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ABSTRACT

STATISTICAL INFERENCE ON SELF-SIMILAR AND INCREMENT STATIONARY
PROCESSES AND RANDOM FIELDS

By

Jeonghwa Lee

This dissertation is about making statistical inference on self-similar and increment stationary

processes/random fields. Self-similarity and, more generally, fractality are seen in many objects in

nature which have similar features at different scales, for smaller scale and larger scale. The most

well known statistical model that has self-similarity is fractional Brownian motion (fBm). It has

been useful for its self-similarity, increment stationarity, and Gaussianity, and it naturally arises

as the scaling limits of random walk, having many applications in hydrology, telecommunication

network, finance, etc. Some extensions of fBm have been introduced including operator fractional

Brownian motion (OFBM)[19][34] and operator scaling Gaussian random field (OSGRF) [8].

OFBM and OSGRF are multivariate processes, random field, respectively, both have operator

self-similarity/operator scaling property, Gaussianity, and increment stationarity.

The first topic is about estimating Hurst parameter which is a measure for self-similarity in

statistical model. Hurst estimation is examined/developed in OFBM and OSGRF using wavelet

transform and discrete variationmethod, respectively. The asymptotics of the estimators are derived

in continuous sample path, discrete sample, and discrete noisy sample in OFBM. In OSGRF, the

asymptotics of the estimators are derived in different sampling methods, fixed domain/increasing

domain, and/or samples on the exact directions/ samples on the grid lines. The performance of the

estimators is examined through simulating OFBM and OSGRF, respectively, and the good choice

for scale parameter in wavelet function and discrete variation method is recommended.

The second topic is on measuring dependency between two random fields that are increment

stationary. The dependency is measured in spectral domain by defining and estimating coherence

in multivariate random field. The concept of coherence is originated from multivariate stationary

time series, and it measures correlation between two time series in spectral domain. Recently, the



definition is extended to multivariate random fields by [30]. In this dissertation, the concept of

coherence is extended to multivariate random field with stationary increments, its properties are

examined and its estimation method is developed. Especially, the concept and the estimator method

are applied to OFBM.
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CHAPTER 1

INTRODUCTION

Hurst exponent is a measure for self-similarity in time series/stochastic process. It is also called

fractal index or long-memory parameter as it measures roughness of path and/or correlatedness

among the variables in the path. The most well known statistical model that has Hurst exponent

which encompasses all three properties above is fractional Brownian motion. The fractional

Brownian motion (fBm) developed by Mandelbrot and Van Ness (1968)[36] has been studied by

many authors for its importance in modeling processes that have long memory and/or a statistical

self-similarity property.

Fractional Brownian motion (fBm), BH, is a Gaussian process with stationary increments and

covariance function

E(BH(t), BH(s)) =
1
2
(|t |2H + |s |2H − |t − s |2H),

where H ∈ (0, 1) is the Hurst index. Firstly, it is a self-similar process,

{BH(ct)}t∈R
f .d
= {cH BH(t)}t∈R every c > 0,

where
f .d.
= denotes equality of all finite-dimensional marginal distributions, which can be easily

derived from the definition of fBm. Secondly, the larger the Hurst index, H ∈ (0, 1), is, the smoother

the sample path of BH is, even though for every H ∈ (0, 1, ), the sample function BH(t) is nowhere

differentiable. Thirdly, if H ∈ (.5, 1), the increments of BH, {BH(i + 1) − BH(i)}i∈N, is a stationary

process with long-memory, i.e.
∞∑

i=1
cov(BH(i + 1) − BH(i), BH(2) − BH(1)) = ∞,

whichmeans that {BH(i+1)−BH(i)}i∈N has strong dependency and its correlation does not decrease

as fast as a conventional stationary process which has the absolutely summable autocovariace

function like when H ∈ (0, .5)
∞∑

i=1
cov(BH(i + 1) − BH(i), BH(2) − BH(1)) < ∞.
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Because of the usefulness of the Hurst parameter in capturing the above important properties, there

have been many applications of fBm and an extensive literature on methodology of estimating

Hurst parameter. For example, fBm has been used in image generation and interpolation, texture

classification and the modeling of burst errors in communication channels, 1/ f noise in oscillators

and current noise in metal films and semiconductor devices. Some extensions of fBm have been

introduced including operator fractional Brownian motions [19][34] and operator scaling Gaussian

random fields [8].

A large body of literature studies estimation of the Hurst index, H, or memory parameter, d,

for fractional Brownian motion and more general processes. One way is to use discrete variation

of sample paths [2][10][13][14], and the other method uses wavelet transform [4][22][26][42][43]

[48][50]. For stationary processes, Fourier transform can be useful, or if it is non-stationary then

one uses this method after differencing the process, ∆k X , andmaking it stationary [22][25][46][47].

Overview and comparison of the two methods, wavelet and Fourier methods, can be found in [22].

In this dissertation, Hurst estimation is developed for an operator fractional Brownian motion

(OFBM) and operator scaling Gaussian random field (OSGRF) using the wavelet transform and

discrete variation method, respectively. In this case, the self-similarity index is a matrix H whose

eigenvalues determine many of their statistical properties. An estimator of the Hurst parameters in

OFBM using wavelet method is proposed in [4] in an increasing domain. In [4], eigenvalue method

was used as the Hurst matrix H was assumed to be diagonizable having eigenvalues h1, h2, and

only hurst index h1 was taken into account for the convergence rate of the estimators. And it was

mentioned that increasing the value of h2 − h1 can increase estimator performance. (see Remarks

4.1,4.4 in [4].)

In Chapter 2, the estimator of the Hurst indices of OFBM is studied in a fixed domain using

the similar method developed in [4]. The asymptotics of the estimator is derived in a continuous

sample path, discrete sample, and discrete noisy sample, respectively. It is revealed that not only

h1, h2, but the dependence structure within the components, i.e. the covariance matrix Γ(1, 1) of

BH(1), and the choice of the scale parameter of wavelet function also affect the performance of the
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estimator.

In [32], parametric estimation method was developed for estimating Hurst parameters in OS-

GRFs using a fast Fourier transform approximation to harmonizable representation of OSSRFs. In

Chapter 4, a different method is proposed for estimating the Hurst parameters in OSGRF, and its

performance is investigated in different sampling methods.

The wavelet and discrete variation method in fBm is introduced in Section 1.1, and the models

of OFBM and OSGRF will be explained in Section 1.3. The methodology and the results will be

shown in Chapter 2 and Chapter 4 for OFBM and OSGRF, respectively.

The concept of coherence originates from multivariate stationary time series, and it measures

correlation between two time series in the spectral domain. Recently, the definition extended

to multivariate stationary random fields by [30]. The definition of coherence in stationary time

series and random fields are introduced in Section 1.2. In Chapter 3, the concept of coherence is

extended to multivariate random fields with stationary increments, its properties are examined and

its estimation method is developed. Particularly, the concept and the method are applied to OFBM.

1.1 Estimation methods of Hurst parameter

There are several methods for estimating Hurst parameter. Among them are wavelet method

and discrete variation method which will be used in Chapter 2 and Chapter 4, respectively.

1.1.1 Wavelet method

The wavelet transform of BH is defined as

d j,k :=
∫
R
ψ j,k (t)BH(t)dt,

where ψ j,k (t) = 2 j/2ψ(2 j t − k), and where ψ is a wavelet function which has the following

properties.

(W-1) ψ has compact support and ∫
R
ψ2(t)dt = 1
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(W-2) ψ has M vanishing moments:∫
R

tmψ(t)dt = 0 for all m = 0, ..., M − 1.

Then for any fixed scale j, the wavelet coefficients {d j,k }k is mean-zero stationary Gaussian process

with variance

E(d2
j,k ) = 2− j(2H+1)

∫
R
ψ(t)ψ(s)|t − s |2Hdtds.

Note that
∫
R
ψ(t)ψ(s)|t − s |2Hdtds = E(d2

0,k ) and the covariance between d0,k and d0,k′ decreases

as fast as cov(d0,k, d0,k′) ∼ |k − k′|2H−2M as k − k′→∞.

Since

log d2
j ∼ −2 jH log 2 + log E(d2

0,k ),

the estimator of H is the least square estimate on log-regression of d2
j on j = J1, ..., J2 where d2

j is

the sample mean of {d2
j,k ; k = 0, 1, ..., n}.

Ĥ = −
1
2

J2∑
j=J1

w j log2 d2
j

where
J2∑

j=J1

w j = 0,
J2∑

j=J1

jw j = 1.

1.1.2 Discrete variations method

This sections is mainly from [15]. Define a = {aq, q = 0, 1, ..., `} as a filter of length ` + 1 with

order p ≥ 1, that is a vector with ` + 1 components satisfying∑̀
q=0

q jaq = 0 for j = 0, ..., p − 1 and
∑̀
q=1

qpaq , 0.

Define

Ba
H(i) :=

∑̀
q=0

aqBH(i − q).
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The covariance and correlation functions are given by

E(Ba
H( j)B

a
H(i + j)) = −

1
2

∑̀
q,r=0

aqar |q − r + i |2H

for i, j ∈ Z. By filtering BH with a, the correlation of Ba
H decreases as cor(Ba

H( j)B
a
H( j + i)) ∼

|i |2H−2p as i →∞. For m ≥ 1, define dilated filters am of a filter a by

am
i =


ai/m if i/m is integer

0 otherwise

for i = 0, ...,m`. That is, am is a filter with length m` + 1 with order p. Then it is derived that

E(Bam
H ( j)B

am
H (i + j)) = −

1
2

m∑̀
q,r=0

am
q am

r |q − r + i |2H = −
1
2

∑̀
q,r=0

aqar |mq − mr + mi |2H,

and

E
(
(Bam

H )
2
)
= m2Hπa

H(0),

where πa
H(0) := E((Ba

H( j))
2) and (Bam

H )
2 is the sample mean of {(Bam

H ( j))
2, j = 1, ..., n}. Then the

estimator of H, Ĥ, is the ordinary least square estimate from the regression of log (Bam
H )

2 on m. In

other words, since

log (Bam
H )

2 ∼ 2H log m + log πa
H(0),

the estimator Ĥ is

Ĥ =
A′

2| |A| |2
(

log (Bam
H )

2
)

m=M1,...,M2 ,

where Am = log m− 1
M2−M1+1

∑M2
m=M1

log m and M1 ≤ m ≤ M2. In particular, if m = 2M1, ..., 2M2

then Ĥ can be expressed as

Ĥ =
1
2

M2∑
r=M1

wr log2 (B
a2r

H )2
,

where
M2∑

r=M1

wr = 0,
M2∑

r=M1

rwr = 1.
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1.2 Coherence ofmultivariate stationary processes andmultivariate random
fields

This section is mainly from 11.6 in [11]. Let Xt = (Xt,1, Xt,2)
′ be a bivariate stationary time

series with mean zero and covariances ci j(h) = E(Xt+h,i Xt, j) satisfying

∞∑
h=−∞

|ci j (h)| < ∞ i, j = 1, 2.

Then the matrix

f (λ) =
1

2π

∞∑
h=−∞

e−ihλC(h) =
©«

f11(h) f12(h)

f21(h) f22(h)

ª®®¬
is called the spectral density matrix or spectrum of Xt where C(h) is the 2 × 2 matrix with (i, j)

element ci j(h), i, j = 1, 2. Especially, fii(·) is called the spectral density of the univariate series

{Xt,i}, i = 1, 2, and f12(·) is called the cross spectrum or cross spectral density of {Xt,1} and {Xt,2}.

Since cii(·) is symmetric around zero, fii(·) is real-valued and symmetric around zero, but not

fi j(·), i , j . It is followed from the above definition that

C(h) =
∫ π

−π
eihλ f (λ)dλ

and Xt has spectral representation,

Xt,i =

∫
(−π,π]

eitλdZi(λ)

where

fi j(λ)dλ = E(dZi(λ)dZ j(λ)), i, j = 1, 2,

and

E(dZi(λ)dZ j(µ)) = 0 for λ , µ and i, j = 1, 2.

It follows that fi j (·) = f ji(·) and therefore f (λ) = f ∗(λ) where * denotes complex conjugate

transpose. Also, for any a = (a1, a2)
′ ∈ C2, a∗ f (λ)a is the spectral density of {a∗Xt}. Therefore,

a∗ f (λ)a ≥ 0 and the matrix f (λ) is non-negative definite.
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The correlation between dZ1(λ) and dZ2(λ) is called coherence, γ12(λ), at frequency λ,

γ12(λ) = f12(λ)/[ f11(λ) f22(λ)]
1/2.

Note that 0 ≤ |γ12(λ)|
2 ≤ 1 for −π ≤ λ ≤ π, and γ12(λ) close to one indicates a strong linear

relationship between dZ1(λ) and dZ2(λ).

The above notion of coherence in multivariate stationary processes was extended to multivariate

random fields in [30]. Suppose X(t) = (X1(t), ..., Xp(t))′ ∈ Cp is a mean-zero p-variate weakly

statinary random field on t ∈ Rd with a matrix-valued covariance function C(h) = (Ci j (h))
p
i, j=1

where Ci j(h) = Cov(Xi(t + h)X j(t)). For complex-valued stationary processes, Cov(Xi(t)X j(s)) =

E(Xi(t)X j(s)) so that Ci j(h) = Cji(−h).

Theorem 1.2.1 (Cramér (1940)). A matrix valued function C : Rd → Cp×p,C = (Ci j )
p
i, j=1 is a

non-negative definite if and only if

Ci j(h) =
∫
Rd

eiω′h fi j (ω)dω

for i, j = 1, ..., p such that the matrix f (ω) = ( fi j (ω))
p
i, j=1 is nonnegative definite for all ω ∈ Rd .

Like before, fi j (ω) are called spectral and cross-spectral densities for the marginal and cross-

covariance functions Ci j (h), and fi j(ω) = f ji(ω). Note that with covariance function Ci j(·)

fi j (ω) =
1
(2π)d

∫
Rd

e−iω
′hCi j (h)dh

and the coherence function is defined

γ(ω) =
f12(ω)√

f11(ω) f22(ω)

for ω ∈ Rd, and fii(ω) > 0. If fii(ω) = 0, then γ(ω) = 0. The squared coherence satisfies

0 ≤ |γ(ω)|2 ≤ 1 for all ω by Theorem 1.2.1 and |γ(ω)|2 close to one indicates X1 and X2 has strong

linear relationship at particular frequency bands.
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1.3 Operator fractional Brownian motion and operator scaling Gaussian
random fields

Operator fractional Brownian motions and operator scaling Gaussian random fields are exten-

sions of fBm with operator self-similar/scaling property in multivariate stochastic processes and

random field.

1.3.1 Operator fractional Brownian motion

Operator fractional Brownian motions (OFBM) arise naturally as the scaling limit of various

multivariate random walks with (long-range) dependent steps on lattices normalized by linear

operators, from asymptotic analysis of nonstationary fractionally integrated multivariate random

sequences, from central limit theorem in Hilbert spaces, or from modeling heavy traffic in queuing

systems. See Pitt [44], Marinucci and Robinson [37], Rackauskas and Suquet [45], Düker [20, 21],

Delgado, R [17], Majewski [35], just to mention a few.

Let X = {X(t), t ∈ Rd} be a p-variate random field. We say that X is an OFBM with exponent

H if it is a Gaussian field with mean zero and stationary increments, and satisfies the following

operator scaling (operator self-similar) property: For any c > 0,

{X(ct), t ∈ Rd}
f .d.
= {cHX(t)}, (1.1)

where H is a linear operator on Rd and cH = exp(H ln c) =
∑∞

k=1 logk (c)Hk/k! for c > 0. For

convenience, we will not distinguish the operator H from its associated matrix relative to the

standard basis of Rd . One can refer to the monographs [38, 41] for more on operator stable

distributions.

Denote by λH and ΛH the minimum and the maximum of the real parts of the eigenvalues of

H, respectively. Mason and Jurek [38] showed that 0 ≤ λH ≤ ΛH ≤ 1 and that X is non-trivial

if and only if λH > 0. It turns out [39] that many sample path properties of OFBM are reflected

through the real parts of the eigenvalues of the operator H.

Recently, there has been much interest in studying OFBM in the literature.
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Maejima and Mason [34] established a time domain construction of OFBM , while Mason and

Xiao [39] gave a spectral domain construction à la Itô-Yaglom, for general d ≥ 1. When d = 1,

Didier and Pipiras [19] found both time and spectral domain representations for OFBM which is

more general than those given in [34, 39].

AnRp-valued stochastic process {XH(t)}t∈R is said to be OFBM if it is an increment stationary,

zero-mean, and operator self-similar Gaussian process, i,e. when its law scales according to amatrix

exponent H, i.e. for c > 0, {XH(ct)}t∈R
f .d
= {cHXH(t)}t∈R.When the operator H is diagonal, it is

called the multivariate fractional Brownian motion.

In the spectral domain, with the mild assumption that eigenvalues of H satisfy

0 < Re(hk ) < 1, k = 1, 2, ..., p. (1.2)

OFBM admits the following representation:

XH(t) =
∫
R

eit x − 1
ix

(x−(H−(1/2)I)+ C + x−(H−(1/2)I)− C )B̃(dx) (1.3)

for some p × p complex-valued matrix C , where x± = max{±x, 0} and B̃(dx) is a multivariate

complex-valued Gaussian measure such that B̃(−dx) = B̃(dx) and EB̃(dx)B̃(dx)∗ = dx. In the

time domain, in addition to (2), if Re(hk ) , 1/2, k = 1, 2, ..., p, then OFBM has the following

representation:∫
R

[
((t − u)H−(1/2)I+ − (−u)H−(1/2)I+ )M+ + ((t − u)H−(1/2)I− − (−u)H−(1/2)I− )M−

]
B(du), (1.4)

where M−,M+ are p × p matrices with real-valued entries and B(du) is a multivariate real-valued

Gaussian measure. The representation (4) is obtained from (3) by taking Fourier transformation of

deterministic kernel in (3).

Unlike the univariate case, OFBM does not have the following property in general.

E(XH(t)XH(s)
∗) = E(XH(s)XH(t)

∗), (1.5)

where * represents Hermitian transposition. InOFBM, time reversibility of the process is equivalent

to (1.5). Didier and Pipiras (Theorem 5.1, Corollary 5.1 in [19]) provided some conditions on C
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and M in (1.3) and (1.4) respectively for OFBM to be time-reversible. With this condition, one

has the following equation analogous to fBm.

E(XH(t)XH(s)
∗) =

1
2
(|t |HΓ(1, 1)|t |H

∗
+ |s |HΓ(1, 1)|s |H

∗
+ |t − s |HΓ(1, 1)|t − s |H

∗
), (1.6)

where Γ(1, 1) = EXH(1)XH(1)∗.

In Chapter 2, OFBMwith d = 1, p = 2 is used with scaling matrix H, and its eigenvalues (Hurst

indices) h1, h2. In Chapter 3, OFBM with d ≥ 1, p = 2 is used.

1.3.2 Operator scaling Gaussian random fields

A scalar valued random field {X(t)}t∈Rd is called operator-scaling if for some d × d matrix E with

positive real parts of the eigenvalues and some H > 0 we have

{X(cE t)}t∈Rd
f .d.
= {cH X(t)}t∈Rd for all c > 0. (1.7)

If E is the identity matrix, then X has self-similar property with Hurst index H, {X(ct)}
Rd

f .d.
=

{cH X(t)}
Rd, and fractional Brownian field is well known class of such field. If E is diagonizable

matrix, Hui = λiui, i = 1, ..., d, then {Xi(ct)}t∈R
f .d.
= {cH/λi Xi(t)}t∈R for any c > 0, where

Xi(t) = X(tui). As this model has different Hurst indices H/λi along the different coordinates ui, it

is expected to be useful to capture such features observed in nature object. Among the applications

of this model is ground water hydrology, [7].

In [8], harmonizable representation and moving average representation of operator scaling

stable random fields (OSSRFs) are defined as below: Harmonizable representation is

Xψ(t) = Re
∫
Rd
(ei〈t,ξ〉 − 1)ψ(ξ)−H−q/αWα(dξ), t ∈ Rd,

where ψ is a continuous, E t-homogeneous function such that ψ(ξ) , 0 for ξ , 0, 0 < α ≤ 2, and

H ∈ (0, a1), a1 is the smallest real parts of the eigenvalue of E . Moving average representation is

Xϕ(t) =
∫
Rd
(ϕ(t − y)H−q/α − ϕ(−y)H−q/α)Zα(dy), t ∈ Rd,
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where ϕ be an E-homogeneous, (β, E)−admissible function, 0 < β, 0 < α ≤ 2, and 0 < H < β. ϕ

is E-homogeneous if ϕ(cE t) = cϕ(t), for all c > 0 and t ∈ Rd \ {0}, and is called (β, E)−admissible

if for any 0 < A < B, there exists positive constant C such that, for A ≤ ||y | | ≤ B, τ(t) ≤ 1 ⇒

|ϕ(t + y) − ϕ(y)| ≤ Cτ(t)β. It turns out that the harmonizable representation is more flexible in

the class of possible functions ϕ whereas the moving average representation is more restrictive.

However they both satisfy (1), have stationary increments and are continuous in probability.

In [9], explicit covariance functions of operator scaling Gaussian random fields are provided

making a fast and exact method of simulation available in these classes. They define a function

τE (t) =
( d∑

i=1
|〈t, ui〉|

2ai
)1/2

, t ∈ Rd, (1.8)

where 1/ai = λi > 0, ui, i = 1, 2, ..., d, are eigenvalues and eigenvectors of a diagonizable matrix

E , and find out that for H ∈ (0, 1], υE,H(t) = τE (t)2H is the semi-variogram funtion of a centered

Gaussian random field that has stationary increments and satisfies (1.7). Recall semi-variogram of

X is defined by υE,H(h) = 1
2 E(X(t + h) − X(t))2.

Throughout this dissertation, var, cov means variance and covariance respectively, vec means

vectorization of a matrix, especially for symmetric matrix vec(
©«
a b

b d

ª®®¬) = (a, b, d)′,→d indicates

convergence in distribution, C and c are a generic constant matrix and scalar respectively, which

are not related to j, n,H. For two matrices A = (ai j ), B = (bi j), A ≤ B means ai j ≤ bi j for all i, j .

a ∼ b means a/b→ 1, an = Op(bn) means ab/bn is bounded in probability which also implies an

converges in probability if bn → 0.
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CHAPTER 2

ESTIMATING HURST INDICES IN OPERATOR FRACTIONAL BROWNIAN MOTION

2.1 Basic Properties of the Wavelet Coefficients of OFBM

Let XH(t) be an operator fractional Brownian motion satisfying (1.1-1.3),(1.5-1.6). For nota-

tional convenience, XH(t) is denoted as Xt = (Xt,1, Xt,2) hereafter. Suppose we observe Xt in a

fixed domain t ∈ [0, 1]. The assumptions below are given to wavelet function and OFBM.

ASSUMPTION (W1) :

ψ is a wavelet function with two vanishing moments and has compact support [0, S].

ASSUMPTION (OFBM1):

Time reversibility holds, i.e., {Xt}
f .d.
= {X−t}.

ASSUMPTION (OFBM 2):

Xt is a bivariate OFBM with scaling matrix H = Pdiag(h1, h2)P−1, 0 < h1 ≤ h2 < 1, i.e. H is

diagonizable with P =
©«
cos θ − sin θ

sin θ cos θ

ª®®¬ .
For j ∈ Z and for some large n greater than 2 j , define the set Sj = {ki, j : ki, j =

2 j
n i, i = 1, ..., n}.

Denote the random wavelet coefficients of Xt by

d j,ki, j =

∫
R
ψ j,ki, j (t)Xt dt ki, j ∈ Sj,

where ψ j,ki, j (t) = 2 j/2ψ(2 j t − ki, j). The sequence {d j,ki, j } is centered bivariate Gaussian and

stationary with respect to the location parameter i for fixed j. It has the following properties.

(P1)

{d j,ki, j ; i ∈ [1, ..., n]}
f .d.
= {2− j(H+1/2)d0,ki, j ; i ∈ [1, ..., n]}.
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(P
′
1)

{d j,ki, j , d j+1,ki, j+1; i ∈ [1, ..., n]}
f .d.
= {2− j(H+1/2)d0,ki, j , 2

− j(H+1/2)d1,ki, j+1; i ∈ [1, ..., n]}.

(P2)

var(d j,ki, j ) = 2− j(H+1/2)c(ψ,H)2− j(H+1/2),

where c(ψ,H) = 1/2
∫
ψ(t)ψ(s)|t − s |HΓ(1, 1)|t − s |Hdsdt .

(P3) cov(d j,ki, j , d j,ki′, j
) = 2− j(H+1/2)cov(d0,ki, j , d0,ki′, j

)2− j(H+1/2) , and it decays hyperboli-

cally fast (each element of the covariance matrix decays hyperbolically fast) as |ki, j − ki′, j | → ∞

due to two vanishing moments of ψ ([13],[49]).

(P4) |cov(d0,ki, j , d0,ki′, j
)`,p | ≤ c(1 + |ki, j − ki′, j |)

2(h2−2), `, p = 1, 2, h1 ≤ h2.

(P
′
4) cov(d j,ki, j , d j+1,ki′, j+1) = 2− j(H+1/2)cov(d0,ki, j , d1,ki′, j+1)2

− j(H+1/2) and

cov(d0,ki, j , d1,ki′, j+1)

=
1
2

∫
ψ(t)ψ(s)|2−1t − s + ki, j − 2−1ki′, j+1 |

H
Γ(1, 1)|2−1t − s + ki, j − 2−1ki′, j+1 |

Hdtds

=
1
2

∫
ψ(t)ψ(s)|2−1t − s + ki, j − ki′, j |

H
Γ(1, 1)|2−1t − s + ki, j − ki′, j |

Hdtds,

therefore

|cov(d0,ki, j , d1,ki′, j+1)`,p | ≤ c(1 + |ki, j − ki′, j |)
2(h2−2), `, p = 1, 2, h1 ≤ h2.

(P5) By the stationary increments ofXt and wavelet assumption (W1), {(d j,ki, j , ..., d j+L,ki, j+L ); i =

1, ..., n} is a multivariate stationary process for a fixed j, L ∈ Z.
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2.2 Wavelet estimation of Hurst index in OFBM

2.2.1 Observing sample path of OFBM

Throughout this chapter, assumptions (W1, OFBM1, OFBM2) are assumed. Assume further that a

continuous sample path of Xt is observed for t = [0, 1]. Then, the estimation strategy is as follows.

Define a 2 × 2 sample covariance matrix Q j in the following way:

Q j =
∑
k∈Sj

d j,kd′ j,k/n,

where d j,k is a vector of wavelet coefficients of sample path of OFBM,

d j,k =
©«

∫
R

Xs,1ψ j,k (s)ds∫
R

Xs,2ψ j,k (s)ds

ª®®¬ .
As n increases, Q j gets closer to its expectation,

Q j ∼ 2− j(H+1/2)c(ψ,H)2− j(H+1/2).

It is shown later that the eigenvalues of Q j satisfy ρ(Q j)i ∼ ci2 j(2hi+1), i = 1, 2, for some constants

ci, where ρ(Q j)i are the eigenvalues of Q j . The estimator hi, j of hi is the log regression of ρ(Q j)i

on j.

hi, j =
1
2

j∑
`= jL

w` log2 ρ(Q`)i −
1
2
, (2.1)

where
j∑

`= jL

w` = 0,
j∑

`= jL

`w` = 1.

Note that the eigenvalues of Q j are the same as those of P−1Q j P, and

P−12− j(H+1/2)d0,k =
©«
2− j(h1+1/2) 0

0 2− j(h2+1/2)

ª®®¬ P−1d0,k .

Since our estimators use eigenvalues of the matrix Q j and ρ(Q j) = ρ(P−1Q j P), it is assumed

that the matrices P, P−1 were premultiplied on both sides of the matrix Q j and assume that
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H = diag(h1, h2). i.e. ρ(Q j) = ρ(P−1Q j P) so we analyze P−1Q j P instead. Therefore, from now

on, we assume H = diag(h1, h2) and

var(d j,k ) =
©«
2 j(h1+1/2) 0

0 2 j(h2+1/2)

ª®®¬ P−1c(ψ,H)P
©«
2 j(h1+1/2) 0

0 2 j(h2+1/2)

ª®®¬
without loss of generality.

Proposition 2.2.1. Let 2 j−N → m, where m is a constant, m ∈ [0, 1] , as n→∞. Then as n→∞,

2 j/2{vec(Vj(Q j − EQ j)Vj)} →d N(0, Σ j),

where Vj =
©«
2 j(h1+1/2) 0

0 2 j(h2+1/2)

ª®®¬ and the elements of Σ j are

lim
n→∞

∑
k,k′∈Sj

2 j

n
{E[(d0,kd′0,k′)`,`′]E[(d0,k′d

′
0,k )p,p′] + E[(d0,kd′0,k′)`,p′]E[(d0,k′d

′
0,k )p,`′]},

`, p, `′p′ = 1, 2.

Proof. Note that {d0,k ; k ∈ Sj } is a stationary Gaussian process for fixed j, and let

f`,p(d0,k ) := d0,k,`d0,k,p − E[d0,k,`d0,k,p], `, p = 1, 2.

Then, f`,p has a generalized Hermite rank 2 (see (2.2) in [5]), and

2 j(h`+1/2)2 j(hp+1/2)(Q j − EQ j)`,p
f .d.
=

∑
k∈Sj

d0,k,`d0,k,p − E[d0,k,`d0,k,p]

n
:=

∑
k∈Sj

f`,p(d0,k )

n
.

Note that for `, p = 1, 2,

lim
n→∞

∑
k∈Sj

2 j

n
|r`,p(k)|2 < ∞,

where r`,p(k) = cov(d0,0,`, d0,k,p), by (P
′
4) and the fact that Sj = {

i2 j
n , i = 1, 2, ..., n.}. Then, by

Theorem 4 in [5],

n1/2
∑
k∈Sj

1
n

[
f1,1

(2 j/2d0,k

n1/4

)
, f1,2

(2 j/2d0,k

n1/4

)
, f2,2

(2 j/2d0,k

n1/4

)]
= 2 j/2

∑
k∈Sj

(
f1,1(d0,k )

n
,

f1,2(d0,k )

n
,

f2,2(d0,k )

n

)
converges to multivariate normal distribution. �

15



Corollary 2.2.2. Let 2 j−N → m. (see Proposition 2.2.1 for m) Then as n→∞,

2 j/2

©«

vec(Vj(Q j − EQ j)Vj)

2−1/2vec(Vj−1(Q j−1 − EQ j−1)Vj−1)

...

2− jL/2vec(Vj− jL (Q j− jL − EQ j− jL )Vj− jL )

ª®®®®®®®®¬
→d N(0, Σ∗j ),

where Σ∗j is a block matrix where the (m,m)-th block is Σ j−m+1, and (m, n)-th block, m > n, consists

of

lim
n→∞

2(m−n)/22(hl+hp+1)(m−n)
∑

k∈Sj−m+1,k′∈Sj−n+1

2 j

n
{E[(d0,kd′m−n,k′)l,l′]E[(d0,k′d

′
m−n,k )p,p′]

+E[(d0,kd′m−n,k′)l,p′]E[(d0,k′d
′
m−n,k )p,l′]}, l, p, l′, p′ = 1, 2.

Proof. Without loss of generality, let jL = j − 1. By (P
′
4),

(d j,k,1, d j,k,2, d j−1,k′,1, d j−1,k′,2)k∈Sj,k′∈Sj−1

is a vector valued stationary Gaussian process for a fixed j. Define f j
l,p and f j−1

l,p as in the above

proposition. Since both of their generalized rank are 2, and by (P
′
4)

lim
n→∞

∑
k∈Sj

2 j

n
cov(d0,0,`, d0,k,p)

2 < ∞, lim
n→∞

∑
k∈Sj

2 j

n
cov(d1,0,`, d0,k,p)

2 < ∞,

for `, p = 1, 2. Therefore, the result is derived from Theorem 9 in [5].

�

Proposition 2.2.3. If H is diagonizable and has real eigenvalues, then for i = 1, 2,

| log ρ(EQ j)i + j(2hi + 1) log 2 + ci | =


O(2−2 j(h2−h1)), if h1 , h2

0, if h1 = h2,

where c1 = a, c2 = d − b2
a .
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Proof. To calculate the eigenvalues of EQ j , we only need to calculate the eigenvalues of the matrix,

©«
2− j(h1+1/2) 0

0 2− j(h2+1/2)

ª®®¬
©«
a b

b d

ª®®¬
©«
2− j(h1+1/2) 0

0 2− j(h2+1/2)

ª®®¬ ,
where ©«

a b

b d

ª®®¬ = Pc(ψ,H)P−1

by Assumption(OFBM2) and (P2).

Let a( j) = 2− j(2h1+1)a, d( j) = 2− j(2h2+1)d, and b( j) = 2− j(h1+1/2)2− j(h2+1/2)b. Then the eigen-

values ρ(EQ j)i, i = 1, 2 of EQ j are

(a( j) + d( j)) ±
√
(a( j) + d( j))2 − 4(a( j)d( j) − b2

( j))

2
.

If h1 = h2 = h, the result follows since

ρ(EQ j)i = 2− j(2h+1) (a + d) ±
√
(a + d)2 − 4(ad − b2)

2
. (2.2)

Now assume h1 , h2. By Taylor’s expansion,√
(a( j) − d( j))2 + 4b2

( j) =
√
(a( j) − d( j))2 +

4b2
( j)

2
√
(a( j) − d( j))2 + θ j4b2

( j)

,

where θ j ∈ [0, 1]. Therefore

ρ(EQ j)1 = 2− j(2h1+1)
(
a +

4b2

4
√
(a2−2 j(h1−h2) − d)2 + θ j4b22−2 j(h1−h2)

)
. (2.3)

Similarly,

ρ(EQ j)2 = 2− j(2h2+1)
(
d −

4b2

4
√
(d2−2 j(h2−h1) − a)2 + θ j4b22−2 j(h2−h1)

)
. (2.4)

The result is derived by using the Mean value theorem and the fact that 22 j(h2−h1) →∞. �
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Let

g1(a, b, d) := 2− j(2h1+1)
(
a +

4b2

4
√
(a2−2 j(h1−h2) − d)2 + θ j4b22−2 j(h1−h2)

)
, (2.5)

g2(a, b, d) := 2− j(2h2+1)
(
d −

4b2

4
√
(d2−2 j(h2−h1) − a)2 + θ j4b22−2 j(h2−h1)

)
. (2.6)

Proposition 2.2.4. If H is diagonizable and has real eigenvalues, then

2 j/2(log ρ(Q j)i − log ρ(EQ j)i) →d N(0, Σρ)

for i = 1, 2, where Σρ = g(1)
′
Σg(1), and where Σ is from Proposition 2.2.1, and g(1) is the vector of

the first derivatives of (g1, g2).

Proof. Let

Vj EQ jVj =
©«
a b

b d

ª®®¬ , VjQ jVj =
©«
a j b j

b j d j

ª®®¬ .
Note that ©«

a b

b d

ª®®¬ = Pc(ψ,H)P−1 and
©«
a j b j

b j d j

ª®®¬
law
=

2 j−1∑
k=0

d0,kd′0,k/2 j−1.

Note that a j, b j, d j are randomvariableswhich converge to a, b, d, respectively, with the convergence

rate of 2( j−1)/2 by Proposition 2.2.1. From the previous Proposition 2.2.3 and delta method, the

result is derived, since log ρ(Q j)i − log ρ(EQ j)i = gi(a j, b j, d j) − gi(a, b, d), which has derivative

for each element. By Proposition 2.2.1, the result is derived with Σρ = g(1)
′
Σg(1), where Σ is

from Proposition 2.2.1, and g(1) is the vector of the first derivatives of (g1, g2) with three variables

a, b, d. �

Corollary 2.2.5. For i = 1, 2,

2 j/2

©«

log ρ(Q j)i − log ρ(EQ j)i

log ρ(Q j−1)i − log ρ(EQ j−1)i

..

log ρ(Q j− jL )i − log ρ(EQ j− jL )i

ª®®®®®®®®¬
→d N(0, Σρ∗),
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where Σρ∗ is a ( jL + 1) × ( jL + 1) matrix whose (`,m)-th element is Σρ∗
`,m = g(1)

′
Σ∗
(`,m)g

(1), and

Σ∗
(`,m) is the (`,m)-th block matrix in Corollary 2.2.2.

Proof. The result follows from Propositon 2.2.4 and Corollary 2.2.2. �

Define

hi, j = −
1
2

j∑
`= jL

w` log2 ρ(Q`)i −
1
2
, (2.7)

hE
i, j = −

1
2

j∑
`= jL

w` log2 ρ(EQ`)i −
1
2
. (2.8)

Proposition 2.2.6. As j →∞, for i = 1, 2,

2 j/2(hi, j − hE
i, j) →d N(0, σh),

where σh = W′Σρ∗W, and W = (w j/(2 log 2), ...,w jL/(2 log 2))′

Proof. The result is derived from Corollary 2.2.5. �

Proposition 2.2.7. For i = 1, 2,

|hE
i, j − hi | = Op(

ci,1
ci
( f1( j) − f1( jL))),

where f1( j) = 2− j(2h2−2h1). If h2 − h1 → 0,

|hE
i, j − hi | =

ci,1
ci
(h2 − h1)2−2 jL (h2−h1) + o((h2 − h1)2−2 jL (h2−h1))

for c1,1 = 2b2/a2, c2,1 = 2b2d/a3.

Proof. From (2.3),(2.4) in Proposition 2.2.3,

ρ(EQ j)i = 2− j(2hi+1)(ci + ci,12−2 j(h1−h2) + o(2−2 j(h1−h2))).

Therefore

log ρ(EQ j)i = − j(2hi + 1) log 2 + log ci +
ci,1
ci

2−2 j(h2−h1) + o(2−2 j(h2−h1)) (2.9)

hE
i, j = hi −

ci,1
ci
( f1( j) − f1( jL)). (2.10)
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If h2 − h1 is small,

2−2 j(h2−h1) = 2−2 jL (h2−h1) + 2−2 jL (h2−h1)(−2 j(h2 − h1) + 2 jL(h2 − h1)) log 2

+ o(2−2 jL (h2−h1)(−2 j(h2 − h1) + 2 jL(h2 − h1)))

and

hE
i, j − hi = −

1
2

jU∑
`= jL

w` log2 ρ(EQ`)i − .5 − hi

= −
ci,1
ci
(h2 − h1)2−2 jL (h2−h1) + o(−(h2 − h1)2−2 jL (h2−h1)).

�

2.2.2 Observing discrete sample paths from OFBM

With the discrete sample path of OFBM Xn
i = (X

n
i,1, Xn

i,2) = (Xi/n,1, Xi/n,2), i = 1, ..., n, define the

following:

d̃n
j,k =

S2N− j−1∑
q=0

( ∫ k/2 j+(q+1)/2N

k/2 j+q/2N
ψ j,k (t)dt

)
Xn

k2N− j+q
(2.11)

Q̃n
j =

∑
k∈Sj

d̃n
j,k d̃′nj,k

n
(2.12)

for j ≤ log2 n and 2N = n. Note that for fixed j, {d̃n
j,k }k is a stationary Gaussian process with

mean zero and the covariance between d̃n
j,k and d̃n

j,k′ decays hyperbolically fast as |k − k′| → ∞

similarly to (P4). For these reasons, the analogous to Proposition 2.2.1 holds for Q̃ j .

Proposition 2.2.8. Let 2 j−N → m. (m in Proposition 2.2.1.) Then as n→∞,

2 j/2{vec(Vj(Q̃
n
j − EQ̃n

j )Vj)} →d N(0, Σ̃ j),

where the elements of Σ̃ j are defined in (2.15).

If j <<
2h1

.5+2h1
log2 n, then

2 j/2{vec(Vj(Q̃
n
j − EQ j)Vj)} →d N(0, Σ̃ j).
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Proof. Note that

d̃n
j,k =

S2N− j−1∑
q=0

( ∫ k/2 j+(q+1)/2N

k/2 j+q/2N
ψ j,k (t)dt

)
Xn

k2N− j+q
(2.13)

f .d.
= 2− j(H+1/2)

S2N− j−1∑
q=0

( ∫ (q+1)2 j/2N

q2 j/2N
ψ0,0(t)dt

)
X2N− j

k2N− j+q
. (2.14)

Let dn∗
0,k =

∑S2N− j−1
q=0

( ∫ (q+1)2 j/2N

q2 j/2N ψ0,0(t)dt
)
X2N− j

k2N− j+q
. Then E(dn∗

0,kd′n∗0,k′) is hyperbolically

decaying as |k − k′| → ∞, and the limit of dn∗
0,k exists in almost sure sense.

d∗0,k := lim
n

dn∗
0,k =


d0,k, if m = 0∑Sm−1

q=0

( ∫ (q+1)m
qm ψ(t)dt

)
Xm

km+q if m ∈ (0, 1].

Therefore, the result follows with the elements of Σ̃ j from

lim
n→∞

∑
k,k′∈Sj

2 j

n
{E[(d∗0,kd′∗0,k′)`,`′]E[(d

∗
0,k′d

′∗
0,k )p,p′] + E[(d∗0,kd′∗0,k′)`,p′]E[(d

∗
0,k′d

′∗
0,k )p,`′]},

(2.15)

`, p, `′, p′ = 1, 2. Note that

Vj EQ̃n
jVj − Vj EQ jVj = E(dn∗

0,kd′n∗0,k ) − E(d0,kd
′

0,k )

=

S2N− j−1∑
q′,q=0

( ∫ (q+1)2 j/2N

q2 j/2N

∫ (q′+1)2 j/2N

q′2 j/2N
ψ0,0(t)ψ0,0(s)G j,n(t, s, q, q

′)dtds
)

where

G j,n = |t − s |HΓ(1, 1)|t − s |H
′
− |(q − q′)2 j/2N |HΓ(1, 1)|(q − q′)2 j/2N |H

′

and

(G j,n(t, s, q, q
′))1,1 < 2(2 j/2N )2h1

(G j,n(t, s, q, q
′))2,2 < 2(2 j/2N )2h2

(G j,n(t, s, q, q
′))1,2 < 2(2 j/2N )h1+h2
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for q2 j/2N ≤ t ≤ (q + 1)2 j/2N, q′2 j/2N ≤ s ≤ (q′ + 1)2 j/2N . Therefore

(Vj EQ̃n
jVj − Vj EQ jVj)1,1 < c(2 j/2N )2h1 (2.16)

(Vj EQ̃n
jVj − Vj EQ jVj)2,2 < c(2 j/2N )2h2 (2.17)

(Vj EQ̃n
jVj − Vj EQ jVj)1,2 < c(2 j/2N )h1+h2 . (2.18)

If j <<
2h1

.5+2h1
log2 n, 2 j/2(2 j/2N )2h1 → 0, the result is derived. �

Analogous to Corollary 2.2.2 is provided below for discrete case.

Corollary 2.2.9. Let 2 j−N → m. ( see Proposition 2.2.1 for m) Then as n→∞,

2 j/2

©«

vec(Vj(Q̃n
j − EQ̃n

j )Vj)

2−1/2vec(Vj−1(Q̃n
j−1 − EQ̃b

j−1)Vj−1)

...

2− jL/2vec(Vj− jL (Q̃
n
j− jL
− EQ̃n

j− jL
)Vj− jL )

ª®®®®®®®®¬
→d N(0, Σ̃∗j ),

where Σ̃∗j is a block matrix where the (m,m)-th block is Σ̃ j−m+1, and (m, n)-th block, m > n, consists

of

lim
n→∞

2(m−n)/22(h`+hp+1)(m−n)
∑

k∈Sj−m+1,k′∈Sj−n+1

2 j

n
{E[(d∗0,kd′∗m−n,k′)`,`′]E[(d

∗
0,k′d

′∗
m−n,k )p,p′]

+E[(d∗0,kd′∗m−n,k′)`,p′]E[(d
∗
0,k′d

′∗
m−n,k )p,`′]}, `, p, `′, p′ = 1, 2.

As in the previous case, P−1, P are assumed to be premultiplied by each side of the matrix Q̃n
j

and see the convergence rate of the estimator. This is the same as multiplying P−1 by Xn
i . Therefore

it is assumed that H = diag(h1, h2). Let

h̃i, j =
1
2

j∑
`= jL

w` log2 ρ(Q̃
n
` )i −

1
2
, (2.19)

h̃E
i, j =

1
2

j∑
`= jL

w` log2 ρ(EQ̃n
` )i −

1
2
, (2.20)

i = 1, 2,where
∑ j
`= jL

w` = 0,
∑ j
`= jL

`w` = 1.Now the convergence rate of the estimator of discrete

data is as follows.
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Theorem 2.2.10. If the domain is fixed interval in R, H is diagonizable where h1, h2 ∈ (0, 1) then,

h̃E
i, j − hi = O(

ci,1
ci
( f1( j) − f1( jL)) + O((c + c∗)′(f2( j) − f2( jL))) (2.21)

for i = 1, 2, where f1( j) = 2− j(2h2−2h1), f2( j) = ((
2 j
n )

2h1, (2
j

n )
2h1 + (2

j
n )

2h2, (2
j

n )
2h2)
′, c =

c′i
ci

where c′i is a vector of first derivatives of ci(a, b, d) with respect to a, b, d, and c∗ is a vector of first

derivatives of
ci,1
ci

2−2 jL (h2−h1) with respect to a, b, d.

Proof. Set a j, b j, d j from v′j EQ jv j , an
j , b

n
j, d

n
j from v′j EQ̃n

j v j as in Proposition 2.2.4. The con-

vergence rates of |a j − an
j |, |d j − dn

j | and |b j − bn
j | are (2

j/2N )2h1, (2 j/2N )2h2 and (2 j/2N )2h1 +

(2 j/2N )2h2, respectively by (2.16-2.18). Therefore similar methods to Propositions 2.2.3,2.2.7,

and by (2.9),(2.10),

h̃E
i, j − hE

i, j = O((c + c∗)′(f2( j) − f2( jL)).

Since hE
i, j − hi = O( f1( j) − f1( jL)) from Proposition 2.2.7, the result follows. �

Theorem 2.2.11. As j →∞, for i = 1, 2,

2 j/2(h̃i, j − h̃E
i, j) →d N(0, σ̃h),

where σ̃h = W′Σ̃ρ∗W, and Σ̃ρ∗ is analogous with Σρ∗ from Σ̃ instead of Σ.

Remark 1 (1) Op(( f1( j) − f1( jL))) is getting smaller as |h2 − h1 | is getting smaller or j is getting

larger.

(2) Op( f2( j) − f2( jL)) is getting smaller as h1 is increasing or j is getting smaller.

(3) If b2
ad in

©«
a b

b d

ª®®¬ is close to one, then the bias of h̃2, j is large, especially for larger j, since f2( j)

and c−1
2 are large. Since

©«
a b

b d

ª®®¬ = P′c(ψ,H)P

=
1
2

∫
ψ(t)ψ(s)

©«
|t − s |h1 0

0 |t − s |h2

ª®®¬ P′E(XH(1)XH(1)′)P
©«
|t − s |h1 0

0 |t − s |h2

ª®®¬ dtds,
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therefore for fixed h1, h2,
b2
ad = c

M2
12

M11M22
where M := P′E(XH(1)XH(1)′)P. This implies that if the

determinant of the matrix P′E(XH(1)XH(1)′)P is close to zero, the bias of the estimator h̃2, j will

be large.

2.2.3 Hurst estimator in discrete noisy data from OFBM

Suppose we observe

©«
Yn

i,1

Yn
i,2

ª®®¬ =
©«

Xn
i,1

Xn
i,2

ª®®¬ +
©«
ξn
i,1

ξn
i,2

ª®®¬ , (2.22)

i = 1, ..., n, where the ξn
i,1, ξ

n
i,2 are centered noise terms. Y is observed in the interval [0, 1],

Xt = (Xt,1, Xt,2) is operator fractional Brownian motion. Define the following terms:

d̂n
j,k =

S2N− j−1∑
q=0

( ∫ k/2 j+(q+1)/2N

k/2 j+q/2N
ψ j,k (t)dt

)
Yn

k2N− j+q
,

en
j,k =

S2N− j−1∑
q=0

( ∫ k/2 j+(q+1)/2N

k/2 j+q/2N
ψ j,k (t)dt

) ©«
ξn

k2N− j+q,1

ξn
k2N− j+q,2

ª®®®¬ ,
vn

j,k =
S2N− j−1∑

q=0

( ∫ k/2 j+(q+1)/2N

k/2 j+q/2N
ψ j,k (t)dt

)2 ©«
σn

1 ρn

ρn σn
2

ª®®¬ .
Note that d̂n

j,k = d̃n
j,k + en

j,k and vn
j,k is the covariance matrix of en

j,k .

Q̂n
j =

∑
k∈Sj

d̂ j,k d̂′ j,k − vn
j,k

n
, (2.23)

ĥi, j =
1
2

j∑
`= jL

w` log2 ρ(Q̂
n
` )i −

1
2

for i = 1, 2, (2.24)

ĥE
i, j =

1
2

j∑
`= jL

w` log2 ρ(EQ̂n
` )i −

1
2

for i = 1, 2. (2.25)

Two different assumptions are made for the noise term.
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ASSUMPTION A.

The noise terms {ξn
i = (ξ

n
i,1, ξ

n
i,2)}i are mutually independent and independent of X. Moreover, for

` = 1, 2, En
H,σ[ξ

n
i,`] = 0, En

H,σ[(ξ
n
i,`)

2] = σn
`
, En

H,σ[ξ
n
i,1ξ

n
i,2] = ρ

n, limn σ
n
`
= σ`, limn ρn/(σ

n
1σ

n
2 ) =

r, r ∈ [−1, 1] and supi,n En
H,σ[(ξ

n
i,`)

4] < ∞.

ASSUMPTION B.

The noise terms {ξn
i = (ξ

n
i,1, ξ

n
i,2)}i aremartingale increments and independent ofX, En

H,σ[ξ
n
i,` |F

n
i/n] =

0.Moreover, En
H,σ[(ξ

n
i,`)

2 |Fn
i/n], En

H,σ[(ξ
n
i,`)

3 |Fn
i/n] and En

H,σ[(ξ
n
i,`)

2ξn
i,p |F

n
i/n] are constants σ

n
`
, cn

i,`,

and c′i
n, respectively. En

H,σ[ξ
n
i,1ξ

n
i,2 |F

n
i/n] = ρ

n, limn σ
n
`
= σ`, limn ρn/(σ

n
1σ

n
2 ) = r, r ∈ [−1, 1] and

supi,n En
H,σ[(ξ

n
i,`)

4] < ∞ for ` = 1, 2.

Assumption A is a special case of Assumption B. Asymptotic distribution of the estimator will

be proved under Assumption B. Note that Q̂n
j − Q̃ j =

∑3
u=1 rn,(u)

j /n, with

rn,(1)
j =

∑
k
(en

j,k )(e
n
j,k )
′
− vn

j,k, rn,(2)
j =

∑
k

en
j,k (d j,k )

′
+ d j,k (en

j,k )
′
,

rn,(3)
j =

∑
k

bn
j,k (e

n
j,k )
′
+ en

j,k (b
n
j,k )
′
.

Since the expectation of rn,(1)
j , rn,(2)

j , rn,(3)
j are zero, EQ̂n

j = EQ̃n
j . Therefore for the bias of the

estimator ĥi, j , we get the same result as in Theorem 2.2.10.

Proposition 2.2.12. If the domain is a fixed interval in R, H is diagonizable where h1, h2 ∈ (0, 1)

then, for i = 1, 2,

ĥE
i, j − hi = O

(ci,1
ci
( f1( j) − f1( jL)

)
+ O

(
(c + c∗)′(f2( j) − f2( jL))

)
. (2.26)

To find the variance of the estimator ĥi, j , note that

Q̂n
j = Q̃n

j + rn,(1)
j /n + rn,(2)

j /n + rn,(3)
j /n. (2.27)

The following result is obtained in a similar way to Proposition 2 in [26].
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Proposition 2.2.13. Under Assumption B

|(Q̂n
j − Q̃n

j )`,` | = Op(n−22 j/2 ∨ n−1/22− j(h`+1)),

|(Q̂n
j − Q̃n

j )`,p | = Op(n−22 j/2 ∨ n−1/22− j(h1+1)),

for ` , p, `, p = 1, 2.

Proof.

E[(rn,(1)
j )2`,p] ≤ c

∑
k

E[(en
j,ken

j,k
′
− vn

j,k )
2
`,p]

≤ c
∑

k

S2N− j−1∑
q=0

( ∫ k/2 j+(q+1)/2N

k/2 j+q/2N
ψ j,k (t)dt

)4

× E
[( ©«

ξn
k2N− j+q,1

2 ξn
k2N− j+q,1

ξn
k2N− j+q,2

ξn
k2N− j+q,1

ξn
k2N− j+q,2

ξn
k2N− j+q,2

2

ª®®®¬ −
©«
σn

1 ρn

ρn σn
2

ª®®¬
)2

`,p

]
≤ cn

n
2 j

22 j

n4 .

The first inequality is derived since (en
j,k )(e

n
j,k )
′
− vn

j,k are uncorrelated when |k − k′| ≥ S. The

second inequality is from the Burkholder-Davis inequality since (en
j,k )(e

n
j,k )
′
− vn

j,k is a sum of

martingale increments. The third inequality is derived by the fact that ξn
i,l has bounded fourth

moment and
∫ k/2 j+(q+1)/2N

k/2 j+q/2N ψ j,k (t)dt ≤ c 2 j/2
n . Therefore, each element of the matrix rn,(1)

j /n is

of order n−22 j/2.

For rn,(2)
j /n and rn,(3)

j /n, use theCauchy-Swartz inequality and uncorelatedness of en
j,k when |k−

k′| > S, we obtain rn,(3)
j /n ≤ 2− jn−1/2(n−HC +Cn−H) and rn,(2)

j /n ≤ 2− j/2n−1/2(C2− j(H+1/2) +

2− j(H+1/2)C). Since 2− jn−1/2(n−HC + Cn−H) ≤ 2− j/2n−1/2(C2− j(H+1/2) + 2− j(H+1/2)C), the

results are derived.

�

Theorem 2.2.14. If the domain is a fixed interval in R, H is diagonizable then, for i = 1, 2,

ĥi, j − ĥE
i, j = Op(ci, j,n),
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where

ci, j,n = Op(n−22 j(2hi+3/2) ∨ n−1/22 jhi ∨ 2− j/2). (2.28)

Proof. By (2.3),(2.4), the order of |(Q̂n
j − EQ̂n

j )1,1 | matters for i = 1 and the orders of |(Q̂n
j −

EQ̂n
j )`,p |, `, p = 1, 2, matter for i = 2, respectively, since in (2.3) the denominator goes to infinity

and in (2.4) it converges to a. Set ãn
j , b̃

n
j, d̃

n
j from Q̃n

j , ân
j , b̂

n
j, d̂

n
j from Q̂n

j as in Proposition 2.2.4.

The convergence rate of |ãn
j − ân

j | is 2 j(2h1+1) |(Q̂n
j − Q̃n

j )1,1 |, the convergence rates of |d̃n
j − d̂n

j |

and |b̃n
j − b̂n

j | are 2 j(2h2+1) |(Q̂n
j − Q̃n

j )2,2 | and 2 j(h2+h1+1) |(Q̂n
j − Q̃n

j )1,2 |. Since EQ̂n
j = EQ̃n

j , and

therefore |Q̂n
j − EQ̂n

j | = |Q̂
n
j − Q̃n

j | + |Q̃
n
j − EQ̃n

j |, the result follows from Proposition 2.2.8 and

Proposition 2.2.13. �

Remark 2 Proposition 2.2.12 and Theorem 2.2.14 reveal that with the presence of the noise, the

bias of the estimator ĥi, j remains the same as in the case when discrete sample path is given without

noise, i.e. the bias of ĥi, j is the same as that of h̃i, j . However, the standard error is much larger

as it is given in (2.28), especially when the Hurst indices are big. Theorem 2.2.14 reveals that the

bigger the Hurst indices are, the smaller the j should be chosen in order to reduce the variance of

the estimator. But even so, the performance of the estimator is not good, since for small j, 2− j/2 is

not small. This means that the larger the Hurst indices are, the worse the estimator performs.

In practice, it is hard to calculate vn
j,k since either

( ∫ k/2 j+(q+1)/2N

k/2 j+q/2N ψ j,k (t)dt
)2

is hard to obtain

or
©«
σn

1 ρn

ρn σn
2

ª®®¬ is unknown or both. Next, two ways are provided to replace vn
j,k . Note that vn

j,k is

not changed according to k and it converges to 1
n
∫
ψ2

j,k (t)dt
©«
σn

1 ρn

ρn σn
2

ª®®¬ = 1
n
©«
σn

1 ρn

ρn σn
2

ª®®¬ as n→ ∞.
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Replace vn
j,k by vn∗ := 1

n
∫
ψ2

j,k (t)dt
©«
σn

1 ρn

ρn σn
2

ª®®¬ = 1
n
©«
σn

1 ρn

ρn σn
2

ª®®¬ , and define
Q̂n′

j =
∑
k∈Sj

d̂ j,k d̂′ j,k − vn∗

n
, (2.29)

ĥ
′

i, j = −
1
2

j∑
`= jL

w` log2 ρ(Q̂
n′
` )i −

1
2

for i = 1, 2, (2.30)

ĥ′Ei, j = −
1
2

j∑
`= jL

w` log2 ρ(EQ̂n′
` )i −

1
2

for i = 1, 2. (2.31)

Theorem 2.2.15. If vn
j,k is replaced by vn∗, then for i = 1, 2,

ĥ′i, j − ĥ′Ei, j = Op(ci, j,n)

ĥ′Ei, j − hi = O
(ci,1

ci
( f1( j) − f1( jL)

)
+ O

(
(c + c∗)(f2( j) − f2( jL))

)
+ O(2 j/n2).

Proof. Since

Q̂n′
j = Q̃n

j + (v
n
j,k − vn∗) + rn,(1)

j /n + rn,(2)
j /n + rn,(3)

j /n and (2.32)

vn
j,k − vn∗ = O

(2 j

n2

)
, (2.33)

EQ̂n′
j = EQ̃n

j + O(2
j/n2). (2.34)

Therefore ĥ′Ei, j − hi = h̃E
i, j − hi + O(2 j/n). Since Q̂n′

j = Q̂n
j − vn

j,k + vn∗, and vn
j,k − vn∗ is not a

random variable, the order of ĥ′i, j − ĥ′Ei, j is the same as the order of ĥi, j − ĥE
i, j . �

Next we define different estimator by using the difference between Q̂n′
j − Q̂n′

j−1.

Q̂n′′
j = Q̂n′

j − Q̂n′
j−1, (2.35)

ĥ
′′

i, j = −
1
2

j∑
`= jL

w` log2 ρ(Q̂
n′′
` )i −

1
2

for i = 1, 2, (2.36)

ĥ′′Ei, j = −
1
2

j∑
`= jL

w` log2 ρ(EQ̂n′′
` )i −

1
2

for i = 1, 2. (2.37)
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Note that

Q̂n′
j − Q̂n′

j−1 =
∑
k∈Sj

d̂ j,k d̂′ j,k
n

−
∑

k∈Sj−1

d̂ j−1,k d̂′ j−1,k
n

.

Therefore, ĥ
′′

i, j is the estimator that can be obtained without knowing vn
j,k or vn∗.

Theorem 2.2.16. For i = 1, 2,

ĥ
′′

i, j − ĥ′′Ei, j = Op(c′i, j,n),

ĥ′′Ei, j − hi = O
(ci,1

ci
( f1( j) − f1( jL)

)
+ O

(
(c + c∗)(f2( j) − f2( jL))

)
+ O(2 j+1/n2),

where

c′i, j,n = Op(2n−22 j(2hi+3/2) ∨ 2n−1/22 jhi ∨ 2− j/2). (2.38)

Proof. Note that

Q̂n′′
j = Q̃n

j − Q̃n
j−1 + vn

j,k − vn
j−1,k + rn,(1)

j /n − rn,(1)
j−1 /n + rn,(2)

j /n − rn,(2)
j−1 /n + rn,(3)

j /n − rn,(3)
j−1 /n

and

EQ̂n′′
j = EQ̃n

j − EQ̃n
j−1 + vn

j,k − vn∗ − vn
j−1,k + vn∗

= EQ̃n
j − EQ̃n

j−1 + O(2
j+1/n2)

by (2.33). Since

vec(Vj(EQ̃n
j − EQ̃n

j−1)Vj − Vj(EQ j − EQ j−1)Vj) =

©«
O((2 j/2N )2h1)

O((2 j/2N )h1+h2)

O((2 j/2N )2h2)

ª®®®®®¬
and

EQ j − EQ j−1 =
©«
2− j(h1+1/2) 0

0 2− j(h2+1/2)

ª®®¬
©«
a′ b′

b′ d′

ª®®¬
©«
2− j(h1+1/2) 0

0 2− j(h2+1/2)

ª®®¬ ,
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where a′ = a(1 − 22h1+1), b′ = b(1 − 2h1+h2+1), d′ = d(1 − 22h2+1), using the same method as in

Proposition 2.2.7 and Theorem 2.2.10, ĥ′′Ei, j − hi has the same order as h̃E
i, j − hi with a′, b′d′ instead

of a, b, d. Since

Vj((Q̃
n
j − Q̃n

j−1) − (EQ̃n
j − EQ̃n

j−1))Vj = OP(2 j/2)

by Corollary 2.2.9, and rn,(1)
j /n − rn,(1)

j−1 /n + rn,(2)
j /n − rn,(2)

j−1 /n + rn,(3)
j /n − rn,(3)

j−1 /n has the order

twice as much as the order in Proposition 2.2.13 by (2.27), the result for ĥ
′′

i, j − ĥ′′Ei, j follows the

same way as in Theorem 2.2.15. �

Remark 3 It is revealed from Theorem 2.2.15 that replacing vn
j,k by vn∗ increases the bias of the

estimator by 2 j/n2 which is small for small j . From ĥ′i, j to ĥ′′i, j, by using Q̂n′
j , there is a small

increase in bias but significant increase in standard error as it is seen by comparing Theorem

2.2.15 and Theorem 2.2.16.

2.2.4 Estimator for eigenvectors

Assume a discrete sample path of OFBM Xn
i = (X

n
i,1, Xn

i,2) = (Xi/n,1, Xi/n,2) is observed for

i = 1, ..., n. In Sections 2.2.1-2.2.3, to calculate the eigenvalues, it was assumed that eigenvector

matrices P, P′ were premultiplied both sides of Q j, Q̃n
j , Q̂

n
j . Now, to calculate eigenvectors, we no

longer have that assumption. Let (ũn
i, j, ρ(Q̃

n
j )i), i = 1, 2, be the eigenvector and eigenvalue of the

matrix Q̃n
j . By ASSUMPTION (OFBM2), one needs to know θ to obtain eigenvectors. To estimate

θ, the eigenvector corresponding to the bigger eigenvalue is chosen, i.e. ũn
1, j = (ũ

n
1, j,1, ũ

n
1, j,2). Since

ũn
1, j ≈ (cos θ, sin θ), the esitimator of θ is defined as follows:

θ̃n
j = arctan

( ũn
1, j,2

ũn
1, j,1

)
Let θE

j be the estimator of θ calculated in the same way as above with the matrix EQ̃n
j .

Theorem 2.2.17. As j →∞,

i)

2 j(h2−h1+1/2)(θ̃n
j − θ

E
j ) →d N(0, σ).
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ii)

θE
j − θ = O(

bn
j

an
j
2 j(h1−h2)).

Proof. Note that by Proposition 2.2.8,

Q̃n
j = 2− j(2h1+1)P

©«
ãn

j b̃n
j 2
− j(h2−h1)

b̃n
j 2
− j(h2−h1) d̃n

j 2−2 j(h2−h1)

ª®®¬ P′

EQ̃n
j = 2− j(2h1+1)P

©«
an

j bn
j 2
− j(h2−h1)

bn
j 2
− j(h2−h1) dn

j 2−2 j(h2−h1)

ª®®¬ P′

and ãn
j − an

j = Op(2− j/2), b̃n
j − bn

j = Op(2− j/2), d̃n
j − dn

j = Op(2− j/2). Eigenvectors of matrix does

not change even if a constant is multiplied by the matrix. Therefore θ̃n
j , θ

E
j are the ones calculated

from

Q̃n
j /ã

n
j = P

©«
1 b̃n

j/ã
n
j 2− j(h2−h1)

b̃n
j/ã

n
j 2− j(h2−h1) d̃n

j /ã
n
j 2−2 j(h2−h1)

ª®®¬ P′,

EQ̃n
j /a

n
j = P

©«
1 bn

j/a
n
j 2− j(h2−h1)

bn
j/a

n
j 2− j(h2−h1) dn

j /a
n
j 2−2 j(h2−h1)

ª®®¬ P′,

respectively. Therefore the result for i) follows since Q̃n
j /ã

n
j − EQ̃n

j /a
n
j →d 0 with

©«
2 j(1/2+h2−h1) 0

0 2 j(1/2+2(h2−h1))

ª®®¬
©«

b̃n
j/ã

n
j 2− j(h2−h1) − bn

j/a
n
j 2− j(h2−h1)

d̃n
j /ã

n
j 2−2 j(h2−h1) − dn

j /a
n
j 2−2 j(h2−h1)

ª®®¬→d N(0, Σ).

ii) follows since

EQ̃n
j /a

n
j − P

©«
1 0

0 0

ª®®¬ P′→ 0

with ©«
bn

j/a
n
j 2− j(h2−h1)

dn
j /a

n
j 2−2 j(h2−h1)

ª®®¬→ 0.

�
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Remark 4 (1) The bigger j is, the better precision θ̃n
j has in terms of both bias and standard error.

Therefore j = log2 n is the best choice.

(2) The bigger h2 − h1 is, the better the estimator θ̃n
j is, for it has smaller bias and smaller standard

error.

(3) For the standard error of the estimator θ̃ j, j and h2 − h1 play a role, as they increase, the

standard error decreases, whereas for the bias of the estimator θ̃ j, j, h2 − h1 and bn
j/a

n
j affect on

the performance. Since by (2.13),(2.14)

©«
an

j bn
j

bn
j dn

j

ª®®¬ =
S2N− j−1∑

q,q′=0

∫ (q+1)2 j/2N

q2 j/2N

∫ (q′+1)2 j/2N

q′2 j/2N

1
2
ψ(t)ψ(s)Dq,q′P

′E(XH(1)XH(1)′)PDq,q′dtds,

(2.39)

where Dq,q′ =
©«
|(q − q′)/2N− j |h1 0

0 |(q − q′)2N− j |h2

ª®®¬ .
Therefore the matrix M := P′E(XH(1)XH(1)′)P also plays a role, since bn

j/a
n
j = cM1,2/M1,1 for

fixed H, j, n.

2.3 Simulation Results

Operator fractional Brownian motion was simulated with the circulant embedding method,

[12], [28], with t = i/n, i = 1, ..., n, n = 213, θ = .2π. For wavelet function, the second derivative

of Gaussian pdf was used, which has the second vanishing moment. The simulation was repeated

60 times, resulting in 60 independent discrete sample paths of OFBM and (h̃1, j,r, h̃2, j,r )
60
r=1. The

R package “wmtsa" was used for wavelet transform of sample paths. In Table 2.1 and Table 2.2,

C =
©«
.3 .2

.1 .4

ª®®¬ was used, and C =
©«
.3 .1

.1 .3

ª®®¬ ,C =
©«
.1 .3

.2 .4

ª®®¬ for Table 2.3 and Table 2.4, respectively.

Table 2.1 to Table 2.4 show the results comparing the eigenvalue method in this chapter with

different sets of j and element-wise method, which uses the first element and the second element

of the paths separately to estimate Hurst indices. The bias and standard error of (h̃1, j,r, h̃2, j,r )
60
r=1

were recorded for different sets of h1, h2 ∈ (0, 1).
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In Table 2.1, it is seen that the estimation works better when h1, h2 ∈ (.5, 1) than when

h1, h2 ∈ (0, .5). This was expected from Theorem 2.2.10 since f2( j) and f2( j) − f2( jL) are smaller

when h1 > .5. It is also noticeable that, for smaller hi, smaller j works better than when larger j

was used, which comes from the fact that for smaller hi, f2( j) gets larger dominating other term in

(2.2.21), and to make f2( j) smaller one needs to use smaller j so that 2 j/n becomes smaller. From

Table 2.2, it is clear that the eigenvalue method works well even when the difference between h2

and h1 is as small as .05.

Table 2.3 shows similar patterns as in Table 2.1 as it shows that, for smaller hi, h̃ j with smaller j

has smaller bias than when larger j was used. For larger hi, h̃i with larger j performs better, which

comes from the fact that, for large hi, f1( j) needs to be smaller in (2.2.21). This can be seen as a

trade off between f1( j) and f2( j) in (2.2.21) and which term gets larger when hi becomes smaller

or larger.

In Table 2.4, one noticeable difference from previous tables is that the performance of h̃2 is

significantly worse than previous cases especially when h1 is small. This shows the delicate relation

between h1 and h2 and the dependency within variables. It arises from the fact that, in this case

with C =
©«
.1 .3

.2 .4

ª®®¬ , c2 is close to zero, which results in large bias in h̃2 especially when h1 is small

since it makes both f2( j) and c−1
2 large. This phenomena was expected from Theorem 2.2.10 and

Remark 1. Note that for `, p = 1, 2,

M`,p = (P
′E[XH(1)XH(1)′]P)`,p = (P′C C ′P)`,pm`,p

where

m`,p =

∫
|eit x − 1|
|x |

|x |−(h`+hp+1)dx.

Therefore for fixed h1, h2, the determinant of M is determined by that of P′C C ′P and with

C =
©«
.1 .3

.2 .4

ª®®¬ , det(P′C C ′P) = 4, whereas with C =
©«
.3 .2

.1 .4

ª®®¬ ,
©«
.3 .1

.1 .3

ª®®¬ , det(P′C C ′P) = 100, 64,

respectively.
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Throughout Tables 2.1- 2.4, it is seen that with j = 3, jL = .8, the estimator h̃i, j performs well

in terms of both bias and standard error for any range of hi ∈ (0, 1), whereas for the estimator with

element-wise method, the bias for h1 and standard error for h1, h2 are small as those of h̃i, j, but the

bias for h2 is close to h2 − h1. This implies that for element-wise method, both the estimators for

h1, h2 are close to h1.

In Table 2.5, the noise term was added to discrete sample paths with t = i/n, i = 1, ..., n, n =

213,C =
©«
.3 .2

.1 .4

ª®®¬ , θ = .2π, and ξn
i

iid
∼ N(0, v), v =

©«
.2 .1

.1 .2

ª®®¬ . The simulation was repeated 60 times

to obtain (ĥ′i, j,r )
60
r=1, (ĥ

′′
i, j,r )

60
r=1, and the sample mean and the standard error of the estimators were

recorded. Table 2.5 shows the results for hi < .5 and j = 8, jL = 6. Neither the larger set of j nor

larger hi could be used for the estimation of the Hurst indices since in these cases many “NA" were

produced for ĥ′i, j, ĥ
′′
i, j . This is from the fact that the variances of ân

j , b̂
n
j, d̂

n
j are large as expected in

Proposition 2.2.13, Theorems 2.2.14-2.2.16, making the eigenvalues of Q̂n′
j negative which cannot

be used for the logarithm for the estimation, i.e. ci, j,n, c′i, j,n are too large in these cases to estimate

hi . From Table 2.5, it is seen that the means of ĥ′i, j, ĥ′′i, j are relatively close to hi when compared

to the estimator h̃i, j in the presence of noise. With the noise term, the mean of h̃i, j is far from hi as

seen in the last column in Table 2.5. Also note that the standard error of ĥ′i, j is smaller than that

of ĥ′′i, j as it is expected from Theorems 2.2.15-2.2.16.

For Table 2.6, the result was recorded for the eigenvector estimator, θ̃ j, when C =
©«
.3 .1

.1 .3

ª®®¬
with t = i/n, i = 1, ..., n, n = 213 as before but varying θ ∈ {π/12, π/6, π/4}. As it was predicted

in Theorem 2.2.17, it is seen in Table 2.6 that, the larger the difference between two Hurst indices,

h2− h1, the better the estimator performs in terms of both bias and standard error. Also, to estimate

θ, it is the best to use the largest j possible, in this case it is 13, as it has the smallest bias and smallest

standard error among the other possible j . It is also noticeable from Table 2.6 that the standard

error is affected by j and h2 − h1, whereas the bias is affected by j, h1 − h2, and θ. From Table

2.6, the bias is getting smaller as θ moves from π/12 to π/4. This is from the fact that the matrix

M = P′E(XH(1)XH(1)′)P is changed and it affects the bias of the θ̃ j as mentioned in Remark 3.
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For θ = π/12, π/6, π/4, M1,2/M1,1 = 0.217, 0.107, 510−17, respectively.

From the results above, the following estimation methods are recommended.

To estimate h1, h2:

i) When there is no error and the determinant of E(XH(1)XH(1)∗) is not small: The set with larger

j is better to estimate hi when hi is large (e.g. hi ≥ .4) since in this case both bias and standard

error are small. The set with wide range of j is recommended when hi is small, since in this case

standard error can be made small and bias is not too large.

ii) When there is no error and the determinant of E(XH(1)XH(1)∗) is small: For large hi, the set of

large j is recommended for it makes both bias and standard error small. For small hi, either the set

of small j or the set of wide range of j is suggested, but there is a trade off since the first set has

large standard error with smaller bias and the second set has smaller standard error with large bias.

iii) When there is error in the process: It is recommend to use the set of smaller j, but it cannot

be too small. As hi is increasing, the estimation would be worse even with the smaller j, and a

different estimation method is needed.

To estimate θ: Pick largest j possible, i.e. j = log2 n.

35



Table 2.1: Bias and standard error of h̃i, j

j h1 = .1 h1 = .2 h1 = .2 h1 = .4 h1 = .25 h1 = .7 h1 = .7
h2 = .3 h2 = .3 h2 = .4 h2 = .9 h2 = .9 h2 = .8 h2 = .9

13–11 h̃1 .264(.02) .156(.02) .164(.02) .063(.02) .127(.02) .019(.02) .020(.02)

h̃2 .109(.02) .103(.01) .073(.02) .019(.02) .029(.02) .018(.02) .013(.02)

11–8 h̃1 .067(.03) .021(.03) .021(.03) .011 (.03) .028(.03) .008(.03) .004(.03)

h̃2 .025(.04) .025(.03) .013(.03) -.001(.03) .010(.03) .002(.03) .012(.04)

8–6 h̃1 .032(.10) -.003(.09) .007(.10) -.004(.10) .013(.09) -.002(.09) .026(.09)

h̃2 .009(.10) .014(.12) -.003(.09) .018(.11) .040(.10) .021(.06) -.014(.09)

6–4 h̃1 -.003(.11) .031(.14) -.005(.11) -.058(.14) -.057(.13) -.260(.21) -.269(.20)

h̃2 .021(.13) -.012(.13) .022(.16) -.375 (.35) -.484(.33) -.067(.25) -.291(.27)

11–6 h̃1 .050(.03) .008(.03) .015(.03) .009(.04) .024(.04) .006(.03) .013(.03)

h̃2 .016(.04) .020(.04) .005(.03) .005(.04) .020(.03) .010(.03) .001(.04)

Element h̃1 .054(.03) .019 (.03) .029(.04) .009(.04) .015(.03) .007(.04) .017(.04)

-wise(11-6) h̃2 .218(.03) .097(.04) .199(.03) .496(.04) .657(.03) .087 (.04) .184(.04)
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Table 2.2: Bias and standard error of h̃i, j

j h1 = .2 h1 = .35 h1 = .7 h1 = .85
h2 = .25 h2 = .4 h2 = .75 h2 = .9

13–11 h̃1 .162(.02) .086(.02) .024(.01) .008 (.02)

h̃2 .129(.02) .073(.02) .016(.02) .012(.02)

11–8 h̃1 .020(.04) .005(.03) .012(.03) -.005 (.02)

h̃2 .015(.03) .010(.03) -.003(.03) .001 (.03)

8–6 h̃1 .004(.12) .011(.10) -.010(.11) -.004(.11)

h̃2 .072(.11) .000(.09) .013(.10) .057(.09)

6–4 h̃1 -.028(.10) -.074(.15) -.156(.22) -.388(.25)

h̃2 .008(.12) .029(.16) -.097(.18) -.167 (.19)

11–6 h̃1 .015(.03) .008(.04) .003(.03) -.004(.04)

h̃2 .032(.04) .011(.04) .003(.03) .020(.04)

Element h̃1 .021(.04) .006(.03) .005(.04) .003(.04)

-wise(11-6) h̃2 .052(.03) .044(.04) .041(.04) .040(.04)
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Table 2.3: Bias and standard error of h̃i, j

j h1 = .1 h1 = .2 h1 = .2 h1 = .4 h1 = .25 h1 = .7 h1 = .7
h2 = .3 h2 = .3 h2 = .4 h2 = .9 h2 = .9 h2 = .8 h2 = .9

13–11 h̃1 .264(.01) .161(.02) .163(.02) .067 (.02) .132(.02) .026(.02) .022 (.02)

h̃2 .105(.02) .108(.02) .067(.02) .013(.01) .013(.02) .013(.01) .007(.01)

11–8 h̃1 .069(.03) .021(.03) .021(.04) .022 (.04) .027(.04) -.012(.03) .009(.03)

h̃2 .012(.03) .006(.04) .015(.03) .005(.04) .007(.03) .004(.03) .017(.03)

8–6 h̃1 .039(.13) .028(.09) .028(.11) .002 (.09) -.013(.11) .030(.11) .009(.10)

h̃2 .026(.10) .021(.10) .037(.10) .044(.09) .012(.12) .045(.10) -.009(.09)

6–4 h̃1 .017(.14) -.009(.15) .004(.17) -.062(.12) -.049(.15) -.179(.23) -.286(.20)

h̃2 .007(.11) -.018(.12) .032(.16) -.471 (.36) -.463(.33) -.061(.29) -.241(.29)

11–6 h̃1 .053(.04) .021(.03) .024(.04) .018(.04) .012(.04) -.003(.04) .009(.04)

h̃2 .018(.04) .011(.04) .025(.04) .019(.04) .009(.05) .020(.04) .009(.04)

Element h̃1 .040(.03) .020(.04) .019(.03) .011(.04) .018(.04) .006(.04) .003(.05)

-wise(11-6) h̃2 .219(.03) .098(.03) .198 (.04) .501(.04) .664(.03) .088(.04) .184 (.04)
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Table 2.4: Bias and standard error of h̃i, j

j h1 = .1 h1 = .2 h1 = .2 h1 = .4 h1 = .25 h1 = .7 h1 = .7
h2 = .3 h2 = .3 h2 = .4 h2 = .9 h2 = .9 h2 = .8 h2 = .9

13–11 h̃1 .261(.02) .159(.02) .161(.02) .071 (.02) .131(.02) .022(.02) .022(.01)

h̃2 .268(.02) .203(.02) .243(.01) .159(.02) .217(.01) .030(.02) .053(.02)

11–8 h̃1 .065(.04) .013(.03) .021(.04) .007 (.03) .010(.04) .002(.04) .012(.04)

h̃2 .233(.03) .076(.03) .113(.03) .036(.03) .062(.04) -.009(.04) .003(.03)

8–6 h̃1 .026(.09) .029(.10) .011(.11) .055 (.12) .030(.09) -.017(.10) -.005(.11)

h̃2 .105(.11) .009(.10) .032(.09) .030(.09) .021(.10) .035(.10) .017(.10)

6–4 h̃1 .025(.11) -.036(.13) -.015(.10) -.060(.15) .027(.10) -.229(.26) -.222(.21)

h̃2 -.032(.19) -.024(.15) -.090(.18) -.769 (.51) -.870(.42) -.294(.24) -.752(.42)

11–6 h̃1 .044(.03) .015(.04) .014(.03) .023(.04) .011(.04) -.006(.03) .008(.03)

h̃2 .179(.03) .051(.04) .078(.03) .036(.04) .044(.03) .004(.04) .007(.04)

Element h̃1 .060(.04) .035(.03) .042(.03) .014(.04) .017(.04) .017(.04) .015 (.03)

-wise(11-6) h̃2 .213(.04) .096(.03) .199 (.03) .493(.04) .656(.04) .081(.04) .172(.03)

Table 2.5: Mean and standard error of ĥi, j

j(6-8) Q j −Q j−1 with v(6-8) without v(6-8)

h1=.1 ĥ1 .083(.17) .080(.09) .073 (.09)

h2=.3 ĥ2 .238(.20) .265(.12) .133(.10)

h1=.2 ĥ1 .179(.17) .184(.10) .161 (.10)

h2=.4 ĥ2 .340(.25) .382(.17) .069(.09)

h1=.3 ĥ1 .282(.14) .290(.10) .219(.09)

h2=.45 ĥ2 .510(.32) .474(.22) .025(.11)
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Table 2.6: Bias and standard error of θ̃ j

θ j h1 = .1 h1 = .2 h1 = .2 h1 = .4 h1 = .25 h1 = .7 h1 = .7
h2 = .3 h2 = .3 h2 = .4 h2 = .9 h2 = .9 h2 = .8 h2 = .9

π/12 13 .040(.001) .147(.003) .052 (.001) .004(e-05) .001(2e-05) .172(.004) .067 (.002)
11 .071(.004) .189(.010) .082 (.004) .009(5e-04) .003(e-04) .203(.009) .091(.004)
9 .108(.011) .230(.023) .113 (.012) .018(2e-03) .007(8e-04) .234(.026) .121(.013)

π/6 13 .020(.001) .072(.003) .026 (.001) .002(9e-05) 4e-04(2e-05) .084(.004) .033 (.001)
11 .035(.003) .092(.009) .041(.004) .004(4e-04) .001(e-04) .101(.009) .045 (.004)
9 .051(.009) .111(.019) .056(.009) .008(2e-03) .003(6e-04) .119(.018) .060 (.010)

π/4 13 -6e-05(.001) 3e-04(.003) -e-04 (.001) 5e-06(8e-05) 3e-07(2e-05) 5e-04(.003) -2e-04 (.001)
11 -2e-04(.003) e-03(.008) -e-04(.003) 3e-05(4e-04) 9e-06(e-04) -2e-04(.009) -e-04(.004)
9 e-03(.009) .002(.016) .001(.010) 6e-05(e-03) -2e-05(6e-04) -.001(.020) -.002(.009)

40



CHAPTER 3

COHERENCE OF MULTIVARIATE RANDOM FIELDS WITH STATIONARY
INCREMENTS

3.1 Preliminaries

Let X = {X(t), t ∈ Rd} be a p-variate random field with X(t) = (X1(t), . . . , Xp(t))′ ∈ Cp as a

column vector. Throughout we assume thatX is a second order random field, that isE[|Xi(t)|2] < ∞

for all t ∈ Rd and 1 ≤ i ≤ p. Here |a| denotes the modulus of a ∈ C.

We say that X has stationary increments (or X is intrinsically stationary) in the weak sense, if

E[X(t) − X(t − r)] = m(r)

for all t, r ∈ Rd , and

E[(X(t + h) − X(t + h − r1))(X(t) − X(t − r2))
′] = D(h; r1, r2)

for all t, h, r1, r2 ∈ R
d . Here m(r) is called the mean vector of the field X and the matrix-valued

function D(h; r1, r2) is called the structure function of the field X, respectively. We refer to

[27, 29, 52] for historical accounts of the terminology. Here, we will adapt Yaglom’s result for

generalized multivariate random fields to our setting.

Theorem 3.1.1 ([52, Thm. 7]). Let {X(t), t ∈ Rd} be a second order p-variate random field with

stationary increments, mean vector m(r) and structure function D(h; r1, r2). Then there exist a

p × d matrix A with complex entries, a p × p matrix of complex measure F on Rd
∗ = R

d \ {0},

and a p × p block matrixU with d × d block matrix Ui j such that

m(r) = A r,

and

D(h; r1, r2) =
∫
Rd
∗

eiλ·h(1 − e−iλ·r1)(1 − eiλ·r2)F (dλ) +Ur1 · r2.
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Here, each entry Fi j(dλ) of the measure F (dλ) satisfies∫
Rd
∗

|λ |2

1 + |λ |2
Fi j(dλ) < ∞, (3.1)

and F (S) is Hermitian non-negative definite for all Borel set S ∈ Rd
∗ ; the d × d matrices satisfies

Ui j = U ∗ji , where ∗ denotes the Hermitian conjugate. Let ui j (k, `) be the entries of Ui j , then∑p
i, j=1

∑d
k,`=1 ui j(k, `)αikα j` ≥ 0 for any αik , i = 1, ..., p, k = 1, ..., d.

The matrix-valued measure F is called the spectral measure of X which plays a crucial role in

the sequel. There is a general stochastic representation theorem for X. For the sake of simplicity,

we assume throughout that A = 0, U = 0, X(0) = 0. In such a case, the representation of X is

simpler to state.

Theorem 3.1.2 ([52, Thm. 9]). Let {X(t), t ∈ Rd} be a second order p-variate random field with

stationary increments, mean vector m(r) ≡ 0 and structure function D(h; r1, r2) as in Theorem

3.1.1 such that A = 0, U = 0 and X(0) = 0. Then there exists a vector-valued complex random

measure Z(dλ) = (Z1(dλ), . . . , Zp(dλ))′, such that

X(t) =
∫
Rd
∗

(eit·λ − 1)Z(dλ), (3.2)

where E[Zi(S1)Z j(S2)] = Fi j(S1 ∩ S2) for any Borel S1, S2 ⊂ R
d
∗ .

Reciprocally, if F , the control measure of Z, satisfies (3.1), then the random field defined as in

(3.2) is a second order random field with stationary increments.

Afterward, Z is referred to as the random spectral measure of X.

3.2 Coherence: definition and basic properties

Similarly to the stationary case considered by Kleiber [30], the coherence between the com-

ponent processes of a multivariate random field with stationary increments can be defined as

follows.

Let Fi j (dλ) be the i j-th entry of the spectral measure F (dλ). Assume that Fi j � Leb with

non-vanishing density fi j(λ), where Leb is the Lebesgue measure.
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Definition 3.2.1. The coherence of component i and component j of the field X at the frequency

λ is defined to be

γi j(λ) :=
fi j (λ)√

fii(λ) f j j (λ)
. (3.3)

We remark that, if {Y(t), t ∈ Rd} is a second order stationary p-variate randomfieldwith spectral

measure F (dλ) whose entries are necessarily finite measures, by the multivariate extension of

Bochner’s theorem (Cramér [16]), then the randomfield {X(t), t ∈ Rd} defined byX(t) = Y(t)−Y(0)

has stationary increments with the same spectral measure F (dλ). It follows from Kleiber [30] that

(3.3) is the same as the coherence between the components Yi and Yj of Y.

Let us describe some general properties of the coherence function. Since F (S) is Hermitian

non-negative definite, we know |γ(λ)| ≤ 1. Values of |γ(λ)| near unity indicates strong linear

relationship between Xi and X j at particular frequency bands.A straightforward way to construct a

legitimate spectral density matrix is the following.

Proposition 3.2.1. Let f ∈ L1(Rd
∗, |λ |

2(1 + |λ |2)−1dλ) be non-vanishing and C = (ci j) be a p × p

Hermitian non-negative definite matrix. Define fi j (λ) = ci j f (λ). Then the measure F (dλ) =

( fi j(λ)dλ) is Hermitian non-negative definite, and

γi j (λ) =
ci j
√ciic j j

.

When the spectral densities fi j are constructed as products of square integrable functions with

respect to the measure |λ |2(1 + |λ |2)−1dλ, the coherence is constant.

Proposition 3.2.2. For each 1 ≤ i ≤ p, let fi : Rd → [0,∞) be non-vanishing and satisfy∫
Rd
∗

|λ |2

1 + |λ |2
f 2
i (λ)dλ < ∞. (3.4)

Define fi j(λ) = fi(λ) f j(λ) for 1 ≤ i, j ≤ p. Then the measure F (dλ) = ( fi j (λ)dλ) is Hermitian

non-negative definite, and

γi j (λ) = 1.
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Proof. That F defined as such is Hermitian is clear. The non-negative definiteness follows from

the fact that a matrix defined as C = a′a for any column vector a ∈ Rp is non-negative definite.

Finally, the integrability condition (3.1) is satisfied by the Cauchy-Schwartz inequality and the

condition (3.4) on fi. �

Remark 1. Let d = 1, p = 2 and f1(λ) = |λ |−1/2−α and f2(λ) = |λ |−1/2−β, 0 < α, β < 1 then the

condition (3.4) is satisfied if and only if 0 < α + β < 1.

Since the Hadamard product of non-negative definite matrices is non-negative definite, we have

the following. Recall that the Hadamard product A ◦B = (ai j bi j) where ai j, bi j are i j-th entry of

A and B.

Proposition 3.2.3. Let A be a Hermitian non-negative definite matrix and F (dλ) be a Hermitian

non-negative definite matrix of complex measures with spectral densities fi j . Then A ◦F (dλ) is

non-negative definite and the coherence is

γi j(λ) =
ai j fi j (λ)√

aii fii(λ)a j j f j j (λ)
.

3.3 Examples

3.3.1 Linear model of coregionalization

In this subsection, we consider the linearmodel of coregionalization (LMC). LetW = {(W1(t),W2(t))′, t ∈

Rd} be a second order bivariate random field with stationary increments, A = (ai j ) be a 2 × 2

matrix, and define X = A W. Denote the spectral density matrix of W by g = (gi j).

Proposition 3.3.1. The bivariate random field X, defined as above, has stationary increments and

its spectral density matrix f is equal to A gA ∗. In particular, if the field W has uncorrelated

components, then

f11 = |a11 |
2g11 + |a12 |

2g22, f22 = |a21 |
2g11 + |a22 |

2g22
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and

f12 = f21 = a11a21g11 + a12a22g22.

If we assume further that a11 = a22 = 1, then the coherence between the components of X is of

modulus 1 if and only if a21a12 = 1.

Proof. For any t, h, r1, r2 ∈ R
d , denote X(t) = (X1(t), X2(t))′, W(t) = (W1(t),W2(t))′, and let

DX(h; r1, r2) and DW(h; r1, r2) be the structure functions of X and W respectively. We have that

DX(h; r1, r2) = E
[
(X(t + h) − X(t + h − r1))(X(t + h) − X(t + h − r1))′

]
= A E

[
(W(t + h) −W(t + h − r1))(W(t + h) −W(t + h − r1))′

]
A ∗

= A DW(h; r1, r2)A
∗,

which completes the proof of the proposition. �

3.3.2 Kernel transform

Now we focus on the effect of convolution to the coherence. Consider a second order complex-

valued random field {X1(t), t ∈ Rd} that has stationary increments in the weak sense. Denote by

f1 and Z1 the spectral density and the random spectral measure of X1, respectively. Assume that

f1(λ) is everywhere non-zero for λ ∈ Rd
∗ and let K : Rd → R be a continuous symmetric kernel

that belongs to L2(Rd,Leb). Define

X2(t) :=
∫
Rd

K(u − t)X1(u)du, t ∈ Rd .

Proposition 3.3.2. The random field {X2(t), t ∈ Rd} is of second order and has stationary in-

crements. Moreover, {X(t) := (X1(t), X2(t))′, t ∈ Rd} is a second order bivariate random field

with stationary increments, and its spectral density and random spectral measure are respectively

written as

f(λ) =


1 K̂(λ)

K̂(λ) |K̂(λ)|2

 f1(λ), Z(dλ) = (1, K̂(λ))′Z1(dλ), λ ∈ Rd
∗, (3.5)
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where the Fourier transform, K̂(λ) =
∫
Rd eit·λK(u)du, is a real valued function. In particular, for

1 ≤ i, j ≤ 2, the coherence functions γi j (λ) = 1 for all λ ∈ Rd
∗ .

Proof. We first show that {X2(t), t ∈ Rd} has stationary increments. It is enough to calculate the

variogram. Note that, for any s, t ∈ Rd , by Theorem 3.1.2 and the Fubini theorem, we have that

E
(
|X2(t + s) − X2(s)|

2
)

= E

(����∫
Rd

K(u)(X1(u + s + t) − X1(u + s))du
����2)

= E
©«
�����∫Rd

K(u)

(∫
Rd
∗

ei(u+t+s)·λ
(
1 − e−it·λ

)
Z1(dλ)

)
du

�����2ª®¬
= E

©«
�����∫Rd
∗

ei(t+s)·λ
(
1 − eit·λ

)
K̂(λ)Z1(dλ)

�����2ª®¬
= 2

∫
Rd
∗

(1 − cos(t · λ)) |K̂(λ)|2 f1(λ)(dλ),

where K̂ is the Fourier transform of K . Hence, {X2(t), t ∈ Rd} has stationary increments and

its spectral density is f2(λ) := |K̂(λ)|2 f1(λ). Furthermore, we calculate its structure functions as

follows. From the definition and Theorem 3.1.1, we get that

D22(h; r1, r2) = E
[
(X2(t + h) − X2(t + h − r1))(X2(t) − X2(t − r2))

]
=

∫
Rd

∫
Rd

K(u)K(v)D11(u + h − v; r1, r2)dudv

=

∫
Rd

∫
Rd

K(u)K(v)

(∫
Rd
∗

eiλ·(u+h−v)
(
1 − e−iλ·r1

) (
1 − eiλ·r2

)
f1(dλ)

)
dudv

=

∫
Rd
∗

eiλ·h
(
1 − e−iλ·r1

) (
1 − eiλ·r2

)
K̂(λ)K̂(−λ) f1(λ)dλ.

As for the cross structure functions, D12(h; r1, r2) and D21(h; r1, r2), using the same methods,

we can obtain that,

D12(h; r1, r2) = E
[
(X1(t + h) − X1(t + h − r1))(X2(t) − X2(t − r2))

]
=

∫
Rd
∗

eiλ·h
(
1 − e−iλ·r1

) (
1 − eiλ·r2

)
K̂(−λ) f1(dλ),
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and

D21(h; r1, r2) = E
[
(X2(t + h) − X2(t + h − r1))(X1(t) − X1(t − r2))

]
=

∫
Rd
∗

eiλ·h
(
1 − e−iλ·r1

) (
1 − eiλ·r2

)
K̂(λ) f1(dλ).

Because the kernel K is real valued symmetric function, we know that K̂ is a real valued function

and K̂(λ) = K̂(−λ). Hence, {X(t), t ∈ Rd} is a bivariate random field with stationary increments

and its spectral density is just the f(λ) in (3.5). Finally, by the definition and Theorem 3.1.2 again,

we know that

X2(t) =
∫
Rd

K(u − t)X1(u)du

=

∫
Rd

K(u)
∫
Rd
∗

(
ei(u+t)·λ − 1

)
Z1(dλ)

=

∫
Rd
∗

(
eit·λ − 1

)
K̂(λ)Z1(dλ) +

∫
Rd
∗

(
K̂(λ) − K̂(0)

)
Z1(dλ)

=

∫
Rd
∗

(
eit·λ − 1

)
K̂(λ)Z1(dλ) + X2(0),

which implies that the random spectral measure of {X(t), t ∈ Rd} is just the Z in (3.5). �

The following result extends Theorem 2 of Kleiber and Nychka [31] and illustrates the role

of coherence in predictive estimation of {X2(t), t ∈ Rd} in terms of kernel smoothed process of

{X1(t), t ∈ Rd}.

Theorem 3.3.3. Suppose that {X(t) = (X1(t), X2(t))′, t ∈ Rd} is a complex-value zero mean

bivariate field with stationary increments and its spectral density matrix, f(λ) =
(

fi j (λ)
)2

i, j=1
, λ ∈

Rd
∗ , is everywhere non-zero. Let Z = (Z1, Z2)

′ be the random spectral measure of {X(t), t ∈ Rd}.

Then the continuous symmetric square integrable function, K : Rd → R, that minimizes the least

squares error, E(|X2(t) −
∫
Rd K(u − t)X1(u)du|2), is

K(t) =
1
(2π)d

∫
Rd
∗

e−it·λ ·
©«
Re

(
(1 − eit·λ) f12(λ)

)
f11(λ)

+ K̂(0) cos(t · λ)
ª®®¬ dλ

=
1
(2π)d

∫
Rd
∗

e−it·λ

√
f22(λ)
f11(λ)

Re

((
1 − eit·λ

)
γ12(λ) + eit·λK̂(0)

√
f11(λ)
f22(λ)

)
dλ. (3.6)
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Furthermore, the spectral density of the predictor, X̃2(t) :=
∫
Rd K(u − t)X1(u)du, is

f̃2|1(λ) = f22(λ)

[
Re

((
1 − eit·λ

)
γ12(λ) + eit·λK̂(0)

√
f11(λ)
f22(λ)

)]2

, λ ∈ Rd
∗ . (3.7)

Proof. By the Fubini theorem, we know that,

E

(����X2(t) −
∫
Rd

K(u − t)X1(u)du
����2) := T1 + T2 − T3 − T4,

where,

T1 := E(X2(t)X2(t)),

T2 :=
∫
Rd

∫
Rd

K(u)K(v)E
(
X1(u + t)X1(v + t)

)
dudv,

T3 = T4 :=
∫
Rd

K(u)E
(
X2(t)X1(u + t)

)
du.

Theorem 3.1.2 yields that,

T1 = E

(∫
Rd
∗

(
eit·λ − 1

)
Z2(dλ) ·

∫
Rd
∗

(
eit·λ − 1

)
Z2(dλ)

)
=

∫
Rd
∗

(
eit·λ − 1

) (
e−it·λ − 1

)
f22(λ)dλ

= 2
∫
Rd
∗

(1 − cos(t · λ)) f22(λ)dλ.

Similarly, by Theorem 3.1.2 and the properties of K̂ , we can obtain that

T2 =
∫
Rd

∫
Rd

K(u)K(v)E
(
X1(u + t)X1(v + t)

)
dudv

=

∫
Rd

∫
Rd

K(u)K(v)E

(∫
Rd
∗

(
ei(u+t)·λ − 1

)
Z1(dλ)

∫
Rd
∗

(
ei(v+t)·λ − 1

)
Z1(dλ)

)
dudv

=

∫
Rd

∫
Rd

K(u)K(v) ·

(∫
Rd
∗

(
ei(u+t)·λ − 1

) (
e−i(v+t)·λ − 1

)
f11(λ)dλ

)
dudv

=

∫
Rd
∗

(
(K̂(λ))2 − 2K̂(λ)K̂(0) cos(t · λ) + (K̂(0))2

)
f11(λ)dλ,
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and

T3 = T4 =
∫
Rd

K(u)E
(
X2(t)X1(u + t)

)
du

=

∫
Rd

K(u)E

(∫
Rd
∗

(
eit·λ − 1

)
Z2(dλ)

∫
Rd
∗

(
ei(u+t)·λ − 1

)
Z1(dλ)

)
du

=

∫
Rd

K(u) ·

(∫
Rd
∗

(
eit·λ − 1

) (
e−i(u+t)·λ − 1

)
f21(λ)dλ

)
du

=

∫
Rd
∗

(
K̂(λ) − K̂(0)eit·λ

)
·

(
1 − e−it·λ

)
f21(λ)dλ.

Note that, the least squares error is a functional of K̂ . So, in order to optimize it, considering the

functional derivative, we can get the following equation,(
1 − e−it·λ

)
f21(λ) +

(
1 − eit·λ

)
f21(λ) = 2

(
K̂(λ) − K̂(0) cos(t · λ)

)
f11(λ), λ ∈ Rd

∗,

which implies that the minimizer of the least squares error is just

K̂(λ) =
Re

(
(1 − eit·λ) f12(λ)

)
f11(λ)

+ K̂(0) cos(t · λ).

Finally, the spectral density of the estimator X̃2(t) follows by Proposition 3.3.2. �

It is natural to consider the p-variate random field related to the kernel transformations. Let

X be a p-variate field with stationary increments admitting a spectral density matrix, f(λ) =(
fi j (λ)

)p

i, j=1
, λ ∈ Rd

∗ , that is everywhere non-zero. Denote its coherence matrix by γf(λ). Let

{Ki, 1 ≤ i ≤ p} be a family of real valued symmetric continuous kernels in L2(Rd,Leb). For

t ∈ Rd and 1 ≤ i ≤ p, define Yi(t) =
∫
Rd Ki(u − t)Xi(u)du and Y(t) = (Y1(t), . . . ,Yp(t))′. Then, by

the similar calculations as above, we can get the following result,

Proposition 3.3.4. Under the aforementioned notations, the p-variate random field Y = {Y(t), t ∈

Rd} has stationary increments and its spectral density matrix is given by

g(λ) =
[
K̂i(λ) fi j(λ)K̂ j(λ)

] p

i, j=1
, λ ∈ Rd

∗ . (3.8)

In particular, γg(λ) = γf(λ) for all λ ∈ Rd
∗ , here γg is the coherence matrix of Y.
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3.3.3 Estimation of Coherence

To estimate coherence, it is natural to use periodogram. Herewe assume that we observe real-valued

bivariate intrinsic stationary process on fixed domain, i.e. Xn(t) = X(t/n) = (X1(t/n), X2(t/n)), t =

1, 2, ..., n. Let X0
n(t) := Xn(t), and

X1
n(t) = Xn(t) − Xn(t − 1) (3.9)

X2
n(t) = Xn(t) − 2Xn(t − 1) + Xn(t − 2) (3.10)

X j
n(t) = X j−1

n (t) − X j−1
n (t − 1) for j = {3, ..., k} (3.11)

for some k < n, k ∈ Z, and

D j,n(λ) =
n∑

t=1
X j

n(t)e
−itλ

I j,n(λ) = n−1D j,n(λ)D j,n(λ)∗ for j = {1, ..., k}.

Then we can estimate the coherence of X j
n, γ

j,n
12 (λ), by

γ̂
j,n
12 (λ) =

I j,n
12 (λ)√

I j,n
11 (λ)I

j,n
22 (λ)

.

It is easy to see that

I j,n(λ) = I j−1,n(λ)(1 − e−iλ)(1 − eiλ)

and therefore

γ̂
j,n
12 (λ) =

I j,n
12 (λ)√

I j,n
11 (λ)I

j,n
22 (λ)

=
I j+1,n
12 (λ)√

I j+1,n
11 (λ)I j+1,n

22 (λ)

= γ̂
j+1,n
12 (λ) for j = {1, ..., k}.

Lemma 3.3.5.

γ̂
j,n
12 = γ̂

j+1,n
12 for j = {1, ..., k}.

Denote spectral density of {X j
n(t), t = 1, ..., n} as f j

n (λ), and its coherence as

γ
j,n
12 (λ) =

f j
n (λ)12√

f j
n (λ)11 f j

n (λ)22

, λ ∈ [−π, π].
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Remark 5 (1) Note that an intrinsic stationary process and the differenced of the process have the

same coherence. Let ξt = X(t + 1) − X(n) where X(t) satisfies Theorem 3.1.2 with the assumtion

that Fi j � Leb with non vanishing density fi j(λ). Then {ξt} is stationary with spectral density :

f ξi j (λ) = (1 − e−iλ)(1 − eiλ) fi j (λ). Therefore coherence of ξ is

γ
ξ
i j(λ) =

f ξi j (λ)√
f ξii (λ) f

ξ
j j(λ)

=
fi j (λ)(1 − e−iλ)(1 − eiλ)√

fii(λ) f j j(λ)(1 − e−iλ)2(1 − eiλ)2
=

fi j(λ)√
fii(λ) f j j(λ)

= γi j (λ)

(2) The same thing can be said for discretely sampled series in a fixed domain. Let X(t) satisfies

Theorem 3.1.2 and assume that Fi j � Leb with non vanishing density fi j (λ), and X j
n,X

j+1
n are

defined as (3.9-3.11). Then spectral density of X j
n and X j+1

n are f j
n (λ)i j := n(1 − e−iλ) j(1 −

eiλ) j
∑∞
`=−∞

fi j (n(λ + 2π`)) and f j+1
n (λ)i j := (1 − e−iλ) j+1(1 − eiλ) j+1n

∑∞
`=−∞

fi j (n(λ + 2π`))

for λ ∈ (−π, π). Therefore

γ
j,n
12 (λ) =

f j
n (λ)12√

f j
n (λ)11 f j

n (λ)22

=
f j+1
n (λ)12√

f j+1
n (λ)22 f j+1

n (λ)22

= γ
j+1,n
12 (λ), λ ∈ (−π, π) (3.12)

But it is well known that Ii,n is not consistent estimator. Therefore we will use smoothed (cross)

periodogram. Let {X(t), t ∈ R} be a second order bivariate stationary random field satisfying

d = 1, (3.2) and assume that Fi j � Leb with non vanishing density fi j (λ) with

f11(λ) ∼ d11 |λ |
−1−2α1 (3.13)

f22(λ) ∼ d22 |λ |
−1−2α2 (3.14)

f`p(λ) ∼ d`p(e
iθ1 I(λ>0) + eiθ2 I(λ<0))|λ |

−1−2α`p (3.15)

when |λ | → ∞ for some constants d`p, θ1, θ2 where 0 < α`, αp < 1, α`p = (α` + αp)/2, (α`` = α`)

for `, p = 1, 2. For j ≥ 1

E(I j,n(λ)) =n−1
n∑

`,m=1
E

(
X j

n(`)X
j
n(m)

∗
)

e−i(`−m)λ
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and

E(X j
n(`)X

j
n(m)

∗) =

∫
R

ei(`−m) xn (e−ix − 1) j(eix − 1) j f (x)dx

=

∫
[−π,π]

ei(`−m)x
∞∑

q=−∞
n|e−ix − 1|2 j f (n(x + 2πq))dx.

Therefore for any fixed λ ∈ [−π, π], λ , 0, as n → ∞ the spectral density of X j
n, f j

n (λ), for

j ≥ 1 has the following limit when max{2α1, 2α2} − 2 j < 0, by [32].

f j
n (λ)`p ∼ d`p

∞∑
q=−∞

n
|e−iλ − 1|2 j

|n(λ + 2πq)|1+2α`p
for `, p = 1, 2.

Therefore we have for `, p = 1, 2,

n2α`p f j
n (λ)`p → d`p

∞∑
q=−∞

|e−iλ − 1|2 j

|(λ + 2πq)|1+2α`p
:= g(λ)

j
`p for max{2α1, 2α2} − 2 j < 0. (3.16)

Now let m j = min{ j : max{2α1, 2α2} − 2 j < 0} and define a set SJ = { j : 0 ≤ j ≤ c + m j } for

some constant c. Note that with j ∈ SJ, g(·)
j
`p becomes integrable function. (see [32].)

Define the smoothed cross-periodogram as in [32] by

f̂ j,h(2πn−1J) =
∑
I∈Tn

Wh(I)I
j,n(2πn−1(J + I)) for j ∈ SJ (3.17)

where

Wh(I) =
Kh(2πn−1I)∑

L∈Tn Kh(2πn−1L)

and K is a symmetric continuous function which satisfies Kh(x) = K( xh )I{|x |≤h},K(0) > 0,K(x) ≥

0, J ∈ Tn,Tn = {b−n − 1/2c, ..., bn − n/2c}. From [32], it is known that

nη



n2α1 f̂ j,h
11 (2πn−1J1) − g(λ1)

j
11

n2α12 f̂ j,h
12 (2πn−1J1) − g(λ1)

j
12

n2α2 f̂ j,h
22 (2πn−1J1) − g(λ1)

j
22

...

n2α2 f̂ j,h
22 (2πn−1Jr ) − g(λr )

j
22


→ N(0, Σ) (3.18)

52



where

h = Cn−ν, η = (1 − ν)/2, for some C > 0, 0 < ν < 1, (3.19)

max{2α1, 2α2} − 2 j < 0, (3.20)

and limn→∞ 2πn−1Jr = λr , 0. Elements of Σ are

lim
n

n2ηcov
(
n2α`p f̂ j,h

`p (2πn−1Jq), n
2α`′p′ f̂ j,h

`′p′(2πn−1Jq′)
)

=



{(2π/C)K̄2/K̄2
1 }g(λq)

j
``′

g(λq)
j
pp′ if Jq = Jq′,

{(2π/C)K̄2/K̄2
1 }g(λq)

j
`p′g(λq)

j
`′p if Jq = −Jq′,

0 if λq , ±λq′

where K̄p =
∫
[−1,1] K(x)

pdx, and 1 ≤ `, `′ ≤ p, p′ ≤ 2. Define

γ̃
j,n
12 (λ) =

f̂ j,h
12 (λ)√

f̂ j,h
11 (λ) f̂

j,h
22 (λ)

for j ∈ SJ . (3.21)

Lemma 3.3.6. Under (3.19) and limn→∞ 2πn−1J = λ , 0

|γ̃
j1,n
12 (2πn−1J) − γ̃

j2,n
12 (2πn−1J)| = O(h) = O(n−ν), λ , 0, λ ∈ (−π, π), j1, j2 ∈ SJ .

Proof. Let j1 < j2 and assume j2 satisfies (3.20). From (3.17), for `, p = 1, 2,

f̂
j2,h
`p (2πn−1J) = f̂

j1,h
`p (2πn−1J)|1 − e−i2πn−1J |2+

f̂
j2,h
`p (2πn−1J)

(
1 −

|1 − e−i2πn−1J |2( j2− j1)

|1 − e−i2πn−1(J+K) |2( j2− j1)

)
.

As h = Cn−ν, 2πn−1K ≤ Cn−ν and therefore

1 −
|1 − e−i2πn−1J |2( j2− j1)

|1 − e−i2πn−1(J+K) |2( j2− j1)
= O(n−ν),

which results in

n2α`p f̂
j2,h
`p (2πn−1J) = n2α`p f̂

j1,h
`p (2πn−1J)|1 − e−i2πn−1J |2( j2− j1) +O(n−ν),

since n2α`p f̂
j2,h
`p (2πn−1J) converges to g(λ)`p as it was shown in [32]. With (3.21), the result is

derived. For the other cases, the result is derived in the similar way. �
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In (3.16), g(λ) j12 was defined for j satisfying (3.20). Notice that for any j1, j2 satisfying (3.20),

g(λ)
j1
12√

g(λ)
j1
11g(λ)

j1
22

=
g(λ)

j2
12√

g(λ)
j2
11g(λ)

j2
22

,

therefore we define

γ̃12(λ) :=
g(λ)

j
12√

g(λ)
j
11g(λ)

j
22

,

for any j satisfying (3.20). Then for any j ∈ SJ

γ
j,n
12 (λ) =

f j
n (λ)12√

f j
n (λ)11 f j

n (λ)22

=
nβ12−1 f j∗

n (λ)12√
nβ11−1 f j∗

n (λ)11nβ22−1 f j∗
n (λ)22

→ γ̃12(λ)

from (3.12) and (3.16) where j∗ satisfies (3.20).

Remark 6 Note that γ̃12(λ) defined above is slightly different than (3.3). This is because we estimate

coherence in a fixed domain.

Theorem 3.3.7. Let {X(t), t ∈ R} be a second order bivariate stationary random field with d = 1,

(3.1),(3.4), (3.19), and ν > 1/3. For limn→∞ 2πn−1J = λ , 0, λ ∈ (−π, π)

nη(γ̃ j,n
12 (2πn−1J) − γ̃12(λ)) → N(0, Σγ) j ∈ SJ

where

Σγ = γ̃
(1)
12
′(λ)Σ(λ)γ̃

(1)
12 (λ),

γ̃
(1)
12 (λ) is a vector of first derivative of γ̃12 with respect to g(λ)

j
11, g(λ)

j
12, g(λ)

j
22, i.e.

γ̃
(1)
12 (λ) =

(
−

g(λ)
j
12

2
√
g(λ)

j
22

{g(λ)
j
11}
−3/2,

1√
g(λ)

j
11g(λ)

j
22

,−
g(λ)

j
12

2
√
g(λ)

j
11

{g(λ)
j
22}
−3/2

)′
and Σ(λ) is from (3.18) for r = 1, λ1 = λ.

Proof. Assume j satisfies (3.20). By (3.18), asymptotic normality of γ̃ j,n
12 (λ) − γ̃12(λ) is derived.

For j which does not satisfy (3.20), Lemma 3.3.6 gives the result since n−ν+η → 0. �

Remark 7 The above results show that one doesn’t need to know the spectral density on the tail,

βlp, to estimate coherence since γ̃
0,n
12 works well as much as γ̃2,n

12 .
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3.3.4 Operator fractional Brownian motion

Let X = {X(t), t ∈ Rd} be a p-variate random field. We say that X is an OFBM with exponent

H if it is a Gaussian field with stationary increments, and satisfies the following operator scaling

property: For any c > 0,

{X(ct), t ∈ Rd}
f .d.
= {cHX(t)}, (3.22)

where H is a linear operator on Rd and cH = exp(H ln c) for c > 0. Denote by λH and ΛH the

minimum and the maximum of the real parts of the eigenvalues of H, respectively.

We need some notations. Let Z be a complex-valued Gaussian measure with the control

measure Leb such that, for every Borel set A ⊂ Rd with finite Lebesgue measure,

ReZ(−A) = ReZ(A) and ImZ(−A) = −ImZ(A), a.s.

The construction of such complex valued Gaussian measure is given in Appendix. Let Z1, . . . , Zp

be independent copies of Z and Z = (Z1, . . . , Zp)
′. Note that Z(c ·) f .d.

= cd/2Z(·) for any c > 0.

The following Theorem 3.3.9 is essentially Theorem 3 in [44] and Theorem 3.1 in [39]. Since there

is a slight difference in the representation of [39] and that of Theorem 3.1.2, we shall prove it for

completeness.

We start with a lemma. To simplify the presentation we only consider the case p = 2 in this

subsection. Without loss of generality we assume that H is in its real canonical form.

Lemma 3.3.8. Define the random measure

M(dλ) :=
(

1
|λ |

)H+dI/2
Z(dλ), λ ∈ Rd

∗ .

i) (H1): If H =


h 0

0 h

 with 0 < h < 1, then the spectral density of M is |λ |−(2h+d)I2, where I2 is

the identity operator on R2.
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ii) (H2): If H =


h1 0

0 h2

 with 0 < h1, h2 < 1, then the spectral density of M is


|λ |−(2h1+d) 0

0 |λ |−(2h2+d)

 .
iii) (H3): If H = P


h1 0

0 h2

 P′ with 0 < h1, h2 < 1, and P = (pi j ) is orthogonal matrix, i.e.

PP′ = I, then the spectral density of M is

P


|λ |−(2h1+d) 0

0 |λ |−(2h2+d)

 P′.

iv) (H4): If H =


h 1

0 h

 with 0 < h < 1, then the spectral density of M is


|λ |−(2h+d)(1 + ln2 1

|λ |
) |λ |−(2h+d) ln 1

|λ |

|λ |−(2h+d) ln 1
|λ |

|λ |−(2h+d)

 , λ ∈ Rd
∗ \ {λ ∈ R

d : |λ | ≥ 1};

v) (H5): If H =


h −β

β h

 with 0 < h < 1 and ±β ∈ R (which correspond to the conjugate

eigenvalues h ± iβ), then the spectral density of M is |λ |−(2h+d)I2.

Theorem 3.3.9. Let C be an invertible linear operator on Rd and H be a linear operator on Rd

with 0 < λH,ΛH < 1. Define

X(t) =
∫
Rd
∗

(eit·λ − 1)
(

1
|λ |

)H+dI/2
C Z(dλ), t ∈ Rd . (3.23)

Then X = {X(t), t ∈ Rd} is a Gaussian field with stationary increments and satisfies the operator

scaling property (3.22) with exponent H.

Proof. First, it is not hard to check that Yaglom’s condition (3.1) is satisfied for each entry of the

spectral density matrix, the form (3.23) thus implies that X is a second order bivariate field with

stationary increments by Theorem 3.1.2.
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Second, since e(λ) = eit·λ − 1 is Hermitian in the sense that e(−λ) = e(λ), and the matrix C is

real-valued, we get that the stochastic integral (3.23) is real valued. The Gaussianity follows from

the fact that Z is a Gaussian measure.

Finally, the operator-scaling property (3.22) follows from the scaling property of the measure

M defined in Lemma 3.3.8, see [39] for details. �

Combining (3.23) and Lemma 3.3.8, we can obtain easily the coherence of OFBM.

Proposition 3.3.10. i) Suppose that C = I2. If H =


h 1

0 h

 with 0 < h < 1, then

γ12(λ) =
ln 1
|λ |√

1 + ln2 1
|λ |

, λ ∈ Rd
∗ \ {λ ∈ R

d : |λ | ≥ 1};

for H in shape of (H1), (H2) or (H5) in Lemma 3.3.8, we have that γ(λ) = 0. If H is of (H3), then

γ12(λ) =
〈P′(λ)e1, P′(λ)e2〉√

〈P′(λ)e1, P′(λ)e1〉〈P′(λ)e2, P′(λ)e2〉
, λ ∈ Rd

∗,

where

P(λ) :=


p11 p12 |λ |

−(h2−h1)

p21 p22 |λ |
−(h2−h1)

 ,
and e1 = (1, 0)′ and e2 = (0, 1)′.

ii) Suppose that C = (ci j ) is an invertible 2 × 2 matrix. If H =


h 0

0 h

 with 0 < h < 1 or

H =


h −β

β h

 with 0 < h < 1 and β , 0, then

γ12(λ) =
〈C ′e1,C

′e2〉√
〈C ′e1,C ′e1〉〈C ′e2,C ′e2〉

, λ ∈ Rd
∗ ;

if H =


h1 0

0 h2

 with 0 < h1 < h2 < 1, then

γ12(λ) =
〈C ′(λ)e1,C

′(λ)e2〉√
〈C ′(λ)e1,C ′(λ)e1〉〈C ′(λ)e2,C ′(λ)e2〉

, λ ∈ Rd
∗,
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where

C (λ) :=


c11 c12

c21 |λ |
−(h2−h1) c22 |λ |

−(h2−h1)

 ;

if H = P


h1 0

0 h2

 P′ with 0 < h1 < h2 < 1, P = (pi j ), then

γ12(λ) =
〈C ′P(λ)e1,C

′
P(λ)e2〉√

〈C ′P(λ)e1,C
′
P(λ)e1〉〈C

′
P(λ)e2,C

′
P(λ)e2〉

, λ ∈ Rd
∗,

where

CP(λ) := [PC (λ)P] ;

if H =


h 1

0 h

 with 0 < h < 1, then1

γ12(λ) =
c11c21 ln2 |λ | − (c11c22 + c12c21) ln |λ | + c11c21 + c12c22√

c2
11 + (c11 ln |λ | − c12)2 ·

√
c2

21 + (c21 ln |λ | − c22)2
, λ ∈ Rd

∗\{λ ∈ R
d : |λ | ≥ 1}.

Remark 8 γ12(λ) tends to 1 as |λ | → 0 or∞ in either {(H3)} or {(H2,H4) and C , I}.

Let {X(t), t ∈ [0, 1]} be operator fractional Brownian motion observed in a fixed domain whose

spectral representation is (3.23) with d = 1. For X j
n defined as (3.9-3.11), its spectral density is

f j
n (λ) =

∞∑
q=−∞

n
|e−iλ − 1| j

|n(λ + 2πq)|H+I/2 C C ′
|e−iλ − 1| j

|n(λ + 2πq)|H+I/2 , j ∈ SJ . (3.24)

We further restrict H as one of (H1), (H2), and (H3) for which we consider the following cases.

Case I: C is diagonal matrix and (H1) or (H2)

Case II: C is not diagonal and (H1) or (H2)

Case III: (H3)

For (H3) and C = I,

f j
n (λ) = P

∞∑
q=−∞

n
|e−iλ − 1|2 j

|n(λ + 2πq)|2Λ+I
P′, (3.25)

1Need to be checked again.
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where Λ =


h1 0

0 h2

 . As in proposition 3.3.10 i), we have the following:

γ
j,n
12 (λ) =

〈P j,n′(λ)e1, P j,n′(λ)e2〉√
〈P j,n′(λ)e1, P j,n′(λ)e1〉〈P j,n′(λ)e2, P j,n′(λ)e2〉

, λ ∈ (−π, π) (3.26)

P j,n(λ) =


p11 p12q j,n(λ)

p21 p22q j,n(λ)

 (3.27)

q j,n(λ) =

√√√ ∞∑
q=−∞

n
|e−iλ − 1|2 j

|n(λ + 2πq)|2h2+1

/ ∞∑
q=−∞

n
|e−iλ − 1|2 j

|n(λ + 2πq)|2h1+1 (3.28)

Now we are ready to derive the following result. For notational simplicity, q(λ) means q j,n(λ).

Lemma 3.3.11. Let X(t) be operator fractional Brownian motion defined as in Theorem 3.3.9 with

Case III, observed in a fixed domain. For λ , 0, λ ∈ (−π, π)

i) C = I and (H3)

|γ
j,n
12 (λ)| − 1 = O(n2(h1−h2)), j ∈ SJ .

ii) C , I and (H3)

|γ
j,n
12 (λ)| − 1 = O

(
b12
b11

nh1−h2 ∨
b22
b11

n2(h1−h2)
)
, j ∈ SJ,

where B = (bi j ) = P′C C ′P.

Proof. i) By remark 5 (2), let j = 2 without loss of generality. Since h1, h2 ∈ (0, 1),

∞∑
q=−∞

|e−iλ − 1|2 j

|(λ + 2πq)|2h2+1

/ ∞∑
q=−∞

|e−iλ − 1|2 j

|(λ + 2πq)|2h1+1 � 1, λ , 0, λ ∈ (−π, π).

Therefore q(λ) � nh1−h2 . By (3.26-3.28),

γ
j,n
12 (λ) =

p11p21 + p12p22q2(λ)√
(p2

11 + p2
12q2(λ))(p2

21 + p2
22q2(λ))

.
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ii) Similarly, from (3.24)

γ
j,n
12 (λ) =

p11p21 +
b12
b11
(p12p21 + p11p22)q(λ) +

b22
b11

p12p22q2(λ)√
(p2

11 + 2 b12
b11

p11p12q(λ) +
b22
b11

p2
12q2(λ))(p2

21 + 2 b12
b11

p21p22q(λ) +
b22
b11

p2
22q2(λ))

.

�

Remark 9 (1) In a similar way to proposition 3.3.10, γ j,n
12 (λ) ≡ 0 for Case I.

(2) For Case II, γ j,n
12 (λ) � cγ where cγ =

C12√
C11C22

,C`,k = (C C ′)`,k, `, k = 1, 2. This is from (3.24)

and the fact that for λ , 0, λ ∈ (−π, π),√√√ ∞∑
q=−∞

|e−iλ − 1|2 j

|(λ + 2πq)|2h2+1

∞∑
q=−∞

|e−iλ − 1|2 j

|(λ + 2πq)|2h1+1 �
∞∑

q=−∞

|e−iλ − 1|2 j

|(λ + 2πq)|h1+h2+1 ,

since from (3.24),

γ
j,n
12 (λ) =

C12
∑∞

q=−∞
|e−iλ−1|2 j

|(λ+2πq)|h1+h2+1√
C11C22

∑∞
q=−∞

|e−iλ−1|2 j

|(λ+2πq)|2h2+1
∑∞

q=−∞
|e−iλ−1|2 j

|(λ+2πq)|2h1+1

.

Especially for (D1), γ j,n
12 (λ) ≡ cγ .

Let us continue to assume that (H3) and C = I hold, since results for other cases follow

similarly. Let

Y j
n(t) = P′X j

n(t),

D j,n
Y (λ) =

n∑
t=1

Y j
n(t)e

−itλ,

I j,n
Y (λ) = n−1D j,n(w j)D

j,n(λ)∗, j ∈ SJ .

Define the smoothed cross-periodogram as in (3.17) by

f̂ j,h
Y (λ) =

∑
K∈Tn

Wh(K)I
j,n

Y (λ) f̂ j,h(λ) =
∑

K∈Tn

Wh(K)I
j,n(λ).

By (3.25), it is easy to see that the spectral density of Y j
n is

f j
Y (λ) =

∞∑
q=−∞

n
|e−iλ − 1|2 j

|n(λ + 2πq)|2Λ+I

60



and

f̂ j,h(λ) = P f̂ j,h
Y (λ)P

′. (3.29)

Since the spectral density of Y satisfies (3.13-3.15) with α1 = h1, α2 = h2, d11 = d22 = 1, d12 =

d21 = 0, the result (3.18) is applied for f̂ j,h
Y (λ),

nη


nh1 f̂ j,h

Y,11(λ1) − gY (λ1)
j
11

...

nh2 f̂ j,h
Y,22(λr ) − gY (λr )

j
22


→ N(0, ΣY ), (3.30)

where

gY (λ)
j =

∞∑
q=−∞

|e−iλ − 1|2 j

|(λ + 2πq)|2Λ+I

and ΣY is defined as in (3.18) except that g is replaced by gY . The coherence estimator of X is

defined as

γ̃
j,n
12 (λ) :=

f̂ j,h
12 (λ)√

f̂ j,h
11 (λ) f̂

j,h
22 (λ)

,

and, by (3.29), f̂ j,h(λ) converges to

P


n−2h1 0

0 n−2h2

 gY (λ)
j


n−2h1 0

0 n−2h2

 P′.

Note that by (3.16) and (3.24), in OFBM, γ j,n
12 (λ) = γ̃12. By (3.25-3.29) and gY defined above,

γ
j,n
12 (λ) =

〈P̃′(λ)e1, P̃′(λ)e2〉√
〈P̃′(λ)e1, P̃′(λ)e1〉〈P̃′e2, P̃′(λ)e2〉

= γ̃12(λ), (3.31)

where

P̃(λ) =


p11 p12q(λ)

p21 p22q(λ)

 , q(λ) =
n−2h2gY (λ)

j
22

n−2h1gY (λ)
j
11

. (3.32)

Theorem 3.3.12. Let X(t) be operator fractional Brownian motion defined as in Theorem 3.3.9.

For limn→∞ 2πn−1J = λ , 0, λ ∈ (−π, π), j ∈ SJ with

Case I:

nη(γ̃ j,n
12 (λ) − γ̃12(λ)) → N(0, Σγ),
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where

γ̃12(λ) ≡ 0.

Case II:

nη(γ̃ j,n
12 (λ) − γ̃12(λ)) → N(0, Σγ),

where γ̃12(λ) � cγ and

cγ =
(C C ′)1,2√

(C C ′)1,1(C C ′)2,2
.

Case III: i) C = I and (H3)

nη+2(h2−h1)(γ̃ j,n
12 (λ) − γ̃12(λ)) → N(0, Σγ),

where

|γ̃12(λ)| − 1 = O(n2(h1−h2)).

ii) C , I and (H3)

nη+τ(γ̃ j,n
12 (λ) − γ̃12(λ)) → N(0, Σγ),

where

|γ̃12(λ)| − 1 = O(τ(n,C , h2, h2)) and τ(n,C , h2, h2) =
b12
b11

nh1−h2 ∨
b22
b11

n2(h1−h2).

Proof. For CaseI and I I the results follow from Theorem 3.3.7 and Remark 9.

For CaseI I I − i), by (3.29), γ̃ j,n
12 (λ) can be written in the same way as in (3.26) with

P̃i,n(λ) =


p11 p12q̃ j,n(λ)

p21 p22q̃ j,n(λ)

 ,
q̃ j,n(λ) =

√√√√√ f̂ j,h
Y,22(λ)

f̂ j,h
Y,11(λ)

.

From (3.30), (3.32), it follows that

nη+2(h2−h1)(q̃ j,n(λ) − q(λ)) → N(0, σ2
q ),

62



where

σ2
q = q(1)′ΣY (λ)q

(1),

q(1) = (−1/2
√
gY (λ)

j
22{gY (λ)

j
11}
−3/2, 1/2{gY (λ)

j
22}
−1/2{gY (λ)

j
11}
−1/2)′, and ΣY (λ) is from (3.30)

with r = 1, λ1 = λ. Therefore by Lemma 3.3.11, and (3.31-3.32), the result is obtained with

Σγ = (σqγ̃
(1)
12 (λ))

2, where γ̃(1)12 (λ) is the first derivative of γ̃12 with q(λ). In CaseI I I − ii), the result

follows in the same way. �

Remark 10 (1) As the coherence reflects the correlation between X1 and X2 on the spectral domain,

depending on C and H, the dynamics of X1 and X2 have different features. In Case I, the coherence

function is zero, which implies that it has zero correlation, and in Case II the coherence function

depends on C C ′. In Case III, the coherence is getting close to either 1 or -1 as sample size n is

increasing on a fixed domain, and the larger the difference in Hurst indices h2 − h1 is, the closer

the coherence is to 1 or -1, which implies that X1 and X2 have very strong correlation.

(2) Note that by (3.16) and (3.24), in OFBM, γ j,n
12 (λ) = γ̃12. In Case I and II, γ̃12(= γ

j,n
12 (λ)) is a

function of j, λ, but not n. However, in Case III, γ̃12(= γ
j,n
12 (λ)) is a function of n, j, λ, and it changes

according to sample size n. More specifically, it increases to one as the sample size grows.

3.4 Simulation and estimation of spectra

In this section, we provide simulation results on the squared coherence function of operator

fractional Brownian motion discussed in Section 3.3.4. In practice, squared of the coherence

function is more often used as it is real-valued in [0, 1], and if its value is near 1 that indicates strong

linear relationship between X1 and X2 at particular frequency bands.

3.4.1 Independent sample paths: Case I

In this case, where C and H are diagonal matrices, two processes are independent. As such, the

coherence is zero in every frequency. We set H as diagonal matrix with h1 = .4, h2 = .8,C = I, and

simulate the sample paths with t = i/n, i = 0, .., n, n = 1000. As the sample paths are independent,
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Figure 3.1: sample paths X1 and X2

each of them is governed by the Hurst index h1, or h2 as seen in Figure 3.1. Figure 3.2 shows

the estimates of squared coherence of X1 and X2, (γ̃
0,n
12 )

2, (γ̃2,n
12 )

2, and its theoretical coherence

function (γ̃12)
2. The result in Figure 3.2 reflects well Theorem 3.3.12, ii). The estimates of

squared coherence, (γ̃0,n
12 )

2, (γ̃2,n
12 )

2, from original series X0
n, and two times differenced series X2

n,

respectively, are close to each other except on the frequency near zero and they are close to the

theoretical coherence function (γ̃12)
2, which is zero function.

Figure 3.2: The estimates of squared coherence of X1 and X2
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3.4.2 Correlated sample paths with diagonal H: Case II

If either C or H is not diagonal matrix, then sample paths are correlated. Let us first assume that

H is diagonal but C is not, which is Case II. Then, as H is diagonal, the roughness of sample paths

are still governed by either h1 or h2. But the two processes are not independent anymore. Figure

3.3 shows the simulated sample paths with C =
©«
1 3

2 1

ª®®¬ and H =
©«
h1 0

0 h2

ª®®¬ , h1 = .4, h2 = .8 and

t = i/n, i = 0, .., n, n = 1000.

Figure 3.3: sample paths of X1 and X2

Figure 3.4: The estimates of squared coherence of X1 and X2

The estimates of squared coherence, (γ̃0,n
12 )

2, (γ̃2,n
12 )

2, are in Figure 3.4. The estimates of squared
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coherence are close to each other except on the frequency near zero and are close to the theoretical

squared coherence function which is close to c2
γ = .5, since C C ′ =

©«
10 5

5 5

ª®®¬, as it was expected
from Theorem 3.3.12,iii).

3.4.3 Correlated sample paths with diagonizable H: Case III

Here, we only consider the case where C = I but H is not diagonal, but diagonizable matrix,

H = PΛP′,wherePP′ = I andΛ =
©«
h1 0

0 h2

ª®®¬ .The two sample paths are dependent, but their depen-

dency is quite different from Case II and shows different behaviour in sample paths and coherence.

Figure 3.5 shows the sample paths with h1 = .4, h2 = .8,C = I, P =
©«
cos θ sin−θ

sin θ cos θ

ª®®¬ , θ = .2 ∗ π,
with t = i/1000, i = 0, 1, .., 1000.

Figure 3.5: sample paths of X1 and X2

The roughness of two sample paths are similar since both paths are governed by h1 = .4. From

Figure 3.6, it is seen that the estimates of squared coherence are very close to each other except on

frequency zero, and the theoretical coherence function is very close to 1 as it was expected from

Theorem 3.3.12. As h1, and h2 are getting close to each other, the theoretical coherence function

γ̃12 and the squared of its estimates, (γ̃0,n
12 )

2, (γ̃2,n
12 )

2, are getting smaller. This is observed well in
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Figure 3.7, 3.8, and this results were predicted from Theorem 3.3.12.

Figure 3.6: θ = .2 ∗ π, h1 = .4, h2 = .8, coherence of X1,X2

Figure 3.7: θ = .2 ∗ π, h1 = .65, h2 = .8,
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Figure 3.8: θ = .2 ∗ π, h1 = .65, h2 = .8,
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CHAPTER 4

ESTIMATING HURST INDICES IN OPERATOR SCALING GAUSSIAN RANDOM
FIELD

4.1 Estimation method

Let X be an operator scaling Gaussian random field that has stationary increment and operator

scaling property (1.7). Its semi-variogram is defined as (1.8) and it has the following property:

υE,H(cE h) = c2HυE,H(h). Also, note that if X is operator scaling for E and H > 0, it is also

for E/H and 1 and (E,H) is not uniquely defined. In the following sections, eigenvectors of E,

u1, u2, and the ratios of H to eigenvalues of E , H/λ1,H/λ2, are estimated where E = UΛU′,U =

(u1, u2),Λ = diag(λ1, λ2).

Eigenvectors u1, u2, are estimated first, and H/λ1,H/λ2, are computed by using the relation

{X(cλiuit)}t∈R
f .d
= {cH X(uit)}t∈R for any c > 0, (4.1)

which means that {X(uit)}t∈R is self-similar with Hurst index H/λi, i = 1, 2.

Different sampling regimes are considered in this chapter. In Section 4.1, it is assumed that

independent sample paths are obtained from OSGRF in a fixed domain or increasing domain. Later

in simulation part, Section 4.2, the performance of the estimators is investigated with X observed

on a grid in a fixed domain, {X(i/n, j/n), i, j = 0, 1, .., n}, in addition to the independent sample

paths case. Throughout this chapter, notation E is used either for scaling matrix E or expected

value, but with the context, there should be no confusion on what it indicates.

4.1.1 Estimation of eigenvectors of E

We make some assumptions on the matrix E and semi-variogram υE,H .

ASSUMPTION
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(A1) υE,H(t) = τE (t)2H with τE in (1.8), H = 1 and a1 ≤ a2, a1, a2 ∈ (0, 1).

(A2) The matrix E in (1.7) is diagonizable with eigenvalues λ2 , λ1.

By (A2), we have the following:

E =
©«

cos θ sin θ

− sin θ cos θ

ª®®¬
©«
λ1 0

0 λ2

ª®®¬
©«
cos θ − sin θ

sin θ cos θ

ª®®¬ , θ ∈ [0, π).

Since H = 1,

{X(t)}t∈R2
f .d.
= {

2∑
i=1

Bai (〈t, ui〉)}t∈R2, (4.2)

where u1 = (cos θ,− sin θ), u2 = (sin θ, cos θ) and Ba1, Ba2 are two independent fractionalBrownian

motion with semi-variogram | | · | |2a1, | | · | |2a2, respectively.

Define for i = 2, .., n,

∇1X(i/n) = X
©«
i/n

0

ª®®¬ − 2X
©«
(i − 1)/n

0

ª®®¬ + X
©«
(i − 2)/n

0

ª®®¬ , (4.3)

∇2X(i/n) = X
©«

0

i/n

ª®®¬ − 2X
©«

0

(i − 1)/n

ª®®¬ + X
©«

0

(i − 2)/n

ª®®¬ . (4.4)

Note that {∇1X(i/n),∇2X(i/n), i = 2, .., n} are (covariance) stationary processes for fixed n, and

∇1X(i/n)
f .d.
=

����cos θ
n

����a1
∇Ba1(i) +

����sin θ
n

����a2
∇Ba2(i), (4.5)

∇2X(i/n)
f .d.
=

����sin θ
n

����a1
∇Ba1(i) +

����cos θ
n

����a2
∇Ba2(i), (4.6)

where ∇Baj (i) = Baj (i) − 2Baj (i − 1) + Baj (i − 2), j = 1, 2.

In an increasing domain, the followings are defined analogous to (4.5-4.6), which is used in later

Section 4.1.2. For i = 2, .., n,

∇1X(i) = X
©«

i

0

ª®®¬ − 2X
©«
i − 1

0

ª®®¬ + X
©«
i − 2

0

ª®®¬ , (4.7)

∇2X(i) = X
©«
0

i

ª®®¬ − 2X
©«

0

i − 1

ª®®¬ + X
©«

0

i − 2

ª®®¬ . (4.8)
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{∇1X(i),∇2X(i), i = 2, ..., n} are stationary processes for fixed n, and

∇1X(i)
f .d.
= |cos θ |a1∇Ba1(i) + |sin θ |a2∇Ba2(i), (4.9)

∇2X(i)
f .d.
= |sin θ |a1∇Ba1(i) + |cos θ |a2∇Ba2(i). (4.10)

For the rest of the chapter, we restrict θ ∈ [0, π/2), since if θ ∈ [π/2, π), then we can just switch

{∇1X(i/n),∇1X(i)} to {∇2X(i/n),∇2X(i)}, and have the same results.

Lemma 4.1.1. Under the assumptions (A1, A2),

i) υE,H
©«
h

0

ª®®¬ ∼ |h cos θ |2a1 and υE,H
©«
0

h

ª®®¬ ∼ |h sin θ |2a1 for |h| → 0 and for fixed θ ∈ [0, π/2).

ii) E(∇1X(i/n)2) = 8υE,H
©«
1/n

0

ª®®¬ − 2υE,H
©«
2/n

0

ª®®¬ , E(∇2X(i/n)2) = 8υE,H
©«

0

1/n

ª®®¬ − 2υE,H
©«

0

2/n

ª®®¬ .
iii) limn

∑n
i=2 cov(∇ j X(2)2,∇ j X(i)2) < ∞, j = 1, 2.

Proof. i) Since

υE,H
©«
h

0

ª®®¬ =|h cos θ |2a1 + |h sin θ |2a2,

υE,H
©«
0

h

ª®®¬ =|h sin θ |2a1 + |h cos θ |2a2,

the results are derived.

ii)

E(∇1X(i/n)2) = E
(
X

©«
i/n

0

ª®®¬ − X
©«
(i − 1)/n

0

ª®®¬
)2
+ E

(
X

©«
(i − 1)/n

0

ª®®¬ − X
©«
(i − 2)/n

0

ª®®¬
)2

+ 2E
[(

X
©«
i/n

0

ª®®¬ − X
©«
(i − 1)/n

0

ª®®¬
) (
− X

©«
(i − 1)/n

0

ª®®¬ + X
©«
(i − 2)/n

0

ª®®¬
)]

= 2υE,H
©«
1/n

0

ª®®¬ + 2υE,H
©«
1/n

0

ª®®¬ + 2υE,H
©«
1/n

0

ª®®¬ + 2υE,H
©«
1/n

0

ª®®¬ − 2υE,H
©«
2/n

0

ª®®¬ − 2υE,H
©«
0

0

ª®®¬ .
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iii) are derived by (4.7-4.10). Let j = 1. For j = 2, it is derived in the same way.

lim
n

n∑
i=2

cov(∇ j X(2)2,∇ j X(i)2) = 2 lim
n

n∑
i=2

cov(∇ j X(2),∇ j X(i))2

= 2 lim
n

n∑
i=2
(| cos θ |2a1cov(∇Ba1(2),∇Ba1(i)) + | sin θ |2a2cov(∇Ba2(2),∇Ba2(i)))

2

and the fact that cov(∇Baj (2),∇Baj (i)) ∼ ci2aj−4 for some c ∈ R, thus

lim
n

n∑
i=2

cov(∇Baj (2),∇Baj (i))
2 < ∞, j = 1, 2.

�

Define

Pn :=
n∑

i=2

∇1X(i/n)2

n − 1
, Qn :=

n∑
i=2

∇2X(i/n)2

n − 1
. (4.11)

Lemma 4.1.2. Assumptions (A1, A2) are satisfied. Then,

i)
Pn
Qn
−

EPn
EQn

= Op(n−.5)

ii)
EPn
EQn

−

(
cos θ
sin θ

)2a1
= O(n2(a1−a2) sin2(a2−a1) θ ∨ n2(a1−a2) cos2(a2+a1) θ/sin4a1 θ)

Proof. i) Using (4.5-4.6), Lemma 4.1.1 iii),

σ2
P := lim

n
var(n.5+2a1Pn) = lim

n

n∑
k=−n

2(ρa1(k) cos2a1 θ + na1−a2ρa2(k) sin2a2 θ)2 (4.12)

≤ lim
n

n∑
i=2

cov(∇1X(2)2,∇1X(i)2) < ∞, (4.13)

σ2
Q := lim

n
var(n.5+2a1Qn) = lim

n

n∑
k=−n

2(ρa1(k) sin2a1 θ + na1−a2ρa2(k) cos2a2 θ)2 (4.14)

≤ lim
n

n∑
i=2

cov(∇2X(2)2,∇2X(i)2) < ∞, (4.15)

σPQ := lim
n

cov(n.5+2a1Pn, (n.5+2a1Qn) < ∞, (4.16)
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where ρaj (k) = cov(∇Baj (i),∇Baj (i + k)), and ∇Baj (i) = Baj (i) − 2Baj (i − 1)+ Baj (i − 2), Baj (i)

is a fractional Brownian motion with Hurst index a j, j = 1, 2. Therefore by Theorem 2 in [5],

n.5+2a1
©«

Pn − EPn

Qn − EQn

ª®®¬→d N(0, Σ), (4.17)

where Σ11 = σ
2
P, Σ22 = σ

2
Q, Σ12 = σPQ . i) follows using delta method and the fact that EPn, EQn

are of order n−2a1 by Lemma 4.1.1 ii).

n.5(
Pn
Qn
−

EPn
EQn
) →d N(0, σ2

P/Q), (4.18)

where σ2
P/Q = limn n4a1( 1

(EQn)2
σ2

P +
(EPn)2

(EQn)4
σ2

Q −
1

EQn
EPn
(EQn)2

σPQ).

ii) By Lemma 4.1.1 ii), it is easily derived that

EPn
EQn

=

(
4υE,H

©«
1/n

0

ª®®¬ − υE,H
©«
2/n

0

ª®®¬
)/(

4υE,H
©«

0

1/n

ª®®¬ − υE,H
©«

0

2/n

ª®®¬
)

=
cos2a1 θ + n2(a1−a2)(4 − 22a2)(4 − 22a1)−1 sin2a2 θ

sin2a1 θ + n2(a1−a2)(4 − 22a2)(4 − 22a1)−1 cos2a2 θ
.

�

Define for i = 4, ..., n,

∇∗1X(i/n) = X
©«
i/n

0

ª®®¬ − 2X
©«
(i − 2)/n

0

ª®®¬ + X
©«
(i − 4)/n

0

ª®®¬ .
Let

P∗n :=
n∑

i=4

∇∗1X(i/n)2

n − 3
.

73



Corollary 4.1.3. Under the assumptions (A1, A2),

i)
P∗n
Qn
− υE,H

©«
4/n

0

ª®®¬
/
υE,H

©«
0

2/n

ª®®¬ = Op(n−.5)

ii) υE,H
©«
4/n

0

ª®®¬
/
υE,H

©«
0

2/n

ª®®¬ −
(
2 cos θ
sin θ

)2a1
= O(n2(a1−a2) sin2(a2−a1) θ ∨ n2(a1−a2) cos2a2 θ/sin2a1 θ)

iii)
P∗n
Pn
− υE,H

©«
4/n

0

ª®®¬
/
υE,H

©«
2/n

0

ª®®¬ = Op(n−.5)

iv) υE,H
©«
4/n

0

ª®®¬
/
υE,H

©«
2/n

0

ª®®¬ − 22a1 = O(n2(a1−a2) sin2a2 θ/cos2a1 θ)

The estimation method for θ is the following:

Step 1) Estimate 2a1 by the ratios of P∗n
Qn

and Pn
Qn

.

2̂a1 = log
(

P∗n
Pn

)
/log 2. (4.19)

Step 2) Estimate θ with 2̂a1 and Pn
Qn

.

cos θ̂
sin θ̂

=

(
Pn
Qn

)1/2̂a1
.

Then the estimator of θ is

θ̂n := cot−1
((

Pn
Qn

)1/2̂a1)
. (4.20)

Theorem 4.1.4. Under the assumptions (A1, A2)

i) 2̂a1 − 2a1 = Op

(
n2(a1−a2)(

sin2a2 θ

sin2a1 θ
∨

cos2(a2+a1) θ

sin4a1 θ
) ∨ n−.5

)
(4.21)

ii) θ̂n − θ = Op(n2(a1−a2)(sin2a2 θ ∨ sin2−4a1 θ cos2(a2+a1) θ) ∨ n−.5 sin2 θ) (4.22)

Proof. By (4.19), 2̂a1 − 2a1 has the same order as Pn
Qn
−

( cos θ
sin θ

)2a1 and P∗n
Qn
−

(2 cos θ
sin θ

)2a1 , therefore

i) follows from Lemma 4.1.2 and its corollary.

74



For ii), note that
( Pn
Qn

)1/2̂a1 − cos θ
sin θ has the same order of 2̂a1 − 2a1 and Pn

Qn
−

( cos θ
sin θ

)2a1 . By (4.20)

and
dθ

d cot θ
= − sin2 θ,

the result follows since

θ̂n − θ = Op
(
dθ/d cot θ

( Pn
Qn

1/2̂a1
−

cos θ
sin θ

) )
= Op(n2(a1−a2) sin2 θ(

sin2a2 θ

sin2a1 θ
∨

cos2(a2+a1) θ

sin4a1 θ
) ∨ n−.5 sin2 θ)

= Op(n2(a1−a2)(sin2a2 θ ∨ sin2−4a1 θ cos2(a2+a1) θ) ∨ n−.5 sin2 θ).

�

Remark 2. (a). Theorem 4.1.4 implies that the estimates of 2a1 and cos θ/sin θ , 2̂a1 and
( Pn
Qn

)1/2̂a1,

respectively, are not goodwhen θ is close to zero. But the estimate of θ is uniformly good throughout

θ ∈ [0, π).

(b). In (4.19) (step 1), one can use the ratio of P∗n and Pn directly, instead of the ratios of P∗n/Qn

and Pn/Qn to estimate 2a1, and will get the same asymptotic result as in Theorem 4.1.4, which is

because of the previous corollary iii),iv).

(c). Theorem 4.1.4 implies consistency of 2â1, θ̂n in probability. Also note that the bias and variance

of 2â1 are of order Op

(
n2(a1−a2)( sin2a2 θ

sin2a1 θ
∨ cos2(a2+a1) θ

sin4a1 θ
)

)
,Op(n−1), respectively, following the

order of the bias and variance of Pn
Qn
,

P∗n
Qn

. Likewise, the bias and the variance of θ̂n are of order

n2(a1−a2)(sin2a2 θ ∨ sin2−4a1 θ cos2(a2+a1) θ), n−1 sin4 θ, respectively.

(d). By (4.12-4.15), it can be seen that the variances σ2
P, σ

2
Q, σP/Q in (4.16-4.18) are dependent on

a1, thus the variance of 2â1, θ̂n are dependent on a1. More specifically, the smaller a1 is, the bigger

the variances σ2
P, σ

2
Q, σP/Q are, as well as the variances of 2â1, θ̂n.
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4.1.2 Estimation of ratios of H(= 1) to eigenvalues of E

Define û1 =
©«

cos θ̂

− sin θ̂

ª®®¬ , and û2 =
©«

sin θ̂

cos θ̂

ª®®¬ . Using the relation,
{X(cuit)}t∈R

f .d.
= {c1/λi X(uit)}t∈R, (4.23)

we estimate ai = 1/λi, i = 1, 2,which are Hurst indices along the directions ui, i = 1, 2, respectively.

Among themanywell-knownHurst estimationmethods, here, we employ discrete variationmethod.

For a fixed domain, [0, 1] × [0, 1], and for m ∈ N ∩ {0}, 2m << n, define

∇̂m
j X(i/n) = X

(
i − 2m+1

n
û j

)
− 2X

(
i − 2m

n
û j

)
+ X

(
i
n

û j

)
j = 1, 2, i = 2m+1, ..., n. (4.24)

Note that {∇̂m
j X(i/n)}i is a discretized sample path with direction û j . If θ̂ = 0 then ∇̂0

j X(i/n) =

∇ j X(i/n), otherwise ∇̂0
j X(i/n) � ∇ j X(i/n). Similar to Pn,Qn in (4.11), define

P̂m
n :=

n∑
i=2m+1

∇̂m
1 X(i/n)2

n − 2m+1 + 1
, Q̂m

n :=
n∑

i=2m+1

∇̂m
2 X(i/n)2

n − 2m+1 + 1
. (4.25)

The estimates of a1 and a2 are log-regression of {P̂m
n ; m = 1, 2, ..., `n}, {Q̂m

n ; m = 1, 2, ..., `n} on

{2m log 2,m = 1, 2, ..., `n} respectively, i.e.

â1 =
1
2

`n∑
m=1

wm log2 P̂m
n , (4.26)

â2 =
1
2

`n∑
m=1

wm log2 Q̂m
n , (4.27)

where
`n∑

m=1
wm = 0,

`n∑
m=1

mwm = 1.

Define

aE
1 :=

1
2

`n∑
m=1

wm log2 EX |û1(P̂
m
n ),

aE
2 :=

1
2

`n∑
m=1

wm log2 EX |û2(Q̂
m
n ),

where the expectation is for X given û j, j = 1, 2.
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Theorem 4.1.5. In a fixed domain with the assumptions (A1, A2),

i)

n.5+2a1(â1 − aE
1 ) →d N(0, σa1),

aE
1 − a1 =


OP(n−2(a2−a1)−a2) if a2 − a1 > .25,

OP(n−(2+4a2)(a2−a1)) if a2 − a1 ≤ .25.

ii) If a2 − a1 ≤ .25 and a1 > .5,

n.5+2a2(â2 − aE
2 ) →d N(0, σa2),

aE
2 − a2 = OP(n

−(4a1−2)(a2−a1)).

Proof. For aE
1 , by (4.2),

EX |û1(∇̂
m
1 X(i/n)2) = c∗a1

(
22ma1

n2a1

)
+ ca2ε

2a2
1

(
22ma2

n2a2

)
(4.28)

= c∗a1

(
22ma1

n2a1

)
(1 + ca2/c

∗
a1ε

2a2
1 22m(a2−a1)n2a1−2a2), (4.29)

where c∗a1 = E(∇Ba1(i)
2)(u′1û1)

2a1, ca2 = E(∇Ba2(i)
2), and ε1 = u′2û1 which has the order of

(4.22). Note that u′1û1 ∼ 1. Since the order of ε2a2
1 n2a1−2a2 is either less than n2(a1−a2)−a2 or

n−(2+4a2)(a2−a1) depending on whether a2 − a1 > .25 or a2 − a1 ≤ .25, the result follows.

For aE
2 ,

EX |û2(∇̂
m
2 X(i/n)2) = ca1ε

2a1
2

(
22ma1

n2a1

)
+ c∗a2

(
22ma2

n2a2

)
(4.30)

= c∗a2

(
22ma2

n2a2

)
(1 + ca1/c

∗
a2ε

2a1
2 22m(a1−a2)n2a2−2a1), (4.31)

where ca1 = E(∇Ba1(i)
2), c∗a2 = E(∇Ba2(i)

2)(u′2û2)
2a2 and ε2 = u′1û2 which has the order of

(4.22). Since ε2a1
2 n2a2−2a1 is of order n−(4a1−2)(a2−a1) when a2 − a1 ≤ .25, and a1 > .5 or

divergent otherwise, the result follows. Asymptotic normality of â1, â2 follows from (4.17) with

delta method. �
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Remark 3. (a). If the condition of ii) in Theorem 4.1.5 is not met, then â2 goes to a1. This is

because ε2a1
2 n2a2−2a1 in (4.31) diverges and therefore as n→∞

log2(1 + ca1/c
∗
a2ε

2a1
2 22m(a1−a2)n2a2−2a1) ' log2(ca1/c

∗
a2ε

2a1
2 22m(a1−a2)n2a2−2a1),

and

aE
2 =

1
2

`n∑
m=1

wm log2 EX |û2(∇̂
m
2 X(i/n)2) ∼ a2 + (a1 − a2) = a1.

(b). Note that here it is assumed that independent sample paths are observed. However, it is

expected to have the same bias results for aE
i − ai, i = 1, 2, even when ûi and {X(tûi)}t∈R are

dependent (e.g., they are in the same sample surface.) This is because P̂m
n and Q̂m

n converge a.s.

to its expectation. For the same reason, the bias of the estimators in Theorem 4.1.6 and Theorem

4.1.10 remain true when {X
©«

t

0

ª®®¬ , X
©«
0

t

ª®®¬ , X(tûi)}t∈R is from one sample surface.

(c). Note that a1 is estimated two times in the whole estimating procedure: The first time is when θ

is estimated in section 4.1.1 (Theorem 4.1.4) and the other is in this section 4.1.2 (Theorem 4.1.5).

This is because ˆ2a1 was estimated to get the estimate of θ so that (a1, a2) are estimated. However,

ˆ2a1 estimated the first time has both larger bias and variance (Theorem 4.1.4) compared to â1 in

this section (Theorem 4.1.5).

As the above lemma indicates that the estimator â2 is not goodwhen a1 is small, one can naturally

use the sample in a different domain (i.e., an increasing domain.) In an increasing domain, the

estimators are obtained in the same way in (4.25-4.27) except that ∇̂m
j X(i/n) is changed to ∇̂m

j X(i).

Theorem 4.1.6. For an increasing domain with the assumptions (A1, A2),

i)

√
n(â1 − aE

1 ) →d N(0, σa1),

aE
1 − a1 =


OP(n−a2) if a2 − a1 > .25,

OP(n−4a2(a2−a1)) if a2 − a1 ≤ .25.
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ii)

√
n(â2 − aE

2 ) →d N(0, σa2),

aE
2 − a2 =


OP(n−a1) if a2 − a1 > .25,

OP(n−4a1(a2−a1)) if a2 − a1 ≤ .25.

Proof.

EX |û1(∇̂
m
1 X(i)2) = c∗a122ma1 + ca2ε

2a2
1 (22ma2)

= c∗a122ma1(1 + ca2/c
∗
a1ε

2a2
1 22m(a2−a1)),

where c∗a1 = E(∇Ba1(i)
2)(u′1û1)

2a1, ca2 = E(∇Ba2(i)
2) and ε1 = u′2û1 which has the order of

(4.22). Since the order of ε2a2 is either less than n−a2 or n−4a2(a2−a1) depending on whether

a2 − a1 > .25 or a2 − a1 ≤ .25, the result follows. For ii),

EX |û2(∇̂
m
2 X(i)2) = ca1ε

2a1
2 22ma1 + c∗a222ma2

= c∗a222ma2(1 + ca1/c
∗
a2ε

2a1
2 22m(a1−a2)),

where ca1 = E(∇Ba1(i)
2), c∗a2 = E(∇Ba2(i)

2)(u′2û2)
2a2 and ε2 = u′1û2 which has the order of

(4.22). The result follows for the order of aE
2 − a2. Asymptotic normality of â1, â2 follows from

the fact that

√
n
( n∑

i=2m+1

∇̂m
1 X(i/n)2

n − 2m+1 + 1
− E(∇̂m

1 X(i)2)
)
→d N(0, Σ1),

√
n
( n∑

i=2m+1

∇̂m
2 X(i/n)2

n − 2m+1 + 1
− E(∇̂m

2 X(i)2)
)
→d N(0, Σ2),

which can be derived in the same way as (4.17). �

4.1.3 For H < 1

From now on, the results for H = 1 has been shown. This constraint is relaxed in this section, and it

will be seen that the results remain the same except the estimators are for hi = H/λi = Hai, i = 1, 2.
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Since H < 1, (4.5-4.6),(4.9-4.10) no longer hold. Nonetheless, most of the results hold in the

similar way.

ASSUMPTION

(A1′) υE,H(x) = τE (x)2H with τE in (2), H < 1 and a1 ≤ a2, a1, a2 ∈ (0, 1).

Lemma 4.1.7. Under the assumptions (A1′, A2),

i) υE,H
©«
h

0

ª®®¬ ∼ |h cos θ |2h1 and υE,H
©«
0

h

ª®®¬ ∼ |h sin θ |2h1 for |h| → 0.

ii) E(∇1X(i/n)2) = 8υE,H
©«
1/n

0

ª®®¬ − 2υE,H
©«
2/n

0

ª®®¬ , E(∇2X(i/n)2) = 8υE,H
©«

0

1/n

ª®®¬ − 2υE,H
©«

0

2/n

ª®®¬ .
iii) limn n4h1

∑n
i=2 cov(∇ j X(2/n)2,∇ j X(i/n)2) < ∞, j = 1, 2.

Proof. i) Since

υE,H
©«
h

0

ª®®¬ =(|h cos θ |2a1 + |h sin θ |2a2)H,

υE,H
©«
0

h

ª®®¬ =(|h sin θ |2a1 + |h cos θ |2a2)H,

the results are derived. ii) It is proved in the same way as in Lemma 4.4.1.

iii) Let j = 1. For j = 2, the proof goes in the same way. Note that cov(∇ j X(2/n)2,∇ j X(i/n)2) =

2cov(∇ j X(2/n),∇ j X(i/n))2. For large enough n,

cov(∇1X(2/n),∇1X(i/n)) ∼ c1υ
(4)
E,H

©«
i/n

0

ª®®¬
for some constant c1, where υ

(4)
E,H

©«
i/n

0

ª®®¬ is the fourth derivative of υE,H
©«
i/n

0

ª®®¬ with respect to i. This
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is because

E(X
©«
i + 1

0

ª®®¬ X
©«
1

0

ª®®¬) = −2υE,H
©«

i

0

ª®®¬ + E
(
X

©«
i + 1

0

ª®®¬
2 )/

2 + E
(
X

©«
1

0

ª®®¬
2 )/

2

and therefore

cov(∇1X(2/n),∇1X(i/n)) = −2
{
υE,H

©«
(i + 1)/n

0

ª®®¬ − 4υE,H
©«
i/n

0

ª®®¬ + 6υE,H
©«
(i − 1)/n

0

ª®®¬
− 4υE,H

©«
(i − 2)/n

0

ª®®¬ + υE,H
©«
(i − 3)/n

0

ª®®¬
}
.

Since n2h1υ(4)E,H

©«
i/n

0

ª®®¬ is the same as the fourth derivative of (|i cos θ |2a1 + n2a1−2a2 |i sin θ |2a2)H,

which is∑
k≥`≥m≥p≥0
k+`+m+p=4

ck,`,m,p(|i cos θ |2a1 + n2(a1−a2) |i sin θ |2a2)H−k (|i cos θ |2a1−1 + n2(a1−a2) |i sin θ |2a2−1)k−`

× (|i cos θ |2a1−2 + n2(a1−a2) |i sin θ |2a2−2)`−m(|i cos θ |2a1−3 + n2(a1−a2) |i sin θ |2a2−3)m−p

× (|i cos θ |2a1−4 + n2(a1−a2) |i sin θ |2a2−4)p < c2i2a1H−4

for some constants ck,`,m,p, c2. Therefore n2h1cov(∇1X(2/n),∇1X(i/n)) < c2i2a1H−4, and the

results follow since a1H < 1.

�

Lemma 4.1.8. Assumptions (A1′, A2) are satisfied. Then,

i)
Pn
Qn
− υE,H

©«
2/n

0

ª®®¬
/
υE,H

©«
0

2/n

ª®®¬ = Op(n−.5)

ii) υE,H
©«
2/n

0

ª®®¬
/
υE,H

©«
0

2/n

ª®®¬ −
(
cos θ
sin θ

)2h1
= O(n2(a1−a2) sin2(a2−a1) θ ∨ n2(a1−a2) cos2a2 θ/sin2a1 θ)

81



Proof. i) By Theorem 2 in [5] and

σ2
P := lim

n
var(n.5+2h1Pn) < 2 lim

n
n4h1

n∑
i=2

cov(∇1X(2/n)2,∇1X(i/n)2) < ∞,

σ2
Q := lim

n
var(n.5+2h1Qn) < 2 lim

n
n4h1

n∑
i=2

cov(∇1X(2/n)2,∇1X(i/n)2) < ∞,

follows

n.5+2h1(Pn − EPn) → N(0, σP), (4.32)

n.5+2h1(Qn − EQn) → N(0, σQ). (4.33)

Therefore

n.5(
Pn
Qn
−

EPn
EQn
) → N(0, σP/Q),

where σ2
P/Q = limn n4h1( 1

EQ2
n
σ2

P +
EP2

n
EQ4

n
σ2

Q).

For ii), it is easily derived from the fact that

υE,H
©«
2/n

0

ª®®¬
/
υE,H

©«
0

2/n

ª®®¬ =
(
cos2a1 θ + 2n2a1−a2 sin2a2 θ

sin2a1 θ + 2n2a1−a2 cos2a2 θ

)H
.

�

By the above results and the same way as in Theorem 4.1.4, the next theorem follows.

Theorem 4.1.9. Under the assumptions (A1′, A2),

i) 2̂h1 − 2h1 = Op

(
n2(a1−a2)(

sin2a2 θ

sin2a1 θ
∨

cos2a2 θ

sin2a1 θ
) ∨ n−.5

)
ii) θ̂n − θ = Op(n2(a1−a2) ∨ n−.5)

(4.23) is now changed to the following equation.

{X(cuit)}t∈R
f .d.
= {cH/λi X(uit)}t∈R.

Using the same estimator as (4.26-4.27), now one can obtain the estimator of hi, hi = H/λi, i = 1, 2.

ĥ1 =
1
2

`n∑
m=1

wm log2 P̂m
n . (4.34)

ĥ2 =
1
2

`n∑
m=1

wm log2 Q̂m
n , (4.35)
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where P̂m
n , Q̂

m
n defined same as (4.25).

Theorem 4.1.10. In a fixed domain with the assumptions (A1′, A2),

i)

n.5+2a1(ĥ1 − hE
1 ) →d N(0, σh1),

hE
1 − h1 =


OP(Hn−2(a2−a1)−a2) if a2 − a1 > .25,

OP(Hn−(2+4a2)(a2−a1)) if a2 − a1 ≤ .25.

ii) If a2 − a1 ≤ .25 and a1 > .5,

n.5+2a2(ĥ2 − hE
2 ) → N(0, σh2),

hE
2 − h2 = OP(Hn−(4a1−2)(a2−a1)).

Proof. For hE
1 , by Lemma 4.1.7 ii), it is derived that

EX |û1(∇̂
m
1 X(i/n)2) = 8

(
ba1

(
22ma1

n2a1

)
+ ε

2a2
1

(
22ma2

n2a2

))H
− 2

(
ba1

(
22(m+1)a1

n2a1

)
+ ε

2a2
1

(
22(m+1)a2

n2a2

))H

=

(
22mHa1

n2Ha1

) (
8bH

a1(1 + ε
2a2
1 22m(a2−a1)b−1

a1 n2a1−2a2)H

− 2bH
a122Ha1(1 + 22(a2−a1)ε

2a2
1 22m(a2−a1)b−1

a1 n2a1−2a2)H
)

= c∗h1

(
22mh1

n2h1

) (
1 + c̃a2/c

∗
h1

Hε
2a2
1 22m(a2−a1)n2a1−2a2 + o(ε

2a2
1 n2a1−2a2)

)
,

where ba1 = (u
′
1û1)

2a1, c∗h1
= E(∇Bh1(i)

2)(u′1û1)
2h1, c̃a2 = E(∇Ba2−(1−H)a1(i)

2)bH−1
a1 and ε1 =

u′2û1. The last equality follows by Taylor expansion and the fact that E(∇Bh(i)2) = 8 − 2 · 22h.

Since ε1 has the order of (4.22), ε2a2
1 n2a1−2a2 is either less than n2(a1−a2)−a2 or n−(2+4a2)(a2−a1)

depending on whether a2 − a1 > .25 or a2 − a1 ≤ .25, the result follows.
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For hE
2 , in the same way as above, it is derived that

EX |û2(∇̂
m
2 X(i/n)2) = 8

(
ε

2a1
2

(
22ma1

n2a1

)
+ ba2

(
22ma2

n2a2

))H
− 2

(
ε

2a1
2

(
22(m+1)a1

n2a1

)
+ ba2

(
22(m+1)a2

n2a2

))H

=

(
22mHa2

n2Ha2

) (
8bH

a2(1 + ε
2a1
2 22m(a1−a2)b−1

a2 n2a2−2a1)H

− 2bH
a222Ha2(1 + 22(a1−a2)ε

2a2
2 22m(a1−a2)b−1

a2 n2a2−2a1)H
)

= c∗h2

(
22mh2

n2h2

) (
1 + c̃a1/c

∗
h2

Hε
2a2
2 22m(a1−a2)n2a2−2a1 + o(ε

2a1
2 n2a2−2a1)

)
,

where ba2 = (u
′
2û2)

2a2, c∗h2
= E(∇Bh2(i)

2)(u′2û2)
2h2, c̃a1 = E(∇Ba1−(1−H)a2(i)

2)bH−1
a2 and ε2 =

u′1û2. The last equality follows by Taylor expansion and the fact that E(∇Bh(i)2) = 8 − 2 · 22h.

Since ε2 has the order of (4.22), ε
2a1
2 n2a2−2a1 is of order n−(4a1−2)(a2−a1) when a2−a1 ≤ .25, and

a1 > .5 or divergent otherwise, the results follow for the order of hE
2 − h2. Asymptotic normality

of ĥ1, ĥ2 follows from (4.32-4.33). �

4.2 Simulation results

The simulation of operator scaling Gaussian random field with semi-variogram (1.8) and

diagonal matrix E was performed with the algorithm in [9](Figure 4.1, Figure 4.6). As we have

diagonizable matrix E in this chapter, the algorithm in [9] was modified. Two different sampling

regimes were employed in this section: 1) independent sample paths on exact directions 2) sample

surface on grid lines. In Section 4.2.1, independent sample pathswere simulated on exact directions.

In Section 4.2.2, sample surfaces were simulated on grid lines.

4.2.1 Independent sample paths on exact directions

Here it is assumed that independent sample paths on exact directions are obtained from OSGRF

with different parameters (θ, a1, a2) when H = 1, (θ, h1, h2) when H < 1. More specifically, two

independent sample paths, {X
©«
i/n

0

ª®®¬ , n = 213, i = 1, ..., 213}, {X
©«

0

i/n

ª®®¬ , n = 213, i = 1, .., 213}, are

obtained to estimate θ, and with that directions θ̂, two independent sample paths, {X
( i

n û1
)
, n =
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213, i = 1, ..., 213}, {X
( i

n û2
)
, n = 213, i = 1, ..., 213}, are used to estimate (a1, a2) for H = 1 and

(h1, h2) for H < 1. In an increasing domain regime, {X(iû1), i = 1, ..., 213}, {X(iû2), i = 1, ..., 213}

are used to estimate (a1, a2) for H = 1.

4.2.1.1 For H = 1

Figure 4.1 shows the simulations of random field X whose semi-variogram is (1.8) with θ = 0 and

various a1, a2 in a fixed domain [0, 1]× [0, 1]. In the same model with different θ, the picture would

look just like Figure 4.1 in a different angle (i.e., the picture rotated by the angle θ from Figure 4.1.)

In Figure 4.2, cos θ/sin θ was estimated in OSGRF for {θ = i/20 ∗ π/2, i = 1, ..., 19}, for each

of {(a1, a2)} in Figure 4.1. In other words, (
Pn
Qn

)1/α̂n

are drawn and its convergence rate is in (4.21). It is seen that, for θ close to zero, the estimation is

not good as it was expected by (4.21), but as seen in Figure 4.3, the estimate of θ, which one needs

ultimately, is good for the whole range of θ, and this result was expected from (4.22).

In Figure 4.3, the estimates of θ, θ ∈ [0, π/2], were drawn in OSGRF for {θ = i/20 ∗ π/2, i =

1, ..., 19} in each case of {(a1, a2)} as in Figure 4.1. For these estimates, the sample paths of

{X
©«
i/n

0

ª®®¬ ; n = 213, i = 1, .., 213}, {X
©«

0

i/n

ª®®¬ , n = 213, i = 1, 2, .., 213} were used. It is seen from

Figure 4.3 that θ̂ works well in any range of set (θ, a1, a2) as all other lines are close to the black

line.

In Figure 4.4, the estimates of a1, a2 were drawn for each case of (a1, a2) with varying θ. The

different colors represent a different set of (a1, a2), and in each color, the solid line is for â1, and the

dotted line is for â2. The estimates â1, â2 were obtained in a fixed domain [0, 1] × [0, 1] with m =

1, 2, 3, 4(= `n), and sample paths {X
( i

n û1
)
, n = 213, i = 1, .., 213}, {X

( i
n û2

)
, n = 213, i = 1, .., 213}

for a1, a2, respectively, where θ̂ for {û j(θ̂), j = 1, 2} are from the previous step in Figure 4.3. As it

was expected in Theorem 4.1.5, Figure 4.4 reveals the fact that â1 performs well for any range of

the set (θ, a1, a2), but â2 performs well only when a1 is large and a2 − a1 is small– {(a1, a2); a1 >
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.5 and a2 − a1 < .25}. In Figure 4.4, it is seen that for {(a1, a2) = (.1, .3), (.2, .3), (.3, .8)}, â1 and

â2 are both close to a1. For {(a1, a2) = (.6, .8), (.8, .9)}, â1 is close to a1 and â2 is close to a2.

In Figure 4.5, the same estimates of θ were used as in Figure 4.3 and Figure 4.4, but a1, a2

are estimated in an increasing domain [0, 213] × [0, 213]. More specifically, the estimates â1, â2

were obtained with m = 1, 2, 3, 4(= `n), and the sample paths {X(iû1), i = 1, .., 213}, {X(iû2), i =

1, .., 213} for a1, a2, respectively, where θ̂ for {û j(θ̂), j = 1, 2} are the same as in Figure 4.3, and

Figure 4.4. As it was expected in Theorem 4.1.6, it is seen in Figure 4.5 that both â1, â2 work well

in any set of the range (θ, a1, a2), as the solid line which is for â1 is close to a1 and the dotted line

which is for â2 is close to a2 in any case of (θ, a1, a2).

4.2.1.2 For H < 1

Figure 4.6 shows sample surface of OSGRF with various (a1, a2) when H < 1, and θ = 0. The

sample surfaces look different than those in Figure 4.1 as there is no longer clear grid lines in

Figure 4.6. Figure 4.7 shows the results for the estimator θ̂, and Figure 4.8 shows the results for

the estimator ĥ1, ĥ2 with m = 1, 2, 3, 4(= `n). The estimators θ̂, ĥ1 ĥ2 behave similarly as in the case

when H = 1. In Figure 4.7, θ̂ was drawn for {θ = i/20 ∗ π/2, i = 1, ..., 19}, for each (h1, h2) with

various H in each of the graphs (a)–(f). It is noticeable that the bias of θ̂ increases as h2 − h1 and

therefore a2−a1 decreases, and the standard error of θ̂ increases as a1, a2 are getting smaller. These

results were predicted in Theorem 4.1.9. In Figure 4.8, it is observed that for graphs (a), (b), (c),

the estimators ĥ1, ĥ2 work well for any range of θ, whereas for graphs (d), (e), only ĥ1 works well.

For graph (f), ĥ1 works well, and ĥ2 performs better than that of graphs (d), (e) but not as much

as graph (a-c). These results coincide with Theorem 4.1.10, as for (a-c), (a1 = h1/H, a2 = h2/H)

falls into the region {(a1, a2); a1 > .5 and a2 − a1 < .25}, whereas in (d), (e), (a1, a2) is far from

the region, and in F, (a1, a2) does not fall into the region but pretty close to the boundary.
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4.2.2 sample surface on a grid

Here it is assume that sample surface from OSGRF is available on a grid. More specifically,{
X

©«
i/n

j/n

ª®®¬ , i, j = 1, ..., n
}
are simulated and used to estimate (θ, a1, a2) for H = 1 and (θ, h1, h2) for

H < 1. Since OSGRF with the parameter (θ , 0, a1, a2,H) is the same as OSGRF (0, a1, a2,H)

rotated by the angle θ,
{

X
©«

i/n

j/n

ª®®¬ , i, j = 1, ..., n
}
were generated from OSGRF (0, a1, a2,H) and the

sample points

S1 =

{
X

©«
i/n

b(i − n/2) tan θc/n + 1/2

ª®®¬ , X
©«
b(i − n/2) tan θc/n + 1/2

i/n

ª®®¬ , i = 1, ..., n
}

were chosen to estimate θ, and with θ̂,

S2 =

{
X

©«
i/n

b(i − n/2) tan(θ̂ − θ)c/n + 1/2

ª®®¬ , X
©«
b(i − n/2) tan(θ̂ − θ)c/n + 1/2

i/n

ª®®¬ , i = 1, ..., n
}

were chosen to estimate (a1, a2) for H = 1, (h1, h2) for H < 1. The estimation method for θ is the

same as before except that ∇ j X(i/n), j = 1, 2, in (4.3-4.4) are computed with sample points in S1.

Likewise, the estimation method for a j, h j, j = 1, 2, are the same as in the previous section except

that ∇̂m
j X(i/n), j = 1, 2, in (4.24) are computed with every 2m-th points in S2.

4.2.2.1 For H = 1

For each θ from {θ = i/20∗π/2, i = 1, ..., 19}, the set S1 with n = 214 was chosen from the simulated

sample surface to estimate θ. The results are shown in Figure 4.9. With θ̂, and n = 214, the set

S2 was chosen to compute ∇̂m
j X(i/n) similarly to (4.24) with every 2m-th sample point from S2 to

estimate (a1, a2). Figure 4.10 and Figure 4.11 show the results for â1, â2 with m = 1, 2, 3, 4(= `n),

and m = 5, 6, 7, 8(= `n), respectively.

Figure 4.10 looks very different than the one obtained in Section 4.2.1.1, especially for the

dotted lines which are for â2. This is because samples are on grid lines so that for small θ̂ − θ, b(i −

n/2) tan(θ̂ − θ)c/n+1/2 will be the same for many adjacent i values, which results in sample points
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on the same vertical or horizontal lines in S2. This affects the estimator of a2 in a different way for

a different value of a2. This is explained well with (4.30-4.31). For â2, as ∇̂m
2 X(i/n) is computed

with S2,

∇̂m
2 X(i/n) =X

©«
b(i − 2m+1 − n/2) tan(θ̂ − θ)c/n + 1/2

(i − 2m+1)/n

ª®®¬
− 2X

©«
b(i − 2m − n/2) tan(θ̂ − θ)c/n + 1/2

(i − 2m)/n

ª®®¬
+ X

©«
b(i − n/2) tan(θ̂ − θ)c/n + 1/2

i/n

ª®®¬ i = 2m+1, ..., n,

the expectation of its squared (4.30) is changed to

EX |û2(∇̂
m
2 X(i/n)2) = E

(
(Ba1(b(i − 2m+1 − n/2) tan(θ̂ − θ)c/n + 1/2)

− 2Ba1(b(i − 2m − n/2) tan(θ̂ − θ)c/n + 1/2) + Ba1(b(i − n/2) tan(θ̂ − θ)c/n + 1/2))2
)

+ E
(
(Ba2((i − 2m+1)/n) − 2Ba2((i − 2m)/n) + Ba2(i/n))

2
)

= c̃
(

1
n2a1

)
+ ca2

(
22ma2

n2a2

)
,

where c̃ is either zero or E(Ba1(i) − Ba1(i − 1))2 = 2, and ca2 = E(∇Ba2(i)
2). This is because for

θ̂ − θ being small, b2m tan(θ̂ − θ)c � 1, and therefore
{
b(i − 2m+1 − n/2) tan(θ̂ − θ)c/n+ 1/2, b(i −

2m − n/2) tan(θ̂ − θ)c/n + 1/2, b(i − n/2) tan(θ̂ − θ)c/n + 1/2
}
are all the same or at most one of

them has an increment of 1/n for about 2m+1bn tan(θ̂ − θ)c among {i = 2m+1, ..., n}. This leads the

change in (4.31), replacing ca1/c
∗
a2ε

2a1
2 22m(a1−a2) by c̃/ca22−2ma2,

log2 EX |û2(∇̂
m
2 X(i/n)2) = log2 ca2 + log2

(
22ma2

n2a2

)
+ log2(1 + c̃/ca22−2ma2n2a2−2a1).

Since c̃ is either 0 or 2, the last term is either 0 or close to log2(c̃/ca22−2ma2n2a2−2a1). Therefore,
1
2
∑`n

m=1 wm log2 E(∇̂m
2 X(i/n)2) is either a2 or close to 0, and aE

2 becomes the weighted average

between 0 and a2 with weights around 2m+1 tan(θ̂ − θ), 1− 2m+1 tan(θ̂ − θ), respectively. Note that

the larger a2 is, the bigger the bias of â2 is, as â2 becomes much smaller than a2. Therefore when
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a2 is small, the estimator â2 actually performs better with samples on grid lines than with samples

on the exact direction. However, there is not much difference for â1, as it always performs well

whether samples are on grid or exact directions. This can be explained by (4.28-4.29). Since the

term n2a1−2a2 in (4.29) goes to zero as the sample size grows, it always makes the estimator â2

work well.

If one increases the scale m that is used for the distance between sample points in estimators

â1, â2 (4.26-4.27), then the estimators behave similarly to the previous case where sample points

are laid exactly along the direction. This can be seen in Figure 4.11. Figure 4.11 looks similar

to Figure 4.4 in a way that â2 works well only when parameters are in the region {(a1, a2); a1 >

.5 and a2 − a1 < .25}, and â1 works well in general. It is because by choosing larger scale m, the

effect of sample points lying on the grid lines is diminished. In other words, the distance between

adjacent i, which are used for ∇̂m
j X(i/n) in (4.24) and in S2, is 2m. Therefore, with the higher m,

b(i − n/2) tan(θ̂ − θ)c/n + 1/2 would not overlap for these i (i.e. every 2m-th sample in S2 lies on

the different vertical and horizontal grid lines.)

4.2.2.2 For H < 1

OSGRF with θ = 0 and various a1, a2,H were simulated at
{

X
©«

i/n

j/n

ª®®¬ , n = 212, i, j = 1, ..., n
}
. The

same method was used to estimate θ, h1, h2 as in section 4.2.2.1. Here, {m = 1, 2, 3, 4(= `n)} and

{m = 3, 4, 5, 6(= `n)} was used for both h1 = .6, h2 = .7 and h1 = .2, h2 = .4 with various H < 1.

The results are shown in Figure 4.12-4.17. The estimators behave similarly to the case when H = 1

in Section 4.2.2.1. For h1 = .6, h2 = .7, the estimators with larger scale m = 3, 4, 5, 6(= `n) perform

well as ĥ1, ĥ2 are close to h1, h2, respectively, whereas the estimator ĥ2 with m = 1, 2, 3, 4(= `n) is

poor since both ĥ1, ĥ2 are close to h1. For h1 = .2, h2 = .4, the estimators with m = 1, 2, 3, 4(= `n)

performs better as ĥ1, ĥ2 are close to h1, h2 in a wider range of θ than when m = 3, 4, 5, 6(= `n).
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(a) (b)

(c) (d)

(e)

Figure 4.1: (a): a1 = .1, a2 = .3, (b): a1 = .2, a2 = .3, (c):a1 = .3, a2 = .8, (d):a1 = .6, a2 = .8,
(e): a1 = .8, a2 = .9
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Figure 4.2: Estimates of cos θ/sin θ

Figure 4.3: Estimates of θ
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Figure 4.4: Estimates of a1 and a2 in a fixed domain

Figure 4.5: Estimates of a1 and a2 in an increasing domain
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(a) (b)

(c) (d)

(e)

Figure 4.6: (a): h1 = .6, h2 = .7,H = 75, (b): h1 = .6, h2 = .7,H = .85, (c):h1 = .1, h2 = .3,H =
.4, (d):h1 = .1, h2 = .3,H = .8 (e): h1 = .2, h2 = .3,H = .4
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Figure 4.7: Estimates of θ

Figure 4.7 (a) h1 = .6, h2 = .7

H =.75(red)
.85(green)
.95(blue)

Figure 4.7 (b) h1 = .6, h2 = .8

H =.85(red)
.9(green)
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Figure 4.7 (cont’d)

Figure 4.7 (c) h1 = .8, h2 = .9

H =.93(red)
.98(green)

Figure 4.7 (d) h1 = .3, h2 = .8

H =.85(red)
.95(green)
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Figure 4.7 (cont’d)

Figure 4.7 (e) h1 = .1, h2 = .3

H =.4(red)
.6(green)
.8(blue)

Figure 4.7 (f) h1 = .6, h2 = .9

H =.95(red)
.99(green)
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Figure 4.8: Estimates of h1, h2

Figure 4.8 (a) h1 = .6, h2 = .7

H =.75(red)
.85(green)
.95(blue)

Figure 4.8 (b) h1 = .6, h2 = .8

H =.85(red)
.9(green)
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Figure 4.8 (cont’d)

Figure 4.8 (c) h1 = .8, h2 = .9

H =.93(red)
.98(green)

Figure 4.8 (d) h1 = .3, h2 = .8

H =.85(red)
.95(green)
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Figure 4.8 (cont’d)

Figure 4.8 (e) h1 = .1, h2 = .3

H =.4(red)
.6(green)
.8(blue)

Figure 4.8 (f) h1 = .6, h2 = .9

H =.95(red)
.99(green)
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Figure 4.9: Estimates of θ in a sample surface

Figure 4.10: Estimates of a1 and a2 in a sample surface with m = 1, 2, 3, 4
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Figure 4.11: Estimates of a1 and a2 in a sample surface with m = 5, 6, 7, 8

Figure 4.12: Estimates of θ
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Figure 4.13: Estimates of h1 and h2 in an fixed domain with m = 1, 2, 3, 4

Figure 4.14: Estimates of h1 and h2 in an fixed domain with m = 3, 4, 5, 6
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Figure 4.15: Estimates of θ

Figure 4.16: Estimates of h1 and h2 in an fixed domain with m = 1, 2, 3, 4
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Figure 4.17: Estimates of h1 and h2 in an fixed domain with m = 3, 4, 5, 6
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CHAPTER 5

CONCLUSION AND DISCUSSION

In this dissertation, statistical inference was made on self-similar processes/random fields with

stationary increments. First, Hurst parameter, which captures self-similarity, was estimated in

multivariate self-similar stochastic processes and random field, OFBM and OSGRF, respectively.

Second, the dependencywithinmultivariate randomfieldswith stationary increments wasmeasured

in the spectral domain.

Hurst estimation method with wavelet transform and eigen decompositon was examined thor-

oughly in a OFBM in continuous sample path, discrete sample path, and discrete noisy data. It was

revealed both theoretically and empirically that there is an interplay of Hurst parameters, h1, h2,

the covariance matrix Γ(1, 1) of XH(1), and the choice of the scale parameter j of wavelet function

on the performance of the estimator. If continuous sample paths are observed, then the bigger j is,

the better the estimators of h2, h1 perform. If discrete sample paths are observed, then it is better

to choose slightly smaller j than the maximum j = log2 n. Especially if hi is small e.g. hi < .5,

or determinant of Γ(1, 1) is small, then the estimators of h1, h2 have large bias for j close to its

maximum. However, the larger j is, the smaller the standard error of the estimators is. Considering

both bias and standard error, it is best to choose a set of j that is slightly smaller than log2 n or wide

range of j except the very large or small j when discrete sample paths are given. If noise is present

in the processes, then it is better to choose much smaller j than in the previous cases, but with the

noise term, the estimator does not work well unless both h1, h2 are small. For the estimator of θ, it

is always the best to choose the largest j = log2 n, since it has the both smallest bias and standard

error among all possible j in any set of (θ, h1, h2).

Hurst estimator was developed in OSGRF, and its performance was analyzed for different

sampling regimes. The performance of the estimator is affected by the several factors such as values

of the parameters, whether it is sampled in grid lines or it is sampled along the exact direction, and

whether samples are on a fixed domain or an increasing domain. It was observed that, in a fixed
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domain setting, the estimator of a1(or h1) always performs well, whereas the estimator of a2(or h2)

performs well if the parameters are in the region of {(a1, a2); a1 > .5, a2 − a2 < .25} provided that

samples are obtained on the exact directions. In a fixed domain, if samples are on grid lines, then

the different choice of scale parameter m used in discrete variation method affects the performance

of the estimator â2(or ĥ2) differently for a different set of (a1, a2). If the parameters fall in the

region {(a1, a2); a1 > .5, a2 − a2 < .25}, higher values of m works better for â2(or ĥ2), whereas

lower values of m work better for â2(or ĥ2) if the parameter a2 is less than .5. In an increasing

domain with H = 1, the estimators â1, â2 perform well in any range of (a1, a2).

The concept of coherencewas extended and defined inmultivariate randomfieldswith stationary

increments, and its estimator was developed. The estimator was applied to OFBM with sample

paths observed in a fixed domain, and its behavior was observed both theoretically and empirically.

It was revealed that OFBM in a fixed domain has different dependence structure for different

matrices D(H),C in (3.23). Particularly, if the scaling matrix D(H) is diagonizable, not diagonal,

then the squared coherence function converges to constant function of 1 as the sample size grows in

a fixed domain, which implies that there exists strong correlation between two stochastic processes.

Moreover, in that case, the squared coherence converges to 1 faster if the two Hurst parameters

have a bigger difference (i.e., the bigger α2 − α1(h1 − h2) is, the stronger correlation exists in two

series.) If both C and D are diagonal matrix, then the squared coherence is zero function which

means that the two series are independent, having no correlation. If D is diagonal matrix, but not

C , then the squared coherence is close to constant function cγ, whose value is in between 0 and 1,

cγ =
C12√

C11C22
,C`,k = (C C ′)`,k, `, k = 1, 2.

Hurst estimation in multivariate stochastic processes and random field is not only an interesting

topic but also has practical value as self-similarity and, more generally, fractality are seen in many

objects in nature. For future work, a better Hurst estimation method needs to be developed in

OFBM when noise is present, since the current method in this dissertation works well only for a

small range of parameters when noise is present. Hurst estimation in OFBM with various form of

Hurst matrix H is also of interest, especially OFBM with Jordan form H. A better Hurst estimation
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method for h2 in OSGRF is needed as the method in this dissertation works well only for some

range of parameters. The coherence function defined in this dissertation is a useful measure in

capturing dependence structure in two random fields that are increment stationary. In future work,

further applications of the coherence in various random fields will be of interest as it will reveal

more of its practical value.
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APPENDIX

A.1 Appendix

Theorem 11 (Complex-valued Gaussian random measure) Let µ be a symmetric measure on

(RN,B(RN )) and let G = {A ∈ B(RN ) : µ(A) < ∞}. Then there exists a complex-valued

Gaussian process indexed by G, i.e. W̃µ = {W̃µ(A) : A ∈ G}, written as W̃µ(A) = W1(A)+ iW2(A)

that satisfies the following conditions,

• E
(
W̃µ(A)W̃µ(B)

)
= µ(A ∩ B);

• for any A ∈ G, W̃µ(−A) =a.s. W̃µ(A) ⇐⇒ W1(A) =a.s. W1(−A) and W2(A) =a.s. −W2(−A).

In general, we denote the Gaussian process W̃µ by W̃ .

Proof. We only give the sketch of the proof. Put

E+ = {x ∈ RN : x1 ≥ 0, xi ∈ R, i = 2, . . . , N},

E− = {x ∈ RN : x1 ≤ 0, xi ∈ R, i = 2, . . . , N},

then (−E−) = E+ and RN = E+ ∪ E−. Without loss of the generality, we assume µ(E+ ∩ E−) = 0.

As in the real case, we can take two independently scattered Gaussian random measures W1 and

W2 on (E+, E+, 1
4 µ). Define, for A ∈ G,

W̃1(A) := W1(A ∩ E+) +W1(−(A ∩ E−)),

W̃2(A) := W2(A ∩ E+) +W2(−(A ∩ E−)),

and

W̃(A) := W̃1(A) + i W̃2(A).

Then {W̃(A), A ∈ G} is a complex-valued Gaussian process with zero mean. We now verify the two

conditions. Notice that the distinction of the symbols between the conditions and constructions,
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then the second condition is obvious. It is easy to see that

E(W̃(A)W̃(B)) =E(W̃1(A)W̃1(B) + W̃2(A)W̃2(B))

+ iE(W̃1(B)W̃2(A) − W̃1(A)W̃2(B))

=
1
2
µ(AB) +

1
2
µ(AB) = µ(AB),

which yields the first condition. �
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