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ABSTRACT

META-ANALYSES OF GENE EXPRESSION IN AGE-DEPENDENT DISEASES

By

Lavida Rashida Kenera Rogers

Physiological changes with age such as immune system decline and brain aging cause an increased

risk for diseases. Age-related diseases are of major concern especially in the elderly population

due to there being an increase in the average lifespan. This dissertation explores neurodegenerative

and respiratory diseases and how gene expression varies due to disease status, age tissue and sex.

Alzheimer’s disease (AD) has been categorized by the Centers for Disease Control and Preven-

tion (CDC) as the 6th leading cause of death in the United States. AD is a significant health-care

burden because of its increased occurrence (specifically in the elderly population), and the lack of

effective treatments and preventive methods. AD targets neuronal function and can cause neuronal

loss due to the buildup of amyloid-beta plaques and intracellular neurofibrillary tangles.

The respiratory disease, chronic obstructive pulmonary disease (COPD), was classified by the

Centers for Disease Control and Prevention in 2014 as the 3rd leading cause of death in the United

States. The main cause of COPD is exposure to tobacco smoke and air pollutants. In addition to

exploring genetic variation due to disease state, sex and age we also explored the role of smoking

status on expression profiles.

Additionally, the respiratory infections, influenza and pneumonia affect thousands of people

worldwide. Young children, elderly and immunocompromised individuals are at higher risk for

being infected by the influenza virus and Streptococcus pneumoniae. Host responses to these

pathogens and vaccinations vary by the state of one’s immune system.

This dissertation includes multiple meta-analyses to assess genetic variation in Alzheimer’s

disease, COPD and Influenza, and an assessment of pneumococcal disease and aging. To iden-

tify significant differentially expressed genes we ran an analysis of variance with a linear model

with disease state, age, sex, tissue, smoking status and study as effects that also included binary



interactions.

Ourmeta-analysis approach effectively combinedmultiple publicly availablemicroarray datasets

to identify gene expression differences across diseases including full age, sex, smoking status and

tissue type considerations. Our findings provide potential gene and pathway associations that can

be targeted to improve treatment and prevention of diseases.
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CHAPTER 1

OVERVIEW AND AIMS OF DISSERTATION
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1.1 Overview

Aging is a natural part of life, and it refers to the physiological changes within the human

body from birth to death [6]. With age, the body gradually deteriorates and cell and organ func-

tion becomes impaired. These physiological changes include cellular senescence, mitochondrial

dysfunction, genomic instability and altered intercellular communication [7]. More specifically,

changes such as the decline in immune system function and also cognitive decline with age puts

the elderly at a higher risk for contracting diseases. For example, neurodegenerative diseases such

as Alzheimer’s Disease (AD) and respiratory infections are highly prevalent in the elderly popula-

tion [8, 9]. Furthermore, with the elderly population living longer, fully understanding how gene

expression changes in response to diseases can assist in treating and reducing the disease burden

for this population.

An underdeveloped immune system, seen in infants and young children, also causes an increased

risk for infectious diseases such as pneumonia and influenza [10]. In the case of respiratory diseases,

the literature indicates that there is an age-dependency in immune response to viral and bacterial

respiratory infections [10, 11]. Understanding the role that age plays in host immune system

activation is essential for better prognosis and treatment of diseases. In addition, the Centers for

Disease Control (CDC) have specific vaccine recommendations for different age groups [12, 13].

These recommendations have been made based on the results of previous studies that indicate the

existence of an age dependency in immune response to respiratory infections such as influenza and

pneumonia.

Another respiratory condition caused by the exposure to toxic substances (tobacco smoke) is

chronic obstructive pulmonary disease (COPD). Themain risk factor for COPD is tobacco exposure,

and the age of onset is around 40 years old[14]. Tobacco exposure causes inflammation and lung

damage, and because of this, COPD sufferers are at higher risk for other respiratory infections.

Differentiating between normal changes in gene expression due to aging and age-dependent

immune responses to diseases will help solidify our understanding of the relationship between age

and immune system activation. This dissertation investigates age-dependent diseases and assesses
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gene expression variation due to sample characteristics such as age and sex. We focus on the

neurodegenerative disease, AD and also the respiratory diseases: pneumococcal disease, COPD

and influenza.

1.2 Aims of Dissertation

In Chapter 2, we explore AD and the effects of age, sex and tissue type on gene expression.

Chapter 2, describes a meta-analysis approach to highlight statistically significant differentially

expressed genes in AD, determine biologically significant genes and also highlight disease genes

that interact directly with age, sex and tissue type. Chapter 2 also explores pathways associated with

statistically significant genes to determine what processes are affected by gene expression variation

due to the study factors.

Chapter 3 combines the literature to assess pneumococcal diseases, host defenses and how aging

impairs the host’s ability to clear the pathogen. We also elaborate on current diagnostics methods,

treatments and preventative methods available and how efficacy changes with age. In Chapter 4, we

evaluate gene expression changes in COPD by looking at factors such as disease state, age, sex and

smoking status. COPD being a respiratory disease mainly caused by tobacco exposure, assessing

how gene expressing changes due to smoking status provides insight on disease pathology. In the

last data chapter, Chapter 5, we investigate gene expression differences in influenza infection and

vaccination. Exploring temporal patterns for these two disease states highlights genes that are

unique to each disease state, and also what genes are in common. These results not only highlight

how the immune response to influenza infection differs from influenza vaccination, but also looks

at how aging and sex differences can also affect gene expression toward influenza.

Together, the chapters of the dissertation aim to improve the understanding of age-related/age-

dependent diseases and how physiological changes in the immune system and within the brain can

affect disease susceptibility. We identify gene expression differences across diseases including full

age, sex, smoking status and tissue type considerations. Our findings provide potential gene and

pathway associations that can be targeted to improve treatment and prevention of these diseases.
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CHAPTER 2

DATA-DRIVEN ANALYSIS OF AGE, SEX, AND TISSUE EFFECTS ON GENE
EXPRESSION VARIABILITY IN ALZHEIMER’S DISEASE

Work presented in this chapter has been published as Brooks LRK, Mias GI. Data-Driven Analysis

of Age, Sex, and Tissue Effects on Gene Expression Variability in Alzheimer’s Disease. Frontiers

in neuroscience. 2019;13:392.
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2.1 Abstract

Alzheimer’s disease (AD) has been categorized by the Centers for Disease Control and Preven-

tion (CDC) as the 6th leading cause of death in the United States. AD is a significant health-care

burden because of its increased occurrence (specifically in the elderly population), and the lack of

effective treatments and preventive methods. With an increase in life expectancy, the CDC expects

AD cases to rise to 15 million by 2060. Aging has been previously associated with susceptibility to

AD, and there are ongoing efforts to effectively differentiate between normal and AD age-related

brain degeneration and memory loss. AD targets neuronal function and can cause neuronal loss

due to the buildup of amyloid-beta plaques and intracellular neurofibrillary tangles.

Our study aims to identify temporal changes within gene expression profiles of healthy controls

and AD subjects. We conducted a meta-analysis using publicly available microarray expression

data from AD and healthy cohorts. For our meta-analysis, we selected datasets that reported

donor age and gender, and used Affymetrix and Illumina microarray platforms (8 datasets, 2,088

samples). Rawmicroarray expression datawere re-analyzed, and normalized across arrays. We then

performed an analysis of variance, using a linear model that incorporated age, tissue type, sex, and

disease state as effects, as well as study to account for batch effects, and included binary interactions

between factors. Our results identified 3,735 statistically significant (Bonferroni adjusted p<0.05)

gene expression differences betweenAD and healthy controls, which we filtered for biological effect

(10% two-tailed quantiles of mean differences between groups) to obtain 352 genes. Interesting

pathways identified as enriched comprised of neurodegenerative diseases pathways (including AD),

and also mitochondrial translation and dysfunction, synaptic vesicle cycle and GABAergic synapse,

and gene ontology terms enrichment in neuronal system, transmission across chemical synapses

and mitochondrial translation.

Overall our approach allowed us to effectively combine multiple available microarray datasets

and identify gene expression differences between AD and healthy individuals including full age

and tissue type considerations. Our findings provide potential gene and pathway associations that

can be targeted to improve AD diagnostics and potentially treatment or prevention.
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2.2 Introduction

Aging refers to the physiological changes that occur within the body overtime [7]. These

changes are accompanied by deteriorating cell and organ function due to cellular and immune

senescence and DNA and protein damage [7, 15, 16]. Aging causes an increased risk for diseases.

Age-related diseases are becoming a public health concern due to an overall increase in the older

population and the average human life span in developed countries [17, 18]. It is predicted that

by the year 2050, the number of Americans over 85 years of age will triple from 2015 [19, 20].

Larger percentages of the elderly and their increased risk for diseases can affect the economy, and

social and health care costs [21]. For instance, immune system dysfunction and cognitive decline

due to aging increases the risk of neurodegenerative diseases such as Alzheimer’s disease (AD)

[22, 23]. Previous research explored brain aging and found notable changes in brain size , brain

structure and function [24]. Changes in the brain as we age are also known as hallmarks of brain

aging. These hallmarks include: mitochondrial dysfunction, damage to proteins and DNA due to

oxidation, neuroinflammation due to immune system dysfunction, reduction in brain volume size

and gray and white matter, and impaired regulation of neuronal Ca2+ [23, 24]. These alterations

render the aging brain vulnerable to neurodegenerative diseases such as AD.

AD, the most common form of dementia, is currently the 6th leading cause of death [25] in the

United States (US). In 2010, an estimate of 4.7 million people in the US had AD, and the number of

AD patients is expected to increase to 13.8 million in 2050 and to 15 million by 2060 [26–28]. As

with other age-related diseases, the risk of AD increases with age. AD is currently characterized

by the accumulation of amyloid-beta (Aβ) plaques and neurofibrillary tangles due to tau protein

modifications [29]. These two protein changes are the main pathological changes in AD [29]. Aβ

is formed when the amyloid precursor protein (APP) is cleaved by γ-secretases and β-secretases.

Cleavage of APP forms fragments of Aβwhich aggregate and deposit on neurons as plaques, which

causes neuronal death in conjunction with neurofibrillary tangles [29].

While AD’s prevalence is on the rise due to increased life expectancy, there is still no treatment

available and diagnosis of AD is challenging. HowADprogresses is still not completely understood
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[30]. New technologies are available such as positron-emission tomography (PET) imaging and

monitoring levels of Aβ and tau in cerebrospinal fluid [29]. Co-morbidities that can exist due to

aging such as hippocampal sclerosis further complicate AD diagnosis [31]. Furthermore, questions

have been raised regarding whether or not AD is simply an accelerated form of aging due to

them both being associated with changes in cognition [31]. However, studies have identified clear

neurocognitive differences in cognition, brain size and function in AD compared to healthy aged

subjects. For example, AD patients have more grey matter loss compared to white matter, impaired

verbal and semantic abilities and more intense memory dysfunction compared to healthy seniors

[31].

Pathological changes within the brain are observed prior to clinical diagnosis of AD. In most

cases AD cannot be confirmed until postmortem examination of the brain. Researchers are in-

vestigating novel biomarkers to detect for earlier diagnosis before diseased individuals become

functionally impaired. Meta-analysis of microarray datasets is becoming more popular for it pro-

vides stronger power to studies due to larger sample sizes obtained through statistically combining

multiple datasets. Microarray data are also available in large quantities on public online data

repositories. In the case of AD, Winkler et al., performed a meta-analysis that compared neurons

within the hippocampus of AD patients and healthy controls. They identified that processes such as

apoptosis, and protein synthesis, were affected by AD and were regulated by androgen and estrogen

receptors [32]. Researchers have also explored differences in gene expression in Parkinson’s and

AD subjects via a meta-analysis approach [33], and identified functionally enriched genes and

pathways that showed overlap between the two diseases [33]. Most recently, Moradifard et al.

identified differentially expressed microRNAs and genes when comparing AD to healthy controls

via a meta-analysis approach. They also identified two key microRNAs that act as regulators in the

AD gene network[34].

In our investigation, our goal was to identify age, sex, and tissue effects on gene expression

variability in AD by comparing age-matched healthy controls to AD subjects via a meta-analysis

approach. In this data-driven approach, we explored global gene expression changes in 2,088 total
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samples (771 healthy, 868 AD , and 449 possible AD, curated from 8 studies) from 26 different

tissues, to identify genes and pathways of interest in AD that can be affected by factors such as age,

sex and tissue. Our findings provide potential gene and pathway associations that can be targeted

to improve AD diagnostics and potentially treatment or prevention.

2.3 Methods

We conducted a meta-analysis using 8 publicly available microarray expression datasets (Table

2.1) from varying tissues andmicroarray platforms on AD.We developed a thorough computational

pipeline (Figure 2.1A) that involved curating and downloading rawmicroarray expression data, pre-

processing the raw expression data and conducting a linear model analysis of the gene expression

profiles. Statistically different genes based on disease state were identified following analysis of

variance (ANOVA) on the linear model which compared gene expression changes due to disease

state, sex, age and tissue. These genes were further analyzed using a Tukey Honest Significant

Difference (TukeyHSD) test to determine their biological significance [35]. In addition to the

p-values, we also obtained the mean differences between binary comparisons of groups (also

generated by the TukeyHSD), as a measure of biological effect size. We examined the TukeyHSD

results by filtering by each factor, and identified up and down regulated genes. We then selected

genes that showed statistically significant pairwise interactions between disease status and sex, age

and tissue. Using these genes, we used R packages ReactomePA [36] and clusterProfiler [37]

to conduct gene enrichment and pathway analyses of the differentially expressed genes (DEG). We

used BINGO in Cytoscape v.3.7.0 for gene ontology (GO) analysis on each gene set for each factor

[38, 39].

Database Accession Number Controls AD Possible AD Platform Citation
GEO GSE84422 242 362 449 Affymetrix Human Genome U133A, B and Plus 2.0 [40]
GEO GSE28146 8 22 - Affymetrix Human Genome Plus 2.0 [41]
GEO GSE48350 173 80 - Affymetrix Human Genome Plus 2.0 [42]
GEO GSE5281 74 85 - Affymetrix Human Genome Plus 2.0 [43]
GEO GSE63060 104 142 - Illumina HumanHT-12 V3.0 expression beadchip [44]
GEO GSE63061 134 139 - Illumina HumanHT-12 V4.0 expression beadchip [44]
GEO GSE29378 32 31 - Illumina HumanHT-12 V3.0 expression beadchip [45]

Array Express E-MEXP-2280 5 7 - Affymetrix Human Genome Plus 2.0 [46]

Table 2.1: Curated microarray datasets and the study description.
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Figure 2.1: Alzheimer’s disease meta-analysis framework. (A) Simplified workflow used for
the meta-analysis, (B) Pipeline for curating microarray data, (C) Pipeline for pre-processing the
microarray data, (D) Methods used for meta-analysis of raw expression microarray data.

2.3.1 Microarray Data Curation

We curated microarray expression data from two data repositories: National Center for Biotech-

nology Information (NCBI) Gene Expression Omnibus (GEO) [47] and Array Express [48] (Fig-

ure 2.1B). We searched these repositories by using entrez programming utilities in Mathematica

[49, 50]. In this search, we used the following keywords: Homo sapiens, Alzheimer’s Disease

and expression profiling by array (Figure 2.1B). This search resulted in 105 datasets from GEO
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and 8 from Array Express. We further filtered the search results by excluding data from cell lines,

selecting for expression data from Illumina and Affymetrix microarray platforms, and focusing

on datasets that provided the ages and sex of their samples (Figure 2.1B). After filtering through

the databases, we found 7 datasets from GEO (GSE84422, GSE28146, GSE48350, GSE5281,

GSE63060, GSE63061, GSE29378) and 1 dataset from Array Express (E-MEXP-2280) to conduct

our meta-analysis of expression profiling to assess differences in gene expression due to disease

state, sex, age and tissue (Table 2.1). The majority of samples from AD subjects were collected

post-mortem, from a variety of brain banks, while the subjects from GSE63060 and GSE63061

voluntarily gave blood samples (Table A.1 of Appendix A). The criteria and guidelines followed

for diagnosis and sampling varied across datasets (Table A.1 of Appendix A). Additionally, we

downloaded the raw expression data from each dataset, and created a demographics file per study,

which included characteristics about the samples (Table 2.2). Our demographics file included infor-

mation about the subjects that was reported in all datasets. For example, some studies reported the

type of AD diagnosis for their respective subjects, as well as the Braak stage and APOE genotype,

whereas others did not (Table A.1 of Appendix A). Therefore, to ensure uniform annotation of

the subjects, we re-annotated subject information provided from the databases: For GSE28146,

we grouped the sub-types of AD, incipient, moderate and severe, as AD because we did not have

such classification information for our other AD samples. We changed all the GSE29378 tissue

types to hippocampus, relabeled the "probable AD" disease state to "possible AD" in GSE84422,

only used AD and control subjects from the E-MEXP-2280 and GSM238944 with an age of >90

(not a definite age) was removed from GSE5281. We should note also that the 1,053 samples

from the GSE84422 dataset included different tissues from the same subjects, which were treated

independently - a paired-design was not incorporated in our downstream analysis.

2.3.2 Pre-processing and Data Normalization

We downloaded the raw expression data from the data repositories in Mathematica [50] and pre-

processed each file in R [51] using the appropriate R packages based on the microarray platform.
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Accession Number Sex (M/F) Age Range
GSE84422 302M/166F 60-103
GSE28146 12M/18F 65-101
GSE48350 124M/129F 20-99
GSE5281 102M/56F 63-102
GSE63060 88M/158F 52-88
GSE63061 107M/166F 59-95
GSE29378 38M/25F 61-90

E-MEXP-2280 7M/5F 68-82

Table 2.2: Patient characteristics for curated datasets.

The affy package was used to pre-process all the .CEL data files from Affymetrix [52], and

the limma package for Illumina summary data files [53]. We performed background correction,

normalization and annotated and summarized all probes (Figure 2.1C). For the Affymetrix expres-

sion data files, we used the expresso function with the following parameters: robust multi-array

analysis (RMA) for background correction, perfect-match (PM) adjustment to correct the perfect

match probes, and ‘avdiff’ for the summary method to compute expression values [52]. We also

used the avereps function from limma to summarize probes and remove replicates [53]. For

the Illumina expression data, we corrected the background using the NormExp Background Cor-

rection (nec) function from the limma package for datasets where the detection p-values were

reported, we annotated and used the aggregate function from the stats package in base R to

summarize probes [51, 53]. We merged all 8 datasets into one large matrix file via common gene

symbols. After merging the datasets, we performed a BoxCox power transformation [54] using

the ApplyBoxCoxTransform function and data standardization using the StandardizeExtended

function from the MathIOmica package [49, 55] (Figure 2.1C and also see ST2 of online supple-

mental data (Appendix A)).

2.3.3 Visualizing Variation due to Batch Effects

Merging expression data from different studies, array platforms and tissues can introduce con-

founding factors and manipulate interpretation of results. To address this, and assess whether

11



batch effects were evident and could be accounted for, we used the ComBat function in the sva

package in R [56, 57] to adjust data for known batch effects . In this study, the batch effect was the

study (i.e. different experiments/research groups), and we also found that there was a one-to-one

correspondence between study and platform. Using expression data from prior to and post ComBat

corrections, we used principal component analysis (PCA) plots to visualize the variability in the

data and the effectiveness of possible batch effect removal [58].

2.3.4 Analysis of Variance

We modeled the merged expression data (see model breakdown below) prior to running ANOVA

(using the anova and aov functions from the stats package in base R) to analyze differences

among the different study factors (Figure 2.1D) [59]. We defined age group, sex, disease state,

study and tissue as factors.

x ∼
∑

i
xi +

∑
i,j; j>i

xi : x j (2.1)

where xi ∈ {age group, sex, tissue, disease status} and the factors have the following levels:

• disease status = {control, possible AD, AD}

• sex = {male, female}

• age group = {under 60, 60-65, 65-70, 70-75, 75-80, 80-85, 85-90, 90-95, over 95}

• tissue = {amygdala, anterior cingulate, blood, caudate nucleus, dorsolateral prefrontal cor-

tex, entorhinal cortex, frontal pole, hippocampus, inferior frontal gyrus, inferior temporal

gyrus, medial temporal lobe, middle temporal gyrus, nucleus accumbens, occipital visual

cortex, parahippocampal gyrus, posterior cingulate cortex, precentral gyrus, prefrontal cor-

tex, primary visual cortex, putamen, superior frontal gyrus, superior parietal lobule, superior

temporal gyrus, temporal pole}

• study = {GSE84422, GSE28146, GSE48350, GSE5281, GSE63060, GSE63061, GSE29378,

E-MEXP-2280}
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The p-values following the ANOVA were adjusted using Bonferroni correction for multiple

hypothesis testing [59]. Genes with p-values <0.05 were considered statistically significant. We

found statistically significant disease genes by filtering on the disease status for p-values <0.05.

Additionally, we used the enrichKEGG function in the clusterprofiler package in R for Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment analysis on these genes [1, 37]. We

also performed Reactome pathway analysis with the enrichPathway function in the ReactomePA

package in R [36]. These packages adjust p-values using the Benjamini Hochberg method for False

Discovery Rate (FDR) control. Enriched pathways with adjusted p-value <0.05 were considered

statistically significant [36, 37] (see ST5 and ST6 of online supplemental data (Appendix A)).

2.3.5 Identifying Up and Down Regulated Genes by Factor

To identify which of the 3,735 genes that show biologically significant differences, we conducted

a TukeyHSD (using the TukeyHSD function from the stats package in base R) to determine

statistically significant up and down-regulated genes using the difference in the means of pairwise

comparisons between the levels within each factor [35, 60]. We carried out TukeyHSD testing on

the statistically significant disease genes we obtained from the ANOVA. To account for multiple

hypothesis testing in the TukeyHSD results, we used <0.00013 (0.05/number of genes ran through

TukeyHSD) as a Bonferroni adjusted cutoff for statistical significance.

We selected the TukeyHSD results from the disease status factor, and focused on the "Control-

AD" pairwise comparison to assess statistically significant gene expression differences. To assess

biological effect, and select an appropriate fold-change-like cutoff (as our results had already been

transformed using a Box-Cox transformation), we calculated the quantiles based on the TukeyHSD

difference of mean difference values (Table A.2 of Appendix A). We used a two-tailed 10% and

90% quantile to identify significantly up and down regulated genes (Table A.2 of Appendix A).

The DEG by disease status factor were subsequently used to determine whether or not there was

a sex, age or tissue effect on them. For sex, we used the DEG to filter the TukeyHSD results for sex

factor differences, identified statistically significant sex-relevant genes based on p-value cutoff, and
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the computed 10% and 90% quantiles based on the difference of means between male and female

groups. We repeated the above steps for age group, but focused only on the binary comparisons

where all age groups were compared to the <60 age group, which was used as a baseline (i.e.

computed the mean gene expression differences per group comparison, i-<60, where i stands for

any age group). This was carried out to enable us to compare the progression with age, relative to

a common reference across all age groups. As for tissue, we carried out the same steps as above to

determined DEG based on comparisons both a hippocampus-based baseline, as well a blood-based

baseline.

Following the identification of the DEG by disease status and sex, we visualized the raw

expression data for these genes in heatmaps. In addition to this, we generated heatmaps using the

difference of means values (TukeyHSD) for the identified DEG by age group (<60 baseline) and

tissue (hippocampus and blood as baseline).

To further investigate the significance of pairwise interactions with disease status and the factors

sex, age and tissue, we used the identified statistically significant (p-value <0.00013, two-tailed

10% and 90% quantile) genes from our post-hoc analysis for each factor, and filtered our ANOVA

results for statistically significant interactions (Bonferroni corrected p-value < 0.05, see also ST4

of online supplemental data (Appendix A)).

2.3.6 Gene Ontology and Reactome Pathway Analysis

For the disease and sexDEGsets, we used theRpackageReactomePA to find enriched pathways[36].

We also built networks to determine if genes overlapped across pathways. Additionally, we used

BINGO in Cytoscape for GO analysis to determine the biological processes the genes were enriched

in [38]. Results were considered statistically significant based on Benjamini-Hochberg adjusted

p-value <0.05.
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2.4 Results

With our data selection criteria outlined in Figure 2.1B we identified 8 datasets from GEO and

Array Express to conduct our meta-analysis to assess differences in gene expression due to disease

state, sex, age and tissue (Table 2.1). We merged the processed expression data by common gene

names, which gave us a total of 2,088 samples and 16,257 genes. The 2,088 samples consisted of

771 healthy controls, 868 AD subjects, 449 subjects reported as possibly having AD, 1308 females

and 780 males.

2.4.1 ComBat Batch Effect Visualization

Combining data from different platforms, tissues and different laboratories introduces batch effects.

Batch effects are sources of non-biological variations that can affect conclusions. We used the

ComBat algorithm in R which works by adjusting the data based on a known batch effect. For

our analysis we classified the study variable as our batch (the study and type of platform are

directly related). We used PCA to visualize variation in the merged expression data before and after

ComBat. In Figure 2.2 before correcting for batch effects, the datasets separate into 4 main clusters

with a variance of 54.3% in PC1 and 13% in PC2. Following ComBat, those main clusters appear

to be removed, with an overall reduction in variation for both principal components. We also looked

at how the data separated by factor. In Figure 2.2B, there are two clear groups and this separation

is accounted for when we look at the separation in the data by tissue (Figure 2.3). In Figure 2.3,

before correction the 4 groups observed in Figure 2.2 are still evident. Following ComBat, the

tissues: amygdala and nucleus accumbens cluster together in one group while all other tissues are

in another. Batch effect correction with ComBat was solely used for visualizing how the expression

data separates before and after ComBat correction - i.e. the batch corrected expression data were

not used in the downstream analysis. We instead used a linear model to account for confounding

study effects. Visualizing and understanding the variation within the expression data following the

merge confirmed the need to include the study as a factor in the linear model analysis.
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A. B.

Variance: 54.3%, 13% Variance: 15.2%, 8.9% 

Figure 2.2: Principal component analysis of the study factor before and after batch correction with
ComBat.
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Figure 2.3: Principal component analysis of the tissue factor before and after batch correction with
ComBat.

2.4.2 Analysis of Variance on Gene Expression By Disease State

Using ANOVAwe assessed the variance in gene expression across the different factors in our linear

model by including the following factors and their pairwise interactions: age group, study, tissue, sex
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and disease state [59]. Statistically significant gene expression differences were determined using

a Bonferroni([61] adjusted p-value was (<0.05) [59, 60]. With our focus on differences by disease

status, we filtered genes based on the ANOVA adjusted p-values for the disease factor. Selecting

for statistical significance by disease status we found 3,735 genes (see ST4 of online supplemental

data (Appendix A)). We conducted GO and pathway analysis on these genes. The KEGG pathway

analysis results are displayed in Table 2.3 (see ST5 of online supplemental data for full table

(Appendix A)). The analysis showed that the genes are involved in Reactome pathways such as the

Mitochondrial Translation Initiation (55 gene hits), Signaling by the B Cell Receptor (61 gene hits),

Activation of NF-kappa β in B cells (40 gene hits), Transmission across Chemical Synapses (83

gene hits) and Neuronal System (119 gene hits) (see ST6 of online supplemental data (Appendix

A)). The KEGG pathways that were enriched for this gene set included neurodegenerative disease

pathways such as Alzheimer’s (31 gene hits), Huntington’s (76 gene hits) and Parkinson’s (53 gene

hits) (Table 2.3) Pathways. We also had genes enriched in synaptic pathways including Synaptic

vesicle cycle (30 gene hits), Dopaminergic synapse (48 gene hits) and GABAergic synapse (34

gene hits) (Table 2.3). In addition to synapses and neurodegeneration, the long term potentiation

(23 gene hits) pathway was associated with these genes (see ST5 for full KEGG pathway analysis

results). To further explore the enriched genes in the KEGG AD pathway, we used the TukeyHSD

results to determine whether genes were up- or down- regulated (see ST7 of online supplemental

data (Appendix A)). To further assess the 73 gene hits identified in the enriched AD pathway we

computed their mean differences between AD and control subjects, and used MathIOmica [55]

tools to highlight them in the AD pathway (Figure 2.4) [1–3, 49] (see ST7 on online supplement

data for full table with difference of means (Appendix A)). For instance, the APOE and LRP gene

were both found to be up-regulated in AD subjects compared to healthy controls, and in the KEGG

AD pathway these genes are involved in Aβ aggregation (Figure 2.4).
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ID Description p-value p-adjusted value # of hits
hsa03050 Proteasome 1.55E-11 4.78E-09 31
hsa04723 Retrograde endocannabinoid

signaling
3.46E-10 4.78E-08 66

hsa05010 Alzheimer’s disease 4.64E-10 4.78E-08 73
hsa00190 Oxidative phosphorylation 3.85E-09 2.98E-07 59
hsa05016 Huntington’s disease 1.60E-08 9.90E-07 76
hsa04714 Thermogenesis 2.54E-08 1.31E-06 86
hsa04932 Non-alcoholic fatty liver dis-

ease (NAFLD)
2.98E-06 1.32E-04 57

hsa04721 Synaptic vesicle cycle 4.57E-06 1.77E-04 30
hsa05012 Parkinson’s disease 1.51E-05 5.18E-04 53
hsa04728 Dopaminergic synapse 6.48E-05 0.002003299 48
hsa04724 Glutamatergic synapse 1.58E-04 0.004085366 42
hsa05169 Epstein-Barr virus infection 1.59E-04 0.004085366 66
hsa04720 Long-term potentiation 1.73E-04 0.004119762 28
hsa04727 GABAergic synapse 2.31E-04 0.00506623 34
hsa01200 Carbon metabolism 2.46E-04 0.00506623 42
hsa01521 EGFR tyrosine kinase in-

hibitor resistance
3.12E-04 0.006031187 31

hsa04725 Cholinergic synapse 4.73E-04 0.008596289 40
hsa00270 Cysteine and methionine

metabolism
5.56E-04 0.009547497 20

hsa04911 Insulin secretion 5.99E-04 0.009738112 32
hsa04713 Circadian entrainment 6.78E-04 0.01048273 35
hsa05033 Nicotine addiction 8.70E-04 0.012730978 18
hsa00650 Butanoate metabolism 9.06E-04 0.012730978 14
hsa03010 Ribosome 0.0010736 0.014423588 50
hsa04510 Focal adhesion 0.001159439 0.014927779 62
hsa04390 Hippo signaling pathway 0.001260878 0.015584456 50

Table 2.3: Top 25 KEGG Pathways using differentially expressed genes.

2.4.3 Up and Down- Regulated Gene Expression in AD and Sex Specific Differences

We conducted a post-hoc analysis (TukeyHSD) on the 3,735 statistically significant disease genes to

identify factorial differences and explore up- and down- regulation of genes. We were particularly

interested in the control compared toADgene expression differences, and how these could be further

sub-categorized to explore effects by sex, age and tissue. We used a Bonferroni adjusted p-value

cut off for significance (<0.000013) and the 10% two-tailed quantile to determine significantly up
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Figure 2.4: Enriched genes from the ANOVA statistically significant disease status gene list (p-
value <0.05) found in the KEGG Alzheimer’s disease pathway (hsa05010) [[1–3]]. The yellow
shading represents up-regulated and the blue shading represents down-regulated in AD samples.
These genes were not yet filtered for biological significance.

and down regulated genes (Table A.2 of Appendix A). In the Control-AD TukeyHSD comparisons,

we found 352 statistically significant genes that we classified as up-regulated (176 DEG) and down-

regulated (176 DEG) in AD subjects (or correspondingly up or down- regulated in controls) if their

mean differences were ≤ -0.0945 and ≥ 0.1196 respectively (Appendix A Table A.2, see also ST8

of online supplemental data (Appendix A)). The top 25 up- and down- regulated genes sorted by the

TukeyHSD adjusted p-values are outlined in Table 2.4 (Figure A.4 of Appendix A and ST8 of online

supplemental data (Appendix A)). After performing gene enrichment and pathway analysis with the

ReactomePA R package [36] on the 352 genes we built pathway-gene networks for the statistically
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significant Reactome pathways (Benjamini-Hochberg adjusted p-value < 0.05) (see ST13 and

ST14 of online supplemental data (Appendix A)). Some of the top 10 enriched Reactome pathways

from DEG down-regulated in AD include: Mitochondrial translation elongation, Mitochondrial

translation, Transmission across chemical synapses, neuronal system (Figure 2.5 and Figure A.5

of Appendix A). The network in Figure 2.5 illustrates that some genes overlap across pathways -

the difference of means from the TukeyHSD results of these genes are indicated by the color scale.

The up-regulated genes in AD were enriched in pathways such as Extracellular matrix (ECM)

organization and ECM proteoglycans, Non-integrin membrane-ECM interactions and potassium

channel activation (Figure 2.6 and FigureA.6 ofAppendixA). Additionally, we usedBINGO forGO

analysis on the 352 disease DEG to determine the biological processes they are involved in (Figure

A.7 of Appendix A). Some examples of significant terms: Cell signaling development, nervous

system development, neuron differentiation, cell proliferation, response to chemical stimulus, cell

communication and brain and nervous system development (Figure A.7 of Appendix A).

Of the 352 DEG in the above disease analysis, 46 genes were differentially expressed by

sex: 23 down- and 23 up- regulated in males compared to females based on mean differences

(≤ -0.0864 and ≥ 0.2502 respectively (Table A.2 of Appendix A). We used the ReactomePA

package to build a network of enriched genes and pathways with sex differences (Figure A.8

of Appendix A) [36]. We found 6 pathways that were enriched with the up-regulated gene list

in males: Neuronal System, Transmission across chemical synapses, neurotransmitter receptors

and post-synaptic signal transmission, and GABA A receptor activation (Figure A.8 of Appendix

A and see also ST9 of online supplemental data (Appendix A)). Of these 46 genes that were

differentially expressed by sex (Figure A.9 of Appendix A), we further filtered the ANOVA results to

identify which of these genes showed statistically significant interactions with disease (sex:disease,

Bonferroni corrected p-value < 0.05). We found one gene, chemokine receptor type 4 (CXCR4),

to have a statistically significant pairwise interaction between disease status and sex (see ST4 of

online supplemental data (Appendix A)).
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Up-Regulated Down-Regulated

Gene Difference of Means Gene Difference of Means

ITPKB 0.1709575 RPA3 -0.1781622
ARHGEF40 0.1574220 NME1 -0.1755078
CXCR4 0.1907433 LSM3 -0.1527917
PRELP 0.1319160 MRPL3 -0.1577078
SLC7A2 0.1568425 PTRH2 -0.1205413
AHNAK 0.1304494 RGS7 -0.1778522
NOTCH1 0.1014441 GLRX -0.1622333
GFAP 0.1198343 RPH3A -0.2168597
HVCN1 0.1151989 BEX4 -0.1416335

LDLRAD3 0.1627433 COX7B -0.1726039
KANK1 0.0992824 NRN1 -0.1634702
HIPK2 0.1255059 PPEF1 -0.1430548

SLC6A12 0.1485253 PCSK1 -0.3127961
KLF4 0.1870071 ENY2 -0.1496523
ABCA1 0.1386346 CD200 -0.1537059
DDR2 0.1069751 NRXN3 -0.1203814
KLF2 0.1070143 GTF2B -0.1508171
GNG12 0.1318200 MRPS18C -0.1535766
POU3F2 0.1022426 NCALD -0.1858802
AEBP1 0.1498719 C11orf1 -0.1448555
IQCA1 0.1134073 DCTN6 -0.1222108
ERBIN 0.1309312 SEM1 -0.1765024

LOC202181 0.1184466 APOO -0.1384320
LPP 0.1072798 CCNH -0.1394853

NOTCH2 0.1213843 RAD51C -0.1280948

Table 2.4: Top 25 up- and down- regulated genes in Alzheimer’s disease compared to healthy
controls.
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Figure 2.5: Pathway-gene network of top 10 enriched Reactome pathways from down-regulated
genes in Alzheimer’s disease patients.
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Figure 2.6: Pathway-gene network of top 10 enriched Reactome pathways from up-regulated genes
in Alzheimer’s disease patients.

2.4.4 Aging and Tissue Differences in AD Gene Expression

To determine if age or tissue had an effect on the DEG by disease status, we filtered the 352 DEG

in disease results discussed above for age group and tissue comparisons. For age effects, we used

our TukeyHSD results that compared age groups to <60 (served as the baseline). This allowed

us to explore if genes associated with AD change with age by using a common reference group.

We used the 352 DEG genes from disease status TukeyHSD results to find sizable age effects in

this gene set by selecting for statistical significance and using the two-tailed 10% quantile filter( ≤
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-1.0477827 and ≥ 0.330869) to find significant DEG per age-group pair comparison (Table A.2 of

Appendix A ). We found 396 significant comparisons of age differences in 141 genes (see ST10 of

online supplemental data (Appendix A)). The 141 genes were plotted across all age comparisons

where < 60 was the baseline to visualize expression changes and how the genes clustered (Figure

A.10 of Appendix A), indicative of distinct differences in expression profiles due to aging. There

is a cluster of genes down-regulated in older age groups, specifically ages 65-80 compared to those

< 60. There also appears to be an overall trend of genes associated with disease being up-regulated

compared to < 60. Of the 141 DEG by age group (Figure A.10 of Appendix A), we found 114

DEG that had a statistically significant interaction (Bonferroni corrected p-value < 0.05) between

disease status and age (Figure 2.7). Changes in expression across each age group comparison (< 60

baseline) in the interacting genes were visualized, and the genes clustered into 3 clear groups based

on similarities in expression patterns (Figure 2.7 and Figure A.10 of Appendix A).
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2
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KLF2, MAP3K1 

Figure 2.7: Heatmap with gene clustering to visualize age group effect (difference in means) on the
differentially expressed disease (control-AD) gene list that have agegroup:disease status interaction.

For tissue effects, we used hippocampus as our baseline due to it being a known target of AD.

In addition to filtering for significance, we used again a two-tailed 10% quantile filter ≤-0.6359497

and ≥0.7932871 from the tissue-specific means differences between tissue types (Table A.2 of
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Appendix A). We found 167 comparisons with tissue differences (see ST11 of online supplemental

data (Appendix A)) from 125 genes. Our heatmap of these genes show that differences do exist

across tissues when compared to hippocampus (Figure A.11 of Appendix A). For example, nucleus

accumbens has higher expression of genes compared to the hippocampus, and putamen has genes

that are down-regulated compared to hippocampus (Figure A.11 of Appendix A)). The majority

of the expression differences appear to be found in nucleus accumbens and putamen (Figure A.11

of Appendix A), see also ST11 of online supplemental data (Appendix A)). From these 125 tissue

specific (hippocampus) genes, we found 13 to have a statistically significant (Bonferroni corrected

p-value < 0.05) interaction between disease and tissue (Figure 2.8A).
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Figure 2.8: Heatmap with gene clustering to visualize tissue effect (difference in means) on the
differentially expressed disease (control-AD) gene list that have tissue:disease status interaction.
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Wealso assessed howgene expression changes in a given tissue compared to blood (10%quantile

filter: ≤-0.6359497 and ≥0.7932871) (Table A.2 of Appendix A), identifying 152 significant tissue

comparisons in 115 genes (see ST12 of online supplemental data (Appendix A)). These 115

gene expression profiles across tissues are visualized using the differences of means in Figure

A.11 of Appendix A). We again noticed similar trends in the blood comparisons as had in the

hippocampus comparisons, with nucleus accumbens showing higher gene expression and putamen

lowered expression compared to blood (Figure A.12 of Appendix A). Finally, we found that 11 of

these genes had a statistically significant (Bonferroni corrected p-value < 0.05) interaction between

disease and tissue (Figure 2.8B).

2.5 Discussion

As debilitating as Alzheimer’s disease (AD) is, there is still no cure available, and diagnosis is

not confidently confirmed until death. There are ongoing research efforts to find biomarkers and

gene targets for early detection and intervention in AD. In our study, we investigated changes at

the transcript level by conducting a meta-analysis to analyze 8 microarray expression datasets for

temporal changes in gene expression due to disease status. In addition to this, we determined if

sex, age or tissue type had an effect on gene expression changes in Alzheimer’s associated disease

genes. We pre-processed the 8 datasets by background correction, data normalization, and probe

annotation. Following this, the datasets were merged into a single dataset (by common gene name)

for the meta-analysis. This is the first meta-analysis to explore over 20 different tissues and use

a linear model to identify linear and binary effects on gene expression. Our linear model also

adjusted batch effects by modeling for the study effect and included age in the model as a linear

time series. Modeling with the study factor to account for batch effects was shown to be necessary

after exploratory visualization of the expression data before and after combat batch effect correction

using principal component analysis to remove variation within the data that was introduced due to

different studies (Figures 2.2,2.3).
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2.5.1 Significant Gene Expression Differences Due to Disease Status and Biological Signifi-
cance

We first identified statistically significant disease genes (p-value <0.05; factor: disease status) from

ANOVA (see ST4 of online supplemental data (Appendix A)), and these genes included: APOE,

PSEN2, APOD, TREM2, CLU which all have been previously associated with AD. APOE and

APOD are members of the apolipoprotein family that transport and metabolize lipids in the central

nervous system and play a role in healthy brain function [62]. APOE is a strong, well documented,

genetic risk factor for AD, and polymorphisms in APOE have been shown to affect age of AD onset

[29]. APOD’s mechanism is still not completely understood [62], PSEN2 encodes presenilin-2, an

enzyme that cleaves APP, regulates production of Aβ ,and mutations are associated with early onset

[29]. Mutations in CLU lead to lower white matter and increases AD risk [29, 63] and TREM2 was

identified by a genome-wide association study (GWAS) as a disease variant and risk factor for AD

[29]. Our enrichment results of the 3,735 genes (fromANOVA)were interesting due to them having

already been associated with AD in the literature (Table 2.3 and also see ST5 and ST6 in online

supplemental data (Appendix A)). For instance, mitochondrial dysfunction has been previously

associated with AD and characterized to cause Aβ deposition, higher production of reactive oxygen

species and lowered ATP production [64–66]. Researchers have also suggested that the immune

system plays a role in AD [67, 68]. As for adaptive immune cells, their role in AD is still not

clear, however, adaptive immune cells have been shown to reduce AD pathology [69]. The loss of

B cell production can exacerbate the disease [69]. Neurodenegenerative diseases have also been

described as having genes that overlap [33, 34]. Neurodegeneration is closely related to synaptic

dysfunction and long term potentiation becomes impaired with age and synaptic dysfunction [70].

These results suggest that our meta-analysis is producing disease-related results (Table 2.3 and also

see ST5 and ST6 in online supplemental data (Appendix A)).

We also identified the KEGG AD pathway as one of our enriched pathways based on the 3,735

statistically significant disease genes. To explore how these genes are regulated in the AD pathway,

we used the difference of means (using the TukeyHSD) to create Figure 2.4 which highlights 73
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of the 3,735 genes from our ANOVA analysis and their role in the KEGG AD pathway (see ST7

online supplement data (Appendix A)). NAE1, also known as amyloid precursor protein-binding

protein 1 (APP-BP1), was down-regulated in AD subjects and is involved in neuronal apoptosis

(Figure 2.4). The literature indicates that APP-BP1 is necessary for cell cycle progression and

activates the neddylation pathway that drives apoptosis [71–76]. Down-regulation of APP-BP1 has

been associated with increased APP while over expression of APP-BP1 leads to APP degradation

[71–76]. TNFRSF6 was up-regulated in AD subjects (Figure 2.4, and this gene produces the Fas

antigen which plays a role in mediating apoptosis. [77].

The KEGG AD pathway also highlights genes from our analysis that are involved in APP

processing and cleavage (Figure 2.4). Specifically, BACE, PSEN and APH-1 are all involved in

APP processing by coding for γ-secretase and β-secretase (Figure 2.4). BACE is a β-secretase, that

we found to be up-regulated in AD subjects compared to controls (Figure 2.4). This finding also

supports previous reports that BACE is over-expressed in AD brains, and plays a role in forming

Aβ [78, 79]. APH-1A and PSEN2 are a part of the γ-secretase complex that finalizes cleavage and

release of APP to produce Aβ [80–82]. As shown in Figure 2.4, in AD subjects there was a high

production of APH-1 while PSEN2 was down-regulated. This indicates that while in a complex,

the two genes may function differently. For example, mutations in PSEN2 can lead to memory

loss and loss of synaptic plasticity [83]. A better understanding of the mechanistic behavior of

the γ-secretase complex genes can aid in the potential development of targeted therapeutics for

γ-secretase. Also in the AD pathway we found up-regulated expression of APOE and LRP1 in

AD subjects compared to control subjects (Figure 2.4). These genes are both involved in Aβ

aggregation. LRP1 a known receptor of APOE and promotes Aβ aggregation and migration across

blood-brain barriers [84].

As discussed above, mitochondrial dysfunction is a key hallmark of AD. Genes from our

meta-analysis that are in the AD pathway are involved in the respiratory electron chain transport

complexes. For example, NDUFC2 (in CxI on Figure 2.4), SDHA (in CxII on Figure 2.4), and

COX5B, COX6A1, COX6C (in CxIV) are all necessary for electron transport, but were down-
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regulated in AD (Figure 2.4). In Figure 2.4, complexes I-IV of the electron chain transport were

all down-regulated in AD. Previous work observed lower expression of 70% of genes that code

for subunits of the electron transport chain [43]. Reduced mitochondrial translation and lowered

mRNA levels for genes such as cytochrome oxidase (COX), can lead to increased oxidative stress,

irregular calcium levels and decreased oxidative phosphorylation (OXPHOS) [43, 85–89]. Hence,

changes due to mitochondrial dysfunction may affect the pathology of neurodegenerative diseases

such as AD.

We also found ITPR3, a gene involved in the calcium signaling pathway, was up-regulated in

AD (Figure 2.4). ITPR3 is necessary for the release of Ca2+ from the endoplasmic reticulum [90].

Increased expression of this gene and calcium concentrations can cause memory loss and neuron

cell death (Figure 2.4) [90]. Additionally, we found genes involved in tau phosphorylation to be

up-regulated in AD (Figure 2.4). Calpain (CAPN1,CAPN2) which is activated by elevated levels

of cytostolic calcium is up-regulated as well as CASP7 [91]. Together these genes regulate tau

phosphorylation and the formation of neurofibrillary tangles, which eventually leads to neuronal

cell death (Figure 2.4).

In addition to enrichment in the AD pathway, our KEGG results on the 3,735 genes included

enrichment in Parkinson’s disease and Huntington’s disease pathways. Because of this we investi-

gated if the three neurodegenerative disease signaling pathways had any common genes in our gene

list (Table 2.3). We determined that AD had 49 genes that overlapped with Huntington’s and 47

with Parkinson’s pathways respectively. We also found that GNAQ, GRIN1 and PLCB1 are in both

Huntington’s and AD but not in Parkinson’s pathways, and SNCA is in both Parkinson’s and AD

but not Huntington’s pathways. In filtering the statistically significant disease genes for biological

effect size (post-hoc analysis), PSEN2, APOE, TREM, CLU and other apolipoproteins did not

make the cutoff (based on their difference in means between the compared AD/healthy groups).

Focusing on the 352 DEG that had a sizable biological effect, the down-regulated genes in AD

connect with the pathology of the disease (Figure 2.5). Specifically, genes in the Mitochondrial

translation pathway that were down-regulated in AD included MRPL15, MPRL13 and MRPL1,
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which are all mitochondrial ribosomal proteins necessary for protein synthesis [92]. These genes

may also be related to down-regulation of themitochondrial electron transport chain complexes [93]

in the KEGG AD pathway (Figure 2.4). Translational elongation factors (EEF1E1 and EEF1A2)

were also down-regulated (Figure 2.5). Previous findings have indicated a reduction in EEF1A

expression in AD patients specifically in the hippocampus [94]. Genes down-regulated in the Neu-

ronal System pathway and Transmission across Chemical Synapses included GABRA1, GABRG2,

NCALD, GAD1 and NEFL (Figure 2.5). GABRA1 and GABRG2 are receptors in the gamma-

aminobutyric acid (GABA) signaling system that bind to GABA (inhibitory neurotransmitter) and

regulate chloride levels in the brain [95, 96]. In AD, the GABA signaling system is dysregulated

with changes in GABA expression in the hippocampus citepcalvo2018gabaergic. NCALD is a

calcium sensor that is involved in neuronal calcium signaling [92, 97]. NEFL makes the pro-

tein neurofilament light chain (Nfl), which has recently been investigated as a fluid biomarker for

monitoring AD disease progression [98].

Our results also included down-regulated genes PSMA3,PSMC6 and SEM1 that are part of the

proteasome complex (cell cycle progression and DNA damage repair) [92, 99, 100] and replication

factor protein, RPA3 (needed to stabilize single stranded DNA during DNA replication) [92, 101],

which are down-regulated in the DNA Replication Pre-Initiation and M/G1 Transition pathways.

It has been reported that incomplete DNA replication and irregular cell cycle events such as

abnormal cell cycle reentry by neurons have been observed in AD brains and lead to cell death

[102]. Additionally, dysregulation of the proteasome complex in AD is supported by the literature

[103–106]. However, the role of the proteasome complex in AD and how it is regulated is still not

clearly understood [103], and merits further consideration.

Reactome pathway analysis on the up-regulated genes resulted in some interesting pathways such

as Extracellular Matrix (ECM) Organization, ECM proteoglycans, Mesenchymal Epithelial Transi-

tion (MET) activates PTK2 signaling, MET promotes cell motility, Non-integrin Membrane-ECM

interactions and Syndecan Interactions, which all had overlapping genes (Figure 2.5). CAPN3,

COL21A1, EFEMP2 and ITGB8 were only in the ECM organization pathway (Figure 2.6).
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COL21A1 has been described as being necessary for maintaining the integrity of the ECM, and

has been previously found to be up-regulated in severe AD [107]. Additionally, changes in the

ECM components and degradation with proteases have previously been found to be associated

with plaque formation, which causes brain dysfunction [108–110]. The up-regulated genes in

the potassium and Ca2+ channel pathways included GNG12, KCNJ2, KCNJ16 and KCNJ10. In

general, as potassium channels open to increase potassium in the cells, calcium is decreased by

inhibiting the Ca2+ gated channels [96]. Increased activity of the potassium channels, especially

the voltage-gated channels have been associated with regulating microglia function and priming

which in turn leads to increased ROS production in AD [111, 112].

We compared the 352 genes identified as differentially expressed and exhibiting a biological

effect with respect to disease status to a recently publishedmeta-analysis inwhich 1400 differentially

expressed disease genes were identified [34]. We determined that 136 DEG from our gene list

overlapped with Moradifard et. al’s findings., and 216 of our DEG were not in their list [34]. Genes

that were unique to our DEG list included GMPR, ABCA1, NOTCH1 and 2, GABRG1, HVCN1,

CXCR4, HIP1, MRPS28, FOS.

The top up-regulated gene in AD from our meta-analysis, ITPKB, (Table 2.4) has previously

been observed to have over-expression in AD subjects. In a mouse model, the gene was found

to be over-expressed and connected to apoptosis, increased (Aβ) production and tau phosphory-

lation [113]. Additional DEG included CXCR4 (brain development and neuronal cell survival

in the hippocampus) [92, 114], AHNAK (may have a role in development of neuronal cells)[92],

NOTCH1,andNOTCH2 (signaling pathwaymay be involved in brain development) [92, 115] which

were all up-regulated in AD subjects (Table 2.4). On the other hand, RPA3 (DNA replication),

NME1 (neural development) [92, 116], and mitochondrial proteinsMRPL3, MRPS18C (associated

with mitochondrial dysfunction observed in AD) were down-regulated in AD samples (Table 2.4).
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2.5.2 Sex, Age and Tissue Effect on Disease Status Biologically Significant Genes

For the sex factor, we determined that 46 of ourDEG (23 up- and down- regulated inmales compared

to females) had a sex effect, with 1 of them (CXCR4) showing a statistically significant (p-value

<0.05) interaction between disease status and sex. The enriched pathways from the up-regulated

genes (prior to selecting for interacting genes) inmales are highlighted in Figure A.8 of AppendixA.

Furthermore, these genes involved in pathways such as Clathrin-mediated endocytosis (SNAP91,

SH3GL2, and AMPH), Neuronal System, Neurotransmitter receptors postsynaptic transmission

and Transmission across Chemical Synapses (GABRG2, GABRA1, GAD1 and NEFL) were down-

regulated in females (Figure A.8 of Appendix A and Table A.3 of Appendix A). Down-regulation

in genes such as GABRG2, GABRA1, GAD1 and NEFL) was previously discussed as being

down-regulated in AD from our DEG list for disease status (Figure 2.5).

Additionally, the current literature indicates that women are at higher risk for AD [117–119].

This increased risk by sex is due to the loss of estrogen protection (due to menopause) against (Aβ)’s

toxicity on the mitochondria [117, 118]. Older women produce more reactive oxygen species with

the decline in estrogen levels [117, 118]. Estrogen replacement therapy is a treatment for AD,

and it is being determined that estrogen works by increasing the expression of antioxidant genes

[117, 118]. A recently published meta-analysis also explored sex effects on AD gene expression

[34]. Moradifard et al., found male and female specific AD associated genes and genes that

overlapped in both sexes [34]. Of the 46 disease associated genes we found to be affected by sex,

22 were found in both males and females, 9 only in males, and 5 only in females in Moradifard et

al gene list. 10 of our sex impacted disease genes (CYBRD1, DIRAS2, FAM107B, FOS, GMPR,

HVCN1, ITIH5, MAPK, RNF135, SLC40A1) did not overlap with their findings, and these genes

have been previously associated with oxidative stress, cell signaling and transport, apoptosis and

AD. For instance, GMPR was found to gradually increase as AD progressed [120]. It produces

GMPR1 which is associated with the phosphorylation of tau [120].

Focusing on the statistically significant pairwise interaction between disease status and sex, we

identified CXCR4 which was up-regulated in females (Table A.3 of Appendix A). CXCR4 was

34



also up-regulated in AD (Table 2.4). CXCR4 has been previously investigated for its role in AD

and other neurodegenerative diseases [114, 121, 122]. CXCR4 is a chemokine receptor that binds

to CXCL12, and together they are involved in signaling pathways for inflammation and neuronal

system function [114, 121, 122]. CXCR4/CXCL12 together regulate synaptic plasticity, apoptosis,

calcium levels, microglia to neuron communication, neuronal signaling and neuroinflammation

[114, 121, 122]. Dysregulation of CXCR4 has been associated with neurodegenerative diseases

[114, 121]. More specifically, up-regulation of CXCR4 in in a mouse model led to abnormal

signaling in microglia and tauopathy [121].

Aging trends on the differentially expressed disease genes were visualized in Figure A.10 of

Appendix A and Figure 2.7. Subjects grouped as <60 were used as a baseline because on average,

AD symptoms start at ages 65 and older [29]. We observed clear age-related patterns when looking

at the difference of means between age cohorts (prior to selecting for interacting genes) for the

disease gene list (Figure A.10 of Appendix A and see ST10 of online supplemental data (Appendix

A)). Highlighting a few of the changes: SNAP91 which is involved in synaptic transmission

and associated with late onset [123], STMN2 which is necessary for microtubule dynamics and

neuronal growth [124, 125], and SST, a neuropeptide that interacts with (Aβ) and can influence how

it aggregates [126, 127] were all up-regulated in <60 age group (Figure A.10 of Appendix A and

see ST8 of online supplemental data (Appendix A)). Also, STMN2 and SST have both previously

been associated with expression reduction due to age[92, 126]. ABCA1, GMPR, HVCN1, ITPKB,

NOTCH1 all had higher expression in older age groups compared to the baseline.

Furthermore, visualizing the genes with a statistically significant interaction (p-value <0.05)

between disease and age group, we observed three distinct groups of genes with similar patterns

(Figure 2.7). Genes identified in group 1 in Figure 2.7 were down-regulated in ages 65 to 80

compared to the baseline (<60 years old). Group 1 genes also displayed a slight increase in relative

expression from ages 85 and higher (Figure 2.7). Reactome pathway analysis on the group 1

genes identified 3 enriched pathways that were statistically significant(FDR <0.05): (i) MECP2

regulates transcription of genes involved in GABA signaling (GAD1) [128, 129], (ii) Muscarinic
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acetylcholine receptors (CHRM1) [128, 130] and (iii) Neuronal System (CACNG3, GAD1, NEFL,

GABRA1, GLRB, NRXN3, GABRG2, and KCNQ2) [128, 131]. Changes in GABA signaling

in AD was previously characterized as age-dependent [132]. The ionic response to GABA, also

reported as GABA currents, were reduced in AD, especially in younger subjects with AD [132]. We

observe a similar pattern in our meta-analysis for the GABA receptor genes in group 1(Figure 2.7).

Genes within group 2 displayed a gradual increase in expression with age (Figure 2.7). Reactome

pathway analysis did not identify statistically significant enrichment for these genes. However, genes

in group 2 include DDR2 (regulates TREM2, microglia and neurotoxic proteins) [133] , IP6K3

(Inositol phosphate metabolism) [134], and GJA1 (regulates known AD risk factor genes) [135].

Additionally, genes in group 3 exhibited significant up-regulation in gene expression for subjects 65

to 80 years with a gradual decrease in expression from ages 85 and older (Figure 2.7). These genes

are associated with the statistically significant enriched pathway (FDR <0.05), TRAF6 mediated

NF-kB activation (MAP3K1) [128, 136]. Our findings highlight genes previously associated with

AD and their temporal trends, and also some additional genes that experience age-effects (Figure

2.7, Figure A.10 of Appendix A, and see ST10 of online supplemental data (Appendix A)).

To investigate tissue-specific effects (prior to selecting for statistically significant pairwise

interactions between tissue and disease status), we used hippocampus (232 samples) as a baseline

due to it being identified as one of the first regions to be affected by AD [29]. We also used blood

(519 samples) as a baseline to explore an underdeveloped non-invasive approach to monitoring

AD. In both analyses, we saw similar trends with the nucleus accumbens (51 samples) and putamen

(52 samples) showing greater differences in expression (Figures A.11 and A.12 of Appendix

A). Focusing on the genes that showed a statistically significant interaction between disease and

tissue, we observed lower expression of genes in tissues compared to the hippocampus and blood

with a slight increase in the primary visual cortex and the putamen (Figure 2.8). As for the

nucleus accumbens we observed significantly higher expression for these interacting genes for both

hippocampus and blood baseline comparisons (Figure 2.8). The statistically significant (p-value

<0.05) interacting genes in Figure 2.8 include genes that are involved in development of dendritic
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spines (C21orf91), normal brain function (SELENOP), GABA signaling (GABRG1), and structure

of actin cytoskeleton (EPS8) [92, 95, 137–139]. In addition to the shrinking of the hippocampus,

decreases in volumes for nucleus accumbens and the putamen have also been reported [140, 141].

The nucleus accumbens is important for reward processing, and in AD has been associated to

impaired decision making and reduction in performance of rewarding behaviors [142]. AD is

also associated with reduced dopamine levels and GABA signaling [143]. Finally, the putamen

(motor behaviors) and primary visual cortex (visual processing) both have impaired functions in

AD [144, 145].

The distribution of samples per tissue type was inconsistent with hippocampus and blood

having larger number of samples compared to an average of around 55 samples per tissue in

other categories. These results show the potential of blood and other tissues for monitoring gene

expression changes in AD, but also the need for further focused mechanistic studies in different

tissues.

2.5.3 Limitations of the Study

Using publicly available data introduced limitations to our research design. Lack of uniform an-

notation and missing information across datasets can make conducting a meta-analysis on multiple

datasets challenging. For example the subclass of AD, details on cognitive status and APOE geno-

type were not uniformly reported across the datasets used (Table A.1 of Appendix A). The brain

samples were from a variety of brain banks with varying institutional review boards and standards,

protocols and criteria for AD diagnosis requirements (Table A.1 of Appendix A). Additionally, the

number of datasets used in our meta-analysis was limited by poor annotations that could not meet

our selection criteria, and this in turn placed bounds to our sample size and power of the study. Our

analysis was also unbalanced: 2,088 samples made up of 771 healthy controls, 868 AD subjects,

449 subjects reported as possibly having AD, 1308 females and 780 males, and the breakdown of

age groups is also somewhat uneven. One of our datasets (GSE84422) consisted of paired samples.

However, as the the other datasets did not include paired samples, we did not incorporate a paired-
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sample analysis in our study. The available public data used for our meta-analysis also lacked

diversity in samples, because in most datasets race and ethnicity are not reported. This informa-

tion would be helpful particularly since AD has been reported by the CDC to be more prevalent in

African Americans [146, 147]. In addition, the use of micro-array expression data for meta-analysis

is a limitation in terms of not being able to query the entire transcriptome or query novel genes.

Also, in our merged dataset, large variability was introduced in data due to the large number of

tissues (26) and methods used for extractions (study effect), which we attempted to correct for by

utilizing both as factors in our model, and including binary interaction terms as well. An additional

limitation of our study is that we included datasets that investigated gene expression changes in bulk

tissue rather than on the cell-type-specific level. Cell-type-specific expression data that matched our

inclusion criteria were not available to include in this meta-analysis. Furthermore, single-cell data

is also only recently becoming available. A meta-analysis including single-cell analysis expression

data from specific cell types such as neurons, astrocytes and microglia would allow an improved

understanding of gene expression differences between AD and healthy controls [148, 149]. Finally,

to our knowledge, there were also a limited number of RNA-sequencing (RNA-seq) datasets on

GEO and Array Express (23), and only one that matched our selection criteria. Thus, we elected to

carry out the analysis using the gene expression array data. We anticipate that more RNA-seq data,

which can provide a more global view of the transcriptome, will become available in the future.

2.5.4 Future Directions and Recommendations

Our study provides gene lists by factor (disease status, sex, age and tissue) of differentially expressed

genes. Our study is largely descriptive, but also yields new gene candidates which we may be

studied further for their role in AD, including underlying mechanisms using model systems. To

expand on this research, the use of RNA-seq data can reveal novel differentially expressed genes,

biomarkers and gene targets for AD. As more RNA-seq data becomes available, a similar meta-

analysis approach may be applied, if such data are annotated to include the necessary factors’

metadata for the analysis. In addition to RNA-seq, implementing other omics technologies such
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as proteomics and metabolomics can help to fully describe the pathology of AD, and identify

additional biomarkers for early detection. To promote more meta-analyses, we recommend that

future studies include more extensive, and structured standardized metadata in their submissions,

that will enable use of data. Including data with racial diversity is also necessary. AD has higher

prevalence in African Americans [147]. Due to reports of racial differences in AD, with an AD

prevalence breakdown of: 14% of African American population compared to 12% in Hispanics and

10% in whites [146], including racial diversity in future studies would help identify this potential

variability in susceptibility and identify if certain treatments might be better suited in some races

than others. Improving the representation of races in clinical trials and molecular reports of AD

can help with health disparities within the field. Exploring the use of easily accessible tissues, such

as blood, to monitor changes in target genes/biomarkers might also prove helpful for early detection

and provide a more systems-level understanding of AD. Determining the best or novel biomarkers

to track for AD requires exploring also mechanistic aspects of the disease. For example, monitoring

exosomes and autoantibodies which can be connected to the dysfunction of the immune system is

one mode of action that is being associated with AD [150]. Lastly, as omics technologies advance,

implementing personalized omics for early detection and treatment may prove useful in improving

individual AD outcomes with the increase in the aging population.
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CHAPTER 3

STREPTOCOCCUS PNEUMONIAE’S VIRULENCE AND HOST IMMUNITY: AGING,
DIAGNOSTICS AND PREVENTION

Work presented in this chapter has been published as Brooks LRK,Mias GI. Streptococcus pneumo-

niae’s virulence and host immunity: aging, diagnostics and prevention. Frontiers in Immunology.

2018;9:1366.
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3.1 Abstract

Streptococcus pneumoniae is an infectious pathogen responsible for millions of deaths world-

wide. Diseases caused by this bacterium are classified as pneumococcal diseases. This pathogen

colonizes the nasopharynx of its host asymptomatically, but overtime can migrate to sterile tissues

and organs and cause infections. Pneumonia is currently the most common pneumococcal disease.

Pneumococcal pneumonia is a global health concern and vastly affects children under the age of

five as well as the elderly and individuals with pre-existing health conditions. S. pneumoniae has

a large selection of virulence factors that promote adherence, invasion of host tissues and allows

it to escape host immune defenses. A clear understanding of S. pneumoniae’s virulence factors,

host immune responses and examining the current techniques available for diagnosis, treatment

and disease prevention will allow for better regulation of the pathogen and its diseases. In terms of

disease prevention, other considerations must include the effects of age on responses to vaccines

and vaccine efficacy. Ongoing work aims to improve on current vaccination paradigms by including

the use of serotype independent vaccines, such as protein and whole cell vaccines. Extending our

knowledge of the biology of, and associated host immune response to S. pneumoniae is paramount

for our improvement of pneumococcal disease diagnosis, treatment and improvement of patient

outlook

3.2 Introduction

Infectious diseases present a significant global burden affecting society [151, 152]. Most of these

diseases are due to exposure to or the invasion of host cells and organs bymicroorganisms [151–153].

These pathogens disrupt the normal function of the human body by hindering immune responses

and producing harmful toxins. Infectious diseases can easily spread from person-to-person via

contact with body fluids, indirect contact or through animal vectors such as mosquitos and ticks

[154]. Common widespread diseases of the respiratory system occur when microorganisms invade

the respiratory tract. Infectious respiratory diseases are globally seen as a major health concern

because they can rapidly become severe and lead to death. Respiratory diseases are categorized
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DALYs per 100, 000

Global Lower Respiratory Infections (2016)

Figure 3.1: Global distribution of lower respiratory infections by sex. Highlighted in this figure
is the distribution of the disability adjusted life year (DALY) per 100,000 (2016) for four major
lower respiratory infections worldwide by sex. Data obtained from Institute for Health Metrics and
Evaluation [4]

into upper and lower respiratory tract infections. Lower respiratory tract infections (LRIs) are more

severe because pathogens infect sterile parts of the respiratory system such as: the lungs, trachea

and bronchi [155]. In 2013, an estimated 2.6 million deaths worldwide were attributed to LRIs,

while by 2015, this increased to 2.74 million [156]. Higher burden of LRIs is associated with low

sociodemographic status, poor access to healthcare and nutrition (Figure 3.1) [4, 156].

Immune system function is important in a host’s defense to pathogens. A host with a healthy

and well-developed immune system is able to clear pathogens before they can become infectious

and cause diseases [157–160]. The ability to clear pathogens before they can become infectious

depends on the quality of the immune system and its effectiveness, which is linked strongly to age
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[157, 161]. The immune system continues to develop from infancy to adulthood, while later in

life a fully developed immune system begins to deteriorate with aging. Infants and the elderly are

at higher risks for contracting infectious diseases due to their weakened immune system and the

inability to clear the pathogens before they become pathogenic [157–160, 162–165]

Streptococcus pneumoniae is a bacterium that has been widely linked to causing respiratory

infections in individuals with a weakened immune system [158, 161, 164]. S. pneumoniae is spread

through airborne droplets, and it is estimated to cause about 4 million illnesses within the United

States (US) and about 450,000 hospitalizations per year [166, 167]. Studies indicate that 10%

of patients with invasive pneumococcal diseases die of their illnesses [168, 169]. S. pneumoniae

invades its host by colonizing the nasopharynx asymptomatically as it has been found to be part of the

commensal microbiota of the upper respiratory tract [170, 171]. After colonization, if the bacterium

is not cleared by the immune system, the bacterium is spread via horizontal dissemination into

the lower airways and other organs and tissues, and becomes pathogenic [171]. A strong immune

system and the balance between resident flora and invaders can help to clear S. pneumoniae before

it becomes pathogenic. With poor defense mechanisms, the host becomes subject to frequent and

long-lasting colonization of S. pneumoniae, which can later lead to diseases [172, 173].

The bacterium has several properties which allow it to go unnoticed by the host immune system,

and defend against the resident florawithin the nasopharynx that would try to clear it [165, 174, 175].

Thus, decreasing the burden of this bacterium and preventing further infections is very important

to the healthcare field [175, 176]. Furthermore, S. pneumoniae is an opportunistic pathogen that

takes advantage of hosts with underdeveloped, weakened and or deteriorating immune systems.

Because of this, S. pneumoniae has greater incidence rates in children under the age of two, the

immunocompromised and the elderly [177]. Figure 3.2 depicts that disease burden for major LRIs

are highest in young children and the elderly [4, 168, 178–180]. Understanding how the immune

system changes with age is important in providing appropriate treatments to hinder colonization of

weaker hosts.

In this review, we provide a concise introduction to the expanding literature on S. pneumoniae,
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Global Lower Respiratory Infection
(DALYs per 100,000 Vs. Age)

Figure 3.2: Global distribution of lower respiratory infections with age. This figure shows the
age-dependent disease burden to lower respiratory infections especially pneumococcal pneumonia
based on the disability adjusted life year (DALY) data from 2016. Data obtained from Institute for
Health Metrics and Evaluation [4]

and focus on exploring the characteristics of S. pneumoniae, its pathogenesis, its virulence factors,

and pathology. We will also delve into the general host immune response to S. pneumoniae, with a

focus on pneumonia, and connect the severity of this disease to varying host immune responses with

age. In addition, wewill explore themedications available to prevent or treat pneumococcal diseases

such as pneumonia, disease prognosis, and finally discuss what the future holds for pneumococcal

diseases.

3.3 Pneumococcal Disease, Epidemiology and Transmission

Streptococcus pneumoniae, a Gram-positive bacterium (Figure 3.3) , also known as pneumo-

coccus, can survive in both aerobic and anaerobic conditions [181]. It is a facultative anaerobe that
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Figure 3.3: Schematic cross section of Streptococcus pneumoniae cell wall. The bacterial cell wall
composes of teichoic acids, a thick peptidoglycan layer, and a phospholipid bilayer

is often found as diplococci [181]. Pasteur and Sternberg first isolated S. pneumoniae from saliva

in 1881 [182–184]. Currently, there are varying reports on the number of identified serotypes of S.

pneumoniae [173, 183, 185, 186]. However, there are at least 97 serotypes of S. pneumoniae that

have been identified and characterized to date [183, 187]. All of these serotypes are independently

recognized by the host [170, 173, 188–190].

Pneumococcal diseases occur worldwide [173, 175, 191] and are more prevalent in young chil-

dren, the elderly and immunocompromised individuals (Table 3.1) [170, 171, 181, 190, 192, 193].

S. pneumoniae causes many pneumococcal diseases such as meningitis, bacteremia, pneumonia,

acute otitis media and sinusitis [173]. S. pneumoniae causes about 40,000 fatal pneumococcal

infections per year within the United States [172, 181, 194, 195].

S. pneumoniae colonizes the upper respiratory tract—specifically the nasopharynx [170, 196],

and is able to asymptomatically reside in the upper respiratory tract—this is known as carriage

[170]. Carriage is more prevalent in children (20–50%) compared to adults (5–20%) [196–198].

Carriage can lead to further transmission of S. pneumoniae within the community or can advance

to pneumococcal diseases [170]. Biofilms form in the nasopharynx during colonization [199]. S.
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pneumoniae has many virulence factors (Table 3.2; Figure 3.4) that allow for adherence to host

cells, reduce the host’s immune system’s ability to clear the bacterium, and promote invasion of

epithelial cells [165]. If the host is unable to clear S. pneumoniae immediately after colonization

of the upper respiratory tract, the bacterium multiplies, disrupts the regular non-pathogenic flora

of the respiratory system [171, 200], and is able to migrate to the tissues and organs and cause

infections. The migration of S. pneumoniae to sterile tissues and organs is the main cause of all

pneumococcal diseases. For example, when meninges, the protective membranes surrounding the

spinal cord and brain, become inflamed due to S. pneumoniae infection, this is known as bacterial

meningitis [173, 201]. Bacterial meningitis is predominantly seen in young children and is mostly

caused by S. pneumoniae [202]. S. pneumoniae causes more than 50% of bacterial meningitis

within the US [173, 202]. Bacteremia refers to infection of the blood by pneumococcus [173]

which causes about 12,000 cases per year and usually accompanies other pneumococcal infections

[173]. S. pneumoniae can also colonize the middle ear of infants and young children causing acute

otitis media [173]. The Centers for Disease Control (CDC) estimates that approximately 60% of

young children would have at least one ear infection [173]. Sinusitis occurs when S. pneumoniae

infects fluid trapped in the sinuses [173].

Year 1997 2007 2012 2014 2015
Age Cases Deaths Cases Deaths Cases Deaths Cases Deaths Cases Deaths
<1 142.9 4.02 40.51 0.9 15.7 0.24 15.9 0.48 18.4 0.24
1 178.7 0.9 32.39 0.23 13.6 0.24 10.3 0 12.9 0.24
2-4 31 0.15 13.03 0.08 5.9 0 6.3 0.08 5.1 0.16
5-17 4.8 0.14 2.91 0.14 1.9 0.14 1.4 0.05 1.3 0
18-34 9.3 0.52 4.19 0.22 2.8 0.1 2.7 0.18 2.5 0.08
35-49 18.9 1.65 11.89 0.98 7.5 0.6 6.6 0.7 6.7 0.5
50-64 23.5 2.72 20.59 2.33 15.9 1.53 15.1 1.64 15 1.53
65-74 61.7 11.02 39.26 6.37 29.6 4.24 19.1 2.41 18.2 2.3
75-84 - - - - - - 28.2 3.46 29 4.5
>85 - - - - - - 42.6 8.01 45.3 11.56

Table 3.1: Occurrence of pneumococcal diseases (Cases and Death Rates) from 1995 to 2015 as
reported by the Centers for Disease Control. Rates are per 100,000 population for Active Bacterial
Core surveillance (ABCs) areas

S. pneumoniae, which initially inhabits the mucosal surfaces of the nasopharynx in its hosts
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Virulence Factor Location on S. pneumoniae Function Refs

Polysaccharide Capsule Layer of polysaccharides on cell
wall

Allows the bacteria to escape the
nasal mucus

[165, 171, 175, 176, 187, 200, 203–
207]

Inhibits phagocytosis by innate im-
mune cells
Escapes neutrophil net traps
Inhibits complement and recogni-
tion by immunoglobulins
Allows adherence and colonization
of the nasopharynx

Pneumolysin Cytoplasmic toxin Binds to membranes with choles-
terol [171, 175, 176, 200, 205, 208–215]

Forms pores which cause cell lysis
Induces inflammation
Drives host-to host transmission
Can activate complement, modulate
chemokine/cytokine production

Autolysin (LytA) Intracellular enzyme produced by
Gram positive bacteria Cell lysis [165, 176, 200, 216–219]

Break down peptidoglycan
Exposes hosts cell to pneumolysin
and teichoic acid
Aids with bacterial colonization

PspA Bound to the cellwall via PChomoi-
ety

Protects against complement system
of the host [165, 171, 187, 200, 209, 220–224]

Aids in colonization by adhering to
epithelial cell membranes
Decreases the deposition of the
complement

PspC Bound to the cellwall via PChomoi-
ety

- Protects against the complement
system of the host

[165, 171, 176, 187, 200, 209, 220–
226]

Binds to receptors such as the hu-
man polymeric immunoglobulin A
during colonization and invasion the
nasopharynx
Cell adhesion and colonization of
nasopharynx

PsaA Surface of the cell wall Transports magnesium and zinc into
the cytoplasm of the bacteria [165, 171, 187, 200, 209, 220–224]

Aids in invasion of epithelial cells
during nasopharynx colonization

Other Choline Binding Proteins:
LytB, LytC, CbpC, CbpG

Bound to the cellwall via PChomoi-
ety

Promote bacterial colonization of
the nasopharynx [171, 176, 200, 207, 221, 225, 226]

Modify proteins on cell surfaces and
promotes binding to host cell recep-
tors
Important for host cell recognition

Non-Classical Surface Proteins Surface of the cell wall Act as adhesins [227–229]
Promote immune system evasion by
inhibiting complement
Controls inflammation and affects
cytokine production

Pili Cell surface
Promotes adherence and coloniza-
tion of the epithelial cells within the
nasopharynx

[171, 176, 200, 230, 231]

Inhibits phagocytosis by immune
cells

Bacteriocin Produced and secreted by the organ-
ism

Inhibits the growth of competing
bacterial cells [171, 176, 200]

Neuraminidase Cell wall bound Degrades mucus [171, 176, 200]
Promotes growth and survival
Aids with cell adherence

Biofilm Helps to reduce bacterial recogni-
tion by the host immune system [171, 176, 200]

Reduces the impact of antimicrobial
agents on bacteria

IgA protease Secreted by the bacteria into the ex-
tracellular environment Breaks down IgA [171, 176, 200, 232–234]

Lipoteichoic acid Membrane bound Causes inflammation [171, 176, 200]

Table 3.2: Selected virulence factors of S. pneumoniae, their location, and function.
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Figure 3.4: Virulence factors of Streptococcus pneumoniae. There are a variety of proteins and
toxins that are expressed by S. pneumoniae that drive its pathogenesis. The major virulence factors
are highlighted in the figure. Abbreviations: PsaA, pneumococcal surface adhesin A; PspA,
pneumococcal surface protein A; PspC, pneumococcal surface protein C; PiaA, pneumococcal iron
acquisition A; PiuA, pneumococcal iron uptake A; PitA, pneumococcal iron transporter.

[165], canmigrate to the lungs, where it causes pneumococcal pneumonia [165]. This is an infection

of the lungs that leads to inflammation of the air sacs causing them to fill with fluid, and making it

difficult to breathe. Individuals who have pneumonia usually suffer with high heart rates, shortness

of breath, frequent coughing and high fevers [235]. Thus, despite S. pneumoniae’s asymptomatic

colonization of the nasopharynx, having a poor immune response and lack of clearance, may

develop into pneumococcal pneumonia, which can be a serious health risk for those with reduced

host defenses. Pneumococcal pneumonia dominates as the main type of pneumococcal disease

within the US and worldwide [173] (Figure 3.5). Overall, pneumonia is the eighth leading cause of
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death in the US [236], and is mainly caused by bacteria, but can also be caused by other pathogens

such as viruses and fungi [171]. For example, Haemophilus influenzae type b, respiratory syncytial

virus (RSV), and influenza can also cause pneumonia, but pneumococcal pneumonia is the most

prevalent (Figures 3.1, 3.2 & 3.6) [4]. Over time the global disease burden of LRIs such as

pneumonia has decreased, but they remain a healthcare concern for specific high-risk populations

(Figures 3.2 & 3.6) [4]. Worldwide pneumonia is the leading cause of death in children under the

age of five [180, 237]. The World Health Organization reported that a child dies from pneumonia

every 20 seconds [238]. There are approximately 900,000 cases of pneumococcal pneumonia that

occur annually within the US [182, 239]. In addition, United Nations Children Fund stated that in

2016, pneumonia accounted for 16% of the fatalities observed amongst young children under the

age of five worldwide [240]. Pneumococcal pneumonia leads to about 300,000 - 600,000 elderly

hospitalizations annually in the US, and the elderly have reduced survival rates [241, 242]. There

are different types of pneumonia: community acquired pneumonia (CAP), atypical pneumonia,

hospital acquired pneumonia and aspiration pneumonia [173]. These differ based onwhere someone

contracts the infection and what bacteria causes the disease. Currently, the most common form of

pneumonia is CAP (which is mostly pneumococcal). This type of pneumonia spreads via person-

to-person contact in the community, but outside of healthcare facilities, by breathing in aerosol

droplets from a carrier or infected person [200, 235]. Worldwide, CAP is currently the leading cause

of death for young children who are under the age of five [178, 243]. In 2015, 920,136 children

died from CAP [244]. Infants, young children, the elderly, smokers and immunocompromised

individuals are all at a higher risk of developing pneumonia due to a weakened immune system

[171]. CAP has a higher occurrence rate in the elderly compared to younger populations, and is

also the 5th leading cause of death in the elderly population [241, 242].

49



Global Pneumococcal Pneumonia (2016)
(DALYs per 100,000)

1000

100

10,000

 DALYs
per 100,000
(Log scale)

10

Figure 3.5: Worldwide disability adjusted life year (DALY) of pneumococcal pneumonia. Global
distribution of pneumococcal pneumonia on a log10 scale of the 2016 DALY per 100,000 pneu-
mococcal pneumonia data obtained from Institute for Health Metrics and Evaluation [4]
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Figure 3.6: Global distribution of lower respiratory infections over time. This figure depicts how the
burden for four major lower respiratory infections changes over time in response to the introduction
of antibiotic treatments and vaccine implementation. Disability adjusted life year (DALY) data
obtained from Institute for Health Metrics and Evaluation [4]
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3.4 Transmission

The severity of pneumococcal diseases has led to multiple studies investigating how S. pneu-

moniae is transmitted. The nasopharynx has been classed as the main reservoir of S. pneumoniae.

This is due to the nasopharynx of hosts being colonized without any symptoms [199]. Following

colonization, the spreading of the disease depends on carriers coming into close contact with healthy

individuals within the community. The CDC has declared that the main source of S. pneumoniae

transmission is direct contact with secretions of the respiratory system of a carrier [173]. Le Polain

de Waroux et al. [245] investigated transmission in 566 Ugandan subjects by studying nasopharyn-

geal samples, and determined that close interpersonal contact was necessary for the dissemination

of S. pneumoniae. Who exactly the main carriers/reservoirs of S. pneumoniae are, is still heavily

debated. There have been a variety of studies trying to pinpoint which age group acts mainly as car-

riers/reservoirs for S. pneumoniae [246–248]. Some researchers have suggested infants [170, 248],

while others suggest that older children actually transmit the pathogen to infants [246, 247]. Lip-

sitch et al.’s longitudinal study suggests that infants are reservoirs due to the duration of carriage

and colonization [248]. In this study, they also observed that the carriage time of S. pneumoniae

decreases with age [246, 248]. On the other hand, a longitudinal study investigating transmission

and colonization in a daycare setting showed that toddlers act as a reservoir for S. pneumoniae

and spread to family members [246, 247]. Another contradicting study that used pre-existing data

and mathematical modeling suggests that older children introduce the pathogen to their homes and

transmit S. pneumoniae to younger children, siblings and adults [246]. Althouse et al. did confirm

that there is higher colonization in infants, however, their results show that S. pneumoniae’s direc-

tion of transmission is instead from older siblings to infants as opposed to transmission from infants

or parents to others in the household [246, 249]. The duration of carriage seems to affect how

well S. pneumoniae is transmitted as well as close contact between carriers and healthy individuals

[245, 246]. Althouse et al., concluded that despite the larger percentage of carriage being in infants,

their role in transmission is minimal compared to that of toddlers and older children [246]. The

differences between these findings suggest that the direction of transmission is still not yet fully
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understood and further research is required. Another possibility would be that multiple age groups

are acting as reservoirs rather than one specific group under different conditions. In addition to

close contact with a S. pneumoniae carrier, the bacterium may also be transferred to healthy indi-

viduals via fomites [250]. Chronic carriers of S. pneumoniae can contaminate inanimate objects

with biofilms [250]. S. pneumoniae biofilms are able to survive being in the environment because

the biofilm’s structure provides protection from drying out [196, 251]. S. pneumoniae was found

in high concentration on items within a day care center following bacterial cultures [199, 250].

Pneumococcus can survive being in the environment for long periods of time (for example up to 4

weeks) [250, 252]. Because of this, fomites can serve as a reservoir. These findings indicate why it

is important to improve hygiene and cleanliness in everyday-life, and at community-based facilities

and daycare centers. S. pneumoniae also makes a toxin, pneumolysin, that promotes shedding and

in turn enhances bacterial transmission [208]. Pneumolysin induces inflammation in hosts during

colonization and this promotes bacterial shedding [208]. Zafar et al., conducted a shedding assay

which suggests that S. pneumoniae may be using the host’s inflammatory response as a signal for

initiating its exit from the inhospitable host [208].

3.4.1 Transmission Via Coinfections:

Co-infection with S. pneumoniae is often seen during viral infections such as influenza, also

the 8thcause of death within the US [236], and respiratory syncytial virus (RSV). Co-infections

by pathogenic bacteria such as S. pneumoniae increase the severity and mortality rates of viral

infections [253, 254]. For example, during the influenza pandemic of 1918, the analysis of lung

samples from those infected indicated that a majority of the deaths were due to bacterial infections

and not the influenza virus [254–256]. Co-infection is possible due to the pre-existing damage

on the epithelia of the respiratory tract which promotes bacterial colonization [257–260]. More

specifically, S. pneumoniae‘s bacterial load increases during viral coinfections due to the bacteria’s

attachment to cells that are already infected by the virus [261]. Studies have also shown that

colonization of S. pneumoniae is affected by flu vaccines, which also indicates that S. pneumoniae
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benefits from colonizing hosts that are already compromised [254, 262]. Increased host colonization

and bacterial cell density of S. pneumoniae during viral infections promote transmission [262].

Khan et al determined that there are higher risks of bacteremia, mortality and spread to other

tissues during coinfections [257, 262]. Co-detection with S. pneumoniae has also been observed in

RSV infections [263].

3.5 S. pneumoniae’s Virulence Factors

S. pneumoniae, like many other bacterial species, produces toxins that are harmful to its host,

has several surface proteins and physical structures, which play a vital role in its pathogenesis

[176]. These virulence factors (Figure3.4, Table 3.2) work by hindering the host’s immune system

response, avoiding defense mechanisms, or by direct contact with host tissues and surface receptors,

which in turn interferes with the host’s immune system activation and bacterial clearance [176]. As

discussed above, S. pneumoniae exploits hosts with weakened or compromised immune systems

[162, 163, 264]. S. pneumoniae’s effectiveness in causing infections is directly related to the host

immune system’s developmental stage and possible deterioration with aging (see also Section 2.6)

S. pneumoniae’s virulence thrives because of the bacteria’s ability to acquire new genetic

material via transformation and recombination [265]. Investigating the level of genetic variation

within S. pneumoniae is important for not only thoroughly understanding its virulence, but also for

developing effective treatments and vaccines. About 4,000 S. pneumoniae genomes have already

been sequenced [265], with lengths ∼ 2-2.2 million base pairs (bp) [203]. More than 2000 genes

have been annotated, but novel genes are still regularly discovered as more sequences become

available [265]. Variation in gene content and single genes plays a role in defining the virulence

profile of some of S. pneumoniae strains [265]. Donati et al., describe genome diversification as S.

pneumoniae’s ability to evolve in diverse host environments [265, 266]. Genetic variation has been

observed within identical S. pneumoniae clones, due to changes in gene content of their dispensable

genes [265, 267]. Dispensable genes are not needed for bacterial growth [265], but provide selective

advantages to S. pneumoniae such as antibiotic resistance [268]. Additional variants are introduced
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to the core genome of S. pneumoniae via allele replacement. This is because the bacteria lacks SOS

genes and does not repair damaged DNA [269]. Carriage can also influence genetic variation. In

2017, Lees et al., developed a model to assess carriage duration and assembled those findings with

data from whole genome sequencing. The results indicated that pneumococcal genetic variation

accounts for the phenotypic variation compared to host’s age and previous carriage(5%) [270].

The major virulence factors of S. pneumoniae that have been thoroughly characterized are

summarized in Table 3.2. Below we further discuss virulence factors of particular interest:

1. Polysaccharide Capsule: S. pneumoniae’s extracellular polysaccharide capsule, the most

important virulence factor [204], helps to initiate infection by allowing the bacterium to

adhere to host cells and cause inflammation, while also providing protection from the host’s

immune system [203, 204]. The capsule inhibits phagocytosis by innate immune cells,

prevents the recognition of the bacterium by host receptors and complement factors, and also

avoids neutrophil traps [165, 176, 204, 205, 220, 271]. Many serotypes of S. pneumoniae

are characterized by the polysaccharides that are on the outer coat of the capsule, and they

are all pathogenic in their own unique manner – some more harmful than others [168,

205]. For example, serotype 1 has been found in invasive infections which have lower

fatalities whereas, serotype 3 is associated with colonization of the nasopharynx and serious

infections which can lead to fatalities [188, 191, 205, 272, 273]. The capsule manipulates

how immunoglobulins recognize the bacteria [274] and inhibits the host’s defenses such as

mucus layers and cilia from removing the bacterium, and is vital for pneumococcal bacterial

cells’ colonization [206]. The roles of the capsule in pathogenesis have been described to

be due to its charge [206, 275]. The capsule has a negative net charge which is in part due

to the acidic polysaccharides and phosphates that make up this layer [206, 275]. The charge

is important because it defines how interactions with other cells take place, specifically host

cells [206, 275]. One explanation for S. pneumoniae’s ability to avoid being trapped bymucus

layers and phagocytic cells is due to electrostatic repulsion [206, 275]. Negatively-charged

mucus and phagocytic cells, such as macrophages, have led to a reduction in the clearance
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of S. pneumoniae because of this electrostatic interaction [206, 275]. S. pneumoniae’s

virulence via their polysaccharide capsule is enhanced by its ability to undergo capsule

switching [265, 276, 277]. Mutations in the capsule polysaccharide synthesis genes (cps)

promote serotype switching [265, 276, 277]. Serotype switching in strains is increasingly

being observed and it is often via recombination or polymorphisms based on antibiotic and

vaccine selective pressures (further discussed in Section 3.7.2) [265, 276, 277]. Currently,

serotype switching is a healthcare concern as non-vaccine serotypes are being detected at

higher rates compared to before vaccines were implemented [276]. Moreover, mutations

in novel genes or a disruption of the cps loci can lead to S. pneumoniae strains without

capsules [278]. Non-typeable S. pneumoniae cannot effectively colonize hosts, but novel

genes such as pneumococcal surface protein K in the cps loci assist with adhesion [278].

Serotype switching and capsule-free strains of S. pneumoniae together will add to the burden

on the high risk age groups (infants, and the elderly) [278], and because of this vaccines and

treatments should be improved.

2. S. pneumoniae’s Cell Wall Components: S. pneumoniae is a gram-positive bacterium

with a thick cell wall. The cell wall is important because it provides protection and shapes

the cell [279]. Peptidoglycan, wall teichoic (WTA) and lipoteichoic acids (LTA) are the

main components of S. pneumoniae’s cell wall [279]. WTA are covalently attached to

peptidoglycan whereas LTA are non-covalently connected to the cytoplasmic membrane

with a lipid anchor [279]. The capsular and cell-surface proteins are all linked to the

peptidoglycan [279]. Alternating glycan chains of N-acetylglucosamine (GlcNac) and N-

acetylmuramic (MurNac) acids crosslinked by peptides make up peptidoglycan [279, 280].

These glycan chains can undergo secondary modifications such as deacetylation of GlcNac

and O-acetylation of MurNac [279, 280]. These modifications aid in S. pneumoniae’s

virulence by making the cell resistant to lysozyme [280]. Cell wall components, WTA and

LTA have phosphorylcholine (PCho) residues which serve as anchors for choline binding

proteins. Choline-binding proteins are important for host-pathogen interactions such as
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evasion of host immune responses (discussed later in this section) [279, 280]. PCho in

bacterial cells is unusual and S. pneumoniae are currently the only bacteria known to require

it for growth [280]. WTA, LTA and peptidoglycan are pathogen associatedmolecular patterns

that can cause an inflammatory response in hosts. Peptide synthesis, peptidoglycan structure,

WTA and LTA synthesis and modifications have been further discussed by Gisch et al. [279].

3. Pneumolysin: This toxin that is capable of forming pores in cell membranes [281] can be

found in the cytoplasm of S. pneumoniae and other Gram-positive bacteria [176, 209, 281].

Pneumolysin is released as a result of cell lysis and is toxic to host cells [176, 210, 282].

Pneumolysin binds to membranes containing cholesterol [283], and forms pores which later

lead to host cell lysis [176, 205, 211]. In addition to causing cell lysis, pneumolysin plays a role

in promoting the formation of biofilms [212], it reduces mucus clearance of the bacterium,

and it can interfere with the host’s immune system [176, 209, 210, 282, 284]. Pneumolysin

regulates the complement system [203] and reduces phagocytosis by innate immune cells. It

is also a pro-inflammatory toxin which causes damage to host cells. It can regulate cytokine

and chemokine production [171, 200]. This pro-inflammation has also been shown to assist

with host-to-host transmission [208]. By increasing cell inflammation, there is an increase

in shedding and thus a higher rate of transmission of the bacteria [208]. Studies have also

shown that pneumolysin can cause DNA damage by inducing double stranded DNA breaks.

One mechanism of DNA damage by pneumolysin was described by Rai et al. in 2016 [213].

They showed that the toxin can dysregulate the production of reactive oxygen species (ROS)

intracellularly [213]. This is possible because of pneumolysin’s pore-forming properties – it

creates ion channels that disrupt cell calcium levels, which leads to overproduction of ROS,

that then causes DNA damage [213]. Host DNA damage may lead to increased pneumolysin

virulence in the elderly, who are already experiencing a compilation of DNA damage and

telomere shortening due to aging [285]. Pneumolysin has different allelic forms that and can

also affect the toxin’s hemolytic activity [203, 286]. For example, genetic variation in allele

5 produces a non-hemolytic form of pneumolysin [286–289]. Previously, a cysteine residue
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at amino acid position 428 in the conserved sequence was described to be important for the

hemolytic activity of pneumolysin [290]. However, cysteine was later substituted by alanine

without affecting the toxin’s hemolytic activity [286, 291].

4. Autolysin: This enzyme is involved in autolysis of bacteria which results in the release

of pneumolysin, teichoic acid and other components from within the cell [171, 200]. An

example of this is LytA [216], a choline binding amidase [165] (see below) that degrades

peptidoglycan and causes cell lysis [176, 217, 218, 292]. Autolysins promote colonization

of nasopharyngeal cells due to the release of toxins such as pneumolysin during cell wall

degradation [176].

5. Pneumococcal Surface Proteins S. pneumoniae has a large variety of surface-exposed

proteins [165, 221] that aid in its pathogenesis by acting as adhesins to host cells and hindering

the host’s immune system, specifically the complement system [171, 176, 200, 293, 294].

Pneumococcal surface proteins are categorized into four groups: choline binding proteins

(CBPs), lipoproteins, non-classical proteins, and proteins that have an LPXTG motif (X

represents any amino acid) and can be covalently bound through sortase cleavage of the motif

[165, 221].

a) Choline Binding Proteins(CBPs): Many of S. pneumoniae’s surface proteins are

classed as choline binding proteins [176, 221, 225, 226]. These proteins are known for

binding to phosphorylcholine on S. pneumoniae’s cell wall [176, 221, 225, 295], and

are necessary for adhesion to host cells [176, 225, 295]. Choline binding proteins affect

the host’s complement system by blocking its activation and reducing the ability of

immunoglobulins to eliminate the pathogen [176, 221]. Some of these choline binding

proteins can also modify host cell surfaces to allow for binding interactions between to

host cell receptors and S. pneumoniae [225]. S. pneumoniae has approximately 10 to

16 identified CBPs [165, 296–298] including pneumococcal surface protein A (PspA),

pneumococcal surface protein C (PspC) and Lytic Amidase (LytA) which are discussed
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below:

i. PspA is very electronegative, and this characteristic can block complement binding,

which prevents opsonization of S. pneumoniae [165, 222]. PspA can also bind

to host lactoferrin [171, 176, 200], specifically apolactoferrin (iron-free), which

in turn provides protection to S. pneumoniae against the bactericidal killing of

apolactoferrin [299, 300].

ii. PspC, also known as CbpA (highly polymorphic), promotes adherence by binding

to the polymeric immunoglobulin receptor [221, 301]. It facilitates the colonization

of S. pneumoniae into the nasopharynx and can prevent the formation of C3b (part

of the complement system) by binding to factor H. This in turn interferes with

opsonization of S. pneumoniae [165, 221, 302]. PspC exists in multiple allelic

forms with most alleles containing a C-terminal cell wall choline binding motif.

However, there are also 17 allelic variants that have the LPTXGmotif (see LPXTG

cell wall bound proteins in Section 2.5) [203, 303, 304]. Additionally, allelic

variant PspC 4.4 was characterized as a ligand for complement inhibitor C4b-

binding protein [203, 305], which leads to an allele-dependent form of protection

from the complement [305].

iii. LytA, an autolysin, was the first of 3 major lytic enzymes found in S. pneumoniae

[225, 306]. LytA degrades peptidoglycan by cleaving the N-acetyl-muramoyl-L-

alanine bond [165, 221]. This causes cell lysis and the release of pneumococcal

antigens such as pneumolysin, peptidoglycan and teichoic acids which are all

harmful to host cells [165, 221, 307]. The release of these harmful particles

from S. pneumoniae cells is also capable of inhibiting cytokine (such as IL-12)

production, which in turn blocks the activation of phagocytes [306, 308]. This

is thought to be due to the fact that cells are already decomposed so phagocytic

activity is no longer necessary [306], and acts as a form of immune system evasion

by S. pneumoniae [308–310]. By blocking cell signaling via cytokine production,

59



LytA has also been shown to hinder complement activation [225]. How exactly

this blockade might be happening still needs to be further researched.

iv. LytB and LytC are two other lytic enzymes found in S. pneumoniae. Their roles

in S. pneumoniae’s virulence is not as thoroughly understood as LytA. Studies have

shown that LytB is necessary for separating daughter cells [311, 312]. LytC on

the other hand, is described as a lysozyme. Ramos-Sevillano et al. have indicated

that LytB and LytC interact and are both involved in adhesion of S. pneumoniae to

epithelial cells within the nasopharynx of hosts [313]. Their results also suggest that

LytC helps with evasion of the complement system via experiments with mutants

[313]. LytC mutants had larger amounts of C3b deposition and LytB and LytC

double mutants all had a reduction in their ability to adhere to host cells [313].

These findings shed light on the roles of LytB and LytC. They aid in virulence by

playing a role in colonization and evasion of host immune responses [313, 314].

Additionally, LytC has also been described to play a role in cellular fratricide

with LytA. These enzymes are released to lyse non-competent pneumococci in

close proximity of competent cells [315]. This is important for transformation

of S. pneumoniae. Competent cells are able to uptake and incorporate free DNA

from the lysed cells [315, 316]. This promotes genetic exchange which in turn

can improve bacterial survival. For example, the bacterium can take up genes for

antibiotic resistance [315, 316]. LytC’s activity is most active at 30 degrees Celsius

which indicates it is probably most active in the upper respiratory tract [315, 316].

v. CbpF, the most abundant protein on S. pneumoniae’s cell wall is capable of

regulating LytC [226, 317]. CbpF regulates LytC’s activity by blocking LytC’s

access to its substrate [226, 298, 317].

vi. Other Choline binding protein: There are about 8 other choline binding proteins:

CbpD, CbpG, CbpI, CbpJ, CbpK, CbpL, CbpM,CbpN. These have not been studied

as extensively as the main choline binding proteins previously discussed. There
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is not much known about their structure or function. CbpD has been shown to

be involved in fratricide by working with LytA and LytC [298, 316, 318]. The

CbpD is able to provide a substrate for LytC that is more accessible by binding to

target cells and breaking down the cross-links of the peptidoglycan [298]. CbpG is

necessary for adhesion and all others been reported to work as adhesins [226, 298].

b) Lipoproteins: These proteins are necessary for substrate transport. There are approx-

imately 50 lipoproteins that have been characterized [221, 296, 298]. The four main

lipoproteins are the pneumococcal surface antigen A (PsaA), pneumococcal iron acqui-

sitionA (PiaA), pneumococcal iron uptakeA (PiuA), and pneumococcal iron transporter

(PitA) [165, 221, 319, 320]. They are all metal-binding proteins that combinewith ATP-

binding cassette (ABC) transporter complexes. ABC transporters transport substrates

across membranes by utilizing energy generated from ATP binding and hydrolysis.

i. PsaA is involved in transporting magnesium and zinc into the cell [176, 223,

321, 322]. Investigations have previously reported PsaA’s role in cell adhesion

and promoting cell invasion of S. pneumoniae[223, 323]. However, other studies

on PsaA mutants have found that PsaA has no clear role in adhesion, but rather

magnesium transport [322]. This particular characteristic of adhesion needs to

be further investigated [175]. Also, genetic mutations can alter PsaA’s function

whichmay lead to impaired ability to acquire manganese which results in decreased

resistance to oxidative stress [203].

ii. PiaA, PiuA and PitA are involved in regulating iron-uptake [324, 325]. In addition

to this, PiaA and PiuA have been described to be needed for full virulence of S.

pneumoniae in mice [324, 326]. Mutations in PiaA and PiuA affect growth and

virulence of S. pneumoniae [327, 328]. This indicates the importance of iron

in the environment for growth. Furthermore, Cheng et al., in 2013 crystalized

PiaA and discovered that PiaA is capable of binding to ferrichrome [329–331]

despite previous findings suggesting pneumococci do not produce siderophores
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[332]. Cheng et al., concluded that S. pneumoniae is probably able to acquire

holo-siderophores from other bacteria within the host [328, 329]. On the other

hand, PiuA binds to both hemin and hemoglobin but has greater affinity for hemin

[330, 333]. PitA was later discovered and characterized to bind to ferric irons

[319, 320, 330]. A novel iron transport was discovered in 2016 by Yang et al.,

via proteomics [334]. In this study, they constructed a triple mutant by deleting

PiaA, PiuA and PitA [334]. Using this mutant, they were able to identify potential

iron transporters, such as putative protein SPD-1609, which functions similarly to

PitA via translatomics and proteomics [334]. These findings suggest that there

are potentially more iron-binding proteins in S. pneumoniae to be discovered and

that the bacteria have developed transport systems to ensure they have access to as

much iron as possible for their survival.

c) LPXTG cell wall bound proteins are recognized by the sortase of the cell wall [203,

297, 335]. Sortase recognizes the LPXTG sequence, cleaves at this site and anchors

the proteins to the cell wall [203, 335, 336]. Mutating the sortase gene srtA caused a

decrease in S. pneumoniae’s adhesion to host nasopharyngeal cells in vitro, and caused

neuraminidase to be released from the cell well into the media [337]. Neuraminidase is

an example of a LPXTG cell wall bound protein and is known for cleaving sialic acid

from glycoproteins. In the case of pathogenesis of S. pneumoniae, this activity can lead

to the removal of sialic acid from lactoferrin which hinders lactoferrin’s bactericidal

effect. Neuraminidase is secreted from S. pneumoniae cells and targets host cells

[203, 335]. It is also involved in colonization of the host and has been suggested to be

involved with adhesion [337, 338].

d) Non-classical Surface Proteins(NCSPs) are found on S. pneumoniae’s surface, but do

not have a membrane-anchoring motif nor a leader peptide [221]. They are also known

asmoonlighting proteins for havingmultiple functions [221, 227, 296]. NCSPs function

as adhesins that are able to bind to host molecules which promotes pneumococcal host
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cell invasion [296]. There are twomainNCSPs: pneumococcal adherence and virulence

factor A (PavA) and glycolytic enzymes (enolase and GAPDH) [338]

i. PavA attaches to fibronectin and assists with adherence to host cells [297]. PavA

also provides protection to pneumococci by controlling inflammation and inhibiting

recognition by dendritic cells [339]. PavA mutants were more susceptible to

recognition and phagocytosis by dendritic cells compared to wildtype [339]. In

addition to this, when the dendritic cells encountered PavA mutants there was a

reduction in cytokine production, which affected the adaptive immune response.

These findings characterize PavA’s potential function in immune system evasion

by S. pneumoniae and cytokine production by dendritic cells [339].

ii. Enolase & GAPDH are both plasminogen binding proteins. Enolase is an an-

chorless protein found at the surface of S. pneumoniae [340]. It is important for

proteolytic activity on the cell surface [341], which is necessary for the pathogen-

esis of S. pneumoniae [340]. Enolase also promotes complement system evasion

by binding to the complement inhibitor C4b-binding protein [342]. Additionally,

studies suggest that enolase may cause host tissue damage by inducing the pro-

duction of neutrophil extracellular traps (NET) by binding to neutrophils [343].

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) can be found on the sur-

face and in the cytoplasm of S. pneumoniae [344]. Although GAPDH binds to

plasminogen, it has a higher affinity for plasmin [297, 344]. GADPH is suggested

to also play a role in iron acquisition due to its ability to bind to hemoglobin and

heme [297]. Like enolase, GADPH may also play a role in host cell invasion and

evasion of the immune system. LytA has recently been identified to be involved in

the delivery of GADPH to S. pneumoniae’s cell surface [228].

6. Pili: These hair-like structures are located on the cell surface of S. pneumoniae and many

other bacteria [176, 200, 230]. They assist with S. pneumoniae’s attachment and colonization

of epithelial cells within the nasopharynx and lungs of hosts [200, 230, 231]. These pili
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also help the bacteria avoid phagocytosis by host immune cells [171]. There are two main

types of pili found on S. pneumoniae: Pilus-1 and pilus-2. Pilus-1 is found in 30% of

clinical isolates [345] whereas pilus-2 is only in about 16% [346]. Studies have shown that

piliated S. pneumoniae induce higher tumor necrosis factor (TNF) responses than the non-

piliated during pneumococcal infection [230]. This suggests that pili are able to stimulate

inflammatory responses of the host [230]. Pancotto et al.’s findings indicated that pilus-

1’s expression is regulated in vivo [231]. High expression of pilus-1 is observed at early

stages of colonization and reduced expression during later stages of infection. This down

regulation may be necessary for avoiding host immune response but this needs to be further

investigated as it is not clear why this might be happening [231]. S. pneumoniae, like many

other pathogenic bacteria have a type IV pilus that is necessary for transformation [347, 348].

This pilus is formed on the surface of the bacterial cell and contains the major pilin ComGC.

The operon that codes for ComGC also encodes for an ATPase which is needed for powering

the pilus assembly. The structure of ComGC was recently discovered by Muschiol et al., in

2017 [347].

7. IgA1 protease: This enzyme is produced by S. pneumoniae and it works by cleaving the

human immunoglobulin A1 (IgA1) into fragments [232, 233]. The IgA1 represents an

isotype of IgA which has two isotypes: IgA1 and IgA2 [349]. These two isotypes differ in

hinge regions – IgA1 has an extended hinge region because of an insertion into this region

of a set of duplicated amino acids [349]. IgA1 proteases reduce the binding IgA’s effector

region of the heavy chain and hinder killing of the bacterium by these antibodies [232, 234].

8. Hydrogen peroxide: S. pneumoniae secretes hydrogen peroxide (H2O2) which causes dam-

age to host DNA [350]. However, this is only observed in strains with pyruvate oxidase

activity (SpxB gene) [350, 351]. H2O2 production also has bactericidal effects. S. pneumo-

niae uses this to reduce the growth of bacteria it may be competing with [351]. Additionally,

pneumococcal H2O2 induces an innate immune response by enhancing the release of pro-

64



inflammatory cytokines, and targets cellular stress responses [352]. As S. pneumoniae

produces H2O2 via pyruvate oxidase, hydroxyl radicals form via the Fenton reaction [353].

These radicals are often harmful to bacteria but do not affect S. pneumoniae. This is because

of S. pneumoniae’s ability to reduce reactive OH before it comes into contact with DNA [354],

by sequestering Fe2+ away from DNA [354]. In addition to producing H2O2, the SpxB gene

has also been found to increase resistance to H2O2 [355]. SpxB mutants produced no H2O2

and were less resistant [355]. Additionally, S. pneumoniae has a variety of defense proteins

involved in detoxification, repair, regulation and cation homeostasis that provide protection

against oxidative stress [354].

9. Pathogenicity Islands: These are parts of pathogenic bacterial genomes that were acquired

via horizontal gene transfer [356]. The genes on pathogenicity islands (PAI) aid in the viru-

lence of the pathogen [357]. PAIs can code for iron-uptake systems and proteins involved in

cell attachment [357]. For example, the first PAI discovered in S. pneumoniae, pneumococ-

cal pathogenicity island 1 codes for the PiaA iron transporter complex [327]. Additionally,

the pilus-1 is encoded by another PAI, known as the rlrA islet [230]. However, this PAI is

not found in all of the S. pneumoniae clinical isolates [230]. Pilus-2 is also encoded by a

PAI, pilus islet 2 (PI-2) [346]. Another important adhesin, pneumococcal serine-rich repeat

protein (PsrP), is also coded for by a PAI. PsrP is important for S. pneumoniae’s attachment

to cells within the lungs [358]. High PsrP production is also linked to biofilm growth [359].

PAIs promote genetic variation in species, and this may affect current treatment and vaccine

targets.

10. Biofilms: These are structured communities that consist of aggregated microbial cells sur-

rounded by an extracellular matrix of polysaccharides that attach to surfaces [196, 360]. The

extracellular matrix provides protection and enhances S. pneumoniae’s virulence [196, 360].

Biofilms are formed in response to stress and harsh conditions to promote bacterial survival

[196, 360, 361]. To promote biofilm formation and competence, S. pneumoniae downregu-
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lates expression of capsular proteins [362]. Within biofilms, horizontal gene transfer rates

increase due to close cell proximity [196, 360, 363, 364]. Studies indicate that S. pneumoniae

biofilms are not effectively cleared during antimicrobial treatments due to increased antimi-

crobial resistance [365]. In addition, S. pneumoniae biofilms are able to escape host immune

responses such as mucociliary clearance [366].

3.6 Host Immune System Responses to S. pneumoniae

We have discussed above the virulence factors (Section 2.5) that aid in ensuring S. pneumoniae

can evade the host’s immune system. On the other hand, there are several host defenses that

recognize S. pneumoniae, act rapidly, and clear the pathogen before it can cause pneumococcal

diseases. Protection from S. pneumoniae is dependent on the state of the host’s immune system.

Age plays a role in how successful the immune system will be at clearing the infection by S.

pneumoniae. Children under the age of five and the elderly are at higher risk for contracting

pneumococcal diseases (Figure 3.1). This is due to infants having a naïve immune system, whereas

the elderly are experiencing immunosenescence [177]. A variety of immune cells are involved

in the innate (first-line of defense) and adaptive immune responses. The most important immune

cellular and humoral components for defending against pneumococcal infections (Figure 3.7) are

summarized in the following sections including how aging may affect their ability to defend the

host.
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Figure 3.7: Host surface and intracellular receptors necessary for immune response to Streptococcus
pneumoniae. Highlighted in this figure are the major pathogen recognition receptors necessary
for binding to pneumococcal ligands and eliciting an immune response. Upon binding to the
ligands, receptors and signaling pathways are activated, which leads to the overall production of
inflammatory cytokines and recruitment of immune cells. There are 10 toll-like receptors (TLRs)
that have been discovered in humans—TLRs involved in pneumococcal disease are depicted in the
figure

3.6.1 Innate Immune Responses

Innate immunity involves nonspecific immune responses – cells and receptors recognize foreign

particles and elicit immune responses to eliminate the invaders that can be harmful to the host

[164, 367, 368]. Cell-related innate immune responses against pneumococcal infection include:

1. Mucosa & Respiratory Epithelial Cells:Epithelial cells provide a protective barrier for

tissues and organs [369]. In this case, they line the respiratory tract and protect against

pneumococcus [369]. There are epithelial cells known as goblet cells, which secrete mucus

[370]. The negatively charged mucus is necessary for maintaining moisture and trapping

foreign particles and pathogens. Additionally, ciliated epithelial cells function simultaneously

with the mucus to clear pathogens. This process is known as mucociliary clearance [206].
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Once the pathogen is trapped in the mucus, the cilia (hair-like structures) move together

to direct the trapped pathogen and the mucus to the mouth, for expelling the pathogen via

coughing or swallowing [371]. The respiratory epithelial cells can recruit other cells by

producing and releasing cytokines and chemokines [171, 370]. They also can directly kill

pneumococcus by secreting antimicrobial peptides such as defensins, human apolactoferrin

and lysozyme (Figure 3.8) [171, 370, 372]. Human apolactoferrin sequesters iron and lyses

cells. Lysozyme also lyses cells and acts as a bactericidal [372]. D-alanine in teichoic

acids of S. pneumoniae’s cell wall help to evade killing by antimicrobial proteins (positively

charged) by reducing the negative charge [373, 374]. The negatively charged capsule also

promotes evasion of mucus via electrostatic repulsion [375]. Mouse model experiments

showed that encapsulated S. pneumoniae were easily trapped in mucus and unable to migrate

to the epithelial cells when compared to capsulated S. pneumoniae [206] This again was

due to the negatively charged capsule. In addition to this, S. pneumoniae’s neuraminidase

degrades mucin and reduces the negative charge by removing sialic acids [375–377]. As

previously mentioned in Section 2.5, the structure of peptidoglycan can be modified. This

modification promotes resistance of S. pneumoniae to lysis via the lysozyme [378]. Another

impressive method of evasion by S. pneumoniae is its ability to undergo phase variation

[379, 380]. S. pneumoniae is able to express a thick and a thin capsule under certain

conditions [379, 380]. The thick capsule is necessary to avoid entrapment in mucus, and the

thin capsule is necessary for binding directly to epithelial cells [379, 380]. Once the thin

capsule is expressed, adhesins are exposed for binding to the glycoconjugates on epithelial

cells [379, 380]. Infants and the elderly both are challenged with mucociliary clearance due

to different reasons: In infants, immature submucosal glands, surface epithelial secretory

cells and low numbers of ciliated epithelial cells can result in poor mucociliary clearance

[381]. In the elderly, as the host ages there is a deterioration of mucociliary clearance, with

reduced mucin and slower cilia beat frequencies[177, 382], which promotes dissemination

of the bacteria [177]. As S. pneumoniae virulence factors can also degrade mucus and slow
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Figure 3.8: Streptococcus pneumoniae’s interaction with host epithelial cells. Two types of ep-
ithelial cells are depicted: goblet cells and ciliated epithelial cells. The cilia on the epithelial cells
together with the mucus produced by goblet cells clear the pathogen via mucociliary clearance.
Epithelial cells can also secrete antimicrobial peptides that directly kill S. pneumoniae or produce
cytokines, which leads to a state of inflammation and the recruitment of immune cells.

down cilia [177], immaturity and deterioration of mucociliary clearance could cause disease

exacerbation through increased colonization and recurrent infections.
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2. Phagocytes:

a) Neutrophils: These are found in larger concentrations compared to any other white

blood cells, and they are generally the first to travel to the infection [383, 384]. Neu-

trophils are phagocytic cells [384] that also produce granules, which break down the cell

walls of pathogens ultimately killing them [384]. There are two main types of granules

produced by neutrophils: primary and secondary, which differ based on age/maturity

of the neutrophil [369, 385]. Primary granules include defensins whereas secondary

granules include enzymes necessary for digestion, such as lysosomes. Neutrophils can

also trap S. pneumoniae extracellularly, by using extracellular fibers made up of DNA

[386]. Neutrophil response changes with age: Infants experience minimal protection

by neutrophils in their early days of life due to poor bactericidal function, impaired

phagocytotic activity, low response to inflammatory signals, and reduced chemotaxis

[387–389]. With age, neutrophil activity improves and strengthens in young adults

but later starts to deteriorate. Elderly populations experience impaired chemotaxis,

which may lead to the overproduction of proteases by neutrophils. This causes an

increase in inflammation levels in older subjects [264, 390]. Neutrophil extracellular

traps generation, phagocytosis and killing diminishes with age [264, 391].

b) Macrophages: Macrophages are derived frommonocytes [369] and function as phago-

cytic cells that engulf and directly kill S. pneumoniae [164, 367]. These cells can recruit

other immune cells, such as neutrophils via cytokine signaling [392], and remove dead

neutrophils [368, 393] and other cells via phagocytosis and apoptosis. Macrophages

attack cells that have been opsonized by the complement system and Fcγ receptors

[375]. The macrophage receptor with collagenous structure (MARCO), found on the

surface of macrophages, aids with the phagocytosis of non-opsonized antigens [394].

Macrophage activation due to S. pneumoniae’s presence is dependent on pattern recog-

nition receptors [375]. For example, Toll-Like receptors 2 and 4 work together to

activate macrophages in the presence of pneumococci [375]. At birth, macrophage
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levels are low with impaired phagocytosis, cell signaling and Toll-like receptor 4 (dis-

cussed in Section 3.6 3a) expression[387, 395]. Within days post birth, macrophage

levels and function improve to reach adult levels [264]. In contrast, with old age alve-

olar macrophage concentrations are depleted, cytokine production and phagocytotic

activity are reduced, and lowered expression of MARCO contributes to poor killing of

S. pneumoniae [177, 264, 387].

3. Pattern Recognition Receptors (PRRs): These receptors can be found on host cell surfaces

that recognize pathogen associated molecular patterns (PAMPs) [164, 369], PRRs can also

be located intracellularly or be secreted [164]. PAMPs are structures found in bacteria

and viruses. Many of these are necessary for virulence in pathogens. There are two main

types of receptors that participate in the host’s immune response to pneumococcus: Toll-

like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD) –like receptors

(NLRs)as described below:

a) Toll-Like Receptors (TLRs): TLRs are mostly found on cell surfaces as membrane-

bound molecules that recognize PAMPs [396]. Recognition of PAMPs activates TLR

signaling pathways that cause the recruitment of immune cells and cytokines production

[397]. There are currently 10 identified TLRs in humans [398]. The main TLRs

involved in pneumococcal infections are TLR2, TLR4 and TLR9. TLR2 is necessary in

pneumococcal infection because it recognizes bacterial cell wall constituents. Former

findings suggested that TLR2 recognized lipoteichoic acids [164, 399, 400]. However,

TLR2 is now found to be binding to pneumococcal lipoproteins and peptidoglycan[375,

401, 402]. TLR2 also has a role in transmission of pneumococci. Mouse models with

deficient TLR2 had increased inflammation and shedding [403]. TLR2 forms dimers

with TLR1 and TLR 6which assist in the recognition ofmicrobial antigens [396]. TLR4

was the first TLR to be characterized and is needed for recognition of pneumococcal

pneumolysin [200, 399, 404]. On the other hand, TLR9 is intracellular and senses
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bacterial DNA within endosomes. TLR9 binds to CpG motifs [396] on the DNA, and

when activated it also has signaling pathways which result in the release of cytokines

[405, 406]. TLR1,2,4,6 and 9 work in a myeloid differentiation primary response

88 (MYD-88)-dependent manner. MYD88 is an intracellular protein necessary for

signal transduction and activation of TLR signaling pathways [396, 407]. In addition

to cytokine production, the activation of these TLRs facilitates the secretion of co-

stimulatory molecules [396] which are necessary for activating T cells [408]. Thus,

the functions of these TLRs also play a role in adaptive immunity (Figure 3.9) [396,

405, 406]. Aging greatly affects TLR function. Expression of TLR1 is reduced with

age [177]. TLR4 expression appears to remain normal but experiences a reduction of

function [177, 264]. This association has beenmade inmice, due tomacrophages having

a lowered production of pro-interleukin-1B [177, 264, 409, 410]. This also indicates

TLR4’s inability to respond to pneumoccocal cell wall components [411, 412]. Overall

TLR cell signaling impairment causes a reduction in cytokines produced, leading to

poor defense against S. pneumoniae [177].

b) Nod-Like Receptors (NLRs): NLRs are intracellular proteins that can stimulate nu-

clear factor-kappa B (NF-κB) [413], control inflammation, and activate inflammasome

formation [205, 414]. NOD2’s role in pneumococcal infections has been thoroughly

investigated [413–415]. This NLR recognizes muramyl-dipeptide which is a fragment

of bacterial peptidoglycan in the cytosol [164, 171]. It promotes the production of cy-

tokines and activation of nucleotide-binding domain and leucine-rich-repeat-containing

protein 3 (NLRP3) genes [205]. For example, when NOD2 senses peptidoglycan, CCL2

is made and that recruits macrophages and monocytes to the infection [416]. This is

dependent on the lysozyme producing these peptidoglycan fragments [416]. NLRs

expression decreases with age and responses to S. pneumoniae’s PAMPs are weakened

[411]. Lack of NLR expression may contribute to the chronic low pro-inflammatory

state observed in the elderly (discussed in Section 3.6.3).
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Figure 3.9: Toll-like receptors (TLRs) assist in the activation of adaptive immune cells. In this
figure, TLR2 recognizes the Streptococcus pneumoniae’s lipoproteins. Upon activation, TLR2
secretes cytokines and co-stimulatory molecules. These co-stimulatory molecules are essential for
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patibility complex (MHC)II and antigen-presenting cell. The recognition of the antigen–MHCII
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c) CD14: This has been characterized as a PRR as it recognizes lipoteichoic acid and

other cell wall components [397, 417]. CD14 works by interacting with other PRRs

such as TLR4 for signal transduction [417]. It has been reported that, in the case of

pneumococcal infections, CD14 promotes growth and dissemination of the bacteria

[171, 417]. Previous studies have found CD14 to be beneficial and protective to

hosts against Gram-negative infections, but as for Gram-positive pathogens such as

pneumococci it instead enhances the pathogenesis of the bacteria and facilitates infection

[417].
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3.6.2 Adaptive Immune Responses (B and T Cells)

Adaptive immune responses transpire a few to several days post infection. The cells involved in

adaptive immune responses respond to specific antigens from pathogens. Adaptive immunity can

also be broken down into two types of responses: humoral and cell-mediated [369, 418]. Humoral

immunity involves B cells that are activated by antigens, and production of antibodies that are

specific to antigens. Cell-mediated immunity also involves T cells, including T cell activation and

T cell mediated recruitment, which involves the activation of other immune cells that can directly

kill pathogenic cells [369].

These immune cells are formed in the bone marrow – B cells mature in the bone marrow

into plasma cells that make antigen-specific antibodies [369, 418]. Infections at mucosal sites are

controlled by the pneumococcal specific immunoglobulin A (IgA) antibody. IgA is observed in

mucosal areas of the nose and saliva following S. pneumoniae colonization [419]. Secretory IgA is

important for opsonizing S. pneumoniae and promoting phagocytosis [380]. S. pneumoniae on the

other hand, possess an IgA1 protease the cleaves the IgA (discussed in Section 3.5). This blocks

opsonization. Following cleaving, the remaining Fab fragment binds to the cell wall [380, 420].

This exposes CBPs, decreases negative charge of the capsule and increases cell adhesion [380, 420].

Studies suggest that the Fab neutralizes the negative charge of the capsule and instead promotes

cell adhesion [380, 420]. Furthermore, the complement (C3) activates B cells. Following antigen

stimulation, the naïve B cells differentiate into IgM+ memory B cells. Class switching produces

other immunoglobulins needed for clearing the infection [419]. T cells instead migrate to the

thymus for maturity into mature helper (CD4+) and cytotoxic (CD8+) T cells [418]. Antigen

presenting cells (APCs) paired with the major histocompatibility complex (MHC) proteins present

antigens (specifically, peptides) to T cells to stimulate an immune response [418]. In pneumococcal

infection, CD4+ T cells are stimulated via co-stimulatory molecules and APCs. Upon activation

helper T cells differentiate into Th1 and Th2 cells (Figure 3.9). Th1 helper cells stimulate a cellular-

mediated immune response by producing cytokines such as interferon-gamma (IFN-γ), that activate

and recruit other immune cells such as macrophages [421]. Th2 helper cells release IL-4 cytokines,
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and are geared towards facilitating a humoral immune response [421] by interacting with B cells and

aiding in antibody production [369, 418]. Cytotoxic T cells directly kill infected cells [369, 418].

Furthermore, upon activation of T and B cells, they can differentiate into memory B and T cells that

can provide quicker clearance in reoccurring infection [369, 418]. Similarly, natural killer T-cells

are also important for clearance of pneumococci [164, 171]. More specifically, CD4+ T cells have

been found to provide protection to S. pneumoniae in an antibody-dependent manner [422]. T-

helper 17 (Th17) and Regulatory T cells (Treg) are also very important for pneumococcal infections.

Th17 cells release the cytokine interleukin-17 (IL-17) which is pro-inflammatory. IL-17 is needed

for recruiting and activating macrophages, monocytes and neutrophils to sites of infection and

promotes clearance of S. pneumoniae [423]. Increased production of IL-17 has been connected to

reduced S. pneumoniae density in the nasopharynx of mice and children [423]. Tregs are necessary

for regulating Th17’s production of IL-17. Imbalance between Tregs and Th17 cells can lead to

autoimmune disease due to over inflammation [423]. Infants experience poor T cell responses to

foreign antigens because their exposure to non-maternal antigens was restricted prior to birth [387].

Infants also display a skewed Th2 response to foreign antigens. To compensate for this, infants

have a population of γδ T cells that generate IFN-γ to provide a Th1 type response [387]. As

for B cells, in infants there is a limited response to antigens due to low expression of co-receptors

[387]. Infants also experience incomplete class switching for immunoglobulins and lower somatic

hypermutations compared to adults [387]. Immunoglobulin protection against S. pneumoniae’s

capsular polysaccharides is developmentally regulated. At birth, maternal IgG antibodies protect

infants until 27 days of age (based on the half-life of IgG) [177, 424]. Once maternal antibodies

have been depleted, the infant’s ability to protect itself via steady antibody generation experiences

a delay until age two [177]. In contrast, IgM has been detected in infants following S. pneumoniae

infection and carriage [177, 425, 426]. Encountering the pathogen again, also promotes antibody

production similar to booster effects in vaccines (discussed below) [427]. With development, the

adaptive immune cells mature, develop memory, and the incidence of S. pneumoniae infections

decrease. In elderly populations, the efficacy of the adaptive immune cells diminishes. Aging leads
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to reduced production of antibodies, immunoglobulin class switching and cell maturation, which

promotes S. pneumoniae’s colonization [425]. Antibodies specific for capsular polysaccharides

decrease with age [425]. Additionally, there is an overall reduction in naïve T cells with age due to

thymus involution [428]. Previously Th17 levels were described to increase in elderly populations

whereas most recently, in 2014, Geest et al., showed lower Th17 concentrations and increased

concentrations of memory T-regs [264, 429]. The ratio between CD4+ and T-reg cell populations

was also reported to increase towards more Tregs [264, 429]. Diminished responses from the

adaptive immune cells explain the higher incidence rates of pneumococcal diseases in these high

risk age groups.

3.6.3 Additional Immune Response Considerations

1. Chemokines and Cytokines: These are signaling molecules released by innate and adaptive

immune cells and receptors to direct other immune cells to the infected tissues [392, 418].

Chemokines are examples of cytokines that attract cells to the infected site. In addition to

recruiting cells, they promote inflammation [392, 418]. Tumor necrosis factor-α (TNF-α), a

well-studied pro-inflammatory cytokine, inhibits growth and dissemination of pneumococci

[171]. Together TNF-α and IFN-γ can enhance clearance of pathogens by activating phago-

cytes. T cells, monocytes and macrophages produce TNF-α [307]. The phagocyte-activating

cytokines are suggested to be inhibited by autolysin activity in pneumococci [307]. The el-

derly experience chronic low-grade age-associated inflammation (Inflammaging) [177]. This

involves constant low levels of pro-inflammatory cytokines such as: TNF-α and IL-6. The

inflammatory state of the elderly is worsened due to increased NF-κβ activation and the

secretion of pro-inflammatory cytokines such as TNF-α from senescent cells [177]. High

concentrations of TNF-α have been correlated with higher disease incidences [177]. Inflam-

maging induces the expression of host proteins which enhances S. pneumoniae adhesion,

and is often accompanied by other morbidities that increase risk of S. pneumoniae infections

[177].
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2. Inflammasome: This is a protein complex that consists of a sensor protein, caspase 1 and an

apoptosis-associated Speck-like protein with a caspase recruitment domain (ASC) [430]. The

inflammasome is used by the host for indirectly recognizing bacterial or pathogenicmolecules

and DNA [205]. Upon recognition, the inflammasome regulates cytokine production [205].

NLRP3 plays a role in identifying pneumococcal infection, activating macrophages and has

been shown to directly interact with pneumolysin during pneumococcal infection [375].

Pneumolysin can directly activate NLRP3 [431], and when activated, inflammasomes secrete

IL-1β and IL-18 [432]. Although inflammasomes may aid in the recognition of pathogens,

the activation of inflammasomes promote inflammation and this can be harmful to the host

[205]. Cho et al studied the effects of aging on NLRP3’s activation in mice [411], and

reported that enhancement in ER stress with age leads to decreased NLRP3 inflammasome

activation in S. pneumoniae infection. Ensuring that NLRP3 is activated appropriately in the

elderly population will promote stronger immune defenses against S. pneumoniae.

3. Complement System: This is comprised of a set of small proteins that enhance the ability of

antibodies and phagocytic cells to clear microbes and damaged cells [418]. These proteins

can mark antigens and cells by coating them with opsonins [164, 369, 418]. Complement ac-

tivation involves three cascade pathways: classical, mannose-lectin and alternative pathways.

In the classical pathway the complement proteins bind to an antibody-antigen complex [368],

whereas the alternate and mannose-lectin pathways, bind directly to PAMPs and cell surface

components [369, 418]. Which pathway plays the main role in response to pneumococcus

has been debated. Brown et al. in 2002 stated that the classical pathway is most important in

response to pneumococcal infection following investigations of complement pathways defi-

cient mice [433]. On the other hand, in 2012 Ali et al. stated that the mannose-lectin pathway

is more important, after following the use of mannose-lectin pathway in deficient mice that

could still use the classical and alternate pathways showed susceptibility to pneumococcal

infection [434]. The importance of the different complement pathways’ role in pneumococcal

infections needs to be further investigated. However, irrespective of the specific pathway,
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the complement proteins also help to fight infections by pathogens such as pneumococcus by

promoting inflammation, attacking pathogens and rupturing their cell walls [164, 171, 367].

For example, mice deficient in complement C3 infected with S. pneumoniae were unable to

clear the infection and had short survival times in comparison to mice with complement C3

[435]. S. pneumoniae can evade the host complement system in many ways – most of which

were previously discussed in Section 3.5. Pneumolysin is able to divert the complement

system away from S. pneumoniae by directly activating the classical complement pathway

[435]. PspA inhibits C1q binding and polyhistidine triad (Pht) proteins are suggested to

degrade C3. S. pneumoniae’s complement evasion has been detailed by Dockrell and Brown

[375]. The effects of aging on the complement system are complex. Previous studies suggest

that complement levels are low in infants [436, 437]. In 2014, Grumach et al., also showed

that in newborns complement activity is low with C1, factor H and C3a levels being lower

than adult levels [437]. Studies have also indicated that complement activity is greater in the

elderly compared to young adults [264, 391, 438].

4. Acute phase serum proteins: These proteins increase in concentration within the blood

during an acute inflammatory infection [439]. The three main proteins that have been

investigated and associated with pneumococcal infection include: C-reactive protein (CRP),

serum amyloid P (SAP) and mannose binding lectin (MBL) [439]. These proteins work

to alleviate infections and can recognize and bind to bacterial surfaces [439]. Acute phase

proteins are made as a result of cytokine production from innate cells such as macrophages

[439]. For example, CRP production by the liver is increased in response to IL-6 [439]. CRP

and SAP bind to phosphorylcholine which is part of the S. pneumoniae’s cell wall. Once

bound to the phosphorylcholine, CRP and SAP activate the complement deposition on the

bacteria via the classical pathway [440]. As for MBL there are conflicting reports about

its role in pneumococcus infection as discussed above in the description of the complement

system. It has been shown to recognize and attach to sugars on the cell surface of S.

pneumoniae [441], but more verification is needed onMBL’s role in pneumococcal infection.
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3.7 Diagnosis, Age-dependent Response, Prevention and Disease Prognosis

3.7.1 Diagnosis

Currently, there are several methods utilized in pneumococcal disease diagnostics. Traditionally,

diagnosis begins with physicians performing a physical exam. For example, in the case of an ear

infection an otoscope [173] is used to confirm infection, whereas for pneumonia physicians monitor

breathing for cracking sounds and wheezing [151, 442, 443]. More specifically, for pneumonia,

based on the results of the physical exam, physicians can conduct a chest X-ray to examine the

lungs and monitor inflammation to confirm the presence of infection [442, 443]. This X-ray is also

performed following signs of respiratory distress [443, 444]. Blood oxygen levels are also measured

via pulse oximetry in both children and adults to assess the severity of the infection [151, 442, 443].

Pulse oximetry at the primary care level should be the future, and future technological developments

might add respiratory rate and work of breathing to the parameters measured by oximetry [445].

Body fluids are also processed to assess whether or not pneumococcus is present, and to confirm

its identity [151, 442–444, 446]. These fluids include: blood, urine, cerebrospinal fluid and saliva

[151, 442–444, 446]. The blood test allows physicians to examine complete blood cell count.

This test confirms whether or not an infection is present by giving an estimate of the percentage

of white blood cells that are circulating [151, 442–444, 446]. A large concentration of white

blood cells (WBC) is indicative of an infection [151, 442–444, 446]. This is expected in infection

response. However, Gardner et al., in 2017 indicated that upon the time of admission, about 25%

of subjects with pneumococcal pneumonia and roughly 38% with CAP actually have normal WBC

counts [447]. Studies have also shown that poor prognosis has been associated with low WBC

[447]. New finding associate low WBC rather than high WBC with poor prognosis [447]. These

conflicting results indicate that WBC count alone should not be used to diagnose pneumonia and

should be better investigated as key indicator of pneumonia. Bacterial cultures and Gram-staining

tests using body fluids are important for determining the strain of bacteria and confirming its

identity [151, 442–444, 446]. Currently, physicians are investigating other means of diagnosing
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pneumococcal infections due to the poor yield and quality of sample when conducting cultures.

This process is also dependent on bacterial growth which can be time consuming. One useful tool

that is being developed is the urinary antigen detection test, which is only currently used in adults

[448]. This test monitors the levels of the C-polysaccharide antigen of pneumococcus in the urine.

It appears to be quicker, can allow for targeted treatment with better results than culture-based

methods of diagnosis [151, 442, 443, 448]. In addition to testing for pneumococcus, physicians

also test for other bacteria which may be causing the infection, and other viruses such as influenza

which can co-infect patients [443]. Once all the tests confirm the presence of an infection, the

cause of the infection and the severity of the disease patients are treated accordingly. Currently,

thoracic ultrasounds are being investigated as a method for diagnosing CAP [449]. When compared

to chest x-rays, thoracic ultrasounds identified 73.5% of the lung consolidations confirmed by chest

x-rays, with about 27% false negative results. D’Amato et al., suggest using ultrasound as a

monitoring tool [449]. Lung ultrasound has been tested for its diagnostic potential and it was

found to be a sensitive tool for confirming CAP in children [450]. 96% children with pneumonia

were detected, however given the small sample size further investigation is necessary. Chest

computed tomography is not used for children due to radiation [450]. Recently, a computer-aided

differential diagnosis systemwas tested for distinguishing types of pneumonia, using high-resolution

computed tomography. This method was compared to radiologists’ classification of interstitial and

non-specific interstitial pneumonia, and was concluded to be a robust method for diagnostics [451].

Additionally, researchers have proposed combining clinical signs and laboratory markers to assess

an individual’s risk of contracting pneumonia. For example, high levels of C-reactive protein

and procalcitonin accompanied by unilateral hyperventilation and grunting were associated with

pneumonia [452]. On the other hand, children with no clinical signs of pneumonia and low C-

reactive protein results were at a lower risk for pneumonia. The use of PCR for diagnosis is also

being developed. A positive blood pneumococcal PCR can more accurately confirm the diagnosis

of pneumonia [452]. PCR has been used to detect pneumolysin in whole blood samples [453]. The

sensitivity of PCR tests varied from 68 to 100 percent and had poor specificity [453]. In contrast,
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assessment of quantitative real time PCR indicated that it is more successful in achieving greater

speed, specificity and sensitivity compared to multiplex PCR [454].

3.7.2 Prevention, Antibiotic Resistance and Age-Dependent Immune Responses

The two main modes of preventing pneumococcal infections are using antibiotics and vaccinations

against pneumococcus [173]. Antibiotics are essential in reducing bacterial load [455]. Such

treatment can work by killing the bacteria or hindering their growth [455]. The first antibiotic to be

created was penicillin which was discovered in 1928 by Alexander Fleming [456], and antibiotics

have been used widely since. However, misuse of antibiotics can cause bacteria to become

resistant [188, 455, 457]. Resistant bacteria are then able to survive post antibiotic treatment

and they can grow, multiply and share antibiotic resistant genes with each other. Pneumococcal

strains that were penicillin-resistant were first recorded in the 1970s [171]. Currently, penicillin-

resistant strains have spread worldwide with pneumococcus also being resistant to other types of

antibiotics: erythromycin, tetracycline and chloramphenicol [455]. S. pneumoniae acquire multiple

antibiotic resistance genes via transformation and evolution with the increase in antibiotic use [458].

Mutations in penicillin-binding proteins (pbp) affect binding of penicillin which acts by blocking

cell wall synthesis [459]. Erythromycin resistance gene erm(B) blocks the binding of macrolides

(antibiotics targeting protein synthesis) and mefA and mefE genes produce an efflux pump which

regulates entry of the antibiotics [458–462]. Resistant S. pneumoniae strains have rapidly spread,

and infections are harder to treat. In 2013, the CDC estimated that about 30% of pneumococcal

cases were due to antibiotic resistance to one or more antibiotics [457]. This resistance increases the

number of doctor visits and hospitalizations [457]. For example, the CDC reports that the resistance

can lead to 1,200,000 more illness and 7,000 deaths annually [457]. This reduction in ability to

treat and clear the pathogen led to the development of vaccines that would provide protection

prior to infection and thus reduce the need for antibiotics [455]. Currently, there are two types

of inactivated vaccinations that protect against S. pneumoniae [12, 463, 464]. The pneumococcal

polysaccharide vaccine 23 (PPSV23) [465] uses purified capsular polysaccharides and is routinely
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given to adultswho are 65 and older [12, 463, 464]. It protects against 23 serotypes of S. pneumoniae

and is effective in 50-70% of cases in adults [274]. This vaccine works in a T-cell independent

manner. The polysaccharide antigens are recognized by B cells which differentiate into plasma cells

that produce antibodies specific for the polysaccharide antigens [466]. PPSV23 provides T-cell

independent immunity and requires revaccination five years after the first vaccination because the

immunity is transient [465, 467]. The pneumococcal conjugate vaccine (PCV) [468] was developed

after noticing the low efficacy and poor immunogenicity of PPSV23 in infants and young children

[469, 470]. In the conjugate vaccine, the purified polysaccharides covalently conjugated to a carrier

protein, specifically CRM197 [467, 468]. The current FDA approved conjugate vaccine is PCV13

which protects against 13 serotypes of the S. pneumoniae [468]. PCV13 replaced PCV7 in 2010

and protects against 6 additional serotypes [471]. This elicits a T-cell dependent response which

provides mucosal immunity, and immunologic memory in children [274]. PCV13 provides long

lasting immunity by causing B and T cells to interact [466]. B cells recognize and process the

carrier protein [466]. The MHC II needed for antigen-presentation to T cells, binds to the peptide

produced following B cell breakdown of the carrier protein [466]. The peptide is presented to the

T cells by MHC II at the surface of the APC, providing co-stimulation necessary for producing

plasma cells and memory B cells [466]. The use of this vaccine has led to a decrease in pneumonia

cases in young children by more than 90%, and is most effective in children younger than five [274].

When it comes to high-risk individuals, the CDC recommends the prime boost method of

vaccination. This involves priming the immune system to a specific antigen, and enhancing this

antigen-specific immune response by re-administering the antigen[472]. The prime boost strategy

increases immunity to antigens and is recommended for high risk individuals [473, 474]. There

are two ways to prime and boost the immune system: homologous, in which the same vaccine is

received twice, and heterologous, which utilizes different types of vaccines [472]. The heterologous

method has been shown to be more immunogenic [475]. Currently, children and adults who are

at high risk for pneumococcal disease and have pre-existing conditions undergo the prime-boost

strategy prevention by receiving the PCV13 followed by the PPSV23 [476, 477]. This is also due
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to the poor immunological response seen in HIV patients who receive the PPSV23. Prime-boost

vaccinated HIV-infected groups have been shown to be more likely to display a 2-fold increase in

IgG geometricmean concentrations [478]. PCV13 provides a longer and stronger level of protection

against S. pneumoniae [473]. Within 4-8 weeks PCV13’s IgG levels can equal or exceed PPSV23

in high risk individuals [473, 474].

Despite the availability of pneumococcal vaccines, it is important to note that these vaccinations

are both serotype and age dependent [12, 172, 463, 464, 469, 470]. Understanding the role that age

plays in host immune system activation is essential for better prognosis and treatment of diseases.

As stated previously, young children and the elderly are at higher risk for contracting pneumococcal

diseases [387]. This is due to immunosenescence within the elderly population, whereas for infants,

it is due to their underdeveloped immune systems [387]. In addition to age recommendations, the

CDC also recommends the use of either vaccine in high-risk individuals with pre-existing health

conditions. For example, both vaccines are recommended in young children and adults ages 19-64

with pre-existing health conditions [172, 173, 469]. PPSV23 is also recommended by the CDC for

use in adults that smoke or have asthma [173]. These vaccine recommendations are re-evaluated

regularly based on vaccine efficacy and changes within the bacteria serotypes [13, 477]

Vaccines have drastically reduced invasive pneumococcal diseases, especially CAP in young

children and adults (Table 2) [166]. However, these vaccines have pitfalls. Firstly, there have been

at least 97 serotypes identified but these vaccines protect against 14-25% of these. The current

vaccines only protect against S. pneumoniae serotypes that are mainly associated with causing the

disease. Some studies suggest that there is little evidence that PPSV23 protects against non-invasive

pneumococcal diseases, which are more prevalent in adults [479]. The CDC also confirms that

PPSV23’s efficacy in non-bacteremic pneumonia has led to contradicting findings, but nevertheless,

it has shown sufficient efficacy in invasive pneumococcal diseases [480]. Weinberger et al., discuss

the challenges of vaccinating the elderly with PCV13 and PPSV23 [479]. These researchers argue

that PPSV23 does not show a real benefit to the elderly [479]. As for, PCV13 they argue that it is

already used in children and thus adults should be partially protected from serotypes in PCV13 due
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to herd immunity [479]. They also state that herd immunity should provide partial protection and

thus will lead to reduction of efficacy of PCV13 [479]. Other studies also discuss herd immunity

from PCV13 due to infants and toddlers being vaccinated [481, 482]. Due to PCV13, disease

serotypes rates within this vaccine will decrease by 50% [481, 482]. This becomes a problem

because of serotype replacement. The serotypes that are not in the vaccine, can colonize young

children and spread to adults [445, 483]. Additionally, with serotype vaccines, the serotypes that

are popular and commonly cause CAP and other diseases may not necessarily do so in the future

and so these vaccines would need to be reevaluated. PCV13’s replacement of PCV7 was a prime

example of changes to serotypes that cause pneumococcal diseases. Recently Merck and Dohme

completed a phase 1 clinical trial (NCT01215175) investigating a new conjugate vaccine, PCV15,

immunogenic and safety properties compared to PCV13 [484]. This contains two extra serotypes

(22F and 33F), which were previously identified for the cause of approximately 10% of invasive

pneumococcal diseases in adults in 2007 [485]. Another concern for current vaccines is that 3-19

percent of pneumococcal diseases are due to non-encapsulated S. pneumoniae [187]. Current

vaccines are ineffective against non-encapsulated S. pneumoniae due to serotype specificity [187].

Further developments of vaccinations are vital for eliminating the burden of S. pneumoniae and

reduce the number of infections.

3.7.3 Post-infection Prognosis

Following pneumococcal diseases such as pneumonia, high risk individuals may experience longer

recovery times and complications due to the disease [151, 442, 443]. About 1.6 million deaths

from pneumococcal diseases occur worldwide [185]. According to the CDC, there were over

50,000 deaths within the US during 2014 and the majority of these deaths were seen in the elderly

[178]. Older adults have lower survival rates than other age groups [242, 486]. The elderly may

recover from pneumococcal diseases such as CAP, but they face higher death rates due to the high

possibility of developing other health problems and the reoccurrence of the disease [151, 242, 486].

Infants and young children that recover from CAP have an increased risk for developing respiratory
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problems [487]. For example, research indicates that young children face a greater risk for reduced

lung function and developing Chronic Obstructive Pulmonary Disease (COPD) [193, 487]. In

some cases, increased death rates and complications are due to delays in diagnosis. Such delays

in turn hamper timely treatment, which also increases the severity of the disease. For example,

meningitis can progress quickly and cause permanent disabilities such as brain damage, hearing

loss and seizuresv[173, 201, 202]. Timely treatment can reduce the risk of neurological damage

and death due to this infection [202]. Additionally, ear and sinus infections can lead to hearing

loss and respiratory problems respectively [173]. The environment also plays a role in affecting

recovery rates and reoccurrence of the disease especially for smokers and those residing in nursing

homes and crowded areas [151]. Furthermore, Tiewsoh et al. study investigating the outcome

of children with severe pneumonia showed that children who were not breastfed, had a low birth

weight and were within crowded homes had longer hospital stays and the initial antibiotics were not

helpful and required new antibiotics [488]. Nutrition also plays a vital role in how well someone

will recover from these diseases [489]. Some complications due to pneumococcal pneumonia

include respiratory failure, lowered oxygen levels and collapsed lungs [154]. It is also possible for

the lungs to fill with fluid and this fluid can become infected. S. pneumoniae may also migrate

to the blood [154, 173]. This is called bacteremia which is the most common complication for

pneumonia [154, 173]. Pneumonia and other pneumococcal diseases are classified as invasive if the

bacteria migrate to the blood. Additionally, individuals with this disease can develop pericarditis

which is inflammation of the sac around the heart, lung abscess, empyema and blockage of airways

[154, 173]. It is also highly probable for co-infections to occur when suffering with pneumonia.

An example of this is influenza – 66% of CAP cases also present co-infection with influenza [260].

Most of these health complications are seen in elderly subjects, and this also points to the increasing

importance of improved diagnostics, treatments and vaccinations for this age group.
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3.8 Discussion

We have discussed the host defenses against S. pneumoniae, and how individuals with weakened

immune systems may experience a harder time clearing the pathogen. We have also indicated that

young children, elders and individuals who are immunocompromised all have an increased risk for

contracting pneumococcal diseases. The majority of previous efforts have provided an extensive

characterization of S. pneumoniae features and began probing the interactions of the bacteria with

the host in the context of pneumococcal disorders. However, in terms of treatment and prevention

there remain substantial open questions that need to be addressed as discussed below. There are a

variety ofmethods available for pneumococcal disease diagnostics. Many of the current tests needed

to confirm S. pneumoniae’s identity are culture-dependent [151, 442, 443]. Culture-independent

methods that take advantage of the latest technologies are being developed, such as the use of a lung

ultrasound to assess pneumonia [490]. Chavez et al. and Long et al. discuss the possibility of lung

ultrasound use in pneumonia diagnosis [491, 492] indicating high diagnostic accuracy, while at the

same time providing a radiation free method of examining the lungs [491, 492]. Similarly, the use of

mass spectrometry to examine metabolites from the saliva [493], breath [494] and urine [448, 495]

of patients being tested for pneumococcal diseases is under development. The urine antigen test

discussed above also provides rapid results that will allow for quicker diagnosis and treatment

once S. pneumoniae antigens are detected in the urine [448, 495]. With diagnostic methods

improving, pneumococcal disease treatments are also being updated. Antibiotics are available to

reduce the colonization of S. pneumoniae, however, the efficacy of antibiotics is being reduced

due to the increase in antibiotic resistance [455, 457]. Broad-spectrum antibiotics are no longer

as effective [455, 457]. Inhaled therapeutics are underdeveloped but can be beneficial for treating

pneumonia and other pneumococcal diseases. This method can provide a mode of delivering

antibiotics and antimicrobials [496] in a more targeted manner, improve mucociliary clearance via

hypertonic saline solutions and inhalation of cytokines to stimulate the immune system [496]. On

the other hand, to also reduce the effect of antibiotic resistance, S. pneumoniae strains may also be

studied via RNA-sequencing and other high throughput technologies to detect antibiotic resistance
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genes and thoroughly characterize serotypes. Treatment and prevention of pneumonia and other

pneumococcal diseases are of major concern for the clinical field due to the high death rates and low

efficacy of current vaccines due to aging differences and serotype replacement. Some alternative

vaccination methods have been proposed and are also being developed. For instance, Weinberger

et al., propose the use of a conjugate vaccine that is specific for elderly subjects, which targets the

serotypes not in current vaccines but other serotypes that are mostly seen in elderly patients with

pneumococcal diseases [479]. Some researchers have proposed creating a conjugate vaccine that

targets all or more of the identified serotypes of S. pneumoniae [479, 497]. However, the impact on

the immune system and immunogenicity of this vaccine would need to be thoroughly investigated

[479]. This vaccine would also need to demonstrate better efficacy than existing vaccines [479].

In addition to this, conjugate vaccines are expensive (currently, the PCV13 costs about $160 per

dose [498], and a true benefit will need to be clearly identified. Additionally, observing how

pneumococcal disease incidence rates are changing as more and more people are getting vaccinated

will lead to accurate assessment of pneumococcal disease burden and vaccine efficacy [489].

Vaccination policies and cost-effect analyses can benefit from information on vaccine disease

reduction [489]. Serotype-independent vaccines are also being investigated. These include protein,

protein and polysaccharide combination, and whole cell vaccines [479, 497, 499, 500]. Protein

vaccines would contain surface proteins that are highly conserved in S. pneumoniae [501, 502]. For

example, PspA and inactivated pneumolysin have been tested in phase 1 clinical trials as protein

antigens [502]. They both demonstrated safety [502], but PspA antigen’s immunogenicity was low

[503] whereas the inactivated pneumolysin was found to be immunogenic and effective in eliciting

protective immune response [504]. PspA is considered an ideal protein candidate because reports

indicate that PspA family 2 is commonly found in S. pneumoniae strains [505]. For example, in

Pakistan most strains of pneumococci have PspA genes [505]. These protein vaccines can provide

an extra preventative method once developed and will require thorough analysis of regulation and

what regulatory issues may be faced [506]. Additionally, as a form of combination therapy, a

vaccine with protein antigens as well as conjugated polysaccharide antigens may also provide a
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broader range of protection against pneumococcal diseases [501, 502]. On the other hand, whole

cell vaccinations would introduce a dead S. pneumoniae cell to hosts with the potential to provide

broader protection to S. pneumoniae [507, 508]. HogenEsch et al., investigated the use of whole

cell vaccines in mice by using a capsule deficient and autolysin mutant cell [507]. This exposed

the host to multiple parts of S. pneumoniae. They found that the vaccine led to the productions of

antibodies and IL-17 which defend against S. pneumoniae colonization of the nasopharynx in mice

[507]. Researchers have also started developing live attenuated pneumococcal vaccines [509, 510].

The SPY-1 strain is a live attenuated strain of pneumococci that does not have a capsule [510].

Xiuyu et al in 2015 experimented with delivering this vaccine intranasally in mice and observed

that it elicited a humoral response [510]. More recently, Xinyuan et al., added a mineralized

shell to SPY-1 to improve its stability and test if it can elicit a stronger immune response [509]

. The modified strain (SPY1δlytA) also did not have autolysin activity [509]. This modified

SPY1 vaccine led to higher stability, more production of IgG, and an overall increase in protection

when compared to the SPY-1 vaccine [509]. Additional concerns of serotype-independent vaccines

include determining if the vaccines will be immunogenic in all ages, whether or not the vaccines

would elicit a strong immune response, and ensuring that they can induce a pro-inflammatory

state while not leading to an over activation of the immune system. All of these novel methods

show great promise, but they require further assessments. Overall, there has been progress in our

understanding of pneumococcal diseases over the last three decades, however, the diseases still

constitute a big burden on health care. There has been a great decrease in pneumococcal diseases

since the implementation of purified polysaccharide and polysaccharide conjugate vaccines, but

over time due to serotype replacement, antibiotic resistance, and changes in immunity with age, the

treatments and vaccines in place may prove ineffective. Therefore, ongoing research to improve

vaccinations and treatments must continue towards alleviating the ill effects of S. pneumoniae.
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CHAPTER 4

META-ANALYSIS OF GENE EXPRESSION MICROARRAY DATASETS IN CHRONIC
OBSTRUCTIVE PULMONARY DISEASE.

Work presented in this chapter has been submitted to the PLOS One journal. A pre-print

is available on bioRxiv: Rogers LRK, Verlinde M, Mias GI. Meta-analysis of Gene Expres-

sion Microarray Datasets in Chronic Obstructive Pulmonary Disease. bioRxiv 671206; doi:

https://doi.org/10.1101/671206
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4.1 Abstract

Chronic obstructive pulmonary disease (COPD) was classified by the Centers for Disease

Control and Prevention in 2014 as the 3rd leading cause of death in the United States (US). Themain

cause of COPD is exposure to tobacco smoke and air pollutants. Problems associated with COPD

include under-diagnosis of the disease and an increase in the number of smokers worldwide. The

goal of our study is to identify disease variability in the gene expression profiles of COPD subjects

compared to controls. We used pre-existing, publicly available microarray expression datasets to

conduct a meta-analysis. Our inclusion criteria for microarray datasets selected for smoking status,

age and sex of blood donors reported. Our datasets used Affymetrix, Agilent microarray platforms

(7 datasets, 1,262 samples). We re-analyzed the curated raw microarray expression data using R

packages, and used Box-Cox power transformations to normalize datasets. To identify significant

differentially expressed genes we ran an analysis of variance with a linear model with disease

state, age, sex, smoking status and study as effects that also included binary interactions. We

found 1,513 statistically significant (Benjamini-Hochberg-adjusted p-value <0.05) differentially

expressed genes with respect to disease state (COPD or control). We further filtered these genes for

biological effect using results from a Tukey test post-hoc analysis (Benjamini-Hochberg-adjusted

p-value <0.05 and 10% two-tailed quantiles of mean differences between COPD and control), to

identify 304 genes. Through analysis of disease, sex, age, and also smoking status and disease

interactions we identified differentially expressed genes involved in a variety of immune responses

and cell processes in COPD. We also trained a logistic regression model using the 304 genes as

features, which enabled prediction of disease status with 84% accuracy. Our results give potential

for improving the diagnosis of COPD through blood and highlight novel gene expression disease

signatures.

4.2 Introduction

Chronic obstructive pulmonary disease (COPD) impairs lung function and reduces lung ca-

pacity. In COPD there is inflammation of the bronchial tubes (chronic bronchitis) [511] and
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destruction of the air sacs (emphysema) [512] within the lungs [14, 513–515]. Chronic bronchitis

and emphysema often occur together and are grouped under COPD [511, 512]. Furthermore, the

Global Initiative for Chronic Obstructive Lung Disease (GOLD) describes COPD as a common

and preventable disease that is caused by exposure to harmful particles and gases that affect the

airways and alveolar of the lungs [516, 517]. Individuals with COPD experience shortness of

breath due to lowered concentrations of oxygen in the blood and a chronic cough accompanied by

mucus production [14, 511–514]. COPD progresses with time and the damage caused to the lungs

is irreversible [517, 518]. However, there are treatments available to control disease progression

[517, 518].

COPD, the 3rd leading cause of death in the United States (US), is expected to rise in 15 years

to the leading cause of death [517–519]. Globally, there were over 250 million cases of COPD

reported in 2016 and in 2015 3.17 million individuals died from the disease [515]. COPD is

prevalent in low- and middle-income countries with over 90% of COPD cases occurring in these

areas [515, 519]. The disease is mainly caused by tobacco exposure through smoking cigarettes

or second-hand exposure to smoke [517, 518]. In addition to this, continuous exposure to other

irritants such as burning fuels, chemicals, polluted air and dust can lead to COPD [515]. Cigarette

smoke exposes the lungs to large amounts of oxidants that induce inflammation of the airways.

Previous research on bronchial biopsies highlighted the presence of increased concentrations of

inflammatory cells throughout the lungs [520, 521]. Studies have also suggested that COPD acts

like an autoimmune disease due to persistent inflammation even after smoking has ceased [521–

523]. In addition to environmental pollutants, there is also also a genetic deficiency, alpha-1

antitrypsin deficiency (AATD), that is associated with COPD [517]. AATD protects the lungs, and

without it the lungs become vulnerable to COPD. The prevalence of COPD is expected to rise due

to increasing smoking rates and larger populations of elderly individuals in many countries[515].

COPD is often underdiagnosed and despite tobacco exposure being the highest risk factor, not

all smokers get COPD, and non-smokers can also develop COPD. Previous work has been done

to identify biomarkers for earlier diagnosis of COPD in blood, a non-invasive approach. Bahr et
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al., compared expression profiles of smokers with COPD and smokers without COPD [524]. They

used multiple linear regression to identify candidate genes and pathways. Their results highlighted

pathways involved in the immune system and inflammatory response [524]. Another study of

blood gene expression in COPD explored using pre-existing gene interaction networks to perform

unsupervised clustering to identify COPD disease sub-types [525]. More recently, Reinhold et al.,

took a different approach by conducting a meta-analysis that identified groups of genes associated

with COPD by using consensus modules of gene co-expression. They built networks of genes that

were co-expressed and associated with COPD phenotypes [5].

In our meta-analysis, the objective was to identify the effects of age, sex, and smoking status on

gene expression in COPD.We investigated gene expression changes in blood for 1,262 samples (574

healthy samples and 688 COPD samples) to identify genes and their associated pathways in COPD

(Figure 4.1-4.2). Our study is the largest meta-analysis on blood expression for COPD to date, to

the best of our knowledge, and our results offer prospective gene and pathway associations that

may be targeted for improving COPD diagnosis and treatment. Our meta-analysis also highlighted

disease genes that interact with smoking status, and these genes can be used to further characterize

the effects of smoking on COPD development.

4.3 Materials and Methods

We used seven publicly available COPD microarray gene expression datasets in our meta-

analysis to evaluate variation in gene expression across samples due to disease status, sex, age and

smoking status (Table 4.1). The 7 expression datasets were from 3 different microarray platforms:

Affymetrix GeneChip Human Genome U133 Plus 2.0, Affymetrix Human Gene 1.1 ST Array and

Agilent Whole Human Genome Microarray 4x44K. Our current meta-analysis pipeline (similar

to Brooks et al.[526]), included 5 main steps (Figure 4.2): (1) data curation; (2) pre-processing

of raw expression data; (3) analysis of variance (ANOVA) on our linear model which compared

gene expression changes due to disease state, smoking status, sex and age group; (4) post-hoc

analysis using Tukey Honest Significance Difference test (TukeyHSD) for biological significance;
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Figure 4.1: Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow
diagram. Data were curated from Gene Expression Omnibus (GEO) and Array Express (AE). The
PRISMA flow diagram shows the identification, screening, eligibility and inclusion of samples in
our analysis.

and (5) Gene ontology (GO) and pathway enrichment analysis of the differentially expressed and

biologically significant genes.
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Database Repository Dataset Accession Control COPD Platform
Array Express E-MTAB-5278 181 53 Affymetrix Human Genome Plus 2.0
Array Express E-MTAB-5279 89 0 Affymetrix Human Genome Plus 2.0
GEO GSE42057 42 94 Affymetrix Human Genome Plus 2.0
GEO GSE47415 48 0 Agilent-014850 Whole Human Genome Microarray 4x44K
GEO GSE54837 90 136 Affymetrix Human Genome Plus 2.0
GEO GSE71220 44 405 Affymetrix Human Gene 1.1 ST Array
GEO GSE87072 80 0 Affymetrix Human Genome Plus 2.0

Table 4.1: Description of datasets used in the meta-analysis

Figure 4.2: Meta-analysis pipeline for Chronic Obstructive Pulmonary Disease. (A)Summary of
workflow used for the meta-analysis, (B) Pre-processing steps used on the microarray data,(C) Data
analysis post ANOVA, (D) post-hoc analysis steps using ANOVA results.

4.3.1 Microarray Data Curation from Gene Expression Omnibus and Array Express

To gather the datasets for our meta-analysis, we searched the National Center for Biotechnology

Information (NCBI)’s data repository, Gene Expression Omnibus (GEO) [47], and the European

Bioinformatics Institute (EMBL-EBI)’s data repository, Array Express (AE) [48] for microarray

expression data. We used the following keywords to search the repositories: COPD, Homo

94



sapiens, blood (whole blood and peripheral blood mononuclear cells) and expression profiling by

array (Figure 4.1). The search results were further filtered to include datasets where the age, sex

and smoking status of the samples were reported (Figure 4.1). We found 3 datasets from GEO

(GSE42057 [527], GSE71220 [528], GSE54837 [529]) and 1 from AE (E-MTAB-5278 [530]) that

met our search criteria (Table 4.1 and Figure 4.1). We conducted an additional search on GEO and

AE to find healthy subjects with their smoking history reported to balance our control subjects with

our COPD subjects. The search keywords included: Homo sapiens, blood, smoking and expression

profiling by array. We also filtered these search results for datasets that reported the age, sex and

smoking status of subjects. With this additional search, we added 3 more datasets: GSE87072

[531], GSE47415 [532], and E-MTAB-5279 [530] which helped improve the balance between

COPD and control subjects (Table 4.1 and DF1 of online supplementary data files (Appendix B)).

After selecting the datasets for our meta-analysis, we retrieved the raw microarray expression

data for each dataset, and created a demographics file per study, which included sample character-

istics using e-utils in Mathematica [49] (Table 4.2). The demographics files were further filtered to

eliminate samples that did not fit our inclusion criteria. For example, GSE71220 included subjects

that were using statin drugs [528], and hence we excluded all samples that were receiving treatment

from our analysis. For GSE87072, we removed the samples that were moist snuff consumers [531]

and only used smokers and non-smokers in our analysis. In our additional search for controls with

smoking status reported, we filtered the selected datasets (GSE87072, GSE47415 and E-MTAB-

5279) and only used the healthy samples for our analysis. In addition to this, we excluded the

subjects in GSE23515 [533] from our analysis because 22 of the 24 samples are duplicates from

GSE47415 [532]. Our demographics files were created to include variables that were reported

across all samples (see merged Demographics file DF1 of online supplementary data files (Ap-

pendix B)) because study annotations had not been uniformly reported in the databases (Appendix

B).
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Dataset Accession Sex(M/F) Smoking Status (S/NS/FS)* Age Range
E-MTAB-5279 46/43 30/29/30 24 - 65
EMTAB5278 136/98 114/60/60 41 - 70
GSE42057 74/62 35/2/99 45 - 80
GSE47415 24/24 24/24/0 20 - 64
GSE54837 148/78 84/6/136 40 - 75
GSE71220 285/165 91/22/336 49 - 75
GSE87072 80/0 40/40/0 35 - 60

*S=smoker, NS=non-smoker, FS= former smoker

Table 4.2: Sample Characteristics By Dataset

4.3.2 Microarray Pre-processing and BoxCox Normalization

To download the raw microarray expression for each dataset we used Mathematica [50]. All raw

expression data files were pre-processed in R [51] using R packages specific to each microarray

platform (Figure 4.2B). For the datasets from the Affymetrix Human Genome Plus 2.0 platform,

we used the affy package [52] for pre-processing all of the .CEL files. The oligo [534] and

affycoretools [535] packages were used to pre-process the data files from theAffymetrix Human

Gene 1.1 ST microarry platform, while the limma package [53] was used for the data files from

the Agilent Whole Human Genome microarray platform. We performed background correction,

normalization, and all probes were annotated and summarized (Figure 4.2B). For the Affymetrix

Human Genome Plus 2.0 expression data files, the expresso function was used to pre-process

the files with the following parameters: background correction with robust multi-array analysis

(RMA), correcting the perfect-match (PM) probes, and ‘avdiff’ to calculate expression values [52].

Subsequently, the avereps function from limma was used to summarize the probes and remove

replicates [53]. TheAffymetrixHumanGene 1.1 ST data fileswere also background corrected using

RMA, and the probes were summarized and replicates removed using the avereps function. As

for the Agilent data files, background correction was performed using the backgroundCorrect

function with NormExp Background Correction as the method from the limma package [536].

The probes for both Affymetrix Human Gene 1.1 ST and Agilent were also summarized and

replicates were removed using the avereps function from limma. Once pre-processing was
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completed, the 8 datasets (Table 4.1) were merged by common gene symbols into a single matrix

file. Using the ApplyBoxCoxTransform function and the StandardizeExtended function from

the MathIOmica (version 1.1.3) package [49, 55] in Mathematica, we performed a Box-Cox power

transformation and data standardization on the merged expression file [54] (Figure 4.2B and DF2

of online supplementary data files (Appendix B)).

4.3.3 Identifying and Visualizing Batch Effects

Conducting meta-analyses by combining expression datasets across different microarray platforms

and research labs/studies introduces batch effects/confounding factors to the data. The batch

effects can introduce non-biological variation in the data, which affects the interpretation of the

results. In order to visualize variation in the expression data across factors, we conducted principal

component analysis (PCA) on the expression data and generated PCA plots (Figure 4.3 and Figure

B.1 of Appendix B). As we also previously described[526], the study factor is directly related to

the microarray platform type. To address this, the ComBat function in the sva package was used to

correct for variation in the data due to the study factor [56, 57]. PCA plots were used to visualize

variation in expression data before and after batch correction with ComBat [58] (Figure 4.3 and

Figure B.1 of Appendix B), confirming the main batch effect removal by adjusting for study.

4.3.4 Analysis of Variance to Identify Differentially Expressed Genes by Factor

To determine if the factors of disease status, sex, study, and smoking status had an impact on gene

expression in COPD, we modeled (see linear model below) our merged expression matrix (DF2

of online supplementary data files (Appendix B)) and then ran ANOVA to identify differentially

expressed genes (Figure 4.2B) using aov and anova from base R’s stats package (as previously

described[526]). Schematically our linear model formula for gene expression, g, per each gene

included main effects and interactions:

g ∼
∑

i
xi +

∑
i,j; j>i

xi : x j (4.1)
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where xi ∈ {age group, sex, smoker, disease status} and the factors have the following levels:

• disease status = {control, COPD}

• sex = {male, female}

• age group = {under 50, 50-55, 55-60, 60-70, over 70}

• smoker = {non-smoker, former smoker, smoker}

• study = {GSE42057, GSE47415, GSE54837, GSE71220, GSE87072, E-MTAB-5278, E-

MTAB-5279}

ANOVA p-values were adjusted using the Benjamini-Hochberg (BH) correction method for

multiple hypothesis testing [59, 60, 537]. Genes were considered statistically significant if their

BH-adjusted p-values were <0.05. We focused on the ANOVA results for the disease factor,

and filtered them for BH-adjusted p-values <0.05. These filtered genes were then identified as

statistically significant disease genes. We used this gene list to identify what GO terms and

Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome pathways they were enriched

in. We used the GOAnalysis and KEGGAnalysis functions from the MathIOmica package for

GO and KEGG pathway enrichment. Additionally, we used the enrichPathway function from

the ReactomePA package in R [36]. All functions for enrichment analysis used the BH p-value

correction method and GO terms, KEGG and Reactome pathways with a BH-adjusted p-value

<0.05 were considered statistically significant (see DF5-DF7 of online supplementary data files

(Appendix B)).

To determine the biological effect of the ANOVA statistically significant genes (disease status

factor) and calculate relative expression (difference in means) to determine up- or down- regulation

of genes, we conducted a post-hoc analysis with TukeyHSD function in the stats package in

base R using our linear model outlined above. We added an additional column to the TukeyHSD

results which contained BH-adjusted TukeyHSD p-values, and all GO terms and pathways with a

BH-adjusted p-value <0.05 were considered significant. To find genes that were significantly up-
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and down-regulated, we further filtered the gene list by difference in means by using the two-tailed

10 and 90% quantile. With these results we carried out GO and pathway enrichment to identify

which biological processes and pathways the genes were enriched. We used the disease genes and

explored sex, smoking status and aging effects on their gene expression.

4.3.5 Machine Learning with COPD

Machine learning classification was carried out inMathematica using the Classify function [538],

with the Method parameter set to “LogisticRegression”. We first trained on all 1262 samples, using

the statistically significant disease genes, filtered with a two tailed 10 and 90% quantile selection

for effect size as features (304 genes). We also randomized the dataset, and created 10 sets for

training and testing, with 90% of the samples used for training, and 10% of the samples used for

testing, where the 10 testing sets were mutually exclusive (10-fold cross-validation).

4.4 Results

Our meta-analysis selection criteria for data curation (Figure 4.1) resulted in 8 datasets from

GEO andAE (Table 4.1). After pre-processing the data, we combined all datasets into a largematrix

by merging by common gene names. This data merge resulted in 1,262 samples (574 controls and

688 COPD subjects) and 16,237 genes. Our 1,262 samples consists of 792 males and 470 females,

and also 661 former smokers, 418 current smokers and 183 non-smokers.

4.4.1 Visualizing Batch Effects and Batch Effect Correction

Prior to designing our linear model, we wanted to visualize variation introduced into the data due

to batch effects, and how the variation changes when the data is adjusted with ComBat for batch

effects. We used ComBat in R to adjust for the study effect on the data and generated PCA plots

before and after batch correction (Figure 4.3). In Figure 4.3A, before running ComBat, the data

separates into four major clusters with a variance of 49.9% in PC1 and 15.7% in PC2. After running

ComBat, the clustering of the data is removed, and variance reduced to 17.7% in PC1 and 4.4%
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in PC2 (Figure 4.3B). We also plotted the PCAs for the other factors (Figure B.1 of Appendix

B) before and after using ComBat for batch effect correction. The ComBat batch effect corrected

expression data was only used to visualize changes in variation due to removal of batch and to

confirm the inclusion of study as an effect factor in our linear model.

Figure 4.3: Visualizing batch effects introduced by using multiple studies in our meta-analysis. (A)
PCA before and (B) PCA after batch effect correction with ComBat.

4.4.2 Variance in Gene Expression Due to Disease Status

With our ANOVA results, we were able to evaluate variance in gene expression introduced by

each factor and their pair-wise interactions [59]. To determine which genes from our ANOVA

results were statistically significant by the disease status factor, we filtered the genes by using

BH-adjusted p-value <0.05. We found 1,513 statistically significant disease genes (see DF4

of online supplementary data files (Appendix B)). We performed GO and pathway enrichment

analysis on the 1,513 genes. Our enriched GO terms included: innate immune response (57 gene

hits), inflammatory response (48 gene hits), apoptotic process (58 gene hits), adaptive immune

response (24 gene hits) and response to drug (40 gene hits) (see DF7 of online supplementary

data files (Appendix B) for full table). We found 7 enriched KEGG pathways (Table 4.3 and

DF5 of online supplementary data files (Appendix B)). The enriched KEGG pathway analysis

results include: Ribosome (29 gene hits), Primary immunodeficiency (11 gene hits), lysosome (22
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gene hits), and cytokine-cytokine receptor interaction (35 gene hits) (Table 4.3 and DF5 of online

supplementary data files (Appendix B)). The 1,513 genes are involved in Reactome pathways such

as Neutrophil degranulation (103 gene hits), Eukaryotic Translation Elongation (31 gene hits),

Signaling by Interleukins (66 gene hits) Diseases of Immune System (8 gene hits) Fc epsilon

receptor (FCERI) signaling (24 gene hits) and Signaling by the B Cell Receptor (BCR) (21 gene

hits) (see DF6 of online supplementary data files (Appendix B) for full table). We also used the

KEGGPathwayVisual function in the MathIOmica package to highlight whether our gene hits for

the enriched KEGG pathways were up- or down- regulated in the pathway (based on TukeyHSD

calculated differences in means) (Figure 4.4 and Figures B.2-B.6 of Appendix B). For example,

Figure 4.4 depicts the Primary Immunodeficiency KEGG pathway and highlights our gene hits

(with yellow: up-regulated, and blue: down-regulated gene expression). In this pathway, Figure

4.4, our results indicate that Igα is down-regulated in COPD compared to controls (involved in

differentiating from a Pro-B Cell to a Pre-B cell 1), and also BTK9 is up-regulated in COPD

(involved in differentiating from Pre-B1 cell to Pre-B2 cell).

Of the 1,513 disease genes we further filtered our ANOVA results (see DF4 of online supple-

mentary data files (Appendix B)) to identify genes with statistically significant interactions with

smoking status (disease:smoking status, BH-adjusted p-value < 0.05). We found 39 genes that had

a statistically significant pairwise interaction between disease status and smoking status (see DF14

of online supplementary data files (Appendix B)). Using the 39 interacting genes, we calculated the

row means across the different pairings of smoking status and disease status to compare expression

(Figure 4.8). We used the row means of the non-smoking controls as our baseline to calculate the

difference in means for the different disease and smoking groups. In Figure 4.8 the data clusters

by disease state (COPD together and controls together), and smokers and former smokers across

both disease states have similar expression profiles. There are subset of genes that are over ex-

pressed in COPD smokers compared to control non-smokers as well as a subset of genes that are

down-regulated. Finally, control smokers and former smokers have similar expression profiles with

GGT6 being an outlier (Figure 4.8).
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KEGG ID KEGG Pathway Name Gene Count p-value adjusted p-value
path:hsa03010 Ribosome 29 5.34E-08 1.50E-05
path:hsa05340 Primary immunodeficiency 11 2.74E-05 3.15E-03
path:hsa04142 Lysosome 22 3.37E-05 3.15E-03
path:hsa04060 Cytokine-cytokine receptor interaction 35 1.64E-04 1.16E-02
path:hsa04520 Adherens junction 14 4.97E-04 2.80E-02
path:hsa05200 Pathways in cancer 45 7.00E-04 3.28E-02
path:hsa04640 Hematopoietic cell lineage 15 9.98E-04 3.88E-02
path:hsa05162 Measles 20 1.10E-03 3.88E-02

Table 4.3: Enriched KEGG Pathways using the ANOVA Differentially Expressed Genes from
Disease Factor

Figure 4.4: Highlighted Primary Immunodeficiency KEGG Pathway (hsa05340) with enriched
genes from the ANOVA (BH-adjusted p-value < 0.05)[1–3]. Yellow-colored genes are up-regulated
and blue-colored genes are down-regulated in COPD samples.
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Figure 4.5: Highlighted Cytokine-cytokine receptor interaction KEGG Pathway (hsa04060) with
enriched genes from the ANOVA (BH-adjusted p-value < 0.05) [1–3]. Yellow-colored genes are
up-regulated and blue-colored genes are down-regulated in COPD samples.
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4.4.3 Up and Down- Regulated Gene Expression in COPD

To assess biological effect and determine factorial differences in gene expression we ran TukeyHSD

on our 1,513 statistically significant disease genes. We first focused on COPD and control gene ex-

pression differences and usedBH-adjusted p-value<0.05 to determine significance. We also filtered

further by using a 10% two-tailed quantile cutoff to identify significantly up- and down- regulated

genes. Once we filtered by p-value, we calculated to 10 and 90% quantiles using differences in

group means. For the COPD-control TukeyHSD comparisons we found 304 statistically significant

genes that we classified as down-regulated (mean differences ≤ -0.0260) and up-regulated (mean

differences ≥ 0.0338) in our COPD subjects. Of the 304 differentially expressed genes (DEG), 152

genes were down-regulated and 152 genes were up-regulated (DF9 of online supplementary data

files (Appendix B)). The top 25 up- and down- regulated genes are displayed in Table 4.4. KEGG

enrichment analysis on the 152 down-regulated disease genes resulted in two significantly enriched

pathways: Hematopoietic cell lineage (5 Gene hits: CD2, CD3E, CD7, FLT3LG and MS4A1)

and Cytokine-cytokine receptor interaction (8 gene hits:CCL5, CCR6, CD27, CXCR3, CXCR6,

FLT3LG, IL2RB, and IL2RG). For the Reactome enrichment analysis on 152 up-regulated genes,

they were enriched in Neutrophil degranulation (30 gene hits) Figure 4.6, while the down-regulated

gens were enriched in the Immunoregulatory interactions between a Lymphoid and a non-Lymphoid

cell pathway (8 gene hits) (Figure 4.7).
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Up-Regulated Down-Regulated
Gene Difference of Means Gene Difference of Means
GPR15 0.123 LBH -0.032
HK3 0.046 CD3E -0.039
CLEC4D 0.075 DUSP7 -0.030
F5 0.050 TCF7 -0.031
DOCK4 0.063 RRAS2 -0.045
GPR55 0.045 ST6GAL1 -0.029
STAB1 0.043 PYHIN1 -0.042
ASGR2 0.046 CCNK -0.026
ARG1 0.087 CD79A -0.053
MPO 0.063 GORASP2 -0.028
NRG1 0.064 IL2RG -0.029
HP 0.086 LRIG1 -0.028
PLD1 0.037 PURA -0.027
CLEC4E 0.041 LPAR5 -0.033
PLSCR1 0.048 FAM102A -0.030
FCGR1B 0.051 UCP2 -0.027
FKBP5 0.035 SPON1 -0.035
ANG 0.042 B3GNT7 -0.042
DSC2 0.063 CAMK2N1 -0.040
OSBPL1A 0.035 DENND2D -0.027
TLR5 0.040 IGFBP4 -0.036
FLVCR2 0.035 IL2RB -0.036
NLRC4 0.037 CD74 -0.031
AHRR 0.063 CBLB -0.031
CAPNS2 0.043 DCXR -0.037

Table 4.4: Top 25 up and down regulated differentially expressed genes in COPD based on effect
size
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Figure 4.6: Enriched Reactome pathway-gene network from up-regulated disease genes in COPD
subjects. The enrichment analysis was based on the 304 statistically significant differentially
expressed genes filtered for effect size.
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Figure 4.7: Enriched Reactome pathway-gene network from down-regulated disease genes in
COPD subjects. The enrichment analysis was based on the 304 statistically significant differentially
expressed genes filtered for effect size.
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Figure 4.8: Heatmap of statistically significant interacting genes across disease states and smoking
statuses. Difference in means calculated using control non-smokers as the baseline.
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4.4.4 Sex and Age on COPD Expression

We further analyzed the 304 DEG found to have a biological effect by disease status to identify

sex and aging effects on gene expression. We found 44 genes that were differentially expressed by

sex: 22 up- and 22 down-regulated in males compared to females by filtering the mean differences

using two-tailed 10% quantiles, ≤ -0.0957 (down-regulated) and ≥ 0.0908 (up-regulated). With

the 44 genes we performed pathway enrichment analysis using the ReactomePA package. There

were 7 enriched Reactome pathways (BH-corrected p-value <0.05) that were all up-regulated in

males (see DF12 of online supplementary data files (Appendix B) and Figure B.7 of Appendix B).

These pathways include: Neutrophil degranulation (13 gene hits), Antimicrobial peptides (5 gene

hits), Extracellular matrix organization (6 gene hits), Activation of matrix metalloproteinases (3

gene hits) and degradation of the extracellular matrix (4 gene hits). We did not find any statistically

significant interacting genes between disease status and sex from our ANOVA results.

To determine the age effect on our DEG associated with COPD (304 genes), we focused on

our TukeyHSD results where the age group <50 was the baseline. We selected for significance

(BH-adjusted p-value <0.05) and two-tailed 10% (up-regulated ≥ 0.421 and down-regulated ≤

-0.193) on the difference in means results to find significant age-group effects. We identified 304

significant age-group comparisons across 95 unique genes (see DF13 of online supplementary

data files (Appendix B)). We plotted the relative expression (difference in means) across all age

comparisons with <50 as the baseline. We identified two clear clusters of the genes by expression

which indicated that there are significant differences in expression profiles due to aging (Figure

4.9). However, we did not find any statistically significant genes with an interaction between disease

status and age from our ANOVA results.
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Figure 4.9: Heatmap of age effect on the statistically significant disease gene list. The enrichment
analysis was based on the 304 statistically significant differentially expressed genes filtered for
effect size. The clustered groups are color-coded, with the corresponding genes in each group listed
in the table.
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Machine Learning with COPD Data

Using the gene expression from the top 304 statistically significant for disease genes, and with 10%

two-tailed highest effect size we trained a logistic regression model in Mathematica for predicting

whether a profile belongs to the control or COPD group. Training with all samples achieved an

accuracy of 87.0±3.0%,(Fig 4.10A). The corresponding confusion matrix and receiver operating

characteristic (ROC) curves are shown in Fig 4.10 respectively, with an ROC area under the curve

(AUC) of 0.979. Furthermore, we decided to carry out a 10-fold cross-validation analysis of

randomized order samples, where we trained on 90% of the data each time and tested on the

remaining 10%. On average the model had an accuracy of 84.2% (standard deviation of 3.1%), and

ROC AUC of 0.921 (standard deviation of 0.022). An example of the worst performing realization

from the cross-validation is shown in Fig. 4.10D-F, where 48/57 controls and 42/69 COPD samples

were classified correctly, whereas 9/57 controls were mis-classified as COPD, and 17/69 COPD

were misclassified as controls. Equivalently, the false positive rates were on average 0.17 (control)

and 0.14 (COPD), and the false discovery rates were on average 0.19 (control) and 0.12 (COPD).
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Classifier Measurements
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Figure 4.10: Trained logistic regression model can classify COPD and healthy profiles. (A)The
logistic regression model trained on all the data achieves 87.0±3.0% accuracy), with the (B)
confusion matrix and (C) ROC curves indicating good performance overall, with AUC 0.979.
Training with 10-fold cross validation gives an average accuracy of 84.2%, with the worst testing
model shown in (D) and its ROC for (E) Controls and (F) COPD shown respectively, with an AUC
of 0.882.
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4.5 Discussion

Chronic obstructive pulmonary disease causes damage to the lungs because of exposure to

toxic irritants or genetic factors, and is a rising global health problem. With an increase in the

elderly population’s life expectancy and the number of smokers, the prevalence of COPD and its

morbidity rates are expected to rise. Researchers are working to identify strategies that can help

to clearly understand COPD, its pathology, and to find biomarkers in easily accessible body fluids

to promote earlier detection of COPD and improve accuracy of diagnosis [5, 524, 525]. Our

research objective was to identify age, sex and smoking status effects on gene expression between

COPD and controls in blood. We curated and downloaded 7 microarray expression datasets for our

meta-analysis on COPD. Using the raw expression data, we removed the background, annotated

and summarized the probes, and merged the 7 datasets together by common gene names. This

was followed by data normalization using BoxCox power transformation and downstream analyses

to identify differentially expressed genes and genes that were biologically significant. This is the

largest COPD meta-analysis and explores expression variability in 1,262 samples by modeling

linear and binary effects of disease status, age, sex and smoking status.

Our ANOVA highlighted 1,513 statistically significant (BH-adjusted p-value <0.05; disease

status factor) disease genes (see DF4 of online supplementary data files (Appendix B)). One of our

genes, FAM13A, has previously been associated with COPD susceptibility [517, 539]. Other genes

such as GPR15, CLEC4D andMPO have also been associated with COPD and inflammation within

the lungs. Our GO and pathway enrichment results highlight some immune pathways (Table 4.3)

and GO terms such as innate immune response, adaptive immune response and inflammation (DF7

of online supplementary data files (Appendix B)) that have previously been associated with COPD.

For example, primary immunodeficiency (weakened immune system due to deficiencies in immune

cell production) is linked to recurrent infections in subjects with COPD [540]. This recurrence

in infections due to a weakened immune system also causes chronic inflammation and airway

remodelling and obstruction [540]. Humoral deficiencies and inadequate antibody production and

responses to infections also reduce the effectiveness of vaccinations such as the influenza and
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pneumococcal vaccines [540, 541]. Studies have suggested that antibody replacement therapy

can help to reduce the recurrence of bacterial and viral infections in COPD subjects [540, 542].

In our results, we highlighted the primary immunodeficiency KEGG pathway to determine how

our genes are regulated in the pathway (Figure 4.4). Of the 8 genes highlighted in the T cell

maturation portion of Figure 4.4, 6 of them are down-regulated in COPD subjects compared to our

controls. IL2RG (alias gamma chain(γC)) that regulates T cell development and differentiation was

down-regulated in COPD subjects (Figure 4.4). IL2RG is also associated with severe combined

immunodeficiency [92]. Previous findings suggest that down-regulation of the soluble common

gamma chain is a mechanism to reduce inflammation by T cells in response to cigarette smoke in a

COPDmouse model[543]. Up-regulated γC promotes interferon-γ production and inflammation in

the respiratory tract[543]. IL7-Ra and JAK3 are also linked to severe combined immunodeficiency.

DCLRE1C (Artemis) and CD3E are both involved in Pro-T to Pre-T cell differentiation andwere up-

and down-regulated respectively in COPD subjects (Figure 4.4). Genes such as LCK ZAP70 and

RFXAP are involved in T cell differentiation into CD8+ and CD4+ cells and were found to be down-

regulated in COPD (Figure 4.4). In B-cell differentiation, our gene hits, BTK (B-cell development)

and IKBKG (alias IKKγ ) were up-regulated in COPD while Igα was down-regulated (Figure 4.4).

Reduced Igα or deficiencies in Igα promote reoccurring infections and disease exacerbation in

COPD subjects [540, 544].

In the highlighted Cytokine-cytokine receptor interaction KEGG pathway there are different

classes of cytokines such as chemokines, class I cytokines and the Tumor necrosis factor and

Transforming growth factor beta families with varying expression (Figure 4.5). Cytokines play

a major role in the inflammatory response observed in COPD subjects. For instance, CCR8

(chemokine) was up-regulated in COPD subjects (Figure 4.5). Increased levels of CCR8 has been

previously observed in allergic asthmatics [545] and has a functional role in macrophage processes

and release of cytokines in the lungs [546].

We also visualized our up- and down- regulated gene hits in the other enriched KEGG pathways

(Table 4.3 and Figure B.2 - Figure B.6 of Appendix B). We highlighted our 45 gene hits in the
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Pathways in Cancer KEGG pathway (Figure B.2 of Appendix B). COPD is a known risk factor for

lung cancer and it leads to 1% of cancer cases each year [547]. Furthermore, there is a five-fold

increase to developing lung cancer in patients with COPD compared to individuals with normal

pulmonary function [547]. Some of our highlighted genes are involved in apoptosis (Fas and

CASP9), DNA damage (MDM2), Extra-cellular matrix (ECM) receptor interaction (ECM) and

proliferation (CyclinD1) (Figure B.2 of Appendix B). As for the KEGG Lysosome pathway (Figure

B.3 of Appendix B), lysosome function and distribution in the cells of COPD subjects and smokers

have been previously examined. The lysosomes in smokers have been previously shown to cluster

around the nucleus of the cell and with reduced concentrations of lysosomes throughout the cell

compared to subjects who did not smoke. Additionally, dysregulation of the lysosomal pathway

has also been previously described in COPD patients [548].

We observed some down-regulated genes in the adherens junction pathway for COPD subjects

(Figure B.4 of Appendix B). This may be connected to the increase in lung epithelial permeability

due to smoking. Also, one study highlighted that apical junctional complex (AJC) genes were

down-regulated in COPD smokers, and that the cigarette smoke promotes a cancer-like molecular

phenotype by causing reprogramming of transcription of the AJC [549]. The hematopoietic cell

lineage pathway highlights genes involved in the differentiation of immune cells from hematopoietic

stem cells (Figure B.5 of Appendix B). As for the enriched measles pathway, research suggests that

heavy smokers who had childhood measles has an increased risk for developing COPD [550]. The

Reactome pathway analysis also resulted in immune related pathways such as Neutrophil degran-

ulation, Signaling by Interleukins, Diseases of the Immune System and Signaling by the B Cell

Receptor which all highlight components of the pathology of COPD (DF6 of online supplementary

data files (Appendix B)).

Focusing on the 304 differentially expressed disease genes (filtered for biological effect), some

of the top up-regulated genes are GPR15 (found on lymphocytes and involved in trafficking of

lymphocytes), HK3 (glucose metabolism), CLEC4D (role in inflammation and immunity) and

F5 (blood coagulation factor) [92] (Table 4.4. As for our top down-regulated genes CD3E (role
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in T-cell development), DUSP7 (involved in MAPK signaling), TCF7 (role in natural killer cell

development), RRAS2 (involved in cell proliferation). We also wanted to compare our gene list to a

previously published meta-analysis. Reinhold et al., had a total of 6,243 genes which they grouped

into 15 modules for each cohort [5]. Out of our 304 genes, 97 of them overlapped with their findings

while 207 of our genes were unique. We used BINGO in Cytoscape v.3.7.1 for GO analysis on our

207 unique genes (Figure B.8 of Appendix B) [38, 39]. Our BINGO results (BH-adjusted p-value

< 0.05) include GO terms such as defense response, response to bacterium, response to stress,

response to wounding, immune response, cell adhesion, and inflammatory response (Figure B.8 of

Appendix B).

In addition to exploring enriched GO terms associated with our 304 disease genes, Figure 4.6 -

4.7 highlight the genes that were up-regulated in COPD and were enriched in the Reactome path-

ways. Neutrophil degranulation (Figure 4.6) (genes up-regulated in COPD), and Immunoregulatory

interactions between a Lymphoid and a non-Lymphoid cell pathway (genes up-regulated in COPD).

Neutrophil degranulation (release of granules by exocytosis) has been associated with pulmonary

disorders including asthma and COPD. In COPD patients’ neutrophils are the highest number of

inflammatory cells present in the bronchial walls [551]. Increase neutrophil degranulation induces

tissue damage and this is due to high inflammatory state and constant priming of neutrophils by

cytokines and chemokines [551]. Our up-regulated genes in the neutrophil granulation pathway

include CEACAM6 (cell adhesion), MMP8 (tissue remodeling and breakdown of extracellular

matrix), CLEC4D (cell-adhesion, cell signaling and inflammation), LTF (granules in neutrophils),

MS4A3 (signal transduction), and DEFA4 (defense antimicrobial peptides). Immunoregulatory

interactions between a Lymphoid and a non-Lymphoid cell pathway down-regulated genes include

KLRB1 and KLRG1 (role in the regulation of natural killer cell function), CD3E (involved in adap-

tive immune response), ICAM2 (leukocyte adhesion and recirculation), SLAMF6 (natural killer

cell activation) and CD81 and CD96 (role in adaptive immunity) [92].

To assess the effect of smoking status on gene expression, we focused on the biologically signif-

icant genes with a significant interaction between disease status and smoking status. We identified
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39 disease genes that significantly interacted with smoking status (Figure 4.8). The baseline in

Figure 4.8 was non-smoking controls. For the two control groups: current and former smokers,

they both have elevated gene expression levels compared to non-smoking controls. This indicates

changes due solely to smoking with moderate differences between former and current smokers.

As for the COPD smokers and non-smokers, the majority of these genes are elevated compared

to non-smoking controls with GGT6, PTGDS, TMEM136, IL24, MYOM2 and POU2AF1 being

down-regulated in COPD compared to healthy non-smokers. Some of these genes have been associ-

ated with lung function and disorders such as GGT6 which plays a role in gluthathione homeostasis

and lung airspace epithelial barrier [552], IL-24 can induce apoptosis and helps control cancer

cells [553] and POU2AF1 is a regulator of host defenses but cigarette smoke suppresses its gene

expression [554] (Figure 4.8). In our analysis there was only 1 COPD non-smoker which was

excluded from this analysis.

As for sex specific effects on gene expression, we identified 44 of the 304 disease genes to

have a sex effect. The enriched pathways from using the genes that were up-regulated in males are

highlighted in Figure B.7 of Appendix B. These genes are involved in Reactome pathways such

as Neutrophil degranulation, Extracellular matrix organization, Collagen degradation, Degradation

of the extracellular matrix, and antimicrobial peptides (Figure B.7 of Appendix B). Neutrophil

degranulation was discussed above as being up-regulated by disease status in COPD subjects

compared to controls. In COPD, the extracellular matrix of the airway and parenchyma of the

lungs are restructured [555, 556]. Previous findings observed altered expression of elastin and

collagen in COPD compared to controls, and the stage/severity of COPD affected extracellular

matrix remodeling [555, 556]. Studies on COPD and sex, previously suggested higher prevalence

in males due to them having higher smoking rates [557, 558]. However, currently with larger

numbers of women smoking the prevalence of COPD in women is on the rise. Studies have shown

that women are 50% more susceptible to COPD than males and why this is the case is still an on

going debate [557, 558]. Some reasons include, smaller airways so larger concentrations of tobacco

smoke in the lungs and hormonal effects [557, 558]. Of the 44 genes with a sex effect, we did not
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find any genes with a significant interaction between disease status and sex.

Aging trends were visualized on the biologically significant disease genes. 95 genes showed

significant aging trends compared to our baseline (<50) (DF13 of online supplementary data files

(Appendix B)). Symptoms for COPD can be detected between ages 40 and 50 [559], and because of

this we used our subjects grouped as <50 as our baseline. The data clustered into two distinct groups

with similar gene expression patterns (Figure 4.9). Group 1 genes were significantly up-regulated

for all age groups compared to the baseline (Figure 4.9). Pathway enrichment analysis indicated that

the genes in group 1 are involved in the Neutrophil degranulation pathway (p-value 1.06e-04 and

FDR 0.029) which has previously been described above as being up-regulated in COPD subjects.

Genes within group 2 displayed an opposite trend with most genes being down-regulated with

increasing age (Figure 4.9). These genes did not result in any statistically significant enrichment.

However, genes in group 2 include C11orf74 (involved in transcription regulation) [92], CD163

(previously found to be over expressed in lungs of individuals with severe COPD) [560], TCF7

(natural killer and lymphoid cell development) [92], CYP1B1 (previously shown to be up-regulated

in COPD and smokers) [561] and SASH1 (involved in TLR4 signaling and can promote cytokine

production) [92]. In addition to this, we did not find any significant interacting genes between

disease status and age.

To test the possibility of using blood expression data from micro-arrays to predict disease

status, we performed machine learning with a logistic regression model using the 304 disease

genes. This resulted in an average accuracy of 84.2% (Figure 4.10). These results are promising

despite using aggregate expression versus cell-type specific expression. Previous studies explored

using computed tomography (CT) images COPD patients and controls for disease classification

[562]. Some studies also used patient reported data (such as heart rate, respiratory rate) to predict

disease exacerbation and resulted in an ROC of 0.87 [563] and another with 70% sensitivity and

71% specificity [564].

Conducting a meta-analysis with microarray expression data limits our findings to annotated

genes, and hinders us from discovering novel genes and looking at the entire transcriptome. Ad-
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ditionally, using publicly available data limits us to specific factors we can explore in our analysis

due to subject characteristics not being reported uniformly across datasets (see B.1 of Appendix

B). For example, all studies did not report ethnicity and therefore we could not investigate the

effect of ethnicity on gene expression in COPD. This would be a good factor to explore due to

over 90% of COPD cases occurring in low-middle class communities [515, 519]. We also did not

have consistently reported disease severity information to factor into our analysis and findings. Our

selection criteria for the publicly available data limits our sample size (Figure 4.2). In addition to

this, the limitations of available data resulted in unbalance in sample constitution: 1,262 samples

with 574 controls and 688 COPD, of which 792 are males and 470 females, and have smoking

status as 183 non-smokers, 418 smokers, and 661 former smokers. As for our machine learning

algorithm, despite having a good predictive power and accuracy, we could not explore cell-type

specific data. Furthermore, the observed confounding between studies suggests that samples would

need to be analysed together with the current sample sets in new investigations, prior to prediction

of status.

Our study highlights new gene candidates by factor (disease status, age, sex and smoking status)

and genes that statistically interact between disease status and smoking status that can be studied

further to understand their role in COPD. Future work to expand on our findingsmust include the use

of cell-type specific expression data and RNA-sequencing data. Due to COPD being characterized

by inflammation, increased macrophages and neutrophils and their release of cytokines, looking at

cell-type specific data can give more insight on pathology of COPD. Using cell-type specific data

for predicting disease states will also expand on our findings. RNA-sequencing data can introduce

novel gene candidates and biomarkers for COPD. Furthermore, implementing proteomics and

metabolomics can help characterize disease pathology and may lead to discovery of additional

signatures for early detection of COPD using a systems biology approach.
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CHAPTER 5

MICROARRAY GENE EXPRESSION DATASET RE-ANALYSIS REVEALS
VARIABILITY IN INFLUENZA INFECTION AND VACCINATION.

Work presented in this chapter has been submitted to Frontiers in Immunology and a pre-print

is available on bioRxiv: Rogers LRK, de los Campos G, Mias GI. Microarray Gene Expression

Dataset Re-Analysis Reveals Variability in Influenza Infection and Vaccination. bioRxiv 702068;

doi:https://doi.org/10.1101/702068
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5.1 Abstract

Influenza, a communicable disease, affects thousands of people worldwide. Young children,

elderly, immunocompromised individuals and pregnant women are at higher risk for being infected

by the influenza virus. Our study aims to highlight differentially expressed genes in influenza

disease compared to influenza vaccination, including variability due to age and sex. To accomplish

our goals, we conducted a meta-analysis using publicly available microarray expression data. Our

inclusion criteria included subjects with influenza, subjects who received the influenza vaccine and

healthy controls. We curated 18microarray datasets for a total of 3,481 samples (1,277 controls, 297

influenza infection, 1,907 influenza vaccination). We pre-processed the raw microarray expression

data in R using packages available to pre-process Affymetrix and Illumina microarray platforms.

We used a Box-Cox power transformation of the data prior to our down-stream analysis to identify

differentially expressed genes. Statistical analyses were based on linear mixed effects model with all

study factors and successive likelihood ratio tests (LRT) to identify differentially-expressed genes.

We filtered LRT results by disease (Bonferroni adjusted p-value < 0.05) and used a two-tailed

10% quantile cutoff to identify biologically significant genes. Furthermore, we assessed age and

sex effects on the disease genes by filtering for genes with a statistically significant (Bonferroni

adjusted p-value < 0.05) interaction between disease and age, and disease and sex. We identified

4,889 statistically significant genes when we filtered the LRT results by disease factor, and gene

enrichment analysis (gene ontology and pathways) included innate immune response, viral process,

defense response to virus, Hematopoietic cell lineage and NF-kappa B signaling pathway. Our

quantile filtered gene lists comprised of 978 genes each associated with influenza infection and

vaccination. We also identified 907 and 48 genes with statistically significant (Bonferroni adjusted

p-value < 0.05) disease-age and disease-sex interactions respectively. Our meta-analysis approach

highlights key gene signatures and their associated pathways for both influenza infection and

vaccination. We also were able to identify genes with an age and sex effect. This gives potential

for improving current vaccines and exploring genes that are expressed equally across ages when

considering universal vaccinations for influenza.
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5.2 Introduction

The influenza virus, a respiratory pathogen, is responsible for seasonal influenza (also known

as the flu), influenza pandemics and high rates of morbidity and mortality worldwide [565]. The

influenza virus infects the upper respiratory tract by invading the epithelial cells, releasing viral

RNA, replicating and spreading throughout the respiratory tract while also causing inflammation

[566]. Influenza is a highly contagious disease and spreads easily via contact with an infected per-

son’s nasal discharges and cough droplets [9]. The main virulence factors are haemagglutinin (HA)

and neuraminidase (NA) [566]. These surface glycoproteins are also important for determining the

sub-type of the influenza virus. The influenza virus can also reduce host gene expression through

their viral proteins [567, 568]. The viral proteins affect transcription and translation in the host

which reduces the production of host proteins and promotes immune system evasion for the virus

[567, 568]. The virus interferes with host gene expression to promote viral gene expression, and

this affects the immune system of the host by reducing the expression of immune components such

as the major histocompatibility (MHC) molecules antigen presentation, and interferon and cytokine

signaling pathways [567, 569].

Influenza is a global health burden, and as a preventative method vaccinations are offered

annually. Vaccines are modified annually because the influenza virus strains change and mutate

every season [570]. The influenza vaccinations target the viral strains and sub-types that researchers

predict would be most prevalent each flu season [9, 571]. Furthermore, there are groups in the

population who are considered at a higher risk for influenza infection, and they include young

children, elderly, individuals who are immunocompromised, and females who are pregnant [9].

The Centers for Disease Control and Prevention (CDC) has estimated, for the 2017-2018 season for

influenza, 959,000 hospitalizations and over 79,000 deaths [9]. 90% of the deaths during the 2017-

2018 flu season were within the elderly population, while about 48,000 of the hospitalizations were

in children [9]. These estimates highlight that young children and especially the elderly are at higher

risks for influenza and severe infections that can lead to hospitalization or death. Additionally, the

CDC has recommended varying dosages for each vaccine for different age groups due to age-
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dependent immune responses [9, 572]. Due to a decrease in efficacy of the influenza vaccines in the

65 and older population, they receive different dosages compared to younger age groups, in order

to elicit a beneficial immune response [9, 572]. Contrasting between changes in gene expression

due to immunosenescence in healthy subjects and the age-dependent immune responses to diseases

such as influenza can help our understanding of how responses to different diseases vary with age.

Due to the influenza virus constantly changing and the efficacy of the vaccine being dependent on

one’s age, researchers have started efforts to develop a universal vaccine [573–575]. The goal is

for such a universal vaccine to provide protection to all influenza strains [576]. One approach, is to

implement the use of highly conserved influenza peptides in vaccine formulations [575, 576].

Previous studies have investigated global blood gene expression to compare influenza disease to

other respiratory diseases to assess severity and pathogenesis [577]. For example, influenza has been

shown to induce a stronger immune response than respiratory syncytial virus by producing more

respiratory cytokines [577, 578]. Studies also explored responses to vaccinations to highlight gene

signatures. In our meta-analysis, our aim was to combine publicly available influenza microarray

data to identify the effects of disease state (control, influenza infection and vaccination), age and

sex on gene expression. We explored gene expression variation in blood for 3,481 samples (1,277

controls, 297 influenza infected, 1,907 influenza vaccinated) to identify genes and their pathways

in influenza (Figure 5.1-5.2). This is to the best of our knowledge, the largest meta-analysis (18

datasets) to explore blood expression changes in influenza infection and vaccination. Our results

provide gene signatures and pathways that can be targeted to improve influenza treatment and

vaccinations. We also highlight disease associated genes that have interactions with age and sex,

that can be used to further explore improving vaccinations, and aid efforts in identifying potential

gene targets towards developing universal vaccinations to help reduce the burden of influenza.

5.3 Methods

We curated 18 influenza-related microarray datasets from public database repositories (Table

5.1) to investigate changes in gene expression due to disease status, sex and age. The 18 datasetswere
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from Affymetrix and Illumina microarray platforms (Table 5.1). We modified and implemented

the data-analysis pipeline outlined by Brooks et al.[526]). To achieve our goal, after curating the

datasets, we used the R programming language [51] to pre-process the raw gene expression data

and to fit linear mixed effects models to determine statistically significant differentially expressed

genes by factor (Figure 5.1). In addition, we identified genes that varied in expression due to

disease status, sex, and age, and we also determined which gene ontology (GO) terms and pathways

enrichment based on these gene sets (Figure 5.1).

Figure 5.1: Meta-analysis Workflow to Assess Gene Expression Variation in Influenza Disease and
Vaccination
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Accession Number Controls Influenza Disease Influenza Vaccine Sex (M/F) Age Range Platform Ref
GSE38900 31 16 0 20/27 0.025 - 1.57 Illumina HumanHT-12 V4.0 expression beadchip [577]
GSE107990 171 0 500 238/433 23 - 89 Illumina HumanHT-12 V4.0 expression beadchip [579]
GSE111368 130 229 0 177/182 18 - 71 Illumina HumanHT-12 V4.0 expression beadchip [580]
GSE27131 7 14 0 16/5 25 - 59 Affymetrix Human Gene 1.0 ST Array [581]
GSE29614 9 0 18 12//15 22 - 46 Affymetrix Human Genome U133 Plus 2.0 Array [582]
GSE29615 28 0 55 38/45 21 - 46 Affymetrix HT HG-U133+ PM Array Plate [582]
GSE47353 117 0 175 122/170 21 - 62 Affymetrix Human Gene 1.0 ST Array [583]
GSE48762 274 0 150 202/222 22 - 49 Illumina HumanHT-12 V3.0 expression beadchip [584]
GSE50628 0 10 0 2//8 4 – 9 Affymetrix Human Genome U133 Plus 2.0 Array [585]
GSE52005 34 0 102 62//74 0.68 - 14.68 Illumina HumanHT-12 V4.0 expression beadchip [586]
GSE74816 72 0 105 59/118 21 - 80 Affymetrix HT HG-U133+ PM Array Plate [587]
GSE97485 10 0 0 6//4 27 - 72 Affymetrix Human Gene 1.0 ST Array [588]
GSE34205 18 28 0 24/22 0.0416 - 11 Affymetrix Human Genome U133 Plus 2.0 Array [578]
GSE41080 91 0 0 37/54 20 - 93 Illumina HumanHT-12 V3.0 expression beadchip [589]
GSE74811 28 0 55 23/60 21 - 47 Affymetrix HT HG-U133+ PM Array Plate [587]
GSE59654 39 0 117 68/88 22 - 90 Illumina HumanHT-12 V4.0 expression beadchip [590]
GSE48018 111 0 320 431/0 18.2 - 32.1 Illumina HumanHT-12 V3.0 expression beadchip [591]
GSE48023 107 0 310 0/417 18.5-40.2 Illumina HumanHT-12 V4.0 expression beadchip [591]

Table 5.1: Demographics of curated influenza microarray datasets.

5.3.1 Data Curation: Gene Expression Omnibus

For our meta-analysis, we focused on influenza infection and vaccination. We searched public

database repositories such as Gene Expression Omnibus (GEO) [47], Array Express (AE) [48] and

Immune Space (IS) [592, 593] (Figure 5.2). To begin our data search, we found datasets with the

keyword "influenza" and filtered for /textitHomo sapiens (Figure 5.2). Following this filter, we then

removed duplicate records. For example, there were 15 duplicate records on GEO and 16 datasets

on IS overlapped with our GEO records (Figure 5.2). We further filtered the results for datasets

that were published, had non-ambiguous annotation, reported the age and sex of all subjects, and

used blood or peripheral blood mononuclear cells (PBMCs) as the tissue type (Figure 5.2). Based

on our inclusion criteria, we identified 18 datasets on GEO to use for our meta-analysis (Table

5.1 and SDF1 of online supplementary data files (Appendix C)). For datasets such as GSE29614

(SDY64 on IS), GSE29615 (SDY269 on IS), GSE74811 (SDY270 on IS), GSE59654 (SDY404

on IS), GSE74816 (SDY1119 on IS), GSE48023 (SDY1276 on IS), 48018 (SDY1276 on IS) that

did not have the ages of the subjects reported on GEO, we used the annotation from IS to gather

age and sex characteristics of the samples. Additionally, we excluded 4 duplicates in GSE34205:

GSM844139, GSM844141, GSM844143 and GSM844196 (which are duplicates of GSM844138,

GSM844140, GSM844142, and GSM844195 datasets respectively).

After filtering through and selecting the datasets to use in our meta-analysis, we downloaded the
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raw gene expression data for each dataset, and created a file per study with sample characteristics

(Table 5.1 and SDF1 of online supplementary data files (Appendix C)). Our selected datasets

were further filtered to remove samples that did not fit our criteria. For instance, GSE38900 and

GSE34205 have samples with respiratory syncytial virus (RSV), GSE48762 contains samples who

received the pneumococcal vaccine, GSE50628 has samples with rota-virus infection and patients

who experience seizures, and GSE97485 has samples with acute myeloid leukemia who received

the influenza vaccine. Due to this, we excluded all subjects that had a pre-existing health condition,

infections other than influenza and received vaccinations other than the influenza vaccine (SDF1

of online supplementary data files (Appendix C)).
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Figure 5.2: Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
Checklist.
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5.3.2 Data Pre-Processing in R and Mathematica

All raw expression files were downloaded directly from the GEO website and pre-processed in

R using appropriate packages based on the type of microarray platform (Table 5.1). We carried

out background correction and annotated and summarized all probes (Fig 5.1B). We used the

affy package [52] to pre-process all of the data files for the expression data from Affymetrix

Human Genome Plus 2.0 and the Affymetrix HT Human Genome U133 Plus PM. Specifically, we

used the expresso function to pre-process the files using robust multi-array analysis (RMA) for

background correction, conduct perfect-match probe correction, and to calculate expression values

using ‘avdiff’ [52]. To summarize and remove replicate probes we used the avereps function from

limma [53]. For the Affymetrix HTHuman Genome U133 Plus PM, we created our own annotation

package in R using the annotation obtained from GEO [51]. For the raw expression data from the

Affymetrix Human Gene 1.1 ST microarray platform, we pre-processed the data using the oligo

[534] and affycoretools [535] packages. To background correct the Affymetrix Human Gene

1.1 ST microarray data files we also used RMA and summarized and removed replicate probes

using avereps function from limma.Our Illumina data files were pre-processed with the limma

package. We used the NormExp Background Correction (nec) function from the limma package

to remove the background of data files that reported the detection p-values. The (nec) function

using the detection p-values when background correcting. Probes were annotated and summarized

using the aggregate function from the stats package in base R [51, 53].

Following pre-processing, wemerged expression data for the 18 datasets (Table 5.1 and SDF1 of

online supplementary data files (Appendix C)) by matching gene symbols that were common across

all datasets. We conducted a Box-Cox power transformation [54] and standardized the expression

values using the functions ApplyBoxCoxTransformExtended and StandardizeExtended from

the MathIOmica (version 1.2.0) package in Mathematica [49, 55] (Fig 5.1B and SDF2 of online

supplementary data files (Appendix C)).
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5.3.3 Linear Mixed Effects Modeling

We fitted a sequence of mixed-effects models to identify genes whose expression levels were

affected by disease status (3 levels: control, influenza, vaccine) and those for which the effect of

disease was modulated by either age or sex. Models were fitted using the lmer function od the

lme4 R-package [594]. Separate models were fitted to each of the genes. Our baseline model

(M0) included the (fixed) effects of sex (M/F), age (a factor with 4 levels, (-1,3],(3,19], (19,65] and

(65,100]), ethnicity (a factor with 7 levels, African-American, Caucasian, Asian, Hispanic, Middle

Eastern, Other, Unclassified) and tissue (2 levels, blood and PBMCs) plus the random effects of

study (18 levels, see Table 5.1 for accession numbers) and of the subject (we included the subject

effect because some studies had repeated measures). We first expanded this model by adding the

(fixed) main effect of disease status (a factor with three levels, M1). Our next model expanded

M1 by adding interactions between disease status and age (M2-DxA) and disease status by sex

(M2-DxS). P-values for the main effects of diseases as for disease-by-sex and disease-by-age were

obtained using likelihood ratio tests (LRT) between the models described above (SDF3 of online

supplementary data files (Appendix C)). LRTs were implemented using the anova function from

base R to pairs of models. We used a sequential testing approach whereas: (i) we first identified

genes with significant main effect of disease (this was based on a LRT between M1 and M0), (ii)

among genes with significant main effect of diseases we tested the significance of DxA and DxS

using a likelihood ratio test that had M1 as null hypothesis and the interaction models as alternative

hypotheses. P-values were adjusted using Bonferroni, where for the first test (i) the number of tests

was equal to the number of genes, and for the second one (ii) the number of tests was equal to the

number of genes that passed the first test.

The filtering of genes based on Bonferroni-adjusted p-values for the main effect of disease

(comparison of M1 to M0) allowed us to identify differentially expressed genes with respect to

disease states (Figure 5.1). Using this gene list, we then conducted GO enrichment analysis

(GOAnalysis function in MathIOmica package) and pathway enrichment analysis using Kyoto

Encyclopedia ofGenes andGenomes (KEGG, using the KEGGAnalysis functions in MathIOmica),
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and Reactome pathway enrichment analysis (enrichPathway function from the ReactomePA

package in R [36]).

5.3.4 DeterminingGeneExpressionVariability between Influenza Infection andVaccination

We took a sequential testing approach to further analyze the identified statistically significant disease

genes (SDF5 of online supplementary data files (Appendix C)). Using this gene list, we further

filtered for biological effect by using calculated estimates (which compared influenza and vaccine

expression to controls) (SDF4 of online supplementary data files (Appendix C)) and performed a

two-tailed 10% quantile filter (i.e. 0.1 and 0.9 quantiles) to determine genes that were biologically

significant in subjects who were vaccinated with influenza vaccinated and subjects infected with

influenza disease. The biologically significant gene lists for the vaccinated and influenza subjects

were further examined to identify genes in common, and genes only in the influenza list, and only

in the vaccinated list (Figure 5.1). We performed GO and pathway enrichment analysis on these

genes. Lastly, we filtered the disease (see SDF1 of online supplementary data files (Appendix

C)) statistically significant gene list for interacting genes between disease and age (age groups:

(-1,3],(3,19], (19,65], (65,100])) and disease and sex.

5.4 Results

Our data curation criteria resulted in 3,481 samples (1,277 controls, 297 influenza infection,

1,907 influenza vaccinated, 1,537males and 1,944 females) (see SDF1 of online supplementary data

files (Appendix C)). Our 3,481 samples are from 1,147 individuals. Some studies include repeated

measures (in the curated studies individuals were followed for several days after vaccination or

infection and varying timepoints were reported as a different samples for the same subject). We

included all repeated measures in our downstream analysis and accounted for them in our model.

The main results are summarized below, and further discussed in the Discussion Section 5.5 (Figure

5.3)..
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5.4.1 Differentially Expressed Genes in Influenza Disease and Vaccination

Filtering our LRT analysis results by disease factor (see SDF3 of online supplementary data files

(Appendix C)) for Bonferroni adjusted p-values (< 0.05), we identified 4,889 statistically signif-

icant disease genes (see SDF5 of online supplementary data files (Appendix C)). We performed

GO enrichment analysis using BINGO in Cytoscape (version 3.7) [38, 39] and pathway enrichment

analysis on the 4,889 genes (Figures C.1-C.5 of Appendix C and see SDF6-SDF8 of online supple-

mentary data files (Appendix C)). We identified enriched GO terms such as: cell cycle checkpoint

(51 genes), response to stimulus (987 genes), immune response (243 genes), transcription (122

genes), regulation of T-cell activation (62 genes), regulation of defense response to virus by host

(8 genes) and immune system process (379 genes) (see SDF8 of online supplementary data files

(Appendix C) for full table). We found 75 enriched KEGG pathways (SDF6 of online supple-

mentary data files (Appendix C)). The enriched KEGG pathways include: Cell cycle (68 gene

hits), Hematopoietic cell lineage (45 genes), NF-kappa B signaling pathway (46 genes), Metabolic

pathways (341 genes), Primary immunodeficiency (23 genes), T cell receptor signaling pathway

(44 genes), B cell receptor signaling pathway (29 genes) and also Influenza A (52 genes). We also

highlighted the NF-kappa B signaling pathway and the Influenza A KEGG pathways that are rele-

vant to disease with our calculated estimates which compared influenza infection and vaccination

expression to that of healthy controls (Figures 5.4 -5.7).

Figure 5.3: Flowchart of Gene Filtering Steps for Influenza Meta-analysis.
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Figure 5.4: Highlighted NF-Kappa B Signaling KEGG Pathway (hsa04040) with Enriched Genes
from the LRT Analysis (Bonferroni-adjusted p-value < 0.05) for Influenza Infected Subjects [1–3].
Yellow-colored genes are up-regulated and blue-colored genes are down-regulated in Influenza
Infected Subjects.
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Figure 5.5: Highlighted NF-Kappa B Signaling KEGG Pathway (hsa04040) with Enriched Genes
from the LRT Analysis (Bonferroni-adjusted p-value < 0.05) for Influenza Vaccinated Subjects [1–
3]. Yellow-colored genes are up-regulated and blue-colored genes are down-regulated in Influenza
Vaccinated Subjects.
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Figure 5.6: Highlighted Influenza A KEGG Pathway (hsa05164) with Enriched Genes from the
LRT analysis (Bonferroni-adjusted p-value < 0.05) for Influenza Infected Subjects [1–3]. Yellow-
colored genes are up-regulated and blue-colored genes are down-regulated in Influenza Infected
Subjects.
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Figure 5.7: Highlighted Influenza A KEGG Pathway (hsa05164) with Enriched Genes from the
LRT Analysis (Bonferroni-adjusted p-value < 0.05) for Influenza Vaccinated Subjects [1–3] .
Yellow-colored genes are up-regulated and blue-colored genes are down-regulated in Influenza
Vaccinated Subjects.

In addition, we filtered the 4,889 genes for effect size to determine biological significance of

the genes (SDF4 of online supplementary data files (Appendix C)). We used a two-tailed 10% and
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90% quantile filter on the 4,889 genes to: (i)analyze the influenza disease estimates (compared ex-

pression to control) list to identify genes that are biologically significant and statistically significant

(Bonferroni-adjusted p-value <0.05) in influenza infection (ii) analyze the influenza vaccination

estimates with the same filtering approach to also identify significant genes for influenza vaccina-

tion. For influenza infection our 10% and 90% quantile cut-offs for biological significance were

≤-0.6724464 and ≥ 0.5949655 respectively. For influenza vaccination, the 10% and 90% quantile

cut-offs were ≤ -0.07157763 and ≥0.06719048 respectively. For influenza infection we identified

978 genes of the 4,889 to be biologically significant (Table 5.3 and SDF9 of online supplementary

data files (Appendix C)), and we also identified 978 genes to be biologically significant for influenza

vaccination (Table 5.3 and SDF10 of online supplementary data files (Appendix C)). We then com-

pared the two gene lists to identify the intersection (genes in common), genes only in the influenza

disease list, and genes only in the influenza vaccination list (Figure 5.1D and SDF11-SDF13 of

online supplementary data files (Appendix C)). There were 334 genes in common across both

lists (influenza disease and vaccination) (SDF17 of online supplementary data files (Appendix C))

that resulted in enriched Reactome pathways such as Interferon alpha/beta signaling (14 genes),

Interferon gamma signaling (12 genes), Antiviral mechanism by IFN-stimulated genes (9 genes),

and Cell Cycle Checkpoints (17 genes) (SDF20 of online supplementary data files (Appendix C)).

There were 644 genes that were only in influenza infection list (SDF18 of online supplementary data

files (Appendix C)) that resulted in enriched Reactome pathways including: Neutrophil degranula-

tion (45 genes), Cell Cycle Checkpoints (27 genes), Amplification of signal from the kinetochores

(13 genes), Amplification of signal from unattached kinetochores via a MAD2 inhibitory signal

(13 genes) and Mitotic Spindle Checkpoint (14 genes) (SDF21 of online supplementary data files

(Appendix C)). Also, we identified another 644 genes that were only in the biologically significant

list for the vaccinated subjects (SDF19 of online supplementary data files (Appendix C)). Enriched

Reactome pathway analysis on these genes resulted in pathways such as Interferon Signaling (24

genes), Antigen processing-Cross presentation (14 genes), ER-Phagosome pathway (12 genes),

Binding and Uptake of Ligands by Scavenger Receptors (8 genes) and Class I MHC mediated
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antigen processing & presentation (30 gene) (SDF22 of online supplementary data files (Appendix

C)).

We also explored the 4,889 genes to identify how many genes were different in gene expression

when looking at influenza infected subjects compared to influenza vaccinated subjects. Of the 4,889

genes, 4,261 genes showed statistically significant differences between vaccination and infection

with influenza (Figure 5.3 and SDF25 - SDF27 of online supplementary data files (Appendix C)).

KEGG ID KEGG Pathway Gene Count p-value adjusted p-value
path:hsa04060 Cytokine-cytokine receptor interaction 34 5.5E-09 1.4E-06
path:hsa04660 T cell receptor signaling pathway 19 6.9E-08 8.7E-06
path:hsa04650 Natural killer cell mediated cytotoxicity 19 3.8E-06 3.2E-04
path:hsa04672 Intestinal immune network for IgA production 11 5.9E-06 3.8E-04
path:hsa04640 Hematopoietic cell lineage 14 1.8E-05 9.1E-04
path:hsa05340 Primary immunodeficiency 8 1.3E-04 4.8E-03
path:hsa04064 NF-kappa B signaling pathway 13 1.4E-04 4.8E-03
path:hsa04622 RIG-I-like receptor signaling pathway 11 1.6E-04 4.8E-03
path:hsa04068 FoxO signaling pathway 16 1.7E-04 4.8E-03
path:hsa05166 HTLV-I infection 23 6.4E-04 1.5E-02
path:hsa05162 Measles 15 6.4E-04 1.5E-02
path:hsa04062 Chemokine signaling pathway 18 9.8E-04 2.1E-02
path:hsa05330 Allograft rejection 7 1.1E-03 2.2E-02
path:hsa04380 Osteoclast differentiation 14 1.4E-03 2.6E-02
path:hsa05320 Autoimmune thyroid disease 8 1.9E-03 3.2E-02
path:hsa04110 Cell cycle 13 2.3E-03 3.6E-02
path:hsa04010 MAPK signaling pathway 21 2.8E-03 4.1E-02
path:hsa04630 Jak-STAT signaling pathway 15 2.9E-03 4.1E-02
path:hsa05164 Influenza A 16 3.3E-03 4.4E-02

Table 5.2: Enriched KEGG Pathways from Statistically Significant Genes with an Interaction
Between Disease Status and Age.
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Influenza Infection
Down-Regulated Up-Regulated

Gene Difference of Means Gene Difference of Means
NELL2 -1.687 UGCG 2.005
UBASH3A -1.583 CD177 1.875
ABCB1 -1.513 OTOF 1.844
PID1 -1.457 HP 1.625
CACNA2D3 -1.428 SSH1 1.491
PTGDR -1.423 DTL 1.431
CD40LG -1.392 GPR84 1.428
PTGDR2 -1.390 HJURP 1.420
TLE2 -1.379 CDC45 1.395
NCR3 -1.357 SLC1A3 1.390

Influenza Vaccination
Down-Regulated Up-Regulated

Gene Difference of Means Gene Difference of Means
TOP1MT -0.179 GBP1 0.354
ARNTL -0.176 MYOF 0.347
DIDO1 -0.172 STAT1 0.284
PDE4D -0.169 PSTPIP2 0.281
TMX4 -0.168 SAMD9L 0.276
ZNF589 -0.166 OAS3 0.269
SLC37A3 -0.165 WARS 0.263
GNB5 -0.165 BATF2 0.263
ENO2 -0.162 ANKRD22 0.256
AP3M2 -0.159 C1QB 0.255

Table 5.3: Top 10 Up- and Down- Regulated Differentially Expressed Genes from the Influenza
Infected and Influenza Vaccination Biologically Significant Gene Lists (based on estimates).
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5.4.2 Age and Sex Effect on Gene Expression in Influenza

Using the 4,889 genes disease significant genes from above, we Bonferroni-adjusted the p-values

for both the age and sex factors. We then further filtered the 4,889 list by the age factor p-values

(Bonferroni-adjusted p-value < 0.05) to identify statistically significant interacting genes between

disease state and age (DxA). We also repeated this approach for the sex factor interaction with

disease (DxS). Of the 4,889 statistically significant (Bonferroni-adjusted p-value <0.05) disease

genes, 907 of them had a statistically significant interaction with disease and age (SDF28 of

online supplementary data files (Appendix C)). KEGG enrichment, our results include: Cytokine-

cytokine receptor interaction (34 genes), T cell receptor signaling pathway (19 genes), Natural

killer cell mediated cytotoxicity (19 genes), Intestinal immune network for IgA production (11

gene hits), Hematopoietic cell lineage (14 genes), Primary immunodeficiency (8 genes), NF-kappa

B signaling pathway (13 genes), and Influenza A (16 genes) (SDF30 of online supplementary data

files (Appendix C), Table 5.2). We also looked at the biologically significant gene lists for influenza

infection and vaccination (based on effect as discussed above) to determinewhich of these genes also

had a significant interaction with disease and age. Of the 978 in the influenza infection biologically

significant list, 432 had a statistically significant ((Bonferroni-adjusted p-value < 0.05 for disease

and age factor) interaction with disease and age (Figure 5.3 and SDF32 of online supplementary

data files (Appendix C)). In the biologically significant gene list for influenza vaccinated subjects

335 genes also had a statistically significant (Bonferroni-adjusted p-value < 0.05 for disease and

age factor) interaction with disease and age (Figure 5.3 and SDF35 of online supplementary data

files (Appendix C)).

Furthermore, we explored differences in gene expression (based on mean differences across

groups) in subjects with influenza infection, influenza vaccination and controls across the 4 age

groups: (-1,3],(3,19], (19,65], (65,100] using the gene lists of identified disease:age interacting

genes. First we calculated the mean expression for control subjects younger than 3 (age group:

(-1,3]). This served as our baseline for all comparisons to influenza infection and vaccination. We

calculated the difference in means for the subjects within the other age groups only focusing on the
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healthy subjects and used the younger than 3 as our baseline to find the difference in means (Figure

5.8). We also calculated the difference in mean expression for all influenza infected subjects and

used the influenza infected subjects younger than 3 as the baseline for comparisons of relative

expression (Figure 5.9A). In addition to this, we calculated difference in means by comparing

influenza infected samples to the control baseline (younger than 3) (Figure 5.9B). We repeated the

above steps with our vaccinated subjects to explore how expression changes with age and disease

state (Figure 5.10). We also plotted the difference inmeans comparing influenza vaccinated subjects

to influenza infected subjects to highlight temporal patterns of the 907 interacting (disease:age)

genes (Figure 5.11).

We also filtered our gene lists (statistically significant disease genes and the biologically signifi-

cant for influenza disease and vaccination gene lists) for genes with a statistically significant disease

interaction with sex (Figure 5.3). We identified 48 of the 4,889 disease genes (Bonferroni-adjusted

p-value < 0.05 for disease and sex factor) that interacted with disease and sex ((Figure 5.3) and

SDF29 of online supplementary data files (Appendix C)). In the influenza infected biologically

significant gene list there were 17 genes that interacted with disease and sex (Bonferroni-adjusted

p-value < 0.05 for disease and sex factor), and 7 genes had an interaction with disease, sex and age

(Bonferroni-adjusted p-value < 0.05 for disease, sex and age factor) (Figure 5.3 and see also SDF33

and SDF34 of online supplementary data files (Appendix C)). We did not find any statistically

significant enrichment in pathways for these genes. As for the biologically significant influenza

vaccination genes, 37 of them were associated with disease and sex interactions (Bonferroni-

adjusted p-value < 0.05 for disease and sex factor), and 13 genes had associated interactions with

disease, sex and age (Bonferroni-adjusted p-value < 0.05 for disease, sex and age factor) (Figure

5.3 and see also SDF36 and SDF37 of online supplementary data files (Appendix C)). We also did

not find any enriched pathways for these genes.
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Figure 5.8: Heatmap of Statistically Significant (Bonferroni-adjusted p-value <0.05) Genes with
an Interaction Between Disease State and Age for Healthy Controls. Difference in means calculated
by comparing control subjects in age groups 2-4 to control subjects in age group 1 (baseline).
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Figure 5.9: Heatmap of Statistically Significant (Bonferroni-adjusted p-value <0.05) Genes with
an Interaction Between Disease State and Age for Influenza Infected Subjects. (A)Difference in
means calculated by comparing influenza infected subjects in age groups 2-4 to influenza infected
subjects in age group 1 (baseline). (B) Comparison of influenza infected subjects to control subjects
in the different age groups by calculating the difference between the baseline-adjusted means for
influenza infected subjects (A) and control subjects (Figure 5.8).
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Figure 5.10: Heatmap of Statistically Significant (Bonferroni-adjusted p-value <0.05) Genes with
an Interaction Between Disease State and Age for Influenza Vaccinated Subjects. (A)Difference
in means calculated by comparing influenza vaccinated subjects in age groups 2-4 to influenza
vaccinated subjects in age group 1 (baseline). (B) Comparison of influenza vaccinated subjects
to control subjects in the different age groups by calculating the difference between the baseline-
adjusted means for influenza vaccinated subjects (A) and control subjects (Figure 5.8).
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Figure 5.11: Heatmap of Statistically Significant (Bonferroni-adjusted p-value <0.05) Genes with
an Interaction Between Disease State and Age for Influenza Vaccinated Subjects Compared to
Influenza Infected Subjects. Comparison of baseline-adjusted means for influenza vaccinated
subjects (Figure 5.10A) and influenza infected subjects (Figure 5.9A)

5.5 Discussion

Every year there is a new vaccine available to reduce the amount of influenza cases worldwide.

The influenza virus is constantly changing and researchers have to predict the most common strains

that will affect the population each season. During the flu season, the majority of hospitalizations

and deaths from influenza are within the elderly population [9]. Young children are also at high risk

for severe infections of influenza due to their underdeveloped immune system [10]. Current vaccine

development methods, though effective are also flawed. In some cases, the influenza strains can

mutate after the strains for the vaccine have been selected for the upcoming flu season, which then

reduces the effectiveness of the vaccine [595]. Exploring how gene expression varies in influenza

infection, vaccination, and comparison of the differences may highlight prospective biomarkers/-

gene signatures for improving vaccinations. In addition, because of the observed age-dependency
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in influenza infection, investigating gene expression temporal patterns across various ages can also

provide insight on how genes change due to underdevelopment and immunosenescence.

We identified 18 microarray expression datasets that passed our inclusion criteria for a meta-

analysis on influenza (Table 5.1). We collected the raw expression microarray data for all datasets,

pre-processed them and combined by common gene names. With 3,481 samples (including repeated

measures) we modeled the pre-processed expression data with a mixed effects model and carried

out LRT analysis. Our LRT analyses resulted in 4,889 statistically significant (Bonferroni-adjusted

p-value <0.05) disease genes (see SDF5 of online supplementary data files (Appendix C)). These

results include CD177 which plays a role in innate immune response by regulating chemotaxis of

neutrophils [92, 596], BCL11B which regulates T-cell differentiation [92, 597], HMGB1 protein

has been shown to promote viral replication [598] and plays a role in inflammation [92], TPP2

plays a role in major histocompatibility complex (MHC) presentation and TANK is involved in

NF-kappa B signalling.

We highlighted the KEGG NF-kappa B signaling pathway using the estimates from influenza

infection and vaccination (Figure 5.4) and Figure 5.5). The NF-kappa B pathway is activated

during influenza infection which up-regulates antiviral genes [599] and can regulate viral synthesis

[600]. Previous studies have also reported that the influenza virus is capable of regulating antiviral

activity by NF-kappa B and promote replication in hosts [600]. In the NF-kappa B pathway,

we observed similar expression patterns between disease and vaccinated subjects, including down

regulation of genes involved in MCH/Antigen presentation for both physiological states. There

are also some differences in gene expression observed such as CD40 and PARP1 up-regulated in

vaccinated samples. CD40 has previously been shown to regulate immune response and promotes

protection against the virus [601, 602] while PARP1 has been highlighted as a host factor that can

regulate the polymerase activity of influenza [603]. In Figure 5.5, the genes in our vaccine list in the

RIG-I-like receptor signaling pathway are down-regulated, compared to influenza infected subjects

(Figure 5.4). The RIG-I-like receptors have been previously shown to be involved in sensing viral

RNA and regulating an antiviral immune response [604]. Other genes such as ICAM which is
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involved in lymphocyte adhesion and T-cell costimulation, and BLC and ELC involved in lymphoid

tissue honing are all down-regulated in vaccinated subjects compared to infected subjects (Figure

5.4) and Figure 5.5). We also highlighted expression of genes in the Influenza A KEGG pathway

for influenza infected and influenza vaccinated (Figure 5.6) and Figure 5.7). Although there are

similarities in both figures, some key differences in expression are observed in genes connected

with high fever (IL-1 and IL-6). Studies have shown elevated levels of IL-1β and IL-6 following

infection with influenza A [580, 605].

Additionally, we compared our biologically significant gene list for influenza infection (978

genes) to Dunning et al.,who identified whole blood RNA signatures in hospitalized adults with

influenza. Their findings indicated that genes involved in interferon-related pathways were activated

at the start of the infection and by day 4 had started to decrease with a shift in inflammatory and

neutrophil related pathways [580]. Our findings also indicate enrichment for neutrophil related

pathways in the case of influenza infection. Dunning et al. list a top 25 gene set (controls versus

influenza subjects), from which 22 genes overlap with our findings (978 genes, see SDF9 of online

supplementary data files (Appendix C)). 5 of our top 10 up-regulated gene list overlap with the

Dunning et al. 25-gene set (Table 5.3), namely UGCG, CD177, OTOF, HP and SSH1.

Furthermore, our identified biologically significant gene lists for influenza infection and vac-

cination (using a 2-tailed 10% quantile filter on expression estimates of effect size compared to

healthy control) have 334 genes in common, with 644 genes being unique to influenza infection

and 644 being unique to influenza vaccination (SDF17-SDF19 of online supplementary data files

(Appendix C)). Following pathway enrichment, we observed that the genes that are unique to each

disease state (influenza infected and vaccinated) are involved in different processes. For example,

the biologically significant genes only in influenza infected samples were enriched in pathways

such as neutrophil degranulation and cell cycle checkpoints (SDF21 of online supplementary data

files (Appendix C)). Neutrophil degranulation is a defensive process neutrophils undergo to protect

the host against invading pathogens. On the other hand, pathways involved in interferon signaling

and antigen processing were enriched for the genes only in the vaccinated gene list (SDF22 of
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online supplementary data files (Appendix C)). This indicates that with the actual infection the

body undergoes different processes to that induced by vaccination (Figures C.3-C.4 of Appendix

C and see SDF23 and SDF24 of online supplementary data files (Appendix C)).

The 48 genes for which we identified a statistically significant interaction between disease and

sex are highlighted in SDF29 of the online supplementary data files (Appendix C). Sex-specific gene

expression has been previously observed in influenza. Studies have observed females exhibited

a stronger immune response to influenza vaccine compared to males within the first day [606].

Another study suggested that males have a stronger immune response to influenza infection [607].

These findings indicate sex and influenza is still to be explored and our gene list may offer new

candidates to be investigated for their role in influenza.

With regards to aging and influenza, the statistics of the disease burden indicates specific age

groups are at higher risk for infection [9]. This is in part due to immune system development and

deterioration. For example, B and T cell function diminishes with age [10, 608]. In our analysis,

we identified 907 disease-associated genes with a statistically significant interaction with age that

were also enriched in immune related KEGG pathways (SDF30 of online supplementary data

files (Appendix C)). Figure 5.8 compares the mean differences of healthy subjects to the baseline

(healthy children younger than 3). There are 4 major groups (Figure 5.8 and see SDF47 of online

supplementary data files (Appendix C)): with reference to Figure 5.8, genes in Cluster 1 were up-

regulated compared to the baseline for all age comparisons, Cluster 2 and 3 genes were generally

down-regulated compared to the baseline, and Cluster 4 genes are up-regulated and increase with

age. Genes in Cluster 1 and 2 are involved in Reactome pathways such as cytokine signaling,

interferon signaling and the immune system. Cluster 3 genes are involved in Reactome pathways

such as interferon signaling and cell cycle while Cluster 4 genes are involved in cellular senescence,

signaling by interleukins and immune system.

In Figure 5.9 we further explored changes in gene expression across age groups due to influenza

infection of our 907 disease:age interacting genes. Figure 5.9A is compares influenza infected

subjects in age groups 2,3 and 4 to the baseline (infection subjects under 3). In Figure 5.9A
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there are three major groups (cluster numbering with respect to Figure 5.9A): Cluster 1 (gradual

decrease with age), 2 (genes up-regulated with increase in age), and 3 (gradual down-regulation

with age). Genes in Cluster 1 are in Reactome pathways such as cytokine signaling, interferon

signaling, antiviral mechanism by IFN-stimulated genes and chemokine receptors. Cluster 2 genes

are involved in regulatory T lymphocytes, transcription, protein repair, and interleukin-2 signaling

while Cluster 3 genes are involved in gene transcription (see SDF48 of online supplementary data

files (Appendix C)). Figure 5.9B instead compares influenza infected subjects to controls by looking

at difference inmeans. There are three groups of expression patterns (cluster numberingwith respect

to Figure 5.9B): Cluster 1 shows a gradual increase with age, in Cluster 2 expression intensifies

with age and in Cluster 3 genes are down-regulated compared to the control subjects younger than

3 (see SDF49 of online supplementary data files (Appendix C)). Genes in Clusters 1 and 2 were not

in any enriched Reactome pathways but are associated with transcription and signaling pathways.

Genes in Cluster 3 were in Reactome pathways that include cytokine signaling, interferon signaling,

antiviral mechanism by IFN-stimulated genes and chemokine receptors.

As for the vaccinated subjects with respect to Figure 5.10A, we observe a gradual decrease in

gene expression for gene Cluster 2 and a gradual increase in expression for genes in Cluster 1 and 3

compared to the baseline (young vaccinated subjects under age 3) (SDF50 of online supplementary

data files (Appendix C)). Genes in Cluster 1 were not enriched in pathways while genes in Cluster

2 were enriched in Reactome pathways that include interferon and cytokine signaling, antiviral

mechanism and response. Genes in Cluster 3 were enriched in Reactome pathways that include

interferon and cytokine signaling, cellular senescence and immune system. When we compared

vaccinated subjects to control subjects across ages we observed 3 main trends, with respect to

Figure 5.10B: Cluster 1 (pathways include antiviral mechanisms, interferon and cytokine signaling)

2 (pathways such as immune response and cell migration, immunological synapse and chemokine

receptors) and 4 (mitochondrial translation) genes are all up-regulated in vaccinated subjects with

Cluster 3 (pathways include interferon and cytokine signaling and immune system) genes being

down-regulated (Figure 5.10B and SDF51 of online supplementary data files (Appendix C)).
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Wealso compared influenza vaccinated subjects to influenza infected subjects to explore changes

in expression with age. There are 3 major groups (cluster numbering with respect to Figure: Cluster

1 and 3 genes show a gradual decrease in expression with age in vaccinated subjects compared to

influenza infected subjects. Genes in Cluster 2 show a gradual increase in expression with age in

influenza vaccinated subjects. Figures C.6-C.8 of Appendix C also explore temporal patterns with

age.

Our heatmaps display temporal patterns with age in response to influenza infection and vac-

cination. These genes that are associated with disease and age interactions, are all involved in

immune-related pathways. Exploring how gene expression changes with age in immune related

genes can help further characterize the disease and improve treatments. For example, age, pre-

existing health conditions and influenza history (previous infection or vaccination) are all factors

that can affect the efficacy of the vaccine [609]. There is an on-going effort to improve efficacy of

vaccination in the elderly population. Studies have suggested that antibody titers decline drastically

in older adults from seroconversion to day 180 after vaccination [609]. The decay of antibody

titers also highlight the importance of determining the right time and how many times one should

be vaccinated. Vaccines for the elderly population have been modified to increase the dosage and

use adjuvants to increase immunogenicity [610]. and Ramsay et al., also showed that vaccination

during the current influenza season provides stronger protection than vaccinations from previous

seasons [611].

The vaccine type also plays a role in immunogenicity within hosts. For example, Nakaya et

al., were able to detect larger antibody titers and plasmblasts generated in the trivalent inactivated

vaccine (TIV) compared to the live attenuated vaccine (LAIV), and differentially expressed genes

mostly related to interferon signaling [582]. LAIV responses in young children are higher than in

adults. For instance, LAIV when compared to inactivated vaccines induced smaller concentrations

of antibodies in response to HA in adults [612]. Previous findings have shown the benefit of taking

a systems biology approach to assess gene expression responses to vaccinations [587, 609, 613].

Our findings not only identify genes that are different between controls compared to infected and
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vaccinated subjects, but with our methodology we were also able to assess differences between the

influenza infected and vaccinated subjects while still investigating disease genes that interact with

age and sex. Our temporal patterns with age for each disease state helps to clarify how age might

be playing a role.

As we have previously observed [526], meta-analyses using microarray expression data have

multiple limitations: Our findings are limited to only genes that have been annotated and are existing

probes on the arrays, and also have to be consistently utilized across array platforms. Hence, we are

unable to probe global gene expression, and are limited to mRNA profiling. These can be expanded

in future studies using RNA-sequencing data, and the newer single-cell sequencing approaches that

would allow cell-specific information to be discerned, which is important in evaluating immune

responses and the interplay between various cell types. Taking a similar approach to our microarray

dataset analysis using RNA-sequencing data will promote the discovery of novel genes by being

able to explore the entire transcriptome. Additionally, we are limited by the varying annotations

of the available public datasets, and can only explore characteristics that are uniformly reported.

For example, we did not have virus strain information for all samples or vaccine details so we were

unable to include such info in our analysis. In addition to this, our study is unbalanced (particularly

with respect to disease state, where a limited number of influenza infection samples were available:

3,481 samples (1,277 controls, 297 influenza infection, 1,907 influenza vaccinated, 1,537 males

and 1,944 female). We additionally used repeated measures, which we accounted for in our mixed

effects model.

Despite the limitations introduced by using micro-array data, our study identified gene candi-

dates by factor (disease status, age and sex) that can be examined further to understand their role

in influenza infection and vaccination. We also highlighted 907 genes that have an age-effect on

gene expression. These genes can be further explored to determine their role in influenza infection

and how they can be further analyzed for their role in implementing effective universal vaccines

regardless of age. All these consideration are of paramount importance in designing the next

generation of vaccines, as we move forward towards a universal influenza vaccine.
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CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS
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6.1 Conclusion

In this dissertation we examined neurodegenerative and respiratory diseases to explore age-

dependent changes in gene expression. We were also especially interested in identifying the

effects of other factors such as sex and tissue on gene expression. We accomplished this by using

publicly availablemicroarray gene expression data from public database repositories to explore gene

expression variation in diseases which have previously been shown to have an age-dependency.

Chapter 2 explored the effects of age, tissue and sex on gene expression in Alzheimer’s Disease.

We identified temporal patterns for control and AD samples (2,088 samples). We found 3,735

statistically significant genes of which 352 of them were biologically significant. Of the 352

disease genes we found genes that were directly interacting with sex and age. We were also able

to highlight aging trends across genes and explore differences in gene expression due to different

brain regions. We identified novel genes and associated pathways that can be further studied for

their role in AD.

In Chapter 3, we conducted a literature review to explore how Streptococcus pneumoniae causes

disease and how the host protects itself against the pathogen. We discuss how the state of one’s

immune system plays a big role in susceptibility to the disease. Understanding how the bacteria

causes the diseases and how weakened host defenses promote infection and spreading throughout

the body sheds light on how important a strong immune system is. Pneumococcal infections

are more prevalent in young children with under-developed immune systems and the elderly and

immunocompromised who have a weakened immune system. We explore the treatments available

and analyze their efficacy in different age groups. Overall, pneumococcal disease burden has been

reduced due to the available vaccines however efficacy varies with age.

Chapter 4 studied how age, sex and smoking status affected gene expression profiles in COPD

compared to healthy controls (1,262 samples). Our linear model and ANOVA resulted in 1,513

statistically significant differentially expressed disease genes. Filtering for biological significance

we identified 304 genes. These genes were associated with immune and cell processes. We

also highlighted genes that significantly interacted with smoking status. Our results compared
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smokers to non-smokers with and without COPD and the temporal patterns highlighted the effects

of smoking and how it can promote the pathology of the disease. We also successfully trained a

model via machine learning to predict disease status (COPD or control).

In the final chapter, Chapter 5, we assessed expression profiles in controls, influenza infected

samples and influenza vaccinated samples (3,481 samples). In addition to comparing these disease

states, we also highlighted important genes with interactions between disease and age group and

disease and sex. This meta-analysis resulted in 4,889 statistically significant genes. Of these

genes we looked for biological significance in influenza infected samples (978 genes) and influenza

vaccinated samples (978 genes). We were able to identify pathways and genes that both disease

states (influenza infected and vaccinated) had in common and genes that were unique to each disease

state. Our results also highlight temporal patterns that clearly show aging trends in response to

infection and vaccination compared to controls.

6.2 Limitations and Future Directions

The use of microarray expression data for our meta-analyses introduced limitations to our

findings. We were limited to previously annotated genes which prevented us from identifying novel

gene signatures due to not being able to span the entire transcriptome. Using publicly available

data also caused our study design to be dependent on the annotation of researchers. We were

only able to explore factors that were uniformly reported. For example, COPD is more prevalent

in low-middle class communities, but because socioeconomic background information was not

reported for samples, we could not explore this factor in our analyses. Additionally, in the case of

AD, there is a higher prevalence of AD in African-Americans, but we were not able to explore the

effect of race or ethnicity on gene expression for our meta-analysis because this information was

not reported for all samples.

Despite the limitations introduced by using pre-existing microarray data, we were successful in

identifying statistically significant gene lists by factor of differentially expressed genes for Chapters

2,4 and 5. We yielded gene candidates that can be further investigated for their role in the
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diseases. We were also successful in identifying disease genes that were affected by age, tissue,

sex and smoking status (COPD). To build on the findings in my dissertation, curating datasets

that enable meta-analyses with balanced design in terms of disease states, sex and ethnicity can

improve our interpretation of our findings and allow us to investigate variation in susceptibility and

effectiveness of treatments. As meta-analyses continue to be a popular approach to explore diseases

and have stronger power due to larger sample sizes, promoting uniformed data annotation/ sample

characteristics reporting will allow for more study factors to be explored which will promote a

thorough understanding of how gene expression profiles can be affected by one’s characteristics or

background. Furthermore, implementing RNA-sequencing data in meta-analyses of diseases rather

than microarray expression data will promote the identification of novel genes and biomarkers for

AD, COPD and Influenza. In addition to usingRNA-sequencing expression data, other technologies

such as proteomics and personalized ’omics can help with characterizing disease pathology and

highlight additional biomarkers while also improving individual outcomes .
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APPENDIX A

DATA-DRIVEN ANALYSIS OF AGE, SEX, AND TISSUE EFFECTS ON GENE
EXPRESSION VARIABILITY IN ALZHEIMER’S DISEASE SUPPLEMENTARY DATA

A.1 Online Supplementary Data Files

Our datasets, data files and results generated in ourAlzhiemer’s Diseasemeta-analysis have been

deposited to FigShare. The supplementary file names begin with the prefix “ST” and are referred to

throughout the chapter. To access the FigShare online repository: https://doi.org/10.6084/m9.figshare.7435469

A.2 Supplementary Figures
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Figure A.1: Principal component analysis of the disease factor before (A) and after (B) batch
correction with ComBat.
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Figure A.2: Principal component analysis of the sex factor before (A) and after (B) batch effect
correction with ComBat.
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Figure A.3: Principal component analysis of the age group factor before (A) and after (B) batch
effect correction with ComBat.
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Figure A.5: Reactome pathway analysis bar plot of enriched pathways and number of gene hits.
Gene list: Genes that were down-regulated in Alzheimer’s disease but up-regulated in healthy
controls.
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Figure A.6: Reactome pathway analysis bar plot of enriched pathways and number of gene hits.
Gene list: Genes that were up-regulated in Alzheimer’s disease but down-regulated in healthy
controls.
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Figure A.11: Heatmap with gene clustering to visualize tissue (hippocampus as baseline) effect
using the difference in means (prior to selecting for interacting genes) on the differentially expressed
disease (control-AD) gene list.
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Figure A.12: Heatmap with gene clustering to visualize tissue (blood as baseline) effect using the
differences in means between binary comparisons (prior to selecting for interacting genes) on the
differentially expressed disease (control-AD) gene list .
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A.3 Supplementary Tables

Dataset Cognitive Data Reported Additional Notes Brain Bank
GSE84422 • Braak stage

• Neuropathological
category
• Clinical dementia rating
• CERAD scores
• Sum of neurofibrillary
tangles density
• Average plaque density

• AD: Probable/possible/definite
• Post-mortem
• APOE genotype not reported
• Full spectrum of clinical and
neuropathological disease severity
• Excluded subjects with non-AD
neuropathology
• Mount Sinai and JJ Peters Institutional
Review Boards approved protocols

Mount Sinai
Medical Center
Brain Bank

GSE28146 • Mini-mental state
examination
• Braak stage (averaged)
• Neurofibrillary tangle
density (averaged)

• AD: Incipient/moderate/severe
• Post-mortem
• APOE genotype not reported
• Alzheimer’s Disease and Related
Disorders Association criteria

Brain Bank of
Alzheimer’s
Disease Research
Center at the
University of
Kentucky

GSE48350 • Braak stage
• Mini-mental state
examination

• Post-mortem
• APOE genotype reported
• Excluded subjects with evidence of
alcoholism, co-existing major psychiatric
illness or major depression, pre-existing
brain damage, brain metastases and
cerebral vascular disease
• Excluded subjects with non-AD
neuropathology

National Insti-
tute on Aging
Alzheimer’s
Disease brain
banks

GSE5281 • Braak stage (range
provided, not reported per
sample)
• CERAD scores (range
provided, not reported per
sample)

• AD: Late-onset AD
• Post-mortem
• APOE genotype not reported
• Clinically and neuropathologically
classified late-onset AD-afflicted
individuals
• Braak stage of V or VI

Sun Health Re-
search Institute
and Alzheimer’s
Disease Center
at Washington
University and
Duke University

GSE63060-1 • Clinical dementia rating
and sum of boxes score
(averaged)
• Mini-mental state
examination

• Living volunteers
• APOE genotype not reported
• Ethical approval received from
Institutional Research Ethics Committee

Not applicable

Table A.1: Additional information reported from datasets on samples used for the meta-analysis.
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Table A.1 (cont’d)

Dataset Cognitive Data Reported Additional Notes Brain Bank
GSE29378 • Braak Stage reported for

some samples
• Plaque disease burden
• Disease Duration

• AD:Late-onset AD
• Post-mortem
• APOE genotype reported for some
samples
• National Institute for Neurological and
Communicative Disorders and
Stroke-Alzheimer’s Disease and Related
Disorder Association diagnostic criteria
for clinical AD
• Neuropathologic confirmation at
autopsy

Alzheimer’s
Disease Center,
Oregon Health
and Sciences
University and
Human Brain
and Spinal Fluid
Resource Center

E-MEXP-2280 • Braak Stage reported for
some samples
• MAPT haplotype

• AD: Braak stage VI
• Post-mortem
• APOE genotype reported
• All patients were screened for
Microtubule Associated Protein Tau
(MAPT) and Progranulin (GRN)
mutations and MAPT haplotyping

Netherlands
Brain Bank

Quantile Disease (control-AD) Sex (male-female) AgeGroup (i-<60) Tissue (i-blood) Tissue (i-hippocamppus)
0.1% -0.1980181 -0.1850368 -1.8342734 -1.4193659 -1.2176260
1% -0.1409218 -0.1662240 -1.5978577 -1.1791001 -0.8806144
2.5% -0.1242022 -0.1531487 -1.4093136 -0.9535290 -0.6994610
5% -0.1109185 -0.1286464 -1.2380410 -0.7905619 -0.5988491
10% -0.0944796 -0.0863796 -1.0477827 -0.6359497 -0.5187091
90% 0.1195751 0.2502144 0.3308682 0.7932871 0.8181017
95% 0.1398357 0.2678312 0.4815650 1.0342074 1.0113406
97.5% 0.1597702 0.2788782 0.6502154 1.2459840 1.2049823
99% 0.1851621 0.3036726 0.8852537 1.5229805 1.6578388
99.9% 0.2625072 0.3698125 1.1441852 1.7230551 1.7531744

Table A.2: Quantiles on differences of means between group comparisons from TukeyHSD analysis
for each factor with the 10% and 90% highlighted.
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Gene diff lwr upr tukey.p.adj
SNAP91 0.38789336 0.3162492 0.45953751 <5.91E-12
AMPH 0.261109 0.227946 0.29427199 5.91E-12
CABP1 0.25221566 0.2197738 0.28465749 5.91E-12
CCK 0.2736884 0.2290262 0.31835057 5.91E-12
CHGB 0.27223361 0.2330743 0.31139295 5.91E-12
CPQ -0.15134075 -0.1739617 -0.12871979 5.91E-12

CXCR4 -0.18569224 -0.2153576 -0.15602687 5.91E-12
DIRAS2 0.26469562 0.2210822 0.30830901 5.91E-12
EEF1A2 0.29830496 0.2546981 0.34191185 5.91E-12
GABRG2 0.28727303 0.2421887 0.33235734 5.91E-12
GFAP 0.26148848 0.2372962 0.28568071 5.91E-12
GJA1 0.30536761 0.279178 0.33155722 5.91E-12
KLF2 -0.16010858 -0.1822269 -0.13799028 5.91E-12
MYT1L 0.25975404 0.2232677 0.29624039 5.91E-12
NEFL 0.27515335 0.2353672 0.31493946 5.91E-12
NRN1 0.26422817 0.2300824 0.29837391 5.91E-12
RGS4 0.27860758 0.2432385 0.31397667 5.91E-12

SERPINI1 0.26217204 0.2301731 0.29417102 5.91E-12
SH3GL2 0.30717515 0.2681965 0.34615382 5.91E-12
IL13RA1 -0.15586061 -0.1816785 -0.13004272 5.91E-12
ERC2 0.26822985 0.2230493 0.31341042 5.91E-12
GAD1 0.26177649 0.2178336 0.30571939 5.91E-12

SLC40A1 -0.18276614 -0.2136628 -0.15186946 5.91E-12

Table A.3: TukeyHSD results (male-female) table of statistically significant differentially expressed
disease genes with sex effect.
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Table A.3 (cont’d)

Gene diff lwr upr tukey.p.adj
ITIH5 -0.16639611 -0.1947932 -0.137999 5.91E-12

FAM19A1 0.269102 0.2230286 0.31517537 5.91E-12
FGF13 0.25310759 0.2088214 0.29739382 5.92E-12
AHNAK -0.10311728 -0.1242383 -0.08199628 5.93E-12
RPA3 -0.13337106 -0.1607507 -0.10599143 5.93E-12
EZR -0.1182311 -0.141882 -0.09458025 5.93E-12
ITPKB -0.11649742 -0.1417882 -0.09120668 5.93E-12

GABRA1 0.27928408 0.2277225 0.33084567 5.93E-12
MAP3K1 -0.16567888 -0.1964814 -0.13487641 5.93E-12
NOTCH1 -0.10639043 -0.1270303 -0.0857506 5.93E-12
HVCN1 -0.10966873 -0.1333269 -0.0860106 5.93E-12
PCDH8 0.26623656 0.2038808 0.32859232 5.93E-12

LDLRAP1 -0.13026125 -0.1611422 -0.09938027 5.93E-12
GMPR -0.14621751 -0.1812927 -0.11114232 5.94E-12

CYBRD1 -0.1288122 -0.1605469 -0.09707747 5.94E-12
PRKD2 -0.09889483 -0.1237886 -0.07400105 5.94E-12
PRKX -0.12798343 -0.1609683 -0.09499854 5.97E-12
STMN2 0.25735011 0.1839117 0.33078852 8.42E-12
HIP1 -0.11198115 -0.1436469 -0.08031542 1.16E-11
FOS -0.15132275 -0.1952695 -0.10737604 2.55E-11

FAM107B -0.10351231 -0.1344653 -0.07255936 7.72E-11
RNF135 -0.0875083 -0.1183122 -0.05670445 2.92E-08
ID3 -0.10925012 -0.1502501 -0.06825012 1.94E-07
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APPENDIX B

META-ANALYSIS OF GENE EXPRESSION MICROARRAY DATASETS IN CHRONIC
OBSTRUCTIVE PULMONARY DISEASE SUPPLEMENTARY DATA

B.1 Online Supplementary Data Files

Our datasets, data files and results generated in our COPDmeta-analysis have been deposited to

FigShare. The supplemental file names begin with the prefix “DF” and are referred to throughout

the chapter. To access the FigShare online repository: https://doi.org/10.6084/m9.figshare.8233175

B.2 Supplementary Figures
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Variance: 49.9%, 15.7% Variance: 17.7%, 4.4%

A. B.
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Variance: 49.9%, 15.7%
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Variance: 17.7%, 4.4%

Figure B.1: Principal Component Analysis to visualize changes in variation in datasets before and
after combat.
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Figure B.2: Highlighted Pathways in Cancer KEGGPathway with enriched genes from the ANOVA
(BH-adjusted p-value < 0.05; disease status factor) [1–3]
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Figure B.3: Highlighted Lysosome KEGG Pathway with enriched genes from the ANOVA (BH-
adjusted p-value < 0.05; disease status factor). [1–3]
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Figure B.4: Highlighted Adherens KEGG Pathway with enriched genes from the ANOVA (BH-
adjusted p-value < 0.05; disease status factor)[1–3]
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Figure B.5: Highlighted Hematopoietic Cell Lineage KEGG pathway with enriched genes from
the ANOVA (BH-adjusted p-value < 0.05; disease status factor) [1–3]
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Figure B.6: Highlighted Measles KEGG pathway with enriched genes from the ANOVA (BH-
adjusted p-value < 0.05; disease status factor) [1–3]
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Figure B.7: Enriched Reactome pathway-gene network using the differentially expressed disease
genes with a sex effect (no significant interaction between sex and disease) that were up-regulated
in males).
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Figure B.8: Gene ontology results from BINGO using our 207 unique statistically significant
disease genes filtered for biological effect. Our 304 biologically significant genes were compared
to Reinhold et al., [5]
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APPENDIX C

MICROARRAY GENE EXPRESSION DATASET RE-ANALYSIS REVEALS
VARIABILITY IN INFLUENZA INFECTION AND VACCINATION SUPPLEMENTARY

DATA

C.1 Online Supplementary Data Files

Our datasets, data files and results generated in our Influenza meta-analysis have been deposited

to FigShare. The supplementary file names begin with the prefix “SDF” and are referred to through-

out the chapter. To access the FigShare online repository: https://doi.org/10.6084/m9.figshare.8636498

C.2 Supplementary Figures
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Figure C.1: Gene Ontology of Biologically Significant Genes for Influenza Infected Subjects using
BINGO. The node size relates to number of genes, and the yellow nodes are statistically significant
with a p-value < 0.05 and false discovery rate < 0.05.
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Figure C.2: Gene Ontology of Biologically Significant Genes for Influenza Vaccinated Subjects
using BINGO. The node size relates to number of genes, and the yellow nodes are statistically
significant with a p-value < 0.05 and false discovery rate < 0.05.
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Figure C.6: Heatmap of Biologically Significant Common Genes for the Influenza Infected and
Vaccinated Subjects with an Interaction Between Disease State and Age. Comparison of baseline-
adjusted means for influenza vaccinated subjects and influenza infected subjects
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Figure C.7: Heatmap of Biologically Significant Genes Only in the Influenza Infected Gene List
with an Interaction Between Disease State and Age. Comparison of baseline-adjusted means for
influenza infected subjects and controls
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Figure C.8: Heatmap of Biologically Significant Genes Only in the Influenza Vaccinated Gene List
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