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ABSTRACT 

A MODULAR MULTILEVEL CONVERTER WITH SELF VOLTAGE 

BALANCING 

By 

Yunting Liu 

Modular multilevel converter (MMC) was proposed in 2003 to extend power electronic 

converters to high voltage applications. Each MMC contains several identical submodules 

in series. MMC allows redundant submodules since its operation would not be disturbed 

by redundant submodules. This is a unique feature compared to other types of multilevel 

converters. In addition, the installation and uninstallation of submodules is easy. This 

modular feature makes MMC stand out for medium/high-voltage high-power applications. 

However, as the number of modules increases, the control complexity of voltage balance 

of each submodule sharply increases. Conventionally, the MMC submodule voltage cannot 

be balanced by open-loop modulation methods without voltage monitoring and control. 

This dissertation proposes a Γ-matrix modulation (ΓMM) that completely eliminates the 

voltage monitoring and control. In another word, the submodule voltage is self balanced. 

The MMC submodule voltage balancing nature with respect to each switching pattern 

is comprehensively analyzed in Chapter 2. The mathematical analysis reveals that the 

MMC is self balanced by nature if considering all possible switching patterns. Based on 

the enlightenment of Chapter 2, the ΓMM is proposed in Chapter 3 to bridge the gap 

between mathematical analysis and MMC switching operations. With this novel 

modulation, the MMC achieves self voltage balancing. The two-, three-, four-, and eleven-

level MMCs are studied to verify the effectiveness of ΓMM. Also, compared to the 

conventional MMC, the ΓMM based MMC has smaller submodule capacitance and smaller 



 

 

arm inductance. This small capacitance and inductance feature extremely reduces the 

volume and weight of MMC. 

To understand the mechanisms of the self balance phenomena of MMC, a state-space 

model of MMC is proposed in Chapter 4. The existing MMC modeling are developed on 

different degrees of assumptions and simplifications. This makes them unsuitable for 

understanding the nature of this circuit from its physical basement. Compared to existing 

MMC modeling, the proposed state-space model well captured the MMC dynamics. With 

this state-space model, the MMC capacitor voltage convergence and divergence can be 

well observed. Four-level MMC with both full-rank Γ and non-full-rank Γ are studied to 

demonstrate that this model could explain both convergence and divergence of the 

capacitor voltage. In addition, a generalized MMC model is derived. The generalized 

model can be applied to higher level MMC. An eleven-level MMC case study is provided 

to verify the proposed model when extended to higher level. The arm inductor voltage 

assumption is discussed in Chapter 5. 
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1 INTRODUCTION 

 

The modular multilevel converter (MMC) is pioneeringly proposed by Lesnicar et al. 

[1] in 2003. The MMC has become the most attractive multilevel converter topology for 

medium/high-power applications, specifically for voltage-sourced converter high-voltage 

direct current (VSC-HVDC) transmission systems. Several identical submodules (SMs) 

with low-voltage ratings could be stacked up. Compared to other multilevel converter 

topologies, MMC features in modularity and scalability to meet any voltage level 

requirements.  

The topology of a three-phase MMC is shown in Figure 1.1. The MMC converts the dc 

system, normally high dc voltage source, to ac system, normally three phases, and feeds an 

ac load. The dc system of an MMC is often referred to as dc-bus or dc-link, connected to 

the positive and negative rails of the converter legs. The three-phase ac system is connected 

to the mid-point of each leg (va, vb, vc). Each leg of the MMC is divided into two arms. The 

arms connected to the positive rail are referred to as upper arms, and the arms connected 

to the negative rail are referred to as lower arms. Each arm has a group of submodules and 

an inductor (L). The arm inductor is connected in series with each group of submodules to 

limit the current due to the instantaneous voltage difference between submodules and the 

dc system.  

All submodules are identical, each corresponding to one voltage step in the resulting 

multilevel ac waveform at the MMC ac terminals. The multilevel ac waveform is shown in 

Figure 1.2. At each time instant, the controller determines how many submodules needed 

to create the voltage level that closest to the output sinusoidal voltage reference. The 
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topology is easy to adapt to any voltage level since the number of submodules can be 

adjusted. The resulting waveform has a very small total harmonic distortion (THD) as the 

number of submodules increases.  

L

L

idc

va

=

+Vdc

–Vdc

L

L

vb

L

L

vc

AC system

(Phase a, b, c)

Sub-module

ArmLeg

DC system

Positive rail

Negative rail

 

Figure 1.1 The topology of a three-phase MMC. 
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π
2π

0

Vdc

–Vdc

Vava

 

Figure 1.2 The multilevel ac waveform at the MMC ac terminals. 

 

MMCs have two inherent properties: 

1) bulky dc capacitors are needed to absorb the fundamental-frequency ripple power 

from ac side; 

2) numerous voltage sensors and feedback control are needed to coordinate the dc 

capacitor voltage of each submodule.  

These two properties result in poor power density for MMC and computational 

inefficiency for control algorithm, especially in high-voltage/-power applications as the 

number of submodules increases.  

Many existing literatures have attempted to resolve the capacitor voltage balancing 

problems [2]-[30]. They can be classified into the following categories, 

1) each submodule has a fast local dc voltage controller to prevent the individual 

voltage from deviation, while a slower upper controller balances the over-all arm 

voltages [2]-[8]; 

2) the submodules are sorted, or compared, continuously in order of capacitor voltage 

value by controller, to determine which submodule(s) to be inserted, or by-passed, 

at each switching cycle [9]-[19];  
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3) the circuit topology is modified to have an inherent ability to self-balance without 

the need of control algorithms [20]-[27]; 

4) the switching patterns are swap among the submodules in an arm within a 

fundamental cycle to guarantee the submodules with an equalized exposure to the 

loading conditions [27]-[29].  

 

As discussed in Chapter 1.2, the existing solution for capacitor voltage balancing can 

be classified into four categories. Among these four categories, 1) and 2) require 

submodule voltage measuring, normally together with arm current measuring, to have a 

sophisticated closed-loop control on capacitor voltage; whereas 3) achieves the sensorless 

voltage balance, or self-balancing, by modifying the MMC topology, which usually results 

in complex circuitry; 4) has the potential to combine the merits of 1), 2) and 3), which are 

maintaining the basic MMC circuitry and also no need for feedback control to balance the 

capacitor voltage. However, none of the literatures in category 4) mathematically proves it 

no need of feedback control for MMC voltage balancing.  

Few literatures discussed the mitigation of voltage ripples on dc capacitors. Normally, 

the low-frequency voltage ripple on dc capacitor is deemed as unavoidable since each 

individual submodule is modeled as a single-phase inverter in existing literatures. 

Adam et al. [31] discusses the basic operation principle of MMCs and the capacitors 

voltage balancing technique for three-level and five-level MMCs. More importantly, it 

leaves a hint that the two-level MMC has a self voltage balancing ability and the low-

frequency ripples on submodule capacitors are eliminated by nature. Adam et al. conclude 

that three-level, and above, MMCs have no such merits. 
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The overall objective of this research is to prove and develop the algorithms for MMC 

to achieve the self voltage balancing. This overall research goal was achieved with the 

following major contributions:  

❖ Mathematically proved that MMCs have the self voltage balancing capability; 

❖ Developed a novel modulation that secures the self voltage balancing for MMC, 

which allows the MMCs to become sensorless.  

❖ Reduced the low-frequency voltage ripple on submodule dc capacitors, which 

allowed a smaller dc capacitance. 

❖ Derived the general state-space model for MMC to catch the dynamics of the 

voltage convergence/divergence. 

 

This dissertation is organized as follows:  

Chapter 2 of this dissertation mathematically proves that MMCs have the self voltage 

balancing capability, regardless of the number of levels.  

Based on the mathematical proof in Chapter 2, a novel modulation is proposed in 

Chapter 3 to transform the mathematical analysis into engineering practice, which allows 

the MMCs to become sensorless. Since the proposed modulation guarantees less low-

frequency ripple on dc capacitors, smaller capacitors can be utilized in MMC submodules. 

Simulation results are provided for verification purposes.  

Chapter 4 derives the general state-space model of MMC to capture the dynamics of the 

voltage convergence/divergence. 

Chapter 5 verifies the inductor voltage drop assumptions that proposed in Chapter 2. 
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Chapter 6 proposes the possible future works. 
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2 THE SELF-BALANCING NATURE OF MMC CAPACITOR VOLTAGE 

 

Modular multilevel converter (MMC) was proposed by Lesnicar et al. [1] in 2003. 

MMCs have an inherent property: numerous voltage sensors and feedback control are 

needed to coordinate the dc capacitor voltage of each submodule. This property results in 

computational inefficiency in control algorithms, especially for high-voltage applications 

where the MMC installations often consist of hundreds of submodules.  

Many existing literatures have attempted to resolve the capacitor voltage balancing 

problems [2]-[30]. They can be classified into the following categories, 

1) Each submodule has a local dc voltage controller to prevent the individual voltage 

from deviation, while a slower upper controller balances the over-all arm voltages 

[2]-[8]; 

2) The submodules are sorted, or compared, continuously in order of capacitor voltage 

value. A main controller determines which submodule(s) to be inserted, or by-

passed, at each switching cycle [9]-[19];  

3) The circuit topology is modified to have an inherent capability to self balance 

without the need of control algorithms [20]-[27]; 

4) The submodule patterns are swapped among the submodules in an arm to guarantee 

the submodules with an equalized exposure to the loading conditions [28]-[30].  

Among the four categories, 1) and 2) require submodule voltage measuring, normally 

together with arm current measuring, to have a sophisticated closed-loop control on 

capacitor voltage; whereas 3) achieves the self voltage balancing by modifying the MMC 

topology, which usually results in complex circuitry; 4) has the potential to maintain the 
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basic MMC circuitry and also no need for feedback control to balance the capacitor voltage. 

However, this method is hard to extend to high level since it is impossible to identify all 

submodule patterns for high-level MMCs.  

Few literatures discussed the mitigation of voltage ripples on dc capacitors. Normally, 

the low-frequency voltage ripple on dc capacitor is deemed as unavoidable since each 

individual submodule is modeled as a single-phase inverter in existing literatures. 

Adam et al. [31] discusses the basic operation principle of MMCs and the capacitors 

voltage balancing technique for three-level and five-level MMCs. More importantly, it 

leaves a hint that the two-level MMC has a self voltage balancing ability and the low-

frequency ripples on submodule capacitors are eliminated by nature. Adam et al. [31] 

conclude that three-level, and above, MMCs have no such merits. 

This Chapter mathematically proves that MMCs have the self voltage balancing 

capability, regardless of the number of levels. This implies that MMC voltage balancing 

control is unnecessary. The mathematical proof starts from two- and three-level MMCs. 

Then, the general N-level MMC analysis is derived thereafter. Based on the mathematical 

proof, a novel modulation will be proposed to transform the mathematical analysis into 

engineering practice in Chapter 3 of this dissertation.  

 

The pole voltage va of a two-level MMC can either be 1/2Vdc or –1/2Vdc as shown in 

Figure2.1. Assume that the voltage drop on arm inductors could be neglected. If the pole 

is attached to the positive dc rail, the lower arm capacitor C2 is clamped to the dc source 

voltage Vdc as shown in Figure2.1(a). If the pole is attached to the negative dc rail, the 
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upper arm capacitor C1 is clamped to the dc source voltage Vdc as shown in Figure2.1(b). 

C1 and C2 voltage could be formulated as,  

 
2

1

dc C

dc C

V V

V V

=


=
, (2.1) 

Re-write (2.1) into matrix form 

 
1 1

2 2

0 1

1 0

      
=  =      

      

dc C C

dc C C

V V V

V V V
Γ , (2.2) 

, where 
0 1

1 0

 
=  

 
Γ . 

Since the rank of Γ is two, [VC1 VC2]
T has the only solution, 

 
1 1

2

−     
= =     

     

C dc dc

C dc dc

V V V

V V V
Γ . (2.3) 

The solution of (2.1) is Vc1 = Vc2 = Vdc. The two-level MMC has its capacitors’ voltages 

balanced by nature. 

Note that this capacitor voltage balance analysis assumes that the voltage drop of arm 

inductors could be neglected. It requires the inductor voltage to be stabilized to zero in 

every switching cycle. Normally, a smaller arm inductor results in faster convergence to 

zero. Here is the question. What is a reasonable value for the arm inductor to be regarded 

as neglectable in theoretical analysis without losing the practical sense? I would like to 

leave this topic in future. The arm inductance value needs to be determined based on the 

detailed model of a two-level MMC. 
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Figure 2.1 Two-level MMC with pole connected to (a) positive dc rail (Level 1); and 

(b) negative dc rail (Level 2). 

 

Figure2.2 shows a three-level MMC. The pole voltage va of a three-level MMC can 

either be Vdc, zero, or –Vdc if all capacitor voltages are Vdc. For a three-level MMC, there 

are two, and only two, out of four submodules at inserting mode at any instant. The other 

two submodules are at by-pass mode meanwhile. If the voltage drop on arm inductors could 

be neglected, the sum of the voltages of the two inserting-mode submodules are clamped 

to the dc source voltage. For example, if the module three and four are at inserting mode, 

as shown in Figure2.2(a), the sum of capacitor C3 voltage and C4 voltage is clamped to 

2Vdc. Figure2.2 shows all the possible states of a three-level MMC. The capacitor voltage 

of Figure2.2(a)-(f) could be formulated as,  
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Figure 2.2 Three-level MMC with pole voltage of (a) Vdc (Level 1); (b)(c)(d)(e) zero 

volt (Level 2); and (f) –Vdc (Level 3). 



12 

 

3 4

2 4

1 4

2 3

1 3

1 2

2

2

2

2

2

2

C Cdc

C Cdc

C Cdc

C Cdc

C Cdc

C Cdc

V V V

V V V

V V V

V V V

V V V

V V V













= +

= +

= +

= +

= +

= +

. (2.4) 

Re-write (2.4) into matrix form 

 

1 1

1
2 2

2

3 3
3

4 4

2 0 0 1 1
2 0 1 0 1

2 1 0 0 1

0 1 1 02
1 0 1 02
1 1 0 0

2

   
                                                         
    

=  = 

dc

dc C C

dc C C

C Cdc

C Cdc

dc

V

V V V

V V V

V VV

V VV

V

Γ

Γ

Γ

, (2.5) 

where  1 0 0 1 1=Γ , 2

0 1 0 1

1 0 0 1

0 1 1 0

1 0 1 0

 
 
 =
 
 
 

Γ , and  3 1 1 0 0=Γ . 

Define the submodule state to be ‘1’ when at inserting mode; and the submodule to be 

‘0’ when at by-pass mode. Γ1 contains all the possible combinations of submodule patterns 

when pole voltage va is at Level 1 [see Figure2.2(a)]. Γ2 contains all the possible 

combinations of submodule patterns when pole voltage va is at Level 2 [see Figure2.2(b)-

(e)]. Γ3 contains all the possible combinations of submodule patterns when pole voltage va 

is at Level 3 [see Figure2.2(f)]. When MMC visits one of submodule patterns, one equation 

of equation set (2.4) is satisfied at a time. We can regard visiting a submodule combination 

as solving an equation of (2.4). 

Lemma 1 [32]: Consider the non-homogeneous system ΓVC = Vdc. Γ is the coefficient 

matrix. VC is unknown. The sizes of Γ, Vdc and VC are m×n, m×1 and n×1, respectively. 

ΓVC = Vdc has no more than one solution if rank[Γ] = n. 
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Now we need to check how many equations of (2.4) we need to solve to guarantee a 

solution for all capacitors’ voltages. First check the rank of Γ1, Γ2, and Γ3 respectively.  

 1 1 
  =rank Γ , 2 3 

  =rank Γ , 3 1 
  =rank Γ , (2.6) 

which means Γ1 has one linearly independent row, Γ2 has three linearly independent 

rows, and Γ3 has one linearly independent row. In another word, we cannot find definite 

solutions for all capacitors’ voltages by solving the equations within same level. For 

example, if considering the equations within Level 2 only,  

 

1 4

2 4

2 3

1 3

2

2

2

2

C Cdc

C Cdc

C Cdc

C Cdc

V V V

V V V

V V V

V V V









= +

= +

= +

= +

. (2.7) 

Simplify (2.7) 

 

1 2

3 4

1 42

C C

C C

C Cdc

V V

V V

V V V







=

=

= +

. (2.8) 

Eq.(2.7) and (2.8) have multiple solutions. There are no definite solutions for all 

capacitors’ voltages by solving the equations within Level 2. 

Then what about combining two levels together? For example [Γ1 Γ2]
T or [Γ2 Γ3]

T. 

Due to THD considerations, MMC pole voltage jumps between two adjacent levels at a 

time. Hence, checking the rank of two adjacent levels complies with practical sense. We 

are going to check the rank of two adjacent levels, to see whether we could find the 

solutions for all capacitors’ voltages. 

The ranks of [Γ1 Γ2]
T and [Γ2 Γ3]

T are 
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1

2

4
 
 
  

=rank
Γ

Γ
, and

2

3

4
 
 
  

=rank
Γ

Γ
, (2.9) 

which guarantee that [Γ1 Γ2]
T and [Γ2 Γ3]

T have four linearly independent rows each. 

Hence, we could find no more than one set of solutions for all capacitors’ voltages if 

combining any two adjacent levels. There is one possible set of solutions for (2.4),  

 

1

2

3

4

dcC

C dc

C dc

C dc

VV

VV

V V

V V

  
  
  
  
  
  

   

= . (2.10) 

These solutions of capacitor voltages are quite intuitive. Since (2.4) have no more than 

one solution, (2.10) must be the unique solution. Hence, the three-level MMC has its 

capacitors’ voltages balanced by nature. 

 

Figure2.3 shows an N-level MMC. Assume that all capacitor voltages are Vdc. The pole 

voltage va of an N-level MMC is an element of { (N–1)Vdc/2, (N–3)Vdc/2, (N–5)Vdc/2, …, 

Vdc, 0, –Vdc,…, –(N–3)Vdc/2, –(N–1)Vdc/2}, if N is an odd number. The pole voltage va of 

an N-level MMC is an element of {(N–1)Vdc/2, (N–3)Vdc/2, (N–5)Vdc/2, …, Vdc/2, –Vdc/2,…, 

–(N–3)Vdc/2, –(N–1)Vdc/2}, if N is an even number. Figure2.4 shows the numbering of 

levels in an N-level MMC, starting from the first level to the N-th level. For an N-level 

MMC, there are N–1, and only N–1, out of 2N–2 submodules at inserting mode at a time. 

The other N–1 submodules are at by-pass mode meanwhile. If the voltage drop on arm 

inductors could be ignored, the sum of the voltages of the N–1 inserting-mode submodules 

are clamped to the dc source voltage. For example, if the SMN through SM2N-2 are at 

inserting mode, as shown in Figure2.3(a), the sum of capacitor CN voltage through C2N-2 
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voltage is clamped to (N-1)Vdc. Figure2.3(b) shows the sum of capacitor C1 and capacitor 

CN-1 through C2N-2 voltages is clamped to (N-1)Vdc; and Figure2.3(c) shows the sum of 

capacitor C1 through CN-1 voltages is clamped to (N-1)Vdc. All capacitor voltage balancing 

could be formulated as,  

 

( )

( )

( )

( )

( )

1

2

1 2

1 (2 2)

2 (2 2) 1

2

(2 2)
1

(2 2)
(2 2) 1

(2 2)

( 1)

( 1)

 −

 −

 −
+ + + 

−
− 

 −

 
 
 

  
    
    
    
    
      

  
 
 
 

−

= 

− k
N

N

m N

m N C

dc
C

k m N
dc m m m

C N
N

N m N

V
N V

V

N V
V

Γ

Γ

Γ

Γ

, (2.11) 

where ( )
2

1 1
1 1 1

k N k k
N Nk N

m C C C− − −
− − −

= = , 1 < k < N. 
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Figure 2.3 N-level MMC with pole voltage of (a) (N–1)Vdc (Level 1); (b) (N–2)Vdc 

(Level 2); and (c) –(N–1)Vdc (Level N).  

Define the submodule state to be ‘1’ when at inserting mode; and the submodule to be 

‘0’ when at by-pass mode. k-th level is an arbitrary level, except for the first level and N-

th level. In another word, 1 < k < N. Γk contains all the possible switching patterns when 

pole voltage va is at k-th level. Γk is an mk by (2N–2) matrix. When MMC visits one 

switching pattern, one equation in (2.11) is satisfied at a time. We can regard visiting a 

switching pattern as solving an equation in (2.11). 

From Chapter 2.3, we have already observed a unique feature of three-level MMC, 

which is the rank of any two adjacent levels is four. This guarantees the three-level MMC 
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has its capacitors’ voltages balanced by nature. If we could extend this observation to N-

level MMC, which means the rank of any two adjacent levels is 2N–2, this will guarantee 

that the N-level MMC has its capacitors’ voltages balanced by nature.  

1.5Vdc

π
2π

0

(N–1)Vdc/2

–(N–1)Vdc/2

1
2

k

(N+1)/2

(N–3 )/2
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N/2
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N
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(b)

(N–1)Vdc/2

–(N–1)Vdc/2

 

Figure 2.4 Numbering of levels in an N-level MMC, when (a) N is an odd number; and 

(b) N is an even number. 

2.4.1 MASSIVE DATA DILEMMA  

However, it is not always easy to obtain the Γ matrix. Notice that the Γk matrix of a N-

level MMC is a mk-by-(2N–2) matrix, where ( )
21 1

1 1 1

k N k k
k N N N

m C C C
− − −
− − −

= = . For example, the 

Γ5 matrix of a 9-level MMC is a 4900-by-16 matrix; the Γ50 matrix of a 100-level MMC is 

a 2.5×1057-by-198 matrix. In High-Voltage DC (HVDC) transmission applications, the 

MMC is built with 200 - 400 levels [33]. The Γ matrix expands rapidly as the MMC level 

increases, which becomes impossible for computers to process. However, it is not always 
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necessary to have a whole picture of Γ matrix. The only thing we care about Γ matrix is its 

rank.  

Lemma 2 [34]: The rank of an m×n matrix cannot exceed m or n. The maximum value 

possible is the smaller of m and n. 

Since Γk is an mk-by-(2N–2) matrix. The rank of Γk cannot exceed 2N–2. Γk should be 

able to extract a (2N–2)-by-(2N–2) submatrix, or even smaller than (2N–2)-by-(2N–2), 

while holding the same rank as the original Γk. In another word, if we could find a 

submatrix ˆ
kΓ of Γk which guarantees that 

T

1
ˆ ˆ

+
  k kΓ Γ has a rank of 2N–2, we can 

conclude that [ Γk  Γk+1 ] also has a rank of 2N – 2 and the N-level MMC has its capacitors’ 

voltages balanced by nature.  

2.4.2 SUBMATRIX EXTRACTION 

Γ matrix extraction is critical before we proceed to calculate the rank of Γ matrix. To 

simplify the problem, let us first investigate the Γ matrix of two-level MMC. The Γ matrix 

of two-level MMC is as follows, 

 
( )

( )

( )

2 st
12

2 nd
2

0 1 1  level

1 0 2  level

    
= =   

    

Γ
Γ

Γ
. (2.12) 

Every specific column is always representing one certain submodule states (1 represents 

inserting mode and 0 represents by-pass mode). Since Γ1
(2) and Γ2

(2) are 1-by-2 matrix, 

there is no need to extract submatrices from these two.  

The Γ matrix of three-level MMC is as follows, 
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 ( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

st2
1

nd2
23

1 2
133

2 2
13

3 2
1

2
2

0 0 1 1 0 0 1 1 0 1 1  level

0 1 0 1 0 1 0 1 0 1 2  leve

1 0 0 1 1 0 0 1 1 1

0 1 1 0 0 1 1 0 0 0

1 0 1 0 1 01 0 1 0

1 1 0 0 1 01 1 0 0

            
        

     
   = = = =  
     
             
           

a

b

Γ

Γ
Γ

T
ΓΓ

T
Γ

Γ

Γ

nd

nd

nd

rd

l

2  level

2  level

2  level

3  level









. (2.13) 

Eq.(2.13) could be interpreted as follows: 

The Γ(3) could be derived from Γ(2). For example, adding a “0” to the left of Γ1
(2) and a 

“1” to the right of Γ1
(2), the matrix [0 Γ1

(2) 1] becomes the Γ1
(3). Adding a “0” to the left of 

Γ2
(2) and a “1” to the right of Γ2

(2), the matrix [0 Γ2
(2) 1] becomes part of Γ2

(3). Adding a 

“1” to the left of Γ1
(2) and a “0” to the right of Γ1

(2), the matrix [1 Γ1
(2) 0] becomes part of 

Γ2
(3). Adding a “1” to the left of Γ2

(2) and a “0” to the right of Γ2
(2), the matrix [0 Γ2

(2) 1] 

becomes part of Γ2
(3). There are two submodule states that cannot be directly derived from 

Γ(2), which are [1 T1(a)
(2) 1] and [0 T1(b)

(2) 0]. T1(a)
(2) is derived from Γ1

(2) by manipulating 

the right most “1” in Γ1
(2) to “0”. T1(b)

(2) is derived from Γ1
(2) by manipulating the left most 

“0” in Γ1
(2) to “1”.  

Γ1
(3) and Γ3

(3) are 1-by-4 matrices. There is no need to extract submatrices from these 

two. Γ2
(3) is a 4-by-4 matrix with a rank of three. Γ2

(3) should be able to find a 3-by-4 

submatrix which holds the same rank. Γ2
(3) is as follows 

 
( )

( )

( )

( )

( )

( )

( )

2
2

2
13

2 2
1

2
1

0 1 0 1 0 1

1 0 0 1 1 1

0 1 1 0 0 0

1 0 1 0 1 0

  
  
  = =
  
  
    

a

b

Γ

T
Γ

T

Γ

. (2.14) 

There are four possible ways to extract a 3-by-4 submatrix from Γ2
(3). Two of them are 

selected as examples. Γ2
(3) can be segmented to  
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( )

( )

( )

( )

( )

( )

( )

( )

( )

2
2

2 3
1 23

2 2 3
1 2

2
1

0 1

ˆ1 1

0 0

1 0

 
 

 
 = =  
 

   
  

a

b

Γ

T Γ
Γ

T M

Γ

, (2.15) 

or 

 
( )

( )

( )

( )

( )

( )

( )

( )

( )

2
2

32
213

2 32
21

2
1

0 1

1 1

ˆ0 0

1 0

 
   
 = =  
     
  

a

b

Γ

MT
Γ

ΓT

Γ

, (2.16) 

where 
( )3
2Γ̂  is the core matrix extracted from Γ2

(3). M2
(3) is the redundant submatrix to 

discard. Let us check the rank of 
( )3
2Γ̂  

 ( )3
2

ˆ 3  = rank Γ . (2.17) 

( )3
3Γ̂  holds the same rank as Γ3

(3). Instead of checking the rank of [Γ1
(3) Γ2

(3)]T and [Γ2
(3) 

Γ3
(3)]T, let us check the rank of ( ) ( )

T
3 3

1 2
ˆ  Γ Γ and ( ) ( )

T
3 3

2 3
ˆ  Γ Γ . 

 

( )

( )

3
1

3
2

4
ˆ

 
 
 
 

=rank
Γ

Γ
, and

( )

( )

3
2

3
3

ˆ
4

 
 
 
 

=rank
Γ

Γ
. (2.18) 

Since ( ) ( )
T

3 3
1 2

ˆ  Γ Γ and ( ) ( )
T

3 3
2 3

ˆ  Γ Γ are submatrices of [Γ1
(3) Γ2

(3)]T and [Γ2
(3) Γ3

(3)]T, 

the rank of [Γ1
(3) Γ2

(3)]T and [Γ2
(3) Γ3

(3)]T should also be four. 

Let’s extend the similar matrix extraction procedure to the four-level MMC. 

The Γ matrix of four-level MMC is as follows, 
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( )

( )

( )

( )

( )

4
1

4
24

4
3

4
4

0 0 0 1 1 1

0 0 1 0 1 1

0 1 0 0 1 1

0 0 1 1 0 1

0 1 0 1 0 1

1 0 0 1 0 1

0 1 0 1 1 0

1 0 0 0 1 1

1 0 0 1 1 0

0 0 1 1 1 0

1 0 1 0 1 0

1 1 0 0 1 0

1 0 1 1 0 0

1 1 0 1 0 0

1 0 1 0 0 1

0 1 1 0 1 0

0 1 1 0 0 1

0 1 1 1 0 0

1 1 0 0 0 1

1 1 1 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
  
  
  = =   
  
   











 

Γ

Γ
Γ

Γ

Γ 














. (2.19) 

Γ1
(4) and Γ4

(4) are 1-by-6 matrices. There is no need to extract submatrices from these 

two. Γ2
(4) and Γ3

(4) are 9-by-6 matrices with a rank of 5. Γ2
(4) and Γ3

(4) should be able to 

find the 5-by-6 submatrices which hold the same rank. Γ2
(4) is as follows 

 
( )

( )

( )

( )

( )

( )

( )

3
2

3
14

2 3
1

4
2

0 0 1 0 1 1 0 0 1 0 1 1

0 1 0 0 1 1 0 1 0 0 1 1

0 0 1 1 0 1 0 0 1 1 0 1
ˆ

0 1 0 1 0 1 1 0 0 1 0 1
1 1

1 0 0 1 0 1 0 1 0 1 1 0
0 0

0 1 0 1 1 0 0 1 0 1 0 1

1 0 0 0 1 1 1 0 0 0 1 1

1 0 0 1 1 0 1 0 0 1 1 0

0 0 1 1 1 0 0 0 1 1 1 0

   
   
   
   

    
   
   = = =
   
   
     

   
   
   
   

a

b

0 Y 1

T
Γ

T

M







, (2.20) 
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where 
( )3
2Γ̂  follows (2.15). T1(a)

(3) is derived from Γ1
(3) by manipulating the right most 

“1” in Γ1
(3) to “0”. T1(b)

(3) is derived from Γ1
(3) by manipulating the left most “0” in Γ1

(3) to 

“1”. There are multiple ways to extract a submatrix from Γ2
(4). One of them is selected as 

example. This segmentation is similar to (2.15). Γ2
(4) can be segmented to  

 
( )

( )

( )

( )

( )

( )

( )

( )

( )

3
2

3 4
1 24

2 3 4
1 2

4
2

ˆ

ˆ1 1

0 0

 
 

  
= =   

   
  

a

b

0 Γ 1

T Y
Γ

T M

M

, (2.21) 

where 
( )4
2Γ̂  is the core submatrix extracted from Γ2

(4). M2
(4) is the redundant submatrix 

to discard. Let us check the rank of 
( )4
2Γ̂  

 ( )4
2

ˆ 5  = rank Γ . (2.22) 

( )4
2Γ̂  holds the same rank as Γ2

(4). 

Γ3
(4) is as follows 

 
( )

( )

( )

( )

( )

( )

( )

3
2

3
24

3 3
2

4
3

1 0 1 0 1 0 1 0 1 0 1 0

1 1 0 0 1 0 1 1 0 0 1 0

1 0 1 1 0 0 1 0 1 1 0 0
ˆ

1 1 0 1 0 0 1 0 1 0 0 1
1 1

1 0 1 0 0 1 0 1 1 0 1 0
0 0

0 1 1 0 1 0 1 1 0 1 0 0

0 1 1 0 0 1 0 1 1 0 0 1

0 1 1 1 0 0 0 1 1 1 0 0

1 1 0 0 0 1 1 1 0 0 0 1

   
   
   
   

    
   
   = = =
   
   
     

   
   
   
   

a

b

1 Γ 0

T
Γ

T

M







, (2.23) 

where 
( )3
2Γ̂  follows (2.15). T2(a)

(3) is derived from 
( )3
2Γ̂  by manipulating the right most 

“1” in first row of 
( )3
2Γ̂  to “0”. T2(b)

(3) is derived from 
( )3
2Γ̂  by manipulating the left most “0” 

in first row of 
( )3
2Γ̂  to “1”. There are multiple ways to extract a submatrix from Γ3

(4). One 
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of them is selected as example. This segmentation logic is similar to (2.16). Γ3
(4) can be 

segmented to  

 
( )

( )

( )

( )

( )

( )

( )

( )

( )

4
3

43
324

3 3 4
2 3

3
2

1 1

ˆ0 0

ˆ

 
   
 = =  
     
  

a

b

M

MT
Γ

T Γ

1 Γ 0

, (2.24) 

where 
( )4
3Γ̂  is the core submatrix extracted from Γ2

(4). M2
(4) is the redundant submatrix 

to discard. Let us check the rank of 
( )4
3Γ̂  

 ( )4
3

ˆ 5  = rank Γ . (2.25) 

( )4
3Γ̂  holds the same rank as Γ3

(4). 

 Instead of checking the rank of [Γ1
(4) Γ2

(4)]T, [Γ2
(4) Γ3

(4)]T, and [Γ3
(4) Γ4

(4)]T, let us check 

the rank of ( ) ( )
T

4 4
1 2

ˆ  Γ Γ , ( ) ( )
T

4 4
2 3

ˆ ˆ  Γ Γ and ( ) ( )
T

3 3
3 4

ˆ  Γ Γ . 

 

( )

( )

4
1

4
2

6
ˆ

 
= 

  

rank
Γ

Γ
, 

( )

( )

4
2

4
3

ˆ
6

ˆ

 
 
 
 

=rank
Γ

Γ
, and

( )

( )

4
3

4
4

ˆ
6

 
 
 
 

=rank
Γ

Γ
. (2.26) 

Since ( ) ( )
T

4 4
1 2

ˆ  Γ Γ , ( ) ( )
T

4 4
2 3

ˆ ˆ  Γ Γ and ( ) ( )
T

3 3
3 4

ˆ  Γ Γ are submatrices of [Γ1
(4) Γ2

(4)]T, 

[Γ2
(4) Γ3

(4)]T, and [Γ3
(4) Γ4

(4)]T, the rank of [Γ1
(4) Γ2

(4)]T, [Γ2
(4) Γ3

(4)]T, and [Γ3
(4) Γ4

(4)]T 

should also be six. 

Here are some observations from four-level MMC: 

a. The first and last level matrices, Γ1
(4) and Γ4

(4), have no need to extract submatrices; 

b. The second level matrix, Γ2
(4), needs to extract a submatrix, and this core submatrix 

(4)

2Γ̂  can be derived from 
(3)

2Γ̂ and Γ1
(3); 
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c. The second to the last matrix, Γ3
(4), needs to extract a submatrix, and this core 

submatrix 
(4)

3Γ̂  can be derived from 
(3)

2Γ̂ only. 

Let’s extend this matrix extraction procedure to N-level MMC: 

a. The first and last level matrices, Γ1
(N) and ΓN

(N), have no need to extract submatrices; 

b. The second to (N – 2)th level matrices, Γ2
(N) to ΓN-2

(N), need to extract submatrices, 

and these core submatrices, 
( )

2
ˆ N
Γ to

( )

2
ˆ

−

N

NΓ , can be derived from 
( 1)

1

−N
Γ and 

( 1)

2
ˆ −N
Γ to 

( 1)

2
ˆ −

−

N

NΓ ; 

c. The second to the last matrix, ΓN-1
(N), needs to extract a submatrix, and this core 

submatrix 
( )

1
ˆ

−

N

NΓ  can be derived from 
( 1)

2
ˆ −

−

N

NΓ only. 

Assume that the Γ matrix and its core submatrix Γ̂ of (N – 1)-level MMC are as follows, 
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( )

( )

1
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1
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( 1)

1

1
1
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−

−

−
−

 
 
 
 

=  
 
 
 
  

N

N

N

N
k

N
N

Γ

Γ

Γ
Γ

Γ

,

( )

( )

( )

( )

( )

1
1

1
2

( 1) 1

1
2

1
1

ˆ

ˆ ˆ

ˆ

−

−

− −

−
−

−
−

 
 
 
 
 
 
 
 
 
 
 
 
 

=

N

N

N N
k

N
N

N
N

Γ

Γ

Y Γ

Γ

Γ

, (2.27) 

Γ1
(N-1) and ΓN-1

(N-1) are 1-by-(2N – 4) matrices. There is no need to extract submatrices 

from these two. Γ2
(N-1) to ΓN-2

(N-1) are mk-by-(2N – 4) matrices, where 

( )
21 1 1

2 2 2

k N k k
k N N N

m C C C
− − − −
− − −

= = as described in (2.11). ( )1ˆ −NΓ is extracted from Γ(N-1) and holds 

the same rank as Γ(N-1).  

Assume that the Γ matrix and its core submatrix Γ̂ of N-level MMC are as follows, 
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( )

( )

( )

( )

1

2

( )

 
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 
 
 
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N
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N

N
k

N
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Γ

Γ

Γ
Γ

Γ

,

( )

( )

( )

( )

( )

1

2

( )

1

ˆ

ˆ ˆ

ˆ
−

 
 
 
 
 
 
 
 
 
 
 
 
 

=

N

N

N N
k

N
N

N
N

Γ

Γ

Y Γ

Γ

Γ

, (2.28) 

Γ1
(N) and ΓN

(N) are 1-by-(2N – 2) matrices. There is no need to extract submatrices from 

these two. Γ2
(N) to ΓN-1

(N) are mk-by-(2N – 2) matrices, where ( )
21 1

1 1 1

k N k k
k N N N

m C C C
− − −
− − −

= = as 

described in (2.11). ( )ˆ NΓ is extracted from Γ(N) and holds the same rank as Γ(N). Instead of 

extracting ( )ˆ NΓ directly from Γ(N), ( )ˆ NΓ could also be derived from ( )1ˆ −NΓ .  

 ( )

1

1 1

[0 0 1 1]

− −

=N

N N

Γ k , (2.29) 

 
( )

( )

( )

( )

( )

( )

1

1
1

1
1

ˆ

ˆ 1 1

0 0

−

−
−

−
−

 
 

=  
 
 

N
k

N N
k k a

N
k b

0 Γ 1

Γ T

T

, (2.30) 

where 2 ≤ k ≤ N – 2.  
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( )

( )

( )

( )

1
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1
21

1
2

1 1

ˆ 0 0

ˆ

−
−

−
−−

−
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 
 

=  
 
 

N
N a

NN
NN b

N
N

T

TΓ

1 Γ 0

, (2.31) 

 ( )

1 1

[1 1 0 0]

− −

=N
N

N N

Γ k . (2.32) 

Eq.(2.31)-(2.32) demonstrate how to derive ( )ˆ NΓ from ( )1ˆ N −Y . Γ1
(N) is a 1-by-(2N – 2) 

matrix with the first N – 1 elements to be zero and the last N – 1 elements to be one. 
( )ˆ N
kΓ

consists of three parts. The first part is derived from
( )1ˆ −N
kΓ by adding a zero vector to the left 
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of 
( )1ˆ −N
kΓ and a one vector to the right of 

( )1ˆ −N
kΓ . The second part is derived from Tk-1(a)

(N-1) 

by adding two “1”s to the left and right of Tk-1(a)
(N-1), where Tk-1(a)

(N-1) is derived from 
( )1

1
ˆ −

−
N

kΓ  

by manipulating the right most “1” in first row of 
( )1

1
ˆ −

−
N

kΓ  to “0”. The third part is derived 

from Tk-1(b)
(N-1) by adding two “0”s to the left and right of Tk-1(b)

(N-1), where Tk-1(b)
(N-1) is 

derived from 
( )1

1
ˆ −

−
N

kΓ  by manipulating the left most “0” in first row of 
( )1

1
ˆ −

−
N

kΓ  to “1”. 
( )

1
ˆ

−
N

NΓ

consists of three parts. The first part is derived from TN-2(a)
(N-1) by adding two “1”s to the 

left and right of TN-2(a)
(N-1), where TN-2(a)

(N-1) is derived from 
( )1

2
ˆ −

−
N

NΓ  by manipulating the right 

most “1” in first row of 
( )1

2
ˆ −

−
N

NΓ  to “0”. The second part is derived from TN-2(b)
(N-1) by adding 

two “0”s to the left and right of TN-2(b)
(N-1), where TN-2(b)

(N-1) is derived from
( )1

2
ˆ −

−
N

NΓ by 

manipulating the left most “0” in first row of
( )1

2
ˆ −

−
N

NΓ to “1”. Both
( )1ˆ −N
kΓ and

( )

1
ˆ

−
N

NΓ are (2N – 3)-

by-(2N – 2) matrix The third part is derived from
( )1

2
ˆ −

−
N

NΓ by adding a zero vector to the left 

of 
( )1

2
ˆ −

−
N

NΓ and a one vector to the right of 
( )1

2
ˆ −

−
N

NΓ . ΓN
(N) is a 1-by-(N – 1) matrix with the first 

N – 1 elements to be one and the last N – 1 elements to be zero. 

( )1ˆ −N
kΓ and 

( )1
2

ˆ −
−

N
NΓ are expected to be a (2N – 5)-by-(2N – 4) matrix, with an expected rank 

of 2N – 5. 
( )ˆ N
kΓ and 

( )

1
ˆ

−
N

NΓ are expected to be a (2N – 3)-by-(2N – 2) matrix, with an expected 

rank of 2N – 3. The reason why we cannot find a uniform formula for both
( )ˆ N
kΓ and

( )

1
ˆ

−
N

NΓ is 

that
( )

1
ˆ

−
N

NΓ cannot be derived from
( )1

1
−

−
N

NΓ . Remember that
( )1

1
−

−
N

NΓ is a 1-by-(2N – 4) matrix. If 

( )

1
ˆ

−
N

NΓ is derived similar to (2.30) as follows, 
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( )

( )

( )

( )

( )

( )

1
1

1
1 1

1
1

ˆ 1 1

0 0

−
−

−
− −

−
−

 
 

=  
 
 

N
N

N N
N k a

N
k b

0 Γ 1

Γ T

T

. (2.33) 

( )

1
ˆ

−
N

NΓ becomes a 3-by-(2N – 2) matrix. The rank of a 3-by-(2N – 2) matrix cannot exceed 

3, which cannot satisfy the rank expectation.  

2.4.3 N-LEVEL MMC CONJECTURE 

The rank of any two adjacent levels is expected to be 2N – 2 To secure the self voltage 

balancing for N-level MMC, which is the same as the number of submodules. To check the 

rank of any two adjacent levels, one option is analytically proving that: 

a. The rank of ( ) ( )
T

1 2
ˆ  

N NΓ Γ  is 2N – 2; 

b. The rank of ( ) ( )
T

1
ˆ ˆ

+
  

N N
k kΓ Γ  is 2N – 2, where 2 ≤ k ≤ N – 3;  

c. The rank of ( ) ( )
T

2 1
ˆ ˆ

− −
  

N N
N NΓ Γ  is 2N – 2; 

d. The rank of ( ) ( )
T

1
ˆ

−
  

N N
N NΓ Γ  is 2N – 2. 

Or alternatively prove that 

a. If the rank of ( ) ( )
T

1 1
1 2

ˆ− −  
N NΓ Γ  is m for an (N – 1)-level MMC, then the rank of 

( ) ( )
T

1 2
ˆ  

N NΓ Γ  is m + 2 for an N-level MMC; 

b. If the rank of ( ) ( )
T

1 1
1

ˆ ˆ− −
+

  
N N

k kΓ Γ  is m for an (N – 1)-level MMC, then the rank of 

( ) ( )
T

1
ˆ ˆ

+
  

N N
k kΓ Γ  is m + 2 for an N-level MMC, where 2 ≤ k ≤ N – 3;  

c.  If the rank of ( ) ( )
T

1 1
2 1

ˆ − −
− −

  
N N

N NΓ Γ  is m for an (N – 1)-level MMC, then the rank of 

( ) ( )
T

2 1
ˆ ˆ

− −
  

N N
N NΓ Γ  is m + 2 for an N-level MMC; 
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d. If the rank of ( ) ( )
T

1 1
2 1

ˆ − −
− −

  
N N

N NΓ Γ  is m for an (N – 1)-level MMC, then the rank of 

( ) ( )
T

1
ˆ

−
  

N N
N NΓ Γ  is m + 2 for an N-level MMC.  

Since we have proved that two-, three-, and four-level MMCs have self voltage 

balancing feature, this feature can be extended to five-, six-, seven-level, and so on.  

The proof of the conjectures above requires comprehensive knowledge of linear algebra 

and is out of the scope of this dissertation. Some trials are included in Appendix A. The 

author of this dissertation would like to leave this proof for the future work. 

2.4.4 COMPUTER-AID PROOF 

As per power electronics engineering, it is not always necessary to consider the 

operation of an MMC with more than 500 levels. In High-Voltage DC (HVDC) 

transmission applications, the MMC is built with 200–400 submodules in each arm [33]. 

The first HVDC installation Trans Bay Cable project utilized an MMC structure with 

around 200 submodules per arm [35]. Normally there are hundreds of submodules per arm 

in HVDC applications [36]. Thanks to the powerful computation capability of modern 

computers, they make it possible to generate the Γ̂matrix of a hundreds-level MMC by 

giving the Γ̂  matrix of a three-level MMC. A Matlab script is created to generate the Γ̂ of 

3-level MMC to 533-level MMC, and to justify the rank of any two adjacent levels. The 

flowchart of the Matlab script is shown in Figure2.5. The Matlab script is attached in 

Appendix B. 
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Set NN = 533, 

N = 1

Start

Is k = 1? Yes

Is k < N – 1?
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Figure 2.5 The flowchart of checking the rank of Γ matrix. 
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According to the MATLAB result, the rank of any two adjacent levels is 2N – 2, up to 

533-level MMC. A rank of 2N – 2 guarantees that Γ̂  matrix of any two adjacent levels, 

from 2-level MMC to 533-level MMC, has 2N – 2 linearly independent rows. Hence, we 

could find no more than one set of solutions for 2N – 2 capacitors’ voltages if combining 

any two adjacent levels. There is one possible set of solutions for (2.11),  

 

1

2

(2 2) (2 2) 1(2 2) 1

C dc

C dc

C N dc NN

V V

V V

V V− − − 

   
   
   =
   
   
    

. (2.34) 

These solutions of capacitor voltages are quite intuitive. Since (2.11) has no more than 

one set of solutions, (2.34) must be the only set of solutions.  

The author of this dissertation conjectures that this conclusion can be extended to any 

level MMC. If the conjecture is true, we can conclude that MMC has self voltage balancing 

by nature. If the conjecture is false, we can conclude that MMC has self voltage balancing 

by nature up to 533 levels at least. 

 

This chapter explores the self voltage balancing nature of MMC. Mathematically, MMC 

submodule voltage can balance If utilizing certain submodule patterns. A computer-aid 

procedure is given to guarantee that N-level MMC, where N < 534, has this self voltage 

balancing by nature. This chapter conjectures that this conclusion can be extended to any 

level of MMC.  
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3 Γ-MATRIX MODULATION (ΓMM) 

 

As discussed in Chapter 2, the MMC structure has self voltage balancing feature in a 

mathematical sense. Here comes a question. How to realize this self voltage balancing 

feature over math to engineering? As mentioned in Chapter 2, when MMC visits one 

submodule pattern, one equation in (2.11) is satisfied at a time. When MMC visits all 

submodule patterns in the Γ, or the Γ̂ , it is said to have finished one iteration. MMC 

capacitor voltages are expected to converge to (2.34) after several iterations. This chapter 

focuses on developing an effective modulation, namely Γ-Matrix Modulation (ΓMM), to 

realize the self voltage balancing feature for MMC. With this novel Γ-Matrix Modulation, 

the low-frequency ripple on dc capacitors is highly reduced, which makes it possible to 

have an extremely small submodule capacitor to absorb only the switching-level ripples. 

 

As shown in Figure2.1, the pole voltage va of a two-level MMC can either be 1/2Vdc or 

–1/2Vdc if the VC1 = VC2 = Vdc. Assume the expected ac-side voltage to be v*
s, and the pole 

voltage va to follow the PWM strategy. The relationship of v*
s and va is plotted in Figure3.1.  

0 2π

0 2π

Vdc/2

–Vdc/2

Vdc/2

–Vdc/2

carrier

1st level

2nd level

v*
s

va

 

Figure 3.1 Relationship of ac-side voltage v*
s and pole voltage va. 
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When the pole voltage va at first level, one of the rows in Γ1
(2) will be assigned to the 

MMC as the chosen submodule pattern to realize this first-level pole-voltage. Recall that 

there is only one row in Γ1
(2), which is [0 1]. This row can be interpreted as this: the SM1 

is at by-pass mode and the SM2 is at inserting mode. The switches of each submodule need 

to follow this piece of Γ-matrix command accordingly. Similarly, when the pole voltage va 

at second level, one of the rows in Γ2
(2) will be assigned to MMC as the chosen submodule 

pattern to realize this second-level pole-voltage. Recall that there is only one row in Γ2
(2), 

which is [1 0]. This row can be interpreted as this: the SM1 is at inserting mode and the 

SM2 is at by-pass mode. The switches of each submodule need to follow this piece of Γ-

matrix command accordingly. A MATLAB/Simulink simulation is conducted to 

demonstrate the ΓMM based two-level MMC. 

❖ Case Study 2.1   ΓMM Based Two-Level MMC 

Objective: In this case study, the working principle and the performance of ΓMM based 

2-level MMC are studied through MATLAB/Simulink. The simulation topology is shown 

in Figure3.2. 
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Figure 3.2 Two-level MMC simulation topology. 
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Parameters: The key parameters of the MMC are as follows: rated apparent power S = 

50 kVA, output phase voltage Va = Vb = Vc = 320 V, output line current Ia = Ib = Ic = 52 A, 

rated output fundamental frequency f0 = 60 Hz, rated load resistance Rload = 6.2 Ω, rated 

dc-bus voltage Vdc = 1 kV, number of submodules per arm: N – 1 = 1, submodule 

capacitance Ci = 85 µF (i = 1, 2, …, 6), line inductance Lline = 1 mH, and arm inductance 

Larm = 0.1 µH. The switching frequency is fsw = 10 kHz. The definition of switching 

frequency is the frequency of the MMC pole voltage jumping from one level to the other 

adjacent level. The key parameters are summarized in Table 1. 

Table 1 

Two-level mmc simulation key parameters. 

Apparent Power, S 50 kVA 

Fundamental Frequency, f0 60 Hz 

Switching Frequency, fsw 10 kHz 

DC-Bus Voltage, Vdc 1000 V 

Phase Voltage, Va, Vb, Vc 320 V 

Line Current, Ia, Ib, Ic 52 A 

Load Resistance, Rload 6.2 Ω   (100% p.u.) 

Line Inductance, Lline 1 mH   (6% p.u.) 

Arm Inductance, Larm 0.1 µH  

(0.0006% p.u.) 

Submodule Capacitance, Ci 85 µF   (20% p.u.) 

Number of Submodules per Arm 1 

  where i = 1, 2, …, 6. 
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Analysis: This two-level MMC simulation follows the Γ-Matrix Modulation strategy. 

The load voltage and current are shown in Figure3.3. The mid-point voltage is shown in 

Figure3.4. The mid-point voltage of two-level MMC has three levels. Although the mid-

point voltage of any single phase, va vb and vc, has only two levels, the differential voltage 

of any two phases, vab vbc and vca, has three levels.  The submodule capacitor voltage and 

current are shown in Figure3.5. The capacitor voltage ripple is within 2%. The capacitor 

current consists mainly of fundamental component and switching-frequency harmonics. 

Note that the submodule capacitance is only 0.2 p.u.. The energy stored in capacitor is 

 2 6 21
0.5 85 10 1000 42.5 (J)

2i i CiE CV −= =    = . (3.1) 

The total energy in all submodule capacitors is 

 
6

2

1

1
6 255 (J)

2i i Citotal
i

E E CV
=

= =  = . (3.2) 

The two-level MMC power rating is 50 kVA. The total capacitor energy in respect to 

MMC power rating is  

 
3

3

255 10
5.1 (kJ/MVA)

50 10
total

E

S


−

−


= = =


. (3.3) 

Typically, the conventional MMC submodule capacitance is chosen such that the total 

stored energy in all submodule capacitors of the converter is approximately 30 – 40 

kJ/MVA, where MVA refers to the converter rating, giving ripple in the range of 10% [35]. 

To have a voltage ripple within 2%, the conventional MMC needs to have submodule 

capacitors energy to be 150 – 200 kJ/MVA. Normally, the capacitor energy storage 

capability is proportional to the capacitor volume. The ΓMM based MMC features an 

extremely small capacitor volume compared to conventional MMC.  
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The capacitor voltage is well balanced and converging to the expected value (1000 V) 

in Figure3.5. However, the fundamental ripples still exist. These fundamental ripples are 

introduced by the arm inductor and stray resistor. Note that the capacitor voltage balance 

analysis in previous sections does not consider the voltage drop on arm inductors and stray 

resistance. The effect of those passive components will be discussed in future work.  

Figure3.6 shows line current of phase-A and its corresponding arms’ current. The arm 

current contains not only fundamental component but also switching-frequency harmonics. 

Normally, the conventional MMC arm current does not contain many switching-frequency 

harmonics, and the arm inductance follows the equation [36] 

 
2

20

1
38

arm dc

i Ci

S
VL

IC V 

 
  
 

+=
 

, (3.4) 

where ω0 = 2πf0, VCi = 1000 V, and I2ω is the peak value of the 2-ω component in arm 

current. For conventional MMC, Ci = 150/5.1×85 µF = 2550 µF to have a voltage ripple 

within 2%. I2ω is known to be 13.8 A from simulation. The arm inductance of conventional 

MMC should be 757 µH (4.6% p.u.) according to (3.4). The arm inductor of ΓMM based 

MMC is extremely small comparing to conventional MMC. Small arm inductance is 

critical to balance the capacitor voltage. This will be explained in future work. 

Figure3.7 shows the input dc voltage and current. As seen from Figure3.7, the input 

current consists of dc component and switching-frequency harmonics. These switching-

frequency harmonics can be mitigated by adding a decoupling capacitor at dc bus. 
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Figure 3.3 Two-level MMC (a) load voltage and (b) load current. 
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Figure 3.4 Two-level MMC mid-point voltage (a) vab; (b) vbc; and (c) vca. 
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Figure 3.5 Submodule capacitor (a)/(c) voltage; and (b)/(d) current. 
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Figure 3.6 (a) Line current of phase-A and its corresponding (b) upper arm current, (c) 

lower arm current.  

 

Figure 3.7 Dc input voltage and current. 
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As shown in Figure2.2, the pole voltage va of a three-level MMC can either be Vdc, zero 

volt, or –Vdc if all capacitor voltages are Vdc. Assume the expected ac-side voltage to be v*
s. 

The pole voltage va follows the level-shifted modulation strategy. The relationship of v*
s 

and va is plotted in Figure3.8.  

0 2π
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Vdc

–Vdc
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–Vdc

3rd level

carrierv*
s

va

1st level

2nd level

 

Figure 3.8 Relationship of ac-side voltage v*
s and pole voltage va. 

When the pole voltage va at first level, one of the rows in Γ1
(3) will be assigned to the 

MMC as the chosen submodule pattern to realize this first-level pole-voltage. Recall that 

there is only one row in Γ1
(3), which is [0 0 1 1]. This row can be interpreted as this: SM1 

and SM2 are at by-pass mode, and SM3 and SM4 are at inserting mode. The switches of 

each submodule need to follow this piece of Γ-matrix command accordingly. Similarly, 

when the pole voltage va at third level, one of the rows in Γ3
(3) will be assigned to MMC as 

the chosen submodule pattern to realize this third-level pole-voltage. Recall that there is 

only one row in Γ3
(3), which is [1 1 0 0]. This row can be interpreted as this: SM1 and SM2 

are at inserting mode and SM3 and SM4 are at by-pass mode. The switches of each 

submodule need to follow this piece of Γ-matrix command accordingly.  
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When the pole voltage va at second level, one of the rows in Γ2
(3) will be assigned to 

MMC as the chosen submodule pattern to realize this second-level pole-voltage. Recall 

that there are four rows in Γ2
(3) and the rank of Γ2

(3) is three, which means only three rows 

in Γ2
(3) are needed to achieve the capacitor voltage balance. There are four combinations 

of three rows in Γ2
(3) in total and all of them have a rank of three.  Hence, we can choose 

any one of these four submatrices to compose the modulation table. The submatrix ( )3
2Ŷ

following (2.16) is selected in this chapter to demonstrate the three-level MMC modulation. 

The three-level MMC modulation can be explained with the aid of Figure3.9. When the 

pole voltage va is determined to be at second level by level-shifted modulation, the level 

pointer is pointed to Level 2. The gating signal generator is going to grab the current row 

of 
( )3
2Ŷ that the Γ-matrix pointer in level two is pointing to. After feeding the Γ-matrix 

command to gating signal generator, the level two pointer will point to the next row and 

wait for the next visit of level pointer. A MATLAB/Simulink simulation is conducted to 

demonstrate the ΓMM based three-level MMC. 

Level 1

Level 2

Level 3

0 0 1 1

1 0 1 0

0 1 1 0

1 0 0 1

1 1 0 0

Level Pointer

Γ-matrix Pointer
 

Figure 3.9 Γ-matrix modulation strategy for three-level MMC. 
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❖ Case Study 2.2   ΓMM Based Three-Level MMC 

Objective: In this case study, the working principle and the performance of ΓMM based 

three-level MMC are studied through MATLAB/Simulink. The simulation topology is 

shown in Figure3.10. 
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Figure 3.10 Three-level MMC simulation topology. 

Parameters: The key parameters of the MMC are as follows: rated apparent power S = 

100 kVA, output phase voltage Va = Vb = Vc = 643 V, output line current Ia = Ib = Ic = 52 

A, rated output fundamental frequency f0 = 60 Hz, rated load resistance Rload = 12.4 Ω, 

rated dc-bus voltage Vdc = 2 kV, number of submodules per arm: N – 1 = 2, submodule 

capacitance Ci = 85 µF (i = 1, 2, …, 12), line inductance Lline = 1 mH, and arm inductance 

Larm = 0.1 µH. The switching frequency is fsw = 20 kHz. The definition of switching 

frequency is the frequency of the MMC pole voltage jumping from one level to the other 

adjacent level. The key parameters are summarized in Table 2. 
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Table 2 

Three-level MMC simulation key parameters. 

Apparent Power, S 100 kVA 

Fundamental Frequency, f0 60 Hz 

Switching Frequency, fsw 20 kHz 

DC-Bus Voltage, Vdc 2000 V 

Phase Voltage, Va, Vb, Vc 643 V 

Line Current, Ia, Ib, Ic 52 A 

Load Resistance, Rload 12.4 Ω (100% p.u.) 

Line Inductance, Lline 1 mH   (3% p.u.) 

Arm Inductance, Larm 0.1 µH  

(0.0003% p.u.) 

Submodule Capacitance, Ci 85 µF   (40% p.u.) 

Number of Submodules per Arm 2 

  where i = 1, 2, …, 12. 

Analysis: This three-level MMC simulation follows the Γ-Matrix Modulation strategy. 

The submatrix
( )3
2Γ̂ extraction follows (2.16). The load voltage and current are shown in 

Figure3.11. The mid-point voltage is shown in Figure3.12. The mid-point voltage of three-

level MMC has five levels. Although the mid-point voltage of any single phase, va vb or vc, 

has only three levels, the differential voltage of any two phases, vab vbc and vca, has five 

levels.  The submodule capacitor voltage and current are shown in Figure3.13. The 

capacitor voltage ripple is within 3%. The capacitor current consists mainly of fundamental 
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component and switching-frequency harmonics. Note that the submodule capacitance is 

only 0.4 p.u.. The energy stored in capacitor is 

 2 6 21
0.5 85 10 1000 42.5 (J)

2i i CiE CV −= =    = . (3.5) 

The total energy in all submodule capacitors is 

 
12

2

1

1
12 510 (J)

2i i Citotal
i

E E CV
=

= =  = . (3.6) 

The three-level MMC power rating is 100 kVA. The total capacitor energy in respect to 

MMC power rating is  

 
3

3

510 10
5.1 (kJ/MVA)

100 10
total

E

S


−

−


= = =


. (3.7) 

Typically, the conventional MMC submodule capacitance is chosen such that the total 

stored energy in all submodule capacitors of the converter is approximately 30 – 40 

kJ/MVA, where MVA refers to the converter rating, giving ripple in the range of 10% [37]. 

To have a voltage ripple within 3%, the conventional MMC needs to have submodule 

capacitors energy to be 100 – 130 kJ/MVA. Normally, the capacitor energy storage 

capability is proportional to the capacitor volume. The ΓMM based MMC features an 

extremely small capacitor volume compared to conventional MMC.  

The capacitor voltage is well balanced and converging to the expected value (1000 V) 

in Figure3.13. However, the fundamental ripples still exist. These fundamental ripples are 

introduced by the arm inductor and stray resistance. Note that the capacitor voltage 

balancing analysis in Chapter 1 did not consider the voltage drop on arm inductors and 

stray resistance. The effect of those passive components will be discussed in future work.  

Figure3.14 shows the line current of phase-A and its corresponding arms’ current. The 

arm current contains not only fundamental component but also switching-frequency 
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harmonics. Normally, the conventional MMC arm current does not contain many 

switching-frequency harmonics, and the arm inductance follows the equation (3.4) [38], 

where ω0 = 2πf0, VCi = 1000 V, and I2ω is the peak value of the 2-ω component in arm 

current. For conventional MMC, Ci = 100/5.1×85 µF = 16667 µF to have a voltage ripple 

within 3%. Assume I2ω to be 13.8 A (Ia×26.5%). The arm inductance of conventional MMC 

should be 2.33 mH (7.1% p.u.) according to (3.4). The arm inductor of ΓMM based MMC 

is extremely small comparing to conventional MMC. Small arm inductance is critical to 

balance the capacitor voltage. This will be explained in future work. 

Figure3.15 shows the input dc voltage and current. As seen from Figure3.15, the input 

current consists of dc component and switching-frequency harmonics. These switching-

frequency harmonics can be mitigated by adding a decoupling capacitor at dc bus. 

 

 

Figure 3.11 Three-level MMC (a) load voltage and (b) load current. 



46 

 

 

 

Figure 3.12 Three-level MMC mid-point voltage (a) vab; (b) vbc; and (c) vca. 
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Figure 3.13 Submodule capacitor (a)/(c) voltage; and (b)/(d) current. 
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Figure 3.14 (a) Line current of phase-A and its corresponding (b) upper arm current, 

(c) lower arm current.  

 

Figure 3.15 Dc input voltage and current. 
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As shown in Figure2.3, The pole voltage va of an N-level MMC is an element of { (N–

1)Vdc/2, (N–3)Vdc/2, (N–5)Vdc/2, …, Vdc, 0, –Vdc,…, –(N–3)Vdc/2, –(N–1)Vdc/2}, if N is an 

odd number. The pole voltage va of an N-level MMC is an element of {(N–1)Vdc/2, (N–

3)Vdc/2, (N–5)Vdc/2, …, Vdc/2, –Vdc/2,…, –(N–3)Vdc/2, –(N–1)Vdc/2}, if N is an even 

number. Assume the expected ac-side voltage to be v*
s. The pole voltage va follows the 

level-shifted modulation strategy. As shown in Figure3.16, N – 1 carriers are needed to 

determine N-level shape of va. The relationship of v*
s and va is plotted in Figure3.17.  
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Figure 3.16 Ac-side voltage v*
s and carriers, when (a) N is an odd number; and (b) N is 

an even number. 
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Figure 3.17 Ac-side voltage v*
s and pole voltage va, when (a) N is an odd number; and 

(b) N is an even number. 

When the pole voltage va at first level, one of the rows in Γ1
(N) will be assigned to the 

MMC as the chosen submodule pattern to realize this first-level pole-voltage. Recall that 

there is only one row in Γ1
(N), as formulated in (2.29). This row can be interpreted as this: 

SM1 to SMN – 1 are at by-pass mode, and SMN to SM2N – 2 are at inserting mode. The switches 

of each submodule need to follow this piece of Γ-matrix command accordingly. Similarly, 

when the pole voltage va at N-th level, one of the rows in ΓN
(N) will be assigned to MMC 

as the chosen submodule pattern to realize this Nth-level pole-voltage. Recall that there is 

only one row in ΓN
(N), as formulated in (2.32). This row can be interpreted as this: SM1 to 

SMN-1 are at inserting mode and SMN and SM2N-2 are at by-pass mode. The switches of 

each submodule need to follow this piece of Γ-matrix command accordingly.  

When the pole voltage va at k-th level, where 2 ≤ k ≤ N – 1, one of the rows in Γk
(N) will 

be assigned to MMC as the chosen submodule pattern to realize this kth-level pole-voltage. 
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Recall that there are mk rows in Γk
(N) where ( )

21 1
1 1 1

k N k k
k N N N

m C C C
− − −
− − −

= = . The rank of Γk
(N) is 

2N – 3, which means only 2N – 3 rows in Γk
(N) are needed to achieve the capacitor voltage 

balance. There are 
2 3

k

N

mC −
 combinations of 2N – 3 rows in Γk

(N) in total. However, not all of 

them have a rank of 2N – 3. Unlike two- and three-level MMC, N-level MMC submatrix,

( )ˆ N
kΓ , needs careful selection. The

( )ˆ N
kΓ extraction in this section follows the

( )ˆ N
kΓ

composition in Chapter 2.4 (2.30) - (2.31). The core submatrix,
( )3
2Γ̂ , of this composition 

procedure follows (2.16). This submatrix extraction may not be the optimal choice, but it 

is good enough to demonstrate the self voltage balancing of N-level MMC. The ΓMM 

procedure of N-level MMC are as follows, 

a. Determine the level of va by level-shifted modulation; 

b. Assign the instantaneous level number to the level pointer; 

c. Find the Γ-matrix pointer to which the level pointer points to; 

d. Read the Γ-matrix row (submodule pattern) which the Γ-matrix pointer points to; 

e. Generate the switching function for each submodule according to the current row 

of Γ matrix; 

f. Update Γ-matrix pointer to next row and wait for next call from level pointer.  

The N-level MMC modulation can also be explained with the aid of Figure3.18. To fully 

understand the self voltage balancing of N-level MMC, MATLAB/Simulink simulations 

are studied based on the Γ-matrix modulation. 
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Figure 3.18 Γ-matrix modulation strategy for N-level MMC. 

3.4.1 CASE STUDY: ΓMM BASED FOUR-LEVEL MMC 

Objective: In this case study, the working principle and the performance of ΓMM based 

four-level MMC are studied through MATLAB/Simulink. The simulation topology is 

shown in Figure3.19. 
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Figure 3.19 Four-level MMC simulation topology. 

Parameters: The key parameters of the MMC are as follows: rated apparent power S = 

150 kVA, output phase voltage Va = Vb = Vc = 964 V, output line current Ia = Ib = Ic = 52 

A, rated output fundamental frequency f0 = 60 Hz, rated load resistance Rload = 18.6 Ω, 

rated dc-bus voltage Vdc = 3 kV, number of submodules per arm: N – 1 = 3, submodule 

capacitance Ci = 171 µF (i = 1, 2, …, 18), line inductance Lline = 1 mH, and arm inductance 

Larm = 0.1 µH. The switching frequency is fsw = 30 kHz. The definition of switching 

frequency is the frequency of the MMC pole voltage jumping from one level to the other 

adjacent level. The key parameters are summarized in Table 3. 
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Table 3 

Four-level MMC simulation key parameters. 

Apparent Power, S 150 kVA 

Fundamental Frequency, f0 60 Hz 

Switching Frequency, fsw 30 kHz 

DC-Bus Voltage, Vdc 3000 V 

Phase Voltage, Va, Vb, Vc 964 V 

Line Current, Ia, Ib, Ic 52 A 

Load Resistance, Rload 18.6 Ω (100% p.u.) 

Line Inductance, Lline 1 mH   (2% p.u.) 

Arm Inductance, Larm 0.1 µH  

(0.0002% p.u.) 

Submodule Capacitance, Ci 171 µF (1.2 p.u.) 

Number of Submodules per Arm 3 

  where i = 1, 2, …, 18. 

Analysis: This four-level MMC simulation follows the Γ-Matrix Modulation strategy, 

as described in Figure3.20. The submatrices are as follows, 

 ( )4
1 0 0 0 1 1 1  =Γ , (3.8) 

 
( )4
2

0 1 0 1 0 1

0 1 0 0 1 1
ˆ 0 0 1 1 0 1

1 0 0 1 0 1

0 1 0 1 1 0

 
 
 
 
 
 
 
 

=Γ , (3.9) 
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( )4
3

1 1 0 1 0 0

1 1 0 0 1 0
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1 1 0 0 0 1

0 1 1 1 0 0

 
 
 
 
 
 
 
 

=Γ , (3.10) 
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Figure 3.20 Γ-matrix modulation strategy for four-level MMC. 

All submatrices are full rank. The load voltage and current are shown in Figure3.21. 

The mid-point voltage is shown in Figure3.22. The mid-point voltage of four-level MMC 

has seven levels. Although the mid-point voltage of any single phase, va vb or vc, has only 

four levels, the differential voltage of any two phases, vab vbc or vca, has seven levels.  The 

submodule capacitor voltage and current are shown in Figure3.23. The capacitor voltage 

ripple is within 5%. The capacitor current consists mainly of fundamental component and 

switching-frequency harmonics. Note that the submodule capacitance is only 1.2 p.u.. The 

energy stored in capacitor is 

 2 6 21
0.5 171 10 1000 85.5 (J)

2
−= =    =i i CiE CV . (3.12) 

The total energy in all submodule capacitors is 

 
18

2

1

1
18 1539 (J)

2=

= =  = i i Citotal
i

E E CV . (3.13) 
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The four-level MMC power rating is 150 kVA. The total capacitor energy in respect to 

MMC power rating is  

 
3

3

1539 10
10.26 (kJ/MVA)

150 10


−

−


= = =


total

E

S
. (3.14) 

Typically, the conventional MMC submodule capacitance is chosen such that the total 

stored energy in all submodule capacitors of the converter is approximately 30 – 40 

kJ/MVA, where MVA refers to the converter rating, giving ripple in the range of 10% [37]. 

To have a voltage ripple within 5%, the conventional MMC needs to have submodule 

capacitors energy to be 60 – 80 kJ/MVA. Normally, the capacitor energy storage capability 

is proportional to the capacitor size. The ΓMM based MMC features an extremely small 

capacitor volume compared to conventional MMC.  

The capacitor voltage is well balanced and converging to the expected value (1000 V) 

in Figure3.23. However, the fundamental ripples still exist. These fundamental ripples are 

introduced by the arm inductor and stray resistance. Note that the capacitor voltage balance 

analysis in Chapter 1 does not consider the voltage drop on arm inductors and stray 

resistance. The effect of those passive components will be discussed in future work.  

Figure3.24 shows one line current and its corresponding arm current. The arm current 

contains not only fundamental component but also switching-frequency harmonics. 

Normally, the conventional MMC arm current does not contain many switching-frequency 

harmonics, and the arm inductance follows the equation (3.4) [38], where ω0 = 2πf0, VCi = 

1000 V, and I2ω is the peak value of the 2-ω component in arm current. For conventional 

MMC, Ci = 60/10.26×171 µF = 1000 µF is needed to have a voltage ripple within 5%. 

Assume I2ω to be 13.8 A (Ia×26.5%). The arm inductance of conventional MMC should be 

4.1 mH (8.24% p.u.) according to (3.4). The arm inductor of ΓMM based MMC is 
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extremely small comparing to conventional MMC. Small arm inductance is critical to 

balance the capacitor voltage. This will be explained in future work.  

Figure3.25 shows the input dc voltage and current. As seen from Figure3.25, the input 

current consists of dc component and switching-frequency harmonics. These switching-

frequency harmonics can be mitigated by adding a decoupling capacitor at dc bus. 

Figure3.26 shows all capacitor voltages at phase-A. The capacitor voltages do not 

deviate from nominal value. 

 

 

Figure 3.21 Four-level MMC (a) load voltage and (b) load current. 
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Figure 3.22 Four-level MMC mid-point voltage (a) vab; (b) vbc; and (c) vca. 
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Figure 3.23 Submodule capacitor (a)/(c) voltage; and (b)/(d) current. 
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Figure 3.24 (a) Line current in phase-A and its corresponding (b) upper arm current, 

(c) lower arm current.  

 

Figure 3.25 Dc input voltage and current. 
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Figure 3.26 All submodule capacitor voltages in phase-A. 

3.4.2 CASE STUDY: ΓMM BASED FOUR-LEVEL MMC WITH NON-FULL-

RANK Γ MATRIX 

Objective: In this case study, a non-full-rank Γ matrix is selected for the four-level 

MMC. Compared with case study in Chapter 3.4.1, the necessity of full-rank Γ matrix 

selection is addressed. The simulation topology is shown in Figure3.19. 

Parameters: All the converter parameters are the same as case study in Chapter 3.4.1. 

The key parameters of the MMC are as follows: rated apparent power S = 150 kVA, output 

phase voltage Va = Vb = Vc = 964 V, output line current Ia = Ib = Ic = 52 A, rated output 

fundamental frequency f0 = 60 Hz, rated load resistance Rload = 18.6 Ω, rated dc-bus voltage 

Vdc = 3 kV, number of submodules per arm: N – 1 = 3, submodule capacitance Ci = 171 µF 

(i = 1, 2, …, 18), line inductance Lline = 1 mH, and arm inductance Larm = 0.1 µH. The 

switching frequency is fsw = 30 kHz. The definition of switching frequency is the frequency 

of the MMC pole voltage jumping from one level to the other adjacent level. The key 

parameters are summarized in Table 3. 

Analysis: This four-level MMC simulation follows the Γ-Matrix Modulation strategy, 

as described in Figure3.20. The submatrices are as follows, 

 
( )  4
1 0 0 0 1 1 1=Γ , (3.15) 
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 ( )4
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0 0 1 1 0 1

0 1 0 0 1 1

ˆ 1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

 
 
 
 =
 
 
  

Γ , (3.16) 

 ( )4
3

1 0 1 1 0 0

1 1 0 0 1 0

ˆ 0 1 1 0 0 1

1 0 1 0 1 0

1 1 0 1 0 0

 
 
 
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 
 
  

Γ , (3.17) 

 
( )  4
4 1 1 1 0 0 0=Γ . (3.18) 

The rank of each matrix are as follows, 

 ( )4
1

1 
 

=rank Γ , ( )4
2

ˆ 4 
 

=rank Γ , ( )4
3

ˆ 4 
 

=rank Γ , and ( )4
4

1=  rank Γ . (3.19) 

The rank of any two adjacent matrices are as follows, 
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4
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4
4

ˆ
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 
 
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 

=rank
Γ

Γ
. (3.20) 

The load voltage and current are shown in Figure3.27. The mid-point voltage is shown 

in Figure3.28. The mid-point voltage of four-level MMC has more than seven levels as the 

capacitor voltage deviates from its nominal value. The submodule capacitor voltage and 

current are shown in Figure3.29. The capacitor voltage has deviated from its nominal value 

over 30% after five fundamental cycles.  

Figure3.30 shows phase-A line current and its corresponding arms’ current.  

Figure3.31 shows the input dc voltage and current. As seen from Figure3.31, the input 

current consists of dc component and switching-frequency harmonics. These switching-

frequency harmonics can be mitigated by adding a decoupling capacitor at dc bus. 
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Figure3.32 shows all capacitor voltages at phase-A. The initial voltage of all capacitors 

is 1000 V. Capacitor voltage VC1 and VC6 are gradually reduced to 0 while VC2 to VC5 

increase to 1500 V.  

 

 

Figure 3.27 Four-level MMC (a) load voltage and (b) load current. 
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Figure 3.28 Four-level MMC mid-point voltage (a) vab; (b) vbc; and (c) vca. 
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Figure 3.29 Submodule capacitor (a)/(c) voltage; and (b)/(d) current. 
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Figure 3.30 (a) Line current and its corresponding (b) upper arm current, (c) lower arm 

current.  

 

Figure 3.31 Dc input voltage and current. 
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Figure 3.32 All submodule capacitor voltages in phase-A. 

3.4.3 CASE STUDY: ΓMM BASED FOUR-LEVEL MMC WITH CAPACITANCE 

DEVIATION 

In this case study, one submodule capacitance is 50% larger than the other submodules to 

show that the proposed ΓMM has a good immunity to capacitance deviation. It is common 

that submodule capacitances are not exactly equal. The simulation topology is shown in 

Figure3.19. All the converter parameters and core submatrices are the same as Chapter 

3.4.1, except for C3 is 257 µF. The capacitor voltages are self balanced as expected. 

The submodule capacitor C3 voltages is shown in Figure3.33. Figure3.34 shows all 

capacitor voltages in phase-A. All capacitor voltages are well balanced and converging to 

nominal value (1000 V).  
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Figure 3.33 Submodule capacitor C3 voltage.  
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Figure 3.34 All submodule capacitor voltages in phase-A.  

3.4.4 CASE STUDY: ΓMM BASED ELEVEN-LEVEL MMC 

Objective: In this case study, the working principle and the performance of ΓMM based 

eleven-level MMC are studied through MATLAB/Simulink. The simulation topology is 

shown in Figure3.35. 
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Figure 3.35 Eleven-level MMC simulation topology. 
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Parameters: The key parameters of the MMC are as follows: rated apparent power S = 

500 kVA, output phase voltage Va = Vb = Vc = 3200 V, output line current Ia = Ib = Ic = 52 

A, rated output fundamental frequency f0 = 60 Hz, rated load resistance Rload = 62 Ω, rated 

dc-bus voltage Vdc = 10 kV, number of submodules per arm: N – 1 = 10, submodule 

capacitance Ci = 769 µF (i = 1, 2, …, 60), line inductance Lline = 1 mH, and arm inductance 

Larm = 0.1 µH. The switching frequency is fsw = 60 kHz. The definition of switching 

frequency is the frequency of the MMC pole voltage jumping from one level to the other 

adjacent level. The key parameters are summarized in Table 4. 

Table 4 

Eleven-level MMC simulation key parameters. 

Apparent Power, S 500 kVA 

Fundamental Frequency, f0 60 Hz 

Switching Frequency, fsw 60 kHz 

DC-Bus Voltage, Vdc 10 kV 

Phase Voltage, Va, Vb, Vc 3200 V 

Line Current, Ia, Ib, Ic 52 A 

Load Resistance, Rload 62 Ω (100% p.u.) 

Line Inductance, Lline 1 mH    

(0.61% p.u.) 

Arm Inductance, Larm 0.1 µH  

(0.00006% p.u.) 

Submodule Capacitance, Ci 770 µF (18 p.u.) 

Number of Submodules per Arm 10 
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  where i = 1, 2, …, 60. 

Analysis: This eleven-level MMC simulation follows the Γ-Matrix Modulation strategy, 

as described in Figure3.18. The ( )ˆ N
kΓ extraction in this section follows the ( )ˆ N

kΓ composition 

in Chapter 2.4 Eq.(2.30) and (2.31). The initial core submatrix, ( )3
2Γ̂ , of this composition 

procedure follows (2.16).  

The load voltage and current are shown in Figure3.36. The mid-point voltage is shown 

in Figure3.37. The mid-point voltage of eleven-level MMC has 17 levels. Although the 

mid-point voltage of any single phase, va vb or vc, has only 11 levels, the differential voltage 

of any two phases, vab vbc or vca, has 17 levels.  The submodule capacitor voltage and current 

are shown in Figure3.38. The capacitor voltage ripple is within 6%. The capacitor current 

consists mainly of fundamental component and switching-frequency harmonics. Note that 

the submodule capacitance is 18 p.u.. The energy stored in capacitor is 

 

2 6 21
0.5 770 10 1000 385 (J)

2i i CiE CV −= =    =
. (3.21) 

The total energy in all submodule capacitors is 
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1
60 23100 (J)

2=

= =  = i i Citotal
i

E E CV . (3.22) 

The eleven-level MMC power rating is 500 kVA. The total capacitor energy in respect 

to MMC power rating is  
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46.2 (kJ/MVA)

500 10


−

−


= = =


total

E

S
. (3.23) 

Typically, the conventional MMC submodule capacitance is chosen such that the total 

stored energy in all submodule capacitors of the converter is approximately 30 – 40 

kJ/MVA, where MVA refers to the converter rating, giving ripple in the range of 10% [37]. 
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To have a voltage ripple within 6%, the conventional MMC needs to have submodule 

capacitors energy to be 50 – 67 kJ/MVA. Normally, the capacitor energy storage capability 

is proportional to the capacitor size. The ΓMM based MMC features smaller capacitor 

volume compared to conventional MMC.  

The capacitor voltage is well balanced and converging to the expected value (1000 V) 

in Figure3.38. However, the fundamental ripples still exist. These fundamental ripples are 

introduced by the arm inductor and stray resistor. Note that the capacitor voltage balance 

analysis in previous sections did not consider the voltage drop on arm inductors and stray 

resistors. The effect of those passive components will be discussed in future work.  

Figure3.39 shows line current in phase-A and its corresponding arm current. The arm 

current contains not only fundamental component but also switching-frequency harmonics. 

Normally, the conventional MMC arm current does not contain many switching-frequency 

harmonics, and the arm inductance follows the equation (3.4) [38], where ω0 = 2πf0, VCi = 

1000 V, and I2ω is the peak value of the 2-ω component in arm current. For conventional 

MMC, Ci = 50/46.2×770 µF = 833 µF to have a voltage ripple within 6%. Assume I2ω to 

be 13.8 A (Ia×26.5%). The arm inductance of conventional MMC should be 23.3 mH (14.2% 

p.u.) according to (3.4). The arm inductor of ΓMM based MMC is extremely small 

compared to conventional MMC. Small arm inductance is critical to balance the capacitor 

voltage. This will be explained in future work.  

Figure3.40 shows the input dc voltage and current. As seen from Figure3.40, the input 

current consists of dc component and switching-frequency harmonics. These switching-

frequency harmonics can be mitigated by adding a decoupling capacitor at dc bus. 



72 

Figure3.41 shows all capacitor voltages at phase-A. The capacitor voltages do not 

deviate from nominal value. 

 

 

Figure 3.36 Eleven-level MMC (a) load voltage and (b) load current. 
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Figure 3.37 Eleven-level MMC mid-point voltage (a) vab; (b) vbc; and (c) vca. 
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Figure 3.38 Submodule capacitor (a)/(c) voltage; and (b)/(d) current. 
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Figure 3.39 (a) Line current in phase-A and its corresponding (b) upper arm current, 

(c) lower arm current.  

 

Figure 3.40 Dc input voltage and current. 
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Figure 3.41 All submodule capacitor voltages in phase-A. 

 

The process of MMC operation is similar to the calculation of the power flow by iterations. 

In the first iteration of power flow calculation, an initial estimation of the unknowns will 

be provided to the first equation of the equation set. This initial estimation does not 

necessarily be the solution for the first equation. A specific iteration law, Newton-Raphson 

for example, will be provided to find a solution for the first equation based on the initial 

estimation. Once we have a solution for the first equation, this solution is inserted into the 

next equation as the initial estimation. Then the iteration law will again be applied to find 

the solution for the second equation. This iteration will be repeated until the solution 

converges. That is to say, the solution only makes a slight change each time of the iteration. 

So, this solution is deemed to be close enough to the analytical solution we are looking for. 

The difference between power flow calculation and MMC voltage balancing calculation 

we set up in this Chapter is that the iterations are done by software in power flow 

calculation, whereas the iterations are done by hardware in MMC. MMC model provides 

an iteration law, which is equivalent to Newton-Raphson, so that the solution gets closer 

to the analytical solution after each iteration. In another word, MMC operation is emulating 

the software iteration to find the solution for capacitor voltage equations set up in Part I. 
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So, the capacitor voltage equations are actually a virtual equation set. The inductor voltage 

could be regarded as a computation error, or measurement error, during these iterations. 

This iteration law provided by MMC physical nature is robust enough to immune to the 

error introduced by arm inductor.  

 

This Chapter proposed a Γ-Matrix Modulation for MMC. With this novel modulation, the 

MMC achieves self voltage balancing. This can extremely simplify, or even eliminate, the 

capacitor voltage balancing control for MMC. Conventionally, either a complicated 

voltage balancing control, or extra components must be embedded to MMC to balance the 

capacitor voltage, which increases the MMC cost. Compared to conventional MMC 

capacitor voltage balancing strategies, ΓMM features extremely simple algorithms and 

good reachability to high-level MMCs while maintaining the original half-bridge 

submodule topology. Four- and eleven-level MMC cases are studied to verify the 

effectiveness of ΓMM.  
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4 THE STATE-SPACE MODEL OF MODULAR MULTILEVEL CONVERTER 

 

In Figure3.32, we have seen a mysterious phenomenon: capacitor voltage VC1 and VC6 

are gradually reduced to 0 while VC2 to VC5 increase to 1500 V. Although the capacitor 

voltages diverge as we expect, we do not expect the voltages end up with these values from 

our previous analysis. The Γ-matrix selected for Chapter 3.4.3 are as follows 

 ( )  4
1 0 0 0 1 1 1=Γ , (4.1) 

 
( )4
2

0 0 1 1 0 1

0 1 0 0 1 1

ˆ 1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

 
 
 
 =
 
 
  

Γ , (4.2) 
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3
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Γ , (4.3) 

 ( )  4
4 1 1 1 0 0 0=Γ . (4.4) 

The rank of each matrix are as follows, 

 ( )4
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The rank of any two adjacent matrices are as follows, 
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. (4.6) 

The voltage balancing equations of this Γ-matrix are as follows 
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The solutions of (4.7)-(4.9) are as follows 

 

1 6

2 3 4 5

1 2 3  3

C C

C C C C

C C C dc

V V

V V V V

V V V V

=


= = =
 + + =

 (4.10) 

These solutions are not unique. In another word, Eq.(4.7)-(4.9) have infinite many 

solutions. VC1 and VC6 could be zero as observed in Figure3.32. They could also be other 

numbers. For example, 

 
1 6

2 3 4 5 0

 3C C dc

C C C C

V V V

V V V V

= =


= == =
 (4.11) 

Another example 

 
1 6

2 3 4 5

 0

1.2

.6C C dc

C C C C dc

V V V

V V V V V

= =


= = = =
 (4.12) 

Eq.(4.11) and (4.12) are just two possible solutions for (4.7)-(4.9). Actually, (4.7)-(4.9) 

should have infinite many solutions since they are non-full-rank. Among (4.11) and (4.12), 

Eq.(4.12) could be observed in Figure3.32 during the transition of the capacitor voltage to 
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the new steady state. Eq.(4.11) does not ever exist either during the transition or in the 

steady state. Our previous analysis could not explain this phenomenon. We need to set up 

a proper dynamic model for MMC to understand this phenomenon, so that we might have 

a chance to predict and control the behavior of those capacitors in the future. 

 

Many literatures have modeled MMC for different purposes and scenarios. For example, 

i) The MMC is modeled as a whole system in order to understand the interaction 

between MMCs and other objectives (power grid, load, etc.) [39]-[41]. 

Normally, this type of models is for system level controller design.  

ii) The MMC is modeled by arm or submodules in order to understand the internal 

state variables dynamics [42]-[52]. Normally, this type of modeling ends up 

with internal state variable regulations. 

iii) The MMC is modeled to evaluate a specific state variable at steady state[53]-

[55]. This type of MMC modeling loses most of the dynamic properties of 

MMC but becomes an effective guidance for parameter design. 

iv) The MMC is modeled for real-time simulation [56]-[61]. The existing literature 

proposes numerous simplified and computationally-efficient equivalent models 

for MMC to meet with the fast calculation of real-time simulation.  

Most of the models developed so far differ from each other on the basis of different 

degree of assumptions and simplification. This makes them unsuitable for understanding 

the nature of this circuit from its physical basement. Wang et. [51] proposed a state-space 

switching model, which is derived from accurate mathematical model without losing any 

characteristics of MMC. However, the aim of [51] is to develop a control to minimize the 
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submodule capacitance and arm inductance. Therefore, the state variables selected in [51] 

are control oriented. This made it unsuitable for understanding the dynamics of MMC. 

[45] proved that the arm voltage converges to equilibrium point by nature from 

Lyapunov method. The model in [45] reduces the dimension of the system by assuming 

that all submodules per arm have identical dynamics. The Lyapunov energy function 

proposed in [45] has the potential to evaluate the system stability quantitively, however, 

the composition of the Lyapunov energy function is complicated for high order systems. 

The existing models are not suitable for understanding the MMC circuit from its physical 

basement. We need to have a model that is accurate enough to demonstrate the mechanism 

of the self balance nature of MMC.  

Switched circuits in power electronics naturally present hybrid behavior. Such circuits 

can be described by a set of discrete states with associated continuous dynamics. All power 

electronic systems can be categorized to hybrid system from control theory point of view. 

However, we seldomly evaluate our power electronic systems using the knowledge from 

hybrid system analysis. [62] set a good example for how to apply hybrid system analysis 

on a boost converter.  

This Chapter proposes a comprehensive state-space model for MMC system that 

consistent with hybrid system analysis. With this state-space model, the mechanism of the 

self balance nature of MMC system could be well explained. 

This Chapter is organized as follows: 

The prior art of MMC modeling is summarized in Chapter 4.3. The contribution of this 

Chapter is summarized in Chapter 4.4. The principle of Γ-Matrix Modulation is reviewed 

in Chapter 4.5. The state-space model of 2-level MMC is derived in Chapter 4.6. The model 
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is extended to 3-level MMC in Chapter 4.7. A general state-space model of N-level MMC 

is derived in Chapter 4.8. The effectiveness of the proposed stability analysis is verified by 

comparing the proposed state-space model with simulation studies.  

 

In the stability analysis of an MMC-HVDC system, MMC is normally modeled as a 

voltage-source converter (VSC) [39]-[41]. The VSC model is shown in Figure4.1. The 

model can well interpret the oscillation of a certain state under the controller and the 

corresponding power network or load.  This type of modeling is usually established on the 

small signal modeling and focused on the phasor/magnitude dynamics. This MMC model 

can well serve the controller design, especially the DC voltage control (DVC) in timescale 

around 10Hz. However, the simplified VCS model contains only one equivalent dc link 

capacitor, either time invariant or time variant. This simplification is suitable for high-level 

MMC since all the submodule capacitors are reduced to one equivalent dc-link capacitor. 

One limitation for the VSC model is that the dynamics of individual cells cannot be 

differentiated from the others in the given model as all of them assumed to be identical.  

Modulation Control loop 1 Control loop 2 PLL

Internal states

Internal states

E t tU
i

i t

Xeq Xg

MMC Model

Power Network/ Load

 

Figure 4.1 The VSC model of MMC. 

The MMC is modeled by selecting different internal states in order to understand the 

internal state variables dynamics [42]-[52]. The selection of the states can be classified into 

time domain[45]-[52] and frequency domain[42]-[44], [63]-[64]. The frequency domain 
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state variables contain the independent harmonic states. This will increase the complexity 

of the Harmonic State Space (HSS). The effects of a zero-sequence voltage are included in 

some HSS MMC models [63]-[64]. They are all three-phase models with a large number 

of state variables. Therefore, a single-phase MMC model considering zero-sequence 

voltage is proposed in [42] to reduce the number of state variables.  

The time domain models different from each other by selecting different state variables. 

The most common time domain model is arm averaged model (AAM)[45]-[50]. AAM 

assumes that the voltage distribution among the submodules in each arm is equal. This 

assumption implies that the capacitor voltage is well balanced among each arm. AAM can 

significantly reduce the complexity of MMC model while maintaining an accurate 

representation of the internal dynamics. For three-phase MMC, there are five independent 

loop currents and six independent node voltages in topology as shown in Figure4.2. These 

eleven states can be selected as state variables to derive the state-space model of MMC. 

Other than selecting these eleven state variables, these states can be manipulated into other 

states by linear operations, for example sum and difference of any two states. Figure4.3 

shows several ways to select loop currents. Figure4.4 shows the node voltages are 

manipulated to be common-mode and differential-mode states. Figure4.5 shows 

combinations of loop current selection and node voltage selection. 
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Figure 4.2 Five independent loop currents and six independent node voltages in 

topology. 
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(a) 

Figure 4.3 Loop current selection (a) single-phase oriented [47]-[48] (b) inductor 

current oriented [49]-[50] and (c) circulating current oriented [45],[51]-[52]. 
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Figure 4.3 (cont’d)  

iL5

iL2

iL1

+

–

+

–

+

–

+

–

+

–

+

–

Vdc

vC1

vC2

vC3

vC4

vC5

vC6

iL3

iL4

 

(b) 

iL5

iL4

iL3iL2iL1

+

–

+

–

+

–

+

–

+

–

+

–

Vdc

vC1

vC2

vC3

vC4

vC5

vC6

 

(c) 
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Figure 4.4 Common-mode and differential-mode voltage as state variables [46]. 
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(a) 

Figure 4.5 State variable selections (a) dc current + common/differential-mode voltage 

oriented (b) inductor current + common/differential-mode voltage oriented and (c) 

circulating current + common/differential-mode voltage oriented. 
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Figure 4.5 (cont’d)  
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(c) 

AAM eliminates most of the dynamic difference among the submodule voltages. [51] 

proposed a switching cycle model (SCM) that discriminates the dynamics of submodule 

voltages. The SCM assigns each submodule with an independent state.  

MMCs are also model for other purposes. The MMC is modeled to evaluate a specific 

state variable at steady state[53]-[55]. This type of MMC modeling loses most of the 

dynamic properties of MMC but becomes an effective guidance for parameter design. The 
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MMC is modeled for real-time simulation [56]-[61]. The existing literature proposes 

numerous simplified and computationally efficient equivalent models for MMC to meet 

with the fast calculation of real-time simulation. The selection of MMC internal state 

variables are summarized in Figure4.6. 

Internal State Variable Selection

Time Domain Frequency Domain

Switching Cycle Model (SCM)

• Assign each submodule 

with an independent state

• Most accurate model of 

MMC

• State variable selected on 

the basis of control/

observing interest

• Increased state space 

complexity

Focus of this dissertation

Arm Averaged Model (AAM)

• Assume the dynamics of 

submodules are identical in 

each arm

• Focus on the certain internal 

state variables 

• Suitable for controller design 

to regulate internal states of 

interests

• Reduced state space 

complexity

node voltage loop current

common/

diferential-

mode voltage

common/

differential-

mode current

d-q Frame

• Focus on fundamental 

frequency

• Derived from AAM

• Assume the dynamics of 

submodules are identical

• Prerequisite for 

linearization at equilibrium 

Harmonic State Space (HSS)

• Focus on harmonic 

components

• Derived from AAM

• Assume the dynamics of 

submodules are identical 

• Assign each harmonic with 

an independent state

• Increase state space 

complexity

single-phase

• Simple in state 

space

• Low accuracy in 

catching 

dynamics

three-phase

• Complex in state 

space

• High accuracy in 

catching 

dynamics

                                                                                   

                                                                                                                                                          

                                                                                          

 

Figure 4.6 The selection of MMC internal state variables. 

 

The model proposed in this Chapter falls into the category of SCM. The SCM assigns 

each submodule with an independent state. The state variables selected in [51] focus on the 

circulating current and three-phase MMC, which increase the number of state variables. 

This dissertation proposes a comprehensive state-space model for single-phase MMC 

system that reduces the number of state variables compared to [51]. With this state-space 

model, the convergence/divergence of submodule voltage could be well captured. The state 

variable selection of [51] is shown in Figure4.7. The selection of state variables of this 

Chapter is shown in Figure4.8. For an N-level MMC, there are 6N – 1 states needed in [51], 

whereas only 2N states needed in this dissertation. 
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Figure 4.7 The state variable selection of [51]. 
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Figure 4.8 The state variable selection of this dissertation. 

 

 

Γ-Matrix Modulation (ΓMM) was proposed in Chapter 3 [65]-[66]. This novel 

modulation utilizes the self balance nature of MMC so that the voltage balancing control 

of MMC is eliminated. ΓMM contains two stages. Namely, level pointer preparation and 

Γ-matrix adaptation. 
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4.5.1 LEVEL POINTER PREPARATION 

An N-level MMC is plotted in Figure4.9. A N-level MMC contains N – 1 submodules 

on upper arm and N – 1 submodules on lower arm. For an N-level MMC, there are N – 1, 

and only N – 1, out of 2N – 2 submodules at inserting mode at a time. The other N – 1 

submodules are at by-pass mode meanwhile. Therefore, there are N possible levels on pole 

voltage va. The numbering of levels in an N-level MMC is shown in Figure4.10. 
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Figure 4.9 N-level MMC circuit. 
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Figure 4.10 Numbering of levels in an N-level MMC, when (a) N is an odd number; 

and (b) N is an even number. 

There are multiple ways to determine the pole voltage level[67]. Phase-disposition (PD) 

modulation is adopted in this Chapter to determine the pole voltage level. Other methods 

should also work properly for level pointer preparation. 

N – 1 carriers are needed to determine N-level shape of va. The carriers are plotted in 

Figure4.11. The relationship of v*
s and va is plotted in Figure4.12. 
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Figure 4.11 ac-side voltage v*
s and carriers, when (a) N is an odd number; and (b) N is 

an even number. 
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Figure 4.12 ac-side voltage v*
s and pole voltage va, when (a) N is an odd number; and 

(b) N is an even number. 

The outcome of PD modulation is assigned to the level pointer.  
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4.5.2 Γ-MATRIX ADAPTATION 

There are always no less than one switching pattern to achieve an arbitrary level of va. 

One possible selection of switching pattern, namely Γ-Matrix subtraction, is proposed in 

[61]. The method extremely reduces the Γ dimension to a practical number. MMC achieves 

self balancing with this Γ-matrix selection[62]. The submatrix Γ̂  extracted from Γ is a mk-

by-(2N – 2) matrix, where 1 1

2 2

− − −

− −= k N k

k N Nm C C . There are still no less than one switching 

pattern to achieve an arbitrary level of va if using Γ̂ . The Γ-matrix adaptor determines the 

specific row in Γ̂  to achieve a certain level of va. Recall that Γ̂ of an N-level MMC are as 

follows, 
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 (4.13) 

( )ˆ N
kΓ is a matrix that contains all the selected switching patterns to achieve level k for an 

N-level MMC.  

When the level pointer at first level, Γ1
(N) is chosen as the switching pattern to 

implement this first-level pole-voltage. Similarly, when the pole voltage va at N-th level, 

ΓN
(N) is chosen as the switching pattern to implement this level-N pole-voltage. Recall that 

Γ1
(N) and ΓN

(N) are as follows, 

 
( )

1

1 1

[0 0 1 1]

− −

=N

N N

Γ k , (4.14) 
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When the level pointer at k-th level, where 2 ≤ k ≤ N – 1, ( )ˆ N
kΓ is chosen to implement 

this kth-level pole-voltage. There are multiple ways to compose ( )ˆ N
kΓ . The ( )ˆ N

kΓ  

composition in this Chapter follows Chapter 3, which is  
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where 2 ≤ k ≤ N – 2.  
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where k = N – 1.  

( )1ˆ −N
kΓ  and ( )1

1
ˆ −

−
N

kΓ  are core submatrices from (N – 1)-level MMC. Tk-1(a)
(N-1) is derived 

from ( )1
1

ˆ −
−
N

kΓ  by manipulating the right most “1” in first row of ( )1
1

ˆ −
−
N

kΓ  to “0”. Tk-1(b)
(N-1) is 

derived from ( )1
1

ˆ −
−
N

kΓ  by manipulating the left most “0” in first row of ( )1
1

ˆ −
−
N

kΓ  to “1”.  

There are multiple switching patterns to achieve k-th level. Γ-matrix adaptor determines 

the exact switching pattern for MMC when level pointer visits level k. Γ-matrix adaptor 

reads the current switching pattern that the Γ-matrix pointer points to. Then, reassign the 

Γ-matrix pointer to the next switching pattern and wait for the next call from level pointer. 

The ΓMM for N-level MMC can also be explained with the aid of Figure4.13.  



95 

Level 1

Level 2

Level N

Level Pointer

Γ-matrix Pointer

Level k

( )

1
NΓ

( )

2
ˆ NΓ

( )ˆ N
kΓ

( )N
NΓ

 

Figure 4.13 Γ-matrix modulation for N-level MMC. 

 

We need to find the state-space model of MMC to demonstrate the dynamics of the 

system. Figure4.14 shows a two-level MMC that is under analysis in this section. 

Figure4.15 shows the simplified MMC model. For a two-level MMC, there are two feasible 

switching patterns. Either the upper submodule or the lower submodule is inserted. The 

following section will model the two-level MMC for each switching pattern. 

VC1

1/2Vdc

1/2Vdc

Vs

VC2

va

C1

C2

VC1

1/2Vdc

1/2Vdc

Vs

VC2

va

C1

C2

is is

i1

i2

VL1

VL2

VL1

VL2

i1

i2  

(a)   (b) 

Figure 4.14 two-level MMC with pole connected to (a) positive dc rail (Level 1); and 

(b) negative dc rail (Level 2). 
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1/2Vdc

1/2Vdc VC2
C2

is

VL1

VL2

i1

i2

is

1/2Vdc

1/2Vdc

VC1

C1

is

VL1

i1

i2

is

VL2

L

L L

L

 

(a)  (b) 

Figure 4.15 two-level MMC model with pole connected to (a) positive dc rail; and (b) 

negative dc rail.  

4.6.1 STATE-SPACE MODEL 

Figure4.15(a) can be formulated as 

 

1
1

2
2

2
2 2

1 2

1 2 2

L

L

C

s

dc L L C

di
V L

dt

di
V L

dt

dV
i C

dt
k

i i i

V V V V

k k


=


 =


 =


 = +



= + +

. (4.18) 

The corresponding switching pattern is  

 ( )  2
1 0 1=Γ . (4.19) 

Define the state variables to be 
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11

22

13

24

C

C

ix

ix

Vx

Vx

  
  
  = =
  
  

   

X , 

1

1
2

2

13

4

2

C

C

di

dt
x di

x dt

dVx

dtx

dV

dt

 
 
  
  
  = =   
  
  
 
 
 

X  . (4.20) 

Rewrite (4.18) into state equation form, 

 

1 4

2 4

4 2

2

1 1 1

2 2 2

1 1 1

2 2 2

1

s
dc

s
dc

di
x x V

L L dt

di
x x V

L L dt

x x
C

k


= − + +




= − + −



=


, (4.21)
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or 

 

1 1 2 3 4

2 1 2 3 4

3 1 2 3 4

1

4 1 2 3 4

2

1 1 1 1
0 0

2 2 2 2

1 1 1 1
0 0

2 2 2 2

1
0

0 1

0 1

0

1

0 0 0

1
0 0 0 0

s
dc

s
dc

di
x x x x x V

L L L dt

di
x x x x x V

L L L dt

x x x x x
C

x x x x x
C

      
=  +  +  − +  − + +           

     
=  +  +  − +  − + −     

     


 
=  +  +  +  + 

 

 
=  +  +  +  + 

 












. (4.22)
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Rewrite (4.22) into matrix form, 

 

1 1

2 2

3 3

14 4

2

1 1
0 0

2 2 1 1

1 1 2 20 0
2 2 1 1

1 2 2
0 0 0

0 0

0 01
0 0

0 1

0 1

0

1 0

dc

s

L L

x x L
V

L Lx x
di

Lx x
dtCx x

C

    
 −  −          

         
 −  −                       −= +

        
         
       

     
  
  



. (4.23) 

 

The coefficient marked in red contains the information from switching patter Γ1
(2).  

The system matrices are 

 

1

2

0 1

0 1

0

1

1 1
0 0

2 2

1 1
0 0

2 2

1
0 0 0

1
0 0 0

L L

L L

C

C

    
 −  −       

 
    

 −  −       
 =

  
  
  

  
  
  

A ,  

 

1 1

2 2

1 1

2 2

0 0

0 0

L

L

 
 
 
 −=
 
 
 
  

B ,  

 and 
dc

s

V

di

dt

 
 =
 
 

U . (4.24) 

The coefficient matrix could be decomposed as follows, 
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1

2

1 1
0 0

2 2

1 1
0 0

2 2

1
0 0

0 1

0 1

0

1

0

1
0 0 0

L

C

L L

L L

C

C

    
 −  −       

 
    

 −  −         
 = =  

  
   

  
  

  
  

0 A
A

A 0
. (4.25) 

   ( )2

1

1 1 1

2 2 2 ˆ
11 1

2

1

2 2

0 1

0

0 1

      
 −  − −         

 = =  =  
      − −  −           

L L

L L L

LL L

A A Γ . (4.26) 

 
1

2

1
0

ˆ
1

0

10

C C C

C

C

  
  
    = =    

  
   

A A A . (4.27) 

   ( )( )2

1 1

1

ˆ ˆ0 1 '

0

  
  =  =   
    

C C
Cdiag diagA A Γ . (4.28) 

   ( )( )2

1

2

0

0 1 '1

  
  =  =   
    

C Cdiag diag

C

A A Γ . (4.29) 

diag operator returns a column vector of the main diagonal elements of the objective 

matrix. ˆ
LA contains the parameters from arm inductance. ˆ 'CA and 'CA contains the 

parameters from submodule capacitance. The reason to decompose the state space in such 

form is to save the work for programming. It will be easy to extent to high level state space 

by decomposing the matrix into such form. 
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Note that U contains sdi

dt
. sdi

dt
 reflects the voltage across the load inductor. That is  

 s
a a s

di
L v V

dt
= − , (4.30) 

as modeled in Figure4.16. 

is

Vsva

La

 

Figure 4.16 Load inductor voltage modeling. 

If the pole is attached to the positive dc rail, as shown in Figure4.14(a) and Figure4.15(a), 

va = 1/2Vdc. Eq.(4.30) can be modified as 

 
1 1

( )
2

s
dc s

a

di
V V

dt L
= − . (4.31) 

Replace the sdi

dt
 in (4.23) by (4.31) 

 1 1
( )
2

 
 =
 −
  

dc

dc s

a

V

V V
L

kkkkk

U . (4.32) 

Figure4.15(b) can be formulated as 

 

1
1

2
2

1
1 1

1 2

1 2 1

L

L

C

s

dc L L C

di
V L

dt

di
V L

dt

dV
i C

dt
k

i i i

V V V V

k k


=


 =


 =


 = +



= + +

. (4.33) 

The corresponding switching pattern is  
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 ( )  2
2 1 0=Γ . (4.34) 

Define the state variables to be 

 

11

22

13

24

C

C

ix

ix

Vx

Vx

  
  
  = =
  
  

   

X , 

1

1
2

2

13

4

2

C

C

di

dt
x di

x dt

dVx

dtx

dV

dt

 
 
  
  
  = =   
  
  
 
 
 

X  . (4.35) 

Rewrite (4.33) into state equation, 

 

1 3

2 3

3 1

1

1 1 1

2 2 2

1 1 1

2 2 2

1

s
dc

s
dc

di
x x V

L L dt

di
x x V

L L dt

x x
C

k


= − + +




= − + −



=


 (4.36) 
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or 

 

1 1 2 3 4

2 1 2 3 4

3 1 2 3 4

1

4 1 2 3 4

2

1 1 1 1
0 0

2 2 2 2

1 1 1 1
0 0

2 2 2 2

1
0

1 0

1 0

1

0

0 0 0

1
0 0 0 0

s
dc

s
dc

di
x x x x x V

L L L dt

di
x x x x x V

L L L dt

x x x x x
C

x x x x x
C

      
=  +  +  − +  − + +           

     
=  +  +  − +  − + −     

     


 
=  +  +  +  + 

 

 
=  +  +  +  + 

 












 . (4.37)
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Rewrite (4.37) into matrix form, 

 

1 1

2 2

3 3

14 4

2

1 1
0 0

2 2 1 1

1 1 2 20 0
2 2 1 1

1 2 2
0 0 0

0 0

0 01
0 0

1 0

1 0

1

0 0

dc

s

L L

x x L
V

L Lx x
di

Lx x
dtCx x

C

    
 −  −          

         
 −  −                       −= +

        
         
       

     
  
  



. (4.38) 

The coefficient marked in red contains the information from switching patter Γ2
(2).  

The system matrices are 

 

1

2

1 0

1 0

1

0

1 1
0 0

2 2

1 1
0 0

2 2

1
0 0 0

1
0 0 0

L L

L L

C

C

    
 −  −       

 
    

 −  −       
 =

  
  
  

  
  
  

A ,  

 

1 1

2 2

1 1

2 2

0 0

0 0

L

L

 
 
 
 −=
 
 
 
  

B ,  

 and 
dc

s

V

di

dt

 
 =
 
 

U . (4.39) 

The coefficient matrix could be decomposed as follows, 
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1

2

1 1
0 0

2 2

1 1
0 0

2 2

1
0 0

1 0

1 0

1

0

0

1
0 0 0

L

C

L L

L L

C

C

    
 −  −       

 
    

 −  −         
 = =  

  
   

  
  

  
  

0 A
A

A 0
. (4.40) 

   ( )2

1

1 1 1

2 2 2 ˆ
11 1

2

0

2 2

1 0

1

1 0

      
 −  − −         

 = =  =  
      − −  −           

L L

L L L

LL L

A A Γ . (4.41) 

 
1

2

1
0

ˆ
1

1

00

C C C

C

C

  
  
    = =    

  
   

A A A . (4.42) 

   ( )( )2

1 21 0

1

ˆ ˆ '

0

  
  =  =   
    

C C
Cdiag diagA A Γ . (4.43) 

   ( )( )2

2

2

1 0

0

'1

  
  =  =   
    

C Cdiag diag

C

A A Γ . (4.44) 

diag operator returns a column vector of the main diagonal elements of the objective 

matrix. ˆ
LA contains the parameters from arm inductance. ˆ 'CA and 'CA contains the 

parameters from submodule capacitance. The reason to decompose the state space in such 

form is to save the work for programming. It will be easy to extent to high level state space 

by decomposing the matrix into such form. 
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Note that U contains sdi

dt
. sdi

dt
 reflects the voltage across the load inductor. That is  

 s
a a s

di
L v V

dt
= − , (4.45) 

as modeled in Figure4.16. 

If the pole is attached to the negative dc rail, as shown in Figure4.14(b) and 

Figure4.15(b), va = – 1 /2Vdc. Eq.(4.45) can be modified as 

 
1 1

( )
2

s
dc s

a

di
V V

dt L
= − − . (4.46) 

Replace the sdi

dt
 in (4.39) by (4.46) 

 1 1
( )

2

dc

dc s

a

V

V V
L

 
 =
 − −
  

U . (4.47) 

4.6.2 STATE-SPACE MODEL WITH STRAY RESISTANCE 

The stray resistance is essential in the real MMC installations or simulations. The pole 

voltage va of a two-level MMC can either be 1/2Vdc or -1/2Vdc as shown in Figure4.17. To 

calculate the arm inductor voltage, we need to find the state equation of MMC. Figure4.18 

shows the simplified MMC model. Figure4.18(a) can be formulated as 

 

1
1

2
2

2
2 2

1 2

1 1 2 2 2

L

L

C

s

dc L R R L C

di
V L

dt

di
V L

dt

dV
i C

dt

V

k

k ki i i

V V V V V


=


 =


 =


 = +



= + + + +

. (4.48) 
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Vdc

1/2Vdc

1/2Vdc

Vs

Vdc

va

C1

C2

VL1

VR1

VR2

VL2

i1

i2

is

Vdc

1/2Vdc

1/2Vdc

Vs

Vdc

va

C1

C2

VL1

VR1

VR2

VL2

i1

is

i2  

(a)   (b) 

Figure 4.17 Two-level MMC with pole connected to (a) positive dc rail (Level 1); and 

(b) negative dc rail (Level 2). 

1/2Vdc

1/2Vdc VC2

C2

is

VL1

VR2

i1

i2

is

L

R

R

VR1

VL2L

1/2Vdc

1/2Vdc

is

VR1

i1

i2

is

R
VC1

C1

VL1

L

VR2R

VL2

L

 

(a)   (b) 

Figure 4.18 Two-level MMC model with pole connected to (a) positive dc rail; and (b) 

negative dc rail.  

The corresponding switching pattern is  

 ( )  2
1 0 1=Γ . (4.49) 

Define the state variables to be 
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11

22

13

24

  
  
  = =
  
  

   

C

C

ix

ix

Vx

Vx

X , 

1

1
2

2

13

4

2

C

C

di

dt
x di

x dt

dVx

dtx

dV

dt

 
 
  
  
  = =   
  
  
 
 
 

X  . (4.50) 

Rewrite (4.48) into state equation form, 

 

1 1 2 4

2 1 2 4

4 2

2

1 1 1

2 2 2 2 2

1 1 1

2 2 2 2 2

1

s
dc

s
dc

diR R
x x x x V

L L L L dt

diR R
x x x x V

L t

k

L L L d

x x
C


= − − − + +




= − − − + −



=


, (4.51) 
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or 

 

1 1 2 3 4

2 1 2 3 4

3 1 2 3 4

1

1 1 1 1

2 2 2 2 2 2

1 1 1 1

2 2 2 2 2 2

1
0

1

00 0

0

0 1

0

s
dc

s
dc

R R di
x x x x x V

L L L L L dt

R R di
x x x x x V

L L L L L dt

x x x x x
C

x

         
= −  + −  +  − +  − + +         

         

         
= −  + −  +  − +  − + −         

         

 
=  +  +  +  + 

 

4 1 2 3 4

2

1
0 01 0 0x x x x

C












  =  +  +  +  +   

 . (4.52)
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Rewrite (4.52) into matrix form, 

 

1 1

2 2

3 3

14 4

2

1 1

2 2 2 2 1 1

1 1 2 2

2 2 2 2 1 1

1 2 2
0 0 0

0 0

0 01
0 0 0

0 1

0 1

0

1

dc

R R

L L L L

R Rx x L
V

L L L Lx x
di

Lx x

Cx x

C

    
− −  −  −          

         
− −  −  −                   −= +

      
       
       

     
  
  

s

dt

 
 
 
  

. (4.53) 

The coefficient marked in red contains the information from switching patter Γ1
(2).  

The system matrices are 

 

1

2

1 1

2 2 2 2

1 1

2 2 2 2

1
0 0 0

1

0 1

0 1

0

10 0 0

R R

L L L L

R R

L L L L

C

C

    
− −  −  −       

 
    

− −  −  −       
 =

  
  
  

  
  
  

A ,  

 

1 1

2 2

1 1

2 2

0 0

0 0

L

L

 
 
 
 −=
 
 
 
  

B ,  

 and 
dc

s

V

di

dt

 
 =
 
 

U . (4.54) 

The coefficient matrix could be decomposed as follows, 
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1

2

1 1

2 2 2 2

1 1

2 2 2 2

1
0 0 0

1
0 0

0 1

0 1

0

01

R L

C

R R

L L L L

R R

L L L L

C

C

    
− −  −  −       

 
    

− −  −  −         
 = =  

  
   

  
  

  
  

A A
A

A 0
. (4.55) 

 
2 2

2 2

R

R R

L L

R R

L L

 
− − 

=  
 − −
  

A . (4.56) 

   ( )2

1

1 1 1

2 2 2 ˆ
11 1

2

1

2 2

0 1

0

0 1

      
 −  − −         

 = =  =  
      − −  −           

L L

L L L

LL L

A A Γ . (4.57) 

 
1

2

1
0

ˆ
1

0

10

C C C

C

C

  
  
    = =    

  
   

A A A . (4.58) 

   ( )( )2

1 1

1

ˆ ˆ0 1 '

0

  
  =  =   
    

C C
Cdiag diagA A Γ . (4.59) 

   ( )( )2

1

2

0

0 1 '1

  
  =  =   
    

C Cdiag diag

C

A A Γ . (4.60) 

diag operator returns a column vector of the main diagonal elements of the objective 

matrix. ˆ
LA contains the parameters from arm inductance. ˆ 'CA and 'CA contains the 

parameters from submodule capacitance. The reason to decompose the state space in such 
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form is to save the work for programming. It will be easy to extent to high level state space 

by decomposing the matrix into such form. 

Note that U contains sdi

dt
. sdi

dt
 reflects the voltage across the load inductor. That is  

 s
a a s

di
L v V

dt
= − , (4.61) 

as modeled in Figure4.16. 

If the pole is attached to the positive dc rail, as shown in Figure4.17(a) and Figure4.18(a), 

va = 1/2Vdc. Eq.(4.61) can be modified as 

 
1 1

( )
2

s
dc s

a

di
V V

dt L
= − . (4.62) 

Replace the sdi

dt
 in (4.54) by (4.62) 

 1 1
( )
2

dc

dc s

a

V

V

k

V
L

kkkk 
 =
 −
  

U . (4.63) 

Figure4.18(b) can be formulated as 

 

1
1

2
2

1
2 1

1 2

1 1 2 2 1

L

L

C

s

dc L R R L C

di
V L

dt

di
V L

dt

dV
i C

dt

V

k

k ki i i

V V V V V


=


 =


 =


 = +



= + + + +

. (4.64) 

The corresponding switching pattern is  

 ( )  2
2 1 0=Γ . (4.65) 
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Define the state variables to be 

 

11

22

13

24

C

C

ix

ix

Vx

Vx

  
  
  = =
  
  

   

X , 

1

1
2

2

13

4

2

C

C

di

dt
x di

x dt

dVx

dtx

dV

dt

 
 
  
  
  = =   
  
  
 
 
 

X  . (4.66) 

Rewrite (4.64) into state equation, 

 

1 1 2 3

2 1 2 3

3 1

1

1 1 1

2 2 2 2 2

1 1 1

2 2 2 2 2

1

s
dc

s
dc

diR R
x x x x V

L L L L dt

diR R
x x x x V

L t

k

L L L d

x x
C


= − − − + +




= − − − + −



=


 (4.67) 
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or 

 

1 1 2 3 4

2 1 2 3 4

3 1 2 3 4

1

1 1 1 1

2 2 2 2 2 2

1 1 1 1

2 2 2 2 2 2

1
0

0

01 0

1

1 0

0

s
dc

s
dc

R R di
x x x x x V

L L L L L dt

R R di
x x x x x V

L L L L L dt

x x x x x
C

x

         
= −  + −  +  − +  − + +         

         

         
= −  + −  +  − +  − + −         

         

 
=  +  +  +  + 

 

4 1 2 3 4

2

1
0 00 0 0x x x x

C












  =  +  +  +  +   

 . (4.68) 
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Rewrite (4.68) into matrix form, 

 

1 1

2 2

3 3

14 4

2

1 1

2 2 2 2 1 1

1 1 2 2

2 2 2 2 1 1

1 2 2
0 0 0

0 0

0 01
0 0 0

1 0

1 0

1

0

dc

R R

L L L L

R Rx x L
V

L L L Lx x
di

Lx x

Cx x

C

    
− −  −  −          

         
− −  −  −                   −= +

      
       
       

     
  
  

s

dt

 
 
 
  

. (4.69) 

The coefficient marked in red contains the information from switching pattern Γ2
(2).  

The system matrices are 

 

1

2

1 1

2 2 2 2

1 1

2 2 2 2

1
0 0 0

1

1 0

1 0

1

00 0 0

R R

L L L L

R R

L L L L

C

C

    
− −  −  −       

 
    

− −  −  −       
 =

  
  
  

  
  
  

A ,  

 

1 1

2 2

1 1

2 2

0 0

0 0

L

L

 
 
 
 −=
 
 
 
  

B ,  

 and 
dc

s

V

di

dt

 
 =
 
 

U . (4.70) 

The coefficient matrix could be decomposed as follows, 
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1

2

1 1

2 2 2 2

1 1

2 2 2 2

1
0 0 0

1
0 0

1 0

1 0

1

00

R L

C

R R

L L L L

R R

L L L L

C

C

    
− −  −  −       

 
    

− −  −  −         
 = =  

  
   

  
  

  
  

A A
A

A 0
. (4.71) 

 
2 2

2 2

R

R R

L L

R R

L L

 
− − 

=  
 − −
  

A . (4.72) 

   ( )2

2

1 1 1

2 2 2 ˆ
11 1

2

0

2 2

1 0

1

1 0

      
 −  − −         

 = =  =  
      − −  −           

L L

L L L

LL L

A A Γ . (4.73) 

 
1

2

1
0

ˆ
1

1

00

C C C

C

C

  
  
    = =    

  
   

A A A . (4.74) 

   ( )( )2

1 21 0

1

ˆ ˆ '

0

  
  =  =   
    

C C
Cdiag diagA A Γ . (4.75) 

   ( )( )2

2

2

1 0

0

'1

  
  =  =   
    

C Cdiag diag

C

A A Γ . (4.76) 

diag operator returns a column vector of the main diagonal elements of the objective 

matrix. ˆ
LA contains the parameters from arm inductance. ˆ 'CA and 'CA contains the 

parameters from submodule capacitance. The reason to decompose the state space in such 
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form is to save the work for programming. It will be easy to extent to high level state space 

by decomposing the matrix into such form. 

Note that U contains sdi

dt
. sdi

dt
 reflects the voltage across the load inductor. That is  

 s
a a s

di
L v V

dt
= − , (4.77) 

as modeled in Figure4.16. 

If the pole is attached to the negative dc rail, as shown in Figure4.17(b) and Figure4.18 

(b), va = – 1 /2Vdc. Eq.(4.77) can be modified as 

 
1 1

( )
2

s
a s

a

di
v V

dt L
= − − . (4.78) 

Replace the sdi

dt
 in (4.70) by (4.78) 

 1 1
( )

2

dc

dc s

a

V

V V
L

 
 =
 − −
  

U . (4.79) 

4.6.3 MODEL ANALYSIS AND SIMULATION 

To prove the correctness of the proposed state-space model, the simulation of a two-

level single phase MMC model in MATLAB/Simulink is conducted for comparison.  

To simulate the proposed model, the differential equations of the state-space model 

(4.53) and (4.69) are discretized as follows, 

  
d

dt
 

X
= A X + B U , (4.80) 

 d dt dt   X = A X +B U , (4.81) 

 ( ) ( ) ( ) ( ) ( )1 1 1 1k k k k T k T− − −  −   − X X = A X +B U , (4.82) 

 ( ) ( ) ( ) ( ) ( )1 1 1 1k k k T k T k−  −   −  + −X = A X +B U X , (4.83) 
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A time-step of ∆T = 0.1 μs was used to make sure the approximation is accurate enough. 

The system matrix A is a function of switching patterns. The switching pattern of this 

modeling follows the modulation discussed Chapter 3. The initial values of the state space 

are extracted from the simulations. Four initial times are selected. The state space values 

at the specific time are extracted from simulation and substituted into (4.83) as initial state. 

The state space initial values are summarized in Table 5. Four initial times are selected to 

verify the state space derivation with the MATLAB/Simulink simulation.  

Table 5 

Initial values of state space at four time instants. 

 t1 = 10 ms t2 = 15 ms t3 = 20 ms t4 = 25 ms 

i1 (A) – 39.5 – 48.7 66.9 4.2 

i2 (A) – 1.4 – 3.7 – 0.2 – 1.0 

VC1 (V) 995.6 994.8 1007.9 999.9 

VC2 (V) 1004.1 1005.2 993.3 999.7 

A switching model is built in MATLAB/Simulink. The simulation circuit is shown in 

Figure4.19. The key parameters of the system are summarized in Table 6. Ideal switches, 

inductors, and capacitors with no parasitic parameters as well as ideal voltage sources were 

used. Any controller delays are not included in the model. In the simulation setup, discrete-

Tustin/Backward Euler (TBE) with a sample time of 0.1 μs is selected. The initial values 

of capacitor voltages are 1000V. The initial values of the inductor current are determined 

by MATLAB/Simulink.  
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Figure 4.19 Two-level single-phase MMC circuit for simulation study. 

The comparison results are shown in Figs. 4.20-4.23. The proposed state space model 

and the simulation results are matched at t1, t2, and t4, whereas a minor mismatch happens 

at t3. This mismatch at t3 accumulated along with time. This is caused by the dis/dt term in 

U. We treat dis/dt as an input since this term contains information from load instead of the 

information from MMC. We could have an even accurate state-space model by adding 

dis/dt as the fifth state variable. This accumulation error becomes notable in a long run. 

Figure4.24 shows the Simulink simulation along with the state-space model in two 

fundamental cycles. The accumulated error can be observed from this figure. Although 

there is minor mismatch between the simulation and the state-space model in this specific 

case study, the main features of the simulation curves are well captured by state-space 

model. This indicates that the mathematical derivation of the proposed model is correct. 

The dis/dt term contains the information of load. This term could vary from load to load. 

But this has nothing to do with the MMC parameters. It is better to regard the dis/dt as an 

input instead of a state variable when later on we move on to the stability analysis. Please 
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notice that stability analysis should have a general idea of how MMC respond to a specific 

load model and its load change.  

Table 6 

Two-level MMC simulation key parameters. 

Fundamental Frequency, f0 60 Hz 

Switching Frequency, fsw 10 kHz 

DC-Bus Voltage, Vdc 1000 V 

Load Resistance, Rload 6.2 Ω   (100% p.u.) 

Line Inductance, Lline 1 mH   (6% p.u.) 

Arm Inductance, Larm 0.1 µH  

(0.0006% p.u.) 

Stray Resistance, Rstray 0.1 Ω   (1.6% p.u.) 

Submodule Capacitance, Ci 85 µF   (20% p.u.) 

Number of Submodules per Arm 1 

  where i = 1, 2. 
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Figure 4.20 Upper arm current (x1) simulation and state-space model comparison. 
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Figure 4.21 Lower arm current (x2) simulation and state-space model comparison. 
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Figure 4.22 Capacitor voltage (x3) simulation and state-space model comparison. 
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Figure 4.23 Capacitor voltage (x4) simulation and state-space model comparison.
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Figure 4.24 Comparison of simulation and state-space model in a long run. (a) upper 

arm current; (b) lower arm current; (c) capacitor voltage VC1; (d) capacitor voltage VC2. 
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4.6.4 STATE-SPACE MODEL WITH LOAD AS STATE VARIABLE 

This section includes the derivation of the state space when considering the load as a 

state variable. We can see how complicated the state space could be.  

The pole voltage va of a two-level MMC can either be 1/2Vdc or -1/2Vdc as shown in 

Figure4.25. To calculate the arm inductor voltage, we need to find the state equation of 

MMC. Figure4.26 shows the simplified MMC model. Figure4.26(a) can be formulated as 
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. (4.84) 
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Figure 4.25 Two-level MMC with pole connected to (a) positive dc rail (Level 1); and 

(b) negative dc rail (Level 2). 
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Figure 4.26 Two-level MMC model with pole connected to (a) positive dc rail; and (b) 

negative dc rail.  

The corresponding switching pattern is  

 ( )  2
1 0 1=Γ . (4.85) 

Define the state variables to be 
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Rewrite (4.84) into state equation form, 
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Where Rs is the load resistance, and La is the load inductance. 

Figure4.26(b) can be formulated as 
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5 1 2 3 5

1

2 2 2 2 2

1

2 2 2 2 2

21

2 2 2 2

a a a s
dc
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
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


=

−− −
=  +  +  + 
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





 (4.88) 
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The corresponding switching pattern is  

 ( )  2
2 1 0=Γ . (4.89) 

Equation (4.87) and (4.88) has a complete representation of MMC and RL load together. 

However, they are hard to decompose as we did in previous sections. Analyzing the 

dynamics and stability of the system considering load model is worth doing. I would like 

to leave this for future work.  

 

We are going to derive the state-space model for three-level MMC in this section. 

Figure4.27 shows a single-phase three-level MMC that is under analysis. For a three-level 

MMC, there are six feasible switching patterns. The following section will model the three-

level MMC for each switching pattern. 
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Figure 4.27 Three-level MMC with pole voltage of (a) Vdc (Level I); (b)(c)(d)(e) zero 

volt (Level II); and (f) –Vdc (Level III). 
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4.7.1 STATE-SPACE MODEL 

Figure4.27(a) can be formulated as 

 

1
1

2
2

3
2 3

4
2 4

1 2

1 2 3 4

L

L

C

C

s

dc L L C C

di
V L

dt

di
V L

dt

dV
i C

dt

dV
i C

dt

i

k

k

i i

V V V V

k

V

k


=


 =


 =



=

 = +



= + + +

. (4.90) 

The corresponding switching pattern is  

 ( )  3
1 0 0 1 1=Γ . (4.91) 

Define the state variables to be 

 

1 1

2 2

3 1

4 2

5 3

6 4

C

C

C

C

x i

x i

x V

x V

x V

x V

   
   
   
   

= =   
   
   
   
      

X , 

1

2

1

2
1

3

4 2

5

3
6

4

C

C

C

C

di

dt

di
x

dt
x dV

x dt

x dV

dtx

dVx
dt

dV

dt

 
 
 
 

   
   
   
   

= =   
   
   
   
    

 
 
 
 

X  . (4.92) 

Rewrite (4.90) into state equation form, 
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2 2
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x x x
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C

x x
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
 − − −
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
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
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=


, (4.93) 
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Or 

 

1 1 2 3 4 5 6

2 1 2 3 4 5 6

3 1

1
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C

         
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

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   (4.94) 
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Rewrite (4.94) into matrix form, 
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The coefficient marked in red contains the information from switching patter Γ1
(3).  

The system matrices are 
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 
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 
 

U . (4.96) 

The coefficient matrix could be decomposed as follows, 
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144 
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   ( )( )2
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4

0 0

0

0

1
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1
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   

  

C Cdiag diag
C

C

A A Γ . (4.101) 

diag operator returns a column vector of the main diagonal elements of the objective 

matrix. ˆ
LA contains the parameters from arm inductance. ˆ 'CA and 'CA contain the 

parameters from submodule capacitance. ˆ 'CA contain the parameters from upper arm 

submodules. 'CA contains the parameters from lower arm submodules. The reason to 

decompose the state space in such form is to save the work for programming. It will be 

easy to extent to high level state space by decomposing the matrix into such form. 

Note that U contains sdi

dt
. sdi

dt
 reflects the voltage across the load inductor. That is  

 s
a a s

di
L v V

dt
= − , (4.102) 

as modeled in Figure4.28. 

is

Vsva

La

 

Figure 4.28 Load inductor voltage modeling. 
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If the pole is attached to the positive dc rail, as shown in Figure4.27(a), va = Vdc. 

Eq.(4.102) can be modified as 

 
1

( )s
dc s

a

di
V V

dt L
= − . (4.103) 

Replace the sdi

dt
 in (4.96) by (4.103) 

 1
( )

dc

dc s

a

V

V V
L

 
 =
 −
  

U . (4.104) 

The other five feasible state space models [Figure4.27(b)-(f)] are omitted since the 

derivations are similar.   

4.7.2 STATE SPACE MODEL WITH STRAY RESISTANCE 

The stray resistance always exists in the real MMC installations or simulations. 

Figure4.29 shows single-phase MMC model with stray resistance R. Figure4.29 can be 

formulated as 
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. (4.105) 
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Figure 4.29 Three-level MMC with pole connected to positive dc rail (Level 1). 

The corresponding switching pattern is  

 ( )  3
1 0 0 1 1=Γ . (4.106) 

Define the state variables to be 
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1

2

1

2
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4 2
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4

C

C

C

C

di

dt

di
x

dt
x dV

x dt

x dV

dtx

dVx
dt

dV

dt

 
 
 
 

   
   
   
   

= =   
   
   
   
    

 
 
 
 

X   . (4.107) 

Rewrite (4.105) into state equation form, 

 

1 1 2 5 6

2 1 2 5 6

5 2

3

6 2

4

1 1 1

2 2 2 2 2 2

1 1 1

2 2 2 2 2 2

1

1

s dc

s dc

di VR R
x x x x x

L L dt L L L

di VR R
x x x x x

L L dt L L L

x x
C

x x
C

− −
= − − +  + + +


 − − −

= − − +  + + +


 =




=


, (4.108) 
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or 

 

1 1 2 3 4 5 6

2 1 2 3 4 5 6

1 1 1 1 1 1

2 2 2 2 2 2 2 2

1 1 1 1

2 2 2 2 2

0 0 1 1

0 0
2

1 1

s
dc

R R di
x x x x x x x V

L L L L L L L dt

R R
x x x x x x x

L L L L L L

             
= −  + −  +  − +  − +  − +  − + +             

             

          
= −  + −  +  − +  − +  − +  −          

          

3 1 2 3 4 5 6

1

4 1 2 3 4 5 6

2

5 1 2 3 4 5 6

3

6 1 2 3 4 5 6

4

1 1

2 2

1
0 0 0 0 0 0

1
0 0 0 0 0 0

1
0 0 0 0 0 0

1
0 0 0 0 0 0

0

0

1

1

s
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di
V
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x x x x x x x
C
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C

x x x x x x x
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x x x x x x x
C

  
+ −  

  

 
=  +  +  +  +  +  + 

 

 
=  +  +  +  +  +  + 

 

 
=  +  +  +  +  +  + 

 

 
=  +  +  +  +  +  + 

 





















 

   (4.109) 



149 

Rewrite (4.109) into matrix form, 

 

1

2

1
3

4

25

6

3

1
1 1 1 1

2 2 2 2 2 2

1 1 1 1

2 2 2 2 2

0

0 0 1

0
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1
0 0 0 0 0
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1
0 0 0 0

0
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1
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. (4.110) 
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The coefficient marked in red contains the information from switching patter Γ1
(3).  

The system matrices are 

 
1

2

3

4

1 1 1 1

2 2 2 2 2 2

1 1 1 1

2 2 2 2 2 2

1
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1
0 0 0 0 0
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1

1
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 
 
 
 
  
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s

V

di
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 
 =
 
 

U . (4.111) 
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The coefficient matrix could be decomposed as follows, 
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2 2 2 2 2 2
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2 2 2 2 2 2
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 
 

=   
  
 

  
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C
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




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





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A A

A 0
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  ( )3
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        
 −  −  −  −               
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        
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  
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   
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 
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   ( )( )

1

3

1

2

0 0

1

1ˆ ˆ '

0

1 1

0

  
  
  
  

=  =   
  
  
   

  

C C

C

diag diag
C

A A Γ . (4.115) 

   ( )( )2

1

3

4

0 0

0

0

1
'1 1

1

  
  
  
  

=  =   
  
  
   

  

C Cdiag diag
C

C

A A Γ . (4.116) 

diag operator returns a column vector of the main diagonal elements of the objective 

matrix. ˆ
LA contains the parameters from arm inductance. ˆ 'CA and 'CA contain the 

parameters from submodule capacitance. ˆ 'CA contain the parameters from upper arm 

submodules. 'CA contains the parameters from lower arm submodules. The reason to 

decompose the state space in such form is to save the work for programming. It will be 

easy to extent to high level state space by decomposing the matrix into such form. 

Note that U contains sdi

dt
. sdi

dt
 reflects the voltage across the load inductor. That is  

 s
a a s

di
L v V

dt
= − , (4.117) 

as modeled in Figure4.28. 

If the pole is attached to the positive dc rail, as shown in Figure4.29, va = 1/2Vdc. 

Eq.(4.117) can be modified as 

 
1

( )s
dc s

a

di
V V

dt L
= − . (4.118) 
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Replace the sdi

dt
 in (4.111) by (4.118) 

 1
( )

dc

dc s

a

V

V

k

V
L

kkkk 
 =
 −
  

U . (4.119) 

The other five feasible state space models [Figure4.27(b)-(f)] are omitted since the 

derivations are similar.   

4.7.3 MODEL ANALYSIS AND SIMULATION 

To prove the correctness of the proposed state-space model, the simulation of a three-

level single phase MMC model in MATLAB/Simulink is conducted for comparison.  

To simulate the proposed model, the differential equations of the state-space model 

(4.110) are discretized as follows, 

  
d

dt
 

X
= A X + B U , (4.120) 

 d dt dt   X = A X +B U , (4.121) 

 ( ) ( ) ( ) ( ) ( )1 1 1 1k k k k T k T− − −  −   − X X = A X +B U , (4.122) 

 ( ) ( ) ( ) ( ) ( )1 1 1 1k k k T k T k−  −   −  + −X = A X +B U X , (4.123) 

A time-step of ∆T = 0.1 μs was used to make sure the approximation is accurate enough. 

The system matrix A is a function of switching patterns. The switching pattern of this 

modeling follows the modulation discussed in Chapter 3. The initial values of the state 

space are extracted from the simulations. Four initial times are selected. The state space 

values at the specific time are extracted from simulation and substituted into (4.123) as 

initial state. The state space initial values are summarized in Table 7. Four initial times are 

selected to verify the state space derivation with the MATLAB/Simulink simulation.  
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Table 7 

Initial values of state space at four time instants. 

 t1 = 10 ms t2 = 15 ms t3 = 20 ms t4 = 25 ms 

i1 (A) – 34.5 60.6 70.7 0.7 

i2 (A) 5.6 16.9 2.2 – 0.7 

VC1 (V) 984.8 983.3 1012.5 1009.5 

VC2 (V) 1004.1 999.0 1018.7 1011.0 

VC3 (V) 1012.3 1007.9 988.9 990.5 

VC4 (V) 1017.8 1023.4 1003.7 994.0 

 

A switching model is built in MATLAB/Simulink. The simulation circuit is shown in 

Figure4.30. The key parameters of the system are summarized in Table 8. Ideal switches, 

inductors, and capacitors with no parasitic parameters as well as ideal voltage sources were 

used. Any controller delays are not included in the model. In the simulation setup, discrete-

Tustin/Backward Euler (TBE) with a sample time of 0.1 μs is selected. The initial values 

of capacitor voltages are 1000V. The initial values of the inductor current are determined 

by MATLAB/Simulink.  
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Figure 4.30 Three-level single-phase MMC circuit for simulation study. 

The comparison results are shown in Figs. 4.31-4.36. The proposed state space model 

and the simulation results are matched at t1, t2, and t4, whereas a minor mismatch happens 

at t3. This mismatch at t3 accumulated along with time. This is caused by the dis/dt term in 

U. We treat dis/dt as an input since this term contains information from load instead of the 

information from MMC. We could have a more accurate state-space model by adding dis/dt 

as the fifth state variable. This accumulation error becomes notable in a long run. 

Figure4.37 shows the Simulink simulation along with the state-space model in five 

fundamental cycles. The accumulated error can be observed from this figure. Figure4.38 

shows the load current derived from the state space model (x1 – x2). The load current has a 

dc offset. This is because the state space model only catches the derivative of load current 
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(dis/dt). The dc component of load current is neglected. This is the major weakness of this 

model. Although there is minor mismatch between the simulation and the state-space 

model in this specific case study, the main features of the simulation curves are well 

captured by state-space model. This indicates that the mathematical derivation of the 

proposed model is correct. The dis/dt term contains the information of load. This term could 

vary from load to load. But this has nothing to do with the MMC parameters. It is better to 

regard the dis/dt as an input instead of a state variable when later on we move on to the 

stability analysis. Please notice that stability analysis should have a general idea of how 

MMC respond to a specific load model and its load change.  

Table 8 

Three-level MMC simulation key parameters. 

Fundamental Frequency, f0 60 Hz 

Switching Frequency, fsw 20 kHz 

DC-Bus Voltage, Vdc 2000 V 

Load Resistance, Rload 12.4 Ω (100% p.u.) 

Line Inductance, Lline 1 mH   (3% p.u.) 

Arm Inductance, Larm 

0.1 µH  

(0.0003% p.u.) 

Stray Resistance, Rstray 0.1 Ω   (0.8% p.u.) 

Submodule Capacitance, Ci 85 µF   (40% p.u.) 

Number of Submodules per 

Arm 

2 

  where i = 1, 2, …, 4. 
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Figure 4.31 Upper arm current (x1) simulation and state-space model comparison. 



158 

0.01 0.015 0.02 0.025
Time (s)

-100

0

100

0.01005 0.0101 0.01015 0.0102

0

100

0.01505 0.0151 0.01515 0.0152

0

100

0.02005 0.0201 0.02015 0.0202

-100

0

0.02505 0.0251 0.02515 0.0252

-50

0

L
ow

er
 A

rm
 C

ur
re

nt
 (

A
)

Simulink i2 (x2)

t1 t3 t4t2

Initialization time

t1

i2 (x2)

Simulink

State-Space Model

t2

i2 (x2)

Simulink

State-Space Model

t3

Simulink

State-Space Modeli2 (x2)

t4

Simulink

State-Space Model i2 (x2)

Time (s)  

Figure 4.32 Lower arm current (x2) simulation and state-space model comparison. 
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Figure 4.33 Capacitor voltage (x3) simulation and state-space model comparison. 
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Figure 4.34 Capacitor voltage (x4) simulation and state-space model comparison. 
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Figure 4.35 Capacitor voltage (x5) simulation and state-space model comparison. 
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Figure 4.36 Capacitor voltage (x6) simulation and state-space model comparison. 
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Figure 4.37 Comparison of simulation and state-space model in a long run. (a) upper 

arm current; (b) lower arm current; (c) capacitor voltage VC1; (d) capacitor voltage VC2; 

(e) capacitor voltage VC3; (f) capacitor voltage VC4. 
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Figure 4.37 (cont’d) 
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Figure 4.38 Accumulated error on load current. 

 

We are going to derive the state-space model for N-level MMC in this section. 

Figure4.39 shows the single-phase N-level MMC under analysis. We have derived the 

state-space model for two-level and three-level MMC in previous sections. There are some 

common in their derivations. The law of derivations is summarized in this chapter. 



165 

SM1

SM2

SMN-1

SMN

SM2N-3

SM2N-2

Vs

is

i1

i2

va

VC2 C2

(N-1)Vdc/2

(N-1)Vdc/2

R
lo

ad

Larm

Rstray

Rstray

Larm

Lline

 

Figure 4.39 A single-phase N-level MMC. 

4.8.1 STATE-SPACE MODEL 

Define the state variables to be 
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The state equation are as follows, 

  X = A X+ B U . (4.125) 

Where  
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  (4.126) 

ym is an element of switching pattern; and 
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The coefficient matrix could be decomposed as follows, 
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diag operator returns a column vector of the main diagonal elements of the objective 

matrix. ˆ
LA contains the parameters from arm inductance. ˆ 'CA and 'CA contain the 

parameters from submodule capacitance. ˆ 'CA contain the parameters from upper arm 

submodules. 'CA contains the parameters from lower arm submodules. The reason to 

decompose the state space in such form is to save the work for programming. It will be 

easy to extent to high level state space by decomposing the matrix into such form. 

Note that U contains sdi

dt
. sdi

dt
 reflects the voltage across the load inductor. That is  

 s
a a s

di
L v V

dt
= − , (4.134) 

as modeled in Figure4.40. 

is

Vsva

La

 

Figure 4.40 Load inductor voltage modeling. 

If the pole is attached to the positive dc rail, va = (N – 1)Vdc/2. Eq.(4.124) can be 

modified as 

 ( )( )
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1 / 2s
dc s

a

di
N V V

dt L
= − − . (4.135) 

For other switching patterns, va is determined by the number of the submodule at 

inserted mode in upper arm. Replace the sdi

dt
 in (4.128) by (4.134) 
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4.8.2 MODEL ANALYSIS AND SIMULATION 

To simulate the proposed model, the differential equations of the state-space model 

(4.125) are discretized as follows, 

  
d

dt
 

X
= A X + B U , (4.137) 

 d dt dt   X = A X +B U , (4.138) 

 ( ) ( ) ( ) ( ) ( )1 1 1 1k k k k T k T− − −  −   − X X = A X +B U , (4.139) 

 ( ) ( ) ( ) ( ) ( )1 1 1 1k k k T k T k−  −   −  + −X = A X +B U X , (4.140) 

The system matrix A is a function of switching patterns. The switching pattern of this 

modeling follows the modulation discussed in [62].  

4.8.2.1 CASE STUDY: ΓMM BASED FOUR-LEVEL MMC 

To prove the correctness of the proposed state-space model, the simulation of a single-

phase four-level MMC model in MATLAB/Simulink is conducted for comparison. This 

four-level MMC simulation follows the ΓMM strategy. The submatrices are as follows, 
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 ( )  4
4 1 1 1 0 0 0=Γ . (4.144) 

Eq.(4.141)-(4.144) are all in full rank. 

The initial values of the state space are extracted from the simulations. Four initial times 

are selected. The state space values at the specific time are extracted from simulation and 

substituted into (4.140) as initial state. The state space initial values are summarized in 

Table 9. Four initial times are selected to verify the state space derivation with the 

MATLAB/Simulink simulation.  

Table 9 

Initial values of state space at four time instants. 

 t1 = 10 ms t2 = 15 ms t3 = 20 ms t4 = 25 ms 

i1 (A) – 3.4 – 14.8 70.1 27.9 

i2 (A) 37.7 28.8 0.8 26.5 

VC1 (V) 991.0 989.4 1016.7 994.2 

VC2 (V) 986.3 985.6 1008.2 1010.6 

VC3 (V) 1001.3 1005.0 1014.1 1008.4 

VC4 (V) 1003.9 1001.8 995.5 988.9 

VC5 (V) 1019.7 1020.9 1006.9 991.6 

VC6 (V) 1019.1 1020.2 995.4 999.9 

 

A simulation is built in MATLAB/Simulink. The simulation circuit is shown in 

Figure4.41. The key parameters of the system are summarized in Table 10. Ideal switches, 

inductors, and capacitors with no parasitic parameters as well as ideal voltage sources were 

used. Any controller delays are not included in the model. In the simulation setup, discrete-
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Tustin/Backward Euler (TBE) with a sample time of 0.167 μs is selected. The initial values 

of capacitor voltages are 1000V. The initial values of the inductor current are determined 

by MATLAB/Simulink.  
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Figure 4.41 Four-level single-phase MMC circuit for simulation study. 

The comparison results are shown in Figs. 4.42-4.45. The proposed state space model 

and the simulation results are matched at all time slots. Figure4.46 shows the Simulink 

simulation along with the state-space model in five fundamental cycles. The proposed 
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state-space model matches with simulation in a long run. Figure4.47 shows the load current 

derived from the state space model (x1 – x2). This indicates that the mathematical derivation 

of the proposed model is correct. The dis/dt term contains the information of load. This 

term could vary from load to load. But this has nothing to do with the MMC parameters. It 

is better to regard the dis/dt as an input instead of a state variable when later on we move 

on to the stability analysis. Please notice that stability analysis should have a general idea 

of how MMC respond to a specific load model and its load change.  

Table 10 

Four-level MMC simulation key parameters. 

Fundamental Frequency, f0 60 Hz 

Switching Frequency, fsw 30 kHz 

DC-Bus Voltage, Vdc 3000 V 

Load Resistance, Rload 18.6 Ω (100% p.u.) 

Line Inductance, Lline 1 mH   (3% p.u.) 

Arm Inductance, Larm 0.1 µH  

(0.0002% p.u.) 

Stray Resistance, Rstray 0.1 Ω   (0.5% p.u.) 

Submodule Capacitance, Ci 171 µF   (1.2 p.u.) 

Number of Submodules per Arm 3 

  where i = 1, 2, …, 6. 
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Figure 4.42 Upper arm current (x1) simulation and state-space model comparison. 
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Figure 4.43 Lower arm current (x2) simulation and state-space model comparison. 
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Figure 4.44 Capacitor voltage (x5) simulation and state-space model comparison. 
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Figure 4.45 Capacitor voltage (x6) simulation and state-space model comparison. 
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Figure 4.46 Comparison of simulation and state-space model in a long run. (a) upper 

arm current; (b) lower arm current; (c) capacitor voltage VC3; (d) capacitor voltage VC4. 
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Figure 4.47 Load current is = x1 – x2. 

4.8.2.2 CASE STUDY: ΓMM BASED FOUR-LEVEL MMC WITH NON-FULL-

RANK MATRIX  

To prove the proposed state-space model can effectively demonstrate the deviation of 

the non-full-rank Γ matrix, the simulation of a single-phase four-level MMC model in 

MATLAB/Simulink is conducted for comparison. This four-level MMC simulation 

follows the ΓMM strategy. The submatrices are as follows, 

 ( )  4
1 0 0 0 1 1 1=Γ , (4.145) 

 
( )4
2

0 0 1 1 0 1

0 1 0 0 1 1

ˆ 1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

 
 
 
 =
 
 
  

Γ , (4.146) 

 
( )4
3

1 0 1 1 0 0

1 1 0 0 1 0

ˆ 0 1 1 0 0 1

1 0 1 0 1 0

1 1 0 1 0 0

 
 
 
 =
 
 
  

Γ , (4.147) 

 ( )  4
4 1 1 1 0 0 0=Γ . (4.148) 

Eq.(4.145)-(4.148) are non-full-rank. The rank of each matrix are as follows, 

 ( )4
1

1=  rank Γ , ( )4
2

ˆ 4  = rank Γ , ( )4
3

ˆ 4  = rank Γ , and ( )4
4

1=  rank Γ . (4.149) 
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The rank of any two adjacent matrices are as follows, 
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rank
Γ

Γ
, and

( )

( )

4
3

4
4

ˆ
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 
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rank
Γ

Γ
. (4.150) 

The initial values of the state space are extracted from the simulations. Four initial times 

are selected. The state space values at the specific time are extracted from simulation and 

substituted into (4.140) as initial state. The state space initial values are summarized in 

Table 11. Four initial times are selected to verify the state space derivation with the 

MATLAB/Simulink simulation.  

Table 11 

Initial values of state space at four time instants. 

 t1 = 10 ms t2 = 15 ms t3 = 20 ms t4 = 25 ms 

i1 (A) – 9.8 – 19.7 67.3 18.0 

i2 (A) 30.7 23.2 – 1.4 18.0 

VC1 (V) 921.9 888.9 868.2 829.2 

VC2 (V) 1028.6 1048.9 1075.4 1087.2 

VC3 (V) 1032.9 1051.0 1075.7 1089.2 

VC4 (V) 1042.6 1057.7 1069.8 1082.2 

VC5 (V) 1046.7 1061.5 1071.1 1083.2 

VC6 (V) 958.9 906.8 860.1 830.2 

 

A simulation is built in MATLAB/Simulink. The simulation circuit is shown in 

Figure4.41. The key parameters of the system are the same as Chapter 4.8.2.1, which is 

summarized in Table 10. Ideal switches, inductors, and capacitors with no parasitic 
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parameters as well as ideal voltage sources were used. Any controller delays are not 

included in the model. In the simulation setup, discrete-Tustin/Backward Euler (TBE) with 

a sample time of 0.167 μs is selected. The initial values of capacitor voltages are 1000V. 

The initial values of the inductor current are determined by MATLAB/Simulink.  

The comparison results are shown in Figs. 4.48-4.51. The proposed state-space model 

and the simulation results are matched at all time slots. Figure4.52 shows the Simulink 

simulation along with the state-space model in five fundamental cycles. The proposed 

state-space model matches with simulation in a long run. Figure4.53 shows the load current 

derived from the state variables (x1 – x2). This indicates that the mathematical derivation 

of the proposed model is correct. The dis/dt term contains the information of load. This 

term could vary from load to load. But this has nothing to do with the MMC parameters. It 

is better to regard the dis/dt as an input instead of a state variable when later on we move 

on to the stability analysis. Please notice that stability analysis should have a general idea 

of how MMC responds to a specific load model and its load change.  
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Figure 4.48 Upper arm current (x1) simulation and state-space model comparison. 
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Figure 4.49 Lower arm current (x2) simulation and state-space model comparison. 
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Figure 4.50 Capacitor voltage (x5) simulation and state-space model comparison. 
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Figure 4.51 Capacitor voltage (x6) simulation and state-space model comparison. 
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Figure 4.52 Comparison of simulation and state-space model in a long run. (a) upper 

arm current; (b) lower arm current; (c) capacitor voltage VC3; (d) capacitor voltage VC4. 
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Figure 4.53 Load current is = x1 – x2. 

4.8.2.3 CASE STUDY: ΓMM BASED ELEVEN-LEVEL MMC  

To prove that this model can be extended to higher level a simulation of a single-phase 

eleven-level MMC model in MATLAB/Simulink is conducted for comparison with the 

proposed state-space model. This eleven-level MMC simulation follows the ΓMM strategy. 

The submatrices extraction follows the case study in Chapter 3.4.4. 

The initial values of the state space are extracted from the simulations. Four initial times 

are selected. The state space values at the specific time are extracted from simulation and 

substituted into (4.140) as initial state. The state space initial values are summarized in 

Table 12. Four initial times are selected to verify the state space derivation with the 

MATLAB/Simulink simulation.  
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Table 12 

Initial values of state variables at four time instants. 

 t1 = 25 ms t2 = 30 ms t3 = 35 ms t4 = 40 ms 

i1 (A) 76.1 – 18.8 127.3 180.1 

i2 (A) 77.5 50.8 84.3 137.5 

VC1 (V) 1017.5 1001.7 1001.6 1015.3 

VC2 (V) 1023.5 998.2 1010.2 1023.6 

VC3 (V) 1020.0 997.7 1002.4 1020.3 

VC4 (V) 1025.7 997.4 1000.8 1023.6 

VC5 (V) 1012.5 995.9 995.8 1021.6 

VC6 (V) 1013.2 996.8 996.0 1024.4 

VC7 (V) 1019.0 998.8 999.2 1023.9 

VC8 (V) 1029.4 1002.1 1003.1 1024.1 

VC9 (V) 1040.1 1002.0 992.3 1039.7 

VC10 (V) 1033.1 1005.0 994.3 1029.5 

VC11 (V) 989.4 1012.2 1008.4 998.4 

VC12 (V) 1000.0 1011.4 1018.5 1012.3 

VC13 (V) 997.7 1009.4 1007.6 999.7 

VC14 (V) 1001.4 1010.8 1003.0 990.9 

VC15 (V) 995.8 1013.2 995.2 987.9 

VC16 (V) 998.4 1014.0 996.4 990.7 

VC17 (V) 971.4 1013.8 995.6 984.0 

VC18 (V) 973.0 1013.0 1.0020 991.3 
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Table 12 (cont’d) 

VC19 (V) 968.1 1015.1 998.1 982.1 

VC20 (V) 970.0 1017.8 1012.5 989.3 

 

A simulation is built in MATLAB/Simulink. The simulation circuit is shown in 

Figure4.54. The key parameters of the system are summarized in Table 13. Ideal switches, 

inductors, and capacitors with no parasitic parameters as well as ideal voltage sources were 

used. Any controller delays are not included in the model. In the simulation setup, discrete-

Tustin/Backward Euler (TBE) with a sample time of 0.167 μs is selected. The initial values 

of capacitor voltages are 1000V. The initial values of the inductor current are determined 

by MATLAB/Simulink.  
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Figure 4.54 Eleven-level single-phase MMC circuit for state-space model study. 

The comparison results are shown in Figs. 4.55-4.58. The proposed state space model 

and the simulation results are matched at all time slots. Figure4.59 shows the Simulink 

simulation along with the state-space model in four fundamental cycles. The proposed 

state-space model matches with simulation in a long run. Figure4.60 shows the load current 

derived from the state variables (x1 – x2). This indicates that the mathematical derivation 

of the proposed model is correct. The dis/dt term contains the information of load. This 

term could vary from load to load. But this has nothing to do with the MMC parameters. It 

is better to regard the dis/dt as an input instead of a state variable when later on we move 
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on to the stability analysis. Please notice that stability analysis should have a general idea 

of how MMC respond to a specific load model and its load change.  

Table 13 

Eleven-level MMC simulation key parameters. 

Fundamental Frequency, f0 60 Hz 

Switching Frequency, fsw 60 kHz 

DC-Bus Voltage, Vdc 10 kV 

Load Resistance, Rload 62 Ω  

(100% p.u.) 

Line Inductance, Lline 1 mH    

(0.61% p.u.) 

Arm Inductance, Larm 0.1 µH  

(0.00006% p.u.) 

Stray Resistance, Rstray 0.2 Ω    

(0.32% p.u.) 

Submodule Capacitance, Ci 770 µF (18 p.u.) 

Number of Submodules per Arm 10 

  where i = 1, 2, …, 20. 
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Figure 4.55 Upper arm current (x1) simulation and state-space model comparison. 
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Figure 4.56 Lower arm current (x2) simulation and state-space model comparison. 
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Figure 4.57 Capacitor voltage (x12) simulation and state-space model comparison. 
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Figure 4.58 Capacitor voltage (x13) simulation and state-space model comparison. 
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(d) 

Figure 4.59 Comparison of simulation and state-space model in a long run. (a) Upper 

arm current; (b) lower arm current; (c) capacitor voltage VC10; (d) capacitor voltage VC11. 
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Figure 4.60 Load current is = x1 – x2. 

 

This Chapter proposed a state-space model for MMC. With this state-space model, the 

MMC capacitor voltage convergence and divergence can be well captured. This state-space 

model can be used for stability analysis and understanding the mechanism of the self 

balance phenomenon in the future. The existing MMC modeling are developed on the basis 

of certain degree of assumptions and simplification. This makes them unsuitable for 

understanding the nature of this circuit from its physical basement. Compared to existing 

MMC modeling, the proposed state-space model well captured the MMC dynamics. Four-

level MMC with both full-rank Γ and non-full-rank Γ are studied to demonstrate that this 

model could explain both convergence and divergence of the capacitor voltage. A 

generalized MMC model is derived, which can be applied to higher level. An eleven-level 

MMC case study is provided to verify the proposed model when extended to higher level.
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5 THE ARM INDUCTORS VOLTAGE DROP ASSUMPTION 

 

The arm inductors are assumed to have zero voltage drop in the analysis of previous 

Chapters. This Chapter is going to address the critical value of inductor in terms of 

validating the assumption. In another word, this Chapter will address how large is this arm 

inductor to drive the system from convergence to divergence. This Chapter will start with 

the assumption of VL= 0. Then some simulations will be provided to verify the analysis. 

 

To calculate the arm inductor voltage, we need to find the state equation of MMC. 

Figure5.1 shows the simplified MMC model. For a two-level MMC, there are two states at 

steady state, either the upper sub-module inserted, or the lower sub-module inserted. The 

following section will model the two-level MMC for each state. 

5.2.1 STATE I 

Figure5.1(a) can be formulated as 
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. (5.1) 

Define the state variables to be 



199 

 

1 1

2 2

3 2

   
   

= =
   
      C

x i

x i

x V

X , 

1

1

2
2

3
2

 
 

   
   = =
   
    

 
  

C

di

dtx
di

x
dt

x
dV

dt

X  . (5.2) 

1/2Vdc

1/2Vdc VC2
C2

is

VL1

VL2

i1

i2

is

1/2Vdc

1/2Vdc

VC1

C1

is

VL1

i1

i2

is

VL2

L

L L

L

 

(a)  (b) 

 Figure 5.1 Two-level MMC model with pole connected to (a) positive dc rail; and (b) 

negative dc rail.  

Rewrite (5.1) into state equation form, 
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Notice that sdi

dt
 reflects the voltage across the phase inductor. That is  
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 = −s
a a s

di
L v V

dt
, (5.5) 

as modeled in Figure5.2. 

is

Vsva

La

 

Figure 5.2 Phase inductor voltage modeling. 

If the pole is attached to the positive dc rail, as shown in Figure5.1(a), va = 1/2Vdc. 

Eq.(5.5) can be modified as 
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Replace the sdi

dt
 in (5.4) by (5.6) 
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The system matrices are 
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State equation (5.7) could be re-written as  

 X = AX + BU . (5.9) 

Apply the Laplace transform to (5.2), (5.8), and (5.9) 
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  ( ) ( )=t sX X , ( ) ( ) (0)  = − t s sX X x , (5.10) 
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 ( ) (0) ( ) ( )−s s s sX x = AX +BU , (5.12) 

where  
T

(0) 0= − s dci kVk kx . To solve for ( )sX , 

 ( ) ( ) (0) ( )−s s sI A X = x +BU , (5.13) 

 ( )1( ) ( ) (0) ( )−−s s sX = I A x + BU , (5.14) 
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Hence, 
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Laplace inverse transform, 
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Eq. (5.20), (5.21), and (5.22) are the dynamic response of upper arm current, lower arm 

current, and C2 voltage, respectively, in State I. All these three functions can be divided by 

two components, the transient component and the steady-state components.  

5.2.2 STATE II 

The dynamic response of State II is similar to State I. Therefore, the derivation is 

omitted. Figure5.1(b) can be formulated by 
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Apply the Laplace transform and Laplace inverse transform to (5.23), yields 
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Eq.(25), (26), and (27) are the dynamic response of upper arm current, lower arm current, 

and C1 voltage, respectively, in State II. All these three functions can be divided by two 

components, the transient component and the steady-state components. The transient 

component will be damped with a coefficient of e – t/τ, where τ = 2L/Req. L is the arm 

inductance and Req is the equivalent resistance of power loss. 

 

The transient component should be damped down to zero if resistance exists in circuit. 

In real MMC prototype, there always 2-4% power loss and this power dissipation can be 

modeled by resistance.  

In order to assume the inductor voltage to be zero, the transient needs to be much faster 

than the switching frequency. From (5.20)-(5.22) and (5.25)-(5.27), we can see that the 

oscillation frequency and the damping time constant of the transient are  

 0

1
 =

eqLC
 (5.28) 

 2 / = eqL R  (5.29) 

Where ω0 is the resonance frequency. L is the arm inductor and Ceq is the equivalent 

capacitance of the submodules. τ is the time constant. Req is the equivalent converter loss. 

Therefore, τ < Tsw is the condition that guarantees the assumption to hold true, where Tsw 

is the switching period. 

When L is small, e.g., zero, then the above condition will automatically hold true. and 

at each switching instant, charging balance occurs.  However, the charging and discharging 

current would be inrush (or impulse) current that may be not good for devices and noises.  

Then in order to limit inrush charging/discharging current, we have to have a minimum 
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inductance to make sure the inrush charging/discharging current below 3 times rated load 

current. 

 

In this chapter, several simulations with various arm inductances are examined to verify 

the analysis in Chapter 5.3 and 5.4. The simulation topology is shown in Figure5.3. 
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Figure 5.3 Three-level MMC simulation topology. 

Parameters: The key parameters of the MMC are as follows: rated apparent power S = 

100 kVA, output phase voltage Va = Vb = Vc = 643 V, output line current Ia = Ib = Ic = 52 

A, rated output fundamental frequency f0 = 60 Hz, rated load resistance Rload = 12.4 Ω, 

rated dc-bus voltage Vdc = 2 kV, number of sub-modules per arm: N – 1 = 2, sub-module 

capacitance Ci = 85 µF (i = 1, 2, …, 12), line inductance Lline = 4 mH. The switching 

frequency is fsw = 5 kHz.  The power loss is modeled by a stray resistor R = 0.4 Ω  (3.6% 

p.u.). The arm inductance Larm varies case by case. 
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5.4.1 τ / Tsw = 0.02 

The time constant of the system is smaller than switching period in this case study. VL 

= 0 holds true in this case. The key parameters are summarized in Table 14. 

Table 14 

Three-level MMC simulation key parameters. 

Apparent Power, S 100 kVA 

Fundamental Frequency, f0 60 Hz 

Switching Frequency, fsw 5 kHz 

DC-Bus Voltage, Vdc 2000 V 

Phase Voltage, Va, Vb, Vc 643 V 

Line Current, Ia, Ib, Ic 52 A 

Load Resistance, Rload 12.4 Ω  

Line Inductance, Lline 4 mH    

Arm Inductance, Larm 0.8 µH  

Stray Resistance, R 0.4 Ω (3.2% p.u.) 

Sub-Module Capacitance, Ci 85 µF    

Number of Sub-Modules per Arm 2 

Time Ratio τ / Tsw 0.02 

Resonant Frequency, f0 27 kHz 

  where i = 1, 2, …, 12. 

The capacitor voltage is well balanced and converging to the expected dc voltage (1000 

V) in Figure5.6. The load voltage and current are shown in Figure5.4. The mid-point 

voltage is shown in Figure5.5. The sub-module capacitor voltage and current are shown in 
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Figure5.6 The arm inductor current is shown in Figure5.7. The arm inductor current is 

limited within 2 times the load current. 

 

 

 

Figure 5.4 Three-level MMC (a) load voltage and (b) load current. 
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Figure 5.5 Three-level MMC mid-point voltage (a) vab; (b) vbc; and (c) vca. 
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Figure 5.6 Sub-module capacitor (a)/(c) voltage; and (b)/(d) current. 
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Figure 5.7 (a) Line current and its corresponding (b) upper arm current, (c) lower arm 

current.  

5.4.2 τ / Tsw = 0.25 

The time constant of the system is smaller than switching period in this case study. VL 

= 0 holds true in this case. The key parameters are summarized in Table 15. 
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Table 15 

Three-level MMC simulation key parameters. 

Apparent Power, S 100 kVA 

Fundamental Frequency, f0 60 Hz 

Switching Frequency, fsw 5 kHz 

DC-Bus Voltage, Vdc 2000 V 

Phase Voltage, Va, Vb, Vc 643 V 

Line Current, Ia, Ib, Ic 52 A 

Load Resistance, Rload 12.4 Ω  

Line Inductance, Lline 4 mH    

Arm Inductance, Larm 10 µH  

Stray Resistance, R 0.4 Ω (3.2% p.u.) 

Sub-Module Capacitance, Ci 85 µF    

Number of Sub-Modules per Arm 2 

Time Ratio τ / Tsw 0.25 

Resonant Frequency, f0 7.7 kHz 

  where i = 1, 2, …, 12. 

The capacitor voltage is well balanced and converging to the expected dc voltage (1000 

V) in Figure5.10. The load voltage and current are shown in Figure5.8. The mid-point 

voltage is shown in Figure5.9. The sub-module capacitor voltage and current are shown in 

Figure5.10. The arm inductor current is shown in Figure5.11. The arm inductor current is 

limited within 2 times the load current. 
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Figure 5.8 Three-level MMC (a) load voltage and (b) load current. 
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Figure 5.9 Three-level MMC mid-point voltage (a) vab; (b) vbc; and (c) vca. 
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Figure 5.10 Sub-module capacitor (a)/(c) voltage; and (b)/(d) current. 
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Figure 5.11 (a) Line current and its corresponding (b) upper arm current, (c) lower arm 

current.  

5.4.3 τ / Tsw = 1 

The time constant of the system is equal to the switching period in this case study. VL = 

0 does not hold true in this case. The key parameters are summarized in Table 16. 

  



219 

Table 16 

Three-level MMC simulation key parameters. 

Apparent Power, S 100 kVA 

Fundamental Frequency, f0 60 Hz 

Switching Frequency, fsw 5 kHz 

DC-Bus Voltage, Vdc 2000 V 

Phase Voltage, Va, Vb, Vc 643 V 

Line Current, Ia, Ib, Ic 52 A 

Load Resistance, Rload 12.4 Ω  

Line Inductance, Lline 4 mH    

Arm Inductance, Larm 40 µH  

Stray Resistance, R 0.4 Ω (3.2% p.u.) 

Sub-Module Capacitance, Ci 85 µF    

Number of Sub-Modules per Arm 2 

Time Ratio τ / Tsw 1 

Resonant Frequency, f0 3.8 kHz 

  where i = 1, 2, …, 12. 

The capacitor voltage is well balanced and converging to the expected dc voltage (1000 

V) in Figure5.14. However, the voltage ripple is around 40%. Normally, this voltage ripple 

is deemed to be abnormal operation. The load voltage and current are shown in Figure5.12. 

The load voltage and current are distorted since the high voltage ripple on capacitors. The 

mid-point voltage is shown in Figure5.13. The sub-module capacitor voltage and current 
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are shown in Figure5.14. The arm inductor current is shown in Figure5.15. The arm 

inductor current is limited within 2 times the load current. 

 

 

 

Figure 5.12 Three-level MMC (a) load voltage and (b) load current. 
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Figure 5.13 Three-level MMC mid-point voltage (a) vab; (b) vbc; and (c) vca. 
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Figure 5.14 Sub-module capacitor (a)/(c) voltage; and (b)/(d) current. 
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Figure 5.15 (a) Line current and its corresponding (b) upper arm current, (c) lower arm 

current.  

5.4.4 τ / Tsw = 2 

The time constant of the system is greater than switching period in this case study. VL = 

0 does not hold true in this case. The key parameters are summarized in Table 17. 
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Table 17 

Three-level MMC simulation key parameters. 

Apparent Power, S 100 kVA 

Fundamental Frequency, f0 60 Hz 

Switching Frequency, fsw 5 kHz 

DC-Bus Voltage, Vdc 2000 V 

Phase Voltage, Va, Vb, Vc 643 V 

Line Current, Ia, Ib, Ic 52 A 

Load Resistance, Rload 12.4 Ω  

Line Inductance, Lline 4 mH    

Arm Inductance, Larm 80 µH  

Stray Resistance, R 0.4 Ω (3.2% p.u.) 

Sub-Module Capacitance, Ci 85 µF    

Number of Sub-Modules per Arm 2 

Time Ratio τ / Tsw 2 

Resonant Frequency, f0 2.7 kHz 

  where i = 1, 2, …, 12. 

The capacitor voltage is well balanced and converging to the expected dc voltage (1000 

V) in Figure5.18. However, the voltage ripple is around 40%. Normally, this voltage ripple 

is deemed to be abnormal operation. The load voltage and current are shown in Figure5.16. 

The load voltage and current are distorted since the high voltage ripple on capacitors. The 

mid-point voltage is shown in Figure5.17. The sub-module capacitor voltage and current 
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are shown in Figure5.18. The arm inductor current is shown in Figure5.19. The arm 

inductor current is limited within 1.5 times the load current. 

 

 

Figure 5.16 Three-level MMC (a) load voltage and (b) load current. 
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Figure 5.17 Three-level MMC mid-point voltage (a) vab; (b) vbc; and (c) vca. 
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Figure 5.18 Sub-module capacitor (a)/(c) voltage; and (b)/(d) current. 
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Figure 5.19 (a) Line current and its corresponding (b) upper arm current, (c) lower arm 

current.  

5.4.5 τ / Tsw = 10 

The time constant of the system is smaller than switching period in this case study. VL 

= 0 does not hold true in this case. The key parameters are summarized in Table 18. 

  



229 

Table 18 

Three-level MMC simulation key parameters. 

Apparent Power, S 100 kVA 

Fundamental Frequency, f0 60 Hz 

Switching Frequency, fsw 5 kHz 

DC-Bus Voltage, Vdc 2000 V 

Phase Voltage, Va, Vb, Vc 643 V 

Line Current, Ia, Ib, Ic 52 A 

Load Resistance, Rload 12.4 Ω  

Line Inductance, Lline 4 mH    

Arm Inductance, Larm 400 µH  

Stray Resistance, R 0.4 Ω (3.2% p.u.) 

Sub-Module Capacitance, Ci 85 µF    

Number of Sub-Modules per Arm 2 

Time Ratio τ / Tsw 10 

Resonant Frequency, f0 1.2 kHz 

  where i = 1, 2, …, 12. 

The capacitor voltage is diverging from the nominal dc voltage (1000 V) in Figure5.22. 

Normally, this voltage ripple is deemed to be abnormal operation. The load voltage and 

current are shown in Figure5.20. The load voltage and current are distorted since the high 

voltage ripple on capacitors. The mid-point voltage is shown in Figure5.21. The sub-

module capacitor voltage and current are shown in Figure5.22. The arm inductor current is 

shown in Figure5.23.  
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Figure 5.20 Three-level MMC (a) load voltage and (b) load current. 
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Figure 5.21 Three-level MMC mid-point voltage (a) vab; (b) vbc; and (c) vca. 
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Figure 5.22 Sub-module capacitor (a)/(c) voltage; and (b)/(d) current. 
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Figure 5.23 (a) Line current and its corresponding (b) upper arm current, (c) lower arm 

current.  

 

This Chapter theoretically analyzes the dynamic response of the MMC in switching 

cycles. To assume the voltage drop on inductor to be zero, transient should be faster than 

the switching period. In another word, τ < Tsw. Some simulations results are provided to 

verify the analysis. 
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6 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

 

This dissertation presents a modular multilevel converter with self voltage balancing. 

This work has made the following contributions: 

❖ This dissertation mathematically proves that MMC capacitor voltage is self-

balanced by nature if considering certain submodule patterns. This implies that 

MMC could achieve the submodule capacitor voltage balancing without any 

monitoring or control. The mathematical proof starts from observing the two- and 

three-level MMCs. Mathematically, two- and three-level MMCs are proved to be 

self-balanced. Then, the similar observation is extended to N-level MMC. A 

computer-aid procedure is given to prove that N-level MMC, where N ≤ 533, is self 

balanced by nature. This dissertation conjectures that this observation can be 

extended to arbitrary-level of MMC. 

❖ To utilize this merit of MMC, a novel modulation, namely Γ-Matrix Modulation 

(ΓMM), is proposed to transform the math analysis of Chapter 2 into modulation 

practice. With the proposed ΓMM, MMCs are secured self voltage balancing. 

Conventionally, either a complicated voltage balancing control, or extra 

components must be embedded to MMC to balance the capacitor voltage. 

Compared to conventional MMC capacitor voltage balancing strategies, ΓMM 

features extremely simple algorithms and good reachability to high-level MMCs 

while maintaining the original half-bridge submodule topology. To simplify the 

analysis, ΓMM is introduced to two-level and three-level MMCs as examples. Then, 
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the generalized ΓMM is derived, which is suitable for high-level MMCs. Several 

ΓMM based MMC case studies are provided for verification purposes. 

❖ The general state-space model of MMC is proposed to understand the mechanisms 

of the self balance phenomena of MMC. The existing MMC modeling are 

developed on different degrees of assumptions and simplification. This makes them 

unsuitable for understanding the nature of this circuit from its physical basement. 

Compared to existing MMC modeling, the proposed state-space model well 

captured the MMC dynamics. With this state-space model, the MMC capacitor 

voltage convergence and divergence can be well observed. Four-level MMC with 

both full-rank Γ and non-full-rank Γ are studied to demonstrate that this model 

could explain both convergence and divergence of the capacitor voltage. In addition, 

a generalized MMC model is derived. The generalized model can be applied to 

higher level MMC. An eleven-level MMC case study is provided to verify the 

proposed model when extended to higher level.  

 

Although we have developed a general state-space model for MMC, MMC still remains 

a black box in terms of the understanding how this model interacts with the Γ matrix (see 

Figure5.1). We observed the self balance phenomenon and gave a reasonable math 

explanation in Chapter 2. Then, we proposed a modulation that could trigger this self 

balance phenomenon in Chapter 3. After that, we developed a general state-space model 

for MMC to catch the detailed dynamics in Chapter 4.  

After this dissertation, we have a lot of interesting works to do. We need to explain the 

trajectory of the convergence/divergence by using the model derived from Chapter 4. One 
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more step, we need to predict the trajectory without the aid of simulation. Once we could 

predict the trajectory, we could come up with a general guidance for this type of sensor-

less operation to evaluate its stability.  

MMC
Y Vdc

Y Vdc

▪ Convergence/divergence mechanisms

▪ Stability analysis

▪ Observability/controllability

▪ Limited measurements/state estimation

▪ Γ-matrix searching

▪ Inrush current reduction

▪ Arm inductor design

▪ Submodule capacitor design

▪ Compact MMC

▪ H-bridge cascaded multilevel converter

▪ Flying capacitor

▪ Three-phase MMC modeling

▪ Circulating current reduction

Conventional power electronics topics Unconventional power electronics topics

 

Figure 6.1 Recommendations for future work. 

6.2.1 STATE-SPACE MODEL OF TWO-LEVEL MMC 

Take the two level MMC for example. We have known that there are two continuous 

state spaces for two-level MMC. The first state space is 
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The system matrices are 
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s

V

di

dt

 
 =
 
 

U . (6.4) 

The corresponding switching pattern is  

 
( )  2
1 0 1=Γ . (6.5) 

We denote 
( )( )2

1A Γ  by A1. 

State equation (6.1) could be re-written as  
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 1X = A X + BU . (6.6) 

This state space dynamics could be denoted by f1, 

 ( )
1 1f =X = X A X + BU . (6.7) 

The other state space is 
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The corresponding switching pattern is  
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2 1 0=Γ . (6.9) 
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 and 
dc

s

V

di

dt

 
 =
 
 

U . (6.10) 

We denote 
( )( )2

2A Γ  by A2. 

State equation (6.8) could be re-written as  

 2X = A X + BU . (6.11) 

This state space dynamics could be denoted by f2, 

 ( )
2 2f =X = X A X + BU . (6.12) 

6.2.2 MECHANISMS OF VOLTAGE CONVERGENCE OF TWO-LEVEL MMC 

6.2.2.1 THE SENSE OF SMELL OF A STATE MACHINE 

Before we discuss the MMC behavior, we first introduce the concept of the sense of 

smell of a state machine. For example, a two-level MMC contains two continuous state 

spaces (f1, f2). The transition between A1 and A2 is governed by a state machine H. In 

another word, H determines the moment that MMC should jump out of current continuous 

state space, and which continuous state space MMC should jump into at that moment.    

Let i1
0, i2

0, 0

1CV  and 0

2CV be the initial value of state variables. Suppose that 0

1C dcV V  and 

0

2C dcV V . The location (coordinates) of initial state variables is denoted by p0, 

 
T

0 0 0 0 0

1 1 1 2C Cp i i V V =    (6.13) 

Similarly, location (coordinates) of balance point is denoted by p, 

  
T

dc dcp V V=    (6.14) 

* denotes no specific definition of balance value for certain state variables. The 

displacement from p to p0 is denoted by d0, 



240 

 
T

0 0 0 0 0 0

1 2 1 2C dc C dcd p p i i V V V V = − = − − − −   (6.15) 

Since we do not have specific balance value for i1 and i2, the first two entries in d0 are 

set to zero to simplify the analysis. Therefore, 

 
T

0 0 0 0

1 20 0 C dc C dcd p p V V V V = − = − −   (6.16) 

Definition: Suppose the state machine H determines the continues dynamics fi to be 

applied at moment t0.  H is said to have a good sense of smell if the inner product of d0 and 

fi is no greater than zero. In another word, 

 
0 , 0id f   (6.17) 

This definition is consistent with our intuitions. fi represents the dynamics of state 

variables. For example, suppose fi to be 

  
T

0 0 1 0if = − . (6.18) 

This means  

 1 1CdV

dt
= − . (6.19) 

This indicates that VC1 has a trend to decrease. 

Suppose p0 to be 

  
T0 1001 1000p =   . (6.20) 

Suppose the balance point p to be 

  
T

1000 1000p =   . (6.21) 

This indicates that VC1 (1001 V) is greater than the expected balance point voltage (1000 

V).  Therefore, 

  
T0 0 0 0 1 0d p p= − =  (6.22) 
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And 

 ( )  
T

0 0

0

0
, 0 0 1 0 1 0

1

0

i id f d f

 
 
 =  =  = − 
 −
 
 

 (6.23) 

Although the initial value of VC1 is greater than the balance value, VC1 has a trend to 

decrease. We could expect VC1 to come closer to the balance point after a while. This 

indicates that H has chosen a good fi to kick in at the right moment. We can claim that H 

has a good sense of smell. 

Otherwise, H is said to have a bad sense of smell if the inner product of d0 and fi is 

greater than zero. In another word, 

 
0 , 0id f   (6.24) 

6.2.2.2 UNDERSTAND TWO-LEVEL MMC BEHAVIORS 

We are going to test the sense of smell for the state machine H of a two-level MMC. 

The state machine H follows the law set up in Chapter 3, which is 

i. Determine the level of va; 

ii. Assign the level number to the level pointer at every switching cycle; 

iii. Find the Γ-matrix pointer which the level pointer points to; 

iv. Read the row (submodule pattern) which the Γ-matrix pointer points to; 

v. Generate the gating signal for each submodule according to the submodule pattern; 

vi. Reassign the Γ-matrix pointer to the next row and wait for the next call from level 

pointer.  

For the two-level MMC case, this state machine law can be interpreted as follows, 
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i. The state machine always choses the state space from the adjacent levels as the next 

state space; 

ii. The kick-off time of next state space is arbitrary within one switching cycle.  

We should also notice some properties of U. 

i. The first entry of U is Vdc, which is a constant; 

ii. The second entry of U is dis/dt = (va – Vs)/L. this entry is a bounded number since 

va, Vs and L are all bounded. 

We should always have these conditions in mind when we evaluate the state machine. 

A single-phase two-level MMC is studied to verify the state machine proposed in Chapter 

3. A switching model is built in MATLAB/Simulink. The simulation circuit is shown in 

Figure6.2. The key parameters of the system are summarized in Table 19. Ideal switches, 

inductors, and capacitors with no parasitic parameters as well as ideal voltage sources were 

used. In the simulation setup, discrete-Tustin/Backward Euler (TBE) with a sample time 

of 0.1 μs is selected. The initial values of capacitor voltages are 1000V. The initial values 

of the inductor current are determined by MATLAB/Simulink.  
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Figure 6.2 Two-level single-phase MMC circuit for state machin study. 

Table 19 

Two-level MMC simulation key parameters for state machine study. 

Fundamental Frequency, f0 60 Hz 

Switching Frequency, fsw 10 kHz 

DC-Bus Voltage, Vdc 1000 V 

Load Resistance, Rload 6.2 Ω    

Line Inductance, Lline 1 mH    

Arm Inductance, Larm 0.1 µH  

Stray Resistance, Rstray 0.1 Ω    

Submodule Capacitance, Ci 85 µF    

Number of Submodules per Arm 1 

  where i = 1, 2. 

We are going to calculate the < d0 , fi > along with time.  
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A time-step of ∆T = 0.1 μs was used to match with the simulation. The system matrix 

A is a function of switching patterns. The state machine decision (instantaneous switching 

patterns) and the input value (U) are extracted from simulation. Then < d0 , fi > is calculated 

accordingly. Figure6.3 shows the < d0 , fi > results from the state machine proposed in 

Chapter 3.  

0.02 0.03 0.04 0.05 0.06 0.07 0.08
-5

0

5

10
<

 d
0
, 
f i 

>
× 106

Time t (s)  

Figure 6.3 The < d0 , fi > resulting from the state machine proposed in Chapter 3. 

If we zoom in to see the details of the state machine and the dynamics of capacitor 

voltage, we will find that H always has a good sense of smell. Figure6.4 gives an example 

to show that H makes eight decisions in five switching cycles. < d0 , fi > is always negative 

when H launches a new decision [see red arrow in Figure6.4 (c)]. We can conclude that the 

proposed H has a good sense of smell. 
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Figure 6.4 (a) Upper arm capacitor voltage; (b) lower arm capacitor voltage; and (c) 

the sense of smell <d0,fi >. 

6.2.3 DISCUSSIONS ON HIGH LEVEL MMC 

I hope that the similar analysis could also be applied to higher level MMCs.  

We have introduced a concept of sense of smell in Chapter 6.2.2. This could be one 

index to evaluate a state machine. However, when we go to high level MMC, this index 

might not be strong enough to guarantee the stability of the system. We need to introduce 

other indices to help assess the state machine.  
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Once we have a tool to assess the state machine we propose, we can move on to 

minimize the inrush current on the arm inductor without losing stability. There might be a 

chance that we need to look for a proper algorithm that can searching in the pool of Γ 

matrix. I have come up with some interesting topics to work on after finishing the stability 

analysis. Just list a few here, 

❖ The inrush current is large in this dissertation. It is possible to look for a better Γ 

matrix to reduce the inrush current. Due to the massive data in Γ matrix, we might 

need to rely on some algorithms to search for the optimized Γ matrix. 

❖ Although there is no sensor in this dissertation, it is possible that we add some 

sensors to the system and increase the stability. So, checking the controllability and 

the observability is critical. It is also possible to use state estimation to help us 

stabilize the system. 

❖ We have demonstrated that ΓMM based MMC could reduce the dc capacitance. 

Since the arm current waveform is totally different from convention MMC, the 

component design needs to be re-considered. There is a chance we can have a 

compact MMC by using ΓMM. 

❖ The ΓMM philosophy can also be applied to other type of multilevel converters, 

for example H-bridge cascaded multilevel converter. But when it comes to H-

bridge, the entries in Γ matrix is no longer just 1 and 0. It is going to be 1, 0, and – 

1. It is promising to extend the ΓMM philosophy to other type of multilevel 

converter as well.  
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❖ In this dissertation I only discussed about single-phase model. The circulating 

current is missed out from this model. We need to have three-phase model in order 

to evaluate the circulating current. 

I apologize that I have to stop here in this dissertation. This is definitely not the end of 

understanding the nature of MMC. Instead, I believe this is just a beginning. There are 

many mysterious phenomena hidden in MMC. There will be a day that MMC is no longer 

a black box. And we will have a thorough understanding of MMC nature at that time. Not 

now but some day in future.  
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The conjectures provided in Chapter 2.4.3 summarized two angles to approach to this 

math problem. We are going to take second conjecture b as example to proof since second 

conjecture b contains the majority levels compared to the other three items. If second 

conjecture b is proved, the other three proofs are trivial. The item that under analysis are 

as follows, 

• If the rank of ( ) ( )
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;  

This conjecture can be decomposed as follows, 

• Row independent: let 
( )1ˆ −N
kΓ  be full rank, where ( )( )1ˆ 2 5− = −N

krank NΓ , then
( )ˆ N
kΓ is full 

rank, where ( )( )ˆ 2 3= −N
krank NΓ . 

• Column independent: let 
( )ˆ N
kΓ and 

( )

1
ˆ

+
N

kΓ be row independent, then ( ) ( )
T

1 1
1

ˆ ˆ− −
+

  
N N

k kΓ Γ is 

column vector independent. 

The reason to decompose the original conjecture into two parts is that the rows of 
( )ˆ N
kΓ

should linearly independent if 
( )ˆ N
kΓ is full rank since 

( )ˆ N
kΓ  is (2N – 3)×(2N – 2). The 

columns of ( ) ( )
T

1 1
1

ˆ ˆ− −
+

  
N N

k kΓ Γ should be linearly independent if ( ) ( )
T

1 1
1

ˆ ˆ− −
+

  
N N

k kΓ Γ is full 

rank since ( ) ( )
T

1 1
1

ˆ ˆ− −
+

  
N N

k kΓ Γ is (4N – 6)×(2N – 2). 
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We are going to prove the above conjectures by contradiction. A classic proof by 

contradiction from mathematics is the proof that the square root of 2 is irrational[69]. If it 

were rational, it could be expressed as a fraction a/b in lowest terms, 

where a and b are integers, at least one of which is odd. But if a/b= √2, then a2 = 2b2. 

Therefore, a2 must be even. Because the square of an odd number is odd, that in turn 

implies that a is even. This means that b must be odd because a/b is in lowest terms. On 

the other hand, if a is even, then a2 is a multiple of 4. If a2 is a multiple of 4 and a2 = 2b2, 

then 2b2 is a multiple of 4, and therefore b2 is even, and so is b.   So b is odd and even, a 

contradiction. Therefore, the initial assumption—that √2 can be expressed as a fraction—

must be false. 

A.1    ROW INDEPENDENT 

Let 
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Where αi is row vector of 
( )ˆ N
kΓ , βi is row vector of 

( )1ˆ −N
kΓ , λ is a column vector. 

Let 
( )1ˆ −N
kΓ  be full rank, where ( )( )1ˆ 2 5− = −N

krank NΓ . If 
( )ˆ N
kΓ is non full rank, ∃ λ ∈ R(2N-

3) × 1
  : – λiαi = λ1α1 + λ2α2 +… + λi – 1αi – 1 + λi + 1αi + 1 +… + λ2N – 3α2N – 3 ⇔

( )T ˆ =N
kλ Γ 0 . 

Therefore  
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Note that ( )

( )1
1
−

−
N

k b
T  is derived from 

( )1
1

ˆ −
−
N

kΓ  by manipulating the left most “0” in first row of 

( )1
1

ˆ −
−
N

kΓ  to “1”. Therefore, ( )

( )1
1
−

−
N

k b
T contains at least one entry to be one. Therefore, ( )

( )1
1
−

− N
k b

T 0 . 

Therefore, 

 
21 2 5 0   −+ + + =N

 (A.7) 

 
1 1 2 2 2 5 2 5     − −+ += + N N0  (A.8) 

A contradiction appears since 
( )1ˆ −N
kΓ  is full rank. 

( )1ˆ −N
kΓ  is full rank⇔

1 1 2 2 2 5 2 5     − −+ + + N N0 . Therefore, the initial assumption—that 
( )ˆ N
kΓ is non full 

rank—must be false. 

then ( )

( )1
1
−

−
N

k b
T  is linearly dependent to 

( )1ˆ −N
kΓ . ( )

( )1
1
−

−
N

k b
T  is derived from 

( )1
1

ˆ −
−
N

kΓ  by manipulating 

the left most “0” in first row of 
( )1

1
ˆ −

−
N

kΓ  to “1”. The definition of ( )

( )1
1
−

−
N

k b
T  does not guarantee 

that ( )

( )1
1
−

−
N

k b
T  is linearly independent to 

( )1ˆ −N
kΓ . If the definition of ( )

( )1
1
−

−
N

k b
T guarantees that ( )

( )1
1
−

−
N

k b
T  

is linearly independent to 
( )1ˆ −N
kΓ , then a contradiction appears. Therefore, the initial 

assumption—that 
( )ˆ N
kΓ is non full rank—must be false. 

A.2    DISCUSSION 

We have two sets of conjectures from Chapter 2.4.3. They are equivalent to each other. 

We have presented the math analysis regarding the second conjecture. The overall logic of 

the second conjecture is proof by induction. In fact, it is unnecessary to prove the conjecture 

by induction. The logic of the first conjecture is direct proof. The matrices presented in 

Chapter 2 have a property, which is the matrices contains only ones and zeros. These 

matrices were the subject of intensive study during the late 1950s and early 1969s by H. J. 

Ryser, D. Ft. Fulkerson, R. M. Haber, and D. Gale, and many remarkable theorems were 
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proved [70]. The original Γ before submatrix extraction has a property that the row and 

column sum vectors are fixed. This special matrix is discussed in [70]. Many remarkable 

theorems were proved in [70].  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% - It takes 30s to run this script on my laptop 

%   if NN = 100; 

% - It takes 12 hours if NN = 433; 

% - It takes 36 hours if NN = 533. 

% Yunting 6-7-18 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clc; clear all; 

% generate the Y matrix 

% initiate the Y(N-1) matrix with 3-level MMC 

YN_1 = [0 0 1 1;       % first level 

        0 1 0 1;       % second level 

        1 0 0 1;       % second level 

        0 1 1 0;       % second level 

        1 1 0 0];      % third level 

% initiate the maximum level NN you hope to check 

NN = 1000; 

% generate the Y matrix of N-level MMC 

for N = 1:NN 

% generate the kth level Yk matrix 

    for k = 1:N 

        if k == 1 

            Yk = [zeros(1, N-1) ones(1, N-1)]; % fist 

level 

        else 

            if k < N-1 

% extract the kth level matrix from the (N-1)-level MMC Y 

matrix 

                N_1 = N-1;       % 

(N-1)-level MMC 

                m = 1 + (k-2) * (2*N_1 - 3) + 1;   % 

starting row 

                n = m + (2*N_1 - 3) - 1;         % 

ending row 

                Yk = YN_1(m:n,:); 

                % have a zero vector to the left 

                zero = zeros(2*N_1 - 3, 1); 

                Yk = [zero Yk]; 

                % have a one vector to the right 

                one = ones(2*N_1 - 3, 1); 

                Yk = [Yk one]; 

                % extract Y(k-1) 

                if k-1 == 1 

                    Yk_1 = YN_1(1,:); 

                else 
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                    m = 1 + (k-3) * (2*N_1 - 3) + 1;  % 

starting row 

                    Yk_1 = YN_1(m,:); 

                end 

                % generate T(k-1)a 

                [a, b] = size(Yk_1); 

                for i = 1:b 

                    if Yk_1(b-i+1) == 1 % search for the 

right most "1" 

                        Tk_1a = Yk_1; 

    % convert the right most "1" to "0" 

                        Tk_1a(b-i+1) = 0;    

                        break 

                    end 

                end 

                % generate T(k-1)b 

                for i = 1:b 

                    if Yk_1(i) == 0    % search for the 

left most "0" 

                        Tk_1b = Yk_1; 

    % convert the right most "0" to "1" 

                        Tk_1b(i) = 1; 

                        break 

                    end 

                end 

                % finalize Yk 

                Yk = [Yk; 1 Tk_1a 1; 0 Tk_1b 0]; 

            else 

                if k == N-1 

% extract the (k-1)th level matrix from the (N-1)-level 

MMC Y matrix 

                    N_1 = N-1;      % (N-1)-

level MMC 

                    m = 1 + (k-3) * (2*N_1 - 3) + 1;  % 

starting row 

                    n = m + (2*N_1 - 3) - 1;         % 

ending row 

                    Yk_1 = YN_1(m:n,:); 

                    % have a zero vector to the right 

                    zero = zeros(2*N_1 - 3, 1); 

                    Yk = [Yk_1 zero]; 

                    % have a one vector to the left 

                    one = ones(2*N_1 - 3, 1); 

                    Yk = [one Yk]; 

                    % extract first row of Y(k-1) 

                    row_Yk_1 = Yk_1(1,:); 

                    % generate T(k-1)a 
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                    [a, b] = size(row_Yk_1); 

                    for i = 1:b 

  % search for the right most "1" 

                        if row_Yk_1(b-i+1) == 1  

                            Tk_1a = row_Yk_1; 

  % convert the right most "1" to "0" 

                            Tk_1a(b-i+1) = 0;    

                            break 

                        end 

                    end 

                    % generate T(k-1)b 

                    for i = 1:b 

  % search for the left most "0" 

                        if row_Yk_1(i) == 0  

                            Tk_1b = row_Yk_1; 

  % convert the right most "0" to "1" 

                            Tk_1b(i) = 1;    

                            break 

                        end 

                    end 

                    % finalize Yk 

                    Yk = [Yk; 1 Tk_1a 1; 0 Tk_1b 0]; 

                else 

                    Yk = [ones(1, N-1) zeros(1, N-1)]; % 

fist level 

                end 

            end 

        end 

        if k == 1 

            YN = Yk; 

        else 

            YN = [YN; Yk]; 

        end 

    end 

    % update Y(N-1). save YN to Y(N-1) 

    YN_1 = YN; 

    % check the rank of any two adjacent levels 

    for k = 1:N-1 

        if k == 1 

            Y1 = YN(1,:);     % extract the kth 

level Y1 

            Y2 = YN(2:2*N-2, :);    % extract the next 

level Y2 

        else 

            if k < N-1 

                % extract the kth level Y1 
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                m = 1 + (k-2) * (2*N - 3) + 1;  % 

starting row of Y1 

                n = m + (2*N - 3) - 1;         % ending 

row of Y1 

                Y1 = YN(m:n,:); % extract the kth level 

Y1 

                % extract the kth level Y2 

                m2 = n + 1;         % starting row of Y2 

                n2 = m2 + (2*N - 3) - 1;      % ending 

row of Y2 

                Y2 = YN(m2:n2,:); 

            else 

                % extract the kth level Y1 

                m = 1 + (k-2) * (2*N - 3) + 1;  % 

starting row of Y1 

                n = m + (2*N - 3) - 1;         % ending 

row of Y1 

    % extract the kth level Y1 

                Y1 = YN(m:n,:);              

                % extract the kth level Y2 

                Y2 = YN(n+1,:); 

            end 

        end 

        Y12 = [Y1;Y2]; 

  % check the rank of any two adjacent levels 

        Y12rank = rank(Y12);    

        if Y12rank ~= (2*N-2) 

            formatSpec = 'The rank of %dth level and %dth 

level of a %d-level MMC is %d\n'; 

            fprintf(formatSpec,k,k+1,N,Y12rank) 

            break 

        end 

    end 

end 

formatSpec = 'All ranks checked!\n'; 

fprintf(formatSpec) 
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