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ABSTRACT 
 

INTEGRATED REMOTE SENSING AND CROP SYSTEM MODELING 
FOR PRECISION AGRICULTURE ACROSS SPATIAL AND TEMPORAL SCALES 

 
By 

 
Bradley George Peter 

 
In light of global environmental change, population pressure, and food production demands, there 

is considerable value in mapping biogeographic crop niche and characterizing crop productivity 

at multiple scales to enhance the impact of agricultural improvement across Africa. Crop system 

research has advanced sustainable strategies for intensifying food production; however, questions 

regarding where to implement innovative technologies are largely unresolved. 

This dissertation focuses on four geographic questions: (1) Where is the fundamental cli-

mate niche of maize, pigeonpea, and sorghum across Africa? (2) Where are marginal lands in 

Malawi and what are the underlying drivers of marginality? (3) Based on the drivers of marginal 

maize production, what are geographic scaling options for integration of pigeonpea into maize-

based cropping systems? (4) What spatial resolutions are effective for conducting precision agri-

culture at the farm scale in smallholder systems?  

Overarching themes within the geographic discipline such as the modifiable areal unit 

problem and ecological fallacy problem underpin this research. Marginal areas for maize are high-

lighted at the Africa and Malawi scales and overlain with the optimal climate niche for crops such 

as sorghum and pigeonpea that offer multiple ecosystem services (e.g., soil rehabilitation through 

nitrogen fixation). Crop productivity is evaluated at scales relative to policy making delineations 

in Malawi (i.e., country, district, and extension planning area) to disentangle heterogeneity at local 

scales that may appear homogeneous at broader scales. At the Malawi farm scale, this research 

included the use of a small unmanned aerial system (sUAS), national government satellites (e.g., 



   

Sentinel-2), and commercial satellites (e.g., SPOT 6). Spectral measurements of crop status were 

evaluated at multiple spatial resolutions (ranging from 0.07–20-m) to determine what spatial res-

olutions and what spectral indices are most effective for estimating crop yields and crop chloro-

phyll. 

 Results of this research include high spatial resolution maps of maize, pigeonpea, and sor-

ghum suitability across Africa, indicating that pigeonpea and sorghum occupy unique agroecolog-

ical zones throughout the continent (e.g., sorghum in the Sahel region). Similarly, pigeonpea suit-

ability in Malawi occupies a greater land area than the extent to which it is currently cultivated, 

demonstrating that integration into maize-based cropping systems, particularly where soil is mar-

ginal, can have beneficial scaling outcomes. For the smallholder farm scale, problems of clouds 

and satellite revisit rates have not yet been overcome for precision agriculture. In this regard, sUAS 

are a promising option for relating spectral signals to on-farm measurements of crop status. Evi-

dence from drone flights conducted at two experimental farms in the central region of Malawi 

(Nyambi and Ntubwi) suggest that spatial resolutions closer to the plant scale (i.e., 14–27-cm) are 

most effective for relating spectral imagery to crop status. Moreover, the green normalized differ-

ence vegetation index (GNDVI) and green soil adjusted vegetation index (GSAVI) were consist-

ently correlated with crop chlorophyll and yield, illustrating that a broad range of indices should 

be evaluated for precision agriculture. 
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INTRODUCTION 

1.1 Multiscale Geographic Challenges 

Continental Scale: Food Security and Climate Change—Many countries in Sub-Saharan Africa have ex-

perienced food shortages over the last several decades (Maxwell 1999; Buerkle 2005; Banda 2015; 

Phiri and Macharia 2016), and smallholder subsistence agriculture is increasingly stressed by pop-

ulation pressures, soil exhaustion, and climate change (Postel 2000; Godfray 2010). Droughts and 

unpredictable rainfall patterns have led to substantial fluctuations in annual agricultural output 

(Tadross et al. 2009), particularly in areas where biophysical conditions are suboptimal or where 

social factors limit productivity (Challinor et al. 2007). Moreover, there are sustainability concerns 

associated with the continuous production of maize consequently leading to soil nutrient and or-

ganic matter depletion (Sanchez 2002; Glasson 2010; Ngwira et al. 2012; Thierfelder et al. 2013).  

Among the United Nations Sustainable Development Goals are to increase agricultural 

production and reduce the cases of hunger and malnutrition globally (United Nations 2018). 

Given the existing and anticipated concerns regarding future climate change, impacts on global 

food security, and the need to produce more food (Wheeler and Braun 2013), a question looms 

for geographers—where can new agricultural technologies be introduced, and at what scales can 

geospatial data be leveraged to improve agricultural production?  

Elucidating the spatial organization of crop suitability across Africa is critical for resolving 

questions of where and how to maximize cropping system efficacy across space. At the continental 

scale, Africa contains many agroecological zones that can support a wide variety of crops, yet 

many are underrepresented by current global crop suitability models (Kane et al. 2016; Peter et al. 

2017a). Promotion of ecosystem service-offering crops has taken hold; however, geospatial prod-

ucts designed to target implementation areas for crop system innovations are essential to 
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successful scaling (Wood et al. 1999), yet currently lacking, particularly at regular temporal inter-

vals. At present, evidence suggests that the production of legumes in Africa does not coincide 

with the biophysical extent of suitability (Snapp et al. 2019a), and that perennial grain suitability 

may be more geographically extensive than previously perceived (Peter et al. 2017a). In this regard, 

there is potential for legume diversification to enhance agroecosystem productivity in many re-

gions of Africa (Snapp et al. 2019a), not only for soil rehabilitation, but also as complementary 

nutrition in household consumption (Bezner-Kerr 2007; Jones et al. 2014; Ojiewo 2015). For il-

lustration, the geographic extent of the fundamental climate niche for common bean across South-

eastern Africa is demonstrated here in Figure 1.1. 

Importantly, crop technology adoption will only take place where biophysical suitability is 

appropriate (Kwesiga et al. 2003), and as global changes continue to occur, geospatial analytics 

and map outputs will need to be generated with more frequency. As global climate information is 

released to the public in near real-time, crop climate-suitability maps can and should be generated 

at the same pace. With cloud-based geographic information system platforms emerging, such as 

Google Earth Engine (Gorelick et al. 2017), data acquisition and geospatial analytics can be per-

formed at unprecedented geographic scales and product delivery speeds to transform empirical 

spatial data into scientific and actionable knowledge.  
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Figure 1.1. Climate niche for common bean in Southeastern Africa. Temperature and precipitation pa-
rameters collected from Beebe et al. (2011). Data sources: NASA MODIS Land Surface Temper-
ature (MOD11A2) (NASA LP DAAC 2015b) and CHIRPS Precipitation (Funk et al. 2015). 
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Country Scale: Characterizing Marginal Lands and Informing Policy—In densely cultivated Malawi, 

the only options for increased production are through agricultural expansion into marginal areas 

or intensification of farms currently persisting on marginal lands (Kalipeni 1996; Josephson et al. 

2014; Ricker-Gilbert et al. 2014). Consideration of marginal lands for agricultural sustainability is 

critical to national food security in Malawi as approximately 88 percent of the population lives in 

rural areas and many rely on subsistence farming (Malawi National Statistical Office NSO 2005; 

Chinsinga and O’Brien 2008). With this in mind, the focus for increased agricultural productivity 

revolves primarily around internal reorganization of existing farms, while simultaneously meeting 

goals associated with environmental conservation (Josephson et al. 2014; Ricker-Gilbert et al. 

2014; Kremen 2015). However, marginal agricultural lands in need of increased production are 

not widely recognized as a land-use class, and despite increasing research efforts to identify mar-

ginal lands (Wood et al. 1999; Gopalakrishnan et al. 2011; Cai et al. 2011), there is not a universal 

definition for characterizing marginal land.  

Few marginal agricultural land classifications directly address the smallholder farming con-

text, and such studies are often limited to one scale. Problematically, marginal agricultural lands 

are typically presented as a singular classification and regularly conflated as unsuitable, which can 

divert agricultural investments away from agricultural areas in need of resources (Nalepa et al. 

2017). Rather than the typical singular marginal land classification, a multi-category definition that 

considers the underlying factors driving marginality can inform what strategies are selected for 

improving crop production on smallholder farms. Locating marginal agricultural lands and iden-

tifying the drivers of marginality ensures that agricultural improvements are targeted with respect 

to the limiting factors of production.  
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Global satellites and time-series spatial information can aid in evaluating long-term agri-

cultural system resilience (Haworth et al. 2018), as well as provide critical biophysical data for crop 

niche mapping. With multispectral satellite imagery, global agricultural productivity can be meas-

ured and characterized (Atzberger 2013); however, at global scales of analysis, local-scale hetero-

geneous landscapes can appear homogeneous (Sexton et al. 1998; Duveiller et al. 2015). This is in 

part a product of the modifiable areal unit problem (MAUP), popularly coined by Openshaw 

(1983), recognizing that pixel classifications or statistical aggregations can vary depending on the 

data distribution within the areal unit selected. At the pixel scale, the ecological fallacy problem 

also emerges, where assumptions may be erroneously applied to individual based on aggregate 

data (Openshaw 1983). A multiscalar challenge to overcome here is that global- and continental-

scale characterizations of land in Malawi can be [mis]represented as one homogeneous category, 

which is ultimately not effective for country- or district-scale policy decisions, let alone an indi-

vidual farm. Notably, Blaikie and Brookfield (1987) argued the importance of geographic scales 

and socioeconomic organizations in evaluating human-environment interactions (Nuemann 

2009). To this end, policymakers will benefit from a multiscale classification approach that con-

siders the modifiable areal unit problem and elucidates crop production variability at scales relative 

to multiple administrative decision levels (e.g., country, districts, and extension planning areas in 

Malawi).  

Farm Scale: Precision Agriculture and Variable-Rate Technology—High spatial-resolution small 

unmanned aerial systems (sUAS) offer unprecedented levels of geospatial analytics at the farm 

scale. In-season crop status monitoring with these systems has become popular in industrialized 

agriculture, with spatial applications of crop improvement informed by spatial measurements of 

crop performance (known as variable-rate technology) (Sawyer 1998; Zhang and Kovacs 2012). 
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Precision agriculture can add value to smallholder environments in semi-arid Africa to inform 

timely and efficient sowing and weeding, and spatial allocation of fertilizer (Aune et al. 2017); 

however, there are substantial limitations to obtaining sUAS imagery across vast geographic ex-

tents. Advances in spatial and temporal resolution satellite imaging have made precision agricul-

ture in remote areas increasingly feasible; however, cloud cover and revisit rates still pose a con-

siderable hurdle (Mulla 2013).  

With a fixed-wing craft such as the senseFly eBee equipped with a Parrot Sequoia multi-

spectral camera, images with a spatial resolution of less than 5-cm can be achieved. The standard 

camera collects images at four spectral wavelengths: green, red, red edge, and near infrared, which 

can be manipulated to produce an extensive collection of crop status indices. At this scale, intra-

farm variability can be measured and intra-farm recommendations made; however, it is well-

known that the linear correlation between remote sensing-based indices and in situ crop measure-

ments will vary depending on the crop evaluated, index selected, spatial resolution of the imagery, 

and interference of clouds, shadows, or soil (Hatfield and Prueger 2010). Two questions of interest 

in this research area are: What spatial resolutions (ranging from national government and com-

mercial satellites to sUAS) are effective for conducting precision agriculture at the smallholder 

farm scale in Malawi?, and (2) What spectral indices are effective for informing variable-rate tech-

nologies on smallholder farms? 

1.2 Multiscale Geographic Solutions 

Purpose and Objectives—This research focuses on four overarching questions: (1) Where is the fun-

damental climate niche of maize, pigeonpea, and sorghum across Africa? (2) Where are marginal 

lands in Malawi and what are the underlying drivers of marginality? (3) Based on the drivers of 

marginal maize production, what are geographic scaling options for integration of pigeonpea into 
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maize-based cropping systems? (4) What spatial resolutions and spectral indices are effective for 

conducting precision agriculture at the farm scale in smallholder systems? 

Key outputs of these studies include the development of protocols and products that pro-

vide multi-scale decision guidance for improving smallholder agricultural systems in Malawi by 

integrating high-resolution satellite imagery, sUAS imagery, field measurements, geospatial analyt-

ics, and variable-rate technology. The project consists of the following four geographic solutions 

for improving agricultural production across spatial scales. Study 1: establish crop profiles and 

map the fundamental climate niche for maize and select perennial grains across Africa. Study 2: 

identify marginal maize agricultural land in Africa and Malawi based on climate niche, terrain char-

acteristics, and measured interannual production variability. Study 3: (a) map the fundamental cli-

mate niche of pigeonpea in Malawi and (b) identify potential areas for the deployment of pigeon-

pea into maize-based cropping systems to illustrate geographic scalability. Study 4: evaluate a range 

of satellite and sUAS imagery spatial resolutions and spectral indices to determine effective spatial 

resolutions for precision agriculture on smallholder farms (Figure 1.2). 
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Figure 1.2. Linking the dissertation studies. Evaluating agricultural productivity and targeting areas 
for enhanced crop production across spatial scales. Study 1—Nature-Based Agricultural Solutions: 
Scaling Perennial Grains Across Africa; Study 2—A Multiscalar Approach to Mapping Marginal 
Agricultural Land: Smallholder Agriculture in Malawi; Study 3—Scaling Agricultural Innovations: 
Pigeonpea in Malawi; Study 4—Multi-Spatial Resolution Satellite and sUAS Imagery for Precision 
Agriculture on Smallholder Farms in Malawi. 

Nature-Based Agricultural Solutions: Scaling Perennial Grains Across Africa (Study 1)—This study 

established crop profiles and mapped the fundamental climate niche for maize, pigeonpea, and 

sorghum across Africa using cropping parameters from a literature review of tested crop perfor-

mance. In view of widespread soil organic matter depletion, nature-based solutions such as per-

ennial grain integration into maize-based cropping systems have emerged (Maes and Jacobs 2015). 

Pigeonpea, for example, is resilient to marginal environments and offers nitrogen fixation, carbon 

sequestration, and has substantial root biomass that can aid in [re]building soil fertility (Fujita et 
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al. 1992; Snapp et al. 2010). Sorghum, like pigeonpea, is resilient to marginal environments (Dicko 

et al. 2006) and is commonly used to improve field structure as a ridge crop for erosion mitigation 

(Okigbo and Greenland 1976).  

To identify the geographic scaling potential of pigeonpea and sorghum across Africa, cli-

mate-suitability maps of each crop were constructed. There are two overarching categories, opti-

mal and suboptimal, which are further subcategorized into a range of suitability. Following the 

suitability classifications of maize, pigeonpea, and sorghum, marginal maize areas were intersected 

with suitable sorghum and pigeonpea areas to identify areas where maize-based systems may ben-

efit from integration of one or both perennials. 

A Multiscalar Approach to Mapping Marginal Agricultural Land: Smallholder Agriculture in Malawi 

(Study 2)—In this study, a multiscale heuristic was designed for identifying marginal agricultural 

lands and the underlying drivers of marginality. Marginal agricultural lands exist as, or may emerge 

from, a complex combination of factors and are defined here as land characterized by variable 

interannual production and/or chronically low production, and suboptimal biogeographic condi-

tions. The framework consists of measuring interannual crop productivity (and variability) of long-

term farmed locations and evaluating biophysical land and climate characteristics.  

Net primary productivity was used to measure time-series trends of vegetation on agricul-

tural land, classifying pixels based on both the level of production and the productivity variance 

over 15 years. A methodology was developed to produce these classifications across, and relative 

to, multiple administrative levels (i.e., country, district, and extension planning area); however, the 

model devised supports any geographic delineation. This method exposes the modifiable areal 

unit problem, showing that classifications can change depending area and data distributions, but 

can also serve to manage the problem by disaggregating pixels relative to local scales where 
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agroecologies are more commonly shared. These classifications were paired with marginal bioge-

ographic conditions (temperature, rainfall, and soil) to address the factors that may be limiting 

agricultural production. In the absence of a biophysical driver explaining marginal production, it 

is possible that some other variable is driving marginality, namely social factors such as fertilizer 

availability, labor requirements, or farm management choices. 

Scaling Agricultural Innovations: Pigeonpea in Malawi (Study 3)—The purpose of this study was 

to identify the geographic scaling potential of integrating perennial pigeonpea into maize-based 

cropping systems in Malawi. Since pigeonpea exhibits soil rehabilitation properties, integration of 

this legume into maize-based cropping systems shows a range of predictable benefits, particularly 

where maize production is marginal due to suboptimal soil status. Historically, pigeonpea has been 

cultivated dominantly in the southern region of Malawi; however, we found that climate suitability 

for pigeonpea spans the latitudinal extent of the country. This evidence is supported by the fact 

that where pigeonpea is grown in the northern and central regions of Malawi, production and 

yields are comparable to those in the south. 

Multi-Spatial Resolution Satellite and sUAS Imagery for Precision Agriculture on Smallholder Farms 

in Malawi (Study 4)—This study examined a range of spatial resolution imagery over two small-

holder farms in Malawi. The imagery under analysis was Sentinel-2 (20-m), SPOT 6 (7-m), Planet 

(3-m), Pléiades (2.5-m), and sUAS (7-cm, 14-cm, and 27-cm). A heuristic was developed to (1) 

automatically generate a collection of spectral indices from the initial set of spectral bands (e.g., 

normalized difference vegetation index [NDVI] and green soil adjusted vegetation index 

[GSAVI]), and (2) evaluate multiple linear regression permutations of the selected indices and 

proximal measurements in the field (crop chlorophyll content and crop yield).  
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NATURE-BASED AGRICULTURAL SOLUTIONS: SCALING PERENNIAL 
GRAINS ACROSS AFRICA1 

2.1 Abstract 

Modern plant breeding tends to focus on maximizing yield, with one of the most ubiquitous im-

plementations being shorter-duration crop varieties. It is indisputable that these breeding efforts 

have resulted in greater yields in ideal circumstances; however, many farmed locations across Af-

rica suffer from one or more conditions that limit the efficacy of modern short-duration hybrids. 

In view of global change and increased necessity for intensification, perennial grains and long-

duration varieties offer a nature-based solution for improving farm productivity and smallholder 

livelihoods in suboptimal agricultural areas. Specific conditions where perennial grains should be 

considered include locations where biophysical and social constraints reduce agricultural system 

efficiency, and where conditions are optimal for crop growth. Using a time-series of remotely-

sensed data, we locate the marginal agricultural lands of Africa, identifying suboptimal temperature 

and precipitation conditions for the dominant crop, i.e., maize, as well as optimal climate condi-

tions for two perennial grains, pigeonpea and sorghum. We propose that perennial grains offer a 

lower impact, sustainable nature-based solution to this subset of climatic drivers of marginality. 

Using spatial analytic methods and satellite-derived climate information, we demonstrate the scala-

bility of perennial pigeonpea and sorghum across Africa. As a nature-based solution, we argue that 

perennial grains offer smallholder farmers of marginal lands a sustainable solution for enhancing 

1 This is an Accepted Manuscript of an article published by Elsevier in Environmental Research on 18 August 
2017, available online at doi.org/10.1016/j.envres.2017.08.011. Reference: Peter, B.G., Mungai, L.M., 
Messina, J.P. and Snapp, S.S., 2017. Nature-based agricultural solutions: Scaling perennial grains across 
Africa. Environmental Research, 159, pp.283-290. 



12 

resilience and minimizing risk in confronting global change, while mitigating social and edaphic 

drivers of low and variable production. 

2.2 Introduction 

2.2.1 Adapting Agriculture in View of a Changing Landscape 

Globally, there is a call to increase food production through sustainable practices, to counter the 

effects of climate change, rising population, land-use change, and deterioration of natural re-

sources (Postel 2000; Godfray et al. 2010). Subsistence agriculture in Africa in particular is becom-

ing increasingly stressed by population pressures, soil exhaustion, and climate change. Since the 

1990's, the population of Africa has been growing at a rate faster than the global average (Reilly 

and Schimmelpfennig 1999), contributing to the conversion of land for both agricultural produc-

tion and urbanization. Climate variability, such as unpredictable timing and quantity of rainfall, 

affect smallholder farmer crop production and farm management practices (Nelson et al. 2009), 

particularly in marginal environments (Reilly and Schimmelpfennig 1999). These changes, among 

others, have prompted increased research for agricultural intensification (Josephson et al. 2014; 

Ricker-Gilbert et al. 2014). Sub-Saharan African agricultural systems are among the most vulner-

able systems facing these challenges (Challinor et al. 2007), and ongoing research that is both 

innovative and participatory will foster biodiversity and increased productivity (Snapp et al. 2010). 

2.2.2 Sustainable Land Management and Emergent Nature-Based Solutions 

Sustainable land management is at the foundation of societal goals to produce food, fuel, and 

fodder in an environmentally sound and supportable manner over the long-term. How to achieve 

sustainable intensified agriculture is contested, with advocates promoting such various approaches 

as organic agriculture, agroecology, and conservation farming (Petersen and Snapp 2015). At the 

same time, there are a number of sustainability principles about which consensus is emerging that 
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can be followed regardless of the type of agriculture deployed (Robertson et al. 2014). Notable 

among these is the case for perennial vegetation (Pimentel et al. 1986; Glover et al. 2010). This 

type of plant trait ensures greater capture and conservation of resources, as living plants are con-

tinuously present to photosynthesize and foster biological processes such as nutrient recycling 

(Jackson 2002). Thus, a range of alternative management practices, including organic and conser-

vation agriculture can potentially derive considerable benefit from integration of perennials. In 

contrast, agriculture as currently practiced involves crops with overwhelmingly annual growth 

habits. This leads to managed lands left bare or unproductive for much of the year, as most food 

crops are grown for a scant four to five months (Jackson 2002). There are sustainable alternatives 

to such annual-intensive production, which include mixed cropping systems that incorporate per-

ennial plants as companion species and the development and deployment of crop plants that have 

perennial properties. Sorghum and pigeonpea are two such crops with perennial growth habits 

that allow regrowth and multiple harvests through an agronomic practice called ratooning (Rogé 

et al. 2016), which involves cutting the main stem(s) after reproductive maturity. 

Based on agroecology and conservation agriculture principles, nature-based solutions offer 

sustainable qualities, such as resilience to disturbance over variable time scales and minimal input 

requirements, as well as an aim toward general improved human well-being (European Commis-

sion 2015; Bauduceau et al. 2015). Nature-based solutions for sustainable urbanization emerged 

in the European Union as a research initiative with the explicit aim of addressing environmental, 

social, and economic challenges sustainably (European Commission 2015; Bauduceau et al. 2015). 

Similarly, smallholder agricultural systems will benefit from adoption of technologies that support 

sustainable principles and the complex system processes of nature. At the same time, the “net 

benefit of nature-based solutions depends on how much non-renewable energy can be replaced 
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without decreasing total production of ecosystem services” (Maes and Jacobs 2015: 3). Attention 

to resilience and resource amelioration is often overlooked in agricultural discourse in favor of the 

intensification of high-yield annuals, which dominates the development lexicon. In contrast to 

nature-based solutions that focus on economic solutions (e.g., fertilizer subsidy), nature-based 

solutions might be better expressed in the smallholder agricultural context through sustainable 

soil management strategies, field/crop organization, and local market development. 

2.2.3 Perennial Grains: A Nature-Based Approach for Africa 

Pigeonpea (Cajanus cajan (L.) Millspaugh) is a perennial leguminous shrub commonly cultivated 

and consumed by smallholder farmers in the tropical and often marginal environments of Africa 

(Kumar Rao and Dart 1987). Pigeonpea is biologically suited to production as an intercrop, as a 

slow initial growth habit minimizes competition for resources with a primary crop (Sakala et al. 

2000). Farmers typically grow pigeonpea as a mixed cropping system, producing two or more food 

products while simultaneously building soil fertility through biological processes (e.g., nitrogen 

fixation and carbon sequestration) (Fujita et al. 1992; Snapp et al. 2010). Sorghum (Sorghum bi-

color (L.) Moench) is a grass with perennial properties commonly grown by smallholder farmers 

in semi-arid regions of Africa (Doggett 1988; Paterson et al. 2009). The cultivation of sorghum 

occurs primarily in dryland areas and hot, semi-arid tropical environments (Dicko et al. 2006), 

though there are sorghum species that grow in wetter regions (Harlan and Stemler 1976). Sorghum 

has deep and spread roots and a solid stem (Buchanan, 1885), and it is common to grow sorghum 

along field ridges, as this helps prevent soil erosion (Okigbo and Greenland 1976). Pigeonpea and 

sorghum are generally drought-tolerant and resilient in dryland environments, and in perennial 

forms maintain these desirable traits (Parr et al. 1990). 
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A research gap that has not been addressed is the spatial assessment of suitability for di-

versification of nature-based solutions. In this paper, we consider the phenology of two perennial 

crops, pigeonpea and sorghum, both of which offer soil rehabilitation properties and are tolerant 

to marginal environments (Okigbo and Greenland 1976; Snapp et al. 2010). The unique properties 

of these crops enhance sustainability of cropping; however, they face biophysical constraints and 

require an appropriate socio-economic context to achieve successful adoption. Our overall objec-

tive is to identify appropriate integration properties and delineate the climate niche for deployment 

of these sustainable perennials within existing maize-based smallholder farms. From an agrocli-

matology perspective, we explore areas suitable for the cultivation of perennial sorghum and pi-

geonpea, and highlight the geographic potential for perennial grains to scale across Africa. Re-

motely-sensed imagery such as those presented here allow for global observation of the environ-

mental and biophysical factors that influence perennial development and adaptation and their 

spatial organization. Identifying biogeographic conditions in which sorghum and pigeonpea can 

prosper is crucial for effective integration and scaling of these perennial grains (Wood et al. 1999). 

This work builds on other global and continental suitability maps (e.g., the Global Agro-

Ecological Zones (GAEZ) database (Fischer et al. 2008; IIASA/FAO 2012)) by highlighting the 

intersection between marginal dominant crop conditions (in this case maize) and optimal perennial 

crop conditions (in this case pigeonpea and sorghum), ultimately targeting areas where maize-

based systems are likely to benefit from perennial integration. More, the data presented here are 

unaltered and at the remote sensing pixel level, providing a direct link to the farmer experience 

and offering a level of transparency (in terms of background variables) commonly masked by data 

aggregations and complex zoning classifications. We use geospatial technologies and techniques 

to (1) explore suitable (and optimal) climate conditions for pigeonpea and sorghum across Africa, 
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(2) assess marginal maize conditions and historic agricultural productivity, and (3) identify areas

where existing maize-based agricultural systems are likely to benefit from integration of sorghum 

or pigeonpea. 

2.3 Methods 

2.3.1 Fundamental Climate Niche: Maize, Pigeonpea, and Sorghum 

The methodology presented here consists of three major components. First, we identify the fun-

damental climate niches for maize, pigeonpea, and sorghum. Second, we present a range of suita-

bility (and optimality) for each crop based on temperature and precipitation conditions. Third, we 

locate the intersection between marginal maize areas and the optimal pigeonpea or sorghum cli-

mate niche. 

The fundamental climate niche (i.e., temperature and precipitation) used for maize, pi-

geonpea, and sorghum is based on a literature review of tested crop performance (Table 2.1). 

Pigeonpea is tolerant to variable rainfall, from very low to high amounts ranging from 350 to 2000 

mm during a growing season (Kimani 2001; Valenzuela and Smith 2002; Wood and Moriniere 

2013; Houérou, n.d.), and produces grain even during dry spells, unlike other legumes (Okiror 

1986). The crop prefers temperatures ranging between 20.0 °C and 35.5 °C (Omanga et al. 1996; 

Carberry et al. 2001; Silim and Omanga 2001; Sardana et al. 2010; Wood and Moriniere 2013). 

Suitable growing season conditions for sorghum consist of rainfall between 150 and 950 mm 

(Chipanshi et al. 2003; Du Plessis 2008; Mishra et al. 2008; Wood and Moriniere 2013) and tem-

peratures between 20.0 °C and 35.0 °C (Du Plessis 2008; Wood and Moriniere 2013; FAO, n.d.-

a). 
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Crop Temperature (°C) Precipitation (mm) 

Maize* 23.8–32.2 750–1217 
Pigeonpea** 22.7–30.9 544–1263 
Sorghum*** 22.1–33.7 317–833 

Table 2.1. Optimal temperature and precipitation ranges for maize, pigeonpea, and sorghum. Sources: *(Pingali 
2001; Wood and Moriniere 2013; Sanchez et al. 2014; Infonet 2016; FAO, n.d.-b). **(Omanga et 
al. 1996; Kimani 2001; Carberry et al. 2001; Silim and Omanga 2001; Valenzuela and Smith 2002; 
Sardana et al. 2010; Wood and Moriniere 2013; Houérou, n.d.). ***(Chipanshi et al. 2003; Du 
Plessis 2008; Mishra et al. 2008; Wood and Moriniere 2013; FAO, n.d.-a) 

Figure 2.1. Diagram of the maize, pigeonpea, and sorghum temperature and precipitation suitability classification 
thresholds. Classifications include optimal and suboptimal, which were further subcategorized into 
a range of suitability: superoptimal, optimal, suitable 1 (S1), suitable 2 (S2), suitable 3 (S3), and 
unsuitable. Maize, circle; pigeonpea, square; sorghum, diamond. Suitability classification color 
scheme used in Figs. 3 and 4. 

For the optimal range, we calculated a mean low-value and mean high-value from all opti-

mal temperature and precipitation ranges collected in our review. From the values presented in 

Table 2.1, there are two basic categories, optimal and suboptimal, which were further subcatego-

rized into a range of suitability: superoptimal, optimal, suitable level 1 (S1), suitable level 2 (S2), 

suitable level 3 (S3), and unsuitable (Figure 2.1). We used equal intervals from the mean low-value 

and high-value outward, depending on the range between the minimum or maximum value, to 
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designate thresholds for levels of suitability. We extrapolated one step inward (toward superopti-

mal) and one step outward (toward unsuitable) in order to highlight an additional level of spatial 

variability. The same protocol was applied for classifying precipitation. The categories were con-

structed in this manner so that precipitation and temperature tolerance (or intolerance) would be 

considered when moving outward from optimal. 

2.3.2 Spatial Distribution of Climatic Variables 

The spatial distribution of climate variability was acquired using two remotely-sensed NASA prod-

ucts. Temperature data were gathered from NASA MODIS Land Surface Temperature (LST—

MYD11B3) (NASA LP DAAC 2015a) and precipitation from NASA/JAXA Tropical Rainfall 

Measuring Mission (TRMM—3B43) (NASA/JAXA TRMM 2016). Mean annual temperature and 

accumulated annual rainfall values were calculated between 2003 and 2014 and a conditional state-

ment applied to classify the ranges of suitability as shown in Table 2.1. In order to generate suita-

bility maps that consider both temperature and precipitation, the individual suitability maps of 

temperature and precipitation were overlain and reclassified so that each pixel was represented by 

the most unsuitable factor. 

Marginal agricultural lands are those places with suboptimal temperature and precipitation 

conditions for the dominant crop (e.g., maize), as well as places with chronically low production 

levels and/or high interannual variability in production (Peter et al., in preparation). Marginal 

maize agricultural land is identified here using suboptimal temperature and precipitation ranges 

for maize (Table 2.1, Figure 2.1), in combination with an interannual variability model that iden-

tifies areas where agricultural production is historically low and/or highly variable (Peter et al., in 

preparation). The model uses time-series Net Primary Productivity (NPP—MOD17A3) (NASA 

LP DAAC 2015c) to categorize individual pixels based on regional productivity trends, 
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highlighting three levels of production and two types of interannual variability. Six results are 

returned: Low-Stable (LS), Low-Variable (LV), Medium-Stable (MS), Medium-Variable (MV), 

High-Stable (HS), High-Variable (HV) (Peter et al., in preparation). From these classifications, we 

considered areas that are historically low and/or variable (LS and LV) to be marginal, as well as 

areas that are historically medium and variable (MV). Combining suboptimal temperature and 

precipitation conditions with marginal historic productivity reveals the spatial organization of var-

ious combinations of marginality and suboptimality, and serves to disentangle possible drivers of 

underproduction (Figure 2.4). In order to delineate areas by agricultural land, we used a global 

cropland percentage map developed by Fritz et al. (2015). 

Areas likely to receive maximum benefit from perennial deployment exist at the intersec-

tion between marginal dominant crop conditions (i.e., maize) and the optimal climate niche for 

perennial grains (i.e., pigeonpea and/or sorghum) (Peter et al. 2017b). We identify this intersection 

by overlaying optimal perennial pigeonpea or sorghum conditions with the marginal maize areas 

identified above (Figure 2.4). These are areas where perennial properties may serve to improve 

existing maize-based agricultural systems. 

2.4 Results 

2.4.1 Spatial Organization of Crop Suitability 

Suitable temperature and precipitation conditions for maize, pigeonpea, and sorghum are spatially 

organized across Africa, following well-established agroecological zones (e.g., IIASA/FAO 2012) 

(Figure 2.2). Marked temperature suitability differences exist in the Southern and Central regions 

of the continent. Suitable precipitation ranges vary significantly by crop, and clear regional delin-

eations are revealed when mapped. In terms of precipitation, sorghum, for example, is highly 

suitable in Southern Africa, Northern Africa (i.e., Northern Algeria, Morocco, and Tunisia), parts 
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of Eastern Africa (i.e., Kenya and Tanzania), the Horn of Africa (i.e., Somalia, Ethiopia, Djibouti, 

and Eritrea), and a horizontal stretch along the Sahel. Precipitation in these areas is uniquely suit-

able for sorghum and is largely suboptimal or unfavorable for pigeonpea and maize. Pigeonpea 

has a breadth of rainfall suitability that covers much of Africa south of the Sahara. Unlike sorghum 

and maize, pigeonpea suitability, particularly in terms of precipitation, covers a large land area in 

the Central region of Africa (i.e., the Democratic Republic of Congo and adjacent countries). 

Since suitable temperature ranges are similar among the crops under study, precipitation 

is the primary determinant of continental-scale suitability; however, temperature does reveal its 

importance when combined with precipitation, particularly at fine spatial scales (Figure 2.3). The 

most notable distinction is that temperature restricts the suitability of sorghum in the Southern 

tip of Africa, as well as the North western portion of the continent (i.e., Northern Algeria, Mo-

rocco, and Tunisia); maize and pigeonpea are affected in these areas, as well. 
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Figure 2.2. Temperature and precipitation suitability for maize, pigeonpea, and sorghum. Kenya is high-
lighted in order to show local spatial variability.  
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Figure 2.3. Combined suitability of temperature and precipitation suitability for maize, pigeonpea, and sorghum. 
Kenya is highlighted in order to show local spatial variability.  

Crop Superoptimal Optimal 
Suitable 
Level 1 

Suitable 
Level 2 

Suitable 
Level 3 Unsuitable 

Maize 8.1% 20.0% 21.9% 22.0% 15.4% 12.6% 
Pigeonpea 11.3% 33.4% 26.4% 15.5% 7.7% 5.7% 
Sorghum 12.6% 11.7% 8.0% 9.5% 9.1% 49.1% 

Table 2.2. Agricultural land area proportions for each category (suitability classifications). Global cropland 
percentage map by Fritz et al. (2015) used to delineate areas by agriculture. 

Overall, we found that maize production is optimal on approximately 28.1 percent of ag-

ricultural land across Africa, suitable on 59.3 percent, and unsuitable on 12.6 percent (Figure 2.3, 

Table 2.2). Pigeonpea is optimal on 44.7 percent of agricultural land across Africa, suitable on 49.6 

percent, and unsuitable on 5.7 percent. Sorghum is optimal on 24.3 percent of agricultural land 

across Africa, suitable on 26.6 percent, and unsuitable on 49.1 percent. Sorghum is the least suit-

able in terms of land area; however, conditions are optimal for its cultivation where maize and 

pigeonpea are not. Optimal pigeonpea conditions occupy the greatest land area, and optimal con-

ditions for maize are surprisingly low given the extent to which it is cultivated. 
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2.4.2 Scaling Perennial Innovations for Maximum Benefit 

Within the optimal pigeonpea niche, 24.9 percent exhibits marginal agricultural productivity and 

suboptimal rainfall conditions for maize, 41.6 percent exhibits sole marginal agricultural produc-

tivity, and 20.9 percent exhibits optimal conditions for maize (Figure 2.4, Table 2.3). Within the 

optimal sorghum niche, 71.4 percent exhibits marginal agricultural productivity and suboptimal 

rainfall conditions for maize, 18.2 percent exhibits sole marginal agricultural productivity, and only 

4.6 percent exhibits optimal conditions for maize. Areas that exhibit sole marginal agricultural 

productivity are areas where marginality may be driven by social or other biogeographic factors 

(e.g., soil quality and land management practices). In areas where maize conditions are suboptimal 

and/or agricultural productivity is marginal, and pigeonpea or sorghum climate conditions are 

optimal, integration of these crops is likely to benefit existing maize-based agricultural systems. 
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Figure 2.4. Intersection of marginal maize and optimal pigeonpea or sorghum. Areas presented in color 
exhibit optimal temperature and precipitation conditions for pigeonpea or sorghum. Suboptimal 
temperature and precipitation legend classifications are associated with the fundamental niche for 
maize: T = suboptimal temperature; TP = suboptimal temperature and marginal productivity; R 
= suboptimal rainfall; RP = suboptimal rainfall and marginal productivity; TR = suboptimal tem-
perature and suboptimal rainfall; P = marginal productivity; TRP = suboptimal temperature, 
suboptimal rainfall, and marginal productivity; O = optimal; A = other agriculture (i.e., suboptimal 
for pigeonpea or sorghum); N = non-agriculture. Global cropland percentage map by Fritz et al. 
(2015) used to delineate areas by agriculture.  
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Crop T TP R RP TR P TRP O 

Pigeonpea 4.3% 1.2% 5.2% 24.9% 1.0% 41.6% 1.0% 20.9% 
Sorghum <0.1% <0.1% 5.4% 71.4% <0.1% 18.2% 0.3% 4.6% 

Table 2.3. Agricultural land area proportions for each category (marginal/optimal intersection). Proportions 
presented only within the optimal pigeonpea or sorghum niche; other agricultural land not in-
cluded. Global cropland percentage map by Fritz et al. (2015) used to delineate areas by agricul-
ture. 

2.5 Discussion and Conclusions 

2.5.1 Promoting a Sustainable Future 

Historically, most smallholder farmers in Africa have depended on intensively managed maize 

systems as a cash crop and staple food (Byerlee and Heisey 1996); however, taking a closer look 

reveals frequent and continual cultivation of, and dependence upon, pigeonpea and/or sorghum 

for food security (Rufino et al. 2013). Many African households are familiar with cultivation needs 

of perennial grains through generational knowledge (Rufino et al. 2013; Rogé et al. 2016), yet there 

is little academic attention given to perennial management practices (e.g., ratooning) of perennial 

grains (Kane et al. 2016). In Africa, there is potential to revitalize perennial crops such as pigeon-

pea and sorghum through innovative practices that offer multiple benefits (e.g., ecosystem im-

provements, crop water-use efficiency, and improved cultivars that enhance nutrition) (DeVries 

and Toenniessen 2001; Cox et al. 2006; DeHaan et al. 2007). 

Perennial grains offer benefits that encompass rural and marginal environment smallholder 

farming contexts, and should be promoted in locations where labor constraints reduce agricultural 

system efficiency, or where topography and farming practices increase erosion or depletion of soil 

organic matter. Integration of perennial pigeonpea or sorghum into maize-based farming systems 

shows wide spatial applicability across Africa. Though the optimal land area for sorghum cultiva-

tion appears of moderate size, low rainfall requirements permit it to fill a spatial niche that 
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pigeonpea does not. This regional delineation of crop suitability between sorghum and pigeonpea 

is particularly evident along a horizontal stretch of the Sahel (Figure 2.4). This is a marginal area 

for which there are few suitable crop options, and sorghum is often overlooked in a maize-centric 

agricultural development agenda (Hellin et al. 2012). Overall, conditions are optimal for pigeonpea 

cultivation on approximately 45 percent of agricultural land across Africa, and optimal for sor-

ghum on 24 percent (Figure 2.4). Between the two crops, approximately 53 percent of African 

agricultural lands are likely to benefit from their integration. There are certainly other perennials 

that may be promoted in Africa (e.g., rice), and there is considerable potential to improve maize-

based farming systems through integration of semi- and fully perennial crops that provide multiple 

ecosystem services (Glover et al. 2010). 

Pigeonpea diversification offers unique environmental benefits, particularly in locations 

where soil fertility decline is limiting crop yields. The ability of pigeonpea to biologically fix nitro-

gen has been proven to function in a smallholder farm context across a range of soil types, reha-

bilitating soils through input of 70–100 kg of nitrogen per hectare annually (Myaka et al. 2006). 

Given the overlap between the pigeonpea and maize niche across large swaths of agricultural 

lands, this could potentially address a substantial portion of the nitrogen deficit that is a primary 

yield limiting factor on African smallholder farms (Vanlauwe et al. 2011). Sorghum is more 

drought-resistant than maize, yet it has been replaced by maize in areas such as Northern Malawi 

(Bezner-Kerr 2014). Where it is still grown, farmers in Malawi ratoon by cutting the stem to extend 

production for more than one season, and have reported that ratooning also saves labor and seeds 

(Rogé et.al 2016). Smallholder farmers typically cultivate sorghum in mixed cropping systems 

where the spatial arrangement of crops plays a major role. In Malawi, for example, farmers have 

reported growing sorghum on soils that are marginal for maize (Rogé et al. 2016). In North-
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Central Nigeria, sorghum has been reported to be intercropped in combinations with millet, 

groundnut, and/or cowpea (Okigbo and Greenland 1976). Due to current global climate impacts 

on crops, there have been partial efforts for breeding of sorghum (ICRISAT, n.d.), and research 

shows that breeding sorghum can produce varieties adaptable to climate variability and pests 

(Haussmann et al. 2012). 

Despite the legacy cultivation of maize across much of Africa, and recent expansion into 

new areas of West and North Africa (Blackie and Dixon 2016), there are large areas that are 

suboptimal environments for maize growth. The decision to cultivate maize in these areas reflects 

socioeconomic factors such as market demand and farmer preference, and may also be influenced 

by the superior calories per unit input that maize offers (Snapp and Silim 2002). Interestingly, our 

analysis shows that the Horn of Africa is largely unsuitable for maize production and optimal for 

sorghum, yet maize is being widely promoted. One study found that one-third of farmers ratoon 

sorghum for perennial production in lowland areas of Ethiopia (Mekbib 2009), yet surprisingly 

little research focuses on this drought-adaptation option, even in the center of origin for the crop. 

Overall, our findings highlight the role that both sorghum and pigeonpea could play in improving 

food security and resilience across marginal swaths of Africa. This is further evidence that the 

crop has been understudied, particularly for novel perennial genotypes and historically important 

ratooned types (Paterson et al. 2014).  

2.5.2 Conclusions 

Sustainable land management is at the forefront of agronomic research, and nature-based solu-

tions are emerging as long-term subsistence strategies. Following nature-based models, sustainable 

agricultural solutions for smallholder farms are innovations inspired by nature. Though many na-

ture-based solution initiatives in the European context have been urban-centric (Nesshöver et al. 
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2016), the core sustainable intensification concepts have broad potential. In rural Africa, where 

land availability and fertilizer access are often limited, smallholder farming systems may benefit 

from the sustainable cropping methods and synergistic crop choices that nature-based solutions 

promote. As arable, fertile land continues to diminish and population growth continues to drive 

production demand, proactive strategies for increased and sustainable production need to be con-

sidered. There are certainly other perennials that may be promoted in Africa, and the potential to 

improve maize-based farming systems through perennial integration is substantial, and underap-

preciated. Though we present the spatial suitability of maize, pigeonpea, and sorghum in Africa, 

the heuristic proposed is generalizable and not limited to any particular set of crops or region. We 

recommend that policy- and decision-makers utilize information and techniques such as these to 

intelligently target areas that may benefit from perennial integration. As pigeonpea, sorghum, and 

other perennials are reintroduced to parts of Africa where perennial production has been ne-

glected in preference for maximizing maize yields, it is crucial to promote cultivation of these 

environmental options in areas where climate conditions are conducive to prosperous and syner-

gistic growth.2 

2 This research was supported by the Perennial Grain Crops for African Smallholder Farming Systems 
project, Grant #OPP1076311, funded by the Bill & Melinda Gates Foundation, and through support of 
the United States Agency for International Development, AID-OAA-A-13-00006. The opinions expressed 
herein are those of the authors and do not necessarily reflect the views of the US Agency for International 
Development or the US Government. We thank the organizers of the special issue for the invitation and 
for highlighting the importance of this topic. 
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A MULTISCALAR APPROACH TO MAPPING MARGINAL AGRICULTURAL 
LAND: SMALLHOLDER AGRICULTURE IN MALAWI3 

3.1 Abstract 

Marginal agricultural lands are defined here by suboptimal biophysical conditions and historically 

variable or low agricultural production. We characterize these areas using remotely sensed infor-

mation to disentangle the biophysical and possible social factors driving marginality. Considering 

both the modifiable areal unit problem and the ecological fallacy problem, the heuristic we pro-

pose is generalizable across geographies and scales and provides information at multiple decision-

making levels through a multiscalar interannual variability model. We present results from our 

study of Malawi, where the landscape is densely cultivated and smallholder farmers frequently 

occupy marginal lands, to illustrate the potential of a multiscalar analysis in a place where food 

insecurity alleviation is needed and where remote sensing can provide necessary information. Our 

framework for identifying marginal agricultural lands consists of (1) locating long-term agricultural 

land, (2) measuring interannual productivity of long-term farmed locations, and (3) assessing mar-

ginal biophysical land characteristics and the fundamental climate niche for the dominant crop (in 

this case maize). Productivity and marginality in Malawi are spatially organized, and an assessment 

of productivity at multiple scales highlights the importance of presenting both global and local 

spatiotemporal variability for managing agroecological variance. By disaggregating broad classes 

of historically marginal production and the underlying drivers of marginality, different interven-

tion efforts can intelligently target areas most likely to receive maximum benefit. These 

3 This is an Accepted Manuscript of an article published by Taylor & Francis in Annals of the American 
Association of Geographers on 18 January 2018, available online at doi.org/10.1080/24694452.2017.1403877. 
Reference: Peter, B.G., Messina, J.P. and Snapp, S.S., 2018. A Multiscalar Approach to Mapping Marginal 
Agricultural Land: Smallholder Agriculture in Malawi. Annals of the American Association of Geogra-
phers, 108(4), pp.989-1005. 
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methodologies can be applied by both policy-makers and scholars to identify and target marginal 

agricultural areas for improved productivity and for the support of smallholder farmer livelihoods. 

3.2 Introduction 

Marginal agricultural lands are dynamic and in many places and contexts represent the dominant 

form. Whether through cause or consequence, sustainability of smallholder farming systems is 

inextricably linked with agricultural marginality. Assuming a normative case for sustainable pro-

duction of most smallholder farms, marginal agricultural lands become so either by bringing mar-

ginal land into production or by adopting management models that degrade the respective poten-

tial of existing agricultural land. 

Marginal agricultural lands exist as, or might emerge from, a complex combination of fac-

tors and rarely have a singular driver. The Consultative Group for International Agricultural Re-

search (CGIAR) defined land marginality as dependent on biophysical characteristics, proximity 

to infrastructure, and population pressure (Nelson et al. 1999). Kang et al. (2013) characterized 

marginal land as areas with low productivity and reduced economic return. Lantican et al. (2003) 

referred to marginal land as “the world’s [unfavorable] dry and difficult cropping environments” 

(353). Others consider marginal land to be entirely unsuitable and too fragile for cultivation (James 

2010). Stimulating controversy, some national governments (e.g., Philippines, Cambodia, and 

Ethiopia) conflate marginal land classifications with wastelands or barren land, partitioning them 

off for corporations or agribusinesses that benefit the state and potentially negatively affect local 

rural populations (e.g., displacement and reduced resource allocation; Borras et al. 2011; Nalepa 

and Bauer 2012; Nalepa et al. 2017). Notably, “big data” methodologies have been used to identify 

and classify global marginal lands as prospects for agrofuel development (e.g., Cai et al. 2011). 
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Pursuits to maintain and reclaim ideas about marginal land as a category for smallholder 

agricultural improvement are present, and research efforts to identify and locate marginal lands 

have proliferated in recent years (e.g., S. Wood et al. 1999; Gopalakrishnan et al. 2011). Still, mar-

ginal agricultural lands, particularly those in the smallholder rural context, are in need of more 

research wherein the focus on marginal land classifications is more closely tied to smallholder 

agricultural improvement, rather than partitioning for other activity. This is especially important 

in rural Africa, where much of the smallholder agriculture takes place in marginal environments. 

In Malawi, for example, a survey conducted by the Malawi National Statistical Office (NSO 2005) 

estimated that approximately 88 percent of the population lives in rural areas with the majority 

smallholder subsistence farmers (Chinsinga and O’Brien 2008). In sub-Saharan Africa, the Inter-

national Fund for Agricultural Development (IFAD 2001) estimated that 73 percent of the pop-

ulation were smallholder farmers (Morton 2007). Farming on marginal lands warrants particular 

attention because (1) marginal land is frequently occupied by smallholder farmers dependent on 

consistent production for subsistence, (2) considerable resources are required to transform mar-

ginal land out of marginality, and (3) marginal areas are particularly vulnerable to abrupt changes 

in climate and at market (Morton 2007). Moreover, in densely populated and cultivated countries 

such as Malawi, internal reorganization and occupation of marginal and protected lands remain 

the only expansion or intensification options (Kalipeni 1996). 

Despite increasing attention, marginal agricultural land is not a widely recognized land-use 

class and is not identified as such on any of the commonly used land-use/land-cover (LULC) 

maps. Even locating agriculture, particularly in low-intensity areas and smallholder farming con-

texts, presents a challenge. There are numerous land-use datasets readily available (e.g., global, 

continental, and country specific), yet there are clear and nontrivial inconsistencies among them 
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(Messina et al. 2014). Haack et al. (2015) discussed inadequacies associated with both traditional 

LULC classifications and remote sensing models. Inevitably, errors of commission (i.e., inclusion 

of non-agriculture features within an area classified as agriculture) will propagate in most LULC 

models. 

Remote sensing has been used in myriad ways to identify and map marginal agricultural 

lands. Gopalakrishnan et al. (2011) used remote sensing to map marginal agricultural lands in 

Nebraska on the basis of soil health, current land use, and environmental degradation. S. Wood 

et al. (1999) used remote sensing and other spatial data to identify marginal agricultural lands, 

categorized by levels of suitability, with the explicit aim of targeting agricultural development. Cai 

et al. (2011) used remote sensing to map cross-continent marginal agricultural lands by integrating 

global data (i.e., soil properties, terrain characteristics, temperature, and humidity) in a fuzzy logic 

model; in the final marginal agricultural land map, the majority of Malawi is classified as marginal. 

Yield gap models have been used to identify marginal production areas (e.g., Neumann et al. 2010), 

but crop simulation products often do not provide access to the biophysical and social drivers of 

marginality. 

Following on this research, there is a need to classify marginal land for the smallholder 

farming context. Few studies have considered definitions that disentangle the underlying biophys-

ical factors (i.e., temperature, precipitation, and soil) driving agricultural marginality. Rather than 

the typical singular marginal land classification, a multi-classification approach allows considera-

tion of all possible marginal combinations of the variables under study. This approach is critical 

to inform policy and provide insights of value to sustainable development of smallholder agricul-

ture. For example, a parcel of land simply classified as marginal might be perceived as fit for 

biofuel production (Cai et al. 2011), whereas the same parcel of land classified as marginal with 
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regard to temperature or precipitation might be ideal for promotion of climate-resilient varieties 

of crops. Areas marginal in terms of soil fertility could be viewed as a prospect for intensification 

of crop production through nutrient replenishment. 

Moreover, the model presented here provides a heuristic to measure agricultural produc-

tivity at multiple scales to enhance decision making across administrative levels and geographies 

and allows for land management across spatially variable agroecosystems. At global and country-

wide aggregations, remotely sensed measures of crop productivity could be indicative of global 

processes and variable agroecosystems. By aggregating remotely sensed measures of crop produc-

tivity at local levels, marginality of agriculture could be assessed relative to shared agroecological 

conditions; that is, areas of homogeneity at the country level become heterogeneous when ob-

served at a local scale (Sexton et al. 1998). With multiscalar information presented, national and 

local administrative units (e.g., districts and extension planning areas in Malawi) can direct re-

sources and technologies in an informed manner, relative to actionable levels. The multiscalar 

methodology presented here also allows for assessment of marginal agriculture across (agro) eco-

systems, where LULC (e.g., crop choices, tree type, tree density) is highly variable and inevitably 

included in remote sensing spectral signals of agriculture. 

To summarize, there are two overarching themes driving this research and two fundamen-

tal questions asked. First, classifications of marginal agricultural lands that include the underlying 

drivers of marginality can serve to emphasize the smallholder farming context. Second, the scale 

of observation matters for making decisions at actionable levels. Regarding these themes, we pose 

two research questions: (1) What measurable, biophysical conditions constitute marginal agricul-

tural land across space, time, and scale? (2) Where are the variable types of marginal agricultural 

land located? 
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3.2.1 Mapping Global Marginal Agricultural Lands for the Smallholder Context 

Here, we define marginal agricultural land as land that has variable interannual production or is 

chronically low-producing, driven by poor biogeographic conditions or social factors. This defi-

nition is directly translatable to the farmer experience and can be measured using remote sensing. 

For subsistence farmers, low productivity translates to insufficient food supply and variable pro-

duction translates to unpredictable harvests. Marginality is further characterized here by crop cli-

mate niche (in this case maize) and soil suitability. The definition of marginal agricultural land 

outlined is one that we argue can be measured using remotely sensed time-series information and 

is generalizable across geographies and scales. 

In this study, we identify the spatial organization of marginal agricultural land in Malawi 

by disentangling the biophysical factors driving marginality, as well as possible social factors by 

deduction (i.e., measured marginal productivity but no explanatory variable). We approach iden-

tifying these marginal areas through a strictly biophysical perspective, and the data we employ are 

primarily remotely sensed products. Moving beyond the either–or debate, we present all possible 

marginal combinations of the variables under study. Combinations of marginality presented here 

include (1) suboptimal temperature, (2) suboptimal precipitation, (3) marginal soil suitability, and 

(4) marginal interannual productivity. Additionally, we propose that measures of productivity and

interannual variability are relative to the scale and geography under observation. Our framework 

consists of locating long-term agricultural land, measuring interannual productivity (and variabil-

ity) of long-term farmed locations, and assessing marginal biophysical land characteristics and the 

fundamental climate niche for the dominant crop, in this case maize. 

Because our definitions and measures of productivity are relative to the scale and geogra-

phy under observation and the data we employ are global, the methodology herein can be used to 
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reveal the spatial organization of marginality at any decision-making or administrative level. By 

presenting information at multiple scales and administrative boundaries, we aim to manage some 

issues manifested by the modifiable areal unit problem (MAUP) and the ecological fallacy prob-

lem. The MAUP arises when classifications or aggregations change based on differences in areal 

selection and scale (Openshaw 1983). The ecological fallacy problem occurs when inferences are 

made about an individual instance based on aggregate data (Openshaw 1983). The five major 

components of the model are as follows: (1) locating long-term agricultural land and minimizing 

errors of commission, (2) measuring historic productivity and interannual variability of agriculture, 

(3) calibrating the model to field observations, (4) identifying crop niche and mapping marginal

land, and (5) extending the interannual variability model to possess multiscalar capabilities. 

3.2.2 Malawi as a Bellwether for Identifying Marginal Agricultural Lands 

Malawi is presented here as a bellwether for identifying marginal lands in the smallholder, rural 

context. Historically, marginal agricultural lands in countries with low population densities move 

into and out of production as prices change, labor shifts, and when climate signals encourage 

planting and land clearing. Malawi faces different challenges. The country is largely settled with 

very little suitable land available for new agriculture, and dense population reduces farm size and 

limits fallowing options (Ricker-Gilbert and Jumbe 2014). Moreover, the Malawian landscape is 

mosaicked with mixed land use, regional land-use variance, and relatively small fields, making ag-

ricultural land difficult to discern from other land-use types in most singular global land-cover 

products. This long-term use of marginal lands and the spatial arrangement of cultivation is 

unique, and marginal agricultural lands in Malawi are particularly important because the current 

intensive use reflects population pressures that will emerge in many other regional countries. In 

neighboring Zambia, for example, the coupling of large-scale investments in agricultural land 
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(Nolte 2014) and population increases will restrict fallowing options for smallholder farmers, de-

manding more food production on already continually harvested fields (Schneider et al. 2011). 

Information-driven targeting for new or different agricultural practices is essential to suc-

cessful scaling (S. Wood et al. 1999), and adoption will only take place where biophysically feasible 

(Kwesiga et al. 2003). To date, efforts to identify marginal agricultural lands specific to Malawi are 

thinly scattered. Remotely sensed data offer a solution to this problem, particularly in areas where 

fine-resolution crop information is unavailable. Depending on the platform, such data can be cost-

effective and cover entire landscapes, improving on regional- or administrative-level development 

strategies. Remotely sensed imagery can also be used to measure crop response to various devel-

opment strategies. The Fertilizer Input Subsidy Programme (FISP) in Malawi, for example, was 

popularly recognized as initiating an “African green revolution” (Sanchez 2015), but recent studies 

suggest that it might not have been effective at reaching those most rural, and production might 

have been overestimated (Holden and Lunduka 2012; Chinsinga and Poulton 2014; Messina et al. 

2017). Moreover, remote sensing offers a partial solution to targeting resource delivery. Recurring 

food insecurity in Malawi and the country’s position in the global market have prompted regular 

aid initiatives from both nongovernmental organizations and international governments; however, 

resource allocation is the subject of much scrutiny and resource need might not always be a major 

driver in resource allocation across all sectors (Dionne et al. 2013). 

Precipitation Soil suitability Temperature Productivity 

Source NASA/JAXA Li et al. 2017a NASA MODIS NASA MODIS 
Product TRMM 3B43 — MOD11A2 MOD17A3 
Spatial resolution ~27-km 90-m 1-km 1-km
Temporal resolution Monthly — 8-day Annual

Table 3.1. Biogeographic data sets used to determine marginality and suboptimality of maize agriculture. 
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3.2.3 The Malawian Landscape: Cultivation, Climate, and Population 

In Malawi, “maize is life”; it is the most frequently cultivated and consumed cereal crop in the 

country, commonly taking form as nsima, a dried, finely ground, and reconstituted dense por-

ridge—a staple of the Malawian diet. Production of maize is widely distributed throughout Malawi 

and, according to the United Nations World Food Programme (WFP 2016), 80 percent of Mala-

wians are smallholder subsistence farmers. Of the farming population, approximately 97 percent 

of farming households cultivate maize, and its consumption comprises 60 percent of the total 

caloric intake (Denning et al. 2009). According to Kassie et al. (2012), 70 percent of smallholder 

agricultural land is cultivated for maize production. Smallholder farmers rely on the success of the 

maize harvest for subsistence, and national food security depends on consistent domestic agricul-

tural productivity. Presently, pressures from rising population, climate change, unsustainable agri-

cultural practices, and deterioration of natural resources all pose major threats to Malawi’s maize 

production (Postel 2000; Godfray et al. 2010). 

There are underlying agricultural sustainability concerns associated with widespread, con-

tinuous production of maize with limited use of soil amendments (e.g., fertilizer; Thierfelder et al. 

2013). Malawi’s long history of unsustainable agricultural practices (e.g., monocrop maize systems, 

residue mismanagement, and extensive cultivation; Glasson 2010; Thierfelder et al. 2013; Mungai 

et al. 2016) has contributed to widespread soil nutrient and organic matter depletion (Sanchez 

2002; Ngwira et al. 2012). Monocropping of maize with little or no inputs is common throughout 

Malawi, resulting in diminishing yields over the last several decades (Thierfelder et al. 2013). Res-

idue management is variable across Malawi, depending on the presence of livestock and access to 

other biomass sources, and legumes are commonly neglected as a source for residue biomass 

(Valbuena et al. 2015; Mungai et al. 2016). Intercropping (e.g., maize with pigeonpea) and other 



38 

rehabilitation strategies (e.g., conservation agriculture) are frequently offered through extension 

efforts, but adoption is generally poor or might be rejected outright (Schulz et al. 2003; Bezner-

Kerr et al. 2007; Snapp et al. 2010). Despite implementation of the FISP, an initiative put forth by 

the Malawian government in response to record low production, soil degradation remains a wide-

spread concern and food insecurity persists (Ecker and Qaim 2011; Messina et al. 2017). 

Demands for increased production continue as Malawi’s population continues to grow. 

On average, the national population increased by approximately 2.9 percent each year between 

2000 and 2014 (World Bank 2016). Concerns related to population growth in Malawi are not new. 

In fact, House and Zimalirana (1992) warned of Malawi’s rapid growth, lack of resources (e.g., 

access to fertilizer, seed, capital, and labor), and pressures on the land (and human needs) before 

the turn of the century, when the population was only 9.7 million (World Bank 2016). In 2014, 

Malawi reached a total population of 16.7 million a 3.1 percent increase from the previous year 

and up from 11.2 million in 2000 (World Bank 2016). Such population pressures and increased 

production demands have contributed to the exhaustion of agricultural lands in Malawi, largely 

due to over-cultivation of maize (Manyonda 1998; Thierfelder et al. 2013). 

Unpredictable climate events can lead to significant fluctuations in agricultural output, af-

fecting both smallholder livelihoods and national food security. During the last two decades, Ma-

lawi has been afflicted by both severe droughts and floods, threatening the nation’s ability to sus-

tain its large, growing population (Devereux 2007; Pauw et al. 2011). In 2002, Malawi was stricken 

with a record drought (Syroka et al. 2010), resulting in 32 percent less reported production than 

the previous maize harvest, placing the country in a food insecure “state of disaster” (Devereux 

2002; Frize 2002). In 2005, Malawi “faced its worst food crisis in more than a decade,” with more 

than 34 percent of the population in need of food aid (Buerkle 2005). In 2015, record floods 
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displaced nearly 70,000 people (Banda 2015). In 2016, Malawi’s President Peter Mutharika de-

clared a national disaster in response to prolonged drought and a devastated maize harvest (Phiri 

and Macharia 2016). Twenty-five of Malawi’s twenty-eight districts were affected, leaving the 

country with a 1.2 million metric ton maize deficit (Kandaya 2016; Phiri and Macharia 2016). 

Overall, droughts and floods contribute to an approximately 1.7 percent loss in gross domestic 

product each year (Pauw et al. 2011). Moreover, seasonal shifts and changes in rainfall pattern 

leave the optimal timing of planting and fertilizing uncertain each year (Tadross et al. 2009; Ex-

tension Planning Area Officers, personal communication 2015). Smallholder farmers occupying 

marginal agricultural areas are most vulnerable to abrupt climatic and biophysical changes, as well 

as socioeconomic shifts (e.g., fertilizer and seed access, poverty, and health). These issues are not 

expected to subside or resolve with imminent global environmental change and steady population 

growth. 

Product Temporal range Spatial resolution Source 

Global Land Cover 2000 986-m ESA (2005) 
GlobCover 2005–2006, 2009 920-m ESA (2008);  

ESA (2010) 
World land use–land cover 2002 920-m IFPRI (2002) 
Land Cover and Land 
Cover Change of Malawi 

2000 & 2010 30-m FAO (2013) 

NASA MODIS Land 
Cover Type (MCD12Q1) 

2001–2012 500-m NASA LP  
DAAC (2015d) 

Table 3.2. Land-use products incorporated in errors of commission-managed agricultural land-use map. Tem-
poral range under study: 2000–2014. 

3.3 Methods 

3.3.1 Remotely Sensed Data Products and Preprocessing 

Precipitation data were acquired from the NASA/ JAXA Tropical Rainfall Measuring Mission 

(TRMM–3B43) via the NASA Mirador Web portal (Table 3.1; NASA/JAXA TRMM 2016). 
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TRMM data require a precipitation rate conversion to retrieve monthly rainfall amounts. We con-

verted monthly precipitation rates to accumulated growing season rainfall (November–April; 

Jayanthi et al. 2013; FAO 2016b) for each year between 2000 and 2014. For both temperature and 

precipitation, we opted to use only growing season data so that postharvest measures were not 

included (Zhang and Oweis 1999). 

Soil suitability was assessed using a product developed by Li et al. (2017)—a multimethod 

approach utilizing a suite of landform characteristics and soil properties (i.e., slope, erosion hazard, 

organic matter, cation exchange capacity, texture, pH, and drainage) to score and rank soil suita-

bility. There are two marginal categories—marginally suitable and marginally unsuitable. Other 

categories include highly suitable, moderately suitable, and permanently unsuitable (e.g., forest 

reserves or urban areas; Li et al. 2017a). Land surface temperature (LST) data were acquired from 

the NASA Moderate Resolution Imaging Spectroradiometer (MODIS–MOD11A2) via the NASA 

Reverb Web portal (NASA LP DAAC 2015b). Annual productivity (net primary productivity 

[NPP]) data were acquired from NASA MODIS (MOD17A3) via the NASA Reverb Web portal 

(NASA LP DAAC 2015c). For the MODIS products, we selected the Terra satellite for its daytime 

temperature accuracy in southeast Africa (DeVisser and Messina 2013). We elected to use the 

annual NPP product because the trendline tracks reported yields more closely than growing season 

gross primary productivity (GPP) (Messina et al. 2017). 

To identify long-term farmed locations, we developed a composite agricultural land-use 

map utilizing a suite of widely recognized products (GLC2000, GlobCover 2005/06 and 2009, 

IFPRI 2002, FAO 2000 and 2010, and NASA MODIS LC 2001–2012; Table 3.2). We elected to 

use the MODIS Land Cover Type product (MCD12Q1) because the temperature and productivity 

measures used here come from the MODIS sensor and it covers a large temporal range (2001– 
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2013; NASA LP DAAC 2015d); GlobCover because it is well recognized and covers two time 

steps within the temporal range under study (2000–2014; ESA 2008 2010); GLC2000 because it 

is well documented and widely used (ESA 2005); IFPRI because it has a relatively unconstrained 

definition of agriculture (i.e., we know from field experience that Malawi is cultivated extensively, 

and this product reflects a high amount of agricultural land area; IFPRI 2002); and FAO because 

it offers a fine spatial resolution Malawi-specific data set and covers two time steps (2000 and 

2010) within the temporal range under study (2000– 2014; FAO 2013; see Table 3.2). 

3.3.2 Locating Long-Term Agricultural Land: Minimizing Errors of Commission 

Before identifying marginal agricultural land, all agricultural lands across the production spectrum 

must be identified. The approach taken here shares conceptual and methodological similarities 

(i.e., integration of a suite of land-cover products) with those of a global cropland percentage map 

developed by Fritz et al. (2015), as well as a global cropland extent map produced by Pittman et 

al. (2010); however, we developed our methodology independently and the output categorizations 

are of a different type. The logic here is that locating areas where multiple land-cover products 

agree (across space and time) will illuminate areas that are routinely and intensively cultivated, 

exhibit minimal land-use mixing, and have been historically used for agriculture. 

Each land-cover classification system (Table 3.2) was reclassified into a binary system (ag-

riculture or non-agriculture), resampled (nearest neighbor resampling method) to the finest reso-

lution of the inputs (30 m), and aggregated (overlain and summed) to create one land-use map. 

The resulting product is an ordinal ranking of values ranging from zero to five; zero represents 

areas where none of the classification systems classify an area as agricultural land and five repre-

sents an area where all five classification systems agree that a particular area is agriculture. Finally, 

majority resampling was used to generate rankings at a 1-km spatial resolution, coinciding with 
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the resolution of many MODIS products (e.g., LST and NPP; Figure 3.1). To represent the actual 

land area devoted to agricultural production, we selected a number of pixels equal to the average 

FAO-reported agricultural area between 2000 and 2013—approximately 5.25 million hectares 

(52,510 km2 pixels or 55.7 percent of the total land area; FAOSTAT 2016). 

We used all pixels from ranks 3, 4, and 5, and added in 7,072 unconstrained random pixels 

from rank 2 so that the total agricultural area would equal 52,510 km2. We refer to the final product 

as our errors of commission-managed agricultural land-use map. This grid was used to demarcate 

agriculture in the marginal agricultural land model. There are undoubtedly marginal agricultural 

lands that exist within ranks 1 and 2, and biophysical suitability could be assessed; however, his-

toric productivity in these areas cannot be measured confidently because of changes in land use 

over time and the resolution of the NPP product used here (1-km). These areas commonly exhibit 

mosaicked land use, particularly mixed forest and agriculture (e.g., Kasungu National Forest in 

central-western Malawi). 
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Figure 3.1. Errors of commission–managed agricultural land–use map. 1-km spatial resolution.  

3.3.3 Measuring Historic Productivity and Interannual Variability of Agriculture 

Marginal agricultural lands are defined here by suboptimal biophysical conditions and historically 

variable or low agricultural production. Using this definition, we created a model that categorizes 

time-series data, classifying individual pixels relative to spatially structured distributions and ad-

ministrative delineations. Our methodology considers three levels of production (low, medium, 

or high) and two types of interannual variability (stable or variable). We use NPP (kg C m-2) as our 

indicator of production because it has a direct relationship with agricultural output (Heinsch et al. 

2003; Reeves et al. 2005; Lobell 2013a; Messina et al. 2017). 

First, to generate levels of production, we calculated the average value of each pixel using 

the time-series NPP (2000–2014). Any pixel with a value of zero for any year between 2000 and 
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2014 was excluded so that only land under regular cultivation would be considered; this involves 

excluding pixels that were not productive for any range of years within the time frame. The level 

of production is derived from a quantile (equal area) classification algorithm; we use three catego-

ries to represent low, medium, and high levels of production. Optionally, the model allows for 

selection of alternative classification systems (e.g., Jenks [1967] natural breaks). Second, to meas-

ure interannual variability, we calculated the variance of each pixel using the time-series NPP 

(2000–2014). We used the quantile classification algorithm with two categories to disaggregate the 

two temporal trends (variable or stable). Again, the classification system here is optional. The 

resulting six categories are low-stable (LS), low-variable (LV), medium-stable (MS), medium-vari-

able (MV), high-stable (HS), and high-variable (HV) (Figure 3.2). 

Figure 3.2. Illustrative diagram of the six interannual variability trends. Net primary productivity trends 
measured between 2000 and 2014 for all of Malawi and individual select depictive pixels. The 
regional trend (shown as a dotted line) is the average of all pixels within the selected region (Malawi 
in this case). Gray and black continuous lines are select pixels that exhibit the six types of trends. 

Crop Temperature (°C) Precipitation (mm) 

Maize (marginal) 23.8 > Mm > 32.2 750 > Mm > 1217 

Table 3.3. Marginal temperature and precipitation parameters for maize. Note: Temperature data acquired 
from NASA MODIS LST (MOD11A2). Precipitation data acquired from NASA/JAXA TRMM 
(3B43). Precipitation requirements are represented as accumulated growing season rainfall. Pingali 
(2001), L. Wood and Moriniere (2013), Sanchez et al. (2014). L. Wood and Moriniere (2013), 
Infonet (2016), FAO (n.d.-b). 
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3.3.4 Calibrating the Model to Field Observations 

In 2015, prior to the development of the marginal land model, we visited 200 sites in thirty-three 

farming regions across the extent of Malawi to conduct a land-cover assessment. We devised a 

stratified random sampling scheme binned by distance to roads and access to local authorities (i.e., 

extension planning area officers). Extension planning areas (EPAs) are local administrative zones 

situated within districts. We visited sites ranked between 3 and 5 on the errors of commission– 

managed agricultural land-use map to increase the likelihood of sampling on agriculture under 

regular cultivation. Interviews were held with farmers and EPA officers for inquiry of the primary 

drivers (and limiters) of production, as well as crops grown and land-use history. 

Agriculture dominates the Malawian landscape. Of the 200 sites we visited, we found that 

only ten were either nonagricultural or experienced dominant land-cover change since 2000. Of 

these ten, only five were misclassified (one barren or forest, one village center, two pastures, and 

one reed field), two were sparsely cultivated (one mountainous region, one rapidly urbanizing), 

and three experienced major land-use change (two became maize agriculture, one became govern-

ment housing for police; Messina et al. 2017). Between ranks 3 and 5 on the errors of commission–

managed agricultural land-use map, 95.0 percent (190/200) of locations visited were long-term 

farmed locations; 91.5 percent (183/200) were long-term maize dominant. The seven fields not 

dominated by maize were sugarcane (three) and tobacco (two) estates and rice irrigation (two). 

During our interviews, we found that the majority of responses for primary drivers of 

production were related to soil quality or suboptimal precipitation. Temperature and agricultural 

management practices were seldom reported as limiting factors for production (<1 percent and 1 

percent, respectively). The most commonly driven narrative of yield limitations in Malawi is soil 

degradation (i.e., loss of nutrients and soil organic matter). Approximately 50 percent of 
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interviewees reported that soil quality (i.e., soil degradation, lack of fertilizer, soil infertility, soil 

suitability, or soil type) was the primary driver limiting yield, with occasional secondary and tertiary 

factors; 75 percent overall reported soil quality as one of the drivers of low production. Another 

common observation in Malawi, which is gaining increasing attention in the literature, is that the 

rainy season is shortening (i.e., starting later and ending earlier; Tadross et al. 2009; Vizy et al. 

2015; EPA Officers, personal communication 2015; Sutcliffe et al. 2016) and that rainfall patterns 

are erratic, yet the overall amount of precipitation has not changed drastically (EPA Officers, 

personal communication 2015). A sole mean descriptive statistic does not capture this phenome-

non. Approximately 50 percent of interviewees reported erratic rains or changing rainfall patterns 

as one of the drivers limiting yields; 40 percent of interviewees reported rainfall (erratic rains or 

precipitation amount) as the primary driver limiting production. For this reason, we include rain-

fall variability in our definition of suboptimal precipitation (refer to the appendix for more discus-

sion on this topic). 
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Figure 3.3. Multiscalar interannual variability and marginal agricultural land model. *The zones input 
provides an optional multiscalar calculation. **The precipitation variance was calculated here 
uniquely for Malawi. NPP = net primary productivity; LULC = land use–land cover. 

3.3.5 Identifying Crop Niche and Mapping Marginal Maize Agricultural Land 

Marginal maize agricultural land is defined here, in part, by suboptimal LST and suboptimal pre-

cipitation. We adopted widely accepted temperature and precipitation ranges for maize to deter-

mine suboptimality (Table 3.3). We calculated a singular average LST value (per pixel) across all 

2000 to 2014 growing seasons and, using the parameters from Table 3.3, created a binary grid for 

temperature—either suboptimal or not. Our definition of suboptimal precipitation is a coupling 

of variable precipitation (determined using our interannual variability model; quantile classifica-

tion, two classes—either variable or not) and accumulated rainfall outside the optimal range of 

values (Table 3.3). 

In terms of productivity, we consider LS, LV, and MV (gathered from the interannual 

variability model) as marginal categories. The soil suitability grid provides various levels of 
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suitability, two of which are marginal (marginally suitable and marginally unsuitable; Li et al. 

2017a). Interannual productivity and soil suitability were reclassified into binary grids—either mar-

ginal or not. All marginal and suboptimal grids were combined so that all possible combinations 

of marginal maize agriculture (temperature, precipitation, soil suitability, and productivity) would 

be revealed (Figure 3.3). Input parameters are time-series spatial data (raster data structure), clas-

sification method, and boundary data; worth mentioning is that the model is not restricted to NPP 

and any spatial data could be considered (e.g., rainfall and temperature). 



49 

Figure 3.4. Multiscalar interannual variability: low-stable (light orange), low-variable (dark orange), medium-
stable (light blue), medium-variable (dark blue), high-stable (light green), and high-variable (dark green). Fritz et 
al.’s (2015) global cropland percentage map used to delineate areas by agriculture on the global 
and continental maps; the errors of commission–managed agricultural land-use map was used for 
Malawi. Scale bar applies to Malawi inset maps. EPA = extension planning area.  
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3.3.6 Devising a Multiscalar Marginal Land Model 

We adapted the productivity and interannual variability methodology into a dynamic, multiscalar 

model. Decision making often takes place at varying administrative levels and performing mul-

tiscalar analyses can provide additional levels of insight. The model is generalizable across all ge-

ographies, scales, and temporal ranges and is equipped to automatically generate classifications for 

any geographical boundary and subset boundaries (i.e., country, district, or EPA). The zones input 

is an optional selection that will generate the six-classification (LS, LV, MS, MV, HS, and HV) 

map for each subset region (e.g., country, district, or EPA; Figure 3.4). 

3.4 Results and Discussion 

3.4.1 Multiscalar Interannual Productivity and Variability of Agriculture 

Agricultural productivity across Malawi is spatially organized and relative to the scale under ob-

servation. There is a clear regional delineation between relative high primary productivity in the 

north and low productivity in the south. The central region of Malawi is a mix of low and medium 

productivity. The district- and EPA-level maps reveal additional levels of information (i.e., areas 

that are homogenous on the country-wide map exhibit heterogeneity at the district level; Figure 

3.4). Important to acknowledge is that productivity on a global and continental scale looks expect-

edly similar to precipitation maps. This is due to global processes driving productivity (precipita-

tion is a calculation input for NPP) and the homogenization of data based on scale. Modifying the 

scale to the country, district, and EPA levels reveals local processes driving variability (e.g., topog-

raphy, precipitation, temperature, and soil). 

3.4.2 Map of Marginal Maize Agricultural Land in Malawi 

Marginal conditions for maize are spatially structured in Malawi. Presented are all possible com-

binations of marginality and the amount of land area each category occupies (Figure 3.5). 



51 

Suboptimal temperatures and marginal productivity are prominent in the central region, marginal 

productivity and marginal soil in the south, and marginal soil and suboptimal temperatures in the 

north. Clusters of other combinations are scattered throughout. We found that marginal soils 

(pertaining to any agricultural activity) occupy 40 percent of Malawi’s agricultural land; suboptimal 

temperatures (pertaining to maize) occupy 52 percent of agricultural land; and suboptimal precip-

itation (pertaining to maize) occupies 59 percent of agricultural land (approximately 19 percent of 

the suboptimal precipitation is the result of too much rainfall). Forty-seven percent of agricultural 

land is characterized by marginal interannual variability and marginal production levels. Despite 

maize being the dominant crop, only 5 percent of Malawi’s total agricultural area is optimal for 

maize. Also uncovered in this map are possible regions where social factors are driving marginality. 

These are areas that have marginal productivity not explained by one of the biophysical drivers 

under study, classified solely as marginal productivity (category P, 5 percent of the agricultural 

land area; Figure 3.5). These areas might benefit from extension and market development. 
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Figure 3.5. Marginal maize agricultural land (2000–2014). All possible marginal combinations of the 
variables under study: productivity (P), soil (S), temperature (T), and rainfall (R). Percentages in-
dicate the proportion of agricultural land that each combination occupies. Letter codes for the 
various combinations of marginality are listed below the legend. Colors presented are semi-arbi-
trary and nonhierarchical.  

3.4.3 Geographic Themes 

There are two distinctly geographic themes underlying this work: the MAUP and the ecological 

fallacy problem. To recount, the MAUP arises when classifications or aggregations change based 

on differences in areal selection and scale, and the ecological fallacy problem occurs when infer-

ences are made about an individual instance based on aggregate data (Openshaw 1983). Consider 
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the Malawi country-level map, for example (Figure 3.4). If there are resources available for distri-

bution (e.g., fertilizer or seed subsidies), the southern region with LV interannual variability seems 

to be an ideal area for focus. Indeed, the southern region warrants particular focus; however, we 

know that in Malawi, the rural poor across the country are facing similar challenges at local levels. 

The district- and EPA-level maps manage the country-level homogenization and identify the mar-

ginal agricultural lands with respect to variable regional agroecosystems. 

Regional land-cover and land-use variation accounts for much of the country-level varia-

tion in the productivity signal. For example, fields in the northern region of Malawi are largely 

composed of maize and cassava, whereas the central region is dominated by maize supplemented 

with groundnut and beans. In the southern region, maize-based systems commonly include pi-

geonpea (VAC 2005). The multiscalar map presented here accounts for these regional variations 

in LULC by presenting measures relative to the differing regional conditions and agroecosystems. 

In terms of policy, if there is to be an equitable spatial distribution of resources, it is critical to 

understand variability at multiple aggregations (i.e., country, district, and EPA). If resources (e.g., 

fertilizer or seed packets) are available for distribution in each district, the question then would be 

where to deliver the resources within each district. A district-level aggregation provides the nec-

essary information that the country level does not. Without maps like these, policy decisions would 

be made with incomplete information. Because much agriculture development in Malawi takes 

place at the EPA level, information at this scale can equip extension officers with additional tar-

geting capabilities. 

The MAUP is indeed illuminated here, and we argue that taking a multiscalar approach is 

one way of managing the problem. There is no single global standard or threshold that would 

effectively describe low, medium, and high productivity across geographies or scales. If we were 
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to consider the Africa-wide map on its own, nuanced productivity within Malawi would not be 

observed. Similarly, if observations are only made at the country level, within-district heterogeneity 

would be missed. Ultimately, no scalar presentation of marginality is better than another irrespec-

tive of context, but depending on resource allocation or research purpose, one map (or a suite of 

maps) might be better equipped for the task. 

3.4.4 Reclaiming Marginal Lands 

To date, the concept of marginal land has been elaborated largely in the context of biofuel advo-

cacy within both academia and government, with some attention given to assessing where biofuel 

crops might be grown without disrupting agricultural subsistence and income-generating crops 

(Cai, Zhang, and Wang 2011). Biofuel advocacy ignores the pivotal role that marginal lands play 

in agricultural production across sub-Saharan Africa and beyond. As global population continues 

to increase and land under cultivation is exhausted, more attention must be paid to how to manage 

marginal agricultural land for improved productivity and sustainability. 

Agrobiodiverse, sustainable agricultural practices suited to conserving marginal agricultural 

lands in a productive manner have become an active area of research in the African development 

context (Khumalo et al. 2012). Specific examples of how marginal land mapping can help target 

development strategies are illustrated here for Malawi. Technologies for soil rehabilitation include 

pigeonpea-based systems, for example, as a tool to foster more resilient maize production (Snapp 

et al. 2010; Ngwira et al. 2012; Mhango et al. 2013). Illuminating areas that are marginal for maize 

agriculture (driven by poor soils) but that are suitable for pigeonpea is a novel approach for iden-

tifying locations where targeted policy and education would have maximum benefit. Areas where 

marginality is driven by temperature or precipitation might benefit from climate-resilient crop 

varieties. Although we focus on maize here, the model is equipped to assess marginal agricultural 
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land for any crop. Marginal lands identified here might also be candidates for promotion of agro-

forestry, particularly those where human population density is sufficient enough to support the 

labor requirements of planting, pruning, and managing trees within agricultural landscapes. The 

protocols presented here can identify the intersection of marginal drivers and suitable conditions 

for select intervention efforts and crops. 

More attention must be given to the potential for remote sensing to characterize marginal 

land as a prospect for increased yields, improved smallholder farmer subsistence, and overall long-

term agricultural system improvement in Malawi. Intervention targeting (i.e., bringing develop-

ment initiatives to places in need of support and where benefits are predictable) is often over-

looked and seldom mapped. As mentioned, one prospect in Malawi is targeted integration of pi-

geonpea in maize-based cropping systems for soil rehabilitation in locations where conditions are 

optimal for its cultivation. Remotely sensed spatial information and maps such as those presented 

here can provide necessary information to target areas in need, particularly in areas most rural 

where other forms of climate information are unavailable. Moreover, we see considerable value in 

addressing the biophysical and possible socioeconomic constraints at multiple scales, as illustrated 

here. In doing so, we aim to overcome some of the hurdles associated with coarse data and char-

acterization of marginal lands by applying big data to a smallholder farming context. 

3.4.5 Social Factors Driving Marginal Productivity 

The marginal agricultural land map presented here highlights areas where social factors might be 

playing a role in marginal productivity. Remotely sensed data do not explicitly capture social driv-

ers of farm productivity (e.g., exogenous economic factors or endogenous agricultural manage-

ment practices); however, we hypothesize that areas where interannual productivity is low or var-

iable but biophysical conditions are optimal are areas where social factors might be dominant 
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factors in marginal productivity. These areas (category P) represent 5 percent of agricultural land 

on the marginal maize agricultural land map (Figure 3.5). Soil suitability is invariably linked to 

management practices; however, they are categorized separately here because (1) the soil suitability 

map used here does not cover a temporal range, making management practices difficult to untan-

gle or verify; (2) the product itself is largely based on terrain characteristics and gross single meas-

urement period soil characteristics; and (3) soil degradation or soil quality (e.g., soil texture) might 

be beyond the management capacity of the individual farmer. Moreover, it is often the case that 

farmers are cultivating and managing fields in concordance with agricultural extension-recom-

mended practices, but soil suitability is a production driver often operating on timescales beyond 

the seasonal or soil degradation is embedded in the soil suitability feedback system. Bringing mar-

ginal land out of marginality or degrading status requires resources that are nontrivial to obtain. 

Somewhat surprising temperature and agricultural management practices were rarely re-

ported as drivers of marginality (<1 percent and 1 percent, respectively). The most commonly 

driven narrative of yield limitations in Malawi was soil degradation (i.e., loss of nutrients and soil 

organic matter). Importantly, there is a prevailing narrative of soil degradation and changing rain-

fall patterns that is delivered from the top down in Malawi (country/district/EPA). EPA officers 

carry out missions in concordance with government objectives and soil and precipitation re-

sponses might have been given when the primary limiting factor of production was not known. It 

can certainly be argued that current and recommended management practices are suboptimal, thus 

contributing to continual soil degradation; however, this situation would not elicit an interviewee 

response for inadequate management practices. Agricultural extension officers typically referred 

to management practices as a primary driver of low and variable yields when a farmer did not 

implement advice from extension, although sometimes insufficient labor or capital were the 
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reasons. Still, it is possible that another factor not presented here is driving marginality. We rec-

ommend that areas where interannual productivity is marginal but all biophysical conditions under 

study are optimal (i.e., temperature, precipitation, and soil suitability) receive further research at-

tention to unpack the social variables (or other biophysical drivers) that might be contributing to 

marginal production in these areas. In this case, market conditions might be one possible avenue 

for future research. Areas where interannual productivity is marginal but temperature and precip-

itation are optimal (and soil suitability is marginal) could also be considered for research on farm 

management. 

Despite widespread maize agriculture in Malawi, conditions are not optimal for its cultiva-

tion. This phenomenon is widespread, as many crops are grown far outside of their optimal niche, 

in terms of both environment and socioeconomic contexts. An increasingly narrow range of crops 

is dominant in the region and across the African continent. Maize is a clear example, and it con-

tinues to expand in production area, becoming a larger presence in semiarid areas of West Africa 

and Ethiopia, which historically did not grow maize due to local food preferences. This raises 

questions related to which agronomic traits support this dominance, such as biological properties, 

which we hypothesize might be related to a superior ability to convert photosynthate into calories, 

and robust tolerance to weeds and other pests. Socioeconomic conditions might also favor some 

crops over others, such as market price support and the fertilizer subsidies that are critical for 

production of cereals. Resilience of farming systems and the environment are supported by agro-

biodiversity, and research attention is urgently needed to understand the drivers and geographical 

patterns that appear to support a countertrend of narrowing of crop diversity. 
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3.5 Conclusions 

Identification of marginal agricultural land is essential for resource conservation and the successful 

deployment and scaling of innovative technologies and development strategies. Our model pro-

vides a generalizable and multiscale heuristic for locating marginal agricultural land and disentan-

gling the factors driving marginality. Further, we propose that areas exhibiting marginal produc-

tivity are regions where attention is most needed and indicate the underlying drivers of marginality 

to reveal where different intervention efforts would prove most effective. The results presented 

here illuminate the role that spatiotemporal mapping can play in shifting contentious debates to 

more informed, constructive engagement. Policymakers and scholars can use such mapping exer-

cises to elucidate impacts of agricultural development efforts, and plan effective ways to conserve 

the environment while supporting farmer livelihoods and services for societal benefits. As pointed 

out by Kremen (2015), moving beyond the either–or debate to a better understanding of vulner-

able lands is key to informing policies that protect natural areas while enhancing food production 

in a conservation-sensitive manner.4 

4 This research was supported by the Perennial Grain Crops for African Smallholder Farming Systems 
project, Grant #OPP1076311, funded by the Bill & Melinda Gates Foundation, and through support of 
the U.S. Agency for International Development, AID-OAA-A-13-00006. The opinions expressed herein 
are those of the authors and do not necessarily reflect the views of the U.S. Agency for International 
Development or the U.S. government. We thank the Lilongwe University of Agriculture and Natural Re-
sources (LUANAR) in Malawi for facilitating research in the field and M. N. Kakwera for his assistance 
and expertise, as well as the EPA officers who offered their valuable insight. Additional thanks go to the 
Environmental Science and Policy Program at Michigan State University for their continued support. 
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SCALING AGRICULTURAL INNOVATIONS: PIGEONPEA IN MALAWI5 

4.1 Abstract 

Successful scaling of agricultural development strategies is fundamental to increased production 

and yields, yet targeting efforts frequently fail to fully consider the underlying biophysical drivers 

of agricultural marginality, particularly at fine spatial resolutions. We present a heuristic for intel-

ligent targeting, utilizing remotely sensed information to identify the intersection between mar-

ginal conditions for performance of a staple crop and the optimal niche for technologies that 

improve crop performance. Here, we explore the geographic potential of maize diversification 

with pigeonpea, a crop with soil productivity enhancing properties. Overall, 79 percent of agricul-

tural land in Malawi exhibits climate conditions optimal for pigeonpea cultivation and, in total, 

approximately 51 percent of Malawian maize-based farming is expected to receive some benefit 

from pigeonpea integration, with 9 percent receiving predictable and substantial benefits. These 

findings illustrate the geographic scaling potential of pigeonpea in Malawi and provide direction 

for informed pigeonpea deployment and market development across the country.  

4.2 Introduction 

In view of widespread food shortages and rural poverty across Africa, scaling innovations to boost 

agricultural productivity is a global priority and essential to meeting many of the United Nations 

Millennium Development Goals (Sachs 2005). Although definitions of scaling vary, achieving ef-

fective agricultural development involves innovations that have positive impacts on productivity. 

Scaling in development is both vertical and horizontal. Vertical scaling includes institutionalization 

5 This is an Accepted Manuscript of an article published by Taylor & Francis in The Professional Geographer 
on 10 August 2017, available online at doi.org/10.1080/00330124.2017.1347798. Reference: Peter, B.G., 
Messina, J.P., Frake, A.N. and Snapp, S.S., 2018. Scaling agricultural innovations: pigeonpea in Malawi. The 
Professional Geographer, 70(2), pp.239-250. 
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or decision making at higher levels and often involves sectors and stakeholder groups in the ex-

pansion process (Pachico and Fujisaka 2004). Horizontal scaling, also known as scaling out, refers 

to geographical spread (Snapp and Heong 2003; Pachico and Fujisaka 2004). In practice, horizon-

tal scaling translates to the widespread spatial adoption of new behaviors or technologies through 

expansion, replication, and adoption of projects, programs, or policies (Linn 2012). Adoption of 

new technologies, both inputs and practices, along with the innovative use of existing technolo-

gies, is vital to achieving agricultural sector growth. These developments aim to increase land and 

labor productivity, the effective use of natural resources, and farmer income potential, with market 

solutions (USAID 2014). 

Understanding the drivers that prompt farmers to adopt a new product, process, or prac-

tice is an essential part of designing a successful scaling strategy. Adoption is a dynamic process, 

one that is location specific, and influenced by a wide range of biophysical and socio-economic 

factors (Feder, Just, and Zilberman 1985). Not only does technology performance matter, but 

there is also a need to consider social context, including input and output market opportunities, 

farmer priorities, and perceptions of performance. This is illustrated by adoption and disadoption 

of drought-tolerant maize varieties by smallholder farmers in Malawi, as nationally representative 

survey data illustrate that this varies with location, as well as with farmer perceptions of drought 

risk, and yields of modern maize varieties (Fisher and Snapp 2014). Overall, adoption of sustain-

able agriculture technologies in Africa has been shown to depend on biophysical performance, 

which influences profitability, and a complex milieu of land and labor availability, knowledge, 

extension, technology availability, and policy (Hazell and Wood 2008; Muyanga and Jayne 2014). 

Approaches to scaling agricultural productivity commonly address and sometimes mix in-

tensification and extensification. In intensified systems, efforts are made to generate more product 
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on land currently under cultivation. Increasing production is achieved through changes in system 

inputs (i.e., seed, fertilizer, land, labor, time, or feed; Food and Agriculture Organization of the 

United Nations [FAO] 2004). Other land-use decisions include the displacement of one commod-

ity for another, where the economic outcome is comparable or greater (Govereh and Jayne 2003). 

As consideration is given to the importance of agricultural systems in a global context, emphasis 

is increasingly being given to sustainable intensification practices. Thirty-eight percent of the 

world’s agricultural area has become degraded through poor natural resource management, par-

ticularly in Africa, where up to 65 percent of agricultural land suffers from degradation (Feed the 

Future 2015). With little room to expand agriculture into new areas due to poor suitability, access, 

or limited availability, there is an increasing focus on intensified agricultural productivity (USAID 

2016). 

Extensification involves introducing agricultural production into land areas that have been 

previously unused or used for less intensive purposes (Impact Assessment Group 2000). These 

land areas are often marginal and might require substantial inputs to bring them into production. 

High population density and limited land availability, however, is widespread in Malawi, limiting 

extensification options (Ricker-Gilbert and Jumbe 2014). Between 1990 and 2013, forest cover in 

Malawi decreased by 23 percent (FAO 2016a), attributed in part to agricultural extensification by 

smallholder farmers and population increase (Government of Malawi 1998; Chibwana, Jumbe, 

and Shively 2013). As of 2013, agriculture occupied approximately 61 percent of Malawi’s total 

land area, with forest cover diminishing to 34 percent of the total land area (FAO 2016a). Conse-

quently, options for extensification have been largely reduced to protected or marginal areas, nei-

ther of which are viable or sustainable for long-term production demand. Thus, intensification 

has become the primary focus for soil rehabilitation and increased production. 
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4.2.1 Prospect for Soil Rehabilitation in Malawi 

Malawi is facing recurrent food security crises due in part to long-term unsustainable agricultural 

practices (Glasson 2010; Mungai et al. 2016). There are other contributing factors, such as histor-

ical inequities in resource distribution and minimal investments in infrastructure, research, and 

education. From a biophysical standpoint, the continuous production of maize over the last sev-

eral decades has fostered widespread soil nutrient and organic matter degradation (Sanchez 2002; 

Ngwira, Aune, and Mkwinda 2012; Thierfelder et al. 2013). In the past, emphasis has been placed 

on fertilizer substitution (e.g., Denning et al. 2009); however, the success and long-term viability 

of such a solution is widely debated (Chinsinga and Poulton 2014; Messina et al. 2017), and seem-

ingly ineffective for the rural poor in Malawi (Holden and Lunduka 2013). 

Pigeonpea has been proposed as a mitigation strategy for combating soil degradation with 

its large root system, copious vegetative biomass, and superior ability to fix nitrogen and enhance 

phosphorus solubilization for soil rehabilitation (Snapp et al. 2010; Ngwira, Aune, and Mkwinda 

2012; Mhango, Snapp, and Phiri 2013). The benefits of pigeonpea, grown in combination with 

maize, or as a doubled-up legume system (i.e., pigeonpea and an understory of soybean or ground-

nut), rotated with maize, have been proven in country-wide trials (Snapp et al. 2010; Snapp et al. 

2014). Perennializing agriculture through growing perennial legumes complementary to existing 

maize-based farming systems is at the foundation of many such sustainable practices, yet adoption 

across Africa has been limited (Schulz et al. 2003; Bezner-Kerr et al. 2007; Snapp et al. 2010). In 

Malawi, uptake of legume biodiversity is commonly hindered by profitability and farmer prefer-

ence; however, trials in northern Malawi show promise for semi-perennial legume adoption 

(Snapp et al. 2010). 
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Pigeonpea is commonly integrated in maize systems in the southern region of Malawi, yet 

farmers in the northern and central regions have historically elected not to grow pigeonpea, choos-

ing other legumes (e.g., groundnut, soybean, common bean, and cowpea) and other forms of crop 

diversity (e.g., cassava; Malawi Vulnerability Assessment Committee [VAC] 2005; Simtowe et al. 

2010). This regional delineation of crop choice does not appear to be dictated explicitly by bio-

physical conditions. In terms of temperature and precipitation, 79 percent of southeast Africa 

(Kenya, Tanzania, Malawi, Mozambique) is suitable for pigeonpea cultivation (Snapp et al. 2019b). 

Rather than climate, pigeonpea presence in Malawi might be dictated largely by social factors (e.g., 

market conditions, culture, extension, labor, preference, or pressure to produce cash crops; Snapp 

and Silim 2002). 

4.2.2 Horizontal Scaling of Pigeonpea in Malawi 

Targeting is crucial to the successful deployment and scaling of development strategies and inno-

vation technologies (S. Wood et al. 1999). Although agricultural improvement efforts frequently 

take place at the local level (e.g., Giller et al. 2006), scaling is typically targeted by region and absent 

the local context (e.g., Millar and Connell 2010). More regional approaches to scaling agricultural 

technologies are often unilateral (i.e., focus is given to a singular metric—e.g., sustainability), ne-

glecting to fully address the underlying combinations of biophysical and social factors driving 

marginality, particularly at fine spatial resolutions. For intervention initiatives to succeed, they need 

to be delivered in areas where benefits would be substantial and predictable (e.g., biophysical con-

ditions must be considered), and where farmer adoption is realistic (Kwesiga et al. 2003). Here, 

we focus primarily on the biophysical suitability of pigeonpea across Malawi. This means promot-

ing pigeonpea and encouraging market development in regions and sites where (1) cli-mate con-

ditions are optimal for pigeonpea, and (2) maize suitability and maize production are marginal. 
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Remotely sensed data offer cost-effective, fine spatial and temporal resolution data to un-

cover the complex dynamics of agricultural production across the landscape and in remote places 

on earth. These data allow for intelligent targeting of development strategies beyond administra-

tive levels and beyond often arbitrary decision-making processes unrelated to in situ conditions. 

Other agricultural improvement initiatives have employed remotely sensed information for tar-

geting deployment of new technologies (e.g., Bellon et al. 2005; Muthoni et al. 2016). Bellon et al. 

(2005) used remotely sensed climate data in combination with demographic information to target 

agricultural advancements for poverty alleviation of farmers in Mexico. Muthoni et al. (2016) used 

a suite of biophysical and socioeconomic variables to recommend zones for sustainable inten-

sification efforts in Tanzania. Our work complements studies such as these and is differentiated 

by providing a framework to disentangle the complex combinations of the underlying biophysical 

and possible social factors driving marginality, supplying information and recommendations at a 

fine spatial resolution, and on a pixel basis. Highlighted here are areas and sites where pigeonpea 

integration will provide predictable and substantial benefits in a classification format readily usable 

by policymakers, decision makers, and scholars.  

We propose a heuristic for assessing the horizontal scaling potential of pigeonpea in Ma-

lawi using a comprehensive suite of remotely sensed measures of agricultural productivity, climate 

conditions, and land suitability. First, we identify locations where climate conditions are optimal 

for the cultivation of pigeonpea, based on fundamental niche. Second, we evaluate areas where 

biophysical conditions for maize are suboptimal and productivity is historically marginal. Finally, 

the intersection of soil-driven maize marginality and the optimal pigeonpea niche reveals “better 

bet” locations for predictable and beneficial integration outcomes. We present a range of scaling 
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outcomes and propose areas where pigeonpea will provide positive results based on biophysical 

suitability, as well as areas that might benefit from extension and market development. 

4.3 Methods and Data 

4.3.1 Pigeonpea Niche 

To identify locations suitable for pigeonpea cultivation, we used two remotely sensed products: 

(1) NASA MODIS Land Surface Temperature (LST— MOD11A2) for temperature (NASA LP

DAAC 2015b), and (2) NASA/JAXA Tropical Rainfall Measuring Mission (TRMM—3B43) for 

precipitation (NASA/JAXA TRMM 2016). Thresholds for optimal pigeonpea conditions are 

based on widely accepted and tested temperature and precipitation ranges (Table 4.1). We calcu-

lated the average value for each pixel across all years under study (2000–2014) for the November 

through April growing seasons (Jayanthi et al. 2013; FAO 2016b). Only areas where temperature 

and precipitation were both optimal were considered for the optimal niche. 

4.3.2 Targeting Development Strategies 

To identify areas where agricultural production is historically poor and soil is likely driving under-

production, we used a Malawi maize suitability map that disaggregates broad classes of suboptimal 

biophysical conditions and agricultural productivity (Peter et al. 2018). The map depicts all com-

binations of suboptimal temperature, suboptimal precipitation, soil suitability, and agricultural 

productivity. The dominant focus here is soil quality and pigeonpea integration. Legumes are gen-

erally tolerant to low soil fertility (Snapp and Silim 2002) and are commonly grown in marginal 

soil environments (Kumar Rao and Dart 1987), whereas maize growth is impaired by marginal, 

resource-poor soils (Heisey and Edmeades 1999). Pigeonpea can grow effectively on marginal 

soils and its integration with maize cropping systems can provide soil nutrient enrichment, resili-

ence, and improved maize yields (Snapp et al. 2010). Because pigeonpea has these soil 
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rehabilitation properties, a reclassification of the marginal maize map tailored to soil marginality 

reveals areas where pigeonpea deployment would prove most effective. This reclassification is one 

that can be easily interpreted and readily used by policymakers and academics to intelligently target 

research and development scaling initiatives. 

Crop Temperature (°C) Precipitation (mm) 

Pigeonpea (optimal) 22.7–30.9 544–1263 

Table 4.1. Optimal pigeonpea climate niche. Note: Temperature data acquired from NASA MODIS 
LST (MOD11A2). Precipitation data acquired from NASA/JAXA TRMM (3B43). Precipitation 
requirements are represented as accumulated growing season rainfall. L. Wood and Moriniere 
(2013); Sardana, Sharma, and Sheoran (2010); Valenzuela and Smith (2002); Carberry et al. (2001); 
Silim and Omanga (2001); Kimani (2001); Omanga, Summerfield, and Qi (1996); Houérou (n.d.). 

Figure 4.1. Reclassification diagram: Transforming maize marginality into pigeonpea opportunity. 

Potential areas for pigeonpea deployment are defined as the intersection between soil-

driven marginal areas for maize and the optimal climate niche for pigeonpea. Locations where 

marginality is related to soil (solely or in combination with marginal productivity) were reclassified 

to a “better bet” option for maximum benefit from pigeonpea integration. In this case, because 

soil is the only factor (of those under study) driving marginality, positive outcomes from pigeonpea 
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integration are expected. Locations with marginal production, but where low productivity is not 

explained by any of the explanatory drivers, are areas where marginality might be driven by social 

factors and would likely benefit from extension and market development. It is also possible, how-

ever, that another factor not under study is driving marginality. Marginal productivity and subop-

timal temperature regions were also considered potential areas for extension and development. 

Other reclassifications include locations that are suitable for pigeonpea, but benefits are 

somewhat unpredictable because marginality is associated with other factors in combination with 

soil and might require alternative solutions (e.g., climate-resilient crop varieties). Areas where pi-

geonpea is suitable, but soil is not a driver of marginality, are classified as highly unpredictable. 

The following are the resulting categories: (1) Better Bet—maximum benefit from pigeonpea in-

tegration; (2) substantial benefit from pigeonpea integration; (3) suitable for pigeonpea— likely 

benefits from extension or market development; (4) suitable for pigeonpea—benefits somewhat 

unpredictable; and (5) suitable for pigeonpea—benefits highly unpredictable (Figure 4.1). The last 

resulting category (6) includes areas unsuitable for pigeonpea or nonmarginal for maize. 

4.3.3 Field Survey and Data Acquisition 

In 2015, we conducted a country-wide field survey in which we spoke with extension officers in 

thirty-three farming regions (extension planning areas [EPAs]) across the extent of Malawi. We 

visited nine EPAs in the north, eight in the south, and sixteen in the central region, conducting 

interviews and land-cover/land-use assessments at 200 sites. At each site, we inquired about crops 

grown and cropping system patterns (e.g., sole crop and intercrop). In addition to our interviews, 

we acquired EPA-level crop production metrics from the Malawi Ministry of Agriculture and 

Food Security (MoAFS), which covers the years between 2005 and 2012. These data, along with 

the interviews, allow us to cross-reference reports of regional crop delineation (VAC 2005; 
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Simtowe et al. 2010), as well as reveal the spatial distribution of pigeonpea production and yield 

at the local scale. Regional and administrative boundaries are presented here for reference (Figure 

4.2). 

Figure 4.2. Study area map highlighting the northern, central, and southern regions of Malawi and the contained 
districts and extension planning areas. 

4.4 Results 

4.4.1 Spatial Distribution of Pigeonpea in Malawi 

Here we present data on pigeonpea production and yield by administrative unit (EPA) across 

Malawi for 2005 and 2012; these years represent the greatest temporal range in the data available. 
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There is a clear regional pattern of pigeonpea presence in the southern region of Malawi (Figure 

4.3). In 2005, the southern region of Malawi produced 92 percent of the national pigeonpea total 

(compared with less than 1 percent in the north). In 2012, the southern region of Malawi produced 

89 percent of the national pigeonpea total (compared with less than 1 percent in the north). For 

instances where pigeonpea is grown in the northern and central regions, however, yields are com-

parable to those observed in the south (Figure 4.4). In 2005, pigeonpea yields in the southern 

region averaged approximately 430 kg ha-1, and in the northern region, pigeonpea yields averaged 

approximately 440 kg ha-1. In 2012, pigeonpea yields in the southern region averaged approxi-

mately 980 kg ha-1, and in the northern region, pigeonpea yields averaged approximately 700 kg 

ha-1. Pigeonpea is scarce in the central region; however, in 2005 pigeonpea yields averaged approx-

imately 470 kg ha-1 and in 2012 pigeonpea yields averaged approximately 900 kg ha-1. Coinciding 

with government reports, our field survey shows an overwhelming presence of pigeonpea in the 

southern region of Malawi. Of our 200 sites visited (in thirty-three farming regions), we were able 

to confirm pigeonpea cultivation at forty sites. Of these sites, pigeonpea was grown at only three 

sites in the north, four in the central region, and thirty-three in the south. 

 4.4.2 Pigeonpea Niche and Deployment Potential 

Malawi’s climate is highly suitable for the cultivation of pigeonpea. In terms of both temperature 

and precipitation, 79 percent of agricultural land exhibits climate conditions optimal for pigeonpea 

growth (Figure 4.5). Approximately 3 percent is optimal only for temperature and 17 percent is 

optimal only for precipitation, so only 2 percent of Malawi’s agricultural area is entirely suboptimal 

for pigeonpea. 
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Figure 4.3. Map depicts the spatial distribution of pigeonpea production and yield in 2005 and 2012 by exten-
sion planning area.  

Figure 4.4. Regional descriptive statistics: Box and whisker plot of pigeonpea production and yield in three major 
regional subdivisions of Malawi (north, central, and south) for 2005 and 2012. Production in metric tons 
and yield in kg/ha. Note that y-axes vary. 

The intersection of marginal maize and optimal pigeonpea covers 74 percent of agricultural 

land in Malawi (Figure 4.6). Within this intersection, 46 percent of maize marginality is attributed 
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to soil (solely or in combination with other drivers). Our findings suggest maximum benefit from 

pigeonpea integration occurring on 2 percent of agricultural land. These are areas where soil suit-

ability is the sole driver of marginality. Seven percent of marginal agricultural land is expected to 

receive substantial benefit from pigeonpea integration. These are areas where soil suitability is a 

primary driver of marginality, along with suboptimal temperature conditions. Another 7 percent 

is suitable for pigeonpea and might benefit from extension and market development. These are 

areas where productivity is measurably low, yet there is either no observable limiting driver of 

productivity (of those under study), or temperature is the sole factor. We found that 37 percent 

of the country is suitable for pigeonpea, but soil is not the sole driver of marginality and benefits 

are less predictable. Twenty-one percent is suitable for pigeonpea but soil is not a driver of mar-

ginal maize; therefore benefits are highly unpredictable. Twenty-six percent is unsuitable for pi-

geonpea or nonmarginal for maize. Overall, approximately 51 percent of Malawian agriculture is 

likely to receive benefits from pigeonpea adoption, with varying degrees of predictability and ef-

fectiveness, at least 9 percent of which should receive highly predictable and beneficial outcomes 

from pigeonpea integration. 
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Figure 4.5. Pigeonpea climate niche: Optimal temperature and precipitation (2000–2014). Data sources: 
NASA MODIS LST (MOD11A2) and TRMM (3B43). Inset maps selected to highlight local spa-
tial variability.  
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Figure 4.6. Potential areas for deployment of pigeonpea and market development. Inset maps selected to 
highlight local spatial variability.  
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4.5 Discussion 

4.5.1 Targeting Investments in Sustainable Agriculture Technologies 

It is urgent to reverse the soil degradation trend in Malawi and support sustainable agricultural 

practices and higher production levels. Agricultural development will not be successful unless 

sustainable management of the underlying soil resource is addressed, nor will investments in agri-

cultural subsidies achieve profitable returns. To build soil organic matter requires sufficient or-

ganic matter inputs, delivered efficiently from leguminous plant roots (Puget and Drinkwater 

2001; Kong and Six 2010). In Malawi, sustained effort to improve soil organic carbon is also 

required. There is a growing body of evidence that the surest way to achieve soil organic matter 

gains, in a manner that ensures ease of farmer adoption, is to promote crops that are shrubby, 

such as pigeonpea, in contrast to growing exclusively annual crops that have limited life spans, 

limited aboveground biomass, and meager root systems (Snapp et al. 2010; Glover, Reganold, and 

Cox 2012). 

Over the long term, technologies such as residue mulch systems, agroforestry, and inten-

sified livestock systems that transfer manure to crop fields are all expected to play a role in building 

soil productivity in Malawi. Some of these systems, however, have been shown to require sub-

stantial labor investments, as well as food production opportunity costs, at least in the short term 

(Sirrine et al. 2010). The combination of near-term options, such as diversification with pigeonpea, 

and more long-term, radical options all need to be considered as means to build soil organic mat-

ter. This is essential to ensure crop response and profitable use of investments in improved seed 

and fertilizer. We recommend the Malawi government extension consider innovative approaches 

to targeting intervention efforts, such as the example presented here that assesses where pigeonpea 

can be most effectively deployed. To complement long-term investments, we propose immediate 
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research and extension attention be given to multipurpose legumes, such as pigeonpea, in the 

“better bet” areas we have highlighted. 

It is clear that pigeonpea is preferred in the southern region of Malawi, based on the quan-

tity of production; however, in instances where pigeonpea is grown in the northern and central 

regions, it performs quite well and yields are comparable to those in the south (Figure 4.4 and 

Figure 4.5). These findings support the spatial extent of pigeonpea optimality and the potential 

for widespread integration (Figure 4.3). Pigeonpea is largely absent in most of the central region; 

however, the confirmation of overlapping optimal niche and reported high productivity leads to 

a reasonable assumption that pigeonpea could be grown successfully in the northern and central 

region EPAs. In Figure 4.3, we show that much of the northern region is suitable for pigeonpea, 

and, based on the drivers of marginality for maize, would receive maximum or substantial benefit 

from pigeonpea integration. These areas in the northern and central regions are high-priority areas 

for the scaling and market development of pigeonpea. 

4.5.2 Drivers of Pigeonpea Production 

This article documents the spatial extent of soil and temperature properties that condition pigeon-

pea growth and compares this to the actual pigeonpea distribution. It is clear that pigeonpea is 

underrepresented in terms of biophysical suitability, but is an expanding crop in Malawi. Produc-

tion area has increased at a rate of about 5.5 percent per year between 2006 and 2014; over the 

same time period, production has increased at a rate of about 5.6 percent per year, and yield at a 

rate of about 11.4 percent per year (FAO 2016a). The maps of pigeonpea production and yield 

presented (MoAFS) are consistent with FAO-reported trends of continually increasing production 

and productivity in Malawi. Indeed, 2005 was a particularly low producing year due to severe crop 

response from poorly timed rains (Buerkle 2005); however, there is still a considerable annual yield 
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increase (8.1 percent on average, 2000–2014; FAO 2016a). The maps and reported figures also 

demonstrate that pigeonpea responds similarly to rainfall stress across regions. Somewhat surpris-

ingly, this rapid upward production and yield trend holds true for many of Malawi’s primary crops 

(e.g., maize, rice, groundnut, soybean, and tobacco). Despite reported production and yield gains 

across crops, the fact remains that widespread food insecurity persists throughout rural Malawi 

(Messina et al. 2017). 

A driving factor of increasing pigeonpea production might be the growing international 

market opportunities occasioned by large and consistent pigeonpea import demands from the 

Indian subcontinent (Simtowe et al. 2010). Emergent pigeonpea success in neighboring Mozam-

bique and Tanzania (Walker et al. 2015) make it increasingly important for Malawi to situate itself 

within the pigeonpea export arena. There is somewhat contradictory evidence regarding market 

demand, which appears to be highly variable in Malawi, as several reports have highlighted farmer 

concerns with pigeonpea market access limitations outside of southern Malawi (Rogé et al. 2016; 

Waldman et al. 2017). The central region of Malawi, where the country capital of Lilongwe is 

situated, is largely undiversified, with maize and tobacco dominating the agricultural landscape 

(VAC 2005), and pigeonpea is largely absent (Snapp et al. 2003). Conversely, southern districts 

such as Zomba have a market structure that encourages pigeonpea production and integration 

(Ortega et al. 2016; Waldman et al. 2016). In Malawi, variability of the pigeonpea market over 

space and time might drive increased production in some areas and years, and limit it in others, 

with an overall positive impact on pigeonpea production. Socioeconomic contexts (e.g., market 

structure and farmer preference) are impeding pigeonpea scaling across much of Malawi. Another 

barrier to pigeonpea production is the extent of free-ranging livestock in northern and central 

Malawi. Compared to southern Malawi, there are few community norms that ensure year-round 
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livestock control, which is key to growth and survival of long-lived semi-perennial crops such as 

pigeonpea (Rogé et al. 2016). Taken together, this is suggestive that agricultural development ef-

forts that involve pigeonpea promotion will need to pay attention to livestock control and market 

policies, as well as biophysical suitability for pigeonpea. 

4.6 Conclusions 

Maize produced in optimal areas with recurring high yields will never be replaced by pigeonpea—

the calorie yield difference is simply too great. The strengths of the model proposed here, how-

ever, lie in its ability to transform marginality into opportunity with predictable outcomes. Small-

holder farmers are generally risk averse. Here, we provide evidence that pigeonpea is a promising 

and scalable option for soil rehabilitation, nitrogen fixation, and improved maize yields across 

many specific locations in Malawi. The maps and methodology herein are resources that might be 

used to intelligently target locations in need of intervention, where benefits will meet expectations 

and minimize risk. The fine spatial and temporal resolution data we employ allow policymakers 

and decision makers to focus efforts beyond the regional level, removing some uncertainty in 

extension delivery and promotion of new practices. Although we focus on maize and pigeonpea 

here, the model is not limited to a particular crop and could be generalized across geographies, 

crops, scales, and innovation strategies. Reclassifying the underlying drivers of marginality, tailored 

to specific technologies, will allow for a wide array of potential for agricultural innovations to scale 

and improve agricultural systems across Malawi.6 

6 This research was supported by the Perennial Grain Crops for African Smallholder Farming Systems 
project, Grant #OPP1076311, funded by the Bill & Melinda Gates Foundation, and through support of 
the U.S. Agency for International Development, AID-OAA-A-13-00006. The opinions expressed herein 
are those of the authors and do not necessarily reflect the views of the U.S. Agency for International 
Development or the U.S. government. We would like to thank the Lilongwe University of Agriculture and 
Natural Resources and Africa RISING for facilitating research in the field, as well as the Global Center 
for Food Systems Innovation at Michigan State University. 
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MULTI-SPATIAL RESOLUTION SATELLITE AND sUAS IMAGERY FOR 
PRECISION AGRICULTURE ON SMALLHOLDER FARMS IN MALAWI7 

5.1 Abstract 

A collection of spectral indices derived from a range of remote sensing imagery spatial resolutions 

are compared here to on-farm measurements of crop yield and crop chlorophyll at two trial farms 

in central Malawi. The primary objective of this analysis was to evaluate what spatial resolutions 

are most effective for relating multispectral images with crop status. Single and multiple linear 

regressions were tested for spatial resolutions ranging from 7-cm to 20-m using a small unmanned 

aerial system (sUAS) and satellite imagery from Planet, SPOT 6, Pléiades, and Sentinel-2. Evidence 

presented here suggests that imagery with spatial resolutions nearest the plant scale (i.e., 14–27-

cm) are most effective for relating spectral signals with crop status on smallholder farms in Malawi.

Moreover, green-band indices were more consistently correlated with crop chlorophyll and yield 

than conventional red-band indices such as NDVI, and multivariable models often outperformed 

single variable models.  

5.2 Introduction 

5.2.1 Precision Agriculture and sUAS 

Precision agriculture has become a prominent subject of research for remote sensing of cropping 

systems since the advent of individual-use small unmanned aircraft systems (sUAS) (Zhang and 

Kovacs 2012). While national governments have been monitoring agricultural production via sat-

ellite since the 1970s, coarse spatial resolutions, cloud cover, and infrequent collection has ren-

dered much of these image data unfit for the needs of small-scale farmers (Mulla 2013). Now, the 

7 This is an Unpublished Manuscript. Reference: Peter, B.G., Messina, J.P., Carrol, J., Lin, S., Chikowo, R., 
Zhi, J., and Snapp, S.S. 2019, In Preparation. Multi-spatial resolution satellite and sUAS imagery for preci-
sion agriculture on smallholder farms in Malawi. 
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use of quadcopters and fixed-wing drones for precision farming continues to grow as sUAS tech-

nologies become increasingly cost effective and programmatic operations are developed that 

streamline the process of collecting imagery and generating map outputs (Floreano and Wood 

2015). Many drones, such as the senseFly eBee fixed-wing aircraft with eMotion, no longer require 

manual piloting and can be launched with pre-programmed flight plans. Moreover, associated 

software such as Pix4D (Pix4D SA 2017) can handle many of the previously arduous image pre-

processing tasks, such as image mosaicking, geometric correction, orthorectification, and radio-

metric calibration. These advancements have made precision agriculture accessible to users with 

minimal to no experience with aerial vehicle piloting and remote sensing-based crop analytics. 

Continuing the precision autonomous farming trends, large-scale agribusinesses have begun to 

leverage GPS enabled systems to deliver fertilizer and water relative to spatial need as measured 

via sUAS (Eaton et al. 2008).  

Typical agricultural-use sUAS multispectral cameras will acquire red, green, and blue 

(RGB), red edge, and near-infrared (NIR) imagery (e.g., Parrot Sequoia multispectral camera) (Par-

rot Drones SA 2017), and more sophisticated cameras with a broader range of spectral bands can 

record shortwave and thermal infrared (SWIR and TIR) (Stark et al. 2015), which are critical for 

monitoring crop water stress (Ceccato et al. 2001). With the visible spectrum (RGB) and NIR, a 

broad range of crop status indices can be calculated. Most notable is the normalized difference 

vegetation index (NDVI) (Tucker 1979). This metric is widely used as a measure of crop health—

a healthy plant will absorb visible light (especially blue and red), while the fortified leaf structure 

will reflect a high amount of NIR. NDVI calculation is simply (NIR–red)/(NIR+red), returning 

values between -1 and 1, ranging from non-vegetated (water or barren) to healthy crops and plants 

with a high leaf area index (LAI). Beyond being a metric for crop health, NDVI is frequently 
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correlated with crop production and yield, thus many farmers find value in mapping NDVI across 

their fields (Wall et al. 2008).  

5.2.2 Variable-Rate Technology and Spectral Signals of Farm Productivity 

Perhaps the most common use of drone imagery on-farm is the application of variable-rate tech-

nology. This is the term coined to describe farm productivity improvement applications that are 

informed by spatiotemporal measurements of crop performance (Sawyer 1994). In the case of 

NDVI being used as an indicator of crop productivity, fertilizer may be applied proportionately 

across a field depending on the spatial organization of measured crop status. Similarly, maximum 

efficiency applications may be deployed that consider the nitrogen use efficiency (NUE) at various 

stages of crop growth (i.e., fertilizer applied to a moderately healthy plant may have a greater return 

than fertilizer applied to an unhealthy plant) (Cassman 2002). NDWI (normalized difference water 

index), a ratio of the SWIR and NIR bands (Gao 1996), can be used to inform water distribution 

across a field, supplying water to areas where crops are experiencing water stress and restricting 

the amount delivered to areas at risk of waterlogging. Depending on the spatial resolution, an 

image interpreter may be able to visually detect areas that are experiencing leaf damage from pests 

and identify invasive plants and weeds between row crops (Hunt and Daughtry 2017). Further, 

elevation point clouds derived from drone imagery can be used to identify sloping terrain prone 

to erosion and areas susceptible to pooling, which can be managed by manipulating the field struc-

ture or by integrating crops with substantial root biomass (Pineux et al. 2017).  

While NDVI is an extensively used vegetation index, it is well known that it does not 

always emerge as having the strongest correlation with on-farm yields or leaf chlorophyll and is 

often outperformed by other remote sensing indicators (Hatfield and Prueger 2010). Spectral in-

dices in relation to crop status can vary substantially due to differences in crop leaf structure, 
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planting density, soil and shadows, and image spatial resolution. Other indices that are often used 

to correlate spectral signals with crop status include GNDVI (green normalized difference vege-

tation index), SAVI (soil adjusted vegetation index), GSAVI (green soil adjusted vegetation index), 

GCI (green chlorophyll index), RVI (ratio vegetation index), CVI (chlorophyll vegetation index), 

and MCARI1 (modified chlorophyll absorption ratio index 1). Zhu et al. (2012), for example, 

found that the soil adjusted vegetation index (SAVI) was effective for estimating leaf nitrogen 

content of wheat. Shanahan et al. (2001) found the green normalized difference vegetation index 

(GNDVI) to be highly correlated with corn grain yields, particularly during midgrain filling. Sim-

ilarly, Panda et al. (2010) found the red- and NIR-based perpendicular vegetation index (PVI) 

reliable for predicting corn yields. Mulla (2013) supplies a comprehensive list of remote sensing-

based indices used in precision agriculture contexts. 

5.2.3 National Government and Commercial Satellites 

While drones are an increasingly viable option for industrial farms and many small-scale opera-

tions, there is still a considerable financial and infrastructural barrier to entry in remote areas. As 

such, national government and commercial satellites play an integral role in scaling agricultural 

technologies and improving crop production worldwide. MODIS (250-m), Landsat (30-m), and 

Sentinel-2 (20-m) are national government satellites that offer global coverage at regular temporal 

intervals. Finer spatial resolution governmental and commercial satellites collect quasi-global im-

agery and can be commissioned for specific missions. Notably, SPOT 6/7 (7-m), Planet (3-m), 

WorldView-2 (2-m), and Pléiades (2.5-m) satellite constellations offer regional, inter-farm, and 

intra-farm multispectral imagery to measure crop status, though none at the individual maize plant 

scale with multispectral bands. In contrast, sUAS can provide intra-farm measurements for indi-

vidual plants down to the leaf scale. For maize, a 30-cm spatial resolution image will capture a 
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complete plant and 7-cm is fine enough to evaluate individual leaves. Though MODIS, Landsat, 

and Sentinel-2 are free to the public, finer spatial resolution images require purchase. A cost per 

resolution curve of multispectral imagery from the Apollo Mapping repository (Apollo Mapping 

2018) is plotted here for comparison in Figure 5.1. 

Figure 5.1. Spatial resolution and cost per square kilometer curve. Costs listed are for the multispectral 
products available from the Apollo Mapping archives. Prices were retrieved from the 2018 mono 
high and medium-resolution satellite imagery price list (archive ≤ 90 days) (Apollo Mapping 2018). 

5.3 Methods 

The objective of this study was to evaluate the linear relationship between in situ farm measure-

ments (crop chlorophyll and yield) and spectral indices of crop status across multiple spatial res-

olutions. Spatial resolutions included in this analysis are 7-cm, 14-cm, and 27-cm (sUAS), 2.5-m 

(Pléiades), 3-m (Planet), 7-m (SPOT 6), and 20-m (Sentinel-2). The workflow consisted of (i) sUAS 

image collection and satellite image acquisition, (ii) image mosaicking, radiometric calibration, or-

thorectification, and geometric correction, (iii) index calculation (NDVI, GNDVI, SAVI, GSAVI, 

GCI, RVI, CVI, and MCARI1), (iv) mean zonal statistic calculations by plot for each index, (v) 
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single and multiple linear regression permutations of all selected indices compared to crop chlo-

rophyll and crop yield, (vi) regression model rankings using Akaike information criterion (AICc), 

and (vii) comparison of correlation results across all spatial resolutions under analysis (Figure 5.2). 

The performance of each spectral index in relation to on-farm crop measurements was also eval-

uated. 

Figure 5.2. Heuristic: multi-spatial resolution satellite and sUAS imagery for precision agriculture on small-
holder farms in Malawi.  

The study took place on two trial farms in the central region district of Machinga in the 

villages of Ntubwi and Nyambi (Figure 5.3). The farms are approximately 0.084 hectares (ha) each, 

separated into 3 columns (referred to herein as replicates [R]) each containing 9 unique treatments 

(T). There are 27 total plots per farm, with 6 rows of monocrop maize in each plot; surrounding 

land cover was a complex mosaic of agriculture (e.g., groundnut, soybean, cassava, and finger 
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millet), tree cover, shrubs, barren land, and housing structures. The Ntubwi farm is approximately 

0.092 ha (918 square meters) with an average plot size of 34.0 square meters and the Nyambi farm 

is approximately 0.077 ha (769 square meters) with an average plot size of 28.5 square meters. 

These trial farms are under experimentation by a research group at Michigan State University in 

partnership with Africa RISING evaluating maize response to variable fertilizer treatments.  

Figure 5.3. Study area map of the trial farms in Ntubwi and Nyambi, Malawi, with plots of differing manage-
ment strategies labeled.  

5.3.1 Problems of Clouds and Satellite Revisit Rates 

One substantial challenge associated with precision agriculture using remote sensing satellites is 

the abundance of clouds during the crop production season. This is particularly problematic in 
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Malawi, where the unimodal rainy season introduces regular cloud cover. Persistent cloud cover, 

coupled with infrequent satellite image revisit rates, often results in few clear images available for 

farm observation. In the peak of the Malawi growing season, this may mean that only a handful 

of commercial satellite images free of clouds will be available. In the case presented here, for two 

farms in the central region of Malawi (Ntubwi and Nyambi) during peak growing season (Febru-

ary/March), only one clear image was available from Pléiades (January 28, 2018) and only one 

clear image was available from SPOT 6 (March 25, 2018). Cloud-free Planet images were available 

for both sites in close temporal proximity to our drone flights (February 17 at Nyambi and Feb-

ruary 20 at Ntubwi); drone flights were conducted February 19–20, 2018. The regular revisit rate 

of national government satellites (e.g., Sentinel-2) minimizes this hurdle; however, the spatial res-

olution is insufficient for intra-farm precision agriculture in the Malawian smallholder context, 

where a 0.5-hectare farm may contain only 9 complete Sentinel-2 20-m pixels. To demonstrate 

and visualize the cloud-cover problem, we assembled NDVI calculations at the Nyambi trial farm 

from 5 global monitoring satellites—AVHRR, VIIRS, MODIS, Landsat 8, and Sentinel-2 (Figure 

5.4). Each open circle on the time-series represents an image collection and/or image delivery. In 

the case of VIIRS and MODIS, composite images are delivered that ‘smooth’ out the effects of 

cloud cover. In the Sentinel-2 time-series, for example, the impact of clouds on the spectral sig-

nature is made apparent through frequent drops in NDVI. A clear advantage of sUAS technolo-

gies here is that imaging occurs below the cloud layer.  
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Figure 5.4. Satellite image NDVI acquisition over the trial farm in Nyambi, Malawi. Hollow circles indi-
cate image collection or image delivery.  
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Every cloud free image over the Ntubwi and Nyambi trial farms that was available on the 

Apollo Mapping web service (Apollo Mapping 2018) was purchased and processed for dates as 

close to February 20th, 2018 as possible (the date of the sUAS image collection flights). Those 

satellites included SPOT 6 (March 25, 2018 for Ntubwi) and Pléiades (January 28, 2018 for 

Nyambi); however, the SPOT 6 image was collected after harvest had already taken place and was 

excluded from analysis, but is presented here to further demonstrate unexpected timing issues 

(Figure 5.5). Planet images were downloaded via the Planet API for February 17, 2018 (Nyambi) 

and February 20, 2018 (Ntubwi) (Planet Team 2017). Sentinel-2 images were acquired using 

Google Earth Engine (Gorelick et al. 2017) at both sites for February 20, 2018. Orthorectification 

and geometric corrections of the SPOT and Pléiades imagery were performed using the recom-

mended parameters in the metadata from the imagery suppliers. The senseFly eBee drone flights 

at Ntubwi and Nyambi were conducted at flight heights ranging from 79-m to 303-m for spatial 

resolutions of 7-cm, 14-cm, and 27-cm. Image collection took place at peak overhead sun hours 

(between 1000 and 1400) to minimize shadow. Flight plans were prepared using eMotion and 

ground control points were set with a Topcon HIPER SR GPS base station, rover, and tripod. 

The drone images were mosaicked, radiometrically calibrated, geometrically corrected, and or-

thorectified using Pix4D (Pix4D SA 2017). Figures 5.5 and 5.6 show the range of imagery resolu-

tions and collection dates for both sites using NDVI as an example.  
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Figure 5.5. NDVI of the trial farm in Ntubwi across spatial resolutions. Note that min (x1) and max (x2) 
NDVI are unique to each map.  
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Figure 5.6. NDVI of the trial farm in Nyambi across spatial resolutions. Note that min (x1) and max (x2) 
NDVI are unique to each map. 

5.3.2 Multispectral Indices and On-Farm Measurements 

Using spectral bands consistent across all imaging platforms under study (i.e., green, red, and 

NIR), eight vegetation indices were selected to relate spectral signals with on-farm plant metrics 

(Table 5.1). Spectral wavelengths of each product are listed below Table 5.1. The indices selected 

included the normalized difference vegetation index (NDVI), green normalized difference vege-

tation index (GNDVI), soil adjusted vegetation index (SAVI), green soil adjusted vegetation index 
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(GSAVI), green chlorophyll index (GCI), ratio vegetation index (RVI), chlorophyll vegetation in-

dex (CVI), and modified chlorophyll absorption ratio index 1 (MCARI1) (Figure 5.7).  

Index selection was informed using a priori knowledge of demonstrated relationships be-

tween crop status (e.g., crop chlorophyll and yield) and remote sensing spectral signals. The indices 

selected are among the most commonly used in precision agriculture contexts, and consideration 

was given to representation of both red- and green-based spectral indices, as well as two indices 

(CVI and MCARI1) that use both the green and red bands in their calculation (Table 5.1). NDVI 

is one of the most commonly used indices for evaluating healthy vegetation (Tucker 1979) and is 

ubiquitous across precision agriculture applications; however, NDVI is sensitive to high leaf area 

index (LAI). GNDVI was popularized by Gitelson and Merzlyak (1998) as a metric sensitive to 

chlorophyll content in leaves and has been used similarly to NDVI as a decision support metric 

in precision agriculture mapping tools (Zhang et al. 2010; Candiago et al. 2015); its calculation is 

the same as NDVI, but using the green band in place of red. SAVI is similar in formulation to 

NDVI, but uses an adjustment factor to minimize the effects of soil on the spectral signal (Huete 

1988); this can be critical in areas where vegetation is sparse or where cropping arrangements (or 

crop types) allow visibility of the soil beneath the canopy. GSAVI follows the SAVI formula 

structure, but uses the green band in calculation instead of red; this index has shown to be effective 

for determining early in-season nitrogen requirements for corn (Sripada 2005). CVI and MCARI1 

are both indices that use NIR, red, and green in combination. CVI was designed to estimate leaf 

chlorophyll at the canopy scale while minimizing the effects of LAI variation (Vincini et al. 2008). 

Conversely, MCARI1 has an increased sensitivity to leaf area while also suppressing the sensitivity 

to chlorophyll (Haboudane et al. 2004).  
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Index Abbreviation Equation 

Normalized difference 
vegetation index 

NDVI (NIR – R)/(NIR + R) 

Green normalized  
difference vegetation  
index  

GNDVI (NIR – G)/(NIR + G) 

Soil adjusted vegetation 
index 

SAVI 1.5 × [(NIR – R)/(NIR + R + 0.5)] 

Green soil adjusted  
vegetation index 

GSAVI 1.5 × [(NIR – G)/(NIR + G + 0.5)] 

Green chlorophyll index GCI (NIR/G) – 1 
Ratio vegetation index RVI (NIR /R 
Chlorophyll vegetation 
index 

CVI (NIR/G) × (R/G) 

Modified chlorophyll 
absorption ratio index 1 

MCARI1 1.2 × [2.5 × (NIR – R) – 1.3 × (NIR – G)] 

Table 5.1. Indices, abbreviations, and equations for each index under study. Parrot Sequoia multispectral 
camera specifications: green 530–570 nm, red 640–680 nm, and NIR 770–810 nm. Planet surface 
reflectance multispectral specifications: green 500–590 nm, red 590–670 nm, and NIR 780–860 
nm. Pléiades-1A multispectral specifications: green 490–610 nm, red 600–720 nm, and NIR 750–
950 nm. Sentinel-2 MSI Level-1C multispectral specifications: green 560 nm, red 665 nm, and 
NIR 835 nm. NIR = near infrared; R = red; G = green. 



92 

Figure 5.7. Nyambi multispectral index panel, 7-cm spatial resolution. 

After computing index grids, mean zonal statistics were calculated for each plot to match 

the scale of the on-farm measurements. Satellite images were resampled down to 50-cm so that 

mean calculations of coarse resolution images were relative to the amount of each pixel contained 

within each plot; no soil or shadow masking was performed. To link the imagery with in situ meas-

urements, we used a handheld SPAD (Soil-Plant Analyses Development) 502 Plus Chlorophyll 

Meter, which returns an index of relative chlorophyll content (calculated using the 650 nm and 

940 nm spectral bands) (Spectrum Technologies, Inc., 2019) and can be used to estimate leaf 
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nitrogen concentration in maize (Bullock and Anderson 1998). We collected the average SPAD 

reading from the center two rows of each plot. The rationale for selecting plants near the center 

of each plot was to minimize influence from neighboring plots that underwent different fertilizer 

treatments. Yield measurements were also collected for each plot (Table 5.2).  

T1 T2 T3 T4 T5 T6 T7 T8 T9 

N 
T 
U 
B 
W 
I 

R1 SPAD 33.2 54.7 55.7 51.9 56.6 53.5 56 52 54.1 
Yield 1426 2133 3494 1848 2966 1808 3433 3128 3880 

R2 SPAD 39.6 51.1 56.9 53.6 54.4 54 56 51.6 53 
Yield 2033 3169 2600 3067 2336 2986 2377 2397 3006 

R3 SPAD 42.3 53.1 53.3 51.5 54.6 54.6 56.5 55.5 50.9 
Yield 911 2113 3433 2275 3250 1727 4063 4834 2945 

N 
Y 
A 
M 
B 
I 

R1 SPAD 24.6 36.8 38.9 43.8 35.7 41.6 39 49.9 34.2 
Yield 467 3129 3869 4514 3415 3153 1696 6067 2723 

R2 SPAD 25.9 36.3 39.9 45.8 46.7 44.9 49.5 48.2 43 
Yield 467 3105 3798 4347 6950 4228 9172 5876 2651 

R3 SPAD 25.5 42.7 46.4 46.6 54.2 53.9 50.8 58.2 47 
Yield 488 6616 5422 6019 6067 5876 5780 9482 6473 

Table 5.2. SPAD and yield measurements at the Ntubwi and Nyambi trial farms. T = treatment; R = 
replicate. 

5.3.3 Multiple Linear Regression Permutations 

Hatfield and Prueger (2010) argue that using a collection of indices to quantify agricultural status 

can be more effective than selecting a single index. To correlate the remote sensing indices with 

crop status, we tested every possible multiple linear regression (MLR) permutation between the 

remote sensing indices selected (independent variables) and the on-farm measurements (SPAD 

and yield as dependent variables). A principal component analysis was also conducted, but no 

significant groupings emerged due to the inherent collinearity among the variables under study. 

In addition to multiple regression, tests were conducted using stepwise regression, partial least 

squares regression, and a classification and regression tree (CART) approach. Ultimately, we 
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elected the multiple regression approach to maximize potential linear relationships while main-

taining model parsimony. The following is the global MLR model: 

Ŷ = b0 + b1NDVI + b2GNDVI + b3SAVI + b4GSAVI + b5GCI + b6RVI + b7CVI + b8MCARI1, 

where Ŷ is SPAD or yield. To generate these permutations, we used the MuMIn package in R 

(Barton 2016), which produced 256 multiple linear regression equations per imagery spatial reso-

lution. We then ranked the models according to the Akaike Information Criterion (AICc), which 

aims for a parsimonious balance of predictive power and model simplicity to adjust for model 

overfitting or underfitting (Akaike 1974). Additionally, the Bonferroni Correction (Bonferroni 

1935) was applied to the multiple regression permutation p-values to adjust for model overfitting. 

The Bonferroni Correction method selected here involved simply multiplying each p-value by the 

number of permutations (N = 256), which was done using p.adjust in R. The top performing 

models from these tests are listed in Table 5.3.  

5.4 Results and Discussion 

The first test consisted of single linear regressions of all indices under study. One example of the 

single variable linear regressions is presented here in Figure 5.8 to illustrate the relationships be-

tween proximal farm measurements and spectral signals derived from the sUAS images. This ex-

ample is from the senseFly eBee/Parrot Sequoia multispectral camera at a spatial resolution of 27-

cm at Nyambi. The index with the highest R2 in this particular case is GSAVI (R2 = 0.607), fol-

lowed by GNDVI (R2 = 0.554), GCI (R2 = 0.510), and SAVI (R2 = 0.489). Contrary to popular 

use, NDVI does not rank among the top four, but ranks fifth with an R2 of 0.423. Interestingly, 

the green band is in each of the top three index calculations. This evidence is consistent with other 

studies that have found green-band indices critical for accurately predicting crop health (Gitelson 

1998; Shanahan 2001; Sripada 2005). Overall, these R2 values fall below those produced with the 
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MLR models, echoing the argument from Hatfield and Prueger (2010) that a multivariable ap-

proach to predicting farm yields from remote sensing spectral indices is the optimal route. Given 

these findings and the abundance of literature reiterating the value of a broader range of spectral 

indices, precision agriculture and sUAS developers would benefit from diversifying their marketed 

indices and integrate green-based indices alongside NDVI. The 27-cm spatial resolution GSAVI 

image at Nyambi is mapped in Figure 5.9, scaled to the plot level, and compared to the on-farm 

measurements of SPAD and yield. 

Figure 5.8. Example single variable linear regressions—SPAD and spectral indices. Nyambi, senseFly eBee 
Parrot Sequoia 27-cm spatial resolution.  

Figure 5.9. GSAVI 27-cm spatial resolution grid at Nyambi, scaled to the plot level and compared to on-farm 
measurements of SPAD and yield. 
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The second test consisted of all possible MLR permutations of the indices under study. 

From the collection of multiple regression permutations, we filtered the top performing models 

across all of the imaging platforms and compared spatial resolutions with their correlative strength 

(Table 5.3). Each regression model presented has a p-value less than 0.05. Multiple linear regres-

sion models are only presented if the single variable model was outperformed. At Ntubwi, the 

highest R2 (0.553) for SPAD (single variable linear regression) was at a spatial resolution of 14-cm 

with GNDVI. The highest R2 (0.790) overall for SPAD was at a spatial resolution of 14-cm in a 

multiple linear regression with CVI, GNDVI, NDVI, and RVI. Single variable regressions for 

SPAD at a 7-cm spatial resolution at Ntubwi did not perform well, with the top performing model 

returning an R2 of 0.196 using RVI. The highest R2 (0.349) for yield at Ntubwi was at a spatial 

resolution of 14-cm using CVI; 0.27-cm spatial resolution ranked second (R2 = 0.302) with 

GSAVI, and there was no statistically significant relationship between yield and spectral indices at 

a 7-cm spatial resolution at this site (p > 0.05). Somewhat surprisingly, the top performing MLR 

at 7-cm spatial resolution for SPAD at Ntubwi returned a high R2 of 0.750; however, this MLR 

equation required 7 out of the 8 selected indices. At Ntubwi, neither Sentinel-2 nor Planet returned 

significant relationships with SPAD or yield. 

At Nyambi the highest R2 (0.607) for SPAD (single variable linear regression) was at a 

spatial resolution of 27-cm with GSAVI. The highest R2 (0.720) overall for SPAD was at a spatial 

resolution of 27-cm in a multiple linear regression with GNDVI, MCARI1, and RVI. Single vari-

able regressions for SPAD at a 7-cm spatial resolution at Nyambi also did not perform well, with 

the top performing model returning an R2 of 0.283 using GNDVI. In contrast to Ntubwi, there 

was no significant MLR model for SPAD at Nyambi at the 7-cm spatial resolution. At Nyambi, 

Planet (3-m spatial resolution) GSAVI emerged as statistically significant (p < 0.05), but with an 
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R2 of only 0.165. At Nyambi, neither Sentinel-2 nor Pléiades returned statistically significant rela-

tionships with SPAD. At Nyambi, there were more statistically significant relationships between 

spectral indices and yield than at Ntubwi. The highest R2 (0.637) for yield (single variable linear 

regression) at Nyambi was at a spatial resolution of 27-cm using GSAVI. The top performing 

model overall was at a 27-cm spatial resolution using MLR with CVI and MCARI1 (R2 = 0.677). 

Planet and Sentinel-2 emerged with statistically significant relationships to yield at Nyambi (p < 

0.05), but both with R2 < 0.2. The results of these tests are plotted in Figure 5.10. 

Site Var. Res. (m) R2 p-value Regression equation 

N 
T 
U 
B 
W 
I 

SPAD 

0.07 0.196 0.021 S = 37.3 + 2.5(RVI) 
0.14 0.553 8.7E-6 S = -19.4 + 112.6(GNDVI) 
0.27 0.495 4.3E-5 S = -1.4 + 94(GNDVI) 

0.07 0.750 0.033* 
S = 491.3 – 76.2(CVI) + 202.7(GCI) – 
2314(GNDVI) + 1715.2(GSAVI) – 
1010.6(MCARI1) + 939(NDVI) – 64.9(RVI) 

0.14 0.790 8.7E-5* S = -252.3 – 48(CVI) + 1498.6(GNDVI) – 
622.8(NDVI) – 7.7(RVI) 

0.27 0.580 0.008* S = -31.3 + 179.8(GNDVI) – 4.3(RVI) 

Yield 0.14 0.349 0.001 Y = -4694.2 + 1820.5(CVI) 
0.27 0.302 0.003 Y = -3599.7 + 16880.1(GSAVI) 

N 
Y 
A 
M 
B 
I 

SPAD 

0.07 0.283 0.004 S = 3.8 + 74.6(GNDVI) 
0.14 0.476 6.9E-5 S = 7.9 + 71.6(NDVI) 
0.27 0.607 1.7E-6 S = -16.2 + 160.1(GSAVI) 
3 0.165 0.035 S = -61.1 + 288.5(GSAVI) 
0.14 0.546 0.020* S = 31.3 – 128(GSAVI) + 176(MCARI1) 

0.27 0.720 3.8E-4* S = -50.8 + 235.6(GNDVI) + 69.2(MCARI1) – 
13(RVI) 

Yield 

0.07 0.226 0.012 Y = -5068.4 + 18407.3(GNDVI) 
0.14 0.464 9.1E-5 Y = -4944.7 + 19526(NDVI) 
0.27 0.637 6.1E-7 Y = -12112.7 + 45275.7(GSAVI) 
3 0.157 0.041 Y = -17753.2 + 69123.8(SAVI) 
20 0.147 0.049 Y = -2103.8 + 31495(MCARI1) 

0.27 0.677 3.2E-4* Y = -18049.5 + 6263.3(CVI) +
19556.8(MCARI1) 

Table 5.3. Top performing single and multiple linear regression models as ranked by AICc. *Bonferroni 
correction applied. S = SPAD; Y = yield. 
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The primary objective of this research was to quantify the effective spatial resolutions for 

conducting precision agriculture on smallholder farms in Malawi. Based on the weak correlations 

drawn from the satellite imagery, the abundance of cloud cover, and infrequent satellite revisit 

rates, it is clear that sUAS are the optimal platforms for evaluating intra-farm variability. Figure 

5.10 includes all single variable linear regressions (p < 0.05) and the top performing multiple linear 

regressions. Illustrated in this figure is a substantial drop in the statistical relationship between 

spectral index and on-farm measurements at the satellite scale. While the satellite spatial resolu-

tions ranged from 2.5-m to 20-m, Pléiades, Planet, and Sentinel-2 all fell below an R2 of 0.2. The 

relationship at the sUAS scale varied substantially depending on the index and spatial resolution, 

generally ranging between R2 values of 0.2 to 0.6, with some instances nearing zero, while MLR 

models reached upwards of approximately 0.8. The second and fourth scatterplots show the re-

gression model R2 values at the drone scale (7–27-cm). This visualization demonstrates that the 

relationship between crop status and spectral signals varies substantially even at fine scales.  

Emergently clear is that the 14-cm and 27-cm spatial resolutions are more effective than 

7-cm for relating spectral indices with proximal farm measurements. Interestingly, resampling

from 7-cm to 14-cm and 27-cm did not produce an increased correlation—there was minimal 

distinguishable change. The tests here were performed on the imagery as collected; however, it 

may be the case that soil and shadow extraction will improve the correlation at the 7-cm spatial 

resolution. However, for a generalizable methodology, it may not be more effective than imaging 

at a plant-scale spatial resolution. In this regard, one hypothesis is that a spatial resolution close to 

the plant dimensions is the optimal spatial resolution for spectral imaging. 
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Figure 5.10. Comparing linear regression correlations of spectral indices and on-farm measurements across spatial 
resolutions. (a) Nyambi top performing multiple linear regressions (depicted in purple), (b) Nyambi 
max single variable linear regressions (depicted in blue), (c) Ntubwi top performing multiple linear 
regressions (depicted in red), (d) Ntubwi max single variable linear regressions (depicted in green), 
(e) Nyambi mean single variable linear regressions (depicted in orange), (f) Ntwubi max single
variable linear regressions, and (g) all single variable linear regressions (depicted in gray). Left
panel: SPAD; right panel: yield.

5.5 Conclusions 

We evaluated a range of spatial resolutions of multispectral images over two trial farms in the 

central region of Malawi—Nyambi and Ntubwi in the district of Machinga. Single and multiple 

linear regressions were performed for all possible permutations of the indices selected. We found 

that the correlation between on-farm measurements and remote sensing spectral signals decreases 

substantially at 2.5-m, 3-m, and 20-m spatial resolutions. For precision agriculture, the problems 

of clouds and satellite revisit rates are hurdles that have not yet been overcome with satellite im-

agery for the smallholder farming context. For larger fields, coarser spatial resolutions may be 

adequate, but they were insufficient for the size of the field experimented in this study. Interest-

ingly, we found that the top performing yield models were associated with the 14-cm and 27-cm 

spatial resolution imagery, rather than the 7-cm spatial resolution. We suspect that this is due to 

soils and shadows in the fine resolution imagery, and possibly a fractal problem where more pixels 
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results in a greater number of pixels containing mixed soil and shadow. One hypothesis in this 

regard is that initial image collection at the resolution of the plant dimensions might be the most 

effective. In this case, 14–27-cm is closer to the maize plant size than 7-cm. We also found that 

GNDVI and GSAVI were consistent indices for relating spectral images to proximal farm meas-

urements. These findings suggest that green-band indices are critical to test when monitoring crop 

production via sUAS. Outcomes of this research are consistent with other studies that have found 

that considering a broad range of indices may be more effective for evaluating plant status and 

farm productivity than selecting a single index; however, the specific set of indices appropriate for 

a given farm may vary.8 

8 This paper is made possible by the support of the American People provided to the Feed the Future 
Innovation Lab for Sustainable Intensification through the United States Agency for International Devel-
opment (USAID). The contents are the sole responsibility of the authors and do not necessarily reflect the 
views of USAID or the United States Government. Program activities are funded by USAID under Co-
operative Agreement No. AID-OAA-L-14-00006. The authors wish to thank the American Society for 
Photogrammetry and Remote Sensing and those affiliated with the Robert N. Colwell Memorial Fellow-
ship for their support. The authors also wish to thank Africa RISING for collaboration in on-farm research 
activities, as well as the Global Change Learning Lab in Sub-Saharan Africa at Michigan State University 
for their involvement. Additional gratitude is extended to Planet’s Education and Research Program for 
supplying access to their imagery archive. 
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CONCLUSIONS 

6.1 Overall Contributions 

The scientific community is largely in agreement that global environmental changes are occurring 

and that innovative crop system solutions are needed to increase food production and ensure a 

sustainable future. To address this need, the research conducted in this dissertation paired geo-

spatial analytics with extensive interdisciplinary collaboration from plant and soil scientists. The 

three primary scales under analysis here included the continental, country, and farm scales. 

Nature-Based Agricultural Solutions: Scaling Perennial Grains Across Africa (Study 1)—At the con-

tinental scale, government satellite-based imaging platforms (e.g., NASA MODIS) were used to 

evaluate agricultural productivity and elucidate the spatial organization of maize, pigeonpea, and 

sorghum suitability across Africa. Study 1 introduced a methodology for characterizing levels of 

crop suitability, showing unique agroecological zones that these crops occupy, and discussed the 

need for up-to-date crop climate-suitability mapping. One key finding from this study was that 

sorghum suitability occupies a unique agroecological niche in Africa. Due to its low rainfall re-

quirements, sorghum is biophysically suited to persist in the Sahel region, the Horn of Africa 

(including portions of Kenya and Tanzania), northwestern Africa, and southern Africa, where 

pigeonpea and maize conditions are suboptimal. Another important outcome is that the optimal 

area for pigeonpea cultivation across Africa complements the niche for maize. Products from this 

study included: (a) high spatial resolution maps showing the fundamental climate niche for maize, 

pigeonpea, and sorghum across Africa at a 1-km spatial resolution; (b) high spatial resolution maps 

of Africa showing the intersection of marginal maize and optimal pigeonpea or sorghum at a 1-

km spatial resolution. 
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A Multiscalar Approach to Mapping Marginal Agricultural Land: Smallholder Agriculture in Malawi 

(Study 2)—At the country scale, national government satellites were used to evaluate agricultural 

productivity and crop niche in Malawi to identify areas of marginal production and marginal maize 

biophysical constraints. To enhance geographical communication and support policy decisions, 

Study 2 contributed a heuristic for generating crop productivity map outputs that are relative to 

government boundary and agroecological zone delineations. Further, this study offered a com-

mentary on reclaiming marginal lands for agricultural improvement by redesigning the ways these 

areas are represented through pixel categorization and cartography. A key outcome of this research 

was illuminating a clear spatial organization of the factors driving marginal maize production in 

Malawi. For example, in the southern region of Malawi, rainfall variability is a primary factor lim-

iting agricultural production; in the central region of Malawi, temperature is a dominant factor 

limiting agricultural production. Products from this study included: (a) agricultural land-use map 

of Malawi that minimizes errors of commission; (b) heuristic for classifying agricultural produc-

tivity relative to spatial scales of observation; (c) map of marginal maize agricultural land in Malawi 

depicting measured agricultural productivity and suboptimal biophysical conditions. 

Scaling Agricultural Innovations: Pigeonpea in Malawi (Study 3)—To communicate areas of focus 

for extension efforts regarding integration of pigeonpea into maize-based cropping systems, Study 

3 identified and classified suitability with respect to soil as a primary driver of marginal production. 

This study also demonstrated that pigeonpea has extensive scaling potential across Malawi and 

that the crop is not limited geographically by biophysical constraints. Products from this study 

included: (a) pigeonpea climate suitability map of Malawi; (b) maps comparing the spatial organi-

zation of pigeonpea production and yields for 2005 and 2012; (c) map of the intersection of 
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marginal maize agricultural land and optimal pigeonpea conditions, highlighting areas where pi-

geonpea integration would likely have beneficial outcomes. 

Multi-Spatial Resolution Satellite and sUAS Imagery for Precision Agriculture on Smallholder Farms 

in Malawi (Study 4)—At the farm scale, a small unmanned aerial system (sUAS) was used to quan-

tify the relationship between remotely-sensed spectral indices and proximal crop-leaf measure-

ments. In Study 4, a methodology was devised for testing the linear relationship between on-farm 

measurements and spectral signals at multiple spatial resolutions. This study offers a framework 

for evaluating combinations of spectral indices in relation to on-farm productivity. Of note was 

that 14-cm and 27-cm spatial resolution images were more strongly correlated with proximal crop 

measurements than the 7-cm spatial resolution. One hypothesis here is that initial imaging at the 

plant scale is the most effective resolution because of how soil and crop shadows are integrated 

in the spectral signal. Additionally, it was observed that green-band indices (i.e., GNDVI and 

GSAVI) were consistently among the strongest correlative indices with both crop yield and crop 

chlorophyll. Products from this study included: (a) chart depicting the cost/km2 for remote sens-

ing imagery, and a chart illustrating problems of satellite revisit rates and clouds for a smallholder 

farm in Malawi; (b) maps comparing varying remote sensing imagery spatial resolutions at a small-

holder farm in Malawi, as well as maps of a collection of spectral indices; (c) multiple linear re-

gression models quantifying the correlation between remote sensing spectral signals across spatial 

resolutions and proximal farm measurements of crop chlorophyll and crop yield. 
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6.2 Future Research 

6.2.1 Web-Based GIS for Near Real-Time Crop Niche Mapping 

Remote sensing-based characterizations of crop suitability are regularly harnessed to visualize the 

spatial distribution of crop suitability and production potential. Conventionally, such mapping 

efforts occur at singular time intervals, include variable collections of crops, and are often pre-

sented with ambiguous suitability classifications. Even the most widely used land and crop suita-

bility maps are subject to diminishing relevance over time, particularly in the face of global land 

and climate change. At present, the most notable crop suitability maps are the Global Agro-Eco-

logical Zones (GAEZ) distributed by the Food and Agriculture Organization of the United Na-

tions (Fischer et al. 2012). While these products are immensely valuable, they are not produced at 

regular or frequent intervals.  

Acquisition and preprocessing of large-scale time-series satellite imagery is often time-con-

suming and an arduous management task, requiring expensive computational hardware, software 

licenses, and storage structures capable of processing and moving large volumes of data. Recently, 

however, cloud-based alternatives are offering increased efficiency for large-scale geospatial com-

puting. Web-based geographic information science (GIS) has the potential to transform the crop 

niche mapping paradigm, bringing series of static maps to a dynamic form complete with interac-

tive geovisualizations and temporal continuity. Google Earth Engine (GEE) is one platform of-

fering planetary-scale geospatial data and analytical tools on the cloud (Gorelick et al. 2017). With 

platforms such as GEE, crop suitability maps can and should be produced at the same rate climate 

and land data are procured. Leveraging cloud-based technology can improve the accessibility of 

global climate information for crop niche mapping, granting more geographic decision power to 
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agronomy academics, government stakeholders, and policymakers to effectively scale agricultural 

improvement and ultimately illuminate what crops can grow where.  

Interactive Mapping for Geographic Communication—A valuable byproduct of web-based GIS is 

interactive mapping that can be queried for information at the pixel scale. Over the last several 

decades, the dominant platform for academic geographers to communicate geospatial science has 

been largely through journal publication. This has meant that a large proportion of map-based 

geographic science has been delivered at the scale of a printable page. Even with fine spatial res-

olution imagery, scaling a figure down for print on standard letter-size paper will result in data loss 

from resampling. With advancements in cloud-computing and server-side geoprocessing, data can 

be retrieved and analyzed at unprecedented scales and speeds. An obvious advantage here is that 

with web-based GIS delivery tools, stakeholders can pan, zoom, and query information as they 

need. Given these considerations, all models developed in this dissertation will be replicated using 

Google Earth Engine to offer temporally continuous and interactive geospatial crop information. 

6.2.2 Crop Modeling and Return on Investment from Variable-Rate Technology 

Remote sensing instruments and derivative models offer data that are synergistic with modern 

cropping system models (e.g., temperature, precipitation, and solar radiation). With increasingly 

fine-resolution data (both temporal and spatial), future precision agriculture may be conducted 

across geographies at intra-farm scales of analysis, particularly in areas where such data have pre-

viously been unavailable. Global satellite coverage of agriculture exists in myriad forms as demon-

strated here; however, there are substantial barriers in retrieving climate and crop information at 

local scales due to problems of clouds, imaging spatial resolutions, and satellite revisit rates (Mulla 

2013). To this end, remote sensing scientists are pairing optical imagery with synthetic aperture 

radar (SAR) (such as the sensors onboard Sentinel-1) to address problems of clouds and better 
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estimate agricultural productivity on the ground during rainy seasons (e.g., Campos-Taberner et 

al. 2017). Downscaling global climate data to the farm scale is one avenue for achieving finer 

spatial resolution climate information; however, there is some contention regarding the accuracy 

of climate downscaling and large errors emerging due to crop model sensitivity (Atkinson 2013; 

Lobell 2013b).  

Despite present hurdles, the potential for precision agriculture to take place at the farm 

scale using global satellite systems may become one of the frontiers of future agricultural improve-

ment science. In this case, variable-rate technology applications will benefit from the use of crop 

modeling software to predict yield outcomes from soil amendments, particularly when local scale 

climate information becomes available and crop system models such as APSIM (Agricultural Pro-

duction Systems sIMulator) integrate remote sensing-based metrics into their algorithms 

(Holzworth 2014). This dissertation addressed multi-spatial and multi-temporal remote sensing 

imagery, pixel and time-series agricultural productivity classifications, and variable rate technology. 

Research evaluating crop yield predictions and the return on investment from variable-rate tech-

nology applications will prove valuable in the future (Figure 6.1). 
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Figure 6.1. Linking present and future research goals. Integrated remote sensing, variable-rate technol-
ogy, crop model yield predictions, and potential return on investment from intra-farm amend-
ments.  

6.2.3 Crop Biodiversity, Nutrition, and Land Equivalence Ratios 

Three of the United Nations Sustainable Development Goals are to increase agricultural produc-

tion, eliminate hunger, and end malnutrition (United Nations 2018). The potential for pigeonpea 

to enhance maize productivity and rehabilitate soils on Malawi smallholder farms was discussed 

at length in this dissertation, but also of importance is that introducing crop biodiversity supports 

household nutrient diversity (Jones et al. 2014; Luckett et al. 2015). Considering intersecting areas 

of maize and pigeonpea suitability, crop nutritional value (e.g., calories, protein, and vitamins), and 

crop arrangements, it is possible to map the scaling potential of crop systems through the lens of 

nutrition. Since yield is a primary metric of farm productivity, the land equivalent ratio (LER) can 

be used to evaluate the tradeoffs between yield (and calories) and nutritional properties for differ-

ent spatial arrangements of maize and pigeonpea on a farm (Mead and Willey 1980; TerAvest 
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2019). Therefore, LER may be used as selection criteria for crop arrangement, then nutritional 

indices calculated and mapped based on crop suitability. Comparing maps such as these with food 

insecurity indicators and measures of agricultural productivity may provide substantial insight for 

extension efforts working toward food security, nutrition, sustainable agriculture, and environ-

mental conservation. 

6.2.4 Crop Differentiation and Further Evaluation of Spectral Indices Using sUAS 

There are two studies planned to follow this dissertation that will further utilize imagery collected 

via sUAS in Malawi. The first is a land-use classification analysis of the smallholder agriculture 

environment. Since land-use is mixed at a local-scale, national government satellites (e.g., MODIS) 

are largely insufficient for land classification at local scales where mixing is high and subtle thresh-

olds determine categorization (Li et al. 2017b). MODIS land-use/land-cover is 500-m spatial res-

olution and, as demonstrated in Study 4, this problem is not completely solved with finer spatial 

resolution national government satellites; there were zero complete Sentinel-2 (20-m spatial reso-

lution) pixels within the trial farms. With broad categories of land-use classifications a challenge 

(e.g., agriculture or shrubland), differentiating between crop types within agricultural land-use clas-

sifications is even more of a challenge. At 7–27-cm spatial resolution, distinguishing between 

unique spectral signals from different crops is feasible (Park and Park 2015; Pajares 2015). Using 

our field data collection on crop type, coupled with RGB image interpretation, both supervised 

and unsupervised classification models will be tested. SVM (support vector machine) algorithms 

and CART (classification and regression trees) will also be evaluated for classification accuracy. 

Similarly to Study 4, a range of spatial resolutions will be tested (7-cm, 14-cm, and 27-cm) and a 

comprehensive collection of spectral indices will be used to classify each pixel. The next study 

planned will follow the heuristic described in Study 4, but will include a more exhaustive collection 
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of all spectral indices currently used in precision agriculture at one spatial resolution and with a 

substantial sampling size for relating crop chlorophyll.  

6.3 Closing Remarks 

First, increasing agricultural production to meet population demand and ensure a sustainable fu-

ture is a multiscalar problem; agricultural innovation will not be successful unless the appropriate 

scales of analysis are addressed. Decisions at the farm-scale cannot be made using a global-scale 

lens; every farm within a 1-km spatial resolution pixel is simply not the same. Prescribing solutions 

to an individual farm based on mixed-pixel data ignores the ecological fallacy problem. In some 

cases, coarse spatial resolution imagery will suffice (e.g., precipitation or temperature), but an area 

with multiple marginal farms surrounded by substantial tree cover could be classified as highly 

productive and thus be completely missed by innovation targeting. Awareness of the modifiable 

areal unit problem can help in this regard, normalizing by agroecological zone so that farms are 

evaluated relative to similar environments.  

Second, the future of crop suitability mapping should consider a framework that can de-

liver maps with greater frequency. As global changes continue to occur at a rapid pace, current 

crop climate-suitability maps are needed as regularly as possible. With satellite climate data being 

delivered to the public at increasing rates, crop climate-suitability models can be automated to 

ingest these data and generate continuously updateable geospatial products. 

Third, intra-farm precision agriculture in the smallholder context is in need of fine-resolu-

tion remote sensing imagery that can penetrate the cloud layer and provide data at high revisit 

rates. Perhaps more beneficial, however, is continued sUAS development that makes unmanned 

aerial vehicles more affordable and able to cover larger spatial extents. It must also be noted here 

that the most effective spectral index for any given farm or crop may vary; it is suggested here that 
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crop chlorophyll and spectral index correlation tests be performed so that recommendations are 

made using the most appropriate index. Furthermore, crop system yield models that integrate 

remote sensing-based spectral indices as input data and more readily handle raster structure pro-

cessing will greatly advance intra-farm precision agriculture and crop yield mapping in the future. 

In conclusion, this dissertation has shown that multiple scales of analysis are required for 

integrating remote sensing with precision agriculture. Agricultural extension efforts using a geo-

graphic or remote sensing-based approach would benefit greatly from considering multiple scales 

of analysis. Finally, it is critical that the resolution of the geographical conclusions drawn match 

the resolution of the selected data, and that the scale of analysis matches the scale of the objective. 
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Mixed-method Land Characterizations: Remote Sensing and Survey Data 

While remote sensing data and geospatial models can be prepared entirely in a lab, unique insights 

often emerge from qualitative data collection in the field. To this end, integrative quantitative-

qualitative models can offer a representation of reality that unifies geospatial data and human 

experiences (Yeager and Steiger 2012; Cheong et al. 2012). Aside from information collected from 

preplanned survey instruments, interfacing with people and pixels often unveils critical infor-

mation that may be absent in the literature or not readily apparent through data mining.   

In July of 2015, a field survey of farming areas across Malawi was conducted. Thirty-three 

extension planning areas (EPA) were visited and a total of 200 sites were surveyed. Interviews 

were held with farmers and EPA officers to inquire about cropping systems and the primary fac-

tors limiting crop production. Crop presence and the biophysical/social factors limiting produc-

tion at each of the 200 survey sites are listed in Table A.1 (each survey site represents an area of 

approximately one square kilometer). Soil quality (e.g., soil degradation, lack of fertilizer, or soil 

type) was the dominant response (approximately 75 percent of respondents) for factors limiting 

production; the frequency of this response was expected given the volume of literature addressing 

this problem in Malawi. Throughout the interview process, there was an unexpectedly frequent 

response that erratic rainfall patterns and changes in the start of the rainy season were dominant 

factors, or one of the major factors, contributing to marginal production. Many EPA officers 

reported that the total amount of rainfall each year was consistent; however, the seasonal patterns 

and start date were changing and unpredictable. These experiences are consistent with published 

research (Tadross et al. 2009; Vizy et al. 2015; Sutcliffe et al. 2016), but the research regarding this 

topic in Malawi is scant. The model devised in Study 2 initially only considered rainfall amount in 

characterizing areas of marginal precipitation. However, given the abundance of marginal rainfall 
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responses, we found it necessary to evaluate rainfall variability in addition to rainfall amount. Had 

these interview data not been integrated, a major limiting factor of marginal agricultural produc-

tion could have been vastly underestimated or entirely missed. Though not a focus of this survey, 

we also discovered a common association of high productivity farms and the presence of a legu-

minous tree known as Feidherbia albida, which may also require more future attention.  

Longitude Latitude Crop presence Production limitations 

33.7858 -13.7283 maize, groundnuts, soya, beans,
tobacco 

soil degradation 

33.8504 -13.6828 maize, groundnuts, Irish potatoes,
tomatoes 

soil degradation, temperature 
(cold) 

33.8226 -13.6648 maize, groundnuts, Irish potatoes,
tomatoes 

soil degradation 

33.7951 -13.7463 maize, groundnuts, banana; guava
and citrus across stream 

soil degradation 

33.62 -13.9909 maize, groundnuts soya, beans, to-
bacco 

rainfall pattern, soil degrada-
tion 

33.5923 -14.0181 maize, groundnuts, soya, tobacco soil degradation
33.6017 -14.0543 tobacco none 
33.6388 -14.0723 maize, groundnuts, tobacco soil degradation 
33.6758 -14.0722 maize, groundnuts, tobacco soil degradation, rainfall pat-

tern 
33.5741 -14.1538 maize, groundnuts, soya rainfall pattern 
33.6668 -14.1716 maize, groundnuts, beans, tobacco soil degradation
33.6761 -14.1807 tobacco soil degradation 
33.7036 -14.0721 maize, groundnuts none 
33.9436 -13.8724 maize soil degradation, monocrop-

ping, no fertilizer, manage-
ment 

33.9436 -13.8814 maize soil degradation, erosion 
33.9159 -13.8815 maize, groundnuts rainfall pattern 
33.8698 -13.945 non-agriculture N/A 
34.1117 -14.1971 maize, groundnuts, soya, beans soil degradation, rainfall pat-

tern 
34.084 -14.2063 maize, groundnuts, soya, beans soil degradation 
34.0841 -14.2334 maize, groundnuts, soya, beans,

sweet/Irish potato 
rainfall pattern 

34.0935 -14.2605 maize, groundnuts, soya, beans rainfall pattern 

Table A.1. Field survey data—crop systems and biophysical factors limiting production. 
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Table A.1 (cont’d) 

34.0378 -14.2336 maize, groundnuts, soya, beans,
cassava 

soil degradation, erosion 

34.5949 -14.3842 maize, groundnuts, pigeonpea,
cowpea, cotton 

rainfall pattern 

34.5948 -14.3752 maize, cowpea rainfall pattern, soil degrada-
tion 

34.5858 -14.4114 maize, groundnuts, pigeonpea,
cowpea 

rainfall pattern 

34.641 -14.3477 non-agriculture N/A 
34.6316 -14.3388 maize, tobacco, cotton rainfall pattern 
34.691 -14.8354 maize, groundnuts, soya, beans,

tobacco, pigeonpea, cowpea, sweet 
potato, cabbage 

rainfall pattern 

34.7281 -14.8261 maize, groundnuts, soya, tobacco,
sweet potato, millet 

soil degradation, rainfall pat-
tern, management 

34.7371 -14.7899 maize, groundnuts, soya, sweet
potato 

topography 

34.6909 -14.8174 maize, millet management 
34.6348 -14.7726 maize, beans, sugar cane, cabbage,

lettuce, tomato 
temperature, erosion 

34.6626 -14.7543 maize, groundnuts, soya, beans,
tobacco, millet, sorghum 

management 

34.7368 -14.7537 maize, groundnuts, soya, tobacco,
cassava, sweet potato 

soil degradation 

34.6901 -14.7089 maize, groundnuts, beans, to-
bacco, cowpea, bananas, papaya 

soil degradation, erosion 

34.6619 -14.673 maize, tobacco, sweet potato, ba-
nana, pumpkin 

management, soil degradation, 
erosion 

34.634 -14.6551 maize, groundnuts, soya, beans,
tobacco, millet 

soil degradation, erosion 

34.6524 -14.6459 maize, soya, tobacco, millet, ba-
nana, pumpkin 

soil degradation 

34.5965 -14.6101 maize, groundnuts, beans, to-
bacco, cowpea, millet, sweet po-
tato 

rainfall pattern 

34.5779 -14.6103 maize, groundnuts, beans, to-
bacco, cowpea, millet, sweet po-
tato 

erosion 

34.6259 -14.8178 maize, groundnuts, beans, cowpea,
Irish potato, millet 

soil degradation, erosion, cold 
temperature 

33.5164 -13.1774 maize, groundnuts, soya, beans,
tobacco, sweet potato, cassava; to-
mato, mustard greens, onion 

soil degradation, rainfall pat-
tern, pests/diseases, tempera-
ture (cold/hot) 
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Table A.1 (cont’d) 

33.498 -13.1955 maize, groundnuts, soya, beans,
tobacco, sweet potato, cassava; ir-
rigation - tomato, mustard greens, 
onion, bananas 

soil degradation, rainfall pat-
tern, pests/diseases, tempera-
ture (cold/hot) 

33.4704 -13.2317 maize, groundnuts, soya, beans,
tobacco, sweet potato 

soil degradation 

33.4427 -13.2408 maize, groundnuts, soya, beans,
tobacco, sweet potato, sugar cane, 
rice 

soil degradation, rainfall pat-
terns 

33.4426 -13.2047 maize, groundnuts, soya, beans,
tobacco, sweet potato, sugar cane 

soil degradation, rainfall pat-
tern, pests/disease 

33.452 -13.277 maize, groundnuts, soya, beans, 
tobacco, sweet potato, sugar cane, 
Irish potato, mustard greens, rape, 
banana 

waterlogging, soil degradation 

33.4335 -13.277 maize, groundnuts, soya, beans, 
tobacco, tomato, banana 

waterlogging, soil degradation 

33.5708 -12.7342 maize, groundnuts, soya, beans,
tobacco, sweet potato, cassava 

soil degradation, rainfall pat-
tern 

33.5707 -12.698 maize, groundnuts, soya, beans, 
tobacco, cowpea, sweet potato, 
cassava 

rainfall pattern 

33.5523 -12.6981 maize, groundnuts, soya, beans,
tobacco, cowpea, sweet potato, 
cassava 

rainfall pattern 

33.5338 -12.6891 maize, groundnuts, soya, beans,
tobacco, cowpea, sweet potato, 
cassava 

rainfall pattern, soil degrada-
tion 

33.6168 -12.707 maize, groundnuts, soya, beans, 
tobacco, cowpea, cassava 

soil type, rainfall pattern, soil 
degradation 

33.6537 -12.734 maize, groundnuts, soya, beans, 
tobacco, cowpea, cassava 

rainfall pattern, soil degrada-
tion 

33.6813 -12.734 maize, groundnuts, soya, tobacco, 
cowpea 

rainfall pattern, soil degrada-
tion 

33.5984 -12.7432 maize, groundnuts, soya, beans,
tobacco, cowpea 

rainfall pattern, soil degrada-
tion 

33.4607 -12.9786 maize, groundnuts, soya, beans,
cassava, sweet potato, cotton, pap-
rika 

soil degradation, rainfall pat-
tern 

33.4791 -12.9876 maize, groundnuts, soya, beans,
cassava, sweet potato, cotton, pap-
rika 

rainfall pattern, soil degrada-
tion 
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Table A.1 (cont’d) 

33.4422 -12.9605 maize, groundnuts, soya, beans,
tobacco 

soil degradation 

33.4699 -12.9605 maize, groundnuts, soya, beans,
cassava 

soil degradation 

33.5066 -12.8971 maize, groundnuts, soya, beans to-
bacco, cassava, sweet potato, cow-
pea 

rainfall pattern, soil degrada-
tion, erosion 

33.4973 -12.87 maize, groundnuts, soya, beans, 
tobacco 

rainfall pattern, soil degrada-
tion 

33.5807 -13.0507 maize, bananas, other/unknown none 
33.5899 -13.0326 maize, other/unknown none 
35.3758 -15.4347 maize, groundnuts, pigeonpea,

sorghum, banana, mango, cassava 
soil degradation 

35.357 -15.4168 maize, pigeonpea, sorghum, soya,
sugar cane, cassava, banana 

soil fertility, rainfall pattern 

35.3854 -15.4526 maize, pigeonpea, sorghum,
groundnuts, soya, mango, oranges, 
tangerines, lemons, papaya, guava 

soil fertility 

35.5438 -15.4599 maize, pigeonpea, rice, sorghum,
cotton 

none 

35.5625 -15.4687 maize, pigeonpea, sorghum, rice,
lablab 

waterlogging 

35.5626 -15.4778 maize, pigeonpea, sorghum, rice,
lablab 

soil fertility 

35.4135 -15.4704 maize, pigeonpea, groundnuts,
cassava, lablab, mango, soya 

soil fertility 

35.0319 -15.5104 maize, pigeonpea soil degradation, rainfall pat-
tern, labor 

35.013 -15.4834 maize, pigeonpea, cowpea soil fertility, rainfall pattern, la-
bor 

35.0128 -15.4563 maize, pigeonpea, sorghum, sweet
potato, banana 

soil fertility 

35.0035 -15.4655 maize, sorghum, pigeonpea, okra soil degradation, rainfall pat-
tern 

34.9851 -15.4837 maize, sugar cane, sweet potato,
rice, mango 

rainfall pattern 

34.957 -15.4659 maize, pigeonpea, groundnuts,
sorghum, cowpea, sweet potato 

rainfall pattern, soil fertility 

34.9659 -15.4297 maize, sorghum, cotton management, labor, rainfall 
pattern 

34.9753 -15.4296 maize, sorghum, cotton rainfall pattern, soil degrada-
tion, temperature 
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Table A.1 (cont’d) 

35.3806 -15.8502 maize, soya, sorghum, groundnuts,
sunflower, pigeonpea 

rainfall, soil degradation 

35.3896 -15.814 maize, soya, sorghum, groundnuts, 
sunflower, pigeonpea 

rainfall, soil degradation 

35.3613 -15.7872 maize, pigeonpea, chickpea, sun-
flower, millet, sorghum 

rainfall, soil degradation 

35.3425 -15.7783 maize, pigeonpea, sorghum, sun-
flower, eggplant 

rainfall, soil degradation 

35.3048 -15.7426 maize, sorghum, tomato, pigeon-
pea, sunflower 

soil degradation, rainfall 

35.333 -15.7604 maize, pigeonpea, eggplant,
mango, pumpkin 

rainfall, rainfall pattern, soil 
degradation, management 

35.3424 -15.7693 maize, pigeonpea, sorghum, rice,
tomato 

rainfall pattern, rainfall 

34.9794 -15.8633 maize, pigeonpea, pumpkin rainfall pattern, soil degrada-
tion 

34.961 -15.8905 maize bananas, sugar cane, beans rainfall pattern, soil degrada-
tion 

34.9425 -15.9088 maize, beans, cassava, okra rainfall pattern, soil fertility 
34.9333 -15.9179 maize, banana, cassava rainfall pattern, soil degrada-

tion 
34.952 -15.9268 maize, beans, rape rainfall pattern, soil degrada-

tion 
34.9507 -15.7912 maize, pigeonpea, mango rainfall pattern, soil degrada-

tion 
34.9414 -15.7913 maize, pigeonpea, cassava, sweet

potato 
rainfall pattern, soil degrada-
tion 

34.9321 -15.7914 maize, pigeonpea, cassava, sweet
potato 

rainfall pattern, soil degrada-
tion 

34.9137 -15.8187 maize, pigeonpea, cassava, man-
goes 

rainfall pattern, soil degrada-
tion 

35.2891 -16.0048 maize, pigeonpea, cowpea, sor-
ghum, sweet potato, cassava 

rainfall pattern, flooding, soil 
degradation 

35.2705 -16.014 maize, pigeonpea, sugar cane, ba-
nana, mango 

rainfall pattern, soil degrada-
tion 

35.2799 -16.0229 maize, pigeonpea, cassava, sor-
ghum, cowpea 

rainfall pattern, soil degrada-
tion 

35.2051 -16.0147 maize, pigeonpea, banana, sor-
ghum, cowpea, cassava 

rainfall pattern, soil degrada-
tion 

35.1767 -15.9788 maize, pigeonpea, cowpea, sor-
ghum, cabbage, banana 

land suitability, rainfall pat-
tern, soil degradation 

35.13 -15.9793 non-agriculture N/A 
35.1487 -15.9791 non-agriculture N/A 
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Table A.1 (cont’d) 

34.0482 -12.362 maize, cassava, rice soil suitability, soil degrada-
tion, rainfall pattern 

34.0667 -12.3801 maize, cassava, rice, sweet potato,
banana 

rainfall pattern 

34.0852 -12.3981 rice, sugar cane, cassava, banana,
some maize 

flooding, soil fertility 

34.076 -12.3981 maize, cassava, rice rainfall pattern, soil fertility 
34.1037 -12.4342 maize, cassava, rice, beans, sweet

potato, tomato, banana 
rainfall pattern, none 

34.0946 -12.4432 maize, cassava, rice, sweet potato rainfall pattern
34.113 -12.4612 maize, bananas, some cassava soil suitability, rainfall pattern 
34.104 -12.4974 non-agriculture N/A 
34.141 -12.5515 sugar cane none 
34.1502 -12.5515 sugar cane none 
34.1504 -12.5786 non-agriculture N/A 
34.1504 -12.5877 non-agriculture N/A 
33.0366 -13.7476 non-agriculture N/A 
33.0366 -13.7566 maize, tobacco, bananas none 
33.0551 -13.6572 maize, groundnuts, tobacco soil degradation, soil fertility 
33.0459 -13.6662 maize, tobacco, banana, mango,

groundnuts, soya, beans 
land suitability, soil degrada-
tion 

33.0921 -13.6662 maize, groundnuts, tobacco, soya,
beans 

soil degradation 

33.0829 -13.6933 maize, tobacco, papaya, mango,
soya 

soil degradation 

33.1384 -13.6933 maize, tobacco, sunflower,
groundnuts, beans, soya 

land degradation 

33.0274 -13.6843 maize, tobacco, sunflower,
groundnuts, soya 

soil degradation, rainfall pat-
tern 

32.9904 -13.7114 maize, tobacco, bananas, mango,
soya, beans, groundnuts, sun-
flower 

soil degradation, rainfall pat-
tern 

32.9719 -13.7205 maize, groundnuts, sunflower,
soya, tobacco, beans 

rainfall pattern 

32.9996 -13.5125 maize, sweet potato, sugar cane rainfall pattern, soil degrada-
tion 

32.9996 -13.4854 maize, groundnuts, tobacco, man-
goes, soya 

tree cover, rainfall, soil fertility 

33.0089 -13.4492 maize, groundnuts, tobacco,
mango, sunflower, soya 

management 

32.9719 -13.3859 maize, cassava, soya soil degradation, soil type 
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Table A.1 (cont’d) 

32.9349 -13.612 maize, tobacco, sugar cane, beans, 
soya, mango, banana, cassava, 
sweet potato 

soil degradation, rainfall pat-
tern 

32.8979 -13.6391 maize, tobacco, groundnuts, soya soil degradation, rainfall pat-
tern 

35.4272 -14.1964 maize, groundnuts, beans, banana,
mango 

soil fertility, rainfall pattern 

35.418 -14.2056 maize, groundnuts, beans, banana,
mango 

soil fertility, rainfall pattern 

35.4088 -14.2056 maize, groundnuts, beans, banana,
mango, cassava, pigeonpea 

soil fertility 

35.4087 -14.1966 maize, groundnuts, beans, banana,
mango, cassava, pigeonpea 

soil fertility 

35.4091 -14.2327 maize, cassava, banana, mango soil fertility 
35.3815 -14.2511 maize, beans, mango soil fertility 
35.4003 -14.278 maize, banana, mango, beans soil fertility 
35.4006 -14.3051 maize, beans, banana, mango soil fertility 
35.3663 -14.5675 maize, cotton, pigeonpea, tobacco,

banana 
rainfall pattern, flood, soil fer-
tility 

35.3845 -14.5402 maize, pigeonpea, cotton rainfall pattern, soil fertility 
35.3751 -14.5222 maize, rice, beans, shallots, to-

mato, banana, mango, potato 
waterlogging 

34.2238 -10.3992 maize, cassava, rice, banana, sweet
potato, tomato, tobacco, mango, 
sugar cane, groundnuts, vegetables 

rainfall pattern 

34.2056 -10.4355 maize, cassava, groundnuts, sweet
potato, cotton, tobacco, mango, 
banana 

rainfall pattern, soil fertility 

34.1875 -10.4627 maize, cassava, groundnuts, sweet
potato, banana, mango, guava, 
rice, tobacco, sugar cane, pigeon-
pea, soya, beans 

rainfall pattern, soil fertility 

34.1326 -10.4448 maize, cassava, groundnuts soil degradation 
34.1052 -10.4539 maize, cassava, groundnuts, pi-

geonpea, mango 
none 

34.1875 -10.4808 rice, maize, banana, mango none 
34.0519 -10.8882 maize, beans, mango, banana, cas-

sava, soya, tobacco 
land suitability, soil degrada-
tion, rainfall pattern 

34.0337 -10.9153 maize, beans, soya, mango, ba-
nana, cassava, tobacco 

washaway, land suitability, soil 
degradation 

34.0154 -10.9244 maize, beans, soya, mango, ba-
nana, cassava, tobacco 

soil degradation 
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Table A.1 (cont’d) 

33.9971 -10.9155 maize, beans, soya, mango, ba-
nana, cassava, tobacco, ground-
nuts 

soil fertility, rainfall pattern 

33.988 -10.9245 maize, beans, soya, mango, ba-
nana, cassava, tobacco, ground-
nuts 

soil fertility 

33.9788 -10.9336 maize, beans, soya, mango, ba-
nana, cassava, tobacco, ground-
nuts 

soil fertility, washaway 

33.9606 -10.9608 maize, beans, soya, mango, ba-
nana, cassava, tobacco, ground-
nuts, sweet potato 

soil fertility, soil degradation 

33.9607 -10.9698 maize, beans, soya, mango, ba-
nana, cassava, tobacco, ground-
nuts, sweet potato 

soil fertility, soil degradation 

33.9515 -10.9699 maize, beans, soya, mango, ba-
nana, cassava, tobacco, ground-
nuts, sweet potato 

soil degradation 

33.9424 -10.997 maize, other/unknown none 
33.8973 -11.1961 non-agriculture rainfall patterns 
33.8881 -11.1961 maize, banana, mango, vegetables management
33.8972 -11.1599 sugar cane, banana, sweet potato,

vegetables 
minimal, washaway 

33.9061 -11.0695 maize, banana, tomato, sugar cane,
vegetables 

floods, rainfall pattern 

33.9519 -11.0784 maize, soya, beans, tobacco rainfall pattern 
33.9518 -11.0693 non-agriculture N/A 
33.9242 -11.0332 maize, soya, tobacco, beans, vege-

tables, sugar cane, sweet potato 
floods, unimproved varieties 

33.4937 -10.8534 maize, groundnuts, cassava, sweet
potato, soya, beans, tobacco 

rainfall pattern 

33.5028 -10.8262 maize, groundnuts, cassava, sweet
potato, soya, beans, tobacco 

soil fertility 

33.4936 -10.8172 maize, groundnuts, cassava, sweet
potato, soya, beans, tobacco 

none, rainfall pattern 

33.5302 -10.8171 maize, groundnuts, cassava, sweet
potato, soya, beans, tobacco, ba-
nana, mango 

rainfall pattern 

33.5394 -10.799 maize, groundnuts, cassava, sweet 
potato, soya, beans, tobacco, ba-
nana, mango 

flood, washaway, waterlogging 
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33.6227 -11.2963 maize, soya, mango, sweet potato,
beans 

rainfall pattern 

33.6228 -11.3234 maize, groundnuts, beans rainfall pattern 
33.632 -11.3324 maize, beans, groundnuts, soya soil type (sandy) 
33.6595 -11.3685 maize, beans, groundnuts, soya soil fertility, soil type 
33.6412 -11.3776 maize, soya, groundnuts, cowpea,

beans, cassava, sweet potato 
soil fertility, rainfall 

33.6412 -11.3686 maize, soya, groundnuts, cowpea,
beans, cassava, sweet potato 

soil fertility 

33.3938 -11.4323 maize, tobacco, groundnuts, soya soil fertility, soil degradation,
management, income 

33.403 -11.4142 maize, tobacco, groundnuts, soya soil fertility, soil degradation,
management, income 

33.3938 -11.369 maize, groundnuts, tobacco, soya soil fertility, soil degradation, 
management, income 

33.412 -11.3419 maize, groundnuts, tobacco, soya rainfall patterns, soil fertility
33.4307 -11.5318 maize, groundnuts rainfall pattern, soil fertility, 

management 
33.4215 -11.5137 maize, tobacco, groundnuts soil degradation 
33.4031 -11.4956 maize, groundnuts, soya, tobacco rainfall pattern, management,

soil degradation 
33.4496 -11.9206 maize, soya, groundnuts, cassava,

sweet potato, beans 
soil degradation, soil type 

33.468 -11.9206 maize, cassava, soya, sweet potato,
groundnuts, beans, cowpea 

soil fertility, soil type 

33.4863 -11.9115 maize, cassava, sweet potato, soya,
groundnuts, beans, cowpea 

soil type (sandy), soil fertility 

33.468 -11.8934 maize, cassava, sweet potato, soya,
beans, banana, mango, cowpea 

soil fertility 

33.4496 -11.9025 maize, cassava, sweet potato, soya,
beans, cowpea 

soil type, soil fertility 

33.4404 -11.8935 maize, cassava, sweet potato, soya,
beans, cowpea 

soil fertility 

33.468 -11.9386 maize, cassava, sweet potato, soya,
beans, cabbage, tomato, cowpea 

rainfall amount 

33.4313 -11.9206 maize, groundnuts, soya, millet,
beans, cowpea 

soil fertility, soil type 

33.4221 -11.9387 maize, groundnuts, soya, millet,
beans, cowpea 

soil type, soil fertility 

33.4592 -12.1376 maize, beans, vegetables, banana,
guava, potato, sunflower, beans, 
paprika, sugar cane 

soil fertility, management (ac-
cess), rainfall amount 
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Table A.1 (cont’d) 

33.3949 -12.1467 maize, tobacco, cassava, soya,
groundnuts, beans 

soil fertility 

33.4132 -12.1105 maize, soya, beans, paprika,
groundnuts, sugar cane, tomatoes, 
tobacco 

rainfall amount 

33.4684 -12.1557 maize, bananas, mango, tobacco,
sugar cane, vegetables, soya, 
groundnuts, sunflower, ground 
bean, Irish potato, cassava, to-
mato, millet 

soil fertility, rainfall patterns 

33.6622 -12.4718 maize, beans, soya, groundnuts,
cassava, millet, sugar cane, banana, 
vegetables 

rainfall pattern 

33.6898 -12.4717 maize, tobacco, beans, soya, sweet
potato, cassava, sunflower, Irish 
potato, banana, sugar cane, vegeta-
ble 

rainfall pattern, soil degrada-
tion 

33.7082 -12.4626 maize, beans, sweet potato, cas-
sava, tobacco, groundnuts, soya, 
millet, banana, vegetables, sugar 
cane 

rainfall pattern, land suitability 

33.6439 -12.4899 maize, tobacco, soya, beans, pi-
geonpea, cassava, sweet potato, 
sugar cane, banana, Irish potato 

rainfall pattern, soil degrada-
tion 

33.6663 -13.9818 maize, other/unknown none 
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