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ABSTRACT 

VIRTUAL-IMPEDANCE CONTROL & COMPENSATION  

FOR GRID-CONNECTED INVERTER SYSTEMS 

By 

Allan R. Taylor Jr 

Interface inductors are a commonly used coupling component for grid-connected DC/AC 

voltage-sourced power-electronics converters. They provide two main benefits: a voltage-sensing 

point for converter synchronization and, together with the grid impedance, they filter out the 

converter’s voltage-switching-harmonics from influencing the grid-currents. Despite these 

benefits, the interface inductors add additional cost, weight, volume, and power losses to the 

system. Furthermore, the measurement of the synchronization voltage requires additional voltage 

sensors to be used, further increasing system cost and complexity. In recent years, much has been 

done to reduce the interface inductor’s size and/or weight without compromising filtering 

performance, such as the use of different magnetic materials, planar windings, or higher 

converter-switching-frequencies. Also, voltage-sensor-less algorithms have been proposed, such 

as the Direct Power Control method (which is similar to the Direct Torque Control of induction 

machines). However, the reduction/elimination of these two items (inductors and sensors) are 

usually not considered together. Furthermore, many sensor-less control methods usually rely on 

knowledge of the source impedance, which may be difficult to estimate in grid-connected 

systems.  

To eliminate the voltage sensors, the concept of virtual impedance can be employed to 

fabricate a synchronization point for the converter within software. Since the virtualized 

synchronization-voltage is based on information from already-available AC current sensors, the 

external voltage sensors can be removed from the system. In addition to synchronization, 



 

 

additional virtual impedances or transfer functions can be fabricated to enhance the dynamic 

performance of the system, reduce computational complexity, and/or enhance the stability range. 

Lastly, if the AC source impedance alone is suitable to provide adequate harmonic filtering of 

the current (e.g. in a motor/generator connection) and the synchronization point is virtualized, the 

physical interfacing inductance can be completely removed from the system.  

The main focus of this research work is to investigate the theory and implementation of using 

virtual impedances in DC/AC converter control systems. The self-synchronized inductor-less 

DC/AC converter system utilizing the concept of virtual-impedance is proposed. Also, a method 

of using only a virtual interfacing-resistance to alter the current control loop, eliminate cross-

coupling terms, and reduce computational complexity is proposed. In addition, a method of 

virtual-impedance-compensating PLL algorithms with better transient response is proposed. 

Finally, the main application considered for this proposed control method is grid-connected 

systems, but an alternate virtual-impedance-based method for high-speed sensor-less control of 

permanent magnet AC machines is also proposed. A 1 kVA three-phase two-level inverter 

prototype has been designed to experimentally validate some of the proposed control strategies. 

A description of the experimental setup and experimental results are included within this report. 
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1. INTRODUCTION & BACKGROUND MATERIAL 

In this chapter, the basics of pulse-width-modulated (PWM) DC/AC power-electronics 

converter systems are reviewed and the need for converter synchronization and harmonic 

filtering are discussed. Afterwards, the typical synchronization methods using a phase-locked 

loop (PLL) and current control methods using rotating-frame proportional-integral (PI) 

controllers are reviewed. Next, the stability, as well as the main benefits and issues with the 

conventional synchronization and harmonic-filtering methods using interface-inductors are 

summarized. The chapter concludes by introducing the key topic of this research, virtual 

impedance, as an alternate solution to converter synchronization and control. This technique can 

eliminate the need for external voltage sensors and enable inductor-less converter operation. In 

addition, the dynamic performance of a converter system can also be improved in some cases. 

1.1. OVERVIEW OF GRID-CONNECTED INVERTERS 

In the case of grid-connected energy systems, such as solar power generation systems or 

hybrid-electric-vehicle (HEV) battery chargers, a DC-AC power electronics converter and an 

interface inductor are typically placed between the energy system and a step-up transformer 

connected to the utility grid. In Figure 1.1, a typical solar three-phase inverter system is outlined. 

The inverter in such a three-phase system is typically a six-switch two-level voltage-sourced 

converter (VSC) but can be a multi-level design if higher phase-voltages and/or lower voltage-

 
Figure 1.1: Block diagram of a typical solar power grid-connected system with interface inductor. 
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harmonics are needed. The transformer is used to step-up the low-voltages of the converter and 

energy system (typically around ~400 V) to higher utility-level voltages (around ~10 kV or so). 

The interfacing inductors are placed between the converter and the transformer, primarily to 

block the high-frequency voltage harmonics of the converter from reaching the grid or the 

voltage-sensing point. In addition to the interface inductance, the leakage flux of the transformer 

and grid also helps to filter the line currents. This leakage flux effectively acts as an additional 

inductance in a series-connection with the interface inductance. 

Both, a balanced three-phase and a single-phase DC/AC converter system can be modeled as 

an equivalent single-phase circuit with two AC voltage sources separated by an impedance; this 

is shown in Figure 1.2. The grid voltage, vG, is modeled as an independent voltage source. The 

inverter output voltage, vI, is modeled as a dependent voltage source; it is controlled to regulate 

the line current, i. The interface and transformer/grid resistances, denoted RI and RG, as well as 

the interface and transformer/grid inductances, denoted LI and LG, are placed in series between 

vG and vI. Applying KVL, the inverter’s output voltage, vI, can be written as following: 

     .I I G I G G

di
v R R i L L v

dt
      (1.1) 

The mid-point voltage in Figure 1.2, vS, is sensed by external AC voltage sensors, to be used 

within the control algorithm in a phase-locked loop. This is used for synchronization of the 

converter system, to be discussed later. The DC-side of the inverter will be ignored; it will be 

considered to be a constant DC voltage value and will not influence the AC-side control. 

 
Figure 1.2: Equivalent single-wire circuit model of a grid-connected power electronics system. 
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1.1.1. THE NEED FOR SYNCHRONIZATION 

The utility grid voltage is usually assumed to be sinusoidal – it is typically generated by the 

back-electro-motive force (EMF) of large rotating electrical machines driven by turbines. To 

enable a non-zero average power flow from the utility grid, we can deduce that the line currents 

must also be sinusoidal. We can argue this from examining the following average power 

expression; assuming vG = VGm sin(ωv t + ϕv) and i = Im sin(ωi t + ϕi), the average power, P, can 

be expressed as the sum of two cosine terms (after applying a trig-substitution) as shown: 

      
1
2

0 0

1
cos cos ,

T T

Gm m
G v v i i v i v i

V I
P v i dt t t t t dt

T T
                    (1.2) 

where ωv and ωi; VGm and Im; and ϕv and ϕi are the frequencies, peak magnitudes, and phase-shift 

angles, respectively, of the grid voltage and current, respectively. In the case that the two 

frequencies are equal, i.e., ωv = ωi = ω, the power expression simplifies to a non-zero value: 

      
1
2 1

2

0

cos cos 2 cos .

T

Gm m
v i v i Gm m v i

V I
P t dt V I

T
                (1.3) 

In the case that the frequencies are not equal, ωv ≠ ωi, the integration in the power expression 

above will equal zero and there will be no average power transfer from the grid.  

Relaxing the definition of the current waveform to be any periodic shape, we can argue based 

on the Fourier Series expansion of the current, i, that all other harmonics of current with 

frequencies not equal to the voltage frequency, ωv, will not produce any net average power. 

Therefore, the line current must also be sinusoidal with the same frequency as the grid. 

Combining this conclusion with equation (1.1), we can determine that the inverter voltage, vI, 

must also be sinusoidal for non-zero power flow. Therefore, the inverter output voltage must be 

synchronized to the grid frequency for proper operation. 
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1.1.2. THE NEED FOR INDUCTIVE FILTERING 

From equation (1.1), we can solve for the line-current in the Laplace domain, yielding the 

following first-order differential-equation result: 

 
       

 

1
.I G I G

I G I G I G I G

I G

V V V V
I

s L L R R L L R R
s

L L

 
 

     
   

 (1.4) 

The inductive impedances essentially function as a low-pass filter for the line-currents. The cut-

off frequency, ωC, of the expression for the current above is given as the following: 

 .I G
C

I G

R R

L L






 (1.5) 

Thus, any high-frequency components of the inverter voltage or grid voltage above ωC will be 

attenuated in the current. The Bode magnitude plot of the current is shown in Figure 1.3 (a). The 

actual magnitude of the output current depends on the magnitudes of the applied voltages 

multiplied by the gain values given by the expression above (as shown in the Bode plot). 

The inverter’s “sinusoidal” output voltage is generated through the use of PWM. A partial 

frequency spectrum of a sine-PWM voltage waveform is shown below in Figure 1.3 (b). 

Assuming the fundamental grid frequency to be fg, the PWM voltage will contain a desired low-

frequency component with frequency fg and magnitude ≈ VIm, as well as several undesired 

      
 (a) (b) 

Figure 1.3: Magnitude vs. frequency responses: (a) Bode magnitude plot of grid current; (b) 

simplified frequency spectrum of PWM voltage waveform. 
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voltage harmonics at the switching frequency, fsw, at the side-band frequencies, (fsw ± fg), and at 

multiples of the switching and side-band frequencies (as well as other, smaller harmonics). 

If the cut-off frequency of the current due to the impedances, ωC, is well below the converter 

switching frequency, fsw, then the high-frequency components of the voltages will be mostly 

filtered from the current. However, the magnitude of these high-frequency harmonics will not be 

zero; some small ripples will remain. These high-frequency current ripples are undesired, since 

they do not contribute to any active power transfer (as explained previously). In addition, any 

large di/dt along the utility lines can cause electro-magnetic interference (EMI) issues with other 

devices connected to the grid. The relative amount of ripple currents as compared to the desired 

fundamental current is typically quantified by the Total Harmonic Distortion (THD) value; one 

general definition of THD for current is given below, where each Ik is a k
th

 harmonic current: 

 

2
2 2 ,rms

2,rms 3,rms 2

2 2

1,rms 1,rms

.

k

i

I
I I

THD
I I



 
 


 (1.6) 

A lower THD value is generally better; a THD value of zero indicates a purely sinusoidal signal. 

The inductance value of the interface inductors is usually selected to limit the total harmonic 

distortion (THD) of the grid current to an acceptable level, usually below 5% THD or less [1]. 

As seen from equation (1.5), a larger inductance value will lower the cut-off frequency, 

providing a better filtering of harmonics. 

Finally, one additional need for filtering the voltage harmonics using interfacing impedances 

(in addition to eliminating potential EMI issues and zero-power-producing currents) is to provide 

a clean voltage-sensing point for converter synchronization. Measurement of the grid voltage is 

traditionally used for synchronization and control of the inverter output voltage, as mentioned 

previously. The voltage-sensing point, vS, is typically measured at the transformer low-voltage 
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(LV) side using galvanically-isolated voltage sensors. Ideally, the sensed voltage should be free 

of harmonics, containing only the fundamental AC voltage sinusoidal waveform. If the 

interfacing inductance is too small, it is possible that some of the high-frequency PWM voltage 

will appear at the sensing mid-point voltage, vS. If left unchecked, this can add extra high-

frequency noise into the inverter control system, possibly causing instability due to positive 

feedback through feed-forward-like paths within the control loop. 

1.2. CONVERTER SYNCHRONIZATION USING A PLL 

The synchronization of the inverter’s voltage is typically done using a Phase-Locked Loop 

(PLL) algorithm. Some non-PLL-based converter synchronization methods exist, such as a self-

synchronized synchronverter [2] and the second-order-generalized-integrator (SOGI) algorithm 

[3], but these will not be covered here. 

A PLL is essentially a feedback control system which tries to produce an exact replica of a 

periodic input signal, or one of its harmonics, excluding noise. They can be hardware-based or 

software-based, usually implemented within a Digital Signal Processor (DSP). The input and 

output signals of a PLL are periodic (they can be analog or digital), where the output signal is 

phase-aligned with the input signal. The PLL typically consists of three main pieces [4-6]: 

 Phase Detector: this is usually a mathematical expression which produces an error signal, εθ, 

related to the phase difference between the input and output signals. In a digital PLL, the 

phase detector may be as simple as an XOR gate. In an analog PLL, it may be the 

multiplication of two signals or another non-linear mathematical calculation. 

 Filter/Controller: a typical PLL might have a low-pass filter and controller following the 

phase detector (note: some controllers have a similar form to a low-pass filter). Their purpose 
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is to produce an estimate of the frequency, 𝜔̂, of the input signal which drives the phase-error 

to zero. Note that this frequency may “speed up” or “slow down” to cause the input and 

output signals to eventually match in phase. When the phase error (and its derivative) reaches 

zero, the frequency will stabilize and the PLL is said to be “locked” to the input signal. 

 Oscillator: sometimes labeled as a VCO (voltage-controlled oscillator), this is where the 

“copy” of the periodic signal is generated, based on the determined frequency estimate, 𝜔̂, 

found earlier. The oscillator could be a digital clock circuit, or it could be an integrator and a 

trigonometric sin(·) function. The output is usually fed back to the phase-detector block. 

The general block diagram of a PLL is shown below in Figure 1.4, consisting of the three main 

components described above. The PLL’s main purpose in a DC/AC converter is to track the 

frequency, phase angle, and the magnitude of the AC grid voltage. These values are used within 

the control algorithm to derive the inverter’s output voltage and perform current regulation. In 

addition, the use of a PLL can help to reduce noise coming from the terminal voltage 

measurements, allowing clean feed-forward-like signals to be used within the control algorithm. 

The input to the PLL in this study will be the mid-point measurement voltage, vS, which may 

contain harmonics. However, the output of the PLL (ideally) will only contain the fundamental 

component of the measurement voltage. The PLL can also help make the control system more 

immune to disturbances in the grid, as the bandwidth of a PLL is generally quite narrow. 

 
Figure 1.4: Block diagram of the basic phase-locked loop structure. 
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One of the most commonly used PLL topologies is the synchronous reference frame (SRF) 

PLL [7]. It is more commonly used in three-phase converter systems but can be implemented in 

single-phase systems as well with minor adjustments [8]. The SRF-PLL obtains its name from its 

use of the Clarke and Park coordinate transformations, used to convert a sinusoidal (rotating) 

three-phase system into a stationary two-phase system by means of using a rotating reference 

frame (hence the name). The Clarke and Park transforms, respectfully, are presented below: 

 

1 1
2 2

3 3

2 2

1 1 1
2 2 2

1
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0 ,
3
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v v

v v

v v
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

     
    

     
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 (1.7) 
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   

cos sin
,

sin cos

Sd S

Sq S

v v

v v





 

 

 
        

     

 (1.8) 

where vSa, vSb, and vSc are the three-phase stationary-frame inputs, vSα and vSβ are the two-phase 

stationary-frame signals, vSγ is the mean value, and vSd and vSq are the rotating-frame outputs. The 

angle, 𝜃, is the estimated angle of the rotating reference frame. Note the use of the “magnitude-

invariant” version of the Clarke transform here (with a ⅔ out front). Since the PLL operates in 

the rotating dq-frame, it is also sometimes referred to as the dq-PLL topology. 

A block diagram of the basic SRF-PLL is shown in Figure 1.5 on the next page. The Park 

transform effectively serves as the phase detector here (and could also be considered part of the 

oscillator). The error signal, εθ, in this case (which we wish to drive to zero) is simply the q-axis 

value of the sensed voltage, vSq. The controller shown in the figure, used to drive the error signal 

to zero, is simply a Proportional-Integral (PI) controller. However, other controllers, such as a 

Proportional-Integral-Derivative (PID) controller, can also be used. From the estimated 
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frequency, 𝜔̂, the oscillator-portion of the PLL generates the phase-angle estimate, 𝜃, through an 

integration. The phase-angle estimate is then fed back to the Park transformation. 

The inputs to the PLL, the variables vSa, vSb, and vSc in equation (1.7), are the three-phase 

components of the sensed mid-point voltage, vS. Assuming the three-phase components are 

balanced, the αβ-components of the sensed mid-point voltage can be expressed as 

 
 

 

cos
,

sin

S Sm S

S Sm S

v V

v V









  
   

   
 (1.9) 

where VSm and θS are the magnitude and phase angle of the sensed voltage, respectively. We 

ignore the γ-term here, assuming it to be zero. Ideally, if the angle estimate of the PLL is correct, 

the Park transform outputs should produce the values vSd = VSm and vSq = 0. We assume that the 

voltage will be aligned to the d-axis of the rotating coordinate system (as opposed to the q-axis, 

as done in motor control theory).  

If we examine the Park transformation output terms more closely, we can see that the error 

signal (the vSq-component) can be expressed as 

    sin cos ,Sq S Sv v v      (1.10) 

which, after plugging in equation (1.9) and a bit of simplification, we can express vSq as the sine 

of the angle-error, scaled by a constant: 

  sin .Sq Sm Sv V     (1.11) 

 
Figure 1.5: Block diagram of the Synchronous Reference Frame PLL. 
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If the angle-error is small, we can use the Taylor-series approximation of sin(x) near x = 0 to 

linearly approximate the q-axis voltage as: 

  .Sq Sm Sv V     (1.12) 

Thus, if the grid voltage (and measurement voltage) has a relatively constant magnitude, then the 

q-axis voltage is approximately equal to the angle error, multiplied by a constant. In a simple 

scenario, the voltage magnitude constant can be absorbed into the PI-controller coefficients, kp,θ 

and ki,θ. A more proper way to correct for the gain is to simply divide it out. Note that the voltage 

magnitude can be computed using the dq-frame components: 

 2 2 .Sm Sd SqV v v   (1.13) 

Thus, the normalized angle-error can be expressed as: 

  
2 2

.
Sq

S

Sd Sq

v

v v
    


 (1.14) 

The overall normalized SRF-PLL block diagram is shown in Figure 1.6 below. 

To tune the PI-controller of the SRF-PLL, we must first linearize the model. The sine and 

cosine terms inside of the Park transformation make the system nonlinear – we cannot directly 

apply feedback control theory to nonlinear systems. As described above in equation (1.14), the 

angle error is approximately being applied to the input of the PI-controller. Therefore, we can 

simplify the PLL feedback control diagram to remove the Park transform, hypotenuse 

calculation, inverse, and multiplication blocks and replace them with simply the angle-error. This 

 
Figure 1.6: Block diagram of the normalized SRF-PLL. 
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is shown in Figure 1.7 below. With this linearized model, we can analyze the dynamics. 

The closed-loop transfer function of the linearized SRF-PLL algorithm is given as: 

 
 

 
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, ,
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.

p i
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TF

s s sk k

 
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




 

 
 (1.15) 

Examining the denominator of the transfer function, we can determine that the PLL will always 

be stable so long as both coefficients are positive. If we compare the denominator to the standard 

form of a second-order system, 

 2 2 2

, ,2 ,n n p is s s k s k        (1.16) 

and apply the basic theory of second-order systems, we can compute the settling time, Tst,θ, of the 

PLL and from it, determine an expression for the kp,θ coefficient: 

 
, ,1

, ,2

4 4 8
.st p

n p st

T k
k T

 

 
     (1.17) 

By examining the roots of the denominator polynomial,  

 21
, , ,2

4 ,p p is k k k       (1.18) 

we can also obtain an expression for the ki,θ coefficient to make the system critically damped, 

having little or no overshoot (ideally). By setting the expression under the radical equal to zero, 

we can solve for the ki,θ coefficient: 

 2 21
, , , ,4

0 4 .p i i pk k k k        (1.19) 

Note: because the transfer function contains a first-order numerator (a zero), some overshoot 

may still occur even when the system has been made critically damped. Typical values for the 

 
Figure 1.7: Linearized model of the normalized SRF-PLL. 
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settling time of the PLL system are usually in the 10’s or 100’s of milli-seconds. Usually, the 

dynamics of the PLL are made to be much slower than other system dynamics (such as the 

current), so that the two systems may be analyzed independently of each other. 

While this PLL theory presented here proves to be a simple analysis, it is not the complete 

picture. It provides only an initial starting point for analyzing the converter’s control system. To 

obtain a more accurate understanding of the stability and dynamics, the effects of the current 

control loop and/or the circuit impedances must also be taken into account. 

1.3. LINE-CURRENT REGULATION 

The control of the grid current in a three-phase DC/AC converter system is commonly done 

using proportional-integral (PI) controllers in each axis of the synchronous frame. The line-

currents are usually measured using isolated analog Hall-effect sensors. The sampled line 

currents are converted to the synchronous frame using the Clarke and Park transformations, 

together with the observed angle-output of the PLL. During normal operation, the output voltage 

of the inverter is controlled to be synchronous with the grid and its fundamental magnitude and 

phase are adjusted to be slightly different than that of the grid. This difference in voltage shows 

up across the interfacing impedance and drives a current through the system; this is how the 

controller is able to source or sink the desired active and/or reactive power. In addition to 

control, the sensing of the AC line currents is also for protection purposes. 

To eliminate the any effects of the transformer or grid impedances affecting the current, the 

sensed terminal voltage, vS, is usually passed through the converter in a feed-forward-like path. 

In this sense, the control algorithm is focused solely around the interfacing impedance. To show 

this mathematically, recall the simplified equivalent circuit diagram (Figure 1.2) of the 

converter-grid system. Recall that the same line current, i, flows through both impedances. Thus, 
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the PLL voltage, vS, will be influenced by not only the grid voltage and the commanded inverter 

voltage, but also the relative impedance values. Using the Superposition principle, we can 

express the PLL voltage in the phasor Laplace domain as: 

 ,GI
S G I

I G I G

ZZ
V V V

Z Z Z Z
 

 
 (1.20) 

where the quantities ZI = RI + jωLI and ZG = RG + jωLG are the simplified interface and grid 

impedances, respectively. The terminal voltage dynamics are governed by the voltage divider 

which is formed from the interface impedance and transformer impedance. By reworking 

equation (1.20) and applying Ohm’s Law, we can rewrite the PLL voltage as: 

    .S G G I IV V Z I V Z I     (1.21) 

The same results can also be obtained from applying KVL. From this, we can see that the three 

voltages, vI, vS, and vG, will be nearly equal at light loads, but will differ at heavy loading 

conditions. The fact that the two voltages, vI and vG, both influence the PLL input voltage will 

play an important role in the stability of the converter control algorithm, as we will later see. 

Also, to ensure that KVL equation (1.21) holds, we can conclude that the converter’s output 

voltage should be controlled to be equal to the following: 

 .I S IV V Z I   (1.22) 

This equation shows that the inverter voltage is nothing more than the sum of the sensed mid-

point voltage and the voltage drop across the interfacing impedance. The converter output 

voltage does not depend upon the transformer/grid impedance or the grid voltage in this case. 

Considering only the interfacing impedance, we can rewrite equation (1.22) in a space-vector 

notation and expand the impedance terms: 

 , , ;I I I S

d i
v R i L v

dt



      (1.23) 
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the αβ-subscripts denote the space vectors are in the stationary frame. Next, we can apply the 

space-vector form of the Park transformation, moving the inverter voltages to the dq-frame: 
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 

 
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 (1.24) 

Simplifying this will give a result similar to the classical result from motor control theory. 

Moving differential-terms from one reference-frame to another results in extra terms due to the 

Product Rule of Calculus, (or in this case, the Frequency Shifting property of Laplace transforms 

might be more applicable): 

 , ,

ˆ
.

dq

I dq I dq I I dq S dq

d i d
v R i L j L i v

dt dt


     (1.25) 

The above equation can be simplified and split in to real and imaginary parts, yielding 
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 (1.26) 

where 𝜔̂ = d𝜃/dt is the estimated grid-frequency. The main difference here from motor control 

theory is that the “back-EMF” term of the grid (vSd in this case) is assumed to be in the d-axis 

rather than the q-axis. At steady-state, the value of vSq should be equal to zero. 

From this result, the classical synchronous-frame current control scheme is derived. This is 

shown in Figure 1.8 on the next page. The dq-frame currents are decoupled from each other 

using a direct calculation of the cross-linked voltages. The pseudo-feed-forward path for the 

sensed d-axis voltage is shown at the top of the figure – this voltage is directly added to the 

inverter’s output voltage. An equivalent pseudo-feed-forward voltage is also added to the q-axis 

output to help during transient events (although the q-axis voltage should be zero at steady-state). 

We call these “pseudo” feed-forward signals since they technically are voltages fed back from 
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voltage-sensor measurements, but are not directly related to the currents in a stiff-grid condition. 

The only terms which are not compensated for are the resistor and inductor voltage-drop terms. 

These are left to the PI-controllers to generate the appropriate error voltages to cancel these 

remaining voltage-terms and determine the system dynamics. 

The equivalent system as seen by the PI-controllers after decoupling is nothing more than a 

series RL-load. Therefore, the equivalent control system block diagram for both axes will be as 

in Figure 1.9. The closed-loop transfer function of the equivalent PI-control loop is given below: 

 
 

 

, ,

,

*

, ,2

.

p c i c

I p c

DQ

I p c i c

I I

k k
s

L kI s
TF

R k kI s
s s

L L

 
  

  
 

  
 

 (1.27) 

Since both axes will be symmetric (Ld = Lq), usually the same tuning parameters can be used for 

both PI-controllers. Examining the denominator of the transfer function, we can determine that 

 
Figure 1.8: Classical dq-frame current controller with decoupling terms. 

 
Figure 1.9: Equivalent PI-control system diagram of the dq-current controllers. 
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the control system will always be stable so long as both PI-coefficients are positive (the interface 

impedance values should always be real and positive). If we compare the denominator of the 

transfer function to the standard form of a second-order system, 

 , ,2 2 22 ,
I p c i c

n n

I I

R k k
s s s s

L L
 

 
     

 
 (1.28) 

and apply the basic dynamic results of second-order systems, we can compute the settling time, 

Tst,c, of the dq-currents and from it, determine an expression for the kp,c coefficient: 
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By examining the roots of the denominator polynomial,  
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we can also obtain an expression for the ki,c coefficient to make the system critically damped 

(setting the radical expression equal to zero): 
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 (1.31) 

Note: because the transfer function contains a first-order numerator (a zero), some overshoot 

may still occur even when the system has been made critically damped. Typical values for the 

settling time of the dq-current control system are usually in the single-milli-second range. 

Usually, the dynamics of the current are the fastest in the whole control system. 

1.4. CONTROL-SYSTEM STABILITY ANALYSIS 

To truly gain an insight into the stability of the overall inverter control system, we must 

consider both the PLL and the dq-control loops together. In addition, we must also consider the 
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dynamics caused by the source and interface impedances. Unfortunately, this makes the 

traditional transfer-function approach very difficult to use in this case, since the overall control 

system will be of very high order. In addition, relating the impedances, dq-control, and PLL 

together requires shifting the mathematics into different coordinate reference-frames using the 

Park transformation. The use of trigonometric quantities within the control loop will make the 

system non-linear, which voids the use of traditional feedback-control theory. The cross-linking 

terms which result from the use of rotating reference-frames will also pose additional difficulty, 

as we will essentially have two dynamic systems which interact with each other. Because of 

these complexity and non-linearity issues, an alternate approach is required. 

As a tradeoff, rather than analyzing the stability of a non-linear system over all of the 

system’s operating ranges, we can linearize the system at an equilibrium point and then analyze 

the stability of just the equilibrium point. To do this, we use an approach similar to a state-space 

representation; instead of working with a single higher-order differential equation, suppose that 

we express the dynamics of the control system as a set of ordinary 1
st
-order differential 

equations. Written in vector form, we have: 

   ,
dx

x
dt

 f  (1.32) 

where f(∙) is the array of differential equations and 𝑥⃗ is an array of state variables. Suppose that a 

particular set of state variable values, 𝑥⃗∗, is an equilibrium point of the system. By definition, we 

can say that f(𝑥⃗∗) = 0. Now, by taking the Taylor-series expansion of the right-hand side of 

equation (1.32) at an equilibrium point gives us the following: 

      
* *

* * * .
x x

dx
x x x x x

dt x x

    
          

    

f f
f 0  (1.33) 
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The 1
st
-order partial-derivative in the previous equation is denoted as the Jacobian matrix. If the 

components of the state vector 𝑥⃗ are (x1, x2, …, xn) and the components of the vector of system-

differential-equations f( ) are (f1, f2, …, fn), then we can express the Jacobian matrix, J, as: 
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f
J  (1.34) 

Next, suppose we define a vector, Δ𝑥⃗, which represents a small perturbation of the state 

variables from the equilibrium point; we can express Δ𝑥⃗ = 𝑥⃗ − 𝑥⃗∗. Taking the derivative of the 

state perturbation, we have: 

  
*

,
d x dx dx dx

x
dt dt dt dt


     0 f 0  (1.35) 

since 𝑥⃗∗ is defined as an equilibrium point. If the perturbation, Δ𝑥⃗, is small, then only the first 

term of equation (1.33) is significant since the higher terms will involve powers of our 

displacement from the equilibrium point. Thus, assuming the Jacobian to be non-zero, the first 

term of equation (1.33) should be useful in telling whether the equilibrium point is stable. 

Rewriting equation (1.33) in terms of the perturbation vector, we have: 

  
*

* ,
x

d x
x x x

dt x

 
   


*f
J  (1.36) 

where the matrix J
*
 is the Jacobian evaluated at the equilibrium point. The matrix J

*
 is constant, 

so the above equation is simply a linear differential equation which can be analyzed for stability.  

According to linear dynamic system theory, a solution to a set of linear differential equations 

can be expressed as a superposition of terms of the form 𝑒𝜆𝑘𝑡, where {𝜆𝑘} is the set of 

eigenvalues of the Jacobian in the system above. The eigenvalues of the Jacobian are, in general, 

complex numbers. We can express the eigenvalues as λk = σk + jωk, where σk and ωk are the real 
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and imaginary parts of the k
th

 eigenvalue, respectively. After expanding the complex exponential, 

each term of the homogeneous solution to the differential equation can be expressed as: 

       cos sin .t

k kx t c e t j t     (1.37) 

From here we can see that only the real-part of the eigenvalues of the Jacobian is of importance. 

If we have σk < 0 for all k, then the homogeneous solution will decay with time, which is the 

definition of a BIBO-stable (bounded-input-bounded-output-stable) system. 

1.4.1. COORDINATE SYSTEM & REFERENCE-FRAME MODELING 

Now that we have established a method for determining the local stability of a system, we 

must begin describing the differential equations of that system. We will start with the coordinate-

system definitions. In an effort to simplify the modeling equations and notation, we will 

introduce an additional rotating reference-frame which we will call the xy-frame. This will be the 

reference frame which is phase-aligned to the true grid voltage, vG (rather than the sensing 

voltage, vS). Furthermore, the xy-frame will rotate at the grid frequency, ωG, which may be 

different than the estimated frequency, 𝜔̂, during a transient event. This is shown in Figure 1.10. 

 
Figure 1.10: Illustration of rotating and stationary coordinate system reference-frames. 
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The phase angle of both rotating frames (the xy-frame and the dq-frame) are measured 

relative to the α-axis of the stationary-frame (αβ-frame). Note that the phase angle of the dq-

frame, 𝜃, may be different than that of the sensing voltage angle, θS; however the two angles will 

be the same at steady-state (i.e., εθ = θS – 𝜃 ≈ 0). The angle δ represents the phase difference 

between the angle of the sensing-point voltage, vS, and true grid voltage, vG, i.e.:  

 ˆ .G     (1.38) 

The value of δ depends on the voltage drop across the grid impedance, ZG; thus, the value of δ 

should be zero when there is no load current. With these definitions, we can define the grid 

voltage in its own synchronized reference frame as: 

 
   

   

cos sin
.

sin cos

Gx GG G

Gy GG G

v v

v v





 

 

    
     

     
 (1.39) 

We can also transform other quantities, such as the sensing-point voltage, vS, the inverter voltage, 

vI, and the current, i, into the xy-frame using the same transformation above. To convert from the 

synchronous grid-voltage frame (xy) to the synchronous sensing-voltage frame (dq), we can 

again use the Park transformation: 
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 (1.40) 

This may be easier to understand by examining the space-vector notation of these quantities, 

together with the Park transforms. We can express both transform-equations for vG and vS as: 
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We can also apply a similar logic to describe the AC current in any of the reference frames: 
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1.4.2. CIRCUIT-DYNAMICS MODELING 

With the coordinate systems defined, we can begin to describe the circuit parameters and 

their dynamics in the form of 1
st
-order differential equations. Starting from our KVL circuit 

analysis, which gave us equation (1.21), we can further describe the sensing-point voltage in the 

grid-oriented xy-frame as: 

 , , .Gj

S xy G G G

di
v v R i L e

dt

 

 


 
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 (1.44) 

Distributing the Park transformation to the previous equation gives us the following: 
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which we can split into real and imaginary parts. Solving for the derivative terms in both cases, 

we obtain the following cross-linked differential equations: 
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 (1.46) 

The benefit of describing the currents in the grid-oriented-frame is that the dynamics here do not 

depend on the PLL or any of its internal parameters.  

1.4.3. PHASE-LOCKED LOOP MODELING 

Next, we can describe the phase-locked loop’s dynamics in terms of 1
st
-order differential 

equations. The first equation is simple to obtain; differentiating equation (1.38) gives us: 
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ˆ .G
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dd d
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 
      (1.47) 

Next, we must model the estimated frequency, 𝜔̂, which is the output of the PI-controller within 

the PLL. To do this, we define an arbitrary quantity, γ, which represents the integral of the angle-
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error. This will be used to represent the internal value of the integrator used in the PI-controller. 

Taking the derivative of γ, our second differential equation for the PLL system will be: 
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 (1.48) 

From these definitions, we can define the estimated PLL frequency as an algebraic equation: 

    , , , ,
ˆ .p i p ik k dt k k               (1.49) 

1.4.4. CURRENT-CONTROLLER MODELING 

Moving on, we will describe the PI-controllers of the current regulation loops. For these, we 

will take a similar approach to what was done with the PLL. We can define two quantities which 

are the integral of the error signal of the currents, εd and εq. These will represent the values of the 

integrators used in the PI-controllers for the current-regulation. Since the integration of current 

yields a charge, we will denote these integration variables as Qd and Qq, defined below: 

 

*

*

,

.

d
d d d

q

q q q

dQ
i i

dt

dQ
i i

dt






  


   


 (1.50) 

From these definitions, we can express the output of the PI-controllers, which, when combined 

with the axis-decoupling terms, form the inverter output voltages. 
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 (1.51) 

1.4.5. OVERALL CONTROL SYSTEM MODEL 

To “close the loop” on the mathematical model presented in this section, we must relate the 

information of the inverter voltage back to the circuit to influence the current. However, the 

differential equations of the current are expressed in terms of only the sensing-point voltage, vS, 

and the grid voltage, vG. This was intentionally done so that the set of equations (1.46) will 
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remain true in later chapters. The grid impedance theoretically will never be zero and thus these 

equations should always hold. 

To relate the inverter voltage back to the currents, we start with the KVL expression between 

the inverter voltage and sensing-point voltage, expressed in the xy-frame: 

 , , .
xy

S xy I xy I G I xy I xy

di
v v L j L i R i

dt


 
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 (1.52) 

Next, we can split this equation above into real and imaginary parts and plug in the set of 

equations (1.46) to cancel out the derivative terms. After a bit of manipulation, we arrive with 

the following expressions for the sensing-point voltages: 

 

 

 

1
,

1
.

Sx G Ix I G G I x I Gx

I G

Sy G Iy I G G I y I Gy

I G

v L v L R L R i L v
L L

v L v L R L R i L v
L L


      


       

 (1.53) 

This set of equations can be interpreted as an alternate form of the voltage-divider equation 

(1.20), written in the xy-frame of reference. 

The complete set of differential equations which describe the inverter system are as follows: 
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The complete set of auxiliary algebraic equations to accompany the previous set of differential 

equations are also listed below. The first set here describes the coordinate transformations 

between the grid and sensing-point frames: 
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The following set of equations describes the relationships between the sensing-point, inverter, 

and grid voltages: 
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To summarize, we have found here that the dynamics of the system are 6
th

-order. If 

additional details or features are included in the modeling, this order will increase. If the 

decoupling voltages can accurately cancel out the cross-coupling terms, then the system could 

potentially reduce to a 4
th

-order system at best. 

To verify the small-signal stability of the system at any equilibrium point which satisfies the 

non-linear model, a small-signal state-space model can be obtained by linearizing (1.54). This 

will result in the linearized system written in the form: 
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where the matrix A is the Jacobian, evaluated at the equilibrium point, J
*
, and the matrix B 

consists of the partial derivatives of the equations which relate the state-variables to the input 

values, evaluated at the equilibrium point: 
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The state-variable vector, Δ𝑥⃗, and input-variable vector, Δ𝑢⃗⃗, can be expressed as: 
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 (1.59) 

1.5. ISSUES WITH CONVENTIONAL DC/AC SYSTEMS 

To review, interface inductors are a commonly used coupling component for grid-connected 

DC/AC voltage-sourced power-electronics converters. Placed between the inverter output 

terminals and the grid-voltage connection/sensing point, they provide two main benefits to the 

converter system (mentioned in the previous sections and repeated again here). 

 Interface inductors, together with the grid impedance, help low-pass filter the grid line-

currents, improving the THD of the system and reducing potential EM-interference. 

 Interface inductors help to provide a clean sinusoidal voltage-sensing point for converter 

synchronization by dropping the high-frequency PWM voltage harmonics of the inverter. 

Due to the second benefit above, we are able to use external voltage sensors to detect the phase 

angle, frequency, and magnitude of the grid voltage. It is worth noting that increasing the value 

of the interfacing inductance, LI, helps to further improve both of these benefits above. 
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Despite these benefits, the use of large interface-inductors is undesirable, since this leads to 

additional cost, volume, weight, and power losses (due to added resistance) within the system. In 

recent years, much effort has been applied to reduce the interface inductor’s size and/or weight 

without compromising filtering performance, such as the use of different magnetic materials or 

using planar windings in the inductor’s construction [9-10]. The transformer leakage and line 

leakage impedances also help in reducing current ripples, but their size is usually not a design 

parameter; the leakage is usually minimized during the transformer design. Note that if the 

transformer and grid impedances are suitably sized large enough (potentially in a weak-grid or 

motor/generator scenario), then the interfacing inductance could be heavily reduced. The Laplace 

expression for the current and its low-pass cut-off frequency, ωC, effectively reduce to: 
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The size of the transformer leakage inductance depends on the transformer size and construction, 

but typical values range from 5% to 10% per-unit (pu) [11-12]. Also, the inductance of the grid 

varies based on loading conditions and other factors, but is also generally around a few percent 

pu [13-14]. It is important to note as well that the grid impedance can be either inductive for 

over-head cables or capacitive for underground cables [15]. A capacitive cable would not be able 

to provide harmonic voltage filtering as is desired. Therefore, we will limit our discussions to 

applications considering only over-head (inductive) cables. 

Alternatively, instead of increasing inductance to obtain a lower cut-off frequency, ωC, of the 

current, the switching harmonics of the inverter can be shifted up in frequency. The use of higher 

switching frequencies, fsw, will effectively reduce the magnitude of the ripple currents (since they 
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will be easier to filter at higher frequencies), enabling the use of smaller inductance values. 

However, the disadvantage to increased switching frequencies is that the converter will exhibit 

additional switching power losses. In addition, the converter will exhibit stronger di/dt and dv/dt 

radiated emissions, potentially causing more EMI issues. Another power-electronics approach to 

enable smaller inductances is to reduce the amplitude of the generated voltage harmonics, rather 

than increasing the switching frequency. This can be achieved using multi-level converter 

structures, such as the neutral-point-clamped (NPC) multi-level inverter or the cascaded multi-

level inverter (CMI), the latter of which is shown in Figure 1.11 below. However, this drastically 

complicates the system design. 

In addition to the disadvantages associated with large interfacing inductances, another 

undesirable feature of the traditional control system is the use of dedicated voltage sensors for 

grid synchronization. The grid-voltage measurement requires the use of isolated (usually Hall-

Effect-based) voltage sensors. The use of these discrete sensors increases the overall system cost 

and physical complexity (while arguably simplifies the software complexity). In very high-

voltage systems, the voltage sensors may also be extremely bulky and costly. Work has also been 

previously done to mitigate these issues; voltage-sensor-less control algorithms for grid-

 
Figure 1.11: Three-phase nine-level cascaded multi-level inverter topology. 
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connected systems have been developed, such as the Direct Power Control algorithm proposed in 

[16-17] (which is similar to the Direct Torque Control algorithm of induction machines). 

However, these algorithms usually depend on a somewhat accurate estimation of the total 

impedance between the converter and grid. Our interest is to reduce ZI and, as discussed 

previously, the grid impedance, ZG, can vary depending on various operating conditions, 

especially in a weak-grid situation. These algorithms may have other disadvantages as well, such 

as a variable switching-frequency or require a very fast sampling rate and control loop. 

It is important to note that these two issues (the use of large interface inductors and discrete 

voltage sensors) are somewhat coupled together. By reducing the size of the inductors to reduce 

the system size, weight, and cost, the switching harmonics present at the voltage-sensing point 

will be increased. The placement of analog filters on sensor lines and digital filters within 

software can be used to remove this noise, but at an increased cost and circuit-board area or an 

increased computational complexity. Also, both analog and digital filtering approaches can 

introduce a slight phase delay in the measured voltages. 

To help reduce measurement noise, capacitors are sometimes added to the power circuit 

(forming an LC filter) to make the sensing voltage more “stiff”, as in Figure 1.12 (a). If the 

transformer/grid impedance, ZG, is small, the circuit model in Figure 1.12 (a) effectively reduces 

to Figure 1.12 (b). However, this is a step in the wrong direction; the interest here is to reduce RI 

and LI while taking advantage of any RG and LG for filtering, as mentioned previously. In this 

scenario of having small ZI and large ZG impedances, adding the interfacing capacitor, CI, may 

also add additional switching losses to the converter since more harmonic voltage will be present 

at the mid-point node, causing increased common-mode currents to flow through the capacitor 

and the converter. Thus, we will not consider the LC filter scenario in this report. 
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To summarize, the reasons for filtering the high-frequency PWM voltages generated by the 

inverter include the elimination of potential EMI issues, the removal of reactive-power-

producing harmonic components in the current, and preventing noise from entering the control 

system. However there is a trade-off taking place; an increased inductance or switching 

frequency can help to eliminate the harmonics, but at increased cost, size, weight, or power loss. 

Furthermore, algorithms using discrete voltage-sensors rely on having a clean voltage-sensing 

point. Reducing the inductance adds noise to the measurements (since less filtering is achieved). 

Control methods which do not rely on grid voltage sensors instead rely on knowledge of the 

interfacing-impedance value. 

To avoid these issues, an algorithm which could operate without either of these detrimental 

components (interface inductors or voltage sensors) would be ideal. However, such an algorithm 

would need to be able to synchronize to the grid voltage without voltage sensors and regulate the 

current without knowledge of the grid or interface impedances. Such an algorithm can be 

realized by the use of virtual impedances – impedances which are connected between the inverter 

and AC grid within software. These impedances allow for regulation of the current and can 

provide a virtual voltage-sensing point which is free of PWM switching noise, as we will soon 

see… If the physical voltage-sensing point is no longer needed, the voltage sensors can be 

removed from the system. Furthermore, if reasonable filtering of the current can still be achieved 

             
 (a) (b) 

Figure 1.12: Alternate equivalent circuit models: (a) capacitively filtered voltage sensing point; (b) 

equivalent circuit with a “stiff” grid connection. 
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by the grid impedance alone, i.e., if the cut-off frequency, ωC, in equation (1.61) is still suitably 

low enough, then the interfacing inductors can also be removed from the system! 

1.6. RESEARCH SCOPE AND CONTRIBUTIONS 

The main objective of this research is to investigate alternative methods for DC/AC converter 

synchronization and control, which utilize virtualized impedances in software, based on the 

sensed AC currents. This is followed by the design and implementation of an experimental 

control system and DC/AC converter prototype which supports an inductor-less voltage-sensor-

less operation. The key contributions of this research can be summarized as follows: 

1. A self-synchronizing algorithm for PLL-based DC/AC converters, based on the concept 

of virtual impedances, is proposed. With this method, the AC voltage sensors can be 

removed and the physical interfacing inductors can be removed in specific cases. 

2. A new method to reduce the computational complexity of the synchronous-frame dq-

current control algorithm, using the concept of a virtual resistance, is proposed. A simple 

computational comparison is provided to quantify the complexity reduction. 

3. An alternate method to implement an impedance-compensated PLL, based on fully-

implemented stationary-frame virtual impedances, is proposed. The proposed method has 

better transient performance than the traditional partially-implemented rotating-frame 

virtual-impedance method. 

Additional research contributions, which were not experimentally verified but have been 

theoretically developed within this dissertation, are also listed below. These topics are listed with 

the potential to be developed further as future works. 
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4. A more generalized expression for the quasi-static stability of a DC/AC converter’s PLL 

synchronization loop is proposed. The analysis extends the stability criteria to the full 

range of converter operating points (real and reactive). 

5. A combination of the self-synchronizing virtual-impedance algorithm, together with the 

impedance-compensation of the PLL using virtual impedance, is proposed as a new 

technique for the position-sensor-less control of permanent-magnet AC machines 

operating at high-speed ranges. A means for on-line parameter estimation can also be 

implemented using a low-frequency injection current, together with this technique. 

1.7. REPORT ORGANIZATION 

The remainder of this dissertation examines the benefits of utilizing virtualized impedances 

within the synchronization and control loops of a DC/AC converter. The primary focus will be 

on three-phase DC/AC converter systems but the concepts covered here can be extended to 

single-phase DC/AC converter systems. 

In Chapter 2, the theoretical framework and implementation of virtual impedances is first 

discussed. Afterwards, a method of replacing the physical interface-impedances with virtualized 

interfacing-impedances is investigated. Together with this, the feasibility of removing the AC 

voltage sensors is also discussed. The chapter then introduces the proposed concept of using only 

a virtual interfacing-resistance for self-synchronization and computational simplification of the 

common dq-current control algorithm. The stability of the control system is analyzed, focusing 

on proper tuning of the PID controllers. Afterwards, the experimental test setup used to validate 

the control method is introduced. The chapter concludes with comparisons between simulated 

and experimental waveforms showing the dynamic performance of the algorithm. 
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Chapter 3 introduces the concept of utilizing virtual impedances to modify the 

synchronization voltage (as opposed to the inverter voltage, as discussed in Chapter 2). A newly 

proposed method to impedance-compensate the PLL, which has better transient response and is 

not affected by the PLL’s own dynamics, is introduced. This method is verified through 

simulation results. Next, it is shown how impedance-compensation (IC) of the PLL algorithm 

can enhance the quasi-static stability of the PLL algorithm. Finally, a more rigorous approach to 

show the IC-PLL stability is also developed, following [19]. 

Next, Chapter 4 presents the author’s concluding remarks, recommendations, and ideas for 

future work. A nine-level (four-module per phase) cascaded multi-level inverter (CMI) is 

introduced as a possible candidate to enable a true sensor-less inductor-less connection to the 

208 V low-voltage utility grid. Also, the combination of impedance-compensation with a 

virtualized self-synchronization method is proposed for position-sensor-less high-speed (back-

EMF-based) motor control applications. A low-voltage dynamometer test bench located at 

Kettering University is also introduced as a possible candidate to test the proposed impedance-

compensated self-synchronized sensor-less permanent magnet AC motor control algorithm. 

In conclusion, some details on the MATLAB Simulink simulation model, used to validate 

some of the developed algorithm’s dynamic performance characteristics, are presented in 

Appendix A. Information and further details on the 1 kW experimental three-phase inverter 

prototype are presented in Appendix B. In Appendix C, a list of the author’s scholarly works 

done over the past several years are presented. This list includes several journal publications, 

conference papers, and one patent. 
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2. VIRTUAL-INTERFACE-IMPEDANCE SYNCHRONIZATION METHODS 

In this chapter, the theoretical framework and implementation of virtual impedances are first 

discussed. The limitations involved with implementing virtual-inductors are then examined. 

Afterwards, the concept of replacing the physical interface-impedances with virtualized 

interfacing-impedances and the removal of the AC voltage sensors for self-synchronization is 

proposed and investigated. An idea for synchronizing during the start-up process using current 

sensors is also outlined. The chapter concludes with the proposed concept of using only a virtual 

interfacing-resistance for PLL self-synchronization, which can be used to reduce the 

computational complexity of the commonly used dq-current control algorithm. The stability and 

dynamics of these methods are examined and confirmed by simulation and experimental results. 

2.1. VIRTUAL-IMPEDANCE IMPLEMENTATION & LIMITATIONS 

The concept of virtual impedance has been used in many prior applications [18-20]. 

However, in most of these applications, the virtual impedance is not fully implemented. The 

basic concept of virtualizing impedances is to directly apply the complex form of Ohm’s Law 

within the software of the converter to change the behavior of the converter’s output. 

In the case of a Voltage-Sourced Converter (VSC), the output is a controlled voltage 

waveform, usually in the form of a PWM-voltage. The control-inputs to a VSC are typically 

currents, other voltages, or other control signals. To implement a virtual impedance, assuming 

that current is one of the sampled input signals, the converter’s normal output voltage, vI, can be 

augmented to become vI' by subtracting (or adding) the voltage drop across a virtual interface 

impedance, ZVI, calculated via Ohm’s Law: 

 .I I VIv v Z i    (2.1) 
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This concept is also portrayed in Figure 2.1 above. The remainder of the control system can 

remain unaltered, with the virtual impedance calculation occurring alongside it. A similar 

approach could be used within a Current-Sourced Converter (CSC), where the voltage of the 

converter could be measured and the converter’s output current could be augmented by adding 

the product of a voltage and a virtual-admittance. 

The implementation of these impedances is generally straightforward if done in the 

stationary-frame. All of the sensor inputs to the controller will ultimately originate in the 

stationary-frame time-domain so we can directly compute the impedance voltage-drops using the 

Ohm’s Law expressions: vR = iR, vL = L di/dt; and vC = 1/C ∫ i dt; the exception to this is the 

inductance. Because the sampled current-sensor inputs will undoubtedly contain sampling noise, 

the calculated inductor voltage will be extremely erratic if computed directly using a pure 

derivative. To remedy this, the sampled current can first be passed through a low-pass filter with 

a unity gain before taking the derivative. Combining these two operations ultimately results in a 

high-pass filter. We can express the approximated inductor voltage in the Laplace domain as: 

 .HP
L

HP

s
v sLi Li

s




 


 (2.2) 

The high-pass filter’s cut-off frequency, ωHP, is multiplied on the numerator to preserve the low-

frequency unity-gain and the value of ωHP is chosen to be substantially higher than the frequency 

of operation. This makes the response very similar to a pure derivative at low frequencies. This is 

shown graphically in the Bode magnitude plots of a pure derivative and a unity-gain high-pass 

 
Figure 2.1: Inverter control algorithm augmented with virtual impedance calculation. 
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filter, presented in Figure 2.2. In the vicinity of the grid frequency, fg, the high-pass filter’s 

magnitude in Figure 2.2 (b) looks nearly identical to the pure derivative’s magnitude in (a). The 

phase plots of both transfer functions (not shown) also look the same near the grid frequency. 

Thus, in a low-frequency sense, the two calculations produce identical results. 

The high-pass filter’s cut-off frequency, ωHP, must be chosen so that it is well above the 

desired grid operating frequency (fg = 60 Hz typically); at least one decade above (fHP = 600 Hz) 

is recommended so that the phase shift of the filter will not have much impact. However, care 

must also be taken not to set the cut-off frequency too high, as this will allow more high-

frequency noise to be amplified by the derivative-like features of the filter. In practice, one 

should select a cut-off frequency which is below the switching frequency of the converter. This 

will ensure that the switching harmonics which are present in the sensed line-currents are not 

amplified excessively (as Figure 2.2 (a) depicts). For example, if the grid frequency is fg = 60 Hz 

and the converter switching frequency is fsw = 10 kHz, an acceptable high-pass-filter cut-off 

frequency might be around fHP = 1 kHz. 

Another form of virtual impedance, which is more commonly used, is the implementation 

within a rotating reference-frame. Using the Clarke and Park transformations to move to a 

reference-frame which is synchronous to the grid, a virtual-impedance can be partially 

implemented by examining the mathematical result of moving a derivative into a rotating-frame. 

      
 (a) (b) 

Figure 2.2: Bode magnitude plots of (a) a pure derivative and (b) a unity-gain high-pass filter. 
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The example provided in equation (2.3) shows the results of moving an inductive voltage from 

the stationary-frame to a rotating-frame: 

 
, , , .

dqj t

L L dq L dq

d id i
v L v v e L j Li

dt dt

 

        (2.3) 

Usually, only the second term, jωL𝑖dq, at the end of equation (2.3) is directly implemented; the 

derivative term is excluded for the same reasons mentioned previously with derivatives in the 

stationary-frame. Thus, it should be noted that this second term in equation (2.3) only represents 

the steady-state voltage-drop across the inductance. This is the reasoning behind the claim that 

most virtual impedances are only “partially” implemented. 

This implementation of partial-virtual-impedance is commonly used within dq-current 

regulators for motor controls or active rectifiers; it is used for decoupling the dq-axis currents by 

subtracting this steady-state voltage from the respective axes. It has also been used for 

impedance-compensation of PLL algorithms [19]; this will be explored in more detail within 

Chapter 3. The remaining derivative-voltage term is left usually to a PI-controller to cancel its 

influence on the current. This implementation is actually the same as what’s shown previously in 

Figure 1.8; it has been restated below as Figure 2.3 with the partial-virtual-impedance terms 

highlighted in red. Partial virtual-capacitance can be implemented in a similar fashion. 

 
Figure 2.3: Classical dq-frame current controller with inductive-decoupling terms highlighted. 
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Finally, it should be noted that, the main limitation of using partial or fully-implemented 

virtual impedances, specifically virtual-inductors in a PWM-based VSC and virtual-capacitors in 

a PWM-based CSC, is that they cannot be used to respond to signals at frequencies equal to or 

higher than the converter’s switching frequency. The reasoning for this is similar to the “chicken 

and the egg” analogy; in the case of virtual-inductors within a VSC, the voltage drop caused by 

the virtual-inductor is being reconstructed through the approximate PWM voltage output of the 

power-electronics converter. If the virtual inductor “tries to respond” to an input signal whose 

oscillation-period is shorter than one PWM cycle of the converter, the converter will be unable to 

generate this response accurately. In other words, the use of PWM only allows for different 

average-output-voltage values to be computed and generated once per switching period. Ideally, 

the highest-frequency of a signal that could be applied to the output of a PWM-based converter 

without being aliased should be ½ the switching frequency, based on a similar reasoning to the 

Nyquist-Shannon Sampling Theorem. Therefore, to summarize, virtual-inductors cannot be used 

to filter out PWM switching harmonics from a system (this would require some method of 

producing opposing PWM voltage-drops – this is what real physical inductors do). 

2.2. REMOVAL OF THE INTERFACING INDUCTORS & VOLTAGE SENSORS 

As discussed in Chapter 1, the interfacing-inductor provides two main benefits: a separate 

voltage sensing point and filtering of the PWM voltage harmonics. Using the concept of virtual 

impedance, the first item (the voltage sensing point) can be fabricated within software. If the 

PWM voltage harmonics can be safely ignored (if other inductances exists in the system), then 

the real impedance can be safely replaced by a virtual one! From a control-standpoint, there is 

little difference between a DC/AC inverter system which uses a real, physical inductor and one 

which uses a fully virtualized one. Even though the high-frequency content may be slightly 
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different (since a virtualized inductor using the high-pass-filter approximation looks like a 

resistor above ωHP), the high-frequency harmonics do not usually play a role within the control 

system (it is assumed that these harmonics will be filtered out anyways). With this in mind, if we 

can argue that if the high-pass filter’s bandwidth is high enough, then the use of a virtualized 

inductor will not impact the remainder of the control system; this is a reasonable assumption in 

most cases. 

For example, if a high-pass-filter is used to compute an interface-inductor voltage and the 

bandwidth (the cut-off frequency) of the filter is selected to be fHP = 1 kHz, the dynamic response 

of this inductor can be roughly 10x greater than the bandwidth of the dq-current PI-controllers 

which are tuned to a settling time of 5 ms (a reasonable speed for the currents). Using the 

analysis from Chapter 1, we can rewrite equation (1.3) (which is the expression for the closed-

loop poles of the dq-current PI-control loops) to be in terms of the dq-current settling time, Tst,c: 

 

2
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st c st c I

k
s

T T L

 
     

 

 (2.4) 

If a settling time of 5 ms is selected for the currents and the controllers are critically damped, the 

bandwidth of the dq-current loops will be roughly 4/(2×π×0.005 s) ≈ 127 Hz, nearly a decade 

below fHP. Usually, the dq-currents are controlled to have the fastest dynamics in the control 

system. Thus, in this example, it should be acceptable to ignore the effects of the high-pass filter 

on the remainder of the inverter’s control system. 

The standard control system block diagram is shown in Figure 2.4 on the next page. Again, 

the only difference between the inverter output voltage, vI, and the sensing voltage, vS, is the 

voltage drop across the interfacing impedance, ZI = RI + jωLI, which we will denote as vZI: 

 
, , , .

IZ I S I I

di
v v v R i L

dt



        (2.5) 
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Now, if we temporarily ignore the PWM harmonic content of the inverter voltage, vI, and assume 

that the inverter could generate a pure sine-wave output voltage, then we could argue that there 

should be no difference between the control system above in Figure 2.4, and the modified control 

system shown in Figure 2.5, on the next page. In Figure 2.5, the physical interfacing impedance 

has been removed and the voltage-drop of this impedance has been computed within the digital 

controller. This virtual-impedance voltage-drop is then subtracted from the “normal” inverter 

output voltage, vI, (computed by the dq-current controllers,) to generate an “augmented” inverter 

voltage, vI', which accounts for the drop. With the inverter output voltage augmented and the 

physical impedance replaced by a short-circuit, the sensing voltage, vS, remains the same as it 

was in Figure 2.4 and is now also equal to the inverter output: vS = vI'. 

From a low-frequency standpoint, the control scheme of Figure 2.5 should work identical to 

that of Figure 2.4. The problem here, however, is when we relax our previous assumption and 

 
Figure 2.4: Classical inverter control block diagram with interfacing impedance. 
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consider the inverter PWM harmonics. These are now being directly fed by the voltage sensors 

into the Clarke/Park transformations, which then in turn feeds to the PLL and the dq-current 

controllers. The PLL may be able to withstand/filter the excessive PWM harmonic content, but 

the dq-current controller cannot. Any feed-forward-like paths from the PLL to the dq-control will 

be plagued with excessive noise, requiring the use of additional low-pass filters (as in Figure 2.5) 

or the use of other methods to eliminate the PWM noise from the control system. However, a 

simpler and more convenient solution exists to solve this harmonic noise problem. 

It is only the low-frequency component of the sensing voltage which is needed by the PLL 

and dq-controller (the PWM harmonics are the problem). Again, note that the inverter output 

voltage is now equal to the sensing voltage: vS = vI' (since the two nodes are shorted). The 

harmonics are only added to the output by the PWM algorithm. The input to the PWM block will 

only be the low-frequency component of the inverter voltage. Thus, the desired voltage signals 

 
Figure 2.5: Inductor-less inverter control block diagram utilizing virtual impedance. 
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(without PWM) already exist within the control algorithm! This means that we can directly 

bypass the PWM-to-inverter-to-sensor path and directly feed this augmented inverter voltage, vI', 

within software back into the control system; this proposed control technique is shown below in 

Figure 2.6. Again, this works because the vI' voltage signals in software are the same as only the 

low-frequency component of the sensing voltage (no PWM has been added yet). 

With this control technique, the AC voltage sensors can be completely removed from the 

system! The only new complication that arises from this proposed control algorithm is the 

method of synchronization during the start-up process. Of course, there also still exists the issue 

of having adequate filtering inductance to smoothen the shape of the AC current – note the 

consistent inclusion of the grid inductor LG. Since there is no longer any voltage-sensing on the 

AC side, when the converter is not operating, there is no direct way to measure the grid voltage 

to synchronize to it. Starting the converter without proper synchronization can cause start-up 

 
Figure 2.6: Proposed inductor-less AC voltage-sensor-less inverter control diagram using virtual 

interface-impedance. 
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transient issues, which could trigger fault protections built into the converter, grid, or both. 

To solve the start-up synchronization problem, the on-board current sensors could be used to 

detect the frequency, phase angle, and approximate voltage magnitude of the grid. To do this, a 

small load could be applied to the AC-lines to generate some small AC current through the 

current-sensors. A separate single-phase PLL algorithm could then be used to lock onto the AC 

current waveform to infer the magnitude, phase, and frequency of the grid. The load could be 

inductive, capacitive, or resistive, however a capacitive load is recommended to avoid the 

bulkiness of a 60 Hz inductive load and the power losses of a resistive load. A configuration such 

as the one in Figure 2.7 could be used, where the capacitive load could be connected from line-

to-line through a small (low-current-rated) bi-directional switch. 

During the start-up process, the start-up switch, SSU, could be closed, placing a start-up 

capacitor, CSU, across two of the lines. This start-up capacitor will draw a capacitive current 

through two of the current sensors. After synchronization, the SSU switch could be opened and 

the converter could start generating PWM while simultaneously enabling the self-

synchronization algorithm. If the capacitor was connected across phases B and C, the current 

flowing through the phase-C current sensor will have the exact same phase as the phase-A line-

 
Figure 2.7: Capacitive line-line load configuration for voltage-sensor-less start-up synchronization. 
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to-neutral voltage (the capacitor current will have a 30° shift because the applied voltage is line-

to-line and another 90° shift since the load is capacitive). Thus, a single-phase PLL could be used 

to lock onto the phase-C current to obtain the grid frequency and phase angle. 

To detect the grid voltage magnitude, the start-up capacitor, CSU, could be carefully selected 

to produce a reasonable current magnitude which could still be sensed. For example, suppose an 

inverter system was designed with bidirectional current sensors having a maximum sensing 

range of ±100 A (this would be adequate for a three-phase 208 VAC, 20 kVA system). Assuming 

the microprocessor used in the converter had an Analog-to-Digital Converter (ADC) with 12-bit 

resolution, the per-bit resolution of the ADC channels connected to the current sensors would be 

equal to: 200 A / 2
12

 bits = 48.82 mA/bit. To allow a few bits of sensing range, the peak phase 

current, Im, (which is equal to the capacitor current) could be limited to ~250 mA. This will cause 

the ADC values to vary by about ± 5 bits (which may be barely enough for the algorithm to 

detect and synchronize to). Working the phasor analysis, the required capacitance to produce a 

current of 250 mA peak on a 60 Hz grid with 208 VLL RMS would be:  

 
  

0.25 A
2.2 μF.

2 60Hz 208 2 V

C

C

I
C

V 
    (2.6) 

Such a capacitor of the polyethylene-film-type can easily be found. For the synchronization 

method, a single-phase nonlinear-variation of the SRF-PLL algorithm, shown in Figure 2.8, can 

 
Figure 2.8: Block diagram of a single-phase nonlinear PLL which includes magnitude detection. 
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be used. Once the magnitude of the current is detected, the voltage magnitude could be computed 

by reversing equation (2.6) above. 

2.3. VIRTUAL-INTERFACE-IMPEDANCE SYSTEM STABILITY ANALYSIS 

To maintain similarity with the traditional control method, we will consider the case of using 

a virtual-impedance composed of a virtual resistance, RVI, and a virtual inductance, LVI. As stated 

in the previous section, the overall control of such a system should be practically identical to that 

of the system with real interfacing impedances. However, we must exercise caution when 

considering the stability of the system, since there is an inherent algebraic loop present in the 

control system shown above in Figure 2.6. The inverter’s output voltage directly feeds the PLL 

inputs, which in turn are used in the calculation of the inverter’s output voltage via the pseudo-

feed-forward decoupling paths. 

2.3.1. CONTROL-SYSTEM SAMPLING-DELAY MODELING 

To deal with the algebraic loop, we must place single-cycle delays within the control 

algorithm. Luckily, such delays are conveniently already present within the digital 

implementation of the control algorithm, since most Analog-to-Digital Converter (ADC) 

hardware and PWM hardware within a Digital Signal Processor (DSP) usually require at least a 

few clock cycles of delay before reading or writing values. In some cases, these delays are 

intentionally enlarged to maintain synchronization with the PWM switching of the converter. 

These delays are illustrated in the block diagram shown in Figure 2.9. Thus, a total of two 

switching-period delays will accumulate in the control algorithm. In the traditional control 

 
Figure 2.9: Illustration of input & output signal delays in a digital control system. 
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system, the sensing-point voltage, vS, would also experience a one-cycle delay (not shown here).  

Note that the delays are effectively applied in the stationary-frame of the system (the real 

sensor and PWM signals will be three-phase sinusoidal signals). Applying delays to sinusoidal 

signals will cause a slight phase-shift in the measured values. This will show up as a slight 

rotation of the values in the dq-frame (or the xy-frame). These delays will also affect the 

dynamics of the system, potentially causing instability issues. 

As was done in Chapter 1, we can model all of the system dynamics as a set of 1
st
-order non-

linear differential equations. From this set of equations, we can linearize the system at an 

equilibrium point by computing the Jacobian matrix, and from here, we can assess the local 

stability. However, an approximation must be made for these discrete-time unit-delays to move 

all terms to continuous-time.  

One method of capturing the behavior of discrete delays in a continuous-time system is to 

use the Taylor-series approximation on the Laplace-transform of the unit-delay. The Laplace 

transform of the time-shifted unit-impulse function can be expressed using the time-shifting 

property of Laplace transforms, as shown below: 

          0

0 0; 0.
st

f t t t f t F s e t 
     L  (2.7) 

The issue here is that the Laplace transform of the unit delay cannot be easily expressed as a 

rational polynomial of complex frequency, s (due to the exponential). However, by using a first-

order Taylor-series approximation, we can express the Laplace transform of the time-delay as 

simply a low-pass filter. The transfer function approximation is given as equation (2.8). Using 

the first-order Taylor series approximation of e
x
 near x = 0; we can say e

x
 ≈ 1 + x, as shown: 

   0

0
0

0

1 1
; 0,

1

st

st
F s e t

e t s




   


 (2.8) 

where the time delay, t0, in this case will be the inverter’s sampling/switching period, Tsw. 
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Applying this concept to our control system, we must include additional state variables to 

model the time-delay low-pass filters, which were not present in our control system model 

developed in Chapter 1. To be consistent with our previous modeling in Chapter 1, we will first 

transfer the unit-delays to a rotating frame. Applying the frequency-shifting property of Laplace 

transforms, we obtain: 

    
 

1 1
.

1 1sw sw

F s F s j
sT s j T




   
  

 (2.9) 

As illustrated in Figure 2.9, we will need to apply this complex low-pass filter to the sampled 

input currents and the outputted inverter voltages. For the currents, we can introduce a new 

space-vector variable, 
,xy LPi . Applying the delay in the xy-frame gives the following: 
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 (2.10) 

Splitting the above equation into real and imaginary parts gives us 
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 (2.11) 

For the output voltage delay, realize that because of the structure of our virtual-interface 

impedance system, the only difference between our augmented inverter voltage, vI', and the 

virtual sensing-point voltage, vS, is a single-cycle delay. This is illustrated in Figure 2.10 below. 

 
Figure 2.10: Location of PWM delay in a virtual-interface-impedance control system. 
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This arrangement is required to prevent an algebraic loop from forming when computing vS 

within the control system. Therefore, the inverter output voltage and the sensing-point voltage 

are technically not equal, but should be very similar to each other. Rather than introducing new 

variables, we will define the PWM delay using existing variables within this particular control 

scheme. Modeling the delay in the dq-frame gives us the following relationship: 
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 (2.12) 

which after splitting into real and imaginary parts gives us 
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 (2.13) 

Accounting for these delays, we must also update our Park-transform definitions of moving 

between the grid-aligned xy-frame and the PLL-aligned dq-frame. The set of equations (1.55) 

will be modified to use the low-pass-filtered values instead of the actual values. This is shown 

below. Note that equations (5) and (6) of the set have been removed since the theoretical inverter 

voltage, vI, is no longer needed in the differential equations describing the currents. Also note 

that the reference-frame directions of equations (3) and (4) of the set have been reversed. 
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 (2.14) 

2.3.2. VIRTUAL INTERFACE-IMPEDANCE MODELING 

In addition to the sampling delays, we must develop equations to express the virtual-

interface-impedance voltages in terms of a set of 1
st
-order differential equations. We start from 
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the s-domain KVL expression of the virtual-impedance voltage, where the inductor voltage is 

calculated using a high-pass filter: 
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where ωHP is the high-pass filter cut-off frequency. We can rewrite this equation to express the 

voltage, 
VIZv , in the dq-frame by using the frequency-shifting property of Laplace transforms: 
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Note that this also results in a complex low-pass filter, as seen in the previous section: 
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To accommodate this filter, we can create an additional space-vector state-variable, 
,dq LPi , to 

represent the stationary-frame low-pass filter of the current (to be used in the high-pass filter). 

Using this low-pass filter variable, we can rewrite the previous equation as: 

  , ,
ˆ .

VIZ dq VI dq VI dq LPv R i L s j i    (2.18) 

The relationship between the low-pass filter’s input, 
dqi , and output, 

,dq LPi , is expressed below: 
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which, when split into real an imaginary parts, gives us 
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From here, we can substitute the set of equations (2.20) into equation (2.18) to obtain the total 

expression for the virtual interface-inductor voltage in the dq-frame. Splitting into real and 

imaginary parts gives us the following: 
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Notice that the last two terms in both equations will cancel, leaving us with: 
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2.3.3. PID-CURRENT-CONTROLLER MODELING 

Next, we will describe the modeling of two dq-frame PID controllers. Because the voltage-

sensor-less virtual interface-impedance control algorithm requires some small amount of 

derivative gain in the control loop for stability (explained in a later section), we must augment 

the model developed in Chapter 1 to include a derivative term. As done in the previous section, 

to implement a derivative, we can use a high-pass filter with a high cut-off frequency.  

Building from what was developed in Chapter 1, we can define two quantities which are the 

low-pass-filtered values of the error signal of the currents, εd,LP and εq,LP. These will be used in 

the PID-controller’s derivative calculation. The space-vector version of the low-pass filtered 

error signals can be expressed as: 

  ,

, , ,
dq LPD

dq LP dq D dq dq LP

D

d

s dt


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
 (2.23) 

where ωD is the cut-off frequency of the low-pass filter. Rearranging and expanding this into real 

and imaginary parts gives: 
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With the low-pass filter of the error defined, we can express the total derivative component of 

the PID-controller output as follows: 

  , , , , , .D
d c dq d c dq LP d c D dq dq LP

D

s
k k s k

s


    


  


 (2.25) 

With the derivative modeled, we can express the output of the PID-controllers, which, when 

combined with the axis-decoupling terms, form the inverter output voltages. We will use the 

other definitions of Qd and Qq from Chapter 1 as well: 
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 (2.26) 

Note that the decoupling terms have also been modified here to be based on the sum of the real 

interface inductance, LI, and any virtualized interface inductance, LVI. In the proposed control 

algorithm, the value of LI = 0, so the decoupling term will reduce to only respond to LVI. 

2.3.4. LINEAR SYSTEM MODEL FOR VIRTUAL INTERFACE-IMPEDANCES 

After defining the additional state variables in the previous sections, we can summarize all of 

developed mathematical relationships and provide a complete set of all the differential equations 

used to describe the proposed control algorithm. The other definitions from Chapter 1 regarding 

the PLL dynamics and the xy-frame current dynamics remain unchanged. The set of algebraic 

equations which relate various values to the state variables are summarized below. These are in 

addition to the four reference-frame translation equations in (2.14): 
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 (2.27) 

Altogether, the complete control algorithm ends up being a 14
th

-order non-linear dynamic 

system! This will undoubtedly be very difficult to analyze by hand and will require computer-

aided analysis. The set of differential equations and a short phrase indicating where each 

equation is used are presented in (2.28) below. 
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(2.28) 

From here, the 14×14 Jacobian matrix can be computed and evaluated at an equilibrium point. 

This can then be used to check for local stability. While useful, this analytical procedure does not 

offer much insight on the limitations for tuning the PI/PID-controllers, or for selecting the values 

of the high-pass filter cut-off frequencies. In the next section, we will attempt to provide some 

rough guidelines on the tuning of the PID parameters to maintain stability. 
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2.3.5. CURRENT-CONTROLLER TUNING USING PADÉ APPROXIMANT 

In an effort to reduce the complexity of the control system down to something which can be 

analyzed by hand, allowing us to gain some insight on the limitations for tuning the PID-

controllers, we will make the following simplifications to the previous dynamic system model: 

(a) transfer all differential equations into the dq-frame,  

(b) assume that all of the cross-coupling terms are negligible or cancellable, and  

(c) assume that pure derivatives are used for the virtual inductance and PID-controller.  

The first two assumptions will allow us to remove the PLL dynamics from our analysis and 

completely decouple the two axes of the dq-frame. Thus, this will allow us to ignore 8 of the 14 

differential equations from the previous page. The last assumption will allow us to further 

eliminate the two low-pass filters, eliminating another 2 differential equations. The resulting 

system will be only 4
th

-order, which should be much easier to analyze. However, it will only tell 

us some information regarding the tuning of the PID-controllers. 

A depiction of the simplified virtual-impedance control system is shown in Figure 2.11. The 

equivalent “plant” in the control system is effectively just the transformer/grid impedance, ZG, 

since the real interfacing impedance, ZI, has been removed (as previously discussed and shown in 

Figure 2.6); the inverter output is now directly connected to the PLL sensing point (the 

transformer terminals). The control system in Figure 2.11 is expressed in the dq-frame; the plant 

represents the transfer function of an RL circuit moved to the dq-frame without the cross-axis 

coupling: 
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where RG and LG are the grid’s resistance and inductance (as introduced previously). 
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To improve the model somewhat, after all of the simplifications above, we can use a different 

approximation for the unit-time delays. Another method of capturing the behavior of discrete 

delays in a continuous system is to use the Padé approximant. While similar to the Taylor Series, 

the Padé approximant is in some cases a “better” approximation of particular non-linear 

functions by a rational function of a given order (i.e. a ratio of polynomials with some given 

order). Using a first-order Padé approximant, we can express the Laplace transform of the time-

delay as the following transfer function: 

  
0

0

0

2 1
02

02 1
02

1
; 0.

1

st
st

st

t se
F s e t

e t s







   


 (2.30) 

After applying the first-order Padé approximation, the control system of Figure 2.11 can be 

redrawn as shown in Figure 2.12 on the next page. The positive-feedback loop at the top has 

been collapsed, based on its equivalent transfer function, A(s), which is very similar to an 

integrator with a very large gain. This is expressed below in equation (2.31), where the time-

delay parameter, Tsw, is the switching period of the inverter PWM outputs (which corresponds to 

the PWM duty cycle and ADC update rates within the control software); 
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Figure 2.11: Equivalent dynamic system model of virtual-impedance control algorithm. 
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With the system approximated, we can collapse the system to obtain the transfer function of 

the current-control loop. The details are omitted here, but the resulting 4
th

-order transfer function 

will have a form as given below: 
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where the denominator polynomial coefficients are: 
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For stability, the numerator coefficients, bn, are of less importance and are not mentioned here. 

From the denominator coefficients, we can obtain some requirements for stability, based on 

the Routh-Horwitz Stability Criterion. Written in terms of the polynomial coefficients, the 

stability of a 4
th

-order system is given by the following set of inequalities: 

 
Figure 2.12: Equivalent dynamic system model of virtual-impedance control algorithm. 
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Assuming the device parameters, RG, LG, RVI, and LVI, to all be much smaller than 1/Tsw, we can 

make the following observations for the stability: 

From a3 > 0:    1
, ,4

2 ;VI d c G sw G VI p c GL k L T R R k L       (2.35) 

From a2 > 0:     21
, , ,4

;VI d c VI p c G sw i c swL k R k R T k T      (2.36) 

From a1 > 0:  , , .VI p c i c swR k k T   (2.37) 

Additional stability requirements can be obtained by examining the higher-order inequalities 

presented in (2.34). However, from the simple inequalities above, we can determine that there 

are upper and lower-limits to the quantity (LVI + kd,c) and a lower-limit to the quantity (RVI + kp,c).  

It is interesting to note that the virtual-inductance, LVI, is somewhat related to the kd,c 

derivative-gain of the controller. The two terms frequently show up together within the system 

transfer function. Likewise, the virtual-resistance, RVI, is somewhat related to the kp,c 

proportional-gain and we could infer that a virtual-capacitance, CVI, would be related to the ki,c 

integral-gain. The important thing to note here is that some small (less than ~LS) but non-zero 

derivative-gain is needed for stability (but it does not matter whether it comes from LVI, from kd,c, 

or a little from both). This will become of more importance in the following section. 

2.4. CURRENT CONTROL-LOOP SIMPLIFICATION USING VIRTUAL RESISTANCE 

In a voltage-sensor-less control algorithm, the real purpose of the measurement voltage being 

taken after the converter’s output voltage (on the other side of the interfacing impedance) is to 

relate the information from the current sensors to the PLL. If a current is applied in the wrong 
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axis (or in a different space-vector direction than estimated), a non-zero voltage will appear in 

the q-axis of the measurement point. The PLL will try to reduce this voltage to zero, realigning 

the system. However, for synchronization, there is no requirement that the interfacing-impedance 

needs to be inductive. Any type of impedance or transfer function may be used to convey the 

current-sensor information to the PLL. The typically-used impedance is inductive merely 

because of its ability to also filter the PWM voltage-harmonics from the inverter. 

With the interfacing impedance becoming virtualized and the synchronization voltage 

measurement bypassing the PWM-stage and voltage sensors (eliminating any filtering needs), we 

are free to select any interfacing impedance we wish. For simplicity, the most obvious choice, 

which is proposed here, is to use a resistance. This will have the following two benefits: 

1) The calculation of the virtual voltage-drop will be very straightforward, only consisting 

of three multiplication and three addition operations (if in the abc-frame). No integration 

or derivative approximations will be required, reducing computational complexity. 

2) The control of the dq-currents can be simplified. The commonly-used decoupling terms 

are implemented to cancel the steady-state voltage drop of an inductance in the system. 

With that inductance removed, the decoupling terms are no longer needed. The dq-axis 

currents and voltages will inherently be decoupled from each other. This further reduces 

computational complexity of the overall control algorithm. 

The regulation of the dq-currents can still be done using a PID-controller in each axis. The 

derivative-term in the controller is needed to ensure the stability; this was hinted at in the 

previous section and will be shown again here soon. The dynamics will also change due to the 

interfacing impedance now being just a resistor. The equivalent virtual-resistance control system 

(with the delays substituted by the 1
st
-order Padé approximation) is shown below in Figure 2.13. 
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In the figure, the positive-feedback loop of the sensing-point voltage has already been collapsed, 

as discussed previously and shown in equation (2.31). The transfer function of this system will 

also be a 4
th

-order system, having a form the same as in equation (2.32). The denominator 

coefficients are given below: 
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From the transfer function, we can make some similar observations on the stability, as was 

done in the previous section. We’ll assume the resistances, RG and RVI, to be larger than the grid 

inductance, LG, or sampling period, Tsw. We’ll also assume the sampling period to be slightly less 

than or equal to the grid inductance: Tsw ≤ LG. From these assumptions, we can make the 

following observations for the stability: 

From a3 > 0:   1
, ,4

2 ;d c G sw G VI p c Gk L T R R k L      (2.39) 

From a2 > 0:   21
, , ,4

0;d c VI p c G sw i c swk R k R T k T      (2.40) 

 
Figure 2.13: Padé-approximated dynamic system model of virtual-resistance control algorithm. 
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From a1 > 0:  , , .VI p c i c swR k k T   (2.41) 

Here, we reach very similar conclusions as were found in the previous section. The derivative 

controller-gain, kd,c, itself now has an upper and lower limit. Also, the sum of proportional gain 

and virtual resistance must exceed some value, ki,cTsw. The main difference here, with LVI = 0, is 

that now the derivative-gain, kd,c, must be non-zero to ensure stability of the system. 

If we can further assume that the positive-feedback-path from the inverter output-voltage to 

the sensing-voltage is sufficient so that the KVL equation (1.21) still holds, then we can further 

approximate the control system to only incorporate the PWM and ADC delays while letting the 

virtual-impedance function as the system plant. Equation (1.21) has been rewritten below as 

equation (2.42), except now ZI has been replaced with ZVI: 

  S G G I Iv v Z i v Z i       .I VI Iv Z i z v z    (2.42) 

This requires that the sampling rate of the control loop be sufficiently small, such that the phase 

delay between vS and vI' is negligible.  

As mentioned previously, the use of a virtual interfacing-resistance means that the inductive 

decoupling-terms of the dq-control algorithm can be eliminated. Thus, the proposed dq-control 

system will effectively reduce to the system shown in Figure 2.14. Conveniently, with the 

decoupling terms removed, the estimated frequency, 𝜔̂, is no longer needed by the control 

system. With this, a low-pass filter can potentially be removed from the PLL system as well (in 

some cases, the estimated frequency may be low-pass filtered to remove noise coming from the 

PLL voltage inputs). The addition of the sensing-point voltage, vS, is accounted for already in the 

previous control system diagram (Figure 2.13), but it is included here for comparison to the 

traditional method. 
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Going one step further, if the KVL equation (2.42) holds, then we can also develop an 

equivalent control-system model where the virtual-impedance functions as the plant. In this 

equivalent model, we will assume that the dynamics of the current will be tuned to be much 

slower than the single-cycle Padé-approximated delays. This allows us to also ignore the delay 

blocks, yielding a lower-order system with which we can analyze and easily estimate the 

dynamics. This simplified control system is shown below in Figure 2.15. The closed-loop 

transfer function of this system will be the following: 
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The poles of this approximated system can be easily found; they depend only on the PID 

controller tuning and the virtual resistance value (as expected from the original proposed system 

description). The values of the poles are listed here: 

 
Figure 2.14: Simplified dq-frame current-controller without decoupling terms. 

 
Figure 2.15: Equivalent PID-control system of the dq-current controllers using virtual-resistance. 
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Further simplification can be made by setting the proportional-gain to zero: kp,c = 0. The 

virtual resistance acts similarly to a proportional gain; the two parameters, RVI and kp,c, show up 

constantly together within the system transfer-functions within this chapter. From the previous 

stability analyses, there should be no issue having kp,c = 0 so long as RVI is sufficiently chosen. 

Next, recall that the derivative gain has an upper-bound, related to the inductance, LG. Since the 

grid inductance may usually be in the milli-Henry range or smaller, we can approximate this 

value to be roughly equal to zero. With kp,c = 0 and kd,c ≈ 0, the two left-half-plane zeros on the 

numerator of the transfer function in (2.43) will become negligibly large. Furthermore, one of the 

poles on the denominator will become extremely fast, making the other closed-loop pole 

dominate (and the transfer function will be overdamped, have a simple, almost first-order 

response). The control loop for the current will take the form shown in Figure 2.16 and the 

transfer function will reduce to: 
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Based on these results, the control of the current (if a pure integral-controller is used) will always 

take the form of a first-order low-pass filter, making the system have no overshoot, while being 

very easy to tune. The bandwidth of the current (the cut-off frequency) will be: 

 
Figure 2.16: Simplified I-control system of the dq-current controllers using virtual-resistance. 
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Assuming roughly four time-constants for the settling time, we also can get the expression: 
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,

4
.VI

st c
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k
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The limitation of this tuning approximation depends on the 2
nd

-order poles listed in equation 

(2.44). As the expression under the radical becomes closer to zero or less than zero, the system 

will become critically or under-damped, causing overshoot and ringing in the response of the 

current. The system can be maintained to have a first-order-like over-damped response so long as 

the following condition holds: 

  
2

, , ,4 .VI p c d c i cR k k k   (2.48) 

These claims are verified at the end of this chapter through MATLAB Simulink simulation and 

experimental results. 

2.5. COMPUTATIONAL COMPLEXITY COMPARISON OF CONTROL METHODS 

Moving on, as a means for comparison, the total number of mathematical calculations (add, 

subtract, multiply, divide, square-root, and table look-ups) required by the different control 

system variations can be examined. Before performing this comparison however, we must make 

some assumptions on the number of clock cycles required to perform each mathematical 

operation. A common platform for controlling a power-electronics system is to use a Digital 

Signal Processor (DSP) which has floating-point calculation support. The implementation of the 

Floating-Point Unit (FPU) is often unevenly distributed among the mathematical calculations 

(addition, multiplication, etc…) mentioned above. Addition and multiplication are often 

extremely efficient, while other operations like division and square-roots are somewhat slow 



 

63 

[21]. To form a basis for comparison, the number of clock cycles required to perform each 

mathematical operation will be assumed to have the values listed in Table 2.1. Addition, 

subtraction, multiplication, and table look-ups will be penalized by only 1 clock cycle. 

Computing saturation limits (used within PID-controllers) will be penalized 6 clock cycles, since 

this usually involves the use of two if-statements requiring a logical check, a branch statement, 

and the execution of the saturation. Division will be arbitrarily penalized by 20 clock cycles and 

the square-root operation will be 40 clock cycles. 

From the assumptions in Table 2.1, we can examine the total number of clock cycles required 

to implement some basic control-system tasks. These are presented in Table 2.2. The first several 

columns of the table list the frequency of each type of mathematical operation occurring in the 

listed task. The last column of the table lists the number of clock cycles required to implement 

each task, which is the product of the number of occurrences of each operation and the number 

of cycles required for each operation, each summed together. For example, a PI-controller 

Table 2.1: Assumed number of FPU clock-cycles required for basic mathematical operations. 

 Add/Sub Multiply Look-Up Saturate Divide Sqr-Root 

# Clk Cycles 1 1 1 6 20 40 

 

Table 2.2: Number of FPU operations and clock-cycles required for common control-system tasks. 

Task Add/Sub Multiply Look-Up Saturate Divide Sqr-Root # Cycles 

Clarke Xfrm 3 4     7 

Park Xfrm 2 4 2    8 

Integrator 1 1     2 

LPF / HPF 2 2     4 

PI-Controller 2 3  2   17 

PID-Controller 5 6  2   23 

Inv. Hypot. 1 2   1 1 63 
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requires 2 additions, 3 multiplications, and 2 saturation checks. The number of clock cycles 

required to implement a PI-controller will therefore be: (2×1) + (3×1) + (2×6) = 17 cycles. The 

last row of Table 2.2 stands for “inverse hypotenuse”, which is used within the PLL to normalize 

the angle error, described previously in equation (1.14). 

With this basis for comparison, we will consider here three systems: a traditional inverter 

control system (using a physical inductor and voltage sensors), one with a virtualized inductor, 

and one using a virtualized resistor. The computational loads for each system are presented 

below in Table 2.3. Note that the PWM calculations and the outer control-loop, which is used to 

generate the dq-current references, idq
*
, will be excluded. The three main columns of each system 

in Table 2.3, labeled as “PLL”, “dq-con”, and “Vir-Im”, correspond to the implementation of the 

phase-locked loop, dq-current controllers, and any virtual impedances, respectively. The 

improvements or degradations to the computational times (against the classical control) are 

color-coded and bolded in green or red, respectively. Detailed explanations for the modification 

Table 2.3: Comparison of computational-load for three different dq-control systems. 

Task (#cyc) 
Classical System Virtual Inductance Virtual Resistance 

PLL dq-con Vir-Im PLL dq-con Vir-Im PLL dq-con Vir-Im 

Add/Sub/Mult (×1) 1 10 0 1 10 12 1 4 6 

Clarke Xfrm (×7) 1 2  0 2  0 2  

Park Xfrm (×8) 1 2  0 2  0 2  

Integrator (×2) 1   1   1   

LPF / HPF (×4) 1  0 1  3 0  0 

PI-Controller (×17) 1 2  1 0  1 0  

PID-Controller (×23)  0   2   2  

Inv. Hypot. (×63) 1   1   1   

Subtotal Cycles: 102 74 0 87 86 24 83 80 6 

Total Cycles: 176 197 169 
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of values in the table are provided below: 

 PLL: in both virtualized systems, the Park & Clarke transforms are not needed since no 

voltage sensors are used. The voltage values from the dq-control algorithm can directly 

be used. In the virtual-resistance case, the PLL no longer needs to send the frequency 

estimate, 𝜔̂, to the dq-controllers for decoupling, so a low-pass filter can be removed. 

 dq-Con: in both virtualized systems, a PID controller must be used to guarantee stability. 

(The virtual-inductor algorithm could potentially omit the derivative-term if the virtual 

inductance, LVI, is sufficiently chosen.) The virtual-resistance algorithm sees a small 

improvement since the decoupling terms are no longer needed. 

 Vir-Im: both virtualized systems experience a loss in speed due to the added calculations 

for the virtual-voltages. The virtual-resistance case is more efficient than the virtual-

inductance case since the high-pass filters (for derivative approximation) are not needed. 

The two virtualized cases also assume that the virtual-voltages are computed in the abc-frame. 

From this comparison, we can see that the implementation of the virtual-resistance control 

algorithm actually saves a few clock cycles (about 4.0%) over the traditional non-virtualized 

control, even when considering the added computation of the virtualized components. This is 

because of the removal of the low-pass filter in the PLL (since 𝜔̂ is no longer needed or filtered), 

the removal of the Park & Clarke transforms in the PLL, and the simplification of the dq-current 

control (the removal of the “kp,c” terms and decoupling terms).  

To further simplify the virtual-resistance-based control algorithm and make it even more 

computationally efficient, we can arbitrarily select an interfacing-resistance of RVI = 1 Ω. Now, 

the three V×I multiplications needed to compute the virtual voltage-drops will vanish. Oddly 

enough, the calculation of the sensing-point voltage will now be mathematically equivalent to 
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simply subtracting the measured current-sensor values from the computed inverter output 

voltage. This will then be fed to the PWM and PLL blocks; while seemingly strange, this method 

does work! The result listed in Table 2.3 for a virtual-resistance system, 169 cycles, can be 

further reduced to 165 cycles (now a 6.2% reduction from the classical method) if a virtual 

resistance of 1 Ω is used and the virtualization is done within the αβ-frame or dq-frame, rather 

than the abc-frame. This eliminates 3 multiplications and 1 subtraction (a reduction of 4 floating-

point operations). Implementing a virtual-resistance in either a stationary or rotating frame 

should be equivalent since no additional voltage terms arise when moving a resistor’s voltage 

from the stationary-frame to a rotating-frame (as compared to the case for the voltage-drop of a 

virtual inductor or capacitor). Further improvement can be made if the kp,c proportional-gain 

terms are removed; an extra 4 cycles can be saved, increasing the reduction to 8.5%. 

2.6. VIRTUAL-RESISTANCE SIMULATION & EXPERIMENTAL RESULTS 

To validate the concepts discussed in this chapter, a MATLAB Simulink time-domain 

simulation model has been generated to simulate the inductor-less sensor-less control algorithm 

using a virtual-resistance for self-synchronization. The top-level diagram of the simulation model 

is shown in Figure 2.17. The inverter is simulated using MOSFETs with low on-state resistance 

(39 mΩ) to match the experimental prototype (introduced later in this section). The inverter is 

directly connected to the grid impedance, RG + LG, which connects to an ideal AC voltage 

 
Figure 2.17: MATLAB Simulink inductor-less voltage-sensor-less virtual-resistance simulation. 
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source. Only the inverter DC-bus voltage and line currents are sensed and fed to the control 

algorithm. The true grid voltage is also sensed but not used by the controller. The inverter PWM 

signals are generated from the duty cycle outputs of the dq-controller. Inside the “PWM 

Hardware” block is a constant-frequency triangle carrier wave used to generate the gate-

switching signals. An inverter deadband of tDB = 500 ns is simulated and the inverter switching 

frequency is set to 10 kHz (Tsw = 100 µs). 

These and other parameters of the simulation are summarized in Table 2.4 below. Smaller-

than-usual values for the grid phase-voltage magnitude (30 V RMS) and inverter DC bus voltage 

magnitude (100 V) were used. This was done to make the impedances have a more significant 

influence on the control system since the currents were small. The total grid impedance 

magnitude, |ZG|, was selected to be roughly 14% pu. The simulated converter was operated at a 

rated power output of ~1 kW. 

Table 2.4: Virtual-resistance simulation electrical parameters. 

Parameter Symbol Value Per-Unit 

Grid line-neutral peak voltage VGm 30√2 V 100% pu 

Inverter DC-bus voltage VDC 100 V --- 

D-axis current reference id
*
 10√2 A 100% pu 

Q-axis current reference iq
*
 0 A 0% pu 

Rated power output S 0.9 kVA 100% pu 

Per-Unit Base Impedance Zbase 3 Ω --- 

Grid parasitic inductance LG 1 mH 12.5% pu  

Virtual interfacing inductance LVI 0 mH 0% pu 

Grid parasitic resistance RG 200 mΩ 6.6% pu 

Virtual interfacing resistance RVI 1 Ω 33.0% pu 

Nominal grid frequency fg 60 Hz --- 

Inverter switching frequency fsw 10 kHz --- 

Inverter deadband time tDB 500 ns --- 
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The top-level diagram of the control system block is presented in Figure 2.18. The voltage 

drop of the virtual resistance (1 Ω in this case) is subtracted from the dq-controller output voltage 

before being sent to the PLL and output of the inverter. The PLL uses only the calculated 

inverter output voltage to synchronize; no external AC voltage measurements are used. A basic 

Sine-PWM (SPWM) algorithm is used for simplicity of the duty cycle calculations. The duty 

cycle outputs are sent to the “PWM Hardware” block, as mentioned previously. Additional 

details on the simulation model are provided within Appendix A. 

The control-system parameters of the simulation are presented in Table 2.5. The dq-control 

was tuned so the current would be over-damped with a settling time of Tstl,c = 50 ms. Meanwhile, 

 
Figure 2.18: Top-level control diagram for virtual-resistance Simulink model. 

Table 2.5: Virtual-resistance simulation control system parameters. 

Parameter Symbol Value 

dq-control Proportional Gain kp,c 0 

dq-control Integral Gain ki,c 80 

dq-control Derivative Gain kd,c 5×10
–4

 

PLL Proportional Gain kp,θ 80 

PLL Integral Gain ki,θ 1600 

High-pass Filter Frequency fHP 1 kHz 

Derivative Filter Frequency fD 3 kHz 

Algorithm Sampling Rate Ts 50 µs 
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the PLL was tuned to have a critically-damped settling time of Tstl,θ = 100 ms. The corresponding 

controller coefficients used to achieve these dynamic responses are listed in the table. 

The time-domain simulation results of three different grid-disturbance cases are presented in 

the following figures. In each simulation output figure, the true phase-A grid voltage, vGa, the 

generated phase-A inverter voltage, vIa, and the phase-A grid current, iA, are plotted vs. time. The 

list below describes the grid-disturbances and their corresponding figures: 

 Figure 2.19 shows results of a –5 Hz frequency step-change at t = 400 ms; 

 Figure 2.20 shows results of a 10% phase-angle jump (36-degrees) at t = 600 ms; 

 Figure 2.21 shows results of a 10% magnitude drop in grid voltage at t = 800 ms. 

In all of the simulation cases, the regulation of the current is very good during the disturbance. 

This is due to the very quick response of the virtual resistance (recall the virtual resistance acts 

similar to a proportional gain). Any change in the current immediately causes a change in the 

 
Figure 2.19: Simulink virtual-resistance simulation; 5 Hz frequency step change. 
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applied inverter voltage; this helps to make the control system immune to grid disturbances.  

 
Figure 2.20: Simulink virtual-resistance simulation; 36-degree phase step change. 

 

Figure 2.21: Simulink virtual-resistance simulation; 10% voltage step change. 
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The phase alignment of the current during the disturbances is governed by the PLL. In the 

frequency-jump and phase-angle-jump simulations, the PLL realigns with the grid voltage after 

about 100 ms, as designed. Note that the PLL is unable to regulate the phase-angle error in 

Figure 2.20 completely to zero. This is because of the phase-lag between the true grid voltage 

and the inverter connection point (which is also the sensing point) caused by ZG. This issue can 

be addressed by using impedance-compensation within the PLL; this is discussed in Chapter 3. 

In addition to simulation, an experimental test setup was constructed to validate the theory. 

The experimental setup consists of: a TDK-Lambda GEN 600-8.5 DC power supply, a SiC-

based three-phase inverter, three 50A-rated 1 mH interface inductors (to simulate a non-zero grid 

impedance), a Staco Energy 1210B-3 variac, and a Yokogawa DL850 isolated oscilloscope. An 

image of the experimental test bench is shown in Figure 2.22. Here, the power supply, inverter, 

inductors, variac, and oscilloscope can be seen. A laptop, connected via a USB cable, was used 

as the man-machine interface to the inverter control software. An additional 5 V power supply 

was also used to power the inverter’s DSP, gate driver ICs, isolated gate-drive supplies, current 

sensors, and voltage sensors. Additional details on the experimental test bench and the design of 

 
Figure 2.22: Experimental test bench for the virtual-resistance control algorithm. 
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the three-phase inverter are presented in Appendix B. 

To confirm the theory presented in this chapter, two key experiments were performed. The 

first experiment was a step-change in load (the d-axis current) where the controller had the same 

tuning parameters as the previous simulation. The values in Table 2.4 and Table 2.5 (excluding 

kp,θ and ki,θ) were chosen to exactly match those of the hardware test bench for this test. The PI-

controller coefficients of the PLL were revised to kp,θ = 16 and ki,θ = 64 to slow down the PLL’s 

dynamics and make Tstl,θ = 500 ms. These simulated and experimental results are shown below in 

Figure 2.23. The dq-control of the current was tuned to set the settling time of the AC current to 

be ~50 ms (as previously mentioned). From equation (2.47), we had: 

 
 

 
,

,

4 14
50 ms.

80

VI
st c

i c

R
T

k


    (2.49) 

The experimental results below agree very well with the simulated results and with the theory. 

There is a slight steady-state error in the magnitude of the experimental currents, but this is 

  
(a) (b) 

Figure 2.23: Results for over-damped step-change in load current: (a) simulation, (b) experiment. 
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believed to be simply an ADC-sensor-gain calibration error with the current sensors on the 

prototype. In both plots below, we can also see the sharp spike in the current at the moment of 

the step-change; this is due to the derivative-component of the PID-controllers. Again, some 

small value of derivative-control was required to ensure the stability of the system. We can also 

confirm that the first-order approximation of the system dynamics should still hold, based on 

equation (2.48). Plugging in values gives us: 1 > 0.16, which satisfies the condition: 

       
2 2 4

, , ,4 1 0 4 5 10 80 0.16 .VI p c d c i cR k k k         (2.50) 

In the second experiment, the controller tuning and virtual-resistance values were altered to 

yield a similar settling-time of the current, but produce an under-damped response. Specifically, 

the virtual resistance and integral gain were set to the following: RVI = 0.1 Ω and ki,c = 100. As 

done previously, the simulated and experimental waveforms for a step-change in load (the d-axis 

current) are shown below in Figure 2.24. Using the simplified 2
nd

-order analysis, we can see that 

  
(a) (b) 

Figure 2.24: Results for under-damped step-change in load current: (a) simulation, (b) experiment. 
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the dynamics should be under-damped (the inequality below is false): 

       
?2 2 4

, , ,4 0.1 0 4 5 10 100 0.2 .VI p c d c i cR k k k         (2.51) 

In both Figure 2.23 and Figure 2.24, we see that the q-axis current was not regulated to zero; 

some small steady-state error began to accumulate after the step-change in the d-axis current. As 

mentioned previously, this discrepancy is due to the actual inductance of the grid affecting the 

phase angle of the terminal voltage (a phase-shift develops between the true grid voltage and the 

sensing-point voltage). Again, this issue can be addressed by impedance-compensating the PLL, 

to be discussed in the following chapter. 

We can also compare the dynamic performance of the virtual-resistance system to the 

simplified 2
nd

-order transfer function model described by equation (2.43). However, to make this 

comparison fair, we must be mindful of any nonlinearities present in the real system. The PI-

controllers are usually implemented to include saturation blocks; this helps to prevent integrator-

wind-up and can help reduce transient current spikes by limiting the output voltage of the PI-

controllers. However, the transfer function listed in (2.43) does not contain any saturation of its 

internal states.  

To get around the saturation issue, we can instead look at a rate-limited step-response of both 

systems. A comparison between the full PWM-based simulation model and the simplified 2
nd

-

order transfer function model is provided in Figure 2.25, where the true step-response is shown 

in (a) and the rate-limited step-response is shown in (b). The rate of the reference current was 

limited to ±1000 A/s in the second case.  

We can see from Figure 2.25 (a) that applying a true step-input causes a large discrepancy 

between the realistic and simplified simulations. This is because of the derivative-term in the 

PID-controller. The unsaturated output from the PID-controller would normally be very large in 
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this case, causing a swift jump in the current. Due to the saturations added to the realistic PWM-

based model, the voltage output of the PID-controller is limited to only ±25 V, causing the 

output current to only slightly rise before the transient response begins. This phenomenon can 

also be seen in the previous simulated and experimental results, shown in Figure 2.24. 

In the rate-limited step-response simulation, shown in Figure 2.25 (b), the two responses are 

practically identical. The saturation blocks do not take effect in this case, since the slope of the 

error signal multiplied by the kd,c value is still quite small (recall that typical kd,c values should be 

roughly less than the magnitude of the grid inductance, LG, which was around 10
–4

). Thus, we 

can conclude that the 2
nd

-order model can provide a reasonable estimate of the response 

dynamics in the case of low ramp-rate transient conditions. 

2.7. CHAPTER 2 SUMMARY 

To conclude, virtual impedances are a useful mathematical tool to help synchronize a DC/AC 

power electronics converter to an AC grid. Using approximated derivatives, virtual-inductances 

can be used to emulate the behavior of interfacing inductors. If adequate grid-filtering is 

available, a virtual interfacing-impedance can be used to fully replace a physical interface 

impedance, simplifying the physical system and reducing the cost, size, weight, and power loss. 

  
(a) (b) 

Figure 2.25: Comparison between full PWM-based simulation & simplified 2
nd

-order transfer 

function when driven by: (a) a pure step-input, (b) a 1000 A/s ramped step-input. 
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AC voltage sensors can also be removed from the system, being replaced by virtual voltage-

sensing-points. This can further reduce system costs and complexity. Any range of virtual 

impedances or transfer functions may be selected to generate a virtual voltage-sensing-point. 

However, the most advantageous is the use of simply a virtual resistance. The computation of the 

virtual-resistor voltage-drops and the regulation of the dq-frame currents can be greatly 

simplified in this case, resulting in roughly 8.5% less computational load than the original 

system. Simulation and experimental results of a virtual-resistance self-synchronizing inverter 

system confirm the functionality of the algorithm and its tolerance to grid disturbances. 

It should be noted that all of the virtual impedance topics presented here were applied to the 

inverter output voltage, without altering the voltage-synchronization point seen by the PLL. The 

purpose of this is to affect the perceived interfacing impedance between the inverter and voltage-

sensing point. Even with the removal of the real interfacing impedance, the PLL sensing-voltage 

was still placed at the grid terminals, vS. In the next chapter, we will explore some benefits of 

applying virtual impedances to influence the voltage-synchronization point; the purpose is to 

affect the total impedance between the sensing point and Thévenin-equivalent voltage source of 

the grid. This can impact the stability and dynamic performance of the PLL and converter, as we 

will soon see. 
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3. APPLYING VIRTUAL IMPEDANCE AT THE SYNCHRONIZATION POINT 

In this chapter, some additional uses and benefits of implementing virtual impedances within 

DC/AC converter control algorithms are presented. First, the impedance-compensation of a PLL 

algorithm is discussed. This can be used to cancel out the phase-angle difference between the 

measurement point and the AC source, allowing for unity-power-factor at the source. A novel 

method is proposed and is compared with an alternate method which uses only a partially-

virtualized impedance. Next, a more general approach to estimate the quasi-static stability of the 

SRF-PLL algorithm in a DC/AC converter system using virtual impedances is proposed. This is 

followed by a thorough analysis of the small-signal stability using locally linearized models. 

Finally, the impedance-compensated PLL algorithm, together with the virtual-resistance-based 

inductor-less self-synchronizing algorithm, is examined and proposed as an alternate means for 

implementing position-sensor-less Back-EMF-based permanent magnet (PM) motor control. 

3.1. IMPEDANCE-COMPENSATED PHASE-LOCKED LOOPS 

The topics presented here in this chapter differ from those in Chapter 2 by the location in 

which a virtual-impedance is applied within the system. As shown in Figure 3.1, we can apply a 

virtual impedance voltage either to the inverter output voltage or to the PLL input voltage. In 

 
(a) 

 
(b) 

Figure 3.1: Addition or subtraction of virtual voltages from: (a) the inverter voltage; (b) the voltage 

sensing point. 
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Figure 3.1 (a), a virtual impedance applied to the inverter output voltage, denoted ZVI, can shift 

the apparent connection point of the inverter to the grid (as seen by the controller). However, in 

(b), we can apply a virtual impedance to the voltage-sensing point, denoted ZVS, which can shift 

the apparent measurement point of the PLL to be closer or further from the true grid voltage. 

Shifting the apparent measurement point can be thought of as equivalently adding or 

cancelling out grid-side impedances. As discussed previously, along with equation (1.21), when 

the line currents are near zero, the PLL will synchronize to the true grid angle; the relative angle 

between the PLL frame and grid-frame, δ, will be small. However, at heavy loading conditions, 

the larger voltage drop across the grid impedance will introduce a larger phase shift at the PLL 

measurement point. This is illustrated in Figure 3.2 below (only inductive line impedances are 

considered). By applying virtual impedances at the measurement point, we can cancel out some 

of the voltage drop produced by the grid impedance, effectively reducing the steady-state angle-

error between the PLL and the true grid angle. This can make the PLL appear to be connected to 

a stiffer point in the grid, moving it closer to the true Thévenin-equivalent grid voltage. In 

addition, this impedance cancellation (or compensation) can also alter the PLL’s dynamic 

performance. 

   

 

(a) (b) (c)  

Figure 3.2: Space-vector diagram of system voltages and current (ignoring resistance) at: (a) light 

load; (b) load-increase transient scenario; and (c) heavy load. 
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To implement virtual impedances at the voltage sensing point requires modifying the PLL 

input voltage using impedance voltage-drops within the control software. Note that this 

impedance-voltage-drop can be either added or subtracted and this can be done in either the 

stationary-frame (fully virtualized) or the rotating-frame (usually partially virtualized). To do 

this, the PLL’s normal sensing voltage, vS, can be augmented to become vS' by adding (or 

subtracting) the voltage-drop across a virtual impedance, ZVS, calculated via Ohm’s Law: 

 .S S VSv v Z i    (3.1) 

A block diagram illustrating the application of virtual impedance to the PLL’s sensing voltage in 

the dq-frame is shown in Figure 3.3 below.  

This approach was previously proposed by J. Suul, et al. in [19], using only partially 

implemented virtual impedances. In [19] the voltages of a virtual resistance and partial virtual 

 
Figure 3.3: Inverter control block diagram utilizing rotating-frame virtual impedance at the 

voltage-sensing point. 
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inductance were subtracted to move the PLL voltage closer to the true grid voltage, vG. This is 

expressed by the following equation: 

 , ,
ˆ .S dq S dq VS dq VS dqv v R i j L i     (3.2) 

However, there are two main drawbacks with this approach. First, the virtual inductor voltage is 

not fully implemented. As described in Chapter 2 with equation (2.3), virtual inductors 

implemented in the dq-frame usually only include the steady-state voltage-drop term. The 

derivative term is ignored. This means that if the outer control loop of the inverter controller 

changes the dq-current reference values (and thus changing the actual currents), the PLL will 

experience a transient disturbance in its synchronization angle, until the currents again stabilize. 

Second, the implementation of the steady-state inductor voltage-drop relies on the estimated 

frequency of the PLL, 𝜔̂. This not only makes analysis of the dynamics more challenging, but 

also means that the compensation of impedance voltages during a transient event may be slightly 

incorrect until the PLL’s frequency estimate stabilizes. 

 
Figure 3.4: Inverter control block diagram utilizing stationary-frame virtual impedance at the 

voltage-sensing point. 
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A proposed alternative is to impedance-compensate the PLL in the stationary-frame, using 

the high-pass filter method described in Chapter 2. The control system block diagram for this 

method is shown below in Figure 3.4. With this method, the inductor voltages are fully 

implemented and the calculation of these inductor voltages does not rely on any inputs from the 

PLL, effectively decoupling the two.  

As a means of comparing these two approaches, a time-domain simulation was performed in 

MATLAB Simulink, using similar parameters to those presented in Table 2.4. The results are 

shown in Figure 3.5. To emphasize the effects in a weak-grid connection, the grid inductance, 

LG, was increased from 10% pu to 80 % pu. In Figure 3.5 (a) and (b), the simulation results using 

no impedance compensation (no comp), 50% dq-frame compensation (dq comp), and 50% abc-

 
Figure 3.5: Simulink simulation comparison of impedance compensation methods. 
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frame compensation (abc comp) are shown. Figure 3.5 (a) shows the q-axis voltage as sensed by 

the PLL and Figure 3.5 (b) shows the PLL angle error from the true grid angle. The axis of the 

applied current also influences the performance of the two different impedance compensation 

methods. For this reason, the values of the dq-currents vs. time are also shown in Figure 3.5 (c). 

Any injected current which causes a significant change in the q-axis voltage will more strongly 

affect the PLL, causing a transient in the estimation angle. For this reason, the current applied in 

the simulation is all reactive, in the q-axis. Thus, roughly 20 kVAR of reactive power is 

delivered at the grid’s Thévenin source. To further highlight the difference between the two 

compensation methods, a high ramp rate of the current was used; the current references in the 

simulation varied by 2000 A/s. This will cause the derivative term of the inductor voltage to be 

more significant, which only the proposed compensation method can address. 

As shown in the figure, both the dq-frame and abc-frame impedance compensation methods 

are effective at eliminating some of the steady-state angle error. With no compensation, the 

steady-state angle error is roughly 3 degrees at full load. Both compensation methods reduce this 

by 50% and have a steady-state angle error of about 1.5 degrees. However, during the transient 

periods of the current, the abc-frame compensation method is affected less. We see a strong 

transient in the sensed q-axis voltage (roughly 10 V) in the uncompensated and dq-frame-

compensated systems. The proposed abc-frame-compensated system has a smaller voltage spike 

and smaller angle-shifts during the ramps in current. 

3.2. QUASI-STATIC STABILITY RANGE OF SRF-PLL FOR WEAK GRIDS 

Here, we revisit the analysis of the basic SRF-PLL, presented in Chapter 1. The typical 

assumption is that the grid impedance, ZG, will not affect the control of the dq-currents, so long 

as the inverter voltage is controlled to satisfy the KVL expression (1.22), restated here: 
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 .I S Iv v Z i   (1.22) 

Restated another way, we can say that if the inverter voltage, vI, and current, i, are controlled 

properly and the interface impedance, ZI, is known, then the voltage difference between the 

inverter voltage and sensing-point voltage, vS, will also be known. The grid impedance, ZG, will 

not influence the voltage between inverter and sensors. It is the job of the dq-controllers to 

regulate the current and in the process, regulate this voltage difference. 

In this section, we now consider the interaction between the sensing voltage, vS, the grid 

impedance, ZG, and grid voltage, vG. Applying KVL in the other direction, we can express the 

sensing point voltage in terms of the grid voltage and grid impedance, as shown below: 

 .S G Gv v Z i   (3.3) 

The PLL, which is driven by the sensing voltage, vS, is trying to lock to the grid voltage, vG. 

However, the grid impedance, ZG, can influence the sensing voltage; this can impact the PLL’s 

ability to synchronize, as we’ll soon see. Following a similar analysis proposed by D. Dong et al. 

in [22], we can modify the basic SRF-PLL control model (shown previously in Figure 1.5) to 

accommodate the additional voltage of the grid impedance, ZG, which augments the sensing 

voltage. This is shown in Figure 3.6 below; note that here we assume the current references, idq
*
, 

to be approximately equal to the real currents, idq. This assumption should be safe, since the 

 
Figure 3.6: Nonlinear SRF-PLL control-system model showing the grid-impedance interaction. 
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dynamics of the current are usually much faster than the PLL control loop. This also means that 

it is the magnitude, phase, and frequency of the current (the latter of which is derived from the 

PLL) which influences the “ZG i ” impedance-voltage-drop term – this will be important soon. 

To better understand how the grid impedance affects the PLL’s synchronization, we need to 

simplify the previous model. Beforehand, we will first define some of the space-vector 

components; we will represent the grid voltage in a stationary-frame space-vector form as: 

    , cos sin ,G Gm G Gm Gv V jV     (3.4) 

where VGm is the grid voltage peak-magnitude and θG is the true angle of the grid. We’ll also 

represent the grid current in a stationary-frame space-vector form, defined as: 

    ˆ ˆcos sin ,m i m ii I jI         (3.5) 

where Im is the grid current peak-magnitude, 𝜃 is the estimated angle from the PLL, and ϕi is the 

relative angle of the current, with respect to the PLL angle. The parameters of the current can 

also be described as follows: 

  ˆ ,m ii i ji I              where     

 

2 2 2 2 ,

arctan .

m d q

i q d

I i i i i

i i

 



    




 (3.6) 

Lastly, we also need to define the magnitude and phase angle of the impedance: 

 ˆ ,
GG G G G ZZ R j L Z          where     

 

 

22 ˆ ,

ˆarctan .
G

G G G

Z G G

Z R L

L R



 

  




 (3.7) 

Now, if we apply the Clarke/Park transforms to the sensing voltage, vS, and examine the 

expression for the q-axis voltage (which is used to obtain the angle-error), 

    ˆ ˆsin cos ,Sq S Sv v v      (3.8) 

and then substitute the sensing voltage with equation (3.3), we will obtain the following: 
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        ˆ ˆsin cos ,
G GSq G Z G Zv v v v v          (3.9) 

where the voltage vZG is the voltage drop on the grid impedance. After some simplification of the 

Park transform, the resulting q-axis voltage can be expressed as:  

    ˆsin sin .
GSq Gm G G m i Zv V Z I        (3.10) 

Note that the time-varying components of the second terms (involving vZG) cancel, since both the 

current and the Park transform rotate with the same angle, 𝜃; only the constant phase-shift terms 

remain. From equation (3.10), we can develop a new quasi-static PLL model, shown below in 

Figure 3.7, which includes the grid-impedance interaction. 

From this model, we can see that there are two feedback loops which influence the PI-

controller of the PLL. Following from [22], the top loop, in blue, is the traditional negative 

feedback loop used to synchronize to the true grid angle, θG, which generates a q-axis voltage 

labeled as vSq–. Meanwhile, the bottom loop, in red, is a positive feedback loop which aims to 

desynchronize the PLL from the grid and synchronize to the inverter voltage, which generates a 

q-axis voltage labeled vSq+. The influence of the self-synchronization loop is determined by Im, 

 
Figure 3.7: Quasi-static SRF-PLL control system including the grid-impedance interaction. 
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ϕi, |ZG|, and ϕZG. A higher injection current, larger grid impedance (a weaker grid), and a larger 

combined current and impedance angle (larger ϕi + ϕZG) give a stronger self-synchronization 

feedback effect. The sign of the self-synchronization voltage, vSq+, is determined by both the 

power-flow direction (related to ϕi) and the grid’s reactive components (ϕZG). One proposed 

change to the analysis shown here from [22] is the inclusion of ϕi; this allows us to consider the 

PLL’s stability over the full range of dq-operating points, providing a more generalized view. 

Due to the pure integrator within the PI-controller, the PLL will always try to drive the total 

q-axis voltage to zero, vSq = 0. At any loaded operating point, the self-synchronization loop will 

generate a constant voltage which the grid-synchronization loop must counteract. This means 

that a finite angle error, (θG – 𝜃) = δ, must exist to have some non-zero vSq– to cancel out the 

disturbance of vSq+. 

With the trigonometric sine function in both loop paths (a residual of the Park transform), the 

grid-synchronization voltage, vSq–, is limited by the grid voltage magnitude: 

 .Gm Sq GmV v V     (3.11) 

When the disturbance, vSq+, is larger than the maximum output of vSq–, no steady-state 

equilibrium point, (θG – 𝜃), can be found to ensure vSq = 0. Therefore, the large-signal stability 

requirement for the PLL in a weak-grid condition can be expressed as the following: 

  sin .
GSq Sq i Z G m Gmv v Z I V       (3.12) 

The result of equation (3.12) shows that a larger grid voltage, a lower grid current magnitude, a 

smaller grid impedance magnitude, and a smaller net sum of grid-current and grid-impedance 

angles will result in a more stable operation of the PLL. 

An existing method, discussed in [19], to enhance the PLL’s quasi-static stability in a weak-

grid operation is to alter the PLL’s sensed voltage, vS, by subtracting a virtual-impedance voltage 
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to counteract the grid impedance, ZG. By virtually shifting sensing-point voltage closer to the 

true Thévenin-equivalent voltage of the grid, the PLL will behave as if it is connected to a more 

stiff-grid. This technique was discussed in the previous section, and agrees with the analysis 

above. However, the proposed alteration to this technique is to consider alternate combinations 

of virtual impedances to further enhance the stability in certain operating cases. 

In the cases of connecting active loads and sources to the grid, such as electric vehicle (EV) 

battery chargers and photo-voltaic (PV) installations, only the grid-voltage magnitude, VGm, the 

grid impedance, ZG, and the real power flow from the converter may be fixed values. In this 

simple scenario, the only other control variable may be the reactive power generation, which in 

turn affects the angle of the current, ϕi. The valid range of operating points can be found by 

simultaneously solving the system of nonlinear equations below, which represent the power 

balance between the inverter, grid impedance, and the Thévenin grid voltage, given as: 

 
 

 

2
*

2
*

3 3 ,

3 3 ,

I G G

I G G

P I R V I

Q I X V I

  


  


 (3.13) 

where RG and XG are the resistance and reactance of the grid, respectively, PI and QI are the real 

and reactive output power of the inverter, respectively, VG is the grid voltage, and I is the line 

current. The grid voltage is usually assumed to have a magnitude of 1 pu and a phase angle of 0°. 

The interfacing impedance is usually much smaller than the grid impedance in a weak-grid 

scenario and will be ignored here (ZI could be considered to be lumped into ZG). 

As a simple example, we can consider the case where the reactive power of the inverter is set 

to also be 0 VAR. If we also assume the grid impedance is highly inductive (assuming a phase 

angle of 80°), we can generate the plot shown in Figure 3.8 (a) on the next page. From this plot, 

we can see the range of possible operating points of the converter. The dark shaded areas 
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indicate operating conditions which do not have a numerical solution to the power-balance 

equations. The lightly shaded areas are operating points which fail the quasi-static stability 

requirements. The white regions represent operating conditions where a valid power solution is 

found, and the operating point is stable according to equation (3.12). We can see in Figure 3.8 (a) 

that with a highly inductive grid impedance, the power transfer capability cannot exceed roughly 

PI = 1 pu with a grid impedance |ZG| > 0.6 pu in the inverter-case. For the rectifier-case, the limit 

of PI = 1 pu is reached around |ZG| > 0.45 pu. 

If we now relax these requirements by allowing the converter to generate reactive power, we 

can observe that more valid operating points exist, which still satisfy the power balance 

equations. The new system of equations used ensures the real power is balanced and the voltage 

magnitude at the sensing side (or inverter side) is controlled to a magnitude of 1.15 pu (avoiding 

over-modulation under Space-Vector PWM). The system of equations in (3.13) is revised to: 

      
 (a) (b) 

Figure 3.8: Quasi-stability & power transfer capability for DC/AC converter vs. grid impedance 

with: (a) no reactive power generation; (b) sensing voltage magnitude regulation via reactive 

power. 
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 
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*3 3 ,

1.15 .

I G G

G G

P I R V I

V Z I

  

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

 (3.14) 

The resulting stable points of the relaxed system are shown in Figure 3.8 (b); from here, we can 

clearly see that the valid operating ranges of the converter increase by allowing reactive power. 

To obtain an even more generalized view, we can hold the magnitude of the grid impedance 

constant and simply sweep the real and reactive power values, PI and QI. We will revert back to 

equation set (3.13) for defining valid operating conditions. Figure 3.9 below shows the results of 

sweeping real and reactive power operating with a grid impedance magnitude of |ZG| = 0.8 pu 

and a grid impedance angle of ∠ZG = 80 degrees. The range of possible operating points maps 

out a sort of “parabolic” shape on the PQ-plane. We can see in the figure that, of this range of 

possible operating points, the quasi-static stability analysis shows that there are some operating 

points where the PLL will be unable to synchronize to the grid voltage. In Figure 3.9 (a), no 

impedance compensation is applied. However, in Figure 3.9 (b), a (0.5 + j0) pu resistive 

compensation is applied. The compensation allows us to shift the range of quasi-stable operating 

 
(a) 

 
(b) 

Figure 3.9: Quasi-stability vs. power transfer capability for weak-grid connection: (a) no 

compensation, (b) 0.5 pu resistive compensation. 
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points so that different operating conditions can be achieved.  

As mentioned previously, the compensation impedance, ZVS, need not cancel out the grid 

impedance entirely. By simply shifting the total phase or total magnitude of (ZG – ZVS), we can 

alter the range of quasi-stable operating points. By applying virtual impedances at the sensing-

point, equation (3.12) will effectively change to: 

  sin .
G VSSq Sq i Z Z G VS m Gmv v Z Z I V         (3.15) 

Thus, a change in the combined phase angle or combined magnitude may be all that is needed to 

enhance the quasi-stability of a particular operating range. Also note from the equation above, 

that if we select ZVS = ZG, the PLL will be perfectly compensated to synchronize to the true grid 

voltage and all of the valid operating points will become quasi-stable. 

3.3. IMPEDANCE-COMPENSATED SYSTEM STABILITY ANALYSIS 

The quasi-stability analysis in the previous section provides a rough estimate of which 

operating points may be possible when running a DC/AC inverter system. However, the previous 

analysis does not take into account any small-signal behavior of the system. Furthermore, much 

of the control system has been omitted. The resulting quasi-static stability equations also do not 

rely on any of the PLL’s PI coefficients or the dq-control’s PID coefficients! 

To assess the small-signal stability of the control algorithm, a complete dynamic system 

model can be developed, as was done in Chapters 1 and 2 previously. In this section, we will 

develop the necessary system of 1
st
-order differential equations to model an inverter system 

using and impedance-compensated PLL. 

We will again start with the model presented in Chapter 1 and modify it to match the present 

control system. First, we will incorporate the single-cycle delays into the model. Assuming that a 

physical interfacing-impedance, ZI, is still used, we will now have three delays within the control 
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system: two ADC delays for the sampling of vS and i, and one PWM delay for outputting vI. 

Building off of Chapter 2, we can introduce a new space-vector variable, 
,Sxy LPv , to represent the 

low-pass filtered sensing-point voltages. Applying the delay in the xy-frame gives the following: 
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 (3.16) 

Splitting the above equation into real and imaginary parts gives us 
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 (3.17) 

The remainder of the dynamics will actually be very similar to the model developed in 

Chapter 2, with a few exceptions. The use of a physical interface-inductor, ZI, means that the 

current control loops can revert back to using a simpler PI-controller. This will eliminate two 

state variables from the system. The overall system dynamics will still be 14
th

-order however, 

due to the addition of the two differential equations above. Furthermore, we will need to redefine 

the inverter output voltage and the PLL error-input signal to be in terms of the augmented 

sensing-point voltage, vS', rather than vS. Also, we’ve introduced the space-vector quantities, 

,Idq LPv , to model the PWM delays. A summary of the modeling equations is provided below, 

starting with the coordinate-frame transformation equations: 
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 (3.18) 
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On the following page, the set of differential equations used to describe the system dynamics is 

provided. The two equations above in (3.17) are listed as equations (9) and (10) in the set:  
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(3.19) 

Note that equation (14) in the set has been modified to use the augmented sensing-point voltage, 

vS'. To be consistent with the previous chapters, equation (14) in the set is still normalized by 

dividing out the magnitude of the sensing-point voltage. However, in the analysis presented in 
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the previous section, following D. Dong et al. in [22], simply uses the q-axis voltage as the 

angle-error signal. This will introduce a gain in the PI-controller coefficients of the PLL 

proportional to the magnitude of the sensed voltage. To cancel out this gain and make the 

analysis follow that of the previous section, equation (14) of the previous set could be revised to 

the following: 

 ,
Sq

v

vd

dt k






   (3.20) 

where kv is simply a constant equal to the nominal magnitude of the grid voltage (~170 V). Since 

this redefines the angle-error signal, equation (13) of the set will also be affected. 

In addition to the set of differential equations, we also can describe the remaining algebraic 

equations which relate the other various quantities in the control system; these are listed below. 

As mentioned above, the augmented sensing-point voltage also has an effect on vI, but this is 

shown in the calculation of the inverter voltages, which are equations (7) and (8) in the set: 
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 (3.21) 

Note that, in the dq-frame inverter voltage calculations, the sum of virtual sensing-point 

impedance and interface impedance should be used for decoupling the currents. This is due to the 

fact that, by impedance-compensating the PLL, the impedance voltage-drops that were removed 
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(subtracted) are effectively moved to the “other side” of the virtual sensing point. Thus, by 

decreasing the effective ZG, we increase the total effective ZI. This is summarized in the 

following equations. The use of virtual interface-impedance does not affect the sensing-point-to-

grid impedance, but altering the sensing point using a virtual-sensing-impedance does affect the 

interface-impedance. We can define the effective interface impedance, ZI,eff, and effective 

sensing-point-to-grid impedance, ZG,eff, as follows: 
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I eff I VI VS
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Z Z Z Z
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 (3.22) 

Another item worth noting is the reoccurrence of the voltage-divider equations for 

calculating the xy-frame sensing-point voltages, equations (9) and (10) in the set (3.21). These 

return since we have a physical interfacing impedance once again. 

To help the reader grasp the different delays and space-vector relationships in this control 

system model, a MATLAB vector plot has been produced for a system running with some 

 
 (a) (b) 

Figure 3.10: Space-vector plot of voltages & currents in the IC-PLL algorithm in: (a) the xy-frame, 

(b) the dq-frame. 
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positive d-axis current reference and a zero q-axis reference (i.e. id
*
 > 0 and iq

*
 = 0). This is 

shown in Figure 3.10 below. The impedance voltage-drops are also shown, as well as some of 

the low-pass filter variables, and some other vectors which have not been previously defined.  

3.4. ENHANCEMENT OF STABILITY USING IMPEDANCE-COMPENSATION 

With the dynamic system model developed in the previous section, a computer-aided 

stability analysis was performed on the impedance-compensated PLL. To relate the results back 

to Section 3.2 (and the work in [22]), the PLL error signal, εθ, was defined to be simply vSq' / kv, 

as described previously in equation (3.20). The value of the constant was set to be kv = 17 

(providing a gain of ~10x to the PI-controller coefficients). The Jacobian matrix was formed 

from the equation set (3.19) and was computed symbolically using MATLAB. The Jacobian was 

then evaluated at many operating points, corresponding to the PI and QI values presented 

previously in Figure 3.9. At each operating point, the eigenvalues of the Jacobian were found 

numerically and the eigenvalue with the largest real-part was checked for stability (to see if it 

was greater or less than zero).  

The plot in Figure 3.9 was regenerated with the small-signal stability information being 

added to the plot, based on the localized stability analysis. The results corresponding to the case 

 

 
Figure 3.11: Small-signal stability vs. power transfer capability without impedance compensation. 
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in Figure 3.9 (a), without any impedance compensation, are presented here in Figure 3.11. From 

the results in Figure 3.11, we can see that the quasi-static stability developed within Section 3.2 

really only provides an “upper bounds” to the actual stable operating capability of the inverter. 

When taking into consideration the dynamics of the current controllers, the PLL, and the time-

delays introduced in the digital system implementation, the range of stable operating points is 

actually only a small subset of the range predicted by the quasi-static stability analysis. 

To see the benefits of impedance-compensation, we can re-run the computational model used 

to generate Figure 3.11, this time with some amount of compensation applied. This is shown 

below in Figure 3.12. Here, the value of ZVS is set to ¼ of the grid impedance, ZG. We can see 

that, not only does the quasi-static stability range increase (as expected), but the predicted small-

signal stability range has also been enlarged! Thus, we have shown that the use of impedance-

compensation can improve the stability of a converter, by allowing the converter to synchronize 

to a more-stable point within the electrical system. Note that other parameters will also obviously 

affect the stability. The tunings of the PI-controllers and the selection of the high-pass filter 

frequencies for the derivative- approximations will also affect the range of small-signal stability. 

 

 
Figure 3.12: Small-signal stability vs. power transfer capability with 25% impedance 

compensation. 
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3.5. SENSOR-LESS PMAC MOTOR TERMINAL-VOLTAGE SYNCHRONIZATION 

One additional application of virtual-impedances within DC/AC converters is in the control 

of three-phase AC machines. We have shown previously in Chapter 2 that self-synchronization 

of a converter to its own terminal voltage (while still regulating current) is possible. However, 

because the self-synchronizing algorithm aligns the PLL to the d-axis of the terminal voltage, 

some phase-angle error will exist between the terminal voltage and the Thévenin-equivalent 

voltage of the AC source. This has been discussed in the previous sections of this chapter. 

However, if we combine this self-synchronizing algorithm together with the impedance-

compensation method to shift the PLL angle to the true Thévenin-equivalent-voltage angle, we 

can control the current from the reference-frame of the Thévenin AC source, using only the 

terminal voltage and current sensor information! This is the main objective in many back-EMF-

based sensor-less motor control algorithms for permanent-magnet AC machines [23]. 

 
Figure 3.13: Proposed sensor-less PMAC control block diagram utilizing virtual impedance 

compensations. 
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A block diagram of the proposed control algorithm is shown in Figure 3.13. To be consistent, 

we will use the same variable-names as before. In this case, the grid voltage, vG, represents the 

back-EMF of the machine due to the time-varying flux linkages. The impedances RG and LG 

represent the motor winding resistance and inductance, respectively. To completely cancel out 

the motor impedance and synchronize the PLL at the back-EMF voltage point, a virtual 

impedance, ZVS, can be subtracted from the sensing voltage. Note that the unadjusted sensing 

voltage, vS, in this case is the same as the inverter’s output voltage, vI', as in Chapter 2: 

 , , , ,HP
S abc S abc VS abc S abc VS VS abc
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v v Z i v R L i

s





 
      

 
 (3.23) 

where we could select RVS = RG and LVS = LG. To implement this, the winding impedance must 

be known. The winding impedances do vary with temperature and loading conditions, but are 

generally more predictable than the parasitic impedance of the grid. Even with some small errors 

in parameter values, the application of equation (3.23) should place the PLL’s angle close to the 

true angle of the back-EMF. 

Subtracting a virtual-impedance’s voltage from the PLL does not eliminate the impedance 

from the virtual system; it simply gets shifted to the other side of the measurement point. In other 

words, the act of impedance-compensating the PLL effectively puts the sensing-virtual-

impedance, ZVS, between the perceived sensing point and the inverter output, making it appear 

like an interfacing-impedance. Therefore, the impedance-compensation of the PLL is really all 

that is required to apply an interfacing-impedance to the system for the inner dq-current loop to 

respond to. This alteration alone will work for sensor-less control of a PM machine. 

However, if a different interfacing-impedance, other than ZVS, is desired, we can further alter 

the control system to adjust the computed inverter output voltage, vI, as previously shown in 

Figure 3.13. For example, if we wish to use only an interfacing resistor between the voltage 
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sensing point and inverter output, we can augment the inverter output voltage computed by the 

dq-current controllers, vI, by subtracting the desired interfacing-impedance voltages and adding 

the undesired interfacing-impedance voltages. This can be used to effectively cancel out the ZVS 

impedance from the interfacing location and replace it with another impedance, ZVI.  

As an example, the cancellation of the motor winding impedance, ZG, and addition of a 

virtual interfacing resistance, RVI, can be performed. With this approach, the same simplifications 

to the dq-current control algorithm can be made, reducing some of the computational complexity 

of the control loop. This example is shown mathematically below: 
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
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 (3.24) 

where again, we could set RVS = RG and LVS = LG. With this second modification to the control 

system, the effects of the ZVS impedance (and the ZG impedance) will be completely removed. 

To help visualize the changes, we can follow the progression of applying equations (3.23) 

and (3.24) as illustrated in Figure 3.14. In Figure 3.14 (a), we have the original system. The 

sensing voltage is located at the inverter terminals. In Figure 3.14 (b), the sensing voltage is 

moved to the Thévenin-equivalent voltage of the machine by impedance-compensating the PLL. 

Note that this places the winding impedance, ZG, between the inverter and measurement point, 

making it behave as if it were an interfacing-impedance. Lastly, in Figure 3.14 (c), the winding 

impedance is cancelled out from the inverter voltage and a virtual interfacing resistance, RVI, is 

added, effectively placing it between the inverter and voltage sensing point. Note that if the last 

step is omitted, the traditional dq-current control algorithm with decoupling terms can be used. 

In the case of parameter variation or estimation error, the virtualized sensing-point voltage 

will not be equal to the true back-EMF voltage; some steady-state angle error will remain. 

However, this can be observed during a change in the operating point. If the motor impedance is 



 

100 

not properly canceled out, any change in the operating-point will cause a slight change in the 

PLL’s error signal, causing the PLL to realign itself. This is the same phenomenon described in 

Section 3.1 previously. These PLL error adjustments can be used to identify/update the estimated 

motor parameters to perfectly align the sensing point with the back-EMF of the machine. 

To generate this PLL re-alignment signal, we can inject a time-varying current reference into 

the d-axis. (To follow convention, note that the PLL should be modified to eliminate d-axis 

voltage and align to the q-axis.) This injection current does not need to be high-frequency; it 

simply needs to be somewhat faster than the response time of the PLL (otherwise, the PLL will 

realign and the error signal will vanish). Alternatively, the PLL could be temporarily detuned 

during the injection phase and then retuned for normal operation. If either the resistance estimate, 

𝑅̂𝐺 , is incorrect or if the inductance estimate, 𝐿̂𝐺, is incorrect, the low-frequency injection current 

will cause a non-zero low-frequency voltage to appear in one or both of the machine axes. The 

 
 

 
 

 
Figure 3.14: Mathematical progression of proposed sensor-less PMAC control, showing: (a) the 

original control system; (b) the impedance-compensated system for observing the back-EMF; (c) 

the resulting control system with virtual interfacing resistance. 
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polarities of these voltages will change if the impedances have been over-compensated. From the 

observed voltages, the machine parameter estimates can be adjusted until the PLL is perfectly 

compensated and the angle-error is reduces to zero. The details of this “low-frequency injection” 

parameter estimation algorithm will be left as a future work. 

3.6. CHAPTER 3 SUMMARY 

In this chapter, we have outlined the theory of impedance-compensation for phase-locked 

loops within DC/AC converter systems. Using virtual-impedance-compensation, the effective 

measurement point of the PLL can be moved to another location in the circuit. This can alter the 

dynamics and steady-state synchronization of the PLL. 

A proposed stationary-frame compensation method was introduced and shown to have better 

transient performance than the traditional rotating-frame compensation. This is due to using a 

fully implemented inductor voltage-drop, rather than only a partial implementation. Furthermore, 

an analysis on the quasi-static stability of the PLL, considering the grid impedance, was also 

given. The proposed analysis was slightly modified from an existing analysis to incorporate the 

phase angle of the line current. This was examined together with the power transfer capabilities 

of a DC/AC converter system connected in a weak-grid scenario. 

Next, a full dynamic-system model was developed for the impedance-compensated converter 

system. The circuit dynamics, current-controller dynamics, PLL dynamics, and digital sampling 

delays were incorporated into the model. From the dynamic system model, the localized linear 

stability of the system could be assessed. Using MATLAB, the local stability at several different 

operating points were be obtained and plotted against the quasi-static stability ranges. From this 

model, it was shown that impedance-compensation of the PLL system can enhance the small-

signal stability range of the overall converter system. 
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Lastly, an alternate method for sensor-less control of permanent magnet AC machines was 

presented, using the concept of virtual-impedance-compensation together with a virtual 

interfacing-impedance. This was introduced as a possible alternative to the typical Back-EMF 

observer method for position-sensor-less control of PMAC motors. The virtual-impedance-based 

method could be potentially much simpler mathematically than the observer-based system. 

In the last chapter, the conclusions of this report are summarized. Afterwards, the author’s 

proposed future research works are outlined.  
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4. CONCLUSIONS AND FUTURE WORK 

In this chapter, the main contributions of this work are summarized, followed by the author’s 

recommendations to extend this work. A method to truly test the inductor-less self-

synchronization method with a direct-connection to the grid is first discussed. Afterwards, a 

means of testing the combined impedance-compensated PLL algorithm and virtual-resistance-

based inductor-less self-synchronizing algorithm is examined and proposed as a future work.  

4.1. CONCLUSIONS 

In this report, some common and some novel approaches for the synchronization and current-

regulation algorithms used within DC/AC power-electronics converters have been discussed. 

While the primary focus of this work was on grid-connected systems, the extension to electric 

motor drive systems is also briefly mentioned. In the following paragraphs, a summary of the 

work and contributions provided in each chapter are outlined. 

Chapter 1 provided some background on DC/AC converters and discussed the typical 

synchronization and current-control strategy used in three-phase DC/AC converters. This 

overview was followed with the author’s research scope and contributions. 

In Chapter 2, the concept of virtual impedance was first reviewed. Afterwards, a novel 

control strategy was proposed to alter the converter’s output voltage in such a way that physical 

interfacing inductors can be replaced by virtualized ones. In addition, it was shown that this 

control algorithm could be modified to allow the physical AC voltage sensors to be eliminated. 

Finally, some novel alterations to the previous control algorithm were proposed to utilize a 

virtual resistance as the interfacing impedance. With the use of a virtual interface-resistance, 

many parts of the dq-current control algorithm could be simplified, reducing the computational 



 

104 

complexity of the overall control system. The dynamics of the proposed control system were 

confirmed using simulated and experimental results. 

In Chapter 3, the concept of altering the synchronization voltage using virtual impedances, 

referred to as “impedance-compensation”, was first discussed. Next, a proposed method of 

impedance-compensating an SRF-PLL in the stationary-frame was shown to have better transient 

performance as compared to an existing method of partial impedance-compensation in the 

synchronous-frame. Afterwards, the large-signal stability of SRF-PLL-controlled inverter 

systems used in weak-grid applications was reviewed. The analysis was further generalized by 

the proposed inclusion of the grid current angle. Afterwards, a thorough linearized stability 

analysis was then conducted to show how impedance compensation can be used to improve the 

small-signal stability of the PLL and control system. Finally, the concept of using a virtual 

interfacing-impedance and an impedance-compensated PLL were proposed as a novel control 

strategy for the back-EMF-based position-sensor-less control of permanent-magnet AC machines 

at high speeds.  

4.2. FUTURE WORK 

As a continuation of the work presented here, the author recommends the following tasks as a 

means to further validate and extend these research contributions: 

1. Construct a cascaded multi-level inverter (CMI) system to reduce the PWM voltage 

harmonics generated by the inverter system. With very low harmonics, a direct inverter-

to-grid connection could be made without any interfacing inductance, and the self-

synchronization algorithm could be further tested and verified. 

2. Experimentally test the combined virtual-impedance + impedance-compensated PLL 

algorithm, proposed in Chapter 3, for the sensor-less control of a PM machine at high 
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speed. This experiment will provide some confirmation on the ability to cancel out a 

motor’s winding impedance and obtain the correct phase angle of the back-EMF. If 

proven successful, this could be used as a simpler alternative to the commonly-used back-

EMF observer method, which is mathematically more intensive. 

Regarding the development of a cascaded multi-level inverter system (task #1), the CMI 

topology, which was briefly mentioned in Chapter 1, could be used. To operate on a typical 

208 V three-phase AC grid, a four-stage nine-level CMI, as shown in Figure 1.11, could be 

constructed. Each module could be powered by isolated 50 V, 1 kW bi-directional DC-DC 

converters. In a Y-connected configuration, the same line-to-neutral voltage magnitude, ±200 V, 

could be generated as compared to a traditional 400 VDC two-level inverter. However, the 

reduced size of the voltage-steps and the use of unipolar PWM in the CMI (as opposed to bipolar 

PWM of the two-level inverter) will reduce the voltage ripple by a factor of 8x! Together with 

the use of a high switching-frequency (e.g. 50 kHz), an interfacing inductance of 200 / 8 = 25 µH 

would be sufficient to maintain a reasonable amount of ripple current. This estimate is based on a 

previously designed two-level 400 V, 10 kW, 50 kHz inverter using 200 µH inductors [24]. 

For the experimental testing of the sensor-less motor control algorithm (task #2), an existing 

48 V PMAC motor/dynamometer test bench, located at Kettering University, could be used. A 

photo of the test bench is provided in Figure 4.1. The motors used in the setup are both 

Motenergy ME1117 4-kW three-phase 8-pole axial-flux PM machines. They are equipped with 

analog sin/cos position sensors; the sensors can be used to compare the estimated angle in the 

control algorithm with the true angle of the back-EMF waveform. The dynamometer is equipped 

with a Transcell TSA50 50-lb load cell to measure the torque difference between the two motors 

(one motor is gimbal-mounted) and a rotating mass is mounted to the intermediate shaft to 

http://motenergy.com/me1117.html
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provide some mechanical inertia. To drive the motors, some existing 48 V inverter hardware at 

Kettering University can be utilized. These inverters also utilize the same F28069 TI DSP used 

in the experimental setup that was developed and used in Chapter 2, so much of the software 

written in other tasks can be reused. 

 

 
Figure 4.1: Low-voltage PMAC dynamometer test bench at Kettering University. 
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APPENDICES 

 



 

108 

APPENDIX A: MATLAB SIMULINK SIMULATION MODELS 

In Chapter 2, a MATLAB Simulink model of a virtual-resistance control algorithm was 

presented and used to compare its results with experimental data. In this appendix, additional 

details and information will be given regarding this simulation model.  

The simulation uses the Simscape library package of MATLAB Simulink to model the DC 

voltage source, two-level MOSFET inverter, grid impedances, and grid AC voltage sources. The 

top-level diagram showing the Simscape blocks in the simulation is shown below in Figure A.1. 

The top-level components are simulated at the fastest sampling rate (smallest sampling time), 

usually 1 or ½ µs (which is much smaller than the typical calculation speed of the inverter’s DSP 

control loop). A discrete-time solver is used for integration within the components (for inductor 

currents in this case).  

The three AC grid voltages are generated using controlled Simscape voltage sources. This is 

shown in Figure A.2 on the next page. The frequency is assumed to be a given constant (from the 

step-function source block). The phase-angles are computed by integration of the frequency and 

an offset adjustment. From the angles, a trigonometric block is used to compute the shape of the 

signals and they are then scaled to the appropriate magnitude. Constructing the voltages this way 

 
Figure A.1: Top-level diagram of the MATLAB Simulink virtual-resistance simulation. 
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allows for easy manipulation of the frequency, phase, or magnitude of the grid voltage while the 

simulation is running. With the use of step-function source blocks, each of these parameters can 

be adjusted at different simulation time instants. This is how the transient responses shown in 

Section 2.6 were generated. 

To generate the PWM signals, the internals of a typical microprocessor PWM module were 

emulated. This is shown in Figure A.3 below. For the switching state of each phase leg, a logical 

“greater-than” comparison is performed between the duty-cycle values calculated by the 

controller and a high-frequency (e.g. 10 kHz) triangle signal which is shifted to have values from 

0 to 1. From the switching state of each phase, logical inversion blocks are used to generate the 

equivalent low-side gating signals. The three switching signals are demuxed, inverted, and then 

muxed back together to yield the six different gate switching signals. From the ideal gating 

signals, a rising-edge deadband delay is generated by comparing each switching signal with its 

 
Figure A.2: MATLAB Simulink model for generating three-phase AC grid voltages. 

 
Figure A.3: MATLAB Simulink model of PWM hardware with deadband insertion. 
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previous value. Only when both are true is the actual gating signal set high. The deadband delay 

time will depend on the “1/z” block’s time delay, which is set by the simulation time. This is also 

why the simulation time is usually set to around 1 µs, as it makes simulating deadband easy. 

As mentioned in Chapter 2, only the grid currents and the DC-bus voltage are supplied to the 

dq-control algorithm in the sensor-less virtual-impedance control method. The dq-controller 

ultimately outputs three duty-cycle values for the three bridges of the MOSFET inverter. The 

top-level diagram of the dq-control algorithm is shown in Figure A.4. Here, rate-transition blocks 

are used to change the sampling time from the very-fast simulation time-step (around 1 µs) to the 

typical algorithm time-step (around 100 µs) used in the digital signal processor (DSP). The 

virtual-resistance calculation can be seen at the top of the diagram, in parallel to the dq-control 

block. Meanwhile, the PLL block is shown at the bottom, being fed by the previously calculated 

phase voltages. To compute the duty cycles, the basic Sine-PWM (SPWM) method is used. The 

outputs from the dq-control and virtual-resistance blocks are already in the stationary abc-frame. 

No third-harmonics have been added to these signals (they are computed using the inverse 

Park/Clarke transformations). To obtain the duty ratio, the algorithm simply divides by VDC and 

then offsets by 50% to center the common-mode voltage of the PWM output. 

Within the dq-control block, we have the basic PID controllers which regulate the currents in 

 
Figure A.4: Top-level control system diagram of MATLAB Simulink virtual-resistance simulation. 
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the dq-frame. This is shown in Figure A.5. The controllers are preceded by the Clarke & Park 

transformations and followed by the inverse Park & Clarke transformations. The outputs from 

the PID-controllers are the voltages used to correct any errors in the regulation of the current. 

These voltages are added to the pseudo-feed-forward voltage terms, which traditionally would 

come from the AC voltage sensors but now are fed from the PLL. These voltages are simply 

passed through the PLL block however – they’re simply equal to the previous values of the 

inverter output voltages.  

The partial-inductive decoupling terms can also be seen in Figure A.5. These are used when 

implementing virtual-inductors in the control system. For the virtual-resistance simulations, the 

value of LVI = 0 so these terms resulted in a zero-output. A manual switch was also placed in-line 

with the PLL frequency, allowing the user to switch the frequency input to zero and eliminate the 

decoupling. In the cases where LVI ≠ 0, this was useful for debugging, to see what effects the 

decoupling terms had on the dynamics of the control system. 

The PID-controllers themselves are also Simulink subsystems. The subsystem for one of the 

 
Figure A.5: MATLAB Simulink model of dq-controllers with decoupling terms. 
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controllers is shown in Figure A.6. They simply consist of the basic mathematical blocks needed 

to compute the output of the basic PID transfer-function, shown below: 
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Saturation blocks were also used within the PID-subsystems to limit the output of the controllers 

to reasonable values. However, one key difference in the PID-subsystems is the implementation 

of the derivative term. Since it is usually desirable to avoid pure derivatives (as discussed in 

Chapter 2), the calculation of the derivative here actually uses a high-pass filter, similar to what 

was done for computing the voltage-drop of a virtual inductance. Thus, the transfer function 

above is effectively changed to the following: 
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This approach was used to help reduce high-frequency noise from propagating through the 

control system. Ideally, the filter cut-off frequency, ωD, should be chosen high enough that the 

filter’s response functions identically to a pure derivative at the frequencies of interest. In most 

simulations, a cut-off frequency around fD ≈ 3 kHz was used to approximate the derivative. 

 
Figure A.6: MATLAB Simulink model of PID controller implemented with a high-pass filter. 
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Finally, the block-diagram for the Phase-Locked Loop (PLL) is presented in Figure A.7. The 

structure of the PLL is basically the same as was described back in Section 1.2. Additional 

features were added to for debugging purposes, and to see their effect on the system dynamics. 

These features, most of them being low-pass filters, can be enabled or disabled through the 

toggling of manual switches by the user. Alternate normalization methods for the PLL’s error 

signal were also examined. In the figure, the two options to compute the angle-error are to 1) 

compute the arctangent of the dq-voltages, or 2) simply divide the q-axis component by the 

magnitude (absolute-value) of the d-axis component. This second method should function very 

similarly to the hypotenuse calculation described by equation (1.14) in Chapter 1; 
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The angle-error can also be directly added to the estimated angle through a derivative-like 

control path, but this was not used in the simulations or experiments. A standard PI-controller 

was used to regulate the angle-error to zero.   

 
Figure A.7: MATLAB Simulink model of Phase-Locked Loop subsystem. 
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APPENDIX B: DETAILS ON 1 KW EXPERIMENTAL PROTOTYPE 

As discussed in Chapter 2, a Silicon-Carbide (SiC) three-phase inverter was developed to 

validate the proposed virtual-resistance self-synchronization control algorithm. In this appendix, 

additional details specific to the design of the inverter will be shared. 

The inverter prototype consisted of two printed circuit boards (PCBs). Both were developed 

using the Altium Designer PCB layout software. The first, referred to as the “power board”, was 

designed to carry the main power-transistors and sensors. A 3D CAD model of the designed 

“power board” PCB is shown in Figure B.1 below. The overall dimensions of this PCB were 

 
Figure B.1: PCB layout of a three-phase 1 kW 400 VDC inverter for experiments. 
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164 × 200 mm. The PCB is composed of four copper layers, each manufactured with a 2-oz 

copper thickness to help conduct heavy currents (the load currents are conducted through the 

board traces in some areas). Some components, whose 3D models were not obtained (such as the 

common-mode choke), are not shown in the CAD model, but they can be seen in the physically-

populated board; this is shown in Figure B.2 below. Other components which are visible in 

Figure B.2 are the heatsinks for the MOSFETs, the wiring of power connections, and the second 

“control board” PCB, which holds the DSP and peripheral circuitry. The USB communication 

cable can also be seen here in the figure. 

 
Figure B.2: Actual populated “power board” inverter PCB used for experiments. 
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The circuitry placed on the “power board” mainly consists of: isolated sensor and gate-drive 

power supplies; isolated current sensors (AC and DC); isolated voltage sensors (AC and DC); 

isolated gate-driver ICs; the main SiC power MOSFETs; and other passive components such as 

the DC-link capacitors, X-caps and Y-caps for filtering the grid connection, and the common-

mode choke (used to filter out common-mode PWM voltages from the inverter).  

The gate driver IC used is the ISO5500 by Texas Instruments (TI). The specific SiC-

MOSFETs used were the SCT3060AL devices by ROHM Semiconductor. The cover-page of the 

component datasheet is shown below in Figure B.3. The inverter was designed to use two of 

 
Figure B.3: Datasheet of the SCT3060AL SiC-MOSFET used in the inverter prototype. 

http://www.ti.com/lit/ds/symlink/iso5500.pdf
https://www.rohm.com/datasheet/SCT3060AL
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these SiC-MOSFETs in parallel for each switching cell in the inverter. Thus, the effective RDS(on) 

resistance of the inverter’s phase legs was ~30 mΩ and the rated current capacity was ~78 A. 

The system was intentionally over-designed to avoid potential power-loss issues or thermal 

issues during testing; the expected currents during testing would be no more than ~20 A. 

A part of the schematics for the gate-drive circuitry is shown in Figure B.4. To enhance the 

gate-drive current capability, a BJT Common-Collector (push-pull) amplifier was placed 

between the gate-driver IC and MOSFET gates. This can be seen in the figure. The BJTs selected 

were the ZXTC2063E6 complementary NPN + PNP paired devices by Diodes Incorporated. 

Besides enhancing the gate-drive current beyond the capability of the driver output, another main 

benefit of using the discrete BJT amplifier circuits is that the effective gate-source loops of each 

MOSFET can be made extremely small in the PCB layout. The power supplies for the gate-drive 

 
Figure B.4: Electrical schematic showing MOSFET gate driver and gate-drive amplifier circuits. 

https://www.diodes.com/assets/Datasheets/ZXTC2063E6.pdf
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amplifiers are regulated to +19 V and –5 V; the use of a high turn-on voltage helps to ensure a 

low RDS(on) value and the use of a negative turn-off voltage helps to prevent erroneous turn-on 

events caused by the Miller capacitance (the CGD capacitance) of the MOSFETs. 

The “control board” PCB was designed in a somewhat modular fashion so that it could be 

used with other future projects. Like the “power board”, the “control board” was also a 4-layer 

PCB design. The components contained on the “control board” PCB include: the main Digital 

Signal Processor (DSP); communication circuits and ICs for Controller-Area Network (CAN) 

and RS-232 (Serial) connections; a local 3.3 V power supply for the DSP; several RC filter 

circuits for low-pass filtering of the analog input pins; an external Electronically-Erasable 

Programmable Read-Only Memory (EEPROM) for storing calibration values; and several 

headers/connectors for connecting to a laptop, the “power board”, or external devices. A 3D 

   
 (a) (b) 

Figure B.5: Layout of the DSP “control board”: (a) CAD model; (b) actual populated PCB. 
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CAD model and the actual populated “control board” PCB can be seen in Figure B.5.  

The processor used on the “control board” is the TMS320F28069 floating-point DSP by TI. 

It features a 90 MHz rated clock-speed, a 12-bit analog-to-digital (A2D) converter, a built-in 

hardware floating-point unit (FPU), and several PWM-capable output pins. The FPU is 

exceptionally useful in speeding up code execution time, as the main control algorithm is written 

using 32-bit floating-point variables and mathematical operations. During testing, the DSP was 

actually over-clocked to 100 MHz to help speed up the control algorithm and simplify some of 

the calculations (since the cycle-time would change from 11.11 ns to simply 10 ns). 

The main control algorithm which runs on the DSP was written in the C-programming 

language; it consists of over 1000 lines of code. The main control loop, which calculates the 

PWM duty cycles and regulates the AC currents, runs via a CPU-timer interrupt which triggers at 

a rate of 20 kHz, or every 50 µs (as mentioned previously in Table 2.5). At the time of writing, 

the algorithm requires roughly 65% of the CPU resources (requiring about 32 µs) to process the 

virtual-resistance control algorithm. This means that the algorithm speed could potentially be 

safely increased to 25 kHz (40 µs) using the same DSP and clock speed. 

  

http://www.ti.com/product/TMS320F28069
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