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ABSTRACT 

 

DEEP LEARNING TECHNIQUES FOR MAGNETIC FLUX LEAKAGE INSPECTION WITH 

UNCERTAINTY QUANTIFICATION 

 

By 

 

Zi Li 

  

   Magnetic flux leakage (MFL), one of the most popular electromagnetic nondestructive 

evaluation (NDE) methods, is a crucial inspection technique of pipeline safety to prevent long-

term failures. The important problems in MFL inspection is to detect and characterize defects in 

terms of shape and size. In industry, the collected MFL data amount is quite large, Convolutional 

neural networks (CNNs), one of the main categories in deep learning applying to images 

classification problems, are considered as good approaches to make the classification. In solving 

the inverse problem to characterize the metal loss defects, the collected MFL signals are 

represented by three-axis signals in terms of three groups of matrices which are consistent in the 

form of images. Therefore, this M.S thesis proposed a novel CNN model to estimate the size and 

shape of defects fed by simulated MFL signals. Some comparative results of the proposed model 

prove that the method is robust for distortion and variances of input MFL signals and can be 

applied in other NDE problems with high classification accuracy. Besides, the prediction results 

are correlated and affected by the systematic and random uncertainties in the MFL inspection 

process. The proposed CNN is then combined with a Bayesian inference method to analyze the 

final classification results and make uncertainty estimation on defect identification in MFL 

inspection. The influences of data and model variation on aleatoric and epistemic uncertainties 

are addressed in my work. Further, the relationship between the classification accuracy and the 

uncertainties are described, which provide more hints to further research in MFL inspection.  
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 Chapter 1: Introduction 

 

1.1 Introduction 

 

Nondestructive Evaluation (NDE) methods are widely applied techniques to assure the 

structural and mechanical components functional well in a safe and reliable manner. NDE 

techniques allow for a thorough evaluation of engineering components and structure without the 

need for deconstruction and damage1. Specifically, probing mechanisms are applied in NDE 

testing to identify material properties and demonstrate anomalies in material based on the 

variation in physical properties of the material. Several electromagnetic NDE techniques have 

shown great advance for metallic components evaluations in the oil, gas, nuclear, energy and 

petrochemical industries2, which involving Magnetic Flux Leakage (MFL) method3, Pulsed 

Magnetic Flux Leakage (PMFL) method4, Eddy Current (EC) method5, Pulsed Eddy Current 

(PEC) method6, etc. 

In modern industry, petrochemical, oil, gas and power generation are important materials 

which are transported through millions of miles of pipelines. Pipelines are the most economical 

and widely installed components in subsea and underground infrastructure. The inevitably 

attacks from external and internal corrosion, cracking and manufacturing flaws will affect the 

transportation safety, therefore, it is necessary to locate the defects in the pipeline at regular 

intervals before they become a cause to concern. MFL technique is one of the most popular 

electromagnetic NDE methods to detect metal-loss defects of oil and gas caused by corrosion, 

fatigue, erosion and abrasive wear in ferromagnetic pipelines since 1960s7-9. The capability and 

application of MFL have undergone a tremendous improvement, and over 80% of pipeline 

inspection relies on MFL technique3 while others rely on ultrasonic inspection techniques10, 

eddy current inspection techniques11 and some combinational techiniques12, 13. The MFL 
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inspection tool consists of a permanent magnet to magnetize the pipe wall and a series of hall 

sensors around the circumference of the probe to detect leakage flux where there is corrosion or 

material loss14. In MFL based pipe inspection and NDE systems, various magnetic circuits are 

formed between the part and probe to induce the magnetic field. After the field saturates, if there 

is no defect in the material, most magnetic flux lines will pass through the inside of the 

ferromagnetic material; otherwise, some three dimensional magnetic flux leak out of the pipe 

wall since the magnetic permeability of the defect area is much smaller than that of the 

ferromagnetic material itself, magnetic resistance will increase in the defect area to form a 

distorted magnetic field region. The overflowing signals are then acquired by the magnetic 

detector to make further damaged areas identification and characterization15. 

The important problems in MFL analysis are to realize the reconstruction of practical cracks 

from the measured signals. Traditionally a defect is characterized associated with primary 

parameters16—length, width and percentage wall loss (%WL) which are obtained from the 

measured three-axis MFL signals in terms of the flux intensity. Besides, for defects with 

irregular and complex shapes, profiling is necessary for a good estimation of pipeline severity17. 

Generally, the accurate identification of the defect shape and size of MFL inspection is of great 

importance in ensuring pipeline safety.  

  

1.2 Motivation 

 

Usually, the process of identifying the characteristics of metal loss defects in transmission 

pipelines from MFL signals is referred to the inversion problem. The solutions to the defect 

inversion problem are normally classified either as non-model-based direct methods or the 

model-based iterative methods18. The model-based methods employ a physical model in the 
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forward model to simulate the measured signals to update the parameter continuously in the 

inversion problem. The involving numerical computation could provide higher confidence 

defect profile reconstruction. However, they are computationally expensive.  Contrast to that, 

the result of a direct mapping method is a rough approximation to the defect parameters by 

establishing a relationship between the signal and the geometry of the defect19. This modeling 

network is fast and of less complexity.   

In the pipeline inspection, more than thousands of groups of MFL signals are collected, and it 

will take a long time for iterative methods to optimizing model, therefore, the direct mapping 

methods, such as neural networks are more suitable to process massive amount data. Besides, 

in this thesis work, the defect identification in terms of the profile classification problem 

concerning defect shape and size is based on MFL measurements. As a result, a direct mapping 

method with a good performance in large scale data classification is needed. The convolutional 

neural network (CNN), which is a key element of modern deep learning technologies, has shown 

a great advance in extracting features from large amounts of data and has been successfully 

adopted in image and objective classification tasks20, 21. The previous study has applied CNNs 

to identify the injurious or non-injurious defect from MFL images with high accuracy22. Despite 

the input in my work are signals, they consist of three groups of matrices corresponding to the 

three-axis components in MFL measurements, which are in identical form to images. Therefore, 

it is quite promising to deal with MFL defect classification problem using CNNs.   

The uncertainties existing in the inspection process affect prediction capabilities and therefore, 

the measurements to uncertainty are critical to assess the reliability of the result. The errors of 

the measurements could be systematic and randomly, and they reflect the effects of these factors 

on the value of uncertainty of the results23. The problems that uncertainty quantification (UQ) 
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addresses are derived from probability theory24, dynamical systems25, and numerical 

simulations26, while the methods used usually rely on statistics, machine learning27, and 

functions approximation28. In NDE inspection, the measurement results are quite sensitive to 

the environmental conditions as well as the signal processing methods29. Therefore, a quantified 

uncertainty estimation in NDE is indispensable. 

 

1.3 Contribution 

 

This M.S. thesis work focuses on addressing the problem of the defects shape and size 

identification for ferromagnetic pipe inspection, and a novel CNN model is proposed to classify 

defects from the simulated MFL signals directly. The well-trained network can efficiently and 

automatically learn defect features from the MFL signals, which could provide information on 

defects’ shape and size to undergo further inspection. The proposed model is further applied in 

other NDE related classification problems, and the network performances on simulated MFL 

signals are compared with conventional machine learning methods Support Vector Machine and 

Decision tree. The comparison results prove that the proposed method is robust for distortion 

variances of input MFL signals and versatile in other classification tasks with high accuracy. 

Furthermore, a Bayesian inference method is addressed in the proposed convolutional neural 

network to provide assistance in analyzing the final classification results with uncertainty 

estimations. The uncertainties in the physical model, as well as the applied classification model, 

have been clarified in this MFL defect identification task. The relationship between the variation 

in data and model and uncertainties are addressed in my work. Further, the classification 

accuracy is proven to be related to uncertainty.  
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Chapter 2: Theory  

  

2.1 Magnetic Flux Leakage Theory 

 

The detection principle of MFL is when the ferromagnetic material is magnetized close to 

saturation under the applied magnetics field, if there is a defect area in the material, a smaller 

magnetic permeability will be formed and the magnetic resistance will increase, therefore, 

magnetic field in the region will be distorted and the leakage flux arises. The flux lines that pass 

off the ferromagnetic material are detected by magnetic sensitive sensors as the electrical 

leakage signals30-32. Once the magnetic flux leakage is detected, it is easy to verify the 

occurrence of a defect. Besides, MFL signals could provide valuable information to exploit the 

existence and characteristic of metal loss defect. 

 

2.1.1 Principle of Magnetic Flux Leakage Detection  

When there is a defect in the pipeline, the defect leakage field is generated (Figure 2.1a). The 

information contained in the measurement of the magnetic flux density 𝐵⃗  has been well 

evaluated so that the status of the defect can be determined 15, 33, 34. The leakage signals are split 

into three vector distributions: 𝐵𝑥
⃗⃗⃗⃗  , 𝐵𝑦

⃗⃗⃗⃗  , 𝐵𝑧
⃗⃗⃗⃗ , which represent the axial, tangential (circumferential) 

and radial components of the magnetic flux density fields, respectively (Fig 2.1b-d). The 

horizontal x and y-axis represent the length and width of the defect; the vertical axis is the 

intensity of the magnetic induction. The surface plot of the axial component 𝐵𝑥
⃗⃗⃗⃗   is with one 

positive peak and two negative peaks, while the tangential component  𝐵𝑦
⃗⃗⃗⃗   always has two 

positive peaks and two negative peaks, which are divided along the defect width-direction from 
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the center. The surface plot of the radial component  𝐵𝑧
⃗⃗⃗⃗  has one positive peak and one negative 

peak. The peak-to-peak separation midpoint is at the defect center. 

 

Figure 2. 1 Surface plot of the amplitude for the magnetic flux density 

 

The applied permanent-magnet excitation ensures all the involved process are static, so the 

static Maxwell’s equations can describe this problem appropriately35: 

∇ × 𝐻⃗⃗ = 0                                 (1) 

∇ ∙ B⃗⃗ = 0                                     (2)    

where 𝐻⃗⃗  is the magnetic field intensity vector and B⃗⃗  represents the magnetic flux density. The 

relationship between magnetic field intensity vector and magnetic flux density is represented as 

follow: 

𝐵⃗ = 𝜇𝐻⃗⃗                                          (3)    

where μ is the spatial permeability distribution. Then H can be expressed by the gradient of a 

magnetic scalar potential U: 
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𝐻⃗⃗ = −∇𝑈                                   (4)      

When combining eq.2-4 together and assuming the region is homogeneous and isotropic, the 

Laplace’s equation is obtained: 

𝜇∇2𝑈 = 0                                (5)    

In practical calculation, a direct solution to the above electromagnetic model is quite difficult, 

so a numerical technique: finite element model (FEM) is applied to compute the distribution of 

magnetic flux density for the system. FEM discretizes the computed region into a finite number 

of rectangular elements and solve the corresponding variational problem.  In this thesis work, 

the MFL data are generated through FEM simulation software – ANSYS, which will be 

introduced and discussed in Chap 3. 

 

2.1.2 Defect Inversion Methods from MFL signals 

As mentioned in Chap.1, both the model-based methods and the non-model based methods 

have been developed to solve the MFL inversion problem. Model-based methods are 

advantageous to make accurate inversions by applying a forward model to solve the well-

behaved forward problem iteratively. It starts with an initial estimation of the defect and 

involved extra iterative inverse algorithms to update defect profile by minimizing the error 

between the predicted and original profiles19. Finite-element method (FEM)36, 37, analytical 

models38 and neural networks14, 39 are generally used as the forward models. In the previous 

work, a novel iterative method was proposed to combine with the parallel radial wavelet basis 

function with a finite-element neural network to accomplish the forward and iterative backward 

algorithms, respectively40. Space mapping (SM) is another optimization method which could 

provide a satisfactory result in an iterative manner following the FEM forward41. This SM-based 
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algorithm has shown good results in crack parameter estimation from FEM simulated MFL 

signals42. 

The forward training and backpropagation parameter updating scheme in the model-based 

network could provide higher confidence defect profiles, but they are computationally expensive. 

Besides, if there is no prior knowledge of the estimated shape, a large number of parameters 

need to be optimized, which affect the whole algorithm’s efficiency. Under these circumstances, 

some non-model based approaches, typically as the neural networks43, 44, have shown great 

advances in this defect inversion problem. This procedure is to establish a functional relationship 

between the signal and the geometry of the defect through a large training amount. Though only 

a rough approximation to the defect parameters could be obtained, these models are fast and the 

networks are of higher efficiency19. Some novel function-approximation methods, such as 

radial-basis function neural network (RBFNN), wavelet-basis function neural network 

(WBFNN)14, 45 and finite element neural network (FEN)46, generic algorithm47, support vector 

machine (SVM)48 are applied to establish the relationship from the signal to the defect space. 

Like other traditional neural networks, convolutional neural networks use several groups of 

learnable parameters and effectively extract input features to make further classification and 

recognition. Although the MFL signals inputs are not actual images, CNNs can still extract 

required effective features and then after training, the relationship between input MFL signals 

and the corresponding defect size and shape can be well established. The results will be fully 

presented and discussed in Chap 4. 
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2.2 Machine Learning, Deep Learning, and Neural Network  

 

2.2.1 Machine Learning and Deep Learning 

With the increasing amount of data available in high-performance computing and storage 

centers, machine learning (ML) technique49 is the study of computer algorithms capable of 

learning to improve their performance of a task based on their previous experience learned the 

massive data. Given the sample data, ML algorithms use statistical methods to provide high-

level information aids in decision-making processes without being programmed specifically. 

The field is closely related to pattern recognition and statistical inference. ML technology 

consists of supervised learning, unsupervised learning, and reinforcement learning50. Supervised 

learning is implemented in the classification or regression tasks; in other words, which is a task-

driven method. The model learns from the labeled data which provide the features that the model 

must learn. Therefore, supervised learning is best suited to problems with prior ground truth 

knowledge or available references points, such as maximum entropy51, classification and 

regression trees52, support vector machines52, 53 and wavelet analysis54. Unsupervised learning 

is a data-driven task that machine learning models learn from unlabeled data without any human 

intervention, and it is used to reveal patterns in the ecological data, including self-organizing 

maps55 and Hopfield neural networks56. Reinforcement learning refers to goal-oriented 

algorithms that learn a sequence of successful decisions by trial and error, to find the best 

solution, like on-policy Sarsa57 and off-policy Q learning58.  

Deep learning (DL) is a specific technique for implementing Machine Learning based on 

Artificial Neural Networks, but DL can automatically discover the features to be used for 

classification while ML requires these features to be provided manually. DL techniques model 

hierarchical representations in data using deep networks of supervised or unsupervised learning 
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algorithms. The multiple processing layers in the models could learn a better abstract 

representation of data59. DL works in continuously iterative manners to adjust the model 

parameters until meeting the stopping condition. In recent years, deep learning has excellent 

performance not only in academic communities, such as image recognition and restoration60, 61, 

speech recognition62, natural language processing63, posts or products with users’ interests64, 

also it has gained attractions in industry products like Googles translator and image search 

engine, Apple’s Siri and Amazon’s Alexa and other companies such as Facebook and IBM59. 

 

2.2.2 Neural Network for Deep Learning 

Neural Networks (NNs) is a biologically inspired network of artificial neurons, which is 

configured to perform specific tasks. Neurons in NNs apply mathematical functions on the given 

inputs and produce an output. The output of each neuron is computed by some non-linear 

function of the sum of its input.  The collection of neurons is called layer and each produces a 

sequence of activations. There are three different layers in a typical Neural Network: input layer 

(fed with inputs), output layer (fed with processed data) and hidden layer (processing the data 

from input layers). The learning target is to find suitable weights and connections to the neurons, 

that make the NN realize desired behavior. This process requires long chains of computational 

stages where each of them transforms the aggregate activation of the network (often in a non-

linear manner)65. The successive layers in deep learning enable the network to accurately learn 

the deeper intermediate feature representation of the input and thus provide a more reliable 

network. 

The iterative learning process of NNs enables the network to have the robustness to noise in 

data and superior classification ability in untrained networks. The learning process is described 
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as follows: The initial values of each neuron are multiplied with some weights and summed with 

all other values into the same neuron. The initial prediction results are then compared with the 

expected label values and calculate the loss between them. The propagation stage is then 

performed to propagate this loss to update every parameter aiming at reducing the total loss in 

the neural network. Those parameters are updated each time with the new inputs. The whole 

iterative process is repeated until all the cases are fed into the network or a better model is 

obtained. 

 Neural Networks have a good performance in the broad spectrum of data-intensive 

applications, such as the target recognition, medical diagnosis, voice recognition, which are 

companies with some typical neural network architectures implemented in deep learning 

techniques, like feed-forward neural networks, multi-layer perceptron (MLP), recurrent neural 

networks (RNN) and convolutional neural networks (CNN). In feed-forward neural networks, 

multiple layers of computational neurons are interconnected in a feed-forward way. It has been 

widely applied in the chemistry area, like the modeling of the secondary molecular structure of 

proteins and DNA66. MLP is a class of feed-forward neural network with two or more trainable 

weight layers (consisting of perceptron). Combined with several decision classifiers, MLP is 

then applied in recognition and pose estimation of 3D objects as well as the handwritten digit 

recognition67. In RNN, each node in a given layer is connected with a directed connection to the 

other neuron in the next successive layer. As recurrent neural networks consider the previous 

word during predicting, it could “remember” the previous sequence for a short period time, 

therefore, it shows a great advance in speech recognition68, time-series prediction69, speech 

synthesis70 and other language modeling areas. The CNN comprised of several convolutional 

and subsampling layers and are optionally followed by fully connected layers. Apart from image 
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recognition, CNNs have been successful in identifying faces71, objects 72 and traffic signs apart 

from powering vision in self-driving cars73. 

 

2.2.3 Convolutional Neural Network 

The huge computational cost is a typical drawback in traditional neural networks, that is due 

to the matrix multiplication operations involved massive parameters. CNNs easily tackle this 

problem by introducing convolutions which make the local spatial coherence in the input ideal 

for extracting relevant information with a lower computational cost.  

The typical operations in CNN structure are introduced as follows:   

a) Convolutional Step: a filter matrix is used to convolute with the original input matrix with 

learnable kernels to get the ‘feature map’. Convolution preserves the spatial relationship 

between pixels by learning image features using small squares of input data. By increasing the 

number of filters, more matrix features can be extracted so that the network performs better in 

recognizing patterns or classification to invisible matrices or images. 

b) Activation Function: It is used to determine the outputs of the neural network by mapping 

the resulting values to some certain range. As neural networks are used to implement complex 

functions, sigmoid74, hyperbolic tangent (Tanh)75, rectified linear unit (ReLU)71 are the 

commonly used non-linear activation functions. Both sigmoid and Tanh are saturating non-

linear functions where the output gradient decreases close to zero as the input increases. 

Different from these two, ReLU is a non-saturating function, that the output returns 0 if it 

receives negative input, otherwise the input will be returned. It can be written as 𝑓(𝑥) =

max (0, 𝑥). Previous works show that ReLU has become the default activation function for many 
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types of neural networks, as it greatly shortens the network converge period and improve 

classification performance in deep neural network applications76, 77.  

c) Pooling: Spatial Pooling (also called sub-sampling or down-sampling) summarizes feature 

responses across neighboring pixels. It makes the feature dimension smaller so that the 

computation load can be reduced, therefore, controls the overfitting problem. Besides, it helps 

to retain the most important information.  

d) Dropout: Dropout is that some units are chosen randomly to be abandoned during a 

particular forward or backward pass. In the process of training, neuron interdependent learning 

exists, which leads to the over-fitting problem. Dropout is a typical regularization method to 

solve the problem by forcing a neural network to learn more robust features that are useful in 

conjunction with many different random subsets of the other neurons. 

Receptive fields, local connectivity, and shared weights are three structural characteristics in 

CNN, which ensure the network to be robust enough for the shift, scale, and distortion variance 

of the input data, as well as the noise. Normally, CNN is applied as a standard neural network 

with some novel structures to tackle specific problems in various areas. H. Nam et al. used a 

pre-trained CNN to obtain generic target representations from a set of labeled videos and applied 

in visual tracking tasks78. Later, an automatic brain tumor segmentation method is proposed 

which applied a novel two-pathway architecture to model both the local details and global 

context and two CNNs are stacked to model local label dependencies. Even though the 

distribution of the label is unbalanced, it can effectively solve medical segmentation problem79. 

In NDE literature, P. Zhu et al. developed a CNN classification model with weighted loss 

function in for eddy current testing defect detection with high classification result80. A novel 
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CNN model with ReLUs activation function is employed in the MFL response segments 

classification81. The applied CNN model in this work is presented and explained in Chap 4. 

 

2.3 Uncertainty Quantification 

 

Quantification of uncertainties in models and measurements requires identification of sources 

of error that lead to the uncertainties. The forward problem involves the use of a calibrated 

model for probabilistic prediction, e.g., classification and segmentation, which has been widely 

used in the computer vision, medical image and NDE fields82-85. This section will review 

probabilistic modeling and variational inference, which is the foundations of derivations in the 

Bayesian method, and the uncertainty sources in NDE area are clarified. 

 

2.3.1 Probabilistic Modelling and Variational Inference  

The uncertainty quantification tries to determine how likely certain outcomes are if some 

aspects of the system are not exactly known. In Bayesian theory, the posterior distribution is 

usually used to describe this relationship. Let 𝑋 = [𝑥𝑖]𝑖=1
𝑁 ∈ 𝑅𝑑 be the training inputs and the 

corresponding one-hot encoded categorical outputs 𝑌 = [𝑦𝑖]𝑖=1
𝑁 ∈ [0,1]𝐾 , where 𝑁  is the 

sample size, 𝑑 denotes the input variable dimension and 𝐾 is the number of categories. In the 

Bayesian probabilistic modeling, posterior 𝑃(𝑤|𝑋, 𝑌) is computed over the weights 𝑤, which 

captures the set of uncertainty model parameter vectors, given the data. The corresponding 

posterior distribution can be expressed as: 

𝑃(𝑤|𝑋, 𝑌) =
𝑃(𝑌|𝑋, 𝑤)𝑃(𝑤)

𝑃(𝑌|𝑋)
                     (6) 
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This distribution describes the most likely function based on the given information. Afterward, 

the predictive distribution of the output for a new input point 𝑥∗ and a new output point 𝑦∗ can 

be derived as: 

𝑃(𝑦∗|𝑥∗, 𝑋, 𝑌) = ∫ 𝑃(𝑦∗|𝑥∗, 𝑤)𝑃(𝑤|𝑋, 𝑌)𝑑𝑤              (7)
Ω

   

As the learning process of the posterior distribution is usually hard to evaluate analytically, 

Radford M Neal investigated the Hamiltonian Monte Carlo, a Markov Chain Monte Carlo 

(MCMC) sampling approach using Hamiltonian dynamics to approximate the posterior 

distribution as calculated by Bayes Neural network86. The results consist of a set of posterior 

samples without direct calculation but computationally complicated. Besides, the variational 

inference method transforms the standard Bayesian learning from integration to optimization 

problem. Tractable approximating variational distribution 𝑞𝜃(𝑤)  indexed by a variational 

parameter 𝜃, is applied to fit the posterior distribution 𝑃(𝑤|𝑋, 𝑌) that obtained from the original 

model87, 88. The closeness to the optimal variational distribution and the posterior distribution is 

measured by the Kullback–Leibler (KL) divergence, which is defined as 

𝐾𝐿(𝑞𝜃(𝑤)||𝑃(𝑤|𝑋, 𝑌)), to find the optimal parameters 𝜃. Minimizing the Kullback–Leibler 

divergence between 𝑞𝜃(𝑤) and 𝑃(𝑤|𝑋, 𝑌) is equivalent to maximizing the log evidence lower 

bound, 

𝐿 =  ∫ 𝑞𝜃(𝑤)log P(𝑦|𝑥, 𝑤) 𝑑𝑤 − 𝐾𝐿((𝑞𝜃(𝑤)||𝑃(𝑤|𝑋, 𝑌))              (8)            

with respect to the variational parameters 𝑞𝜃(𝑤). This is known as variational inference, a 

general method applied in the Bayesian modeling. 
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2.3.2 Dropout as approximating variational inference  

The uncertainty prediction in Neural Networks is accomplished by introducing Bayesian 

inference methods for training recurring neural networks89 and convolutional network90, 91. 

Several studies have demonstrated that Dropout92 and Gaussian Dropout 93applied before the 

weighted layer can be used as approximating variational reasoning schemes in the deep 

Gaussian process as they are marginalized over its covariance function parameters94.  

Gal and Ghahramani implemented the dropout training in CNN as the Bayesian approximation 

and developed the approximate variational inference in Bayesian NNs using Bernoulli 

approximating variational distributions and relate this to dropout training95. In Neural Network, 

normally the 𝐿2 regularization term is used to optimize the dropout process with weight decay 

𝜆, resulting in a minimization objective: 

𝐿𝑑𝑟𝑜𝑝𝑜𝑢𝑡 =
1

𝑁
∑ 𝐸(𝑦𝑖 , 𝑦𝑖̂) +𝑁

𝑖=1  𝜆 ∑ (||𝑊𝑖||2
2
+ ||𝑏𝑖||2

2
)𝐿

𝑖=1       (9)              

where 𝑦𝑖̂ is the output with L layers in the network. 𝐸(. , . ) represents the loss function, such as 

the softmax loss or the Euclidean loss (squared loss) with weighted matrices 𝑊 and bias vector 

𝑏 . In the Bayesian Neural Networks with dropout, the tractable approximating variational 

distribution 𝑞(𝑊𝑖) for every layer is defined as:  

𝑊𝑖 = 𝑀𝑖 ∗ 𝑑𝑖𝑎𝑔 ([𝑧𝑖,𝑗]𝑗=1

𝐾𝑖
)                           (10)     

Here 𝑧𝑖,𝑗are Bernoulli distributed random variables with some probabilities𝑝𝑖 , and 𝑀𝑖  are 

variational parameters need to be optimized. As the variational inference defined in the last 

section cannot be evaluated analytically for approximating distribution, an unbiased estimator 

to 𝐿 is proposed as: 
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𝐿̂ =
1

𝑁
∑ 𝐸 (𝑦𝑖 , 𝑓(𝑥𝑖,𝑤̂𝑖)) −𝑁

𝑖=1 𝐾𝐿((𝑞(𝑤)||𝑃(𝑤|𝑋, 𝑌))                 (11)  

The softmax loss is applied to normalize the network predictions, which are interpreted as 

probabilities. As sampling from 𝑞(𝑊𝑖) is identical to performing dropout operation in a network. 

The second term in eq.8 can be approximated as ∑ (
𝑝𝑖𝑙

2

2
||𝑊𝑖||2

2 +
𝑙2

2
||𝑏𝑖||2

2)𝐿
𝑖=1  with prior length 

scale 𝑙  which is derived in the previous work96. With the Monte Carlo integration, the 

approximating predictive posterior distribution can be rewritten as 𝑃(𝑦∗|𝑥∗, 𝑋, 𝑌) ≈

1

𝑇
∑ 𝑝(𝑦∗|𝑥∗, 𝑤̂𝑖))

𝑇
𝑡=1 . Therefore, it has proven that 𝐿 is an approximation to 𝐿𝑑𝑟𝑜𝑝𝑜𝑢𝑡, resulting 

dropout is the approximating variational inference in Bayesian NNs. 

 

2.3.3 Source of Uncertainties 

In general, the sources of uncertainty in the context of modeling, based on the character of 

uncertainties, can be categorized as:  

• Aleatoric uncertainty: the intrinsic randomness of a phenomenon. 

• Epistemic uncertainty: the reducible uncertainty caused by lack of knowledge.  

However, in most cases, it is difficult to determine the uncertainty category in a more general 

way, which should depend on the specific context and application23. In the Bayesian methods 

that are applied in Neural Network, epistemic uncertainty is modeled by placing a prior 

distribution over a model’s weights and then trying to capture how much these weights vary 

given some data while aleatoric uncertainty, on the other hand, is modeled by placing a 

distribution over the output of the model. Epistemic uncertainty, often referred to model 

uncertainty, accounts for uncertainty in the parameters of the machine learning model which 

could be improved by given enough data. On the other hand, aleatoric uncertainty captures 
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inherent noise in the data, such as sensor noise or motion noise, resulting in uncertainty which 

cannot be reduced even if more data were to be collected. Normally, aleatoric uncertainty can 

be categorized into homoscedastic uncertainty, which assumes identical observation noise for 

every input, and heteroscedastic uncertainty where different extents of noise for each input97. 

Generally, in NDE area, the data are generated by the physics model based on the selected 

defect parameters, material properties, etc., and then passed through the machine learning model 

to obtain the output. The final predicted outputs are collected to estimate the uncertainties 

brought by data and the machine learning model. The flow diagram of the whole process is 

shown in Fig 2.2. 

 

Figure 2. 2 The flow diagram of the entire NDE UQ system 

 

In this thesis work, the uncertainty quantification to MFL is based on the Bayesian inference 

method. According to the previous definitions, the uncertainties could be divided into the data 

related and the machine learning model-related uncertainties, while the former can be 

understood as the aleatoric uncertainty and the latter as the epistemic uncertainty. In this case, 

data are generated from the physical model, thus the inherent noise in data is considered as 
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coming from the physics model. In the Bayesian approach, only the uncertainties directly related 

to data and model are taken into consideration, the specific uncertainty quantification to this 

physical model needs further investigation.  

To be specific, the sources of aleatoric uncertainties are physics properties, data-producing 

method, and noise: 

• Physics properties: piping material properties such as grain size, fracture toughness, chemical 

composition, yield strength, and ultimate tensile strength; loading/pressure, e.g., operating 

pressure; geometry such as outer diameter, thickness, defect shape, size, and location.  

• Data producing method: the data can be collected from the real field testing/experiments or 

simulation platforms, like ANSYS, ANSOFT, and COMSOL. Even with the same experiment 

settings, different software results may vary from each other. In this work, ANSYS is adopted 

to generate MFL data. 

• Noise: experimental device may have various measurement noise to contaminate measured 

signals, i.e., sensor lift-off variation noise, that the distance between the pipe wall and the 

detector sensors always varies throughout the whole detection process due to the surface 

discontinuity and vibration of the detector98; seamless pipe noise, which contributes to a helical 

variation in the grain properties of the seamless pipe99; system noise, which is referred as 

inherent noise in on-board electronics100. During the experiment, these noises can be modeled 

as additive white Gaussian noise in the data, which presented most of the high-frequency 

noise101.  

The sources of epistemic uncertainties are related to the model structure and hyperparameters: 

•  Model structure: Different applying NNs bring uncertainties to the whole process. In this 

thesis work, only CNN is implemented as the machine learning model.  
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• Hyperparameters: uncertainties are from various parameters and functions in the model, for 

example in CNN, differences in the number of convolutional layers, kinds of activation 

functions and loss functions will bring uncertainties. 

 

Figure 2. 3 The diagram of NDE uncertainties 

 

Fig 2.3 shows the diagram of the NDE uncertainties and their sources for this study. 

According to the analysis above, the uncertainties are involved from multiple sources. In this 

MFL defect classification work, the variation in defect shape, size, location, noise and data 

amount are considered as the main sources and their influences on defect detection will be 

explicitly investigated in Chap 5. 
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Chapter 3: Magnetic Flux Leakage Simulation 

 

3.1 Finite Element Modeling  

    

Three-dimensional (3-D) finite element method (FEM) is a widely adopted approach in 

analyzing and modeling the accurate 3-D defects and detailed MFL signals102. 3-D FEM has 

been used as a general discretization technique for many physical problems in various 

engineering fields, such as structure analysis, heat transfer, fluid flow, electromagnetic potential. 

In a structural simulation, FEM helps to predict the deformation of a structure and providing 

stiffness and strength visualizations103. R. W. Lewis et al. applied an adaptive finite element 

analysis (FEA) with an error estimation technique in heat conduction problem and provided 

satisfactory results for non-linear transient heat diffusion problems and steady incompressible 

flow problems104. FEM also provides an effective solution to the 3D electromagnetic forward-

modeling problem in the frequency domain accompanied vector and scalar potentials and 

unstructured grids105. 

The physical interpretation of FEM is to subdivide the mathematical model into disjoint (non-

overlapping) components called finite elements of simple geometry. The degrees of freedom are 

used to represent the response of each element, which is characterized by the value of an 

unknown function or function at a set of nodes106. In general, the number of degrees of freedom 

equals to the product of the number of nodes and the number of values of the field variables, 

possibly their derivatives, that must be calculated at each node. The analytical solution at each 

element is converted to solve the boundary value problems for differential algebraical equations 

at selected elements. All elements are then assembled to form a discrete model in terms of a 

system of equations, which is an approximation to the original mathematical model. The 
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variational methods are used to approximate a solution by minimizing an associated error 

function.  

In 3-D finite element computation of MFL numerical models, the geometry is constructed with 

the specified material properties and boundary conditions. It is then discretized into small 

regions which create the equations to be solved. As discussed in Chap 2, the simplified 

Maxwell’s equations could describe the electromagnetic phenomena in MFL with permanent-

magnet excitation. Based on Maxwell’s theory accompanied by eq.1 and eq.3 in Chap 2: 

∇ × 𝐴 = 𝐵⃑⃗                          (12)                     

∇ ×
1

𝜇
∇ × 𝐴 = 𝐽                 (13)            

where A is the vector magnetic potential vector, B is the magnetic flux density vector, μ is the 

spatial permeability107. In the finite element model, the equations can be expressed as108: 

[𝐾]𝐴 = 𝑆                           (14)   

where [𝐾]  is a global stiff matrix, 𝐴  is an unknown column vector about magnetic vector 

potential and S is a column vector of the excitation source. With proper boundary conditions, 

the magnetic potential vector 𝐴 can be solved from this formula and the distribution of magnetic 

flux density is then obtained. As FEM is usually used in MFL signals analysis by correlating 

MFL signals and the defect geometry parameter, in this work, ANSYS finite element software 

is used to obtain the three-dimensional MFL signals. 

 

3.2 Simulation Environment 

 

The 3-D model defines the simulation geometry in ANSYS, shown in Fig 3.1. The defects are 

set to locate in the center area of the specimen, while the size of the specimen is of 400 mm long, 
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200 mm width and 10 mm thick. The depth of the defect is set to be 5 mm, 8 mm, and 10 mm. 

In other words, the flaw depth is of 50%, 80% and 100% to the sample. The York, magnets, 

brushes and the specimen compose the whole MFL 3-D finite element simulation model. The 

permanent magnets work as the magnetic flux induction to activate the magnetic circuit, and also 

are load. Brushes act as a transmitter of magnetic flux from the tool into the piping material, and 

strategically placed tri-axial Hall effect sensor heads can accurately measure the 3-D MFL vector 

fields. In ANSYS, the chosen permanent magnets, are translated into equivalent current and 

apply on every element and node of the model102. The material of magnet is NdFe30, and that of 

York and brushes are all nickel, while the specimen is made with iron. Huang et al. proved that 

the MFL peak to peak value is inversely proportional to the lift-off value9. In order to obtain a 

precise result in the experiment, a 20 mm 𝑋 20 mm measured area is selected around the center 

of the specimen with 1 mm lift-off to receive the output MFL signals. 

 

Figure 3. 1 3D model geometry of MFL inspection in ANSYS 
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3.3 Simulation Parameter 

 

There are many types of actual defects in pipelines and the geometry of them might be arbitrary 

and complex, this thesis takes three typical defect types into simulation: cylindrical (Cy), cubical 

(Cu) and a novel shape (C). Specifically, shape C is a half-cylinder, which is constructed by 

cutting a horizontal cylinder with an incision parallel to the side of the cylinder. The metal loss 

volume is proven to be greatly related to the MFL signal, that leakage flux increases with the 

increase in the volume of defect109. As these three shape defects are of similar volume, the 

corresponding MFL signals will not be greatly varied and therefore, it is feasible to make 

classification on defect shape. The calculation formulas of defect volume are expressed as 

follows:   

Cylindrical shape:                 𝑉𝐶𝑦 = 𝜋 ×
𝐿

2
×

𝑊

2
×  𝐷 =

𝜋𝐿𝑊𝐷

4
          (15) 

Cubical shape:                       𝑉𝐶𝑢 = 𝐿𝑊𝐷                                            (16)  

C shape:                                  𝑉𝐶 =
𝜋

2
×

𝐿

2
× 𝑊 ×  𝐷 =

𝜋𝐿𝑊𝐷

4
          (17) 

Where 𝐿, 𝑊, and 𝐷 denote the length, width, and depth of the defect, respectively. Fig 3.2 (a-

c) show the 3-D profiles of each defect and the corresponding heat map of the axial component 

𝐵𝑥 are shown in Fig 3.3 (a-c).  

 

Figure 3. 2 3-D profiles of each shaped defect 
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Figure 3. 3 𝐵𝑥 component of each shaped defect (L, W, D = 5mm) 

 

For each shape defect, different length, width, and depth are assigned and combined together 

to enrich the dataset, which will be applied in the CNN to classify the defect shape and size. The 

specific defect parameters are explained in Table 3.1 and it can be seen that there are 27 kinds 

of size defects under each shape and totally, 81 kinds of defects are simulated to achieve a 

balanced dataset. In one simulation, the acquired axial, tangential and radial component signals 

are referred to a group of MFL signals and there will be three groups of MFL signals of every 

defect. Generally, 243 groups of MFL signals are simulated, while 170 groups are used as the 

training data and the others are the test data in defect classification tasks.  

Table 3. 1 MFL simulation defect parameters 

 Cy Cu C 

Length 5mm/8mm/10mm 5mm/8mm/10mm 5mm/8mm/10mm 

Width 5mm/8mm/10mm 5mm/8mm/10mm 5mm/8mm/10mm 

Depth 5mm/8mm/10mm 5mm/8mm/10mm 5mm/8mm/10mm 
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Chapter 4: Convolutional Neural Network in NDE 

 

4.1 Proposed CNN model 

 

 In general, the Convolutional Neural Network is considered as a hierarchical feature extractor, 

which extracts features of different abstract levels and maps the input image or matrix into a 

feature vector by several fully connected layers. The overall architecture and detailed settings 

of the proposed network are illustrated in Fig 4.1. All convolutional filter kernel elements are 

trained from the data in a supervised fashion by learning from the labeled MFL data.  

 

Figure 4. 1 The proposed CNN architecture 

 

In the proposed architecture, four convolutional layers are employed and each of them is 

activated by ReLU, which enable the network to extract the important features of the input. The 

first two convolutional layers with 32 kernels of 3 × 3 sized filters to obtain the corresponding 

feature maps of the input matrix. The number of kernels is selected according to the principle 
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that keeps the total number of activations (number of feature maps times number of pixel 

positions) to be non-decreasing from one layer to the next. Maxpooling layer takes the largest 

element from each feature maps within the 2x2 window, which helps to reduces the 

dimensionality of our feature map. These two connected convolutions with a pooling layer act 

as the feature extractors from the input and in this case, produce 32 feature maps. Then 25% of 

neurons are dropout to increase the validation accuracy and decrease the loss initially before the 

trend starts to go down. 

  The previous layers are employed again to deeper the network and therefore, more detailed 

features of the input image or matrix can be extracted. As the output of previous layers 

represents high-level features of the input image, a fully connected layer is added to combine 

features to create a model. Finally, the softmax activation function is applied to classify the 

inputs into various classes. It is a widely applied function in various multiclass classification 

methods by taking a vector of arbitrary real-valued scores and squashing the feature maps to a 

vector of values that sum to one110, 111. In this way, the output probability distribution over 

predicted output classes can be specified. All parameters are jointly optimized through 

minimization of the misclassification error over the training process. The entire experiment was 

implemented on the Google Cloud high-performance computing platform, with 8 virtual CPUs 

and an NVIDIA Tesla K80 as computing resources. The project is based on Keras and 

Tensorflow neural networks libraries. The performance of the proposed CNN will be validated 

on some other NDE applications and the simulated MFL detection data, which will be shown in 

the following two sections. 
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4.2 Validation of the proposed CNN in other NDE application 

 

In order to validate the generality and robustness of the proposed network, three different NDE 

related datasets are tested in the proposed CNN and some of the results are compared with 

previously published work. The comparison results showed that the proposed CNN is effective 

in solving different defect detection and recognition problems in NDE area. 

 

4.2.1 Concrete Crack Detection 

In transportation infrastructure maintenance, automatic detection of pavement cracks is an 

important task for driving safety assurance. The objective of the crack detection problem is to 

determine whether a specific pixel in pavement images can be classified and grouped as a crack. 

Zhang et al. used a supervised deep convolutional neural network to detect the crack in each 

image patch and compared the classification performances with other two conventional machine 

learning methods: Support Vector Machine and the Boosting method. The results showed that 

compared with CNNs, SVM and boosting method cannot correctly distinguish the crack from 

the background112. Inspired by this, my proposed CNN is trained to classify image patch from 

the open-sourced concrete images.  

458 high-resolution concrete surface images with various cracks are collected from various 

Middle East Technical University (METU) campus buildings113.  Following the sampling 

methods proposed in 112,  40000 annotated RGB images with 227 x 227 pixels are generated and 

are divided into two classes as negative and positive crack images.  The numbers of crack and 

non-crack patches are set to equal in this dataset. Fig 4.2 shows sample images with crack and 

without crack.  
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Figure 4. 2 Concrete image with crack (left) and without crack (right) 

 

  Noted that the number of background patches is far more than that of crack patches in an 

image, the accuracy calculated in CNN may overestimate the possibility of crack. Therefore, the 

precision (P), recall (R) and F1 score are applied as performance criteria, which defined as 

follows: 

𝑃 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

𝑅 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

𝐹1 =
2𝑃𝑅

𝑃 + 𝑅
 

Table 4.1 shows the performance of the proposed CNN in this concrete crack classification task. 

It can be seen that CNN can learn the deep features from the concrete crack images and the cracks 

can be distinguished from the backgrounds with high accuracy.  

Table 4. 1 Comparison result in Concrete Crack Data 

Method Precision Recall F1 Score 

Proposed CNN 0.9987 0.9967 0.9971 

 



30 

 

4.2.2 Surface Defect Detection 

The inspection to the steel surface is an important research area114, 115 and a surface defect 

database, constructed by Northeastern University (NEU), has been applied in feature extraction 

methods for defect recognition116-118.  In this database, six kinds of typical surface defects of the 

hot-rolled steel strip are collected, i.e., rolled-in scale (RS), patches (Pa), crazing (Cr), pitted 

surface (PS), inclusion (In) and scratches (Sc). The database includes 1,800 grayscale images, 

where each typical surface defect has 300 samples. Fig 4.3 shows the sample images of six kinds 

of typical surface defects. Each image consists of 200 × 200  pixels. In this NEU surface 

database, both the intra-class defects of one type and the inter-class defects exist large differences 

in appearance. For instance, there are horizontal, vertical and slanting scratches among the Sc 

surface defects while RS, Cr, and PS typed defects are varied. Besides, the changes in 

illumination and material influence the defect images.  

 

Figure 4. 3 NEU surface defect sample image 
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In surface inspection, a large amount of training dataset is obtained which is costly for feature 

extraction. Therefore, Ren et al. utilized a pre-trained deep learning network: Decaf119 to extract 

patch features from input images and multinomial logistic regression (MLR) classifier is chosen 

to generate the defect heat map based on patch features, and predicted the defect area by 

thresholding and segmenting the heat map117. Decaf is previously trained on the ImageNet 

challenge to predict 1000 classes of objects and its weights and model structure are reused as the 

feature extractor to the small data in another domain120-122. Comparison results of the proposed 

model and other benchmark methods are shown in Fig 4.4: 

 

Figure 4. 4 Comparison model accuracy in reference work117 
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Figure 4. 5 Model accuracy of the proposed network 

 

The results in Fig 4.4 indicated that the proposed Decaf model with MLR classifier provided 

the highest accuracy: 99.27% and in Fig 4.5, the classification accuracy of my proposed CNN 

can reach up to 99.30% within 500 epochs. Although training CNN requires a large amount of 

time, it shows great performance in classifying surface defects on this NEU dataset. In dealing 

with image classification problems, it is common to use a deep learning model pre-trained for a 

large and challenging image classification task, but the choice of the appropriate source data or 

source model is an open problem. 

  

4.2.3 Defect Detection on Eddy Current Testing 

Eddy Current Testing (ECT) is another typical electromagnetic testing method in NDE to 

detect and characterize defects in conductive materials. The electromagnetic induction is used to 

produce the alternating current and perturbations in the induced eddy current indicate the 

presence of defects80. An eddy current testing dataset, obtained from EPRI (Electric Power 

Research Institute, USA), consists of multi-frequency ECT data from inspection of 37 steam 
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generator (SG) tubes using array probes under four frequencies, i.e., 70 kHz, 250 kHz, 450 kHz, 

and 650 kHz123. In previous work, robust principal component analysis (RPCA) is utilized to 

preprocess the initial data to detect and enhance the potential flaw region, referred as the region 

of interests (ROIs), and separate the background. Fig 4.6 shows an example of segmented initial 

image samples and its sparse component with enhanced defect area (ROIs) and suppressed 

background. Then subsampling is performed to divide the individual raw image into 374 defect 

images and 374 non-defect images and each of them is of 32 × 200 pixels. Among the total 748 

sample images, 648 are used for training the CNN model while the others are used for testing the 

performance80. 

 

Figure 4. 6  One initial ECT sample image (left) and its sparse component with ROIs (right) 

 

In the reference work80, a classical CNN structure with a proper weighted loss function is 

adopted by applying larger weight of errors resulted from defect samples to improve the 

performance of their CNN model. A five-fold validation technique is implemented to verify the 

network by setting different threshold values. Five training datasets are used separately to train 

five CNN models and the results showed 𝜆6 dataset is of higher accuracy, shown in Fig 4.7. From 

the reference result plot, the x-axis represents the threshold 𝜃 which is involved in assigning 

penalty in the proposed weighted loss function. When 𝜃 is 0.5, either the defect or the non-defect 
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images are of the same penalty. The performance of the proposed CNN trained on this ECT 

datasets with threshold 𝜃 = 0.5  and no weighted loss function are shown in Fig 4.8.  

 

Figure 4. 7 Comparison model accuracy in reference work80 

 

 

Figure 4. 8 Example model accuracy and model loss of the proposed network 
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The above graphs show that the accuracy in both networks is quite good when assigning no 

penalty to the defect and non-defect ECT images. My proposed CNN is a little unstable in 

convergence, which is because the network is not specifically finetuned on this ECT defect 

classification tasks. However, its high classification accuracies prove that the defect area in ECT 

images can be distinguished from the background, in other words, the versatility of the proposed 

CNN is addressed.  

 

4.3 CNN Classification Result in MFL 

 

The simulated MFL signals described in Chap.3 are trained and tested in the proposed CNN, 

and each CNN model for different MFL classification tasks converges within 150 epochs. In 

different classification tasks, the MFL signals are assigned with corresponding labels. To be 

specific, Cu, Cy, and C are marked in the defect shape classification task, while 5mm, 8mm, 

and 10mm are marked in the defect size classification task. Each group of MFL signals consists 

of three 81 × 81  sized matrices, representing the axial, tangential and radial components, 

respectively. Similar to how RGB images are processed, these three MFL matrices are stacked 

together to be passed through CNN. After a series of convolution, pooling and dropout 

operations, the MFL defect features can be extracted and combined to make the classification 

and the results will be discussed as follows: 

 

Experiment 1: Defect shape and size classification tasks to MFL data in proposed CNN model. 
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Table 4. 2 Classification accuracy for MFL signals 

Accuracy Shape Length Width Depth 

Proposed CNN 100% 97.26% 95.89% 94.53% 

 

From Table 4.2, it can be seen that the proposed network has shown superior performances in 

shape and size classification task for MFL signal data, especially when classifying different 

defect shapes. Among the defect size classification, depth is the “hardest” one to deal with. The 

main characteristics of defect depth are represented from the axial peak and vale values of 

magnetic leakage field, which will also be affected by length and width15. Although CNNs are 

most commonly applied in visual imagery, in this case, the essential defect shape and size 

features can still be learned from 3-D MFL signals with high classification accuracy. 

 

Experiment 2:  CNN performance on distorted MFL data  

During the MFL defect detection, various measurement noise such as mechanical vibrations, 

velocity effect, sensor lift-off variation, etc., greatly distorted MFL signals. To simulate this 

noise-degraded MFL data generation, Gaussian noise is generated to contaminate the MFL 

signals and its probability density function 𝑝 is: 

𝑝 =
1

𝜎√2𝜋
𝑒

−
(𝑥−𝜇)2

2𝜎2                (18) 

where 𝑥 represents the Gaussian noise level, 𝜇 and 𝜎2 represents the mean value and variance. 

In this case, different percentage of signal points among each group of MFL matrices are 

randomly assigned with the additive Gaussian noise with the mean value of 0.005 and variance 

of 0.001. Therefore, each new noisy MFL signal point 𝑑𝑖𝑛 can be expressed as: 

𝑑𝑖𝑛 = 𝑑𝑖 + 𝑥𝑖 ,       𝑖 ∈ [0, 𝜖 × 19682]                      (19) 
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Where 𝜖 represent how much points is randomly selected among the 3-D MFL matrices to add 

noise and 𝑖 is the specific chosen position, where each matrix composed of 6561 points. 𝑑𝑖 and 

𝑥𝑖 are the original MFL signal point and gaussian noise point. Three noisy MFL datasets are 

generated by setting 𝜖 equals to 1%, 5%, and 10% respectively, which are then put into the 

proposed CNN to figure out how noisy MFL data affect the defect shape and size classification 

accuracy. 

Besides, during the MFL testing, the variation in defect location changes the measured 

magnetic field as well. To simulate this variance, different amounts of defects described in 

Chap3, are selected to be moved randomly away from the previous places (center of the 

measured area). Their new locations are set within 5mm from the previous spot, while the 

measurement area is fixed. Among the whole MFL data, 5%, 10%, 15%, and 20% defects are 

evenly chosen to be randomly relocated, respectively, and then, four new MFL defect datasets 

with location variation are generated. The relationship between the altered defect location and 

the defect classification performance of the proposed network can be found by putting these 

four MFL datasets into CNN respectively and following the same training and testing process 

in the previous section.  Fig 4.9 presents examples of two groups of magnetic fields affected by 

different defect positions. Defect in the first row is placed on the left side of the original position, 

while the defect in the second row is on the lower right side.  
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Figure 4. 9 Magnetic fields corresponding to different located defect. 

 

The variation in data increases the difficulty of the applied classification technique but in 

another aspect, represents this CNN’s robustness in MFL inspection. The comparative accuracy 

results are shown in Fig 4.10 and Fig 4.11. 
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Figure 4. 10 Noise influence on different defect classification tasks 
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Figure 4. 11 Location influence on different defect classification tasks 

 

 It can be seen that the noise distortion has more negative influences on defect identification 

accuracy than the location variations. The more MFL signals are contaminated by noises, the 

more distortions in MFL signals, and therefore the lower the classification accuracy. The proposed 

CNN has shown some resistance to noise, especially in the shape and length identification task. 

Compared to the MFL data with no noise, the additive 10% noises reduce the accuracy to around 

80% in length classification and 85% in shape classification, while in other two tasks, the 
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classification accuracies fell almost by half. The variation in defect location affect the CNN’s 

performance, but the influence is quite small when compared with noise. It can be seen that, when 

20% of defects are relocated, the variation in accuracies is less than 20% compared to the result 

of original MFL data. Therefore, the proposed defect identification network has good robustness 

in position variance and noise distortions. 

 

4.4 Comparison with Other Machine Learning Methods 

 

In previous works, feature-based techniques are proposed to accomplish the defect 

identification in MFL measurements22, 45, 47. Support vector machine (SVM) and tree-based 

techniques, e.g., decision tree (DT), are also popular tools in building the prediction models and 

solving the classification and regression problem 124-127. SVM is based on the statistical learning 

theory while DT is built following a multistage or hierarchical decision scheme. They have both 

shown great advances in multiple areas: an alternative procedure to the Fisher kernel is used in 

SVM and applied in the multimedia classification task128; Y. Bazi and F. Melgani designed an 

optimal SVM classification system for hyperspectral imagery129.  P. Ye applied the DT on the 

visual expression identification and it shows comprehensive and accurate recognition results130. 

In this section, the principle of those two methods is introduced and used as the direct inversion 

models to present the comparison results with the proposed algorithms in this thesis on the MFL 

simulation data. 
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4.4.1 Support Vector Machine 

Similar to neural networks, Support Vector Machine (SVM) is one of the powerful kernel-

based learning algorithms that analyze data for classification and regression. When the input 

data is not linearly separable, the non-linear SVM transforms the input space into a high-

dimensional output space. Different distributions in the feature space could fit a linear 

hypersurface to separate all samples into the classes131. This transformation can be performed 

by kernel function which allows more simplified representations of the data, such as polynomial, 

sigmoidal, and Gaussian (RBF)132-134. The various regularization algorithms and the kernel 

functions enable SVM to have better performance in generalization and reduce the risk of over-

fitting based on the rigorous statistical learning theory. In MFL defect detection area, SVM has 

proven to be an effective technique in the reconstruction of defects shape features in 48, while a 

least-square SVM model is used to correlate the physics-based geometric and feature parameters 

to realize a fast reconstruction of 3-D defect profiles135. 

The main idea behind SVM is to find a hyperplane that can correctly separate the sample data 

points. Given the input data points 𝑥𝑖  and the corresponding class label 𝑦𝑖 , the classifying 

hyperplane is constructed as: 

𝑤𝑇𝜑(𝑥) + 𝑏 = 0             (20) 

 where 𝜑(∙)is a non-linear function and similar to neural networks, this function maps the input 

space to a high, possibly infinite, dimensional feature space. The boundary condition should 

satisfy:  

𝑦𝑖[𝑤
𝑇𝜑(𝑥𝑖) + 𝑏] ≥ 𝛾,      𝑖 = 1, … , 𝑁               (21) 
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The optimization problem is then transferred to choose weights 𝑤 and bias 𝑏, and select the 

proper kernel functions. 

SVM performs well when dealing with evenly unstructured and semi-structured data with low 

overfitting risk and high generalization136-138. However, it is quite difficult to choose a perfect 

kernel function. In multi-class classification problems, it needs a long training period, so their 

training on a large dataset is still a bottleneck. 

4.4.2 Decision Tree 

Decision Tree (DT) is another widely used supervised machine learning technique by building 

a classification or regression models in the form of a tree-like structure139. The final result is a 

tree with decision nodes and leaf nodes. Decision nodes represent where the data to be split and 

each leaf node represents a class label or a decision. The complexity of the decision rules 

increases along with the depth of the tree. DT can learn from the data to approximate a sinusoid 

function based on specific decision rules. Unlike the black-box algorithms, e.g., SVM and NN, 

DT interprets the data by following a strict logic. It is a non-parametric method without the 

assumption of the distribution of the data and the structure of the real model140. The steps 

involved in the DT construction process are splitting, pruning and selecting the tree.  

a) Splitting: The decision tree is built by dividing training data into smaller subsets repeatedly 

according to predictor variables.  

b) Pruning: To avoid the extra calculation in the searching process, branches of the tree are 

shortened by converting some branch nodes to leaf nodes and deleting the leaf nodes under the 

original branch. It is an effective strategy to solve the overfitting problem.  
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c) Selecting Tree: It is the process of finding the smallest and the most efficient tree to fit the 

data according to various decision rules. Normally the lowest cross-validated error is set as the 

evaluation index. 

In the NDT area, DT approach is commonly applied as the comparison feature-based network 

to provide comparable results. D'Angelo and Rampone proposed a content-based image retrieval 

(CBIR) solution to classify the aerospace structure defects detected by eddy current non-

destructive testing and the J48 Decision Tree are used to evaluate the proposed system’s 

performance in defect recognition141. Later, DT and other feature-based networks are used to 

compare with the proposed neural networks in MFL defect detection task22. In general, Decision 

Tree is easy to understand and is considered as the fastest way to identify the most significant 

variables and the relation between the variables.  However, in multi-class problems, the 

probability of overfitting is relatively high and prediction accuracy is low.   

 

4.4.3 Comparison Results 

In MFL defect detection task, the proposed CNN network is compared with two feature-based 

machine learning models: SVM and Decision Tree. SVM is trained with the Sigmoid kernel, while 

in DT, ID3 (Iterative Dichotomiser 3) algorithm is used to generate the tree. 

Table 4. 3 Network comparison result in MFL 

Accuracy Shape Length Width Depth 

Proposed CNN 100% 97.26% 95.89% 94.53% 

SVM 65.75% 71.23% 83.56% 89.04% 

Decision Tree 90.41% 87.67% 93.15% 86.30% 
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The comparative results are presented in Table 4.3. The accuracy of the proposed CNN is much 

better than the other models. In this simulated MFL defect dataset, there exist data variations in 

each classification task. Take the shape detection, for example, although there are 81 groups of 

MFL signals under each label, the corresponding defect size are not fixed. To SVM and DT, the 

extracted features are sensitive to variation in data, especially for small defects; however, CNN 

can suppress the adverse interference of this variation and therefore, outperformance in pinpointing 

the distinguishing features of MFL signals.  
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Chapter 5: Uncertainty Estimation in MFL NDE  
 

Based on the discussion in section 2.3, this chapter explicitly explains how the Bayesian 

variance inference applied in CNN to obtain the aleatoric and epistemic uncertainties, which is 

proposed by the reference work142. Then this uncertainty estimation approach is applied in my 

proposed CNN to MFL defect detection, which helps to explain the relationship between data 

and model variation and aleatoric and epistemic uncertainties 

 

5.1 Aleatoric Uncertainty and Epistemic Uncertainty in CNN 

 

In the neural network, as explained before in section 2.3, the dropout result is of Gaussian 

distributions 𝒩(𝑤|𝜇, 𝜎2), where 𝑞𝜃(𝑤) are learned with the training dataset. Since most of the 

classification problems are discrete and finite, with the Monte Carlo integration, the 

approximating variational predictive posterior distribution can be constructed as: 

𝑞𝜃̂(𝑦
∗|𝑥∗) =

1

𝑇
∑𝑃(𝑦∗|𝑥∗, 𝑤̂𝑡)  (22)

𝑇

𝑡=1

 

where 𝜃 is the optimized variational parameter to minimize eq.8 and T is the number of samples 

are set to obtain the distribution, [𝑤̂𝑡]𝑡=1
𝑇  are the realized weight vectors derived from variational 

distribution. 𝑥∗ and 𝑦∗ represent the new input and corresponding one hot encode output. As there 

is no explicit function between the categorical result and Gaussian distributions, the variance of 

the variational predictive distribution allows us to evaluate how much the model is confident in 

its prediction, that is to say, the uncertainty can be quantified. According to the definition, the 

variance is given by 

        𝑉𝑎𝑟𝑞𝜃̂
(𝑦∗) = 𝐸𝑞𝜃̂

(𝑦∗⊗2) − 𝐸𝑞𝜃̂
(𝑦∗)⊗2                        (23) 
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Based on a variant of law of the total variance, eq.23 can be derived as142: 

        𝑉𝑎𝑟𝑞𝜃̂
(𝑦∗) = ∫[𝑑𝑖𝑎𝑔(𝐸𝑝[𝑦

∗]) − 𝐸𝑝[𝑦
∗]𝐸𝑝[𝑦

∗]𝑇]𝑞𝜃̂(𝑤|𝑋, 𝑌)𝑑𝑤 

                                 +∫(𝐸𝑝[𝑦
∗] − 𝐸𝑞[𝑦

∗]) (𝐸𝑝[𝑦
∗] − 𝐸𝑞[𝑦

∗])𝑇𝑞𝜃̂(𝑤|𝑋, 𝑌)𝑑𝑤  

  = 𝐸[𝑑𝑖𝑎𝑔(𝑝(𝑤)) − 𝑝(𝑤)⊗2] + 𝐸[𝑝(𝑤) − 𝐸(𝑝(𝑤))]⊗2      (24) 

𝑑𝑖𝑎𝑔(𝑣)  is a diagonal matrix with the element of the vector 𝑣  and 𝑥⊗2 = 𝑥𝑥𝑇 . 𝑝(𝑤) =

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓𝑤(𝑥∗)), where a new output 𝑦∗is made for a given input 𝑥∗, different features are 

generated with randomly assigned 𝑤 , and each feature is weighted differently to produce the 

posterior distribution. The first term in eq.24 is defined as the aleatoric uncertainty as its 

expectation is over 𝑞𝜃̂(𝑤), which captures the inherent randomness of an output. The second term 

in eq.24 is epistemic uncertainty as its expectation is only related to the network weight parameter 

𝑤, which is related to the model only. To estimate uncertainties in CNN classification task, based 

on the previous derivation, Kwon defined the predictive uncertainty estimators as: 

Aleatoric:   
1

𝑇
∑ 𝑑𝑖𝑎𝑔(𝑝̂𝑡) − 𝑝̂𝑡

⨂2𝑇
𝑡=1           (25) 

Epistemic: 
1

𝑇
∑ (𝑝̂𝑡 −  𝑝̅)⨂2𝑇

𝑡=1                       (26) 

where 𝑝̂𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓𝑤(𝑥∗)) and 𝑝̅ =
1

𝑇
∑ 𝑝̂𝑡

𝑇
𝑡=1 . With increasing T, the summation of these 

two terms converges in probability to eq.24142. Each output element of softmax function has a 

certain probability and consist to a vector, thus the variability of the predictive distribution can 

be obtained by T times calculations. 

To be more specific, in aleatoric uncertainty estimator, the diagonal matrix of expected output 

𝑦∗ is subtracted by the inner product of the softmax-generated vectors. This operation is repeated 

T times and then being averaged by T to make it tractable. The variability of the output is 
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considered to be from the inherent noise in data., therefore, the aleatoric uncertainty is 

considered to be related to the data variation. In the MFL inspection, this variance is from the 

physical model which generated the simulated MFL signals. In the epistemic estimator, based 

on the variational distribution 𝑞(𝑦∗|𝑥∗), the expected outcome 𝑦∗ is represented by the average 

of the softmax-generated vectors of T samples. Then this average is subtracted from the softmax-

generated output. Afterward, for each element, the subtraction is multiplied by its transpose and 

the summation of the output matrix make the process tractable. As the variability of the output 

coming from the model, referred as the proposed CNN model in this thesis, the epistemic 

uncertainty is considered to capture the model variation and is not proportional to the validation 

accuracy. In this way, the underlying distribution of the outcome can describe the inherent 

variability of data and model and has numerical stability as well.  

 

5.2 Uncertainty Estimation on MFL   

 

5.2.1 Uncertainty estimation in the proposed CNN on MFL 

The proposed uncertainty quantification method142 has performed well in ischemic stroke 

lesion segmentation task by providing additional assistance to a more informed decision. 

Inspired by this, I involved the predictive estimator (eq.26 and eq.27) and utilized the various 

outputs of a Dropout function to define a distribution in my convolutional network. In the next 

section, the epistemic and aleatoric uncertainty will be estimated in my MFL classification task 

based on the predictive estimator and reasonable interpretations will be explained for each 

uncertainty.  
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The principle is applying the variability in modeling the last layer of the neural network in 

order to divide the uncertainty into aleatoric and epistemic uncertainty respectively based on the 

predictive estimator formula. In my proposed CNN, the softmax activation function is already 

assigned to produce the final output. Besides, previous reviews in Chap 2 have justified that 

dropout is an approximate inference process. To obtain the variability distribution of the output, 

during the prediction stage, each group of testing data is fed into every dropout layer for 100 

times and the output will be normalized every 10 times (which is T in the predictive estimator 

formula). Therefore, for each testing MFL sample, there are 10 aleatoric uncertainty results and 

10 epistemic uncertainty results respectively, which could provide a tractable distribution to 

describe those two uncertainties. 

 

5.2.2 Uncertainty Estimation Result on MFL 

Two-thirds of the MFL data are used to train the network and in the prediction stage, the others 

are used to test my proposed network and evaluate the inherent uncertainties in data and model 

through their uncertainty distribution. The uncertainty maps are considered to provide extra 

information in addition to the MFL defect detection. Noted that, in each uncertainty plot, x-axis 

and y-axis represent the uncertainty values and occurrences to the corresponding uncertainty 

respectively. 

Experiment 1:  Uncertainties in MFL defect size classification tasks. 

In this experiment, the uncertainty estimation is applied to evaluate the defect size classification 

results and to explore the influence of different sizes on uncertainties. The uncertainty distributions 

are shown in Fig 5.1. 
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Figure 5. 1 Epistemic and aleatoric uncertainty in MFL size classification tasks 
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It can be seen from the results that: in each size classification task of length, width, and depth, 

the size parameters bring no difference in aleatoric or epistemic uncertainties. However, different 

tasks bring some variances in uncertainties. Further, the average values of aleatoric and epistemic 

uncertainties are computed for each classification task, which are compared with the corresponding 

classification accuracies. The results are described in Table 5.1.  

Table 5. 1 Comparison of accuracy, averages of total aleatoric and epistemic uncertainties 

 Length Width Depth 

Accuracy 97.89% 95.89% 94.53% 

Aleatoric Uncertainty 0.0142 0.0197 0.0547 

Epistemic Uncertainty 0.0021 0.0048 0.0066 

 

The results show that the classification accuracy is related to uncertainty. It can be seen that the 

accuracy is negatively correlated with aleatoric uncertainty, that the better classification 

performance is, the less aleatoric uncertainty is, but the epistemic uncertainty is not proportional 

to this change.  

Experiment 2:  Uncertainties in MFL defect shape classification tasks. 

The uncertainty estimation is then applied to evaluate the influence of different defect shapes on 

aleatoric and epistemic uncertainties. The uncertainty distribution and their corresponding 

average values are presented in Fig 5.2 and Table 5.2. 
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Figure 5. 2 Epistemic and aleatoric uncertainty in MFL shape classification task 

 

Table 5. 2 Comparison of aleatoric and epistemic uncertainties of each shape 

 Cu Cy C 

Aleatoric Uncertainty 0.0386 0.0787 0.1323 

Epistemic Uncertainty 0.0062 0.0127 0.0209 

 

Unlike the size classification, variations in defect shape affect both aleatoric and epistemic 

uncertainties, especially in the aleatoric uncertainty. Based on the comparison results both in 

aleatoric uncertainties and epistemic uncertainties, there exist at most around ten-fold numerically 

differences among different defect shapes. Because C shaped defects are the most irregular shapes 

compared with the other two, the uncertainties are raised.  

Experiment 3: Different percentage additive Gaussian noise and different MFL data size on 

uncertainty.  
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Here, 0%, 1%, 5% and 10% Gaussian Noise is added to the whole MFL dataset and applied in 

the shape and size classification task. In order to clearly and intuitively reflect the noise impacts 

on uncertainties, the classification results under one label are chosen to estimate uncertainties, 

which are the cubical shaped defect, defects of length 5mm, defects of width 5mm, and defects of 

depth 5mm. 

 

 

Figure 5. 3 Aleatoric and Epistemic uncertainty are computed on the MFL signal with different percentage 

noise 
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Figure 5. 3 (cont’d) 

 

 

It can be seen from the Fig 5.3, no matter in which classification task, noise in data brings much 

more uncertainties to the aleatoric part than that to the epistemic part: with the noise inferences, 

the average values of aleatoric uncertainties are almost twice larger than previous average values. 

In general, the more noises added to MFL data, the larger the aleatoric uncertainty is, but the 

epistemic uncertainty is barely changed. This result is consistent with the theory that aleatoric 

uncertainty captures the data inherent variation.  
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Besides, different sized MFL data sets are tested in the proposed CNN and Fig 5.4 shows the 

corresponding uncertainty results. Original MFL data consists of 243 groups of MFL signals which 

is the marked as Data 1. Data 2 is generated by increasing the amount of original MFL data to 324 

groups of MFL signal while Data 3 are of 405 groups. Notably, the added MFL data are the 

previous MFL data with location alteration. To some extent, the increasing sized data brings 

variation (noise) to data as well.  
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Figure 5. 4 Aleatoric, epistemic uncertainty and average uncertainties are computed on each shaped defect 

under different data size 

 

From the uncertainty distributions and the trends in average uncertainty values of each shaped 

defect in Fig 5.4, it can be seen that with the increased data size, the aleatoric and epistemic 

uncertainties are barely changed. Because, in this case, the size of the dataset is not greatly 

increased, it is difficult to directly explore the relationship between epistemic uncertainty and the 
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CNN model. However, it has been proved that the aleatoric uncertainty is related with data and in 

this experiment the aleatoric uncertainty does not change greatly, therefore, these increased MFL 

data don’t bring much data variances. Combined with previous performances that epistemic 

uncertainties are barely affected by data intrinsic randomness, in turn, epistemic uncertainty 

accounts for the model variation.  
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CONCLUSIONS 

 

To address the problem of defect feature identification in MFL, this thesis work proposed a 

novel method based on CNN. Although characteristics of general CNN make it well suited to deal 

with images and objects recognition and classification problems, the proposed CNN is applied to 

extract defect features directly from the simulated MFL signals and to classify the size and shape 

of defects. Further, in the MFL inspection, either the uncertainty in data or model affect prediction 

capabilities. Therefore, in order to assess the reliability of the classification results, a Bayesian 

inference method is involved in the proposed Convolutional Neural Network to describe the 

aleatoric and epistemic uncertainties in physical and machine learning model on defect 

identification in MFL inspection. The following conclusions are obtained: 

1. Although CNNs are most commonly applied in visual imagery, the proposed CNN provided 

good performances in recognizing defect shape and size directly from 3-D MFL signals. 

Besides, the proposed CNN has good robustness in position variance and noise distortions on 

MFL inspection, especially compared with the traditional machine learning approaches. 

2. The comparable performances of the proposed method with previous work in three different 

NDT datasets show that the proposed CNN shows great versatility in defect detection in NDE 

related areas. 

3. The proposed CNN is then combined with a Bayesian inference method to analyze the final 

classification results and make the uncertainty estimation to the physical model as well as the 

applied classification model on defect identification in MFL inspection.  

4. The intrinsic variances in data are proven to be related to the aleatoric uncertainty while the 

model variations are described through epistemic uncertainty. In size classification tasks, the 



59 

 

different size brings identical uncertainties. Besides, the classification accuracy of the proposed 

CNN model is addressed to be negative correlated with the aleatoric uncertainty.  
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FUTURE WORK 

 

To address the problem of defect feature identification in MFL, this thesis work proposed a 

novel method based on CNN. According to previous work, the CNN model is a useful tool to 

detect and characterize defects in MFL inspection. However, in practical applications, the 

defect shape and size vary and normally, there is more than one defect in a measurement area, 

therefore, it is necessary to increase the defect variety to explore CNN’s performances on this 

problem. Besides, in industry, there are large amounts of MFL signals collected in the pipeline 

inspection, and CNNs are good at processing ‘big’ data, it is promising to apply CNN in 

classifying practical MFL data.  

In addition, the uncertainty estimation approach applied in this thesis only focus on the data 

and model. As mentioned before, there exist different kinds of uncertainties in the physical 

model, it is necessary to clarify how these uncertainties affect the produced data. If successful, 

a reliable MFL defect detection and characterization system could be established and could be 

further applied in other NDT techniques, such as ECT.  
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