
MULTI-TASK LEARNING AND ITS APPLICATION TO GEOSPATIO-TEMPORAL DATA

By

Jianpeng Xu

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science and Engineering – Doctor of Philosophy

2017

ABSTRACT

MULTI-TASK LEARNING AND ITS APPLICATION TO GEOSPATIO-TEMPORAL DATA

By

Jianpeng Xu

Multi-task learning (MTL) is a data mining and machine learning approach for modeling multi-

ple prediction tasks simultaneously by exploiting the relatedness among the tasks. MTL has been

successfully applied to various domains, including computer vision, healthcare, genomics, recom-

mender systems, and natural language processing. The goals of this thesis are: (1) to investigate the

feasibility of applying MTL to geospatio-temporal prediction problems, particularly those encoun-

tered in the climate and environmental science domains and (2) to develop novel MTL frameworks

that address the challenges of building effective predictive models from geospatio-temporal data.

The first contribution of this thesis is to develop an online temporal MTL framework called

ORION for ensemble forecasting problems. Ensemble forecasting uses a numerical method to

simulate the evolution of nonlinear dynamic systems, such as climate and hydrological systems.

ORION aims to effectively aggregate the forecasts generated by different ensemble members for

a future time window, where each forecast is obtained by perturbing the starting condition of the

computer model or using a different model representation. ORION considers the prediction for

each time point in the forecast window as a distinct prediction task, where the task relatedness is

achieved by imposing temporal smoothness and mean regularization constraints. A novel, online

update with restart strategy is proposed to handle missing observations in the training data. ORION

can also be optimized for different objectives, such as ε-insensitive and quantile loss functions.

The second contribution of this thesis is to propose a MTL framework named GSpartan that

can perform inferences at multiple locations simultaneously while allowing the local models for

different locations to be jointly trained. GSpartan assumes that the local models share a common,

low-rank representation and employs a graph Laplacian regularization to enforce constraints due

to the inherent spatial autocorrelation of the data. Sparsity and non-negativity constraints are also

incorporated into the formulation to ensure interpretability of the models.

GSpartan is a MTL framework that considers only the spatial autocorrelation of the data. It is

also a batch learning algorithm, which makes it difficult to scale up to global-scale data. To address

these limitations, a new framework called WISDOM is proposed, which can incorporate the task

relatedness across both space and time. WISDOM encodes the geospatio-temporal data as a tensor

and performs supervised tensor decomposition to identify the latent factors that capture the inherent

spatial and temporal variabilities of the data as well as the relationship between the predictor and

target variables. The framework is unique in that it trains distinct spatial and temporal prediction

models from the latent factors of the decomposed tensor and aggregates the outputs of these models

to obtain the final prediction. WISDOM also employs an incremental learning algorithm that can

systematically update the models when training examples are available for a new time period or

for a new location.

Finally, the geospatio-temporal data for many scientific applications are often available at vary-

ing spatial scales. For example, they can be generated by computer models simulated at different

grid resolutions (e.g., the global and regional models used in climate modeling). A simple way

to handle the predictor variables generated from the multi-scale data is to concatenate them into a

single feature vector and train WISDOM using the concatenated vectors. However, this strategy

may not be effective as it ignores the inherent dependencies between variables at different scales.

To overcome this limitation, this thesis presents an extension of WISDOM called MUSCAT for

handling multi-scale geospatio-temporal data. MUSCAT considers the consistency of the latent

factors extracted from the spatio-temporal tensors at different scales while inheriting the benefits

of WISDOM. Given the massive size of the multi-scale spatio-temporal tensors, a novel, super-

vised, incremental multi-tensor decomposition algorithm is develop to efficiently learn the model

parameters.

Copyright by
JIANPENG XU

2017

ACKNOWLEDGEMENTS

Spending five or more years of the life-time for a Ph.D degree is a great commitment for any

human beings, including myself. During this fantastic journey as part of my limited life, what I

have experienced has and will continue to influence the paths of my personal and career life. There

are always moments and fragments in the memory that are related to those wonderful people I met,

lived, and worked with. I would like to sincerely acknowledge each of them for being supportive,

informative, and resourceful during my adventurous Ph.D study.

First and foremost, I would like to thank my advisor, Dr. Pang-Ning Tan for the continuous

support of my Ph.D study and research. He is a very patient, motivated, knowledgable and humble

mentor. He is willing to spend time on discussing not only the big pictures of my research, but

also technical details of the work. His guidance on how to correctly do research, how to identify

research problems and how to dive deep in the analysis of results is valuable and greatly benefits

my research. I am extremely grateful to those opportunities he provided for pursuing problems

of my interest, for attending conferences to make my work visible to other researchers, and for

interning at industrial and research organizations to expose myself to different real world problems.

Because of him, my Ph.D study in Michigan State University was memorable, enlightening, and

less stressful. It is my honor to be able to work with Dr. Tan and I will cherish everything he

dedicated during my stay.

Next, I would like to thank the rest of my Ph.D committee members, Dr. Jiayu Zhou, Dr.

Lifeng Luo and Dr. Abdol-Hossein Esfahanian for their support and guidance throughout my Ph.D

program. From Dr. Zhou, I gained considerably amount of practical machine learning techniques

for solving optimization problems efficiently, and it is always fruitful in every discussion with him.

His expertise in machine learning had influential impact on my research. I would also specially

thank Dr. Luo for his continuously support and discussion on the domain knowledge in my research

work. Without his domain insight, my research will not be as meaningful. Finally I would thank

Dr. Esfahanian for always being supportive for my thesis. It was great pleasure to work with each

v

of them and I look forward to continue my collaborations in my future career.

Further, I would like to spread my acknowledgement to many current and previous peer col-

leagues, especially, Prakash Mandayam Comar, Zubin Abraham, Lei Liu, Shuai Yuan, Courtland

VanDam, Xi Liu, Ding Wang, Kaixiang Lin and Qi Wang from CSE Department, as well as Pouyan

Hatami from Geography Department. They are not only keeping my lab hours interesting and in-

formative via discussions on different research topics, but also being helpful to make my life hap-

pier and easier at MSU. I also want to express my spacial thanks to the graduate director Eric Torng

for his extensive help and support over my Ph.D time, as well as numerous department secretaries

for all administrative and travel assistance.

Last but not least, I gratefully thank my parents and my wife for their continuous support,

encouragement, and unconditional love to me. This thesis would not be accomplished without

their support. I also thank my daughter coming into my life in the last year of my Ph.D, who has

brought me tremendous happiness as being a father.

Particularly, this thesis is partially supported by National Science Foundation through grant

NSF III-1615612, NOAA Climate Program office through grant NA12OAR4310081, and NASA

Terrestrial Hydrology Program through grant NNX13AI44G.

vi

TABLE OF CONTENTS

LIST OF TABLES . x

LIST OF FIGURES . xii

CHAPTER 1 INTRODUCTION . 1
1.1 Geospatio-temporal Data . 1
1.2 Application of MTL to Geospatio-Temporal Data 3
1.3 Research Challenges . 5

1.3.1 Growth and Other Characteristics of Data 5
1.3.2 Spatio-temporal Autocorrelation . 7
1.3.3 Capturing Broader-Scale Phenomena . 7
1.3.4 Multi-Scale Data . 7

1.4 Thesis Contributions . 7
1.4.1 ORION . 8
1.4.2 GSpartan . 8
1.4.3 WISDOM . 9
1.4.4 MUSCAT . 9

1.5 Related Publications . 10
1.6 Thesis Outline . 10

CHAPTER 2 BACKGROUND . 11
2.1 Spatio-temporal Data Mining . 11
2.2 Multi-scale Data Mining . 12
2.3 Multi-task learning . 13
2.4 Tensor Decomposition . 18

CHAPTER 3 ONLINE REGULARIZED MULTI-TASK REGRESSION 20
3.1 Problem Formulation . 23
3.2 Online Regularized multI-task regressiON(ORION) 25

3.2.1 ORION for ε-insensitive Loss Function 25
3.2.2 Optimization . 27
3.2.3 Algorithm . 29

3.2.3.1 Time complexity . 30
3.2.4 Theoretical Analysis of ORION-ε . 30

3.3 Online Regularized Multi-Task Quantile Regression (ORION-QR) 34
3.4 Experimental Evaluation . 36

3.4.1 Performance Comparison for ORION-ε 36
3.4.2 ORION with Quantile Regression (ORION-QR) 41
3.4.3 Sensitivity Analysis . 43
3.4.4 Variations of ORION-ε Framework . 43

3.5 Conclusion . 45

vii

CHAPTER 4 MULTI-TASK LEARNING FRAMEWORK FOR MULTI-LOCATION
PREDICTION . 46

4.1 Preliminaries . 47
4.2 GSpartan . 48
4.3 Experimental Evaluation . 53

4.3.1 Dataset Description . 53
4.3.2 Baseline Methods . 54
4.3.3 Task relationship matrix . 55
4.3.4 Experimental Results . 56
4.3.5 Sensitivity Analysis . 59

4.4 Conclusion . 60

CHAPTER 5 WEIGHTED INCREMENTAL SPATIO-TEMPORAL MULTI-TASK LEARN-
ING VIA TENSOR DECOMPOSITION 61

5.1 Preliminaries . 64
5.2 WISDOM: An Incremental Spatio-Temporal Multi-Task Learning Framework . . . 65

5.2.1 Spatio-temporal Predictive Models . 66
5.2.2 Supervised Tensor Decomposition . 67
5.2.3 WISDOM Algorithm . 68

5.2.3.1 Incremental Learning over Space 69
5.2.3.2 Incremental Learning over Time 72
5.2.3.3 Incremental Learning over Space-Time 73

5.3 Experimental Evaluation . 73
5.3.1 Dataset Description . 73
5.3.2 Experimental Setup . 74
5.3.3 Comparison against Baseline Methods . 76
5.3.4 Convergence Analysis of WISDOM . 77
5.3.5 Analysis of Spatial Latent Factors . 78
5.3.6 Analysis of Temporal Latent Factors . 79

5.4 Conclusion . 84

CHAPTER 6 MULTI-SCALE SPATIO-TEMPORAL MULTI-TASK LEARNING VIA
INCREMENTAL MULTI-TENSOR DECOMPOSITION 85

6.1 Background . 88
6.1.1 Notations . 88
6.1.2 Tensor Factorization . 89
6.1.3 Spatio-Temporal Prediction . 89

6.2 MUSCAT . 90
6.2.1 Multi-tensor decomposition . 90
6.2.2 Supervised Multi-tensor Decomposition 90
6.2.3 MUSCAT . 92

6.2.3.1 Incremental Learning over Space 93
6.2.3.2 Incremental Learning over Time 96

6.3 Experimental Evaluation . 98
6.3.1 Dataset Description . 98

viii

6.3.2 Baseline Algorithm . 101
6.3.3 Experimental Results . 102

6.3.3.1 Comparison against Baselines 102
6.3.3.2 Comparison of Multi-scale analysis against single-scale analysis . 102
6.3.3.3 Influence of Data from Multiple Scales 104

6.3.4 Analysis of Spatial Latent Factors . 104
6.3.5 Analysis of Temporal Latent Factors . 105

6.4 Conclusion . 105

CHAPTER 7 CONCLUSIONS AND FUTURE WORK 107
7.1 Summary of Contributions . 107
7.2 Future Directions . 108

BIBLIOGRAPHY . 110

ix

LIST OF TABLES

Table 3.1: Notations used in Equation (3.3) . 28

Table 3.2: Comparison of mean absolute error (MAE) for ORION-ε against baseline
methods on soil moisture data . 38

Table 3.3: Comparison of runtime (in seconds) on the Northeast data set. 41

Table 3.4: Comparison of F1 measure for predicting occurrence of extreme events. 42

Table 3.5: Comparison of mean absolute error (MAE) for different variations of ORION-
ε framework . 45

Table 4.1: Win-loss table comparing performance of various methods when applied to
the data set with limited training examples (1 year of training data and 39
years of test data). 57

Table 5.1: List of predictor variables selected from NCEP reanalysis data. 75

Table 5.2: MAE and its standard deviation for WISDOM and other baseline methods 77

Table 5.3: MAE and its standard deviation for WISDOM and its variants 77

Table 5.4: Comparison between the number of locations (out of 1,100) in which one
method outperforms another . 78

Table 5.5: List of the climate indices used to correlate with the temporal factors learned
from WISDOM. 81

Table 5.6: Comparing MAE of WISDOM and WISDOM-KP 83

Table 6.1: Spatial resolutions for various climate datasets 86

Table 6.2: Glossary of symbols used in the chapter. 88

Table 6.3: Glossary of tensor/matrix operations. 89

Table 6.4: List of variables from NARR data as predictors. 99

Table 6.5: List of surface variables selected from NCEP reanalysis data as predictors. . . . 100

Table 6.6: Number of weather stations and grid cells for each response variable. 100

x

Table 6.7: Mean and standard deviation of MAE for MUSCAT and other baseline meth-
ods for climate datasets over 10 trials. 103

Table 6.8: Mean and standard deviation of MAE for MUSCAT against different varia-
tions of MUSCAT . 103

Table 6.9: Mean of α1 and α2 for the climate datasets over 10 trials. 104

Table 6.10: List of the climate indices used to correlate with the temporal factors learned
from WISDOM. 106

xi

LIST OF FIGURES

Figure 1.1: A geospatio-temporal data set, where each location has a pair of time series. . . 2

Figure 1.2: Example of trajectory data for hurricane Sandy in 20121. 3

Figure 2.1: Multiplicative low-rank representation . 14

Figure 2.2: Illustration of MTL based on explicit task relationship 15

Figure 2.3: Illustration of MTL based on sharing common parameters 16

Figure 3.1: A schematic illustration of ensemble forecasting task (diagram is best viewed
in color). Assuming the latest forecast was generated on September 12, 2011
for the time period between September 17 and October 22, there is one obser-
vation value available to verify Forecast (N −1), two observations available
to verify Forecast (N −2), and so on. 21

Figure 3.2: Seasonable soil moisture forecasts and the observed time series at a major
river basin in North America. 22

Figure 3.3: Forecasts on Dataset Northeast for ORION-ε . Fig. 3.3a - 3.3c are results
from the training set and Fig. 3.3d - 3.3l are results from the test set. Note
that in the early stage of the online learning process, ORION-ε performs
similar to Ensemble Median (see Fig. 3.3a - 3.3b), and ORION-ε starts to
follow the observation from Fig. 3.3c. 39

Figure 3.4: Mean absolute error for ORION-ε and Ensemble Median on the Northeast
and Midatlantic data. 40

Figure 3.5: Sensitivity Analysis of ORION-ε . Fig. 3.5a shows that ORION-ε tends to
choose a large value of µ; Fig. 3.5b shows that ORION-ε is not that sensitive
to β ; Fig. 3.5c shows that λ is the parameter to be tuned in practice. 44

Figure 4.1: Comparison of GSpartan against three baseline methods 57

Figure 4.2: Comparison of GSpartan against its variants 58

Figure 4.3: Performance comparison between GSpartan against baseline methods as train-
ing set size increases. 59

xii

Figure 4.4: Results of sensitivity analysis on λ1, λ2, λ3, and k for GSpartan. The hori-
zontal axis represents the index of a station and the vertical axis corresponds
to the RMSE value. 60

Figure 5.1: The standardized monthly maximum temperature of a weather station in
French Polynesia, which correlates strongly with the deseasonalized El-Nino
Southern Oscillation Index. 62

Figure 5.2: Overview of the proposed WISDOM framework. 65

Figure 5.3: Changes in MAE over time for WISDOM . 79

Figure 5.4: Spatial distribution of the spatials factor learned by WISDOM for prcp. (Fig-
ure is best viewed in color). 80

Figure 5.5: Spatial distribution of the spatials factor learned by WISDOM for prcp, con-
tinued. (Figure is best viewed in color). 81

Figure 5.6: Average annual MAE comparison between WISDOM with incremental learn-
ing over space and WISDOM without incremental learning over space for the
100 initially chosen locations . 82

Figure 5.7: Correlations between the climate indices and the temporal factors learned
from WISDOM for tmean and prcp . 83

Figure 5.8: Percentage of locations whose response variables has a correlation above 0.3
with the temporal factors and climate indices learned from WISDOM for
tmean and prcp . 83

Figure 5.9: Stations where WISDOM-KP outperforms WISDOM more than 0.05 in MAE
evaluation for tmean and vise versa. 84

Figure 6.1: Spatial distribution of the spatial latent factors learned by MUSCAT for pre-
cipitation data (Figure is best viewed in color) 104

Figure 6.2: Correlations between the known climate indices and the temporal latent fac-
tors derived from MUSCAT . 106

xiii

CHAPTER 1

INTRODUCTION

Multi-task learning (MTL) is a data mining and machine learning approach for learning multiple

related tasks jointly, by incorporating the relatedness between tasks [20]. It was first introduced

in the context of neural networks inspired from models of learning in the human brain. To date,

MTL has been successfully applied to many applications, including computer vision [119, 103],

healthcare and medical applications [126, 14, 15], recommender systems [79, 101], natural lan-

guage processing [4], genomics [81] and social media applications [121]. MTL is also applicable

to various learning tasks such as classification [113], regression [126], and clustering [52].

The rationale for applying MTL to multiple predictive modeling problems [113] are as follows:

(i) the prediction tasks are not identical, so fitting a single model for all tasks using their combined

data is often not as effective; and (ii) the prediction tasks are related, so the model for each task

could benefit by sharing information across the tasks. However, identifying what type of infor-

mation to be shared between the different tasks and how to integrate them into a unified learning

formulation are among the key challenges that must be addressed. Based on different assumption-

s of particular applications, numerous methods for representing and modeling the common task

structures have been developed in recent years [107, 38, 7, 56, 63, 25, 49, 126, 120, 87, 31].

1.1 Geospatio-temporal Data

Geospatio-temporal data sets are prevalent across many disciplines, including geophysical and

environmental sciences [40, 8], medical informatics [32], computational molecular and fluid dy-

namics [115], and real estate economics [92]. The availability of such data sets have grown in

recent years due to advances in sensing technology and large-scale scientific simulation studies.

Predictive modeling of such massive data sets is important as it supports various scientific and

engineering applications.

A geospatio-temporal data set consists of time series observations of various fields associat-

1

ed with each geo-referenced object, e.g., measurements of meteorological variables at a weather

station, frequency of infectious disease incidents in a county, or average housing price, annual

income, and crime rate in a given neighborhood. Figure 1.1 shows an example of a geospatio-

temporal data set, where each location is associated with a pair of time series (e.g., temperature

and precipitation). A standard prediction problem for this type of data is to forecast the values of

the time series at each location based on their historical observations as well as the spatial rela-

tionships among the locations. In addition to temporal forecasting, one might also be interested in

inferring the values at locations with limited or no historical data.

Figure 1.1: A geospatio-temporal data set, where each location has a pair of time series.

The geospatio-temporal data considered in this study (as depicted in Figure 1.1) is different

from the another type of geospatio-temporal data known as trajectory data [43, 74, 95, 68]. An ex-

ample of the latter is shown in Figure 1.2, which shows the trajectory of a hurricane. Unlike Figure

1.1, where the data are generated by stationary geo-referenced objects, trajectory data are gener-

ated from movements of the geo-referenced objects. In terms of the prediction task for trajectory

data, one is often interested to predict the locations in the future path of the moving object.

1Image courtesy of http://www.weather.gov/images/okx/Sandy/Track_NHCreport.

2

1.2 Application of MTL to Geospatio-Temporal Data

There are numerous applications involving geospatio-temporal data that can be naturally mapped

into MTL problems. In the following, we describe several examples of such applications from the

climate and environmental science domains.

• Ensemble Forecasting:

Ensemble forecasting is a well-known numerical prediction technique for modeling the evo-

lution of nonlinear dynamic systems. The ensemble member forecasts are generated from

multiple runs of a computer model, where each run is obtained by perturbing the starting

condition or using a different model representation of the dynamic system. The set of fore-

casts produced by the ensemble members are used to quantify the range of uncertainties in

the future state of the system. However, for many applications, it is also desirable to obtain

a point estimate of the forecasts for decision making purposes. To do so, the ensemble mean

Figure 1.2: Example of trajectory data for hurricane Sandy in 20121.

png

3

or median are typically chosen as the consensus estimate of the aggregated forecasts. These

approaches are limited in that they assume each member is equally skillful and ignore the

potential correlations between the ensemble member forecasts. Furthermore, each forecast

typically represents the predictions for an extended future time period, e.g., for a 6-month

forecast duration. The ensemble mean or median approaches do not guarantee the tempo-

ral predictions would be smooth throughout the forecast window since the mean or median

aggregation is performed at each time step independently. This presents an opportunity for

developing a temporal MTL framework to learn the optimal weights for combining the en-

semble member forecasts, where the prediction at each time step is considered a separate

learning task and task relatedness constraints can be imposed to ensure temporal smoothness

of the predictions.

• Multi-Location Prediction:

Another obvious application of MTL is to predict the values of one or more response vari-

ables simultaneously at multiple locations. For example, climate scientists are interested

to obtain projections of the future climate (e.g., temperature and precipitation) at multiple

locations in a study region. Similarly, in hydrology, soil moisture forecasts are needed for

various river basins for drought monitoring applications. One way to do this is to train a local

model at each location using only its historical observations. This single-task learning (STL)

approach may not be effective especially if there are limited training examples available at

the locations. This is because the STL models fail to exploit the spatial relationships of the

predictions, which is important for many geospatio-temporal prediction problems following

Tobler’s first law of geography, which states that “Everything is related to everything else,

but near things are more related than distant things.” [98]. Spatio-temporal MTL approach-

es can be developed that allow the local models at multiple locations to be jointly trained,

taking into account the shared information between locations (e.g., their spatial proximity or

autocorrelation).

4

• Multi-Scale Prediction:

The geospatio-temporal data generated for many scientific applications are often available at

multiple spatial scales. For example, the climate projections generated by global and region-

al climate models are available at a wide range of spatial resolutions, from tens to several

hundred kilometers. As another example, the soil moisture estimates provided by the Cli-

mate Forecast System Reanalysis (CFSR) and the North American Land Data Assimilation

System (NLDAS-2) for hydrology applications are available at 35km and 12km resolutions

respectively over the conterminous United States. It has been shown that integrating data

from multiple scales for predictive modeling could improve the performance, as different

analysis scales have the potential to produce different prediction skills [75]. Many existing

methods [82, 35, 75] would concatenate the variables from multiple scales into a single fea-

ture vector, enabling us to apply existing approaches for building predictive models from

the multi-scale data. However, this strategy may not be effective as it fails to consider the

relationships among the multi-scale variables. A MTL framework can be developed to ex-

ploit such relationships in order to build more robust and effective predictive models. For

example, the predictive modeling using predictor variables at each scale for each location

can be treated as a separate learning task and the task relatedness can be defined based on

the structure of the models (e.g., the shared latent factors of the predictor variables across

multiple scales).

1.3 Research Challenges

This section presents the challenges of applying MTL to geospatio-temporal data.

1.3.1 Growth and Other Characteristics of Data

Geospatio-temporal data sets often grow linearly over time. For example, climate observations

from weather stations are typically available at hourly, 3-hourly, or daily basis. Due to the contin-

uous growth of the data, building predictive models for a large number of locations simultaneously

5

using MTL in a batch mode is computationally demanding as the models have to be trained from

scratch each time new observation data become available. An online or incremental MTL ap-

proach is more suitable as the models need to be revised using the new observations only instead

of re-trained using the entire data set. Furthermore, such an approach is more adaptive to changes

due to concept drifts in the data. Although online versions of MTL have been developed in recent

years [21, 34, 114, 87, 101], these methods are not specifically designed to exploit properties of

the geospatio-temporal data.

In particular, the characteristics of the data could make it difficult to apply existing MTL meth-

ods to certain applications. For example, the ensemble forecasting task described in the previous

section can be viewed as a sliding window prediction problem, which requires making predictions

for multiple consecutive time steps into the future. As time progresses, the sliding window will

be shifted from its current forecast window to the next forecast window. In addition, the number

of observed values in its previous forecast windows varies depending on the current time period,

making it difficult to apply existing online MTL methods. To illustrate this, consider an ensemble

of weather forecasting models. Every day, the ensemble members would generate their predictions

for the next 7 days. For example, on a Sunday, the ensemble members would generate their pre-

dictions for a 7-day forecast window starting from the next day (Monday) to the following Sunday.

On the next day, which is a Monday, the ensemble members would generate a new set of fore-

casts for a new 7-day time window (from Tuesday to the following Monday). At this time, the

previous forecast window generated on Sunday would have 1 observed value out of its 7 predict-

ed days whereas the forecast window generated on the previous Saturday would have 2 observed

values instead of 1. The online MTL approach will have to revise its models using the partially

observed (incomplete) data from not just 1 but several of its previously forecasted time windows.

This problem will be further elaborated in Chapter 3.

6

1.3.2 Spatio-temporal Autocorrelation

Geospatio-temporal data often contain spatial and temporal autocorrelations that can be utilized

to improve the performance of the predictive models. For example, temporal autocorrelation can

be used to ensure that the predicted values vary smoothly over time. The spatial autocorrelation

enables the models to leverage data from other locations based on the similarity between the loca-

tions. How to effectively incorporate both the spatial and temporal autocorrelations into the MTL

framework is a challenge that needs to be addressed.

1.3.3 Capturing Broader-Scale Phenomena

The geospatio-temporal variabilities of the data are potentially influenced by broader-scale phe-

nomena, whose impact may vary from one location to another. For example, the well-known

El-Ninö phenomenon has different effects on weather patterns in North America and the rest of the

world. To generate realistic predictions, the predictive models for different locations should be able

to capture such broader-scale phenomena. Designing a geospatio-temporal MTL framework that

can effectively perform multi-location predictions while capturing such broader-scale phenomena

is a challenge in this research.

1.3.4 Multi-Scale Data

As previously noted, the geospatio-temporal data are often available at multiple spatial resolu-

tions. Such multi-scale data provide useful information that can be harnessed for building robust

prediction models. Constructing a MTL framework that can utilize the multi-scale data, while ac-

counting for the relationships between variables at different scales, is another challenge that needs

to be addressed.

1.4 Thesis Contributions

This section summarizes the key contributions of this thesis in terms of addressing the chal-

lenges described in the previous section.

7

1.4.1 ORION

In Chapter 3, an online temporal MTL framework called ORION (which stands for Online Regularized

multI-task regressiON) is proposed to estimate the weights of the ensemble members for the en-

semble forecasting application. The framework uses an online learning with restart strategy to deal

with the partially observed data for different forecast windows. It regards the prediction at each

time point as a single learning task and employs graph regularization constraints to ensure smooth-

ness in the model parameters while taking into account the task relatedness within each time win-

dow. The framework is applicable to different types of loss functions, including ε-insensitive and

quantile loss. The quantile loss function is particularly appealing for forecasting extreme events

in a time series. Experimental results suggest that ORION reduces the forecast error of ensemble

median for all major river basins datasets, and performs better than other baseline algorithms in

most cases.

1.4.2 GSpartan

In order to address the multi-location prediction problem, Chapter 4 proposes a novel MTL frame-

work called GSpartan, which stands for GeoSPAtio-tempoRal mulTi-tAsk learNing. GSpartan

considers the prediction at each location as a single learning task and employs a multi-modal

MTL approach to fit the training data simultaneously at multiple locations, where each modality

corresponds to a latent factor derived from the data. The multi-modal approach is based on the as-

sumption that the prediction models for all locations share a common set of low-rank base models.

The local model at each location is then composed of a linear combination of these base models.

The coefficients of the linear combination along with the base models are jointly estimated from

the data using a matrix factorization approach. A Laplacian regularization is also added to the

MTL formulation to constrain the relatedness between different task models under the assumption

of spatial autocorrelation. To ensure interpretability of the models, sparsity and non-negativity

constraints are also added into the proposed MTL formulation. The performance of GSpartan is

evaluated against several baseline methods on climate data collected from 37 randomly chosen

8

weather stations in Canada. The experimental results show that GSpartan outperforms single-task

learning and other existing MTL methods in more than 75% of the stations.

1.4.3 WISDOM

GSpartan considers only the spatial autocorrelation between locations, while ignoring the temporal

consistency of its predictions. In addition, it is designed for batch learning, which makes it dif-

ficult to scale up the algorithm for the growing geospatio-temporal data sets collected by many

applications. To overcome these limitations, an incremental, geospatio-temporal MTL frame-

work named WISDOM (Weighted Incremental Spatio-temporal Multi-task Learning via Tensor

Decomposition) is proposed in Chapter 5. The framework performs a supervised tensor factoriza-

tion on the geospatio-temporal data, from which it constructs distinct spatial and temporal predic-

tive models from the derived latent factors. The framework can also incorporate known patterns

from the domain by adding constraints on the latent factors. WISDOM can be applied to in-

cremental learning over space, time, or both when new observation data become available. The

effectiveness of the proposed framework for multi-location time series prediction is demonstrated

on a large-scale global climate data.

1.4.4 MUSCAT

Finally, Chapter 6 presents a multi-scale MTL framework named MUSCAT (Multi-scale Spatio-

Temporal Muti-task Learning via Incremental Multi-tensor Decomposition), which not only learns

the prediction models at multiple locations simultaneously, but can also take advantage of the

task relatedness between predictor variables at different scales. Unlike WISDOM , MUSCAT

represents the data at each scale as a separate tensor and performs a supervised, joint multiple

tensor decomposition across all tensors. The consistency of the learned latent spatial and temporal

factors are enforced to model the relatedness of the predictor variables from different scales. A

comparison between MUSCAT to other baseline methods including WISDOM demonstrates the

9

effectiveness of the proposed framework in terms of handling the multi-scale geospatio-temporal

data.

1.5 Related Publications

This thesis is based on materials taken from several conference or journal papers that have

been published or submitted as this thesis is written. The materials for Chapter 3 are adopted from

two papers, entitled “ORION: Online Regularized multI-task regressiON and its application to

ensemble forecasting” [107] and “Online Multi-task Learning Framework for Ensemble Forecast-

ing” [111], respectively. Chapter 4 is based on the results published in the paper entitled “GSpar-

tan: a Geospatio-Temporal Multi-task Learning Framework for Multi-location Prediction” [109].

Chapter 5 is adopted from the paper “WISDOM: Weighted Incremental Spatio-Temporal Multi-

Task Learning via Tensor Decomposition” [110]. This paper also won the best paper award at the

IEEE BigData Conference in 2017. Finally, the materials in Chapter 6 are based on a paper that has

been submitted to a conference. I am the first author and main contributor for all of these papers.

1.6 Thesis Outline

The reminder of this thesis is organized as follows. Chapter 2 presents the background and

related works of this thesis. Chapter 3 presents the temporal MTL framework named ORION for

ensemble forecasting [107, 111]. Chapter 4 introduces the spatio-temporal MTL framework for

multi-location prediction (GSpartan) [109]. Chapter 5 presents an incremental, spatio-temporal

MTL framework named WISDOM [110] while Chapter 6 describes the extension of the frame-

work to multi-scale geospatio-temporal data. Finally, Chapter 7 summarizes the dissertation and

discusses possible extensions and future directions of this research.

10

CHAPTER 2

BACKGROUND

The objective of this thesis is to develop MTL frameworks for the predictive modeling of geospatio-

temporal data. In this chapter, previous works related to the key topics investigated in this thesis,

including spatio-temporal data mining, multi-task learning, multi-scale modeling, and tensor de-

composition, are reviewed.

2.1 Spatio-temporal Data Mining

Spatio-temporal data mining can be either related to stationary geo-referenced objects which

consist of time series for each object [110, 48, 46, 47], such as soil moisture measurement as

weather stations over time, or related to in-motion objects which are associated with movements

of the object over time [9, 27, 45], such as trajectory data. This thesis focuses on the methods

belonging to the first type of the spatio-temporal data mining.

Spatio-temporal data mining is important to many application domains, such as climatology,

medicine, and crop sciences. It usually can be categorized into three classes: spatial data mining,

temporal data mining, and spatio-temporal data mining. Spatial data mining is to learn, model, and

discover the interesting unknown knowledge or patterns with spatial dependencies such as spatial

auto-correlation, while temporal data mining is to model or discover the temporal unknown knowl-

edge or patterns from timeseries data by exploring the temporal dependencies such as temporal

auto-correlation. Spatio-temporal data mining usually consumes both spatial and temporal infor-

mation in the modeling process. There are other information or properties that are often considered

in the modeling process, such as spatial heterogeneity, non-stationarity, as well as multiple scale

effect. Existing tasks for spatial, temporal, spatio-temporal data mining include prediction (classi-

fication and regression) [58, 17, 83], clustering [51, 18, 53], association rule mining [62, 73, 96]

and anomaly detection [71, 59, 70]. This thesis will focus on the prediction tasks in spatial, and

spatio-temporal data mining.

11

Spatial prediction modeling is to predict the target variable at unobserved locations by mod-

eling the data in observed locations. One of the common approach for modeling spatial data is

spatial statistics [5, 44], which is composed by three sets of methods based on different types of

spatial data: (a). geostatistics for point referenced data, such as Kriging [10]; (b). lattice statistics

for areal data, such as spatial autoregressive model (SAR) [58], conditional autoregressive model

(CAR) [33] and Markov random fields (MRF) [54]; and (c). point process for spatial point patterns,

such as complete spatial randomness (CSR) [44].

Spatio-temporal prediction refers to the methods that perform predictions on the response vari-

able by learning models from predictor variables from spatio-temporal data [88]. Spatio-temporal

prediction common approaches include spatio-temporal autoregressive regression [42, 99], spatio-

temporal kriging [123, 89], and Bayesian hierarchical spatio-temporal models [104, 85, 13]. A

comprehensive survey on spatio-temporal data mining is provided by Shekhar et. al. [88]. Re-

cent work has shown that MTL could potentially gain better performance on spatio-temporal

prediction, by taking into account the correlation between tasks across time, space, or time and

space [107, 109, 110, 121, 117].

2.2 Multi-scale Data Mining

The concept of multi-scale learning has been used in the literature to describe different classes

of methods. For example, in traditional machine learning, multi-scale learning is related to the use

of techniques based on multi-kernel [11], multi-covariance matrices [100] or multi-basis function-

s [80]. These methods are not designed to handle data containing multi-scale variables. Instead,

they are focused on extracting and combining different models of the same raw data, which is

available at a single resolution.

For geospatio-temporal data, the goal of multi-scale learning is to build predictive models from

data whose predictor variables are collected at multiple resolutions. A straightforward approach for

handling multi-scale data is to concatenate the predictor variables together into one single feature

vector and then apply existing prediction methods [35, 75]. These approaches are limited in that it

12

ignores the relationships among the multi-scale variables.

With the explosive growing of deep learning techniques, there have been several recent works

on multi-scale modeling, in the context of computer vision. The concept of multi-scale data in

this case typically refers to different image resolutions. For example, the multi-scale concept used

in deep convolutional networks refers to the extraction of features from an image using windows

or patches of different sizes [41, 12]. Deep learning can also be used to learn multi-scale spa-

tial features from images that have multiple resolutions [122]. However, these methods assume

that the spatial data has a gridded structure, and thus, are inapplicable to geospatio-temporal data

where the spatial data may not be gridded. Nevertheless, there have been some recent works using

deep learning to model data with multiple resolutions. For example, a multi-scale deep learn-

ing approach was proposed in [78] to build models and to perform predictions independently at

each scale of the data, followed by majority voting to combine the predictions. Another approach

performs global learning on coarser scale data and then refines the model locally on finer scale da-

ta [37]. However, unlike our proposed approach, none of these methods consider the relationships

between data at different scales.

2.3 Multi-task learning

MTL is a well-known machine learning approach for solving multiple, related prediction tasks

simultaneously by considering the shared information among the tasks [20]. The rationale of MTL

is that the information propagated between related tasks may enhance the overall predictive accu-

racy if the models are trained jointly instead of independently. The MTL scheme has been success-

fully adopted into various learning problems including classification [113], regression [126], and

clustering [52]. Online learning versions of MTL have also been developed [21, 34, 114, 87, 101],

which allows the models of multiple tasks to be updated incrementally. In this section, the existing

MTL approaches are reviewed.

Based on the information sharing scheme between multiple tasks, MTL methods can be broadly

classified into the following categories:

13

MTL based on Low-rank Representation: This category of methods assume that the underlying

models for different tasks share a low-rank representation, either additively or multiplicatively.

For example, in the multiplicative low-rank representation, the tasks models can be factorized

into two terms, one representing the base models shared across tasks, the other representing the

combination coefficients. The task models are linear combinations of those base models, weighted

by the combination coefficients. An illustration for multiplicative low-rank representation is shown

in Figure 2.1. Additive low-rank representation simply replaces the multiplication into summation,

with additional constraints for those additive terms.

Figure 2.1: Multiplicative low-rank representation

Previous works that belong to this category include [23, 7, 56, 63, 24, 25, 49]. For example,

Chen et al. [23, 24] assumed the tasks models are composed additively by a low-rank structure cap-

turing the relatedness over the tasks and a group sparse structure that identifies the outlying tasks.

A similar idea was proposed in Gong et al. [49], which uses a combination of a task model that

enforces group sparsity on features and another that enforces group sparsity for detecting outlying

tasks. Argyriou et al. [7] and Kang et al. [56] projected the features into a low dimensional space in

which the predictive models for different tasks are inferred and the discriminant features are select-

ed using an ℓ2,1 norm. Kumar et al. [63] assumed that each task model is a linear combination of a

set of underlying base models, where the coefficients of the linear combination along with the base

models are coupled in a multiplicative way. Sparsity constraints are also enforced to ensure the

models are interpretable. Chen et al. [25] incorporated both additive and multiplicative represen-

tation into their formulation with a low-dimensional feature map shared across the different tasks.

Tensor decomposition methods are also adopted in MTL to extract low-rank representations [118].

These existing MTL methods may not be suitable to leverage some of the task relations specially

14

in geospatio-temporal predictions, or fails to capture geospatio-temporal patterns from the data.

MTL based on Explicit Task Relationship: This category of methods explicitly incorporates

the task relationship inferred from the application domain into the MTL formulation. The task

relationships are typically encoded in a similarity matrix, whose elements represent the closeness

between two tasks [39]. Concrete constraints will be enforced on objective functions based on the

relations defined by the similarity matrix, in such a way that the models will be similar if the tasks

are close to each other. Figure 2.2 illustrates the general idea of using explicit task relationships

in MTL. Matrix A represents the similarity matrix of tasks, where Ai j is the similarity score or

closeness between task i and task j.

Figure 2.2: Illustration of MTL based on explicit task relationship

Several works can be categorized under this framework. For example, Zhou et al. [126] em-

ployed a task relationship to ensure smoothness in time series prediction, where each time point

corresponds to a separate prediction task. Zhang et al. [120] proposed a MTL regularization formu-

lation to simultaneously learn the task relationship and task models. Saha et al. [87] also proposed

an online MTL to learn both the task models and their relationships. This category of methods is

useful when the task relatedness can be clearly defined. They are inapplicable if the task relation-

ship is not available or if the implicit task relationship needs to be inferred from data.

MTL based on Sharing Common Parameters: The assumption in this category is that different

15

tasks are related by sharing a set of common parameters. One of the examples is proposed by

Evgeniou et al. [38], which is shown in Figure 2.3. In this example, the models w1 to wn for task

1 to task n are composed by a common term w0, and n task specific terms v1 to vn, where the

common term w0 is shared across different tasks.

Figure 2.3: Illustration of MTL based on sharing common parameters

There are other ways for sharing model parameters for multi-task learning. For example,

Lawrence et al. [64] and Yu et al. [116] proposed a multi-task Gaussian process where the pri-

or parameters are shared across different generative processes. Lee et al. [65] gave a formulation

to share hyperparameters between distributions of different task models while Daume et al. [31]

learned hierarchical Bayesian models that share a common structure parameterized by a covariance

matrix. Note that sharing common terms additively across tasks is equivalent to using a specific

task relation where all the tasks are close to the (weighted) averaged models [38].

MTL based on Hybrid Information Sharing Methods: More recently, there have been some

efforts to combine two or more MTL information sharing methods described above. For example,

Xu et al. [108] combined both low-rank representation and explicit task relations as it models the

heterogeneity between patients using low-rank modeling and constrains the task models to be close

to the weighted average models from the neighboring tasks.

Besides of the taxonomy induced by the way of sharing information between tasks, MTL al-

gorithms can be also divided as batch [38, 126, 120, 87, 56, 63, 24, 25, 49, 116, 31, 65, 20] versus

16

online multi-task learning [34, 21, 87, 3], according to the data availability and the way of training

the models.

Batch Multi-task Learning Methods: For batch multi-task learning approaches, all the data

points from all the tasks have to be available when the learning procedure starts. Similar to s-

ingle task learning approaches, the advantage of batch learning methods is that all the information

can be taken account at the same time and hence the learnt models can be considered as an optimal

solution. Most of the aforementioned MTLs are batch methods.

Online Multi-task Learning Methods: Online learning is a family of learning algorithms, in

which the data is observed in a sequential manner and the models must be updated incrementally

based on the new observations. The merit of applying online learning is that it does not consume

as much memory compared to batch learning, which is advantageous for handling large, streaming

data sets. Some of the popular online learning methods include the weighted majority algorith-

m [69], online Passive Aggressive (PA) algorithm [29], and confidence-weighted algorithm [36].

Since the amount of data to be processed in multi-task learning is generally much larger than single-

task learning, a straightforward solution is to extend MTL to an online learning setting. Dekel et

al. [34] presented an approach for multi-task perceptron using a global loss function to define the

relationships among the different tasks. This method assumes the true values for all the learning

tasks are available when updating the model. Relationships among the tasks are also not explicitly

defined in their objective function. As a result, only those tasks that have committed a prediction

error will have their weights updated. Cavallanti et al. [21] proposed another perceptron-based on-

line MTL method, which uses an empirical loss function with co-regularization among the tasks.

Since the method performs an update one task at a time, the results are order-dependent. Saha et

al. [87] extended the work in [21] by proposing a method that simultaneously learns the model

and task relation matrix using an alternating optimization scheme. However, this approach has the

same limitation as [21] because it uses similar assumptions as [21]. [67] proposed a collaborative

online MTL method by extending [38] into an online version. However, it does not consider the

possible task relationships explicitly. Another recent work on online multi-task learning consid-

17

ers a regret-minimization approach under expert advice model [3]. However, none of the existing

works were designed for geospatio-temporal data to address its challenges.

2.4 Tensor Decomposition

Existing tensor decomposition approaches can be categorized into unsupervised [57, 22, 28]

and supervised methods [105, 86, 106, 118]. The former is designed to minimize reconstruction

error whereas the latter considers the relationship between the predictor and response variables,

and thus, is more suitable for predictive modeling problems.

Several implementations of supervised tensor decomposition approaches have been developed

in recent years. For example, Wu et. al [106] proposed the SNTFM framework to map the rep-

resentation of each sample from a tensor into a vector and build a predictive model on the new

representation of the data. Bernardino et. al [86] and Kishan et. al [105] presented a MTL frame-

work for data sets with multi-modal structures using a supervised tensor decomposition approach.

Similarly, Yu et. al [118] proposed a low-rank tensor learning approach for multivariate spatio-

temporal data. These approaches encode the parameters of their predictive models as a tensor,

which is assumed to have a low rank. Tensor decomposition was performed on the model param-

eters, unlike our proposed framework, which performs the decomposition on the spatio-temporal

tensor data. This strategy allows us to provide meaningful interpretation of the latent factors in

terms of their spatial, temporal, and feature dimensions.

Incremental/online tensor decomposition methods have been developed for streaming data as

well as for data sets that grow dynamically over time [93]. Current incremental methods can be

divided into two categories, one is based on Tucker decomposition, while the other is based on

CP decomposition. Existing incremental Tucker decomposition methods are mostly based on in-

cremental SVD, applied to the matricization of the tensor for different modes [94, 93, 55]. The

incremental SVD based methods assume orthogonality of the latent factors, which is somewhat

restrictive for interpretability reasons. Zhou, et al. [127] developed an online CP decomposition

approach, where the the latent factors are updated when there are new data. However, these meth-

18

ods are inapplicable to our problem setting since they were developed for unsupervised learning.

Although there is a recent work on online supervised tensor decomposition [118], it is restricted to

new observation data along the time dimension, whereas our WISDOM and MUSCAT framework

consider new observations in both space and time.

19

CHAPTER 3

ONLINE REGULARIZED MULTI-TASK REGRESSION

1 Ensemble forecasting is a popular numerical prediction method for modeling nonlinear dynamic

systems, such as climate [97], agriculture [19], ecological [6], and hydrological [72] systems.

Specifically, the future states of the systems are predicted using computer models that simulate the

physical processes governing the behavior of such systems. Since the models may not fully capture

all the underlying processes as well as their parameterization accurately, their forecast errors tend

to amplify with increasing lead time. Ensemble forecasting [66] aims at obtaining more robust

prediction results by combining outputs from multiple runs of the computer models. Each run

is obtained by perturbing the starting condition or using a different model representation of the

dynamic system. The forecast generated from each run corresponds to a series of predictions for

a future time window, T , known as the forecast duration. As an example, consider the ensemble

forecasting task shown in Fig. 3.1. There are altogether N sets of forecasts generated every 5 days,

from April 5, 2011 to September 12, 2011. Each set of forecasts contains time series predictions

generated by d ensemble members (x1, ..., xd) for a forecast duration T . The goal is to combine

the d ensemble member forecasts in such a way that produces an aggregated prediction that is

consistent with the true observation data, y.

The ensemble mean or median is often used as a point estimate of the aggregated forecasts.

These estimates assume that every ensemble member prediction is equally plausible, and thus,

their predictions should be weighted equally. However, as some ensemble members may fit the

observed data less accurately than others, this may degrade the overall predictive performance. To

illustrate this, consider the example given in Fig. 3.2, which shows the basin-averaged soil moisture

percentile forecasts of a hydrological model ensemble, consisting of 33 members (shown as thin

green lines), along with the ensemble median (shown as a dashed line) and the true observed data

(shown as a solid red line). The ensemble members were initially calibrated using soil moisture

1This chapter is based on the previous publication [111].

20

data from September 2, 2011. Their outputs for that day are therefore the same. Each ensemble

member would then generate a set of forecasts for a 40-day time window, from September 7, 2011

to October 12, 2011. Though the forecasts were quite similar at the beginning, they began to

diverge with increasing lead time. Some ensemble member forecasts no longer fit the observed

data well, thus affecting the accuracy of the ensemble median approach. This example illustrates

the need to learn an optimal set of weights for combining the ensemble member forecasts.

To address this need, this chapter presents an online learning model that can update the weights

of the ensemble members according to their predictive skills. Unlike conventional online learning,

the ensemble forecasting task requires making multiple predictions for a time window of length T .

As the predictions within the window are not independent due to the temporal autocorrelation of the

time series, the ensemble forecasting task can be naturally cast as an online multi-task regression

problem.

Another difference between conventional online learning and the requirements of ensemble

forecasting is that not all observation data are available when the model is updated. For example, in

Fig. 3.1, suppose the ensemble members generate a new set of forecasts every 5 days. Let forecast

N − 2 be the set of forecasts generated on September 2 for a 40-day period from September 7 to

No observation data

Observation data

Ensemble member 1 forecasts

Ensemble member 2 forecasts

Ensemble member 3 forecasts

Ensemble member 4 forecasts

Legend
d ensemble

member

forecasts observation

x1 x2 xd … y

t1

t2

.

.

.

tT-1

tT

F
o

re
ca

st
 d

u
ra

ti
o

n

Apr. 05, 2011 Apr. 10, 2011 Sep. 07, 2011 Sep. 12, 2011 Sep. 02, 2011

Time

Forecast 1 Forecast 2 Forecast N-1 Forecast N Forecast N-2

forecasts obse

Figure 3.1: A schematic illustration of ensemble forecasting task (diagram is best viewed in
color). Assuming the latest forecast was generated on September 12, 2011 for the time period

between September 17 and October 22, there is one observation value available to verify Forecast
(N −1), two observations available to verify Forecast (N −2), and so on.

21

October 12, forecast N−1 be the corresponding forecast set generated on September 7 for the time

window September 12 to October 17, and forecast N be the forecast set generated on September 12

for September 17 to October 22. We assume forecast N to be the most current forecast. When the

online learning model is updated on September 12, forecast N − 2 has two observed values in its

time window, including September 7 and September 12, while forecast N −1 has a new observed

value for September 12. This means the observation data are not only incomplete in each time

window, the number of observations also varies from one window to another. We call this problem

online multi-task learning with partially observed data. Due to this property of the data, instead of

updating the model from its most recent model, we need to backtrack and revise some of the older

models when new observation data are available.

This chapter is to develop a framework called ORION (which stands for Online Regularized

multI-task regressiON) that uses an online learning with restart strategy to deal with the partially

observed data. The framework also employs graph regularization constraints to ensure smoothness

10

20

30

40

50

60

70

80

90

S
oi

l M
oi

st
ur

e

2011/9/2

2011/9/7

2011/9/12

2011/9/17

2011/9/22

2011/9/27

2011/10/2

2011/10/7

2011/10/12

Ensemble Members
Observations
Ensemble Median

Figure 3.2: Seasonable soil moisture forecasts and the observed time series at a major river basin
in North America.

22

in the model parameters while taking into account the temporal autocorrelation of the predictions

within each time window. It is capable to incorporate different loss functions, such as ε-insensitive

loss and quantile loss function, which is useful for predicting extreme values of a time series. The-

oretical proofs are also provided to demonstrate the convergence of the proposed online learning

algorithm.

The main contributions of this chapter are summarized as follows:

• The problem of online regularized multi-task regression with partially observed data is in-

troduced and demonstrated the relevance to the ensemble forecasting task.

• A novel framework called ORION is presented, which uses an online learning with restart

strategy to solve the problem. It also uses a graph Laplacian to capture relationships a-

mong the learning tasks along with a passive aggressive update scheme to optimize the ε-

insensitive loss function.

• The framework is extended to incorporate the quantile loss function for predicting extreme

events. To the best of our knowledge, ORION is the first multi-task regression framework

that has been tailored for extreme value prediction.

• Extensive experiments are performed using a real-world soil moisture data set and the results

show that ORION outperforms several baseline algorithms, including the ensemble median,

for the majority of the river basins in our data set.

3.1 Problem Formulation

We consider a variation of the online multi-task learning process described in [34], in which

the learning proceeds in a sequence of rounds. At the start of round n, where n ∈ {1,2, · · · ,N},

the algorithm observes T unlabeled instances, x(n) = {x(n)1 ,x(n)2 , · · · ,x(n)T }, where each instance

x(n)i ∈ ℜd is a d-dimensional vector of predictor variables, and T is the number of instances to

be predicted in each round. The algorithm then predicts the target value f (xi) for each unlabeled

instance. We consider the prediction of each instance as a separate learning task. Our goal is to

23

learn a set of prediction functions for the T tasks such that their cumulative loss over the N rounds

is minimized. Similar to previous works [34, 21], we consider only linear prediction functions

of the form f (x) = wT x, where w ∈ ℜd is the parameter vector. Extending the formulation to

non-linear models is beyond the scope of this work.

From an ensemble forecasting perspective, each online round corresponds to the scenario when

a new set of forecasts is generated, as shown in Fig. 3.1. After N rounds, there are N sets of

forecasts generated. Each set of forecasts is generated by d ensemble members, which collectively

form the set of predictor variables for our online learning task. Note that each ensemble member

produces a time series of length T , which is equivalent to the number of instances (tasks) that

must be predicted in each online round. Since the prediction tasks are related due to the inherent

temporal autocorrelation of the time series, we cast the ensemble forecasting task into a multi-task

learning problem. The number of prediction tasks in each round is equal to the forecast duration,

T , and the number of online rounds is equal to the number of forecast sets, N.

As can be seen from Fig. 3.1, the number of observed values available to update the predictions

at the end of each round varies from one forecast set to another. Let forecast N be the most recent

set of forecasts generated for the time window [tN+1, tN+2, · · · , tN+T]. There are no observed

values available for the given time window. However, the forecast set N−1, which was previously

generated for the time window [tN , tN+1, · · · , tN+T−1] now has a new observed value for the time

tN . Similarly, the number of observed values for the forecast set N−2 increases from 1 to 2. More

generally, let y(n)m = {y(n)1 ,y(n)2 , · · · ,y(n)mn} denote the set of observed values available for the forecast

set m in round n, where m ≤ n. If T is the forecast duration, then the number of observed values

available to update the forecast set m in round n is given by mn = min(n−m,T). This partially

observed data scenario distinguishes our work from other online multi-task learning formulations.

Example 1. Consider the scenario shown in Fig. 3.1. Assume the most recent forecast set N was

generated on September 12, 2011. The forecast set N − 1, which was generated on September

7, 2011 for predicting a 40-day time window from September 12 to October 17, will have a new

observed value for September 12. The forecast set N − 2, which was generated on September 2,

24

2011 for predicting the time series from September 7 to October 12, now has two observed values,

for September 7 and 12, respectively. If the forecast duration is T , then all previous forecast sets

from Forecast 1 to Forecast N −T will have complete observation values for their entire data sets.

Let f (n−1) be the model obtained at the end of round n−1. After round n, a new labeled data

D
(n)
n−1 = (x(n−1),y(n)n−1). is available to update f (n−1), where y(n)n−1 includes the latest observed

value for the time tn. The number of labeled examples in D(n−2), D(n−3), · · · D(n−T+1) also

increases by 1 in round n since all of them involves a prediction for the time step tn. It is there-

fore insufficient to generate f (n) directly from f (n−1) since the models f (n−1), f (n−2), · · · f (n−T)

should also be revised given their expanded labeled data sets. Thus, we employ the following on-

line learning with restart strategy to update our models. In round n, we first backtrack to round

n−T and revise f (n−T) with the expanded labeled data D(n−T) to obtain a new model f (n−T+1).

We then update f (n−T+1) with the expanded labeled data D(n−T+1) to obtain f (n−T+2) and re-

peat the procedure until f (n) is obtained. To implement this strategy, the algorithm only needs to

maintain two sets of weights, w(n−1) and w(n−T−1). At the start of round n, the algorithm makes

it prediction using w(n−1). When D(n) is available, the algorithm will backtrack and progressive-

ly update the models starting with w(n−T−1), which was the last set of weights trained from a

completely labeled data set, until w(n) is obtained.

3.2 Online Regularized multI-task regressiON (ORION)

This section presents the ORION framework for the ε-insensitive loss function. An extension

of the framework to the quantile loss function is given in Section 3.3.

3.2.1 ORION for ε-insensitive Loss Function

Although our framework requires restarting the online learning process at round n− T to deal

with the partially observed data problem, the update formula and optimization step in each round

are identical. Specifically, in round n, the ORION framework assumes that the weights are co-

25

regularized as follows:

w(n)
t = w(n)

0 +v(n)t , ∀t ∈ {1,2, · · · ,T}.

In other words, the prediction functions for all T tasks share a common term w0 and a task-specific

weight vt , which is expected to be small when the predictions are correlated. To estimate the

weights, we employ the following objective function, which extends the Passive Aggressive online

algorithm given in [29] to a multi-task learning setting with an ε-insensitive loss function:

arg min
w0,{vt}

1
2

T

∑
t=2

||wt −wt−1||22 +
µ
2

T

∑
t=1

||vt ||22 (3.1)

+
λ
2
||w0 −w(n−1)

0 ||22 +
β
2

T

∑
t=1

||vt −v(n−1)
t ||22

s.t. ∀t ≤ mn : |wT
t x(n)t − y(n)t | ≤ ε

∀t ∈ {1,2, · · · ,T} : wt = w0 +vt

µ,λ ,β and ε ≥ 0

where mn is the number of labeled observations, x(n)t is a vector of predictor variables for task t

in the n-th round, and y(n)t is the target value. For brevity, we have omitted the superscript n in

our notations for vt , wt , and w0. Since wt −wt−1 = vt −vt−1, Equation (3.1) can be simplified as

follows:

arg min
w0,V

1
2

Tr
[

VT (L+µIT)V)

]
(3.2)

+
λ
2
||w0 −w(n−1)

0 ||22 +
β
2
||V−V(n−1)||2F

s.t. ∀t ≤ mn, |wT
t x(n)t − y(n)t | ≤ ε

∀t ∈ {1,2, · · · ,T}, wt = w0 +vt

26

where V = [vT
1 ;vT

2 ; · · · ;vT
T] is a T × d-dimensional matrix, IT is a T ×T identity matrix, Tr[·] is

the trace operator and

Li, j =

1 if i = j = 1 or i = j = T

2 if i = j ̸= 1 and i = j ̸= T

−1 if i = j+1 or i = j−1

0 otherwise

is a graph Laplacian capturing the relationships among the T tasks. The Lagrange formulation is

given by

L (w0,V,τ) =
1
2

Tr(VT (L+µIT)V)

+
λ
2
||w0 −w(n−1)

0 ||22 +
β
2
||V−V(n−1)||2F

+ ∑
t∈O(n)

τt(|wT
t x(n)t − y(n)t |− ε)

where O(n) = {t|t ≤ mn and |wT
t x(n)t − y(n)t | > ε} is the feasible set and τ = {τt} is the set of

Lagrangian multipliers such that τt ≥ 0 for all t ∈ O(n) and τt = 0 for all t /∈ O(n). In the next

subsection, we present the solution for this optimization problem.

3.2.2 Optimization

To simplify the notation, we first vectorize the matrix V and concatenate it with w0. Let z =

[w0;v1; ...,vT] denote the resulting weight vector to be solved. The Lagrangian can now be written

into the following form:

L (z,τ) =
1
2
(z− z(n−1))T R(z− z(n−1))+

1
2

zT Qz

+

[
(zT X̃(n)−y(n)

T
)S− ε1T

]
Pτ (3.3)

where X̃(n), R, Q, P, and S are defined in Table 3.1.

Taking the partial derivative of L with respect to z and setting it to zero yields the following

∂L (z,τ)
∂z

= R(z− z(n−1))+Qz+ X̃(n)SPτ= 0

z = M(Rz(n−1)− X̃(n)SPτ) (3.4)

27

Table 3.1: Notations used in Equation (3.3)

Notation Definition
0d a d-dimensional column vector of zeros

0d×T a d ×T matrix of zeros
Id a d ×d identity matrix

A⊗B Kronecker product between matrices A and B

X̃(n)

x(n)1 x(n)2 · · · x(n)T
x(n)1 0d · · · 0d

0d x(n)2 · · · 0d
...

...
...

...

0d 0d · · · x(n)T

y(n) [y(n)1 ;y(n)2 ; · · · ;y(n)mn ;0(T−mn)]

P Pi, j =

{
1 if i = j and i ∈ O(n)

0 otherwise

S Si, j =

{
sign(w(n)

i
T

x(n)i − y(n)i) if i = j
0 otherwise

τ [τ1; ...;τT]

R
[

λ Id 0d×T d
0T d×d β IT d

]
Q

[
0d×d 0d×T d

0T d×d (L+µIT)⊗ Id

]

where M = (R+Q)−1. It can be easily shown that R+Q is a positive definite matrix, which

means it is invertible and its inverse is also positive definite.

Plugging z in Equation (3.4) back into Equation (3.3) leads to the following equation after

simplification

L (τ)X̃(n)SPτ = −1
2
τT X̃(n)T

PS MT X̃(n)
PS τ+ ℓT

n (ẑ
(n−1))τ

+ constant (3.5)

where

X̃(n)
PS = X̃(n)SP

ℓT
n (ẑ

(n−1)) =

[
(ẑ(n−1)T X̃(n)−y(n)T)S− ε1T

]
P

ẑ(n−1) = MT RT z(n−1) (3.6)

28

Note that P is a diagonal matrix, whose diagonal element Pt,t is zero if t /∈O(n). In other words,

if the target value for task t is either unavailable or predicted correctly (within the ε-insensitive

bound), all the elements in the t-th column of X̃(n)
PS become 0, and the corresponding t-th element

in ℓT
n (ẑ(n−1)) is also 0. Thus, τt for t /∈ O(n) has no impact on Equation (3.5) and can be set to

zero. In the following derivation, we assume the rows and columns corresponding to all the tasks

t /∈ O(n) in τ , X̃(n)
PS , and ℓT

n (ẑ(n−1)) have been removed.

Taking the partial derivative of the “reduced" Lagrangian with respect to τ and setting it to zero

yields

∂L

∂τ
= −X̃(n)T

PS MT X̃(n)
PS τ+ ℓn(ẑ(n−1)) = 0

τ =

[
X̃(n)T

PS MT X̃(n)
PS

]−1
ℓn(ẑ(n−1)) (3.7)

There are several points worth noting regarding the update formula for z and its learning rate

τ. First, note that Equation (3.7) is only applicable to tasks that belong to O(n). The columns

in X̃PS for t /∈ O(n) must be removed before calculating τ. Otherwise, the matrix X̃(n)T
PS MT X̃(n)

PS

is not invertible. For t /∈ O(n), we set τt = 0 before calculating z. Second, even when τt = 0,

the corresponding weight for vt may still change due to the first term of Equation (3.4). This

distinguishes our approach from other online algorithms, where a zero learning rate implies the

weights will not change in the next round. Finally, our formula for τ has a similar form as the

learning rate for the single-task learning given in [29], τn = ℓn/||xn||2. The main difference is that

the τ for multi-task learning must take into account the task relatedness in both ℓn and the inverse

of X̃(n)T
PS MT X̃(n)

PS .

3.2.3 Algorithm

A summary of the ORION framework for ε-insensitive loss function is given in Algorithm 1. The

algorithm proceeds in a sequence of rounds. During round n, the algorithm receives the instances

x(n)t for each task t ∈ {1, ..,T}. Using the online learning with restart strategy, it will backtrack

to round n−T and update the set of labeled observations to include the most recent target value.

29

After computing the loss for each task, it identifies the set of tasks for which the loss exceeds the ε-

bound. The weights associated with the tasks will be updated using the formula given in Equation

(3.4). Note that τt is set to zero for tasks that do not belong to O(n). In each round, the algorithm

only needs to maintain two sets of weights, z(n−T) and z(n), along with the predictor variables

{x(n−T),x(n−T+1), · · · ,x(n)} and the observed target values {y(n−T),y(n−T+1),y(n)}. Its storage

complexity is therefore T times the complexity of single-task learning.

3.2.3.1 Time complexity

In this section, we analyze the time complexity of the ORION framework for the ε-insensitive

loss function in terms of the number of online rounds N, the number of tasks T and the number

of features d. For ensemble forecasting, T refers to the forecast duration and d is the number of

ensemble members (see Fig. 3.1). Each round requires calculations of Equations (3.4) and (3.7).

For Equation (3.7), X̃(n)
PS needs to be computed first, which requires O(T 3d) floating point oper-

ations (flops). Calculating X̃(n)T
PS MT X̃(n)

PS requires O(T 3d2) flops and its inverse will take O(T 3)

flops. According to Equation (3.6), calculating both ẑ(n−1) and ℓn(ẑ(n−1)) will require O(T 3d)

flops. The time complexity for calculating Equation (3.7) is O(T 3d2) whereas the time complexity

for Equation (3.4) is O(T 3d+T 2d2). Therefore, the model update for each task requires O(T 3d2)

flops. Since there are T tasks, the time complexity for each online round is O(T 4d2). There are

other computations that need to be performed only once throughout the entire online learning pro-

cess, which is the calculation for M = (R+Q)−1, whose complexity is O(T 3d3). Thus, after N

rounds, the overall time complexity is O(N(T 4d2+T 3d3)), which is linear in the number of rounds

(similar to other online learning algorithms). The number of tasks T and number of features d are

domain-dependent, though they are both generally much smaller than N.

3.2.4 Theoretical Analysis of ORION-ε

This section presents theoretical analysis on the average loss bound of the ORION-ε algorithm.

30

Input: µ , λ , β , ε = 0.001 ;
Initialize: w0 = 0d ;∀t ∈ {1, ...,T},vt = 0d ;
Compute R and Q using the formula in Table 3.1 ;
for n = 2, · · · ,N do

Receive x(n)1 ,x(n)2 , ...,x(n)T ;
for m = n−T, · · · ,n do

Set mn = n−m ;
for t = 1,2, · · · ,T do

Predict ŷ(m)
t =

[
w(m−1)

0 +v(m−1)
t

]T
x(m)

t ;

end
Update y(n)m = y(n−1)

m ∪{y(n)} ;

Set On = {t|t ≤ mn; |w(m)T
t x(m)

t − y(n)m,t |> ε} ;
Compute τ using Equation (3.7) and set τt = 0 when t /∈ O(n) ;
Update z(m) using Equation (3.4) ;

end
end

Algorithm 1: Pseudocode for ORION-ε Algorithm

Lemma 1. Let U UT be an eigendecomposition of the real symmetric matrix R−1Q, where U

is an orthogonal matrix and is a diagonal matrix containing the eigenvalues of R−1Q. The

eigendecomposition of MR is given by U(I+)−1UT .

Proof. First, we can write

MR = (R+Q)−1R = (I+R−1Q)−1 = (I+U UT)−1

Since U is an orthogonal matrix, UUT = I. Hence

MR = (UUT +U UT)−1 = U(I+)−1UT

Lemma 2. ∥MR∥2 = 1, where ∥ · ∥2 denote the induced 2-norm of a matrix.

Proof. The induced 2-norm of a matrix A is defined as

∥A∥2 = max
∥x∥2=1

∥Ax∥2 =
√

λmax,

31

where λmax is the largest eigenvalue of the matrix AT A. Since

R−1Q =

 0d×d 0d×T d

0T d×d
1
β (L+µIT)⊗ Id

the determinant |R−1Q| = 0 because the matrix contains rows and columns of all zeros. In addi-

tion, it can be shown that R−1Q is a positive semi-definite matrix since it is diagonally dominant,

which means all of its eigenvalues must be non-negative. Since |R−1Q|= ∏k λk = 0, this implies

that the smallest eigenvalue of R−1Q is λmin = 0.

Following Lemma 1, the largest eigenvalue of MR is (1+ λmin)
−1 = 1. Finally, given that

(MR)T MR = U(I+)−2U, the largest eigenvalue of (MR)T MR must also be equal to 1. Thus,

∥MR∥2 = 1.

Lemma 3. ∥I−MR∥2 = 1− 1
1+λmax

≤ 1, where ∥ ·∥2 denote the induced 2-norm of a matrix and

λmax ≥ 0 is the largest eigenvalue of R−1Q.

Proof. Following Lemma 1, it is easy to see that I−MR = U[I− (I+)−1]UT . Thus, the largest

eigenvalue of I−MR is 1− 1
1+λmax

, which is the induced 2-norm of the matrix.

Theorem 1. Let z(1),z(2), · · · ,z(n) be a sequence of weights learned using the ORION-ε algorithm.

Using the notations given in Table 3.1, the following bound holds for any u ∈ ℜ(T+1)d .

1
N

N

∑
n
||ℓn(MT MRz(n))||

≤ 1
N

N

∑
n
∥ℓT

n (M
T u)∥+ 1

2C

[
∥u∥2

N
+∥u∥Ψ+C2ρ2

]
,

where ||τ|| ≤C, ∥z(n)∥ ≤ Ψ, and ∥MX̃(n)SP∥ ≤ ρ .

Proof. Define ∆n = ∥z(n)−u∥2−∥z(n+1)−u∥2. We will derive the relative loss bound by finding

32

the upper and lower bound of ∑N
n=1 ∆n. For the upper bound,

N

∑
n=1

∆n =
N

∑
n=1

∥z(n)−u∥2 −∥z(n+1)−u∥2

= ∥z(1)−u∥2 −∥z(N+1)−u∥2 (3.8)

= ∥u||2 −∥z(N+1)−u∥2

≤ ∥u∥2

where z(1) = 0. Next, we derive the lower bound of ∆n.

∆n = ∥z(n)−u∥2 −∥z(n+1)−u∥2

= ∥z(n)−u∥2 −∥MRz(n)−MX̃(n)SPτ−u∥2

= ∥z(n)−u∥2 −∥MRz(n)−u∥2 −∥MX̃(n)SPτ∥2 + 2(MRz(n)−u)T MX̃(n)SPτ

A lower bound on the first two terms is given as follows

∥z(n)−u∥2 −∥MRz(n)−u∥2

= ∥z(n)∥2 −∥MRz(n)∥2 −2uT (I−MR)z

≥ ∥z(n)∥2 −∥MR∥2∥z(n)∥2 −2∥u∥∥I−MR∥∥z(n)∥

≥ −2∥u∥∥z(n)∥

where we have applied Lemmas 2 and 3 and used the fact that ∥Ax∥2 ≤ ∥A∥2∥x∥2 and uT v ≤

∥u∥∥v∥. Furthermore,

z(n)
T

RT MT MX̃(n)SPτ−uT MX̃(n)SP

= [(z(n)
T

RT MT MX̃(n)−y(n)
T
)S− ε1T]Pτ− [(uT MX̃(n)−y(n)

T
)S− ε1T]Pτ

≥ ℓT
n (M

T MRz(n))τ− ℓT
n (M

T u)τ

33

Putting them together, we have

∥u∥2 ≥
N

∑
n=1

∆n

≥ −2∥u∥
N

∑
n
∥z(n)∥−

N

∑
n
∥MX̃(n)SP∥2∥τ∥2

+2
N

∑
n
ℓT
n (M

T MRz(n))τ−2
N

∑
n
ℓT
n (M

T u)τ

Assuming ||τ|| ≤C, ∥z(n)∥ ≤ Ψ, ∥MX̃(n)SP∥ ≤ ρ , and after re-arranging the equation, we obtain

1
N

N

∑
n
||ℓn(MT MRz(n))||

≤ 1
N

N

∑
n
∥ℓT

n (M
T u)∥+ 1

2C

[
∥u∥2

N
+∥u∥Ψ+C2ρ2

]

3.3 Online Regularized Multi-Task Quantile Regression (ORION-QR)

Predicting extreme value events are important for applications such as weather and hydrolog-

ical forecasting due to their adverse impacts on both human and natural systems. Unfortunately,

most of the existing work on multi-task learning have considered only squared or hinge loss func-

tions, and thus, are not suitable for extreme value prediction. In this section, we describe an

extension of the ORION framework to predict extreme values in a time series by incorporating

a quantile loss function. To describe the approach, we first present the quantile regression (QR)

method [60] and introduce the quantile loss function.

QR is a statistical method for estimating the conditional quantiles of a target variable as a

function of its predictor variables. By focusing on the upper or lower quantiles of the distribution,

this may help bias the algorithm towards learning the extreme values of the target distribution.

Specifically, QR is designed to improve the estimate of the τth conditional quantile of the prediction

by minimizing the following sum of asymmetrically weighted absolute residuals:

n

∑
i=1

ρτ(yi −xT
i β), where ρτ(u) =

 τu u > 0

(τ−1)u u ≤ 0

34

The τth quantile of a random variable Y is defined as

QY (τ) = F−1(τ) = inf{y : FY (y)≥ τ}

The quantile loss function is asymmetric around τ, i.e., it incurs a higher penalty if the predicted

function underestimates the true value of the target variable and lower penalty if it overestimates

the true value. By choosing τ close to 1, quantile regression is biased towards predicting higher

values of the time series. In the case when τ= 0.5, the solution reduces to the conditional median

of the target distribution. The preceding objective function is equivalent to solving the following

linear programming problem:

min
p,q

τ1T
T p+(1−τ)1T

T q

s.t. y−Xβ = p−q

p ≥ 0,q ≥ 0

The ORION framework for quantile loss function is designed to solve the following optimiza-

tion problem.

min
p,q,w0,V

τ1T
T p+(1−τ)1T

T q

+
1
2

Tr(VT (L+µIT)V)

+
λ
2
||w0 −w(n)

0 ||22 +
β
2
||V−V(n−1)||2F

s.t. ∀t ≤ mn,y
(n)
t −wT

t x(n)t = pt −qt

∀t,wt = w0 +vt

p ≥ 0,q ≥ 0

Compared to ORION-ε , there are two additional parameters, p and q, that must be estimated from

the data. With this formulation, the prediction function is trained to fit the conditional quantiles

and to ensure smoothness of the model parameters across the different tasks. The latter is attained

by using a graph Laplacian to encode the task relationships. Unlike the original QR formula-

tion, ORION-QR requires solving a quadratic programming problem. We employed the CVX

software [50] to estimate the parameters using τ= 0.95 to detect extreme (high) value events.

35

3.4 Experimental Evaluation

The proposed framework was applied to the soil moisture ensemble forecasting problem. The

soil moisture forecasts were obtained from a seasonal hydrological prediction system for 12 major

river basins in North America. 33 ensemble member forecasts were generated by running the

model multiple times with different initial conditions. The data correspond to 40-day forecasts

generated every 5 days for the time period between April, 2011 and September, 2011. The number

of learning tasks to be predicted in each forecast set is T = 8.

The number of forecast sets in the data set is N = 33, which is equivalent to the number of

online rounds. Since the model parameters were initialized to zero, the initial forecasts were poor

until the model has been sufficiently trained. We use the first 23 forecast sets as “training data"

and report the performance based on the predictions generated for the last 10 forecast sets (“test

data"). We evaluated the performance of the different methods in terms of their mean absolute

error (MAE) on the test data:

MAE =
1

80

33

∑
n=24

8

∑
t=1

|y(n)t − ŷ(n)t |,

where ŷ is the vector of predicted values.

3.4.1 Performance Comparison for ORION-ε

We compared the performance of ORION-ε against the following baseline methods.

1. Ensemble Median (EM): This is an unbiased aggregation of the ensemble member fore-

casts.

2. Passive-Aggresive (PA) Algorithm [29]: This single-task learning method assumes there is

only one set of weights w to be estimated. Starting from the initial weights w = 0, we update

the weights in each round as follows (from the first to the last task):

w(n) = w(n−1)+ sign(y(n)− ŷ(n))τx(n)

where τ= ℓn/∥x(n)∥2
2, and ℓ is the ε-insensitive loss.

36

3. Tracking Climate Models (TCM) [77]: This method uses a Hidden Markov Model to

track the current best ensemble member. Unlike ORION-ε , the weights estimated by TCM

range between 0 and 1, which means the aggregated forecast always fall within the range of

the ensemble member forecasts. Since the method is designed for single-task learning, we

modify its implementation to handle T instances in each round. Instead of using squared

error between the observed and predicted target values, the loss is computed based on the

average squared error over mn instances.

4. Online Multi-task Learning with a Shared Loss(OMTLSL) [34]: This is a modified im-

plementation of the approach given in [34], which was originally proposed for the hinge loss

function. Here, we use the ε-insensitive loss function for our regression problem and ignore

the use of slack variables. The modified objective function is given by:

argmin
wt

1
2

T

∑
t=1

∥wt −w(n−1)
t ∥2

2

s.t. ∀t ≤ mn, |wT
t x(n)t − y(n)t | ≤ ε

The optimization problem can be solved using a similar technique as that for ORION-ε .

5. Linear Algorithms for Online Multi-task Learning(LAOM) [21]: The original method

was proposed for multi-task classification. We modify the loss function to be squared loss

for regression problem. The default approach given in [21] assumes the data is only available

one task at a time, and thus, the models are updated one task at a time according to the task

relationship matrix. As a consequence, the learning process depends on ordering of the task.

ORION-ε does not require such an assumption.

For a fair comparison, all the baseline methods adopt the same online learning with restart strategy

(similar to ORION-ε) to deal with the partially observed data.

Table 3.2 compares the results of the different methods. As can be seen from the table, ORION-

ε works better than the baseline methods on all 12 data sets. In particular, it outperforms OMTLSL,

which is a state-of-the-art online multi-task learning algorithm, on all the data sets. Unlike OMTL-

37

Table 3.2: Comparison of mean absolute error (MAE) for ORION-ε against baseline methods on
soil moisture data

O
R

IO
N

-ε

E
M

PA T
C

M

O
M

T
L

SL

L
A

O
M

arkansusred 2.740 4.189 3.788 3.659 5.423 2.767
calinevada 3.398 4.919 4.281 4.265 4.422 4.257
colorado 4.362 5.934 5.741 5.634 6.068 5.674
columbia 4.411 6.000 6.439 6.475 6.225 5.370
lowermiss 9.891 12.023 11.639 10.671 14.975 11.951
midatlantic 13.473 24.381 25.140 20.961 23.143 27.507
missouri 3.699 6.029 5.470 6.575 6.913 5.269
northcentral 6.292 8.789 8.700 9.157 10.838 7.298
northeast 7.422 22.040 20.490 19.471 24.877 23.824
ohio 14.535 17.023 15.107 15.021 19.064 16.436
southeast 8.229 8.951 8.778 9.136 10.966 9.158
westgulf 3.790 4.697 4.490 5.689 6.150 4.369

SL, ORION-ε enforces the constraint wt = w0 + vt , which helps to improve the performance of

the ensemble forecasting task. As will be shown in Table 3.5, the improvement is still observed

even when the task relationship is removed (i.e., comparing OMTLSL against ORION-ε-NR).

Comparing ORION-ε against LAOM, the results suggest the benefit of updating the multiple tasks

simultaneously instead of updating them one task at a time.

As further evidence, Fig. 3.3 shows the predicted time series for ORION-ε and the Ensemble

Median (EM) method on the northeast data set. The first five figures are from the training set and

the remaining ten figures are from the test set. Initially, the time series predicted by ORION-ε is

similar to EM (see Fig. 3.3a to 3.3c). As more data becomes available, the predictions by ORION-

ε is closer to observation data than EM (Fig. 3.3d to 3.3j). In Fig. 3.3k, there appears to be a

sudden shift that causes the performance of ORION-ε to degrade significantly. However, after

one update, ORION-ε recovers from the mistake and its prediction follows closely the observation

data again (Fig. 3.3l). Fig. 3.4 shows the absolute error of ORION-ε and EM during the last 15

rounds of the training data and the 10 rounds in test data, for both Northeast and Midatlantic data.

Although the performance of ORION-ε is slightly worse than EM at the beginning, after sufficient

38

10

20

30

40

50

60

70

80

90

100

2011/5/15

2011/5/20

2011/5/25

2011/5/30

2011/6/4

2011/6/9

2011/6/14

2011/6/19

2011/6/24

Ensemble Members
ORION-ǫ
Observations
Ensemble Median

(a) Forecasts for 05/15/2011

10

20

30

40

50

60

70

80

90

100

2011/6/9

2011/6/14

2011/6/19

2011/6/24

2011/6/29

2011/7/4

2011/7/9

2011/7/14

2011/7/19

Ensemble Members
ORION-ǫ
Observations
Ensemble Median

(b) Forecasts for 06/09/2011

10

20

30

40

50

60

70

80

90

100

2011/7/14

2011/7/19

2011/7/24

2011/7/29

2011/8/3

2011/8/8

2011/8/13

2011/8/18

2011/8/23

Ensemble Members
ORION-ǫ
Observations
Ensemble Median

(c) Forecasts for 07/14/2011

10

20

30

40

50

60

70

80

90

100

2011/8/3

2011/8/8

2011/8/13

2011/8/18

2011/8/23

2011/8/28

2011/9/2

2011/9/7

2011/9/12

Ensemble Members
ORION-ǫ
Observations
Ensemble Median

(d) Forecasts for 08/03/2011

10

20

30

40

50

60

70

80

90

100

2011/8/8

2011/8/13

2011/8/18

2011/8/23

2011/8/28

2011/9/2

2011/9/7

2011/9/12

2011/9/17

Ensemble Members
ORION-ǫ
Observations
Ensemble Median

(e) Forecasts for 08/08/2011

10

20

30

40

50

60

70

80

90

100

2011/8/13

2011/8/18

2011/8/23

2011/8/28

2011/9/2

2011/9/7

2011/9/12

2011/9/17

2011/9/22

Ensemble Members
ORION-ǫ
Observations
Ensemble Median

(f) Forecasts for 08/13/2011

10

20

30

40

50

60

70

80

90

100

2011/8/18

2011/8/23

2011/8/28

2011/9/2

2011/9/7

2011/9/12

2011/9/17

2011/9/22

2011/9/27

Ensemble Members
ORION-ǫ
Observations
Ensemble Median

(g) Forecasts for 08/18/2011

10

20

30

40

50

60

70

80

90

100

2011/8/23

2011/8/28

2011/9/2

2011/9/7

2011/9/12

2011/9/17

2011/9/22

2011/9/27

2011/10/2

Ensemble Members
ORION-ǫ
Observations
Ensemble Median

(h) Forecasts for 08/23/2011

10

20

30

40

50

60

70

80

90

100

2011/8/28

2011/9/2

2011/9/7

2011/9/12

2011/9/17

2011/9/22

2011/9/27

2011/10/2

2011/10/7

Ensemble Members
ORION-ǫ
Observations
Ensemble Median

(i) Forecasts for 08/28/2011

10

20

30

40

50

60

70

80

90

100

2011/9/2

2011/9/7

2011/9/12

2011/9/17

2011/9/22

2011/9/27

2011/10/2

2011/10/7

2011/10/12

Ensemble Members
ORION-ǫ
Observations
Ensemble Median

(j) Forecasts for 09/02/2011

10

20

30

40

50

60

70

80

90

100

2011/9/7

2011/9/12

2011/9/17

2011/9/22

2011/9/27

2011/10/2

2011/10/7

2011/10/12

2011/10/17

Ensemble Members
ORION-ǫ
Observations
Ensemble Median

(k) Forecasts for 09/07/2011

10

20

30

40

50

60

70

80

90

100

2011/9/12

2011/9/17

2011/9/22

2011/9/27

2011/10/2

2011/10/7

2011/10/12

2011/10/17

2011/10/22

Ensemble Members
ORION-ǫ
Observations
Ensemble Median

(l) Forecasts for 09/12/2011

Figure 3.3: Forecasts on Dataset Northeast for ORION-ε . Fig. 3.3a - 3.3c are results from the
training set and Fig. 3.3d - 3.3l are results from the test set. Note that in the early stage of the

online learning process, ORION-ε performs similar to Ensemble Median (see Fig. 3.3a - 3.3b),
and ORION-ε starts to follow the observation from Fig. 3.3c.

39

2011/5/15 2011/6/4 2011/6/29 2011/7/14 2011/8/18
0

5

10

15

20

25

30

35

40

45

50

A
bs

ol
ut

e
E

rr
or

ORION−ε
Ensemble Median

(a) Northeast Data

2011/5/15 2011/6/4 2011/6/29 2011/7/14 2011/8/18
0

5

10

15

20

25

30

35

40

45

50

A
bs

ol
ut

e
E

rr
or

ORION−ε
Ensemble Median

(b) Mid-Atlantic Data

Figure 3.4: Mean absolute error for ORION-ε and Ensemble Median on the Northeast and
Midatlantic data.

40

Table 3.3: Comparison of runtime (in seconds) on the Northeast data set.

ORION PA TCM OMTLSL LAOM
Runtime

per
Round

0.0430 0.0005 0.0070 0.0013 0.0014

Total
Runtime 1.0909 0.0208 0.1252 0.0647 0.0606

training, ORION-ε appears to perform significantly better than EM.

We also compared the runtime of ORION against other baseline methods. The total runtime

as well as average runtime per round for the Northeast data set is shown in Table 3.3. ORION is

relatively slower than other baselines, which is not surprising since it has to backtrack and revise

some the older models in each round unlike other methods. Nevertheless, the additional overhead,

which is less than 50 ms for each update round, is reasonable for many ensemble forecasting

problems that require only a one-time daily update of their models. It is therefore an acceptable

tradeoff to achieve the accuracy improvement shown in Table 3.2.

3.4.2 ORION with Quantile Regression (ORION-QR)

To evaluate the performance of the ORION framework with quantile loss function, the observation

data were initially preprocessed to identify the forecast periods when the soil moisture value is

extremely high, i.e., more than 1.64 standard deviations away from the mean. Non-extremes are

defined as those values located within the 90% confidence interval of the mean. Only 5 of the

12 data sets contain extreme events in the test period. The number of extreme events during

the test period for the five data sets are as follows: arkansusred (14), colorado (14), midatlantic

(44), southeast (6), and westgulf (41). We report our experimental results for these data sets only,

comparing ORION-QR against EM, ORION-ε , and the following two baselines:

1. Quantile Regression (QR): This is the original QR method used in a batch mode. It assumes

all the tasks share the same set of weights w.

2. Online Quantile Regression (OQR): This is a variant of the PA [29] algorithm using a

41

Table 3.4: Comparison of F1 measure for predicting occurrence of extreme events.

ORION-QR EM ORION-ε QR OQR
arkansusred 0.465 0.4167 0.200 0.500 0.500

colorado 0.593 0.148 0.500 0.406 0.3030
midatlantic 0.500 0.3019 0.500 0.387 0.275
southeast 0.444 0.3077 0.250 0 0.286
westgulf 0.598 0.6122 0.451 0.568 0.625

quantile loss function. The objective function is modified as follows:

min
p,q,w

τ1T
T p+(1−τ)1T

T q

+
λ
2
∥w−w(n−1)∥2

2 (3.9)

s.t. ∀t,y(n)t −wT x(n)t = pt −qt

p ≥ 0,q ≥ 0

which can be solved using standard quadratic programming solvers such as CVX.

For this experiment, we are interested in the predictions of extreme events. A predicted event

is a true positive (TP) if it is a real event and a false positive (FP) if it does not correspond to a real

event. A false negative (FN) corresponds to a real event that was not detected by the algorithm.

We use the following F1-measure as our evaluation metric:

F1 =
2 TP

2 TP+FP+FN

Table 3.4 shows that ORION-QR outperforms both EM and ORION-ε in 4 out of 5 data sets.

The latter suggests quantile loss is more effective than ε-insensitive loss when dealing with extreme

value prediction. Compared to single-task learning methods, ORION-QR outperforms QR in 4 out

of 5 data sets and OQR in 3 out of 5 data sets. Furthermore, there is no significant difference

when comparing the number of data sets in which the batch version of QR outperforms its online

version, OQR.

For the southeast dataset, the F1-measure for QR is zero, which suggests that the method fails

to correctly predict extreme events in the test data. This is because there are only 6 extreme events

42

in the test period of southeast dataset, which makes it a hard prediction problem. In contrast, the

frequency of extreme events for other datasets is at least 14. The presence of concept drift in the

time series data also makes QR less effective compared to OQR. While OQR performs better on

the southeast dataset, it is still significantly worse than our proposed ORION-QR algorithm.

3.4.3 Sensitivity Analysis

This section analyzes the sensitivity of the three input parameters of the ORION framework.2

Although the experimental results shown here are for the northeast data set, a similar behavior was

observed in other data sets. For each experiment, we vary the value of one parameter and fix the

values of the remaining two.

The parameter µ controls sparsity of the weights for vt . Note that µ must be non-negative

to ensure the matrix L+ µIT is positive semi-definite. Fig. 3.5(a) shows that MAE improves as

µ increases. As long as µ is sufficiently large (> 50), its MAE becomes stable. This result is

not surprising since the prediction tasks are highly correlated. Therefore, the weights for vt are

expected to be small.

The parameters β and λ affect how much information should be retained from previous rounds.

Since the weights for vt are small, the results are not that sensitive to changes in β (see Fig. 3.5(a)).

The results are more sensitive to choice of λ . If λ is too small, w0 deviates significantly from its

previous value. Conversely, if λ is set too large, the variation in w0 becomes too slow and the

algorithm requires more training examples in order to converge. In practice, λ can be set based on

its performance on the training data.

3.4.4 Variations of ORION-ε Framework

The ORION framework uses two types of information to update its model parameters. First, it

uses the λ and β regularizers to control the amount of information retained from previous rounds.

2Similar to other works, ε is typically fixed to a small number. So we set ε = 10−3 in all our
experiments.

43

Second, it relies on the Q matrix to control the amount on information shared among the tasks.

We investigate two variations of the ORION-ε framework. We first consider the case when

β = 0, which implies that the weight vectors vt are independent of their values in the previous

round.3 We denote the approach as ORION-ε-β . Experimental results given in Table 3.5 showed

that ORION-ε outperforms ORION-ε-β in 9 out of 12 data sets. However, the difference is not

that significant except for 3 of 12 the data sets. The second variation of our framework removes the

task relationship by setting Q = 0. This approach is denoted as ORION-ε-NR. Based on the results

µ

0 50 100 150 200

M
A

E

6

8

10

12

(a) Effect of varying µ on MAE

β
0 50 100 150 200

M
A

E

6

8

10

12

(b) Effect of varying β on MAE

λ

0 5 10 15

M
A

E

6

8

10

12

(c) Effect of varying λ on MAE

Figure 3.5: Sensitivity Analysis of ORION-ε . Fig. 3.5a shows that ORION-ε tends to choose a
large value of µ; Fig. 3.5b shows that ORION-ε is not that sensitive to β ; Fig. 3.5c shows that λ

is the parameter to be tuned in practice.

3Setting λ = 0 makes R+Q becomes a singular matrix. This situation is not considered in this
study.

44

Table 3.5: Comparison of mean absolute error (MAE) for different variations of ORION-ε
framework

ORION-ε ORION-ε-NR ORION-ε-β
arkansusred 2.740 3.937 2.740
calinevada 3.398 4.781 3.390
colorado 4.362 4.599 4.410
columbia 4.411 4.278 5.156
lowermiss 9.891 10.038 12.047
midatlantic 13.473 13.809 13.527

missouri 3.699 3.370 5.049
northcentral 6.292 6.163 6.475

northeast 7.422 7.814 7.427
ohio 14.535 14.463 14.987

southeast 8.229 9.583 8.232
westgulf 3.790 5.002 3.780

given in Table 3.5, ORION-ε outperforms ORION-ε-NR in 8 out of 12 datasets, with substantial

improvements in at least 4 of them. This shows the value of incorporating the task relationship into

the ORION-ε framework.

3.5 Conclusion

This chapter presents an online regularized multi-task regression framework for ensemble fore-

casting tasks. This framework is unique in that it uses an online learning with restart strategy to

update its models. It is also flexible in that it can accommodate both ε-insensitive and quantile loss

functions. Experimental results confirm the superiority of the proposed framework compared to

several baseline methods.

45

CHAPTER 4

MULTI-TASK LEARNING FRAMEWORK FOR MULTI-LOCATION PREDICTION

1 The geospatio-temporal prediction task typically requires making predictions for a response vari-

able at multiple locations [121]. For example, climate scientists are interested to obtain future cli-

mate projections of temperature or precipitation for multiple locations in a geographical region of

interest. Similarly, in hydrology, soil moisture forecasts are periodically generated at multiple riv-

er and lake basins for drought monitoring applications. To perform such predictions, the simplest

approach would be to fit a model at each location using only its local observations. This approach

may not be effective because it fails to exploit the shared information among the prediction tasks.

This is especially true for geospatio-temporal prediction problems following Tobler’s first law of

geography, which states that “Everything is related to everything else, but near things are more

related than distant things." [98].

To overcome this challenge, this thesis considers the application of multi-task learning (MTL) [20]

to geospatio-temporal prediction problems. MTL is a widely-used approach for solving multiple,

related learning tasks by exploiting the common structure of the problem. For geospatio-temporal

data, the task relatedness could be represented by the spatial proximity or landscape similarity

between different locations (e.g., elevation, slope, and other topographic variables).

However, incorporating such information alone into existing MTL framework may not be

sufficient since the spatio-temporal variabilities of the data are potentially influenced by several

macroscale phenomena, whose impact varies from one location to another. For example, the well-

known El-Ninö phenomenon affects differentially weather patterns in North America and the rest

of the world. A flexible MTL framework that can capture the spatial autocorrelation of the data as

well as the influence of broader scale effects is therefore needed.

To address this problem, we present a novel multi-location prediction framework called GSpar-

tan, which stands for GeoSPAtio-tempoRal mulTi-tAsk learNing. GSpartan is developed based

1This chapter is based on the previous publication [109].

46

on the assumption that the prediction models for all locations share a common set of low-rank base

models, where each base model may represent a macroscale phenomenon that potentially explains

the variability of the data. The local model at each location is constructed as a linear combina-

tion of these base models. A graph Laplacian regularization is introduced to capture the spatial

autocorrelation of the data, thus providing a natural way to specify the relationships among the

prediction tasks. To ensure interpretability of the models, we also add sparsity and non-negativity

constraints into the GSpartan formulation. We evaluated the performance of GSpartan against

several baseline methods on climate data collected from 37 randomly chosen weather stations in

Canada. Our experimental results for predicting monthly precipitation showed that GSpartan out-

performed single-task learning (STL) and two other existing multi-task learning (MTL) methods

in at least 75% of the stations. The ability of GSpartan to outperform other baseline methods in-

creases to more than 84% of the stations if the training data available at each station is limited to

only 1 year.

4.1 Preliminaries

Let S ⊂ ℜ2 be a set of geo-referenced locations, where each location s ∈ S is associated with

a set of temporal fields. One of the fields is designated as the response variable we are interested

in predicting, while the rest are considered predictor variables. For instance, in climate modeling,

the response variable may correspond to monthly precipitation values recorded at a weather station

whereas the predictor variables correspond to outputs generated from a global or regional climate

model [26]. An example of the multi-location prediction task here is to infer future monthly values

of precipitation for all the locations based on their historical observations and outputs from the

climate models.

Formally, consider a geospatio-temporal data set D = {(X1,y1), (X2,y2), · · · ,(X|S|,y|S|)},

where each tuple, (Xs,ys), denote the temporal fields at location s. Let Xs ∈Rns×d = [xT
s,1, · · · ,x

T
s,ns]

be the matrix of predictor variables and ys ∈ Rns be the time series for the response variable ob-

served at the discrete time points 1,2, · · · ,ns.

47

For single-task learning (STL), each location s is treated as a separate learning task. Let ns be

the number of training examples available for task s and d be the number of predictor variables.

STL seeks to learn a (local) task model fs(x;ws) for each location in such a way that the following

loss function is minimized:

min
W

|S|
∑
s=1

ns
∑
i=1

ℓs

[
fs(xs,i;ws),ys,i

]
where W = [w1, ...,w|S|] ∈Rd×|S| denote the model parameters and ℓs(·) represents the loss func-

tion for task s. For brevity, we consider only task models of the form fs(xs;ws) = xT
s ws with a

squared loss function.

4.2 GSpartan

This section presents our proposed GSpartan framework for multi-location prediction. The

framework was designed to satisfy the following three requirements:

1. It should learn a low-rank representation of the task models. The low-rank representation,

defined by a set of base models, represents the possible macroscale phenomena that could

help explain the temporal variability of the data.

2. It should incorporate domain knowledge about the spatial autocorrelation of the response

variable among the various locations.

3. To ensure interpretability, each base model should depend only on a small subset of the

predictor variables. In addition, each local model should be comprised of a small number of

base models.

The following objective function is used in GSpartan to train the local models jointly:

min
W

|S|
∑
s=1

ns
∑
i=1

ℓs

[
fs(xs,i;ws),ys,i

]
+Ω(W)

where Ω(W) is a regularization term. In the following, we will discuss how to formulate the

objective function to meet the requirements stated above.

48

Low-rank Representation: We assume that the local models can be expressed as a product of two

low-rank matrices, i.e., W = UV, where U ∈ Rd×k and V ∈ Rk×|S|. The matrix U is a feature

representation of the base models while V expresses the weighted combination of the base models

that form the local model at each location. Specifically, ui is a column vector in U that represents

the feature vector for the i-th base model, while v j is a column vector in V that represents the

weights of the base models defining the j-th local model.

Task Relation Matrix: We employ a graph Laplacian regularization to incorporate information

about the spatial autocorrelation between locations. Let A be the task relation matrix, where Ai, j

measures the spatial autocorrelation between locations i and j. The graph Laplacian regularizer

can be written as follows:

Ωr(W) =
|S|
∑

i, j=1
Ai, j∥wi −w j∥2

2 = Tr
[

W(D−A)WT
]

where D is a diagonal matrix with Di,i = ∑ j Ai j. Intuitively, if Ai, j is large, the graph Laplacian

regularizer term will also be large unless wi is similar to w j. Thus, the graph Laplacian is simply

a re-statement of Tobler’s first law of geography.

Model Interpretability: Sparsity constraints can be imposed to ensure that each base model de-

pends only on a small subset of the predictor variables and each task model is a linear combination

of a few base models. To improve interpretability, the coefficients of the weighted linear combi-

nation should also be non-negative. To satisfy these requirements, the following L1 regularization

penalty is added to the objective function:

Ωs(W) = λ1∥V∥1 +λ2∥U∥1

s.t. W = UV, V ≽ 0

where λ1 and λ2 are the regularization parameters. The notation V ≽ 0 implies all elements of V

must be non-negative.

49

Putting everything together, we can now express our objective function for GSpartan (assuming

a squared loss function) as follows:

min
W,U,V

1
2

|S|
∑
s=1

∥Xsws −ys∥2
2 +λ1∥V∥1 +λ2∥U∥1 +

λ3
2

Tr(W(D−A)WT)

s.t. V ≽ 0, W = UV

Since W = UV, the objective function reduces to the following simplified expression:

min
U,V

1
2

|S|
∑
i=1

∥XsUvi −ys∥2
2 +λ1∥V∥1 +λ2∥U∥1 +

λ3
2

Tr(UV(D−A)VT UT) (4.1)

s.t. V ≽ 0

The preceding constrained optimization problem can be solved using a block coordinate de-

scent approach, by alternately solving for U and V. Details for solving each step efficiently is

given below.

Solve U, given V:

When V is fixed, the objective function can be simplified as follows:

min
U

1
2

|S|
∑
i=1

∥XsUvi −ys∥2
2 +λ2∥U∥1 +

λ3
2

Tr(UV(D−A)VT UT) (4.2)

This optimization problem can be efficiently solved using the proximal gradient descent method.

Proximal gradient descent is commonly used to solve optimization problems containing non-

differentiable components. The algorithm also has faster convergence compared to other methods

such as subgradient descent. The basic idea here is to minimize a corresponding upper bound

function of the original objective function [84]. Based on standard assumptions such as Lipschitz

continuity on the partial gradient of the differentiable part of the objective function, we can use

a tighter upper bound to approximate the original objective function. Here, we will use Prox-

linear [112] to solve our optimization problem, with the following update formula:

Uk = argmin
U

(U− Ûk−1)T ĝk
U +

τk−1
U
2

∥U− Ûk−1∥2
F +λ2∥U∥1, (4.3)

where

ĝk
U =

|S|
∑
s=1

(
−XT

s ysvT
s +XT

s XsUvsvT
s

)
+ λ3UV(D−A)VT

50

and

Ûk−1 = Uk−1 +ωk−1
U (Uk−1 −Uk−2)

The solution for problem (4.3) is given by

Uk = S
τk−1
U /λ2

(Ûk−1 − ĝk−1

τk−1
U

) (4.4)

where Sα(t) = sign(t)(max(|t|−α,0) is a component-wise soft-thresholding function.

Solve V, given U

Similarly, when U is fixed, the objective function becomes:

min
V

1
2

|S|
∑
i=1

∥XsUvi −ys∥2
2 +λ1∥V∥1 +

λ3
2

Tr(UV(D−A)VT UT) (4.5)

The update formula for V using proximal gradient descent approach is:

Vk = argmin
V

(V− V̂k−1)T ĝk
V +

τk−1
V
2

∥V− V̂k−1∥2
F +λ1∥V∥1 (4.6)

where

ĝk
V = P+λ3UT UV(D−A)

The s-th column of matrix P is given by

ps =−UT XT
s ys +UT XT

s XsUvs

and

V̂k−1 = Vk−1 + τk−1
V (Vk−1 −Vk−2)

The solution for problem (4.6) is given by

Vk = S
ωk−1

V /λ2
(V̂k−1 − ĝk−1

τk−1
V

) (4.7)

A further projection step is needed to ensure that the elements of V are non-negative.

Note that the learning rates τk−1
U and τk−1

V are provided by the Lipschitz continuous constant

of the partial gradient ĝk
U and ĝk

V , respectively. The learning rates are given in Theorems 2 and 3

below. The extrapolation term ω is selected to be 0 ≤ ωk ≤ δω

√
τk−2

τk−1 for δω < 1.

51

Theorem 2. The partial gradient ĝU is Lipschitz continuous with the constant

τU =
|S|
∑
s=1

∥XT
s Xs∥∥vsvT

s ∥+λ3∥V(D−A)VT∥

Proof. For any U and U∗ ∈ Rd×k,

∥ĝU − ĝU∗∥

=

∥∥∥∥ |S|
∑
s=1

(
XT

s XsUvsvT
s −XT

s XsU∗vsvT
s

)
+ λ3(U−U∗)V(D−A)VT

∥∥∥∥
≤

|S|
∑
s=1

∥XT
s XsUvsvT

s −XT
s XsU∗vsvT

s ∥+ λ3∥U−U∗∥∥V(D−A)VT∥

≤
|S|
∑
s=1

∥XT
s Xs∥∥vsvT

s ∥∥U−U∗∥+λ3∥U−U∗∥∥V(D−A)VT∥

= ∥U−U∗∥

(|S|
∑
s=1

∥XT
s Xs∥∥vsvT

s ∥+λ3∥V(D−A)VT∥

)

Theorem 3. Assuming ∥Xs∥ ≤ R, the partial gradient ĝV is Lipschitz continuous with the constant

τV = ∥U∥2R2 +λ3∥UT U∥∥D−A∥

Proof. For any V and V∗ ∈ Rk×S,

∥ĝV − ĝV∗∥

=

∥∥∥∥P+λ3UT UV(D−A)−P∗−λ3UT UV∗(D−A)

∥∥∥∥
≤ ∥P−P∗∥+λ3∥UT U∥∥D−A∥∥V−V∗∥

=
|S|
∑
s=1

∥UT XT
s XsU(vs −v∗s)∥+λ3∥UT U∥∥D−A∥∥V−V∗∥

≤
|S|
∑
s=1

∥UT XT
s XsU∥∥vs −v∗s∥+λ3∥UT U∥∥D−A∥∥V−V∗∥

≤ ∥U∥2R2
|S|
∑
s=1

∥vs −v∗s∥+λ3∥UT U∥∥D−A∥∥V−V∗∥

= ∥V−V∗∥
(
∥U∥2R2 +λ3∥UT U∥∥D−A∥

)

52

A summary of the GSpartan framework is shown in Algorithm 2 below.

Input: Dataset D = {(X1,y1), ...,(XS,yS)}, Task relation matrix A, parameters λ1, λ2, λ3;
Initialize: Randomly generate U and V and set k = 1
Block coordinate descent:
while not converge do

Solve U given V:
Compute τk

U using Theorem 2
Update Uk using Equation (4.4)
Solve V given U:
Compute τk

V using Theorem 3
Update Vk using Equation (4.7)
k = k+1

end
return {Uk,V k}

Algorithm 2: Pseudocode for GSpartan framework

Theorem 4. Let {Uk,Vk} be the sequence generated by Algorithm 2 with 0 ≤ ωk ≤ δω

√
τk−2

τk−1

for δω < 1. Then the sequence of {Uk,Vk} will converge.

The proof of convergence given by Theorem 4 can be found in Lemma 2.2 of [112].

4.3 Experimental Evaluation

This section presents the experiment results to evaluate the effectiveness of the proposed GSpar-

tan framework.

4.3.1 Dataset Description

We evaluated the performance of GSpartan on climate data from 37 randomly chosen weather s-

tations in Canada2. We use monthly precipitation data from the weather stations as the response

variable. The precipitation data spans a 40-year period from January, 1961 to December, 2000.

The predictor variables for building the local models were obtained from NCEP-reanalysis3 data,

which is a coarse-scale global environmental data that integrates observations with output from a

2http://climate.weather.gc.ca/
3http://www.cccsn.ec.gc.ca/?page=pred-hadcm3

53

numerical weather prediction model. There are 26 predictor variables, including mean tempera-

ture at 2 meters, mean sea level pressure, 500 hPa geopotential height, and near surface relative

humidity4. We deseasonalize the precipitation time series by subtracting each monthly values with

the average value for that month over the entire 40 year period. We then created multiple versions

of the training set for each location by varying the length of the training period from 1 to 30 years.

For example, the first version uses monthly precipitation data from 1961 for training and the re-

maining 39 years for testing while the last version uses the first 30 years of monthly precipitation

for training and the remaining 10 years for testing.

4.3.2 Baseline Methods

We compared the performance of GSpartan against the following baseline:

• LASSO: We applied LASSO regression to the data set at each location independently. The

Lasso results serve as a baseline for single-task learning.

• MRMTL: The mean regularized MTL (MRMTL) is an algorithm developed in [38] based on

the assumption of shared common parameters among task models. Specifically, the objective

function of MRMTL is given by

min
W

S

∑
s=1

∥Xsws −ys∥2
2 +ρ1∥W∥1 +ρ2

S

∑
s=1

∥∥∥∥ws −
1
S ∑S

i=1 wi

∥∥∥∥2

2

We use the MRMTL implementation given in the MALSAR software package [125]. Note

that instead of using ℓ2 norm on W as the original work in [38], we use ℓ1 norm on W for a

fair comparison.

• SLMTL: This is an MTL algorithm proposed in [24], which assumes that the tasks are relat-

ed using an incoherent rank-sparsity structure. Unlike GSpartan, SLMTL does not explicitly

consider the relationships among tasks (e.g., spatial autocorrelation between locations). The

4A complete list of the features and their description is available at http://www.cccsn.ec.
gc.ca/?page=pred-help

54

objective function for SLMTL is given by [24],

min
W

S

∑
s=1

∥Xsws −ys∥2
2 + γ∥P∥1

s.t. W = P+Q,∥Q∥∗ ≤ τ

where W ∈ Rd×S and W = [w1, ...,wS]. We use the SLMTL implementation provided by

the MALSAR software package [125] for our experiments.

In addition to the three baseline algorithms, we also investigate the following two variants of

GSpartan.

• GSpartan-NTR: In this variant, we remove the graph Laplacian regularizer from the objec-

tive function given in Equation (4.1). This allows us to evaluate the importance of incorpo-

rating spatial autocorrelation into the framework.

min
W,U,V

1
2

S

∑
s=1

∥Xsws −ys∥2
2 +λ1∥V∥1 +λ2∥U∥1

s.t. V ≽ 0,W =UV

• GSpartan-norm: In [124] a normalized graph Laplacian regularizer was used to facilitate

transfer of information:

S

∑
i, j=1

Ai, j

∥∥∥∥ 1√
Di,i

wi −
1√
D j, j

w j

∥∥∥∥2

2
.

We will compare the normalized graph Laplacian against the unnormalized one used in

GSpartan.

4.3.3 Task relationship matrix

We use the inverse of a modified variogram measure to estimate the spatial autocorrelation be-

tween locations. Variogram is a measure developed in spatial statistics to determine the spatial

dependence between a pair of locations [30]. The measure is computed based on the variance of

55

the difference in field values for two locations:

Ai, j =

1 if i = j

1
var(yi−y j)

otherwise

where var(z) denote variance of z. Since we have time series data at each location, we compute

var(yi −y j) using monthly precipitation from the first year (1961).

4.3.4 Experimental Results

We evaluated the performance of various methods on the test set in terms of their root-mean-

square-error (RMSE):

R =

√
1
n

n

∑
i
(yi − ŷi)2

where n is the number of test points. Figure 4.1 compares the RMSE for different methods when

applied to the first version of the data set (which has 1 year of data for training and 39 years of data

for testing). The horizontal axis of the plot corresponds to indices for the 37 weather stations. The

results suggest that GSpartan outperforms other baselines for most of the stations. In fact, looking

at Table 4.1, which summarizes the number of wins achieved by each method compared to others,

GSpartan outperforms other baselines in at least 32 (86.5%) out of 37 stations. Furthermore, by

comparing LASSO against other methods, we observe that MTL is generally better than STL

especially when there are limited training data available.

To investigate the strength of GSpartan, Figure 4.2 compares its RMSE against other variants of

GSpartan. Observe that GSpartan performs no worse than its variants for most of the stations and

is significantly better in at least 8 of the stations. Furthermore, the results in Table 4.1 suggest that

GSpartan outperforms GSpartan -NTR in all 37 stations, which demonstrates the importance of in-

corporating spatial autocorrelation into the geospatio-temporal MTL framework. In addition, since

GSpartan-NTR outperform other MTL methods in at least 27 stations, this shows the importance

of using low-rank representation for modeling the data.

The previous results were obtained using a data set with limited training examples (1 year for

training and 39 years for testing). We next investigate the relative performance of GSpartan against

56

Table 4.1: Win-loss table comparing performance of various methods when applied to the data set
with limited training examples (1 year of training data and 39 years of test data).

GSpartan GSpartan-norm GSpartan-NTR MRMTL SLMTL LASSO
GSpartan - 32 37 33 32 36

GSpartan-norm 5 - 20 31 27 34
GSpartan-NTR 0 17 - 31 27 34

MRMTL 4 6 6 - 6 13
SLMTL 5 10 10 31 - 34
LASSO 1 3 3 24 7 -

other methods as the training set size increases from 1 to 10 years. Specifically, we compare the

percentage of stations in which the RMSE for GSpartan is lower than that for other methods. For

example, if GSpartan outperforms another method in 32 out of 37 stations, the ratio is 0.865.

Figure 4.3 shows the results when the training set size increases. The horizontal axis of the plot

corresponds to the index of the data set (which is equivalent to number of training years), while

the vertical axis corresponds to the GSpartan outperform ratio. The result shows that, on average,

GSpartan outperforms the baseline methods for more than 75% of the stations, and is even higher

0 5 10 15 20 25 30 35 40
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Station index

R
M

S
E

GSpartan
MRMTL
SLMTL
LASSO

Figure 4.1: Comparison of GSpartan against three baseline methods

57

when there are fewer training examples. This confirms our hypothesis that GSpartan can effectively

train local models when there are limited training examples.

In addition, by comparing GSpartan with GSpartan-NTR, we can see that incorporating spa-

tial autocorrelation enhances the performance of GSpartan irrespective of the training set size. By

comparing GSpartan against GSpartan-norm, we also see that a normalized graph Laplacian regu-

larizer indeed degrades the performance of GSpartan . This is because the normalization attenuates

the spatial autocorrelation among the tasks, which causes the task relationship to be ineffective. Fi-

nally, comparing the results for GSpartan against the two baseline MTL algorithms, it appears that

when the training set is small, GSpartan outperforms both MRMTL and SLMTL. However, with

increasing training set size, both MRMTL and SLMTL perform better than GSpartan. One possible

explanation is that, when there are enough labeled examples available at each station, incorporat-

ing the spatial autocorrelation information (which was computed using the first year training data

only) might adversely affect the local models.

0 5 10 15 20 25 30 35 40
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Station index

R
M

S
E

GSpartan
GSpartan−norm
GSpartan−NTR

Figure 4.2: Comparison of GSpartan against its variants

58

4.3.5 Sensitivity Analysis

Since there are four parameters (λ1, λ2, λ3 and k) that must be tuned in GSpartan, this subsection

analyzes the performance of the framework as each parameter is varied. For this experiment,

we use the data set with 30 years of training and 10 years of testing. The results using other

data sets are quite similar, so we omit them due to lack of space. Figure 4.4 shows the results

of our experiment. The horizontal axis corresponds to each index location while the vertical axis

represents RMSE values. The results from the figure show that GSpartan is not sensitive to changes

in λ1 and λ2 for all 37 locations (see Figures 4.4a and 4.4b). Furthermore, Figure 4.4c showed that

smaller values of λ3 should be preferred. Figure 4.4d showed that GSpartan is not that sensitive to

k for many locations. However, for those locations where k is sensitive, a small value of k tends to

produce lower RMSE.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dataset index

O
ut

pe
rf

or
m

a
ra

tio

GSpartan−norm
GSpartan−NTR
MRMTL
SLMTL
LASSO

Figure 4.3: Performance comparison between GSpartan against baseline methods as training set
size increases.

59

4.4 Conclusion

This chapter presents a novel geospatio-temporal multi-task learning framework called GSpar-

tan for multi-location prediction. GSpartan assumes that the local models share a common low-

rank representation. The framework also enables domain-specific constraints such as spatial auto-

correlation to be integrated into its formulation. Experimental results on a real world climate data

set showed that the proposed framework outperformed other baseline algorithms especially when

there are limited training examples available at each location.

0 5 10 15 20 25 30 35 40
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Station index

R
M

S
E

λ

1
 = 0.001

λ
1
 = 0.01

λ
1
 = 0.1

λ
1
 = 1

λ
1
 = 10

(a) Sensitivity Test on λ1

0 5 10 15 20 25 30 35 40
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Station index

R
M

S
E

λ

2
 = 0.001

λ
2
 = 0.01

λ
2
 = 0.1

λ
2
 = 1

λ
2
 = 10

(b) Sensitivity Test on λ2

0 5 10 15 20 25 30 35 40
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Station index

R
M

S
E

λ

3
 = 0.1

λ
3
 = 1

λ
3
 = 10

(c) Sensitivity Test on λ3

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

Station index

R
M

S
E

k = 1
k = 3
k = 5
k = 7
k = 9

(d) Sensitivity Test on k

Figure 4.4: Results of sensitivity analysis on λ1, λ2, λ3, and k for GSpartan. The horizontal axis
represents the index of a station and the vertical axis corresponds to the RMSE value.

60

CHAPTER 5

WEIGHTED INCREMENTAL SPATIO-TEMPORAL MULTI-TASK LEARNING VIA
TENSOR DECOMPOSITION

1 Predictive modeling of geospatio-temporal data is an important task for many application do-

mains, such as climatology [1, 90, 76], medicine [32], and crop sciences [16]. Such a task typically

requires making robust predictions of a target variable at multiple geo-referenced locations based

on their historical observation data and other predictor variables. For example, climate scientist-

s are interested to obtain projections of the future climate for multiple locations by downscaling

the coarse-scale outputs from regional or global climate models as predictor variables. The multi-

location prediction problem can be naturally cast into a multi-task learning (MTL) framework, in

which the time series prediction at each location can be regarded as a single learning task. Re-

cent studies [109] have demonstrated the merits of performing a joint learning of the models for

multi-location predictions using MTL instead of learning the model at each location independently.

While there have been several previous studies on modeling the predictions at various loca-

tions by taking into account the spatial autocorrelation [109] or spatial smoothness of the predic-

tions [91], these methods are often developed for batch learning, thus hindering their applicability

to large-scale spatio-temporal data. In addition, as many of the previous works have focused

primarily on improving prediction accuracy, their resulting models are often too complicated for

interpretation by the domain experts. Incorporating known patterns that drive the variability of

the spatio-temporal data into a predictive modeling framework is also non-trivial. For example,

it is well-known that the climate variability at a location can be influenced by broad-scale tele-

connection patterns such as El Niño (see Fig. 5.1). How to seamlessly integrate such patterns

into the predictive modeling framework and derive new, previously unknown patterns that could

capture other variability in the spatio-temporal data are challenges that have not been sufficiently

addressed in the literature [90, 76].

1This paper is based on the previous publication [110].

61

To overcome these challenges, this chapter presents a novel, incremental spatio-temporal learn-

ing algorithm called WISDOM (Weighted Incremental Spatio-temporal Multi-task Learning via

Tensor Decomposition) for multi-location prediction. The algorithm represents the spatio-temporal

data as a third-order tensor, where the dimensions (modes) of the tensor represent the temporal,

spatial, and predictor variables of the data. By performing tensor decomposition, the latent factors

that characterize the variability of the data along each of the three dimensions can be identified. For

climate data, known temporal patterns such as El Niño can be directly integrated as a constraint on

one of the temporal latent factors of the spatio-temporal tensor. Sparsity-inducing norms can also

be added as additional constraints to avoid model overfitting and enhance model interpretability by

the domain experts.

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
-4

-3

-2

-1

0

1

2

3

Deseasonalized El Nino Index (SOI)
Max temperature for station ID 1031

Figure 5.1: The standardized monthly maximum temperature of a weather station in French
Polynesia, which correlates strongly with the deseasonalized El-Nino Southern Oscillation Index.

Our proposed tensor decomposition approach is supervised in that the latent factors of the

tensor are estimated jointly with the parameters of the prediction models in a unified learning

framework. A unique aspect of our formulation is that it constructs two types of prediction

models—spatial and temporal—by regressing on the spatial and temporal latent factors inferred

from the data. This is a significant departure from conventional spatio-temporal prediction ap-

62

proaches [118, 91, 109], which typically learns a temporal model for each location from the his-

torical observations and adds spatial constraints to guide the learning algorithm. An alternative

approach is to develop a spatial prediction model such as Gaussian Markov Random Field and

kriging that considers the spatial distribution of the target variable, where temporal dependencies

are used to compute the covariance function of the model. In both types of approaches, the model

is trained on one of the dimensions (space or time) while the other dimension is used as side infor-

mation that constrains the modeling process. Instead, our formulation enables both space and time

to be treated equally as it explicitly trains prediction models from both spatial and temporal latent

factors. To make a prediction for location s at time t, we first apply the spatial model to the spatial

latent features for s and the temporal model to the temporal latent features for t. We then compute

their weighted average to determine the final prediction.

Another challenge is that the spatio-temporal data for many applications often grow rapidly

over space and time. The prediction models have to be re-trained whenever new observation data

become available, either for a new location (e.g., data from a newly deployed sensor) or as time

progresses (when labeled data from the most recent time period are available to verify earlier pre-

dictions). Instead of performing the joint tensor factorization and model building steps repeatedly

from scratch, which is computationally prohibitive due to the time and memory constraints, it

would be desirable to develop a framework that can gradually update its previous latent factors

and model parameters based on the newly observed data. Thus, we develop an incremental learn-

ing algorithm called WISDOM to solve the optimization problem associated with our proposed

formulation.

In short, the main contributions of the chapter are as follows:

1. A supervised tensor factorization framework is presented for spatio-temporal predictive mod-

eling. The framework is unique in that it constructs both spatial and temporal prediction

models from the data and can incorporate known patterns from the domain.

2. A scalable algorithm called WISDOM is developed to effectively solve the optimization

63

problem of the proposed framework. The algorithm can be applied to incremental learning

over space, time, or both when new observation data become available.

3. The effectiveness of the proposed framework for multi-location time series prediction is

demonstrated on a large-scale global climate data.

5.1 Preliminaries

We begin with the notations used in the chapter. A scalar is denoted by a lowercase letter such

as c whereas a vector is denoted by a boldface lowercase letter such as x. We denote a matrix by

a boldface capital letter, such as A and a tensor by a boldface Euler script letter, such as X . The

symbol “:" is used to denote sub-arrays within a matrix or tensor, e.g., A:,i denote the i-th column

of matrix A.

A tensor is a multidimensional array, whose order refers to the number of dimensions (or

modes). Each dimension in the tensor can be referred to by its index. A fiber of a tensor is a

vector obtained by fixing all the indices of the tensor except for one of them. For example, in a

3-dimensional tensor X , X i,:, j is the mode-2 fiber, which is obtained by fixing the mode-1 index

to i and mode-3 index to j. A slice of a tensor refers to a matrix obtained by fixing all but two of

the indices of the tensor. For example, X :,:,i is the i-th mode-3 slice of the tensor X obtained by

setting its mode-3 index to i.

Mode-n matricization is the process of reordering the elements of a tensor X ∈ ℜp1×...×pN

into a matrix X(n) ∈ ℜpn×qn , where qn = Πk ̸=n pk. The mode-n matricization is obtained by

arranging the mode-n fibers of the tensor so that each of them is a column of X(n). This process is

also known as mode-n unfolding.

The mode-n product of a tensor X ∈ ℜp1×...×pN with a matrix A ∈ ℜq×pn is defined as

(X ×n A)i1,...,in−1, j,in+1,...,iN =
pn
∑

in=1
X i1,...,iN A j,in

which results in a new tensor of dimensions p1 × ...× pn−1 ×q× pn+1 × ...×N. Furthermore, if

Y = X ×1 A(1)×2 A(2)...×N A(N) is an Nth-order tensor, then Y(n) = A(n)X(n)

(
A(N)⊗ ...⊗

64

A(n+1)⊗A(n−1)⊗ ...⊗A(1)
)T

[61], where ⊗ denotes the Kronecker product.

The Khatri-Rao product of two matrices is equivalent to applying a Kronecker product colum-

nwise to the matrices. For example, given matrices A ∈ ℜN×K and B ∈ ℜM×K , then their Khatri-

Rao product is given by:

A⊙B = [a1 ⊗b1,a2 ⊗b2, ...,aK ⊗bK]

Figure 5.2: Overview of the proposed WISDOM framework.

5.2 WISDOM: An Incremental Spatio-Temporal Multi-Task Learning Frame-
work

Let D =(X ,Y) be a spatio-temporal data set, where X ∈ℜS×T×d denote the spatio-temporal

tensor of predictor variables, Y ∈ ℜS×T denote the response variable for all the locations, S is the

number of locations, T is the length of the time series, and d is the number of predictor variables.

For incremental learning, the data is assumed to be periodically augmented with a new data chunk,

(Xnew,Ynew), where Xnew ∈ ℜS×1×d and Ynew ∈ ℜS×1 if the data is for a new time period or

Xnew ∈ ℜ1×T×d and Ynew ∈ ℜ1×T if the data is from a new location.

65

5.2.1 Spatio-temporal Predictive Models

A standard approach to address the spatio-temporal prediction problem is to train a temporal pre-

diction model for each location, ft(xst ;ws), where ws ∈ ℜd×1 is the model parameter for location

s. Note that the temporal models can be trained independently or jointly using a multi-task learning

approach such as [109] to predict values of the response variable at a future time t. In the latter

case, the spatial information is typically used as constraints [91, 109] to guide the training of the

temporal prediction model. Alternatively, one could also train a spatial prediction model for each

time t, fs(xst ;vt), where vt ∈ ℜd×1 is the model parameter at time t and apply the model to predict

the values of the response variable at a previously unobserved location s.

The framework proposed in this study is novel in that it simultaneously learns the temporal

and spatial prediction models using the latent factors derived from the spatio-temporal tensor, as

shown in Fig. 5.2. Unlike other previous approaches, it builds separate models from the spatial

and temporal latent factors and combines the output of both models to obtain the final prediction.

Assuming a linear model, the framework predicts the value for a location s at time t as a weighted

linear combination of its spatial and temporal models, i.e.,

ŷs,t = xT
s,t(

K

∑
k

As,kwk +
K

∑
k

Bt,kvk) (5.1)

where As,k denote the weight of the k-th spatial latent feature for location s, Bt,k denote the weight

of the k-th temporal latent feature for time t, wk and vr are the parameters for the corresponding

spatial and temporal prediction models of the k-th latent feature. The model parameters can be

represented in matrix form as W = [wT
1 ;wT

2 ; ...;wT
K] ∈ ℜK×d and V = [vT

1 ;vT
2 ; ...;vT

K] ∈ ℜK×d

and are estimated by optimizing the following joint objective function:

min
W,V

S

∑
s

T

∑
t

L (xs,t ,W,V,ys,t)+Ωm(W,V) (5.2)

where L (xs,t ,W,V,ys,t) is the loss function and Ω(W,V) is the regularizer for the model param-

eters. In this work, we consider a squared loss function, L (xs,t ,W,V,ys,t) = (ŷs,t − ys,t)
2, and

define Ωm(W,V) = ∥W∥1 +∥V∥1 to ensure sparsity of the models.

66

5.2.2 Supervised Tensor Decomposition

The formulation presented in Eq.(5.2) requires knowledge about the latent factors of the spatio-

temporal tensor. These latent factors are represented by the loading matrices A and B, which

can be derived from the data using tensor decomposition techniques. There are two standard ap-

proaches for decomposing a tensor, namely, Tucker and CANDECOMP/PARAFAC (CP) decom-

positions [61]. Tucker decomposition factorizes a tensor into a core tensor and a product of its

loading matrices along each mode. Though it provides a more general representation, the latent

factors are harder to be interpreted as the number of latent factors along each mode does not have

to be identical. In contrast, CP decomposition factorizes a tensor into a sum of rank-1 tensors, i.e.,

X = JA,B,CK = ∑K
k=1 ak ◦bk ◦ ck, where ◦ denote the outer product operation between two vec-

tors while ak, bk and ck correspond to the vectors associated with the k-th latent factor. The vectors

ak, bk and ck also denote the k-th columns of the loading matrices A, B, and C, respectively.

In this work, we apply CP decomposition on the spatio-temporal tensor. Let X ∈ ℜS×T×d be

a spatio-temporal tensor, where the (s, t)-th mode-3 fiber of X corresponds to the feature vector

for location s at time t, i.e., X s,t,: = xs,t . To estimate the latent factors, the objective function for

CP decomposition can be written as follows:

min
A,B,C

1
2
∥X − JA,B,CK∥2

F +Ωd(A,B,C)

where ∥X ∥F =
√

∑i jk X 2
i jk is the Frobenius norm of the tensor X and Ωd(A,B,C) is a reg-

ularization term for the loading matrices A, B, and C. To ensure model sparsity, the following

regularization penalty can be used:

Ωd(A,B,C) = ∥A∥1 +∥B∥1 +∥C∥1

Putting everything together, the objective function for our spatio-temporal MTL framework

67

can be stated as follows:

min
W,V,A,B,C

F (W,V,A,B,C)

=
1
2

S

∑
s

T

∑
t
(xT

s,t(W
T As +VT Bt)− ys,t)

2

+
λ
2
∥X − JA,B,CK∥2

F +β∥[W,V,A,B,C]∥1 (5.3)

where we have used ∥[W,V,A,B,C]∥1 to denote the ℓ1 norm for W, V, A, B and C, respectively.

5.2.3 WISDOM Algorithm

As the size of many spatio-temporal data sets can be very large, efficient algorithms are needed

to learn the spatio-temporal predictive models of the data. To optimize the objective function

in Eq.(5.3), we develop an incremental learning algorithm called WISDOM to learn the model

parameters as well as the latent factors of the tensor. While most incremental learning algorithms

consider only updating the parameters over time, for spatio-temporal data, there is also a need

to update the parameters over space. For example, new observation data may be available from

sensors deployed at a new location or when a scientific research is expanded to include a new

study region. To support this, we present two implementations of WISDOM—one for incremental

learning over space and the other for incremental learning over time. A hybrid approach that

combines both strategies can be easily developed when new observations can be generated over

space and time.

For incremental learning, our goal is to adapt the existing models without rebuilding the model

from scratch as new data become available. To ensure that the model parameters and latent factors

do not vary significantly from their previous values, a smoothness criterion can be added to the

objective function. We reformulate the optimization problem for incremental learning as follows:

min
W,V,A,B,C

Q(W,V,A,B,C,W̃, Ṽ, Ã, B̃, C̃)

= F (W,V,A,B,C)+Γ(W,V,A,B,C,W̃, Ṽ, Ã, B̃, C̃),

68

where W̃, Ṽ, Ã, B̃, and C̃ are the previous values before the update, F (W,V,A,B,C) is given by

Eq. (5.3) and

Γ(W,V,A,B,C,W̃, Ṽ, Ã, B̃, C̃)

= ∥W−W̃∥2
F +∥V− Ṽ∥2

F +∥A− Ã∥2
F +∥B− B̃∥2

F +∥C− C̃∥2
F . (5.4)

5.2.3.1 Incremental Learning over Space

First, we discuss WISDOM’s approach for incremental learning over space, when data from a new

location becomes available. Let T be the current time and S be the current number of locations.

We assume that the new location has historical observation data from time t0 to T . If the location

has only one observation data, then t0 = T . We further assume that the spatial latent features for

other locations are unaffected by the addition of the new location, i.e., ∀s : Ãs = As. However,

the latent features for other modes (B and C) as well as the parameters of the prediction models

(W and V) can be affected by the addition of the new data, {xS+1,t0 ,xS+1,t0+1, · · · ,xS+1,T}. For

brevity, we denote the feature vectors for the new location as XS+1, which is a tensor of size

1× (T − t0 +1)×d.

The objective function for incremental learning over space can be expressed as follows:

min
W,V,V ,AS+1,B,C

Q(W,V,AS+1,B,C,W̃, Ṽ, B̃, C̃)

=
1
2

T

∑
t=t0

[
xT

S+1,t(W
T AS+1 +VT Bt)− yS+1,t

]2

+
λ1
2
∥X S+1 − JAT

S+1,B,CK∥2
F

+
η1
2

[
∥W−W̃∥2

F +∥V− Ṽ∥2
F + ∥B− B̃∥2

F +∥C− C̃∥2
F

]
+ β1∥W,V,AS+1,B,C∥1 (5.5)

Note that AS+1 is a column vector that represents the spatial latent features for the new location and

xS+1,t denote the feature vector of the location at time t. The smoothness parameter η1 determines

the extent to which the previous model parameters should be retained.

69

We employ an alternating minimization strategy to solve the optimization problem. Since not

all terms in the objective function are differentiable, we employ the proximal gradient descent

method [84] to solve each subproblem. The method is applicable to non-differentiable objec-

tive functions that can be decomposed into a smooth part and a non-smooth part. Let f (x) =

g(x)+ h(x), where g(x) is a differentiable function and h(x) is a non-differentiable function. For

example, the loss function involving the Frobenius norm terms in our objective function is differen-

tiable whereas the sparsity-inducing L1-norm terms are non-differentiable. The proximal gradient

descent method updates its parameter as following:

x(k) = proxtk,h

(
x(k−1)− tk∇g(x(k−1))

)
where x(k) is the parameter to be estimated at step k. proxtk,h

is the proximal operator for the

nondifferentiable function h, ∇g(x(k−1)) is the gradient on the smooth function g w.r.t. x(k−1) and

tk is the step size for the gradient descent update. The proximal operator for ℓ1 norm function is

the soft-thresholding operator: proxλ ,h(v) = (v−λ)+− (−v−λ)+. The parameters are updated

iteratively by calculating the gradient on the smooth part of the objective function, and then apply

the soft-thresholding operator (proximal mapping function for ℓ1 norm) to determine its next value.

The step size can be found using a line search algorithm. In the following, we provide the gradient

of the objective function for each alternating minimization step.

I. Solving for AS+1 by fixing W, V, B, C:

The objective function can be simplified to retain only terms involving AS+1 as follows:

min
AS+1

1
2

T

∑
t=t0

(xT
S+1,t(W

T AS+1 +VT Bt)− yS+1,t)
2

+
λ1
2
∥XS+1(1)−AT

S+1(C⊙B)T∥2
F +β1∥AS+1∥1

where XS+1(1) is the mode-1 unfolding of the tensor X S+1. The gradient on the smooth part of

the objective function w.r.t. AS+1 is
T

∑
t=t0

(
xT

S+1,t(W
T AS+1 +VT Bt)− yS+1,t

)
WxS+1,t

− λ1

(
[XS+1(1)−AT

S+1(C⊙B)T](C⊙B)
)T

70

II. Solving for B by fixing AS+1, W, V, C:

The terms in the objective function involving matrix B include

min
B

1
2

T

∑
t=t0

(xT
S+1,t(W

T AS+1 +VT Bt)− yS+1,t)
2

+
λ1
2
∥XS+1(2)−B(C⊙AT

S+1)
T∥2

F

+
η1
2
∥B− B̃∥2

F +β1∥B∥1 (5.6)

The gradient on the smooth part of the objective function w.r.t. Bt is given by(
xT

S+1,t(W
T AS+1 +VT Bt)− yS+1,t

)
VxS+1,t

+ λ1

(
[xT

S+1,t −BT
t (C⊙AT

S+1)
T](C⊙AT

S+1)
)T

− η1(Bt − B̃t)

III. Solving for C by fixing AS+1, B, W, V:

Similarly, we can simplify the objective function to include only terms involving the matrix C:

min
C

λ1
2
∥XS+1(3)−C(B⊙AT

S+1)
T∥2

F

+
η1
2
∥C− C̃∥2

F +β1∥C∥1 (5.7)

The gradient on the smooth part of the objective function w.r.t. C is given by

−λ1

(
XS+1(3)−C(B⊙AT

S+1)
T
)
(B⊙AT

S+1)+η1(C− C̃)

IV. Solving for W by fixing V, AS+1, B, C:

The terms in the objective function involving the model parameter W is

min
W

1
2

T

∑
t=t0

(xT
S+1,t(W

T AS+1 +VT Bt)− yS+1,t)
2

+
η1
2
∥W−W̃∥2

F +β1∥W∥1 (5.8)

The gradient on the smooth part of the objective function w.r.t. W is given by

T

∑
t=t0

xS+1,t

(
xT

S+1,t(W
T AS+1 +VT Bt)− yS+1,t

)
AT

S+1

+ η1(WT −W̃T)

71

V. Solving for V by fixing W, AS+1, B, C:

Finally, the objective function can be simplified for terms involving V as follows:

min
V

1
2

T

∑
t=t0

(xT
S+1,t(W

T AS+1 +VT Bt)− yS+1,t)
2

+
η1
2
∥V− Ṽ∥2

F +β1∥V∥1 (5.9)

The gradient on the smooth part of the objective function w.r.t. V is given by

T

∑
t=t0

xS+1,t(xT
S+1,t(W

T AS+1 +VT Bt)− yS+1,t)BT
t

+ η1(V− Ṽ)

5.2.3.2 Incremental Learning over Time

Next, we examine WISDOM’s strategy for incremental learning over time. Let S be the number

of locations and T be the current time. Similar to other online learning schemes, we assume the

availability of the feature vectors of predictor variables for all S locations at time T + 1. This

information will be used to determine the temporal latent factor BT+1 for the new time period.

Similar to the strategy used for incremental learning over space, we assume the new data for time

T +1 does not affect previous temporal latent factors B1,B2, · · · ,BT .

Our strategy for incremental learning over time is to perform the following two steps: first, we

learn the temporal latent factor BT+1 based on the values of the predictor variables for the new

time period. Next, the model parameters and latent factors for other modes are updated when the

target variable for the new time period is observed for all the locations.

Step 1: Updating the temporal latent factor BT+1 before observing target variable. The

objective function for updating the temporal latent factor is given below:

min
BT+1

Q(BT+1) =
λ2
2
∥X T+1 − JA,BT

T+1,CK∥2
F (5.10)

Note that the loading matrices A and C correspond to the values obtained from the previous update.

Step 2: Updating model parameters and other latent factors after observing target variable.

After the new observation for target variable at time T + 1, we can derive the update formula by

72

optimizing the following objective function:

min
W,V,A,BT+1,C

Q(W,V,A,BT+1,C,W̃, Ṽ, Ã, C̃)

=
1
2

S

∑
s
(xT

s,T+1(W
T As +VT BT+1)− ys,T+1)

2

+
λ2
2
∥X T+1 − JA,BT

T+1,CK∥2
F

+
η2
2
(∥W−W̃∥2

F +∥V− Ṽ∥2
F +∥A− Ã∥2

F

+ ∥C− C̃∥2
F)+β1(∥W,V,A,BT+1,C∥1) (5.11)

Solving Eq. (5.11) to obtain the update formula for W, V, A, BT+1 and C is similar to the approach

described for incremental learning over space. We omit their details due to lack of space.

5.2.3.3 Incremental Learning over Space-Time

The approaches described in the previous subsections can be combined to create a hybrid approach

for incremental learning over both space and time. Specifically, the WISDOM algorithm can be

initially applied to a subset of the locations at a given starting time. As time progresses, it will apply

the model update approach for incremental learning over time to the newly acquired observation

data. Similarly, when data from a new location becomes available, it will then invoke the update

strategy for incremental learning over space.

5.3 Experimental Evaluation

We applied WISDOM to a global-scale climate data set and compared its performance against

several baseline algorithms.

5.3.1 Dataset Description

The climate data was obtained from two sources. First, we downloaded the monthly climate ob-

servation data from the Global Surface Summary of Day (GSOD)2 website. These monthly values

2https://data.noaa.gov/dataset/global-surface-summary-of-the-day-gsod

73

of total precipitation (prcp), maximum (tmax), minimum (tmin), and average (tmean) temperature

are used to define the target/response variable for our prediction tasks. We created 4 data sets, one

for each response variable, to evaluate the performance of WISDOM. Though the four response

variables can be jointly modeled in a multi-task learning framework, this is beyond the scope of

the current work.

The second source corresponds to a coarse-scale gridded climate data from NCEP reanalysis3.

We use the data to define the predictor variables for our climate prediction task. Although there

are hundreds of variables available in the NCEP reanalysis data, we selected 13 of them as our

predictor variables with the help of our domain expert. A detailed description of the selected

features is given in Table 5.1.

GSOD provides climate data from more than 30,000 monitoring sites worldwide, spanning

a time period from 1942 to the present time. We use the monthly data from January 1985 to

November 2015 (for a total of 371 months) in our experiment. During preprocessing, we remove

the sites that have missing values as well as sites that are co-located in the same grid as another

previously chosen site, i.e., we restrict each grid to contain only one GSOD site. This reduces

the number of sites in our data set to 1,110. The variables are deseasonalized by subtracting

each monthly value from the average value of the given month and then standardized to obtain

their Z-scores. The dimensionality of the resulting spatio-temporal tensor after preprocessing is

1110×371×13.

5.3.2 Experimental Setup

We use the data from the first 20 years (1985 - 2004) for training and the rest (2005 - 2015) for

testing the efficacy of the prediction models. The last 10 years of the training data are used as

validation set to determine the model parameters. We set the number of latent factors in WISDOM

to k = 5 and randomly select 100 sites as our initial starting locations. For incremental learning,

3http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.
html

74

Table 5.1: List of predictor variables selected from NCEP reanalysis data.

Variable Description
cprat.sfc Monthly mean convective precipita-

tion rate at surface
dlwrf.sfc Monthly mean longwave radiation

flux at surface
dswrf.sfc Monthly mean solar radiation flux at

surface
prate.sfc Monthly mean of precipitation rate
tmax.2m Monthly mean maximum tempera-

ture at 2 m
tmin.2m Monthly mean minimum tempera-

ture at 2 m
lftx.sfc Monthly mean surface lifted index
omega.sig995 Monthly mean omega at sigma level

0.995
pr_wrt.eatm Monthly mean of precipitable water

content
rhum.sig995 Monthly mean relative humidity at

sigma level 0.995
slp Sea level pressure
thick_1000500 Monthly mean of thickness for 1000-

500mb
thick_850500 Monthly mean of thickness for 850-

500mb

the new observation may come from a new location or for a new time point. In the former case, we

perform incremental learning over space for the new location and update the prediction models for

other locations. In the latter case, we perform incremental learning over time to update the models

for all the locations. The mean absolute error (MAE) for all locations are used as our evaluation

metric and we also report the standard deviation of MAE over time.

We compared WISDOM against the following two baseline algorithms. The order in which

new observations are introduced over space and time is the same for all the algorithms:

1. STL (Single Task Learning): Each location has its own local (linear) model that is incremen-

tally updated using a gradient descent approach when it has a new observation data. When

a new location is introduced, its parameters are randomly initialized and updated only when

75

new observation data for the location becomes available.

2. ALTO: This is an adaptation of the method in [118], which assumes the model parameters

for multiple response variables are in the form of a tensor. To extend ALTO to our problem

setting, we make the following changes: First, the tensor is reduced to a matrix W since

each data set has only one response variable. Second, we replace tensor decomposition

with singular value decomposition and apply it to the noise-perturbed weight matrices to

obtain the updated model parameters. We have also extended ALTO to perform incremental

learning over space: when data from a new location is available, we compute the model for

the new location using linear regression and adds the estimated parameters as a new row in

W. The updated W is then projected into its low-rank matrix representation.

In addition to the two baseline methods, we also consider the following two variations of WIS-

DOM:

3) WISDOM-S: This baseline considers only the spatial component of the framework. Specif-

ically, we remove all terms related to V in Eq. (5.5) and (5.11).

4) WISDOM-T: This baseline considers only the temporal component of the framework. We

remove all terms related to W in Eq. (5.5) and (5.11).

5.3.3 Comparison against Baseline Methods

We first present the results comparing WISDOM against the two baseline algorithms, STL and

ALTO. Table 5.2 shows the average MAE for the various methods whereas Table 5.4 shows the

number of locations in which each method outperforms another. The results suggest that WIS-

DOM outperform STL and ALTO in more than 75% of the locations for all 4 data sets evaluated.

The percentage is even higher (> 90%) when compared against ALTO on the three temperature

data sets. By outperforming STL, this suggests the importance of incorporating spatial autocor-

relation into the learning framework. WISDOM also outperforms ALTO, which is another online

tensor learning approach for spatio-temporal data. There are two possible reasons for this. First,

76

ALTO performs the following simple update to its weight matrix each time new observation data is

available4: W(k) = (1−α)W(k−1)+αXZ† [118]. The single-step update may not be sufficient to

learn the right weights of the prediction model. In contrast, WISDOM learns the optimal weights

that minimize an incrementally updated objective function. Second, ALTO performs a low-rank

decomposition on a perturbed weight matrix whereas WISDOM decomposes the data tensor itself.

The results suggest that the latter strategy is more effective as the observation data is potentially

noisy.

Next, we compare WISDOM against its variants in Tables 5.3 and 5.4. Observe that WISDOM

and WISDOM-S outperform WISDOM-T on all four data sets, which suggest the importance of

incorporating a predictive model from the spatial latent factors. Furthermore, WISDOM performs

better than WISDOM-S especially for precipitation prediction. This makes sense as precipitation

has less spatial autocorrelation compared to temperature, which is why temporal autocorrelation

plays a more significant role in improving its prediction.

Table 5.2: MAE and its standard deviation for WISDOM and other baseline methods

tmax tmin tmean prcp
WISDOM 0.4751± 0.0739 0.5016 ± 0.0777 0.4438 ± 0.0798 0.5700 ± 0.1157
STL 0.5580 ± 0.0599 0.5670 ± 0.0627 0.5233 ± 0.0606 0.6930 ± 0.0897
ALTO 0.6824 ± 0.1448 0.6598 ± 0.1660 0.6570 ± 0.1691 0.6087 ± 0.1197

Table 5.3: MAE and its standard deviation for WISDOM and its variants

tmax tmin tmean prcp
WISDOM 0.4751 ± 0.0739 0.5016 ± 0.0777 0.4438 ± 0.0798 0.5700 ± 0.1157
WISDOM-S 0.4685 ± 0.1031 0.5030 ± 0.0952 0.4380 ± 0.1065 0.5824 ± 0.1206
WISDOM-T 0.4832 ± 0.1233 0.5285 ± 0.1033 0.4607 ± 0.1036 0.6075 ± 0.1221

5.3.4 Convergence Analysis of WISDOM

To demonstrate its convergence, Fig. 5.3 shows the average MAE of WISDOM for all locations

across time. A location is included into the average MAE calculation only after the data for the

4We use incremental update of the weight matrix instead of exact update since the latter requires
the entire data to be available in memory.

77

Table 5.4: Comparison between the number of locations (out of 1,100) in which one method
outperforms another

Variable W
IS

D
O

M

W
IS

D
O

M
-S

W
IS

D
O

M
-T

A
LT

O

ST
L

tmax

WISDOM 0 621 842 1031 904
WISDOM-S 489 0 901 1036 968
WISDOM-T 268 209 0 976 848
ALTO 79 74 134 0 163
STL 206 142 262 947 0

tmin

WISDOM 0 642 823 1007 883
WISDOM-S 468 0 869 1016 901
WISDOM-T 287 241 0 956 792
ALTO 103 94 154 0 192
STL 227 209 318 918 0

tmean

WISDOM 0 621 767 1033 898
WISDOM-S 489 0 779 1044 951
WISDOM-T 343 331 0 1003 869
ALTO 77 66 107 0 131
STL 212 159 241 979 0

prcp

WISDOM 0 756 946 838 990
WISDOM-S 354 0 789 685 997
WISDOM-T 164 321 0 651 910
ALTO 272 425 495 0 852
STL 120 113 200 258 0

location becomes available. Although there are some instabilities in its performance during the

first 8 years, WISDOM begins to converge after the first 10 years, which is our initial training

period, on all four data sets.

5.3.5 Analysis of Spatial Latent Factors

Next, we investigate the spatial latent factors derived by WISDOM. Each spatial latent factor is a

vector whose elements represent the membership of each location to the given latent factor. Figure

5.4 and 5.5 show the spatial distribution of the latent factors for prcp. The figure shows that the

latent factors have varying spatial distributions, which suggests that they capture different aspects

78

of the spatial variability in the data. For example, the first latent factor is dominant in Europe and

north of China whereas the second latent factor emphasizes more in US and east of China.

Year

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

M
A

E

0.4

0.6

0.8

1

1.2

tmax
tmin
tmean
prcp

Figure 5.3: Changes in MAE over time for WISDOM

WISDOM utilizes the spatial latent factors to perform incremental learning over space. To

further demonstrate the benefit of incremental learning over space, we compare the average annual

MAE for the first 100 randomly chosen locations when the model is updated with and without

incremental learning over space. Specifically, in the latter case, no new locations are added into

the data set as time progresses. Indeed, as shown in Fig 5.6, adding data from new locations helps

to improve the MAE of the first 100 randomly chosen locations.

5.3.6 Analysis of Temporal Latent Factors

Each temporal latent factor derived by WISDOM can be represented as a time series. To understand

their significance, we correlate the temporal latent factors against the known climate indices given

in Table 5.5. Fig. 5.7 shows the resulting correlation for the tmean and prcp data sets. Though the

temporal latent factors for both data sets are different, we found some of the factors correlate highly

(over 0.6) with the existing climate indices. This result suggests that the temporal latent factors may

capture some of the previously known climate phenomena, represented by the climate indices such

as AOI and NAO. For each temporal latent factor and climate index, we also calculate the percent

of locations whose temperature or precipitation has a correlation above 0.3. The results in Fig.

5.8 suggest that (1) not all climate indices have a significant number of locations highly correlated

with them and (2) some latent factors have significant correlation with a relatively large number of

79

locations, comparable to the known indices. More importantly, as some of the latent factors do not

correlate highly with the known indices, this suggests that our framework can potentially discover

new indices that capture the climate variability for many locations.

0

0.2

0.4

0.6

0.8

1

(a) Factor 1

0

0.2

0.4

0.6

0.8

1

(b) Factor 2

0

0.2

0.4

0.6

0.8

1

(c) Factor 3

Figure 5.4: Spatial distribution of the spatials factor learned by WISDOM for prcp. (Figure is best
viewed in color).

80

Table 5.5: List of the climate indices used to correlate with the temporal factors learned from
WISDOM.

Climate Index Description
AOI Arctic Oscillation Index
NAO North Atlantic Oscillation
WPI West Pacific Pattern
QBO Quasi-Biennial Oscillation
PDO Pacific Decadal Oscillation
SOI Southern Oscillation Index

Surprisingly, none of the temporal latent factors were found to correlate highly with SOI, which

is a surrogate time series for El Niño. One of the strengths of WISDOM is its ability to incorporate

known domain patterns as additional constraints for its formulation. In order to incorporate known

0

0.2

0.4

0.6

0.8

1

(a) Factor 4

0

0.2

0.4

0.6

0.8

1

(b) Factor 5

Figure 5.5: Spatial distribution of the spatials factor learned by WISDOM for prcp, continued.
(Figure is best viewed in color).

81

Year

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

M
A

E
0

0.5

1

1.5

2

With incremental learning over space
Without incremental learning over space

(a) tmax

Year

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

M
A

E

0

0.5

1

1.5

2

With incremental learning over space
Without incremental learning over space

(b) tmin

Year

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

M
A

E

0

0.5

1

1.5

2

With incremental learning over space
Without incremental learning over space

(c) tmean

Year

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

M
A

E

0

0.5

1

1.5

2

With incremental learning over space
Without incremental learning over space

(d) prcp

Figure 5.6: Average annual MAE comparison between WISDOM with incremental learning over
space and WISDOM without incremental learning over space for the 100 initially chosen

locations

82

Table 5.6: Comparing MAE of WISDOM and WISDOM-KP

tmax tmin tmean prcp
WISDOM 0.4751 0.5016 0.4438 0.5700
WISDOM-KP 0.4678 0.5037 0.4343 0.5725

patterns such as SOI, we simply fix one of the columns in the temporal latent factor matrix B

to be the time series of SOI and learn the remaining spatial and temporal latent factors using

WISDOM. We denote this approach as WISDOM-KP. The MAE results comparing WISDOM

against WISDOM-KP is shown in Table 5.6. The results suggest that WISDOM-KP achieves

comparable results as WISDOM in terms of their average MAE.

In addition, we also compared the number of locations where WISDOM-KP outperforms WIS-

DOM. For tmax, tmean, and prcp, the MAE for WISDOM-KP is lower than WISDOM in at least

49% of the locations whereas for tmin, the percentage is around 43%. This is not surprising as

we do not expect SOI to accurately capture the climate variability for all locations. Instead, there

A
O

I
N

A
O

W
P

I
P

D
O

Q
B

O
S

O
I

A
O

I
N

A
O

W
P

I
P

D
O

Q
B

O
S

O
I

1
2
3
4
5 -0.2

0
0.2
0.4
0.6

(a) tmean

A
O

I
N

A
O

W
P

I
P

D
O

Q
B

O
S

O
I

A
O

I
N

A
O

W
P

I
P

D
O

Q
B

O
S

O
I

1
2
3
4
5 -0.2

0
0.2
0.4
0.6

(b) prcp

Figure 5.7: Correlations between the climate indices and the temporal factors learned from
WISDOM for tmean and prcp

F
ac

to
r

1

F
ac

to
r

2

F
ac

to
r

3

F
ac

to
r

4

F
ac

to
r

5

A
O

I

N
A

O

W
P

I

P
D

O

Q
B

O

S
O

I0

0.2

(a) tmean

F
ac

to
r

1

F
ac

to
r

2

F
ac

to
r

3

F
ac

to
r

4

F
ac

to
r

5

A
O

I

N
A

O

W
P

I

P
D

O

Q
B

O

S
O

I0

0.01

0.02

(b) prcp

Figure 5.8: Percentage of locations whose response variables has a correlation above 0.3 with the
temporal factors and climate indices learned from WISDOM for tmean and prcp

83

are locations that are expected to benefit from using SOI as one of the temporal latent factors. To

identify such locations, we plot a map of the locations in which WISDOM-KP is better than WIS-

DOM, and vice-versa, for predicting t-mean in Fig. 5.9. The results suggest that by incorporating

SOI, an improved predictive performance is observed in areas such as Australia, part of South

America, northeast of North America, and locations around Arctic Ocean. Some of these locations

are consistent with the results of previous studies [90].

Stations where WISDOM-KP outperforms WISDOM
Stations where WISDOM outperforms WISDOM-KP

Figure 5.9: Stations where WISDOM-KP outperforms WISDOM more than 0.05 in MAE
evaluation for tmean and vise versa.

5.4 Conclusion

This chapter presents a spatio-temporal learning framework for multi-location prediction based

on supervised tensor decomposition. Unlike conventional methods, the proposed framework con-

structs both spatial and temporal models of the data and aggregates their output to obtain the final

prediction. A novel incremental learning algorithm called WISDOM is developed to simultane-

ously extracts the latent factors of the spatio-temporal data and learns the spatial and temporal

prediction models. We show that WISDOM outperforms several baseline algorithms and can eas-

ily accommodate known patterns from the spatio-temporal domain.

84

CHAPTER 6

MULTI-SCALE SPATIO-TEMPORAL MULTI-TASK LEARNING VIA INCREMENTAL
MULTI-TENSOR DECOMPOSITION

The spatio-temporal data generated from many scientific domains are often available at multiple

spatial scales. For example, the climate projections generated by global and regional climate mod-

els are available at a wide range of spatial resolutions, from tens to several hundred kilometers (see

Table 6.1). Such multi-scale data can potentially be used to train models for predicting and under-

standing our future climate. However, since the data at different scales may be correlated to one

another, concatenating their variables together into a single feature vector for building predictive

models may not be an effective strategy. Similarly, considering the data from a single resolution on-

ly, e.g., from the finest scale, may not be sufficient as the models that generate the data at different

resolutions may have varying degrees of predictive skills at different locations. How to effectively

integrate the data from multiple spatial scales into a unified formulation to build predictive models

is therefore a challenge that must be addressed [35, 82, 75].

Note that the problem investigated in this study is different than some of the previous multi-

scale modeling tasks investigated by the machine learning, computer vision, and signal processing

communities. For example, some of the previous multi-scale modeling techniques would extract a

multi-resolution representation of a single dataset (e.g., using wavelet transform [80]), whereas our

focus here is on modeling multiple datasets with inherently different spatial scales. Another ex-

ample is the multi-resolution image data, which are often created by aggregating the pixels within

a grid to obtain a low resolution image representation. Unlike such representation, the geospatio-

temporal data investigated in this study are obtained from multiple sources (e.g., climate models

from various research groups), each based on different model parameterization and with potential-

ly different spatial scales. Furthermore, the multi-resolution image dataset is static whereas the

geospatio-temporal dataset is dynamic in nature.

In addition to the challenges posed by the multi-scale data, the complexity of the problem

85

Table 6.1: Spatial resolutions for various climate datasets

Climate Dataset Spatial Resolution
NCEP North American Regional Reanalysis 32 km
Canadian Regional Climate Model (CRCM) 45 km
Weather Research & Forecasting model (WRFG) 50km
NCEP Reanalysis 250km
HadCM3 Global Climate Model 300km

is further exacerbated by the need to build predictive models for multiple locations instead of

building the model for a single location. For example, in climate modeling, robust predictions are

often needed for multiple locations within a study region for some future time period. Although

a prediction model can be trained for each location separately, the resulting predicted distribution

may not be spatially consistent, i.e., it may not preserve the inherent spatial autocorrelation of

the data. Recent works [109, 110, 48, 46, 47, 118] have demonstrated the effectiveness of using

multi-task learning to produce predictions that are more consistent across space in the study region.

These approaches require making assumptions about the relationship between modeling tasks at

different locations and utilizing such relationship to jointly train the multiple models. However,

none of these previous studies have dealt with the effect of multi-scale data. Furthermore, with

the exception of [110], most of these works are primarily batch learning algorithms, which makes

them harder to scale up to very large spatio-temporal datasets. How to efficiently deal with the

large scale data without affecting the model accuracy is another important challenge that must be

addressed in the predictive modeling of geospatio-temporal data.

In addition to its accuracy, interpretability of the model is often a desirable feature. For exam-

ple, climate scientists are interested to understand the driving factors that influence the variability

observed in the climate data. Some of the broad-scale driving factors, such as El Niño, are well-

known to the scientists. Thus, having a geospatio-temporal predictive model that can reproduce

the known patterns of the domain as well as accurate predictions would help boost our confidence

in the validity of the model. While there have been some previous works based on tensor [110] and

matrix [109] factorization for deriving such patterns from geospatio-temporal data, it is unclear

86

whether such patterns would be preserved when applied to multi-scale data.

To address these challenges, this chapter presents a multi-task learning framework named

MUSCAT (MUlti-SCAle Spatio-Temporal Learning via Incremental Multi-Tensor Decomposi-

tion) to build predictive models from multi-scale spatio-temporal data. The multiple tasks in the

proposed framework are not only defined over different scales, but are also defined over space and

time. In the proposed framework, the multi-scale data is represented using a set of 3-dimensional

tensors, which are jointly decomposed into their latent factors via a multi-tensor decomposition

approach. The task relationships among the predictor variables at different scales are captured by

assuming that the latent spatial and temporal factors are invariant across the scales. The framework

also employs a supervised learning approach to incorporate the latent factors into a loss function

for predictive modeling. In short, MUSCAT provides a unified formulation for simultaneous de-

composition of multiple tensors and fitting the latent factors to the response variable of interest. In

addition, to handle large-scale spatio-temporal data, an incremental learning algorithm is proposed

enabling the model to be iteratively constructed over space and time, thus avoiding the need to

build the model from scratch each time there is new data available.

The contributions of this work are summarized as follows:

1. A geospatio-temporal multi-task learning framework called MUSCAT is proposed to build

prediction models for multi-scale data at multiple locations.

2. The proposed framework allows the latent spatial and temporal patterns shared by the mul-

tiple scales to be derived via a multi-tensor decomposition approach.

3. An incremental learning algorithm over space and over time is proposed to scale the MUS-

CAT framework to large datasets.

4. Experimental evaluation performed using climate data from the United States Historical Cli-

mate Network (USHCN) shows the superiority of the framework compared to several base-

line multi-scale learning methods.

87

6.1 Background

In this section, we first introduce the notations used in this chapter followed by our problem

definition. We then describe the tensor factorization approach employed by our proposed frame-

work.

6.1.1 Notations

To facilitate the discussion, we adopt the following notation throughout the chapter. First, scalars

are denoted by lowercase italic letters such as v while vectors are denoted by lowercase boldface

letters such as x. Note that x is assumed to be a column vector unless stated otherwise. Its cor-

responding row vector is denoted as xT , where the superscript T denote the transpose operation.

Matrices are denoted by boldface capital letters such as A while tensors are represented as bold-

face calligraphic letters such as X . Furthermore, ak denote the vector corresponding to the k-th

column of the matrix A. A summary of the notations used is shown in Table 6.2.

Table 6.2: Glossary of symbols used in the chapter.

Symbol Notation
v A scalar
x A column vector
A A matrix

A:,k or ak The k-th column of matrix A
X A tensor

X i,:, j The mode-2 fiber of X , which is
obtained by fixing the mode-1 index
to i and mode-3 index to j

X :,:,i The i-th mode-3 slice of the tensor
X obtained by setting its mode-3
index to i

We use xT y to denote the dot product between two vectors and x◦y to denote their outer prod-

uct. Furthermore, let ∥A∥F = ∑i j a2
i j be the Frobenius norm of matrix A and ∥X ∥F =

√
∑i jk x2

i jk

be the Frobenius norm of the tensor X . For other tensor operations, the notations used are given

in Table 6.3.

88

Table 6.3: Glossary of tensor/matrix operations.

mode-n matricization reordering the elements of a tensor X ∈
ℜp1×...×pN into a matrix X(n) ∈ ℜpn×qn ,
where qn = Πk ̸=n pk, and each of the mode-n
fibers of X is a column of X(n)

mode-n product (X ×n A)i1,...,in−1, j,in+1,...,iN =

∑pn
in=1 X i1,...,iN A j,in

Khatri-Rao product A⊙B = [a1 ⊗b1,a2 ⊗b2, ...,aK ⊗bK], where
⊗ is the Kronecker product.

6.1.2 Tensor Factorization

We employ the following CANDECOMP/PARAFAC (CP) decomposition [61] to factorize a 3rd-

order tensor X into its corresponding latent factors A, B, and C:

X = JA,B,CK = K

∑
k=1

ak ◦bk ◦ ck. (6.1)

Specifically, the tensor is factorized into the sum of K rank-1 tensors, each of which is given by

the outer product ak ◦bk ◦ ck. In addition, the vectors ak, bk and ck denote the k-th columns of the

matrices A, B, and C, respectively

6.1.3 Spatio-Temporal Prediction

Let D = (X (1), ...,X (L),Y) be a multi-scale spatio-temporal data set, where X (l) ∈ ℜS×T×dl

denote the spatio-temporal tensor of predictor variables from the l-th resolution, Y ∈ ℜS×T denote

the response variable for all the locations, S is the number of locations, T is the length of the time

series, and dl is the number of predictor variables for scale l.

The goal of spatio-temporal predictive modeling is to learn a target function f ({x(l)};Π) that

maps each multi-scale variable {x(l)} to its corresponding response variable y ∈ R in such a way

that minimizes the difference between its predicted and true value. Note that Π denotes the set of

parameters associated with the target function.

89

6.2 MUSCAT

This section presents our proposed framework for multi-scale multi-task learning. We begin

with the discussion on multi-tensor decomposition.

6.2.1 Multi-tensor decomposition

Inspired by previous work on discovering climate indices using SVD [90], tensor decomposition,

as a generalization of SVD to higher dimensions, is employed to learn the spatial and temporal

latent factors of the data. Since the data are available at multiple scales, the tensor decomposition

can be performed at each scale.

min
A,B,C(l)

1
2(S×T ×dl)

∥X (l)− JA,B,C(l)K∥2
F +Ωd(A,B,C(l))

where A is the spatial latent factor with size S×K and B is the temporal latent factor with size

T ×K. We assume the underlining climate variability of the data from different scales should be

consistent, and thus, the latent factors A and B learned from the data should be shared between

scales. 1
S×T×dl

is used to normalize the norm so that it does not depend on the size of the tensor.

Ωd(A,B,C) is a regularization term for matrices A, B, and C, and we enforce sparsity of the latent

factors by using ℓ1-norm:

Ωd(A,B,C) = ∥A∥1 +∥B∥1 +∥C∥1

6.2.2 Supervised Multi-tensor Decomposition

The latent factors derived from the multi-tensor decomposition may capture the spatial and tempo-

ral climate variabilities of the data, and could be beneficial to spatio-temporal prediction modeling.

In this section, we discuss how to incorporate the latent factors into the supervised learning frame-

work.

90

We assume the prediction function is composed by a weighted average of the predictions from

multiple scales:

ŷs,t =
L

∑
l

αl ŷ
(l)
s,t

where αl is the weights for the prediction from the l-th scale, and is assumed to be probability

simplex (αl > 0 and ∑L
l αl = 1).

For each scale l, we assume the prediction function is composed by a temporal model for

multiple locations, and a spatial model for multiple time points, which is defined as follows:

ŷ(l)s,t = x(l)s,t
T
(

K

∑
k

As,kw(l)
k +

K

∑
k

Bt,kv(l)k)

where w(l)
k and v(l)k denote the parameters for spatial and temporal prediction models for the k-th

latent factor at scale l, while As,k and Bt,k are the weights of location s or time point t to the

k-th latent factor. Note that x(l)s,t
T

∑K
k As,kw(l)

k is a temporal model prediction for location s, and

x(l)s,t
T

∑K
k Bt,kv(l)k is a spatial model prediction for time t. The relatedness between the multi-scale

data is defined by the consistency of the latent spatial and temporal factors between scales. In other

words, the L prediction components share the same spatial factor A and temporal factor B.

Putting the multi-tensor decomposition and supervised learning together with squared loss

function, the objective function can be written as:

min
{αl ,W

(l),V(l),C(l)}
A,B

F
(
{W(l),V(l),C(l)},A,B

)

=
1
2

S

∑
s

T

∑
t

[L

∑
l

αlx
(l)
s,t

T
(

K

∑
k

As,kw(l)
k +

K

∑
k

Bt,kv(l)k)− ys,t

]2

+
λ
2

L

∑
l

1
S×T ×dl

∥X (l)− JA,B,C(l)K∥2
F +β

L

∑
l
∥[{W(l),V(l),C(l)},A,B]∥1

s.t.

αl > 0 for all l and
L

∑
l

αl = 1 (6.2)

91

where we use ∥[{W(l),V(l),C(l)},A,B]∥1 to denote the ℓ1 norm regularization term for W(l),

V(l), A, B and C(l), respectively.

6.2.3 MUSCAT

Spatio-temporal data are usually growing over space and time, when new spatial objects become

available, or new measurements are observed for further timestamps. It is expensive to learn the

models repeatedly over the whole dataset whenever there are new data available. In this section,

we propose an efficient algorithm called MUSCAT to optimize the objective function in Eq.(6.2),

which incrementally learns the model parameters and latent factors over space or time. MUSCAT

performs update only on the new available data, and the models are constrained to be close to the

previous learned models, such that the newly learned model still contains information from the old

data. Besides, MUSCAT does not require old data to perform the learning on new data, and hence

no old data need to be stored in memory.

The optimization problem for incremental learning of the objective function in Eq.(6.2) can be

formulated as follows:

min
{αl ,W

(l),V(l),C(l)}
A,B

Q

{αl , α̃l ,W(l),W̃(l),V(l), Ṽ(l),

C(l), C̃(l)},A, Ã,B, B̃

= F ({αl ,W(l),V(l),C(l)},A,B)

+ Γ

{αl , α̃l ,W(l),W̃(l),V(l), Ṽ(l),C(l), C̃(l)},

A, Ã,B, B̃

where {αl} , {W̃(l)}, {Ṽ(l)}, Ã, B̃, and {C̃(l)} denote the previous model parameters before the

incremental update, F ({αl ,W(l),V(l),C(l)},A,B) is given by Eq.(6.2) and

Γ

{αl , α̃l ,W(l),W̃(l),V(l), Ṽ(l),C(l), C̃(l)},

A, Ã,B, B̃

=

L

∑
l

(
(αl − α̃l)

2 +∥W(l)−W̃(l)∥2
F +∥V(l)− Ṽ(l)∥2

F +∥C(l)− C̃(l)∥2
F

)
+ ∥A− Ã∥2

F + ∥B− B̃∥2
F , (6.3)

92

which controls how much information will be retained from the previous model.

6.2.3.1 Incremental Learning over Space

In this section, we describe the MUSCAT framework for incremental learning over space.

Let T be the current time and S be the current number of locations. We assume that the new

location has historical observation data from time t0 to T . If the location has only one observation,

then t0 = T . We further assume that the spatial latent factors for other locations are unaffected by

the addition of the new location, i.e., ∀s : Ãs = As. However, the latent factors for other modes (B

and C(l)) as well as the parameters of the prediction models (αl , W(l) and V(l)) can be affected by

the addition of the new data, {xS+1,t0 ,xS+1,t0+1, · · · ,xS+1,T}. For brevity, we denote the feature

vectors for the new location as X S+1, which is a tensor of size 1× (T − t0 +1)×d composed by

X
(l)
S+1 ∈ R1×(T−t0+1)×dl for l = 1, ...,L.

The objective function for incremental learning over space can be expressed as follows:

min
{αl ,W

(l),V(l),C(l)},
AS+1,B

Q

{W(l),W̃(l),V(l), Ṽ(l),

C(l), C̃(l)},AS+1,B, B̃

 (6.4)

=
1
2

T

∑
t=t0

[L

∑
l

αlx
(l)
S+1,t

T
(W(l)T

AS+1 +V(l)T
Bt)− yS+1,t

]2

+
λ1
2

L

∑
l

1
T ×dl

∥X (l)
S+1 − JAT

S+1,B,C
(l)K∥2

F

+
η1
2

[L

∑
l
((αl − α̃l)

2 +∥W(l)−W̃(l)∥2
F +∥V(l)− Ṽ(l)∥2

F +∥C(l)− C̃(l)∥2
F)+∥B− B̃∥2

F

]
+ β1∥[{W(l),V(l),C(l)},AS+1,B]∥1

s.t.

αl > 0 for all l and
L

∑
l

αl = 1

Note that AS+1 is a column vector that represents the spatial latent factors for the new location and

xS+1,t denote the feature vector of the location at time t. The smoothness parameter η1 determines

93

the extent to which the previous model parameters should be retained.

An alternating minimization strategy is used to solve the optimization problem, and each sub-

problem is solved by the proximal gradient descent method [84]. The parameters are updated

iteratively by calculating the gradient on the smooth part of the objective function, and then ap-

ply the soft-thresholding operator to determine its next value. The step size can be found using a

line search algorithm. In the following, we provide the gradient of the objective function for each

alternating minimization step.

I. Solving for AS+1 by fixing {αl ,W(l),V(l),C(l)}, B:

The objective function with respect to AS+1 can be written as follows:

min
AS+1

1
2

T

∑
t=t0

[L

∑
l

αlx
(l)
S+1,t

T
(W(l)T

AS+1 +V(l)T
Bt)− yS+1,t

]2

+
λ1
2

L

∑
l

1
T ×dl

∥X(l)
S+1(1)−AT

S+1(C
(l)⊙B)T∥2

F

+ β1∥AS+1∥1 (6.5)

where X(l)
S+1(1) is the mode-1 unfolding of the tensor X

(l)
S+1.The gradient on the smooth part of

the objective function w.r.t. AS+1 is

T

∑
t=t0

[L

∑
l

αlx
(l)
S+1,t

T
(W(l)T

AS+1 +V(l)T
Bt)− yS+1,t

] L

∑
l

αlW(l)x(l)S+1,t

−
L

∑
l

λ1
T ×dl

(
[X(l)

S+1(1)−AT
S+1(C

(l)⊙B)T](C(l)⊙B)
)T

II. Solving for B by fixing AS+1, {αl ,W(l),V(l),C(l)}:

The terms in the objective function involving matrix B include

min
B

1
2

T

∑
t=t0

[L

∑
l

αlx
(l)
S+1,t

T
(W(l)T

AS+1 +V(l)T
Bt)− yS+1,t

]2

+
λ1
2

L

∑
l

1
T ×dl

∥X(l)
S+1(2)−B(C(l)⊙AT

S+1)
T∥2

F

+
η1
2
∥B− B̃∥2

F +β1∥B∥1 (6.6)

94

The gradient on the smooth part of the objective function w.r.t. Bt is given by[L

∑
l

αlx
(l)
S+1,t

T
(W(l)T

AS+1 +V(l)T
Bt)− yS+1,t

] L

∑
l

αlV(l)x(l)S+1,t

−
L

∑
l

λ1
T ×dl

[
(x(l)S+1,t

T
−BT

t (C
(l)⊙AT

S+1)
T)(C(l)⊙AT

S+1)

]T

+ η1(Bt − B̃t)

III. Solving for {C(l)} by fixing AS+1, B, {αl ,W(l),V(l)}:

We will solve C(l) for l = 1, ...,L individually. We can simplify the objective function to include

only terms involving the matrix C(l):

min
C(l)

λ1
2T ×dl

∥X(l)
S+1(3)−C(l)(B⊙AT

S+1)
T∥2

F

+
η1
2
∥C(l)− C̃(l)∥2

F +β1∥C(l)∥1 (6.7)

The gradient on the smooth part of the objective function w.r.t. C(l) is given by

− λ1
T ×dl

[
X(l)

S+1(3)−C(l)(B⊙AT
S+1)

T
]
(B⊙AT

S+1)+η1(C(l)− C̃(l))

IV. Solving for {W(l)} by fixing AS+1, B, {αl ,V(l),C(l)}:

The terms in the objective function involving the model parameter W(l) is

min
W(l)

1
2

T

∑
t=t0

[L

∑
l

αlx
(l)
S+1,t

T
(W(l)T

AS+1 +V(l)T
Bt)− yS+1,t

]2

+
η1
2
∥W(l)−W̃(l)∥2

F +β1∥W(l)∥1 (6.8)

The gradient on the smooth part of the objective function w.r.t. W(l) is given by
T

∑
t=t0

αlx
(l)
S+1,t

[L

∑
i

αix
(l)
S+1,t

T
(W(i)T

AS+1 +V(i)T
Bt)− yS+1,t

]
AT

S+1

+η1(W(l)T
−W̃(l)T

)

V. Solving for {V(l)} by fixing {αl ,W(l),C(l)}, AS+1, B:

The objective function can be simplified for terms involving V(l) as follows:

min
V(l)

1
2

T

∑
t=t0

[L

∑
l

αlx
(l)
S+1,t

T
(W(l)T

AS+1 +V(l)T
Bt)− yS+1,t

]2

+
η1
2
∥V(l)− Ṽ(l)∥2

F +β1∥V(l)∥1 (6.9)

95

The gradient on the smooth part of the objective function w.r.t. V(l) is given by

T

∑
t=t0

αlx
(l)
S+1,t

[L

∑
i

αix
(i)
S+1,t

T
(W(i)T

AS+1 +V(i)T
Bt)− yS+1,t

]
BT

t

+η1(V(l)− Ṽ(l))

VI. Solving for αl by fixing {W(l),V(l),C(l)}, AS+1, B:

Finally, the parameters for reweighting models learned for different scales can be solved by the

following objective function:

min
αl

1
2

T

∑
t=t0

[L

∑
l

αlx
(l)
S+1,t

T
(W(l)T

AS+1 +V(l)T
Bt)− yS+1,t

]2

+
η1
2
(αl − α̃l)

2

s.t.

αl > 0 for all l and
L

∑
l

αl = 1

The gradient on the objective function w.r.t αl is given by:

T

∑
t=t0

[L

∑
i

αix
(i)
S+1,t

T
(W(i)T

AS+1 +V(i)T
Bt)

−yS+1,t

]
x(l)S+1,t

T
(W(l)T

AS+1 +V(l)T
Bt)

+η1(αl − α̃l)

The probability simplex constraint is solved by performing a Euclidean projection onto the

probability simplex in proximal mapping step for the proximal gradient descent algorithm [102].

6.2.3.2 Incremental Learning over Time

Similar to incremental learning over space, we also develop incremental learning over time for

MUSCAT when new observations become available at new timestamps. Let S be the number of

locations and T be the current time and we assume the availability of the feature vectors of predictor

variables for all S stations at time T + 1. This information will be used to calculate the temporal

latent factor BT+1 for the new time period. Similar to the strategy for incremental learning over

96

space, we assume the new data for time T + 1 does not affect previous temporal latent factors

B1,B2, · · · ,BT .

Different from incremental learning over space, there are two steps for incremental learning

over time. First, we learn the temporal latent factor BT+1 based on the values of the predictor

variables for the new time period before the target variable is observed. Note that the predictions

for the next timestamp is performed based on the parameters at current stage. Next, the model

parameters and latent factors for other modes are updated when the target variable for the new

time period is observed for all the locations.

Step 1: Updating the temporal latent factor BT+1 before observing target variable. The

objective function for updating the temporal latent factor is given below:

min
BT+1

Q(BT+1) =
λ2
2

L

∑
l

1
S×dl

∥X (l)
T+1 − JA,BT

T+1,C
(l)K∥2

F

Note that the loading matrices A and {C(l)} correspond to the values obtained from the previ-

ous update. The predictions for the target variable are performed using BT+1 and other model

parameters from previous update.

Step 2: Updating model parameters and latent factors after observing target variable. After

obtaining the new observations for target variable at time T +1, we can derive the update formula

97

by optimizing the following objective function:

min
{αl ,W

(l),V(l),C(l)},
A,BT+1

Q

{W(l),V(l),C(l)},A,BT+1,

{W̃(l), Ṽ(l), C̃(l)}, Ã

=

1
2

S

∑
s

[L

∑
l

αlx
(l)
s,T+1

T
(W(l)T

As +V(l)T
BT+1)− ys,T+1

]2

+
λ2
2

L

∑
l

1
S×dl

∥X (l)
T+1 − JA,BT

T+1,C
(l)K∥2

F

+
η2
2

[L

∑
l
((αl − α̃l)

2 +∥W(l)−W̃(l)∥2
F

+∥V(l)− Ṽ(l)∥2
F +∥C(l)− C̃(l)∥2

F)+∥A− Ã∥2
F

]
+ β2(∥{W(l),V(l),C(l)},A,BT+1∥1)

s.t.

αl > 0 for all l and
L

∑
l

αl = 1

The optimization approach for solving Eq. (6.10) to obtain the update formula for {αl ,W(l),V(l),C(l)},

A and BT+1 is similar to the approach for incremental learning over space.

6.3 Experimental Evaluation

This section describes the experiments performed to evaluate the performance of MUSCAT

using a multi-scale climate dataset.

6.3.1 Dataset Description

We use a multi-scale climate dataset that has three spatial resolutions. The data at the finest scale

correspond to monthly observations obtained from various weather stations. The dataset was ob-

tained from the United States Historical Climatology Network (USHCN)1. Four variables from this

dataset—maximum (tmax), minimum (tmin), mean (tmean) temperature and precipitation (prcp)—

1http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn.html

98

Table 6.4: List of variables from NARR data as predictors.

Variable Description
acpcp Monthly mean convective precipita-

tion accumulation at surface
air.2m Monthly mean air temperature at 2 m
dlwrf Monthly mean downward longwave

radiation flux at surface
dswrf Monthly mean downward shortwave

radiation flux at surface
lftx4 Monthly mean (4-layer) lifted index
prate Monthly mean precipitation rate at

surface
prmsl Monthly mean pressure at mean sea

level
pr_wtr Monthly mean precipitable water for

entire atmosphere
rhum Monthly mean relative humidity at 2

m

are selected as the response variables for our multi-scale modeling task. The prediction for each

response variable will be modeled independently2.

For predictor variables, we will use two other climate datasets, NARR and NCEP reanalysis.

NARR3 corresponds to the North American regional reanalysis dataset and has a spatial resolution

of 0.3◦ (32 km). Nine predictor variables are selected from this data source with the help of our

domain expert. The variables are shown in Table 6.4. NCEP reanalysis4 is a gridded climate dataset

with a coarser spatial resolution of 2.5◦. Seven surface variables are selected as the predictor

variables based on the suggestion of our domain experts. A detailed description of the selected

variables is shown in Table 6.5.

The collected datasets cover the entire United States, spanning the months of January, 1985

until November, 2015. However, since there are missing values in the response variables for some

2Even though the four variables can be modeled jointly using a multi-task learning framework,
this is currently beyond the scope of this work.

3https://www.esrl.noaa.gov/psd/data/gridded/data.narr.html
4http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.

html

99

Table 6.5: List of surface variables selected from NCEP reanalysis data as predictors.

Variable Description
cprat.sfc Monthly mean convective precipita-

tion rate at surface
dlwrf.sfc Monthly mean downward longwave

radiation flux at surface
dswrf.sfc Monthly mean downward shortwave

radiation flux at surface
prate.sfc Monthly mean of precipitation rate at

surface
tmax.2m Monthly mean maximum tempera-

ture at 2 m
tmin.2m Monthly mean minimum tempera-

ture at 2 m
lftx.sfc Monthly mean surface lifted index

Table 6.6: Number of weather stations and grid cells for each response variable.

USHCN NARR NCEP
tmax 357 350 146
tmin 341 336 144

tmean 333 328 143
prcp 790 635 159

weather stations over the 30-year period, the number of data points (weather stations) varies from

one response variable to another. We also remove the grid cells in the NARR and NCEP reanalysis

datasets that do not have any corresponding weather station data. Table 6.6 summarizes the number

of weather stations and grid cells for each response variable.

After removing the stations with missing values, we apply the following preprocessing step

to all the time series of predictor and response variables. For each variable at a given scale, we

deseasonalize the time series by subtracting each monthly value from the mean value of its corre-

sponding month. The time series is then standardized to obtain a sequence of Z-scores.

Next, we divide the dataset into 3 equal-sized partitions for training, validation, and testing.

We use the data from the first 10 years (1985-1994) for training, the next 10 years (1995-2004) for

validation, and the rest (2005-2015) for testing. The validation set is used to perform parameter

tuning. We adopt a similar evaluation strategy as WISDOM [110] by setting the number of latent

100

factors to be k = 5. Note that the number of weather stations included in the training, validation,

and testing may vary depending on when the station was first introduced into our incremental

learning formulation. Specifically, we first randomly choose 100 weather stations as our starting

locations. At each step during the incremental learning process, we randomly introduce either a

new station (along with its historical data) or a new time period (where the data for the new time

period becomes available to all the previously selected stations) for updating the latent factors as

well as the spatial and temporal multi-scale models. With this incremental learning strategy, a

station could be introduced during the training period, the validation period, or the testing period.

We used the following mean absolute error (MAE) metric to evaluate the performance of vari-

ous algorithms:

MAE({(yt , ŷt)}) =
∑S

s=1 ∑N
n=1 |ys,n − ŷs,n|
S×N

(6.10)

Note that the evaluation metric is calculated for each station starting from the test period in which

incremental learning is performed for the given station. For example, if a station was first intro-

duced into the incremental learning formulation during the training or validation period, then its

MAE is calculated for the entire test period. However, if the station was first introduced during

the testing period, its MAE is computed starting from the test period in which it was first intro-

duced. The incremental learning process is repeated 10 times, each time with a different random

initialization. Results are reported based on the average performance over the 10 trials.

6.3.2 Baseline Algorithm

We compare the performance of MUSCAT against single-task learning (STL) and several state-

of-the-art multi-task learning algorithms. For these baseline algorithms, the predictor variables

from NARR and NCEP reanalysis are concatenated together into a single feature vector to be fitted

against the response variable.

1. STL (Single Task Learning): In this approach, an independent linear model is incrementally

trained for each location using stochastic gradient descent algorithm when a new observation

101

becomes available. When a weather station is first introduced during the incremental learning

process, the parameters of the model are initialized randomly. The parameters are then

updated as new observations for the station become available.

2. ALTO: This is variation of the spatio-temporal multi-task learning algorithm proposed in [118]

which was designed to build models for multiple response variables simultaneously.

3. WISDOM: This is a recent spatio-temporal multi-task learning approach proposed in Chap-

ter 5. It applies tensor decomposition on the spatio-temporal data but does not distinguish

between features from different scales.

6.3.3 Experimental Results

6.3.3.1 Comparison against Baselines

As previously noted, we repeated the incremental learning process 10 times for each method by

randomly introducing new station or new time period into the learning process. We then report

the mean and standard deviation of MAE over the 10 runs for each method in Table 6.7. The

results suggest that WISDOM and MUSCAT outperform STL in all datasets, which shows the

effectiveness of using a multi-task learning approach. Although ALTO also employs a multi-task

learning strategy, it performs a simple update on its weight matrix, which may not be sufficient

to learn the optimal weight for the prediction models. Comparing WISDOM and MUSCAT , the

results show that MUSCAT significantly outperforms WISDOM on all four datasets evaluated in

this study. This shows the effectiveness of our proposed framework, which uses a multi-tensor

decomposition approach to jointly factorize the multi-scale tensors, instead of factorizing a single

tensor with concatenated features from multiple scales, which is the approach used in WISDOM .

6.3.3.2 Comparison of Multi-scale analysis against single-scale analysis

In order to determine the value of using multi-scale data, we develop the following two variations

of MUSCAT and compare its performance against MUSCAT and WISDOM:

102

Table 6.7: Mean and standard deviation of MAE for MUSCAT and other baseline methods for
climate datasets over 10 trials.

tmax tmin tmean prcp
STL 0.4422 ± 0.0016 0.4412 ± 0.0020 0.4141 ± 0.0018 0.5446 ± 0.0012

ALTO 0.5854 ± 0.0064 0.5687 ± 0.0031 0.5656 ± 0.0053 0.5806 ± 0.0051
WISDOM 0.3543 ± 0.0155 0.4001 ± 0.0075 0.3850 ± 0.0236 0.4212 ± 0.0054
MUSCAT 0.3212 ± 0.0074 0.3454 ± 0.0065 0.2844 ± 0.0112 0.4115 ± 0.0023

1. MUSCAT-S1 In this variation, MUSCAT uses only predictor variables from NCEP. This

variation is equivalent to applying WISDOM on the NCEP data.

2. MUSCAT-S2: In this variation, MUSCAT uses only predictor variables from NARR. This

variation is equivalent to applying WISDOM to the NARR data.

The mean and standard deviation of MAE over 10 runs are reported in Table 6.8. The re-

sults showed that MUSCAT outperforms WISDOM , MUSCAT-S1 and MUSCAT-S2 on all four

datasets. Furthermore, WISDOM performs better than both MUSCAT-S1 and MUSCAT-S2 on the

temperature datasets, which suggest the importance of incorporating data from multiple scales into

the modeling framework. For the precipitation dataset, MUSCAT-S2 performs better than WIS-

DOM . This result suggests that for precipitation, the predictor variables from the coarsest scale

(NCEP reanalysis) does not help to predict the precipitation values of the stations. Nonetheless,

MUSCAT still achieves the lowest MAE because it can learn the appropriate weight combination

(α) for NARR and NCEP reanalysis when making its predictions.

Table 6.8: Mean and standard deviation of MAE for MUSCAT against different variations of
MUSCAT .

tmax tmin tmean prcp
WISDOM 0.3543 ± 0.0155 0.4001 ± 0.0075 0.3850 ± 0.0236 0.4212 ± 0.0054

MUSCAT-S1 0.5492 ± 0.0700 0.4328 ± 0.0115 0.4543 ± 0.0393 0.6194 ± 0.0026
MUSCAT-S2 0.3910 ± 0.0183 0.4094 ± 0.0186 0.4350 ± 0.0532 0.4208 ± 0.0051

MUSCAT 0.3212 ± 0.0074 0.3454 ± 0.0065 0.2844 ± 0.0112 0.4115 ± 0.0023

103

Table 6.9: Mean of α1 and α2 for the climate datasets over 10 trials.

tmax tmin tmean prcp
α1 0.2876 0.3651 0.3360 0.0933
α2 0.7124 0.6349 0.6640 0.9067

6.3.3.3 Influence of Data from Multiple Scales

Next, we examine the impact of the data at different scales on the performance of MUSCAT . Our

hypothesis is that the predictor variables from coarsest scale are less influential compared to those

from the finer scale. To do this, we examine the mean values of the parameters α1 and α2 over 10

runs. The results are shown in Table 6.9. For all four datasets, α2 (NARR) has a consistently higher

weight than α1 (NCEP reanalysis). In other words, that NARR predictors are more influential in

the prediction of the response variables compared to the NCEP reanalysis predictors. This supports

our hypothesis that the finer-level predictors have higher impact than the coarser-level predictors.

Factor 1
Factor 2
Factor 3
Factor 4
Factor 5

Figure 6.1: Spatial distribution of the spatial latent factors learned by MUSCAT for precipitation
data (Figure is best viewed in color)

6.3.4 Analysis of Spatial Latent Factors

One of the advantages of using MUSCAT is that the latent factors can be used to identify the

spatial patterns of the data. In this section, we examine the spatial latent factors A generated by

MUSCAT . Figure 6.1 shows the spatial distribution of the latent factors for the precipitation data.

For each of the 5 spatial latent factors, we plot its corresponding top 20% most influential stations

104

on the map. As can be seen from Figure 6.1, the distribution for spatial latent factors exhibit certain

grouping phenomena. For example, the first latent factor is more dominant on the eastern part of

the United States, while the third and fifth latent factors are more influential on the northwest part

of the country.

6.3.5 Analysis of Temporal Latent Factors

Finally, we examine the temporal latent factors B derived by MUSCAT. Since each column in B is

a time-series, our goal is to determine whether the latent factors capture some of the known climate

patterns previously described in the literature. To do this, we computed the correlation between

each latent factor against the known climate indices such as El-Niño Southern Oscillation Index

(SOI), North Atlantic Oscillation (NAO) index, Arctic Oscillation Index (AOI), etc. The descrip-

tion of the climate indices are shown in Table 6.10. Figure 6.2 shows the correlation between the

selected climate indices and the temporal latent factors generated by MUSCAT for all four dataset-

s. It is expected that the overall correlation may not be that high since the datasets used in this

study are limited to weather stations in the United States, whereas most climate indices are defined

over other regions of the world. Nevertheless, we still observe relatively high correlation between

some indices and the temporal latent factors found. For example, in the tmax dataset, the fourth

latent factor has a relatively high correlation with NAO. In the tmin and tmean datasets, the second

latent factor has a high correlation with PDO, while for the prcp dataset, the fifth latent factor has a

relatively high correlation with AOI. This result suggests that the temporal latent factors generated

by MUSCAT was able to capture some of the previously known climate phenomena, which was

represented by the climate indices.

6.4 Conclusion

This chapter presents a multi-scale multi-task learning framework for geospatio-temporal data

by employing a supervised multi-tensor decomposition approach. The framework enables the

multi-scale relationships to be harnessed by enforcing a constraint on the consistency between

105

Table 6.10: List of the climate indices used to correlate with the temporal factors learned from
WISDOM.

Climate Index Description
AOI Arctic Oscillation Index
NAO North Atlantic Oscillation
WPI West Pacific Pattern
QBO Quasi-Biennial Oscillation
PDO Pacific Decadal Oscillation
SOI Southern Oscillation Index

A
O

I
N

A
O

W
P

I
P

D
O

Q
B

O
S

O
I

A
O

I
N

A
O

W
P

I
P

D
O

Q
B

O
S

O
I

1
2
3
4
5

-0.3

-0.1

0.1

0.3

(a) tmax
A

O
I

N
A

O
W

P
I

P
D

O
Q

B
O

S
O

I
A

O
I

N
A

O
W

P
I

P
D

O
Q

B
O

S
O

I

1
2
3
4
5

-0.3

-0.1

0.1

0.3

(b) tmin

A
O

I
N

A
O

W
P

I
P

D
O

Q
B

O
S

O
I

A
O

I
N

A
O

W
P

I
P

D
O

Q
B

O
S

O
I

1
2
3
4
5

-0.3

-0.1

0.1

0.3

(c) tmean

A
O

I
N

A
O

W
P

I
P

D
O

Q
B

O
S

O
I

A
O

I
N

A
O

W
P

I
P

D
O

Q
B

O
S

O
I

1
2
3
4
5

-0.3

-0.1

0.1

0.3

(d) prcp

Figure 6.2: Correlations between the known climate indices and the temporal latent factors
derived from MUSCAT .

the spatial and temporal latent factors derived from the multi-scale geospatio-temporal data. An

incremental learning algorithm over space and time is then proposed to efficiently learn the weights

of the model. Experiments performed on a real-world multi-scale climate dataset demonstrate the

effectiveness of proposed method compared to several baseline algorithms.

106

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this chapter, the major contributions of this thesis are summarized and possible future research

directions are discussed.

7.1 Summary of Contributions

Geospatio-temporal data mining tasks can be naturally cast into MTL problems in spatial and

temporal dimensions. This thesis proposed four novel MTL frameworks to investigate the possi-

bility of applying MTL approaches on geospatio-temporal domain by addressing the challenges of

building effective predictive models for geospatio-temporal data. It also evaluated the performance

of the proposed MTL frameworks on different geospatio-temporal applications. The contribution

of this thesis is summarized in the following.

In Chapter 3, an online temporal MTL framework named ORION is proposed to learn the

optimal weights for ensemble members in applications of ensemble forecasting. The framework

considers the prediction for each time point in the forecast window as one task, and the task re-

latedness is defined by the mean regularizer and Laplacian regularizer to constrain the temporal

smoothness between tasks. ORION adopts a restart strategy to handle the missing value of the

target variable in the forecast window. Various loss functions such as ε-insensitive and quantile

loss functions can be adopted in the framework for different objectives. The experimental results

on real world soil moisture data from 12 US river basins demonstrate the superior performance of

ORION over other baselines.

In Chapter 4, in order to perform multi-location prediction, a MTL framework named GSpartan

is developed to build models jointly at multiple geo-locations. The framework assumes that the

models are sharing a set of hidden models and linearly combined by these hidden models. Spatial

autocorrelation is also employed to explicitly define the relationship between tasks. Sparsity and

non-negativity are also enforced in the objective to ensure interpretability of the learned models.

107

Experimental results on real world climate data show that GSpartan outperforms other baselines

especially when there are limited training examples at each location.

GSpartan is limited in that it only considers the spatial autocorrelation of the data and it is

difficult to scale up to global-scale data. In Chapter 5, a spatio-temporal MTL framework is

proposed for multi-location prediction based on supervised tensor decomposition. This frame-

work constructs multiple tasks across both space and time, and the task relations in spatial and

temporal dimension are implicitly determined by the tensor decomposition. A novel incremen-

tal learning algorithm called WISDOM is developed to simultaneously learn the latent factors of

the spatio-temporal data via tensor decomposition, as well as the prediction models. WISDOM

outperforms several baseline algorithms and can easily accommodate existing patterns from the

geospatio-temporal domain.

In Chapter 6, in order to handle data from multiple scales, a multi-scale spatio-temporal MTL

framework is developed for multi-scale modeling on multiple locations simultaneously. In addition

to the merit of WISDOM, this framework models the relatedness of the predictors from differen-

t resolution or scales, by considering the consistency of the spatial and temporal latent factors

learned from the predictor tensor of different scales. A novel incremental multi-tensor decomposi-

tion algorithm called MUSCAT is developed to solve the objective efficiently. Experiments on real

world climate data show the effectiveness of MUSCAT over other baselines, including WISDOM.

7.2 Future Directions

Although the results for the proposed MTL frameworks are promising, they are still limited in

a few aspects. In this section, the future research directions are discussed, which are inspired from

the work of this thesis.

The proposed MTL frameworks in this thesis assume the prediction function to be a linear

form, which might not be true in some of the geospatio-temporal applications, such as climate and

Earth science. As future work, the choice of non-linear prediction functions or kernel functions

needs to be studied.

108

In addition, the features used in the proposed frameworks for multi-location prediction are

only a very small portion of the whole feature set, which are mainly determined by the domain

experts. However, removing the features outside of the hand-picked feature set might result in

information loss. While it might not be effective and efficient to directly use all possible features,

it is a challenge to perform feature selection and feature learning such that the learned features with

a limited number of size can be effectively represent the original feature set. Since deep learning

has been proposed in literature to learn informative features, as future work, MTL framework with

feature learning can be proposed by incorporating the merit of deep learning approaches.

For many spatio-temporal applications, preserving the fidelity of the distribution is as important

as minimizing the prediction error [2]. Although the proposed MTL frameworks do improve the

regression prediction performance over the state-of-the-art methods, they still suffer from the fact

that the regression will not always preserve the true distribution of the data. As future work, in

order to address this problem, multi-task contour regression can be explored to simultaneously

minimize the prediction error and maximize the alignment between the distributions of prediction

and observation.

109

BIBLIOGRAPHY

110

BIBLIOGRAPHY

[1] Zubin Abraham, Malgorzata Liszewska, Perdinan, Pang-Ning Tan, Julie Winkler, and
Shiyuan Zhong. Distribution regularized regression framework for climate modeling. In
SDM, pages 333–341. SIAM, 2013.

[2] Zubin Abraham, Pang-Ning Tan, Perdinan, Julie A. Winkler, Shiyuan Zhong, and Malgo-
rzata Liszewska. Contour regression: A distribution-regularized regression framework for
climate modeling. Stat. Anal. Data Min., 7(4):272–281, August 2014. ISSN 1932-1864.

[3] Alekh Agarwal, Alexander Rakhlin, and Peter Bartlett. Matrix regularization techniques
for online multitask learning. Technical Report UCB/EECS-2008-138, EECS Department,
University of California, Berkeley, Oct 2008. URL http://www.eecs.berkeley.edu/

Pubs/TechRpts/2008/EECS-2008-138.html.

[4] Rie Kubota Ando and Tong Zhang. A framework for learning predictive structures from
multiple tasks and unlabeled data. Journal of Machine Learning Research, 6:1817–1853,
December 2005. ISSN 1532-4435.

[5] Luc Anselin and Arthur Getis. Spatial statistical analysis and geographic information sys-
tems. The Annals of Regional Science, 26(1):19–33, 1992. ISSN 1432-0592.

[6] Miguel B. Araújo and Mark New. Ensemble forecasting of species distributions. Trends in
Ecology & Evolution, 22(1):42–47, 2007.

[7] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Convex multi-task fea-
ture learning. Mach. Learn., 73(3):243–272, December 2008. ISSN 0885-6125.

[8] N. H. Augustin, M. Musio, K. von Wilpert, E. Kublin, S. N. Wood, and M. Schumacher.
Modeling spatiotemporal forest health monitoring data. 104:899–911, 2009.

[9] Prithu Banerjee, Pranali Yawalkar, and Sayan Ranu. Mantra: A scalable approach to mining
temporally anomalous sub-trajectories. In KDD, pages 1415–1424, 2016.

[10] Sudipto Banerjee, Bradley P. Carlin, and Alan E. Gelfand. Hierarchical Modeling and
Analysis for Spatial Data. Monographs on Statistics and Applied Probability. Chapman and
Hall/CRC, 1 edition, 2004. ISBN 158488410X.

[11] F. Bellocchio, S. Ferrari, V. Piuri, and N.A. Borghese. Hierarchical approach for multiscale
support vector regression. IEEE Transactions on Neural Networks and Learning Systems,
23(9):1448–1460, September 2012. 1045-9227.

[12] Gedas Bertasius, Jianbo Shi, and Lorenzo Torresani. Deepedge: A multi-scale bifurcated
deep network for top-down contour detection. In CVPR, pages 4380–4389, 2015.

[13] Martin Andrew Bezener. Bayesian spatiotemporal modeling using spatial hierarchical priors
with applications to functional magnetic resonance imaging. Ph.D dissertation, University
of Minnesota, 2015.

111

[14] Jinbo Bi, Tao Xiong, Shipeng Yu, Murat Dundar, and R.Bharat Rao. An improved multi-
task learning approach with applications in medical diagnosis. In Machine Learning and
Knowledge Discovery in Databases, volume 5211 of Lecture Notes in Computer Science,
pages 117–132. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-87478-2.

[15] Steffen Bickel, Jasmina Bogojeska, Thomas Lengauer, and Tobias Scheffer. Multi-task
learning for hiv therapy screening. In Proceedings of the 25th International Conference
on Machine Learning, ICML ’08, pages 56–63, New York, NY, USA, 2008. ACM. ISBN
978-1-60558-205-4.

[16] Shyam Boriah, Vipin Kumar, Michael Steinbach, Christopher Potter, and Steven Klooster.
Land cover change detection: A case study. In KDD, pages 857–865, 2008.

[17] George Edward Pelham Box and Gwilym Jenkins. Time Series Analysis, Forecasting and
Control. Holden-Day, Incorporated, 1990. ISBN 0816211043.

[18] Jorge Caiado and Nuno Crato. A garch-based method for clustering of financial time series:
International stock markets evidence. Mpra paper, University Library of Munich, Germany,
2007. URL http://EconPapers.repec.org/RePEc:pra:mprapa:2074.

[19] Pierre Cantelaube and Jean-Michel Terres. Seasonal weather forecasts for crop yield mod-
elling in europe. Tellus A, 57(3):476–487, 2005.

[20] Rich Caruana. Multitask learning. Machine Learning, 28(1):41–75, July 1997. ISSN 0885-
6125.

[21] Giovanni Cavallanti, Nicolò Cesa-Bianchi, and Claudio Gentile. Linear algorithms for on-
line multitask classification. Journal of Machine Learning Research, 11:2901–2934, De-
cember 2010. ISSN 1532-4435.

[22] Kai-Wei Chang, Wen-Tau Yih, Bishan Yang, and Christopher Meek. Typed tensor decom-
position of knowledge bases for relation extraction. In EMNLP, 2014.

[23] Jianhui Chen, Jiayu Zhou, and Jieping Ye. Integrating low-rank and group-sparse structures
for robust multi-task learning. In Proceedings of the 17th ACM SIGKDD Int’l Conf on
Knowledge discovery and data mining, pages 42–50. ACM, 2011.

[24] Jianhui Chen, Ji Liu, and Jieping Ye. Learning incoherent sparse and low-rank patterns
from multiple tasks. ACM Transactions on Knowledge Discovery from Data, 5(4):22:1–
22:31, 2012. ISSN 1556-4681.

[25] Jianhui Chen, Lei Tang, Jun Liu, and Jieping Ye. A convex formulation for learning a shared
predictive structure from multiple tasks. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 35(5):1025–1038, May 2013. ISSN 0162-8828.

[26] Haibin Cheng and Pang-Ning Tan. Semi-supervised learning with data calibration for long-
term time series forecasting. In Proc of ACM SIGKDD Int’l Conf on Knowledge Discovery
and Data Mining, pages 133–141, 2008.

112

[27] Chi-Yin Chow and Mohamed F. Mokbel. Trajectory privacy in location-based services and
data publication. SIGKDD Explor. Newsl., 13(1):19–29, August 2011.

[28] A. Cichocki, D. Mandic, L. De Lathauwer, Guoxu Zhou, Qibin Zhao, C. Caiafa, and H.A.
Phan. Tensor decompositions for signal processing applications: From two-way to multiway
component analysis. Signal Processing Magazine, 32(2):145–163, 2015.

[29] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer. On-
line passive-aggressive algorithms. Journal of Machine Learning Research, 7:551–585,
December 2006. ISSN 1532-4435.

[30] N. Cressie. Statistics for spatial data. Wiley, New York, 1993.

[31] Hal Daumé, III. Bayesian multitask learning with latent hierarchies. In Proceedings of the
25th Conference on Uncertainty in Artificial Intelligence, UAI ’09, pages 135–142, Arling-
ton, Virginia, United States, 2009. AUAI Press. ISBN 978-0-9749039-5-8.

[32] G.S. Davis, N Sevdalis, and L.N Drumright. Spatial and temporal analyses to investigate
infectious disease transmission within healthcare settings. pages 227–243, 2014.

[33] Victor De Oliveira. Bayesian analysis of conditional autoregressive models. Annals of the
Institute of Statistical Mathematics, 64(1):107–133, 2012.

[34] Ofer Dekel, Philip M. Long, and Yoram Singer. Online learning of multiple tasks with a
shared loss. Journal of Machine Learning Research, 8:2233–2264, December 2007. ISSN
1532-4435.

[35] N. Diodato, G. Bellocchi, C. Bertolin, and D. Camuffo. Multiscale regression model to
infer historical temperatures in a central mediterranean sub-regional area. Climate of the
Past Discussions, 6:2625–3649, 2010.

[36] Mark Dredze, Koby Crammer, and Fernando Pereira. Confidence-weighted linear classifi-
cation. In Proceedings of the 25th International Conference on Machine Learning, ICML
’08, pages 264–271, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-205-4.

[37] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from a single image
using a multi-scale deep network. In NIPS, pages 2366–2374, 2014.

[38] Theodoros Evgeniou and Massimiliano Pontil. Regularized multi-task learning. In Pro-
ceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’04, pages 109–117, New York, NY, USA, 2004. ACM. ISBN 1-58113-
888-1.

[39] Theodoros Evgeniou, Charles A. Micchelli, and Massimiliano Pontil. Learning multiple
tasks with kernel methods. J. Mach. Learn. Res., 6:615–637, December 2005. ISSN 1532-
4435.

[40] JamesH. Faghmous and Vipin Kumar. Spatio-temporal data mining for climate data: Ad-
vances, challenges, and opportunities. In Data Mining and Knowledge Discovery for Big
Data, volume 1 of Studies in Big Data, pages 83–116. Springer Berlin Heidelberg, 2014.

113

[41] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hierarchical features for scene
labeling. PAMI, 35(8):1915–1929, Aug 2013.

[42] Robert J. Franzese, Jude C. Hays, and Scott J. Cook. Spatial- and spatiotemporal-
autoregressive probit models of interdependent binary outcomes. Political Science Research
and Methods, 4(1):151âĂŞ173, 2016.

[43] Scott John Gaffney. Probabilistic Curve-Aligned Clustering and Prediction with Regression
Mixture Models. PhD thesis, 2004.

[44] Alan E Gelfand, Peter J Diggle, Montserrat Fuentes, and Peter Guttorp. Handbook of spatial
statistics. CRC press, 2010.

[45] Fosca Giannotti, Mirco Nanni, Fabio Pinelli, and Dino Pedreschi. Trajectory pattern min-
ing. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’07, pages 330–339. ACM, 2007.

[46] A. R. GonÃğalves, F. J. Von Zuben, and A. Banerjee. A multitask learning view on the earth
system model ensemble. Computing in Science Engineering, 17(6):35–42, Nov 2015.

[47] A. R. GonÃğalves, A. Banerjee, and F. J. Von Zuben. Spatial projection of multiple climate
variables using hierarchical multitask learning. In AAAI, 2017.

[48] André R. Gonçalves, Fernando J. Von Zuben, and Arindam Banerjee. Multi-task sparse
structure learning with gaussian copula models. JMLR, 17(1):1205–1234, January 2016.

[49] Pinghua Gong, Jieping Ye, and Changshui Zhang. Robust multi-task feature learning. In
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’12, pages 895–903, New York, NY, USA, 2012. ACM. ISBN
978-1-4503-1462-6.

[50] Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined convex program-
ming, version 2.0 beta. http://cvxr.com/cvx, September 2013.

[51] Tony H Grubesic and Alan T Murray. Detecting hot spots using cluster analysis and gis.
In Proceedings from the fifth annual international crime mapping research conference, vol-
ume 26, 2001.

[52] Quanquan Gu, Zhenhui Li, and Jiawei Han. Learning a kernel for multi-task clustering. In
Proceedings of the 25th Conference on Artificial Intelligence (AAAI), 2011.

[53] Forrest M Hoffman, William W Hargrove, and Anthony D Del Genio. Multivariate spatio-
temporal clustering of time-series data: an approach for diagnosing cloud properties and
understanding arm site representativeness.

[54] Sahyun Hong and W. M. Moon. Application of gaussian markov random field model to un-
supervised classification in polarimetric sar image. In 2003 IEEE International Geoscience
and Remote Sensing Symposium. Proceedings, volume 2, pages 929–931 vol.2, 2003.

114

[55] Weiming Hu, Xi Li, Xiaoqin Zhang, Xinchu Shi, Stephen Maybank, and Zhongfei Zhang.
Incremental tensor subspace learning and its applications to foreground segmentation and
tracking. IJCV, 91(3):303–327, 2011.

[56] Zhuoliang Kang, Kristen Grauman, and Fei Sha. Learning with whom to share in multi-task
feature learning. In Proceedings of the 28st International Conference on Machine Learning,
pages 521–528. Omnipress, 2011.

[57] Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, and Nuria Oliver. Multiverse
recommendation: N-dimensional tensor factorization for context-aware collaborative filter-
ing. In RecSys 2010, pages 79–86, 2010.

[58] Baris M. Kazar and Mete Celik. Spatial AutoRegression (SAR) Model: Parameter Estima-
tion Techniques. Springer Publishing Company, Incorporated, 2012.

[59] Eamonn Keogh, Jessica Lin, and Ada Fu. Hot sax: Efficiently finding the most unusual
time series subsequence. In Proceedings of the Fifth IEEE International Conference on
Data Mining, ICDM ’05, pages 226–233, 2005. ISBN 0-7695-2278-5.

[60] Roger Koenker. Quantile Regression. Econometric Society Monographs. Cambridge Uni-
versity Press, 2005. ISBN 0521608279.

[61] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM
Review, 51(3):455–500, August 2009.

[62] Krzysztof Koperski and Jiawei Han. Discovery of spatial association rules in geographic
information databases. In Proceedings of the 4th International Symposium on Advances in
Spatial Databases, SSD ’95, pages 47–66, 1995.

[63] Abhishek Kumar and Hal DaumÂĺÂę III. Learning task grouping and overlap in multi-task
learning. In Proceedings of the 29st International Conference on Machine Learning. icml.cc
/ Omnipress, 2012.

[64] Neil D. Lawrence and John C. Platt. Learning to learn with the informative vector machine.
In Proceedings of the 21st International Conference on Machine Learning, ICML ’04.

[65] Su-In Lee, Vassil Chatalbashev, David Vickrey, and Daphne Koller. Learning a meta-level
prior for feature relevance from multiple related tasks. In Proceedings of the 24th Interna-
tional Conference on Machine Learning, ICML ’07, pages 489–496, New York, NY, USA,
2007. ACM. ISBN 978-1-59593-793-3.

[66] M. Leutbecher and T.N. Palmer. Ensemble forecasting. Journal of Computational Physics,
227:3515–3539, 2008.

[67] Guangxia Li, S.C.H. Hoi, Kuiyu Chang, Wenting Liu, and R. Jain. Collaborative online
multitask learning. Knowledge and Data Engineering, IEEE Transactions on, 26(8):1866–
1876, Aug 2014. ISSN 1041-4347. doi: 10.1109/TKDE.2013.139.

115

[68] Mu Li, Amr Ahmed, and Alexander J. Smola. Inferring movement trajectories from gps
snippets. In Proceedings of the 8th ACM International Conference on Web Search and Data
Mining, WSDM ’15, pages 325–334, 2015.

[69] Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Information
and Computation, 108(2):212–261, February 1994. ISSN 0890-5401.

[70] Chang-Tien Lu and Lily R Liang. Wavelet fuzzy classification for detecting and tracking
region outliers in meteorological data. In Proceedings of the 12th annual ACM international
workshop on Geographic information systems, pages 258–265. ACM, 2004.

[71] Chang-Tien Lu, Dechang Chen, and Yufeng Kou. Algorithms for spatial outlier detection.
In Proceedings of the Third IEEE International Conference on Data Mining, ICDM ’03,
pages 597–, 2003. ISBN 0-7695-1978-4.

[72] Lifeng Luo and Eric F. Wood. Use of bayesian merging techniques in a multimodel seasonal
hydrologic ensemble prediction system for the eastern united states. Journal of Hydromete-
orology, 9:866–884, 2008.

[73] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Discovery of frequent episodes in
event sequences. Data Min. Knowl. Discov., 1(3):259–289, January 1997. ISSN 1384-5810.

[74] Wesley Mathew, Ruben Raposo, and Bruno Martins. Predicting future locations with hidden
markov models. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing,
UbiComp ’12, pages 911–918, 2012.

[75] Bradley A. Miller, Sylvia Koszinski, Marc Wehrhan, and Michael Sommer. Impact of multi-
scale predictor selection for modeling soil properties. Geoderma, 239âĂŞ240:97 – 106,
2015. ISSN 0016-7061.

[76] C. Monteleoni, G.A. Schmidt, and S. McQuade. Climate informatics: Accelerating discov-
ering in climate science with machine learning. Computing in Science Engineering, 15(5):
32–40, Sept 2013.

[77] Claire Monteleoni, Gavin A. Schmidt, and Shailesh Saroha. Tracking climate models. In
NASA Conference on Intelligent Data Understanding, pages 1–15. NASA Ames Research
Center, 2010.

[78] Natalia Neverova, Christian Wolf, Graham W. Taylor, and Florian Nebout. Multi-scale Deep
Learning for Gesture Detection and Localization, pages 474–490. 2014.

[79] Xia Ning and George Karypis. Multi-task learning for recommender system. In Proceedings
of the 2nd Asian Conference on Machine Learning, volume 13 of JMLR Proceedings, pages
269–284. JMLR.org, 2010.

[80] Mohamed N. Nounou and Hazem N. Nounou. Multiscale latent variable regression. Inter-
national Journal of Chemical Engineering, 2010:8, 2010.

116

[81] Guillaume Obozinski, Ben Taskar, and MichaelI. Jordan. Joint covariate selection and joint
subspace selection for multiple classification problems. Statistics and Computing, 20(2):
231–252, 2010. ISSN 0960-3174.

[82] K.P. Overmars, G.H.J. de Koning, and A. Veldkamp. Spatial autocorrelation in multi-scale
land use models. Ecological Modelling, 164(2âĂŞ3):257 – 270, 2003. ISSN 0304-3800.

[83] R. Kelley Pace, Ronald Barry, John M. Clapp, and Mauricio Rodriquez. Spatiotemporal
autoregressive models of neighborhood effects. The Journal of Real Estate Finance and
Economics, 17(1):15–33, 1998.

[84] Neal Parikh and Stephen Boyd. Proximal algorithms. Found. Trends Optim., 1(3):127–239,
January 2014. ISSN 2167-3888.

[85] A. Riccio, G. Barone, E. Chianese, and G. Giunta. A hierarchical bayesian approach to the
spatio-temporal modeling of air quality data. Atmospheric Environment, 40(3):554 – 566,
2006.

[86] Bernardino Romera-Paredes, Hane Aung, Nadia Bianchi-Berthouze, and Massimiliano Pon-
til. Multilinear multitask learning. In ICML, pages 1444–1452.

[87] Avishek Saha, Piyush Rai, Hal DaumÂĺÂę III, and Suresh Venkatasubramanian. Online
learning of multiple tasks and their relationships. In AISTATS, volume 15 of JMLR Pro-
ceedings, pages 643–651. JMLR.org, 2011.

[88] Shashi Shekhar, Zhe Jiang, Reem Y. Ali, Emre Eftelioglu, Xun Tang, Venkata M. V. Gun-
turi, and Xun Zhou. Spatiotemporal data mining: A computational perspective. ISPRS
International Journal of Geo-Information, 4(4):2306–2338, 2015.

[89] Balaji Vasan Srinivasan, Ramani Duraiswami, and Raghu Murtugudde. Efficient kriging for
real-time spatio-temporal interpolation. In PSAS, pages 228–235, 2010.

[90] Michael Steinbach, Pang-Ning Tan, Vipin Kumar, Steven Klooster, and Christopher Potter.
Discovery of climate indices using clustering. In Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’03, pages 446–
455, 2003.

[91] Karthik Subbian and Arindam Banerjee. Climate multi-model regression using spatial s-
moothing. In SDM, pages 324–332, 2013.

[92] Hua Sun, Yong Tu, and Shi-Ming Yu. A spatio-temporal autoregressive model for multi-
unit residential market analysis. The Journal of Real Estate Finance and Economics, 31(2):
155–187, 2005.

[93] Jimeng Sun, Dacheng Tao, Spiros Papadimitriou, Philip S. Yu, and Christos Faloutsos. In-
cremental tensor analysis: Theory and applications. TKDD, 2(3):11:1–11:37.

[94] Jimeng Sun, Dacheng Tao, and Christos Faloutsos. Beyond streams and graphs: Dynamic
tensor analysis. In KDD, pages 374–383, 2006.

117

[95] C. Sung, D. Feldman, and D. Rus. Trajectory clustering for motion prediction. In Pro-
ceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 1547–1552, Oct 2012.

[96] Yufei Tao, George Kollios, Jeffrey Considine, Feifei Li, and Dimitris Papadias. Spatio-
temporal aggregation using sketches. In Proceedings of the 20th International Conference
on Data Engineering, ICDE ’04, pages 214–, 2004. ISBN 0-7695-2065-0.

[97] Claudia Tebaldi and Reto Knutti. The use of the multi-model ensemble in probabilistic
climate projections. Philosophical Transactions of the Royal Society of London A: Mathe-
matical, Physical and Engineering Sciences, 365(1857):2053–2075, 2007.

[98] W. Tobler. A computer movie simulating urban growth in the detroit region. Economic
Geography, 46(2):234–240, 1970.

[99] Pedro A. Valdes-Sosa. Spatio-temporal autoregressive models defined over brain manifolds.
Neuroinformatics, 2(2):239–250, 2004.

[100] Christian Walder, Kwang In Kim, and Bernhard Schölkopf. Sparse multiscale gaussian pro-
cess regression. In Proceedings of the 25th International Conference on Machine Learning,
ICML ’08, pages 1112–1119, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-205-4.

[101] Jialei Wang, Steven C.H. Hoi, Peilin Zhao, and Zhi-Yong Liu. Online multi-task collabora-
tive filtering for on-the-fly recommender systems. In Proceedings of the 7th ACM Confer-
ence on Recommender Systems, RecSys ’13, pages 237–244. ACM, 2013.

[102] Weiran Wang and Miguel Á. Carreira-Perpiñán. Projection onto the probability simplex:
An efficient algorithm with a simple proof, and an application. CoRR, abs/1309.1541, 2013.
URL http://arxiv.org/abs/1309.1541.

[103] Xiaogang Wang, Cha Zhang, and Zhengyou Zhang. In Proceedings of the 22nd IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR ’09.

[104] Christopher K. Wikle, Ralph F. Milliff, Doug Nychka, and L. Mark Berliner. Spatiotemporal
hierarchical bayesian modeling: Tropical ocean surface winds. Journal of the American
Statistical Association, 96(454):382–397, 2001.

[105] Kishan Wimalawarne, Masashi Sugiyama, and Ryota Tomioka. Multitask learning meets
tensor factorization: task imputation via convex optimization. In NIPS, pages 2825–2833.
2014.

[106] Fei Wu, Xu Tan, Yi Yang, Dacheng Tao, Siliang Tang, and Yueting Zhuang. Supervised
nonnegative tensor factorization with maximum-margin constraint. In AAAI 2013, 2013.

[107] Jianpeng Xu, Pang-Ning Tan, and Lifeng Luo. ORION: Online Regularized multI-task
regressiON and its application to ensemble forecasting. In Proceedings of the 14th IEEE
International Conference on Data Mining, ICDM ’14.

118

[108] Jianpeng Xu, Jiayu Zhou, and Pang-Ning Tan. Formula: Factorized multi-task learning for
task discovery in personalized medical models. In Proceedings of the 15th SIAM Interna-
tional Conference on Data Mining, SDM ’15, pages 496–504, 2015.

[109] Jianpeng Xu, Pang-Ning Tan, Lifeng Luo, and Jiayu Zhou. Gspartan: a geospatio-temporal
multi-task learning framework for multi-location prediction. In SDM 2016, 2016.

[110] Jianpeng Xu, Jiayu Zhou, Pang-Ning Tan, Xi Liu, and Lifeng Luo. Wisdom: Weighted
incremental spatio-temporal multi-task learning via tensor decomposition. In IEEE Big
Data, pages 522–531, Dec 2016.

[111] Jianpeng Xu, Pang-Ning Tan, Jiayu Zhou, and Lifeng Luo. Online multi-task learning
framework for ensemble forecasting. IEEE Transactions on Knowledge and Data Engi-
neering, 29(6):1268–1280, 2017.

[112] Yangyang Xu and Wotao Yin. A block coordinate descent method for regularized multi-
convex optimization with applications to nonnegative tensor factorization and completion.
SIAM Journal of Imaging Sciences, 6:1758–1789, 2013.

[113] Ya Xue, Xuejun Liao, Lawrence Carin, and Balaji Krishnapuram. Multi-task learning for
classification with dirichlet process priors. Journal of Machine Learning Research, 8:35–63,
May 2007. ISSN 1532-4435.

[114] Haiqin Yang, Irwin King, and Michael R. Lyu. Online learning for multi-task feature s-
election. In Proceedings of the 19th ACM International Conference on Information and
Knowledge Management, CIKM ’10, pages 1693–1696. ACM, 2010. ISBN 978-1-4503-
0099-5.

[115] Hui Yang, Srinivasan Parthasarathy, and Sameep Mehta. A generalized framework for min-
ing spatio-temporal patterns in scientific data. In Proc of ACM SIGKDD Int’l Conf on
Knowledge Discovery and Data Mining, pages 716–721, 2005.

[116] Kai Yu, Volker Tresp, and Anton Schwaighofer. Learning gaussian processes from multiple
tasks. In Proceedings of the 22Nd International Conference on Machine Learning, ICML
’05, pages 1012–1019, New York, NY, USA, 2005. ACM. ISBN 1-59593-180-5.

[117] Rose Yu, Mohammad Taha Bahadori, and Yan Liu. Fast multivariate spatio-temporal anal-
ysis via low rank tensor learning. In NIPS, pages 3491–3499, 2014.

[118] Rose Yu, Dehua Cheng, and Yan Liu. Accelerated online low rank tensor learning for
multivariate spatiotemporal streams. In ICML 2015, volume 37, pages 238–247, 2015.

[119] Xiao-Tong Yuan and Shuicheng Yan. Visual classification with multi-task joint sparse rep-
resentation. In Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern
Recognition, pages 3493–3500, June 2010.

[120] Yu Zhang and Dit-Yan Yeung. A convex formulation for learning task relationships in
multi-task learning. In Proceedings of the 26th Conference on Uncertainty in Artificial
Intelligence, pages 733–442. AUAI Press, 2010. ISBN 978-0-9749039-6-5.

119

[121] Liang Zhao, Qian Sun, Jieping Ye, Feng Chen, Chang-Tien Lu, and Naren Ramakrishnan.
Multi-task learning for spatio-temporal event forecasting. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’15,
pages 1503–1512, 2015.

[122] Wenzhi Zhao and Shihong Du. Learning multiscale and deep representations for classifying
remotely sensed imagery. Journal of Photogrammetry and Remote Sensing, 113:155 – 165,
2016.

[123] Xu Zhong, Allison Kealy, and Matt Duckham. Stream kriging. Computers & Geosciences,
90(PA):134–143, May 2016.

[124] Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and Bernhard
SchÃűlkopf. Learning with local and global consistency. In The 16th Annual Conference
on Neural Information Processing Systems, pages 321–328. MIT Press, 2004.

[125] J. Zhou, J. Chen, and J. Ye. MALSAR: Multi-tAsk Learning via StructurAl Regularization.
Arizona State University, 2011. URL http://www.public.asu.edu/~jye02/Software/

MALSAR.

[126] Jiayu Zhou, Lei Yuan, Jun Liu, and Jieping Ye. A multi-task learning formulation for pre-
dicting disease progression. In Proceedings of the 17th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’11, pages 814–822, New York,
NY, USA, 2011. ACM. ISBN 978-1-4503-0813-7.

[127] Shuo Zhou, Xuan Vinh Nguyen, James Bailey, Yunzhe Jia, and Ian Davidson. Accelerating
Online CP Decompositions for Higher Order Tensors. In KDD, 2016.

120

