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ABSTRACT 

 

CONTRIBUTIONS OF STUDENT RESPONSE THEORY TO EVALUATION SYSTEMS: 

THREE ESSAYS EXTENDING ITEM RESPONSE THEORY PROCEDURES TO 

MEASURES OF TEACHER PERFORMANCE 

 

By 

 

Tara Kilbride 

This dissertation is a collection of three papers that each use Student Response Theory 

(SRT), a method for estimating educator effectiveness built upon an analogy of students and 

teachers to test items and examinees in Item Response Theory (IRT). Prior studies compare SRT 

to competing methods like value-added and student growth percentile models. This study 

broadens this literature by shifting the primary focus to comparisons between SRT and IRT and 

implications of their differences in the context of teacher evaluation and accountability. Using 

student-teacher linked data from an anonymous large school district in a major U.S. city, unique 

contributions of IRT concepts and procedures are examined within the SRT context.  

The first paper focuses on the construction of a student instructional demand index that 

operates like an item difficulty parameter in an SRT model. Although prior studies recommend 

two different methods for estimating this index, they focus primarily on one method (regression 

analysis) and minimally on the other (IRT calibration). In this paper, I select indicators of 

instructional demand that are optimal for IRT calibration and compare instructional demand 

indices across model specifications and estimation methods. I find that the IRT calibration 

method yields estimates of instructional demand that are more consistent with other indicators of 

teacher quality than the regression analysis method. However, when students and teachers are 

evaluated against a difficult standard, neither type of instructional demand index is consistent 

with these other measures. 



In the second paper, I define mathematical functions of SRT model parameters that are 

comparable to characteristic curves and information functions in IRT. From these functions, I 

derive several different indicators of teacher performance and compare their respective meanings 

and the quality of information they each provide. I then identify groups of teachers whose classes 

comprise equivalent levels of instructional demand, conceptually similar to parallel test forms in 

IRT. I find high levels of consistency between different effectiveness measures from the same 

SRT model. The results also suggest that state-determined thresholds for proficiency and 

advanced proficiency are so difficult for most students in this district that they provide little 

information about educators. The basic proficiency threshold, however, is informative about 

most students and teachers. 

The third paper applies procedures related to differential item functioning, common item 

equating, and item selection to the SRT framework as potential tools in a formative teacher 

evaluation system. Tests of “differential student functioning” find consistent model performance 

across most subgroups of teachers and classrooms. Although SRT models are successfully 

equated to a common scale across years, some estimates of teacher growth have unreasonably 

large standard errors, offering little power to make inferences about changes in performance. 

Mismatch between the abilities of teachers and demands of their students are the main factor 

driving this finding. Applications of optimal item selection procedures to SRT, however, may be 

useful for matching students and teachers with one another in mutually beneficial ways. 

These findings are generally encouraging, but also emphasize the importance of setting 

reasonable goals for students and teachers and thoughtful assignment practices in determining 

whether this method will be useful in practice. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

Objective evidence of performance is critical for making meaningful comparisons of 

teachers or schools across different contexts. However, the methods used to produce such 

evidence have historically been both limited and controversial. Statewide school accountability 

systems implemented after the No Child Left Behind Act of 2001 primarily relied on rates of 

proficiency on standardized tests as measures of school quality. As research unveiled the biases 

and unintended impacts of these accountability policies (Booher-Jennings, 2005, Neal & 

Schanzenbach, 2010, Grissom et al., 2013, Dee et al., 2013), alternative metrics emerged that 

shifted the focus from achievement to growth (Ladd & Lauen, 2010). By 2016, 40 states required 

objective evidence of student growth to be a component in teacher evaluations (NCTQ, 2017). 

Most of these states used statistical growth models (typically a Value-Added Model or “VAM”) 

to generate norm-referenced estimates of teachers’ contributions to student growth.  

1.1.1  Types and Comparisons of Statistical Growth Models 

VAMs estimate the effects of individual teachers on student performance adjusting for 

prior performance and, in some cases, student demographics and other characteristics (Rothstein, 

2008, Hanushek & Rivkin, 2010). The SAS Education Value-Added Assessment System 

(EVAAS), one of the most widely used VAMs, uses hierarchical linear modeling to estimate 

these effects (Sanders & Horn, 1994). The Value-Added Research Center (VARC), American 

Institutes for Research (AIR), and Mathematica Policy Research have each developed similar 
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approaches. Student Growth Percentile (SGP) models, which are sometimes considered a type of 

VAM, rank students within comparable prior achievement groups using quantile regression, and 

the mean or median SGP across students with the same teacher (referred to as MGPs) are used as 

indicators of effective teaching (Betebenner, 2011).  Largely due to its use of a familiar 

percentile rank scale and relatively simple calculation of MGPs from SGPs, this method is often 

preferred over traditional VAMs for its greater accessibility to stakeholders without statistical 

backgrounds. However, increased transparency of MGP models and some less sophisticated 

VAMs may come at the expense of greater bias favoring teachers of more advantaged students 

(Castellano & McCaffrey, 2017, Walsh & Isenberg, 2013) and greater sensitivity to nonrandom 

sorting (Guarino et al., 2014).  

Transparency and fairness are both central priorities in teacher accountability, but one of 

these priorities is often compromised for the sake of the other when choosing between the 

accountability metrics that are typically available to stakeholders. This contributes to an ongoing 

debate about whether it is appropriate for these metrics to influence decisions about teachers. 

Specific concerns about some statistical models include effects of non-random sorting of 

students and teachers (Rothstein, 2009, Harris, 2009), instability of ratings (Koedel & Betts, 

2007, Ballou, 2005), effects of omitted variables (Harris, 2009), and the assumption of a linear 

relationship between prior and expected performance (Lissitz & Doran, 2009). Concerns about 

transparency include limited interpretability using norm-referenced statistical growth models 

(Thum, 2003), as there is no direct link between teachers’ ratings and concrete performance 

criteria. Consequently, the results neither deliver explicit guidance for improvement nor provide 

a basis to assess longitudinal changes in effectiveness. The role of these models in accountability 

systems, as a result, is generally limited to assigning summative ratings to teachers in order to 
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administer rewards or sanctions and influence personnel decisions, despite experts cautioning 

against their use in high-stakes decisions (Braun, 2005). This results in apprehension about 

impacts on instructional climate, educator morale, and student welfare (Lee, 2011).  

Reckase and Martineau (2014) proposed an alternate method that offers solutions to 

many of these concerns: the estimates produced are criterion-referenced and defined in relation 

to student characteristics, longitudinal changes can be assessed in a meaningful way, random 

sorting is not assumed, and results may lend well for formative uses in addition to summative. 

The method, initially titled the Educator Response Function and renamed Student Response 

Theory (SRT) in subsequent work (Martineau, 2016), is grounded in Item-Response Theory 

(IRT) methodology. SRT is an extension of techniques typically used to estimate student 

performance from responses to different types of test questions to the context of estimating 

educator capacity from outcomes for different types of students. In IRT, examinees’ locations on 

a latent capacity scale are estimated by maximizing the joint probability functions associated 

with observed strings of responses to test items with specific properties such as item difficulty 

(Lord, 2012). SRT conceptualizes students as the test items; teachers are tasked with helping 

students to reach pre-defined performance goals and succeeding to do so with a particular student 

is analogous to a correct response to a test question. The set of outcomes for all of a teacher’s 

students constitute that teacher’s test of capacity.  

Just as test questions vary in their levels of difficulty, the difficulty levels of teachers’ 

tasks vary depending on characteristics of their students. For instance, it will likely be easier for 

teachers to help students who reached an advanced proficiency level in the prior school year to 

reach a target proficiency level than students who only reached a basic proficiency level. 

Absences, instances of discipline or behavior problems, and learning disabilities likely increase 
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the level of challenge associated with reaching a performance goal, while high levels of family 

support, strong work ethic, and good study habits likely decrease it. These factors influence the 

ease with which students respond to instruction and, therefore, the level of instructional 

proficiency required for a teacher to successfully help a student reach an academic benchmark. 

An index of these factors serves as a scale of “instructional demand” analogous to IRT’s 

difficulty parameter, also referred to as a “student challenge index” in previous studies. The two-

parameter logistic (2PL) model also estimates a slope parameter that describes an item’s level of 

discriminating power. In SRT, a slope parameter is estimated at the teacher level and describes 

the strength of the relationship between instructional demand and target attainment for a 

particular teacher (Reckase & Martineau, 2014), also referred to as a “consistency parameter” 

(Martineau, 2016). 

SRT bears some similarities to VAMs and SGPs. Like these statistical growth models, 

SRT estimates effectiveness of teachers on the basis of test scores, while adjusting for student 

characteristics that are likely to affect performance. Preliminary studies have demonstrated that 

rankings of teachers and schools are similar across these different model types. Ham (2014) 

computed capacity estimates for the same group of teachers using both SRT and VAMs. Rank-

order correlations (averaged across grade levels) ranged from 0.69 to 0.89 for reading and from 

0.83 to 0.92 for math, depending on the model specifications. Martineau (2016) compared 

school-level capacity measures using VAMs, SGPs, and SRT. Correlations were highest when 

SRT performance goals were fixed at a moderate difficulty level (0.81 to 0.84 for reading and 

0.82 to 0.76 for math) and with individualized performance goals based on prior performance 

(0.80 to 0.84 for reading and 0.73 to 0.78 for math). Correlations between estimates from VAMs 

and SGPs were notably higher (0.91 to 0.99) than the correlations between VAMs or SGPs and 
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SRT, suggesting that although the capacity estimates produced by SRT are related to those 

produced by these growth models there may be key differences in the information they capture.  

Ham (2014) outlines three key differences that distinguish SRT from other statistical 

growth models. First, SRT uses student performance data in a different manner than most 

common growth models. VAMs and SGPs use a continuous student performance variable as an 

outcome, providing norm-referenced information about the rank of a student score relative to 

others in the same year and grade level. SRT uses a discrete, criterion-referenced performance 

outcome, which aligns with the criterion-referenced nature of most state assessments.  Second, 

SRT incorporates student characteristics in a different way. VAMs treat student characteristics as 

additional educational inputs in the model, while SRT considers these characteristics separately 

from the outcome variable to determine the different levels of demand posed to educators. Third, 

the definition of teacher effectiveness differs between the two types of models. VAMs frame 

teacher effects as the amount of change in student test scores, after accounting for other 

educational inputs, whereas SRT defines the teacher effect as a latent trait describing the 

capacity of a teacher to help students reach a particular performance target. As a result, SRT 

teacher capacity estimates are sample-independent while VAM teacher effects are sample-

dependent. 

These differences have several implications for the potential role of SRT in an evaluation 

system. The criterion-referenced capacity scale allows for estimates to be interpreted in terms of 

the probability that a specific type of student will achieve a specific performance target. The 

targets typically used in an SRT model correspond to performance level descriptors that 

explicitly define what students should be able to know or do in order to be considered successful 

(Martineau, 2016). These ties between observable student characteristics and concrete 
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performance criteria make results more accessible to stakeholders who may be unfamiliar with a 

particular statistical model but knowledgeable about student performance standards and their 

relationships to instructional practices. Separate calibration of student parameters and sample-

independent properties of capacity estimates lend better to establishing scales that are 

comparable across contexts and over time, empowering administrators to monitor absolute 

changes in teacher performance, rather than simply changes in teachers’ relative positions within 

the distribution. Procedures used to examine item difficulty, comparability of test forms, and 

estimation precision in IRT may add additional value and decision-making power when applied 

to analogous concepts within an evaluation framework. 

1.1.2  The Two-Parameter Logistic Model in SRT 

The analogous form of the two-parameter logistic (2PL) model for SRT is shown in 

Equation 1-1. The variable xs represents the achievement level of student s, while xt represents 

the target achievement level for the student. The outcome variable for the SRT model is a binary 

indicator that equals 1 if the student reaches this target performance level (!" ≥ !$) and equals 0 

otherwise (!" < !$). This is equivalent to a correct response to a particular test item in IRT. The 

variable &'$ represents the latent capacity of educator e with respect to performance target t and 

is equivalent to the latent ability level of an examinee in IRT. The level of instructional demand 

for student s, ds, is equivalent to the item difficulty parameter in IRT and the slope parameter ae 

is equivalent to the discrimination parameter in IRT. 

There are a few key characteristics that distinguish this model from its IRT counterpart. 

First, the location parameter is estimated separately from the other model parameters in SRT. 

This takes place in an earlier step, and pre-calculated instructional demand estimates are treated 
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as constants in the SRT model used to estimate slope and capacity parameters. Second, the slope 

parameter is estimated at the teacher level (analogous to the examinee level, rather than the item 

level). This means that the 2PL in SRT includes two second-level (teacher) parameters and only 

one first-level (student) parameter, whereas the 2PL in IRT includes one second-level 

(examinee) parameter and two first-level (item) parameters. 

($(!" ≥ !$	|	&'$, 	-'$, 	.") =
1!2(-'$(&'$ − .")

1 + 1!2(-'$(&'$ − .") (1-1) 

where ($ is the probability associated with a particular achievement target t; 
!" is the achievement level attained by student s; 
!$ is the achievement level required to meet target t; 
." is the instructional demand level of student s; 
	-'$ is the target t slope parameter for educator e; 
and &'$ is the latent capacity of educator e to help students reach target t. 

The three main assumptions underlying the 2PL in IRT (De Ayala, 2009) also apply 

within the SRT framework. The first assumption is that the student response function (SRF) 

increases monotonically with teacher capacity. This makes sense intuitively: the greater the 

capacity of a teacher, the more likely a student is to reach a performance target. The second 

assumption is unidimensionality of teacher capacity. Satisfying this assumption hinges on proper 

specification of the student instructional demand index, as omitting important indicators from 

this index is a threat to unidimensionality (Ham, 2014). The third assumption, conditional 

independence of student outcomes, is perhaps the most concerning of the three within the SRT 

context. Although the average characteristics of students’ peers generally have little effect on 

teacher value-added estimates (Harris & Sass, 2006), the presence of a disruptive peer has been 
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shown to impact both student achievement and teacher value-added (Horoi & Ost, 2015) and 

could affect SRT capacity estimates in similar ways. 

1.2 The Present Study 

The purpose of this study is to examine the unique capabilities of SRT models as  

tools for evaluating the performance of teachers, making appropriate decisions based on this 

evaluative information, and ultimately driving improvement in instructional quality. These tasks 

are organized into three main research questions and addressed in three corresponding standalone 

papers. The first paper focuses on the construction of the student instructional demand index 

(SIDI). The second paper explores contributions of IRT-specific procedures and their SRT 

analogs within a summative evaluation framework. The third paper examines the contributions 

of these types of procedures within a formative evaluation framework. 

1.2.1 Research Questions 

The first paper broadly addresses the following question: how does the estimation method 

and set of indicators used to construct the SIDI affect estimates of teacher capacity and student 

demand? Proper specification of this index is critical in order to satisfy the unidimensionality 

assumption. Choices between different estimation methods and indicator sets also have practical 

implications for the role of an SRT model in an evaluation system; these decisions may affect the 

point within the school year when information about instructional demand will be available and 

the way standards and expectations are set for teachers with different types of students. These 

practical implications are considered alongside the statistical properties of indicators, 
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instructional demand estimates, and SRT models, in order to evaluate the consequences of 

various decisions in the SIDI construction process.  

The second paper explores the following question: can mathematical functions of SRT 

parameters, comparable to item response and test information functions in IRT, be used to 

generate more comprehensive summative reports of teacher performance? These mathematical 

functions are used to frame SRT results in multiple ways, creating several indicators of teacher 

performance with somewhat different meanings. The statistical validity and practical value of 

these indicators hinge both on the monotonicity assumption and on the levels of variation and 

concordance among the different indicators. Taking these factors into consideration, this paper 

explores whether a combination of the indicators can offer non-redundant, non-contradictory 

information about educators and can therefore provide more nuanced summaries of their 

performance than any one of the measures on its own. 

The third paper addresses a similar question while shifting outside of the summative 

evaluation framework: can extensions of IRT procedures to the SRT context contribute 

meaningfully to a formative evaluation system? IRT procedures related to differential item 

functioning, test form equating, and optimal item selection are extended to SRT as potential tools 

for identifying differences in performance across subgroups of teachers and classrooms, 

monitoring changes in the performance of a teacher over time, and making decisions about how 

best to match students and teachers with one another. The conditional independence assumption 

is critical to these applications. The extent to which this assumption is violated may impact 

whether it is feasible or appropriate to equate the instructional demand index across years, under 

what circumstances performance is expected to differ from model-based predictions, and 

whether predictions of future performance can be trusted. 
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1.2.2  Significance and Implications 

The primary purpose of this study is to establish whether, how, and to what extent SRT 

can contribute to an educator evaluation system in ways that a traditional VAM cannot. Earlier 

studies demonstrate that SRT can perform the same tasks as a VAM and produce similar results. 

By leveraging the aspects of SRT that distinguish it from other statistical growth models, arising 

from the vast body of research and well-studied technology within the IRT framework, this study 

homes in on the practical relevance of SRT and its unique benefits to an evaluation system.  

The proposed adaptations of IRT concepts, procedures, and technology to SRT that are 

explored in the study each aim to align a statistical growth model more closely with the priorities 

of educators, administrators, and other stakeholders. The first paper considers several decisions 

about how to measure instructional demand that determine when this information can be made 

available and how it relates to educational equity. The second paper expands beyond a simple 

ranking of educators to construct multifaceted reports of teaching performance that highlight 

strengths and weaknesses of an individual, consider contextual factors for different comparisons, 

and frame results in terms of concrete performance criteria. The third paper connects SRT 

measures across time and contexts, creating a framework for monitoring the performance of 

individual educators, groups of educators, and the entire population of educators over time, and 

using this information to better meet the needs of students. 

While this study takes critical steps towards refining SRT methods for use in a practical 

setting, it also identifies areas of concern. Violations of model assumptions and fundamental 

differences between the IRT and SRT frameworks that were discussed in earlier studies are 

examined through a different lens, in a different setting, using different data. This contributes to 

larger conversations about limitations of these measures, contextual factors that contribute to 
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model performance, ways in which IRT and SRT are not truly analogous, and directions for 

future work.
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CHAPTER 2. MEASURING STUDENT DEMAND AND EDUCATOR CAPACITY 

2.1 Introduction 

Student response theory (SRT) is a method for estimating the effectiveness of an educator 

using a statistical model analogous to an item response theory (IRT) model (Reckase & 

Martineau, 2014). One of the primary differences between the two-parameter logistic (2PL) 

model in IRT and the analogous version of this model in SRT is the manner in which the location 

parameter is estimated. In IRT, the item location (or item difficulty) parameter is typically 

estimated concurrently with the item discrimination (or slope) parameter and the latent variable 

(Lord, 2012). In SRT, the student location (or instructional demand) parameter is estimated 

independently in an earlier step, and then treated as a constant in the model used to estimate the 

teacher slope and capacity parameters.  

Instructional demand is a construct describing the varying levels of challenge to an 

educator that are associated with helping different students to reach a performance target, given 

each student’s prerequisite knowledge, behavior, attitude, and different needs as a learner. In 

order to estimate instructional demand, an index is constructed using a combination of indicators 

describing the academic performance, behavior, attendance, disabilities, and support structures of 

students. The inclusion of demographic indicators like ethnicity and socioeconomic status can be 

controversial: on one hand, there are well-documented relationships between these variables and 

academic performance (Baker et al., 2016). On the other hand, incorporating these factors can 

inappropriately imply that these relationships are causal or inadvertently set lower standards for 
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educators of students from disadvantaged backgrounds1. This necessitates careful consideration 

of not only the statistical properties of instructional demand indicators, but also the social 

consequences of their use in an accountability framework. 

Reckase and Martineau (2014) discuss two approaches for estimating the student 

instructional demand index (SIDI): regression analysis and IRT calibration. The two methods 

produce SIDIs with fundamentally different meanings, and function best with different types of 

instructional demand indicators. With the regression analysis approach, student performance at 

the end of a school year is regressed on performance in the prior school year and a set of student-

level covariates believed to influence performance. The SIDI is then defined by determining the 

predicted performance for each student, and reverse-scaling these values so that lower predicted 

performance corresponds to a higher level of instructional demand. The ideal covariates for 

regression analysis are highly-correlated with the outcome variable (future performance) but 

uncorrelated with each other (Chatterjee & Hadi, 2015). The second approach uses IRT 

calibration to estimate instructional demand as a latent variable with student-level indicators 

operating as test items. This is equivalent to the first principal component of a set of risk factors 

(Martineau, 2016). Because this approach does not rely on current year performance in the 

estimation process, instructional demand can be calculated before the school year begins. The 

ideal indicators for this method are highly-correlated with future achievement and also highly-

correlated with each other.  

Preliminary studies of SRT utilize both estimation methods. Ham (2014) constructed both 

types of SIDIs using prior performance, attendance, economic disadvantage, FRL eligibility, 

1 A set of guidelines issued by the federal government in 2009 explicitly discouraged this practice on the grounds 
that expectations of growth and standards of achievement should be the same regardless of these characteristics 
(U.S. Department of Education, 2009). Researchers have argued that this advice is misguided (Ehlert et al., 2013). 
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targeted assistant eligibility, special education placement, and limited English proficiency as 

indicators. While the regression method produced an approximately normal distribution of 

estimated demand levels, the IRT calibration method resulted in very few possible demand 

values, and ultimately only the regression-based SIDI was used for the SRT analysis. Martineau 

(2016) used a similar set of indicators to construct both types of SIDIs and the resulting capacity 

estimates were markedly different from each other. Correlations with estimates from other SRT 

models and VAMs were weaker, estimates were more stable across grade levels and years, and 

correlations with demographic variables were stronger for models with the IRT-calibrated SIDI. 

The reason for these differences was not entirely clear, and analyses focused primarily on models 

that used the regression-based SIDI.  

One possible explanation for these results is that the sets of instructional demand 

indicators used in these studies are better suited for the regression analysis method, and that the 

IRT calibration method would be more successful with a different set of indicators. If this is the 

case, IRT calibration could offer three noteworthy advantages over regression analysis in this 

context. First, the regression analysis method is subject to bias from regression to the mean while 

the IRT calibration method is not (Reckase & Martineau, 2014). Second, the IRT calibration 

method does not rely on performance outcomes from the current year and can therefore be 

estimated in advance of an upcoming school year and potentially be used for planning purposes. 

Third, IRT equating procedures could be applied to SIDIs from different grade levels and years 

to establish consistent scales across time and across contexts. This study compares different sets 

of instructional demand indicators, methods for estimating the SIDI, and the resulting estimates 

of demand and capacity from SRT models under each combination of an indicator set and 

estimation method. This is the first study to employ such a rich set of instructional demand 
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indicators, as well as the first to select instructional demand indicators based on optimality for 

IRT calibration, and the first to analyze the impact of omitting demographic variables from the 

SIDI construction process. 

2.2 Data and Methodology 

2.2.1 Source Data 

This study draws on data from a large, anonymous, urban school district in a major U.S. 

city.  The district serves a diverse population with a large proportion of high-needs students, 

providing a strong framework for studying the varying levels of demand faced by educators. 

Table 2-1 provides descriptive information about students and teachers in the sample. The 

majority of students in the district are nonwhite and eligible for free or reduced-price lunch 

(FRL), and the percentage of students classified as English language learners (ELL) is far greater 

than the 2015 national average of 9.5%. Students in this district tend to perform poorly on 

standardized math and ELA assessments, relative to other students throughout the state. Scores 

in both subjects are farthest below state averages in earlier grade levels and move closer to the 

state average for higher grades. Nearly 90% of teachers in the sample are tenured, and only 1-2% 

are first-year teachers in each grade level each year. Fewer 4th grade students in the first cohort 

are eligible for gifted programs than 4th grade students in the second cohort. Within cohorts, 

eligibility in gifted and special education programs increases between the two years in the study. 

Aside from these exceptions, characteristics of students and teachers are fairly consistent across 

cohorts, grade levels, and years. 
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Table 2-1. Summary of student and teacher characteristics by cohort. 
Cohort 1 Cohort 2 

School year 2014-2015 2015-2016 2014-2015 2015-2016 
Grade level 3rd 4th 4th 5th 
Students 
Percent female 48.8 48.8 48.8 49.0 
Percent nonwhite 85.2 85.5 85.7 85.6 
Percent FRL eligible 83.4 80.0 83.3 79.4 
Percent ELL 32.0 29.1 26.9 24.0 
Percent special education 11.3 12.7 12.6 13.8 
Percent gifted 7.5 9.7 14.1 14.7 
Mean number of absences 6.9 6.5 6.7 6.2 
Mean standardized math score -0.61 -0.26 -0.27 -0.09
Mean standardized ELA score -0.77 -0.41 -0.43 -0.07
Teachers 
Mean number of students  17.5 20.4 20.2 20.7 
Percent female 79.9 75.7 75.9 74.2 
Percent tenured 88.9 86.3 86.1 86.2 
Percent first-year teachers 1.9 1.5 2.1 1.2 

Student-level indicators of instructional demand include performance level categories on 

state standardized math and ELA assessments, course grades for achievement and effort in each 

of ten subject areas (math, reading, writing, speaking, listening, science, history, health, art, and 

physical education), number of days enrolled in the district during the year, number of days 

absent during the year, number of suspensions, length of suspensions, parent education level, 

eligibility for specific gifted and special education programs, ethnicity, eligibility for free or 

reduced-price lunch (FRL), gender, language spoken at home, English language learner (ELL) 

status, and previous ELL status. SIDI estimates are linked to performance levels for the same 

students on state standardized assessments in the following year (as 4th or 5th graders in 2015-

2016) and identifiers for their 2015-2016 classroom teachers. Teacher-level variables used for 

validation purposes include years of teaching experience and rating categories from classroom 

observations. 
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2.2.2  Selecting Instructional Demand Indicators 

In order to construct a SIDI using IRT calibration, student-level variables related to 

instructional demand are redefined as discrete test items for compatibility with a hybrid IRT 

model. Continuous variables are collapsed into either two or four levels to create a combination 

of graded-response model (GRM) and two-parameter logistic (2PL) items. All items are coded 

such that the highest values correspond to the highest levels of demand. For instance, students 

who reached the advanced proficiency benchmark in the previous year are likely to pose lower 

levels of demand on their educators and are assigned the lowest value, 0, for the graded-response 

item constructed from this variable. Students who did not reach any of the performance 

benchmarks in the previous year are likely to pose higher levels of demand; these students are 

assigned the highest value, 3. The value definitions for all instructional demand indicators are 

shown in Table 2-2.  

The complete list of indicators is used to estimate an initial SIDI, referred to as the “full” 

index, before undergoing an item reduction process for alternate versions of the SIDI. The full 

set of instructional demand indicators is reduced to a “compact” set based purely on empirical 

relationships between the indicators through an iterative analysis of internal consistency using 

Chronbach’s coefficient alpha (Cronbach, 1951). In each iteration of the item analysis, indicators 

with item-test correlations below 0.1 were identified and excluded from future iterations. Once 

there were no remaining items below 0.1, items with item-test correlations below 0.25 were 

excluded iteratively until no more remained. A third “restricted” indicator set was selected by 

repeating the same item reduction process, except that several demographic variables that could 

be controversial for accountability purposes (ethnicity, gender, free or reduced-price lunch 
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eligibility, parent education level, and home language) were excluded from consideration prior to 

beginning the item analysis.  

Table 2-2. Definitions of discrete levels for instructional demand indicators 
Polytomous (GRM) items 0 1 2 3 

State performance level: math 
State performance level: ELA 

Advanced 
proficiency Proficiency Basic 

proficiency 
Below basic 
proficiency 

Course grade for achievement 
Course grade for effort [3.5, 4.0] [3.0, 3.5) [2.0, 3.0) [0.0, 2.0) 

Highest degree held by parent Advanced 
degree 

College 
degree 

High school 
diploma None 

Number of suspensions  
Number of days suspended 0 1 2 3+ 

Number of days absent 0-4 5-10 11-17 18+ 

Number of days enrolled 180 175-179 155-174 <155 

Dichotomous (2PL) items 0 1 

Gender Female Male 
Eligible for gifted program(s) 
Native English speaker 
English is home language 
Consistent achievement/effort grades throughout year 

Yes No 

Under-represented minority (URM) 
Student with disability (SWD) 
Eligible for free or reduced-price lunch (FRL) 
Limited English proficiency (LEP—current or previous) 

No Yes 

The three sets of indicators (full, compact, and restricted) are outlined in Table 2-3. The 

full set, which consists of 73 items, has high internal consistency with alpha=0.92. Through the 

item reduction process, the full set reduces to 33 items in the compact item set and 31 items in 

the restricted set, both with alpha=0.94. While these are the exact sets of indicators used to 

estimate each IRT-calibrated SIDI, some of the indicators that are considered optimal for IRT 
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Table 2-3. Instructional demand indicators in the full, compact, and/or restricted SIDI. 
Category GRM items F C R 2PL items F C R 
Math 
performance 

Math achievement X X X Inconsistent math grades X 
Math effort* X X X Inconsistent math effort X 
State math level X X X 

ELA 
performance 

Reading achievement X X X Inconsistent reading grades X 
Writing achievement X X X Inconsistent writing grades X 
Speaking achievement X X X Inconsistent speaking grades X 
Listening achievement X X X Inconsistent listening grades X 
Reading effort X X X Inconsistent reading effort X 
Writing effort* X X X Inconsistent writing effort X 
Speaking effort X X X Inconsistent speaking effort X 
Listening effort X X X Inconsistent listening effort X 
State ELA level X X X 

Performance 
(other subjects) 

Science achievement X X X Inconsistent science grades X 
History achievement X X X Inconsistent history grades X 
Health achievement X X X Inconsistent health grades X 
Art achievement X X X Inconsistent art grades X 
PE achievement X X X Inconsistent PE grades X 
Science effort* X X X Inconsistent science effort X 
History effort* X X X Inconsistent history effort X 
Health effort X X X Inconsistent health effort X 
Art effort X X X Inconsistent art effort X 
PE effort X X X Inconsistent PE effort X 

Learner needs & 
support structure 

Days absent X X URM status X X 
Days enrolled X FRL eligibility X X 
Times suspended X Male X 
Days suspended X Non-native English speaker X 
Parent education level X X Home language not English X 
Number of disabilities X X X ELL X X X 

Proficient, non-native speaker X 
Previously ELL X 
Gifted (any type)* X X X 
Gifted (high intellectual ability) X X X 
Gifted (high achievement) X X X 
Gifted (multiple types) X 
SPED: any type* X X X 
SPED: adapted PE X 
SPED: autistic X 
SPED: behavioral intervention X 
SPED: speech impairment X 
SPED: occupational therapy* X 
SPED: referred for counseling X 
SPED: resource specialist X X X 
SPED: specific learning disability X 
SPED: any physical disability X 
SPED: rare disability X 
SPED: any related to learner needs X X X 
SPED: any behavioral disability* X 

*Item was excluded from regression-based SIDI due to collinearity. F: full, C: compact, R: restricted
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calibration are inappropriate for the regression analysis method due to collinearity with other 

indicators. These items, which are marked with an asterisk (*) in Table 2-3, are excluded from 

the regression-based SIDIs. After excluding collinear variables, there are no pairs of regression 

model covariates with correlations above 0.8 and no regression model with a variance inflation 

factor (VIF) above 4.0. 

2.2.3 Constructing Indices of Student Instructional Demand 

For the IRT-calibration method, the Graded Response Model (Samejima, 2016) shown in 

Equations 2-1 and 2-2 is used to estimate student levels of instructional demand with each item 

set (full, compact, and restricted). A single slope parameter is estimated for each item, and a 

unique difficulty parameter is estimated for each response option beyond the zero category. For 

the polytomous graded-response items defined in Table 2-2, this yields four total parameters (one 

discrimination parameter and three location parameters). For the dichotomous items, this reduces 

to a two-parameter logistic (2PL) model with one discrimination parameter and one location 

parameter.  

(6,78 (.9) =
exp	[-6>.9 − ?6,7@]

1 + exp	[-6>.9 − ?6,7@]
(2-1) 

(6,7(.9) = (6,78 (.9) − (6,78B8 (.9) (2-2) 

where .9 is the latent level of instructional demand for student i, 
(6,7 is the probability that a student is in category q of indicator j, 
(6,78  is the probability that a student is in category q or higher of indicator j, 
aj is the discrimination parameter for indicator j, 
and bj,q is the location parameter for category q of indicator j 
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For each IRT-calibrated SIDI, a comparison SIDI is estimated using the regression 

analysis method with the same set of indicators (except for the collinear items that were 

excluded, as indicated in Table 2-3). The regression-based SIDI is computed by estimating a 

linear regression model with scores on the 2015-2016 state standardized assessment as an 

outcome variable and 2014-2015 instructional demand indicators as covariates (as shown in 

Equation 2-3). The instructional demand estimate is equivalent to the reverse of the predicted 

outcome for a student, as shown in Equation 2-4. Separate models are used for state math and 

ELA assessments; this means that there are twice as many regression-based SIDIs estimated as 

there are IRT-calibrated SIDIs, as the IRT calibrated SIDI is not subject-specific. Continuous 

indicators that were collapsed into discrete levels for the IRT-calibrated SIDI are used in their 

original forms when estimating the regression-based SIDI. 

C$ = DE +	DBC$FB + DGHB + ⋯+	DJHJ + K (2-3) 

. = −CL$ (2-4) 

where yit is the standardized achievement score at time t, 
 yt-1 is the standardized achievement score from the previous year, 
X1-Xk is a set of instructional demand indicators,  
. is the instructional demand level for a student 

2.3 Results 

 2.3.1  Comparison of SIDIs Across Indicator Sets and Estimation Methods 

 Test Information Functions for each of the IRT-calibrated SIDIs are shown in Figure 2-1. 

Even after drastically reducing the number of indicators for the compact and restricted SIDI, test 
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information levels are impacted very little. The information functions for the compact and 

restricted SIDIs are nearly identical to one another, which suggests that the impact of excluding 

demographic indicators is negligible. The shapes of these curves are nearly identical across the 

two cohorts of students. Table 2-4 provides descriptive statistics for each of the SIDIs. The 

distributions of instructional demand are consistent across item sets and grade levels. The 

correlations between student-level demand estimates and future performance on standardized 

math and ELA assessments are also listed in Table 2-4: all are strong and negative, and 

correlations are stronger for regression demand indices than for IRT indices. 

Figure 2-1. Test Information Functions for IRT-calibrated SIDIs 
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Table 2-4. Distributions of SIDIs and correlations with future state assessment scores 
SIDI conditions Descriptive statistics Future score correlation 

Method Grade Indicators Mean SD Min Max Math ELA 

IRT 

4th 
Full 0.00 0.98 -3.76 3.98 -0.67 -0.70
Compact 0.00 0.98 -3.43 4.05 -0.68 -0.70
Restricted 0.00 0.98 -3.34 4.00 -0.67 -0.69

5th 
Full 0.00 0.98 -3.63 4.01 -0.68 -0.71
Compact 0.00 0.98 -3.30 3.92 -0.69 -0.71
Restricted 0.00 0.98 -3.21 4.03 -0.68 -0.71

Regression 
(math) 

4th 
Full -0.07 0.87 -2.81 2.56 -0.87 -0.81
Compact -0.07 0.87 -2.66 2.50 -0.87 -0.81
Restricted -0.07 0.86 -2.69 2.43 -0.87 -0.81

5th 
Full -0.08 0.88 -2.84 2.60 -0.88 -0.83
Compact -0.08 0.88 -2.68 2.57 -0.88 -0.83
Restricted -0.08 0.88 -2.69 2.70 -0.88 -0.83

Regression 
(ELA) 

4th 
Full -0.07 0.85 -2.58 2.55 -0.82 -0.86
Compact -0.07 0.85 -2.58 2.45 -0.82 -0.86
Restricted -0.07 0.85 -2.54 2.53 -0.82 -0.86

5th 
Full -0.07 0.87 -2.58 2.63 -0.83 -0.87
Compact -0.07 0.87 -2.51 2.69 -0.84 -0.87
Restricted -0.07 0.86 -2.53 2.68 -0.83 -0.87

Table 2-5 provides correlations among estimates of instructional demand for the same 

students based on SIDIs estimated with different methods and sets of instructional demand 

indicators. There are strong, positive, linear relationships between estimates for all pairs of 

SIDIs. Estimates of instructional demand are nearly identical across pairs of SIDIs with the same 

estimation method, regardless of which set of instructional demand indicators is used to construct 

them. In comparison, the relationships between SIDIs constructed using opposite estimation 

methods are somewhat weaker. However, correlations among these estimates are still rather 

strong, ranging from 0.77 to 0.81. 
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Table 2-5. Correlations between estimates from different instructional demand indices 
Method Indicators (1) (2) (3) (4) (5) (6) (7) (8) (9)

IRT 

Full (1) 0.99 0.99 0.78 0.78 0.78 0.81 0.81 0.81 

Compact (2) 0.99 0.99 0.78 0.78 0.78 0.81 0.81 0.81 

Restricted (3) 0.99 0.99 0.77 0.77 0.78 0.80 0.81 0.81 

Regression 
(math) 

Full (4) 0.77 0.77 0.77 0.99 0.99 0.95 0.95 0.95 

Compact (5) 0.77 0.78 0.77 0.99 0.99 0.95 0.95 0.95 

Restricted (6) 0.77 0.78 0.77 0.99 0.99 0.95 0.95 0.95 

Regression 
(ELA) 

Full (7) 0.81 0.81 0.80 0.94 0.95 0.94 0.99 0.99 

Compact (8) 0.81 0.81 0.80 0.94 0.95 0.94 0.99 0.99 

Restricted (9) 0.81 0.81 0.80 0.94 0.94 0.95 0.99 0.99 

*Below diagonal: 4th grade, above diagonal: 5th grade

2.3.2  Comparisons of SRT Models with Different SIDIs 

Table 2-6 provides the Akaike Information Criterion (AIC) values for different SRT 

models. The models differ in which target performance level is used as an outcome variable 

(basic proficiency, proficiency, or advanced proficiency) and which set of instructional demand 

indicators is used to compute the SIDI (full, compact, or restricted). AIC comparisons are only 

meaningful across models for the same grade level, as these estimates were derived from 

identical data. Across all conditions, the AIC values for models with the most difficult 

performance target (advanced proficiency) indicate the best fit. SRT models with regression- 

based SIDIs have AIC values that indicate better fit than the corresponding models with IRT- 

calibrated SIDIs. There are no major differences in model fit across sets of instructional demand 

indicators when all other conditions are the same. 
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Table 2-6. Akaike Information Criterion (AIC) for SRT models 
IRT Regression 

Math ELA Math ELA 
Target SIDI 4th 5th 4th 5th 4th 5th 4th 5th 

Low 

Full -12703 -12865 -13107 -12044 -9088 -8766 -9852 -9026

Compact -12649 -12773 -13050 -12005 -9133 -8807 -9891 -9120

Restricted -12683 -12820 -13103 -12051 -9203 -8866 -9974 -9173

Middle 

Full -12410 -10270 -12541 -12222 -8317 -6585 -9315 -8949

Compact -12308 -10170 -12454 -12135 -8377 -6432 -9333 -9018

Restricted -12367 -10232 -12518 -12201 -8436 -6700 -9404 -9085

High 

Full -7105 -6576 -8786 -7709 -4595 -4217 -6295 -5544

Compact -7036 -6509 -8708 -7639 -4636 -4252 -6299 -5565

Restricted -7084 -6552 -8768 -7697 -4714 -4260 -6365 -5613

Table 2-7 lists ranges of correlations for capacity estimates among pairs of SRT models 

with specified properties. Correlations of capacity estimates are above 0.90 for all pairs of SRT 

models with the same performance target and estimation method but different sets of indicators. 

All of these pairs of models have correlations above 0.99 except when one model uses a 

regression-based SIDI with the restricted set of indicators (correlations range from 0.91 to 0.94 

for these conditions). Correlations are lower when the pair of models uses different performance 

targets and the same estimation method; they are lower for nonconsecutive targets (one low and 

one high) and regression-based SIDIs, and about the same regardless of whether the same 

demand indicators are used. Pairs of models with different SIDI estimation methods show similar 

patterns across targets and sets of indicators, but correlations are lower overall. Because 

estimates of capacity are so consistent across sets of indicators, the remaining comparisons focus 

only on SRT models and SIDIs constructed from the restricted indicator set. 



 26 

Table 2-7. Range of correlations among capacity estimates for pairs of SRT models. 
Model 1 SIDI Model 2 SIDI Target Indicators Range of correlations 

IRT 
Same Different >0.99

IRT Different Same 0.59 to 0.86 
Different Different 0.58 to 0.86 

Regression 
Same Different 0.91 to 0.99 

Regression Different Same 0.40 to 0.73 
Different Different 0.40 to 0.70 

Regression 
Same Different 0.52 to 0.66 

IRT Different Same 0.25 to 0.53 
Different Different 0.25 to 0.53 

Scatterplots of teacher capacity rankings2 across pairs of SRT models across estimation 

methods and performance targets are provided in Figure 2-2. There are high concentrations of 

teachers close to the 45-degree line, indicating that their capacity rankings are consistent across 

the pair of models. However, there are still large quantities of teachers with inconsistent rankings 

across every pair of SRT models. Patterns of clustering indicate that capacity estimates across 

somewhat broad ranges in one model are concentrated within limited ranges in other models. 

This appears to be primarily driven by special education teachers. When these teachers are 

excluded, as in Figure 2-3, there are far fewer of these clustering patterns. The differences in 

between Figures 2-2 and 2-3 are most prominent among pairs of models with at least one 

regression-based SIDI. Regardless, there are still large proportions of teachers ranked 

inconsistently across models when only general education teachers are included.

2 Capacity estimates were converted to percentile rankings for these scatterplots in order to improve visibility of 
patterns in concentrated areas of the capacity distribution. 
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Figure 2-2. Scatterplot of capacity rankings by SRT model specifications. 

Figure 2-3. Scatterplot of capacity rankings (special education excluded)
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2.3.3  Comparisons to Other Measures of Educator Quality 

Figure 2-4 provides marginal density distributions of capacity percentile rankings across 

teachers rated in each overall performance category based on observations of their classroom 

teaching. Marginal density distributions are the most distinct across observation rating categories 

for the capacity rankings from SRT models with the lowest performance target. Teachers in the 

lowest observation rating category are generally ranked within a smaller range of the capacity 

distribution by models with IRT-calibrated SIDIs than by models with regression-based SIDIs. 

These teachers are also more likely to be ranked in the top half of the capacity distribution by 

SRT models with regression-based SIDIs than those with IRT-calibrated SIDIs across all 

performance targets and in both subject areas.  

Figure 2-5 provides marginal density distributions of capacity percentile rankings by 

teaching experience level. Across both subjects and in all but the highest performance target, the 

distributions of capacity rankings are more distinct across experience categories for SRT models 

with IRT-calibrated SIDIs than for models with regression-based SIDIs. However, there is no 

distinction between marginal distributions of capacity rankings by teaching experience level for 

any SRT models that use the highest performance target as the outcome variable, regardless of 

the subject area and SIDI estimation method.  
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Figure 2-4. Marginal density distributions by observation rating. 
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Figure 2-5. Marginal density distributions by experience level. 
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2.4 Discussion 

2.4.1  Validity of the SIDI 

The types of instructional demand indicators retained after the reduction processes reflect 

similar balances of academic and behavioral characteristics to the full set. Considering the 

minimal impact of removing approximately half of the indicators on the test information function 

and distribution of estimated instructional demand, it can be concluded that the excluded 

indicators were not making substantial contributions to estimates of instructional demand. These 

indicators tend to have either low discriminating power or difficulty parameters far outside the 

observed range of student instructional demand levels. The impact of removing demographic 

indicators is also negligible. This suggests that other, less controversial indicators may 

adequately account for the variation in performance associated with differences between 

demographic groups. Differences in instructional demand can be attributed directly to the types 

of indicators that were retained in the restricted set. However, there is no strong theoretic basis 

for attributing differences in instructional demand to demographic group membership. For this 

reason, the restricted set of indicators is likely the most appropriate for use in an accountability 

framework. 

Similarly, regression-based SIDIs change very little depending on the set of instructional 

demand indicators used. However, the regression-based SIDIs are slightly more sensitive to these 

differences than the IRT-calibrated SIDIs. Estimates of instructional demand for the same 

students from different SIDIs, in general, are affected very little by the set of indicators used or 

the subject area but are somewhat sensitive to the estimation method. Both methods produce 

SIDIs that are negatively correlated with future assessment performance, suggesting associations 
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between higher instructional demand levels and lower academic performance. A significant 

relationship between these quantities is desirable, as this provides evidence of convergent 

validity. However, some discordance between the two quantities is also desirable in order to 

demonstrate evidence of divergent validity. The magnitude of correlations for the IRT-calibrated 

SIDIs is only moderately strong, implying that these SIDIs capture a different underlying 

construct than the assessment scores. The correlations for regression-based SIDIs are notably 

stronger; this makes sense considering that this estimation method frames instructional demand 

estimates in reference to these same assessment scores. However, this does warrant consideration 

about whether the regression analysis method is capturing the appropriate construct. If 

instructional demand is a substantively different construct than expected achievement, the 

regression analysis method may not be capturing this. 

2.4.2  Differences Across SRT Specifications 

The comparatively better fit for SRT models that use the highest performance target may 

be misleading, as other findings suggest these measures are the least informative about educator 

performance. This improvement in model fit could be a result of low variation in the outcome 

variable, as there are very few students who reach the high performance targets. These results 

also suggest that the types of students who reach these targets can be predicted from demand 

indicators with greater accuracy than for the other performance targets. This implies that this 

outcome is related more to characteristics of the students and less to characteristics of their 

teachers, relative to the other performance targets. Although this translates to an improvement in 

model fit, if the outcome is unlikely to be affected by an educator it is probably not an 

appropriate indicator of educator performance. Differences in fit across SRT models with IRT-
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calibrated SIDIs and regression-based SIDIs may also be misleading. Regression-based SIDIs 

are estimated as predicted assessment performance. By definition, these instructional demand 

estimates account for the greatest possible amount of variation in assessment outcomes. This 

translates to “better” model fit by construction but does not necessarily imply that these models 

produce better estimates of educator capacity. 

Similar to the estimates of instructional demand, estimates of capacity are quite 

consistent across different sets of instructional demand indicators, but somewhat less consistent 

for models with regression-based SIDIs than those with IRT-calibrated SIDIs. The choice of a 

performance target has a much larger impact, though once again, the impact is more pronounced 

for models with regression-based SIDIs than those with IRT-calibrated SIDIs. These 

relationships are likely driven in part by special education teachers. These teachers tend to fall 

within a restricted range of the capacity scale using regression-based SIDIs but are more 

dispersed across the capacity distribution using IRT-calibrated SIDIs. This suggests that IRT-

calibrated SIDIs might be better able to discriminate between instructional demand levels of 

special education students and capacity levels of special education teachers. One possible 

explanation for this is that indicators of eligibility in some specific special education programs 

were included in IRT-calibrated SIDIs but excluded from regression-based SIDIs due to 

collinearity. Although these indicators are highly correlated with one another, they may be 

important to discriminating between the relative demand levels of special education students and 

the capacities of their teachers.  

The marginal distributions of capacity rankings across classroom observation rating 

categories and teaching experience levels offer insight about the concurrent validity of capacity 

estimates from SRT models with different specifications. Across all conditions, the highest 
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performance target does not discriminate between these groups of teachers in intuitive ways. The 

high performance target is unreasonably difficult for the vast majority of students in the district, 

and as a result, it is rather uninformative about educator quality in most cases.  The two lower 

targets do separate these groups to a greater degree, especially for ELA. Models with IRT-

calibrated SIDIs are much more likely to rank “ineffective” teachers in lower parts of the 

distribution than those with regression-based SIDIs, and much less likely to assign low rankings 

to “effective” teachers. Across all specifications, models with regression-based SIDIs do not 

show meaningful distinctions between the distributions of rankings for teachers at different 

experience levels, while IRT-calibrated SIDI are able to do so in both subject areas for all targets 

except the highest. 

2.5 Conclusions 

These results demonstrate that IRT calibration is a feasible method for constructing the 

student instructional demand index for an SRT analysis. It is important to recognize that the 

indicators of instructional demand in this study were selected in a manner that is optimal for 

IRT-calibration.  This demonstrates that, with proper selection methods, IRT calibration is a 

useful tool for demand scale construction, and that these SIDIs outperform regression-based 

SIDIs in several ways. While results from prior studies favored the regression analysis method, 

this is likely a result of the type of indicators used to construct the SIDI. This study demonstrates 

that selecting indicators in a different way can favor a different method. This does not 

necessarily mean that IRT calibration is a more effective method of scale construction for SRT, 
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but rather that the selection of indicators should be appropriate for the scale construction method 

of choice.  

The IRT calibration method offers several advantages over regression analysis. Its 

independence from current year achievement allows for instructional demand to be estimated far 

earlier than with a regression-based SIDI, allowing for this information to influence planning 

processes for an upcoming school year. The potential ability to equate scales across grade levels 

and years using parameters of instructional demand indicators also could allow for the 

measurement of absolute changes (or growth) in teaching capacity over time, rather than simply 

changes in the relative position of a teacher within the capacity distribution. Considering the 

benefits IRT calibration may offer to schools and evaluation systems, it may also be worthwhile 

to invest in the collection of higher-quality or more appropriate instructional demand indicators 

before implementing an SRT model in a practical setting, rather than relying on a limited but 

readily-available set of indicators. 

The study also highlights a few areas of concern that warrant further examination. 

Capacity estimates may be less reliable for special education teachers. This is likely related to a 

mismatch between the instructional demands of their students and the performance targets 

against which they are assessed. Similarly, when the student performance target in an SRT model 

is unreasonably high, estimates of capacity are less consistent with other measures of educator 

quality, even for general education teachers. In order for these tools to be informative and useful 

in practice, the performance targets considered in SRT models must be both challenging and 

realistic.  Setting appropriate benchmarks for students and teachers will be critical in order for 

SRT to contribute valuable feedback to an education system.
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CHAPTER 3. CONTRIBUTIONS OF SRT TO SUMMATIVE EVALUATION 

3.1 Introduction 

Within a teacher accountability framework, value-added models (VAMs) and similar 

statistical growth models typically operate as summative assessments of teaching performance. 

Estimates of effectiveness are compared against a standard or benchmark to identify high or low 

performing educators and administer rewards or sanctions (Harris, 2011). This process is 

conceptually similar to end-of-year student achievement testing to determine a final grade or 

performance level for the year.  Student Response Theory (SRT) bridges the student assessment 

and educator assessment contexts, using item response theory (IRT) methodology to define a 

statistical growth model for educators (Reckase & Martineau, 2013). Previous research in this 

area focuses primarily on estimating and comparing teacher effects across SRT and other 

statistical growth models like value-added and growth percentile models (Ham, 2014; Martineau, 

2016). In this study, the main comparison of interest is between the IRT and SRT frameworks. 

Procedures commonly used in IRT analyses are studied within the SRT context, with particular 

regard to the meaning and quality of information they provide and implications of differences 

across the two frameworks.  

3.1.1 Item and Student Response Functions 

An item-response function (IRF) is a mathematical equation that relates the probability of 

a correct response to properties of the test item and the examinee (Lord, 2012). In typical 

applications of IRT, various quantities derived from the IRF are useful for item selection, 
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outcome prediction, standard setting, and comparing test forms. In SRT, a student response 

function (SRF) plays a comparable role to the IRF, by modeling the relationship between 

performance outcomes and characteristics of students and teachers. However, the IRF and SRF 

are not perfectly analogous to each other, and the ways in which they differ have implications for 

the interpretation and use of these functions. Corresponding components of the IRF and SRF are 

shown side-by-side in Table 3-1. The outcome variable and latent variable are both directly 

analogous across the two functions. The binary outcome variable, X, takes on a value of 1 in IRT 

if a student gives a correct response to a particular test item. In SRT, this variable takes on a 

value of 1 for a teacher if a pre-defined performance target is achieved by a particular student in 

their class. The latent variable, &, represents performance of a student in IRT and of an educator 

in SRT. The location parameter, ., describes the difficulty of a test item in IRT and the level of 

instructional demand posed by a student in SRT. While the two location parameters are 

conceptually similar, they differ in how and when they are estimated. The item difficulty 

parameter is typically estimated simultaneously with the latent variable and slope parameter. The 

instructional demand parameter is estimated separately and entered into the SRT model as a 

constant (Reckase & Martineau, 2014). 

The most prominent difference between the IRF and SRF is the nature of the slope 

parameter, a. In IRT, the slope is estimated at the item level. This parameter describes the extent 

to which a test item discriminates between examinees with latent ability levels just above and 

just below the item difficulty level. In order to estimate a perfectly-analogous student slope 

parameter in an SRT model, students would need to work with many teachers simultaneously 

and the same achievement target would need to be measured separately with each of these 

teachers. This is not feasible in the SRT context, as it is incompatible with the way that students 



 38 

and teachers are placed with one another and with the way classroom instruction takes place. For 

this reason, the SRT slope parameter is estimated at the teacher level. This parameter describes 

the consistency of expected outcomes across students posing different levels of instructional 

demand to a teacher. Because of this difference, the SRF is a function of one first-level variable 

(instructional demand) and two second-level variables (educator capacity and educator 

consistency), while the IRF is a function of two first-level variables (item difficulty and item 

discrimination) and one second-level variable (examinee ability). 

Table 3-1. Comparison of item and student response functions. 
IRT SRT 

Response function ((H9) =
1!2M-9(&6 − .9)N

1 + 1!2M-9(&6 − .9)N
((H") =

1!2[-'(&' − .")]
1 + 1!2[-'(&' − .")]

 

Dependent variable Correct response to item (H9) Successful student outcome (H") 
1st level unit Item (i) Student (s) 
2nd level unit Examinee (j) Educator (e) 
Location parameter Item difficulty (.9) Student instructional demand (.") 
Slope parameter Item discrimination (-9) Educator consistency (-') 
Latent variable Examinee ability (&6) Educator capacity (&') 

3.1.2 Item Characteristic Curves and their SRT Counterparts 

In IRT, each individual item has an item characteristic curve (ICC) that is defined by 

substituting the difficulty and discrimination parameters for the item into the IRF. The ICC 

illustrates the probability of a correct response to a particular item for examinees at each location 

along the latent scale (Lord, 2012). The direct analog to the ICC in SRT is a student 

characteristic curve (SCC) which illustrates the probability that a student with a given level of 

instructional demand will reach a performance target with teachers of varying capacity levels. 
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However, there is only one student-level parameter in the SRF and two teacher-level parameters, 

so substituting the one student-level parameter would leave two unknown quantities in the SCC 

(capacity and consistency). In order to hold constant two variables that describe the same unit of 

analysis, Martineau (2016) defined an educator characteristic curve (ECC) that illustrates the 

relationship between the probability of a successful student outcome for a particular teacher and 

the level of instructional demand posed by a student. 

By defining the characteristic curve in this way, the expected performance of similar 

students across different teachers can be compared beyond inferences about their relative 

capacities. If the SRT slope parameter varies among teachers, and equivalently, if the IRT slope 

parameter varies among items, the characteristic curves for different items or educators will 

intersect with one another and the relative order of their heights will vary along the latent scale. 

In SRT, this variability in relative rankings could be particularly useful for evaluating different 

aspects of teaching performance. This type of analysis may offer more insight into the strengths 

or weaknesses of a particular teacher in terms of their expected performance with different types 

of students, compared to a single summative measure.  

3.1.3 Item and Test Information Functions and their SRT Counterparts 

In IRT, a mathematical function of the slope parameter and the ICC called an item 

information function (IIF) indicates the amount of Fisher information a particular item provides 

about examinees at each location along the latent scale. The test information function (TIF), 

computed as the sum of the IIF accros every item on a test, is inversely related to the standard 

error of an estimate at a particular location on the latent scale (Lord, 2012). Because of its 

relationship to estimation precision, the TIF can be used to inform standard setting processes, 
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item selection algorithms, and the development or identification of equivalent test forms 

(Samejima, 1977a). The direct analog to the IIF in SRT would be a student information function 

(SIF). The sum of SIFs across all students in the same class would then constitute a class 

information function (CIF), analogous to the TIF. 

In variable-length adaptive testing, items are continually administered until a pre-

determined stopping rule, which typically corresponds to a minimum acceptable level of 

precision, is achieved (Dodd, Koch, & De Ayala, 1993). For instance, if the stopping rule is a 

reliability coefficient of 0.9, items are administered until the height of the TIF at the estimated 

ability level of the examinee corresponds to a reliability of 0.9. For a latent trait with a standard 

deviation of one, test reliability reaches 0.9 when the standard error and test information level are 

approximately 3.16 and 10, respectively. Within the SRT framework, similar benchmarks could 

be useful for determining the range of latent teacher capacities for which a particular group of 

students provides reliable estimates.  

The TIF is also used to determine whether different forms of a test can be considered 

equivalent. Two tests consisting of different items that measure the same construct can be 

considered or “weak parallel” forms if their TIFs are the same (Samejima, 1977b). This is an 

important step in ensuring fairness for students taking different forms of the test. Similar 

techniques can be used to address concerns about fairness for educators evaluated based on 

different groups of students. Comparisons of classroom-level information functions across 

teachers may be informative about the demand of a class as a whole, quality of information 

provided by an estimate, and which groups of teachers are most appropriate to compare with one 

another.   
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3.1.4 Differences Between Models and Contexts 

A few key differences between IRT and SRT complicate the extensions of these 

procedures from one context to the other. The primary methodological difference is that the two 

response functions differ in the number of variables at each level of analysis. The IRF is a 

function of two first-level variables and one second-level variable, while the SRF is a function of 

one first-level variable and two second-level variables. This means that, although substituting the 

first-level (item) parameters into the IRF defines an equation with a single unknown quantity, 

substituting first-level (student) parameters into the SRF results in an equation with two 

unknown quantities. Several contextual differences arise from differences in what factors are 

considered when administering items to an examinee versus assigning students to a teacher. 

Adjustments may be necessary in order for some equations and procedures developed for IRT to 

be useful when applied within the SRT framework. This requires careful consideration of the 

implications of the differences between models and contexts and of the adjustments made to 

address them. 

This study explores possible uses of the SRF and its derivations within a summative 

teacher evaluation framework. Specifically, the SRF is used to define cut-scores and rating 

categories with intuitive meanings to facilitate result comprehension. SRT-specific information 

functions are analyzed to determine the extent of differences across classrooms and implications 

of these differences for comparing teachers to one another. A cluster analysis of information 

functions is then used to identify groups of educators whose sets of students constitute 

reasonably-equivalent tests of teaching performance. Finally, sample reporting materials are 

presented to illustrate ways this information may be communicated to and interpreted by 

stakeholders.   
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3.2 Data and Methodology 

3.2.1 Estimates of Demand, Capacity, and Consistency 

The study draws on data from an anonymous large urban school district in a major U.S. 

city. The analytic sample consists of 5th grade students and teachers in the 2015-2016 school 

year. Estimates of instructional demand, educator capacity, and educator consistency were 

constructed according to the process described in Chapter 2 and Table 3-2 provides descriptive 

statistics for each of these quantities. The student instructional demand index (SIDI) was 

estimated from characteristics of these same students in previous school year (as 4th graders in 

2014-2015) in the restricted set of demand indicators using the IRT calibration method. Educator 

capacity and consistency parameters were estimated for three different SRT models, each with 

the same SIDI but for three different student performance targets. The three targets correspond to 

sequential state-determined performance level categories for a standardized mathematics 

assessment. The labels “basic proficiency”, “proficiency”, and “advanced proficiency,” are used 

interchangeably with “low,” “middle,” and “high” to describe the three targets.  

Table 3-2. Descriptive statistics for SRT model parameters 
Mean SD Min Max 

Student instructional demand 0.00 0.98 -3.21 4.03 
Educator capacity: low target -0.13 2.18 -5.42 6.23 
Educator capacity: middle target -4.57 2.23 -9.85 3.81 
Educator capacity: high target -8.41 2.03 -12.60 1.72 
Educator consistency: low target 1.89 0.34 0.17 2.79 
Educator consistency: middle target 2.02 0.29 0.25 2.93 
Educator consistency: high target 2.09 0.17 1.20 2.67 
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3.2.2 Defining Characteristic Curves and Information Functions for SRT 

Several mathematical functions, comparable to different characteristic curves and 

information functions in IRT, are defined from the SRT model parameters. Each of these 

functions is listed in Table 3-3. Martineau (2016) introduces an educator characteristic curve 

(ECC) that addresses the different numbers of parameters at each level in the item and student 

response functions. However, a student-level characteristic curve is a closer analog to the ICC 

and may be of interest for different purposes. Two types of student-level functions are defined, 

both of which express the probability of achieving a performance target as a function of only one 

variable, educator capacity, by substituting both a student-level variable (instructional demand) 

and a teacher-level variable (educator consistency) as constants.  

Table 3-3. Mathematical functions of SRT model parameters 

($(!" ≥ !$) =
1!2(-'$(&'$ − .")

1 + 1!2(-'$(&'$ − .")

O$(&	|	.", -$) = -'$G($[1 − ($] 

Variables: Subscripts: 
P: probability 
x: achievement level 
a: slope  
θ: capacity 
d: instructional demand 
I: information 

s: student 
e: educator 
t: target 
•: mean 

Name Function Level IRT counterpart 

ECC – educator characteristic curve ($(d | θe, ae) teacher ICC 

SCC – student characteristic curve ($(θ | ds, -• ) student ICC 

E-SCC – educator-student characteristic curve ($(θ | ds, ae) student ICC 

SIF—student information function O$(&	|	ds, -•) student IIF 

E-SIF—educator-student information function O$(&	|	ds, -') student IIF 

CIF—class information function P O$(&	|	.", -•)
"(')

 teacher TIF 

E-CIF—educator-class information function P O$(&	|	.", -')
"(')

 teacher TIF 
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The first of these functions, referred to simply as the student characteristic curve (SCC), 

substitutes the average slope parameter across all teachers as a constant. This function expresses 

the probability that a particular student will reach a performance goal with a teacher of average 

consistency, as a function of the capacity of the teacher. The SCC may be useful for judgements 

about groups of students independently from properties of the teachers to whom they are 

assigned. For other purposes, such as computing Fisher Information standard errors of teacher 

capacity estimates, the properties of a specific student-teacher pairing are appropriate. The 

second student-level characteristic function is informed by properties of both the teacher and 

student. The educator-student characteristic curve (E-SCC) describes the probability associated 

with a particular student and a teacher at a particular educator consistency level as a function of 

educator capacity. 

Constructing analogous information functions for SRT also requires careful consideration 

of the meaning and purpose of the function and implications of the different nature of the slope 

parameters. If the purpose is to identify equivalent groups of students, then the function should 

be defined solely by student-level parameters. The student information function (SIF), which is 

informed by student instructional demand and the mean slope across educators, serves this 

purpose. The SIF is summed across all students in the same class, yielding a class information 

function (CIF), that describes the total amount of information that a particular group of students 

contributes to estimates of capacity for teachers with average slope parameters at each location 

along the capacity scale. However, if an information function is to be used to judge the precision 

of a capacity estimate or to determine a cut-score, then it is more appropriate to incorporate 

properties of both the student and the teacher. The information function defined from the E-SCC 

is referred to as the educator-student information function (E-SIF). Summed across all students 
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in a class, the resulting educator-class information function (E-CIF) is informative about the 

information a particular group of students contributes to an estimate of capacity for a particular 

teacher and can be used as a basis for deriving standard errors of these estimates.  

3.2.3 Ranking and Categorizing Teachers 

Teachers are assigned percentile rankings according to several different measures. The 

primary measure is the capacity estimate from the SRT model, which is equivalent to the 

location on the instructional demand scale where the height of the ECC is exactly 0.5. Teachers 

are then ranked according to several alternate measures of effectiveness derived from the SRF 

and its derivations. The first alternate measures are the locations of the instructional demand 

scale that correspond to ECC heights of 0.25 and 0.75. These measures, referred to as P25 and 

P75, respectively, indicate the instructional demand level of a student expected to have a 

probability of reaching a performance target of 0.25 or 0.75 given the capacity and consistency 

parameters for a particular teacher. The equations used to construct these measures and the steps 

used to derive them are shown in the Appendix.  

Next, teachers are ranked according to the heights of their ECCs at fixed locations along 

the instructional demand scale that correspond to meaningful distinctions between types of 

students. These fixed values are selected based on the location parameters for different 

instructional demand indicators from the IRT calibration process described in Chapter 2. For 

instance, the location parameter for a student having 5 or more absences is 0.04, indicating that 

the probability that a student with instructional demand of 0.04 was absent for 5 or more days is 

0.5. Students with instructional demand levels above 0.04 have probabilities above 0.5 and 

students with instructional demand levels below 0.04 have probabilities below 0.5. Three key 
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values are selected, describing low-demand, average-demand, and high-demand students based 

on location parameters for characteristics associated with these types of students. An 

instructional demand level of -1.5 was selected as the low-demand value, as students below this 

level have probabilities above 0.5 of receiving top marks from their teachers for their effort in all 

subject areas. An instructional demand level of 0 was selected as the average-demand value, as 

students below this instructional demand level have probabilities of above 0.5 of reaching basic 

proficiency. An instructional demand level of 1.5 was selected for the high-demand value, as 

students above this demand level have high probabilities of receiving failing grades in their 

courses. These measures are referred to as D1, D2, and D3, corresponding to the low-demand, 

average-demand, and high-demand values, respectively. D1 ranks teachers according to the 

probability that a low-demand student will reach a particular performance target in their class, 

while D2 and D3 rank teachers based on the probabilities for average-demand and high-demand 

students. 

These three fixed probabilities and three fixed demand levels each define a unique 

effectiveness measure derived from the same SRF. These measures, outlined in Table 3-4, are 

each computed for the three different performance targets, yielding 18 total measures according 

to which teachers are ranked. Teachers are then assigned categorical effectiveness levels in 

several ways. For each of the fixed-probability measures, teachers are placed into one of four 

categories that are separated using the three fixed demand levels as cut-points. Similarly, for 

each of the fixed-demand measures, teachers are placed into one of four categories that are 

separated using the three fixed probabilities as cut-points. Teachers are assigned to groups 

according to each of the six categorization schemes (also outlined in Table 3-4) for each of the 
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Table 3-4. Definitions of effectiveness measures and levels derived from the SRF. 
Effectiveness measures 

descriptions and equations 
Effectiveness levels 

classification criteria and descriptions 

Fixed-probability measures 
L1 

! < −1.5
L2 

−1.5 ≤ ! < 0
L3 

0 ≤ ! < 1.5 
L4 

! ≥ 1.5

P25 Demand when
probability=.25 *+ − ln

1
3 /+0 Low-demand student very 

likely to miss target 
Low-demand student 

somewhat likely to hit target 
Average-demand student 

somewhat likely to hit target 
High-demand student 

somewhat likely to hit target 

P50 Demand when
probability=.50 *+ Low-demand student likely to 

miss target 
Low-demand student likely 

to hit target 
Average-demand student 

likely to hit target 
High-demand student likely 

to hit target 

P75 Demand when
probability=.75 *+ − ln 3 /+0 Low-demand student 

somewhat likely to miss target 
Low-demand student very 

likely to hit target 
Average-demand student 
very likely to hit target 

High-demand student very 
likely to hit target 

Fixed-demand measures 
L1 

1 < 0.25 
L2 

0.25 ≤ 1 < 0.5 
L3 

0.5 ≤ 1 < 0.75 
L4 

1 ≥ 0.75 

D1 Probability if
demand=-1.5 

e567869:.;<
1 + e567869:.;<

Unlikely for low-demand 
student to hit target 

Somewhat likely for low-
demand student to hit target 

Likely for low-demand 
student to hit target 

 Very likely for low-demand 
student to hit target  

D2 Probability if
demand=0 

e5686
1 + e5686

Unlikely for average-demand 
student to hit target 

Somewhat likely for average-
demand student to hit target 

Likely for average-demand 
student to hit target 

Very likely for average-
demand student to hit target 

D3 Probability if
demand=1.5 

e56786>:.;<
1 + e56786>:.;<

Unlikely for high-demand 
student to hit target 

Somewhat likely for high-
demand student to hit target 

Likely for high-demand 
student to hit target 

Very likely for high-demand 
student to hit target 
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three performance targets, yielding 18 total categorical assignments for each teacher in the 

sample. 

Groups of teachers with equivalent or comparable groups of students were identified by 

conducting a cluster analysis of the heights of teachers’ CIFs at periodic locations along the 

instructional demand scale. CIF heights are computed at all integer values between and including 

-4 and 4. Similar to the manner in which test forms with matching TIFs are classified as parallel

test forms, sets of classrooms with similar CIFs are considered reasonably-equivalent 

comparison groups (or parallel classrooms). Using a hierarchical cluster analysis with Ward’s 

linkage, teachers are classified into comparison groups of teachers whose CIFs are most similar 

to theirs, indicating that the students they teach comprise equivalent levels of instructional 

demand.  

Statistical and practical properties of clustering solutions are both considered. The Duda-

Hart index is one of the statistical properties considered. This index gives the ratio of the within-

cluster sum of squared errors after partitioning the data to the sum of squared errors before 

partitioning the data (Duda & Hart, 1973). The corresponding pseudo T-squared statistic is a 

measure of cluster similarity taking into account the number of observations (Halpin, 2016). The 

preferred clustering solutions should correspond to increases in the Duda-Hart index and 

decreases in pseudo T-squared, relative to the solution with one fewer cluster. Practical 

considerations include the number and size of clusters in a solution. In order for teachers to be 

compared meaningfully within clusters, the number of teachers per cluster must be sufficiently 

large. However, the number of groups must also be adequately high to distinguish between types 

of classrooms in a meaningful way. 
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3.3 Results 

3.3.1 Distributions of Characteristic Curves and Information Functions 

All students in the sample have their own unique SCCs and E-SCCs determined by their 

estimated instructional demand and either the mean consistency estimate across teachers for a 

particular performance target or the actual consistency estimate of their classroom teacher for the 

target. The distributions of these characteristic curves across the sample of students is shown in 

Figure 3-1, where the 5th, 25th, 50th, 75th, and 95th percentiles of SCC and E-SCC heights are 

shown at each location along the educator capacity scale. When teacher capacity is at either 

extreme end of the distribution, there is little variation in student probabilities. The distribution 

of student probabilities is fairly constant across performance targets, even though the targets vary 

in difficulty. This is because the instructional demand scale is fixed across targets. Differences in 

target difficulty, rather, are reflected in downward shifts of the capacity distribution for the 

higher targets. 

The SCC is a function of student instructional demand and the mean slope across the 

sample of teachers. Instructional demand is constant across performance targets, so the only 

source of differences in the distribution of SCCs across performance targets is differences in the 

distributions of teacher slopes for the different performance targets. Although there are slight 

differences in these mean slopes (as shown previously in Table 3-2), these do not translate to 

visually-perceptible differences in the corresponding SCC distributions. E-SCC is a function of 

student instructional demand (which is constant across performance targets) and the slope for a 

particular student’s teacher. Similar to the distributions of the SCC, any differences in the 

distributions of E-SCCs across performance targets must be attributed to differences in teacher  
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Figure 3-1. Distributions of student and educator-student characteristic curves. 

slopes across targets. As was the case with the SCCs, no such differences in E-SCCs are evident 

from the figure. 
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The distributions of the SIF and E-SIF across all students are shown in Figure 3-2. The 

SIF distributions are similar in shape across the three performance targets. However, the peak 

heights of the 95th curves vary, reaching just below 1, approximately 1, and just above 1 for the 

low, middle, and high targets, respectively. This is a result of slightly larger slopes, on average, 

for the higher targets. While the shapes of the 5th, 25th, 50th, and 75th percentiles resemble bell 

curves, the 95th percentile has a flatter distribution, as the maximum information for any given 

student is limited by the fixed slope parameter. Excluding the 95th percentile, the distributions of 

the E-SIF resemble bell curves as well and are similar across targets. While the 95th percentile 

for the low target is shaped similarly to these, the 95th percentile for the middle and high targets 

show a comparatively lower level of information for higher-demand students, resulting in an 

asymmetric curve. 

The distributions of the ECC, CIF, and E-CIF across all teachers are shown in Figure 3-3. 

The educator characteristic curve (ECC) differs most drastically across targets. While there is a 

high level of variation in probabilities across the entire range of observed student demand values 

for the low target, the ECC heights for the middle and high targets have very little variation. For 

the middle target, the median teacher has a probability close to zero for almost the entire range of 

demand values. While the 75th and 95th percentile have probabilities above zero for a small range 

of values on the demand scale, probabilities are close to zero for all higher-demand students. For 

the highest target, even teachers at the 95th percentile have probabilities near zero across most of 

the instructional demand scale, and no teachers below the 75th percentile have a probability 

visually distinguishable from zero anywhere in the range of observed demand values. The class 

CIF and E-CIF distributions are similar in shape across targets. The 95th percentile of the E-CIF 

peaks higher than the 95th percentile of the CIF, as the teacher slope is not fixed at its mean.  
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Figure 3-2. Distributions of student and educator-student information functions 
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Figure 3-3. Distributions of class and educator-class information functions and educator characteristic curves
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The dashed lines on the CIF and E-CIF plots highlight the minimum level of information 

(approximately 2.5) required for a reliability coefficient of 0.9 when the distribution of latent 

capacity has a standard deviation of about 2.0. Across the three performance targets, the median 

E-CIF is above this threshold for demand levels between approximately -2 and 2. Capacity

estimates are within this range for 61% of teachers in the sample for the low target, 14% of 

teachers for the middle target, and fewer than 1% of teachers for the high target. At the 75th 

percentile, the range of capacities above this threshold extends from approximately -2.5 to 2.5. 

Capacity estimates are within this range for 73%, 19% and 1% of teachers for the low, middle, 

and high targets, respectively. At the 25th percentile, the range is only from about -0.5 to 1.5. 

Only 31% of teachers have capacity estimates within this range for the low target, 4% for the 

middle target, and fewer than 1% for the high target. 

3.3.2 Comparing Alternate Measures of Effectiveness 

Table 3-5 provides Spearman rank correlations among the different measures of 

effectiveness derived from the SRF. Rankings based on the same performance target but 

different probabilities or demand levels are very similar with correlations above 0.90. These 

relationships are strongest for the same type of measure (i.e. both measures are based on a fixed 

probability or both are based on a fixed demand level) with correlations above 0.97. Correlations 

for measures with the same target but different types of rankings (one fixed demand and one 

fixed probability) are strongest for the low target, followed by the middle, then the highest target. 

Correlations among pairs of measures based on different targets are weakest when the targets are 

farther apart (i.e. low target and high target) and highest when both measures are based on fixed 

probabilities. Correlations of measures for different targets are similar in strength when both are 
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based on fixed demand levels and when one is based on a fixed probability and the other on a 

fixed demand level. 

Table 3-5. Spearman rank correlations of teacher effectiveness measures derived from the SRF 

Low target Middle target High target 

P50 P25 P75 D1 D2 D3 P50 P25 P75 D1 D2 D3 P50 P25 P75 D1 D2 D3 

L
o
w

 t
a
rg

e
t 

P50 1 

P25 .99 1 

P75 .99 .98 1 

D1 .99 .98 .99 1 

D2 .99 .98 .99 .97 1 

D3 .99 .99 .97 .99 .99 1 

M
id

d
le

 t
a
rg

e
t 

P50 .78 .78 .77 .77 .76 .75 1 

P25 .78 .78 .77 .76 .76 .75 .99 1 

P75 .79 .79 .78 .77 .77 .76 .99 .99 1 

D1 .74 .75 .73 .71 .73 .74 .98 .99 .98 1 

D2 .72 .73 .70 .71 .71 .72 .97 .97 .96 .99 1 

D3 .69 .70 .68 .69 .74 .66 .95 .96 .94 .99 .99 1 

H
ig

h
 t

a
rg

e
t 

P50 .55 .54 .55 .54 .53 .51 .71 .71 .72 .67 .64 .62 1 

P25 .54 .53 .55 .54 .53 .51 .71 .70 .72 .67 .65 .62 .99 1 

P75 .55 .54 .56 .54 .53 .51 .71 .71 .72 .67 .64 .62 .99 .99 1 

D1 .50 .49 .50 .48 .45 .48 .68 .68 .69 .67 .65 .65 .95 .96 .95 1 

D2 .48 .48 .48 .48 .47 .46 .67 .67 .67 .64 .65 .63 .93 .94 .93 .99 1 

D3 .46 .46 .46 .47 .45 .45 .66 .66 .66 .66 .64 .63 .91 .92 .90 .99 .99 1 

3.3.3 Parallel Classroom Analysis 

Solutions from the hierarchical cluster analysis are shown in Table 3-6. The solutions 

associated with an increase in the Duda-Hart index and a decrease in pseudo T-squared relative 
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to the solution with one fewer cluster were considered. Solutions with fewer than 3 clusters or 

fewer than 100 teachers per cluster were excluded from consideration, as these solutions do not 

adequately distinguish between types of classrooms or maintain a sufficient number of teachers 

per group for within-cluster comparison purposes. Only the 3, 6, and 8-cluster solutions meet all 

of the statistical and practical criteria discussed. Ultimately, the 6-cluster solution was selected 

because its pseudo T-squared is the smallest, indicating dissimilarity of clusters, taking into 

account the number of observations (Halpin, 2016). The dendrogram for this solution is shown in 

Figure 3-4.  

Table 3-6. Hierarchical cluster analysis solutions 

Number of 
clusters 

Duda-Hart 
index 

Pseudo 
T-squared

2 0.618 860.67 

3 0.707 424.73 

4 0.627 430.65 

5 0.460 738.81 

6 0.626 219.51 

7 0.495 303.49 

8 0.681 239.89 

9 0.468 237.9 

10 0.572 118.21 

11 0.557 175.8 

12 0.565 185.9 

13 0.595 197.55 

14 0.578 150.94 

15 0.580 158.77 
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Figure 3-4. Dendrogram for CIF cluster analysis (6-cluster solution). 

Table 3-7 provides characteristics of teachers and students in each cluster of classrooms. 

Clusters 1 through 4 have similar levels of variation in instructional demand within classrooms. 

Clusters 5 and 6 have somewhat less variation, as these classes are comprised mainly of special 

education students who tend to have high demand levels. Estimates of capacity for teachers with 

different classroom types do vary to some extent. Teachers in Cluster 1, on average, have the 

highest estimates of capacity for all three performance targets. Teachers in Cluster 6, who 

primarily teach special education students and have unusually low student counts, have the 

lowest average capacity for the low target, but perform similarly to the remaining clusters for the 

middle and high targets. Slope parameters, on average, differ very little between clusters. 
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Table 3-7. Characteristics of students, teachers, and classes by cluster 

Cluster 
Percent of teachers 

1 
18.2% 

2 
25.4% 

3 
10.4% 

4 
14.8% 

5 
12.0% 

6 
19.1% 

All 
100% 

Proportion SPED 
0.0 

(0.0) 

0.0 

(0.0) 

0.0 

(0.0) 

0.0 

(0.0) 

0.6 

(0.5) 

0.9 

(0.3) 

0.2 

(0.4) 

Number of students 
29.6 

(3.0) 

28.1 

(2.9) 

23.6 

(3.5) 

21.5 

(3.9) 

9.0 

(2.3) 

2.9 

(1.5) 

19.8 

(10.7) 

Mean student demand 
-0.8

(0.4) 

0.2 

(0.3) 

0.7 

(0.3) 

-0.2

(0.3) 

0.7 

(0.8) 

1.1 

(0.7) 

0.2 

(0.8) 

SD student demand 
0.7 

(0.2) 

0.7 

(0.2) 

0.7 

(0.2) 

0.8 

(0.2) 

0.5 

(0.2) 

0.5 

(0.4) 

0.7 

(0.3) 

Capacity (low target) 
1.5 

(2.0) 

0.1 

(2.1) 

-0.6

(1.9)

0.2 

(1.9) 

-1.0

(2.4)

-1.5

(1.5)

-0.1

(2.2) 

Capacity (middle target) 
-3.0

(2.4) 

-4.7

(2.4)

-5.5

(1.9)

-4.6

(2.2)

-4.9

(2.0)

-5.3

(1.2)

-4.6

(2.2) 

Capacity (high target) 
-7.0

(2.6)

-8.6

(2.2)

-9.2

(1.4)

-8.7

(1.9)

-8.5

(1.8)

-8.8

(0.8)

-8.4

(2.0) 

Slope (low target) 
1.9 

(0.4) 

1.9 

(0.4) 

1.9 

(0.4) 

1.8 

(0.4) 

2.0 

(0.3) 

2.0 

(0.2) 

1.9 

(0.3) 

Slope (middle target) 
2.0 

(0.4) 

2.0 

(0.3) 

2.0 

(0.2) 

2.0 

(0.4) 

2.1 

(0.3) 

2.1 

(0.1) 

2.0 

(0.3) 

Slope (high target) 
2.1 

(0.3) 

2.1 

(0.2) 

2.1 

(0.1) 

2.1 

(0.2) 

2.1 

(0.1) 

2.1 

(0.0) 

2.1 

(0.2) 

The left side of Figure 3-5 shows the proportions of teachers at each percentile of the 

capacity scale represented by each classroom cluster. While there are some differences in cluster 

composition across capacity levels for all three targets, these differences become more prominent 

as performance targets become more difficult. Teachers in Cluster 6, in particular, are unlikely to 

fall outside of a restricted range of capacity scores, especially for the middle and high target. 

Cluster 1, which consists of large, low-demand classes, has the most consistent distribution of 

rankings across targets of all the clusters. These teachers tend to rank towards the top of the 

capacity distribution for all three targets. The right side of Figure 3-5 provides scatterplots of 

within-cluster percentile rankings and overall percentile rankings of capacity parameters for each 

performance target. Within-cluster rankings are most similar to overall rankings for teachers in 
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Clusters 2 and 4, although even the rankings for these groups become less similar as performance 

targets become more difficult. 

Figure 3-5. Relationships between cluster membership and capacity rankings 
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3.3.4 Comparing Alternate Rating Categories 

Table 3-8 shows the percentages of teachers assigned each performance rating level 

based for the classification schemes defined in Table 3-4, along with the breakdown of these 

percentages by cluster. For the high target, nearly every teacher is placed in the lowest category 

across all measures and clusters. The same is true for the middle target, although to a lesser 

extent. The overwhelming majority of teachers are placed in the bottom category in these cases, 

with teachers of Cluster 1 classes appearing in the higher categories at somewhat higher rates. 

For the low target measures, more substantial proportions of teachers receive ratings in each of 

the four categories. Teachers are split most evenly among categories for the measures based on 

fixed probabilities (P25, P50, P75), while the measures based on fixed demand levels (D1, D2, 

D3) tend to have much higher frequencies in either the top of bottom category. The dominant 

category for these fixed demand measures varies by cluster. 

Because of the low level of variation in ratings within and between classification schemes 

for the middle and high targets, comparisons of ratings for the same individual teachers across 

measures focus only on the low target. Table 3-9 provides frequencies for all 14 observed 

combinations of ratings across these measures. About 37% of teachers receive the same rating on 

all six measures. 20% of teachers are in bottom group on all measures while the other 17% are 

placed in the top group on all measures. No teachers receive uniform ratings in either of the 

middle categories. All teachers placed in the bottom category for P25 or for D1 are also in the 

bottom category on the other five measures; more than half of these teachers are from Clusters 5 

and 6. All teachers placed in the top category for P75 or for D3 are also in the top category on 

the five other measures; nearly half of these teachers are from Cluster 1, and a quarter are from 

Cluster 2.
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Table 3-8. Percent of teachers in each performance category (L1 to L4) 

P25 P50 P75 
Cluster L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4 

Low 

target 

1 4 8 25 63 6 17 25 51 12 21 27 41 

2 13 22 29 35 20 29 26 25 31 30 22 17 

3 22 29 29 20 33 30 24 13 44 32 16 9 

4 12 1 33 35 19 27 30 25 27 33 24 16 

5 44 17 14 24 51 16 16 16 58 17 12 13 

6 36 40 18 6 53 32 11 4 70 22 6 2 

all 21 23 25 32 29 26 22 24 39 26 18 17 

Middle 

target 

1 64 21 10 5 76 14 7 4 83 11 5 2 

2 84 10 3 2 89 8 3 1 92 5 2 1 

3 92 5 2 0 95 5 0 0 97 3 0 0 

4 86 9 4 1 92 6 2 0 96 3 1 0 

5 88 7 4 1 91 5 3 1 94 4 1 0 

6 96 4 0 0 98 2 0 0 99 1 0 0 

all 84 10 4 2 89 7 3 1 93 5 2 1 

High 

target 

1 97 2 1 0 98 1 1 0 99 1 1 0 

2 99 1 0 0 99 1 0 0 100 0 0 0 

3 100 0 0 0 100 0 0 0 100 0 0 0 

4 99 0 0 0 100 0 0 0 100 0 0 0 

5 99 1 0 0 100 0 0 0 100 0 0 0 

6 100 0 0 0 100 0 0 0 100 0 0 0 

all 99 1 0 0 99 0 0 0 100 0 0 0 

D1 D2 D3 
Cluster L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4 

Low 

target 

1 4 2 6 88 12 11 9 67 37 12 11 41 

2 13 6 12 69 35 13 13 39 65 10 9 17 

3 22 11 10 56 51 13 12 24 80 7 4 9 

4 12 6 8 73 32 14 15 40 65 11 9 16 

5 44 7 7 42 61 6 8 25 76 8 4 13 

6 36 17 17 30 77 9 6 8 94 2 1 2 

all 21 8 10 61 43 1 11 35 68 8 7 17 

Middle 

target 

1 64 11 7 17 85 5 4 6 95 1 2 2 

2 84 4 4 8 95 1 2 2 98 1 1 1 

3 92 2 2 3 98 2 0 0 100 0 0 0 

4 86 6 4 4 95 2 1 1 99 0 0 0 

5 88 3 3 6 95 1 2 2 99 1 0 0 

6 96 2 1 1 100 0 0 0 100 0 0 0 

all 84 5 4 7 94 2 2 2 98 1 1 1 

High 

target 

1 97 1 1 1 99 0 1 1 100 0 0 0 

2 99 0 0 0 100 0 0 0 100 0 0 0 

3 100 0 0 0 100 0 0 0 100 0 0 0 

4 99 0 0 0 100 0 0 0 100 0 0 0 

5 99 0 0 0 100 0 0 0 100 0 0 0 

6 100 0 0 0 100 0 0 0 100 0 0 0 

all 99 0 0 0 100 0 0 0 100 0 0 0 
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Table 3-9. Teacher classification patterns and their frequencies for low-target measures. 
Tree diagram of rating categories across measures Frequency of 

pattern 
Breakdown by cluster 

P25 P50 P75 D1 D2 D3 1 2 3 4 5 6 

L1 L1 L1 L1 L1 L1 20.5% 0.8% 3.4% 2.3% 1.8% 5.3% 7.0% 

L1 L1 L2 L1 L1 8.1% 0.3% 1.6% 1.2% 0.9% 0.9% 3.2% 
L2 

L1 L3 L1 L1 9.3% 0.8% 2.6% 0.9% 1.1% 0.7% 3.1% L2 
L2 L4 L1 L1 5.1% 0.2% 1.4% 0.9% 0.8% 0.4% 1.3% 

L1 L3 L2 L1 0.7% 0.2% 0.3% 0.1% 0.1% 0.0% 0.0% 
L2 

L2 L4 L2 L1 10.3% 1.9% 2.9% 1.2% 2.0% 0.7% 1.7% 
L3 

L2 L4 L3 L1 9.7% 1.4% 3.2% 1.2% 2.0% 0.7% 1.2% 
L3 

L3 L4 L4 L1 4.3% 1.1% 1.1% 0.5% 0.8% 0.3% 0.4% 
` 

L2 L1 L3 L2 L2 0.2% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 

L1 L3 L3 L2 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
L3 

L2 L4 L3 L2 0.8% 0.2% 0.2% 0.0% 0.1% 0.2% 0.0% L4 
L3 L4 L4 L2 7.2% 1.8% 2.2% 0.6% 1.4% 0.7% 0.4% 

L3 L4 L4 L3 6.6% 1.9% 2.2% 0.4% 1.3% 0.4% 0.2% L4 
L4 L4 L4 L4 16.9% 7.5% 4.2% 0.9% 2.3% 1.5% 0.4% 
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For the remaining 63% of teachers, ratings vary across the six categorization schemes. 

About 15% of teachers receive ratings in two different categories; in all of these cases, the two 

categories are consecutive (either the two bottom categories or the two top categories). 27% are 

rated in three categories: 23% are rated in three consecutive categories. For the other 4%, five of 

the six ratings are in the top two categories and the other is in the bottom category. This pattern 

is observed most frequently among Cluster 1 teachers. 20% are rated in each of the four 

categories across the six classification schemes. These inconsistent classification patterns are 

observed most frequently among Cluster 2 teachers. Because each rating is a function of the 

teacher’s SRT parameters, descriptive statistics for the capacity and slope estimates of teachers 

with each rating pattern are given in Table 3-10 for reference. Uniform classification patterns are 

associated with very high or very low capacity estimates. Inconsistent classification patterns are 

associated with smaller slope estimates and capacity estimates that fall between the demand 

levels used as cut-points. 

Table 3-10. Descriptive statistics for low-target SRT parameters by rating pattern. 
Rating category Estimated capacity Estimated slope 

P25 P50 P75 D1 D2 D3 Mean SD Min Max Mean SD Min Max 
L1 L1 L1 L1 L1 L1 -3.02 0.75 -5.42 -1.92 2.02 0.23 1.18 2.79 

L2 
L1 L1 L2 L1 L1 -1.78 0.18 -2.30 -1.50 1.90 0.30 1.02 2.54 

L2 L1 L3 L1 L1 -1.20 0.18 -1.50 -0.79 1.84 0.34 1.04 2.62 
L2 L4 L1 L1 -0.76 0.12 -1.08 0.49 2.07 0.24 1.52 2.74 

L3 
L2 

L1 L3 L2 L1 -0.70 0.16 -0.96 -0.41 1.08 0.13 0.81 1.32 
L2 L4 L2 L1 -0.30 0.19 -0.69 0.00 1.79 0.34 0.91 2.58 

L3 
L2 L4 L3 L1 0.27 0.17 0.01 0.70 1.79 0.36 0.90 2.57 
L3 L4 L4 L1 0.75 0.13 0.50 1.09 2.07 0.26 1.58 2.72 

L4 

L2 L1 L3 L2 L2 -0.25 0.14 -0.43 -0.13 0.45 0.19 0.22 0.64 

L3 
L1 L3 L3 L2 0.20 0.17 0.08 0.32 0.38 0.29 0.17 0.58 
L2 L4 L3 L2 0.62 0.28 0.05 0.93 0.95 0.20 0.71 1.36 
L3 L4 L4 L2 1.19 0.17 0.81 1.50 1.79 0.35 0.93 2.62 

L4 
L3 L4 L4 L3 1.79 0.17 1.51 2.34 1.84 0.35 0.94 2.79 
L4 L4 L4 L4 3.30 0.90 1.98 6.23 1.96 0.28 1.17 2.67 
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3.4 Discussion 

These results repeatedly demonstrate that estimates for and conclusions about teachers 

vary depending on the student performance target selected. Different peak information levels 

across targets suggest that the predictive relationship between instructional demand and target 

attainment is stronger for the higher targets; this is consistent with findings from the model fit 

analysis in Chapter 2. However, the educator characteristic curves (ECCs) shown in Figure 3-3 

affirm that very few students are expected to reach the high target even with exceptional 

teachers. The same is true of the middle performance target, although to a lesser extent. The 

distribution of ECCs shows little variation in the probability of attaining the middle target for 

students at most instructional demand levels. Because attainment of these higher targets is both 

rare and strongly related to observable characteristics of students, they may not be appropriate 

benchmarks against which to evaluate teachers. Similarly, categorization schemes for the middle 

and high target measures place the overwhelming majority of teachers into the lowest 

performance level. These classifications could be useful for identifying a very small number of 

higher-performing teachers but would be less helpful for discriminating among other types of 

teachers. The categorization schemes for the low target measures do a better job of 

discriminating among the full sample of teachers.  

Four of the categorization schemes for the low target identify either the top or bottom 

group of teachers in perfect agreement with the remaining 5 measures. The P25 and D1 measures 

are strong choices for confidently identifying a low-performing group of teachers, as this group 

has the lowest probabilities of success with the least-demanding students. Similarly, P75 and D3 

are strong choices for identifying a high-performing group of teachers, as those identified will 
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have the highest probability of success with the most demanding students. However, the vast 

majority of teachers are placed in different categories across measures. This stresses that, aside 

from those who perform extremely well or extremely poorly, a combination of measures may 

offer a more nuanced description of educator performance than any single measure on its own. 

The clusters of parallel classrooms highlight differences not only in the groups of 

students assigned to different teachers, but also in the properties of capacity estimates for these 

teachers. For instance, Cluster 6 teachers work with very small groups of students who are 

typically in special education programs. Considering the low student counts and high demand 

levels, using this information to assess the effectiveness of these teachers is equivalent to 

administering a test that is very short and very difficult. Figure 3-5 highlights that, although these 

teachers’ estimated capacities for the low target span the entire scale, they are disproportionally 

concentrated within much smaller ranges of the capacity scale for the higher targets. This is 

likely more indicative of an assessment that does not adequately discriminate between the 

capacities of these teachers than it is of a lack of variation in their true capacities. In contrast, 

Cluster 1 teachers, who have the most students and lowest demand levels, have the most 

consistent distribution of results across targets. This is equivalent to an assessment of 

effectiveness that is much longer and easier than the assessment for teachers in Cluster 6. 

Relationships between classification patterns and cluster membership are evident in Table 

3-10. A greater proportion of cluster 5 teachers receive uniform classifications than any other

cluster, with 57% falling in either the top or bottom category on all 6 measures. Cluster 1 

teachers follow behind this group with 45% receiving uniform ratings. While sorting and 

assignment patterns could play a role in these differences, the main attributes that define each 

cluster (student counts and the distribution of instructional demand) also influence the precision 
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with which capacity is estimated. Cluster 1 teachers have the most students and lowest demand 

levels. The “longer” test of effectiveness allows for greater precision, which could possibly result 

in more consistent ratings. The “easier” test could result in a ceiling effect. This would explain 

the lack of variation in ratings across measures that have inherently different meanings, and a 

higher target measure may be more appropriate for evaluating this particular group of teachers. 

Cluster 5 teachers, on the other hand, are likely to receive uniform ratings (typically in the lowest 

category) despite having fewer students and higher demand levels. While this cannot be a result 

of higher precision due to test length, it is possible that Cluster 5 teachers are experiencing a 

floor effect. If this is the case, this implies that even the lowest target is inappropriately difficult 

for most students in Cluster 5 classrooms.  

In general, the different measures vary more in their meanings and interpretations than 

they do in quality. Thus, rather than pointing towards a recommended measure or subset of 

measures for reporting purposes, these results affirm that SRT can offer a degree of flexibility for 

districts or administrators to select measures that align with their objectives and are relevant for a 

particular audience. The criterion-referenced nature of SRT measures connects these estimates to 

concepts that are already familiar to many stakeholders. The section that follows uses sample 

reporting materials to illustrate a few possible ways this information can be framed, presented, 

and interpreted. 

3.4.1 Contextualizing the Instructional Demand Scale 

While the student instructional demand index (SIDI) estimated in Chapter 2 is a 

standardized measure, it has been rescaled for simplicity and user-friendliness for reporting 

purposes. The rescaled SIDI was computed by adding 4.5 to the SIDI, so that all observed 
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demand levels take on positive values. The scale bar in Figure 3-6 divides the scale into one-unit 

intervals that are each labeled with a consecutive integer that corresponds to the midpoint of the 

interval (i.e. the interval labeled “1” spans from 0.5 to 1.5 on the rescaled SIDI). Typical 

characteristics of students in each interval are indicated below the scale bar, providing a 

framework to associate student characteristics with numbers or colors on the scale. For example, 

students within the fourth interval (whose rescaled demand estimates are between 3.5 and 4.5) 

tend to have average marks for effort, earn B’s in their courses, reach proficiency, not be eligible 

for gifted or special education programs, and have average attendance.  

1 2 3 4 5 6 7 8 
Course effort Good Average Below Average Poor 

Course grades A B C D-F
Performance level Advanced Proficient Basic Below Basic 

Program eligibility Gifted None Special education 
Attendance Good Average Poor 

Figure 3-6. Mapping of instructional demand scale to typical student characteristics. 

The same scale bar appears alongside several other sample reporting materials to connect 

the information presented with types of students and instructional challenges. Figure 3-7, for 

instance, illustrates the distributions of instructional demand across the entire district and three 

randomly-selected sample schools in reference to the scale bar. Sections of the distribution are 

shaded according to percentage of students within the corresponding instructional demand 

interval. The distributions shown in Figure 3-7 indicate that each of the sample schools has 

lower-demand students, on average, than the district as a whole. This provides a context for 

interpreting a report.  
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1 2 3 4 5 6 7 8 

Entire district Percent of students 

0     50       100 

School X 

School Y 
School Z 

Figure 3-7. Distribution of instructional demand across district and sample schools. 

3.4.2 Simplifying the ECC 

Figure 3-8 combines this information with results for three sample teachers (one from 

each sample school) from the SRT analysis. On the left-hand side, the distribution of 

instructional demand for a particular teacher is shown alongside the distributions for the school, 

all students in the same classroom cluster (the term “comparison group” is used in place of 

cluster because it is more familiar to many audiences), and all students in the district. The right-

hand side condenses the educator characteristic curve (ECC) into a simpler format, while also 

tying this information to the color-coded scale bar. Symbols are used to indicate how likely 

different types of students are to reach each performance benchmark with the teacher, according 

to the height of the teacher’s ECC at the midpoints of each interval on the demand scale. For 

instance, students with demand levels greater than or equal to 6 are “very unlikely” to reach the 

high target with Teacher C; however, the distribution of demand for Teacher C reveals that there 

are no students at this level in Teacher C’s class. Nearly all of Teacher C’s actual students are 

“likely” or “very likely” to reach all of the performance targets.  

The report does not explicitly show the capacity or slope estimate for any teacher, but this 

information is still communicated in the report. The location where probabilities change from 

“unlikely” to “likely” categories is the location of the capacity estimate and the abruptness of  
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Key 
0.00-0.05: very unlikely - - -
0.05-0.25: unlikely  - - 
0.25-0.50: somewhat unlikely  - 
0.50-0.75: somewhat likely   + 
0.75-0.95: likely + + 
0.95-1.00: very likely + + +

1 2 3 4 5 6 7 8 Percent of students How likely are students at each demand level 
to reach this benchmark with Teacher A? 
1 2 3 4 5 6 7 8 Teacher A 0    50  100 Benchmark 

Basic School X + + + + + + + + + + + - - - - 

Proficient Comparison group + + + + + + - - - - - - - - - - - - -

Advanced District - - - - - - - - - - - - - - - - - - - - - - - - 

1 2 3 4 5 6 7 8 Percent of students How likely are students at each demand level 
to reach this benchmark with Teacher B? 
1 2 3 4 5 6 7 8 Teacher B 0    50  100 Benchmark 

 

Basic School Y + + + + + + + - - - - - - - - 

Proficient Comparison group - - - - - - - - - - - - - - - - - - - - - - - - 

Advanced District - - - - - - - - - - - - - - - - - - - - - - - - 

1 2 3 4 5 6 7 8 Percent of students How likely are students at each demand level 
to reach this benchmark with Teacher C? 
1 2 3 4 5 6 7 8 Teacher C 0    50 100 Benchmark 

School Z Basic + + + + + + + + + + + + + + + + + + + + + + +

Comparison group Proficient + + + + + + + + + + + + + + + - - - 

District Advanced + + + + + + + + + + + - - - - - - - - - - -

Figure 3-8. Sample reports for one teacher from each sample school. 

transitions between probability categories communicates the magnitude of the slope. For 

instance, Teacher A’s capacity for the low target is between 5 and 6, as the probability category 

changes from a single plus symbol (“somewhat likely”) in the 5th interval to a single minus 
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symbol (“somewhat unlikely”) in the 6th interval. Teacher C’s probability for the high target 

changes more abruptly than this: there is a change from two plus symbols (“likely”) in the 4th 

interval to two minus symbols (“unlikely”) in the 5th interval, indicating that the capacity 

parameter is between 4 and 5, and that the slope is larger than Teacher A’s low-target slope.  

Because the parameter values themselves may not be inherently meaningful to many 

stakeholders, a simplified form of the ECC can communicate the relevant concepts in terms of 

probabilities, performance benchmarks, and types of students.  

3.4.3 Describing Teacher Performance in Terms of Demand 

Figure 3-9 summarizes the performance of all teachers of the same grade level in each of 

the sample schools. The scale bars on the left compare the distributions of demand across these 

teachers and are supplemented by information about the mean demand, size, and type (or cluster) 

of each class. Differences in the distribution of demand for teachers in the same school suggest 

that assignment practices vary across these three locations. For instance, the overall distributions 

of demand in School Y and School Z are quite similar, but School Y places students with similar 

demand levels in the same classrooms while School Z distributes instructional demand equitably 

across teachers with each classroom distribution mirroring the schoolwide distribution. In School 

X, classrooms vary in size, mean demand, and variation in demand. The right-hand side provides 

information about the capacity estimates for each teacher. The number reported is largest integer 

value on the demand scale for which a teacher has a probability above 0.5 for a particular target. 

This frames the estimate for a teacher in terms of the types of students (with respect to 

instructional demand) that are likely to reach a particular benchmark in their class.   Many 

capacity estimates, particularly those for the highest target, are outside the range of instructional 
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demand values that are observed for students in the district. In these cases, an asterisk (*) is 

reported in place of a demand level, as there is no realistic level of instructional demand that 

corresponds to a probability of student success above 0.5.  For example, no teacher in School Y 

has a capacity estimate within the range of observed demand values for the middle or high target. 

1 2 3 4 5 6 7 8 class 
type 

mean 
demand 

class 
size 

Highest level of instructional 
demand likely to reach target 

School X target 1 target 2 target 3 

Teacher A1 1 3.7 34 8 6 1 

Teacher A2 1 3.8 34 8 6 4 

Teacher A3 2 4.2 28 6 4 * 

Teacher A4 2 4.4 30 7 2 * 

Teacher A5 2 4.7 33 7 2 * 

Teacher A6 6 6.1 1 Insufficient data 

1 2 3 4 5 6 7 8 class 
type 

mean 
demand 

class 
size 

Highest level of instructional 
demand likely to reach target 

School Y target 1 target 2 target 3 

Teacher B1 1 3.1 27 4 * * 

Teacher B2 4 3.3 17 3 * * 

Teacher B3 1 3.7 24 5 * * 

Teacher B4 4 3.9 22 4 * * 

Teacher B5 2 4.7 25 1 * * 

Teacher B6 6 5.7 5 2 * * 

1 2 3 4 5 6 7 8 class 
type 

mean 
demand 

class 
size 

Highest level of instructional 
demand likely to reach target 

School Z target 1 target 2 target 3 

Teacher C1 1 3.5 34 8 8 6 

Teacher C2 1 3.7 33 8 6 5 

Teacher C3 1 3.7 34 8 7 5 

Teacher C4 1 3.8 33 7 3 * 

Teacher C5 1 3.8 33 7 2 * 

Figure 3-9. Sample reports for all teachers in the sample schools. 
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3.4.4 Referencing Estimates to Populations of Teachers and Students 

While norm-referenced measures that describe a teacher’s relative position in the 

distribution are commonly featured in evaluation systems, SRT scores can also be presented in 

reference to distributions of students. Each estimate of educator capacity corresponds to a 

location on the student instructional demand scale. The percentage of students with demand 

levels below a teacher’s capacity estimate indicates how many students would have probabilities 

of reaching a performance target with this teacher that are above 0.5. By reporting this 

percentage, teachers’ capacities are framed in terms of how many students would, theoretically, 

be more likely than not to reach a particular performance target if placed in their class. Table 3-

12 shows two versions of this metric: the first is the percentage of all students in the district with 

probabilities above 0.5 for the teacher, and the second is the percentage of all students in a 

particular school with probabilities above 0.5 for the teacher. While the first percentage is useful 

for comparisons of teachers across the entire district relative to the student population, the 

second is informative about how well a teacher meets the needs of students in their own school.  

The table also includes district and school norms as comparison points, further 

contextualizing the performance of the teacher relative to other teachers district-wide and in the 

same school. For example, only 33% of students in the district have probabilities above 0.5 of 

reaching the lowest performance target with Teacher B, meaning that 33% of students in the 

district have instructional demand estimates that are greater than the capacity estimate for this 

teacher. In comparison, 45% of students in the district have probabilities above 0.5 of reaching 

this same target with a teacher whose capacity is equal to the district average. However, 60% of 

the students in Teacher B’s school have probabilities above 0.5 with Teacher B, compared to 

only 32% of these students with a teacher whose capacity is equal to the school average. 
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Although the capacity of Teacher B, in reference to the districtwide distributions of capacity and 

demand, may suggest poor performance, Teacher B is expected to perform well with the majority 

of students in the school where he/she teachers, and expected to perform significantly better than 

the average teacher in that school. 

Table 3-11. Sample teacher-level reports: capacity relative to student demand distribution. 

Percentage of students more likely than not to reach target with Teacher A 
All students in district All students in Teacher A’s school 

Teacher A 
Average 

teacher in 
district 

Average 
teacher in 
School X 

Teacher A 
Average 

teacher in 
district 

Average 
teacher in 
School X 

Basic proficiency 92% 45% 95% 97% 76% 98% 
Proficiency 19% 4% 35% 33% 17% 38% 
Advanced proficiency 0% 0% 6% 0% 0% 9% 

Percentage of students more likely than not to reach target with Teacher B 
All students in district All students in Teacher B’s school 

Teacher B 
Average 

teacher in 
district 

Average 
teacher in 
School Y 

Teacher B 
Average 

teacher in 
district 

Average 
teacher in 
School Y 

Basic proficiency 33% 45% 18% 60% 76% 32% 
Proficiency 0% 4% 0% 0% 17% 0% 
Advanced proficiency 0% 0% 0% 0% 0% 0% 

Percentage of students more likely than not to reach target with Teacher C 
All students in district All students in Teacher C’s school 

Teacher C 
Average 

teacher in 
district 

Average 
teacher in 
School Z 

Teacher C 
Average 

teacher in 
district 

Average 
teacher in 
School Z 

Basic proficiency 98% 45% 98% 99% 76% 99% 
Proficiency 97% 4% 50% 99% 17% 51% 
Advanced proficiency 49% 0% 35% 83% 0% 46% 

Both Figure 3-9 and Table 3-12 present information about the capacity estimate for a 

teacher, which is equivalent to the location on the demand scale corresponding to a probability of 

0.5 (referred to as P50 in Sections 3.2 and 3.3). However, equivalent versions of these reports 
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could be developed for any measure derived from the ECC. The SRT framework affords 

flexibility to administrators or policymakers to determine what information is most relevant to 

their priorities and their context. Relevant measures may include, but are not necessarily limited 

to, probabilities associated with each teacher at a fixed demand level that corresponds to specific 

student attributes, demand levels associated with a probability above an agreed-upon threshold, 

or percentages of students expected to achieve a particular outcome with each teacher.  

3.5 Conclusions 

Item-response functions, item and test characteristic curves, and item and test information 

functions serve a variety of purposes in testing contexts. Analogous forms of these functions also 

offer meaningful contributions to the context of educator evaluation with Student Response 

Theory. Some of these contributions apply concepts or procedures from IRT directly to the SRT 

framework; for instance, matching information functions to identify parallel test forms. While 

fundamental differences between how tests are constructed and how students are assigned to 

classrooms require different procedures to be used, the underlying concept of identifying an 

equivalent assessment is the same. Comparisons of SRT information functions highlighted some 

concerns about differences in the properties of classrooms across students, and the implications 

of these differences for estimating the capacity of a teacher. Differences in the number of 

students assigned to different teachers equate to varying lengths and precision levels of the 

assessments for different teachers. Differences in the distribution of demand across classrooms 

equate to varying difficulty levels of assessments for different teachers. While varying lengths 

and difficulty levels are common in some areas of IRT, particularly in adaptive tests, equal 
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precision and fairness are valid concerns if comparisons are to be made across the entire 

population of teachers. However, by identifying groups of teachers with reasonably-equivalent 

information functions, many of these concerns can be alleviated.   

Other applications are unique, arising from key differences and incompatibilities among 

IRT and SRT. In particular, the teacher-level slope results is the equivalent of an IRT model with 

only one item-level parameter and two examinee-level parameters. This key difference raises 

concerns about whether some of the technology that has been developed and studied extensively 

in IRT contexts is truly compatible with the SRT framework. However, this difference also 

introduces new possibilities in an SRT analysis that do not have a direct parallel in IRT. The 

additional teacher-level parameter that relates properties of educators to the instructional demand 

levels of their students is especially useful for deriving alternate performance measures from the 

same SRT models. These alternate measures allow for flexibility to choose those that are most 

useful and meaningful for the specific purposes of a district, state, or program.  

The different measures derived from the SRF for the same performance target are quite 

similar, but measures are much less consistent across targets. Some of this can be explained by 

the difficulty level of the middle and high targets; very few students reach either of these 

performance benchmarks regardless of their instructional demand levels and the capacities of 

their teachers. As a result, these targets are often not informative about an educator’s 

performance. The measures derived from the low target are more appropriate for the vast 

majority of students and teachers. While the different low-target measures are highly correlated 

and rank teachers consistently, there are slight differences in how they are defined and 

interpreted. When combined, these different measures offer a more nuanced summary of 

educator performance than is possible with any single measure. 
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The criterion-referenced nature of SRT also contributes to the flexibility in report design; 

results can be framed in a variety of ways that are connected directly to stakeholders’ knowledge 

of students and teaching. While the sample reports illustrate some of the ways this information 

may be presented in practice, these are only preliminary suggestions. Additional work is needed, 

perhaps with focus groups comprised of different stakeholders, to determine the best ways to 

develop reports that empower stakeholders to understand the results and their implications and 

take appropriate actions in response that improve future outcomes for students and educators. 

With proper development, SRT could be a useful for presenting objective information about 

teacher performance with direct connections to the varying levels of instructional demand posed 

to teachers, properties of a specific population of students, and concrete performance standards 

for both teachers and students.    
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CHAPTER 4. CONTRIBUTIONS OF SRT TO FORMATIVE EVALUATION 

4.1 Introduction 

4.1.1 Summative and Formative Evaluations of Teachers 

Summative and formative assessments are both important components in evaluations of 

student learning. Summative assessments typically occur at the end of a unit or course to 

evaluate whether a particular goal has been met, while formative assessments occur on an 

ongoing basis to evaluate student needs and adjust future instruction accordingly. In evaluations 

of teaching performance, the role of value-added models (VAMs) and similar statistical growth 

models has been typically been as a summative assessment of teaching performance, where 

ratings are assigned at the conclusion of a school year and associated with consequences for 

teachers. In a formative teacher evaluation framework, schools or districts use evaluative 

information about teaching performance to guide decisions about assignment, professional 

development, and resource allocation. This occurs through an ongoing process in order to best 

support the needs of teachers and evaluate whether these decisions have the desired outcomes in 

future evaluations.  

Student Response Theory (SRT) applies the underlying methodology of item response 

theory (IRT) to an assessment of educator performance, offering an alternative to VAMs and 

other statistical growth models. In IRT, the probability of an examinee responding correctly to a 

test item is predicted as a function of the latent ability of the examinee and properties of the test 

item (Lord, 2012). SRT frames students as test items that assess the performance of their 

educators. The probability that a student will reach a pre-defined performance target with a 
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particular teacher (equivalent to the probability of a correct item response in IRT) is predicted as 

a function of the latent capacity of the teacher and properties of the student (Reckase & 

Martineau, 2014). The 2-parameter logistic (2PL) models in IRT and SRT define similar location 

parameters. In IRT, this parameter indicates the difficulty level of an item, while in SRT, it 

indicates the level of instructional demand posed by a student to an educator. Instructional 

demand is a construct that describes the difficulty level associated with helping a particular 

student reach a performance target.  

SRT may be better equipped to play a formative role in the teacher evaluation process 

than commonly-used statistical growth models like VAMs. Due to the criterion-referenced nature 

of SRT scales, the information produced by these models relates directly to characteristics of 

students and teachers and performance standards for students and teachers. This forms a clearer 

link between the content of a report and instructional or administrative practices. As a result, the 

information produced by an SRT model could potentially provide educators and administrators 

with actionable feedback about their practices. With norm-referenced VAMs and similar models, 

changes in teachers’ ratings over time typically only denote changes in their relative ranking 

within a distribution of teachers. IRT equating procedures may allow for a consistent 

longitudinal scale to be established for evaluating teachers within the SRT framework. This type 

of scale introduces the possibility of measuring absolute growth over time, both for individual 

teachers and for the distribution of teachers as a whole. The combination of the consistent 

longitudinal scale and the probabilistic nature of the model also provides a means for 

administrators to predict outcomes of different types of students with different types of teachers, 

consider these predictions in decisions about assignment and resource allocation in an upcoming 

school year, and monitor changes over time in meaningful ways. 
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4.1.2 Differential Item and Student Functioning 

In IRT, differential item functioning (DIF) occurs when the probability of a correct 

response is different for examinees with the same latent ability who differ on a characteristic that 

is irrelevant to the construct being measured (Holland & Wainer, 2012). The purpose of a DIF 

analysis is to improve the quality of a test by revising or removing items that exhibit bias. The 

analog to DIF in SRT is differential student functioning (DSF). While a DIF analysis explores 

whether items function differently for certain types of examinees, a DSF analysis investigates 

whether students perform differently than expected in certain types of classrooms. Tests of DSF 

would investigate whether students placed in classrooms or schools or with teachers with certain 

characteristics tend to perform differently than predicted given their levels of instructional 

demand.  

However, a DSF analysis would likely serve different purposes and warrant different 

actions than a typical DIF analysis due to fundamental differences between the IRT and SRT 

contexts. Revising or removing students when DSF is detected is neither a reasonable nor a 

desirable response. Rather, DSF detection would ideally prompt changes to instructional or 

administrative practices to address the underlying problem that resulted in DSF. The primary 

purpose of a DSF analysis would be to provide diagnostic information about subgroups to target 

for intervention. In an IRT framework, this is equivalent to responding to DIF by training 

subgroups of examinees to respond to an offending item differently rather than removing or 

revising the item.  

DSF analysis could also provide diagnostic information about the student instructional 

demand index (SIDI) and SRT model with respect to underlying model assumptions. For 
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instance, misspecification of the SIDI is a threat to the unidimensionality assumption (Ham, 

2014). If a DSF test indicates that certain characteristics are associated with different model 

performance, this implies that the SIDI does not appropriately account for those characteristics. 

Similarly, DSF for an aggregate classroom-level characteristic would raise concerns about the 

conditional independence assumption. Ham (2014) finds evidence of conditional dependence in 

an SRT analysis and discusses both misspecification of the SIDI and peer effects as possible 

explanations. A DSF analysis may offer additional insight into the source, magnitude, and 

practical significance of conditional dependence among students in the same class. While this 

particular purpose does not play a direct role in formative evaluation, it is a necessary step in 

establishing whether the necessary conditions for equating are met. Many of the proposed uses of 

SRT in formative evaluation, such as measuring growth of educators and predicting future 

performance of students with different potential teachers, hinge on the ability to equate SRT 

scales over time. 

4.1.3 Establishing a Consistent Scale 

Test equating procedures in IRT allow for scales to be linked across different test forms 

by placing the parameters from each test form onto a common scale. With common-item 

equating, a subset of items that appear on two different test forms operate as anchors that define 

this scale (Ryan & Brockmann, 2009). Some items may appear on both forms but relate 

differently to the underlying construct for the groups of examinees taking each form or across 

testing occasions due to differences or changes in curriculum, item exposure, or context. For this 

reason, the relationships between parameters of common items are first analyzed before selecting 
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a set of anchors. Through this process, items that exhibit evidence of parameter drift are 

identified and excluded as anchors (Dorans et al., 2010).  

Because norm-referenced statistical growth measures do not have fixed scales across 

years, multi-year comparisons can only focus on changes in the relative standing of teachers, 

rather than on the absolute growth of teachers. The same process can be extended to SRT 

instructional demand indices from different years or grade levels in order to assess longitudinal 

growth and compare educators of different grade levels using a consistent scale. An analysis of 

SIDI indicator parameters from different years and grade levels can identify the extent of 

variation in the relationships between indicators and instructional demand over time and across 

contexts. Then, the indicators that are consistent across these conditions can be used as a basis 

for building a common scale. This allows for the effectiveness of individual educators to be 

analyzed over multiple years and for rates of educator growth to be calculated. Relationships 

between classroom or school-level factors and growth rates of early career teachers may shed 

light on how administrators can support them more effectively. 

4.1.4 Optimizing the Assignment Process 

When IRT item parameters are already known, this information is sometimes used to 

select the best item(s) for a particular purpose. Sometimes this purpose is to construct a new 

form of a test such that the information function (TIF) matches that of an existing form as closely 

as possible (Samejima, 1977a). In an adaptive testing context, the purpose is to select the most 

informative item for a particular examinee, given their responses to previous items (Cella et al., 

2007).  These decisions are typically subject to certain constraints, such as item exposure and 

content balance. These processes parallel the assignment of students to teachers in an SRT 
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framework. Although the objectives and constraints are likely to differ tremendously across these 

two contexts, similar optimization procedures may still be applicable and useful in different ways 

within the SRT framework. 

Probabilistic outcomes from an SRT model for students with all potential teachers in an 

upcoming year could be useful for administrators in determining which students and teachers to 

place with one another for an upcoming year. Optimal assignments can be configured countless 

ways, affording flexibility to administrators to determine how different factors are prioritized. 

For instance, assignments can be made in a way that maximizes the number of students expected 

to meet a proficiency standard in a particular subject, optimally matches student demand levels 

with teacher capacities, or distributes instructional demand across teachers as equitably as 

possible, subject to constraints like class size restrictions, groups of students who must be placed 

either together or separately, or avoidance of tracking practices where students of similar ability 

levels are placed together.  

Comparisons between actual assignments and different types of optimized assignments 

may also serve as feedback for administrators about inefficiencies or implications of their 

existing assignment practices. Prior studies find that schools vary widely in the relative degrees 

of influence from principals, teachers, and parents in assignment decisions (Monk, 1987; Paufler 

& Amrein-Beardsley, 2014) and that teachers with more prominent positions in formal 

leadership and informal advice networks tend to be assigned higher-achieving students (Kim, 

Frank, & Spillane, 2018). Comparing the assignments determined through traditional processes 

to assignments that optimize a particular objective function, implications of existing practices on 

expected outcomes may surface. 
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4.1.5 Significance 

While the use of statistical growth models in teacher evaluation is widely criticized, the 

need for objective performance measures is far less disputed than the manner in which these 

measures are used. A model that offers evaluative information in a formative context, helping 

administrators to better support the needs of teachers and students, may garner significantly more 

support within the field than one that simply focuses on making summative judgements and 

determining high-stakes personnel decisions (Goe et al., 2017). This study explores possible 

contributions of SRT within a formative evaluation framework. Procedures extended from 

traditional IRT applications offer potential tools for diagnosing problems in an educational 

system, monitoring changes over time, and making informed decisions to improve future 

outcomes for both students and teachers. 

4.2 Data and Methodology 

4.2.1 Data and Measures 

The study draws on data from an anonymous large school district in a major U.S. city for 

5th grade teachers and their students during the 2015-2016 and 2016-2017 school years. SRT 

measures of educator capacity and consistency for both math and ELA were estimated according 

to the procedures outlined in Chapter 2. Estimates for the low performance target are the primary 

focus in this study, as findings from Chapter 3 suggest that these measures are most informative 

about the population of students and teachers in this district. The sample of students is restricted 

to those with data available from the previous school year, as this information is used to compute 

the student instructional demand index (SIDI). The SIDI is estimated using the IRT calibration 
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method and restricted set of instructional demand indicators according to the procedures outlined 

in Chapter 2.  In order to compare estimates for the same teachers with the same students across 

subject areas, 5th grade students with different teachers for math than for ELA (approximately 

3% all students each year) and teachers with none of the same students for both subjects 

(approximately 3% of all teachers each year) are excluded from the sample. For analyses of 

teacher growth, the sample is further restricted to teachers that appear in the data as 5th grade 

teachers in both school years (69% of all teachers) and students placed with these teachers (74% 

of all students).  

Table 4-1 describes the full samples of students and teachers, the restricted sample used 

in cross-sectional analyses, and the further restricted sample used for longitudinal analyses. The 

rate of special education eligibility is slightly higher for the first cohort than the second. This 

corresponds to a slightly lower ratio of students to teachers, as special education and inclusion 

classes tend to be smaller than general education classes. For both cohorts, the mean of the 

instructional demand distribution is approximately zero for the full sample and decreases as more 

restrictions are imposed. This indicates that the students excluded from the sample tend to have 

higher instructional demand levels than those that are retained. Special education students, who 

generally have high instructional demand levels, likely contribute to this pattern. For instance, 

students with specific learning disabilities may be more likely to work with someone other than 

their primary classroom teacher in either math or ELA. Because the special education 

populations vary in size across the two cohorts, special education teachers may be more likely to 

move between grade levels between years, and therefore less likely to meet the criteria for 

inclusion in the growth analyses. Potential implications of these differences on the quality of 
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information about teachers of high-demand and special education students are considered 

throughout the study. 

Table 4-1. Full and restricted samples of teachers and students. 

Sample restrictions 
Student Cohort 1 

5th grade 2015-2016 
Student Cohort 2 

5th grade 2016-2017 
Students with same teacher for math and ELA X X X X 
Teachers who taught 5th grade both years X X 
Percent of all students included 100% 97% 74% 100% 97% 73% 

Percent of all teachers included 100% 97% 66% 100% 97% 71% 
Student-teacher ratio 19.5 19.6 21.8 20.7 20.9 21.4 
Percent eligible for special education services 12% 12% 11% 11% 11% 11% 

Distribution of instructional demand 0.00 
(0.98) 

-0.03
(0.98)

-0.09
(0.98)

0.00 
(0.98) 

-0.04
(0.97)

-0.08
(0.97)

4.2.2 Differential Student Functioning 

Tests of DSF are conducted using the Mantel-Haenszel (MH) DIF index (Mantel & 

Haenszel, 1959; Holland & Thayer, 1988). The MH DIF statistic is computed from a set of 2x2 

contingency tables, with a separate table for each of j latent ability levels, containing the counts 

of correct and incorrect responses to a particular item i for members of the focal and reference 

groups. Applying these same procedures for a DSF analysis, there is a separate 2x2 table for each 

of t latent capacity levels that contains counts of students at an instructional demand level d who 

did and did not meet a particular performance target in the focal and reference groups (the SRT 

adaptation of the Mantel-Haenszel DIF table is shown in Table 4-2). In a DIF analysis, the values 

in these contingency tables represent responses to the same item across different examinees. In 

the DSF context, however, each student is only observed with one teacher. In this case, the 
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counts in each cell of the contingency table instead reflect groups of students with approximately 

equal levels of instructional demand. 

Table 4-2 Mantel-Haenszel DSF 2x2 contingency table 

Student reached target 
Yes No 

Reference group Ast Bst

Focal group Cst Dst

The distribution of student instructional demand estimates, shown in Figure 4-1, is 

slightly bimodal. Each peak represents a commonly observed instructional demand level among 

the sample of students, one slightly above and one slightly below the mean. Students with 

instructional demand levels within 0.15 of the lower peak are grouped together for one set of 

DSF analyses, and students within 0.15 of the upper peak are grouped together for another set. 

These groups of students provide insight about performance of educators with slightly below-

average and slightly above-average demand levels, across several key characteristics of teachers 

and classrooms. For the purpose of the DSF tests, each of these groups of students operates like a 

single test item administered to many examinees, rather than a set of similar items that are each 

administered to one examinee. These groups were selected because their high frequencies allow 

for more teachers to be included in the DSF tests. 76% of all teachers in the sample have at least 

one student in at least one of the two demand intervals and 55% have at least one student in each 

of the two demand intervals. 
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Figure 4-1. Distribution of instructional demand with shaded areas in DSF intervals. 

In Chapter 3, the instructional demand and educator capacity scales were divided into 

eight one-unit intervals for reporting purposes. These same eight intervals (which each span 

approximately half of a standard deviation of the capacity distribution) are used as the latent 

capacity levels for the DSF analysis. The MH common odds ratio, shown in Equation 4-1, is 

computed using the counts in each of the contingency tables across the eight capacity levels. This 

ratio is then transformed into a “Mantel-Haenszel delta difference” (Dorans & Holland, 1993), 

which is typically abbreviated as MH DIF but shown in Equation 4-2 as MH DSF for consistency 

with SRT terminology.  
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!"#$ =
∑ [()*+)*/(()* + /)* + 0)* + +)*)]*

∑ [/)*0)*/(()* + /)* + 0)* + +)*)]*
 (4-1) 

34	+67 = −2.35 ln?!"#$@ (4-2) 

The resulting DSF statistics are classified using the Educational Testing Service (ETS) 

guidelines for categorizing DIF. The ETS classification system assigns a letter (A, B, or C) 

indicating the level of DIF (“negligible DIF,” “slight to moderate DIF,” or “moderate to large 

DIF,” respectively) and a symbol (“+” or “-”) indicating the direction of DIF, based on the 

magnitude of MH DIF and statistical significance of the corresponding chi-square test (Zieky, 

1993; Zwick, Thayer, & Lewis, 1999). For instance, “B+” indicates slight to moderate DIF in 

favor of the focal group, while “C-” indicates moderate to large DIF in favor of the reference 

group. Table 4-3 outlines these ETS classification criteria, with terminology from SRT in place 

of analogous IRT terms.  

Table 4-3. DSF categories based on the ETS DIF classification system. 

MH chi-square test 
Direction Magnitude p<0.05 p>0.05

Positive DSF 
(favors focal group) 

MH DSF > 1.5 C+ A 
1.0 < MH DSF < 1.5 B+ A 

MH DSF < 1.0 A A 

Negative DSF 
(favors reference group) 

MH DSF > -1.0 A A 
-1.5 < MH DSF < -1.0 B- A 

MH DSF < -1.5 C- A 
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4.2.3 Equating the Instructional Demand Index Across Years 

First, test-level properties of the student instructional demand indices (SIDIs) from each 

year are compared to assess a few key assumptions of test form equating. In order for two test 

forms to be considered equated, or for scores from each form to be used interchangeably, both 

forms must measure the same construct with the same level of precision and have the same level 

of difficulty (Holland & Dorans, 2006).  Because the SIDIs were constructed using IRT 

calibration, plots of their test information functions (TIFs) and conditional standard errors can be 

examined to compare the difficulty and precision levels from each year. Each cohort of students 

is then assigned an estimate of instructional demand based on the SIDI from the opposite cohort, 

so that estimates for the same individuals can be compared across indices. A high degree of 

consistency between these estimates is desired to support the assumption that both SIDIs 

measure the same construct.  

Next, parameters and standard errors of individual instructional demand indicators are 

compared across the two SIDIs. Although both SIDIs were constructed using identical sets of 

instructional demand indicators, relationships between some indicators and the latent construct 

could differ between the two years. Relationships between the location parameter estimates, 

standard errors of location parameter estimates, slope parameter estimates, and standard errors of 

slope parameter estimates, for the same indicators across the two years are examined so that a set 

of consistent indicators can be identified. These indicators are referred to as “anchors,” which 

form the basis for equating the SIDIs using an anchor test design (Kolen & Brennan, 2014). 

Indicators are selected for the anchor test using the following steps: 1) estimates from the SIDI 

for the second cohort are regressed on estimates from the first cohort, 2) instructional demand 

indicators with standardized residuals greater than 3 or less than -3 are excluded from 
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consideration, and 3) the same regression model is fit without these indicators. These steps are 

repeated until all remaining instructional demand indicators fall between -3 and 3, and these 

remaining indicators comprise the anchor test.  

The anchor test is then assessed against criteria for test length, content balance, and 

parameter stability to establish its suitability for common-item equating. The anchor test must 

meet a minimum length requirement of about 20-25% of the total number of items in each full 

test form (Hambleton et al., 1991; Kolen & Brennan, 2014). The indicators included in the 

anchor test must also be representative of the balance of content on each form, such that the 

anchor test looks like a “mini version” of the two full test forms (Kolen & Brennan, 2014). 

Lastly, the parameters of instructional demand indicators must be sufficiently stable across the 

two forms, with correlations of at least 0.95 and the ratio of their standard deviations between 0.9 

and 1.1 (Huynh & Meyer, 2010). 

The SIDI for the second cohort of students is rescaled by applying a linear transformation 

that results in the location parameters of anchor indicators having the same mean and standard 

deviation as they do for the SIDI for the first cohort of students. The rescaled SIDI is then used 

to fit SRTs models in order to estimate educator capacity and consistency for the second school 

year on the same scale as the capacity and consistency estimates from the first school year. DSF 

tests, as described in Section 4.2.2, are conducted to compare results from the first and second 

school years as reference and focal groups, respectively. The purpose of these DSF tests is to 

determine whether there are differences in model performance across teachers with similar 

capacities estimated from models for different years. If DSF is nonnegligible, this could indicate 

nonequivalence of the two scales. 
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4.2.4 Identifying Growth of Teachers 

Growth of an educator over the course of a particular year y, represented by the variable 

ΔB*, is computed using Equation 4-3. The variables !B* and !(BCD)* represent the capacity 

estimates for teacher t in years y-1 and y (in this study, these are the 2015-2016 and 2016-2017 

school years, respectively). The standard errors of the two capacity estimates are derived from 

the educator-class information functions (E-CIFs) for each teacher, as described in Chapter 3. 

The height of the E-CIF at the estimated capacity level is inversely related to the standard error 

of the capacity estimate, as shown in Equation 4-4. The height of the educator-student 

information function (E-SIF) is computed for each student s assigned to teacher t in year y, given 

the slope and capacity estimates for teacher t in year y (!B* and EB*, respectively) and the 

instructional demand level of student s (represented by FB)). These heights are summed across 

all students assigned to the same teacher that year, and the reciprocal of the square root of this 

sum is the standard error of the capacity estimate. The standard error of the growth estimate, G∆I, 

is computed using Equation 4-5, where GJ(KLM)I and GJKI are the standard errors of !(BCD)* and 

!B*, respectively.

ΔB* = !B* − !(BCD)* (4-3) 

GJKI = NO EB*
P Q

RSKI(JKICTKU)

1 + RSKI(JKICTKU)
W Q1 −

RSKI(JKICTKU)

1 + RSKI(JKICTKU)
W

B)(*)

	CD

(4-4) 

G∆I = XYGJ(KLM)IZ
P
+ YGJKIZ

P
(4-5) 
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Using these estimates of growth and their standard errors, three main questions are 

explored. First, under what conditions can growth of teachers be detected? In order for growth to 

be detectable, the standard error of each capacity estimate must be reasonably small. Because 

these standard errors are derived from the sums of information functions across all students in a 

class, they are likely sensitive to the number of students in a class and the distance between 

estimates of student instructional demand and estimates of educator capacity. The next question, 

“how much growth is detectable?” is addressed by determining the proportions of observed 

growth estimates that have standard errors below the threshold required to detect different 

amounts of growth. The third question, “what characteristics are associated with different types 

of growth?” is addressed for a subset of teachers with standard errors that are sufficiently small 

to detect moderate levels of growth. Relationships between observable teacher characteristics 

and significant negative, nonsignificant or zero, and significant positive changes in capacity are 

explored using a series of chi-square tests of association. 

4.2.5 Assignment Optimization 

Optimal assignments of students and teachers to one another are explored for rising 5th 

graders in one sample school. The school was selected based on the number of general education 

classrooms for the 5th grade, and relatively high variation in student instructional demand and 

teacher capacity estimates compared to other schools of similar sizes. There are 126 5th grade 

students, 6 general education 5th grade classrooms, and one teacher for each of these classrooms 

in the sample school. Table 4-4 shows the distribution of instructional demand for each of these 

classrooms, along with the average predicted probabilities of reaching the low and middle 

performance targets across students in each class, based on estimates of capacity and consistency 
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of their assigned classroom teachers. Capacity estimates from the initial year are used because 

results from 2016-2017 would not be available at the time assignment decisions are made. The 

six classrooms vary somewhat in size and in mean instructional demand. On average, most 

students are very unlikely to reach the middle target for either math or ELA, although these 

probabilities are higher for students with Teacher 3. For the low performance targets, there is 

more variation in mean probabilities for math across classrooms, while the probabilities for ELA 

are very high for students with most teachers.  

Table 4-4. Student demand and probability estimates by teacher. 

Teacher/ 
Class 

Student 
Count 

Instructional Demand Average Probability 

Mean SD Min Max Math targets ELA targets 
Low Middle Low Middle 

1 22 -0.41 1.00 -1.44 2.25 0.57 0.00 0.93 0.03 
2 20 0.91 0.75 -0.85 2.22 0.42 0.00 0.80 0.00 
3 22 -0.70 1.17 -0.21 2.13 0.96 0.11 1.00 0.73 
4 17 0.23 1.18 -1.43 2.15 0.65 0.00 0.53 0.01 
5 22 0.45 0.98 -1.26 2.81 0.46 0.00 0.08 0.00 
6 23 0.42 1.17 -1.60 2.62 0.70 0.00 0.99 0.20 

Using an evolutionary optimization algorithm, different arrangements of these 126 

students with these 6 teachers are generated in an effort to maximize the sum of probabilities of 

reaching performance targets across all students and both subjects. For most students, the 

probabilities considered in the objective function reflect the low targets for both math and ELA. 

However, if a student has a probability above 0.5 for the low target in a particular subject across 

all 6 potential teachers, the middle target probability is used in its place. Theoretically, if a 

student had a probability above 0.5 across all 6 teachers for the middle target, the high target 
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would be considered instead. Because no students meet this description, the high targets are not 

considered at all.  

Optimization procedures are repeated across four conditions, and each condition is 

repeated with 5 different random seeds, yielding 20 suggested assignments. These are compared 

to the actual assignments as well as randomly-generated assignments. The four conditions differ 

according to how initial values are set prior to beginning the optimization procedure (actual 

assignments or random assignments) and the mutation rate for the evolutionary algorithm (0.075 

or 0.15). A higher mutation rate allows for more changes in assignments in each iteration of the 

optimization process, while a lower mutation rate places greater weight on preserving the initial 

assignments. In order to ensure that class sizes are reasonably equitable across teachers, a 

minimum and maximum number of students per teacher (17 and 25, respectively) are included as 

integer constraints.  

4.3 Results 

4.3.1 Differential Student Functioning Results 

Results of DSF tests by teacher ethnicity, teacher gender, evaluation status, student count, 

mean instructional demand in a class, standard deviation of instructional demand in a class, 

classroom cluster (as defined in Chapter 3), and indicators for whether the majority of students in 

a class are nonwhite, eligible for special education services, classified as English Language 

Learners (ELL), or eligible for free or reduced-price lunch (FRL), are provided in Table 4-5. 

Each MH DSF statistic and corresponding chi-square significance test is assigned a category in 

accordance with the ETS DIF classification system. DSF is negligible across nearly every 
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characteristic tested. There are a few exceptions to this: classes with mostly special education 

students compared to those with mostly general education students (for both modal demand 

levels and both subjects), high demand classes compared to average demand classes (lower mode 

and ELA only), Cluster 6 classes compared to Cluster 2 classes (lower mode for math and upper 

mode for ELA), and Cluster 1 classes compared to Cluster 2 classes (lower mode for ELA only). 

DSF is negative for each of these comparisons, indicating lower performance in the focal group 

than the reference group. 

4.3.2 SIDI Equating Results 

The test information functions (TIFs) and conditional standard errors for the SIDIs from 

each year (prior to equating) are shown in Figure 4-2. The corresponding curves from opposite 

years are nearly indistinguishable from each other upon visual inspection. Estimates of 

instructional demand for students based on the SIDI for the opposite cohort are also nearly 

identical to those for their own cohort, with correlations above 0.99. As Figure 4-3 illustrates, 

instructional demand estimates on the two SIDIs fall along the identity line for nearly all 

students. There are very few points that deviate far enough from this line for visual 

identification, and these deviations are extremely small.  

 Parameter estimates are also consistent across the two SIDIs. The only indicators flagged 

as outliers and excluded from the anchor set are those for the gifted programs and the total 

number of disabilities. Parameter estimates for the remaining indicators are correlated above 0.99 

across the two years. The ratio of anchor indicator standard deviations for the 2015 and 2016 

SIDIs is 1.02. Table 4-6 shows results from DSF tests using the two years as comparison groups  
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Table 4-5. Results from differential student functioning (DSF) analysis 
Lower modal student Upper modal student 

Math ELA Math ELA 
Comparison groups MH 

DSF chi2 sig. ETS
DSF 

MH 
DSF chi2 sig. ETS 

DSF 
MH 
DSF chi2 sig. ETS

DSF 
MH 
DSF chi2 sig. ETS

DSF Focal Reference 
Nonwhite White 0.22 1.32 0.17 A 0.22 0.89 0.14 A 0.01 0.00 0.00 A -0.31 2.92 0.17 A
Male Female 0.12 0.33 0.07 A -0.13 0.25 0.06 A -0.13 0.48 0.10 A -0.13 0.46 0.09 A
Evaluation year Not evaluated -0.12 0.32 0.07 A 0.85 10.9 0.01 A -0.04 0.03 0.01 A 0.25 1.90 0.18 A 
Low student count Average -0.36 2.52 0.18 A -0.54 4.19 0.13 A -0.54 7.42 0.05 A -0.32 2.65 0.18 A
High student count Average 0.33 1.73 0.18 A -0.70 5.01 0.10 A -0.06 0.04 0.01 A -0.01 0.00 0.00 A
High mean demand Average -0.64 2.91 0.17 A -1.22 9.09 0.02 B- 0.03 0.01 0.00 A 0.01 0.00 0.00 A 
Low mean demand Average -0.19 0.65 0.12 A -0.22 0.60 0.11 A 0.48 3.24 0.16 A 0.26 0.89 0.14 A 
High SD demand Average -0.35 2.44 0.18 A -0.33 1.50 0.18 A 0.27 1.46 0.18 A 0.29 1.64 0.18 A 
Low SD demand Average 0.09 0.14 0.03 A 0.02 0.00 0.00 A 0.10 0.20 0.05 A -0.57 9.20 0.02 A
Cluster3 1 Cluster 2 0.06 0.05 0.01 A -1.00 12.8 0.01 B- 0.30 1.59 0.18 A 0.05 0.03 0.01 A 
Cluster 3 Cluster 2 0.03 0.00 0.00 A -0.62 1.77 0.18 A -0.12 0.16 0.04 A -0.07 0.05 0.01 A
Cluster 4 Cluster 2 -0.45 4.22 0.13 A -0.22 0.61 0.11 A -0.02 0.00 0.00 A 0.14 0.35 0.07 A 
Cluster 5 Cluster 2 -1.57 3.50 0.15 A -1.68 3.26 0.16 A -0.69 1.92 0.18 A -0.70 1.52 0.18 A
Cluster 6 Cluster 2 -7.81 11.4 0.01 C- -4.66 6.85 0.06 A -2.98 6.61 0.06 A -3.28 9.82 0.02 C- 
Mostly nonwhite White 0.04 0.00 0.00 A 0.17 0.05 0.01 A -0.39 0.83 0.14 A -0.14 0.06 0.02 A
Mostly Special ed. General ed. -8.96 9.12 0.02 C- -11.7 18.7 0.00 C- -4.43 14.1 0.00 C- -5.97 25.0 0.00 C- 
Mostly ELL Not ELL 0.03 0.02 0.01 A 0.35 2.34 0.18 A -0.43 6.43 0.07 A -0.16 0.76 0.13 A
Mostly FRL Not FRL -0.43 1.45 0.18 A 0.51 1.49 0.18 A -0.69 4.53 0.12 A -0.00 0.00 0.00 A

3 These are the same clusters defined from class information functions (CIFs) in Chapter 3. Descriptions of each cluster are as follows: 1) high student count and 
low mean demand, 2) high student count and average mean demand, 3) average student count and high mean demand, 4) average student count and below-
average mean demand, 5) low student count and high mean demand (inclusion classes with combination of special education and general education students), 6) 
very low student count and very high mean demand (dedicated special education classrooms). 
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Figure 4-2. Test information functions and conditional 

standard errors for each SIDI. 

 

 
Figure 4-3. Instructional demand estimates based on each 

SIDI. 
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for SRT models using the low performance targets and equated SIDIs. DSF is negligible for both 

modal instructional demand levels across both subject areas. 

Table 4-6. DSF* by year for equated SRT measures. 

MH DSF chi2 sig. ETS DSF 

Math 
Lower mode -0.02 7116 0.00 A 

Upper mode 0.01 884 0.00 A 

ELA 
Lower mode 0.04 12700 0.00 A 

Upper mode 0.20 1483 0.00 A 

*The focal and reference groups are 2017 and 2016 for these tests, respectively..

4.3.3 Teacher Growth Analysis Results 

On average, teacher capacities decreased by about 0.07 in math and 0.02 in ELA between 

the two school years. These changes correspond to about 0.04 and 0.01 standard deviations of the 

capacity distribution4, respectively. Figure 4-4 provides histograms of math and ELA capacity 

changes. The magnitude of change is within one standard deviation of the capacity distribution 

for approximately 70% of teachers in math and 65% of teachers in ELA. The standard errors of 

these estimated changes vary widely across teachers. For math, the mean standard error is 1.28 

with a standard deviation of 1.40. For ELA, the mean is 1.62 with a standard deviation of 1.82. 

The distributions of standard errors, which are also provided in Figure 4-3, are highly skewed in 

the negative direction. The median standard errors of 0.72 for math and 0.82 for ELA are more 

reflective of the typical magnitudes observed in the sample, as the means are more sensitive to a  

4 The standard deviations of capacity measures are slightly larger across the entire of samples (approximately equal 

to 2) than for the analytic sample (about 1.80 and 1.74 for math and ELA, respectively). These values reflect the 
standard deviation of 2015-2016 capacities across the analytic sample of teachers in the growth analysis.  
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Figure 4-4. Distributions of changes in capacity and their standard errors. 
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Figure 4-5. Scatterplot of math capacity estimates colored according to the standard errors of corresponding math growth estimates. 
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Figure 4-6. Scatterplot of ELA capacity estimates colored according to the standard errors of corresponding ELA growth estimates.
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relatively small number of extremely large standard errors.  Figures 4-5 and 4-6 provide 

scatterplots of 2015-2016 and 2016-2017 capacity estimates for the same subject with points  

colored according to the standard error of the growth estimate (or the change between the two 

capacity estimates). Standard errors are generally largest when the capacity estimate in one of the 

years is on one of the far ends of the distribution. However, there are teachers with capacities in 

these ranges with standard errors in the lower ranges.  

Student counts and gaps between teacher capacity and class mean instructional demand 

were explored as possible drivers of differences in standard errors across teachers, as both of 

these quantities are directly related to the educator-class information function (E-CIF) from 

which standard errors are derived. Figure 4-7 provides the mean standard error among groups of 

teachers with a given student count in each of the two years. There is no obvious visual 

relationship between the student counts for each year and the mean standard error. In fact, some 

cells corresponding to very low student counts have small mean standard errors and some cells 

corresponding to very high student counts have very large mean standard errors.  

Figures 4-8 and 4-9 provide scatterplots of the distance between a teacher’s capacity 

estimate and the mean instructional demand estimate of students in the teacher’s class for each 

year, where the color of each point corresponds to the standard error of the growth estimate for 

the teacher. There are clear visual patterns in the magnitude of standard errors based on these 

capacity-demand gaps; teachers with larger gaps in either direction have larger standard errors. 

There are a few exceptions to this, where a teacher without an extreme capacity-demand gap in 

either year has a standard error in the highest interval (appearing as a dark red point in a location 

populated mostly by bright green points). These correspond to teachers with unusually small 

consistency (or slope) estimates in at least one of the two years. 
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Figure 4-7. Mean standard errors of growth estimates by student counts.
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Figure 4-8. Standard errors of growth estimates by gap between math capacity and class mean instructional demand. 
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Figure 4-9. Standard errors of growth estimates by gap between ELA capacity and class mean instructional demand. 
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Table 4-7 provides details about the standard errors necessary for different magnitudes of 

growth to be considered statistically significant. The smallest magnitude of growth in math  

capacity with statistical significance is 0.64. This corresponds to about one third of a standard 

deviation of the capacity distribution. While about 72% of all math growth estimates are larger 

than this (including both positive and negative growth estimates), only 3% of math growth 

estimates have sufficiently small standard errors for this change to be statistically significant. 

Similarly, only 7% of ELA growth estimates have sufficiently small standard errors for the 

smallest observed significant growth (0.73 capacity units) to be statistically significant. More 

than half of all growth estimates have sufficient standard errors to detect significant changes in 

capacity of one full standard deviation unit, however, growth of this magnitude is not frequently 

observed, particularly among the subset of teachers with sufficient standard errors to detect it. 

About 31% of math growth estimates and 35% of ELA growth estimates are equal to or above 

this level, and fewer than half of these are statistically significant. 

Table 4-7. Detectable and observed magnitudes of growth. 

Math Minimum 
detectable 0.5 SD 1 SD 

Magnitude of growth (change in capacity) 0.64 0.90 1.80 
Maximum SE for this magnitude of growth to be significant 0.33 0.46 0.92 
Percent of teacher growth estimates above this magnitude 72% 60% 31% 
Percent of teachers with sufficient SE to detect growth 3% 22% 60% 
Percent of teachers with significant growth above this magnitude 1% 8% 13% 

ELA Minimum 
detectable 0.5 SD 1 SD 

Magnitude of growth (change in capacity) 0.73 0.87 1.74 
Maximum SE for this magnitude of growth to be significant 0.37 0.44 0.89 
Percent of teacher growth estimates above this magnitude 67% 62% 35% 
Percent of teachers with sufficient SE to detect growth 7% 16% 53% 
Percent of teachers with significant growth above this magnitude 3% 7% 14% 
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For the subset of teachers with standard errors below the threshold for detecting one 

standard deviation of growth, percentages of teachers with significant negative, nonsignificant or 

zero, and significant positive changes in capacity are shown in Table 4-8. About half of all 

teachers have significant changes in capacity across the two years, but significant changes are 

more often negative than positive. Early career teachers are the only group more likely to have a 

positive change in math capacity than a negative change, and no groups of teachers are more 

likely to have positive changes than negative changes in ELA capacity. Rates of negative 

changes are particularly high among probationary teachers (in both subjects) and mid-career 

teachers (in ELA only). There are statistically significant associations between ELA growth and 

both teacher minority status and teaching experience. There are no significant associations found 

between math growth and observable teacher characteristics.  

Table 4-8. Comparison of teachers by change type (if 1SD change is detectable) 
Math Growth ELA Growth 

Negative None Positive Negative None Positive 

All teachers 25% 54% 20% 29% 49% 22% 
Employment status 

Probationary 42% 50% 8% c2=2.30 40% 45% 15% c2=1.41 
 Tenured 25% 55% 21% p=0.32 28% 50% 22% p=0.50 
Master’s degree 

Yes 24% 57% 19% c2=0.88 26% 51% 23% c2=0.89 
 No 26% 53% 21% p=0.64 30% 49% 21% p=0.64 
Teacher Ethnicity 

Nonwhite 26% 53% 21% c2=1.43 30% 46% 24% c2=6.23 
White 24% 58% 18% p=0.49 25% 60% 15% p=0.04 

Teaching Experience 
1-5 years 20% 50% 30% c2=2.27 26% 48% 26% c2=12.84 
6-9 years 33% 48% 18% p=0.69 59% 33% 7% p=0.01 
10+ years 25% 55% 20% 26% 51% 23% 

Evaluation Year 
Yes 22% 59% 19% c2=1.61 26% 54% 20% c2=1.14 
No 26% 53% 21% p=0.45 30% 48% 22% p=0.57 
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4.3.4 Optimal Assignment Results 

The top panel of Table 4-9 shows properties of actual class assignments and a random set 

of assignments. When students are placed with their actual assigned teacher, the objective 

function (the sum of probabilities across 126 students and 2 subjects) is equal to 124.06. The 

within-student sums of probabilities (math probability plus ELA probability) have a standard 

deviation of 0.52. These same values were computed for randomly generated assignments. 

Across 100 replications of randomly placing students and teachers with one another, the mean of 

the objective function is 121.15 with a standard deviation of 4.73. This suggests that the expected 

outcomes for the actual assigned classes are within the range of typical outcomes when classes 

are assigned completely at random. The mean standard deviation of within-student sums across 

the 100 random assignment replications is 0.58 with a standard deviation of 0.02. This suggests 

that, although the sum of probabilities is similar for actual and random assignments, there is less 

variability in student probabilities. 

Properties of the actual assignments, a set of random assignments with a similar objective 

function value to the actual assignments, and distributions of properties across optimization 

replications from each condition, are provided in Table 4-9. Although the objective functions 

have similar values for the actual and random assignments, students and demand levels are 

distributed more equitably across teachers with the actual assignments than with random 

assignments. Optimized classes have more equitable class size distributions than the random 

assignments, but they are slightly less equitable than the actual assignments. The standard 

deviation of mean demand across teachers is higher for all of the optimized assignments than for 

the actual assignments, and highest for the conditions with actual assignments as starting values. 

On average, optimization procedures lead to greater increases in the objective function when the 
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actual assignments are used as starting values. Even after optimization, the value of the objective 

function for conditions with random starting values is similar in to that of the actual assignments. 

Optimization conditions with the higher mutation rate have more consistent results across 

different random seeds. 

Table 4-9. Actual, random, and optimized class assignments. 

Conditions Objective function SD across teachers 
Initial Mutation rate Final Change Student count Mean demand 

Actual ---- ---- 124.06 ---- 2.19 0.15 
Random ---- ---- 123.81 ---- 6.00 0.24 

Optimal Actual 0.075 136.49 
(5.80) 

12.44 
(5.80) 

2.92 
(0.61) 

0.38 
(0.04) 

Optimal Actual 0.15 140.86 
(1.09) 

16.80 
(0.98) 

3.59 
(0.41) 

0.40 
(0.10) 

Optimal Random 0.075 127.41 
(4.94) 

3.59 
(4.94) 

3.26 
(0.47) 

0.23 
(0.07) 

Optimal Random 0.15 126.99 
(2.33) 

3.18 
(2.33) 

3.52 
(0.67) 

0.18 
(0.02) 

4.4 Discussion 

These results offer two types of diagnostic feedback. First, they identify concerns about 

the performance and specifications of the SRT model. Second, they identify patterns in the 

performance of students and teachers. While the second type of feedback is most relevant to 

teachers, administrators, and other stakeholders, the first type provides evidence of validity and 

shortcomings in these measures that should be considered carefully when interpreting the more 

practical findings and when developing an appropriate SRT model for use in a formative 

evaluation system.  
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4.4.1 Differential Student Functioning 

Most of the nonnegligible DSF results occur in similar groups of teachers that are 

identified in slightly different ways. There is likely a lot of overlap in the groups of teachers with 

special education classes, cluster 6 classes, and classes with high mean instructional demand 

levels, so it is not surprising that findings are similar across DSF tests for each of these focal 

groups. Teachers of high demand, special education, or cluster 6 classes tend to have fewer 

students in general. When viewing the classroom as a test in the SRT framework, these teachers 

are given shorter, more difficult tests, than teachers of an average class. The types of students in 

these classes are also more likely to have different teachers for math and ELA; these students 

were excluded from this study, potentially exacerbating the effects of low student counts for 

some of these teachers. Near-average students tend to perform worse in these classes than similar 

students with similar teachers in other types of classes. It is also possible that the instructional 

demand index does not adequately capture the added challenges associated with teaching many 

high-demand students simultaneously. 

The only nonnegligible DSF test that was not for one of these same groups was for 

Cluster 1 relative to Cluster 2 for the lower mode in ELA. In this case, both the focal and 

reference groups have high student counts but differ in their mean demand levels. This result 

indicates that students with slightly below-average demand levels in large, low-demand classes 

are less likely to reach the ELA target than similar students with similar teachers in large, 

average-demand classes. This could indicate that teachers of Cluster 1 classes direct their 

instruction more towards low-demand students, while instruction in Cluster 2 classes is generally 

directed towards average-demand students. Similarly, tendencies to direct instruction towards 



 111 

higher-demand students in higher-demand classes could contribute to the significant DSF 

findings for special education, Cluster 6, and high-demand classes. If given this information as 

part of a formative evaluation process, an administrator may choose to plan professional 

development activities that focus on improving instructional practices to reach a broader range of 

students. An administrator may also consider this information when determining class 

assignments in the following year. 

4.4.2 Equating the SIDI 

The TIFs shown in Figure 4-1 provide strong evidence that, prior to equating, the SIDIs 

from each year can be considered equivalent forms. The high level of consistency for 

instructional demand estimates from each SIDI further supports that the forms can be used 

interchangeably, and neither form would be preferred over the other. The content balance of the 

anchor test is nearly identical to that of the complete set of indicators used to estimate each SIDI. 

The indicators for gifted students and the total number of disabilities do operate somewhat 

differently on the two forms, however. This may be related to differences between the groups of 

gifted students or students with multiple disabilities in each cohort. For instance, students in the 

first cohort with multiple disabilities may have qualitatively different disabilities than those in 

the second cohort. It is also possible that the eligibility criteria for different gifted programs or 

special education services changed slightly after the first year. Aside from these few exceptions, 

which were excluded from the set of anchors used to equate the scales, relationships between 

instructional demand indicators and the latent construct measured by the SIDI are quite stable 

across the two forms. The DSF tests comparing performance in the two years are all classified as 

negligible, affirming that the two scales are comparable. 
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4.4.3 Teacher Growth 

Under certain conditions, there is relatively little power to detect significant changes in 

equated educator capacity estimates due to their unreasonably large standard errors. However, 

mismatch between student demand levels and teacher capacities poses a far greater threat to 

standard errors of growth estimates than low student counts. These findings emphasize that 

appropriate matching of the needs of students with the capabilities of teachers is critical in order 

to make inferences about the performance and growth of teachers in an SRT analysis. It may be 

more feasible to measure growth over longer periods of time, as changes occurring over multiple 

years may be larger relative to the standard errors of the initial and final capacity estimates. 

Teachers at either extreme end of the capacity distribution are disproportionately likely to 

have large gaps between their capacity estimates and the mean instructional demand levels of 

their students, large standard errors, and large estimates of growth. Because of these 

relationships, the teachers with growth estimates above a given level tend not to be the same 

teachers with sufficiently small standard errors for this level of growth to be statistically 

significant. In future work, it will be important to address differences in SRT and IRT models 

and contexts, such as the level of the slope parameter and interactions among students in the 

same class, that are likely to contribute to these enlarged standard errors. 

The frequency with which negative growth (or decreases in capacity from one year to the 

next) is observed raises concerns about possible changes in the difficulty of a performance target 

over time. If the cut-score for a performance level designated by the state is more difficult in the 

second year than the first, students will be less likely to reach the target than students of the same 

instructional demand levels in the previous year. Because the capacity scale is defined by the 
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relationship between instructional demand and target attainment, this sort of change could result 

in a systematic shift of capacity estimates for all teachers regardless of whether their capabilities 

as educators have actually changed. In order to prevent incorrect inferences about declining 

capacities or underestimation of positive growth, comparability of performance targets should be 

established in future SRT studies involving longitudinal comparisons. 

4.4.4 Optimal Assignment 

Differences between the properties of actual assignments and randomly-generated 

assignments reveal that, although the expected sum of probabilities is similar, the actual 

assignments correspond to fewer students with probabilities very close to 0 or 1 than the random 

assignments. This suggests that the actual assignments do a better job of matching student 

instructional demand levels and teacher capacity levels. As a result, students are less likely to be 

placed with teachers with whom they have very low probabilities of reaching the performance 

target than if they were assigned at random. Despite beginning with approximately the same 

initial value for the objective function, the optimization process is more successful in improving 

successful outcomes when the actual assignments are used as initial values, compared to the 

random assignments. Although improvements to the objective function vary across random 

seeds, results are much more consistent across replications for conditions with the higher 

mutation rate. Results are most consistent for the condition with actual assignments as starting 

values and the higher mutation rate. Optimal assignments in this condition correspond to 

approximately 10 more students (of the 126 5th grade students in the school) expected to reach 

performance targets than with the actual assignments. 
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The standard deviation of class sizes tends to be larger for optimized assignments than for 

the actual assignments. The assignment procedures used in the sample school may prioritize 

equitable class sizes to a greater extent than simply imposing a minimum and maximum size. 

The class size restrictions may need to be revised in order to generate assignments that align with 

other priorities and concerns of the school. Similarly, the standard deviation of class mean 

instructional demand levels is lowest for the actual assignments. In order to maximize expected 

student outcomes, the optimal assignments focus more on matching of students and teachers, 

while assignment practices in the school may focus more on equitable distribution of 

instructional demand across teachers. If this is the primary objective of teachers and 

administrators in this particular school, then optimal assignments that minimize the standard 

deviation of instructional demand across teachers may be of greater interest. However, providing 

administrators with optimal assignments for different objectives, and comparisons of these with 

actual assignments, may be helpful in evaluating implications of their current assignment 

practices. For instance, while the sample school may currently focus more on equitable 

distribution than on expected student outcomes when determining assignments, an administrator 

may choose to emphasize expected student outcomes more in future assignment decisions after 

reviewing this type of report.  

4.5 Conclusions 

These findings affirm that the mean instructional demand level of a class, and its 

relationship to the capacity of a teacher or instructional demand of an individual student, impacts 

both the performance of students and the quality of information provided about a teacher. 
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Commonalities between special education, high mean demand, and cluster 6 classrooms are 

likely related more to discrepancies between the instructional demand levels of students in these 

classes and the capacities of most teachers than they are to low student counts. This is equivalent 

to assessing the performance of these groups of teachers using a significantly more difficult form 

of a test than for other teachers. When the latent capacity of a teacher is far below the demand 

level of their students, this may result in a floor effect. These patterns could also indicate a 

tendency of teachers to direct instruction towards the level of most students in the class. This 

would also explain differential performance of average students in very low-demand classes, 

compared to similar students with similar teachers in average classes. 

The instructional demand indices for the two cohorts of students are successfully equated 

to a common scale, however, standard errors of teacher growth estimates are too large to make 

judgements about changes in most teachers’ capacities between the two years. The magnitudes of 

these standard errors are most sensitive to gaps between capacity and mean demand and 

impacted little by student counts in comparison. With greater emphasis on matching student 

instructional demand levels with teacher capacity levels in assignment processes, this type of 

growth analysis may be more feasible. However, findings from the sample school and in 

previous studies suggest that some teachers and administrators prioritize equitable distribution of 

students and instructional demand across teachers, as opposed to matching of students with the 

most appropriate teachers.  

Further development of SRT methods are necessary in order to adequately capture 

growth of educators when there are gaps between capacity and instructional demand as well as 

interactions among students in the same class and their contributions to the instructional 

demands posed to an educator. However, the negligible DSF findings, feasibility of longitudinal 
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equating, and improvements in expected outcomes through assignment optimization are suggest 

that these procedures can contribute to formative teacher evaluation processes in novel and 

impactful ways.      
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CHAPTER 5. OVERALL CONCLUSION AND DISCUSSION 

5.1 Summary of Findings 

The main objective of the first paper is to demonstrate whether the student instructional 

demand index (SIDI) can be constructed in ways that are more beneficial to an evaluation system 

and less controversial politically. Although the IRT calibration method was less successful than 

regression analysis for estimating the SIDI in previous studies, this study is the first to use such 

an expansive set of instructional demand indicators. It is also the first to explicitly choose 

indicators based on their optimality for IRT calibration.  

The results suggest that the IRT calibration method produces an index of instructional 

demand that is related to future achievement closely enough to demonstrate evidence of 

convergent validity but differs enough from future achievement to offer evidence of divergent 

validity. This suggests that the construct this SIDI captures is related to but different from future 

achievement. The regression analysis method, in comparison, creates a SIDI that is essentially an 

indicator of future performance. This is problematic within an accountability framework; if 

characteristics of a student before beginning the school year are so highly predictive of 

performance at the end of the school year, this implies that teachers have relatively little 

influence in these outcomes.   

Estimates of teacher capacity from SRT models with IRT-calibrated SIDIs are also more 

consistent with other measures of teacher quality. The IRT-calibrated SIDI discriminates 

between teachers in different rating categories based on observations of their classroom teaching, 

as well as between different levels of teaching experience. However, when a difficult 



 118 
 

performance target is used as a standard for evaluating student and teacher performance, neither 

type of SIDI is able to discriminate among these groups of teachers. 

 Results from the second paper also emphasize that when student performance targets are 

unreasonably difficult, SRT models are not very informative about educator capacity. The lowest 

performance target for the state assessment taken by students in this sample is the only 

benchmark that provides reliable estimates of teacher performance across a wide range of the 

instructional demand scale. The middle performance target provides reliable information about 

some students and teachers in the district, but the highest performance target is generally 

uninformative across the entire student and teacher distributions. 

 Different measures derived from the low target are highly correlated with one another. 

This suggests that, although it might not be particularly useful to report multiple measures if the 

information they provide is redundant, administrators should feel comfortable choosing a 

measure derived from the SRF based on the relevance of its interpretation to the objectives and 

priorities of the educational system conducting the evaluation, as long as the underlying SRT 

model uses a performance target that is informative about the populations of students and 

teachers in that system. 

 Differences in class information functions (CIFs) raise some alarm about whether 

comparisons across all teachers are fair or appropriate. However, commonalities among the CIFs 

across large subsets of teachers, similar to parallel forms of a test, provide a promising solution 

to this problem. CIF matching allows for meaningful within-cluster comparisons, however, 

differences between within-cluster rankings and overall rankings suggest that overall rankings 

should be interpreted with caution. 
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Results from the third paper indicate that, under most conditions, model performance is 

consistent across characteristics of teachers and classes. Most exceptions to this are for classes 

with very high-demand students, including special education classes. The only other exception is 

for slightly below-average demand students placed in large, low-demand classes compared to 

large, average-demand classes. While low student counts in the high-demand and special 

education classes offer one possible explanation for these differences in model performance, the 

presence of a similar pattern across large classes with different demand levels could not be 

explained in the same way. Another explanation is that the differences in model performance 

relate to mismatch between the instructional demand levels of individual students and the 

instructional demand levels of their classmates. It is not clear whether performance of these 

students is more likely affected by the demand levels of their classmates, or whether the 

instruction administered in these types of classrooms is targeted towards the mean demand level 

of the class. If the latter is true, students far above or below that mean demand level might not 

benefit as much as they would in an average-demand classroom where instruction is designed for 

a different type of student. 

Parameter estimates for instructional demand indicators are rather stable across the two 

years, lending well for common item equating of the SIDI across the two cohorts of 5th grade 

students. The only instructional demand indicators that were flagged for inconsistency were for 

gifted programs and students with multiple disabilities. These indicators represent opposite ends 

of the instructional demand distribution, where estimates tend to be less precise in general. These 

differences could also reflect changes in the criteria for program eligibility between the two years 

or differences in the relatively small groups of students from each cohort that fall within these 

categories. Standard errors of teacher growth estimates are rather large for some teachers, 
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resulting in little power to detect changes in capacity in these cases. The primary factor driving 

these large standard errors is mismatch between the capacity of a teacher and the mean demand 

level of students in their class. This discrepancy makes a far greater impact than the number of 

students in a class. Small slope estimates also correspond to large standard errors, however, this 

affects far fewer teachers than capacity-demand mismatch. 

Although inappropriate matching of students and teachers is a limiting factor for 

analyzing teacher growth, assignment optimization procedures provide guidance to schools about 

how to improve the ways students and teachers are assigned to one another. However, an 

administrator would only be interested in this information if student-teacher matching aligns with 

their objectives and priorities in the assignment process. In the sample school selected for the 

optimization analysis, the actual assignments appeared to prioritize the equitable distribution of 

students and instructional demand across teachers. This type of practice would likely result in 

more similar CIFs across teachers in the same school, facilitating comparisons among the 

different teachers. However, it is not necessarily the best practice for improving student 

outcomes, accurately assessing the performance of a teacher, or monitoring and supporting 

teacher growth over time. 

5.2 Implications 

The importance of setting realistic performance standards for students and teachers is 

emphasized in several findings across the three papers. For this district, only one of the three 

performance targets is informative about large proportions of students and teachers. Without 

reliable information about performance based on the other two targets, the potential benefits of 
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using multiple performance outcomes to generate different types of measures about teachers 

cannot be assessed. Different types of IRT models with polytomous or continuous response 

variables would likely capture more of the variation in student performance than the single 

dichotomous outcome that was informative in this study. However, these models are not as 

easily-interpretable as the 2PL and may be less accessible to stakeholders. Many of the other 

advantages of SRT over VAMs relate to IRT-specific procedures that have been studied 

extensively within the context of dichotomous response models. Continuous response models, in 

particular, are rarely used in research or in practice, and the types of IRT technology that may be 

most beneficial to the evaluation context has not been developed for these types of models. 

Interpretability and application of well-studied IRT technology are focal points of this study, so 

the most appropriate resolution for these same purposes would be to seek different dichotomous 

targets to use in place of the higher targets. Like the state-determined proficiency levels, these 

targets should correspond to concrete standards of performance. However, they must be both 

reasonable and challenging for a significant proportion of students in the district. 

Another common theme throughout these findings is mismatch between the average 

instructional demand level of a class and either the capacity of a teacher or the instructional 

demand level of an individual student. Large discrepancies between capacity and demand result 

in large standard errors of capacity and growth estimates. Discrepancies between individual 

students’ instructional demand levels and class mean demand correspond to differences in 

performance compared to similar students with similar teachers but different classmates. One 

explanation is that these differences arise from interactions between students in the class, or peer 

effects. Another explanation is that teachers alter their instructional practices to target the types 

of students that comprise the majority of a class. Students who are either above or below the 
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demand levels of most students in their classes may not benefit as much as they would in a class 

where instruction is targeted towards students like them. The first explanation could potentially 

be addressed with further development of the SRT model and instructional demand index. The 

second explanation would be relevant feedback for administrators and could prompt them to 

train teachers on instructional practices that benefit a wider range of students or to actively avoid 

placing students in classes where most students are far above or far below their instructional 

demand levels. 

Although several findings point to possible differences in model performance for special 

education students and special education teachers, as well as for teachers with very low student 

counts, most of these relationships are better explained by discrepancies between the high 

demand levels in these classes and the capacity estimates of these teachers. These types of 

classes are typically associated with low student counts, and are also more likely to have students 

missing from the data, however, the results suggest that the capacity-demand gap makes a far 

greater difference than the number of students placed with a teacher.
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Table A1. Location and slope parameters for instructional demand indicators 5 
Indicators location slope Indicators (cont’d) location slope 
Not gifted (high achievement) -2.62 1.42 C for listening effort 0.78 2.71 
B in writing -2.23 2.95 C for history effort 0.90 3.02 
Not gifted (intellectual ability) -2.19 1.23 C for science effort 1.00 2.95 
B in science -2.12 2.63 C in health 1.09 2.52 
B in history -2.06 2.96 C for speaking effort 1.14 2.30 
Proficient in math -2.04 1.66 Limited English proficiency 1.15 1.07 
B in math -2.04 2.56 C for health effort 1.39 2.63 
B in phys ed -2.03 1.52 D-F in math 1.57 2.56 
B in health -2.02 2.52 D-F in writing 1.68 2.95 
B in reading -2.00 2.72 D-F in art 1.74 1.91 
B in art -1.81 1.91 D-F in reading 1.75 2.72 
B in speaking -1.77 2.31 Student with IEP 1.90 1.30 
Not designated as gifted -1.68 1.45 Learning disability 1.92 1.29 
Proficient in ELA -1.67 1.76 C for art effort 1.94 1.86 
B in listening -1.58 2.92 One disability 1.94 1.26 
B for writing effort -1.41 2.91 C in phys ed 1.97 1.52 
B for PE effort -1.39 1.49 C for PE effort 2.09 1.49 
B for health effort -1.37 2.63 D-F in history 2.11 2.96 
B for science effort -1.35 2.95 D-F for math effort 2.14 2.91 
B for history effort -1.34 3.02 D-F for writing effort 2.14 2.91 
B for speaking effort -1.29 2.30 D-F for reading effort 2.20 3.06 
B for reading effort -1.25 3.06 D-F in science 2.22 2.63 
B for listening effort -1.25 2.71 D-F in listening 2.32 2.92 
B for math effort -1.21 2.91 D-F for listening effort 2.42 2.71 
B for art effort -1.17 1.86 D-F for history effort 2.44 3.02 
Basic math proficiency -0.90 1.66 D-F for science effort 2.56 2.95 
Basic ELA proficiency -0.76 1.76 D-F in speaking 2.67 2.31 
C in writing -0.23 2.95 D-F in health 2.67 2.52 
C in math -0.12 2.56 Two disabilities 2.86 1.26 
C in reading -0.01 2.72 Resource specialist 2.92 1.07 
Below basic ELA proficiency 0.04 1.76 D for health effort 2.93 2.63 
Absent 5-10 days 0.04 0.36 D for speaking effort 2.98 2.30 
Below basic math proficiency 0.41 1.66 At least 3 disabilities 3.63 1.26 
C in history 0.48 2.96 D-F in art 3.91 1.91 
C in science 0.49 2.63 Absent 11-17 days 3.92 0.36 
C in listening 0.55 2.92 D-F for art effort 4.13 1.86 
C for writing effort 0.55 2.91 D-F for PE effort 4.58 1.49 
C for reading effort 0.64 3.06 D-F in phys ed 4.60 1.52 
C for math effort 0.66 2.91 Absent 18 or more days 7.12 0.36 
C in speaking 0.77 2.31 

5 IRT-calibrated instructional demand index with restricted item set (cohort 1). 
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Table A2. Deriving equations for the P25 and P75 measures (Chapter 3) 

!"($) =
exp	 +,-"./-" − $12

1 + exp	 +,-"./-" − $12
(A1) 

!"($)[1 + exp	 +,-"./-" − $12] = exp	 +,-"./-" − $12 (A2) 

!"($) + !"($) ∗ exp	 +,-"./-" − $12 = exp +,-"./-" − $12 (A3) 

!"($) = exp	 +,-"./-" − $12 − !"($) ∗ exp	 +,-"./-" − $12 (A4) 

!"($) = exp +,-"./-" − $12 ∗ (1 − !"($)) (A5) 

!"($)
1 − !"($)

= exp +,-"./-" − $12 (A6) 

ln	( !"($)
1 − !"($)

) = ,-"./-" − $1 (A7) 

$ + ln	( !"($)
1 − !"($)

) ,-": = /-" (A8) 

$ = /-" − ln	(
!"($)

1 − !"($)
) ,-": (A9) 

P25 = /-" − ln >
0.25

1 − 0.25A ,-": = 	/-" − ln >
0.25
0.75A ,-": = /-" − ln >

1
3A ,-": (A10) 

P75 = /-" − ln >
0.75

1 − 0.75A ,-": = 	/-" − ln >
0.75
0.25A ,-": = /-" − ln(3) ,-"⁄ (A11) 
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