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ABSTRACT

VARIABLE SELECTION IN VARYING MULTI-INDEX COEFFICIENT MODELS
WITH APPLICATIONS TO GENE-ENVIRONMENTAL INTERACTIONS

By

Shunjie Guan

Variable selection is an important topic in modern statistics literature. And varying

multi-index coefficient model(VMICM) is a promising tool to study the synergistic

interaction effects between genes and multiple environmental exposures. In this dissertation,

we proposed a variable selection approach for VMICM, we also generalized such approach

to generalized and quantile regression settings. Their theoretical properties, simulation

performance and application in genetic research were studied.

Complicated diseases have both environmental and genetic risk factors, and large amount

of research have been devoted to identify gene-environment (G×E) interaction. Defined as

different effect of a genotype on disease risk in persons with different environmental exposures

(Ottman (1996)), we can view environmental exposures as the modulating factors in the

effect of a gene. Based on this idea, we derived a three stage variable selection approach

to estimate different effects of gene variables: varying, constant and zero which respectively

correspond to nonlinear G×E effect, no G×E effect and no genetic effect. For multiple

environmental exposure variables, we also select and estimate important environmental

variables that contribute to the synergistic interaction effect. We theoretically evaluated

the oracle property of the three step estimation method. We conducted simulation studies

to further evaluate the finite sample performance of the method, considering both continuous

and discrete predictors. Application to a real data set demonstrated the utility of the method.

In Chapter 3, we generalized such variable selection approach to binary response



setting. Instead of minimizing penalized squared error loss, we chose to maximize penalized

log-likelihood function. We also theoretically evaluated the oracle property of the proposed

selection approach in binary response setting. We demonstrated the performance of the

model via simulation. At last, we applied our model to a Type II diabetes data set.

Compared to conditional mean regression, conditional quantile regression could provide

a more comprehensive understanding of the distribution of the response variable at different

quantile. Even if the center of distribution is our only interest, median regression (special

case of quantile regression) could offer a more robust estimator. Hence, we extended our

three stage variable selection approach to a quantile regression setting in Chapter 4. We

demonstrated the finite sample performance of the model via extensive simulation. And we

applied our model to a birth weight data set.
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Chapter 1

Introduction

1.1 Overview

In this dissertation, we studied how genetic and environmental factors interact to affect

a disease outcome by developing novel statistical methods. Ever since Gregor Mendel’s

famous experiments with his pea plants in the nineteenth century, researchers have been

fascinated with the role of genetics played in our lives. With decades of genetics research,

we knew more than ever the effect of various genes. For example, we knew mutations in

the CFTR gene cause cystic fibrosis, mutations in PAH gene cause phenylketonuria. In fact,

scientists have identified more than 10, 000 human disorders that are caused by mutations

in single genes. However, complex diseases such as type II diabetes have various risk factors:

environmental risk factors such as exercise level, body mass index, genetic risk factors such

as mutations in gene TCF7L2 and ABCC8. Hence, it is of great interest to study how

gene and environment interact and affect various disease traits. In this chapter, we first

provided some background information and a brief review of traditional statistical models

used to study gene-environment(G×E) interaction in section 1.2. To address the constrain

of traditional G×E interaction models, we discussed non-parametric models in section 1.3.

In section 1.4, we discussed the recent advance in variable selection via penalized regression

and how we can apply variable selection in our model to select significant risk factors. We
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offered a brief review of quantile regression and its benefit in section 1.5. At last, the goal

and organization of this dissertation is offered in section 1.6

1.2 Gene-Environment Interaction

In recent years, more and more research suggested that gene-environment (G×E) interaction

plays an important role in complex traits such as type II diabetes and birth weight. G×E

interaction was defined by Ottman (1996) as “a different effect of a genotype on disease

risk in persons with different environmental exposures”. Traditionally, G×E interaction was

investigated via linear model:

Y = β0 + βG ∗G+ βE ∗Ek + βG×E ∗G ∗Ek + ε (1.1)

where G represents genetic factors; Ek represents an environmental factor; βG, βE

represents the genetic effects and environmental effect respectively; and βG×E represents

the G×E effect between genetic factors G and environmental factor Ek. However, such

model has several drawbacks. Firstly, it assumes the G×E interaction is linear, which is

often violated in many cases. Secondly, model (1.1) is only computational feasible with

a single environmental factor. With the introduction of multiple environmental factors,

model dimension will increase dramatically, resulting in biased and unstable estimation.

Nevertheless, many epidemiological studies revealed that disease risks can be modified by

simultaneously exposure to several environmental factors (Carpenter et al. (2002); Sexton

and Hattis (2007)). These limitations led to the implementation of several non-parametric

models in the G×E interaction studies.
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1.3 Non-Parametric Models

In parametric modelling, such as linear model (1.1) or generalized linear model, we

assumed we knew the model structure in advance and we estimated the model parameters

based on the assumed structure and the data set. However, more often than we would

prefer, such assumptions cannot be justified. Which was particularly problematic since

all parameter estimation and model interpretation were made based on those assumptions.

This predicament led us to consider non-parametric modelling. Non-parametric models

make little to no assumptions, it lets the data decide the functional relationships between

the response variable and the predictors. Due to its flexibility, non-parametric models

could be applied to most data set. For example, to address the limitation of linearity in

model (1.1), Ma et al. (2011) proposed to use varying coefficient(VC) model to detect

non-linear gene-environmental interaction. Proposed by Hastie and Tibshirani (1993), a

varying coefficient model could be of the form

Y = β0(X) +

p∑
k=1

βk(X)Gk + ε (1.2)

where Y is the response; Gk, k = 1, . . . , p is the kth genetic factor; and X is a single

environmental factor and ε is the random error. Representing the gene effect of Gk, βk(X)

is a smooth non-linear non-parametric functions indexed by X. Under such structure, βk(X)

is allowed to vary as a function of the environmental factor X. It could either be a linear or

a non-linear function. This is the reason why model (1.2) could be used to detect non-linear

gene-environmental interaction between several genetic variants and a single environmental

variant.

While VC model (1.2) alleviates the linearity constrain of model (1.1), it can only be
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used to model G×E interaction with a single environmental factor. Similar to linear models,

it is computational infeasible to model how a mixture of environmental factors interact with

genetic variants due to dramatically increasing model dimension. To address this issue, Liu

et al. (2016) proposed we could implement varying multi-index coefficient model (VMICM)

Y = m0(Xβ) +

p∑
k=1

mk(Xβ)Gk + ε (1.3)

where Y is the continuous response variable; G = (G1, . . . ,Gp) is a p dimensional

matrix representing genetic factors; X is an environmental factor matrix of dimension q;

β is the loading parameter for environment covariates X; mk(u) is a smooth non-linear

non-parametric function indexed by Xβ, and it represents the gene effect of Gk. One of the

main advantage of model (1.3) is it considers the interaction between genetic variants G and

a mixture of environmental variants X without increasing model dimension dramatically.

We could interpret mk(Xβ) as the gene effect of Gk modulated by its index Xβ. And βd

could be interpreted as the strength of interaction between the d− th environmental factors

Xd and G. We could also observe VC model (1.2) is a special case of VMICM (1.3) when

q = 1. Due to its unique ability to accommodate non-linear G×E interaction with a mixture

of environmental variants, we decide to implement VMICM in this dissertation.

Estimation for non-parametric model such as (1.2) and (1.3) could be roughly grouped

into three categories: kernel smoothing (Fan and Zhang (1999); Xia and Li (1999) ; Cai et

al. (2000)), spline-based methods (Huant et al. (2004); Hoover et al. (1998); Chiang et

al. (2001)) and wavelet estimation (Zhou and You (2004)). In this dissertation, we adopted

the idea of B-spline approximation to estimate non-parametric function mk(u) for several

reasons. Firstly, by some transformation of the B-spline basis function, we would be able to
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separate the constant effect of Gk from its varying effect. This would be discussed in detail

in the following chapters. Secondly, the computation algorithm of B-spline approximation

is more efficient compared to kernel based methods. It is essential since we are working

with high dimension genetics data. Further, it’s easier to implement variable selection via

penalized regression in a B-spline approximation setting.

1.4 Variable Selection

To select significant gene environmental combo from a large number of variants, we need to

implement some dimension reduction technique, via either variable selection or hypothesis

testing. In this dissertation, we focused on variable selection for its efficient algorithm and

unique feature of simultaneous model selection and estimation. Traditional model selection

techniques include backward/forward selection or information criterion based technique such

as AIC or BIC. However, with the rise of big data, such methods are no longer feasible for

several reasons: exponentially increasing computation time and unstable estimation due to

increasing collinearity. Recently, variable selection via penalized regression has been gaining

popularity. Its idea is to add a penalty term to the loss or lieklihood function. It could be

of the form

β̂ = arg min
β

Q(β) = arg min
β

(
||Y −Xβ||22 + n

p∑
j=1

pλ(|βj |)
)

(1.4)

or

β̂ = arg max
β

Q(β) = arg max
β

(
l(β,X,Y )− n

p∑
j=1

pλ(|βj |)
)

(1.5)
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where Y is the dependent variable and X is the predictor; ||Y −Xβ||22 is the squared error

loss function; l(β,X,Y ) is the log-likelihood function; and pλ(|βj |) is the penalty function

for the j-th coordinate of β. By adding an appropriate penalty term to the optimization

function, some covariates of the penalized estimator β̂ could be shrunk to 0, therefore,

achieving simultaneous model selection and estimation.

With different choices of penalty function pλ(·), the penalized estimator of β could possess

different properties. Fan and Li (2001) advocated three properties that a penalized estimator

should possess:

(1) Sparsity: The penalized estimator should automatically set small coefficients to zero,

therefore achieving model selection.

(2) Approximately Unbiasedness: The penalized estimator should be approximated

unbiased, especially when the true coefficient is large.

(3) Continuity: The penalized estimator should be continuous in the data, therefore,

reducing instability in model prediction.

To possess all three properties under squared error loss setting, Antoniadis and Fan

(2001) deduced that the penalty function pλ(t) should satisfy: (1) mint≥0{t + p′λ(t)} > 0;

(2) p′λ(t) = 0 for large t; (3) argmint≥0{t + p′λ(t)} = 0. Here, we present several popular

choice of penalty functions:

(1) Ridge Regression: pλ(βj) = λ|βj |2 (Hoerl and Kennard (1970));

(2) LASSO: pλ(βj) = λ|βj | (Tibshirani (1996));

(3) Adaptive Lasso: pλ(βj) = wjλ|βj | (Zou (2006));
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(4) SCAD: p′λ(βj) = λ{I(βj ≤ λ) +
(aλ−βj)+
(a−1)λ I(βj > λ)} for some a > 2 (Fan and Li

(2001));

(5) MCP: pλ(βj) = λ
∫ βj
0 (1− s

τλ)+ds for some τ > 0 (Zhang (2010)).

Among those penalty functions, adaptive LASSO, SCAD and MCP all possess the

sparsity, approximately unbiasedness and continuity property. In this dissertation, we

focused on MCP as our penalty function.

To solve the optimization problem (1.4) or (1.5), there are several algorithms available.

Least-angle regression (LARS) (Efron et al. (2004)) could be used to calculate the entire

solution path of the LASSO problem very efficiently. Fan and Li (2001) proposed local

quadratic approximation (LQA) algorithm to solve the non-concave penalized likelihood

problem. It can be implemented with a number of penalty functions. Their idea was to locally

approximate the optimization function with a quadratic function. Therefore, transforming

problem (1.4) or (1.5) to a least square problem with a closed form solution. Even though

its efficient was surpassed by recent algorithms, the idea of LQA is still of great importance.

Building on the idea of LQA, Zou and Li (2008) proposed local linear approximation (LLA)

algorithm. Their idea was to locally approximate the non-concave penalty function linearly.

Transforming the non-concave penalty to a LASSO penalty, which could be solved using

LARS. Coordinate descent algorithm (Friedman et al. (2007), Friedman et al. (2010)) is

an even more efficient algorithm. With small modification, it could be implemented to a

wide range of penalized optimization problems. In this dissertation, we adopted the idea of

coordinate descent and LQA to solve our optimization problem.

Besides the usual penalized regression that select individual parameters, there is a group

analog, call grouped penalized regression (Yuan and Lin (2006)). Instead of penalizing
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individual parameter, it penalizes the L2 norm of a group of parameters. Assume β is

divided into q groups β = (β1, . . . ,βq), and the objective function could be of the form

β̂ = argmin
β

Q(β) = argmin
β

(
||Y −Xβ||22 + n

q∑
j=1

pλ(||βj ||2)
)
. (1.6)

The end result is that we select non-zero parameters as a group, either a group of parameters

being all zero or none of them being zero. The grouped penalized regression technique is

particularly useful in this dissertation.

1.5 Quantile Regression

Another objective of this dissertation was to extend the proposed variable selection for

VMICM to quantile regression setting. Quantile regression is a very important alternative

to the conventional conditional mean regression. It differs from mean regression in the loss

function. Instead of trying to minimize the squared error loss for linear model, quantile

regression tries to minimize the quantile loss function

n∑
i=1

ρτ (Yi −Xiβ) and ρτ (u) = u{τ − I(u < 0)}. (1.7)

Quantile regression also possess several advantages. First, modelling a dataset at several

different quantiles offers a far more comprehensive view of the distribution of the response

variable. In many scenarios, the effect of gene Gk varies at different quantile of the

distribution. Further, even when we are only interested in the center of the distribution,

median regression (quantile regression with τ = 0.5) can provides more robust estimator,

therefore, insensitive to outliers.
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1.6 Objective and Organization

To select non-linear gene-environment interaction, we proposed a three stages iterative

variable selection approach for Varying Multi-Index Coefficient Model and its generalization.

We also extended such approach to a quantile regression setting. One of our goal is to

classify genetic variants into three categories: varying, constant and zero. Varying effect

gene is the gene that interact with environmental factors. Its effect on the response varies

as environmental factors changes. Constant effect gene is the gene that only has a constant

effect, not being modulated by environmental factors. Zero effect gene does not have an

effect at all. By selecting non-zero loading parameters β in model (1.3), another goal of the

proposed approach is to select environmental variants that interact with genetic variants.

The rest of the dissertation is organized as follow. In chapter 2, we presented the variable

selection approach for VMICM, its estimation method, and theoretical properties. We

conducted extensive simulation studies to evaluate the finite sample performance of the

proposed method. The utility of our model was demonstrated with a real data analysis. In

chapter 3, we generalized our selection approach to a binary response generalized regression

setting. We extended the model to a quantile regression setting in chapter 4, followed by

conclusion and further works in chapter 5. At last, all the proofs and details of the algorithms

were rendered in the Appendices.
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Chapter 2

Variable Selection with Varying

Multi-Index Coefficients Model for

G×E Interaction

2.1 Introduction

Gene-environment (G×E) interaction study has been gaining popularity. As discussed in

chapter 1, varying multi-index coefficient model (VMICM) enjoys the unique ability to model

non-linear interaction between genetic variants and a mixture of environmental variants.

In this chapter, we propose a variable selection model for VMICM. Consider the varying

multi-index coefficient model of the form:

Y =

p∑
k=0

mk(Xβ)Gk + ε (2.1)

where Y = (Y1, Y2, . . . , Yn)T is a continuous response variable that measures certain

phenotypic trait of interest; X is a q-dimensional environmental exposure variables; G is

a p + 1 dimensional genetic variables; mk(·), k = 0, 1, . . . , p is the unknown non-parametric

function and β is a vector of unknown loading parameter of dimension q. One of the main
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advantage of VMICM is that it models the effects of G on Y as functions of X without

suffering the curse of dimensionality. One can interpret mk(Xβ) as the effect of Gk on Y ,

modified by multiple X variables though the index Xβ. In addition, VMICM is flexible

enough to cover a wide range of models. For instance, if q = 1 and β = 1 then it becomes

an additive varying coefficient model, and if p = 1 and G = 1 then it becomes a standard

additive single index model.

Variable selection has been a popular statistical strategy to solve large p small n

problem in a regression setup. In the past, researchers often opted for forward/backward

selection, and information based criteria such as AIC and BIC for variable selection.

Recently, variable selection via penalized regression is gaining more popularity and wider

acceptance as it features simultaneous selection and estimation of parameters. Its idea is to

add a penalty function to the loss function or log-likelihood function. Bridge regression

(Frank and Friedman (1993)), least absolute shrinkage and selection operator (LASSO)

(Tibshirani (1996)) and its extensions (adaptive-LASSO Zou (2006)), smoothly clipped

absolute deviation (SCAD) (Fan and Li (2001)) and minimax concave penalty (MCP)

(Zhang (2010)) are a few examples. To evaluate different penalized functions, Fan and

Li (2001) proposed three important criteria: sparsity, unbiasedness, and continuity. They

also showed that SCAD penalty possess oracle property, meaning that penalized regression

featuring SCAD works as well as if the correct sub-model was known in advance. Adaptive

LASSO (Zou (2006)), SCAD (Fan and Li (2001)) and MCP (Zhang (2010)) all possess oracle

property. However, for adaptive LASSO, determining weights for parameters might become

problematic when p > n. In the current work, we adopt MCP penalty function for its oracle

property and fast algorithm.

Considering the nonlinear structure about the unknown non-parametric functions mk(·)
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and its unknown parameter β. We propose a three stage iterative variable selection strategy.

Specifically, our goal is: (1) to classify the non-parametric functions mk(·), k = 1, . . . , p into

three categories: varying, constant and zero; (2) to select zero and non-zero components of

loading parameters β; and (3) to estimate mk(·), k = 0, 1, . . . , p and β. Our approach is

motivated by the practical need to separate three different mechanisms in G×E interaction.

The zero function of mk(·) indicates no genetic effect at all; the constant function of mk(·)

indicates no G×E effect; while the varying function of mk(·) indicates the existence of G×E

effect. As shown in Liu et al. (2016), the VMICM model has the advantage to capture

the joint interaction of genes with multiple exposures as a whole. Novel insights about the

underlying genetic mechanism can be revealed by the proposed model. In addition to the

selection of the coefficient functions, we can also select important loading parameters inside

each index coefficient function, to further quantify the relative importance of individual

exposure variables.

Feng and Xue (2013) proposed a variable selection approach based on VMICM by

applying a group SCAD penalty on B-spline coefficients γ and loading parameters β. They

focused on either zero or nonzero coefficient functions mk(·). We are particularly interested

in the constant coefficient since it corresponds to no G×E effect and has important practical

implications. Tang et al. (2012) proposed a two step variable selection approach based on

an additive varying-coefficient model. They classified the non-parametric function into three

categories: varying, constant or zero. However, their model is a special case of our VMICM

model with the dimension of the X variable being one. No variable selection approach on

VMICM has been proposed to classify unknown non-parametric functions mk(·) into three

categories (varying, constant or zero), while at the same time selecting non-zero loading

parameter β. Following their previous work, we use B-spline basis functions to approximate
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unknown non-parametric functions mk(·), then using penalized regression to classify mk(·)

into varying, constant or zero. In addition, we select non-zero β via first order approximation

and penalized regression. We show that under mild regulatory conditions, our estimators

possess the oracle property, indicating that our penalized estimator works as well as if the

correct sub-model is known in advance.

The rest of the chapter is organized as follows. Section 2.2 introduces our proposed

variable selection approach, including estimation method, iteration approach, and how to

select various tuning parameters. Method on how to select initial values for β is also

discussed. In Section 2.3, we evaluate the theoretical properties of our approach. In Section

2.4, we perform simulations to evaluate the performance of our approach in finite samples,

followed by a real data application in Section 2.5 and a discussion.

2.2 Variable Selection Method

Throughout the chapter, superscript T is used to denote matrix transpose, ||.||p is used

to denote Lp norm, and log(a) is used to denote natural logarithm of a. For the sake of

simplicity, we use constant and non-zero constant interchangeably.

2.2.1 Model Setup

The varying multi-index coefficient model is set up as follows:

Y =

p∑
k=0

mk(Xβ)Gk + ε
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where Y n×1 = (Y1, Y2, . . . , Yn)T is a continuous response variable; n is the sample size.

mk(·), k = 0, 1, . . . , p are p + 1 unknown continuous functions; Xn×q = (X1,X2, . . . ,Xq)

are continuous loading covariates; βq×1 = (β1, . . . , βq)
T are the loading parameters;

Gn×(p+1) = (G0,G1, . . . ,Gp), G0 = (1, . . . , 1)T and Gk = (G1k, G2k, . . . , Gnk)T is a

continuous or discrete vector of length n for k = 1, 2, . . . p. In the model, mk(Xβ) is the

effect of Gk on Y for k 6= 0 and m0(Xβ) is the intercept function which models the marginal

effect of multiple X variables on Y . The error term ε is an unknown random error with

mean 0 and variance σ2. We further assumed εi and εj are independent ∀ 1 ≤ i, j ≤ n and

i 6= j.

2.2.2 Estimation Method

Our goal was to select and estimate unknown functions {mk(·)}k=0,1,...,p and unknown

loading parameter β = (β1, . . . , βq)
T . For identifiability purpose, we assume ||β||2 = 1

and β1 > 0, and mk(·) cannot has the form of mj(u) = αTuβTu+ γTu+ c.

We approximated the unknown function {mk(u)}k=0,1,...,p using B-spline basis functions.

Without loss of generality, we assumed u ∈ [0, 1]. Let K be the number of internal knots, h be

the degree of the B-spline basis function. So h = 1 represents linear splines, h = 2 represents

quadratic splines. Denote u1, u2, ..., uK be internal knots satisfying 0 = u0 =< u1 < u2 <

.... < uK < uK+1 = 1. Denote Int to be left closed, right opened interval [ut−1, ut) for

1 ≤ t ≤ K; InK+1
to be closed interval [uK , uK+1]. Denote F to be a collection of

functions f defined on [0, 1] satisfying: (i) the restriction of f to Int is a polynomial of

degree h or less for 1 ≤ j ≤ K + 1; (ii) f is h − 1 times continuous differentiable on [0, 1].

Let L = K + h + 1, by (Schumaker (2007)), we have normalized B-spline basis function

B̃(u) = (B̃1(u), B̃2(u), . . . , B̃L(u)) for F . And there exists a linear transformation matrix
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Π, such that ΠB̃(u) = (1, B̄(u)) = (1,B2(u),B3(u), . . . ,BL(u)) = B(u) where each

component of B̄(u) is a function of u. Then for 0 ≤ k ≤ p, we can estimate mk(u) by

mk(u) ≈ (1, B2(u), · · · , BL(u)) ∗ (γk1, γk2, · · · , γkL)T = B(u)γk = γk1 + B̄(u)γk∗ (2.2)

where γk∗ = (γk2, γk3, . . . , γkL)T and γk = (γk1,γ
T
k∗)

T . With B-spline approximation, (2.1)

can be rewritten as

Y =

p∑
k=0

{γk1 + B̄(Xβ)γk∗}Gk + ε. (2.3)

Thus, the original estimation problem can be transformed to estimate {γk1,γk∗}k=0,1,...,p

and β. Note: the transformation Π enable us to separate the constant effect of Gk on Y

from its jointly effect with X on Y . That is: (1) if ||γk∗||2 = (
∑L
l=2 γ

2
kl)

1/2 6= 0, then there

exists interaction between Gk and multiple X; (2) if ||γk∗||2 = 0 and |γk1| 6= 0, then Gk

has a constant effect on Y , i.e., no G×E interaction effect; and (3) if further ||γk∗||2 = 0

and |γk1| = 0 then Gk has no effect on Y at all.

To select and estimate the parameters {γk}k=0,1,...,p and β, we adopted the penalized

regression idea and minimized the following objective function:

Q(β,γ) =
n∑
i=1

g(Yi −
p∑

k=0

[γk1 + B̄(Xβ)γk∗]Gik) + n

p∑
k=1

pλ1(||γk∗||2)

+ n

p∑
k=1

pλ2(|γk1|)I(||γk∗||2 = 0) + n

q∑
d=2

pλ3(|βd|)
(2.4)

where g(·) is a loss function; pλ1(·), pλ2(·), pλ3(·) are penalty function of the corresponding

parameters; and I(·) is an indicator function.

Remarks: (1) From the construction of the penalty function, we penalized γk1 only if
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||γk∗||2 = 0. If ||γk∗||2 6= 0, it implies that the function is varying and no need to penalize

the constant part.

(2) No penalty was applied to the intercept function m0(·) as both γ0∗ and γ01 was not

involved in the penalty term. There is no practical motivation of penalizing the marginal

intercept function.

(3) No penalty was applied to the first loading parameter β1 in β due to the constraint.

For the penalty function, we used MCP penalty proposed by C. Zhang (Zhang (2010)),

p(x, λ) = λ
∫ x
0 (1 − s

τλ)+ds with regularization parameters τ > 0 and λ > 0. For the loss

function, we set g(·) to be squared error loss, (2.4) can be further rewritten as :

Q(β,γ) =
n∑
i=1

{
Yi −

p∑
k=0

[γk1 + B̄(Xβ)γk∗]Gik
}2

+ n

p∑
k=1

pλ1(||γk∗||1)

+ n

p∑
k=1

pλ2(|γk1|)I(||γk∗||1 = 0) + n

q∑
d=2

pλ3(|βd|)
(2.5)

where pλ1(·), pλ2(·), pλ3(·) are the MCP penalty function defined above.

2.2.3 Iterative Approach

Our modeling purpose was to separate the mk(·) function into three different categories:

varying, constat or zero, denoted by V, C and Z respectively. Following the ideas by Feng

and Xue (2013) and Tang et al. (2012), we adopted a three step iterative approach to obtain

our penalized estimator.

Step 1 : For given initial values of β, denoted by β̂
(0)

, we obtained our 1st step estimation
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of γ, denoted by γ̂(1) = {γ̂(1)k1 , γ̂
(1)T
k∗ }

T
k=0,1,...,p by following a group penalized regression,

γ̂(1) = arg min
γ

Q1(γ|λ1, β̂
(0)

)

where

Q1(γ|λ1, β̂
(0)

) =
n∑
i=1

{Yi −
p∑

k=0

[γk1 + B̄(Xβ̂
(0)

)γk∗]Gik}2 + n

p∑
k=1

pλ1(||γk∗||2).

Note that instead of penalizing each coordinate of γk∗ = (γk2, . . . , γkL)T separately, we

penalized the L2 norm of γk∗ because we want to assess the presence of joint varying effect of

X and Gk on Y . No penalty was applied to γ0∗ (the B-spline coefficients for the intercept

function m0(·)). Step 1 separates mk(·), k = 1, . . . , p into two categories: varying(V) or

non-varying(NV), and mk(·) ∈ V if ||γ̂(1)k∗ ||2 > 0 and mk(·) ∈ NV if ||γ̂(1)k∗ ||2 = 0.

Step 2 : The aim of this step was to select γk1 given γ̂
(1)
k∗ = 0. From the non-varying

functions obtained from step 1, we would like to further select the variables with constant

effects, and classify the non-parametric functions into constant(C) and zero (0). We penalized

γk1 only when ||γ̂(1)k∗ ||2 = 0, k = 1, 2, . . . , p, and no penalty is applied to γ01.

We obtained our step 2 estimator γ̂(2) = {(γ̂(2)k1 , γ̂
(2)
k∗ )k∈V , (γ̂

(2)
k1 )k∈NV } via penalized

regression

γ̂(2) = arg min
γ

Q2(γ|λ2,β(0), γ̂(1))
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where

Q2(γ|λ2,β(0), γ̂(1)) =
n∑
i=1

{Yi −
∑
k∈V

[γ
(2)
k1 + B̄(Xβ(0))γ

(2)
k∗ ]Gk −

∑
k∈NV

γ
(2)
k1 Gk}

2

+ n

p∑
k=1

pλ2(|γ(2)k1 |)I(||γ̂(1)k∗ ||2 = 0).

After Step 1 and 2, we had obtained the estimator of the B-spline coefficients γ and

classify mk(·) k = 1, . . . , p into V, C or 0. The next step is to select loading parameter β

given γ̂(2).

Step 3 : We obtained β̂ via penalized regression

β̂ = arg min
||β||2=1

Q3(β|λ3, γ̂(2))

where

Q3(β|λ3, γ̂(2)) =
n∑
i=1

(Yi −
p∑

k=0

[γ̂
(2)
k1 + B̄(Xβ)γ̂

(2)
k∗ ]Gk)2 + n

q∑
d=2

pλ3(|βd|).

Then we replaced β̂
(0)

by β̂, and iterate step 1 to 3 until convergence. The algorithms used

in each step would be discussed in Appendices.

2.2.4 Selection of tuning parameters

We proposed the following three step tuning parameters selection process based on Bayesian

Information Criterion (BIC) (Schwarz (1978)).
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Step 1: We took λ1 as the minimizer of

BIC(λ1) = log

n∑
i=1

(Yi −
p∑

k=0

[γ̂
(λ1)
k1 + B̄(Xβ̂

(0)
)γ̂

(λ1)
k∗ ]Gk)2 +

log(n)

n
∗ dfλ1

where {γ̂(λ1)k1 , γ̂
(λ1)
k∗ }k=0,1,...,p are the minimizers of Q1(γ|λ1, β̂

(0)
) defined above; β̂

(0)
is

chosen as the estimator from previous iteration; and dfλ1 is defined as the total number of

non zero coefficients if λ1 is the penalized parameter.

Step 2: We took λ2 as the minimizer of

BIC(λ2) = log
n∑
i=1

(Yi −
p∑

k=0

[γ̂
(λ2)
k1 + B̄(Xβ̂

(0)
)γ̂

(λ2)
k∗ ]Gk)2 +

log(n)

n
∗ dfλ2

where {γ̂(λ2)k1 , γ̂
(λ2)
k∗ }k=0,1,...,p are the minimizers of Q2(γ|λ2, β̂

(0)
) defined above; β̂

(0)
is

chosen as the estimator from previous iteration; and dfλ2 is defined as the total number of

non zero coefficients if λ2 is the penalized parameter.

Step 3: We took λ3 as the minimizer of

BIC(λ3) = log
n∑
i=1

(Yi −
p∑

k=0

[γ̂
(λ2)
k1 + B̄(Xβ̂

(λ3))T γ̂
(λ2)
k∗ ]Gk)2 +

logn

n
∗ dfλ3

where β̂
(λ3) is the minimizer of Q3(β|λ3, γ̂(2)) defined above; {γ̂(λ2)k1 , γ̂

(λ2)
k∗ }k=0,1,...,p are

minimizer of the B-spline coefficient from Step 2; and dfλ3 is defined as the total number of

non zero β if λ3 is the penalized parameter. We searched the optimal of λ1, λ2, λ3 over a

grid of 100 exponentially decreasing values with the minimum to be 1E-3, and the maximum

of λ1, λ2, λ3 were set to be the minimum value such that all of the penalized estimators are

0.
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2.2.5 Selection of the order h and the number of internal knots K

Since h is the order of the B-spline basis function, higher degree corresponds to more

complicated interactions and is less interpretable in practice. For instance, h = 2 implies

quadratic splines while h = 3 implies cubic splines. Hence, we searched optimal h over

the set h ∈ {2, 3, 4}. As for the selection of K, since only when K = Op(n
1

2r+1 ) (n is

the number of samples and r is the smoothness of our nonparametric function mk(·) and

r > 2), our selection approach possesses oracle properties. So we can search optimal K in

the neighborhood of n
1

2r+1 , which is denoted by K . In our simulation, K = {2, 3, 4, 5}.

In theory, we can select the optimal order and the interior knots for all the nonparametric

functions. However, this is practically infeasible due to the large search space and the

computational cost. Thus, we assumed that all the nonparametric functions share common

h and K, and fit the following intercept only model to select the optimal h and K,

Y = m0(Xβ) + ε. (2.6)

We searched the optimal K and h over a grid K ∈ K and h ∈ {2, 3, 4}. The optimal K and

h is defined as the K, h that minimize log
∑n
i=1(Ŷi − Yi)2 +

log(n)
n (K + h+ 1), where Ŷi is

the prediction of the ith subject under model (2.6).

2.2.6 Selection of Initial values for β

The algorithm described above needs a reasonable initial value for β (denoted by βinitial) to

start the iteration. Based on the optimal K and h selected, we fit the intercept only model

(2.6) via B-spline approximation and Newton-Raplson algorithm. βinitial was set to be the

estimator for β in (2.6).
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2.3 Theoretical Properties

Let β0 and m0
k(·), k = 0, 1, . . . , p be the true value of β and mk(·), respectively, and denote

γ0 be the true value of the B-spline coefficient γ. Without loss of generality, we assumed

β0l 6= 0 for l = 1, . . . s, β0l = 0 for l = s+ 1, . . . q; m0
k(·) is varying for k = 0, 1, . . . , v, m0

k(·) is

non-zero constant for k = v + 1, . . . , c and m0
k(·) is zero for k = c + 1, . . . , p. The following

theorems established the consistency of the penalized least square estimators.

Theorem 2.3.1. Assume the regulatory conditions (A1)-(A7) in Appendices hold and the

number of knots K = Op(n
1/(2r+1)). Then

(i) ||β̂ − β0|| = Op(n
−r/(2r+1) + an);

(ii) ||m̂k(·)−m0
k(·)|| = Op(n

−r/(2r+1) + an), k = 1, . . . , q

where

an = max
k,j,l
{p′λ1(||γ0k∗||2), p′λ2

(|γ0j1|), p
′
λ3

(|β0l |),γ
0
k∗ 6= 0, γ0j1 6= 0, β0l 6= 0}

and k, j = 1, . . . , p, l = 2, . . . , q, and r is defined in Appendices.

Theorem 2.3.2. Assume the regularity conditions (A1)-(A7) the Appendices hold and the

number of knots K = Op(n
1/(2r+1)). Let

λmax = max{λ1, λ2, λ3}, λmin = min{λ1, λ2, λ3}.

Suppose λmax → 0 and nr/(2r+1)λmin → ∞ as n → ∞.Then with probability approaching

1, β̂ and m̂k(·) must satisfy:

(i) β̂j = 0 for j = s+ 1, . . . , q

(ii) m̂k(·) = ck for k = v + 1, . . . , c where ck is some non-zero constant
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(iii) m̂k(·) = 0 for k = c+ 1, . . . , p

Theorem 2.3.1 and 2.3.2 show that our proposed variable selection approach is consistent

and possesses oracle property.

2.4 Simulation

We conducted extensive simulation to evaluate the performance of our proposed approach.

The performance is measured in several ways: (1) classification accuracy for function m(·),

denoted as oracle percentage; (2) IMSE of the estimated m(·) function; (3) selection accuracy

of β; and (4) estimation accuracy of β(MSE). Denote R as the total number of simulations.

Oracle percentage of m(·) is defined as the percentage of correct classification out of

a total of R simulations. For example, if mk(·) ∈ V , and out of R simulations, mk(·) is

classified as varying for g times, then the oracle percentage of mk(·) is g
R × 100%.

IMSE of mk(·) is defined as

IMSE =
1

R

R∑
r=1

[
1

ngrid

ngrid∑
j=1

(γ̂
(r)
k1 + B̄(uj)γ̂

(r)
k∗ −mk(uj))

2]

where ngrid is the number of points that we want to estimate the MSE of the predicted

function; γ̂
(r)
k∗ and γ̂

(r)
k1 are the estimators of the B-spline coefficients for the rth simulation

using the proposed estimation approach; β̂
(r)

is the estimator of the loading parameter β

for the rth simulation; and uj is taken at the j/ngrid × 100% quantile among the range of

Xβ̂
(r)

. For our simulations, ngrid is set to be 100.

Oracle percentage of β is defined as the percentage of correct selection of β out of R

simulations. For example, if βd 6= 0 and out of R simulations, βd is selected to be non-zero
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for g times, then the oracle percentage of βd is g
R × 100%.

MSE of βd is calculated as 1
R

∑R
r=1(β̂

(r)
d − βd)

2 where β̂
(r)
d is the estimator for βd in the

rth simulation.

2.4.1 Simulation Setting

The simulation data was generated according to the following model,

Y = m0(Xβ) +

p∑
k=1

mk(Xβ)Gk + ε

whereX was generated from a Unif(0, 1) distribution; β = (β1, β2, . . . , βq)
T ; β1 = β2 = 1√

2
;

and the rest β′js are zeros. We evaluated the performance of the proposed approach with

both continuous and discrete predictors G. For continuous G variables, they can be gene

expressions. For discreteG variables, they can be SNP variants. In either case, the dimension

of G can be large.

2.4.2 The Continuous Cases

In the continuous case, the non-parametric functions mk(u) are defined as follows: m0(u) =

2sin(2πu), m1(u) = 2cos(πu)+2 and m2(u) = sin(2πu)+cos(πu)+1 are varying functions;

m3(u) = 2 and m4(u) = 2.5 are non-zero constants; mk(u) = 0 for k = 5, . . . , p are zeros.

The number of loading parameters is set as q = 5 and β1 = β2 = 1√
2
, β3 = β4 = β5 = 0. G

was generated randomly from a N(0, 1) distribution, ε ∼ N(0, 1). We ran 1000 simulations

(R = 1000) to evaluate the performance of the proposed model under p = 50, 100.

Table 1 demonstrates the selection and estimation accuracy for non-parametric functions

with continuous G. The left and right penal corresponds to the case where p = 50 and
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100 respectively. For all the cases, the selection accuracy (oracle %) is very closed to 100%.

IMSE for varying functions (m0(·),m1(·) and m2(·)) is in the order of -2, and the IMSE

for constant functions (m3(·) and m4(·)) is in the order of -3. All of the model IMSE and

oracle IMSE are in the same order. Overall, the differences in oracle percentage and IMSE

are negligible between the case p = 50 and the case p = 100. These observations suggest

that our proposed variable selection approach possesses reasonable selection and prediction

accuracy for non-parametric function mk(·).

Table 1: Selection and prediction accuracy of mk(·) for continuous G

p = 50 p = 100

IMSE IMSE
Oracle % Model Oracle Oracle % Model Oracle

n = 500

m0(·) 100.0% 3.87E-02 4.27E-02 100.0% 3.77E-02 4.51E-02
m1(·) 99.6% 1.58E-02 2.42E-02 99.9% 1.57E-02 3.14E-02
m2(·) 99.9% 2.33E-02 2.58E-02 99.9% 2.26E-02 2.96E-02
m3(·) 100.0% 2.09E-03 2.11E-03 100.0% 1.90E-03 1.97E-03
m4(·) 100.0% 2.04E-03 2.06E-03 100.0% 2.07E-03 2.12E-03
Zero 99.7% 1.94E-05 0 99.9% 1.12E-05 0

n = 1000

m0(·) 100.0% 3.23E-02 3.40E-02 100.0% 3.31E-02 3.47E-02
m1(·) 100.0% 7.17E-03 1.21E-02 100.0% 7.07E-03 1.17E-02
m2(·) 100.0% 1.46E-02 1.59E-02 100.0% 1.46E-02 1.64E-02
m3(·) 100.0% 1.02E-03 1.02E-03 100.0% 9.60E-04 9.55E-04
m4(·) 100.0% 1.09E-03 1.09E-03 100.0% 1.06E-03 1.07E-03
Zero 99.8% 8.50E-06 0 99.9% 3.46E-06 0

Table 2 presents the selection and prediction accuracy for loading parameter β. The left

and the right penal correspond to the case where p = 50 and 100 respectively. It shows that

the selection accuracy for all β is reasonably good (> 98% in all cases). For most of the

β, the MSE is in the order of -4 or lower, except for β2, which was -3 for both p = 50 and

p = 100 when n = 500. The order of the model estimation for β is at least the same as that

of the oracle model if not lower. And we did not observe a difference in performance between
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the case p = 50 and the case p = 100. These results indicate that our model possesses good

selection and prediction accuracy for loading parameters β.

Table 2: Prediction accuracy of β for continuous G (β1 = β2 = 1√
2
, β3 = β4 = β5 = 0)

p = 50 p = 100

MSE MSE
Oracle % Model Oracle Oracle % Model Oracle

n = 500

β1 100.0% 1.15E-04 1.07E-04 100.0% 1.17E-04 1.30E-04
β2 100.0% 8.04E-03 4.12E-03 100.0% 2.26E-03 7.62E-03
β3 98.1% 9.98E-05 0 98.2% 3.64E-05 0
β4 98.8% 2.99E-05 0 99.1% 3.13E-05 0
β5 98.6% 1.00E-04 0 98.5% 7.73E-05 0

n = 1000

β1 100.0% 5.30E-05 5.52E-05 100.0% 5.00E-05 5.49E-05
β2 100.0% 5.34E-05 1.86E-03 100.0% 5.04E-05 1.79E-03
β3 98.9% 9.36E-06 0 98.8% 1.16E-05 0
β4 99.4% 6.30E-06 0 99.5% 5.49E-06 0
β5 99.1% 7.17E-06 0 99.0% 6.93E-06 0

2.4.3 For discrete G

We further evaluated how our proposed model performs with the discrete G. In this

simulation, each G variable was simulated from a multinomial distributions with minor

allele frequency (MAF) denoted as Pa. The G variable took values 0, 1, and 2 corresponding

to the genotype aa, Aa, and AA where a is the minor allele. The frequencies corresponding

to the three genotypes (aa, Aa, and AA) are P 2
a , 2Pa(1 − Pa) and (1 − Pa)2. We varied

the MAF for different G variables to evaluate the impact of the MAF on the selection

performance. Specifically, for k = 1, 2, 7, Pa = 0.5; for k = 3, 4, 8, Pa = 0.3; for k = 5, 6, 9,

Pa = 0.1, and for k = 10, 11, . . . , p, Pa ∼ Unif(0.05, 0.5). For the non-parametric functions,

we set m0(u) = 2sin(2πu), m1(u) = m3(u) = m5(u) = 2cos(πu) + 2, m2(u) = m4(u) =

m6(u) = sin(2πu) + cos(πu) + 1; m7(u) = m8(u) = m9(u) = 2; and mk(u) = 0 for
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k = 10, 11, . . . , p. Under the setup, we have both varying and constant effect with different

minor allele frequencies. For the zero effects, the MAF for Gk ranged uniformly from 0.05

to 0.5. X was generated from Unif(0, 1) and ε was generated from N(0, 1). Finally, Y was

generated according to model (2.1). We evaluated the performance of our proposed model

via 1000 simulations under p = 50, 100 and n = 500, 1000.

Table 3 and figure 1 present the selection and estimation accuracy of non-parametric

function mk(·) for discrete G. We observed that the oracle percentage is very high (> 99%)

for all cases, indicating our proposed model can correctly select the coefficient functions with

high accuracy. The IMSE for varying functions was of the order −1 or −2, while the IMSE

for constant functions was of the order −2 or−3. Moreover, the IMSE of the proposed model

was in the same order of the IMSE of the oracle model. With the decrease of minor allele

frequency Pa of Gk (from 0.5 to 0.1), we observed an increase in both model IMSE and

oracle IMSE. This is consistent with our expectation since SNP with lower MAF provides

less information. We did not observe a difference in oracle percentage and IMSE between

the case p = 50 and p = 100. This suggests that our model performs reasonably well in

both cases. The case n = 1000 performed slightly better than the case n = 500, and it is

consistent with the asymptotic property of the model. Overall, the proposed model performs

reasonably well in the selection and estimation of non-parametric functions.
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Table 3: Selection and prediction accuracy of mk(·) for discrete G.

p = 50 p = 100
IMSE IMSE

Oracle % Model Oracle Oracle % Model Oracle

n = 500

m0(·) 100.0% 4.67E-02 4.34E-02 100.0% 5.06E-02 5.22E-02
m1(·) 99.7% 3.71E-02 3.54E-02 99.6% 4.02E-02 4.53E-02
m2(·) 99.7% 4.56E-02 4.26E-02 99.4% 4.92E-02 4.77E-02
m3(·) 99.7% 4.39E-02 4.19E-02 99.4% 4.95E-02 5.44E-02
m4(·) 99.6% 5.13E-02 4.93E-02 99.4% 5.68E-02 5.45E-02
m5(·) 99.6% 1.15E-01 1.53E-01 99.2% 1.33E-01 2.02E-01
m6(·) 99.6% 1.29E-01 1.24E-01 99.3% 1.33E-01 1.30E-01
m7(·) 100.0% 4.53E-03 4.50E-03 99.9% 4.74E-03 4.56E-03
m8(·) 100.0% 5.34E-03 5.30E-03 99.8% 6.26E-03 6.03E-03
m9(·) 100.0% 1.27E-02 1.26E-02 99.9% 1.21E-02 1.24E-02
Zero 99.6% 1.82E-04 0 99.6% 1.28E-04 0

n = 1000

m0(·) 100.0% 3.11E-02 3.31E-02 100.0% 3.11E-02 3.20E-02
m1(·) 99.9% 1.44E-02 1.96E-02 100.0% 1.44E-02 1.93E-02
m2(·) 99.9% 2.16E-02 2.37E-02 100.0% 2.13E-02 2.34E-02
m3(·) 99.9% 1.69E-02 2.19E-02 100.0% 1.74E-02 2.20E-02
m4(·) 99.9% 2.35E-02 2.50E-02 100.0% 2.40E-02 2.56E-02
m5(·) 99.9% 4.10E-02 4.55E-02 100.0% 4.25E-02 4.74E-02
m6(·) 99.9% 4.62E-02 5.01E-02 100.0% 4.65E-02 4.85E-02
m7(·) 100.0% 2.29E-03 2.34E-03 100.0% 1.89E-03 1.89E-03
m8(·) 100.0% 2.67E-03 2.66E-03 100.0% 2.62E-03 2.63E-03
m9(·) 100.0% 5.61E-03 5.69E-03 100.0% 6.03E-03 6.08E-03
Zero 99.8% 3.10E-05 0 99.9% 1.15E-05 0
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Figure 1: Selection and estimation accuracy of mk(·) for discrete G

Table 4 presents the selection and estimation result of the loading parameters β. The

left and right panel represent the case where p = 50 and p = 100, respectively. We observed

that the oracle percentage in all the cases is above 97% and the MSE for the estimation

of β is of the order −3 or lower in the proposed and oracle model. With the increase of

model dimension p (from 50 to 100), we observed a slight increase model MSE. This is

expected since model performance usually decreases as complexity increases. Further, the

case where n = 1000 performed slightly better than the case n = 500, and it is consistent

with the asymptotic theory of the model. Overall, the proposed variable selection approach
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can correctly select and estimate the loading parameters with high accuracy.

Table 4: Prediction accuracy of β for discrete G (β1 = β2 = 1√
2
, β3 = β4 = β5 = 0)

p = 50 p = 100

MSE MSE
Oracle % Model Oracle Oracle % Model Oracle

n = 500

β1 100.0% 2.86E-04 1.04E-04 100.0% 6.36E-04 2.13E-04
β2 99.8% 2.84E-03 1.04E-04 99.7% 6.89E-03 6.13E-03
β3 97.4% 9.38E-05 0 97.0% 2.15E-04 0
β4 99.1% 4.08E-05 0 98.6% 2.21E-04 0
β5 97.3% 7.04E-05 0 98.2% 1.68E-04 0

n = 1000

β1 100.0% 5.45E-05 5.03E-05 100.0% 5.20E-05 6.03E-05
β2 100.0% 1.92E-03 2.09E-03 100.0% 5.20E-05 1.74E-03
β3 99.3% 5.19E-06 0 99.0% 1.10E-05 0
β4 99.3% 4.21E-06 0 98.9% 9.69E-06 0
β5 99.2% 7.51E-06 0 99.5% 2.64E-06 0

To summarize, the proposed method possesses reasonable selection and estimation

accuracy for non-parametric functions mk(·) and their loading parameters β in all cases.

With the increase of the sample size n, we observed a small increase in oracle percentage for

both non-parametric functions mk(·) and their loading parameters β. We also observed a

decrease in IMSE of mk(·) and MSE of β. These coincide with the asymptotic theory of our

model.

2.5 Real Data Application

We demonstrated the utility of the model with a human liver cohort (HLC) data set. The

data set is consisted of genotype (SNPs), gene expressions, and phenotypes (activity of several

liver enzymes). The data set can be downloaded from www.synapse.org using synapse ID:

syn4499. For more details regarding the data set, please refer to Schadt et al. (2008) and
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Yang et al. (2010). In the HLC data set, the phenotypes are enzyme activity measurements

of Cytochrom P450. There are a total of nine P450 enzymes (CYP1A2, 2A6, 2B6, 2C8,

2C9, 2C19, 2D6, 2E1, and 3A4). However, only CYP2E1 passed Shapiro-Wilk normality

test (p-value > 0.1) after log transformation. Hence, we focused the analysis on CYP2E1

activity (Y ). For the environmental variable (X), we set X1 = Age, X2 = Aldehyde

Oxydase, and X3 = Liver Triglyceride, then transform Xi, i = 1, 2, 3 to range [0,1] with

X ′ij =
Xij−minj=1,2,...,n(Xij)

maxj=1,2,...,n(Xij)−minj=1,2,...,n(Xij)
. Where Xij denotes the jth observation of Xi,

j = 1, . . . n. In this analysis, we focused on gene expressions and treated them as the G

variable. After data cleaning, we had n = 394 (sample size) and N = 19, 172 (number of

gene expressions).

We implemented the proposed selection approach to pathway hsa00510

N-Glycan biosynthesis. Based on the KEGG pathway database

(http://www.genome.jp/kegg/pathway.html), pathway hsa00510 is mapped to 44 gene

expressions in our data. Due to model constrain of VMICM, the first loading parameter

must be a non-zero positive number (β1 > 0). Hence, we fit the proposed model three times

with age, aldehyde oxydase, and liver triglyceride being the first loading covariate. Gene

expression PGGT1B was selected as varying coefficient predictor in all three models. Gene

expression B4GALT3 and B3GNT3 were selected as constant coefficient predictors in two

models (age and aldehyde oxydase being the first loading covariate).
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Figure 2: Plot of the varying coefficient effect for gene expression PGGT1B.

Table 5: The estimated loading parameters

Aldehyde Oxydase Age Liver Triglyceride

0.879 0.477 0

Figure 2 presents the plot of the marginal environmental effect and the effect of gene

PGGT1B on log of CYP2E1 activity with aldehyde oxydase being the first loading covariate.

With the increase of loading index Xβ, marginal environmental effect (m0(·)) first increased

from 6.9 to 7.6, then it fluctuated around 7.5 before decreasing sharply to 7.0. For gene

expression PGGT1B, its effect on the log of CY P2E1 activity first decreased sharply from

0.8 to -0.2, then it fluctuated around -0.1 for the remainder of the index. This suggests that

the G×E effect of gene expression PGGT1B mainly exists in the lower quantile of aldehyde

oxydase and age. With aldehyde oxydase being the first loading covariate, the constant

effects of gene expression B4GALT3 and B3GNT3 were -0.0618 and -0.0624 respectively.

These suggest that the effect of gene expression B4GALT3 and B3GNT3 on the log of
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CY P2E1 activity does not interact with environmental factors.

Table 5 presents the selection result of environmental factors with aldehyde oxydase

being the first loading covariate. The model selected aldehyde oxydase and age as significant

environmental factors, their estimation were 0.879 and 0.477 respectively. Base on their

value, aldehyde oxydase have a stronger effect than age.

This result demonstrates the unique ability of the proposed method to capture the

non-linear interaction between a mixture of environmental variants and genetic variables.

However, further biological investigation is needed to confirm this finding.

2.6 Discussion

VMICM is a promising candidate to model non-linear interaction between multiple genes

and multiple environments as a whole. It combines multiple exposure variables X into a

single indexXβ, hence can reduce model dimension and alleviate the curse of dimensionality.

In this paper, we developed a three stage variable selection approach for VMICM model.

Our goal was to identify varying, constant and zero effect that interacted with a gene. In

the meantime, we also selected important exposure variables. Rather than modeling the

G×E effect for each X variable separately, our approach can model the joint effect of the

environmental factors (X) as a whole, then identify how different genes (G) interacted with

the environmental mixture to affect the phenotype Y . Biologically speaking, our approach is

attractive since it offers an alternative strategy to look for G×E interaction, and our model

is flexible to detect any non-linear interactions. In addition, we theoretically evaluated

the selection consistency of the variable selection. Both simulation and real data analysis

demonstrated the utility of the proposed method.
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In our model setup, the covariates X were assumed to be continuous. This is due to

the fact that the index Xβ has to be continuous in order to model the nonlinear function.

In real applications, environmental variables can be discrete such as smoking status, gender

and ethnicity. To accommodate the presence of discrete factors, the model VMICM could

be generalized to partial-linear VMICM: Y = Zα +
∑p
k=0mk(Xβ)Gk + ε where Z is

the discrete covariates of dimension r and α is its effect on the response. Our variable

selection approach can be modified slightly to perform selection of non-parametric function

and the parametric component simultaneously. More specifically, the objected function (2.5)

is modified as

Q(β,γ) =
n∑
i=1

{Yi −Ziα−
p∑

k=0

[γk1 + B̄(Xβ)γk∗]Gik}2 + n

p∑
k=1

pλ1(||γk∗||1)

+ n
r∑
j=1

pλz (|αj |) + n

p∑
k=1

pλ2(|γk1|)I(||γk∗||1 = 0) + n

q∑
d=2

pλ3(|βd|).

And the objective function in step 1 is modified as

Q1(γ|λz, λ1, β̂
(0)

) =
n∑
i=1

{Yi −Ziα−
p∑

k=0

[γk1 + B̄(Xβ̂
(0)

)γk∗]Gik}2

+ n

p∑
k=1

pλ1(||γk∗||2) + n
r∑
j=1

pλz (|αj |).

In this paper, we discussed the variable selection approach for VMICM with a continuous

response variable. However, many response variables are measured on a binary scale such

as the presence of a certain disease in humans. It is natural to extend the current selection

approach to a generalized VIMCM framework, which will be investigated in chapter 3.
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In our model formulation, we assumed different index coefficients share the common

loading parameters, i.e., β0 = β1 = · · · = βp = β. From a practical point of view, allowing

different loading parameters makes perfect sense. However, such a model imposes theoretical

challenges when evaluating the theoretical properties such as the selection consistency. This

is because that the loading coefficients for the kth index coefficients are not identifiable

when mk(u) /∈ V . When a coefficient function does not vary, βk does not exists. Thus, the

selection consistency for βk does not exists. For this reason, we imposed the same loading

parameters for all the index coefficient functions.

In addition to the application to G×E study, our model has many applications in other

fields where a potential nonlinear varying effect exists. Our method enriches the catalog of

variable selection. It contributes to the methodology development of variable selection in

theory and to the application of G×E study in practice.
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Chapter 3

Variable Selection for Generalized

VMICM

3.1 Introduction

There has been a growing interest in identifying gene-environment (G×E) interaction in

scientific literatures. Ottman(1996) defined gene-environment interaction as “a different

effect of a genotype on disease risk in persons with different environmental exposures”.

Traditionally, G×E interactions were investigated based on a single environmental

factor, since introduction of several environmental factors will increase model dimension

exponentially, which could potentially lead to biased estimation and large standard error

(curse of dimensionality). However, more and more epidemiological studies revealed that

disease risk can be modified by simultaneously exposure to several environmental factors

(Carpenter et al. (2002), Sexton and Hattis (2007)). Further, little was known about how

multiple environmental factors as a whole could interact with genetic factors to affect the

response variable. Any investigation in this area could shed some light into the disease

etiology and offer prospects for future disease prevention.

In chapter 2, we proposed to use varying multi-index coefficient model of the form Y =∑p
k=0mk(Xβ)Gk + ε to model the non-linear gene-environmental interaction. However,
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VMICM can only model continuous phenotype. In this chapter, we generalized VMICM to

model data with binary response variables. Consider the generalized varying multi-index

coefficient model (gVMICM)

log
(P (Y = 1|X,G)

P (Y = 0|X,G)

)
=

p∑
k=0

mk(Xβ)Gk (3.1)

where mk(·), k = 0, 1, . . . , p represents the gene effect of Gk, and is modeled as a smoothed

non-linear non-parametric function modulated by the loading index Xβ. Its unique

structure allows us to capture the interaction effect between genetic factors and a mixture of

environmental factors. Further, model (3.1) is very flexible to cover a wide range of models.

For instance, if q = 1 and β = 1 then it reduces to a generalized varying coefficient mode; if

p = 1 and G = 1 then it becomes a standard generalized single index model.

Variable selection has been a popular topic in modern statistics literature. In the past,

people often implemented hypothesis testing, forward/backward selection combined with

AIC or BIC. Nevertheless, with the rise of big data, we were able to collect hundreds

of thousands of variables at the same time. Traditional methods are no longer feasible

because of exponentially increasing computation time and unstable estimation due to

increasing collinearity. Recently, variable selection via penalized regression has become fairly

popular. The idea is to add a penalty term to the optimization function. With different

penalty functions, the penalized estimator could possess different properties. Fan and Li

(2001) proposed three important criteria for penalized estimator: sparsity, unbiasedness

and continuity. They also characterized oracle property meaning the model performs as

well as if the true sub-model is known in advance. It has become the standard for new

penalized estimator. A few examples of the penalized function would be Bridge regression
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(Frank and Friedman (1993)), least absolute shrinkage and selection operator (LASSO)

(Tibshirani (1996)), its extension adaptive LASSO (Zou (2006)), smoothly clipped absolute

deviation (SCAD) (Fan and Li (2001)), and minimax concave penalty (MCP) (Zhang (2010)).

Although LASSO enjoys simple formulation and efficient algorithm (LARS), it does not

possess oracle property. On the other side, Adaptive LASSO, SCAD, MCP all posses oracle

property and we decided to implement MCP in our model.

Due to the complexity of model (3.1), variable selection presents unique challenge,

specifically, the nonlinear and non-parametric structure of function mk(·) and its unknown

loading parameter β. In chapter 2, we proposed a three stage variable selection approach for

VMICM. The model classified the non-parametric gene effect into varying, constant and zero.

It also selected non-zero loading parameters. In this chapter, we extended such approach to

gVMICM. In stead of penalizing squared error loss for VMICM, we decided to implement

the penalized log-likelihood method in this model.

The rest of this chapter is organized as follows: section 3.2 introduced the proposed

variable selection method, formulation of the penalized log-likelihood, three step iterative

optimization approach, and selection of tuning parameters. In section 3.3, we discussed the

asymptotic properties of the proposed method. And we evaluated the performance of our

method via several simulations in section 3.4. Utility of our model was demonstrated with

a Type II diabetes data set in section 3.5, followed by discussion and future work.

37



3.2 Variable Selection for gVMICM

3.2.1 Model Setup

Consider the following gVMICM model

log(
P (Y = 1|X,G)

P (Y = 0|X,G)
) =

p∑
k=0

mk(Xβ)Gk

where Y n×1 = (Y1, Y2, . . . , Yn)T is a binary response variable measured over n subjects;

mk(·), k = 0, 1, . . . , p are p+1 unknown smooth non-linear functions; X = (X1, . . . ,Xq) is a

matrix of dimension n×q representing continuous environmental variables; β = (β1, . . . , βq)
T

is the loading parameter of dimension q; Gn×(p+1) = (G0,G1, . . . ,Gp), G0 = (1, . . . , 1)T

and Gk = (G1k, G2k, . . . , Gnk)T is the k − th genetic factor. For k 6= 0, mk(Xβ) is the

effect of Gk on the response on a log odda scale; m0(Xβ) is the intercept term measuring

the marginal environmental effect.

For ease of notation, we denoted µ =
∑p
k=0mk(Xβ)Gk. Thus, model (3.1) can be

rewritten as

log(
P (Y = 1|X,G)

P (Y = 0|X,G)
) = µ. (3.2)

3.2.2 Estimation Method

Our goal was to select and estimate unknown functions {mk(·)}k=0,1,...,p and their unknown

loading parameter β = (β1, . . . , βq)
T . For the sake of identifiability, we assumed ||β||2 = 1

and β1 > 0, and mk(·) cannot has the form of mj(u) = αTuβTu+ γTu+ c.

We first approximated the non-parametric function mk(u) with B-spline basis functions.

Without loss of generality, we assumed u ∈ [0, 1], and denoted K to be the number of internal
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knots and h to be the degree of B-spline basis function. So h = 1 represents linear splines;

h = 2 represents quadratic splines; and h = 3 represents cubic splines. From standard

B-spline theory, we denoted u1, u2, ..., uK to be the interior knots satisfying 0 = u0 =< u1 <

u2 < .... < uK < uK+1 = 1. Let Int be left closed, right opened interval [ut−1, ut) for

1 ≤ t ≤ K, and InK+1
be closed interval [uK , uK+1]. Let F to be a collection of functions

f defined on [0, 1] satisfying: (i) the restriction of f to Int is a polynomial of degree h

or less for 1 ≤ j ≤ K + 1; (ii) f is h − 1 times continuously differentiable on [0, 1]. Let

L = K + h+ 1, then by Schumaker (1981)(Schumaker (2007)), we normalized B-spline basis

function B̃(u) = (B̃1(u), B̃2(u), . . . , B̃L(u)) for F . And there exists a linear transformation

matrix Π, such that ΠB̃(u) = (1, B̄(u)) = (1,B2(u),B3(u), . . . ,BL(u)) = B(u) where

each component of B̄(u) is a function of u. Hence, for 0 ≤ k ≤ p, we approximated mk(u)

by

mk(u) ≈ (1, B2(u), · · · , BL(u)) ∗ (γk1, γk2, · · · , γkL)T = B(u)γk = γk1 + B̄(u)γk∗ (3.3)

where γk∗ = (γk2, γk3, . . . , γkL)T and γk = (γk1,γ
T
k∗)

T . We approximated µ with µB :

µB =

p∑
k=0

[γk1 + B̄(Xβ)γk∗]Gk (3.4)

where γk1, k ≥ 1 represents the main genetic effect for the kth variant and γk∗, k ≥ 1

represents the G×E interaction effect between the kth variant and a mixture of the

environmental variables.

With this new representation, the selection of the non-parametric function mk(·) was

transformed to the selection of its B-splines coefficients γ = {γk1,γk∗}k=0,1,...,p. The

transformation Π allows us to separate constant effect of Gk from its varying effect. More
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specifically, (1) if ||γk∗||2 6= 0, then there exists G×E effect; (2) if ||γk∗||2 = 0 and |γk1| 6= 0,

then there only exists main genetic effect; and (3) if ||γk∗||2 = 0 and |γk1| = 0, then Gk has

no effect at all. This transformation is the key step to separate different genetic effects.

Given the binary response, the log-likelihood function is defined as:

l(γ,β) =
n∑
i=1

(Yiµ
B
i − log(1 + eµ

B
i ))

where µBi is the ith subject of µB . We defined the following penalized log-likelihood objective

function,

M(β,γ) =
n∑
i=1

(Yiµ
B
i − log(1 + eµ

B
i ))− n

p∑
k=1

pλ1(||γk∗||2)

− n
p∑

k=1

pλ2(|γk1|)I(||γk∗||2 = 0)− n
q∑

d=2

pλ3(|βd|)
(3.5)

where pλ1(·), pλ2(·), pλ3(·) are the penalty functions for γk∗, γk1 and β, respectively; I(·) is

an indicator function. The construction of the penalty functions in (3.5) implies that there

is a natural order when selecting the effect of Gk. First, the model selects Gk with varying

effect. If Gk does not have a varying effect, the model penalizes the constant effects of Gk.

We did not penalize β1 due to the model constraint. For the penalty function, we adopted the

MCP penalty function proposed by Zhang (Zhang (2010)), i.e., p(x, λ) = λ
∫ x
0 (1 − s

τλ)+ds

with regularization parameters τ > 0 and λ > 0.

3.2.3 Computational algorithm

To optimize function (3.5), we followed the idea proposed in chapter 2 and adopted a 3 step

interactive approach.
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Step 1 : Given an initial value for β, denoted as β̂
(0)

, we obtained the 1st step estimation

of γ, denoted as γ̂(1) = {γ̂(1)k1 , γ̂
(1)T
k∗ }

T
k=0,1,...,p by following a group penalized regression, i.e.,

γ̂(1) = arg max
γ

M1(γ|λ1, β̂
(0)

)

where

M1(γ|λ1, β̂
(0)

) =
n∑
i=1

(Yiµ
B
i − log(1 + eµ

B
i ))− n

p∑
k=1

pλ1(||γk∗||2).

Step 1 classified mk(·), k = 1, . . . , p into two categories: varying(V) or non-varying(NV).

That is, mk(·) ∈ V if ||γ̂(1)k∗ ||2 > 0 and mk(·) ∈ NV if ||γ̂(1)k∗ ||2 = 0.

Step 2 : In this step, our interest was to select γk1 given γ̂
(1)
k∗ = 0. We further selected

constant coefficient from the non-varying coefficient obtained in step 1. We penalized γk1

only when ||γ̂(1)k∗ ||2 = 0, k = 1, 2, . . . , p, and no penalty was applied to γ01. We excluded

γk∗ from the model if ||γ̂(1)k∗ ||2 = 0 in step 1, i.e. γ̂
(2)
k∗ = 0. We obtained our step 2 estimator

γ̂(2) = {(γ̂(2)k1 , γ̂
(2)
k∗ )k∈V , (γ̂

(2)
k1 )k∈NV } via penalized regression

γ̂(2) = arg max
γ

M2(γ|λ2,β(0), γ̂(1))

where

M2(γ|λ2,β(0), γ̂(1)) =
n∑
i=1

(Yiµ
B(2)
i − log(1 + eµ

B(2)
i ))− n

p∑
k=1

pλ2(|γ(2)k1 |)I(||γ̂(1)k∗ ||2 = 0).

µB
(2)

i is the ith element of µB
(2)

with µB
(2)

=
∑
k∈V [γ

(2)
k1 + B̄(Xβ(0))γ

(2)
k∗ ]Gk +∑

k∈NV γ
(2)
k1 Gk.

After step 2, we obtained our estimators of the B-splines coefficients γ for given β̂
(0)
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and classified mk(·) k = 1, . . . , p into varying, constant or zero effects. The next step is to

update and select the loading parameter β given γ̂(2).

Step 3 : We obtained β̂ via penalized regression

β̂ = arg max
||β||2=1

M3(β|λ3, γ̂(2))

where

M3(β|λ3, γ̂(2)) =
n∑
i=1

(Yiµ
B(3)
i − log(1 + eµ

B(3)
i ))− n

q∑
d=2

pλ3(|βd|).

µB
(3)

i is the ith element of µB
(3)

with µB
(3)

=
∑p
k=0[γ̂

(2)
k1 + B̄(Xβ)γ̂

(2)
k∗ ]Gk.

Once we have the updated β̂, we set β̂
(0)

= β̂, then iterate step 1 through 3 until

convergence.

Remark: For step 1 and 2, we implemented the block coordinate descent algorithm

for group penalty. For step 3, we developed our algorithm based on the idea of the local

quadratic approximation (LQA) proposed by Fan and Li(2001). For more detail, please refer

to the Appendices. Next we discuss details about selecting the tuning parameters λ1, λ2, λ3,

order h and the number of interior knots K for the B-spline approximation, as well as a

reasonable initial value for β.

3.2.4 Selection of Parameters

3.2.4.1 Selection of tuning parameters λ1, λ2, λ3

We proposed to use Bayesian Information Criterion (BIC) (Schwarz (1978)) to select the

tuning parameters.
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Step 1: We selected λ1 as the minimizer of

BIC(λ1) = −2l(γ̂
(1)
λ1
, β̂

(0)
) + log(n) ∗ dfλ1

where γ̂
(1)
λ1

is the minimizer of M1(γ|λ1, β̂
(0)

) defined above; β̂
(0)

is chosen as the estimator

from the previous iteration; and dfλ1 is defined as the total number of non-zero coefficients

if λ1 is the penalized parameter.

Step 2: We selected λ2 as the minimizer of

BIC(λ2) = −2l(γ̂
(2)
λ2
, β̂

(0)
) + log(n) ∗ dfλ2

where γ̂
(2)
λ2

is the minimizer of M2(γ|λ2,β(0), γ̂(1)) defined above; β̂
(0)

is chosen as the

estimator from the previous iteration; and dfλ2 is defined as the total number of non-zero

coefficients if λ2 is the penalized parameter.

Step 3: We selected λ3 as the minimizer of

BIC(λ3) = −2l(γ̂(2), β̂λ3) + log(n) ∗ dfλ3

where β̂λ3 is the minimizer of M3(β|λ3, γ̂(2)) defined above; γ̂(2) is the minimizer of the

B-spline coefficient from step 2; and dfλ3 is defined as the total number of non-zero β if λ3

is the penalized parameter.

The penalized parameter λ1, λ2, λ3 were chosen over a grid of exponentially decreasing

values with the minimum to be 1E-3. The maximum of λ1, λ2, λ3 were set to be the minimum

values such that all of the penalized estimators are zeros. The number of grid to be searched

was set as 100.
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3.2.4.2 Selection of order h and number of interior knots K

In theory, it might be appealing to allow different K and h for different non-parametric

functions mk(·). In practice, it would be computationally infeasible. For computational

purpose, we let all mk(·) share the same K and h. Since h is the order of the B-spline

basis function, higher degree implies more complicated interactions between environmental

factors and genetic predictors, thus, more difficult to interpret. For this reason, we searched

optimal h over the set h ∈ {2, 3, 4}. For the interior knots K, only when K = Op(n
1

2r+1 ) (n

is the sample size and r is the smoothness of the nonparametric function mk(·) and r > 2),

our selection approach possesses oracle properties. Thus, we searched optimal K in the

neighborhood of n
1

2r+1 , denoted by K . In our simulation, we chosed K = {2, 3, 4, 5}.

The knots K and order h were then selected by fitting the following intercept only model

with the B-spline approximation and Newton-Raphson algorithm.

log(
P (Y = 1|X,G)

P (Y = 0|X,G)
) = m0(Xβ). (3.6)

Denote the estimated spline coefficients as (γ̂01, γ̂0∗) and the loading parameters as β̂, and

let m̂0(Xβ̂) = γ̂01 + B̄(Xβ̂)γ̂0∗. We searched the optimal K and h over a grid K ∈ K

and h ∈ {2, 3, 4}. Optimal K and h are defined as the K and h that minimized log
(
Y ∗

m̂0(Xβ̂)− log(1 + em̂0(Xβ̂))
)

+
log(n)
n (K + h+ 1).

3.2.5 Choosing the initial values

To start the iterative optimization process described above, a reasonably good initial value of

β, βinitial is essential. In many literature, βinitial is set to be (1, 0, . . . , 0)T or ( 1√
q , . . . ,

1√
q )T .

However, neither works well in our simulations. Hence, we set the initial value of β as the
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byproduct of selecting the optimal K and h by fitting the intercept only model in (3.6).

3.3 Theoretical Properties

Let β0 and m0
k(·), k = 0, 1, . . . , p be the true value of β and mk(·), respectively. Denote γ0

to be the true value of the B-spline coefficients γ. Without loss of generality, we assumed

β0l 6= 0 for l = 1, . . . s, β0l = 0 for l = s + 1, . . . q; m0
k(·) has varying coefficients for

k = 0, 1, . . . , v, m0
k(·) has non-zero constant coefficients for k = v + 1, . . . , c and m0

k(·) is

zero for k = c + 1, . . . , p. The following theorems give the consistency of the penalized

log-likelihood estimators.

Theorem 3.3.1. Assume the regulatory conditions (A1)-(A7) in Appendices hold and the

number of knots K = Op(n
1/(2r+1)). Then

(i) ||β̂ − β0|| = Op(n
−r/(2r+1) + an);

(ii) ||m̂k(·)−m0
k(·)|| = Op(n

−r/(2r+1) + an), k = 1, . . . , q

where

an = max
k,j,l
{p′λ1(||γ0k∗||2), p′λ2

(|γ0j1|), p
′
λ3

(|β0l |),γ
0
k∗ 6= 0, γj1 6= 0, β0l 6= 0}.

k, j = 1, . . . , p, l = 2, . . . , q. r is defined in condition (A2) in Appendices. p′λ(·) denotes the

first order derivative of the penalty function pλ(·).

Theorem 3.3.2. Assume the regularity conditions(A1)-(A7) in Appendices hold and the

number of knots K = Op(n
1/(2r+1)). Let

λmax = max{λ1, λ2, λ3}, λmin = min{λ1, λ2, λ3}.
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Suppose λmax → 0 and nr/(2r+1)λmin →∞ when n→∞.Then with probability approaching

1, β̂ and m̂k(·) must satisfy:

(i) β̂j = 0 for j = s+ 1, . . . , q

(ii) m̂k(·) = ck for k = v + 1, . . . , c where ck is some non-zero constant

(iii) m̂k(·) = 0 for k = c+ 1, . . . , p

Theorem 3.3.1 and 3.3.2 show that our penalized likelihood estimators are consistent and

possess oracle properties.

3.4 Simulation

We evaluated the finite sample performance of our model via simulations. Its performance

was evaluated in several ways: (1) classification accuracy of the m(·) denoted as oracle

percentage; (2) IMSE of the estimated m-functions; (3) selection accuracy of β; and (4)

estimation accuracy of β (MSE). For all cases, we ran a total of R simulations.

The oracle percentage of m(·) is defined as the percentage of correct classification for

varying, constant and zero effects. For instance, if mk(·) is a varying function and mk(·) is

classified as varying for g times, then the oracle percentage of mk(·) is calculated as g
R×100%.

IMSE of mk(·) is defined as

1

R

R∑
r=1

[
1

ngrid

ngrid∑
j=1

(γ̂
(r)
k1 + B̄(uj)γ̂

(r)
k∗ −mk(uj))

2]

where ngrid is the number of grid points; γ̂
(r)
k∗ and γ̂

(r)
k1 are the estimators of the B-spline

coefficients for the rth simulation using the proposed estimation approach; β̂
(r)

is the

estimator of the loading parameter β for the rth simulation; and uj is taken at the
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j/ngrid × 100% quantile among the range of Xβ̂
(r)

. In the simulations, ngrid was set

to be 100.

The oracle percentage of β is defined as the percentage of correct selection of β out of R

simulations. For example, if βd 6= 0, and βd is selected as non-zero for g times, then the oracle

percentage of βd is calculated as g
R ×100%. MSE of βd is calculated as 1

R

∑R
r=1(β̂

(r)
d −βd)

2,

where β̂
(r)
d is the estimator for βd in the rth simulation.

The simulation data were generated according to model (3.1). The index matrix X was

generated from a Unif(0, 1) distribution. For the loading parameter β, β1 = β2 = 1√
2

and

the rest β′js are zeros. We evaluated the performance of the proposed approach with both

continuous and discrete predictors G. The continuous G can be gene expressions and the

discrete G can be SNP variants.

3.4.1 For continuous G

In the continuous case, the non-parametric functions mk(u) are defined as follows: m0(u) =

2sin(2πu), m1(u) = 2cos(πu)+2 and m2(u) = sin(2πu)+cos(πu)+1 are varying coefficient

functions. m3(u) = 2 and m4(u) = 2.5 are non-zero constant coefficients. mk(u) = 0 for

k = 5, . . . , p are zeros. G ∼ N(0, 1) . We conducted 1000 simulations (R = 1000) to evaluate

the performance of the proposed model under p = 50, 100, q = 5 and n = 1000, 2000.

Table 6 demonstrates the selection and estimation accuracy for mk(·) with continuous

predictors. The left and the right penal corresponds to the case where p = 50 and 100,

respectively. The upper and lower panel corresponds to the case where n = 1000 and 2000,

respectively. In all cases, the selection accuracy was closed to 100% for varying, constant

and zero effect coefficients. The IMSE of the proposed model was in the order of −1 or −2
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for varying and constant effect predictors. With the increase of model dimension p (from 50

to 100), we observed a small increase in model IMSE. With the increase of the sample size

n (from 1000 to 2000), there were decreases in both model IMSE and oracle IMSE, which

is consistent with the asymptotic property of the proposed model. These suggest that the

proposed variable selection approach performs reasonably well in selection and estimation

accuracy for the non-parametric functions mk(·).

Table 6: Selection and prediction accuracy of mk(·) for continuous G

p = 50 p = 100

IMSE IMSE
Oracle % Model Oracle Oracle % Model Oracle

n = 1000

m0(.) 100.0% 1.50E-01 1.47E-01 100.0% 1.48E-01 1.31E-01
m1(.) 99.2% 1.44E-01 2.14E-01 99.7% 1.48E-01 1.66E-01
m2(.) 99.4% 1.34E-01 1.61E-01 99.7% 1.37E-01 1.43E-01
m3(.) 100.0% 3.95E-02 3.85E-02 100.0% 4.19E-02 3.33E-02
m4(.) 99.9% 5.58E-02 5.53E-02 100.0% 5.93E-02 4.86E-02
Zero 99.1% 1.03E-03 0 99.0% 1.16E-03 0

n = 2000

m0(.) 100.0% 6.85E-02 6.88E-02 100.0% 7.00E-02 7.05E-02
m1(.) 100.0% 5.17E-02 6.00E-02 100.0% 5.43E-02 6.34E-02
m2(.) 100.0% 5.46E-02 5.99E-02 100.0% 5.40E-02 5.88E-02
m3(.) 100.0% 1.40E-02 1.46E-02 100.0% 1.46E-02 1.48E-02
m4(.) 100.0% 1.79E-02 1.93E-02 100.0% 1.89E-02 1.87E-02
Zero 99.4% 3.33E-04 0 99.4% 3.14E-04 0

Table 7 presents the selection and prediction accuracy for loading parameter β. The left

and right penal corresponds to the case where p = 50 and 100, respectively. The upper and

lower panel corresponds to the case where n = 1000 and 2000, respectively. For all cases, the

selection accuracy for non-zero loading parameters (β1, β2) was close to 100%. Their MSE

were in order of −2 to −4. For zero loading parameters (β3, β4, β5), the selection accuracy

for the case n = 1000 was around 97%. When the sample size increases to n = 2000, their

oracle percentages increased to 99%. Their MSE were in the order of −4 to −5. These
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suggest that the algorithm could not shrink estimators to 0 in around 4% of the cases when

n = 1000, which is a common drawback of the LQA algorithm.

Table 7: Prediction accuracy of β for continuous G (β1 = β2 = 1√
2
, β3 = β4 = β5 = 0)

p = 50 p = 100

MSE MSE
Oracle % Model Oracle Oracle % Model Oracle

n = 1000

β1 100.0% 7.26E-04 5.91E-04 100.0% 6.75E-04 5.75E-04
β2 100.0% 1.36E-02 1.11E-02 100.0% 3.28E-03 5.78E-04
β3 97.3% 2.34E-04 0 96.7% 6.22E-04 0
β4 97.5% 1.90E-04 0 96.7% 2.72E-04 0
β5 96.8% 9.01E-04 0 96.6% 2.95E-04 0

n = 2000

β1 100.0% 2.76E-04 2.68E-04 100.0% 2.77E-04 2.75E-04
β2 100.0% 2.71E-04 2.66E-04 100.0% 2.76E-04 2.74E-04
β3 99.1% 5.49E-05 0 99.6% 1.57E-05 0
β4 99.6% 2.68E-05 0 99.4% 3.16E-05 0
β5 99.3% 4.58E-05 0 99.4% 2.22E-05 0

3.4.2 For discrete G

For the discrete case, each G was simulated from a multinomial distribution assuming a

minor allele frequency (MAF) Pa. G took values as 0, 1, 2 corresponds to aa, Aa, and

AA genotype, where a is the minor allele. G was simulated via the following probability

distribution function:

P (Gij = 0) = P 2
a , P (Gij = 1) = 2 ∗ Pa(1− Pa), P (Gij = 2) = (1− Pa)2

where Gij is the j-th variable of the i-th subject, for i = 1, . . . , n, j = 1, . . . , p. The following

lists the choice of the coefficient functions mk(u).
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Table 8: Setup for mk(u)

Function Pa of Gk

m0(u) = 2sin(2πu) NA
m1(u) = 2cos(πu) + 2 0.5
m2(u) = sin(2πu) + cos(πu) + 1 0.5
m3(u) = 2cos(πu) + 2 0.3
m4(u) = sin(2πu) + cos(πu) + 1 0.3
m5(u) = 2cos(πu) + 2 0.1
m6(u) = sin(2πu) + cos(πu) + 1 0.1
m7(u) = 2 0.5
m8(u) = 2 0.3
m9(u) = 2 0.1
mk(u) = 0, k > 9 Unif(0.05, 0.5)

In this setup, there were varying and constant coefficient functions corresponding to

different MAF. The purpose of setting varying MAFs is to check the selection and estimation

performance under different MAFs in G. For zero coefficients, Pa ranged uniformly from

0.05 to 0.5. X was simulated from a Unif(0, 1) distribution. Y was generated according

to model (3.1). We evaluated the performance of our proposed model with 1000 simulations

under p = 50, 100, n = 1000, 2000 and q = 5.

Table 9 and presents the selection and estimation accuracy of non-parametric function

mk(·) for discrete G. We observed sample size n and minor allele frequency (Pa) of Gk were

the determining factors in the performance of the proposed model and we present figure 3

to better visualize their impact. With the increase of sample size (from 1000 to 2000), the

performance of the model increased. For example, the oracle percentage for m1(·), . . . ,m4(·)

increased from around 80% to 100%. The corresponding IMSE decreased significantly. These

are consistent with the asymptotic theory of the proposed model. With the decrease of

minor allele frequency for Gk (from 0.5 to 0.1), we observed a decrease in performance,

both in terms of oracle percentage and model IMSE. For instance, in the case where n =
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1000, the oracle percentages of {m1(·),m2(·)}(Pa = 0.5), {m3(·),m4(·)}(Pa = 0.3), and

{m5(·),m6(·)}(Pa = 0.1) were around 85%, 80%, and 23% respectively. Their IMSE also

increased from 0.4 (Pa = 0.5) to 0.5 (Pa = 0.3), then to 1.3 (Pa = 0.1). We believed this

is due to the fact that SNP with lower minor allele frequency provides less information.

Overall, the proposed variable selection approach works better with larger sample and with

common variant SNPs.

Table 9: Selection and estimation accuracy of mk(·) for discrete G

p = 50 p = 100
IMSE IMSE

Oracle % Model Oracle Oracle % Model Oracle

n = 1000

m0(.) 100.0% 1.63E-01 2.28E-01 100.0% 1.75E-01 2.29E-01
m1(.) 83.4% 4.29E-01 5.61E-01 83.1% 4.44E-01 6.08E-01
m2(.) 87.7% 3.82E-01 4.38E-01 87.9% 3.69E-01 4.50E-01
m3(.) 76.0% 5.43E-01 5.87E-01 75.5% 5.50E-01 6.17E-01
m4(.) 83.3% 4.37E-01 4.19E-01 79.6% 5.11E-01 4.50E-01
m5(.) 23.2% 1.35E+00 1.05E+00 22.1% 1.45E+00 1.18E+00
m6(.) 25.7% 1.27E+00 8.93E-01 23.7% 1.31E+00 9.22E-01
m7(.) 100.0% 5.09E-02 6.22E-02 99.9% 5.05E-02 5.86E-02
m8(.) 99.9% 6.08E-02 7.50E-02 99.9% 5.83E-02 6.75E-02
m9(.) 100.0% 1.05E-01 1.24E-01 99.9% 1.13E-01 1.21E-01
Zero 99.0% 2.74E-03 0 99.2% 2.15E-03 0

n = 2000

m0(.) 100.0% 7.47E-02 8.03E-02 100.0% 7.42E-02 8.35E-02
m1(.) 100.0% 9.46E-02 1.38E-01 99.9% 1.02E-01 1.49E-01
m2(.) 100.0% 9.52E-02 1.21E-01 99.9% 9.47E-02 1.21E-01
m3(.) 100.0% 1.07E-01 1.55E-01 99.8% 1.08E-01 1.50E-01
m4(.) 99.9% 1.05E-01 1.37E-01 99.8% 1.05E-01 1.30E-01
m5(.) 77.5% 4.84E-01 2.99E-01 75.1% 5.15E-01 3.08E-01
m6(.) 77.5% 4.93E-01 2.63E-01 73.5% 5.32E-01 2.53E-01
m7(.) 100.0% 1.89E-02 2.11E-02 100.0% 1.75E-02 1.97E-02
m8(.) 100.0% 2.17E-02 2.39E-02 100.0% 2.08E-02 2.33E-02
m9(.) 100.0% 4.47E-02 4.95E-02 100.0% 4.24E-02 4.56E-02
Zero 99.3% 9.15E-04 0 99.5% 6.81E-04 0
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Figure 3: Selection and estimation accuracy of mk(·) for discrete G

Table 10 demonstrates the selection and estimation result of the loading parameter β.

The left and right panel correspond to the case where p = 50 and p = 100 case respectively

and the upper and lower panel correspond to the case where n = 1000 and n = 2000

respectively. We observed sample size n was the determining factor in model performance.

When sample size is large (n = 2000), the oracle percentage for non-zero loading covariates

(β1, β2) was 100% and the oracle percentage for zero loading covariates (β3, β4, β5) was

around 99%. The MSE for β was in the order of −3 to −5. When sample size is relatively

small (n = 1000), although the oracle percentage was 100% for non-zero loading covariates,
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the oracle percentage for zero loading parameters decreased to around 95%. Comparing

between the case p = 50 and p = 100, we detected a small deterioration in selection accuracy

for zero loading parameters with n = 1000. This is expected since model performance usually

decreases with the increase of complexity. However, we did not detect such difference in

performance with larger sample size (n = 2000).

Table 10: Estimation accuracy of β for discrete G (β1 = β2 = 1√
2
, β3 = β4 = β5 = 0)

p = 50 p = 100
MSE MSE

Oracle % Model Oracle Oracle % Model Oracle

n = 1000

β1 100.0% 6.64E-04 7.28E-04 100.0% 5.84E-04 5.13E-04
β2 100.0% 7.37E-03 7.32E-03 100.0% 2.76E-03 3.27E-03
β3 95.2% 3.64E-04 0 95.2% 3.73E-04 0
β4 97.0% 1.21E-04 0 96.1% 4.18E-04 0
β5 96.1% 2.04E-04 0 94.7% 5.46E-04 0

n = 2000

β1 100.0% 2.34E-04 2.22E-04 100.0% 2.20E-04 2.12E-04
β2 100.0% 2.31E-04 2.20E-04 100.0% 2.30E-03 2.37E-03
β3 98.9% 5.00E-05 0 98.9% 3.24E-05 0
β4 98.7% 5.44E-05 0 98.9% 4.49E-05 0
β5 98.9% 4.37E-05 0 99.0% 5.07E-05 0

Based on the simulation results with both continuous and discreteG variables, we inferred

the following characteristics of the proposed model. (1) The proposed model performs

reasonably well with large sample (n = 1000 or 2000). (2) The false positive rate for loading

parameter β was around 5% when n = 1000. This is due to the implementation of LQA

algorithm since it cannot shrink zero parameters to zero in some cases. (3) Compared to rare

variant SNP (Pa = 0.1), the model performs better with common variant SNP (Pa = 0.3 or

0.5). We believe this is due to the fact that SNP with lower minor allele frequency provides

less information.
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3.5 Real Data Application

We demonstrated the utility of our model with a type 2 diabetes data set. The data set

contains genotypes (SNPs), environments and phenotypic trait of interest for type 2 diabetes.

The data set is consisted of two nested case-control cohort studies: the Nurses Health Study

(NHS) and the Health Professional Fellow-up Study (HPFS) from the Gene Environmental

Association Studies Consortium (GENVEA). Details of these two cohorts can be found from

Coldditz and Hankinson (2005) and Rimm et al. (1991). Originally, the data set contained

3,391 females (NHS) and 2,599 males (HPFS). After data cleaning by removing subjects with

unmatch genotypes and phenotypes, SNPs with more than 10% missing rate, MAF < 0.05,

and deviation from Hardy-Weinberg equilibrium (p-value < 0.001), the data set contains

655,002 SNPs and a total of 5,865 subjects (2,494 males and 3,371 females), of which there

were 2,733 cases and 3,132 controls.

There are 12 continuous covariates including: height, weight, age, alcohol consumption

etc. We fit a marginal logistic regression model for all 12 factors. Based on their marginal

p-values and the correlation between those factors, we decided to select 5 covariates as the

environmental variables in the model. They were total physical activity (X1 denoted as act),

BMI (X2), alcohol intake (X3 denoted as alcohol), heme iron intake (X4 denoted as heme),

and glycemic load (X5 denoted as gl). Based on the location of the SNPs, we mapped all

SNPs to all known genes. Then we selected the genes with more than 30 SNPs. As a result,

we obtained 2,178 genes. We applied the proposed variable selection approach by fitting one

gene at a time to select significant SNPs and identify their effects. Since the first element

of the loading parameter β, β1 has to be a non-zero positive number for identifiability

purpose, we fit the proposed model five times, each time with a different variable as the first
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component in X. If a SNP is selected as varying or constant effect in all five models, this

would suggest a convincing signal. We only considered results with a convincing signal, that

is, SNPs showing non-zero effect in all the five fitted models by varying the order of the five

environmental variables in X.

In total, our model identified 13 varying effect SNPs and 26 constant effect SNPs. Here

we presented one of the selected varying SNP as an example. Please refer to the supplemental

material for the complete list of selected varying and constant SNPs. Fig 4 presents plots of

marginal environmental effect and the interaction effect of a SNP rs6537663 with heme iron

intake being the first loading covariate. With the increase of the index, we observed that

the marginal effect first decreases then increases, followed by a rapid decrease as the total

effect of the five environmental factors increases. For the interaction effect, it fluctuated

around 0 as the total effect of the five environmental variables increases, indicating that the

SNP is not responding (or insensitive) to the changes of the five environmental variables.

As the index X ′β increases, the SNP reacts to the environmental changes, with a dramatic

increased risk on type 2 diabetes after a certain threshold. This estimated effect implies

that the genetic sensitivity of the SNP to the total effect of the five environmental variables

follows a threshold model. This has practical applications as people are mostly OK with the

daily environmental changes including dietary changes. However, such changes cannot pass

a certain limit. Otherwise, disease may occur. Table 11 presents the selection and estimation

results of the loading parameters β with heme iron intake being the first loading covariate.

The model selects all loading parameters except the alcohol consumption (alcohol). We also

observed that body mass index (bmi) has the largest effect which makes practical sense since

BMI is positively associated with type 2 diabetes and is a risk factor for diabetes.
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Figure 4: Plot of effects on a log odds scale for SNP rs6537663

Table 11: The estimated effect of β for SNP rs6537663.

act bmi alcohol heme gl

-0.1832 0.954445 0 0.215668 0.094647

Previous study (Sale et al. (2007) and Grant et al. (2006)) suggested that gene TCF7L2

is associated with type 2 diabetes across multiple populations. Sale et al. (2007) reported

strong association between type 2 diabetes and SNPs rs7903146 and rs7901695. Our model

also selected SNP rs7901695 showing a constant effect (rs7903146 was not in our data set).

3.6 Discussion

Gene-environment interaction has been one of the major components in genetic association

studies. In this paper, we developed a 3 stage iterative variable selection approach for

generalized varying multi-index coefficient model with binary responses. Our goal was to
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identify varying, constant and zero effects as well as to select non-zero loading parameters.

Biologically speaking, our approach is attractive since it offered a novel way to look at

G×E interaction from a systems genetics perspective. Our model is flexible to detect

non-linear interactions. It should be preferred when the gene effect is non-linearly modified by

simultaneous exposure to multiple environmental factors. Statistically speaking, gVMICM

treats the effect of multiple variables X as a single index, thus reducing model dimension

and alleviating the curse of dimensionality.

In a typical G×E study, there are usually hundreds of thousands of genotype (SNPs)

and a couple dozens environmental variables. It is important to reduce the dimension of

gene predictors first before apply our method. For example, one could fit a marginal model

between the response and every genotype, then select a reasonable number of gene predictors

to fit the variable selection model. In human genome, a pathway usually contains a wide

range of genes and each gene could contain ten to hundred of SNPs. In this chapter, we

implemented the proposed method focusing a gene as a unit to select varying and constant

effect SNPs. We could implement such method in every pathway to select significant genes

or SNPs of importance. Alternatively, we could apply principle component analysis (PCA)

(Jolliffe (2002)) or sparse principle component analysis (sPCA) (Zou et al. (2006)) to

summarize the SNP information in a gene or pathway to several principle components (PCs),

apply the proposed method to select significant PCs.

In chapter 2, we proposed a 3 stage variable selection approach for VMICM with

continuous responses. Then we generalized such approach to binary responses in chapter

3. The regression model applied in chapter 2 is essentially a mean regression model in which

one is interested in the conditional mean. When there are outliers or the nature of interest

is not on the mean rather than on different quantiles, a quantile regression model might be
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a natural choice. For example, when studying the effect of genes on birth weight, people are

typically interested in the effect of SNPs on the lower or upper quantile of the birth weight

because extremely low or high birth weight may pose potential risk later in life. In such

cases, it is essential to extend the proposed method to a quantile regression setup to select

important genes modulated by multiple environmental exposures to affect a trait of interest

such as birth weight. This will be addressed in chapter 4.
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Chapter 4

Variable Selection for Quantile

VMICM

4.1 Introduction

Over the past decades, there has been a growing interest in identifying gene-environment

(G×E) interaction in scientific research. Gene-environment interaction was defined as

a different effect of a genotype on disease risk under different environmental exposures

(Ottman (1996)). Traditionally, G×E interactions has been investigated based on a single

environmental exposure model. However, more and more epidemiological studies reveal that

disease risk can be modified by simultaneously exposure to multiple environmental factors

(Carpenter et al. (2002) and Sexton and Hattis (2007)). When multiple environmental

factors are analyzed, the model dimension can increase dramatically with the inclusion of

the interaction terms, which lead to estimation instability and large standard errors (curse

of dimensionality). To ease such burden, a varying multi-index coefficient model(VMICM)

(Liu et al. (2016)) can be applied to model the interaction between genetic factors Gk and

a mixture of environmental factors X by

Y =

p∑
k=0

mk(Xβ)Gk + ε
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where mk(u), k = 0, 1, . . . , p are continuous smooth functions; β is q-dimensional loading

parameter; and ε is the random error. We have proposed an iterative 3 steps variable selection

method for VMICM in chapter 2, which classifies the non-parametric smooth function mk(u)

into three categories: varying, constant and zero. The goal of this paper is to generalize such

approach to a quantile regression setting.

The quantile VMICM is a important alternative to the conditional mean models for

analyzing G×E interaction. First, comparing conditional mean regression, modelling

conditional quantiles offers a far more comprehensive understanding of the distribution of the

response variable. In many applications, the impact of the genetic factor G on the response

varies at different quantiles of the distribution. People are more interested in the quantiles

rather than the mean. For example, in a study to find genes associated with birth weight,

extremely low or high birth weight could be problematic since it could cause complications

later in life. In this case, one would be interested in identifying genes or SNPs affecting low

or high birth weight with their effect modified by environmental exposures. Second, even

when we are interested in the center of the conditional distribution of the response variable,

median regression (quantile regression with τ = 0.5) can provides more robust estimators,

especially when there are outliers in the trait distribution.

With the recent advancement in biotechnoloty, we are now able to collect hundreds

of thousands of single nucleotide polymorphisms (SNPs) data, at the same time with

relatively low cost. Such advancement renders traditional model selection methods such as

forward/backword selection or methods based on AIC/BIC information obsolete. Recently,

variable selection via penalized regression has been gaining popularity. The idea is to

add a penalty term to the loss(likelihood) function. With different choices of penalty

functions, the estimator could possess different properties. Fan and Li (2001) proposed three
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important criteria for penalized estimator: sparsity, unbiasedness and continuity. They also

characterized oracle property, meaning that the model performs as well as if the true model

is known in advance. For instance, adaptive LASSO (Zou (2006)), smoothly clipped absolute

deviation (SCAD) (Fan and Li (2001)) and minimax concave penalty (MCP) (Zhang (2010))

possess oracle property.

In this work, we proposed a quantile regression based variable selection method built upon

the VMICM model to identify how genetic effects are modified by simultaneous exposure to

multiple environmental factors to affect a disease trait. We adopted the MCP penalty in

our modeling framework. We evaluated the method through both simulation and real data

applications. The proposed variable selection method for quantile regression enriches the

literature about variable selection for quantile regression.

The rest of the paper is organized as follows. Section 2 introduces the proposed

variable selection method, how to formulate the penalized quantile loss function, how to

iteratively optimize the penalized quantile loss function as well as how to select various

tuning parameters and initial value for β. In section 3, we evaluated the finite sample

performance of our model via monte carlo simulation. We applied our approach to a birth

weight data set in section 4, followed by a discussion.

4.2 Variable selection for quantile regression with

VMICM

Throughout the paper, superscript T is used to denote matrix transpose; ||.||p is used to

denote Lp norm; log(a) is used to denote natural logarithm of a. For the sake of simplicity,

we use constant and non-zero constant interchangeably.
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4.2.1 Model setup

For a random sample of the data {Y n×1,Xn×q,Gn×(p+1)} with size n, we assume the

following model:

Y =

p∑
k=0

mk(Xβ(τ), τ)Gk + ε(τ) (4.1)

where Y = (Y1, Y2, . . . , Yn)T is a continuous response variable; X = (X1,X2, . . . ,Xq)

is a continuous q-dim environmental variable; Gn×(p+1) = (G0,G1, . . . ,Gp) where G0 =

(1, . . . , 1)T and Gk is a continuous or discrete genetic vector of length n for k = 1, 2, . . . p.

Our parameters of interest {mk(u, τ)}k=0,1,...,p are p+ 1 unknown non-parametric functions

conditional on quantile τ ; β(τ) = (β1(τ), . . . , βq(τ))T is the loading parameters conditional

on quantile τ . ε(τ) is an unknown random error satisfies P (ε(τ) < 0|X,G) = τ for some

specific quantile 0 < τ < 1. The case with τ = 0.5 corresponds to median regression. For

ease of presentation, all parameters of interest are τ -specific. For instance, we use β and

mk(u) to represents β(τ) and mk(u, τ), respectively. We denote the quantile VMICM model

as τVMICM.

4.2.2 Estimation method

Our goal is to select and estimate unknown functions {mk(·)}k=0,1,...,p and unknown loading

parameter β = (β1, . . . , βq)
T . For the sake of identifiability, we assumed ||β||2 = 1 and β1 >

0, and mk(·) cannot has the form of mk(u) = αTuβTu+γTu+c. Please refer to Schumaker

(2007) for details of the construction of B-splines basis function. Given the number of interior

knots K and the degree of the B-spline basis function h, we can approximate mk(u) by

mk(u) ≈ γk1 + B̄(u)γk∗ (4.2)
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where γk∗ = (γk2, γk3, . . . , γkL)T , γk = (γk1,γ
T
k∗)

T and L = K + h + 1. Hence, (4.1) can

be rewritten as :

Y =

p∑
k=0

[γk1 + B̄(Xβ)γk∗]Gk + ε. (4.3)

Here, the estimation of non-parametric functionmk(u)k=0,1,...,p and its loading parameter

β is transformed to the estimation of {γk1,γk∗}k=0,1,...,p and β. This B-spline approximation

(4.2) also enable us to separate the constant effect of Gk on Y from its joint effect with X

on Y . (1) If ||γk∗||2 6= 0, then Gk and X jointly affect Y ; (2) If ||γk∗||2 = 0 and |γk1| 6= 0,

then Gk has a constant effect on Y ; (3) If ||γk∗||2 = 0 and |γk1| = 0 then Gk has no effect

on Y at all.

Following the idea proposed in previous chapters, we adopted the following penalized

regression approach and defined the objective function as Qτ (β,γ):

Qτ (β,γ) =
n∑
i=1

ρτ
(
Yi −

p∑
k=0

[γk1 + B̄(Xβ)γk∗]Gik
)

+ n

p∑
k=1

pλ1(||γk∗||2)

+ n

p∑
k=1

pλ2(|γk1|)I(||γk∗||2 = 0) + n

q∑
d=2

pλ3(|βd|)
(4.4)

where ρτ (u) = u{τ − I(u < 0)} is the quantile loss function; pλ1(·), pλ2(·), pλ3(·) are penalty

functions of the corresponding parameters; and I(·) is an indicator function which equals 1

if the condition in the parentheses is satisfied, and 0 otherwise. From the construction of

the penalty function, we only penalize γk1 if ||γk∗||2 = 0, meaning that we are interested in

whether the non-parametric function mk(·) is zero or a non-zero constant only when it is not

varying. No penalty is applied to the intercept function m0(·) as both γ0∗ and γ01 are not

involved in the penalty term. No penalty is applied to the coefficient β1 due to the constrain:
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β1 > 0. For the penalty function, we use MCP penalty proposed by Zhang (Zhang (2010))

which is defined as p(x, λ) = λ
∫ x
0 (1− s

τλ)+ds with the regularization parameters τ > 0 and

λ > 0.

4.2.3 Estimation algorithm

In the previous chapters, we proposed a 3 step iterative approach based on the VMICM model

for both continuous and binary responses. The methods classify the non-parametric functions

mk(·) into 3 categories: varying, constat or zero, denoted by V, C and Z respectively. Here,

we generalized the estimation algorithm to a quantile regression setting.

Step 1 : For given β, denoted by β̂
(0)

, the step 1 estimator of γ, γ̂(1) =

{γ̂(1)k1 , γ̂
(1)T
k∗ }

T
k=0,1,...,p can be obtained via optimizing the following grouped penalized

regression

γ̂(1) = min
γ

Q1(γ|λ1, β̂
(0)

)

where

Q1(γ|λ1, β̂
(0)

) =
n∑
i=1

ρτ
(
Yi −

p∑
k=0

[γk1 + B̄(Xβ(0))γk∗]Gik
)

+ n

p∑
k=1

pλ1(||γk∗||2).

Instead of penalizing each coordinate of γk∗ = (γk2, . . . , γkL)T separately, we penalized the

L2 norm of γk∗ since we would like to assess the presence of the varying effect of Gk on

the response variable. Step 1 classifies mk(·), k = 1, . . . , p into two categories: varying(V) or

non-varying(NV) where mk(·) ∈ V if ||γ̂(1)k∗ ||2 > 0 and mk(·) ∈ NV if ||γ̂(1)k∗ ||2 = 0.

Step 2 : Based on the step 1 estimators of the B-spline coefficients γ, the step 2 estimators

γ̂(2) = {(γ̂(2)k1 , γ̂
(2)
k∗ )k∈V , (γ̂

(2)
k1 )k∈C} can be obtained via the penalized regression. Note that
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γ̂
(2)
k∗ = 0 automatically if γ̂

(1)
k∗ = 0. We obtained the estimator by,

γ̂(2) = min
γ

Q2(γ|λ2,β(0), γ̂(1))

where

Q2(γ|λ2,β(0), γ̂(1)) =
n∑
i=1

ρτ
(
Yi −

∑
k∈V

[γk1 + B̄(Xβ(0))γk∗]Gik −
∑
k∈C

γ
(2)
k1 Gik

)
+ n

p∑
k=1

pλ2(|γ(2)k1 |)I(||γ̂(1)k∗ ||2 = 0). (4.5)

Based on the initial estimator of β, β̂
(0)

, we can obtain the estimators of the B-splines

coefficients γ, γ̂(2) and classify mk(·) k = 1, . . . , p into V, C or 0.

Step 3 : We obtained β̂ via the penalized regression by

β̂ = min
||β||2=1

Q3(β|λ3, γ̂(2))

where

Q3(β|λ3, γ̂(2)) =
n∑
i=1

ρτ
(
Yi −

p∑
k=0

[γ̂
(2)
k1 + B̄(Xβ)γ̂

(2)
k∗ ]Gik

)
+ n

q∑
d=2

pλ3(|βd|).

Step 4 : Set β̂
(0)

= β̂, then iterate step 1 to 3 until convergence. Denote γ̂ and β̂ as the

converged estimators.

With this iteration approach, we still need to select the tuning parameters λ1, λ2, λ3, order

h and number of interior knots K for the B-spline approximation, as well as a reasonable

initial value for β.

65



4.2.4 Selection of parameters

For a traditional linear mean regression model, Bayesian Information Criterion (BIC)

(Schwarz (1978)) has been a popular choice in the selection of shrinkage parameters. Lee et

al. (2014) provided theoretical justification in the use of BIC in quantile regression models.

Hence, we use BIC as our selection criterion for shrinkage parameters, and the order h and

the number of interior knots K of the B-spline basis functions.

4.2.4.1 Selection of the tuning parameters λ1, λ2, λ3

Step 1: We took λ1 as the minimizer of

BIC(λ1) = log
n∑
i=1

ρτ
(
Yi −

p∑
k=0

[γ̂
(λ1)
k1 + B̄(Xβ̂

(0)
)γ̂

(λ1)
k∗ ]Gik

)
+
log(n)

2n
∗ dfλ1

where {γ̂(λ1)k1 , γ̂
(λ1)
k∗ }k=0,1,...,p are the minimizers of Q1(γ|λ1, β̂

(0)
) defined above; β̂

(0)
is

chosen as the estimator from previous iteration; and dfλ1 is defined as the total number of

non-zero coefficients if λ1 is the penalized parameter.

Step 2: We took λ2 as the minimizer of

BIC(λ2) = log
n∑
i=1

ρτ
(
Yi −

p∑
k=0

[γ̂
(λ2)
k1 + B̄(Xβ̂

(0)
)γ̂

(λ2)
k∗ ]Gik

)
+
log(n)

2n
∗ dfλ2

where {γ̂(λ2)k1 , γ̂
(λ2)
k∗ }k=0,1,...,p are the minimizers of Q2(γ|λ2, β̂

(0)
) defined above and dfλ2

is defined as the total number of non-zero coefficients if λ2 is the penalized parameter.

Step 3: We took λ3 as the minimizer of

BIC(λ3) = log
n∑
i=1

ρτ
(
Yi −

p∑
k=0

[γ̂
(2)
k1 + B̄(Xβ̂

(λ3))γ̂
(2)
k∗ ]Gik

)
+
log(n)

2n
∗ dfλ3
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where β̂
(λ3) are the minimizers of Q3(β|λ3, γ̂(2)) defined above and dfλ3 is defined as the

total number of non-zero β if λ3 is the penalized parameter.

To find the optimal tuning parameters, λ1, λ2, λ3 are searched over a grid of exponentially

decreasing values with the minimum to be 1E-3, and the maximum of λ1, λ2, λ3 are set to be

the minimum value such that all of the penalized estimators are 0. For ease of computation,

the number of grid points is set to be 100.

4.2.4.2 Selection of the order h and the number of interior knots K

As we discussed in previous chapters, higher order of the B-spline basis function implies more

complex functions and leads to less interpretable effect. From a practical point of view, the

interaction effect is less likely to be highly nonlinear. Thus, we searched optimal h over the

set h ∈ {2, 3, 4} to avoid any complications in interpretation. As for the number of interior

knots K, we searched the optimal K in K = {2, 3, 4, 5}. For every combination of K and

h, we fit the following intercept only model,

Y = m0(Xβ) + ε (4.6)

Again, as we discussed in previous chapters, this is to avoid computational burden. The

optimal K and h are those that minimize log
∑n
i=1 ρτ (Ŷi − Yi) +

log(n)
2n (K + h + 1), where

Ŷi is the estimation of the i-th subject under model (4.6).

4.2.5 Selection of the initial values

The initial value of β for a single index model is usually set to be (1, 0, . . . , 0)T or

( 1√
q , . . . ,

1√
q )T . However, neither works well in our simulations. Hence, we get the initial
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value by fitting the intercept only model (4.6).

4.3 Simulation

We conducted extensive simulation to investigate the finite sample performance of the

proposed selection approach under the τVMICM model. The performance is evaluated in

several ways: (1) the selection accuracy (oracle percentage) of the non-parametric function

mk(u); (2) IMSE of m̂(u); (3) the selection accuracy (oracle percentage) of β and (4) MSE

of β. The performance is evaluated over 1000 simulation runs.

The oracle percentage of mk(u) is defined as the percentage of correct classification of

mk(u). For instance, if mk(u) ∈ V , and mk(·) is classified as varying for g times, then the

oracle percentage of mk(·) is calcualted as g
1000 × 100%. IMSE of mk(·) is defined as

1

1000

1000∑
r=1

[
1

100

100∑
j=1

(m̂k(uj)
r −mk(uj))

2]

where m̂k(uj)
r is the fitted value of mk(uj) for the r-th simulation and uj is taken at the

j − % quantile among the range of Xβ̂
(r)

. The oracle percentage of β is defined as the

percentage of correct selection of β. For example, if βd 6= 0 and βd is selected to be non-zero

for g times, then the oracle percentage of βd is calculated as g
1000 × 100%. MSE of βd

is calculated as 1
1000

∑1000
r=1 (β̂

(r)
d − βd)

2 where β̂
(r)
d is the estimator for βd in the r − th

simulation.
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4.3.1 Simulation Setting

Our data was generated according to the model,

Y = m0(Xβ) +

p∑
k=1

mk(Xβ)Gk + ε(τ).

Five (q = 5) independent environmental factors were generated with each one being

generated from a Unif(0, 1) distribution. For the loading parameter β = (β1, β2, . . . , βq)
T ,

we set β1 = β2 = 1√
2

and the rest β′js were set as zeros. ε was generated from a N(0, 1)

distribution and ε(τ) = ε− F−1(τ) where F denotes the CDF of ε. F−1(τ) was subtracted

from ε to make sure the τth-quantile of ε(τ) is zero. For the genetic factor G, we evaluated

the performance of our model with both continuous and discrete variables.

4.3.2 The continuous case

We first evaluated the performance of our approach with continuous genetic predictors G

which marginally followed a N(0, 1) distribution. The non-parametric functions mk(u) were

set to be: m0(u) = 2sin(2πu), m1(u) = 2cos(πu) + 2 and m2(u) = sin(2πu) + cos(πu) + 1;

m3(u) = 2 and m4(u) = 2.5 which were non-zero constants; mk(u) = 0 for k = 5, . . . , p

which were zero effects. We simulated the data under p = 50, 100, τ = 0.25, 0.5, 0.75, and

n = 2000.

Table 12 presents the selection and estimation result for non-parametric functions mk(u)

with continuous predictor G. For varying and constant coefficient function (m1(·) to m4(·)),

the oracle percentage was at 100% and model IMSE was in the order of -2 for all cases. These

suggest that our model could correctly select and estimate non-zero effect predictors at all

quantiles. Between the median regression case (τ = 0.5) and the cases where τ = 0.25, 0.75,
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the false positive rate was much lower for median regression case (around 1%) than that

of the case τ = 0.25, 0.75 (around 10%). Also the model IMSE of the case τ = 0.5 was

smaller than the model IMSE of the case τ = 0.25, 0.75. These are expected since median

regression usually provides the most accurate estimator among different quantiles. Between

the case p = 50 and the case p = 100, we did not observe an significant difference in

model performance. Overall, the proposed variable selection approach can correctly select

non-zero effect predictors at all quantiles. Compared with median regression, although the

false positive rate and model IMSE were higher in the case τ = 0.25, 0.75, they were still

decent.

Table 12: Selection and estimation accuracy of mk(·) for continuous G

p = 50 p = 100

0.25

m0(.) 100.0% 2.78E+00 2.96E-02 100.0% 2.67E+00 2.97E-02
m1(.) 100.0% 8.16E-02 6.16E-03 100.0% 7.07E-02 6.16E-03
m2(.) 100.0% 9.59E-02 1.30E-02 100.0% 7.80E-02 1.31E-02
m3(.) 100.0% 2.58E-02 8.77E-04 100.0% 2.19E-02 9.71E-04
m4(.) 100.0% 2.56E-02 1.02E-03 99.8% 2.12E-02 9.80E-04
Zero 88.8% 1.03E-02 0 90.6% 7.27E-03 0

0.5

m0(.) 100.0% 7.49E-02 2.88E-02 100.0% 7.70E-02 2.91E-02
m1(.) 100.0% 4.98E-02 5.07E-03 100.0% 4.89E-02 5.31E-03
m2(.) 100.0% 5.72E-02 1.22E-02 100.0% 5.77E-02 1.23E-02
m3(.) 99.7% 1.25E-03 7.90E-04 99.9% 1.30E-03 7.90E-04
m4(.) 99.9% 1.50E-03 7.91E-04 99.8% 1.48E-03 8.29E-04
Zero 98.7% 1.00E-04 0 99.1% 6.26E-05 0

0.75

m0(.) 100.0% 2.60E+00 3.01E-02 100.0% 2.60E+00 3.13E-02
m1(.) 100.0% 6.25E-02 6.08E-03 100.0% 6.17E-02 6.18E-03
m2(.) 100.0% 7.12E-02 1.35E-02 100.0% 7.14E-02 1.37E-02
m3(.) 99.9% 2.42E-02 8.58E-04 100.0% 2.18E-02 9.03E-04
m4(.) 99.9% 2.62E-02 9.93E-04 100.0% 2.20E-02 9.63E-04
Zero 88.5% 1.05E-02 0 90.7% 7.19E-03 0

Table 13 presents the selection and estimation results for the loading parameters β. For

non-zero loading β’s (β1 and β2), the oracle percentage was close to 100% in all cases. This
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suggests our model could correctly select non-zero loading parameters. For zero loading β’s

(β3, β4, and β5), the oracle percentage for the median regression case was around 98.5%.

Compared between the case τ = 0.25 and τ = 0.75, oracle percentage for the case τ = 0.25

(99%) was slightly higher than that of the case τ = 0.75 (96%), while the MSE for the

case τ = 0.25 is higher than that of the case τ = 0.75. Between the case p = 50 and

p = 100, we did not observed a difference in model performance. Overall, the proposed

model can correctively select and estimate loading covariates with reasonably high accuracy

at all quantiles.

Table 13: Selection and estimation accuracy of β

p = 50 p = 100

τ Oracle % Model Oracle Oracle % Model Oracle

0.25

β1 100.0% 1.20E-02 4.76E-05 100.0% 6.71E-03 4.36E-05
β2 99.8% 1.47E-02 4.75E-05 100.0% 7.69E-03 4.37E-05
β3 99.9% 7.15E-05 0 99.9% 5.81E-05 0
β4 99.9% 2.09E-04 0 99.9% 2.93E-04 0
β5 99.9% 9.60E-05 0 99.9% 9.53E-05 0

0.5

β1 100.0% 5.29E-05 3.78E-05 100.0% 5.33E-05 3.54E-05
β2 100.0% 5.29E-05 3.78E-05 100.0% 5.34E-05 3.54E-05
β3 98.6% 1.52E-06 0 98.3% 1.23E-06 0
β4 98.3% 3.33E-06 0 98.8% 3.24E-06 0
β5 98.7% 1.85E-06 0 98.9% 1.45E-06 0

0.75

β1 100.0% 4.40E-03 4.81E-05 100.0% 3.60E-03 4.89E-05
β2 100.0% 4.51E-03 4.80E-05 100.0% 3.49E-03 4.88E-05
β3 95.3% 4.14E-05 0 96.3% 1.87E-05 0
β4 95.9% 5.31E-05 0 96.2% 4.23E-05 0
β5 95.8% 3.85E-05 0 95.8% 2.32E-05 0

4.3.3 The discrete case

We continued to evaluate the performance of our model with discrete genetic predictors G.

One of many applications of our model is to select significant single nucleotide polymorphism
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(SNP) in a gene or pathway. All SNPs take values of 0, 1 and 2 to represent aa, Aa, and

AA genotype under an additive genetic model. We simulated G according to the following

probability distribution function,

P (Gij = 0) = MAF 2, P (Gij = 1) = 2 ∗MAF (1−MAF ), P (Gij = 2) = (1−MAF )2

where Gij is the j-th predictor of the i-th subject, i = 1, . . . , n and j = 1, . . . , p. The

data were simulated under p = 50, 100, τ = 0.25, 0.5, 0.75, and n = 2000. We set the

non-parametric function mk(u) and the corresponding MAF for Gk as follows:

Table 14: Setup for mk(u)

Function MAF of Gk

m0(u) = 2sin(2πu) NA
m1(u) = 2cos(πu) + 2 0.5
m2(u) = sin(2πu) + cos(πu) + 1 0.5
m3(u) = 2cos(πu) + 2 0.3
m4(u) = sin(2πu) + cos(πu) + 1 0.3
m5(u) = 2cos(πu) + 2 0.1
m6(u) = sin(2πu) + cos(πu) + 1 0.1
m7(u) = 2 0.5
m8(u) = 2 0.3
m9(u) = 2 0.1
mk(u) = 0, k > 9 Unif(0.05,0.5)

From the simulation setup, we would be able to evaluate how our proposed variable

selection method perform with SNPs of a wide range of MAF. Table 15 presents the selection

and estimation result for the non-parametric functions with discrete genetic predictors.

Compared to the case where τ = 0.25, 0.75, the median regression case (τ = 0.5) performed

better. For instance, the oracle percentage for varying effect Gk was around 99% for median

regression, while that of the case τ = 0.25, 0.75 ranged from 90% to 97% (p = 50) and 84%
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to 91% (p = 100). Further, the model IMSE for the median regression case was smaller than

that of the case τ = 0.25, 0.75. Between the case where p = 50 and p = 100, the case p = 50

performed slightly better both in terms of oracle percentage and model IMSE with varying

effect predictors. Overall, the model performed reasonably well across different quantiles. In

addition, we observed the model performance was associated with minor allele frequency of

Gk. We prepared figure 5 to better visualize such trend. With an increase of minor allele

frequency of Gk (from 0.1 to 0.5), we observed an increase in oracle percentage as well as a

decrease in model IMSE. These suggest that the model performs better with common variant

SNPs. It is expected since rare variant SNP has less information.

Table 15: Selection and estimation accuracy for mk(u) with discrete G

p = 50 p = 100
IMSE IMSE

τ Oracle % Model Oracle Oracle % Model Oracle

0.25

Intercept 100.0% 7.54E-01 2.47E-02 100.0% 7.98E-01 2.44E-02
Varying 97.5% 1.44E-01 2.30E-02 91.4% 2.23E-01 2.32E-02

Constant 94.2% 1.66E-02 3.19E-03 95.5% 1.66E-02 3.22E-03
Zero 93.9% 4.71E-03 0 96.0% 3.05E-03 0

0.5

Intercept 100.0% 4.84E-02 2.35E-02 100.0% 4.97E-02 2.30E-02
Varying 99.9% 9.14E-02 2.00E-02 99.3% 9.84E-02 1.98E-02

Constant 95.4% 7.52E-03 2.68E-03 95.5% 9.30E-03 2.76E-03
Zero 93.6% 2.87E-03 0 93.8% 2.87E-03 0

0.75

Intercept 100.0% 1.02E+00 2.53E-02 100.0% 1.09E+00 2.48E-02
Varying 90.8% 2.29E-01 2.33E-02 84.1% 3.35E-01 2.30E-02

Constant 96.7% 1.35E-02 3.19E-03 98.6% 1.26E-02 3.14E-03
Zero 96.8% 2.09E-03 0 98.5% 9.24E-04 0
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Figure 5: Selection and estimation accuracy of mk(·) for discrete G

Table 16 shows the selection and estimation of loading parameters β with discrete G.

The proposed model select and estimate non-zero loading β with high precision (100% in

all cases). For zero loading parameters (β3, β4, and β5), the false positive rate was around

0%, 1.5%, and 6.5% for the case τ = 0.25, τ = 0.5, and τ = 0.75 respectively. The MSE for

zero loading β’s was in the order of −5 to −7, suggesting the proposed model shrunk it very

close to 0.
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Table 16: Selection and estimation accuracy for β with discrete G

p = 50 p = 100
MSE MSE

τ Oracle % Model Oracle Oracle % Model Oracle

0.25

β1 100.0% 3.98E-04 4.42E-05 100.0% 4.63E-04 4.75E-05
β2 100.0% 4.04E-04 4.43E-05 100.0% 4.69E-04 4.74E-05
β3 100.0% 0 0 100.0% 0 0
β4 100.0% 0 0 100.0% 0 0
β5 100.0% 0 0 100.0% 0 0

0.5

β1 100.0% 5.20E-05 3.96E-05 100.0% 5.30E-05 3.97E-05
β2 100.0% 5.21E-05 3.97E-05 100.0% 5.30E-05 3.97E-05
β3 99.1% 2.27E-07 0 99.1% 1.00E-06 0
β4 98.9% 3.43E-07 0 98.4% 8.12E-07 0
β5 98.9% 5.45E-07 0 98.7% 5.87E-07 0

0.75

β1 100.0% 2.75E-04 5.13E-05 100.0% 3.70E-04 4.69E-05
β2 100.0% 2.84E-04 5.15E-05 100.0% 3.59E-04 4.69E-05
β3 93.6% 2.52E-05 0 93.0% 2.26E-05 0
β4 94.3% 2.23E-05 0 93.9% 1.80E-05 0
β5 93.5% 3.46E-05 0 93.3% 3.08E-05 0

Based on the simulation results described above, we were able to conclude the followings.

(1) The proposed model selects and estimates Gk with reasonably high precision. (2)

Compared to rare variant SNPs (Pa = 0.1), the model performed better with common

variant SNPs (Pa = 0.3, 0.5). (3) The model could correctly select and estimate non-zero

loading β. At last, (4) the false positive rate for zero loading β was low for τ = 0.25, 0.5,

and it was slightly higher for τ = 0.75.

4.4 Real Data Application

We applied the proposed variable selection approach to a birth weight data set, which is

obtained from Gene Environment Association Studies initiative (GENEVA) funded by the
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Genes, Environment and Health Initiative (GEI). Epidemiological studies often suggested

that birth weight is strongly associated with morbidity and mortality risk during the first

year, and risk of many diseases in adulthood. Birth weight is affected by fetal genes and

maternal environment. We first performed data cleaning, removing SNPs with more that 5%

missing, SNPs with minor allele frequency < 0.05 and SNPs deviates from Hardy-Weinberg

equilibrium (p-value < 0.001). After this cleaning step, the data set contains 1,126 subjects

and 590,913 SNPs. For the environmental factors X, based on the marginal p-value (<

0.05) when regressing birth weight with each X variable, we select 3 environmental factors:

mother’s mean OGTT(oral glucose tolerance test) diastolic blood pressure (X1), mother’s

one hour OGTT glucose level (X2) and mother’s mean OGTT systolic blood pressure (X3).

We first map all SNPs to all known genes based on its location. Then we select the genes

which contain ≥ 30 SNPs. As a result, we get 2,076 genes. Then we fit the proposed model

to all genes at τ=0.25, 0.5, and 0.75. Since the first element of the loading parameter β has

to be a non-zero positive number (β > 0), we fit the proposed model three times by varying

the order of the X variable inside the index function. If the SNP is selected as varying or

constant in all the three cases, this would suggest a convincing signal. Therefore, we only

consider the cases where all three models return the same effect classification result.

Our model identified 122 genes with constat effect and no gene with varying effect,

indicating that these genes are not sensitive to the changes of those three environmental

variables, i.e., no significant G×E effect. Consider gene ST3GAL1 located on chromosome

8 as an example. It contains 39 SNPs in our data set. Table 17 presents the estimated SNP

effect in gene ST3GAL1. The left, middle, and right column correspond to the case where

τ = 0.25, τ = 0.50, and τ = 0.75, respectively. Among those, SNPs rs13267049, rs6986303,

and rs6990329 have effect on response in lower quantile (τ = 0.25). SNP rs2142306 only has
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effect for the τ = 0.5 quantile, and SNPs rs2736860, rs9643299, and rs7460764 have effect

when τ = 0.75. Interestingly, for SNP rs7831227, we observed an increase in negative effect

with the increase of the quantile of the response variable. This suggests that the SNP has

different effect at different quantile of the birth weight. A genome-wide associations study in

2016 (Horikoshi et al. (2016)) suggested that only 15% of the variance in birth weight was

captured by genetic variations. Thus, it is not surprise to see the limited genetic variants

with relatively small effect being selected.

Table 17: Effect of SNPs in gene ST3GAL1

τ = 0.25 τ = 0.50 τ = 0.75

rs13267049 0.0260 0 0
rs2736860 0 0 -0.0290
rs2142306 0 0.0720 0
rs6986303 0.1129 0 0
rs6990329 0.1411 0 0
rs9643299 0 0 -0.0489
rs7460764 0 0 -0.1077
rs7831227 -0.0294 -0.0801 -0.1007

Table 18 presents the parameter estimates for the marginal effect of environmental factors

on birth weight. The first, second, and third row correspond to the case where τ = 0.25,

τ = 0.50, and τ = 0.75 respectively. We observed different results at different quantiles,

suggesting that the environmental effects are different at different quantiles for the birth

weight. For example, at lower quantile (0.25), X2 (mother’s one hour OGTT glucose level)

and X3 (mother’s systolic blood pressure) showed strongest effect. At higher quantile (0.75),

X1 (mother’s diastolic blood pressure) and X3 showed strongest effect. For median regression

case (τ = 0.5), we observed a strong effect for X1, while X2 was not selected.

Figure 6 represents the effect of environmental factors on different quantiles of birth
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Table 18: Estimated Loading Parameter for Gene ST3GAL1

β1 β2 β3

τ = 0.25 0.272 0.707 0.653
τ = 0.5 0.895 0.000 -0.445
τ = 0.75 0.637 -0.288 -0.715

weight. The red, blue, and black curve correspond to the effect at quantile 0.25, 0.5,

and 0.75, respectively. Since the estimated β is different at different quantile, the span

differs. We observed a higher fitted birth weight at a higher quantile. For τ = 0.75, with

the increased index Xβ, we first observed a quick decrease in fitted birth weight, then it

fluctuates around 3.3. Since the loading coefficient estimates for β2 and β3 are negative, this

implies that higher values for mother’s one hour OGTT glucose level and mother’s systolic

blood pressure potentially contribute to higher birth weight at the upper quantile. For the

median regression, the fitted birth weight first decreases from 3.3 to 3.0, then slowly increases

to 3.2. Both larger values in Mother’s diastolic blood pressure and Mother’s systolic blood

pressure contribute to relatively higher birth weight. For τ = 0.25, we saw a positive trend

in the total effect as the index increases.
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Figure 6: Plot of interaction effect effects

4.5 Discussion

Varying multi-index coefficient model is a novel way to model non-linear interaction between

genetic variants G and a mixture of environmental factors X. In previous chapters, we

proposed a 3 step iterative variable selection approach with the goal of selecting varying

and constat effect genetic variants as well as non-zero loading parameters. In this paper,

we generalized such approach to a conditional quantile regression setting. Compared to

condition mean regression, condition quantile regression possesses several advantages. First,

modelling the data at several quantiles offers a more comprehensive way to understand the

distribution of the response variable. In many applications, the effect of Gk on the response

differs at different quantiles. Second, quantile regression is robust to extreme observations.

By looking at different quantiles, novel insights about the underlying genetic mechanism
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could be revealed.

From the setup of τVMICM, the environmental factors X have to be continuous due

to the model constrain. Nevertheless, discrete factors such as gender and smoking status

might possess significant effect. In this case, we could easily generalize τVMICM to a partial

linear τVMICM model as Y = Zα+ (ZG)δ+
∑p
k=0mk(Xβ)Gk + ε(τ) where Z represent

the discrete environmental factors and δ represent the interaction of gene with discrete

environmental variables. The proposed variable selection approach could be modified to

accommodate these changes.

Although varying multi-index coefficient model enjoys many advantages over traditional

G×E model, it is not without its limitations. One of which is the constrains on its loading

parameters, ||β||2 = 1 and β1 > 0. Potentially, it would lead to different selection results if

we vary the order of loading covariates. In the application to real data, we can fit several

different models by varying the first loading covariate. If all the models return the same

selection results, then we are convinced such finding is valid. The constrains also limit the

interpretation of fitted environmental parameters, it is difficult to characterize the effect of

a single environmental factor. If environmental effect is our primary interest, we should

consider other modelling technique.

In the case study, the estimated interaction coefficients are all constants, indicating no

G×E interaction for birth weight. As the study is focused on the Thai population, this

cannot rule out the possibility that the mother’s conditions may act on fetus’ genome to

affect fetal growth in other populations. Further investigation is needed to confirm this.
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Chapter 5

Conclusion and future work

5.1 Conclusion

The main goal of this dissertation is to develop variable selection methods to identify

non-linear G×E interactions. We first proposed to use varying multi-index coefficient models

since it allows non-linear interaction between genetic factors and multiple environmental

factors. In Chapter 2, we proposed a 3 step iterative variable selection approach for VMICM

via a penalized regression. It separates gene effects into three categories: varying, constant

and zero. It could also select non-zero loading parameters for environmental factors. In

Chapter 3, we generalized such approach to a generalized regression setting with binary

responses. Following the work of Chapter 2, we extended the proposed variable selection

approach to a quantile regression setting in Chapter 4, since it provided a more comprehensive

understanding of the data and offered more robust estimators.

In conclusion, this dissertation contributes to the literature in two ways. From the

methodological perspective, it contributes to the methods development in variable selection

under a nonparametric varying index coefficients model framework. For the selection of

the nonparametric coefficients, we separated three types of effects rather than just selecting

zero vs non-zero functions. This complicates our selection procedure and distinguishes our

methods to existing ones in the literature (e.g., Feng and Xue (2013)). Theoretical properties
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of the selection methods were evaluated. Our methods have practical meanings and enrich

the literature of variable selection.

From the application perspective, our method development is well motivated by empirical

studies to evaluate the joint effect of multiple environmental exposures and how they interact

with genes to affect a disease trait. By taking gene or pathway information into account,

we were able to select important players in a gene set. The method developed under the

quantile regression framework makes much biological sense in certain trait such as birth

weight. Novel insights are expected under the proposed models.

5.2 Future work

In the simulation studies, we assumed any two genetic variants Gk and Gl are independent.

However, it would be more desirable if we consider linkage disequilibrium structure among

SNPs. More specifically, we could set the correlation between Gk and Gl to be ρ|k−l| where

ρ = 0.3 for low correlation case, ρ = 0.5 for median correlation case, and ρ = 0.9 for high

correlation case. To demonstrate the robustness of median regression compared to mean

regression, we could consider the case where ε follows a t distribution with 3 degree of

freedom.

In Chapter 2 and 3, we theoretically proved that our penalized estimators are consistent in

both estimation and selection under a fixed number of parameters. It could be more desirable

if we could prove the selection consistency when the number of parameters increases as the

sample size increases. Also it could be beneficial if we could demonstrate the consistency

of the penalized estimators in the quantile regression setting in Chapter 4. Further,

generalizations of the proposed selection approach to other generalized regression setting
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such as poisson or categorical variable could be done with modification to the likelihood

function. At last, extension of the proposed model to longitudinal data could be considered.

We will consider the aforementioned mentioned future work and continue to investigate

along those line.
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Appendix A

Real Data Results

A.1 Real data results of gVMICM

Table 19 presented all the varying effect SNPs selected. Similarly, Table 20 presented all the

constant effect SNPs selected.

Table 19: List of SNPs with a varying effect.

GeneID SNP

GeneID:440600 rs6537663
GeneID:2590 rs6666516
GeneID:729993 rs1015431
GeneID:54768 rs4788621
GeneID:117532 rs7509377
GeneID:758 rs5766384
GeneID:23395 rs4311249
GeneID:647107 rs2404825
GeneID:8633 rs3775049
GeneID:2185 rs6557991
GeneID:4915 rs6559870
GeneID:19 rs4742969
GeneID:286205 rs2416996
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Table 20: List of SNPs with a constant effect.

GeneID SNP

GeneID:114827 rs3815792
GeneID:2899 rs12118788
GeneID:260425 rs11102660
GeneID:9857 rs2293990
GeneID:2590 rs9308482
GeneID:6934 rs7901695
GeneID:55742 rs7101596
GeneID:867 rs4489755
GeneID:10867 rs740771
GeneID:57494 rs11047510
GeneID:196385 rs11058132
GeneID:64328 rs1961415
GeneID:23348 rs7326971
GeneID:23348 rs7991210
GeneID:57099 rs16962542
GeneID:11060 rs16970994
GeneID:25780 rs6708570
GeneID:100505498 rs6730602
GeneID:117532 rs11696526
GeneID:29780 rs5765571
GeneID:25814 rs713999
GeneID:9620 rs11090812
GeneID:23429 rs17009630
GeneID:80254 rs11710699
GeneID:8633 rs10516957
GeneID:157680 rs1788161
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Appendix B

Algorithm

B.1 Algorithm for VMICM

Here we presents the algorithm used in each steps:

Step 1 : To minimize the objective function Q1(γ|λ1, β̂
(0)

), we implemented the group

coordinate descent algorithm. The design matrix has the form

D = (G0, B̄(Xβ̂
(0)

)G0,G1, B̄(Xβ̂
(0)

)G1, . . . ,Gp, B̄(Xβ̂
(0)

)Gp)n×(L∗(p+1))

with the corresponding parameters (γ01,γ0∗, γ11,γ1∗, . . . , γ0p,γp∗), where γk∗ has a length

of L−1. We assigned a grouping index for each of the parameters (from 0 to M , where M+1

is the number of groups). Parameters with the same grouping index were in the same group

and they were penalized as a group, parameters with grouping index 0 were not penalized.

Denote Dm as the design matrix for group m, m = 0, 1, . . .M . Given the penalty

parameter λ1 and the MCP tuning parameter γMCP , γ(1) is obtained through the following

iteration:

(0) Perform Q-R decomposition on all Dm, i.e., Dm = QmRm, m = 0, 1, 2 . . .M , where

QT
mQm = I and Rm is an upper triangular matrix. Hence, Qm is the normalized

design matrix for group m.
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(1) For given initial values for γ, denoted as γ̂initial = {γ̂initialm },m = 0, 1, . . . ,M .

We obtained OLS estimate γ̂OLSm via γ̂OLSm = QT
m(Y − Q−mγ̃−m) = QT

mY −

QT
mQ−mγ̃−m where subscript Q−m represents the normalized design matrix without

group m and γ̃−m represents the most updated values for γ without group m.

(2) For group 0, set γ̂0 = γ̂OLS0 .

(3) For all other groups m = 1, . . . ,M , obtain the MCP estimate γ̂m via

γ̂m = γ̂OLSm if ||γ̂OLSm ||2 > λ ∗ τ

γ̂m = τ
τ−1S(γ̂OLSm , λ) if γ̂OLSm ≤ λ ∗ τ where S(γ̂OLSm , λ) = (1− λ

||γ̂OLSm ||2
)+ ∗ γ̂OLSm

(4) Updated γ̂initialm in step (1) by γ̂m. Iterate (1) through (4) until convergence

(5) We adjusted the converged estimator γ̂m by γ̂
final
m = R−1m γ̂m, for m = 0, 1, . . . ,M .

Step 2 : To obtained γ̂(2) = minγ Q2(γ|λ2,β(0), γ̂(1)) where

Q2(γ|λ2,β(0), γ̂(1)) =
n∑
i=1

{Yi −
∑
k∈V

[γ
(2)
k1 + B̄(Xβ(0))γ

(2)
k∗ ]Gk −

∑
k∈C

γ
(2)
k1 Gk}

2

+ n

p∑
k=1

pλ2(|γ(2)k1 |)I(||γ̂(1)k∗ ||2 = 0)

We implement standard coordinate descent algorithm and the design matrix is:

D(2) =
({
Gj , B̄(Xβ̂

(0)
)Gj

}
j∈V ,

{
Gk, B̄(Xβ̂

(0)
)Gk

}
k∈C

)

Step 3 : To obtain β̂, we minimized

Q3(β|λ3, γ̂(2)) = ||Y −
p∑

k=0

[γ̂k1 + B̄(Xβ)γ̂k∗]Gk||2 + n

q∑
d=2

pλ3(|βd|)

88



For an given initial value β̃ and doing a local linear approximation of B̄(Xβ)γ̂k∗Gk at β̃,

we have

B̄(Xβ)γ̂k∗Gk ≈ B̄(Xβ̃)γ̂k∗Gk + B̄′(Xβ̃)γ̂k∗XGk(β − β̃)

For the d− th coordinate of β, βd, we have

B̄(Xβ)γ̂∗kGk ≈ B̄(Xβ̃)γ̂∗kGk + B̄′(Xβ̃)γ̂∗kXdGk(βd − β̃d)

Thus we could obtain β̂d by minimizing the following:

Qd = ||Y ∗d −X
∗
dβd||

2
2 + npλ3(|βd|)

where

Y ∗d = Y −
∑p
k=0[γ̂k1Gk + B̄(XT β̃)γ̂∗kGk − B̄′(Xβ̃)γ̂∗kGkXdβ̃d]

X∗d =
∑p
k=0 B̄

′(Xβ̃)γ̂∗kGkXd

Hence, we obtained the MCP penalized estimator β̂
∗

= (β̂∗1 , . . . , β̂
∗
q )T via the following

(1) Given an initial estimate of β, denoted as β̃, calculate Y ∗dandX
∗
d according to the

above formula.

(2) Normalize X∗d by X∗
′
d = X∗d/||X

∗
d||2.

(3) Calculate β̂OLSd = X∗
′T
d Y ∗d.

(4) Set β̂∗1 = β̂OLS1 and for d 6= 1, β̂∗d =
(β̂OLSd −λ)+
1−1/γMCP if |β̂OLSd | ≤ λγMCP and β̂∗d = β̂OLSd

if |β̂OLSd | > λγMCP .

(5) Adjust β̂∗d by β̂
adjusted
d = β̂∗d ∗ ||X

∗
d||2.
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(6) Repeat steps (1) through (5) for all βd, d = 1, . . . , q.

(7) Normalize β̂
adjusted

, i.e. β̂d =
β̂
adjusted
d

||β̂
adjusted

||2
∗ sign(β

adjusted
1 ).

(8) Update β̃ in step (1) with β̂ = (β̂1, . . . , β̂q)
T and iterate step (1) through (6) until

convergence.

B.2 Algorithm for model (2.6)

For the intercept only model, Y = m0(Xβ)+ε, the following contain the steps in estimation.

(0) We approximated m0(Xβ) with B-spline basis function: m0(Xβ) ≈ γ01+B̄(Xβ)γ0∗.

(1) Given initial value for β, denoted as β̂, let the design matrix D = (1, B̄(Xβ̂)), denote

γ = (γ01,γ0∗), we estimated γ with γ̂ = (DTD)−1DTY .

(2) Obtain βupdated via minimizing ||Y − γ̂01 − B̄(Xβ)γ̂0∗||22 with Newton-Raphson

algorithm.

(3) Replace β̂ by βupdated in step (1), and iterate until convergence.

B.3 Algorithm for gVMICM

Here we showed the algorithm used in gVMICM:

Step 1 & Step 2 followed directly from the group coordinate descent algorithm described

before, hence the details are omitted.

Step 3 :

β̂ = max
||β||2=1

M3(β|λ3, γ̂(2)) = max
||β||2=1

(
l(γ̂(2),β)− n

q∑
d=2

pλ3(|βd|)
)
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We implemented the local quadratic approximation technique proposed by Fan and

Li(2001)(Fan and Li (2001)). Denote β̃ to be the most updated value of β, by Taylor

expansion at β̃, we have

l(γ̂(2),β) ≈ l(γ̂(2), β̃) +5l(γ̂(2), β̃)T (β − β̃) +
1

2
(β − β̃)T 52 l(γ̂(2), β̃)(β − β̃)

where

5l(γ̂(2), β̃) = (
∂l(γ̂(2),β)

∂β1
, . . . ,

∂l(γ̂(2),β)

∂βq
)T
∣∣∣∣
β=β̃

is the gradient

52l(γ̂(2), β̃) =

[
∂2l(γ̂(2),β)

∂βj∂βl

]
1≤j,l≤q

∣∣∣∣
β=β̃

is the hessian matrix

and

∂l(γ̂(2),β)

∂βj
= (Y − 1

1 + e−µB
(3)

)T
∂µB

(3)

∂βj

∂2l(γ̂(2),β)

∂βj∂βl
= (Y − 1

1 + e−µB
(3)

)T
∂µB

(3)

∂βj∂βl
−
(

e−µ
B(3)

(1 + e−µB
(3)

)2

)T ∂µB(3)

∂βj
· ∂µ

B(3)

∂βl

with

µB
(3)

=

p∑
k=0

[γ̂
(2)
k1 + B̄(Xβ)γ̂

(2)
k∗ ] ·Gk

∂µB
(3)

∂βj
=

p∑
k=0

(
B̄′(Xβ)γ̂

(2)
k∗ ·Xj ·Gk

)

∂µB
(3)

∂βj∂βl
=

p∑
k=0

(
B̄′′(Xβ)γ̂

(2)
k∗ ·Xj ·X l ·Gk

)

Let Σλ3
(β̃) = diag(0,

p′λ3
(β̂2)

|β̂2|
, . . . ,

p′λ3
(β̂q)

|β̂q |
). Then, we updated β with

β∗ = β̃ −
[
52 l(γ̂(2), β̃) + nΣλ3

(β̃)
]−1[

5 l(γ̂(2), β̃) + nΣλ3
(β̃)β̃

]
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Then we standardized β with βupdated = sign(β∗1)
β∗

||β∗||2
. We iterate the above steps until

convergence.

B.4 Algorithm for quantile VMICM

Here, we presented the algorithm used in the quantile VMICM model.

Step 1&2 : The algorithm used in these steps followed directly from Peng and Wang(2015)

and we implemented the R-package “rqPen” (Sherwood and Maidman (2016)).

Step 3: Obtain β̂ = min||β||2=1Q3(β|λ3, γ̂(2)) where

Q3(β|λ3, γ̂) =
n∑
i=1

ρτ
(
Yi −

p∑
k=0

[γ̂k1 + B̄(Xβ)γ̂k∗]Gik
)

+ n

q∑
d=2

pλ3(|βd|)

Since B̄(Xβ) is not a linear function of β, we adopted the idea of first order approximation

for B̄(Xβ). Denote β̃ as the most updated value of β. We have

B̄(Xβ)γ̂k∗Gk ≈ B̄(Xβ̃)γ̂k∗Gk + B̄′(Xβ̃)γ̂k∗XGk(β − β̃)

For individual βd, d = 1, . . . q, we have

B̄(Xβ)γ̂∗kGk ≈ B̄(Xβ̃)γ̂∗kGk + B̄′(Xβ̃)γ̂∗kXdGk(βd − β̃d)

Then we could obtain β̂d by minimizing the following:

Qd = ρτ (Y ∗d −X
∗
dβd) + npλ3(|βd|)
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where Y ∗d = Y −
∑p
k=0[γ̂k1Gk + B̄(XT β̃)γ̂∗kGk − B̄′(Xβ̃)γ̂∗kGkXdβ̃d] and X∗d =∑p

k=0 B̄
′(Xβ̃)γ̂∗kGkXd. Hence, we obtained the MCP penalized estimator β̂

∗
=

(β∗1 , . . . , β
∗
q )T via the following steps:

(1) For given initial value for β, denoted as β̃, calculate Y ∗d and X∗d according to the

above formula.

(2) Obtain β̂
∗

= (β∗1 , . . . , β
∗
q )T via implementing the iterative coordinate descent algorithm

for quantile regression.

(3) Standardize β̂
∗

via β̂ = sign(β̂∗1)
β̂
∗

||β̂
∗
||2

.

(4) Iterate steps (1) to (3) until convergence.

B.5 Algorithm for model (4.6)

Consider the intercept only model Y = m0(Xβ) + ε, we proposed an iterative algorithm to

estimate its parameters in the following.

(0) Approximate m0(Xβ) with the B-spline basis function, i.e., m0(Xβ) ≈ γ01 +

B̄(Xβ)γ0∗.

(1) For given initial value for β, denoted as β̂, obtain γ̂01 and γ̂0∗ via the “rq” function

in R (in package “quantreg”), with B̄(Xβ̂) being the design matrix.

(2) Obtain βupdated via minimizing
∑n
i=1 ρτ (Y i − γ̂01 − B̄(Xβ)γ̂0∗) with the linear

approximation method described in Appendix B.4.

(3) Update β̂ by βupdated, and iterate until convergence.
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Appendix C

Proof of Theorems

Some notations: Denote the space of Lipschitz continuous functions for any fixed constant

c as Lip([a, b], c) = {f : |f(x1) − f(x2)| ≤ c|x1 − x2|,∀x1, x2 ∈ [a, b]}. Let C(p)[a, b] = {f :

f (p) ∈ C[a, b]} be the space of the pth order smooth functions.

C.1 Proof of Theorem 2.3.1

We assume the following regularity conditions:

(A1) The density function fU(β)(·) of random variable U(β) = Xβ is bounded away

from 0 on Ω = {Xβ,X ∈ X }, where X is the compact support of X. There exists a

constant c1, such that fU(β)(·) ∈ Lip([a, b], c1).

(A2) For k = 0, 1, . . . , p, the non-parametric function mk(·) ∈ C(r) and r ≥ 2.

(A3) E(||G||6) <∞ and E(|ε|6) <∞.

(A4) The matrixM(u) = E(GGT |Xβ = u) is positive definite, each element ofM (u) ∈

Lip([a, b], c4).

(A5) Let bn = maxk,l{p′′λ1(||γ0k∗||2), p′′λ2
(|γ0k1|), p

′′
λ3

(|β0d|),γ
0
k∗ 6= 0,γ0k1 6= 0, β0l 6= 0} for

k = 1, . . . , p, d = 2, . . . , q. Then bn → 0 as n→ 0

(A6)

lim inf
n→∞

lim inf
||γk∗||2→0+

1

λ1
|p′λ1(||γk∗||2)| > 0 for k = v + 1, . . . , p

94



lim inf
n→∞

lim inf
|γk1|→0+

1

λ2
|p′λ2(|γk1|)| > 0 for k = c+ 1, . . . , p

lim inf
n→∞

lim inf
|βd|→0+

1

λ3
|p′λ3(|βd|)| > 0 for d = s+ 1, . . . , q

(A7) Let c1, . . . , cK be the interior knots of [a, b], where a = inf{u : u ∈ Ω}, b = sup{u :

u ∈ Ω} and c0 = 1, cK+1 = b, hi = ci− ci−1, h = max{hi}. Then exists a constant C7 such

that h
min{hi}

< C7 and max{hi+1hi} = o(K−1).

Lemma C.1.1. If mk(u), k = 0, 1, . . . , p satisfy condition (A2), then there exists a constant

C > 0 such that

sup
u∈Ω

|mk(u)− γk1 − B̄(u)γk∗| ≤ CK−r.

Proof : This result follows directly from a standard B-spline theory.

Denote φ = (β2, . . . βq)
T , hence β = (

√
1− ||φ||22,φ

T )T and φ0 is the true value of φ.

To show the consistency of β̂, it is equivalent to show the consistency of φ̂ = (β̂2, · · · , β̂q).

Let αn = n−r/(2r+1) + an, γ = γ0 + αnτ 1, φ = φ0 + αnτ 2 and τ = (τ 1, τ 2), where

τ 1 = (τ01, τ 0∗, . . . , τp1, τ p∗) and {τk1, τ k∗} corresponds to the B-spline coefficients γk1,γk∗;

τ 2 = (τ
φ
1 , . . . , τ

φ
q−1) and τ

φ
l corresponds to φl.

To show the consistency of γ̂ and φ̂, we need to show that ∀ε > 0, ∃ a large enough C,

so that:

P
(

inf
||τ ||=C

{Q1(γ,φ)} > Q1(γ0,φ0)
)
≥ 1− ε (C.1)

where

Q1(γ,φ) = g(γ,φ) + n

p∑
k=1

pλ1(||γk∗||2) + n

p∑
k=1

pλ2(|γk1|)I(||γk∗||2 = 0) + n

q−1∑
l=1

pλ3(|φl|)

and g(γ,φ) = ||Y −
∑p
k=0(γk1+B̄(φ)γk∗)Gk||22 is the squared error loss. If (C.1) holds, we
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can say with probability at least 1−ε, there exists a local minimum in the ball {(γ0,φ0)+αn∗

τ ; ||τ || ≤ C}. Hence, there exists a local minimizer such that ||(γ̂, φ̂)− (γ0,φ0)|| = Op(αn).

Let

Dn(τ ) =
1

K
{Q1(γ,φ)−Q1(γ0,φ0)} =

1

K
{Q1(γ0 + αnτ 1,φ

0 + αnτ 2)−Q1(γ0,φ0)}

=
1

K

{
g(γ0 + αnτ 1,φ

0 + αnτ 2)− g(γ0,φ0)

+ n

p∑
k=1

[
pλ1(||γ0k∗ + αnτ k∗||2)− pλ1(||γ0k∗||2)

]
+ n

p∑
k=1

[
pλ2(|γ0k1 + αnτk1|)I(||γ0k∗ + αnτk∗||2 = 0)− pλ2(|γ0k1|)I(||γ0k∗||2 = 0)

]
+ n

q−1∑
j=1

[
pλ3(|φ0j + αnτ

φ
j |)− pλ3(|φ0j |)

]}

Since pλ1(||γ0k∗||2)] = 0 for k = v + 1, . . . , p and pλ3(|φ0j |) = 0 for j = s + 1, . . . , q − 1

and I(||γ0k∗||2 = 0) = 0 for k = 1, . . . , v , we have

Dn(τ ) ≥ 1

K

{
g(γ0 + αnτ 1,φ

0 + αnτ 2)− g(γ0,φ0)

+ n
v∑

k=1

[pλ1(||γ0k∗ + αnτ k∗||2)− pλ1(||γ0k∗||2)]

+ n

p∑
k=v+1

[
pλ2(|γ0k1 + αnτk1|)− pλ2(|γ0k1|)

]
+ n

s−1∑
j=1

[pλ3(|φ0j + αnτ
φ
j |)− pλ3(|φ0j |)]

}
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Then by Taylor series expansion at (γ0,φ0), we have

Dn(τ ) ≥ αn
K

(
∂g

∂γ0
,
∂g

∂φ0
)τT − 1

2K
nα2nτI(γ0,φ0)τT (1 + op(1))

+
n

K

v∑
k=1

[
αnp
′
λ1

(||γ0k∗||2)
γ0k∗
||γ0k∗||2

τTk∗ + α2np
′′
λ1

(||γ0k∗||2)τ k∗τ
T
k∗(1 + op(1))

]
+
n

K

p∑
k=v+1

[
αnp
′
λ2

(|γ0k1|)sign(γ0k1)τk1 + α2np
′′
λ2

(|γ0k1|)(τk1)2(1 + op(1))
]

+
n

K

s−1∑
j=1

[
αnp
′
λ3

(|φ0j |)sign(φ0j )τ
φ
j + α2np

′′
λ3

(|φ0j |)(τ
φ
j )2(1 + op(1))

]
:= S1 + S2 + S3 + S4 + S5

where I(γ0,φ0) is the Fisher’s information matrix.

By standard arguments, S1 is of the order Op(1 + nr/(2r+1)αn)||τ ||, S2 is of the order

Op(1+2nr/(2r+1)αn)||τ ||2 and for large enought C, S2 dominates S1 uniformly in ||τ || = C.

Further, by Taylor expansion at γ0, we have

S3 ≤
n

K
αnan

v∑
k=1

γ0k∗
||γ0k∗||2

τTk∗ +
n

K
α2n max

k
{p′′λ1(||γ0k∗||2)}

v∑
k=1

τ k∗τ
T
k∗

≤ n

K
α2n
√
v +

n

K
α2nC max

k
{p′′λ1(||γ0k∗||2)}

Since maxk{p′′λ1} → 0, S3 is dominated by S2.

For S4 and S5, we have

S4 ≤ αnan
n

K

p∑
k=v+1

τk1 +
n

K
α2n max

k
{p′′λ2(|γ0k1|)}

p∑
k=v+1

(τk1)2

≤ n

K
α2nC +

n

K
α2nC

2 max
k
{p′′λ2(|γ0k1|)}
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and

S5 ≤ αnan
n

K

s∑
j=1

τ
φ
j +

n

K
α2n max

j
{p′′λ3(|φ0j |)}

s∑
j=1

(τ
φ
j )2

≤ n

K
α2nC +

n

K
α2nC

2 max
j
{p′′λ3(|φ0j |)}

Similarly, we have S4 and S5 being dominated by S2. Hence, by choosing a large enough

C, we have ||(γ̂, φ̂)− (γ0,φ0)|| = Op(αn). This proves the consistency of the penalized least

square estimator (γ̂, φ̂).

C.2 Proof of Theorem 2.3.2

Without loss of generality, we denote φ = (φnz,φz), where φnz = (φ1, . . . , φs−1) and

φz = (φs, . . . , φq−1). From λmax → 0, it is very easy to see that an = 0 for large n. Then

by Theorem 2.3.1, it is sufficient to show for φnz,

||φj − φ0j ||2 = Op(n
−r/(2r+1)), j = 1, . . . , s− 1

and for φz, for some given small ε = Cn−r/(2r+1), when n → ∞, with probability

approaching 1, for j = s, . . . , q − 1, we have

∂Q1(γ,φ)

∂φj
> 0 when 0 < φj < ε and

∂Q1(γ,φ)

∂φj
< 0 when − ε < φj < 0

Since we have

∂Q1(γ,φ)

∂φj
=
∂g(γ,φ)

∂φj
+ npλ3(|φj |)sign(φj).

98



Do Taylor expansion at φ0 for
∂g(γ,φ)
∂φj

only, we have

∂Q1(γ,φ)

∂φj
=
∂g(γ,φ0)

∂φj
+

q−1∑
l=1

∂2g(γ,φ0)

∂φj∂φl
(φl − φ0l )

+

q−1∑
l=1

q−1∑
k=1

∂3g(γ,φ∗)
∂φj∂φl∂φk

(φl − φ0l )(φk − φ
0
k) + npλ3(|φj |)sign(φj)

where φ∗ lies between φ0 and φ. After some calculation, we have

∂Q1(γ,φ)

∂φj
= nλ3{

1

λ3
p′λ3

(|φj |)sign(φj) +Op(
1

λ3
n−r/(2r+1))}

Since limn→∞ lim infφj→0
1
λ3
p′λ3

(|φj |) > 0 and 1
λ3
n−r/(2r+1) → 0, we can conclude that the

sign of
∂Q1(γ,φ)

∂φj
is completely determined by sign of φj . Hence, we have proven β̂j = 0 for

j = s+ 1, . . . , q

For (ii) & (iii), applying similar arguments as in (i), we immediately have, with probability

approaching 1, γ̂k∗ = 0 for k = v + 1, . . . , p and γ̂k1 = 0 for k = c + 1, . . . , p. Then

by supuB(u) = O(1) and m̂k(·) = γ̂k0 + B̄(Xβ̂)γ̂k∗, we have proven m̂k(·) = ck for

k = v + 1, . . . , c where ck is some constant and m̂k(·) = 0 for k = c+ 1, . . . , p.

C.3 Proof of Theorem 3.3.1

We assume the following regularity conditions:

(A1) The density function fU(β)(·) of a random variable U(β) = Xβ is bounded away

from 0 on Ω = {Xβ,X ∈X }, where X is the compact support of X. And there exists a

constant c1, such that fU(β)(·) ∈ Lip([a, b], c1).

(A2) For k = 0, 1, . . . , p, the non-parametric function mk(·) ∈ C(r) and r ≥ 2.
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(A3) E(||G||6) <∞.

(A4) The matrix M (u) = E(GGT |Xβ = u) is positive definite, and each element of

M (u) ∈ Lip([a, b], c4)

(A5) Let bn = maxk,l{p′′λ1(||γ0k∗||2), p′′λ2
(|γ0k1|), p

′′
λ3

(|β0d|),γ
0
k∗ 6= 0,γ0k1 6= 0, β0l 6= 0} for

k = 1, . . . , p, d = 2, . . . , q, then bn → 0 as n→ 0.

(A6)

lim inf
n→∞

lim inf
||γk∗||2→0+

1

λ1
|p′λ1(||γk∗||2)| > 0 for k = v + 1, . . . , p

lim inf
n→∞

lim inf
|γk1|→0+

1

λ2
|p′λ2(|γk1|)| > 0 for k = c+ 1, . . . , p

lim inf
n→∞

lim inf
|βd|→0+

1

λ3
|p′λ3(|βd|)| > 0 for d = s+ 1, . . . , q

(A7) Let c1, . . . , cK be the interior knots of [a, b], a = inf{u : u ∈ Ω}, b = sup{u : u ∈ Ω}

and c0 = 1, cK+1 = b, hi = ci − ci−1, h = max{hi}. Then there exists a constant C7 such

that h
min{hi}

< C7 and max{hi+1hi} = o(K−1).

Let φ = (β2, . . . , βq)
T , and we have β = (

√
1− ||φ||22,φ

T )T , hence the restriction ||β|| =

1 and β1 > 0 is equivalent to ||φ||2 < 1. To show the consistency of β̂, it is enough to show

the consistency of φ̂. Let αn = n−r/(2r+1) + an, γ = γ0 + αnτ 1, φ = φ0 + αnτ 2 and

τ = (τ 1, τ 2), where τ1 = (τ01, τ 0∗, . . . , τp1, τ p∗) and {τk1, τ k∗} corresponds to the B-spline

coefficients γk1,γk∗; τ 2 = (τ
φ
1 , . . . , τ

φ
q−1) and τ

φ
l corresponds to φl.

To show consistency of γ̂ and φ̂, we need to show ∀ε > 0, ∃ a large enough C, so that:

P
(

sup
||τ ||=C

{M(γ,φ)} < M(γ0,φ0)
)
≥ 1− ε (C.2)
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where

M(γ,φ) = l(γ,φ)− n
p∑

k=1

pλ1(||γk∗||2)− n
p∑

k=1

pλ2(|γk1|)I(||γk∗||2 = 0)− n
q−1∑
l=1

pλ3(|φl|)

and l(γ,φ) is the log-likelihood function defined above. If (C.2) holds, we can see, with

probability at least 1− ε, there exists a local maximum in the ball {(γ0,φ0) +αn ∗τ ; ||τ || ≤

C}. Hence, there exists a local maximizer such that ||(γ̂, φ̂)− (γ0,φ0)|| = Op(αn).

Let

Dn(τ ) =
1

K
{M(γ,φ)−M(γ0,φ0)} =

1

K
{M(γ0 + αnτ 1,φ

0 + αnτ 2)−M(γ0,φ0)}

=
1

K

{[
l(γ0 + αnτ 1,φ

0 + αnτ 2)− l(γ0,φ0)
]

− n
p∑

k=1

[
pλ1(||γ0k∗ + αnτ k∗||2)− pλ1(||γ0k∗||2)

]
− n

p∑
k=1

[
pλ2(|γ0k1 + αnτk1|)I(||γ0k∗ + αnτk∗||2 = 0)− pλ2(|γ0k1|)I(||γ0k∗||2 = 0)

]
− n

q−1∑
j=1

[
pλ3(|φ0j + αnτ

φ
j |)− pλ3(|φ0j |)

]}

Since pλ1(||γ0k∗||2)] = 0 for k = v + 1, . . . , p and pλ3(|φ0j |) = 0 for j = s + 1, . . . , q − 1

and I(||γ0k∗||2 = 0) = 0 for k = 1, . . . , v , we have
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Dn(τ ) ≤ 1

K

{
l(γ0 + αnτ 1,φ

0 + αnτ 2)− l(γ0,φ0)

−n
v∑

k=1

[pλ1(||γ0k∗ + αnτ k∗||2)− pλ1(||γ0k∗||2)]

−n
p∑

k=v+1

[
pλ2(|γ0k1 + αnτk1|)− pλ2(|γ0k1|)

]
−n

s−1∑
j=1

[pλ3(|φ0j + αnτ
φ
j |)− pλ3(|φ0j |)]

}

Then by Taylor expansion at (γ0,φ0), we have

Dn(τ ) ≤ αn
K

(
∂l

∂γ0
,
∂l

∂φ0
)τT − 1

2K
nα2nτI(γ0,φ0)τT (1 + op(1))

− n
K

v∑
k=1

[
αnp
′
λ1

(||γ0k∗||2)
γ0k∗
||γ0k∗||2

τTk∗ + α2np
′′
λ1

(||γ0k∗||2)τ k∗τ
T
k∗(1 + op(1))

]
− n
K

p∑
k=v+1

[
αnp
′
λ2

(|γ0k1|)sign(γ0k1)τk1 + α2np
′′
λ2

(|γ0k1|)(τk1)2(1 + op(1))
]

− n
K

s−1∑
j=1

[
αnp
′
λ3

(|φ0j |)sign(φ0j )τ
φ
j + α2np

′′
λ3

(|φ0j |)(τ
φ
j )2(1 + op(1))

]
:= S1 − S2 − S3 − S4 − S5

where I(γ0,φ0) is the Fisher’s information matrix. By standard arguments of likelihood

theory, S1 is of the order Op(1 + nr/(2r+1)αn)||τ ||, S2 is of the order Op(1 +

2nr/(2r+1)αn)||τ ||2 and for large enough C, S2 dominates S1 uniformly in ||τ || = C .
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Further, we have

S3 ≤
n

K
αnan

v∑
k=1

γ0k∗
||γ0k∗||2

τTk∗ +
n

K
α2n max

k
{p′′λ1(||γ0k∗||2)}

v∑
k=1

τ k∗τ
T
k∗

≤ n

K
α2n
√
v||τ ||+ n

K
α2n||τ ||2 max

k
{p′′λ1(||γ0k∗||2)}

Since maxk{p′′λ1} → 0, we have S3 dominated by S2.

For S4 and S5, we have

S4 ≤ αnan
n

K

p∑
k=v+1

τk1 +
n

K
α2n max

k
{p′′λ2(|γ0k1|)}

p∑
k=v+1

(τk1)2

≤ n

K
α2n||τ ||+

n

K
α2n||τ ||2 max

k
{p′′λ2(|γ0k1|)}

and

S5 ≤ αnan
n

K

s−1∑
l=1

τ
φ
l +

n

K
α2n max

l
{p′′λ3(|φ0l |)}

s−1∑
l=1

(τ
φ
l )2

≤ n

K
α2n||τ ||+

n

K
α2n||τ ||2 max

l
{p′′λ3(|φ0l |)}

Similarly, we have S4 and S5 dominated by S2. Hence, by choosing a large enough C,

we have ||(γ̂, φ̂) − (γ0,φ0)|| = Op(αn). Hence the consistency of penalized least squares

estimator (γ̂, φ̂) is proven.

C.4 Proof of Theorem 3.3.2

For ease of notation, we denote φ = (φnz,φz), where φnz = (φ1, . . . , φs−1) and φz =

(φs, . . . , φq−1). From λmax → 0, it is very easy to see an = 0 for large n. Then by Theorem
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3.3.1, it is sufficient to show for φnz, it satisfies,

||φl − φ0l ||2 = Op(n
−r/(2r+1)), l = 1, . . . , s− 1

and for φz and for some given small ε = Cn−r/(2r+1), when n → ∞, with probability

approaching 1, for l = s, . . . , q − 1, it satisfies,

∂M(γ,φ)

∂φl
< 0 when 0 < φl < ε and

∂M(γ,φ)

∂φl
> 0 when − ε < φl < 0

Since we have

∂M(γ,φ)

∂φl
=
∂l(γ,φ)

∂φl
− np′λ3(|φl|)sign(φl)

Do Taylor expansion at φ0 for
∂l(γ,φ)
∂φl

only, we have

∂M(γ,φ)

∂φl
=
∂l(γ,φ0)

∂φl
+

q−1∑
k=1

∂2l(γ,φ0)

∂φl∂φk
(φk − φ0k)

+

q−1∑
k=1

q−1∑
j=1

∂3l(γ,φ∗)
∂φl∂φk∂φj

(φk − φ0k)(φj − φ0j )− np
′
λ3

(|φj |)sign(φj)

where φ∗ lies between φ0 and φ. After some calculation, we have

∂M(γ,φ)

∂φl
= nλ3

{
− 1

λ3
p′λ3

(|φl|)sign(φl) +Op(
1

λ3
n−r/(2r+1))

}

Since limn→∞ lim infφj→0
1
λ3
p′λ3

(|φj |) > 0 and 1
λ3
n−r/(2r+1) → 0, we can conclude that the

sign of
∂M(γ,φ)

∂φj
is completely determined by the sign of φj . Hence, we prove β̂j = 0 for

j = s+ 1, . . . , q

For (ii) & (iii), applying similar arguments as in (i), we immediately have, with probability
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approaching 1, γ̂k∗ = 0 for k = v + 1, . . . , p and γ̂k1 = 0 for k = c + 1, . . . , p. Then by

supuB(u) = O(1) and m̂k(·) = γ̂k0 + B̄(Xβ̂)γ̂k∗, we prove m̂k(·) = ck for k = v + 1, . . . , c,

where ck is some constant and m̂k(·) = 0 for k = c+ 1, . . . , p.
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