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ABSTRACT 

URBAN EXPANSION AND URBAN ENVIRONMENTAL EVALUATION IN CHENGDU, 

CHINA 

By 

Shiqi Tao 

Environmental consequences resulting from urbanization jeopardize the life quality and 

social welfare of urban residents. To date, studies have focused on the urban environment by using 

integrated assessment methods and providing one evaluation result for the whole geographic area 

within an administrative boundary. These studies lack consideration of spatial heterogeneity, 

failing to fully understand the urban environmental statuses and dynamics at the pixel scale. 

Therefore, this research aims to fill this gap by systematically evaluating the urban environment 

at every single spatial unit of urban land against the background of urban expansion in Chengdu, 

a megacity in western China. Guided by a proposed three-dimensional (self, neighborhood and 

accessibility) theoretical framework, this study uses remote sensing and GIS data and adapts the 

catastrophe theory to evaluate Chengdu’s urban environment in a spatially explicit manner. Results 

from change detection of the urban area in Chengdu show a high-speed expansion from the urban 

center towards all directions, especially southwest during 2000-2015. Environmental assessment 

analysis reveals an improved urban center but degraded outskirts regarding environmental 

conditions. The regression analysis suggests a negative effect of rapid urban expansion on the 

environment, while this effect can be alleviated through better planning strategies. Therefore, it is 

suggested that policy makers should balance the speed of urban expansion and urban 

environmental planning to provide a better living environment for urban residents in Chengdu. 

The integration of remote sensing and urban environmental assessment can be applied to other 

cities in China and elsewhere around the world.  
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CHAPTER 1: INTRODUCTION 

In the past century, the world has experienced intensive and extensive urban expansion 

under rapid population growth, economic development, and industrialization (Seto et al., 2011). 

During 1900-2000, the size of the worldwide population has quadrupled from 1.6 to 6.4 billion 

(Maddison, 2001), facilitating the process of urbanization. Meanwhile, the global economy, 

measured as Gross Domestic Product (GDP), has increased by over twenty-fold (Maddison, 2001; 

Krausmann et al., 2009) and the urban economy has contributed more than 90% of the value (UN, 

2011).  

The pace of urban area expansion is expected to continue and even accelerate in the 

developing world for the next century. Estimates suggest that urban land cover will increase by 

1.5 million km2, which is 2.5 times of the increased size during 1970-2000, while the urban 

population will increase by more than 66% by 2050 (UN, 2014) and move towards 100% by 2100 

(Batty, 2011). Such huge global processes have far-reaching consequences to the terrestrial 

environment on the Earth as well as human well-being, particularly in developing countries. For 

example, urban expansion is inevitably accompanied by the tremendous demand for natural 

resources, such as food, water, energy, and land space for supporting residents. By 2050, almost 

50% more food and biofuel, compared to those in 2012, will be needed to sustain the projected 

living population of 9.73 billion (FAO, 2017). Therefore, it is imperative to address the needs of 

sustainable development with regard to the expansion of urban areas.  

There is perhaps no country where the challenge of urban sustainability is exemplified 

more strongly than China, currently the most populous country in the world. Since the central 

government implemented the opening-up policy in the late 1970s, China has witnessed a booming 

economy with double-digit growth in GDP over three decades (Zhang et al., 2018). Such an 
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unprecedented increase in the economy, accompanied by the growing population, has catalyzed 

urban transformation and industrialization, starting from coastal cities (e.g., Shanghai, Guangzhou, 

Tianjin, etc.) to other major cities in the inland regions (Long, 2014). Although predominantly 

agrarian in history, China has become more urbanized than ever before, with urban population 

exceeding 55% of the total (Wu et al., 2014).  

However, the fast speed of development comes with sacrifices. China has been facing 

numerous environmental problems such as air pollution, water shortages, sandstorms, frequent 

floods and droughts, as well as social issues such as inequalities (Huang et al., 2016), which have 

to a large extent compromised the life quality of urban residents. Thus, the main challenge is to 

harmonize urbanization and environmental change under the rapid pace of economic development. 

To address this challenge, it is necessary to conduct a comprehensive evaluation of urban 

expansion and environmental sustainability along with the processes.  

In 2000, China initiated the western development policy, also known as the “Go West” 

strategic program. The goal of the policy is to reduce the growing regional disparities between the 

western and eastern areas, the latter being the primarily focused areas of urbanization prior to 2000. 

The “Go West” program aimed to promote socio-economic development in western inland areas 

(Lai, 2002) via investments and incentives to attract emigrants from other regions. The program 

covers six provinces (Sichuan, Guizhou, Yunnan, Shanxi, Gansu, and Qinghai), one municipality 

(Chongqing), and five autonomous regions (Tibet, Ningxia, Xinjiang, Inner Mongolia, and 

Guangxi), promoting economic development in western cities (Schneider et al., 2005). Although 

the central government included ecological conservation policies in the western development 

program, urban expansion has inevitably encroached onto surrounding ecosystems (e.g., farmland, 

wetland and forest land) and reduced ecosystem services (e.g., provisional services of food and 
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water), jeopardizing their long-term sustainability (Liu et al., 2005). There is evidence that serious 

environmental issues arise because of urban expansion, including water and air pollution, loss of 

arable lands and reduction of biodiversity in these cities (Brown et al., 2010; Tao et al., 2013). 

As the capital city of Sichuan Province, Chengdu is among the highlighted cities in western 

China under the “Go West” program. With fast development, the GDP of Chengdu ranks among 

the top two over all other western Chinese cities during the past decade. The flourishing economy 

has brought residents a wealthy life, but has also caused various environmental issues, threatening 

the life quality of urban residents. The dense construction of impervious surface intensified the 

effect of the urban heat island (UHI) on the city as well as its peripheral land (Zhou et al., 2014). 

The burning of fossil fuel led to spikes of air pollution, especially by particulate matter with a 

diameter less than 2.5 micrometers, namely PM2.5 (Han et al., 2014). The growing population 

increased the demand for urban resources such as housing, education and green infrastructure 

(Schneider et al., 2005). Therefore, it is urgent to systematically evaluate the urban environment 

under the rapid urbanization background in Chengdu to provide suggestions to the government for 

better urban planning.  

The present study thus aims to examine the spatial and temporal patterns of urban 

expansion and the urban environmental condition in Chengdu as an indirect way to evaluate the 

effect of economic development and issues brought about following the “Go West” program. This 

study has three specific aims: 1) analyzing spatiotemporal patterns and rates of Chengdu’s urban 

expansion during 2000-2015 with a time series of satellite observations; 2) assessing the urban 

environment during the study period based on a set of indicators from a spatially-explicit 

perspective, and 3) linking urban expansion with urban environmental conditions and discussing 

the effects of governmental policies. The results will provide a valuable reference to inform policy 
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makers for the establishment or amendment of future policies for sustainable urban development 

in Chengdu. The linking of urban area detection and environmental assessment not only gives a 

spatial perspective of the urban environment but also advances the understanding of the 

relationship between urban expansion and urban environmental change. The proposed analysis can 

be applied to other urban areas in China and elsewhere in the world. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Urbanization and urban expansion 

For centuries, human activities have driven the process of urbanization on the terrestrial 

surface. Schwirian & Preh (1962) explained urbanization from three perspectives, including the 

expansion of urban area, the change of human behavior and thoughts, and the increase in urban 

population. Antrop (2000) defined urbanization as the process of the transformation from natural 

landscape to industrial types constrained by local geography and facilitated by transportation 

systems. Huang (2006) identified urbanization as the industrial, commercial and residential 

development with land cover drastically changing from natural elements to anthropogenic, rough, 

and rigid structures. Researchers in different fields have different views about urbanization, while 

all theories of urbanization are related to the changes of scopes in human and environment 

dimensions.  

Urban expansion is an important manifestation of urbanization as a result of human needs 

and has pronounced consequence on the environment (Wei & Ye, 2014). Urban expansion is a 

process instead of status, thus requiring the track of changes over time. Many researchers reviewed 

reports and summarized the urban expansion processes. For example, Bengston et al., (2005) 

collected public discussions from news media and analyzed the consequence of urban expansion 

to forests in the United States. Quantifying the urban area, as most researchers propose, is a more 

direct way of monitoring urban expansion. Some studies used historical statistics data provided by 

governments about the constructed area to analyze urban expansion (e.g., Gao et al., 2014; Wei et 

al., 2017). However, these conventional methods were subject to errors due probably to 

inconsistent surveying and data processing steps by different people and the change of 

administrative boundaries. 
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With the advent and free accessibility of remotely sensed satellite images (Woodcock et 

al., 2008), monitoring immediate, accurate and long-term changes of urban areas within a large 

geographic boundary has become possible. Urban area delineation using visual interpretation 

methods relying on expert experiences was adopted in most of the early studies (e.g., Yagoub 2004; 

Henríquez et al., 2006). Liu et al. (2005) visually delineated the urban landscape and analyzed the 

driving forces of urban expansion in China and found an increase of 817,000 hectares in urban 

areas from 1990 to 2000. At the same time, indices such as the Normalized Difference Built-up 

Index (NDBI) were used to differentiate urban land use from other land cover types (Zha et al., 

2003). A more accurate method of urban monitoring, as applied by many researchers (e.g., Chen 

& Masser 2003, Deng et al., 2008, Schneider & Woodcock 2008, Taubenböck et al., 2012), is to 

develop classification algorithms to extract urban pixels or urban objects from satellite images. 

Aiming to pinpoint the time of changes, Zhu &Woodcock (2014) designed an algorithm to 

continuously detect land use and land cover (LULC) with all available remotely sensed images, 

which became a popular way of tracking LULC dynamics. Inspired by previous research, Liu et 

al. (2019) integrated spatial-temporal rules and dense Landsat time series stack to track impervious 

cover in Nanchang (China) during 2000-2015. Other data, such as nightlight data derived from 

satellite products can also be used to reflect urban density (e.g., Henderson et al., 2003; Li et al., 

2017). In addition, by using remotely sensed land surface temperature, urban land use change can 

influence the dynamics of UHI (Chen et al., 2006), which can, in turn, be used to facilitate the 

detection of urban area (He et al., 2014). 

2.2 Urban environment assessment 

Sustainable development, with the purpose of supporting lives for the current generation 

on the Earth without sacrificing benefits of the future generations, has drawn increasing attention 

https://www.sciencedirect.com/science/article/pii/S0197397505000378#!
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of urban planners and the public. With the rapid urbanization process, how to sustain the living of 

urban residents becomes one of the most urgent topics. Focusing on social, economic and 

environmental dimensions, also known as the three-pillar theory, urban sustainability has been 

intensively studied (May, 2000; Gibson, 2006; Wang et al., 2012). Concerning sustainable urban 

development, many organizations, such as the United Nations, UN Human Settlements 

Programme, and the World Bank, have established indicator systems for evaluating urban 

development (Yigitcanlar and Dizdaroglu, 2015). The applications of the Urban Sustainability 

Indicators List (IUSIL), the Global City Indicators Facility (GCIF), and the Global Urban 

Indicators Database to a large variety of cities provide useful guidance for urban development 

(Shen et al., 2011; Fox, 2013). With the recent establishment of the UN Sustainable Development 

Goals (SDGs), the frontier of sustainable development embodies a broad scale of aspects 

considering food, water, life, climate, health, equality, etc. (Simon et al., 2016; Liu et al., 2018). 

One primary focus of the SDGs is building sustainable cities and communities, and the urban 

environment is important.  

As one of the pillars of sustainable urban development, the urban environment is critical 

for the quality of urban residents’ lives and human health (Krämer et al., 2000; Volth, 2004; Dye, 

2008; Frumkin, 2016). During the past decades, the ecosystem has suffered the most from 

economic development in China. At the same time, the degraded urban environment, in turn, 

offsets economic and social development (Pacione, 2003; Nwaka, 2005). To better understand the 

changes, causes and consequences of urbanization, many researchers attempted to track the 

dynamics of the urban environment with multiple methods such as life cycle analysis (Lundin et 

al., 2002), system dynamic modeling (He et al., 2006), multi-agent system (Courdier et al., 2002), 

and linear programming (Hengsdijk & Van Ittersum, 2003). A more efficient and comprehensive 
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approach to evaluate the urban system is using a set of relevant indicators. With each individual 

indicator evaluated, an integrating approach, which requires a sophisticated model (Shibata et al., 

2004; Li et al., 2009; Shen et al., 2011), can be applied to all of the indicators. The result of the 

integration depicts a broad picture of the overall environmental condition of a city.  
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CHAPTER 3: METHODS 

3.1 Study area 

The Chengdu metropolitan area (10254’ E - 10453’ E and 3005’ N - 3126’ N) is located 

in the middle of Sichuan Province in western China (Figure 3.1). The central part of Chengdu 

constitutes the major developed area, surrounded by rural counties in the immediate vicinity of the 

Qionglai Mountain Piedmont to the west, and of the Longquan Mountain to the east. Two main 

rivers flow through the central urban area of Chengdu, providing water resources for agricultural 

irrigation and urban dwellings.  

 

 

Figure 3.1. The geographic location of the study area, Chengdu, Sichuan Province in western 

China. The background image is topography, with darker greens representing higher elevations 

while light greens lower elevations.  
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As the capital of Sichuan Province, Chengdu is home to 14.66 million people (in 2015) 

within the administrative boundary, distributed over an area of 14,605 km2, covering eleven 

administrative districts, five counties, and four county-level cities. The eleven districts are 

concentrated in the center of Chengdu, with six forming the core urban areas, while the other five 

are located in peripheral urban areas (Figure 3.1). Most of the counties or county-level cities in 

Chengdu are located in relatively remote areas dominated by natural landscapes and thus 

considered as suburban or rural areas. To simplify the illustration in this study, district, county and 

counties-level city are all called county hereafter. 

Since the implementation of the “Go West” program, Chengdu has been supported by both 

the central and local governments for its urban development. From 2000 to 2008, Chengdu’s 

economy witnessed a nearly threefold growth in total GDP, making the city top two in economic 

development among all of the western cities in China (Walcott, 2007). According to official 

statistics, the gross regional product of Chengdu during 2001-2015 increased from 149 billion yuan 

to 1080 billion yuan (~$24 billion to ~$174 billion), with per capita GDP of over 74,000 yuan 

(~$12,000) in 2015, which was 50% higher than the national average of 50,000 yuan (~$8,000). 

The total investment in fixed assets such as real estate increased by nearly 10 times during the 

period. Furthermore, the State Council of China designated three High-Tech Zones in Chengdu, 

aiming to shift the economy from agriculture, forestry, aquaculture, graziery to manufacturing 

(Schneider et al., 2005). Meanwhile, the local government increased investment in public 

transportation and infrastructures, and built ecotourism areas to provide green space amenities.  

Chengdu’s economic growth has caused environmental and social problems, undermining 

economic benefits. First, population growth, much of it driven by the arrival of rural migrants in 

the city, caused land shortage and traffic congestion (Hou et al., 2016). Second, urban expansion 



 

11 

 

encroached onto farmlands in peripheral areas (Schneider, 2012), reducing the provision of 

ecosystem goods and services such as crops and livestock production. Third, the subsequent 

increases in energy consumption and fossil fuel burning led to air pollution. During 2009-2010, 

for instance, the annual average of PM2.5 concentration in Chengdu was 165.1 ± 85.1 μg m-3, far 

exceeding the Chinese National Ambient Air Quality Standards of 35 μg m-3 (below which the air 

quality is healthy), and the highest concentration reached as high as 425.0 μg/m3 (Tao et al., 2013). 

Moreover, the high density of industrial build-ups placed Chengdu in the hazard of urban heat 

stresses, as observed from the remotely sensed thermal infrared data (Xu et al., 2007). Given the 

background of rapid urbanization in Chengdu, understanding the relationship between economic 

development, rapid urban expansion, environmental degradation and change in social benefits 

before putting adequate and effective policies into practice for sustainable development is urgently 

needed. Therefore, this study tracks the process of urban expansion and measures the changes in 

its environmental condition in an integrated way. 

3.2 Data acquisition and preprocessing 

Two types of spatial data were used in this study. One is remotely sensed raster data, 

including surface reflectance images, Digital Elevation Model (DEM), water surfaces product, 

land surface temperature product, and PM 2.5 data. The other is vector data, including the 

boundaries of all counties in Chengdu, footprints of parks, roads and rivers.  

All available satellite images used in this study, including Landsat 5 Thematic Mapper 

(TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land 

Imager (OLI) within the study area and during the study period, were provided by the United States 

Geological Survey (USGS). DEM data were from the Shuttle Radar Topography Mission (SRTM). 

Global Surface Water Data, which has the information about the frequency of water occurrence 
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within each pixel, was provided by the Joint Research Centre (JRC) of the European Commission 

(Pekel et al 2016). Daily Land Surface Temperature (LST) products from Moderate Resolution 

Imaging Spectroradiometer (MODIS) were obtained for creating 30 meters high-resolution 

Landsat-like LST data. PM2.5 data were obtained from the Socioeconomic Data and Application 

Center (SEDAC) of NASA (Donkelaar et al., 2018), which can be found on the website 

(http://sedac.ciesin.columbia.edu). All the above-mentioned data, except PM2.5, were obtained via 

the Google Earth Engine (GEE) platform (Gorelick et al., 2017).  

The administrative boundary of Chengdu was obtained from the Geospatial Data Cloud 

(https://www.gscloud.cn). The footprints of parks, roads and river system in Chengdu were derived 

from Baidu Map (https://map.baidu.com/).  

3.3 Extraction of urban areas 

Remote sensing is a versatile technique that can capture information of the Earth’s surface 

without direct physical contact (Lillesand et al., 2014). The advantage of remotely sensed data is 

that it consistently obtains timely and high-resolution information at the regional scale (Congalton 

et al., 2014), and hence offers more accurate and comprehensive results than traditional methods 

(Ouyang et al., 2016).  

To generate the corresponding LULC maps, Landsat time-series images from four time 

periods, i.e., 1999-2001, 2004-2006, 2009-2011 and 2014-2016, were composited to a set of fully 

covered images representing 2000, 2005, 2010 and 2015, respectively. In the first step, cloud-free 

land and water pixels in all available images were identified by masking out cloud and snow pixels 

using the quality control information in the surface reflectance data product. Then, monthly median 

Normalized Difference Vegetation Index (NDVI) composites were applied to the images that are 

in the same month of all three years for the four-time periods. This resulted in 4 groups of 12 

http://sedac.ciesin.columbia.edu/
https://www.gscloud.cn/
https://map.baidu.com/
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monthly composited images, so that within one group, each image represents each month of that 

year. For each year of interest (2000, 2005 2010, 2015), the maximum NDVI composition was 

further applied to the grouped 12 images. In this way, four fully covered composited surface 

reflectance images representing the years of 2000, 2005, 2010 and 2015 were created.  

The Random Forest classifier (Breiman 2001; Pal 2005; Zhang et al. 2016) was employed 

for LULC classification. Four types of the land cover of primary interest in this research were 

identified, including urban, water, vegetation and bare land. A disproportionate stratified sampling 

scheme (Rosenfield et al., 1982; Congalton 1991) was adopted to select pixels for training the 

classifier. Since urban land consists of the most complex surface characteristics and vegetation 

covers most of the study area, more than 100 locations comprised of over 1500 pixels in these two 

classes each were selected as training samples. In addition, more than 500 pixels of water, more 

than 1200 pixels of bare land were used for training. The major error of classification exists 

between urban and bare land that have similar spectral information. Thus, topographic and 

geographic information including slope and distance to water was used to distinguish between 

these two classes (Zhang et al., 2018), given that bare land is mostly located in proximity to rivers 

while the urban land cover is flat in Chengdu. Therefore, slope derived from DEM data, and 

distance to water calculated based on water occurrence data were then overlaid to the composited 

images and included as training features in the random forest algorithm. The parameter setting for 

machine learning algorithms is one of the key factors for classification accuracy. Following the 

suggestion by a previous study (Belgiu & Drăguţ, 2016) and adjusted during the process of 

classification, the number of decision trees to create per class was set to 500; the number of 

variables per split was set to the square root of the number of variables; the minimum size of a 

terminal node was set to 3, and the fraction of input to bag per tree was 70%. To test the accuracy 
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of the classification results, a set of 800 testing sample points containing the four different classes 

were stratified sampled using the combined map of four classified LULC results. In this way, all 

256 classes include 800 points are sampled. Some sample points, whose ground truth were hard to 

recognize mostly because of the shadow, cloud and high aerosol cover, were excluded from 

accuracy assessment. Therefore, the number of final testing samples is less than 800 pixels. 

3.4 Derivation of environmental indices 

3.4.1 Urban greenness 

In this study, two indicators were used to represent greenness, which is an important 

criterion of favorable urban environments. The first is the NDVI, an index that has been widely 

used for tracking healthy vegetation with remote sensing techniques (Rouse, 1973; Bannari et al., 

1995; Kawabata et al., 2001). The higher the index value, the higher the vegetation cover. The 

index can be derived based on the surface reflectance at the radiative wavelengths of 0.66 m (Red 

Band) and 0.86 m (Near-Infrared Band), given the knowledge that the chlorophyll in the 

vegetation absorbs red radiance while strongly reflects near-infrared radiance. Thus, the index can 

be expressed as a function of red reflectance (SRred) and near-infrared reflectance (SRNIR), as shown 

in Eq. (3.1) 

 

𝑁𝐷𝑉𝐼 =
𝑆𝑅𝑁𝐼𝑅 − 𝑆𝑅𝑟𝑒𝑑
𝑆𝑅𝑁𝐼𝑅 + 𝑆𝑅𝑟𝑒𝑑

 (3.1) 

 

Because of the sensor difference between Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 

OLI, only Landsat 7 was used to calculate NDVI except for the year of 2015. The NDVI value 

was calculated for each cloud-free pixel of all the available Landsat 7 ETM+ images for 1999-

2001, 2004-2006, 2009-2011, 2014-2016. For each three-year period, a maximum NDVI 
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composite was generated to represent the annual greenness for each pixel. Because of the Landsat 

7 ETM+ failure of Scan Line Corrector (SLC), the quality of the image was reduced with the 

occurrence of data gaps (Wulder et al., 2008). This gap effect makes the reflectance values of 

adjacent pixels in strip areas of the composted image inconsistent. This inconsistency needs to be 

alleviated by using the composition of three years’ data. However, for the year of 2005, due to 

both high cloud cover and the strip effect, there was still a limited amount of available information 

for the Landsat 7 ETM+ images. To solve this problem, the Landsat 5 TM images were included 

for the period of 2004-2006. 

The second type of data pertains to parks, a special type of greenness that provides residents 

a place to relax (Ulmer et al., 2016, Kondo et al., 2018). Park footprints were obtained using Baidu 

Map, representing the year of 2015. To trace back to the years where park information was not 

available, the difference of NDVI values within each park between the year of 2015 and the year 

of interest was calculated as a reference to determine if the park had already been built since the 

year of interest. The first step is to subtract the maximum NDVI image of 2015 by the year of 

interest (2000, 2005, 2010). Then, the Mean Square Error (MSE) within each park was calculated. 

Finally, a 0.06 threshold of MSE was empirically defined to exclude the parks that had not been 

built during the previous years. This park counting method assumes that a park would not be 

removed once it was built during 2000-2015. Using the MSE of NDVI values, the information of 

parks on the four years were obtained. Figure 3.2 illustrates the distribution of MSE between 2015 

and the years of interest with the empirically defined threshold to exclude parks.  
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Figure 3.2. Histograms of MSE (NDVI difference between 2015 and 2000/2005/2010 within 

parks) and smoothed distribution using the kernel density estimation. The area of each column in 

each histogram equals to the probability of data distribution at that range. The threshold was 

empirically set as 0.06 to determine whether the park was already built at that time. 

 

3.4.2 Urban blueness 

The blueness in urban is defined as large open water (Gascon et al., 2015, Pitt 2018) that 

is believed to have a beneficial function on reducing residents’ psychological distress (Nutsford et 

al., 2016). To delineate water surfaces with relatively large areas, water pixels were extracted from 

the classified satellite images for each year. Next, to remove small ponds, and most importantly, 

the noise (classification error), the count of each water pixel cluster was calculated, and the clusters 

with fewer than 10 pixels (around 9000 m2) were removed. Because many rivers in Chengdu have 

widths less than 30 meters, some of them cannot be distinguished from satellite images through 

classification. Therefore, the shapes of rivers obtained from Baidu Map were converted to raster 

data and combined with data of large water bodies. 
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The Normalized Difference Water Index (NDWI) is another indicator of urban blue. There 

are two commonly used NDWIs, with one indicating the water content in vegetation (Gao 1996), 

and the other indicating the water content in the water body (McFeeters 1996). For the purpose of 

this study, the index defined by McFeeters (1996) was used to calculate the water content in each 

pixel. With SRgreen represents the green band and SRNIR represents the NIR band of the surface 

reflectance image, the algorithm of the NDWI is shown as follows: 

 

𝑁𝐷𝑊𝐼 =
𝑆𝑅𝑔𝑟𝑒𝑒𝑛 − 𝑆𝑅𝑁𝐼𝑅

𝑆𝑅𝑔𝑟𝑒𝑒𝑛 + 𝑆𝑅𝑁𝐼𝑅
 (3.2) 

 

3.4.3 Air quality 

Air quality is considered one of the most important factors that influence the well-being of 

urban residents. Air pollutants such as PM2.5, PM10, NO2, and SO2 are all proved to have negative 

impacts on human health (He et al., 2001; Weinmayr et al., 2009; Pui et al., 2014). However, 

except for PM2.5, there is no accessible air pollutant data with high spatial resolution suitable for 

the study area. At the same time, the high concentration of sulfur contents, diesel and road dust in 

PM2.5 (He et al., 2001) make it an ideal indicator to analyze air pollution. Therefore, PM2.5 data 

with a spatial resolution of 0.01 degree were obtained and used to derive the air quality indicator. 

To align the spatial resolution according to those of other spatial data, the bicubic resampling 

approach (Carlson & Fritsch 1985) was conducted to generate PM2.5 data with a spatial resolution 

of 30 meters for the four years of interest in Chengdu. The bicubic sampling process predicts every 

geographic unit using an interpolant that is determined by the first partial derivatives and first 

mixed partial. The resampled data approximates real value at each pixel under the assumption that 

the concentration of PM2.5 changes gradually in the air. 
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3.4.4 Land surface temperature 

LST measures the temperature of the land surface within a unit area, which is a strong 

indicator of the urban environment (Yue et al., 2012). There are many existing methods for 

deriving LST, such as the mono-window algorithm (Qin et al., 2001), the single-channel algorithm 

(Jiménez-Muñoz et al., 2009), and the radiative transfer algorithm (Yu et al., 2012). These methods 

require ancillary data about atmospheric conditions, which are not available in this research. Thus, 

this study used the effective at-sensor brightness temperature, which is Band 6 in surface 

reflectance data of TM and Band 8 of OLI data, to calculate LST through a method that requires 

only information of the NDVI (Weng 2003; Li et al., 2009; Shen et al., 2016).  

The at-sensor brightness temperature is referenced to a “black body”, which should be 

differentiated from the properties of real objects. Therefore, the equation (Artis & Carnahan, 1982) 

to correct the spectral emissivity is applied, written as: 

 

𝐿𝑆𝑇 =
𝑇𝑠𝑒𝑛𝑠𝑜𝑟

1 +⁡(𝜆⁡⁡𝑇𝑠𝑒𝑛𝑠𝑜𝑟 ⁡/⁡𝛼)⁡ln⁡(𝜀)
 (3.3) 

 

where Tsensor is the effective at-sensor brightness temperature in Kelvin (K); LST is the 

surface radiance temperature in K; λ is the wavelength of the emitted radiance in meters; α = 

1.43810−2 mK; ε is the surface emissivity. For water (NDVI < 0) pixels, ε were assigned a value 

of 0.9925; in urban (impervious surface) and bare land (0 ≤ NDVI < 0.15), ε were assigned a value 

of 0.923 (Xie et al., 2012); while in highly vegetated area (NDVI > 0.727), ε were assigned a value 

of 0.986 (Valor & Caselles, 1996). For all the other NDVI values, the following equation (Van de 

Griend & Owe, 1993) was used: 
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𝜀 = ⁡1.0094 + 0.047⁡ln⁡(𝑁𝐷𝑉𝐼)⁡⁡ (3.4) 

 

Here, the reference NDVI value was calculated using the surface reflectance data with Eq. 

(3.1). Using the NDVI method illustrated above, land surface temperature derived from all the 

available Landsat images during summer (June-August, Figure 3.3) in Chengdu was calculated. 

To generate a fully covered summertime LST map, a median composition was applied based on 

the calculated LST time series data during the summer in three-year intervals for each year of 

interest. In detail, for example, the median value of LST for each pixel within June-August from 

1999 to 2001 was calculated to generate the map of summer median LST for the year of 2000. The 

process was applied in parallel to the other three years of interest, i.e., 2005, 2010, 2015.  

 

 

Figure 3.3. Monthly temperatures in Chengdu. The highest temperature is in the summertime, 

June-August. (source: https://en.climate-data.org/) 

 

For the year 2005, however, the number of available pixels during summer was not enough 

to cover the whole study area due to high cloud cover. Therefore, the MODIS summer median 

LST in 2005 was calculated and combined with surface reflectance images of 2005 to predict the 

https://en.climate-data.org/
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Landsat-like LST data at the 30-meter spatial scale. First, MODIS LST data were resampled from 

500 meters to 30 meters using the bicubic algorithm (Carlson & Fritsch 1985). Second, summer 

median LST from MODIS was combined with the composited surface reflectance data (the image 

previously used for classification) and used as the training bands, while Landsat LST data were 

used as training results on the data of 2000. A machine learning method was used to do the 

prediction, with stratified random samples selected including 5000 pixels for urban and vegetation 

classes each, and 2000 for water and bare classes each. Then, a random forest regression was 

applied to the sampled training set to predict the Landsat-like LST on each of the land cover classes 

separately. If the samples from only one specific class were used for the training, the error would 

be high for the misclassified pixels within that classified land cover. Therefore, this study proposed 

to include sample pixels from other land cover types in the training process to minimize the error. 

To understand the influence of the proportion of different training samples on the regression 

accuracy, the mean square error (MSE) between simulated and actual LST values was calculated 

after the prediction using different combinations of samples on different land cover. With every 5 

percent increase of pixels sampled on one specific land cover (the rest of pixels are sampled on 

other land cover types), the MSE was plotted based on 20 simulations (training samples were 

spatially random at each simulation). The percentage that corresponds to the lowest MSE was then 

chosen to predict the LST in 2005. 

3.4.5 Natural environment 

The natural environment provides many mental and physical benefits to human beings 

(Hartig et al., 1991, Mitchell & Popham, 2008). In this study, the natural environment is defined 

as the area with a limited human-dominated area within a region. Therefore, the natural 

environment is mapped based on the criteria that the urban land cover should be less than a certain 
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percentage of all the land covers within a certain distance. Specifically, a buffer of 1000-meter 

radius was delineated for each pixel of classified images, and the percentage of urban area within 

the buffer was calculated. Then, a 1% threshold was empirically set to distinguish natural and 

human-disturbed environments. The 1% threshold is appropriate for countries (e.g., China) where 

urban expansion is compact. 

3.5 Dimensions for assessing environmental condition 

3.5.1 Theoretical framework  

To achieve the goal of evaluating environmental sustainability, a theoretical framework 

that includes different dimensions of indicators for analyzing the condition of the urban 

environment of Chengdu was proposed. The spatial disparity within one city suggests that a 

location-based evaluation (evaluating the condition within a unit of geographic area) of 

environmental conditions is more sophisticated than an overall evaluation (one score for one whole 

region) (Metzger & Schröter, 2006). Therefore, the first dimension chosen in this study is the 

environmental condition within an individual spatial unit. Apart from the environment of a certain 

location, the nearby environment also supports the social well-being of urban residents (Unger & 

Wandersman 1982). For example, Nuissl et al. (2002) analyzed the environmental impact of land 

use change and suggested to include the influence of changes in the neighboring landscape when 

examining spatial interrelations. Therefore, the second dimension is the neighboring environment. 

With the expansion of urban areas, accessibility becomes one of the most important factors in the 

changing landscape (Antrop 2004). This indicates that characterizing the living environment also 

requires the measurement of residents’ access to favorable environmental infrastructures, which 

was calculated and chosen as the third dimension of the environmental condition proposed in this 

research.  With all the three dimensions encompassed, the theoretical framework of the urban 
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environment was constructed to guide this research (Figure 3.4). To have a spatially explicit 

evaluation of the urban environment, the indicators at every single geographic unit (i.e., a pixel of 

image) within the study area were evaluated in order to assess the spatial disparity of 

environmental condition.  

 

 

Figure 3.4. The theoretical framework of three dimensions for assessing the urban environment 

in Chengdu. The characteristics within the blue region represent the environmental condition in 

the pixel itself. The neighboring environment means the environmental condition within a certain 

buffered zone that is walkable to residents. The accessibility dimension is a way to measure the 

degree of convenience for residents to access one specific location. 

 

Aggregating the indicators within a constructed model is as important as the evaluation of 

the selected indicators. Explicit grading methods such as mean aggregation, weighted aggregation 

and experts’ grading (Krajnc et al, 2005; Van de Kerk) lack of objectivity. Other implicit methods 

such as principal component analysis (Li et al., 2012) and project pursuit model (Shao et al., 2015) 

integrate the variables depending on the data distribution, which makes these approaches data-



 

23 

 

driven with few interpretable implications. Among all the approaches of integrating urban 

environment indicators, the catastrophe model has received increasing attention (Clarke and 

Wilson, 1983; Wilson, 2011) because the model clearly describes and simulates the behavior of 

gradual changes, followed by an abrupt transformation that resembles most of the systems in the 

real world. The catastrophe theory delineates the tipping points from quantitative change to 

qualitative change, which contradicts the linear relationship between variables and a system. The 

catastrophe theory uses the implicit weighting process by changing the data distribution of 

indicators depending on the relative importance of indicators. For each step that requires 

catastrophe model weighting, a more important indicator will be less transformed so that the 

resulting value will be more similar to its original status. Su et al. (2011) used the catastrophe 

model to evaluate land ecological security in Shanghai and found a significant downward trend of 

land eco-security during 1999-2008. Yang et al. (2012) assessed urban water security based on 

catastrophe theory and compared it with other methods. The result demonstrated the reliability and 

scientific significance of the catastrophe theory. Zhou et al. (2018) applied the catastrophe theory 

in assessing eco-security of plastic greenhouse soil and suggested that this method has strong 

objectivity. Overall, the catastrophe theory has a unique advantage against others with its wide 

applicability and objectivity, which gives it promising applications in environmental evaluation 

based on indicator systems. Thus, this study used the catastrophe model to evaluate urban 

environmental condition under the guidance of the proposed three-dimension theoretical 

framework. 

3.5.2 Self attributes 

As the most important dimension of the urban environment, the unit itself has the closest 

contact with people who live at that location. Within each unit, the greenness, temperature and air 
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quality directly impact the mental and physical health of residents. However, air quality data often 

has a coarse spatial resolution (1000 meters in this study), thus it is not representative within the 

spatial unit of the present study, which has a 30-meter resolution. At the same time, because there 

supposed to be no water within pixels which were classified as urban, indicators related to water 

were not used in this dimension. Therefore, two indices were derived for each pixel to represent 

the environment sustainability status of the pixel itself, including the NDVI and the LST. The 

detailed calculation steps are illustrated in sections 3.4.1 and 3.4.4. 

3.5.3 Neighborhood characteristics 

For each pixel, the environmental status can also be influenced by conditions in the 

surrounding areas, in addition to those within the pixel itself. Many researchers defined the 

neighborhood using a circular buffer with a radius from 400 to 1000 meters (Colabianchi et al., 

2007; Root 2012), and 400 meters is the most walkable distance (Bissonnette et al., 2012). In order 

to adjust to the local situation, neighboring regions are defined as a 500-meter buffer zone in this 

study, which equals to the distance of two blocks on average in Chengdu. Local residents are 

expected to have most of their daily activities within two blocks of their residence. In the 

neighboring region, greenness, blueness, temperature and air quality all have impacts on residents’ 

health. Therefore, four indices were calculated to measure the neighborhood environmental 

characteristics given a specific pixel, including NDVI, NDWI, LST and PM2.5. 

3.5.4 Accessibility 

Accessibility to the public natural environment is another way of defining the urban 

environmental condition. In this study, three places were considered as the natural environment. 

The first is the park, a typical type of urban green space, which provides citizens numerous physical 

and mental health benefits (Lee et al., 2010, Hartig et al., 2014). The second is large open water. 
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Blue spaces are known to be associated with the healthy lifestyles of residents (Gascon et al., 2015), 

and in this study, they are defined as rivers and large open water surfaces. The third is the rural 

area, which has most of the natural green land cover in Chengdu and is also beneficial to urban 

residents. In this study, rural areas are defined as places with less than 1% of the urban land cover 

within a 1000-meter buffer zone. The accessibility was then calculated using the friction map 

(Weiss et al 2018) of Chengdu. 

Two kinds of friction maps, driving friction map and walking friction map, were derived 

using road data obtained from Baidu Map. They were created by dividing the length of the pixel 

by speed. For driving speed, highways were assigned a value of 110 km/h; national and province-

level roads 70 km/h; county-level roads 50 km/h; narrow roads in urban area 30 km/h; other roads 

40 km/h. Pixels lacking roads were assigned a value of 5 km/h, which corresponds to walking 

speed. In the walking speed map, roads were given a value of 5 km/h while other pixels 4 km/h. 

The friction maps allow the calculation of accessibility to parks/water represented by the 

time cost of each pixel to the nearest park/water via walking. Accessibility to the rural environment 

is defined as the time cost of each pixel to the nearest rural area via driving. For each pixel, a 

smaller time cost indicates better accessibility. 

3.6 Catastrophe model development 

3.6.1 Indicator selection and initialization 

Based on the theoretical framework and urban environmental indicators illustrated above, 

the indicator system of urban environmental assessment using the hierarchical analysis was shown 

in Table 3.1, with a total of three dimensions including nine indicators.  
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Table 3.1. Indicators and structure of the catastrophe model applied in this study.  

Dimension Indicator Description 

Direct impact 

[A] 

Vegetation greenness [B1] Annual maximum NDVI 

UHI effect [B2] Median LST in summer 

Neighboring 

effect [A2] 

Air quality [B3] 
Annual mean PM2.5 in neighboring 

regions 

Neighboring vegetation greenness 

[B4] 

Spatial averaged maximum NDVI 

in neighboring regions 

UHI effect in the neighboring 

environment [B5] 

Spatial averaged median LST in 

summer of neighboring regions 

Neighboring blue surfaces [B6] 
Spatial averaged NDWI in 

neighboring regions 

Accessibility 

[A3] 

Access to public parks [B7] 
Cumulative time cost to the nearest 

park 

Access to urban blue [B8] 
Cumulative time cost to the nearest 

open water surfaces (lakes/rivers) 

Access to a rural area[B9] Cumulative time cost to a rural area 

 

The units and data range of the indicators are different so they are not comparable and 

cannot be integrated together before the transformation. To transform the data, all indicators need 

to be rescaled to a range between 0 and 1. Two types of formulas are used because some of the 

indicators (B1, B4, B6) have positive influences on the urban environment, while others (B2, B3, 

B5, B7, B8, B9) have negative influences. For the indicators with positive influence, a higher value 

means a better urban environment, so that the equation can be written as: 

 

𝑋𝑖 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (3.3) 

 



 

27 

 

For the indicators that have negative influences the on the urban environment, a higher 

value of the data means a poorer urban environment. In this case, the equation can be written as: 

 

𝑋𝑖 =
𝑥𝑚𝑎𝑥 − 𝑥𝑖
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 (3.4) 

 

3.6.2 Catastrophe model framework 

 

Table 3.2. Illustration of different categories of catastrophe models defined by the number of 

control variables. (source: Woodstock and Poston, 2006) 

Category 

Number 

of control 

variables 

Potential function Bifurcation set 

Normalization 

formula 

Fold model 1 V(x) = 1/3x3 + u1x u1 = -3x2 Xu1 = u1
1/2 

Cusp 

model 
2 

V(x) = 1/4x4 + 1/2u1x
2 

+ u2x 

u1 = -6x2, u2 = 

8x3 
Xu1 = u1

1/2, Xu2 = u2
1/3 

Swallowtail 

model 
3 

V(x) = 1/5x5 + 1/3u1x
3 

+ 1/2u2x
2 + u3x 

u1 = -6x2, u2 = 

8x3, u3 = -3x4 

Xu1 = u1
1/2, Xu2 = u2

1/3, 

Xu3 = u3
1/4 

Butterfly 

model 
4 

V(x) = 1/6x6 + 1/4u1x
4 

+ 1/3u2x
3 + 1/2u3x

2 + 

u4x 

u1=-10x2, u2 = 

20x3, u3 =  

-15x4, u4 = 4x5 

Xu1 = u1
1/2, Xu2 = u2

1/3, 

Xu3 = u3
1/4. Xu4 = u4

1/5 

 

The catastrophe theory was introduced to describe abrupt changes triggered by continuous 

alteration of multiple influencing factors. The behavior and function that describe the system are 

different given different numbers of variables at each level (Su et al., 2011). The general forms of 
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the catastrophe model were described in detail by Woodstock and Poston (2006). In this study, 

given the number of variables within each sub-system, the general form of the model is described 

in Table 3.2. 

With the variables selected (Table 3.1) and the normalization formula illustrated (Table 

3.2), the catastrophe models were then applied to evaluate the urban environment in Chengdu using 

the normalization formulas defined by the number of variables. The modeling process is shown in 

Figure 3.5. 

 

 

Figure 3.5. Indicator system, hierarchical model structure and selected catastrophe model for 

each sub-system of urban environmental evaluation.  

 

3.7 Regression between urban expansion and urban environment 

To link urban expansion and urban environment, univariate linear regression models were 

applied to all counties in Chengdu, i.e., county is used as the analyzing unit. As many researchers 
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pointed out, the rapid urban expansion would bring stress to the local urban environment in China 

(Li et al., 2013). Therefore, an assumption is that the larger the expanded area, the less 

improvement (or the greater deterioration) will the urban environment changed from the previous 

stage (year). In this case, the null hypothesis to test is that with the increase of the expanded area, 

there is no influence on the change of the urban environment. To test this assumption, the expanded 

urban area between the adjacent two selected years was used as an independent variable, and the 

change of urban environmental assessment value was used as the dependent variable. In this study, 

three models were applied separately to each of the three time periods (2000-2005, 2005-2010, 

and 2010-2015) to explore the relationship between urban expansion and urban environment. 
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CHAPTER 4: RESULTS 

4.1 Urban expansion  

4.1.1 Accuracy assessment for classification 

Before interpreting urban expansion results, it is necessary to show the accuracy metrics of 

the classifications. Using stratified sample points that were selected from the combined image of 

four LULC maps, the confusion matrix (Stehman 1997) for each classified image was created and 

shown in Tables 4.1-4.4. The total number of testing samples is nearly 800 pixels, and the same 

samples were used for the four images in different years. The overall testing accuracies for the 

images of 2000, 2005, 2010, and 2015, calculated by dividing the correctly classified pixels by the 

number of all testing pixels, were 83.2%, 79.6%, 84.3%, and 80.9%, respectively.  

 

Table 4.1. Confusion matrix of random forest classification in 2000.  

    Truth   

 
  Urban Water Vegetation 

Bare 

land 
Total 

 Urban 123 15 0 50 188 

 Water 10 147 15 6 178 

Classified Vegetation 2 10 185 0 197 

 Bare land 15 2 4 185 206 

 Total 150 174 204 241 769 

 

Table 4.2. Confusion matrix of random forest classification in 2005. 

    Truth   

 
  Urban Water Vegetation 

Bare 

land 
Total 

 Urban 140 21 5 40 206 

 Water 10 149 12 5 176 

Classified Vegetation 19 11 153 5 188 

 Bare land 15 2 12 172 201 

 Total 184 183 182 222 771 
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Table 4.3. Confusion matrix of random forest classification in 2010. 

    Truth   

 
  Urban Water Vegetation 

Bare 

land 
Total 

 Urban 138 11 5 37 191 

 Water 5 154 2 3 164 

Classified Vegetation 5 10 176 3 194 

 Bare land 31 4 1 160 196 

 Total 179 179 184 203 745 

 

Table 4.4. Confusion matrix of random forest classification in 2015. 

    Truth   

 
  Urban Water Vegetation 

Bare 

land 
Total 

 Urban 129 14 0 41 184 

 Water 12 169 10 2 193 

Classified Vegetation 4 12 177 1 194 

 Bare land 45 1 2 134 182 

 Total 190 196 189 178 753 

 

Based on the confusion matrix, producer’s accuracy pertaining to the omission error and 

user’s accuracy relating to the commission error can be derived. Producer’s accuracy is calculated 

as the percentage of sample pixels that were correctly classified in a given class while user’s 

accuracy is the proportion of predicted pixels in a given class that is truly in that class. Focusing 

on the urban land, both producer’s accuracy and user’s accuracy fell within a satisfactory range of 

65%-82%. In 2000, the producer’s accuracy was 82.0%, while the user’s accuracy was 65.4%. In 

2005, compared to 2000, the classification of the urban area had a greater omission error but a 

smaller commission error, with producer’s and user’s accuracies of 76.1% and 68.0%, respectively. 

In 2010, both producer’s accuracy (77.1%) and user’s accuracy (72.3%.) were higher than those 
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in 2005, respectively. For the image of 2015, the producer’s accuracy (67.9%) was the lowest 

among the four images, while the user’s accuracy (70.1%) was in the middle of the range.  

As Chengdu is at the middle state of urban development, its LULC change followed 

expected orders. For example, it is typical that vegetation was converted to bare land, which then 

changed to urban. However, it is the least likely that urban would change back to water and to bare 

land. Thus, the aforementioned stratified sampling process implemented in this study tended to 

select incorrectly classified pixels comparing to the spatially random sampling process. Therefore, 

the actual accuracy for the whole Chengdu city should be much higher than the reported accuracy. 

4.1.2 Urban expansion area 

The spatial pattern of urban expansion reveals that, between 2000 and 2015, Chengdu 

experienced a rapid increase in urban areas, with urban land encroaching on surrounding land 

cover in all directions, especially to the southwest (Figure 4.1). The majority of the expanded urban 

areas were located within the peripheral counties, while remote counties had much fewer and 

scattered areas of expansion (Figure 4.1a).  

To have a detailed view of urban expansion in Chengdu, the expanded areas towards eight 

directions were calculated within a buffer whose radius equaled to two times of the area of the 

central counties (Figure 4.1b).  The rates of expansion in different directions varied substantially. 

The spider chart (Figure 4.1c) verifies that most urban areas expanded in four directions: northwest, 

west, southwest and south, where all encroached areas are calculated to be more than 120 km2 by 

2015. West, which had the least urban cover in 2000, became one of the two highest urbanized 

regions by the year of 2015. North, northeast and southeast experienced substantial encroachment, 

but had relatively small urban areas, compared to the aforementioned four directions. The urban 
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areas in these three directions all reached 90 km2 during the 15 years. The eastern part of Chengdu 

had the slowest pace of urban expansion, with an urbanized area less than 90 km2. 

 

 

Figure 4.1. (a) Urban expansion of Chengdu showing different spatial and temporal patterns 

within the central, peripheral and remote counties. (b) Zoomed-in analysis of urban expansion 

within the circular region (bounded by the orange dash line in subplot a) that covers all central 

counties and some peripheral counties, with the legend the same as the one in subplot a. (c) 

Spider plot of urban expansion analysis within the circular region showing that the urban area in 

Chengdu expanded mostly towards the west and south. 

 

Figure 4.2 provides the graphic results of urban expansion areas and rates during the study 

period at the county level. Overall, the urban area of Chengdu expanded to a substantial extent 

during 2000-2015. The urban area was concentrated within central counties in 2000, but the 
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peripheral area has the greatest urban area in 2015. For central counties, the total urban area in 

2000 was 220.6 km2, which increased to 379.4 km2 in 2015 with an increaseing rate of 72.0% over 

the 15-year study period and a mean annual increase rate of 4.8%. Among all the central counties, 

Jinniu had the largest urban areas in both 2000 and 2015, with the urban area in 2015 accounting 

for 78.6% of the total county area. Compared to the other central counties, Gaoxin had the greatest 

expansion rate (135.7%) during 2000-2015. The percent cover of the urban area in Gaoxin reached 

90.4% in 2015, although the total district area is relatively small (only 470.3 km2). The expansion 

of the central counties saturated within the bounded county region, which is the main reason that 

those central areas were not the most expanded area.  

All counties in the peripheral region went through rapid urban expansions with increase 

rates of over 300%. Among all the peripheral counties, the largest expanded urban area (in square 

kilometers) occurred in Shuangliu, while the greatest urban expansion rate was observed in 

Wenjiang. In addition, the total urban area of Shuangliu also achieved the greatest amount over all 

the counties in the whole study area in 2015. Wenjiang had the least urban area in 2000, which 

however increased to 81.3 km2 in 2015, a number larger than most counties in Chengdu.  

The urban extent in remote counties was the smallest among the three regions in 2000, but 

all of these counties experienced tremendous urban expansion during the 15-year period. The 

highest rate of expansion (627.6%) was found in Jintang county, followed by Dayi (516.6%). The 

total urban area in remote regions in 2015 was 535.0 km2, revealing a huge jump since 2000 (105.8 

km2). These results provide a statistical view on the spatial heterogeneity of urban expansion by 

the administrative boundary. 
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Figure 4.2. Urban expansion area and the percentage by county of Chengdu. County names in 

the central region are shown in black text, peripheral counties brown, and remote counties gray. 

Gray bars refer to the total area of a given county, while yellow bars represent urban areas in 

2000, green bars show the expanded area during 2000-2005, orange bars 2005-2010, and purple 

bars 2010-2015. 
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4.2. Urban environmental indicators 

4.2.1 Accuracy of simulated surface temperature data 

In this study, the LST data in 2005 was derived using a machine learning algorithm, which 

required accuracy assessment as did the image classification. In order to avoid the data limitation 

due to insufficient images covering the whole study area in the summertime of 2005, a random 

forest approach was implemented to simulate the 30-meter LST data using MODIS LST as 

reference.  To understand the influence of the proportion of different training samples on the 

accuracy, the mean square error (MSE) between simulated LST value and actual value was 

calculated, and the mean value and envelope of 20 simulations were plotted for every 5 percent 

increase of pixels in actual land cover. Figure 4.3 shows the influence of percentage change of 

training samples on the training accuracy. Take LST prediction on urban land as an example, there 

were totally 4000 training samples used, with some from the pixels in urban land cover and the 

rest from the other land cover types. With the increase of the percentage of urban land pixels as 

training samples, the MSE in the urban area decreased, while the MSE in other land cover types 

gradually increased and finally reached the tipping point at 95%. 

To achieve high accuracy, according to the MSE charts, 95% of the urban pixels and 5% 

of the other pixels were combined together to train the LST random forest using the samples in 

2000’s image and the classifier was applied to 2005’s data. Similarly, 95% of vegetation pixels 

and 5% of the other pixels were selected on areas covered with vegetation. For water and bare land, 

80% of the pixels in the actual land cover class and 20% of the pixels in other LULC types were 

used as training samples.  
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Figure 4.3. The influence of the percent of actual LULC sample pixels on the MSE of the 

random forest prediction results. 

 

4.2.2 Data distribution 

Before spatially evaluating the urban environment in Chengdu, it is useful to describe the 

distribution of the environmental indicators of the three dimensions for the purpose of exploring 

how individual indicator changed during the study period. Similar to box plot, violin plot has the 

function of visualizing data distribution. However, instead of mean, standard deviation, maximum 

and minimum shown in box plot, violin plot has the ability to visualize the probability density 

falling within certain values. Figure 4.4 shows the basic statistics about the individual indicators 

of all urban pixels and their dynamics in the four years. 
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Figure 4.4. Violin plots of all urban environmental indicators in urban areas of Chengdu 

showing the dynamics of data distributions through time. 

 

For the first indicator, urban greenness, in this study, is represented by NDVI calculated 

from satellite image and has a value ranging from -1 to 1. A higher value indicates a denser 

vegetation cover. In 2000, the NDVI values in all pixels had a widely-spreading distribution (i.e., 

a higher standard deviation) while the data were more compact in the other three years. In addition, 

in 2000, unlike the normally distributed histograms for other three years, there were two peak 

values, 0.2 and 0.35. Overall, through looking at the mean value and its changes, NDVI in Chengdu 

decreased from 2000 to 2005, but increased from 2005 to 2015.  
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For the composition of NDVI indicators, both Landsat 5 TM and Landsat 7 ETM+ data 

were used. Thus, the observed temporal trend may be due partially to the sensor difference between 

the two satellites. To verify the robustness of the results, the NDVI data obtained from the MODIS 

satellite were also plotted (Figure 4.5). Results from MODIS data demonstrated the consistency of 

temporal trends with the Landsat data, showing a small dip in 2005 during the study period. 

Although the trend of NDVI from MODIS was less obvious than that from Landsat, it might be 

due to the pixel mixture problem, since MODIS has coarser resolution than Landsat. 

 

 

Figure 4.5. Data distribution of NDVI derived from MODIS data in urban areas of Chengdu. 

 

LST is an important indicator of UHI, which influences residents’ health. As seen in Figure 

4.4, LST values in 2000 had a higher variation than those in the other three years. LST was 

negatively related to vegetation cover, so that the variation of LST is thought to have a reversed 

trend from NDVI. However, the mean value of LST in the urban area of Chengdu did not change 

much, approximately equaling to 30 degrees. 

For PM2.5, the range of the data was wide, but the standard deviation was low, and the 

histograms were generally skewed towards the higher values. The change of the PM2.5 was 
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prominent, showing an increase from 2000 to 2005 and then a decreasing trend to 2015. The lower 

tails were most likely comprised of the pixels located in the countryside. 

Not only the greenness of each pixel but also the greenness in the neighboring regions play 

an important role in the urban environment for local residents. Neighboring NDVI in urban areas 

of Chengdu had the highest variation in 2000 but became lower later during the 15 years.  The 

mean value of neighboring average NDVI decreased from 2000 to 2005 and then increased from 

2005 to 2015. 

The plot of neighboring LST values within Chengdu was similar to LST in the self 

dimension. The mean value of neighboring LST had no obvious change from 2000 to 2005, but 

increased during 2005-2010, and finally decreased from 2010 to 2015. The variation of data 

decreased from 2000 to 2010 and slightly increased from 2010 to 2015. Among the four years, the 

highest LST value was observed in 2010 and accompanied by the lowest standard deviation. 

Calculated from remotely sensed images, NDWI can be used as an indicator for water 

content. Because there is limited water within the urban area, the average value of NDWI within 

certain regions fell below zero. The value of average NDWI within the neighboring region is 

positively correlated to the coverage of water in the neighboring area. The data distribution of 

NDWI in the urban area is also shown in Figure 4.4. The mean value of the neighboring NDWI 

increased from 2000 to 2005, and then decreased from 2005 to 2015. The data distributions in 

2000 and 2005 were different from those in 2010 and 2015. In 2000 and 2005, the data distributions 

were skewed toward higher values. However, in 2010 and 2015, the data resembled normal 

distributions. 

For the indicators in the accessibility dimension, a smaller value indicates higher 

accessibility. In the violin plot of accessibility to the nearest park, the distribution of park 
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accessibility in all four years were skewed towards the lower values, meaning that most of the 

urban areas are close to their nearest parks, while outliers could have extremely long distances. 

There was a slightly increasing trend of the park accessibility values, suggesting that parks were 

becoming less accessible with time as urban expanded. However, the trends of mean value and 

variation were nuanced in the violin plot. 

The distribution of water accessibility data showed a high and increasing data range while 

a relatively small and stable standard deviation. Similar to park accessibility, water accessibility 

was also skewed towards the lower values, and this phenomenon was most obvious in 2000. The 

mean values increased, albeit slightly. 

The natural area is defined as the rural environment in this study. The data of rural 

environment accessibility had two peaks, one in the lower values and the other in the higher values. 

The mean value of this indicator gradually increased during the whole study period, as did its range 

and standard deviation. An increasing mean value indicates decreasing nature accessibility while 

increasing range and standard deviation suggested an increasing spatial disparity.  

For all the nine indicators mentioned above, NDVI, LST and NDWI in self and neighboring 

dimensions had similar data distribution. Values on access to park and water had similar 

distributions. However, PM2.5 and rural area accessibility had different data distributions from 

others. For NDVI, LST and PM2.5, the worst situation occurred in the year of 2005. However, for 

NDWI, 2005 was the best year. The accessibility dimension is different from the other two 

dimensions, in which the value of the pixel was calculated based on the distance to specific objects. 

Therefore, it made the temporal change of three indicators in accessibility dimension different 

from the other six indicators. 
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4.2.3 Temporal trajectories of indicators 

Figure 4.6 shows the temporal trajectories of urban environmental indicators (NDVI and 

LST) in the self dimension. The gray lines in the plots represent values in different counties, and 

the orange lines, blue lines and green lines refer to the mean values of counties in the central, 

peripheral and remote regions, respectively.  

 

 

Figure 4.6. Temporal trajectories of indicators in the self dimension for the three different 

regions. Each gray line represents one county.  

 

It can be seen that the central region had the lowest NDVI value but had the greatest 

increase over the 15-year period, from 0.34 to 0.38. The NDVI in the peripheral region decreased 

to a substantial degree during the first five years and then slightly increased.  The remote region 

had the highest NDVI, but it was relatively stable throughout the whole study period. For each of 

the three regions, there was a dip of mean NDVI values in 2005.   
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Regarding counties in the central region, most of them had higher LST values than the 

peripheral and remote counties except for 2015 when the mean of LST in the central region 

achieved their lowest. The mean value of LST in all central counties decreased from 2000 to 2005 

and from 2010 to 2015 while increased during 2005-2010. LST in the peripheral region increased 

stably during the 15 years. In the remote region, LST decreased from 2000 to 2005, followed by a 

sharp increase from 2005 to 2015. 

The trajectories of indicator values in the neighborhood dimension were shown in Figure 

4.7. For PM2.5, all counties in all the regions were characterized by similar values and temporal 

trends. However, the PM2.5 value of each county in the central region approximately equaled to 

the mean value of all counties in the central region. There were more variations in the other two 

regions, indicating that the counties in the peripheral and remote regions had more heterogeneous 

PM2.5 values. 

The change of neighboring NDVI had similar characteristics to that of NDVI of the self 

dimension. However, the overall value of neighboring NDVI was relatively higher than the NDVI 

value in self dimension. Among the three regions, the central region had generally the lowest 

neighboring NDVI values, while the remote region had the highest. The mean values in the remote 

area were relatively stable, but there existed obvious variations among different counties. For the 

central and peripheral regions, almost all of the counties had similar trends. However, in the remote 

region, no similar trend between different counties was identifiable in the line plot. 
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Figure 4.7. Temporal change of indicators in the neighborhood dimension for the three different 

regions. Each gray line represents one county. 
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The central region had the highest neighboring LST. During the study period, neighboring 

LST values in central counties first decreased and then increased. The final value in 2015 was 

lower than the initial value in 2000. The peripheral region was characterized by a trend of 

continuing increase. In the remote region, LST values decreased from 2000 to 2005, followed by 

a sharp increase from 2005 to 2015. Counties in the remote region had the least variation compared 

to the other two regions. In addition, counties in the central and peripheral areas have different 

changing trends. 

The open water in central counties was higher than those in the peripheral and remote 

regions, and the values were higher in the peripheral region than those in the remote region. Except 

for the remote region, most central and peripheral counties experienced the first-increased-then-

decreased trend. The change points for central counties were mostly in 2005, while 2010 for most 

peripheral counties. The value of neighboring NDWI in remote counties decreased from 2000 to 

2005 and then increased from 2005 to 2010, and finally decreased from 2010 to 2015, except for 

one county. 

Figure 4.8 shows the temporal change of indicators in each county in the accessibility 

dimension. For all indicators in this dimension, a higher value means poorer accessibility. The 

central region had the best park accessibility, followed by the peripheral region, while the remote 

region had the least. All of the three regions had decreasing trends of park accessibility. The 

differences between counties in the same region were pronounced, especially in the remote region.  

Time cost to large open water surface in all three regions increased, meaning that 

accessibility to water decreased. Peripheral counties had the greatest increasing rate of time cost 

to water. In the beginning, time cost to large water surfaces in the peripheral and remote regions 
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was almost similar and both higher than central counties. However, in 2015, the peripheral region 

had the highest time cost compared to the other two regions.  

 

 

Figure 4.8. Temporal change of indicators in the accessibility dimension for the three different 

regions. Each gray line represents one county. 

 

Central counties had the least access to nature, followed by the peripheral region. The 

remote region had the finest access to natural land. Central counties also had the greatest 

decreasing rate of accessibility. Accessibility in the peripheral region had a decreasing trend during 
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2000-2010, but an increasing trend during 2010-2015. Among all the three regions, counties in the 

remote region had the most similar temporal changes to each other. 

In summary, central counties had very different temporal trends from the counties in the 

other two regions. The variation between different counties within one region suggested that a 

central county was more similar to another, while peripheral and remote counties were more 

heterogeneous. At the same time, central counties had greater trends towards a better urban 

environment based on the analysis of individual indicators except for NDWI and PM2.5.  

4.3 Urban environmental evaluation 

As described in section 3.6, indicators in each dimension were aggregated together to 

represent the environmental condition in that dimension. Then, the results of environmental 

evaluation in the three dimensions were aggregated to represent the overall evaluation of 

comprehensive urban environment in Chengdu. There was no pre-defined threshold in the study 

to distinguish which place had definite good or poor environment, and the absolute scale of the 

score was of little means. However, the results were given to show the relative environmental 

condition of one location compared to another within the whole study area of Chengdu, and the 

same location at a certain time compared to another time. For the results of three dimensions and 

the overall comprehensive evaluation, a higher value represents a better environment. In the maps, 

the brown color denotes a relatively poor environment, while green means a relatively favorable 

environmental condition. The borders of the central, peripheral and remote regions were delineated 

using the black line, gray line and dashed gray line, respectively. 

4.3.1 Self dimension 

The self dimension of the urban environment is a comprehensive value of NDVI and LST 

at the pixel level of the study area. The values in this dimension are spatially mapped in Figure 4.9 
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for the four years. The overall trends of environment condition in this dimension decreased from 

2000 to 2005, and then increased from 2005 to 2015. In 2000, the urban center of Chengdu had 

the lowest value, representing a relatively poor urban environment, compared to the other areas. 

However, with time, this center-outer disparity effect tended to fade out, as shown by more spatial 

coherence from central to remote regions in Chengdu. The self dimension of the urban 

environment was the least favorable in 2005, while the best in 2015. 

 

 

Figure 4.9. Spatial patterns and temporal dynamics of the urban environment in the self 

dimension.  
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4.3.2 Neighborhood dimension  

The result of the neighborhood dimension (Figure 4.10) had a similar trend to the change 

of the urban environment in the self dimension. It also followed the trend of decrease from 2000 

to 2005 and increase from 2005 to 2015. The center-outer disparity phenomenon is obvious in the 

years of 2000 and 2010, while the neighboring urban environment in 2005 in almost all area was 

at a relatively poor condition. In 2015, the environment in all places of Chengdu changed back to 

a favorable condition, which is as good as the year of 2000, except for some industrial areas in the 

northeastern part of the peripheral region (in Longquanyi county).   

 

 

Figure 4.10. Spatial patterns and temporal dynamics of urban environment in the neighborhood 

dimension. 
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4.3.3 Accessibility dimension 

 

 

Figure 4.11. Spatial patterns and temporal dynamics of urban environment in the accessibility 

dimension.  

 

The accessibility dimension of the urban environment had a pattern that was 

distinguishable from those of the other two dimensions, since the aim of designing this dimension 

was different. The first and second dimensions considered the environment where people live, 

while this dimension considers access to urban natural or anthropogenic environmental 

infrastructure such as parks. Expanded urban areas of the Chengdu were most likely located in the 

urban fringes, and the urban center went through a trend of continuing decline of nature 
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accessibility. For those small urban clusters in the peripheral and remote regions, the values did 

not substantially change. However, from 2000 to 2015, the accessibility condition in the central 

part of Chengdu deteriorated, manifested by the growing brown areas. The worst situation was in 

the southwestern part of the central area, in which most of the urban extensively expanded. 

4.3.4 Integrated evaluation at 3-dimensional coordinate system 

The urban environment evaluation value of all three dimensions was plotted for the four 

years to understand the environmental condition dynamics in the three dimensions and their 

relation through exploring the distribution of data and the changes. The orange, green, and blue 

dots represent pixels in the central, peripheral, and remote regions, respectively. The wider the 

scatter of the data points along each of the three axes, the greater the spatial disparity in that 

dimension.  

The distribution of the environmental evaluation values in the 3-dimensional (3-D) system 

changed in four study years, although those shapes in 2000 were similar to 2005, and those in 2010 

was similar to 2015 (Figure 4.12). In 2000 and 2005, the urban environmental evaluation values 

in the central region widely scattered along the self dimension while they were relatively compact 

in the neighborhood and accessibility dimensions. This formed a cigar-shaped cloud in the 3D 

coordinate system. In 2010 and 2015, the cigar-shaped cloud became oval-shaped with the range 

of values in the neighborhood and accessibility dimension elongated. The shape and changes of 

value points in peripheral and remote regions were similar; they were normally distributed along 

three axes (slightly stretched along the self dimension) forming an oval-shape and gradually 

became more scattered. One more thing to mention is that pixels in the central and remote regions 

had higher values in the accessibility dimension in 2000 and 2005. However, the values of 

accessibility dimension in the peripheral region were higher in 2010 and 2015.  
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Figure 4.12. Three-dimension scatterplots of the urban environment in Chengdu. The shape and 

dynamics of data values in the three regions were different. 

 

4.4 Comprehensive evaluation of the urban environment 

The results of the urban environmental evaluation are summarized in Table 4.5. For the 

self dimension, the mean value of urban environment slightly decreased from 0.7639 in 2000 to 

0.7387 in 2005, then bounced back to 0.7633 in 2010, and continued increasing to 0.7725 in 2015. 

The mean value of the neighboring dimension followed a similar trend, but it (0.8178 in 2015) did 
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not reach the original highest state of 0.8242 in 2000. The mean value of the accessibility 

dimension experienced a continuing decrease from 0.9572 in 2000, to 0.9383 in 2005, to 0.9277 

in 2010, and finally to 0.9213 in 2015. The comprehensive dimension of the urban environment is 

an integration of the values for the three dimensions and represents the overall urban 

environmental change during the study period. The comprehensive value in 2000 is 0.9296, and it 

then decreased to 0.9099 in 2005, nearly stably increased to 0.9191 in 2010, and finally increased 

to 0.9269 in 2015 similar to the value in 2000. The dynamic suggested that the urban environment 

in Chengdu went through a process of degradation from 2000 to 2005. Afterward, the environment 

of Chengdu improved, albeit never achieved the original best state in 2000. 

 

Table 4.5. Results of comprehensive urban environmental evaluation 

Dimension Statistics Year 2000 Year 2005 Year 2010 Year 2015 

Self  

dimension 

Max 0.9968 0.9635 0.9551 0.9585 

Mean 0.7639 0.7387 0.7633 0.7725 

Min 0.5594 0.4642 0.5854 0.2008 

Std. Dev. 0.0784 0.0678 0.053 0.0537 

Neighborhood 

dimension 

Max 0.904 0.8322 0.8501 0.8697 

Mean 0.8242 0.7293 0.7631 0.8178 

Min 0.7229 0.6203 0.6792 0.6013 

Std. Dev. 0.0353 0.0315 0.0314 0.0196 

Accessibility 

dimension 

Max 0.9923 0.9909 0.99 0.9899 

Mean 0.9572 0.9383 0.9277 0.9213 

Min 0.6661 0.5654 0.7588 0.6575 

Std. Dev. 0.0192 0.0278 0.0356 0.0417 

Comprehensive 

evaluation 

Max 0.977 0.9597 0.9689 0.973 

Mean 0.9296 0.9099 0.9191 0.9269 

Min 0.8782 0.8617 0.8371 0.8295 

Std. Dev. 0.0177 0.0147 0.0134 0.0116 
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At the spatial scale (Figure 4.13), the disparity of the urban environment was mainly 

characterized by the distinction between the urban center and outskirts in 2000 and 2005. After 

2005, the situation of disparity was alleviated and became homogenous in 2015. With the urban 

center of Chengdu became better, the urban area in the surrounding counties, namely those located 

in the peripheral and remote regions, had degraded to some extent.  

 

 

Figure 4.13. Spatial patterns and temporal dynamics of the comprehensive urban environment 

evaluation. 

 

The mean value of the four-years comprehensive environmental condition in each county 

was calculated and mapped to understand the ranking of the relative environmental condition of 

the counties using the equal quantile classification method. According to Figure 4.14, all the 
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counties with the very good environmental condition were in the remote region, while all the 

counties with the very poor environmental condition are in the central region. Counties in the 

peripheral area have good, fair and poor environmental conditions.  

 

 

Figure 4.14. Spatial and temporal averaged comprehensive environmental condition of all 

counties in Chengdu. The categories were defined using the equal quantile method. In Chengdu, 

in the past 15 years, the worst environmental condition was in the central region while the 

remote counties had a relatively good condition. 

 

The changes of urban environmental condition (Figure 4.15) revealed a different spatial 

pattern from the mean of environmental condition. There was no obvious difference between 

central counties, peripheral counties and remote counties. One of the most prominent patterns is 

that the counties to the west of the urban core were highly degraded. This was coincident with 
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urban expansion results that the western adjacent part of the urban core experienced the most urban 

expansion. Another thing to mention is that no counties that are separated from central core by 

mountains were degraded or highly degraded.  

 

 

Figure 4.15. The change of comprehensive environmental condition of all counties in Chengdu 

calculated by subtracting the mean of the previous two years (2000 and 2005) by the mean of the 

latter two years (2010 and 2015). The western counties adjacent to the urban core were highly 

degraded while counties to the east and most of the remote counties were improved. 

 

Table 4.6 provides information about the change of the relative environmental condition 

within the county through time. From 2000 to 2005, all counties had degraded urban environment, 

while the degradation degree in the central and peripheral regions were much higher than that in 

the remote region. During 2005-2015, almost all counties experienced an improvement of 
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environmental condition, except for Shuangliu, Pixian, Pengzhou in 2005-2010 period, and 

Qingbaijiang, Dayi in 2010-2015 period. Those deteriorating area during 2005-2015 experienced 

relatively faster urban expansion than many other counties.  

 

Table 4.6. Change of comprehensive environmental condition at counties of Chengdu. 

County 2000 - 2005 2005 - 2010 2010 - 2015 

Jinjiang -0.0201 0.0132 0.0052 

Qingyang -0.0187 0.0001 0.0161 

Jinniu -0.0249 0.0017 0.0152 

Wuhou -0.0296 0.0021 0.0119 

Chenghua -0.0253 0.0124 0.0081 

Gaoxin -0.0258 0.0032 0.0038 

Longquanyi -0.0286 0.0106 0.0035 

Qingbaijiang -0.0231 0.0121 -0.0038 

Xindu -0.0256 0.0049 0.0048 

Wenjiang -0.0194 0.0015 0.0085 

Shuangliu -0.0221 -0.0009 0.0042 

Pixian -0.0179 -0.0054 0.0061 

Jintang -0.0187 0.0097 0.0007 

Dayi -0.0127 0.0116 -0.0030 

Pujiang -0.0103 0.0014 0.0067 

Xinjin -0.0171 0.0048 0.0016 

Dujiangyan -0.0116 0.0004 0.0065 

Pengzhou -0.0157 -0.0034 0.0072 

Qionglai -0.0108 0.0084 0.0000 

Chongzhou -0.0236 0.0110 0.0009 

 

To have a detailed analysis on the spatial distribution of urban expansion and the urban 

environment at the pixel level in different regions of Chengdu, three zoomed-in illustrations of the 

rectangular regions are provided, including Longquanyi in the peripheral region, Dujiangyan in 

the remote region and all counties in the central region. The regions were chosen in order to show 

the result of pixel-based environmental valuation (Figure 4.16). The overall environmental 
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condition in the central area went down from 2000 to 2005 and got better thereafter. The clusters 

of degraded areas in the center became less prominent and the whole area became more 

heterogeneous over time. The relatively good environmental condition in Longquanyi and 

Dujiangyan degraded during the 15-year time period. Although conditions in the newly expanded 

urban area of these two regions were favorable, the old town area was rapidly degraded.  

 

 

Figure 4.16. Comprehensive evaluation of urban environmental condition in three sub-regions. 

 

4.5 Urban environment and urban expansion 

The regression result between the urban environment and urban expansion is shown in 

Figure 4.17. The fitted three univariate models have similar slopes, which are -1.38×10-4, -9.14×10-

5, -8.64×10-5, all around -1×10-4. It reflects that with every one square kilometer increase of 

expanded area, the change of urban environment decreases by 1×10-4. This suggests that urban 
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expansion may have a negative effect on the urban environment. The P values of the independent 

variable in the linear model are 0.317 for 2000-2005, 0.231 for 2005-2010, and 0.188 for 2010-

2015, all of which are insignificant. According to this result, although we can say that the increase 

speed of expanded urban area may have a negative consequence on the change of urban 

environment, it is not statistically significant to reject the null hypothesis.  

 

 

Figure 4.17. Regression between expanded urban area and change of urban environmental 

assessment value. The star signs stand for central counties, circles for peripheral counties, and 

triangles for remote counties. 
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CHAPTER 5: DISCUSSION 

5.1 Drivers and Policy implications  

In this research, not only the temporal-spatial distribution of urban expansion and urban 

environmental dynamics but also the uneven development between different counties are analyzed. 

In addition, the factors driving the changes directly, indirectly or unintentionally are discussed 

according to the results. The spatial and temporal pattern of urban expansion and urban 

environment in Chengdu are shaped by many factors including government policies, market 

forces, and geographic and social background of different areas.  

5.1.1 Government policies 

The main driver of urban development in Chengdu is the implementation of government 

policies. The accelerated speed of urban expansion after 2000 resulted primarily from the 

implementation of the “Go West” program by the Chinese government (Schneider et al., 2005). 

To achieve balanced development between the western and eastern parts of China, the national 

government established several strategies in western provinces to promote the economy, 

livelihoods, infrastructure, education, public health, etc. As one of the hotspots of this program, 

Chengdu, the capital of Sichuan Province, has witnessed a rapid rate of increase in population and 

infrastructure construction. Stimulated by the flourishing economy and consequently more job 

opportunities, growing population, and increasing housing needs, the urban area has rapidly 

expanded (Peng et al., 2015).  

The process of urban expansion in peripheral and remote regions of Chengdu is prominent 

during the periods of 2005-2015. This may result from the implementation of two policies. One is 

the “Small-City Strategy” that promotes the development of neighboring small cities, towns and 

counties around the center of large cities to avoid overcrowding (Chen & Gao, 2011). The other is 
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the “Coordinated Development between Urban and Rural Sectors” (Chen et al., 2011; Ye et al., 

2013), which is a strategy by the central government aimed at helping the rural population to settle 

in urban areas, especially small cities and towns. Since the government implemented the 

“Coordinate Development” strategy, the proportion of non-agricultural population in Chengdu had 

grown from 37% in 2003 to 53.7% in 2007 (Chen and Gao, 2011), and the migrants from rural to 

urban areas increased the demands for residential housing, especially in small satellite 

cities/towns/counties around the centers of big cities, accelerating the urban expansion.  

Along with economic development, the local government started to consider 

environmental protection to build a better living place for the residents. With the idea of building 

a “garden city and village” (Ai and Huang, 2010) implemented by the city government, the creation 

of a good living environment became one of the central goals of city planning in Chengdu (Zhao 

and Yang, 2016). The planting and protection of trees along the road and the design of landscape 

inside the residential area made the urban environment in Chengdu greener. 

5.1.2 Market forces 

With the reconstruction of the economy and the inflow of global capita (Yue et al., 2014), 

the inland cities experienced rapid economic reform following the developing pace of coastal 

cities. The emergence of manufacturing and high-tech industries infills the city with the migrated 

population. The planning of main types of construction and different functional buildings was 

designated for each county in Chengdu and thus the expansion was uneven for counties in different 

time period. 

Before 2000, to promote economic development, the investment highlights the 

development in the second sector, especially manufacturing. Many factories were built in the east 

of the central region. After the implementation of policies such as “Go West” and “coordinate 
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development”, the housing needs increased, and the real estate industry flourished, promoting the 

construction of residential buildings that favors the well-maintained southwest of the city. At the 

same time, with the designation of high-tech zones in the south of Chengdu, the economy was 

shifted to the tertiary sector so that the many national and international companies rooted in 

southern Chengdu (Schneider et al., 2005), leading to the construction of malls and complexes in 

Gaoxin district. 

The environmental changes are also driven by market forces, led by the real estate industry. 

To accommodate the increasing population and provide a better environment within communities 

with a higher price of realty, low-rise buildings were demolished and changed to high-rise 

buildings. This not only provided more housing opportunities but also left more space for 

designing landscape in the residential area, thus increasing the green cover and alleviating the 

urban heat island effect. This phenomenon was prevalent in the central region of Chengdu, where 

many old buildings were demolished or reconstructed.  

Apart from the good effects, there was also an air quality issue in this city. To stimulate 

the economy, environmental protections were neglected by the government for years. The rapid 

urban construction and development of heavy industry polluted the air in Chengdu. Although 

factories were required to move to the outskirts where there are fewer residents, wastes from 

factories (industrial facilities) were still one of the main sources of air pollution (Qiao et al., 2015). 

At the same time, the waste gas from vehicles resulting from busy transportations and the burning 

of biomass in rural areas intensified the air pollution (Chen et al, 2014).  

5.1.3 Geographic and social background 

The geographic condition is one of the main reasons for the finding that most peripheral 

counties were less urbanized. The two mountain ranges standing to the west and east of Chengdu 
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form the basin of Sichuan. The soil is fertile in the central basin while barren in the mountainous 

areas. The mountains also decreased the accessibility to the central urban area through 

transportation. Therefore, the peripheral regions in the east and west of Chengdu were less 

expanded by urban areas. 

For the other counties such as Chenghua, their urban areas were less expanded because of 

the social background. In the early 2000s, the construction of factories driven by industrialization 

was concentrated in the eastern part of Chengdu, which made this part less favorable to permanent 

residents. Therefore, the urban area in the eastern part of the city was less expanded when the real 

estate industry flourished. At the same time, a large portion of the newly constructed urban areas 

during 2010-2015 was built to the south of the central counties. This may be due to the 

development of “New Tianfu District”, which aimed to attract investment by private sectors (Liu 

and Jin, 2012). These planning strategies have accelerated the increase in urban land use of 

Chengdu mainly occupied by domestic and international companies. 

With the rapid expansion, the old town area went through continuing degradation in terms 

of accessibility to the natural environment, because most of the expansion happened around the 

fringe. At the same time, the high cost of reconstruction in populated old blocks prevents the 

building of green and blue infrastructures. These are the main reasons for the result that some old 

urban areas were degraded in accessibility dimension. As the government and companies care 

more about environmental protection when doing construction nowadays (Legates & Hudalah, 

2014), it is recommended that green and blue infrastructures should be well planned before 

building the community. Finally, greater strength of building and updating the infrastructures 

should be put on the southwest side of the city where the expansion speed was relatively high. 
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5.2 Linking urban expansion and urban environment 

As the urbanization process continues, the world is now facing challenges from human 

impact on land use change in addition to global climate change (Seto & Satterthwaite, 2010). The 

rapid urbanization has profound effects on the environment, reflected in three ways: 1) directly in 

the living environment inside the city itself; 2) in the adjacent environment that urbanization 

process gradually prevails; 3) to the remote places that telecouple with and sometimes burden the 

consequence of pollution from the city. The environment inside the city, which is chosen as the 

topic in the present research, has the most direct relationship with human beings because it 

influences the health of residents. Based on the regression analysis in this study, it can be seen that 

rapid urban expansion may have negative consequences on the urban environment. However, 

based on the analysis of urban environmental change map, different areas in Chengdu represent 

different patterns regarding the relationship between urban expansion and urban environment. 

Generally, if no planning strategy is implemented to improve the old town area, with the urban 

area expanded along the edges (the most typical situation in China), it can be expected that the 

urban environment would degrade, and it is noticed to be true in the old town area of many counties 

of Chengdu in the present research. However, the counties in the central region of Chengdu is an 

exception. There is an obvious improvement of the environment in the urban core of Chengdu in 

2015, mainly resulting from government policies and market forces as previously discussed.  

Researchers have explored the relationship between urban expansion and urban 

environment in many studies. Zhao et al. (2006) found negative environmental consequences of 

rapid urbanization in Shanghai. He et al. (2014) illustrated the negative consequence of economic 

development with the focus on environmental degradation through pollution in China. Yue et al. 

(2014) found that the economic development and therefore urban expansion is highly interrelated 
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with the urban environment at the district level in Shanghai. The study of Vietnam (Fan et al., 

2019) shows that urbanization contributes to environmental deterioration. The present study 

suggests that while the rapid urban expansion will lead to a degraded urban environment, this 

relationship will be broken through the implementation of environmental policies. With strong 

policy intervention on environmental protection, the negative consequences caused by the rapid 

urban expansion will be alleviated.  

5.3 Caveats and future directions 

This study has caveats and limitations. First, the sampled pixels for urban extraction and 

validation are limited by the availability of fine resolution images from Google Earth, and for some 

places and times with no high-resolution images, the image itself was used as reference (Zhu & 

Woodcock, 2014). This reduced the classification accuracy. Additionally, the urban expansion 

area summarized in Figure 4.2 is under the assumption that urban expansion is irreversible through 

the study period 2000-2015, which would cause overestimation in urban areas (represented by 

impervious surface), albeit to some trivial degree. Second, the selection and definition of urban 

environment indicators are subjective and constrained by data, which influence the effectiveness 

of representing the overall urban environment in Chengdu. Through incorporating more relevant 

environmental indicators suggested by many researchers (Li et al., 2009; Shen et al., 2011), future 

studies can refine the model to achieve better evaluation. Third, the assessed values of the three 

dimensions and the final comprehensive results are relative scores of urban environments. Thus, 

the status of “improve” or “degrade” means the relative change of urban environment across the 

study period. Nevertheless, although the scores may change with the processing of data with 

different data scales, the general pattern of spatial and temporal dynamics should be identical 

within the same study periods as other researchers did (Su et al., 2011, Zhou et al., 2018). Fourth, 
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the linear regression model between urban expansion and urban environment does not take into 

account of the error propagation originated from image processing, classification, indicator 

calculation. Last, the urban expansion is analyzed only to the horizontal direction in this study 

while the vertical direction is also an important dimension to study especially in megacities such 

as Chengdu.  

This study focuses on exploring the spatial and temporal dynamics of urban expansion and 

the urban environment, and analyzed their relationship using a simple linear model. However, the 

complex processes and mechanisms between urban expansion and environment are beyond the 

scope of this study. In addition, the assessment covers a relatively short period immediately after 

the implementation of the “Go West” program, thus it does not involve the time before baseline. 

Therefore, future research can include one or more of the followings: 1) incorporating the error 

from the data processing step to the regression between urban expansion and urban environmental 

change; 2) monitoring the urban expansion through not only the horizontal but also the vertical 

direction; 3) exploring the underlying mechanism between urban expansion and urban 

environment; 4) studying urban expansion and sustainability with a longer time series covering 

periods before the year of 2000.  

 

  



 

67 

 

CHAPTER 6: CONCLUSIONS 

The world is becoming more urbanized than ever with rapid population growth and 

economic development, which also leads to many undesirable consequences. As one of the most 

important factors of urban life, residents’ living environment is facing challenges from rapid urban 

expansion. To achieve sustainable urban development, it is imperative to comprehensively assess 

the urban environment. The present research makes efforts to track the process of urban expansion 

and evaluate urban environment using the case from Chengdu during 2000-2015 under the 

background of China’s Western Development program. Major contributions are as follows.  

The use and advancement of theories, frameworks, methods and techniques enable a 

comprehensive pixel-base spatial analysis on the urban environment, which gives an example of 

urban environment evaluation that is applicable to all the cities around the world. First of all, the 

use of remote sensing and GIS is an efficient and effective way to track the spatial and temporal 

patterns of urban expansion with high accuracy and high resolution. Second, the integration of 

self, neighborhood and accessibility dimensions on the urban environment provides a 

comprehensive assessment. Third, the application of the catastrophe model gives an exemplar of 

urban environmental assessment that is applicable to almost all indicator-based analysis systems. 

Fourth, the pixel-based analysis enables the understanding of spatial heterogeneity within 

administrative boundaries, and this advanced the lump-sum assessments in most of the previous 

studies, which only give one score for one city.  

The results illustrate the relative spatial and temporal changes of urban expansion and the 

environment. Based on the discussion, the changes of urban expansion and the urban environment 

are influenced by activities of governments, organizations and companies, while constrained by 

the existing built environment and geographic condition. The analysis on the relationship between 
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urban expansion and the urban environment supports the view that rapid urban expansion may 

have negative consequences on the urban environment, but this phenomenon can be alleviated 

through policy intervention. However, more rigorous analyses need to be done before reaching 

this conclusion.  Using this study as a reference, policy-makers can help future urban planning and 

sustainable urban development of Chengdu.  
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