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ABSTRACT

BAYESIAN VARIABLE SELECTION AND FUNCTIONAL DATA ANALYSIS:
APPLICATION TO BRAIN IMAGING

By

Asish Kumar Banik

High-dimensional statistics is one of the most studied topics in the field of statistics. The most

interesting problem to arise in the last 15 years is variable selection or subset selection. Variable

selection is a strong statistical tool that can be explored in functional data analysis. In the first part

of this thesis, we implement a Bayesian variable selection method for automatic knot selection.

We propose a spike-and-slab prior on knots and formulate a conjugate stochastic search variable

selection for significant knots. The computation is substantially faster than existing knot selection

methods, as we use Metropolis-Hastings algorithms and a Gibbs sampler for estimation. This work

focuses on a single nonlinear covariate, modeled as regression splines. In the next stage, we study

Bayesian variable selection in additive models with high-dimensional predictors. The selection

of nonlinear functions in models is highly important in recent research, and the Bayesian method

of selection has more advantages than contemporary frequentist methods. Chapter 2 examines

Bayesian sparse group lasso theory based on spike-and-slab priors to determine its applicability for

variable selection and function estimation in nonparametric additive models.

The primary objective of Chapter 3 is to build a classification method using longitudinal

volumetric magnetic resonance imaging (MRI) data from five regions of interest (ROIs). A

functional data analysis method is used to handle the longitudinal measurement of ROIs, and the

functional coefficients are later used in the classification models. We propose a Pólya-gamma

augmentation method to classify normal controls and diseased patients based on functional MRI

measurements. Weobtain fast-posterior sampling by avoiding the slow and complicatedMetropolis-

Hastings algorithm. Our main motivation is to determine the important ROIs that have the highest

separating power to classify our dichotomous response. We compare the sensitivity, specificity,



and accuracy of the classification based on single ROIs and with various combinations of them.

We obtain a sensitivity of over 85% and a specificity of around 90% for most of the combinations.

Next, we work with Bayesian classification and selection methodology. The main goal of

Chapter 4 is to employ longitudinal trajectories in a significant number of sub-regional brain

volumetric MRI data as statistical predictors for Alzheimer’s disease (AD) classification. We

use logistic regression in a Bayesian framework that includes many functional predictors. The

direct sampling of regression coefficients from the Bayesian logistic model is difficult due to its

complicated likelihood function. In high-dimensional scenarios, the selection of predictors is

paramount with the introduction of either spike-and-slab priors, non-local priors, or Horseshoe

priors. We seek to avoid the complicated Metropolis-Hastings approach and to develop an easily

implementable Gibbs sampler. In addition, the Bayesian estimation provides proper estimates of

the model parameters, which are also useful for building inference. Another advantage of working

with logistic regression is that it calculates the log of odds of relative risk for AD compared

to normal control based on the selected longitudinal predictors, rather than simply classifying

patients based on cross-sectional estimates. Ultimately, however, we combine approaches and use a

probability threshold to classify individual patients. We employ 49 functional predictors consisting

of volumetric estimates of brain sub-regions, chosen for their established clinical significance.

Moreover, the use of spike-and-slab priors ensures that many redundant predictors are dropped

from the model.

Finally, we present a new approach of Bayesian model-based clustering for spatiotemporal data

in chapter 5 . A simple linear mixed model (LME) derived from a functional model is used to

model spatiotemporal cerebral white matter data extracted from healthy aging individuals. LME

provides us with prior information for spatial covariance structure and brain segmentation based

on white matter intensity. This motivates us to build stochastic model-based clustering to group

voxels considering their longitudinal and location information. The cluster-specific random effect

causes correlation among repeated measures. The problem of finding partitions is dealt with by

imposing prior structure on cluster partitions in order to derive a stochastic objective function.
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CHAPTER 1

INTRODUCTION

1.1 Variable selection

Statistical modeling with large numbers of predictors is one of the most studied topics in the field

of statistics. The most interesting problem to arise in the last 15 years is variable selection or subset

selection. Statisticians are excited about variable selection for various reasons. Most often, when

a model contains a large number of predictors, we are not satisfied with prediction accuracy, in-

terpretation, over-fitting, estimation, or testing of regression coefficients, among others. Numerous

variable selection methods have been proposed in the Bayesian and non-Bayesian literature, such

as forward and backward stepwise selection, shrinkage methods, principal components regression,

and partial least squares. The problem of choosing an optimal model from a subset of all possible

models has led to a variety of algorithms and methodology building. The following discusses

Bayesian variable selection and its application to various nonparametric regression problems.

1.1.1 Bayesian Variable Selection and Spike-and-Slab Prior

We start by defining the setup,

y =

p∑
i=1

Xiβi + ε

where p � n and y is a n × 1 vector. It is mathematically intuitive that the parameter vector β can

only be estimated by n observations. If β is sparse in terms of l0 norm i.e. | |β | |00 = |{i : βi , 0}| < n,

then we can achieve reasonably good estimates. Various authors worked on this problem. Miller,

2002[89] used a spike-and-slab prior with a spike on the zero coefficient and a slab part on the

estimable coefficients. A spike-and-slab prior was introduced by [43] where βi follows a normal

mixture distribution:

βi |γi ∼ (1 − γi)N(0, τ2
i ) + γiN(0, c2

i τ
2
i )

1



Figure 1.1: spike-and-slab Priora

Figure 1.2: Horseshoe priora
a Plot obtained from on-line resources

where γi is a latent variable that controls the number of significant coefficients or model size.

The motivation for the frequently used Dirac-distributed spike-and-slab prior came from the above

structure. We observe a point mass on the spike part when τ2
i tends to 0. Model complexity is a

required property. The degree of sparseness can be set based on an optimality criterion. Burnham

and Anderson, 2004[3] mentioned the best predictive ability as an optimal criterion in their book,

“Model Selection and Multi-model Inference.” As we have noted P(γi = 1) controls the sparsity

of the model; George & McCulloch, 1993[43] proposed to use a Bernoulli distribution with 0.5

probability. Bayesian variable selection is not limited to spike-and-slab prior. For example, Liang

et al., 2008 [78] used a mixture of g-priors for variable selection. Carvalho et al., 2010[18]

introduced the horseshoe prior as a global-local shrinkage. The horseshoe is another popular prior

choice for variable selection where a half-cauchy prior is used to estimate significant predictors.

We have seen that this method penalizes less on the strong signals and parameters are estimated

with fewer constraints. However, it comes with a computation cost, as in most cases it is difficult

to determine a proper posterior distribution. Casella and Moreno, 2006[21] presented an objective

Bayesian criterion for variable selection. In general, the literature on variable selection is vast, but

we focused on spike-and-slab prior in this study.

2



The application of a spike-and-slab prior can be extended to various problems, such as non-

parametric function estimation or curve estimation. Smith and Kohn, 1996[115] applied a similar

approach for univariate nonparametric regression. We closely studied their work for function esti-

mation. Although their prior structure does not directly resemble a spike-and-slab setup, they also

used an indicator variable γ, such that

βγ ∼ N(0, cσ2(XT
γ Xγ)−1), p(γi) = πi

where Xγ is the design matrix with columns whose regression coefficients are nonzero. Once we

find p(γ |y), it is easy to sample using Gibbs sampling. Smith and Kohn, 1996[115] used this

approach to select significant knots from an unknown function f (x) approximated by cubic spline.

Later, Ishwaran and Rao, 2005[57] started reshaping the spike-and-slab prior. They described the

following setup in their paper:

(Yi/xi, β,σ
2) ind
∼ N(x′i β,σ

2), (i = 1, ...,n)

(β/γ) ∼ N(0, Γ),

γ ∼ π(dγ),

σ2 ∼ µ(dσ2),

The above formulation is a general setup, where Γ is a diagonal matrix. The authors developed con-

tinuous bimodal priors which have separate spike and slab parts. Malsiner-Walli and Wagner[82]

performed a thorough revision of spike-and-slab priors. They argued that the selected indicator

variables are independent conditional on the prior inclusion probability, but marginal dependence

is not a logical condition. Instead, they used an individual inclusion probability for each regression

coefficient.

1.1.2 Penalization Methods

Variable selection has been extensively studied in the non-Bayesian literature too. Lasso (Tib-

shirani, 1996 [120]) is the most popular variable selection technique, initially developed for linear

3



regression models. If p > n, the ordinary least square estimator is not unique and Tibshirani

introduced the idea of l1 penalization on regression coefficients,as formulated below:

β̂lasso(λ) = arg min
β

(
1
n
| |y − Xβ| |22 + λ | |β | |1

)
where λ ≥ 0 is the penalty parameter. This estimator can drag many coefficients towards zero,

depending on the sparsity of the design matrix and the extent of the penalization. The solution

is a convex optimization problem and easy to implement. Lasso can perform variable selection

in the sense that it can provide an exact zero solution for some components. On the other hand,

another old and popular penalization method, ridge regression, shrinks regression coefficients by

penalizing on the size. The ridge coefficients minimize a penalized residual sum of squares,

β̂ridge(λ) = arg min
β

(
1
n
| |y − Xβ | |22 + λ | |β | |

2
2

)
Similarly λ, the complexity parameter, controls the amount of shrinkage. Ridge regression performs

proportional shrinkage, and lasso truncates the coefficient at zero. To understand the relationship,

we use the famous picture of the lasso and ridge regression solution path for two parameters in

Figure 1.3. The solution path has elliptical contours centered around OLS estimates. The solution

for ridge is the disk, while for lasso it is the diamond. The solution is obtained when the elliptical

contour first hits the constraint region. As the disk has corners, lasso has one solution equal to

zero. For p > 2, we can have more solutions exactly equal to zero. In case of an orthonormal

design matrix, we can have the explicit solutions for lasso and ridge. On the other hand, lasso uses

soft-thresholding, as depicted in Figure 1.4.

Lasso and Ridge regression both use Bayes estimates with different priors. Tibshirani, 1996

[120] suggested that Lasso estimates can be obtained if the regression parameters have Laplace or

double-exponential priors. Park andCasella, 2008[96] provided an easy-to-computeGibbs sampler
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Figure 1.3: Lasso vs Ridge solution Patha
Figure 1.4: Threshold functions for orthonormal
designa

a Plot obtained from on-line resources

for Bayesian lasso by introducing a scale mixture of normal priors on regression coefficients.

β |σ2, τ2
1 , .., τ

2
p ∼ Np(0, σ2Dτ)

Dτ = diag(τ2
1 , .., τ

2
p)

τ2
1 , .., τ

2
p ∼

p∏
i=1

λ2

2
exp(−λ2τ2

i /2)dτ
2
i

π(σ2) ∼
1
σ2

Although this method helps us computationally, we do not obtain exact zero estimates from the

posterior median solution. Figure 1.5 comes from Park and Casella, 2008’s paper, where it is

clearly visible that by using lasso, we can have a zero solution, in contrast to Bayesian lasso or

ridge. Bayesian lasso provides very small estimates for insignificant predictors, and one needs to

impose one more level of threshold to drop redundant variables from the model. This problem

can be solved using a point mass spike-and-slab prior on regression coefficients. Xu and Ghosh,

2015[128] used this phenomenon for Bayesian Group Lasso , which we discuss in next section.
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Figure 1.5: comparison between Lasso, Bayesian Lasso and Ridge regression solution pathsa
a Plot obtained from on-line resources

1.1.3 Bayesian Group Lasso

Grouping structures among predictors occurs in many situations, such as when a model has

categorical variables or functional predictors. The categorical predictors are represented by a

group of dummy variables and, in the case of functional predictors, sometimes a group of basic

functions used in the model. Gene expression data forms groups in the form of gene pathways,

and these groups have a natural correlation structure. The lasso solution is not entirely satisfactory

in such scenarios, as it only selects the individual predictors instead of the whole group. It also

depends on how the dummy variables are orthogonalized. To deal with this problem Yuan et al.

[132] introduced ’Group Lasso’ which can select important grouped variables as a whole. Consider

this model-

Yn×1 =
G∑
g=1

Xgβg + ε

where ε follows normal distribution and βg is the g-th grouped predictor among G total group

variables. The group size can vary. Yuan et al. [132] proposed group lasso, which is an extension
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of lasso, to handle grouped variables. The group lasso solution for linear regression is defined as

min
βg
| |Y −

G∑
g=1

Xgβg | | + λ

G∑
g=1
| |βg | |2

In this dissertation, we deal with a generalized linear model with binary response. Hence, we

are interested in how lasso and group lasso have been developed for logistic regression. The lasso

penalty can be applied to logistic regression or multinomial logistic regression. Genkin et al. [42]

applied l1 penalty to their sparse model and used a Laplace prior to avoid overfitting. Instead of

the residual sum of squares, they used a negative log-likelihood criterion and MAP estimates of the

regression parameters. The first introduction of group lasso penalty for logistic regression model

was observed in Kim et al. [66], where they proposed a gradient descent algorithm for estimation.

Meier et al. [87] presented group lasso for a “large p” which minimizes the negative log-likelihood

function with group penalty. The group lasso solution in their paper is defined as follows:

min
βg
−


n∑

i=1
yi

G∑
g=1

Xi,gβg − log(1 + exp(
G∑
g=1

Xi,gβg))

 + λ
G∑
g=1

√
mg | |βg | |2

where mg is the size of βg. They propose a block co-ordinate gradient descent algorithm to find

the solution to this minimizing problem.

Despite the more common use of frequentist group lasso methods, Bayesian approaches may

be more appropriate for the same problem. This is because the estimates of the standard lasso

estimators do not provide meaningful standard errors that can be used for hypothesis testing or

constructing confidence intervals. The lasso estimator has a complex limit distribution and is

complicated to implement (Knight et al. [68],Chatterjee et al.[23]). On the other hand, a Bayesian

prior-based formulation of lasso can provide reliable standard errors of estimates by obtaining

the MAP estimators. In his seminal Lasso paper, Tibshirani[120] stated that the posterior mode

with an independent double exponential prior for the regression coefficient is the same as a lasso

estimator. Later, Park and Casella[96] developed a highly efficient Gibbs sampler for Bayesian

lasso by introducing scale mixture priors for regression coefficients. The regression coefficients
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follow the normal prior, and the variance components of the normal distribution follow the Gamma

prior, giving us a highly efficient way of posterior sampling. Based on Park and Casella’s[96]

work, Kyung et al.[69] provided a Bayesian hierarchical model for Bayesian group lasso. As in

penalized linear regression with grouped variables, the conditional prior β/σ2 can be written as

π(β/σ2) ∝ exp
−

λ

σ

G∑
g=1
| |βg | |2


Kyung et al.[69] expressed this same prior as

βg/τ
2
g , σ

2 ∼ Nmg (0, τ
2
gσ

2Img )

τ2
g ∼ Gamma(

mg + 1
2

,
λ2

2
), g = 1, ..,G

Li et al. 2015[75] worked with a high-dimensional varying-coefficient model equipped with

Bayesian group lasso. They tried to obtain group lasso estimators as posterior mode estimates of

multivariate i.i.d. Laplace priors on regression parameters.

Although it is highly computationally efficient, a significant disadvantage ofPark andCasella’s[96]

normal mixture prior setup is that it does not ensure an exact zero solution for the regression co-

efficients. This is also the case if we obtain the posterior mean or median from the prior setup by

Kyung et al.[69] – it will not provide exact 0 estimates for βg’s. Therefore, to impose sparsity in

group level, Xu et al. [128] proposed a multivariate zero-inflated mixture prior for each βg. The

following is a hierarchical structure with an independent spike-and-slab prior for each βg:

Y |X, β,σ2 ∼ N(Xβ,σ2I)

βg |τ
2
g , σ

2 ∼ (1 − π0)Nmg (0, σ
2τ2

g Img ) + π0δ0(βg), g = 1, ..,G

τ2
g ∼ Gamma

(
mg + 1

2
,
λ2

2

)
, g = 1, ..,G

σ2 ∼ IG(α,γ)

π0 ∼ Beta(a, b)
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where δ0(βg) denotes point mass at 0. The mixing probability π0 can be defined as a function of

the number of predictors to impose more sparsity as the feature size increases. The choice of λ is

very critical to control sparsity. Large values of λ will produce biased estimates and very small λ

values will impose diffuse distribution for the slab part. Xu et al. [128] mentioned an empirical

Bayes approach to estimate λ. Due to the intractability of marginal likelihood, they proposed a

Monte Carlo EM (Expectation Maximization) algorithm for the estimation of λ. Moreover, they

have shown theoretically and numerically that the median thresholding of posterior βg samples

provides exact zero estimates for insignificant group predictors.

The class of spike-and-slab zero-inflated mixture prior was first introduced by Mitchell et

al.[91]. It is highly useful for variable selection. In the zero-inflated mixture prior, the slab part

assumes some known distribution at nonzero coefficients, and the spike part has point mass at zero

coefficients. Later George et al. ([43],[44]) used a zero-inflated normal mixture prior to build

Gibbs sampling for variable selection. Narisetty et al.[94] worked with shrinking and diffusing

priors. The predictors with zero or very small coefficients have variance tending to 0, as those

coefficients reach point mass at zero (spike), and the active predictors’ variance reaches infinity as

a diffused prior (slab). On a different note, Lykou et al.[79] worked with Bayesian lasso variable

selection; they assumed independent double exponential distribution for regression coefficients and

concentrated on the shrinkage parameter λ. Bayes factors criteria are used to choose the selection

vector and the shrinkage parameter. Zhang et al.[134] generalized this prior using Dirac spike-slab

where each coefficient group follows a normal distribution, as follows:

βg |γg, σ
2, τ2

g ∼ γgN(0, σ2Dτg ) + (1 − γg)δ0(βg)

where Dτg = diag(τ2
g1, .., τ

2
gmg ) and γg follows a Bernoulli distribution. The more interesting

advancement in their work is the simultaneous selection of groups and the members within those

groups. In addition, they incorporated group serial correlations with Bayesian fused lasso technique

for within-group selection. Xu et al. [128] also proposed an algorithm for bi-level selection in group

lasso with a two-way sparsity assumption: among grouped predictors and within selected groups.
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The main application of this kind of selection arises in genetic association studies. For instance,

when not all genetic variations in a selected gene are responsible for a disease, it is necessary to

incorporate bi-level selection.

1.2 Bayesian logistic regression

Classification using longitudinal data can be challenging with a large number of predictors. The

first significant approach to handle longitudinal predictors is to consider each multiple-occasion

observation as a single function that is observed over a time interval. Functional predictors have a

high correlation between adjacent measurements, and the observational space is high-dimensional.

The number of predictors required for estimation often exceeds the number of observations, which

introduces the problem of dimensionality. A regression framework is often the most suitable to

model all possible longitudinal effects across ROIs, where the proposed method will select the

important predictors. Moreover, many biomedical studies have shown that a limited number of

specific brain regions or ROIs are essential for AD classification. Thus, dimension reduction tech-

niques can be applied, and classification can be limited to the reduced feature set. Zhu et al. [136]

proposed a method for classification and selection of functional predictors: first, functional prin-

ciple component scores are calculated for each functional predictor; then, the functional principle

component scores are used for the classification of each individual observation. They proposed

using Gaussian priors for selection and developed a hybrid Metropolis-Hastings/Gibbs sampler

algorithm. Although the method reported in the present study was inspired by this method, we

developed a simple Gibbs sampler where MCMC samples are drawn from standard distributions.

We also focused on applying penalized regression for dimension reduction. In the Bayesian variable

selection literature, the spike-and-slab prior has widespread applications due to its superior selec-

tion power. George et al. ([43],[44]) initially proposed that each coefficient β can be modeled either

from the “spike” distribution, where most of its mass is concentrated around zero, or from the “slab”

distribution, which resembles a diffuse distribution. Instead of imposing the spike-and-slab prior

directly on regression coefficients, Ishwaran et al. [57] introduced a method in which they place
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a spike-and-slab prior on the variance of Gaussian priors. The Bayesian variable selection meth-

ods also include different Bayesian regularization methods, such as Bayesian lasso [96], Bayesian

Group Lasso, and Bayesian elastic net [76]. We opted for spike-slab Bayesian group lasso which is

extensively discussed in Xu et al. [128]. The group structure among the coefficients in our model

comes from functional smoothing of the coefficients, and group lasso facilitates the selection of

the important functional predictors. Thus, our proposed method uses the idea of Bayesian variable

selection in a generalized functional linear model with binary responses.

We model binary response yi ∈ {0,1} (i = 1, ..,n) and predictors with logistic regression. We

know that posterior sampling of logistic regression coefficients is difficult due to the model’s com-

plicated likelihood function. In addition, we assume a Gaussian prior for regression coefficients,

which makes the likelihood function analytically inconvenient. Full posterior sampling of param-

eters requires candidate density following the Metropolis-Hastings algorithm. Bayesian inference

for a probit model is comparatively easier [2]. Different sampling algorithms motivated by Albert et

al.’s work [2] have been proposed. For instance, Holmes et al. [54] presented an indirect sampling

method by introducing auxiliary variables for binary and multinomial regression. Later, more

methods based on latent variables for logistic regression were advanced by Frühwirth-Schnatter

et al. [41], Gramacy et al. [45] and Polson et al. [97]. Among all these works, Polson et al.’s

algorithm is the most interesting to us due to its ease of computational implementation and its

sampling efficiency. Our aim is to avoid the complex Metropolis algorithm while sampling from

posterior distributions of regression coefficients.

Holmes et al. [54] introduced an auxiliary variable to avoid the conditional non-conjugacy for
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updating β. The prior structure they used is

yi =


1, if zi > 0

0, otherwise

zi = xiβ + εi

εi ∼ N(0, λi)

λi = (2ψi)
2

ψi ∼ Kolmogorv − Smirnov distribution

β ∼ Normal distribution

The above prior is interesting because the marginal likelihood L(β|data) is same as the likelihood

for logit model. One can achieve a conjugate full conditional distribution of β given data, but the

conditional distribution of π(λi |zi, β) does not have any standard form. One has to use a complicated

rejection sampling method to sample for conditional λi. Hence, adding an auxiliary variable does

not give us significant computational improvement compared to using the Metropolis-Hastings

algorithm. Frühwirth-Schnatter et al. [41] addressed the problem with the same approach, but

instead of using a single auxiliary variable they used a two-stage augmentation method. In the

first stage, they assumed the existence of a latent variable, where the binary response variable is

conditional on the sign of the auxiliary variable. They assumed the error part of the model to

follow a type I extreme value distribution, which is non-normal density. Then, in the second stage

of data augmentation, this non-normal error distribution was approximated by the mixture of the

normal distribution. Finally, they obtained a multivariate normal distribution for the posterior of

β. Among all the popular methods, pólya-gamma augmentation is most interesting to us, and it is

easy to apply due to the availability of the R package.

1.3 Functional data smoothing

Here we discuss some of the key features of functional data or functional observations in the

regression context. Throughout this thesis, we use linear combinations of basis functions to rep-
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resent functions. The pivotal philosophy of functional data analysis is to consider observed data

functions as single observations. Measurement error is a frequent problem in functional obser-

vations. In the following, we discuss the simplest case of nonparametric regression problem: we

observe (xi, yi)i=1,..,n with yi = f (xi) + σεi where xi’s follow a Uniform (0,1) distribution (i.i.d).

To estimate f̂ (x), we must minimize
[
E

∫ 1
0 ( f̂ (x) − f (x))2dx

]
. We need basis functions to esti-

mate the unknown function. Basis functions have mathematical properties that help statisticians

to approximate any function by taking a linear combination. Some popular basis functions are the

Haar basis, Fourier basis, Spline basis, wavelets, and polynomial bases, among others. In general,

basis functions have the property of orthonormality. Now, if we have a set of basis functions φ j

in L2(0,1) then we can define fJ(x) = 1
n
∑J

j=0 θ jφ j(x) where θ j =
∫ 1
0 φ j(x)dx. We plug in the

estimator θ̂ j =
1
n
∑n

i=1 yiφ j(xi) such that E(θ̂ j) = θ j . The choice of basis function is crucial in

functional data analysis. We focus on B-spline basis functions in this thesis, and we discuss its

properties in the following.

Spline functions are most often used to approximate non-periodic functional data. Splines are

easy to handle computationally and provide better results than polynomial approximations. One

can approximate most of the functions using a moderate number of basis functions. The first step

in constructing splines in the input space is to divide the space into breakpoints, which are called

knots. Let ε0 < ε1 and εK < εK+1 be two binary knots which can be defined as the range of the

domain over which we approximate our function. Now, we define:

• τ1 ≤ τ2 ≤ · · · ≤ τM ≤ ε0

• τj+M = ε j, j = 1, ..,K

• εK+1 ≤ τK+M+1 · · · ≤ τK+2M

Although the additional knots are defined outside of boundary points, in practice they are all equal

to ε0 and εK+1 respectively. We define Bi,k (x) as the ith B-spline basis function of order ’k’ with
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Figure 1.6: B-spline smoothing under varying orders and knotsa
a Plot obtained from online resources

knot sequence τ and they are constructed as follows:

Bi,1(x) = 1, i f τi ≤ x ≤ Ti+1, f or i = 1, ..,K + 2M − 1

Bi,k (x) =
x − τi

τi+k−1 − τi
Bi,k−1(x) +

τi+k − x
τi+k − τi+1

Bi+1,k−1(x), f or i = 1, ..,K + 2M − k

To understand the construction we obtained Figure 1.6 from a paper byDertimanis et al., 2018[30].

Now we can replace the general φ j(x) basis functions with Bi,k (x) basis functions, and a function

f (x) can be approximated as f (x) =
∑K

j=1 β j B j(x). The least square method can be used to

estimate unknown βs.

Knot selection is another domain of research that statisticians have already explored. Automatic

knot selection can be achieved using model selection criteria such as cross validation and Mallow’s

Cp in a linear regression framework. The aim is to choose a set of knots from a large number of
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candidate knots such that optimization criteria are satisfied. The number of all possible models

increases as the cardinality of candidate knots does. Some works to mention on this topic are by

(Smith and Kohn, 1996[115],Denison et al., 1997[24],DiMatteo et al., 2001[24]). Smith and Kohn,

1996[115], Denison et al., 1997[24] utilized Bayesian variable selection to build MCMC methods

for function estimation.

The problem of univariate function estimation can be extended to function selection in additive

models. Many authors are interested in selecting significant functions for yi =
∑p

j=1 f j(Xi j) + εi

when p � n. Scheipl et al., 2012[106] proposed a normal-mixture-of-inverse gamma distribu-

tions by introducing similar indicator variable used in spike and slab prior. Their setup is for

a generalized linear model with continuous response replaced by link functions. Scheipl et al.,

2013[107] mentioned more than one method in their paper, including using penalized likelihood

and smoothness priors, and an indicator selection approach after transforming functions into a lin-

ear combination of centered B-spline expansion. Lan Xue[129] proposed a penalized polynomial

spline method for a simultaneous model estimation and variable selection in additive models. He

explored spline SCAD (Smoothly Clipped Absolute Deviation) penalty as a regularization method.

Although Fan et al., 2015[33] did not engage in variable selection in their work, they did utilize a

penalized least squares optimization technique to efficiently deal with high-dimensional functional

predictors. They minimized a loss function with a penalized l2 norm of functions to find estimated

functions. McLean et al., 2013[85] explored both MCMC and variational Bayes algorithms to fit

a functional generalized additive model. Huang et al.[56] tackled the same problem in a conven-

tional non-Bayesian variable selection approach by applying adaptive group lasso. To start, they

also decomposed functional predictors as a linear combination of B-spline basis functions and later

penalized the unknown coefficients as groups. The Bayesian group lasso we built is inspired by

their work, but we deal with binary response that is equivalent to a generalized linear model.
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1.4 Bayesian model based clustering

Cluster analysis is the modern data mining tool used to group or segment objects into clusters

based on similarity measurements. Many available algorithms have been built based on a particular

criterion that objects within a cluster are more similar to each other than to objects that belong to

other clusters. Some popular clustering methods are K-means, agglomerative clustering, hierar-

chical clustering, and model-based clustering. We focus more on model-based clustering in this

chapter. A disadvantage of hierarchical clustering or K-means methods is that they are model-free

heuristic methods. Model-based clustering is an alternative to provide an option to formulate a

model while grouping objects. Model-based clustering was first introduced Banfield and Raftery,

1993[6], who assumed that observations come from multivariate normal distribution and that max-

imum likelihood yields the estimates . Fraley and Raftery, 2002[37] introduced the finite mixture

models as a formal setting for model based clustering. Let y1, .., yn are independently distributed

p-dimensional observations from a K-component mixture distribution-

f (y; τ ,θ) =
n∏

i=1

K∑
k=1

τk fk (yi |θk ) (1.1)

Here τk is the probability that a particular object belongs to kth cluster and θk parametrizes the

density fk . In general, fk is multivariate normal density where fk ≡ MV N(µk,Σk). The EM

algorithm helps us to get the estimates of unknown parameters. In a later study, Melnykov and

Maitra, 2010[88] provided a thorough reference for model-based clustering. A point of subjectivity

that is always attached to cluster analysis is choosing the number of clusters. Similar to K-means,

model-based clustering needs a specified number of clusters at the start of the algorithm. Fraley

and Raftery, 1998[36] tried to answer this question using model selection criteria. They suggested

studying BIC over all possible cluster numbers and choosing the onewith lowest BIC. Another study

to mention is that of Yeung et al., 2001 [131], who applied model-based clustering to group gene

expression data. Over time, researchers included other factors inside the model-based approach,

such as variable selection[101] and penalizing the parameter space θ[95]. All the aforementioned

studies have been done in a conventional statistical framework without using any prior information
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on the cluster structure, the number of clusters, or unknown parameters (τ ,θ). Only Bayesian

model selection has been used to select optimal number of clusters. Handcock et al., 2007[46]

described two methods to estimate unknown parameters: first, a two-stage maximum likelihood

method, and second, a Bayesian estimation method. In the Bayesian part, regression parameters

have a multivariate normal prior, and the mixture probability τ has a Dirichlet prior with MCMC

estimation. Furthermore, Fraley and Raftery, 2007[38] discussed the problems of using the EM

algorithm and where it can fail to converge. Instead of MLE, they preferred to work with the MAP

estimator with conventional priors on mean and covariance parameters, such as MVN on mean and

an Inverse-Wishart distribution on a covariance matrix. Medvedovic et al., 2004 [86] proposed a

contrasting formulation of a Bayesian mixture-based clustering algorithm to group gene expression

data with replicates. Interestingly, the Poisson-Dirichlet process is the most logical and convenient

way of assuming priors on the number of clusters and mixture probability if one does not want to

limit the number of clusters when starting the algorithm [70].

The methods and literature described above have various advantages and can be applied to

different complicated problems faced by researchers. Here we should reiterate the problem with

which we are dealing: we aim to build a Bayesian model-based clustering method with the same

white matter data used for spatiotemporal modeling discussed in Section 5.1. We have longitudinal

voxel-wise white matter measurements for healthy aging subjects, and we would like to group

voxels in homogeneous regions considering the longitudinal and spatial information. To this

end, we review the literature for spatiotemporal clustering methods. Authors in the computer

science literature have examined this topic extensively. Kalnis et al., 2005[65] dealt with a highly

complicated problem of detecting clusters among moving objects that change locations over time.

For instance, they clustered trajectories and mining movement patterns for a group of migrating

animals or a convoy of cars moving in a city. The complexity of this problem is manifold, as we are

simplifying our situation by assuming that spatial locations of voxels are fixed over time. Kisilevich

et al., 2009[67] described a detailed study of spatiotemporal clustering on trajectories and provided
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in-depth research development on this topic.

1.5 ADNI Longitudinal Data

Alzheimer’s disease (AD) is the most common form of age-related neurodegeneration and

dementia. More than 25 million people in the world are currently affected by dementia, with most

suffering from AD, and around 5 million new cases occur every year. The number of people with

dementia is anticipated to double every 20 years [99]. Some suggest that earlier diagnosis and

intervention may offer the greatest potential for treatment, making the early detection of AD of

the utmost clinical importance. AD symptoms are diagnosed via clinical neuropsychological and

cognitive measures, including the Clinical Dementia Rating (CDR) scale. In addition to other

standardized clinical neuropsychological measures, such as the Ray Auditory Verbal Learning Task

or the Mini Mental Status Examination (MMSE), biomarkers from MRI and PET imaging are also

used in diagnostic classification. Based in part on these scores, patients are diagnosed or classified

into one of three primary categories: cognitively normal (CN), mild cognitive impairment (MCI),

and AD. In this dissertation, we demonstrate a method to differentiate AD patients fromCN persons

via the differential nonlinear longitudinal trajectories in regional brain volumes. Various high-

dimensional classification and regressionmethods have been proposed for biostatistical applications

to neurological diagnostic methods for early-stage AD detection. The present study focuses on

applying volumetric MRI data at the region of interest (ROI) level, and limiting the included

features to more clinically established sub-regions of brain volumes in AD and aging. Unlike

commonly used Bayesian classification methods, we emphasize the selection of the longitudinal

trajectories of brain volumes as predictors for classification of patients as AD vs. CN.

MRI is a valuable tool for in vivo assessment of brain biomarkers related to disease progression.

Longitudinal patterns of brain atrophy follow a common pattern, with prominent volumetric loss

in established and canonical regions, such as the hippocampus or the entorhinal cortex, as well as

ventricular and sulcal expansion. The currently available, fully processed ADNI longitudinal MRI

data includes cortical and white matter (WM) parcellation, surface area, and cortical thickness of
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different brain regions. Instead of using all possible regional measurements, we focus on volumetric

longitudinal changes in a more theoretically guided and limited number of brain sub-regions to

classify patients. We obtained nearly 115 different sub-regions’ volume measurements from ADNI

1, ADNI 2, & ADNI GO. Leung et al. [74] compared MCI converters and MCI nonconverters

considering longitudinal hippocampal volumes, and showed that MCI converters have higher rates

of hippocampal atrophy. Reduced hippocampal volume has been proposed to diagnose AD earlier

than clinical diagnosis [40]. We believe that measuring volumetric change over multiple occasions

rather than at a single time-point will provide a more reliable estimate of quantitative change. In this

dissertation, we concentrate on the selection of key brain regions that differ in longitudinal change

between AD patients and CN older adults using a Bayesian variable selection method. In addition

to prior findings related to the selection of volumetric MRI measurements, there are also numerous

studies involving the selection of functional predictors. The key advantage of using longitudinal

MRI data is that it captures the atrophy rates with time as patients’ progress through multiple

disease stages. FreeSurfer software is able to measure accurate brain volumes and cortical thick-

ness, and theADNIwebsite has 1.5T structuralMRI datawith parcellation performed by FreeSurfer.

The pivotal contribution of this dissertation is that it explores functional data analysis with

Bayesian variable selection. We extensively refer to themethodologies described in this introduction

in the development of later chapters. Chapter 2 introduces the applicability of spike-and-slab priors

for knot selection in function estimation. The research interest in function estimation is still

prevalent in the statistics literature. Spike-and-slab group lasso, which was discussed earlier,

works well for group selection and outperforms other methodologies. Chapter 4 presents extensive

application of Bayesian group lasso to function selection. Moreover, it helps to establish some

statistical properties. In addition, Bayesian classification is another field that is discussed later

in this dissertation. The aim of this introduction was to help the reader better understand the

perspective of this dissertation.
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CHAPTER 2

NONPARAMETRIC FUNCTION ESTIMATION USING BAYESIAN VARIABLE
SELECTION

Bayesian variable selection for nonparametric function estimation is a challenging research field.

We have tried to explore it with a large number of functional predictors in an additive model. We

started with the knot selection problem for a single function estimation.

2.1 Univariate function estimation

The literature on function estimation is quite old and has already established excellent mathe-

matical properties. Bayesian methods have worked well for estimating functions with a penalized

spline. However, we propose a new approach to function estimation by assuming uncertainty with

knots. We describe our methodology in the following.

2.1.1 Introduction

Consider a very simple regression problem with data observed as (yi,Xi)i=1,..,n where X is a

single covariate and Y is n × 1 response variable. We regard a nonlinear model as a potential

setup, such that the mean E(y |X) varies nonlinearly with the predictor. Then, we can replace the

conventional regression problem of yi = Xiβ + εi with

yi = f (Xi) + εi, i = 1, ..,n

where f (.) belongs to some class of nonlinear functions. There are numerous methods available

to estimate the unknown function, one of which is basis function expansion. This single covariate

has a nonlinear component with respect to response, which is modeled as a regression spline basis

and can be written as

f (x) =
K∑

j=1
β jφ j(x) (2.1)

20



where φ j(x) are some orthonormal basis functions. Now, if we limit our study only for spline

functions, the value ’K’ depends on the number of internal knots we are using. Let us assume that

we have τ1, .., τK internal knots to approximate the function. Then, equation (1.1) can be written

with pth degree spline model as

f (x) = β0 + β1X + · · · + βpX p +
K∑

j=1
βpj(X − τj)

p
+

=

K+p+1∑
j=1

β jφ j(x)

here (X − τj)+ = max(0, (x− τj)) and as (X − τj)
p
+ has p−1 continuous derivatives, the smoothness

of the spline function increases with a value of p. We work with cubic spline bases here.

To start the statistical problem, we assume that we have a large number of candidate knots,

and we would like to build a data-driven algorithm that automatically selects important knots to

accurately approximate a given function. Knots’ locations are another point of interest. Various

model selection criteria have been used before, such as cross-validation and Mallow’s Cp etc. The

number of possible models increases as the cardinality of candidate knots expands. There is the

potential to over-fit the data if we use a large number of knots. One advantage of using spline bases

is that the design matrix for the linear model is sparse and we can explore the variable selection

methods in computation. We examine Bayesian variable selection as a potential method for knot

selection regarding this problem.

Our method implicitly assumes that f is well approximated by a linear combination of spline

basis functions with some number of knots. In practice, we assume that f can be represented by

a linear combination of basis functions. This class of basis splines is large and approximates any

locally smooth function arbitrarily well. We note that our approach determines which knots are

effective in estimating the spline function, and we closely follow the works on variable selection

in linear regression models by George and McCulloch, 1993,1997[43][44]. These authors first
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introduced the spike-and-slab prior with the following setup:

βi |γi ∼ (1 − γi)N(0, τ2
i ) + γiN(0, c2

i τ
2
i )

where γi is a latent variable that controls the number of significant coefficients or model size. Smith

and Kohn ,1996[115] implemented another method of g-priors on the regression coefficients and

applied this prior in univariate function estimation. On the other hand DiMatteo et al., 2001[31]

quantified two unknown quantities, such as number of knots and location of knots with Poisson

prior and Dirichlet prior, respectively.

We focus on George and McCulloch, 1993,1997[43][44]’s approach in this section, as the

conventional spike-and-slab prior is not considered for function estimation. The Gibbs sampler is

computationally feasible and easy to implement when the model has a large number of predictors.

Once we integrate corresponding variance and regression coefficients, we show that the Bayesian

variable selection convergence rate is much faster than with other approaches.

2.1.2 Variable selection using Spike-Slab Prior

A spike-and-slab model is often represented by a Bayesian hierarchical model. The most

conventional definition is given below:

(Yi/xi, β,σ
2) ind
∼ N(x′i β,σ

2), (i = 1, ...,n)

(β/γ) ∼ N(0, Γ),

γ ∼ π(dγ),

σ2 ∼ µ(dσ2),

where 0 is a K-dimensional zero vector, Γ is the K × K diagonal matrix diag(γ1, ..., γK ), π is the

prior measure for γ = (γ1, ..., γK )
t and µ is the prior measure for σ2.

George and McCulloch(1993)[43] first developed the most widely used spike-and-slab model

version. It identifies zero and nonzero βi’s by using zero-one indicator variables γi, assuming a
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scale mixture of two normal distributions:

(βi/γi)
ind
∼(1 − γi)N(0, τ2

i ) + γiN(0, c2
i τ

2
i ), i = 1, ..,K

τ2
i > 0 is some suitably small value, while ci > 0 is some suitably large value. γi = 1 represents

the βi’s that are significant, and the variances of these coefficients are large, with larger posterior

βi values. The opposite occurs when γi = 0. The prior hierarchy for β is completed by assuming

a prior for γi. When τ2
i tends to zero we provide more masses on 0 which operates as the prior for

insignificant βs. The prior distribution for the regression coefficients then can be written as

(βi/γi)
ind
∼(1 − γi)I0 + γiN(0, ν2) (∗)

with I0 point mass at 0 coefficients, where ν2 is the limit for c2
i τ

2
i when τ2

i tends to zero with a

large enough c2
i . We use prior (*) to select significant knots from candidate knots.

2.1.2.1 Model description and Prior

We start with the simple linear model:

y = Xβ + ε

where y is the n × 1 vector of observations. X is the n × r design matrix,

ε ∼ N(0, σ2In) is the error vector, and β = (β1, ..., βr )
′ is the r x1 vector of regression coefficients.

Let γ be the r x1 vector of indicator variable with i-th element γi such that:

γi =


1, when βi , 0

0, when βi = 0


Given γ, let βγ consist of all the nonzero coefficients of β and let Xγ be the columns of X corre-

sponding to particular components of γ that are equal to one. We then make the following prior

assumptions:

1. Given γ and σ2, the prior for βγ ∼N(0, cσ2(X′γXγ)−1),where c is a positive scale factor. For

our simulation study we used c=100. The above formulation of βs is identical to the spike-and-slab
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prior defined in equation (*).For large values of c, the prior for βγ contains very little information

about βγ compared to the likelihood. We take the prior variance of βγ proportional to σ2(X′γXγ)−1

which makes the Gibbs sampler very fast. We also think this prior contains the associative rela-

tionships of βs.

2. The γi are assumed to be a priori independent with

P(γi = 1) = 1 − P(γi = 0) = pi (i = 1, ...,r)

p(γ/Y) ∝ p(Y/γ)p(γ) contains information relevant to variable selection. We started with pi =
1
2

which justifies no bias towards model size.

3. Finally, for σ2 we use the inverse gamma conjugate prior

p(σ2/γ) ∼ IG(νγ/2, νγλγ/2),

We note that νγ and λγ may depend on γ to incorporate dependence between β and σ2. For our

practical example, we choose νγ ≡ 0 and λγ ≡ 0 which gives us a commonly used prior for σ2:

p(σ2/γ) ∝ 1
σ2 .

2.1.2.2 The Gibbs Sampler

The primary advantage of applying a conjugate hierarchical setup is that it enables analytical

marginalizing of γ with respect to βγ and σ2 from

p(βγ, σ2, γ/Y) ∝ p(Y/βγ, σ2)p(βγ/σ2, γ)p(σ2)p(γ). For a given γ, let qγ =
r∑

i=1
γi be the number

of nonzero elements of β and

S(γ) = y′y −
c

1 + c
y′Xγ(X′γXγ)−1X′γy
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Then,

p(y/γ) ∝
∫
σ

{∫
β

p(y/βγ, σ2)p(βγ/σ2) dβγ

}
p(σ2) dσ2

∝ (1 + c)−
qγ
2 S(γ)−

n
2 ;

βγ is integrated out as a normal integral and σ2 is integrated out as an inverse gamma integral.

The posterior distribution of γ is

p(γ/y) ∝ p(y/γ)p(γ)

∝ (1 + c)−qγ/2S(γ)
r∏

i=1
p
γi
i (1 − pi)

1−γi

≡ g(γ),

The marginalizing constant can be obtained by computing g(γ) for all γ values. To find an efficient

posterior sample, we do not immediately need normalizing constant.

Gibbs Sampler:

We will start with an initial sequence of γ0 = (γ0
1, .., γ

0
r ) and then we draw each member of γ

from the Bernoulli distribution with probability:

p(γi = 1|y, γ j,i) =
1

1 + h
, where

h =
1 − πi
πi
(1 + c)

1
2

(
S(γ1)

S(γ0)

) n
2
, where

γ1 = (γ1, .., γi−1, γi = 1, .., γr ) and γ0 = (γ1, .., γi−1, γi = 0, .., γr ). We repeat this step for a warm

up period and sampling period until the sequence converges.

For large r, the above method takes a long time to execute, and computation complexity is O(r3).

However, MCMC chain still can still be used to find high-probability γ values. We can construct
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easy MCMC algorithms to simulate a Markov chain

γ1, ...., γK

which converges in distribution to p(γ/y).

Metropolis-Hastings algorithms:

Another way of sampling from g(γ) is to use Metropolis-Hastings (MH) algorithms. We start

with a proposal density q(γ0, γ1), which is also called candidate density. For each γ0 value,

q(γ0, γ1) is a probability distribution over γ1 values. Once we determine the candidate proposal

density q(γ0, γ1), the below algorithm populates posterior sample of γ:

1. Generate γnew with probability q(γ0, γ1).

2. Set γ( j+1) = γnew with probability

αMH(γ( j), γnew) = min

{
q(γnew, γ( j))

q(γ( j), γnew)

g(γnew)

g(γ( j))
,1

}
= 0, Otherwise

Under weak conditions on q(γ0, γ1), the sequence obtained by this algorithmwill be aMarkov

chain that converges to p(γ/y).

In case of symmetric proposal density, Metropolis-Hastings becomes simple Metropolis algo-

rithm, i.e. if q(γ0, γ1) is symmetric. Then the above αMH simplifies to

αM (γ( j), γnew) = min
{
g(γnew)

g(γ( j))
,1

}
One of the simple proposal density is

q(γ0, γ1) =
1
r
, if

r∑
i=1
|γ0

i − γ
1
i | = 1
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Which alters the above MH algorithm-

1. Generate γnew by changing one element of γ( j).

2. Set γ( j+1) = γnew with probability αM (γ( j), γnew). Otherwise, γ( j+1) = γ( j).

This algorithm was proposed in Raftery, Madigan and Hoeting (1993)[53].

From the above algorithm, we estimate γ with the highest probability of occurrence. We can

use the estimated γ̂ to obtain the estimates of γ and σ2. If we plug this γ̂ in the model and select

only those covariates for which the γis are 1, estimation of β and σ2 becomes much easier. This is

a huge advantage of using the spike-and-slab prior, and it is the main motivation behind using it.

2.1.2.3 Updating β and σ2

We use George and McCulloch’s (1993)[43] SSVS procedure to simulate a full parameter se-

quence. This method is based on the Gibbs sampler. At each step, we use the full conditional

distribution of β and σ2 to generate new samples.

Let γ̂ be the final posterior estimate of γ:

p(y/βγ̂, σ
2) p(βγ̂/σ

2) p(σ2) ∝

(
1

2πσ2

)n/2
exp(−

1
2σ2 (y − Xγ̂βγ̂)

′(y − Xγ̂βγ̂))

×

(
1
σ2

)qγ̂/2
exp(−

1
2cσ2 (Xγ̂βγ̂)

′(Xγ̂βγ̂)) ×
(

1
σ2

)

The full conditional for βγ̂ is multivariate normal with mean A−1Xγ̂ y and variance σ2 A−1, where

A = (1 + 1
c )X
′
γ̂

Xγ̂ . Symbolically,

p(βγ̂/y, σ
2) ∼ N(A−1Xγ̂ y, σ

2 A−1)
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The full conditional distribution of σ2 is inverse gamma: The terms in the joint distribution

involving σ2 are

(
σ2

)−(n2+qγ̂
2 +1)

exp(− 1
2σ2 ((y − Xγ̂βγ̂)′(y − Xγ̂βγ̂) +

1
c (Xγ̂βγ̂)

′(Xγ̂βγ̂))

so σ2 is conditionally inverse gamma with shape parameter n
2 +

qγ̂
2 and scale parameter

1
2 ((y − Xγ̂βγ̂)′(y − Xγ̂βγ̂) +

1
c (Xγ̂βγ̂)

′(Xγ̂βγ̂)).

The Gibbs sampler cyclically samples from the distributions of β and σ2 conditional on the

current values of the another parameter. Finally, we obtain the estimates of β and σ2 from the

posterior median.

2.1.3 Regression Splines

Let’s assume,

yi = f (xi) + εi, i = 1, ...,n

where yi is the i-th response, error part εi follows N(0, σ2), and f (x) is the unknown smooth

function that needs to be estimated. Under the suitable smoothness assumption, we propose to

approximate f (x) using a normalized B-spline basis. One of the research aims involved here is to

quantify the location and the number of knots. Badly placed knots will definitely miss the function’s

properties and provide bad approximations. On the other hand, if we use a large number of knots,

we will definitely have low bias but very high variance. The most convenient way to approach this

problem is to introduce variable selection. One can assume that there are initially a large number

of candidate knots and can then select a small set of significant knots using variable selection (e.g.,

Friedman and Silverman, 1989[39]). Now we can visualize the problem as a potential variable

selection problem, as columns of the design matrix correspond to individual knots. This is what

guides us to use the spike-and-slab prior. In a univariate case, we place knots in at least a quarter

of the positions, depending on the number of observations, but we try to stay below 40 knots. We
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want to ensure that placed knots capture the curvature of functions. For our simulation study, we

place knots after every fourth sorted observation.

2.1.3.1 Simulated example

In this section we studied performance of Bayesian nonparametric estimators using simulated

data. We used these functions in the simulation:

1. f1(x) = sin(2x) + 2 exp(−16x2)

2. f2(x) = (φ(x,0.15,0.05) + φ(x,0.6,0.2))/4

which is a nonlinear function. A well-judged nonparametric kernel-based method can estimate

these functions. We approximate these functions with a cubic B-spline basis.

One hundred response observations are generated from N( f (x), σ2) with xi ∼ U(0,1) and

ei ∼ N(0, σ2). The choice of σ is made such that the signal to noise ratio sd( f )
sd(ε) stays around 3.

The number of initial knots is directly proportional to the number of observations such that when

n increases, so does the number of knots. For our simulation, we start with n
4 number of , which

implies that as n increases, there is more sparsity. We place knots at every fourth position, which

generates a total of r=28 columns in the design matrix X with a B-spline of degree=3. The Gibbs

sampler is run on 1,600 iterations, with the sampling starting after the 100th iteration.

If f̂ (x) is the estimated unknown function, then we need some statistic to measure accuracy of

estimation. The integrated squared error (ISE)=
∫

x{ f (x) − f̂ (x)}2dx over the unit interval is the

statistic on which we focus. We created 400 equally spaced grids zi = i/400, i = 1, ...,400 with

ISE =
1

400

400∑
i=1

(
f (zi) − f̂ (zi)

)2
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We repeat the simulation 100 times. ISE results are shown in the below table and compared to the

kernel method of estimation.

The simulation result with Bayesian variable selection show better performance than kernel

Table 2.1: Log(ISE) comparison with Kernel methods of approximation

r Bayes Mode log(ISE)
Mean (sd)

Kernel log(ISE)
Mean (sd)

f1(x) 28 -2.7 (0.05) -1.28 (0.03)
f2(x) 28 -0.92 (0.02) -0.49 (0.01)

estimation. We use Gaussian kernel with 0.10 bandwidth. Next, we illustrate the above method

using ’Chloride’ data from Bates and Watts, 1988[8].

2.1.3.2 Chloride concentration Data

The Chloride data contains 54 observations of concentrations of chloride taken over an interval

of time. We implement the same variable selection algorithm for knot selection discussed above,

and we compare it to fixed knot basis approximation and linear regression estimates, as shown in

Figure 1.7. We can state that B-spline basis approximation with four internal knots works better

than the Bayesian variable selection method. We obtain 0.23 of mean log(ISE) and posterior mode

selects 11 basis columns out of 17 basis functions.

2.1.3.3 Discussion:

The main drawback of this method is its sensitivity to the initial choice of basis. We need to

account for the uncertainty in selection based on the properties of the corresponding basis function.

Here we work with cubic B-spline basis functions, which are assumed to be smooth. However,

this assumption is not always valid when dealing with spike functions. In these situations, one

requires prior information or needs to work with the Bayesian penalized spline method. Hence,

prior information should be given on both the basis choice and the corresponding basis coefficients.
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Figure 2.1: Nonparametric function estimation comparison between variable selection, linear
regression, and fixed knot approximation
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2.2 Functional additive model estimation with bi-level selection

We examine a different problem in this section: we seek to explore how Bayesian variable

selection can perform in function selection in additive models.

2.2.1 Introduction

Modern-day life sciences develop applied questions regarding technological innovations for the

selection of influential components in regression models. The statistics literature is full of feature

selection methods and their corresponding theories in linear models where the number of predictors

is very large compared to the sample size. The literature is rich in terms of variable selection that has

been developed for generalized linear models, hazard rate models, and so forth. On the other hand,

the selection of significant functions in additive models is very recent. Consider the nonparametric

additive model

Yi = µ +

p∑
j=1

f j(Xi j ) + εi,

where µ is the intercept term, Xi j is ith observation of jth covariate X j , f js are unknown functions

and εi is an unobserved random variable with mean 0 and variance σ2.

The questions we aim to answer are: Are all f j(X j)’s significant? And based on the significant

ones, can we develop an algorithm that handles the feature selection and estimates the true functions

simultaneously? We assume that not all f j(X j)’s are important and that we are dealing with a much

larger number of functions than the sample size, i.e . p is larger than n. We further assume that

the number of true functions in a model is still less than n. The estimation of true functions is an

important component of this article, whether the true functions are linear or nonlinear.

Both frequentist and Bayesian statisticians deal with model selection or function selection in

additive models. Most of the ideas have come from variable selection in regression models with

a large number of predictors. The most popular methods of variable selection are lasso [Tib-

shirani, 1996][120], SCAD penalty [Fan and Li, 2001][32], adaptive LASSO [Zou, 2006][138],
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group LASSO [Yuan and Lin,2006][132]. Bayesian variable selection methods, particularly for

linear models, can be divided into two segments: one based on the spike-and-slab prior, and an-

other that introduces selection indicators with the regression coefficients. George and McCulloch

[1193,1997][43][44] proposed the basic idea that each coefficient β j’s can be modeled either from

the “spike” distribution, where most of its mass is concentrated around zero, or from the “slab”

distribution, which is like a diffuse distribution. The introduction of selection indicators for vari-

able selection is a closely related idea, where we decide whether a coefficient is in the model or

not by using selection indicators. Smith and Kohn [1996][115] developed this notion by adding

selection indicators with the columns of the design matrix which eventually selects the significant

covariates. Furthermore, unlikeGeorge andMcCulloch’s spike-and-slab, which focuses on β coeffi-

cient, Ishwaran andRao [2005][57] placed a spike-and-slab prior on the variance of Gaussian priors.

The two ideas of Bayesian variable selection also extend to group selection. In their paper,

Ghosh and Xu [2015][128] described how spike-and-slab priors can be used to select groups in co-

variates as a form of Bayesian group lasso. Our method of Bayesian function selection implements

Ghosh and Xu’s [2015][128] ideas. First, we represent each function in our model by B-spline basis

function coefficients with a subsequently large number of knots placed in each function. Next, we

introduce two-stage spike-and-slab priors to find the significant functions and the significant knots

for true functions. In both situations, we assume that the number of functions in the model is large,

that they are sparse (large p, small n), and that the number of knots introduced to estimate the

functions are also sparse. Chen et al. [2016][24] published a paper on Bayesian sparse group se-

lection using selection indicators, which is an extension of variable selection in grouping structures.

In the next section, we describe the construction of functions in terms of B-spline basis func-

tions, and the application of Bayesian sparse group lasso with a spike-and-slab prior for selecting

significant functions and estimating in "large p, small n" settings. The posterior median threshold-

ing, as shown in Ghosh and Xu [2015][128], estimates both the null functions and their members
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as zero. As we use a large number of internal knots to estimate the functions, the spike-and-slab

prior with median thresholding estimates the insignificant knots as zero based on the structure of

the true functions. Section 1.2.3 presents simulation studies to evaluate the performance of our

method.

2.2.2 Bayesian Sparse group Lasso in nonparametric additive models

Suppose we have data (Y,X j), j = 1, .., p; and X j ∈ [a, b] with a, b < ∞. To hold

the identifiable conditions for functions f j , we assume that f j’s are centered around zero, i.e.

E f j(X j) = 0, 1 ≤ j ≤ p. For the model Yi = µ +
∑p

j=1 f j(Xi j ) + εi, after centering covariates and

responses, the intercept term can be dropped for simplicity. Corresponding nonlinear components

can be transformed into a linear regression model with spline coefficients. Thus, the problem of

detecting a significant function in the additive model is equivalent to selecting groups of variables

in a linear regression setup with a predefined grouping structure. We hence define each function

f j through basis functions.

Wedefine the construction ofB-splines as follows. Let d denote the degree of theB-spline, which

implies the order as d+1. Our next assumption is that a sequence of knots is placed in each function

where the number of knots is large but does not exceed the sample size; as sample size increases,

so does the number of knots. To define the sequence of knots, let a = ξ0 < ξ1 < · · · ξK < ξK+1 = b

be a partition of [a, b] into K sub intervals. In addition, define d knots ξ−d = ξ−d+1 = .. = ξ−1 = ξ0

and another set of d knots ξK+1 = ξK+2 = .. = ξK+d+1. The B-spline basis functions are defined

as

Bi,1(x) =


1, ξi ≤ x < ξi+1

0, otherwise

Bi,d+1(x) =
x − ξi

ξi+d − ξi
Bi,d(x) +

ξi+d+1 − x
ξi+d+1 − ξi+1

Bi+1,d(x),
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for j = −d, ..,K . With the use of additional knots we will get precisely K+d+1 basis functions.

Thus for any function f j , defined on the function space F j , can be written as

f j(x) =
mn∑
k=1

β j k B j k (x)

and the vector f j of function can be expressed as

f j = X jβ j

with basis function values B j k (Xi j) as elements of the design matrix X. Finally the model can be

written as

Y =
p∑

j=1
X jβ j + ε,

where β j’s are the grouped coefficients corresponding to the basis functions X j . The error ε has

mean 0 and variance σ2.

We now introduce the method of Bayesian sparse group selection with a spike-and-slab prior.

The importance of this method is that we assume sparsity at a number of functions and also at

a number of knots within a function. Simon et al. [2013][113] proposed sparse group lasso to

produce exact 0 coefficients at the group level and within a group. The sparse group lasso estimator

of β is given by

min
β

(
| |Y −

G∑
g=1

Xgβg | |
2
2 + λ1 | |β| |1 + λ2

G∑
g=1
| |βg | |2

)
.

A corresponding prior can be constructed as

π(β) ∝ exp
{
− λ1 | |β | |1 − λ2

G∑
g=1
| |βg | |2

}
,

which can be expressed as a scale mixture of normals. However, to select variables both at group

level and within a group, Ghosh and Xu [2015][128] developed a hierarchical spike-and-slab prior

structure that shrinks coefficients to exactly 0 with posterior median thresholding. Two sets of

spike-and-slab distributions, one at group level and another at individual level with a posterior
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median estimator, have great variable selection and prediction performance.

We describe the model specifications exactly same as Ghosh and Xu [2015][128] described in

their paper. The coefficients β j’s are reparameterized to handle two different degrees of sparsity.

β j = V j
1
2 b j whereV j

1
2 = diag(τj1, .., τjmj ), τj k ≥ 0, j = 1, .., p; k = 1, ..,m j . To select variables

at the group stage, the first set of spike-and-slab prior is introduced.

b j
ind
∼ (1 − π0)Nmj (0, Imj ) + π0δ0(b j), j = 1, .., p

When τj k = 0, β j k drops from the model even though b j k , 0. τj k controls the magnitude of

the elements of β j . Hence to choose variables within a group Ghosh and Xu [2015][128] placed

another spike-and-slab prior with τj k ’s:

τj k
ind
∼ (1 − π1)N

+(0, s2) + π1δ0(τj k ), j = 1, .., p; k = 1, ..,m j

where N+(0, s2) is a normal distribution N(0, s2) truncated below 0 with mean
√

2
π s and variance

s2. The error variance σ2 follows a Inverse Gamma distribution with shape α and scale γ:

σ2 ∼ InverseGamma(α, γ).

Ghosh and Xu [2015][128] set up an hierarchical setup to decide the values for hyper-parameters

π0, π1.

π0 ∼ Beta(a1,a2), π1 ∼ Beta(c1, c2).

For s2, a conjugate inverse gamma prior is placed,

s2 ∼ InverseGamma(1, t).

We can update ’t’ with amonte carlo EMalgorithm (Casella, 2001[20]; Park andCasella, 2008[96]).

For kth EM update,

t(k) =
1

Et(k−1)[
1
s2 |Y ]

,

where the posterior mean of 1
s2 can be obtained through the mean of Gibbs samples with (k − 1)th

iteration.
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Gibbs Sampler:

Let β( j) denote β vector without jth group.

β( j) = (β
T
1 , .., β

T
j−1, β

T
j+1, .., β

T
p )

T .

X( j) is the corresponding design matrix to β( j). Similarly β( j k) denote the whole set of vector of

coefficients without kth element corresponding jth group:

β( j k) = (β11, .., β1mn, .., β j1, .., β j k−1, β j k+1, .., β jmn, .., βp1, .., βpmn)

The corresponding full conditional posterior distributions are:

b j |rest ∼ l jδ0(b j) + (1 − l j)Nmj (µ j, Σ j),

where l j = P(b j = 0|rest),

l j =
1

π0 + (1 − π0)|Σ j |
1
2 exp

{
1

2σ4 | |Σ
1
2
j V

1
2
j X

T
j (Y − X ( j)V ( j)b( j))| |

2
2

} ,
with

µ j =
1
σ2 Σ jV

1
2
j X

T
j (Y − X ( j)V ( j)b( j)), and Σ j = (Imn +

1
σ2V

1
2
j X

T
j X jV

1
2
j )
−1

Full conditional posterior of τj k is a spike-and-slab distribution:

τj k |rest ∼ q j kδ0(τj k ) + (1 − q j k )N
+(u j k, ν

2
j k ), j = 1, .., p; k = 1,2, ..,mn,mn + 1, .., p ∗ mn,

where

u j k =
1
σ2 ν

2
j k (Y − X ( j k)β( j k))

TX j k b j k, ν
2
j k = (

1
s2 +

1
σ2 X

T
jkX j k b

2
j k )
−1

and q j k = P(τj k = 0|rest),

q j k =
1

π1 + 2(1 − π1)(s2)−
1
2 (ν2

j k )
1
2 exp

{ u2
j k

2ν2
j k

} [
Φ(

ujk
ν j k
)
] .

σ2 |rest ∼ Inverse Gamma
(
n
2
+ α,

1
2
| |Y − Xβ | |22 + γ

)
.
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With Conjugate Beta and Inverse Gamma prior, the subsequent posteriors are:

π0 |rest ∼ Beta(#(b j = 0) + a1,#(b j , 0) + a2),

π1 |rest ∼ Beta(#(τj k = 0) + c1,#(τj k , 0) + c2)

s2 |rest ∼ Inverse Gamma
(
1 +

1
2

#(τj k = 0), t +
1
2

∑
j,k

τ2
j k

)

2.2.3 Simulated Example:

We apply Ghosh and Xu’s [2015] bi-level Bayesian sparse group selection method in function

selection and estimation for two simulated examples.

Example 1.

We define 4 functions-

• f1(x) = 5x

• f2(x) = 3(5x − 1)2

• f3(x) =
10 sin(2πx)
2−sin(2πx)

• f4(x) = 6(0.1 sin(2πx) + 0.2 cos(2πx) + 0.3 sin(2πx)2 + 0.4 cos(2πx)3 + 0.5 sin(2πx)3)

This generating model is the same as Huang et al.’s [2010][] Example 1. We use p=20 and n=100.

We employ n
4 as the number of internal knots for each function, so that in total we have pn

4 number

of coefficients. Again, our assumption is those n
4 internal knots are sparse, and we will select im-

portant knots from them. We use B-spline basis functions of degree=3 with n
4 numbers of internal

knots. We have f5(x) = f6(x) = .. = f20(x) = 0 as null function.

We generate the covariates as x j = (w j + t ∗ u)/(1 + t) f or j = 1,2,3,4 and x j = (w j + t ∗

v)/(1 + t) f or j = 5, ..,20. (w j,u, v)
ind
∼ N+(0,1) and t controls the amount of correlation. The
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Figure 2.2: Example 1 simulation plot

covariates from zero component and non-zero components are independent. We work with t=0,0.7

and a signal to noise ratio as 9.

We run this simulation setup 100 times and examine the selection performance of the method.

We compute the number of true positives and true negatives for 100 repetitions. For our model, we

first have four models as true functions and the rest as null functions. Our first function is detected

20% of the time, and the other three functions are correctly detected 100% of the time. In contrast,

the null functions are not selected in a model a single time in our 100 repetitions. We compute the

ISE for each true function and plot them in a boxplot for 100 repetitions, with the error computed

for overall response as well. We have a few of other plots above, such as actual vs. predicted

plots for response, and plots of rejection probabilities for true functions and null functions. All the

results above are found in the setup where predictors are not correlated.

In our next step, we run the same simulation setup with predictors that are correlated. The

response is generated by additive models with the same four functions mentioned above and the

same signal-to-noise ratio, but we set the correlation between covariates as 0.7. We run this setup
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Figure 2.3: Example 1 simulation plot

for 100 repetitions and study the results. Out of 100 repetitions, the selection of the first function

is very low at 6%, while the other three true functions are selected 100% of the iterations. On the

other hand, one null function come as significant once that is the selection percentage is 1% for

that null function. Below are the same plots that were given for the non-correlated setup:

Example 2.

In 2nd example we took another four different functions defined as:

• f1(x) = 3x,

• f2(x) = x + (2x−2)2
5.5 ,

• f3(x) = −x + π sin(πx),

• f4(x) = 0.5x + 15φ(2(x − 0.2)) − φ(x + 0.4),where φ() is a standard normal density function.

Again, in this example we use p=20 and n=100. We utilize n
4 as the number of internal knots

for each function, so that in total we have pn
4 number of coefficients. Again, our assumption is that
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Figure 2.4: Example 2 simulation plot

those n
4 internal knots are sparse for functional estimation. We use the B-spline basis functions

constructed from predictors. The predictors are generated independently from Uniform (-2,2), and

the signal-to-noise ratio is kept at 5. The simulation setup runs for 100 repetitions. Out of 100

repetitions, the first four true functions are selected 75%, 28%, 85%, and 92% of the iterations,

respectively, whereas the null functions are not selected a single time in 100 repetitions. A few

plots are included below to provide a better picture.

In the next step, we generate the covariates from AR(1) process with ρ = 0.7. In the case of

correlated covariates, the relationship between predictors and response is still of theoretical interest.

We repeat the simulation for the same set of functions mentioned above and gather outputs. We run

this setup for 100 repetitions and study the results. Out of 100 repetitions, the selection percentages

of the functions are 97%, 50%, 13%, and 97%, respectively. The selection of false positives is

zero, except for one null function that is significant with 1% appearances among the null functions

we’ve used. No null functions we use. No null function is selected in the 100 repetitions. Below

are the same plots as in the uncorrelated scenario.
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Figure 2.5: Example 2 simulation plot

2.2.4 Conclusion:

We explored an application of Bayesian variable selection for a sparse additive model. The

motivation behind applying bi-level selection for function selection and estimation is to find true

nonzero functions and estimate them by knot selection. Our idea worked for a small number of

functions. If we have 20 functions and 4 of them are significant, the proposed algorithm performs

satisfactorily. However, the initial problem was to apply this to a large number of functional spaces.

Therefore, more research is needed to draw a final conclusion.
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CHAPTER 3

BAYESIAN CLASSIFICATION OF ALZHEIMER’S DISEASE STAGES FROM
LONGITUDINAL VOLUMETRIC MRI DATA

3.1 Introduction

Alzheimer’s disease (AD) is the most frequent neurodegenerative and age-related form of de-

mentia. AD patients suffer loss of memory and difficulty with speech, and over time become

unable to perform daily tasks such as bathing, dressing, eating, and using the bathroom. AD is

becoming a significant societal and financial burden among elderly people. As many treatments are

being developed and evaluated, it is important to be able to determine early and accurately which

individuals are relatively more likely to progress clinically. Based on signs and symptoms, physi-

cians usually track AD using the Clinical Dementia Rating (CDR), and subjects are classified in

three states: cognitively normal (CN), mild cognitive impairment (MCI), and Alzheimer’s disease

(AD). AD accounts for between 60% and 80% of dementia cases. Brain MRI scans provide useful

information regarding dementia and its progression. Many group studies based on volumetric re-

gions of interest (ROI)([105],[118]), voxel-based morphometry ([124],[125]) or group comparison

of cortical thickness ([55],[84]) have shown that many brain regions like the enthorinal cortex,

the hippocampus, lateral and inferior temporal structures, and the anterior and posterior cingulate

are responsible for brain atrophy in AD. The atrophy patterns vary in different disease stages over

different regions. According to Leung et al. [74] MCI converters have higher decaying rates of

brain volume than nonconverters do. Hence, hippocampal atrophy using MRI is a marker of AD

pathology.

MRI provides scientifically accurate and easy-to-collect data on brain sub-regional volumes,

surface area, and cortical thickness. Besides measuring the cross-sectional volume of hippocampal

or other regions’ structural changes, there is great interest in longitudinal brain volume changes. The
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greatest advantage of using longitudinal data is that it can capture a high correlation between obser-

vations and time trends, and it can track the rate of changes over time. A prominent phenomenon of

significant hippocampal atrophy over time has been observed in AD groups ([7],[49],[60],[119]),

whereas healthy aging control groups do not have such high rates of atrophy. In this chapter, we

focus on brain regional volumetric changes over time for five ROIs measured by MRI scans: the

hippocampus (H), entorhinal cortex (EC), middle temporal cortex (MTC), fusiform gyrus (FG),

and the whole brain (WB). The key aim of this chapter is to apply a novel Bayesian classification

method for classifying patients into disease groups by observing their longitudinal brain regional

changes. Throughout this chapter, we work with dichotomous target variables: AD and CN.

A number of high-dimensional classification and regression methods have been developed for

the classification of patients at different stages of disease, and also for the prediction of future

clinical changes in MCI patients. Several new machine learning algorithms are used to deal with

high-dimensional data, such as support vector machines (SVMs) and linear discriminant analysis.

Different approaches have been proposed in various papers ([50],[80],[90],[100]) to classify pa-

tients with Dementia from other stages of disease. Zhang et al. [133] applied a multi-kernel SVM

for classification of patients using a longitudinal feature selection method. In terms of classification

between MCI and AD patients, they achieved 78.4% accuracy, 79% sensitivity, and 78% speci-

ficity. Lee et al. 2016 [72] used logistic regression with fused lasso regularization to predict the

conversion fromMCI to Alzheimer’s. Seixas et al. [108] developed a Bayesian network model that

accounted for a combination of expert knowledge and data-oriented modeling. Writers assumed a

known structured Bayesian network model and estimated parameters using the EM algorithm.

In this chapter, we develop a Bayesian classification method using longitudinal volumetric

data. This data was obtained from the ADNI database (http://www.loni.ucla.edu/ADNI).

Longitudinal MRI data has variability in the number of observations for each subject. However, we

assume that the longitudinal volumetric measurements are functional observations, and we consider
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patients with at least three data points. Longitudinal observations of each subject are smoothed

using basis splines even if only a few observations are available. Finally, a Bayesian classification

method is employed to classify individuals between AD and CN. Our classification method is

unique and easy to implement, and it works with functional predictors. In the Bayesian literature,

very few classification methods have been developed using functional predictors. In this context,

we want to mention Zhu et al. [136], who worked with functional predictors for classification. They

developed a selection method to obtain important functional predictors for a binary model. Later,

they proposed twoMCMC algorithms for posterior sampling, which areMetropolis-Hastings/Gibbs

sampler hybrids. We propose the Bayesian Pólya-gamma augmentation method for classification;

it is easy to implement using the Gibbs sampler algorithm. Functional predictors are smoothed

by cubic basis splines, and basis coefficients are used as predictors in the classification model.

We obtain very good results of classification in terms of sensitivity, specificity, and accuracy.

This chapter is divided into five sections. Section 3.2 discusses the functional smoothing and

classification method developed for the analysis. In Section 3.3, we explain the data in detail.

Section 3.4 presents the numerical results and some of the key points we extract from our analysis.

Section 3.5 concludes with a short discussion.

3.2 Methodology

In this section, we develop a supervised classification technique to handle functional predictors.

3.2.1 Smoothing functional data

Classification with functional data is a challenge. Functional predictors have high correlation be-

tween observations from the same individual. The sole purpose of using functional predictors is to

catch the time trend present in the data. Therefore, we take an approach to smooth the parametric

curves with a cubic basis spline. After we smooth a particular longitudinal functional curve, the

resulting coefficient vector can be considered as a predictor for the next stage of classification. To

avoid the complexity of the problem, we use data from patients who have at least three time period

45



observations, such that smoothed curves are comparable. [61] applied a similar approach to obtain

the estimates of a generalized linear model with functional predictors. However, his approach was

frequentist, whereas ours is Bayesian.

Let us assume that we observe n patients with their functional observations where each patient

has p functions (co-variates). Let xi j (t) be the j-th function observed at time point t from the i-th

patient. Let T be the compact domain of xi j(t) and xi j(t) ∈ L2[T]. With the functional predictors

xi j(t) we assume that we have binary response variable yi which takes value 0 and 1. Therefore a

logistic regression equation would look like-

log
{ P(yi = 1|xi1, .., xip)

1 − P(yi = 1|xi1, .., xip)

}
=

p∑
j=1

∫
T

xi j(t)β j(t)dt (3.1)

To fit the discrete observations xi j (t) we assume that, at any given time t, instead of xi j(t), we

observe Xi j (t) where

xi j(t) = Xi j(t) + e(t)

where e(t) is a zero-mean Gaussian process. We use a basis function expansion for Xi j (t) of the

form

Xi j(t) =
q∑

k=1
ci j kφ

j
k (t) = c′i jφ

j(t)

where φ j(t) is the q-dimensional spline basis at time t for jth function, ci j the q-dimensional

spline coefficients for the jth predictor from ith patient. We used ordinary least square estimates

for estimating spline coefficients. A simple linear smoother is obtained by minimizing the least

squares criterion | |xi j −Φci j | |
2 as

ĉi j = (Φ
′Φ)−1Φ′xi j (3.2)

Once the orthonormal basis coefficients have been estimated, we can combine (1) and (2) by
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plugging x̂i j (t) in (1), which gives-

log
{ P(yi = 1|xi1, .., xip)

1 − P(yi = 1|xi1, .., xip)

}
=

p∑
j=1

∫
T
ĉ′i jφ(t)β j(t)dt

=

p∑
j=1

ĉ′i jβ j

= c′iβ (3.3)

where βT
j =

∫
T β j(t)φ jT (t)dt, the coefficient vector for the jth functional predictor. Here ci vector

has first element as 1 and rest of the spline coefficients for ith patient and β contains intercept of

the model as first element.

Functional principal component (FPC) analysis is also a popular method that can be applied

here. Instead of least square basis estimates, one can work with FPC scores for classification. [93]

worked on functional modeling that extends the applicability of FPC analysis for longitudinal data.

Specifically, when we have few repeated and irregularly observed data points, FPC scores can be

used. In our functional smoothing method, we expand the functional observation with spline basis

functions and use the basis coefficients for classification. On the other hand, the same intuition

can be applied for FPC scores. For functional component analysis, we assume that longitudinal

observations are observations from a smooth random function X(t) mean function µ(t) = E X(t)

and covariance function G(s, t) = cov(X(s),X(t)). The covariance function can be represented as

G(s, t) =
∑∞

k=1 λkφk (s)φk (t) where φk ’s are eigenfunctions and λk ’s are eigenvalues. Then the

underline process can be written as:

X(t) = µ(t) +
∞∑

k=1
ξkφk (t),

where ξk ’s are frequently referred to as FPC scores. These scores can be used later in the classifica-

tion model. We do not work with infinite numbers of scores; instead, the above sum is approximated

with a finite K that explains the majority of the variance in functional observations. For most cases,

the first two FPC scores are enough to build a good classification model. Zhu et al. [136] also
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used FPC scores in their classification model; they chose functional predictors with significant FPC

scores.

There are relatively few counterparts to functional PCA in the Bayesian literature. Behseta

et al. [9] proposed Bayesian FPCA using two methods, one with a random-coefficient model

and another with a hierarchical Gaussian process model. They found better performance for

the hierarchical model. Later, in 2008, van der Linde [121] introduced a variational algorithm

for one-parameter exponential families to obtain approximate Bayesian inference in functional

PCA. Recently, Suarez and Ghosal [117] proposed a prior structure on the covariance function

of functional observations. Their model simultaneously smooths functional observations while

estimating principal components. In this chapter, we work with a basis spline smoothing method

due to its ease of implementation in statistical software. In R, we have the splines package, which

fits cubic basis splines on longitudinal data with equally placed knots. We do not investigate

any findings using FPC scores instead of basis spline coefficients, as our main focus is on the

classification algorithm and basis spline coefficients work very well for our classification model.

3.2.2 Classification using Pólya-Gamma Augmentation

In this section, we present the relationship between predictors and outcome using a logistic

regression model. The binary data is denoted as yi ∈ {0,1} (i = 1, ..,n). Now, posterior sampling

of logistic regression coefficients is difficult due to the model’s complicated likelihood function.

The assumption of the Gaussian prior for regression coefficients is highly important, but the full

posterior distribution of regression coefficients becomes analytically inconvenient. In comparison

to the logistic model, it is computationally easier to execute Bayesian inference using a probit

model [2]. Different sampling algorithms have been proposed [2]. Holmes et al. [54] developed

an indirect sampling method by introducing auxiliary variables for binary and multinational re-

gression. Later, more methods based on latent variables for logistic regression were reported by

Frühwirth-Schnatter et al. [41],Gramacy et al. [45] and Polson et al. [97]. Among all these works,
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Polson et al.’s algorithm is most interesting to us due to its ease of computational implementation

as well as its sampling efficiency. Our aim is to avoid the complex Metropolis algorithm while

sampling from posterior distributions of regression coefficients.

A vast body of literature is concerned with the analysis of Bayesian logistic models. As

mentioned earlier, Holmes et al. [54] proposed using an auxiliary variable to avoid the conditional

non-conjugacy for updating β. The prior structure they used was:

yi =


1, if zi > 0

0, otherwise

zi = xiβ + εi

εi ∼ N(0, λi)

λi = (2ψ)2

ψi ∼ Kolmogorv − Smirnovdistribution

β ∼ Normaldistribution

The above prior is interesting because the marginal likelihood L(β|data) is the same as the like-

lihood for the logit model. However, the main disadvantage of using this prior structure is that

although we obtain a conjugate full conditional distribution of β given data, the conditional dis-

tribution of π(λi |zi, β) does not have any standard form. One must use a complicated rejection

sampling method to sample for conditional λi. Hence, adding an auxiliary variable does not give

us significant computational improvement compared to using the Metropolis-Hastings algorithm.

Frühwirth-Schnatter et al. [41] addressed this problem with the same approach, but instead of

a single auxiliary variable they used a two-stage augmentation method. In the first stage, they

assumed the existence of a latent variable, where the binary response variable was conditional on

the sign of the auxiliary variable. The error part of the model was assumed to follow a type I

extreme value distribution that had non-normal density. Then, in the second stage of data aug-

mentation, they approximated this non-normal error distribution using the mixture of the normal
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distribution. Finally, they obtained a multivariate normal distribution for the posterior of β. Among

all popular methods, pólya-gamma augmentation is most interesting to us and it’s easy to apply due

to availability of the R package.

We now discuss Polson et al.’s [97] algorithm in detail. They showed how a Gaussian variance

mixture distribution with a Pólya-gamma mixing density can approximate logit likelihood. We

start with defining Pólya-gamma density-

Random variable X ∼ PG(b, c), a Pólya-gamma distribution with parameters b > 0 and c ∈ <,

if

X d
=

1
2π2

∞∑
k=1

gk

(k − 1
2 )

2 + c2
4π2

,

where gk ∼ Gamma(b,1) are independent gamma random variables and d
= indicates equality in

distribution.

In their work, Polson et al. [97] showed that Bernoulli likelihoods parametrized by log-odds

can be represented as mixtures of Gaussians with respect to Pólya-gamma distribution. Assume

we have latent variables ω such that ω ∼ PG(b,0) distribution, which is infinite sum of gammas:

ω
d
= 1

2π2
∑∞

k=1
gk

(k−1
2 )

2 . Now if ω ∼ PG(b,0) below equality can be proved:

(eψ)a

(1 + eψ)b
= 2−beκψ

∫ ∞
0

e−
ωψ2

2 p(ω)dω (3.4)

where κ = a − b
2 .

Motivated by Polson et al.’s [97] integral result, we construct a Bayesian prior formulation

targeted to handle binary logistic regression. Equation 3.3 has a Bernoulli likelihood function with

logit link. We proposed a Normal prior for β vector in equation (3.3). To derive our Gibbs sampler
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, we introduce a latent variable ω. Our prior set up is-

yi |ci,β ∼ Bernoulli(
ec
′
iβ

1 + ec
′
iβ
), i = 1, ..,n

ωi ∼ PG(1,0), i = 1, ..,n

β ∼ Normal(b,B) (3.5)

Gibbs Sampler:

The likelihood for ith observation is

Li(β) =
(ec
′
iβ)yi

1 + ec
′
iβ

∝ eκic
′
iβ

∫ ∞
0

exp

{
−
ωi(c′iβ)

2

2

}
p(ωi)dω

where κi = yi −
1
2 . We combine the likelihood function with β prior, given ω = (ω1, ..,ωn):

p(β |ω,y,c) ∝ p(β)
n∏

i=1
exp

{
κic′iβ −

ωi(c′iβ)
2

2

}
∝ exp

{
−

1
2
(z − Cβ)TΩ(z − Cβ)

}
× exp

{
−

1
2
(β − b)T B−1(β − b)

}
∝ exp

{
−

1
2
(β − Cω(CTΩz + B−1b))TC−1

ω (β − Cω(CTΩz + B−1b))
}

where z = (
κ1
ω1
, .., κnωn ), Ω = diag(ω1, ..,ωn) and Cω = (CTΩC + B−1)−1.

Finally, posterior samples for regression coefficients can be computed with Pólya-gamma aug-

mentation. The steps are

(ωi |β) ∼ PG(1,cT
i β)

(β |y,ω) ∼ N(Cω(CTΩz + B−1b),Cω) (3.6)
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We used 0.5 probability threshold to construct our response variable Y as dichotomous {1,0}.

Once we obtain the posterior samples of β, we can calculate the predicted probability for each

patient. We use the posterior median estimate forβ - that is, we calculate the median of the posterior

samples of β and use those estimates for validation in the test data set. Finally, we need to decide

a threshold to classify each patient into either the AD or the CN group. The classification method

is implemented in the R package BayesLogit. The sampler is highly efficient for sampling from

Pólya-gamma distribution with a positive parameter as one. In 2013, Choi et al. [26] published a

paper in which they showed that "the Pólya-gamma Gibbs sampler for Bayesian logistic regression

is uniformly ergodic". This result is very crucial, as it guarantees that Monte Carlo averages of

posterior samples follow the central limit theorem. This is a strong reason to adopt this method for

our analysis.

3.3 Data Description

The MRI data used in the analysis of this thesis was collected from the Alzheimer’s disease

Neuroimaging Initiative (ADNI) website. We consider five main longitudinal predictors as po-

tential markers of differences between AD patients and normal aging persons. AD patients and

normal aging persons both have brain region atrophy, and our aim is to find the essential markers

related to brain atrophy that causes dementia after a certain age. We have longitudinal volumetric

measurements of the hippocampus (H), entorhinal cortex (EC), middle temporal cortex (MTC),

fusiform gyrus (FG), and the whole brain (WB). We believe that these are the potential predictors

that can distinguish the AD patients from normal aging patients.

From the ADNI database, we have information on a total of 1,279 patients diagnosed as either

AD or CN over their visits for tests. We discard five patients who changed their disease status from

CN to AD over their longitudinal measurements. At the start of our analysis, we decide to keep

patients who have at least three data points as longitudinal measurements. After filtering for number

of data points and excluding patients whose predictor-related information is missing, 528 patients
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are included in the study, divided into two groups: AD (n=206) and CN (n=322). The rest of the

patients have the status of mild cognitive impairment (MCI). All patients went through an initial

clinical evaluation to measure their baseline scores for different tests, such as the Mini-Mental State

Examination (MMSE) and the 11-item Alzheimer’s disease Assessment Scale–Cognitive Subscale

(ADAS11). In addition, patients underwent a baseline structural MRI scan, giving us baseline mea-

surements of all the predictors of interest. In addition, at the start of the study, subjects provided

apolipoprotein E (APOE) genotyping information. Data was collected from patients’ visits at spe-

cific time points, such as after 6, 12, 18, 24, and 36 months. Patients’ visits were irregular, and we

do not have uniformity over differences between consecutive measurements. We start by comparing

the baseline measurements between the AD and the CN group, as shown in Table 1. Although

age distribution and gender ratio are not significantly different between these two groups, the other

three features, namely baseline MMSE, ADAS11 score, and APOE proportion, show significant

differences between the two disease classes at the 5% level of significance. This implies that those

three features can be used as strong predictors for classifying patients. Furthermore, we examine

the patterns and spread for the number of visits for patients. For all the patients we consider, the

minimum observed time span is 10 months (only three observations were collected), while the

longest is 10 years. In terms of number of visits or data points, there is a minimum of three data

points due to our threshold, and the maximum is 11. The median number of data points is around 4.

Table 2 provides a detailed breakdown of this information with respect to the AD and the CN group.

In the spaghetti plot in Figure 1, we plot the predictor variables for each subject segmented by

their disease status. In addition, we create another plot for patients’MMSE scores. Themean values

for each group are highlighted in the plots. In the first five plots, we can see that the hippocampus

and other important variables have much higher values for the CN group than for dementia patients.

We can visually observe the MMSE score patterns, although in Table 1 we see much higher MMSE

scores for normal patients. The goal is to predict the probability of a patient belonging to either of

these groups with measured MRI scans.
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Table 3.1: Patients Baseline Characteristics

AD CN p-value
n 206 322

Age (Mean ± sd) 73.53 ± 7.67 74.15 ± 5.67 0.325
Gender (F/M) 97/109 155/167 0.814

MMSE (Mean ± sd) 24.38 ± 2.5 29.07 ± 1.13 <0.0001
ADAS11 (Mean ± sd) 16.8 ± 6.42 5.85 ± 2.87 <0.0001

APOE (+/-) 143/63 85/237 <0.0001

Notes: Comparison of Baseline Age, Gender ratio, MMSE score, ADAS11 score and APOE ratio between
AD and CN groups

Table 3.2: Data Characteristics

n Span (Months) #Data Points (Nobs)
Max Min Median Max Min Median

AD 206 71 10 24 7 3 4
CN 322 120 11 36 11 3 4

* duration of patients’ visits and number of visits available for each group

3.4 Application results

This section presents the numerical results of applying the method proposed in Section 2 to

ADNI data. We first deal with a single potential covariate, “hippocampus,” as a representation of

a single ROI’s volume. Section 4.1 lists the results we obtain using the hippocampus as a single

predictor. We repeat the same procedure in Section 4.2 by listing all classification results using

single ROIs. Section 4.3 presents the results regarding combinations of the ROIs to determine the

best model with the greatest classification power. We work with five potential predictors and a

significant number of combinations of five ROIs.

3.4.1 Classification using Hippocampus

In this section, we consider the volumetric MRI data of the hippocampus to demonstrate the appli-

cability of the proposed method with a single predictor.
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Figure 3.1: Longitudinal volume of ROIs for dementia patients and normal controls. The first five
plots (plots in the first column and the top two plots in the second column) are scaled ROIs of
interest. The last plot has MMSE scores of patients. On the X-axis, we have the number of visits
for patients. Blue lines are for the dementia group and orange lines are for the normal group. Thin
lines represent each patient’s data, and thick lines are the pooled mean for the AD and CN groups.

We start our analysis by smoothing the longitudinal observed values of the hippocampus. A

simple least squares approximation is sufficient, as we assume that the residuals of the true curve

are independently and identically distributed with mean 0 and constant variance. We use the cubic

B-spline basis functions for spline smoothing of the observed hippocampus volume. Four internal

knots are used for spline smoothing with intercept, which gives us eight basis functions. We want

to ensure that the smoothed estimated curve yields a good fit to each patient’s observed curve. As

we do not have a large number of data points for each patient, we do not consider controlling over

fitting of our estimated curve. Figure 4 shows the observed hippocampus volume of patients in

both group for all visits. The black points represent the mean values of the smoothed curves for all

patients at each time point or visit. The smooth curve seems to track the variation in the volumetric
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measurements accurately. Besides least squares smoothing, functional principle component scores

can also be used for this analysis. At the start of the analysis, we divide the data set into two parts:

three-quarters of the patients (457) are reserved as a training data set, and the rest (152) are kept for

testing. For each patient in the training data set, we gather the basis coefficients used as predictors

for classification. For classification, we generate β prior from a multivariate normal distribution

with a mean vector as 0 and a diagonal covariance matrix with diagonal elements as 100. The

large diagonal numbers for the covariance matrix represent the absence of any prior knowledge

for β and indicate a non-informative prior. The pólya-gamma augmentation method is repeated

for 10,000 iterations, and the initial 5,000 iterations are considered a burn-in period for the Monte

Carlo Markov Chain. Figure 5 shows the predicted probability plot, with a red horizontal line

representing a probability value equal to 0.5. A probability threshold of 0.5 is used to classify

patients as either AD or CN. Patients with more than a 0.5 probability are tagged as AD patients.

Figure 4c presents a boxplot of the β coefficients estimated from Pólya-gamma augmentation. The

coefficients are very small and mostly close to 0, except for the intercept, which is not shown in the

plot.

We apply the method described in Section 3 to the training data and obtain the estimated β

coefficients. We use functional smoothing on the hippocampus volume test data set. Using both

estimated coefficients and basis matrices for this data set, we obtain the predicted probability. To

check the robustness of our classification method, we repeat the procedure 100 times and examine

the corresponding sensitivity, specificity, accuracy, and area under the ROC curve (AUC). Table 3

lists the results for all important predictors we consider when used as single ROIs in the model,

including sensitivity, specificity, accuracy, and AUCmean with standard deviation. We obtain 82%

sensitivity, 88% specificity, and 86% accuracy for the classification using the Hippocampus, which

gives us strong confidence in the validity of our methods. The corresponding ROC curve is also

shown in Figure 3.
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3.4.2 Classification with Single ROI

In the previous section, we showed the applicability of our proposed method using the hippocam-

pus as a single ROI. We now evaluate the classification performance if we consider all five ROIs:

H, WB, EC, FG, and MTC. We repeat our proposed procedure 100 times and calculate sensitivity,

specificity, accuracy, and AUCwith one-quarter of the test data set. We set the threshold probability

to 0.5 for all cases. Sensitivity, specificity, accuracy, and AUC mean with standard deviation are

listed in Table 3.

Table 3.3: Classification performance using single ROI

sensitivity specificity accuracy AUC
Hippocampus
(Mean ± sd) 0.82 ± 0.01 0.88 ± 0.01 0.86 ± 0.001 0.92 ± 0.02

WholeBrain
(Mean ± sd) 0.75 ± 0.01 0.74 ± 0.01 0.75 ± 0.001 0.83 ± 0.03

Entorhinal Cortex
(Mean ± sd) 0.80 ± 0.01 0.90 ± 0.001 0.86 ± 0.01 0.92 ± 0.02

Fusiform gyrus
(Mean ± sd) 0.73 ± 0.01 0.87 ± 0.01 0.81 ± 0.01 0.89 ± 0.03

Middle Temporal Cortex
(Mean ± sd) 0.75 ± 0.01 0.87 ± 0.01 0.83 ± 0.01 0.89 ± 0.03

Notes: Sensitivity is the proportion of correct AD predictions; specificity is the proportion of correct CN
predictions; AUC is area under the ROC curve. The mean and standard deviation are based on 100 repeated
results in test data sets. The probability threshold is 0.5.

It is evident from Table 3 that single ROIs are critical for distinguishing dementia patients from

normal aging people. We obtain an accuracy rate of around 0.80 for single ROIs, and AUC is

around 0.9. These are excellent statistics. We also examine the sensitivity and specificity using

single ROIs. A high sensitivity of 0.80 gives us confidence in our proposed method and implies

that volumetric MRI data of single ROI does have strong classification power.
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(a) Mean smoothed Hippocampus scores (b) Predicted class probability

(c) Box plot for posterior median estimates of model
coefficients using Hippocampus

(d) ROC curve for Hippocampus model

Figure 3.2: In (a), the colored points represent hippocampus values for each time point, and the
black dot signifies the mean value of the smoothed curve for that time point. Orange is for CN and
blue is for AD. In (b), the points are the predicted class probability for patients in the test data set.
(c) presents the spread of the estimated regression coefficients from the Bayesian logistic model in
100 repeated runs. (d) shows the ROC curve after classifying patients using the hippocampus only.

58



3.4.3 Classification using combination of ROIs

In the final stage of our analysis, we consider all combinations of ROIs. We first check the

classification performance of our model using combinations of five ROIs, and we later include the

baseline MMSE, ADAS11 score, and APOE status. Table 1 showed that patients had significant

differences in MMMSE and ADAS11 scores at the beginning of the study. We include these

variables to make our model stronger in terms of classification power. We describe our analysis

in the following. Before applying our method directly to the data, we make one change in the

volumetric MRI ROIs: we normalize all the volumetric ROIs by dividing them by the intracranial

volume (ICV) to bring each patient’s ROI measurements to the same level. For example, to

normalize the ROI volume, we consider each patient’s ICV for each time point and divide the

ROI volume by the corresponding ICV for each patient at each time point. We then calculate the

basis coefficients from longitudinal measurements of volumetric ROIs and use those coefficients,

including baseline MMSE, ADAS11, and APOE, in the Bayesian logistic model for each subject.

The same pólya-gamma augmentation is used to avoid complicatedMetropolis-Hastings algorithm.

The following is the model for classification with pi = P(yi = 1|xi j(t) using the combination of H,

WB, EC, FG and MTC:

logit(pi) =β0 + β1cH
i + β2cW B

i + β3cEC
i + β4cFG

i + β5cMTC
i

+ β6M MSEi + β7 ADAS11i + β8 APOEi, i = 1, ...,n
(3.7)

We use this model with our normalized data to classify patients into two groups: AD and CN.

We obtain astonishingly better results than what we observed using single ROIs. The classification

power of the model is very high, with 93

3.4.4 Conclusion

We collected results for 26 different combinations of ROIs, excluding the results of single ROIs.

We list the important points and conclusions below based on those results:

• Overall, we obtain 80% sensitivity, 90% specificity, and 85% accuracy using single ROIs as
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potential predictors. This implies that each individual ROI has strong classification power in

differentiating AD patients from normal aging people. Among the five potential volumetric

MRIs, the whole brain yields the lowest sensitivity, specificity, and accuracy, while the

hippocampus performs best.

• To compare different model results using combinations of ROIs, we start with the findings

obtained from the combination of two ROIs. The overall sensitivity moves to around 80%

and the specificity to around 90%. The hippocampus and fusiform gyrus together have the

best performance. We do not use the normalized volume of ROIs for these models.

• In comparing results between different combinations, we mostly emphasize sensitivity, as it

indicates the percentage of patients correctly identified as Alzheimer’s patients. We achieve

more than 80% sensitivity for most of the combinations. Furthermore, we obtain more than

85% sensitivity for the majority of combinations of three ROIs. Specifically, H+WB+FG

has 91% sensitivity and 84% accuracy.

• Next, when using combinations of four ROIs, H+WB+EC+FG has 0.91 sensitivity and

0.79 specificity. However, H+WB+EC+MTC has sensitivity of 0.77 and 0.89 specificity,

indicating that the inclusion of the middle temporal cortex (MTC) in the model and the

exclusion of the fusiform gyrus (FG) decreases sensitivity and increases specificity.

• We obtain the best result when using all five ROIs with baseline MMSE, ADAS11, and

APOE in the model. This model achieves 96% specificity and 95% accuracy, which is high

compared to other combinations. The addition of MMSE and ADAS11 scores in the model

definitely increases the performance of method. However, the five potential ROIs together

yield 81% sensitivity, 77% specificity, and 79% accuracy.

3.5 Discussion

We have proposed a Bayesian classification method motivated by a practical problem in the

domain of Alzheimer’s disease. The differentiation of Alzheimer’s patients based on their MRI
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inputs is crucial in medical science. The importance of this problem is two-fold: first, doctors need

to know the main factors involved with dementia in aging patients; and second, a computationally

feasible and less time-consuming classification method is proposed here. Bayesian logistic regres-

sion with functional predictors is itself a challenge due to its analytically complicated likelihood

function. The Metropolis-Hastings algorithm is a popular tool used by many researchers to tackle

this problem, but the choice of candidate density is highly subjective and convergence rates are not

great. In this situation, Pólya-gamma augmentation provides us with sampling efficiency that can

easily be integrated into hierarchical Bayesian modeling.

One more challenging question arises when working with functional predictors: What about

the selection of predictors? In our study, we work with five important ROIs and a few baseline

score variables. This problem can be extended to a situation in which one has multiple functional

predictors and some of them are redundant. It is crucial in modern Bayesian theories to find a proper

variable selection method for classification which works with functional predictors as well. In the

context of Alzheimer’s disease, not all MRI measurements over time are important for predicting

AD patients. In our next study, we will build a data-driven method to provide a feasible solution to

this problem.

In this chapter, we applied a classification method to distinguish AD patients from healthy con-

trols. However, in the Alzheimer’s disease domain, the differentiation of MCI converters (MCI-c)

from MCI nonconverters (MCI-nc) is more interesting. The main problem we faced while dealing

with this situation was the low ratio of MCI-c to MCI-nc. The data set was sparse, and we did not

find a significant number of disease cases in the test data on which we could validate our method.

In addition, most of the baseline MCI patients had very few data points in their longitudinal mea-

surements.

Besides the points mentioned above, our method performs very well for the given data. The
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best classification model is

H+WB+EC+FG+MTC+MMSE_bl+ADAS11_bl+APOE_blwith sensitivity=0.93, specificity=0.96,

accuracy=0.95 and AUC=0.98. This is almost an oracle classifier. Our Bayesian logistic model

uses very few functional predictor variables and performs much better than other exiting methods.

Our method prefers a highly cost-effective and less time-consuming data collection process, as

fewer MRI measurements are needed for analysis. In summary, the method proposed in this chapter

shows good performance in distinguishing Alzheimer’s patients from normal aging controls.
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CHAPTER 4

BAYESIAN PENALIZED MODEL FOR CLASSIFICATION AND SELECTION OF
FUNCTIONAL PREDICTORS USING LONGITUDINAL MRI DATA FROM ADNI

4.1 Introduction

The research literature on applied mathematical approaches and classification methods using

longitudinal MRI data has seen massive growth over the past decade. Among the broad range

of methods applied with variable degrees of success, several warrant mention. Misra et al. [90]

implemented a high-dimensional pattern recognition method to baseline and longitudinal MRI

scans to predict conversion from MCI to AD over a 15-month period. Zhang et al. [133] used a

multi-kernel SVM for classification of patients between MCI and AD, achieving 78.4% accuracy,

79% sensitivity, and 78% specificity. Lee et al. [72] applied logistic regression in predicting

conversion from MCI to Alzheimer’s, using fused lasso regularization to select important fea-

tures. Seixas et al. [108] proposed a Bayesian network decision model for detecting AD and MCI

which considered the uncertainty and causality behind different disease stages. Their Bayesian

network used a blended effect of expert knowledge and data-oriented modeling, and the param-

eters were estimated using an EM algorithm. Adaszewski et al. [1] employed classical group

analyses and automated SVM classification of longitudinal MRI data at the voxel level. Arlt et

al. [4] studied the correlation between the test scores over time with fully automated MRI-based

volume at the baseline. However, few studies to date have developed methods that increase the sen-

sitivity, accuracy, and specificity of classification in AD diagnosis or progression to more than 80%.

Classification using longitudinal data can be a challenge with a large number of predictors. The

first significant approach to handle longitudinal predictors is to consider each multiple-occasion

observation as a single function observed over a time interval. Functional predictors have a high

correlation with adjacent measurements, and the observational space is high-dimensional. The
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number of predictors required for estimation often exceeds the number of observations, thus in-

troducing the problem of dimensionality. A regression framework is frequently the most suitable

to model all possible longitudinal effects across ROIs, where the proposed method will select

the important predictors. Moreover, many biomedical studies have shown that a limited number

of specific brain regions or ROIs are essential for AD classification. Thus, dimension reduction

techniques can be applied, and classification can be limited to the reduced feature set. Zhu et

al. [136] advanced a method for classification and selection of functional predictors that entails

calculation of functional principle component scores for each functional predictor, followed by

the use of these scores to classify each individual observation. They proposed using Gaussian

priors for selection and created a hybrid Metropolis-Hastings/Gibbs sampler algorithm. Although

the method reported in the present study is inspired by this method, we develop a simple Gibbs

sampler where MCMC samples are drawn from standard distributions. We also focus on applying

penalized regression for dimension reduction. In the Bayesian variable selection literature, the

spike-and-slab prior has widespread applications due to its superior selection power. George et al.

([43],[44]) initially proposed that each coefficient β can be modeled either from the “spike” distri-

bution, where most of its mass is concentrated around zero, or from the “slab” distribution, which

resembles a diffuse distribution. Instead of imposing the spike-and-slab prior directly on regression

coefficients, Ishwaran et al. [57] introduced a method in which they placed a spike-and-slab prior

on the variance of Gaussian priors. The Bayesian variable selection methods also include different

Bayesian regularization methods, such as Bayesian Lasso [96], Bayesian Group Lasso, Bayesian

elastic net [76]. We employ a Bayesian group lasso algorithm blended with a spike-and-slab prior

obtained from Xu and Ghosh, 2015[128]. The group structure among coefficients in our model

comes from functional smoothing of the coefficients, and group lasso facilitates the selection of the

important functional predictors. Thus, our proposed method takes the idea of Bayesian variable

selection to a generalized functional linear model with binary responses.

The fundamental challenge of this work is to perform logistic regression in a Bayesian frame-
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work while using a large number of functional predictors. The direct sampling of regression

coefficients from the Bayesian logistic model is difficult due to its complicated likelihood function.

In high-dimensional scenarios, selection of predictors becomes crucial with the introduction of

either a spike-and-slab prior, non-local priors, or horseshoe priors. For all such priors, the full

posterior distribution of regression coefficients is analytically inconvenient. We obtain the Pólya-

gamma augmentation method with priors proposed by Xu and Ghosh, 2015[128], which yields

full conditional samples from standard distributions. Our aim is to avoid the complications of

Metropolis-Hastings and to develop an easily implementable Gibbs sampler. In addition, Bayesian

estimation provides proper estimates of the model parameters, which are also useful for building

inference. The key advantage of this method is that it calculates the log of odds of AD with respect

to CN based on the selected longitudinal predictors. Moreover, we use a probability threshold

for classifying individual patients to validate our modeling performance. We obtained the data

used in the dissertation from the ADNI server. The volumetric MRI brain data includes parcel-

lated sub-regions of the whole brain, with separate subdivisions for the left and right hemispheres.

Volumetric measurements of brain sub-regions across multiple occasions over time demonstrate

differential patterns of brain atrophy between AD patients and normal aging people. Because not

all brain regions are as closely related to AD, the redundant features derived from the unrelated

brain regions can be removed by limiting the selection to brain sub-regions important to classifi-

cation. The problem of identifying important brain sub-regions from a large number of functional

predictors or longitudinal measurements is far from simple. Various variable selection methods

have been designed for single-time-point data with respective target variables. We apply a Bayesian

variable selection method to select longitudinal features or functional predictors for our data set.

We work with 49 functional predictors consisting of longitudinal volumetric measurements in dif-

ferent sub-regional brain ROIs. The use of the spike-and-slab prior ensures that a large number of

redundant predictors are dropped from the model. The ROI sub-regions selected by our method

will be helpful for future studies to detect the progression of dementia.
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The chapter is organized as follows. In section 2, we introduce Bayesian variable selection with

a spike-and-slab prior. Section 3 discusses functional smoothing of the longitudinal predictors.

In Section 4, we introduce our methodology and algorithm for simultaneous selection and classi-

fication. Theoretical properties and consistency results are shown in Section 5. We then discuss

the application results with simulated data and real data in Sections 6 and 7. Finally, Section 8

examines another potential modeling approach, and Section 9 covers the overall development and

limitations of the methodology.

4.2 Bayesian Variable selection

We will briefly discuss about Bayesian variable selection below:

4.2.1 Spike-Slab prior

A Bayesian model with a spike-and-slab prior can be constructed as follows:

(Yi/xi, β,σ
2) ind
∼ N(x′i β,σ

2), (i = 1, ...,n)

(β/γ) ∼ N(0, Γ),

γ ∼ π(dγ),

σ2 ∼ µ(dσ2),

where 0 is a p-dimensional zero vector, Γ is the p x p diagonal matrix diag(γ1, ..., γp), π is the prior

measure for γ = (γ1, ..., γp)
t and µ is the prior measure for σ2. Ishwaran et al. [57] proposed this

setup and developed optimal properties based on the prior choice of (β/γ).

A popular version of the spike-and-slabmodel, introduced byGeorge et al. ([43],[44]), identifies

zero and non-zero βi’s by using zero-one indicator variables γi and assuming a scale mixture of

two normal distributions:

(βi/γi)
ind
∼(1 − γi)N(0, τ2

i ) + γiN(0, c2
i τ

2
i ), i = 1, .., p

66



The value for τ2
i > 0 is some suitably small value, while ci > 0 is some suitably large value. γi = 1

represents the βi’s which are significant, and these coefficients have large posterior hypervariances

and large posterior βi values. The opposite occurs when γi = 0. The prior hierarchy for β is

completed by assuming a prior for γi. When τ2
i tends to zero we provide more masses on 0, as the

prior for insignificant βs. The prior distribution for the regression coefficients can then be written

as:

(βi/γi)
ind
∼(1 − γi)I0 + γiN(0, ν2)

with I0 point mass at 0 coefficients; and ν2 is the limit for c2
i τ

2
i when τ2

i tends to zero and c2
i is

large enough.

4.2.2 Bayesian Group lasso

We discussed extensively about Bayesian Group Lasso in introduction. The form of Bayesian

Group lasso we extensively worked with initiated in Xu and Ghosh, 2015[128]. A multivariate

zero-inflated mixture prior can bring sparsity in group level which is elaborately discussed in Xu

and Ghosh, 2015[128]. The following hierarchical structure with independent spike-and-slab prior

for each βg:

Y |X, β,σ2 ∼ N(Xβ,σ2I)

βg |τ
2
g , σ

2 ∼ (1 − π0)Nmg (0, σ
2τ2

g Img ) + π0δ0(βg), g = 1, ..,G

τ2
g ∼ Gamma

(
mg + 1

2
,
λ2

2

)
, g = 1, ..,G

σ2 ∼ IG(α,γ)

π0 ∼ Beta(a, b)

where δ0(βg) denotes point mass at 0. The mixing probability π0 can be defined as a function of

the number of predictors to impose more sparsity as the feature size increases. The choice of λ is

very critical for Xu and Ghosh’s prior setup. Large values of λ produce biased estimates, while very
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small λ values impose diffuse distribution for the slab part. Xu and Ghosh, 2015[128] mentioned an

empirical Bayes approach to estimate λ. Due to intractability of marginal likelihood, they proposed

a Monte Carlo EM algorithm for the estimation of λ. Moreover, they showed theoretically and

numerically that the median thresholding of posterior βg samples provides exact zero estimates for

insignificant group predictors.

4.3 Functional smoothing for longitudinal data

Classification with the selection of significant functional predictors is challenging. Researchers

commonly observe high correlation values between functional predictors. In this dissertation,

we work with the assumptions of independence between predictors; hence, later we propose a

corresponding prior in the coefficient space.The main advantage of using functional predictors is

that it allows us to measure time trends present in data . We start our methodology by smoothing

functional observations using a cubic basis spline. We restrict our data set to patients with at

least four time period observations, such that smoothed curves are comparable. Gareth M. James

[61] used a similar approach to obtain the estimates of a generalized linear model with functional

predictors.

Let us assume that we observe n patients with their functional observations and each patient has

p functions. We assume that not all p functional observations are important. Let xi j (t) be the jth

function observed from the ith patient. Let T be the compact domain of xi j(t) and xi j(t) ∈ L2[T].

With the functional predictors (xi1(t), .., xip(t)), we assume that we have binary response variable yi

which takes value 0 and 1. We also assume that the predictors have been centered in this work, so

that we can ignore the intercept term. Therefore, we have the following logistic regression equation:

log
{ P(yi = 1|xi1, .., xip)

1 − P(yi = 1|xi1, .., xip)

}
=

p∑
j=1

∫
T

xi j(t)β j(t)dt (4.1)

Next, we construct an orthonormal basis φk (t) that can be used to decompose the functional
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predictors and the corresponding logistic regression coefficients, such as

xi j (t) =
q∑

k=1
ci j kφk (t), β j(t) =

q∑
k=1

β j kφk (t)

where ci j k and β j k are the coefficients of xi j (t) and β j(t) with respect to the kth orthonormal basis

φk (t). For notational convenience, we denote the basis coefficients as β j k . These are different

than the functional coefficients β j(t). We use cubic basis splines as the orthonormal basis for our

simulation examples and real data applications. Hence, the choice of q completely depends on the

number of internal knots used in basis spline constructions. The jth component in equation (1) can

thus be written as

∫
T

xi j (t)β j(t)dt =
q∑

k=1
ci j k β j k = c′i jβ j (4.2)

To fit the discrete observations xi j(t), we assume that, at any given time t, instead of xi j (t), we

observe Xi j (t):

xi j(t) = Xi j(t) + e(t)

where e(t) is a zero-mean Gaussian process. We use the same basis function expansion for Xi j (t)

of the form

Xi j(t) =
q∑

k=1
ci j kφk (t) = c′i jφ(t)

where φ(t) is the q-dimensional spline basis at time t for jth function, ci j the q-dimensional

spline coefficients for the jth predictor from ith patient. We use ordinary least square estimates

for estimating spline coefficients. A simple linear smoother is obtained by minimizing the least

squares criterion | |xi j −Φci j | |
2 as

ĉi j = (Φ
′Φ)−1Φ′xi j (4.3)

Once the orthonormal basis coefficients have been estimated, we can combine (1), (2) and (3)
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by plugging x̂i j (t) in (1), which yields

log
{ P(yi = 1|xi1, .., xip)

1 − P(yi = 1|xi1, .., xip)

}
=

p∑
j=1

∫
T
ĉ′i jφ(t)β j(t)dt

=

p∑
j=1

ĉ′i jβ j

= c′iβ (4.4)

where βT
j =

∫
T β j(t)φT (t)dt, the coefficient vector for the jth functional predictor. Here, ci vector

has its first element as 1 and rest of the spline coefficients for ith patient, and β contains intercept of

the model as its first element. We use no intercept form for our real data and simulation application

where c′i = (ĉi1, .., ĉip)
′ does not have first element as 1 and βpqx1 = (β

Tqx1
1 , .., β

Tqx1
p )T has group

structure with each group size=q. Our selection method drops the redundant β’s and will select the

important coefficient groups.

Functional principal component (FPC) analysis is another popular method that can be applied

here. Instead of least square basis estimates, one can work with FPC scores for classification. Zhu

et al. [136] also used FPC scores in their classification model, and they selected the functional

predictors whose FPC scores were significant. Müller [93] extended the applicability of FPC

analysis for modeling longitudinal data. Specifically, FPC scores can be used when we have

few repeated and irregularly observed data points. In our functional smoothing method, we

expanded the functional observation with spline basis functions and used the basis coefficients for

classification. The same intuition can also be applied for FPC scores. For functional component

analysis, we assume that longitudinal observations are from a smooth random function X(t) and its

mean function is µ(t) = E X(t) and covariance function G(s, t) = cov(X(s),X(t)). The covariance

function can be represented as G(s, t) =
∑∞

k=1 λkφk (s)φk (t) where φk ’s are eigenfunctions and

λk ’s are eigenvalues. Then, the underline process can be written as:

X(t) = µ(t) +
∞∑

k=1
ξkφk (t),

where ξk ’s are frequently referred to as FPC scores. These scores can be used later in the clas-

sification model. We do not work with an infinite number of scores; instead, the above sum is

70



approximated with a finite K that explains the majority of the variance in functional observations.

For most cases, the first two FPC scores are enough to build a good classification model. In this

chapter, we work with the basis spline smoothing method due to its ease of implementation in

statistical software. In R, we have the splines package, which fits cubic basis splines on longitudi-

nal data with equally placed knots. We do not investigate any findings using FPC scores instead

of basis spline coefficients, as our main focus is on the classification algorithm, and basis spline

coefficients work very well for our classification model.

4.4 Simultaneous Classification of binary response with selection of func-
tional predictors

4.4.1 Classification using Pólya-Gamma Augmentation

In the following, we discuss Polson et al.’s [97] algorithm; these authors showed how a Gaussian

variance mixture distribution with a Pólya-gammamixing density can approximate logit likelihood.

We start by defining Pólya-gamma density-

Random variable X ∼ PG(b, c), a Pólya-gamma distribution with parameters b > 0 and c ∈ <,

if

X d
=

1
2π2

∞∑
k=1

gk

(k − 1
2 )

2 + c2
4π2

,

where gk ∼ Gamma(b,1) are independent gamma random variables and d
= means equality in

distribution.

Polson et al.’s [97] main result parametrized the log-odds of logistic likelihood as mixtures

of Gaussian with respect to Pólya-gamma distribution. The fundamental integral result, which is

easily integrated into the Gaussian prior hierarchy is that, for b > 0 -

(eψ)a

(1 + eψ)b
= 2−beκψ

∫ ∞
0

e−
ωψ2

2 p(ω)dω (4.5)
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where κ = a − b/2 and ω ∼ PG(b,0). The introduction of latent variables (ω1, ..,ωn) later helped

us in deriving conjugate posterior distribution. R package BayesLogit has an efficient algorithm to

sample from Pólya-gamma distribution and it was proposed by Windle et al.,2014[126].

4.4.2 Selection using Bayesian Group Lasso

As we discussed in the Section 2.2,Meier et al.[87] developed group lasso for logistic regression

in a frequentist setup. In our model, we have p number of functional predictors (xi1(t), .., xip(t)

with binary response yi ∈ {0,1}, each group has q levels. We can write our model as-

log
{ P(yi = 1|xi1(t), .., xip(t))

1 − P(yi = 1|xi1(t), .., xip(t))

}
=

p∑
j=1

c′i jβ j

= ηβ(ci)

According toMeier et al.[87]method, the logistic group lasso estimatorwith basis spline coefficients

would look like

β̂GL = min
β

−l(β) + λ
p∑

j=1

√
q | |β j | |2


where l(β) =

∑n
i=1(yiηβ(ci) − log(1 + exp{ηβ(ci)}) is the log-likelihood function.

Before moving on to our proposed Bayesian method, we want to mention a similar model

presented by Zhu et al. [136]: they used latent variables for Bayesian logistic regression, and FPC

scores represented the functional predictors. They proposed a normal prior for the concatenation

coefficients, which is the same as our coefficients β js.

Now, motivated by Polson et al.’s [97] integral result, we construct a Bayesian prior formulation

targeted to handle binary logistic regression. Equation 4.4 has a Bernoulli likelihood function with

logit link. We propose a spike-and-slab prior motivated by Xu and Ghosh, 2015[128] with a

zero-inflated mixture prior, which helps us in selecting the important group coefficients. As

previously described, we introduce latent variables (ω1, ..,ωn) to take advantage of the integral
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identity described in equation (5). Our prior setup is

yi |ci, β ∼ Bernoulli

(
exp(cT

i β)

1 + exp(cT
i β)

)
, i = 1, ..,n

ωi ∼ PG(1,0), i = 1, ..,n

β j |τ
2
j , π0 ∼ (1 − π0)Nq(0, τ2

j Iq) + π0δ0(β j), j = 1, ..., p

τ2
j |λ

2 ∼ Gamma(
q + 1

2
,
λ2

2
), j = 1, ..., p

π0 ∼ Beta(a, b) (4.6)

Gibbs Sampler:

The likelihood for ith observation is:

Li(β) =
(ecT

i β)yi

1 + ecT
i β

∝ exp{κicT
i β}

∫ ∞
0

exp

{
−
ωi(cT

i β)
2

2

}
p(ωi)dωi, f rom equation (5)

where κi = yi − 0.5 and ωi ∼ PG(1,0). If we consider all n independent observations, given ωi

we can write the joint likelihood as-

n∏
i=1

Li(β |ωi) =
n∏

i=1
exp

{
κic

T
i β −

ωi(cT
i β)

2

2

}
= exp

{
ωi
2
(cT

i β −
κi
ωi
)2

}
= exp

{
−

1
2
(z − Cβ)TΩ(z − Cβ)

}
where z = (

κ1
ω1
, .., κnωn ) and Ω = diag(ω1, ..,ωn).
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Next, we combine the likelihood function with β prior, given ω = (ω1, ..,ωn):

p(β, τ2, π0 |Y,C,ω) ∝ exp
{
−

1
2
(z − Cβ)TΩ(z − Cβ)

}
×

p∏
j=1

(1 − π0)(τ
2
j )
−

q
2 exp{−

1
2τ2

j

βT
j β j }I(β j,0) + π0δ0(β j)


× (λ2)

q+1
2 (τ2

j )
q+1

2 −1e−
λ2τ2

j
2

× πa−1
0 (1 − π0)

b−1

Due to the introduction of Pólya-gamma augmentation, we can derive a block Gibbs sampler with

a posterior distribution of β j’s. The same method is derived in Xu and Ghosh, 2015[128] for

continuous Y in linear model setup. The blocks Gibbs sampler was introduced byHobert et al.[52].

To build this sampler, we start with some notations. Let β( j) denotes the β vector without j-th

group,

β( j) = (β
T
1 , .., β

T
j−1, β

T
j+1, .., β

T
p )

T

and the corresponding design matrix can be written as:

C( j) = (C1, ..,Cj−1,Cj+1, ..,Cp)

Cj is the corresponding design matrix for β j .

When β j , 0:

p(β j |rest) ∝ exp
{
−

1
2
(z − C( j)β( j) − Cj β j)

TΩ(z − C( j)β( j) − Cj β j)

}
× exp

−
1

2τ2
j

βT
j β j


∝ exp

−
1
2

βT
j (C

T
j ΩCj +

1
τ2

j

Iq)β j − 2(z − C( j)β( j))
TΩCj β j




∝ exp
{
−

1
2
(β j − A j)

T B j(β j − A j)

}
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where, B j = (CT
j ΩCj +

1
τ2

j
Iq) and A j = B−1

j CT
j Ω(z−C( j)β( j))Hence the posterior full conditional

of β j is a spike-and-slab distribution,

(β j |rest) ∼ (1 − l j)Nq(A j,B
−1
j ) + l jδ0(β j), j = 1, .., p (4.7)

where l j = p(β j = 0|rest). Now we will find the probability l j :

l j = p(β j = 0|rest)

=
p(β j = 0, y |C,ω, τ2

j , π0)∫
β j,0 p(β j, y |C,ω, τ2

j , π0)dβ j

=
p(y |β j = 0,C,ω, τ2

j , π0)p(β j = 0|τ2
j , π0)

p(y |β j = 0,C,ω, τ2
j , π0)p(β j = 0|τ2

j , π0) +
∫
β j,0 p(y |β j , 0,C,ω, τ2

j , π0)p(β j , 0|τ2
j , π0)dβ j

=
Mπ0

Mπ0 + N(1 − π0)

where π0 = p(β j = 0|τ2
j , π0),

M = p(y |β j = 0,C,ω, τ2
j , π0) = exp

{
−

1
2
(z − C( j)β( j))

TΩ(z − C( j)β( j))
}

N =
∫
β j,0

p(y |β j , 0,C,ω, τ2
j , π0)dβ j

=

∫
β j,0

exp
{
−

1
2
(z − Cβ)TΩ(z − Cβ)

}
(2πτ2

j )
−

q
2 e
−
βT

j β j

2τ2
j dβ j

= M ×
∫
β j,0

exp
−

1
2

βT
j (C

T
j ΩCj +

1
τ2

j

Iq)β j − 2βT
j CT

j Ω(z − C( j)β( j))

 (2πτ2

j )
−

q
2 dβ j

= M × (τ2
j )
−

q
2 exp

{
1
2

AT
j B j A j

} ∫
β j,0
(2π)−

q
2 exp

{
−

1
2
(β j − A j)

T B j(β j − A j)

}
dβ j

= M × (τ2
j )
−

q
2 exp

{
1
2

AT
j B j A j

}
|B j |
−1

2

Hence,

l j =
π0

π0 + (1 − π0)(τ
2
j )
−

q
2 |B j |

−1
2 exp

{
1
2 AT

j B j A j

} (4.8)
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The posterior full conditional distributions of other parameters are stated below, and the deriva-

tions of the posteriors are described in appendix.

©­« 1
τ2

j

|restª®¬ ∼


Inverse − Gamma(q+1
2 , λ

2
2 ), if β j = 0

Inverse − Gaussian( λ
| |β j | |2

, λ2), if β j , 0
(4.9)

for all j = 1, , ., p. Let, G j define whether a certain group is selected or not

G j =


1, if β j , 0

0, if β j = 0

Then,

(π0 |rest) ∼ Beta ©­«p −
p∑

j=1
G j + a,

p∑
j=1

G j + bª®¬ (4.10)

We will sample our augmented variables ω = (ω1, ..,ωn) using the posterior samples of β:

(ωi |β) ∼ PG(1,c′iβ), i = 1, ..,n (4.11)

Finally, we are left with the values of λ. λ is the most crucial parameter for our model and

should be treated carefully. A large λ shrinks most of the group coefficients towards zero and

produces biased estimates. In our real data analysis, we try to control the λ value by assigning a

different range of values. Xu and Ghosh, 2015[128] proposed a Monte Carlo EM algorithm for

estimating λ. The following is the kth EM update for λ from their paper-

λ(k) =

√√√ p(q + 1)∑p
j=1 E

λ(k−1)
[
τ2

j |y
]

The expected value of τ2
j |y for binary response y is intractable. In other words, this expected value

can be calculated by taking mean of posterior samples of τ2
j .

4.5 Median thresholding and Theoretical properties

4.5.1 Marginal Prior for β j:

We first study the marginal priors of β j’s to examine the theoretical properties of the Bayesian

group lasso estimators. We aim to establish the connection between β j group priors and existing
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Group Lasso penalization methods. We integrate out τ2
j from β j priors. The marginal priors for

β j’s are calculated based on Xu and Ghosh, 2015[128] work with extension to binary response

instead of continuous response. For β j , 0:

p(β j/π0) ∝
∫
τ2

j

p(β j/τ
2
j , π0)p(τ

2
j )dτ

2
j

∝

∫ ∞
0
(1 − π0)(τ

2
j )
−

q
2 exp

−
1

2τ2
j

βT
j β j

 (λ2)
q+1

2 (τ2
j )

q+1
2 −1 exp

{
−
λ2

2
τ2

j

}
dτ2

j

∝ (1 − π0)(λ
2)

q+1
2 exp

{
−λ | |β j | |2

} ∫ ∞
0
(α2

j )
−3

2 exp
−

1
2

βT
j β j

α2
j

[
α2

j −
λ

| |β j | |2

]2 dα2
j

∝ (1 − π0)
(
λ2

) q
2 exp

{
−λ | |β j | |2

}
where α2

j =
1
τ2

j
. The marginal prior for β j’s are also spike-slab with with point mass at 0 and the

slab part consists of a Multi-Laplace distribution which same as the one considered in Bayesian

group lasso (Kyung et al.,2010[69]) or matches with penalization mentioned in Bayesian Adaptive

Lasso (Leng et al.,2014[73]).

β j/π0 ∼ (1 − π0)M − Laplace
(
0,

1
λ

)
+ π0δ0(β j) (4.12)

Combining spike and slab both, the components facilitates variable selection at group level and

shrinks the coefficients of the selected groups.

4.5.2 Median thresholding as posterior estimates

We previously discussed obtaining the selected group coefficient estimation through median thresh-

olding of the MCMC sample. Xu and Ghosh, 2015[128] generalized the median thresholding pro-

posed by Johnstone et al.,2004[64] for multivariate spike-and-slab prior. Johnstone et al.,2004[64]

showed median thresholding, under a spike-and-slab prior for normal means, has some desirable

properties. In this section, we generalize this idea to a binary classification problem and show that

the posterior median estimator serves as group variable selection by obtaining a zero coefficient for

the redundant groups. We further demonstrate the posterior median as a soft thresholding estimator
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that is consistent in model selection and has an optimal asymptotic estimation rate.

Focusing on only one group, then Xu and Ghosh, 2015[128] proposed the following theorem

on Median thresholding:

Zmx1 ∼ f (z − µ)

µ ∼ π0δ0(µ) + (1 − π0)γ(µ)

where Z is an m-dimensional random variable, and γ(.) and f (.) are both density functions for

m-dimensional random vectors. f (t) is maximized at t = 0. Let Med(µi |z) denote the marginal

posterior median of µi given data. By definition,

c =

∫
f (−ν)γ(ν)dν

f (0)
≤

∫
f (0)γ(ν)dν

f (0)
= 1

Theorem 1: Suppose π0 >
c

1+c , then there exists a threshold t(π0) > 0, such that when | |z | |2 < t,

Med(µi |z) = 0, f or any 1 ≤ i ≤ m

Next, we focus on our problem setup. If we assume β j follows a Gaussian prior, β j ∼ N(0,B j)

and the design matrix satisfies the condition CT
j ΩC( j) = 0. Then the posterior estimates of β j |rest

is:

β̂ j = β j |rest ∼ N(µ j, Σ j)

Σ j = (C
T
j ΩCj + B−1

j )
−1

µ j = Σ jC
T
j Ωz

According to theorem 1, assuming π0 > c
1+c , then there exists t(π0) > 0, such that the marginal

posterior median of β j k under prior (6) satisfies

Med(β j k | β̂ j) = 0 f or any 1 ≤ k ≤ q
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when | | β̂ j | |2 < t. We can interpret this result in the context of the same explanation provided by Xu

andGhosh, 2015[128]: themedian estimator of the j-th group of regression coefficients is zerowhen

the norm of the posterior estimates under any other prior distribution is less than a certain threshold.

Posterior Median as soft thresholding:

We assume that CT
j ΩCj = nIq and C matrix is group wise Orthogonal with CT

j ΩC( j) = 0. We

are considering the model defined in (6) with fixed τ2
j,n and it depends on n. In this set-up, the

posterior distribution of β j will be similar to the one derived in the previous section:

β j |C, y,ω ∼ (1 − l j)Nq

(
1
n
(1 − D j,n)C

T
j Ωz,

1
n
(1 − D j,n)Iq

)
+ l jδ0(β j),

where D j,n =
1

1+nτ2
j,n

and,

l j =
π0

π0 + (1 − π0)(1 + nτ2
j,n)
−

q
2 exp

{
1

2n (1 − D j,n)| |CT
j Ωz | |22

}
Then, the marginal posterior distribution for β j k (1 ≤ k ≤ q) conditional on the observed data

is a spike-and-slab distribution,

β j k |C, y,ω ∼ l jδ0(β j k ) + (1 − l j)N
(
1
n
(1 − D j,n)C

T
jkΩz,

1
n
(1 − D j,n)

)
whereCj k is the k-th vector of theCj th groupmatrix. The corresponding soft thresholding estimator

is

β̂ j k = Med(β j k |C, y,ω) = sgn
(
CT

jkΩz
) (

1
n
(1 − D j,n)|C

T
jkΩz | −

1
√

n
Q j

√
1 − D j,n

)
+

where z+ is the positive part of z and Q j = Φ
−1

(
1

2(1−min(12 ,l j ))

)
. Our results also follow Xu and

Ghosh, 2015[128]’s work to show the soft thresholding. One should especially note that the term

D j,n depends on τ2
j,n which controls the shrinkage factor.
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Oracle Property:

Let β0, β j
0, β0

j k be the true values β, β j, β j k , respectively. The index vector of true model is

A =
(
I(| |β j | |2 , 0), j = 1, .., p

)
, and the index vector model selected by certain thresholding

estimator β̂ j is An =
(
I(| | β̂ j | |2 , 0), j = 1, .., p

)
. Model selection consistency is attained if and

only if limn P(An→∞ = A) = 1.

Theorem 2: Assume the following design exists, CT
j ΩCj = nIq. Suppose

√
nτ2

j,n → ∞ and

log(τ2
j,n)/n → 0 as n → ∞, for j = 1, .., p, then the median thresholding estimator has oracle

property, that is, varaible selection consistency,

lim
n→∞

P(AMed
n = A) = 1

The proof follows same as steps as the proof of Theorem 4 in Xu and Ghosh, 2015[128].

4.5.3 Posterior Consistency:

In this section, we conduct a theoretical investigation regarding the convergence of the group

lasso estimator model to the true model. To show model consistency, we refer to the results and

theorems mentioned in the paper titled “On the consistency of Bayesian variable selection for high

dimensional binary regression and classification” by Jiang,2006[62]. In this paper, the author setup

Bayesian variable selection similar to Smith et al.,1996[115] by introducing a selection indicator

vector γ = (γ1, .., γp) where γi = 0/1. The corresponding prior setup is as follows:

y = Xβ + ε

βγ ∼ N(0, cσ2
(
XT
γ Xγ)−1

)
γi ∼ Bernoulli(π), i = 1, .., p

(σ2 |γ) ∼ 1/σ2

We can establish a direct connection between our model and the above penalized regression. We re-

parametrize the groups coefficient vector β j = γ j b j where γ j, j = 1, .., p is the selection indicator
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0/1 valued. As in section 5.1 we have shown the marginal prior of β j follows a Multi-Laplace

distribution, we can place a Bernoulli prior in γ j ,

b j |λ ∼ Multi − Laplace(0,
1
λ
)

γ j ∼ Bernoulli(1 − π0), j = 1, .., p (4.13)

The marginal prior distribution of β j is same as in equation (12).

Next, we study the asymptotic results as n → ∞. Let y be the binary response and ®c is

the corresponding basis coefficients for any given subject. Let the true model be of the form

µo(c) = e

∑pn
j=1 cT

j β j

1+
∑pn

j=1 cT
j β j
= ψ(

∑pn
j=1 cT

j β j), β j is a qX1 vector with pn(↑ n) number of group vectors

present in the model. As described by Jiang,2006[62], we assume that the data dimension sat-

isfies 1 ≺ pn and log(pn) ≺ n, where an ≺ bn represents an = o(bn), or limn→∞
an
bn
= 0. We

assume sparsity of the regression coefficients on the group level, i.e. limn→∞
∑pn

j=1 | |β j | |2 < ∞,

which implies that only a limited number of group coefficients are nonzero. We further assume

| |c j | |2 ≤ 1, j = 1, .., pn for simplicity.

We assume n i.i.d. observations. Dn = (®c1, .., ®cpn, yi)
n
i=1 and f0 = µ

y
0(1 − µ0)

1−y. Before we

move forward with the results, we define the posterior estimator of the true density f0 as-

f̂n(y, c) =
∑
γ

∫
βγ

f (y, c |γ, βγ)πn(βγ, γ |Dn)dβγ

and we define the posterior estimate of µ0 as

µ̂n(c) =
∑
γ

∫
βγ
ψ(cT

γ βγ)πn(βγ, γ |Dn)dβγ .

We define the classifier as Ĉn(c) = I[µ̂n(c) > 0.5], so that Ĉn(c) will be the validation tool for our

algorithm’s performance.

Next we define consistency using Jiang’s,2006[62] description of density function, andmeasure

the distance between twodensity functionswithHellinger distance dH( f , f0) =
√∫ ∫

(
√

f −
√

f0)2dxdy.
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The below definitions are quoted from Jiang’s,2006[62] article.

Definition 1: "Suppose Dn is i.i.d. sample based on density f0. The posterior πn(.|Dn) is

asymptotically consistent for f0 over Hellinger neighborhood if for any ε > 0,

πn
[

f : dH( f , f0) ≤ ε |D
n] P
→ 1, as n→∞ (Density Consistency)

" Next we define consistency in classification from Jiang,2006[62] paper in terms of how the

misclassification error EDn P[Ĉn(c) , y |Dn] approaches the minimal error P[C0(c) , y], where

C0(c) = I[µ0(c) > 0.5].

Definition 2: "Let B̂n(c) be a classification rule obtained based on the observed data Dn. If

limn→∞ EDn P[B̂n(c) , y |Dn] = P[C0(c) , y], then B̂n(c) is called a consistent classification rule."

Combining Proposition 1 and Proposition 3 from Jiang,2006[62], under conditions I, S, and

L, density consistency directly implies classification consistency. The proof follows by checking

conditions I, S, and L from Jiang’s(2006) paper[62], since our prior satisfies his prior setup. To

have density consistency and classification consistency for posterior estimates, we need to check

whether our prior setup follows Jiang’s conditions. The motivation for the proof and the technique

of checking conditions to establish the theorem were discussed in theses Atreyee Majumder, 2017

[81] and Guiling Shi, 2017[111].

Condition I: (On inverse link function ψ) "Denote w(u) as the log odds function w(u) =

log[ψ(u)/(1−ψ(u))]. The derivative of the log odds w′(u) is continuous and satisfies the following

boundaries condition when the size of the domain increases: sup|u|≤C |w
′(u)| ≤ Cq for some q ≥ 0,

for all large enough C."

Condition S: (For prior πn on small approximation set.) "There exists a sequence rn in-

creasing to infinity as n → ∞, such that for any η > 0, and
∑

j<γ(rn) | |β j | |2 ≺ ε2
n , we have
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πn[γ = γ(rn)] > e−cnε2
n and πn[βγ ∈ M(rn, η)|γ = γ(rn)] > e−cnε2

n , for all large enough n."

Condition L: (For prior π outside a large region) "There exist some r̄n = o(n/lnpn), r̄n ∈ [1, pn],

and some Cn satisfying C−1
n = o(1) and lnCn = o(n/r̄n), such that for some c > 0, πn[|γ | > r̄n] ≤

exp(−cnε2
n ), and πn

©­« ⋃
j:γ j=1

[
| |β j | |2 > Cn

]
|γ

ª®¬ ≤ exp(−cnε2
n ) for all |γ | ≤ r̄n, for all large enough n."

We checked for the conditions; corresponding proofs are in the appendix.

4.6 Simulation results

We assess the performance of our proposed simultaneous classification and selection methodol-

ogy with simulated data sets. We apply our method to both simulated and real data. We compare

the results from our Bayesian method with those from a frequentist group lasso selection method for

binary response. To the best of our knowledge, no other Bayesian method reported in the literature

is as convenient and efficient as the presently proposed method. The following section reports

the method testing by creating three different examples with varying numbers of predictors. We

generate a binary response with simulated functional predictors; there are a significant number of

inessential predictors.

Example 1: We first generate functional predictors xi j(t) using a 10-dimensional Fourier basis

φ0(t) = 1 and φk (t) =
√

2 cos(kπt), k = 1, ..,9, adding an error term. We work with a similar

simulation set up mentioned in Fan et al.[33], as Fan’s model setup is also based on functional

predictors. We generate our predictors as follows:

xi j (tk ) = φ(tk )
Tθi j + εi j k, εi j k ∼ N(0, σ2), θi j ∼ N10(0, I)

where φ(tk ) = (φ0(tk ), φ1(tk ), .., φ10(tk ))′. We take σ = 0.5 and we generate 200 i.i.d observations

using 20 functional predictors. Each predictor is observed at 50 time points, and time points are

equally distributed between 0 and 1. θi j and εi j k are independently sampled. It is easier to under-

stand the set up notationally as ’i’ varies from 1 to 200, ’j’ varies from 1 to 20 and ’k’ varies from
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1 to 50. We construct a cubic basis spline on (0 = t1, .., t50 = 1) with four internal knots equally

spaced at 20%, 40%, 60% and 80% quantiles. We use R-package ’splines’ and the ’bs’ function

to construct the basis matrix φ. With 4 internal knots, plus intercept and degree=3, we end up

having eight columns in the basis matrix for each predictor, i.e. q=8. To validate classification and

selection performance, we use 75% of the observations as training data, and the remaining 25% for

testing purposes. We repeat this process 100 times to limit sampling bias in data and concatenate

all results considering the 100 repetitions.

Example 2 and 3: In example 2, we increase the number of predictors from 20 to 50 while

maintaining 200 observations with 50 time points for each observation. The functional predictor

generation in Example 3 follows the same method as in Example 1, but generates 500 observations

with 100 functional predictors and 20 time points for each observation. We use three internal knots

to smooth the predictors.

In both cases, we chose the second and final predictor, i.e. β2(t)and βp(t) as non-zero, and the

rest of the coefficients are zero. We generate the binary response y ∈ (0,1) from a Bernoulli distri-

bution using the set of pre-assigned β. In all of the examples, 75% of the data is used for training

and 100 repetitions are used to normalize sampling bias. We obtain 20,000 Gibbs samples, and the

first one-third of these samples are discarded as a burn-in period. All the parameter estimates are

obtained using the remaining samples. As Xu and Ghosh, 2015[128] showed that median thresh-

olding gives exact 0 estimates for the redundant group coefficients, we apply a posterior median on

posterior samples to obtain β estimates. We choose a=1,b=1 as the initial parameter values for the

prior distribution of π0 and β = 0 is used as the initial choice for the first iteration. Although we

have p number of functional predictors, the number of coefficients we need to estimate is p*q. In

Example 2, we have p=50, and with four internal knots for each function we obtain q=8. Hence, the

number of coefficients we need to estimate is 400 using 200 observations. From this perspective,

our algorithm is applicable to “large p, small n” conditions. The simulation results are presented
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below.

Example1 Results: We obtain a 100% true positive rate and a 0% false positive rate in terms of

selection, i.e. the two nonzero coefficients are captured in all 100 iterations. Moreover, none of the

predictors that originally had zero coefficients are selected. In terms of classification, our method

shows 97% sensitivity, 93% specificity, 95% accuracy, and AUC=0.99. Below are the rejection

probability plots for β2(t) and β1(t), of which the first is nonzero and the second is zero in the true

model. In addition, we plot the posterior median estimates of the coefficient function with respect

to its true values. The ROC curve establishes the differentiating power of our method.

Example 2 and 3 Results: In Example 2, we obtain a 100% true positive rate and a 0.73%

false positive rate out of 100 repetitions, with 97% sensitivity and 95% specificity. In Example 3,

we achieve a 100% true positive rate and a 0% false positive rate with 98% sensitivity and 97%

specificity. We compare our simulation results with those of frequentist group lasso for logistic

regression for all the setups above. Our methodology yields the best results in terms of classifying

subjects into the right class, far exceeding frequentist group lasso. Although the frequentist group

lasso approach successfully identifies the true significant predictors for the model, it also selects

many redundant functional predictors that have zero effect on the true model. The false selection of

predictors in the model is very high compared to that of our algorithm. The table below summarizes

the numerical results of all three aforementioned examples, with comparisons to frequentist group

lasso for logistic regression.

4.7 Application on ADNI MRI data

This section reports the results of the application of our proposedmethod toADNI data. TheMRI

data used in all analyses was downloaded from the ADNI database (http://www.adni-info.

org/). The fundamental goal of ADNI is to develop a large, standardized neuroimaging database
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Figure 4.1: Plots based on Example 1
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Table 4.1: Classification and selection performance Table

Bayesian Classification with
Bayesian Group Lasso

Sensitivity Specificity TPR FPR -2 Log
likelihood

Example 1
n=200
p=20
t=50

0.97 (0.01) 0.93 (0.01) 1 (0) 0 (0) 3.65

Example 2
n=200
p=50
t=50

0.97 (0.01) 0.95 (0.01) 1 (0) 0.0073
(0.05) 0.219

Example 3
n=500
p=100
t=20

0.98 (0.001) 0.97 (0.01) 1 (0) 0 (0) 6.87

Logistic regression
with frequentist group lasso

Sensitivity Specificity TPR FPR -2 Log
likelihood

Example 1
n=200
p=20
t=50

0.92 (0.01) 0.86 (0.01) 1 (0) 0.114 (0.04) 69.23

Example 2
n=200
p=50
t=50

0.81 (0.01) 0.88 (0.01) 1 (0) 0.34 (0.05) 53.66

Example 3
n=500
p=100
t=20

0.91 (0.001) 0.94 (0.001) 1 (0) 0.05 (0.02) 190.23

Notes: Simulation result comparisons between Bayesian and Frequentist methods

with strong statistical power for research on potential biomarkers in AD incidence, diagnosis, and

disease progression. ADNI data available at this time include three projects: ADNI-1, ADNI-GO,

and ADNI-2. Starting in 2004, ADNI-1 collected prospective data on cognitive performance, brain

structure, and biochemical changes every 6 months. Participants in ADNI-1 included 200 CN, 200

MCI, and 400 AD patients. Then, starting in 2009, ADNI-GO continued the longitudinal study of
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the existing patients from ADNI-1 and established a new cohort that included early MCI patients,

who were enrolled to identify biomarkers manifesting at earlier stages of the disease. ADNI-GO

and ADNI-2 together contain additional MRI sequences plus perfusion and diffusion tensor imag-

ing. The volumetric estimation for our data set was performed using FreeSurfer by the UCSF/SF

VA Medical Center.

Considerable research has been conducted to develop automatic approaches for patient classi-

fication into different clinical groups, with many ADNI studies identifying ROIs associated with

different disease stages. A support vector machine (SVM) is a primary tool utilized in many studies

to evaluate the patterns in training data sets and to create classifiers to identify new patients. Fan et

al.[34] used neuroimaging data to create a structural phenotypic score reflecting brain abnormalities

associated with AD. In classifying AD vs CN, a positive score in their framework identified AD-like

structural brain patterns. Their classifier obtained 94.3% accuracy in AD vs CN, although their

approach used only left and right whole brain volumes as potential predictors. Some researchers

have used Bayesian statistical methods in studying Alzheimer’s data. Shen et al.[110] employed

a sparse Bayesian learning method, which they named automatic relevance determination (ARD)

and predictive ARD, to classify AD patients. This method outperformed an SVM classifier. Yang

et al.[130] proposed a data-driven approach to the automatic classification of MRI scans based on

disease stages. Their methodology was broadly divided into two parts. First, they extracted the

potentially classifying features from normalizedMRI scans using independent component analysis.

Next, the separated independent coefficients were applied for the SVM classification of patients.

In contrast to this approach, our proposed method selects important components and classifies pa-

tients simultaneously. Moreover, we consider multiple brain sub-regions to identify those potential

regions whose longitudinal trajectories are specifically related to AD. Another seminal paper by

Jack et al.[58] used MRI-based measurements of hippocampal volume to assess the future risk of

conversion from MCI to AD. A bivariate model included hippocampal volume and other factors

like age and APOE genotype, but only hippocampal volume was identified as significant. Wang
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et al.[123] employed a functional modeling approach using Haar wavelets and lasso regularization

to find ROIs in voxel-level data. In that approach, large Haar wavelet coefficients were related to

most important features, with a sparse structure among redundant features. The majority of these

methods are based on SVM classification, which often uses kernel-based methods for functional

smoothing. Casanove et al.[19] utilized a penalized logistic regression approach, and they calcu-

lated estimates using coordinate-wise descent optimization techniques from the GLMNET library.

Similarly, our method employs penalized logistic regression with group lasso penalty. However,

our approach differs in its use of both functional predictors and a custom algorithm developed

in-house.

We consider the longitudinal volume of various brain regions, such as the Para hippocampal

gyrus, cerebellar cortices, entorhinal cortex, fusiform gyrus, and precuneus, among many others.

Although the accessed ADNI data set includes corresponding volume, surface area, and cortical

thickness information, we work with only the volume information to acquire uniformity over lon-

gitudinal predictors. Because the brain is divided into right and left hemispheres, the data includes

sub-regional brain volumes for both hemispheres. Our main objective is to identify the brain sub-

regions whose volumetric trajectories can differentiate AD patients from the normal aging control

group. As mentioned in the introduction, dementia is associated with widespread brain atrophy,

although the time course and magnitude of shrinkage varies across regions.

The initial sample includes 761 patients’ data from the ADNI database, classified as AD, MCI,

or CN throughout their visits for the study. We exclude all patients classified as MCI, and any AD

or CN patients whose diagnostic status changed over time. This is because our model assumes

that response does not depend on time. Of the remaining patients, we include those with data

from at least four longitudinal measurement occasions. This yields 296 patients who have at least

four data points and unchanging diagnoses of either AD or CN. The final sample is composed

of 174 AD patients and 122 normally aging controls. All patients underwent a thorough initial
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Table 4.2: Patients Baseline Characteristics

AD CN p-value
n 174 122

Age (Mean ± sd) 74.76 ± 7.23 75.61 ± 5.45 0.25
Gender (F/M) 69/105 55/67 0.35

MMSE (Mean ± sd) 25.43 ± 2.40 28.96 ± 1.17 <.0001
ADAS11 (Mean ± sd) 14.78 ± 5.44 5.95 ± 2.94 <.0001

APOE (+/-) 119/55 30/90 <.0001

Notes: Comparison of Baseline Age, Gender ratio, MMSE score, ADAS11 score and APOE ratio between
AD and CN groups

clinical evaluation to measure baseline cognitive and medical scores, including MMSE, the 11-

item Alzheimer Cognitive Subscale (ADAS11), and other standardized neuropsychological tests.

In addition, at baseline, APOE genotyping information was obtained from patients. Longitudinal

structural MRI scans were parcellated into sub-regional brain volumetric measurements. Our initial

model includes 49 sub-regional brain volumes chosen by Dr. Andrew Bender, based on knowledge

of the extant literature regarding atrophy patterns in AD. Although these 49 sub-regions are not

assumed to change in uniform magnitude, the direction of change over time is hypothesized to be

consistent (i.e., shrinking). Thus, the model includes 49 longitudinal predictors that we consider

as functional predictors. We assume that not all predictors are potential candidates for classifying

patients, and that the sparse assumption is valid. However, because some patients’ visits were

irregular, we do not have an equal number of time points across patients. We start by comparing

the baseline measurements between the AD and CN groups, as shown in Table 1.

In the next stage, we smooth the longitudinal trajectories for the observed volumes of all brain

sub-regions. A simple least squares approximation is sufficient, as we assume that the residuals of

the true curve are independently and identically distributed with mean 0 and have constant variance.

We use the cubic B-spline basis functions for spline smoothing of observed volumes. Three internal

knots are used for spline smoothing with intercept, which gives us seven basis functions. We seek

to ensure that the smoothed estimated curve is a good fit for each patient’s observed curve. As
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we do not have a large number of data points for each patient, we do not consider controlling for

potential overfitting of our estimated curve. Besides least squares smoothing, functional principle

component scores can also be used for this analysis.

Prior to analysis, we scale the brain volumes to the corresponding patient’s brain ICV mea-

surement by fitting a simple regression to adjust volume measurements for individual brain volume

changes. The aim is to remove systematic variation in brain volumes due to differences in physical

size. The formula we use is ROIadj = ROIvol − β0(ICV − ICVmean), where β0 is the regression

coefficient by regressing ROIvol on ICV [103] [59]. We adjust or correct the volumes using the

above method for each gender group: male and female. Next, we scale the corrected volumes

between 0 and 1 to bring all brain regions onto the same scale. We then divide the data set into

two parts: two-thirds of the patients are reserved for the training data set (n=198), and the rest are

kept for testing (n=98). We gather the basis coefficients for each patient in the training data set and

use them as predictors for classification. We initialize choice of β with all zero to start iterations.

The π0 probability has a Beta(a,b) distribution with a and b both set up as 1. As a first step,

we examine λ using Pólya-Gamma transformation of our sample with a spike-slab penalty on the

training data. After estimating λ, we evaluate the remainder of the algorithm on the training data

with 30,000 MCMC samples. The first one-third of observations are left out as a burn-in period.

We propose a spike-and-slab prior on the β coefficient, which transforms into posterior estimates

of zero for most the functional predictors. We run our model 100 times with different training

samples to nullify sampling bias in the training and test data. In the 100 iterations, the model does

not consistently or uniformly select many of the brain sub-regions; therefore, we choose the brain

regions that frequently appear as significant in each iteration. The median thresholding selects the

left hippocampus, left lateral orbitofrontal cortex, and left posterior cingulate gyrus with 100%

probability. Other brain regions that are selected as important are the right Para hippocampal gyrus,

left caudate nucleus, left medial orbitofrontal cortex, left putamen, left superior temporal gyrus,

left thalamus, right hippocampus, and right middle temporal gyrus. In Figure 2, we plot the brain
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volume changes of the left hippocampus, left lateral orbitofrontal cortex, and left posterior cingulate

gyrus over time. Orange and green signify the normal aging and dementia group, respectively. The

bold thick line represents the mean curve for the corresponding group. The plot shows that there

are significant differences in volume between the groups, and our model identifies these regions

as significant. In Figure 3, we plot the acceptance probability of the MCMC sample for the left

hippocampus and left lateral orbitofrontal brain regions.

Themethod classifies patients into the correct groupwith 77% accuracy. We achieve 72% sensi-

tivity, 85% specificity, and a corresponding AUC of 0.87. We use the median predicted probability

from the training sample as the threshold for classification validation. We also test the classification

by adding clinical measurements such as the ADAS11 (11-item Alzheimer Cognitive subscale),

MMSE scores, "CDRSB," "RAVLT immediate," and "RAVLT forgetting,” measured over time. In

this classification, we initially select longitudinal brain volumes that are significant, and then we

add the clinical variables. We achieve very high classification measures of 97% accuracy, 97%

sensitivity, and 98% specificity. If we ignore the MMSE score and run the model with the rest of

the functional predictors, we observe similar classification accuracy. In all scenarios, we model

diseased patients as 1 and CN as 0 for the interpretation of classification sensitivity/specificity.

In addition to finding functional models of longitudinal trajectories in sub-regional brain vol-

umes to differentiate between the AD and normal groups, we also apply our method for MCI

converters vs MCI nonconverters. We select patients who entered the study as MCI, and we assign

the label of MCI nonconverter (MCI-nc) to those who did not transition to AD across all mea-

surement occasions and a label of MCI converter (MCI-c) for any who did transition to AD. The

total subsample includes 163 patients who were either MCI-c or MCI-nc. We use three-quarters

of the patients to train our model. We note the significant brain ROIs that are selected after 100

iterations. Among the selected ROIs that contribute to classification are the right posterior cingulate

gyrus, right superior parietal cortex, right thalamus, right isthmus cingulate gyrus, right fusiform
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Figure 4.2: Brain volume changes of Left Hippocampus, Left Lateral Orbitofrontal cortex, and
Left Posterior Cingulate over time for Normal and Dementia patients
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Figure 4.3: Acceptance probability of MCMC sample for Left Hippocampus and Left-Lateral
Orbitofrontal brain regions

gyrus, left thalamus, and left precuneus. However, the classification performance is not as good

as compared to the previous model: 62% accuracy and 0.66 AUC. The biological explanation for

this result is critical to acknowledge. The mean difference of functional predictors between MCI-c

vs MCI-nc is not significant for segmenting patients. Moreover, we also neglect some time points’

data for this set of patients.

4.8 An alternate modeling Proposal:

It is always important in penalization setups to protect strong signal estimations. We should

control over-shrinkage of the selected group coefficients with lesser bias. Hence, we propose a

horseshoe prior (Carvalho et al.,2009[17]) within the spike-slab structure. This setup provides

a heavy-tailed distribution for the slab part. We propose a normal prior for the slab part with
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(a) Left Hippocampusa (b) Posterior Singulatea

(c) Middle Temporal Gyrusa (d) Left lateral orbitofrontal cortexa

Figure 4.4: Pictorial representation of selected brain ROI’s discriminating diseased group from
normal control
a Plot obtained from on-line resources

two hyper-parameters controlling local and global shrinkage. We compare the corresponding

penalization on group coefficients with our main proposed penalization from the previous section.

We contrast the results of applying bothmethods on theADpatients. Below, we report an alternative

exploratory setup:

β j/λ j1, .., λ jq, τj, π0 ∼ (1 − π0)Nq(0, τ2
j DΛ j

) + π0δ0(β j), j = 1, .., p

λ j k ∼ C+(0,1), k = 1, ..,q

τj ∼ C+(0,1), j = 1, .., p (4.14)
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where DΛ j
= diag(λ2

j1, .., λ
2
jq). We can also develop an efficient Gibbs sampler to update the

model parameters from the corresponding full conditional distributions:

β j/rest ∼ (1 − l j)Nq(β̄ j, Σ j) + l jδ0(β j), j = 1, .., p
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} (4.15)

It is also important to sample the global and local scale parameters λ j k ’s and τj’s efficiently.

Polson et al.,2014[98] provided an efficient slice sampling scheme which can acquired for our

setup. We define α j k = λ
−2
j k , and sample u j k/α j k ∼ Uni f orm

(
0, 1

1+α j k

)
and next we sample

from α j k/u j k ∼ E xp(2τ2
j /β

2
j k )I(α j k <

1−α j k
α j k
).

4.9 Discussion:

This chapter discusses the use of Bayesian group lasso penalization combined with Pólya-

Gamma augmentation to build a simultaneous classification and selection method. The Bayesian

spike-and-slab prior helps in identifying functional parameters generated from longitudinal tra-

jectories of multiple brain ROIs, and discriminates the patient group from normal controls. The

inclusion of Pólya-Gamma augmentation helps avoid the Metropolis-Hastings algorithm or the

incorporation of other expensive sampling algorithms related to latent variables. We consider the

longitudinal brain ROI volume measurements as functional predictors, and the cubic basis splines

smooth the curves over time. The next steps include using those smoothed functional predictors as

discriminating inputs with sparsity assumptions among them.

Our method performs very well on simulated data sets, outperforming available frequentist

methods. Furthermore, our method is applied on a data set that has a large number of predictors. We

have one more strong assumption for the functional predictors: namely, that they are independent of
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each other. As our prior setup does not account for any correlation structure among predictors, this

method will not work well for highly correlated functional predictors. To handle this incompetency,

we also proposed an alternative prior structure in Section 4.8, but we did not compare its results to

those of our original method. This will serve as the basis for further research.
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CHAPTER 5

BAYESIAN SPATIOTEMPORAL CLUSTERING MODEL FOR ANALYZINGWHITE
MATTER DATA

5.1 Spatiotemporal Linear mixed effects modeling for the distribution of
cerebral white matter on MRI scans

5.1.1 Introduction

Bernal-Rusiel et al., 2013[12] introduced a linear mixed effects (LME)model for mass-univariate

analysis of longitudinal neuroimaging data. They tried to exploit the spatial structure of the cortical

thickness in the brain’s sub-regions using a spatiotemporal setup. Before that, Bernal-Rusiel et al.,

2012 [11] used a similar approach with an LME model but for longitudinal modeling; they built a

base for the extension of space information. We seek to develop a similar spatiotemporal model with

a different research question and a completely distinct application. Spatiotemporal modeling has

not been studied extensively in the literature regarding longitudinal white matter (WM) changes for

healthy aging with diffusion tensor imaging (DTI). Bender et al. 2016[10] compared age -related

changes across brain regions and identified the influences of age, vascular risk at the baseline on

WM diffusion. They conducted a seven-year follow-up study to establish that diffusion properties

in association with WM tracts deteriorated with age. Due to the limited study of spatiotemporal

association with changes in WM integrity obtained by fractional anisotropy (FA), we work with

data from healthy middle-aged and older adults. Some authors have reported evidence of brain

region shrinkage with aging (Raz and Rodrigue, 2006[104];Raz and Kennedy, 2009[102]). In

contrary, very little is known about age-related changes in structural properties of cerebral WM,

which varies at different rates in various parts of the brain. Diffusion tensor imaging provides

principal directions from diffusion tensor eigenvalues, one of which is fractional anisotropy. Ac-

cording to Montag and Reuter, 2015[92], "Fractional anisotropy (FA) is a scalar value between

zero and one that describes the degree of anisotropy of a diffusion process. A value of zero means
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that diffusion is isotropic, i.e. it is unrestricted (or equally restricted) in all directions. A value of

onemeans that diffusion occurs only along one axis and is fully restricted along all other directions."

The literature on longitudinal neuroimaging analysis is vast; in the following, we mention

some of the significant studies that have been done in the last few years. Asami et al., 2011[5]

studied longitudinal loss of gray matter among schizophrenia patients. They established a clinical

correlation with gray matter decay. They used a high-dimensional warping and individualized

baseline-rescan to measure longitudinal volume changes within subjects, and they performed a

comparison with time-varying manual ROI analysis on the same subjects. Chetelat et al., 2005[25]

found the highest rates of atrophy in the anterior, inferior, middle, and medial parts of the temporal

lobes in their study of the dynamics of gray matter changes for patients transitioning from mild

cognitive impairment (MCI) to Alzheimer’s disease (AD). On the other hand, Fjell et al., 2009[35]

worked with healthy aging subjects, similar to those in our experiment. They found that changes

in brain structure can occur within one year and that atrophy accelerates with the advancement of

age. Although longitudinal studies have yielded some novel discoveries, they have not answered all

questions regarding brain image data. Moreover, most statistical methods are not enough to capture

the real system. Bernal-Rusiel et al., 2012 [11] implemented an LME model to analyze brain

sub-regions’ cortical thickness in Alzheimer’s patients. They performed hypothesis testing of the

regression coefficients, calculated the sample size, and derived statistical power. In longitudinal

studies, researchers broadly focus on two methodologies. The first is the repeated measure of

variance and secondly the cross-sectional study after aggregated data. We previously conducted a

separate study with longitudinal data by assuming brain volume changes as a function of time, and

we used estimated functions as potential predictors for classification; themanuscript is under review.

The aim of this article is to apply an LME model for longitudinal data where space information

is considered as an additional effect. The LME method captures the covariance structure of brain

voxels properly for serial measurements. It also has the ability to impute missing responses for any
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time point. We work with a balanced data case, but the extension of the methodology to unbalanced

data is trivial. We obtain our data in the “nifty” image format, and each pixel of the image has

location coordinates. We want to find regions in the brain that have homogeneous properties, which

will help us to track region-wise longitudinal changes instead of voxel-wise analysis. Several previ-

ous studies have examined longitudinal changes for voxel-level data (Zipunnikov et al., 2011[137],

Zhang et al., 2009[135], Skup et al., 2012[114], Shinohara et al., 2011[112]). However, most of

these works employ voxel-based analysis and do not account for spatial information. Bernal-Rusiel

et al., 2013[12] apply their work to a different problem with cortical thickness measurements, but

their covariance structure works nicely for our WM DTI data as well. As our motivation is to work

with homogeneous brain regions and to track changes in fractional anisotropy WM measurements

in relation to subjects’ demographic and clinical factors, we work with the K-means algorithm.

We consider each voxel’s location, measurements, and predictive response values as clustering at-

tributes for voxel-wise analysis. The homogeneous regions offer a scope to build a spatiotemporal

model separately for each cluster. This strategy has several advantages. Firstly, this is a highly

parsimonious way of building models, such that the number of estimable parameters are much

lesser than voxel-wise models. Secondly, voxel-level models do not consider spatial structure in

the data, which implies that estimators are less informative with lower statistical power. Finally, we

are able to identify brain regions behaving similarly in terms of WM atrophy as the healthy aging

people age.

This chapter is organized as follows. In part 1 of Section 2, we describe voxel-wise model

building, estimation of fixed effect parameters, and temporal covariance structure with respect

to subjects’ time-variant random effects. We calculate residual values for each voxel used as an

attribute in the clustering algorithm. We describe the agglomeration method in part 2, and finally,

we apply the spatiotemporal mixed effect model in part 3. We perform separate inference in part

3 for region-wise reasoning. Section 3 then describes the WM data and how we obtained it from

subjects. Results are described in Section 4, while a final discussion is presented in Section 5.
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5.1.2 Methods

5.1.2.1 Voxel-wise linear mixed effect model

We start modeling with a voxel-wise LME model fitting with WM MRI data. In a longitudinal

study, the outcome variable for, for instance, the fractional anisotropy or cerebral WM in our data is

measured repeatedly for the same individual for a number of times. The aim is to measure changes

in the patients’ response over time and their association with demographic and biological factors,

such as gender, hypertension, MMSE score, and starting age for the study. We fix a spatial location

such as for a fixed particular voxel, we have the leeway to apply a single LME independently for that

particular voxel. One advantage of this modeling is that it can assess the within-subject changes

or correlation across different time points. Voxel-wise LME models have been used in various

studies. For example, Bowman and Kilts, 2003[16] implemented a mixed effect model to analyze

PET data. They acheived improved estimation and inference by considering various covariance

structures to handle correlation among individuals’ repeated scans. Bernal-Rusiel et al., 2013[12]

worked with a voxel-wise mixed effect model; they analyzed longitudinal brain MRI data from

ADNI. The following are other significant papers on these methods: (Delaloye et al., 2008[28],

Lau et al., 2008[71], Shaw et al., 2008[109]). A longitudinal study in a spatiotemporal setup

offers a distinctive understanding; for example, it reflects the temporal trajectory of an underlying

non-stationary continuous process. The correlation between pairs of repeated measures is directly

proportional to the distance between consecutive time points, and between-subject variations are

not constant, which gives us scope to assume a subject-specific covariance structure.

In general, we observe three different variabilities in the covariance structure for voxel-specific

longitudinal measurements. A particular voxel’s WM measurements have (i) between-subject

variability, (ii) within-subject changes over time, and, finally, (iii) a measurement error uniform

with the other two variations. Now, the voxel-wise LMEmodel imposes structure on the covariance

matrix by introducing random effects. In totality, all the above variations are handled with this
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structure except the measurement error, although we believe that measurement error has a direct

influence on the covariance between longitudinal measurements within a subject. The mean

trajectory of WM is modeled with subject-specific fixed effects and time-variant random effects.

In this research article, we consider working with balanced, normally distributed data. Now, let Yi

be the T × 1 vector of serial univariate measurement for a particular voxel for subject i, where T is

the number of time points. Xi is the T × p subject specific design matrix built with fixed effects

(variables such as gender, hypertension indicator, MMSE score, Base Age, CESD score etc.). Let

Zi be the T × q design matrix of random effects (e.g. systolic and diastolic pressure, measurement

time etc.). We consider time-variant predictors as the random effects and the intercept as the fixed

effect. Hence, we can write the model as follows:

Yi = Xiβ + Ziui + εi, i = 1, ..,M (5.1)

ui ∼ Nq(0, σ2
r Dr )

εi ∼ NT (0, σ2IT )

We define

Dr =



1 ρ . . . ρq−1

ρ 1 . . . ρq−2

...
...

. . .

ρq−1 ρq−2 . . . 1


and Xi = 1T ⊗ ®xT

i . The components of ui control the deviation from the population mean for i-th

subject. As we mentioned above, this model structure handles the variability present in longitudinal

data, and εi controls the remaining measurement error. Finally, we assume that we have M number

of subjects/patients.

The subject specific mean of Yi given ui is E(Yi |ui) = Xiβ + Ziui; thus, the vector ui with

fixed effect provides subject specific coefficients. The β regression coefficients are the same for all

individuals. The initial motivation to write about the single voxel longitudinal model was to find
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the temporal covariance matrix for ith subject, and

Cov(Yi) = Σi = σ
2
r ZiDr ZT

i + σ
2IT (5.2)

We can find the unbiased estimates of the unknown parameters β, σr, ρ, σ by maximizing the

log-likelihood function.

Parameter Estimation: In the following, we shortly describe the method to estimate the

unknown parameters mentioned above, as we use the voxel-wise estimation to segment the whole

brain into homogeneous regions. We explain the segmentation method in the next section. Now,

given the normally distributed WM assumptions, the vector of measurements for a particular

subject’s fixed voxel is as follows:

Yi ∼ N(Xiβ, Σi)

If we have the estimates of σ̂r, ρ̂, σ̂, the closed-form solution of β is based on MLE and given as:

β̂ =

( M∑
i=1

XT
i Σ̂
−1
i Xi

)−1 M∑
i=1

XT
i Σ̂
−1
i Yi

Once wemaximize the restricted log-likelihood we can have unbiased estimates of σ̂r, ρ̂, σ̂ (Verbeke

and Molenberghs, 2000[122]):

lReML =
1
2

M∑
i=1

log |Σ−1
i | −

1
2

M∑
i=1
(Yi − Xi β̂)

TΣ−1
i (Yi − Xi β̂) −

1
2

log

����� M∑
i=1

XT
i Σ
−1
i Xi

�����
The solution of the estimates can be obtained by using either the expectation maximization (EM)

algorithm, the Newton-Raphson algorithm, or Fisher’s scoring algorithm. We employ Fisher’s

scoring algorithm to obtain the parameter estimates, and we need some initial estimates to run the

algorithm.

5.1.2.2 Clustering voxels into homogeneous regions using K-means algorithm

Our key aim is to build a spatiotemporal model for homogeneous regions in the brain. Homo-

geneous regions or clusters contain voxels that are similar in terms of cerebral WM, location in
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the brain, and quantitative relationship with the subjects’ demographic/biological factors. Once

we obtain homogeneous regions in the brain from the clustering algorithm, we can assume that

temporal variance is shared among all voxels present in a particular region. The K-means algorithm

we implement is a universal method and completely data-driven. Our goal is to partition the voxels

into k-uniform clusters C1,C2, ..,Ck such that i) Ci ∩ Cj = φ for i , j and ii) elements of Ci

are homogeneous based on some conditions. We now list the conditions we consider to run the

K-means algorithm.

We first calculate the coefficient of variation of a particular voxel based on all the longitudinal

observations present for all subjects. In our study, we have M ∗ T number of cerebral WM

measurements for each voxel, and we calculate CVv = sdv
meanv for each voxel. We use the CV and

mean measurement for each voxel in the K-means algorithm. Next, we calculate the residuals for

each voxel by fitting the mixed-effect model described in the last section. Once we estimate the

parameters for the temporal covariance matrix and fixed effect regression coefficients, it is easy to

compute residuals for each voxel. In addition, we have one more piece of directional information

for FA measurements over voxels. This information helps us to collate voxels whose WM changes

are in a uniform direction. Finally, we calculate the polar coordinates of the three-dimensional

voxel locations from their Cartesian coordinates using the following formula:

r =
√

x2 + y2 + z2, θ = tan−1(
y

x
), φ = cos−1(

z
r
)

The K-means algorithm starts by defining a dissimilarity matrix as an input. In our data, we

have measurements xi j for i = 1,2, ..,N and m = 1,2, ..,m where N is the number of active voxels

in the brain with positive WM measurements and m is the number of attributes considered for a

particular voxel. We use five attributes to cluster the voxels. We define the dissimilarity matrix

between voxel i and i’ as

D(xi, xi′) =
m∑

j=1
d j(xi j, xi′ j)

Most of the common choices are Euclidean distances: d j(xi j, xi′ j) = (xi j − xi′ j)
2 or Manhattan
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distance: |xi j − xi′ j | or based on correlation:

ρ(xi, xi′) =

∑
j(xi j − x̄i)(xi′ j − x̄′i )√∑

j(xi j − x̄i)2
∑

j(xi′ j − x̄′i )
2

As shown in Hastie et al., 2009[47], if the attributes are standardized, then
∑

j(xi j − xi′ j)
2 ∝

2(1 − ρ(xi, xi′)). Hence, we use Euclidean distance to implement K-means clustering.

5.1.2.3 Cluster based Spatiotemporal linear mixed effect models

Spatiotemporalmodels that consider a temporal covariancematrix and that are shared among spa-

tial locations have been studied in the functional neuroimaging literature for a long time. Bowman,

2007[14] described a framework for spatiotemporal modeling by defining a functional distance

metric in the model to perform voxel-wise inference. The distance metric reflected bonding be-

tween voxels based on functionality rather than proximity. The spatiotemporal model estimated

temporal and spatial correlations in a given region (ROI). Later, Bowman et al., 2008[15], proposed

a spatial Bayesian hierarchical model for analyzing functional neuroimaging data. They built the

hierarchical model after anatomical parcellation of the brain consisting of 116 regions. Derado

et al., 2012[29] also worked with a multivariate Bayesian hierarchical model, where a Gaussian

prior was imposed on a voxel-specific population-level mean parameter separately for a baseline

and a follow-up session. Next, the wishart prior on the inverse covariance matrix of subject specific

measurements for a particular voxel provides estimators. Woolrich et al., 2004[127] presented a full

Bayesianmodeling approach to handle spatiotemporal noise modeling and haemodynamic response

function (HRF) modeling. They implemented a simultaneously specified autoregressive model in

which the spatial noise structure would remain the same over time. Although this method precisely

estimated the parameters and grasped the spatiotemporal dependency, it was important to model the

spatial covariance matrix among those locations of voxels present in a particular cluster. Moreover,

the proposed voxel-wise model or prior did not account for the inter-voxel correlation. The authors

assumed that responsive voxels are spread over the whole brain and that the temporal covariance

matrix is a scaled version of a global covariance structure matrix. We aim to model our cerebral
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WMdata with a similar assumption as in Bernal-Rusiel et al., 2013[12], for twomain reasons. First,

we believe that the temporal covariance structure is likely to be different in different segments of

the brain and that it needs to be modeled separately for each cluster of voxels. Second, inter-voxel

correlations depend on the location of the voxels; for example, voxels in close proximity share

similar behavior at different stages in various disease processes. The spatiotemporal covariance of

the cerebral WM for a particular brain segment is a product of both the spatial covariance of the

voxels present in that region and the temporal covariance of a particular patient whose parameters

are different for different regions. The spatial structure presented in Bernal-Rusiel et al., 2013[12]

is inspired from Bowman, 2007[14]. Bowman, 2007[14] proposed the alternate strategy of using

a spatiotemporal model to estimate spatial and temporal correlations in a given ROI. We assume a

similar spatial covariance matrix captured through a parametric matrix that models the dependency

as an exponential transformation of the distance between voxels given a region/cluster.

Our assumption is that a temporal covariance structure is shared among voxels within a homo-

geneous region obtained from the K-means algorithm. The parametric covariance structure that

controls the dependency between voxels in a region solely depends on the distance between those

voxels. We consider a homogeneous parcellation of the brain consisting of g = 1, ..,G regions. Let

g be the region/segment/cluster in which we are interested and vg be the number of voxels present

in the gth cluster. Let Yig be the (T ∗ vg) × 1 vector of measurements for WM for ith subject. As

we defined in section (2.1), we have M number of patients, with each patient having T time points

of observations (balanced case). We can expand the Yig vector as-

Yig =



Yig1

Yig2
...

Yigvg


where Yigv is the T × 1 vector measurements of vth voxel for patient i. We assumed similar
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covariance matrix used by Bernal-Rusiel et al., 2013[12] for Yig as-

cov(Yig) = Wig = Gg ⊗ Σig =



Gg11Σig Gg12Σig . . .Gg1vgΣig

Gg21Σig Gg22Σig . . .Gg2vgΣig
...

...
...

Ggvg1Σig Ggvg2Σig . . .GgvgvgΣig


where ⊗ is the Kronecker product, and Σig = σ

2
rgZiDrgZT

i +σ
2
g IT from equation (2) is the temporal

covariance matrix for ith patient in gth cluster. Gg is the vg × vg spatial covariance matrix that

accounts for the correlation between voxels present in the gth cluster. Similarly, we used the spatial

structure proposed in Bernal-Rusiel et al., 2013[12] which is empirically useful:

Gg =



1 exp−agd12−bgd2
12 . . . exp

−agd1vg−bgd2
1vg

exp−agd21−bgd2
21 1 . . . exp

−agd2vg−bgd2
2vg

...
...

...
...

exp
−agdvg1−bgd2

vg1 exp
−agdvg2−bgd2

vg2 . . . 1


where ag, bg ≥ 0 are unknown parameters and d j k is the Euclidean distance between voxels j &

k in the gth cluster. Hence, the joint distribution of the Yigv vector of WM measurements in gth

cluster follows:

Yig ∼ N(Xigβig,Wig), (5.3)

where Xig = Ivg ⊗ Xi is (vg ∗ T) ⊗ (vg ∗ p) matrix and

βg =
(
βg11, . . . , βg1p, βg21, . . . , βgvg1, . . . , βgvgp

)T

is a (vg ∗p)×1 stacked vector of fixed effects which gives separate fixed effect estimates for each

voxel present in gth cluster. Finally, wewill workwith restricted log-likelihood and Fisher’s Scoring

method to estimate the parameters associated to covariance matrix Wig i.e. (σgr, ρg, σg,ag, bg).

The restricted log-likelihood is:

l =
1
2

M∑
i=1

log |Wig | −
1
2

M∑
i=1
(Yig − Xig β̂g)

TW−1
ig (Yig − Xig β̂g) −

1
2

log |
M∑

i=1
XT

igW−1
ig Xig |,
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where β̂g =
[∑M

i=1 XT
igŴ−1

ig Xig

]−1 ∑M
i=1 XT

igŴ−1
ig Yig is the least square estimator. One more ad-

vantage of segmenting the brain or clustering homogeneous voxels together is that it reduces the

number of parameters to estimate. In the situation of voxel-wise model building, we are required to

estimate parameters for the covariance matrix for each voxel, whereas in this situation we estimate

(σgr, ρg, σg,ag, bg) only for G number of regions.

Fisher’s scoring algorithm starts by calculating partial derivatives and expected information

matrix for each iteration to update parameter estimates:

θ(k+1) = θ(k) + I−1(θ(k))
δl
δθ
|
θ=θ(k)

Let’s define θg = (σgr, ρg, σg) and sg = (ag, bg). Next, define

Mig j =
δΣig

δθg j
, Hg =

M∑
i=1

XT
i Σ
−1
ig Xi, Fgk =

δGg

δsgk

β̂g =

M∑
i=1

(
Ivg ⊗ H−1

g XT
i Σ
−1
ig

)
Yig, and rig = Yig − Xig β̂g

Then the partial derivatives of the restricted log-likelihood functions are:

δl
δθg j

= −
vg

2

M∑
i=1

(
tr(Mig jΣ

−1
ig ) +

1
2

rT
ig(G

−1
g ⊗ Σ

−1
ig Mig jΣ

−1
ig )rig

)
+
vg

2
tr(H−1

g

M∑
i=1

XT
i Σ
−1
ig Mig jΣ

−1
ig Xi)

δl
δsgk

=
1
2

M∑
i=1

rT
ig

(
G−1
g FgkG−1

g ⊗ Σ
−1
ig

)
rig −

(M ∗ T − p)
2

tr(FgkG−1
g )

The individual entries of Fisher’s Information matrix for gth cluster is described below:

Ig(θg j, θgk ) =
vg

2

( M∑
i=1

tr(Σ−1
ig Mig jΣ

−1
ig Migk ) − tr(H−1

g (2Qg j k − Pg j H
−1
g Pgk ))

)
Ig(θg j, sgk ) =

1
2

tr(FgkG−1
g )

(( M∑
i=1

tr(Σ−1
ig Mig j)

)
+ tr(H−1

g Pg j)

)
Ig(sg j, sgk ) =

(M ∗ T − p)
2

tr(Fg jG
−1
g FgkG−1

g ),
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Table 5.1: Subject Characteristics

Baseline
variables

Women
Mean (sd)

Men
Mean (sd) p-value

Age 62.60 (8.51) 63.62 (9.61) 0.825
MMSE 28.50 (0.92) 29.12 (1.35) 0.30

%Hypertension 37.5% 25% 1
Systolic BP 133.75 (9.4) 128.81 (7.8) 0.27
Diastolic BP 78.65 (7.5) 76.93 (8.5) 0.67

ED 15.5 (3.11) 17.87 (2.8) 0.13
% Smoker 0% 12.5% 1

p-values computed for two-sample t-test or test of association, sd=standard deviation

where Qg j k =
∑M

i=1 XT
i Σ
−1
ig Mig jΣ

−1
ig MigkΣ

−1
ig Xi, and Pg j =

∑M
i=1 XT

i Σ
−1
ig Mig jΣ

−1
ig Xi After we

input all the necessary terms in the iteration parameters do converge after sixth or seventh step.

5.1.3 WM Data

The subjects in this study were from the Midwestern part of the United States. They were no

younger than 50 during their first visit. All subjects had three longitudinal measurements, simpli-

fying the problem to a balanced case. In total, 16 patients participated. Subjects were screened

for history of psychiatric and neurological disorders or any heart disease, whether hypertension or

not. They were then screened for cognitive impairment using the Mini Mental Status Examination

(MMSE) for symptoms of depression. The sample comprised 16 healthy subjects (50% women)

who were between 50 and 80 years old (mean=62.6, sd=8.51 years). The men and women did not

differ in age, MMSE, hypertension, or systolic and diastolic pressure. We present the demographic

and clinical characteristics in Table 1; the corresponding p-value confirms that there was no gender

bias in the sample. Moreover, the proportion of smoking, regular exercise, and diagnosed hyper-

tension did not differ based on gender.

MRI scans were obtained at three separate time points (T3, T2, and T3), and the DTI sequence
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Figure 5.1: Change of WM across Z-axis from top-left to bottom-right Z-slice 15,30,45,60

was initiated on the first occasion (T1). The mean differences between each time point are: mean

T1-T2=15.56, SD=1.03 months; mean T2-T3=15.06, SD=2.8 months. The subjects were scanned

using a 1.5T Siemens Magnetom Sonata scanner. One image has a voxel size 1.8 × 1.8 × 3 mm3.

In total we have 182 × 218 × 182 slices of ’nifti’ image with 48 number time points (#patients ×

time points). We have plenty of extraneous slices in our data which are the outer side of skull and

extra-cranial tissues. In order to process the data we need to remove those empty slices. We used

neurobase::dropEmptyImageDimensions function to reduce the dimension with reduced proportion

as 121 × 157 × 100. The voxel-wise measurement changes across the z-axis and Figure 5.1 has a

representation of how image changes if we move from head to toe.

The voxel-wise measurement changes across the z-axis. Figure 5.3 shows the orthographic view

of the reduced “nifti” image in three different planes for a single time point, as well as the voxels

whoseWMmeasurements are greater than 0.5. This gives us a scope to investigate brighter regions

and voxels with lower WM intensity. We are more interested in the WM analysis and in studying

WM distribution. After masking the first time point’s image, we examine the density plot of the

data. Figure 5.2 shows that WM measurements follow approximately a bell shaped distribution,
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Figure 5.2: white matter histogram with density
plot

Figure 5.3: white matter measurement greater
than 0.5

Figure 5.4: voxels’ directional density Figure 5.5: 2-dimensional distributions of T1 &
T2 imaging sequence

with values between 0.2 and 1. This finding helps us to assume a Gaussian distribution for the

response variable. We also want to compare image files for different time points and to calculate the

correlation between consecutive occurrences. Figure 5.5 presents a two-dimensional distribution

of T1 and T2 imaging sequences against each other. We also have another nifti object, which

contains the directional information about FA measurement changes. The directional values range

from -1 to 1, as plotted in Figure 5.4. Voxels with close directional values have similar properties

regarding change in WM/FA values.
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Figure 5.6: Residual vs predicted plot

Figure 5.7: Within sum of squares by number of
clusters

5.1.4 Results

We start our analysis with voxel-wise model fit. We work with a linear mixed effect model,

where we use eight factors as fixed effects and two time-variant variables as random effects. The

following fixed effects are considered: gender, hypertension indicator, MMSE score, and baseline

age, systolic pressure, diastolic pressure, ED, and smoking indicators. We have few longitudinal

observations for each patient, which limits us to the use of two time-variant random effects, such

as systolic and diastolic pressure, in the model. We consider the intercept as the fixed effect.

Coefficients are estimated using Fisher’s scoring method, where each voxel has separate estimates

for (β,σ2, σ2
r , ρ) and a best predictor (BP) for ûi. Our key aim is to calculate residuals for each

voxel to use as attributes for the clustering algorithm. We check the randomness of the residuals

with respect to the voxel-wise predicted response for each patient and each time point. The plot in

Figure 5.6 shows no pattern in residual values.

We start our clustering algorithm by calculating each voxel’s coefficient of variations, mean,

residuals, and directional values, and the polar coordinates of the three-dimensional voxel location.
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Figure 5.8: Segmentation of brain into similar regions

We then use the K-means algorithm to segment the brain into 3,000 clusters with a maximum

cluster size of 258 voxels. We check the within sum of squares over the number of clusters in

Figure 5.7, and 3,000 is the optimal point for minimum WSS (within sum of squares) to have a

significant number of voxels present. The average cluster size is around 105 voxels. Once we

obtain each voxel’s cluster number, i.e. the cluster to which it belongs, we feed the corresponding

number to that voxel as an input. We visually examine how voxels are clustered together in each

hemisphere. Note that, voxels in same region have four major attributes: mean WM, variation in

WM over time, residual values, and location of the voxels. We plot the same brain slices in Figure

5.8 as we used in Figure 5.1 (z-axis: 15, 30, 45, 60) with cluster position numbers. Based on the

visual representation, we can claim that voxels close to similar WM belong to an analogous region.
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Figure 5.9: Fisher’s scoring method convergenceFigure 5.10: Estimated parameters plot for all
clusters

In the next step, weworkwith spatiotemporal linear mixed effects with the same set of predictors

used in voxel-wise longitudinal models. However, this time we consider all the voxels present in

a cluster. Firstly, we estimate parameters (σ2
r , ρ,σ

2,a, b) related to random effects, measurement

error, and the spatial covariance matrix that controls the spatiotemporal covariance matrix. We

use Fisher’s scoring algorithm to estimate these parameters, and all parameters converge within 20

iterations. We inspect the convergence of parameters for cluster 1 in Figure 5.9. Our motivation

behind segmenting the brain is to find regions whose voxels are similar to each other and the clusters

that differ from each other. To study how much variability we observe from one cluster to another,

we plot the estimated parameters for all 3,000 clusters in Figure 5.10. Visually, we can identify that

the correlation estimates differ from one cluster to another.

Finally, we discuss our pivotal interest in estimating β components. As we have mentioned

before, Yig ∼ N(Xigβig,Wig) and β̂g =
[∑M

i=1 XT
igŴ−1

ig Xig

]−1∑M
i=1 XT

igŴ−1
ig Yig is the least square estimator, where βg is a (vg ∗ p) × 1 vector. This implies that

for a particular cluster, we will obtain vg set of β(p × 1) estimators, where the first component is

the intercept and and the rest of the components belong to the corresponding fixed effect. Note

that vg is the number of voxels present in gth cluster. Similar to the previous approach, we study

the histograms of beta components over different clusters. We examine two separate figures, one
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Figure 5.11: Histogram of Intercepts Figure 5.12: Histogram of Gender coefficients

for the intercept and another for the gender coefficient, in Figures 5.11 and 5.12, respectively. We

choose clusters 1, 45, 250, and 500 to inspect variability. From the plots, it is clear that voxel-wise

estimates are different among clusters, implying voxel variability over regions.

5.1.5 Discussion

The linear mixed effect model is a powerful tool that has been used here to capture spatiotem-

poral structures hidden in voxel-level data. Bernal-Rusiel et al., 2013[12] proposed this method

for analyzing cortical thickness in brain sub-regions. LME provides a flexible approach to capture

the longitudinal changes and spatial dependence. This method always works better than voxel-wise

longitudinal studies and statistical power increases. To the best of our knowledge, this method

has never before been used to analyze longitudinal WM changes in healthy aging subjects. The

implications of the whole setup can be divided into three parts. i) First, we find the longitudinal

changes of WM in each voxel, and we identify how subjects’ age, gender, hypertension, MMSE

score, and systolic and diastolic pressure relate to these repeated measures. ii) In the next stage, we

find the brain regions that behave similarly with respect to the WMmeasurements, voxel locations,

and voxel-wise model coefficients. This gives us homogeneous regions in the brain to build more

parsimonious models. iii) Finally, we develop an individual model of each of these regions, where
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the covariance matrix is a bi-product of the longitudinal and spatial covariance matrix. We observe

that fixed-effects regression coefficients, estimated variance, and covariance components of random

effects vary from one cluster to another. These give us a scope to study longitudinal changes in

these homogeneous regions rather than in a voxel-wise study.

The main motivation for building this linear mixed effects spatiotemporal model was to work

with Bayesian model-based clustering with some stochastic objective function. In Part A, we used

the K-means algorithm to segment the brain, but we were dissatisfied with the limitations of this

method. One such limitation is that we needed to fix the number of clusters a priori, while this is

most often unknown. Researchers study the within sum of squares to choose an optimal number

of clusters, but it does not have any probabilistic implications. An advantage of the stochastic

objective function is that it incorporates dependence among voxels through spatial and temporal

structures within a cluster. We elaborately formulate the method in Part B.
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5.2 Bayesian Model based clustering in application to Spatiotemporal data

5.2.1 Introduction

Cluster analysis is a modern data mining tool used to group or segment objects into clusters based

on similarity measurements. Many available algorithms have been built based on the particular

criterion that objects within a cluster aremore similar to each other than to objects belonging to other

clusters. Some popular clustering methods are K-means, agglomerative clustering, hierarchical

clustering, and model-based clustering. We focus on model-based clustering in this chapter. A

disadvantage of hierarchical clustering and K-means is that they are model-free heuristic methods.

Model-based clustering is an alternative that provides the option to formulate a model while

grouping objects. Model-based clustering was first introduced by Banfield and Raftery, 1993[6],

who assumed that observations come from multivariate normal distribution and that maximum

likelihood yields the estimates. Fraley andRaftery, 2002[37] introduced the finitemixturemodels as

a formal setting formodel-based clustering. Let y1, .., yn be independently distributed p-dimensional

observations from a K-component mixture distribution:

f (y; τ ,θ) =
n∏

i=1

K∑
k=1

τk fk (yi |θk ) (5.4)

Here, τk is the probability that a particular object belongs to kth cluster, and θk parametrize the

density fk . In general, fk is multivariate normal density, where fk ≡ MV N(µk,Σk). EM algo-

rithm helps us to obtain the estimates of unknown parameters. Melnykov and Maitra, 2010[88]

provided a thorough reference for model-based clustering. One point of subjectivity that is al-

ways attached to cluster analysis is how to decide the number of clusters. Similar to K-means,

model-based clustering needs a specified number of clusters at the start of the algorithm. Fraley

and Raftery, 1998[36] tried to address this question by using model selection criteria. They sug-

gested examining BIC over all possible cluster numbers and choosing the one with the lowest BIC.

In another notable study, Yeung et al., 2001 [131] applied model-based clustering to group gene

expression data. Over time, researchers have included other factors in the model-based approach,
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such as variable selection [101] and penalizing the parameter space θ[95]. All the aforementioned

studies were performed in a conventional statistical framework, without using any prior information

on the cluster structure, the number of clusters, or unknown parameters (τ ,θ). As an exception,

Bayesian model selection has been used to select an optimal number of clusters. Handcock et al.

2007[46] described two methods to estimate unknown parameters. They first used a two-stage

maximum likelihood method, and then they proposed a Bayesian estimation method. In Bayesian

part, parameters have a multivariate normal prior, and the mixture probability τ has Dirichlet prior

with MCMC estimation. Moreover, Fraley and Raftery, 2007[38] published a paper in 2007 in

which they discussed the problems with using the EM algorithm and where it can fail to converge.

Instead of MLE, they preferred to work with a MAP estimator with conventional priors on mean

and covariance parameters, such as MVN on the mean and an Inverse-Wishart distribution on the

covariance matrix. Medvedovic et al., 2004 [86] proposed a contrasting formulation of a Bayesian

mixture-based clustering algorithm for grouping gene expression data with replicates. Interestingly,

the Poisson-Dirichlet process is the most logical and convenient way of assuming priors on the

number of clusters and mixture probability, if one does not want to limit the number of clusters at

the start of the algorithm [70].

The methods and literature described above have various advantages and can be applied to

different complicated problems with which researchers deal. Here, we should reiterate the problem

we are addressing. We aim to build a Bayesian model-based clustering method with the same

WM data used for spatiotemporal modeling in Section 5.1. We have longitudinal voxel-wise WM

measurements for healthy aging subjects, and we want to group voxels into homogeneous regions

considering longitudinal and spatial information. To this end, we review some of the literature

regarding spatiotemporal clustering methods. The field of computer science has worked with this

topic extensively. Kalnis et al., 2005[65] investigated a highly complicated problem of detecting

clusters amongmoving objects that changed locations over time. For example, they clustered trajec-

tories and mined movement patterns for a group of migrating animals or a convoy of cars moving in
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a city. The complexity of this problem is manifold, but we simplify our situation by assuming that

the spatial locations of voxels are fixed over time. Kisilevich et al., 2009[67] described a detailed

study of spatiotemporal clustering on trajectories and provided in-depth research development on

this topic.

In Section 5.1.2.2, we apply K-means clustering of group voxels into homogeneous regions

without any model assumption. In advancement, we seek to build a clustering algorithm that

satisfies the clustering criteria and simultaneously helps us to estimate the regression coefficients

and variance components for each cluster. Section 5.1 presents a two-stage procedure of clustering

objects and then a fitting spatiotemporal model for each cluster. To blend these two processes

together and work closely with the Bayesian clustering structure, we explore the method described

by Booth et al., 2008[13]. They derived an objective function to cluster objects and a stochastic

search process to find the posterior distribution for the number of clusters. We also take advantage

of the parsimonious representation of the mean via regression. Similar ideas were explored in

studies published before Booth et al., 2008’s paper came [51] [48]. In Section 5.2.2, we discuss

the general algorithm of our proposed methodology and model building with posterior derivations.

Section 5.2.3 concerns the stochastic search method to optimize the objective function.

5.2.2 Methodology :

5.2.2.1 The Ewens-Pitman Prior on Cluster partitions :

The basic clustering objective is easy to convey. Let us assume we have n voxels in the brain

observed for M subjects over T time points. We want to group these voxels into clusters that are

independent of subject variation, and the algorithm should consider spatial and temporal covariance

structures together. Voxels belonging to the same cluster are similar to each other whereas differs

widely with members belong to other clusters. As stated in Booth et al., 2008[13], we want to
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find an objective function π : Pn → R+, where Pn is all possible partitions of the n objects.

Partitions must be non-empty sets that do not overlap each other. π assigns a score to each partition

measuring the overall achievement. Equivalently, we need to optimize the objective function π so

that we can obtain the partition with the highest score. That partition will be the best partition given

all circumstances. In addition, we use the same linear mixed effect model as the one described

in Section 5.1.2.3, which considers the spatiotemporal dependence among voxels with other fixed,

random effects. Instead of assuming objects coming from equation (5.4) with fixed K groups, it

is more realistic to assume that there is an unknown partition ω with c = c(ω) as the number of

clusters. We can denote the clusters as C1, ..,Cc and equation (5.4) can be written as-

f (y |θ1, ..θc,ω) =

c(ω)∏
k=1

∏
i∈Ck

f (yi |θk ) (5.5)

with Ci ∩ Cj = Φ for i , j. The introduction of ω leads to uncertainty in the number of clusters

or a probabilistic component attached to each partition. Once we find estimated ω̂, we can fix the

cluster partition with the fullest confidence and find estimated θ̂ for each cluster.

Equation (5.5) draws a general picture of the clustering proposal. Spatiotemporal data needs a

separate covariance structure; we work with the covariance structure mentioned in Bernal-Rusiel

et al., 2013[12]. We used WM data in this covariance structure in Section 5.1. We believe that this

structure accurately captures the dependence between voxels, as well as temporal changes among

time points to model spatiotemporal data in a non-functional way. The objective function that final-

izes clusters’ partition is the posterior distribution π(ω |y), hence we need prior distribution on ω.

The optimization of π(ω|y) is highly computationally challenging work, especially in spatiotempo-

ral data. As stated in Booth et al., 2008[13] if there are n data points to cluster, the total number of

all possible partitions is called the Bell number[116] and is denoted by B(n) = #Pn. B(n) increases

rapidly with n. The table below gives an idea of the relationship between ’n’ and B(n). We have

n 1 2 3 4 5 6 7 8 9 10 40 100
B(n) 1 2 5 15 52 203 877 4140 21147 115975 1.6 × 1035 4.8 × 10115
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around 316,000 voxels to cluster, which is computationally challenging. We also need a stochastic

search algorithm to optimize the objective function. We are still working on building this algorithm.

We now focus on the prior distribution of ω. The posterior distribution π(ω|y) is calculated

using π(ω) and π(θ |ω) with integrating out nuisance parameter θ from the likelihood. It should be

noted that estimates of θ are cluster specific and should depend on ω. We explore the same prior

used by Booth et al., 2008[13] for ω ∈Pn,

π(ω) =
Γ(m)mc(ω)

Γ(n + m)

c(ω)∏
k=1

Γ(nk ), c(ω) = 1, ..,n, ω ∈Pn (5.6)

where nk = #(Ck ) is the number of objects in cluster Ck , n =
∑c(ω)

k=1 nk is total number of objects

in study, and m > 0 is a parameter. This distribution was first used by Crowley, 1997[27]. This

prior is also known as "The Ewens-Pitman Prior"[22]. McCullagh and Yang, 2006[83] presented

detailed mathematical derivation of this prior. Moreover when c(ω) → ∞ this prior is also called

as Chinese Restaurant Process. Parameter ’m’ controls the number of clusters to be formed, and

it increases proportionally. When m→ 0, we can achieve a single cluster with all objects gathered

into it. Similarly, for m → ∞, number of clusters reaches ’n’, which is the same as the number of

objects. As mentioned in Booth et al., 2008[13], the expected number of clusters to be formed if

ω ∼ π(ω) is-

E [c(ω)] = m
n−1∑
i=0

1
m + i

This prior has two other interesting properties:

• Exchangeability: If two partitions (∈ Pn) have same c(ω) and same n1,n2, ..,nc(ω) then

they have exact same probability under π(ω).

• Consistency: Prior probability for a partition based on n objects (ω ∈ Pn) doesn’t depend

on if (n + 1)th element enters into study, i.e. for ω∗ ∈ Pn and S ⊂ Pn+1,
∑
ω∈S πn+1(ω) =

πn(ω
∗) is satisfied.
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Next we will define our assumed model and prior for π(θ |ω). We will calculate posterior of ω as-

π(ω |y) ∝

∫
θ

f (y |θ,ω)π(θ |ω)π(ω)dθ

5.2.2.2 Spatiotemporal Linear Mixed Effects model:

In this part, we focus on the same linear mixed effect model as the one used in Section 5.1.2.3.

Let us assume that yij is the ith voxel’s jth subject’s measurement observed over T time points,

and for fixed ω, yij ∈ Ck = 1,2, ..,nk the kth cluster. Then,

yij = X j βk + Z jui + εi j, f or i = 1, ..,nk andj = 1, ..,M (5.7)

ui ∼ Nq(0, λσ2
k Iq)

εi j ∼ NT (0, σ2
k IT )

XT×p
j is jth subject’s fixed effect design matrix, ZT×q

j is jth subject’s time-variant random effect

matrix, βk is a p-dimensional coefficient vector for kth cluster, ui is the ith voxel’s random effect

associated with jth patient, and εi j is the measurement error. Once we aggregate a single voxel’s

measurement for all M subjects, we obtain

yi = Xβk + Zui + εi, i = 1, ..,nk

cov(yi) = σ
2
k

(
λZ ZT + IMT

)
= σ2

k Σ (5.8)

Σ contains the temporal covariance matrix, and we can assume that Z is block-wise orthogonal,

such that each patient has an independent random effect. Once we consider that all nk voxels belong

to kth cluster, we get yk(nk MT)×1 = (yT , ..,ynk
T )T , we write covariance matrix as a product of

spatial and temporal covariance matrices

cov(yk) = σ
2
k Wk = σ

2
k (Gk ⊗ Σ) = σ

2
k



Gk11Σ Gk12Σ . . .Gk1nk Σ

Gk21Σ Gk22Σ . . .Gk2nk Σ

...
...

...

Gknk1Σ Gknk2Σ . . .Gknk nk Σ


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where ⊗ is the Kronecker product, and Σ =
(
λZ ZT + IMT

)
from equation (5.8) is the temporal

covariance matrix for all patients’ voxels present in the kth cluster. Gk is the nk × nk spatial

covariance matrix that accounts for the correlation between voxels present in the kth cluster. The

spatial structure mentioned below and on which we worked in previous sections was proposed by

Bernal-Rusiel et al., 2013[12]. It is empirically useful:

Gk =



1 exp−ak d12−bk d2
12 . . . exp

−ak d1nk
−bk d2

1nk

exp−ak d21−bk d2
21 1 . . . exp

−ak d2nk
−bk d2

2nk

...
...

...
...

exp
−ak dnk1−bk d2

nk1 exp
−ak dnk2−bk d2

nk2 . . . 1


where ak, bk ≥ 0 are unknown parameters and di j is the Euclidean distance between voxels i & j in

the kth cluster. Hence, the joint distribution of the yk vector of WM measurements in kth cluster

is as follows:

yk ∼ N(X∗βk, σ
2
k Wk ), (5.9)

where X∗ = ®1nk × X is (nk ∗ MT) ⊗ p matrix. For time being, we assume that Wk is known. Wk

has three unknown parameters λ,ak, bk . (ak, bk ) can be plugged in from our previous study, and

we estimate λ from a data-driven method. Our primary focus is on parameters θk = (βk, σ
2
k ), and

a convenient non-informative prior on (βk, log(σk )) is,

π(βk, σ
2
k |ω) ∝

1
σ2

k

5.2.2.3 Objective function derivation:

Once we decide on the prior distributions, it is easy to derive posterior distributions. We

determine the first posterior distribution for π(βk |σ
2
k ,yk,ω) conditional on σ

2
k & ω. Next, we
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ascertain the marginal posterior distribution of π(σ2
k |yk,ω).(

βk |σ
2
k ,yk,ω

)
∼ N(β̂k, σ

2
k Vβk ), where

β̂k =

(
X∗

T
W−1

k X∗
)−1

X∗
T

W−1
k yk

Vβk =

(
X∗

T
W−1

k X∗
)−1

(5.10)

Marginal posterior distribution of σ2
K is(

σ2
k |yk,ω

)
∼ Inv − χ2

(
(nk ∗ MT) − p, s2

k

)
where

s2
k =

1
(nk ∗ MT) − p

(
yk − X∗ β̂k

)T
W−1

k

(
yk − X∗ β̂k

)
(5.11)

To find π(ω|y), we need to integrate out βk and σ2
k so that we can find

π(yk |ω) ∝

∫
σ2

k

∫
βk

f (yk |βk, σ
2
k ,ω)π(βk, σ

2
k |ω)dβk dσ2

k

∝ Γ

(
(nk ∗ MT) − p

2

) (
1
2

(
yk − X∗ β̂k

)T
W−1

k

(
yk − X∗ β̂k

))−(nk∗MT)−p
2

(5.12)

Finally, we product the above function over all clusters and multiply it with the prior distribution

on cluster partitions π(ω). This provides us our long-desired objective function,

π(ω|y) ∝ π(ω)

c(ω)∏
k=1

π(yk |ω)

∝
Γ(m)mc(ω)

Γ(n + m)

c(ω)∏
k=1

Γ(nk )Γ((nk ∗ MT − p)/2)
(
1
2

(
yk − X∗ β̂k

)T
W−1

k

(
yk − X∗ β̂k

))−(nk∗MT)−p
2

(5.13)

The posterior function π(ω|y) is logically reasonable. The residual quadratic form calculates

within the sum of squares in a cluster and prefers partitions with lower WSS. Furthermore, this

posterior objective function prefers large homogeneous regions for large nk . It also measures lack

of fit from the linear mixed effect model we have assumed. Optimizing the objective function is

challenging work.
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CHAPTER 6

FUTUREWORK

The dissertation is focused on Bayesian variable selection and its application to brain image data.

We extensively worked with Bayesian model based clustering in order to segment brain in similar

regions. Optimization of the objective function would be our future works. As we have discussed

earlier, the total number of possible combinations for 316 thousands voxels would be in billions. It’s

implausible to optimize the function for such a large space. In order to utilize this objective function

we decided to reduce our sample space. We will find a large number of partitions using K-means

described in section 5.1.2.2 with different cluster numbers. Once we finalize these partitions the

above derived objective function will work as criterion to pick the best partition among selected

large number of partitions.

We focused on the Metropolis-Hastings based on biased random walk algorithm described in

Booth et al., 2008[13]. If we assume each partition as a node of an undirected graph and edges

are created based on connection from one node to another. As authors described, from a particular

partition if we move one element of a cluster and place in another cluster and obtain a new partition

then these two partitions have an edge. Although following this logic we won’t be able to obtain

symmetric candidate density for Metropolis-Hastings algorithm. Our future work would be to

propose and alternative graph creation which will provide symmetric candidate proposal. There

is also a potential problem with our reduced sample space approach. As we’ve mentioned, we

will subset our space with large (not infinite) number of partitions. There is a possibility that two

separate partitions won’t have any edges or they have no connection in terms of voxel distribution.

We need more brainstorming in order to handle this situation. All these potential computational

problems will be answered in our future work.
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APPENDIX

A.1 Chapter 3: Tables for Classification performance using combination of
ROIs

Table A1: Combination two ROIs

sensitivity specificity accuracy AUC
H + WB

(Mean ± SD) 0.87 ±0.02 0.85 ±0.01 0.86 ±0.01 0.92 ±0.02

H + EC
(Mean ± SD) 0.86 ±0.01 0.88 ±0.01 0.87 ±0.01 0.93 ±0.02

H + FG
(Mean ± SD) 0.86 ±0.02 0.88 ±0.02 0.87 ±0.001 0.94 ±0.02

H + MTC
(Mean ± SD) 0.84 ±0.02 0.90 ±0.01 0.88 ±0.01 0.93 ±0.02

WB + EC
(Mean ± SD) 0.81 ±0.02 0.90 ±0.01 0.87 ±0.01 0.92 ±0.03

WB + FG
(Mean ± SD) 0.77 ±0.03 0.84 ±0.01 0.81 ±0.01 0.89 ±0.03

WB + MTC
(Mean ± SD) 0.78 ±0.01 0.88 ±0.01 0.84 ±0.01 0.90 ±0.02

EC + FG
(Mean ± SD) 0.84 ±0.02 0.89 ±0.001 0.87 ±0.01 0.92 ±0.03

EC + MTC
(Mean ± SD) 0.82 ±0.04 0.89 ±0.01 0.86 ±0.01 0.92 ±0.02

FG + MTC
(Mean ± SD) 0.81 ±0.03 0.84 ±0.01 0.83 ±0.01 0.91 ±0.03

Notes: Sensitivity is proportion of correct AD prediction, Specificity is proportion of correct CN prediction,
AUC is area under ROC curve. The mean and standard deviation are based on 100 repeated results on test
data sets. Probability threshold is 0.5.
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Table A2: Combination three ROIs

sensitivity specificity accuracy AUC
H+WB+EC
(Mean ± sd) 0.86±0.02 0.86±0.02 0.86±0.01 0.91±0.05

H+WB+FG
(Mean ± sd) 0.91±0.02 0.80±0.02 0.84±0.01 0.91±0.10

H+WB+MTC
(Mean ± sd) 0.87±0.05 0.86±0.03 0.87±0.02 0.93±0.07

H+EC+FG
(Mean ± sd) 0.85±0.03 0.87±0.02 0.86±0.001 0.93±0.03

H+EC+MTC
(Mean ± sd) 0.83±0.02 0.90±0.01 0.87±0.01 0.93±0.03

H+FG+MTC
(Mean ± sd) 0.86±0.02 0.87±0.01 0.86±0.01 0.93±0.02

WB+EC+FG
(Mean ± sd) 0.84±0.04 0.86±0.01 0.85±0.02 0.91±0.03

WB+EC+MTC
(Mean ± sd) 0.85±0.02 0.89±0.01 0.88±0.01 0.94±0.02

WB+FG+MTC
(Mean ± sd) 0.82±0.02 0.86±0.03 0.84±0.02 0.91±0.03

EC+FG+MTC
(Mean ± sd) 0.86±0.02 0.85±0.01 0.85±0.01 0.92±0.03

Notes: Sensitivity is proportion of correct AD prediction, Specificity is proportion of correct CN prediction,
AUC is area under ROC curve. The mean and standard deviation are based on 100 repeated results on test
data sets. Probability threshold is 0.5.
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Table A3: Combination four ROIs

sensitivity specificity accuracy AUC
H+WB+EC+FG
(Mean ± sd) 0.91±0.01 0.79±0.04 0.84±0.02 0.92±0.06

H+WB+EC+MTC
(Mean ± sd) 0.77±0.04 0.89±0.03 0.84±0.02 0.89±0.10

H+WB+FG+MTC
(Mean ± sd) 0.74±0.08 0.90±0.02 0.84±0.03 0.85±0.14

H+EC+FG+MTC
(Mean ± sd) 0.85±0.02 0.84±0.02 0.84±0.02 0.91±0.05

WB+EC+FG+MTC
(Mean ± sd) 0.85±0.03 0.86±0.02 0.86±0.01 0.92±0.03

H+WB+EC+FG+MTC*
(Mean ± sd) 0.81±0.01 0.77±0.01 0.79±0.01 0.87±0.02

Notes: Sensitivity is proportion of correct AD prediction, Specificity is proportion of correct CN prediction,
AUC is area under ROC curve. The mean and standard deviation are based on 100 repeated results on test
data sets. Probability threshold is 0.5.
* Normalized volumes were used for this model run

A.2 Chapter 4: Posterior consistency proofs

Let us define B(rn) = supγ=γ(rn)Ch(G−1
rn ) and B̄(rn) = supγ=γ(rn)Ch(Grn) where Grn =

diag(τ∗1 Iq, .., τ
∗
rn Iq). B(rn) is the largest eigenvalues ofGrn andD(R) = 1+R.sup|h|≤R |a

′
(h)|sup|h|≤R |ψ(h)|.

Let εn → (0,1] with nε2
n � 1 and assuming the below conditions hold which come from Jiang,

2007[63] paper:
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Conditions:

i) pn log(1/ε2
n ) ≺ nε2

n

ii) pn log(pn) ≺ nε2
n

iii) pn log(D(
pn
λn

B̄(rn)nε2
n )) � nε2

n

iv) rn � pn

v) rn log(B̄(rn)n) � nε2
n and ∆(rn) � nε2

n

vi) log(
rn
pn
) ≤ −

4nε2
n

pn

Proof of Condition I: If ψ(u) = eu/(1 + eu), then

w(u) = log[ψ(u)/(1 − ψ(u))] = u

=⇒ w′(u) = 1

=⇒ |w′(u)| ≤ Cq

Proof of Condition S: The proof starts with defining set and notations used in condition S. Let

rn be a large integer > 0 and η is small > 0, then

S(rn, η) =
{
(γ, βγ)) : γ = γ(rn), βγ ∈ M(rn,n)

}
M(rn,n) =

{
(b1, .., brn)

T : b j ∈ β j ±
nε2

n
rn
, j = 1, ..,rn

}
Here rn is the model size and γ(rn) = (1,2, ..,rn,0, ...) is an increasing sequence whose first rn

components take value 1.

Let, 1 ≺ rn ≺ min(pn,n/log(pn)) and
∑∞

j=1 | |β j | |2 < ∞.

πn

[
βγ ∈ β j ±

nε2
n

rn
|γ = γ(rn)

]
≥

rn∏
j=1

[
(λ2

n)
(q/2)

(2π)(q−1)/2 exp
(
−λn

√
β̄T

j β̄ j

) (
nε2

n
rn

)]
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where β̄ j is some intermediate value which achieves the minimum density over (β j ±
nε2

n
rn ) j∈γ(rn).

Then ,

λn

rn∑
j=1

√
β̄T

j β̄ j ≤ C1B(rn)

as
∑rn

j=1

√
β̄T

j β̄ j ≤ limn→∞
∑pn

j=1

√
β̄T

j β̄ j +
nε2

n
rn is bounded. In addition we can show that,

rn∏
j=1

(λ2
n)
(q/2)

(2π)(q−1)/2 ≥ exp(−C2rn − C3rn log(B̄(rn))

where B̄(rn) = supγ=γ(rn)Ch(Grn). Therefore,

πn

[
βγ ∈ β j ±

nε2
n

rn
|γ = γ(rn)

]
≥ exp

(
−C2rn − C3rn log(B̄(rn) − C1B(rn) − rn log(

rn

nε2
n
)

)
≥ exp(−cnε2

n )

To prove the prior condition: Let r̄n such that rn < r̄n ≤ pn & r̄n ≺ n/ln(pn). For our model we

have placed π0,n ∼ Beta distribution which is equivalent way of proposing Bernoulli distribution

on γ = γ(rn) where γ(rn) ∼ Bernoulli(π0,n) [115].

Now,

lnπn = rnlnπ0,n + (pn − rn)ln(1 − π0,n)

if rn ≈ pnλn then for π0,n = rn/pn small and 1 ≺ rn ≺ min(pn,n/lnpn)

=⇒ lnπn ≥ −rnlnpn > −cnε2
n f or large n

=⇒ πn[γ = γ(rn)] > exp(−cnε2
n )

Satisfying condition (S).
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Proof of Condition L: Let us assume D(R) = 1 + R.sup|h|≤R |a
′
(h)|sup|h|≤R |ψ(h)| and there

exists some Cn such that

r̄nln(
1
ε2
n
) ≺ nε2

n

r̄nln(pn) ≺ nε2
n

r̄nlnD(r̄nCn) ≺ nε2
n

then,

πn(|γ | > r̄n) = πn(|γ | = pn) = (
rn
pn
)pn

=⇒ ln(πn(|γ | > r̄n) = pnln(
rn
pn
) ≤ −cnε2

n

=⇒ πn(|γ | > r̄n) ≤ e−cnε2
n

Next,

πn(| |β j | |2 > t |γ) ∝
∫ ∞

t
e
−λn

√
βT

j β j
dβ j

≤
1
λn

e−λnt

If t = Cn =
cnε2

n
λn

and nε2
n � 1, then

1
λn

e−λnt ≤ e−cnε2
n , as λn ≥ 1

Satisfying condition (L).
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