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ABSTRACT 

A CONTAINER-ATTACHABLE INERTIAL SENSOR FOR  

REAL-TIME HYDRATION TRACKING 

By 

Henry Griffith 

The underconsumption of fluid is associated with multiple adverse health outcomes, 

including reduced cognitive function, obesity, and cancer. To aid individuals in maintaining 

adequate hydration, numerous sensing architectures for tracking fluid intake have been proposed. 

Amongst the various approaches considered, container-attachable inertial sensors offer a non-

wearable solution capable of estimating aggregate consumption across multiple drinking 

containers. The research described herein demonstrates techniques for improving the performance 

of these devices. 

 A novel sip detection algorithm designed to accommodate the variable duration and sparse 

occurrence of drinking events is presented at the beginning of this dissertation. The proposed 

technique identifies drinks using a two-stage segmentation and classification framework. 

Segmentation is performed using a dynamic partitioning algorithm which spots the characteristic 

inclination pattern of the container during drinking. Candidate drinks are then distinguished from 

handling activities with similar motion patterns using a support vector machine classifier. The 

algorithm is demonstrated to improve true positive detection rate from 75.1% to 98.8% versus a 

benchmark approach employing static segmentation.  

 Multiple strategies for improving drink volume estimation performance are demonstrated 

in the latter portion of this dissertation. Proposed techniques are verified through a large-scale data 

collection consisting of 1,908 drinks consumed by 84 individuals over 159 trials. Support vector 

machine regression models are shown to improve per-drink estimation accuracy versus the prior 



 

 

state-of-the-art for a single inertial sensor, with mean absolute percentage error reduced by 11.1%. 

Aggregate consumption accuracy is also increased versus previously reported results for a 

container-attachable device. 

An approach for computing aggregate consumption using fill level estimates is also 

demonstrated. Fill level estimates are shown to exhibit superior accuracy with reduced inter-

subject variance versus volume models. A heuristic fusion technique for further improving these 

estimates is also introduced herein. Heuristic fusion is shown to reduce root mean square error 

versus direct estimates by over 30%. The dissertation concludes by demonstrating the ability of 

the sensor to operate across multiple containers. 
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Chapter 1 : Introduction 

1.1 Motivation 

The availability of consumer-grade devices for health monitoring applications has 

increased substantially in recent years [1]. By enabling the prevention and early detection of 

disease, these products offer a promising approach for addressing escalating healthcare costs [2]. 

Of the many diverse monitoring applications available, those promoting adherence to positive 

behavioral norms, such as minimizing sedentary time and maintaining a healthy diet, have received 

considerable attention. This focus is merited, given the key role of lifestyle habits in determining 

health outcomes [3].  

Amongst available dietary monitoring solutions, numerous architectures for tracking fluid 

intake have been proposed. These devices have tremendous potential for improving wellness, as 

estimates suggest that approximately 16-28% of adults are dehydrated [4]. While the health 

consequences of dehydration are well understood, research indicates that even slight 

underconsumption of water is associated with various negative health outcomes, including obesity 

and reduced cognitive function [5].   

Maintaining appropriate hydration levels is of particular concern for the elderly population, 

due to the degradation of fluid regulatory mechanisms with age [6]. Elderly individuals may 

decrease fluid consumption due to a variety of factors, including reduced osmoreceptor sensitivity, 

dysphagia, cognitive impairment, as well as mobility restrictions [7]. The large-scale ramifications 

of elderly dehydration are considerable, especially in developed countries with aging populations 

[8]. For example, Medicaid expenditures in the United States associated with hospital admissions 

for dehydration were estimated at $5.5 billion in 2004 [9].  
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To promote hydration maintenance, numerous sensing technologies have been 

demonstrated for tracking fluid consumption. Approaches include containers with embedded 

sensing functionality (often denoted as augmented or smart-containers) [10], wearable 

technologies [11], and video-based solutions [12]. Unfortunately, each class of sensors is 

characterized by some limitation which may prohibit large-scale deployment. Namely, augmented 

containers restrict tracking to a dedicated set of drinking vessels, which limits the feasibility of 

logging aggregate intake across multiple containers during daily living. Wearable technologies 

may not be accepted by all users due to personal preference [13]. Moreover, the at-risk elderly 

population may reject such devices due to various physical limitations [14]. Furthermore, video-

based solutions may be viewed as excessively intrusive. A more thorough review of the various 

hydration tracking technologies proposed in the literature is provided in Chapter 2. As described 

therein, the lack of a container-agnostic, non-wearable hydration tracking sensor serves as the 

primary motivation for this research.  

1.2 Proposed Solution 

Previous work has proposed a container-attachable IMU sensor for hydration tracking [15]. 

This approach alleviates the restrictiveness of augmented containers by allowing for simplistic 

reconfiguration across multiple drinking vessels [16]. Moreover, by isolating all electronic 

functionality to the exterior of the container, potential exposure to water is minimized versus 

sensors embedded in the interior of the drinking vessel. 

Similar to other wearable consumption tracking technologies employing inertial sensors, this 

device operates using a motion-based sensing paradigm [17]. Namely, features of the container’s 

movement patterns are used to detect drinking events and estimate their associated volumes. 

Detection of drinking events for container-attached devices is simplified versus wearable sensors, 
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which may exhibit false alarms for arm movements exhibiting similar kinematics to drinking [18]. 

An image of the sensor prototype used for all experiments described in this dissertation is shown 

attached to a refillable bottle in Figure 1-1. Both a triaxial accelerometer and gyroscope are 

integrated within the sensor prototype. The broad goal of this research is to improve upon the 

performance previously demonstrated in [15] for this sensor architecture as specified in the 

forthcoming research objectives. 

 

Figure 1-1: Sensor Prototype Attached to a Refillable Bottle 

 

1.3 Summary of Research Objectives 

Successful estimation of the fluid intake associated with a drinking event may be 

conceptualized as a two-stage process. Namely, the drinking event must first be segmented from 

the streaming sensor output, followed by the estimation of drink volume from the partitioned data. 

For subsequent discussion throughout this dissertation, this former problem is denoted as sip 

detection, and is addressed in detail within Chapter 3. The latter problem is hereby referred to as 
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volume estimation, and is addressed in various frameworks throughout Chapters 4 - 9. A formal 

discussion of these two problems, which constitute the core research objectives of this dissertation, 

is provided in the following subsections. 

1.3.1 Summary of Sip Detection Problem 

The sensor output may be represented as a sequence of tuples denoted as {𝑠1, 𝑠2 … 𝑠𝑁}, where 

 𝑠𝑘 ∈  ℝ6 corresponds to the six channel output at time index 𝑘. Sip detection algorithms seek to 

identify pairs of indices from the above set corresponding to the initiation and termination of all 

drinks, hereby denoted as (𝑠𝑖, 𝑠𝑓)
𝑗
 , where 𝑗 is an index serving to identify the drinking event. This 

mapping is formalized in (1.1) 

 𝑆:  {𝑠1, 𝑠2 … 𝑠𝑁} →  (𝑠𝑖, 𝑠𝑓)
𝑗
  (1.1) 

Traditional learning-based techniques for spotting activities within streaming data employ 

a two-stage processing approach. Data is initially segmented into fixed duration windows. Next, a 

classifier is used to distinguish events of interest from other intermixed activities. This process 

suffers from numerous disadvantages, especially for sparsely occurring events of variable duration 

such as drinks. Namely, such algorithms are inherently inefficient, and are characterized by trade-

offs related to accuracy and spotting precision in the selection of windowing parameters.  

To address these limitations, this dissertation introduces a dynamic segmentation and 

classification sip detection algorithm targeted for an attachable sensor architecture. The proposed 

approach enhances processing efficiency, increases temporal resolution, and improves detection 

accuracy versus traditional fixed-duration sliding window techniques. A deterministic initial stage 

partitions the output into candidate drinking events based upon their distinctive motion pattern. 

Next, a classifier trained to discriminate between drinking events and intermixed activities 
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demonstrating similar kinematics is applied to the segmented output. An example of the estimated 

inclination of the container during drinking, along with an event exhibiting a similar inclination 

pattern (discharge of excess fluid), is presented in Figure 1-2.  

 

Figure 1-2: Estimated Container Inclination During Excess Discharge and Drinking 

 

As the nature of the collection system utilized herein prohibits deployment in-the-wild as described 

in Chapter 2, the proposed sip detection algorithm is assessed through a series of experiments 

designed to test the most stringent scenarios encountered during the intended use case.   

1.3.2 Summary of Volume Estimation Problem 

After drinks have been segmented through application of the sip detection algorithm, a 

mapping between the partitioned output and estimated drink volume is developed as specified in 

(1.2), where 𝑉𝑗̂ corresponds to the estimated volume of the 𝑗𝑡ℎ drink.  

 Φ𝑉:  (𝑠𝑖, 𝑠𝑓)
𝑗

→ 𝑉𝑗̂  (1.2) 
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As reviewed thoroughly in Chapter 3, motion-based volume estimation using machine 

learning is a challenging problem, with prior results characterized by both limited accuracy and 

high inter-subject variability. The previously best-case reported mean absolute percentage error 

(MAPE) for drink volume estimations using a single inertial sensor was achieved by Hamatani et 

al. in [18]. In this research, the utilized accelerometer sensor was embedded within a commercial 

smartwatch. A MAPE of 58.9% was obtained for an experiment consisting of 1,069 drinks 

consumed by 16 individuals with ground-truth data recorded using a scale. Reported aggregate 

(i.e.: multiple drink) consumption estimates were slightly improved due to the cancelation of errors 

across adjacent drinking events. For a container-attachable inertial sensor, previously reported 

volume estimation results are limited to a single experiment. Namely, Dong et al. achieved an 

aggregate estimation error of 25% across subjects for an experiment consisting of approximately 

70 drinks consumed by seven subjects [15]. 

 As described in Chapters 4-9, numerous techniques are proposed and explored within this 

dissertation for improving motion-based drink volume estimation performance for the proposed 

sensing architecture. Drink volume is estimated in Chapter 5 using a support vector machine 

regression model with 33 hand-engineered features describing the estimated container inclination 

during drinking. Performance is improved versus the prior state-of-the art for a single inertial 

sensor, with MAPE reduced by 11.05% versus results from a comparable experiment presented in 

[11]. An alternative technique for estimating the consumption across multiple drinks based upon 

estimates of fill level is investigated in Chapter 6. Denoted as residual volume estimation, this 

process approximates aggregate consumption using fill level estimates under the assumption of 

known container geometry. Chapter 7 proposes a technique for further improving these 

consumption estimates by fusing predictions from a heuristic consumption model.  
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Container inclination estimates are verified using an open-source video motion capture 

package in Chapter 8. This chapter also introduces an approach for utilizing the gyroscope output 

to improve inclination estimates. Chapter 9 explores potential expansions of the proposed feature 

space and the resulting effects on estimation accuracy. Utilization of the alternative inclination 

estimates proposed in Chapter 8 are also explored within this chapter. 

To support volume estimation efforts, a large-scale data collection consisting of 1,908 

drinks consumed by 84 individuals over 159 trials was conducted as described in Chapter 4. All 

experiments were performed using a scripted protocol. Namely, participants only handled the 

container for purposes of drinking, resting the bottle on a stationary surface between drinking 

events. This protocol eliminates the complexities associated with sip detection, thereby optimizing 

the data format for the intended use case. Moreover, this approach allows for ground-truth data to 

be collected on a per-drink basis using an electronic scale, thereby eliminating reliance on 

commercial smart-bottle products for data labeling. 

1.3.3 Generalization to Additional Drinking Containers 

While all data collections supporting the aforementioned sip detection and volume 

estimation efforts were performed for a single container type (refillable bottle), this dissertation 

also provides a limited exploration of sensor performance for alternative drinking vessels. Namely, 

the ability of the proposed device to detect the type of container to which it is attached, along with 

the fill level from which a drink is consumed, is explored in Chapter 10. Dedicated experiments 

are conducted for both a glass and mug, in addition to the previously utilized refillable bottle.    

 

 

.
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Chapter 2 : Related Work 

2.1 Introduction 

This chapter reviews alternative technologies for automated fluid consumption tracking. 

Additional consideration is allocated for approaches employing motion-based sensing paradigms 

using IMU sensors. Sip detection and volume estimation results are provided where available.  

2.2 Review of Hydration Tracking Sensors 

Numerous hydration management technologies have been previously proposed in the 

literature. While complete solutions are inherently complex cyber-physical systems, which must 

be cognizant of individual hydration requirements, provide appropriate reminders, etc., this review 

focuses solely on the enabling sensing mechanisms. 

2.2.1 Augmented Containers 

Tracking solutions which embed sensing functionality within a dedicated drinking vessel 

are typically referred to as augmented or smart containers. Documentation of these technologies is 

largely restricted to the patent literature, thereby limiting the availability of performance data. 

Augmented containers for consumption tracking are currently available in the commercial market.   

Augmented containers have been implemented using a variety of sensing modalities. Sensors 

capable of measuring the total volume of fluid contained within the vessel, such as pressure [18] 

and capacitive sensors [19], have been demonstrated. To form consumption estimates using this 

type of sensor, a reference measurement is required to assess changes in total volume. A 

mechanism for implementing this approach using the sensing modality considered herein is 

explored in Chapter 5. A capacitive fluid sensor for measuring total container volume as integrated 

within a current commercially available smart bottle is depicted in Figure 2-1. 
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Figure 2-1: Image of an Augmented Container Using an Insertable Capacitive Sensor [23] 

 

Augmented containers estimating consumption on a per-drink basis have also been 

described. For example, a container with a dedicated sensor for measuring the exiting flow rate 

during drinking has been proposed [20]. Per-drink consumption estimation is addressed in Chapter 

4 of this dissertation.  

IMU sensors have been considered as an enabling sensing modality for augmented 

containers. Proposals for integrating IMUs within either the structure or cap of the drinking vessel 

have been documented in the literature. Extensions of this technology for alternative applications 

of benefit, such as activity tracking, have been proposed [21]. The integration of multiple sensing 

modalities within smart bottles, such as a touch-based sensor for heart rate monitoring, has also 

been suggested [22].  

As the above references are largely restricted to patent literature, available performance 

data is limited. However, recent research has provided some independent verification of the 

accuracy of commercially available solutions. For example, Borofsky et al. assessed the aggregate 

tracking accuracy of the smart bottle previously shown in Figure 2-1. An experiment was 
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conducted where eight participants consumed water from the bottle over 62 twenty-four-hour 

intervals, with manual consumption estimates also recorded. Daily consumption estimates 

produced by the bottle varied from hand measurements by less than 3%. [23].  

The primary disadvantage of the aforementioned technologies is the restriction of tracking 

functionality to a dedicated set of containers. For individuals seeking to track total daily 

consumption across a variety of drinking vessels, these products may be viewed as excessively 

restrictive. Moreover, many of the proposed approaches require the embedding of electronics 

within the interior of the container, thereby mandating additional design challenges to avoid water 

exposure. The container-attachable nature of the solution considered within this dissertation 

alleviates these concerns. 

2.2.2  Multi-Sensor Wearable Consumption Trackers 

To address the restrictiveness of augmented container tracking, various alternative sensors 

have been demonstrated. For purposes of this review, these are organized as wearable, nearable, 

and contactless solutions. Amongst wearables, Amft and Tröster identified drinking events using 

a body sensor network. Network sensors included IMUs placed on the upper limbs, an ear 

microphone, and an EMG and microphone combination configured in a throat collar [24]. This 

system was designed for monitoring the intake of both fluids and foods, thereby motivating the 

complexity of hardware employed. A schematic depicting the configuration of sensors across the 

body is shown in Figure 2-2. 
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Figure 2-2: Wearable Multi-sensor Configuration for Dietary Monitoring in [24] 

 

An experiment involving four individuals was used to assess system performance. 

Participants completed four consumption activities, including fetching and drinking from a glass, 

along with additional common hand gestures (i.e.: head scratching, using a phone, etc.). 

Independent detectors were used to spot the various consumption activities of interest, with 

individual outputs fused to improve accuracy. Detection was accomplished using a feature 

similarity search (FSS) algorithm on fixed duration partitions of sensor data. The FSS algorithm 

is summarized in Figure 2-3 and described thereafter. 
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Figure 2-3: Diagram of Feature Similarity Search Algorithm in [24] 

 

During training, the FSS algorithm determines the candidate durations for each event of 

interest using manually denoted video-based ground truth data. In addition, templates for each 

activity are formed in the utilized feature space. In inference, the FSS algorithm searches across 

the feasible duration for each event, computing the feature space representation of the sensor 

output for each search section. Similarity between the computed representation and template is 

measured in a Euclidean sense, with a decision formed using an event-specific threshold 

determined during training.  

Drinking events were detected using features computed on the estimated Euler angles of 

the forearm. Drinks were recognized with 86% recall and 85% precision using a user-specific 

training procedure. Considerable (20%) confusion was demonstrated between drinking activities 

and those of the null class. No volume estimation was performed in this work.  

While such an extensive sensor architecture may be necessary to capture the variety of 

dietary events considered, practical feasibility of the proposed system is limited by the number of 
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required sensors. The requirement of user-specific training data also limits the practical viability 

of this approach. Moreover, wearable sensors inherently capture signals associated with all daily 

living activities, resulting in a large and highly variable null class. For the attachable architecture 

proposed herein, the null class is restricted to only non-drinking activities for which the container 

is in motion with the sensor attached (i.e.: transport, handling, etc.). This reduction in problem 

complexity allows for the deployment of a more streamlined partitioning algorithm versus FSS as 

described in Chapter 3.  

Mirtchouk et al. [25] performed drink volume estimation using a similar network of 

wearable audio and motion sensors. This effort was also focused on tracking both drinking and 

eating activities. An acoustic earbud, two commercial smartwatches, and a headset with embedded 

IMU sensors were used to collect data. While food type classification was also demonstrated, 

presented results below focus solely on efforts related to hydration tracking. 

Six participants consumed 171 drinks of multiple types of liquids (i.e.: coconut water, coffee, 

etc.) over a 72-hour period in an unscripted experiment. Data was partitioned using video-based 

annotations on a per-intake basis. Various audio features (i.e.: energy, spectral flux, zero-crossing 

rate, etc.) were computed over 200 ms windows. Motion features were computed on a five second 

frame, and included 11 statistical features, 15 temporal shape features, and two frequency features. 

Random forest regression models were trained using a leave-one-drink-out approach to account 

for the lack of consistent consumption patterns across participants. The mass of each drink was 

estimated with a best-case mean absolute percentage error (MAPE) of 47.2% under the assumption 

of known fluid type. Similar to [24], the practical viability of this solution is limited by the number 

of sensors employed. Moreover, no approach for identifying drinking events from continuous 

sensor output was proposed within this work. 
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2.2.3  Single Sensor Wearable Consumption Trackers 

Subsequent research has alleviated the restrictiveness of multi-sensor systems by isolating 

tracking functionality within a single wearable device. Amft et al. spotted drinking activities using 

a wrist-wearable IMU sensor containing a triaxial accelerometer and gyroscope [26]. Results were 

validated using 5.84 hours of data collected from six subjects during daily living. The data set 

included 560 drinking instances consumed from varying container types. A separate scripted 

experiment consisting solely of drinking events was collected for training. Sensor data was initially 

segmented into 2 second windows, with drinks subsequently spotted using the previously 

described FSS algorithm. Detection thresholds were determined on a per-subject basis during 

training.  

Two-hundred general time-domain features were used to describe the motion pattern of the 

arm. The Mann-Whitney-Wilcoxon test was used to extract a subset of the 20 highest ranked 

features. The drinking event was partitioned into two sections, denoted as fetch (period of transport 

towards and away from the mouth), and sip (period of fluid intake). An image of the signal 

morphology during these two micro-events is depicted in Figure 2-4. The authors noted greater 

variability in the recorded signal for the fetch versus sip motion. A similar strategy for parsing 

drink events into the transport and sip phases for the sensor described herein is proposed in Chapter 

4. Fetch motions were spotted with 84% precision and 90% recall, while sip motions were spotted 

with 84% recall and 94% precision. 
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Figure 2-4: Variation in Signal Morphology Depicted in [26] 

 

A volume estimation strategy based upon fill level detection was also introduced within 

this work. These experiments used a magnetic coupling sensor system attached at both the shoulder 

and wrist. An experiment was conducted in which three participants consumed 30 drinks from nine 

different container types in a scripted sequence. Drinks were consumed at three initial fill levels 

(full, half-full, near empty), with subjects instructed to ingest only a minimal amount during each 

drink to avoid overconsumption. Individual-specific classifiers achieved an average fill level 

classification accuracy of 72% across all subjects and container types. Classification accuracy 

across subjects varied considerably, ranging from 58% to 83%.  

While estimation of aggregate consumption using fill level information is feasible, 

practical deployment requires increased resolution, along with consideration of the effect of 

varying drink volume on the estimation process. In addition, the requirement of individual-specific 
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training data limits the feasibility of employing the proposed system in practice. Both limitations 

are addressed in the research described within this dissertation. 

Hamatani et al. [11] proposed FluidMeter, a fluid consumption tracking system utilizing the 

embedded IMU sensor within a commercial smartwatch. Both sip detection and volume estimation 

were performed as emphasized in the system design diagram shown in Figure 2-5. 

 

Figure 2-5: FluidMeter System Diagram Presented in [11] 

 

Drinking events were distinguished from other arm motions using a macro-activity 

classification module. This module was implemented using a conditional random field (CRF) 

model to map features of motion to activity states. Data was partitioned using a static sliding 

window of 8 second duration with 0% overlap. Eight explicit activity classes were considered, 

including various sedentary and active states (sitting, standing still, moving, etc.), eating, and 

drinking. A null class was used to represent remaining motion signatures. Twenty-eight statistical 

features (i.e.: average, standard deviation, etc.) were used to describe the motion pattern across the 

six sensor channels, with backward feature selection performed to reduce dimensionality.  

Once drinking events were spotted using the macro-classifier, an additional CRF classifier 

was used to further partition drinks into the following micro-events – 1) Lift, 2) Sip, and 3) Release. 

Data was segmented for the microevent classifier using a 500 ms window with 50% overlap. Sip 
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detection results for various collections were presented. For the Lab-macro dataset collected from 

9 individuals over 1,325 minutes, drinking events were classified with 83.6% precision and 87.3% 

recall. The authors noted that false negatives were most commonly associated with eating due to 

similarity in arm movements.  

An additional data collection, denoted as the Lab-micro+ dataset, was performed for 

assessing micro-gesture classification and volume estimation. Data was gathered from 16 

individuals consuming 1,069 drinks in a laboratory setting. The ground truth weight of each drink 

was recorded using a digital scale, with micro-event boundaries specified by the participants using 

a smart-phone application. For this collection, the sip micro-gesture was classified with 90.7% 

precision and 96.3% recall. 

While volume estimation results for multiple experiments were reported, the Lab-micro+ 

dataset most closely resembles the scripted experiments conducted in Chapter 4. Various linear 

regression models utilizing both sip duration and the integral of the accelerometer signals 

tangential to the wrist surface were used to estimate the mass of each drink. A best-case MAPE of 

58.9% was achieved for the integration model trained using leave-one-subject-out (LOSO) 

validation. While variability across subjects was not reported for the Lab-micro+ dataset, models 

trained on this data exhibited considerable dispersion in accuracy across subjects (MAPE ranging 

from 57.9% to 11.0%) when applied to a dedicated in-situ collection (Wild-office dataset). MAPE 

for the in-situ collection using ground-truth data collected with a commercial smart bottle was 

31.8%.  

While FluidMeter offers an unobtrusive mechanism for consumption tracking for existing 

smartwatch users, some individuals may be unwilling to adopt the requisite technology to employ 
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this approach. Moreover, while the authors noted the influence of both fill level and drink volume 

on the drink motion pattern, no explicit efforts were employed to address this interdependence.  

Chun et al. also detected drink episodes using a commercially available wrist-mounted 

inertial sensor. Drinking events were spotted with 90.3% precision and 91.0% recall for a study 

consisting of 561 drinks consumed by 30 participants [27]. An adaptive segmentation technique 

originally proposed in [28] was used within this work based upon the characteristic morphology 

of the accelerometer signal during drinking. Namely, data was initially partitioned into non-

overlapping windows of 1 second duration. Windows were then increased bilaterally in an iterative 

fashion until the signal range exceeded a predefined threshold. This dynamic expansion process is 

summarized in Figure 2-6. 

 

Figure 2-6: Adaptive Segmentation Scheme Employed in [27] 

 

Once the adaptive segmentation procedure was applied, a set of 45 general features were computed 

on the adaptive frame duration. A random forest learning algorithm was used to classify drink 

events. 

The adaptive segmentation proposed in Chapter 3 does not require preliminary 

segmentation, thereby supporting real-time implementations with minimal latency. Moreover, due 

to the placement of the sensor on the container, mechanistic thresholds may be established based 

upon container geometry (i.e.: minimum container inclination required to induce fluid flow etc.), 
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if available. In addition, the newly proposed algorithm utilizes additional qualifications in the 

dynamic segmentation process, thereby further distinguishing candidate drink events prior to 

classification.   

Gomes and Sousa proposed a method for identifying the hand-to-mouth container 

movement during drinking episodes using a single IMU sensor placed on the forearm [29]. Data 

was partitioned into fixed duration windows of 1 second with 50% overlap. Seventeen participants 

performed both drinking events and other daily living activities (i.e.: walking, other hand to mouth 

movements, etc.), producing a dataset consisting of 1,034 drink instances versus 11,526 null class 

activities. A set of 10 general features were extracted using backwards feature selection for a 

random forecast classifier. Drinking events were spotted with 85% recall and 84% precision within 

an experiment mimicking the daily use case of the device. While the proposed method may be 

useful for triggering the deployment of an additional processing stage for volume estimation, no 

such techniques were demonstrated within this manuscript. 

Although wearable approaches are appropriate for many users, they may be excessively 

cumbersome for some individuals, including persons with limited dexterity and other physical 

limitations. This concern is alleviated for the attachable sensor placement considered herein.  This 

advantage comes at the expense of reduced convenience, as the proposed solution must be 

repositioned on the container before each drinking instance. 

2.2.4 Contactless and Nearable Consumption Trackers 

Amongst contactless solutions, Chua et al. used a Haar-like feature set to spot drinking 

events by identifying the gripping posture of the hand through image processing [30]. Ienaga et al. 

used features related to joint position estimated using a Kinect sensor to demonstrate sip 

recognition for service robotic applications [31]. Both approaches are characterized by the typical 
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privacy concerns associated with deploying video sensors in daily living environments. Chiu et al. 

proposed estimating fill level using a phone camera placed adjacent to a drink container in a custom 

attachment, with temporal partitioning performed by fusing information from the embedded 

accelerometer [32]. In addition to the general privacy concerns associated with video collection, 

this method is also disadvantaged through its requirement of an optically transparent container, 

along with utilization of a custom apparatus to configure the phone in the required position.   

Numerous nearable sensors have also been explored for hydration tracking. Proposed 

approaches include the integration of sensing functionality into coasters [33]. Alternative 

container-attachable sensors have also been demonstrated. Namely, an attachable passive RFID 

sensor for spotting drink events was proposed in [34]. Versus the IMU-based approach described 

herein, this technique requires additional infrastructure. Moreover, it does not support modeling 

the container inclination to enable mechanistic algorithms exploiting the characteristics of drink 

motion patterns.  

2.2.5 Prior Research for Attachable IMU Sensors 

The sensor architecture considered within this dissertation was originally proposed by 

Dong et al. in [15]. A 100 Hz accelerometer was used for data collection, which differs from the 

20 Hz sampling rate employed in the current work. Both preliminary sip detection and volume 

estimation results were reported. Computations were performed only on the component of the 

accelerometer parallel to the axis of the bottle. The signal was smoothed using an 11-point moving 

average filter in pre-processing.  

For sip detection analysis, the conditioned signal was initially partitioned using a sliding 

window of 30 seconds duration with 50% overlap. Within each window, an amplitude threshold 

of 0.2 g was applied to identify local minima values of drinking events. Local minima separated 
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by more than 2 seconds were subsequently extracted for classification. Classification was 

performed using the following four hand-engineered features – 1) signal range, 2) event duration, 

3) signal mean, 4) increase-to-decrease ratio. This feature space is utilized as a benchmark in both 

the sip detection and volume estimation results considered herein.  

Sip detection was assessed using an experiment involving seven subjects. Each subject 

conducted two trials for dedicated drinking collection, consuming an entire bottle in each session. 

In addition, two of the subjects performed a data collection solely intended to capture container 

motion during non-drinking events (i.e.: walking with the container in-hand, etc.). Approximately 

1 hour of artifact data was collected. Data from both experiments was then parsed using the 

proposed segmentation algorithm. This parsing resulted in 143 drink events versus 104 non-drink 

events. A variety of classification models were evaluated for identifying drink events, including 

support vector machines, artificial neural network, and naïve Bayes classification models. All three 

models reported an accuracy exceeding 90%.  

While valuable for initial proof-of-concept, inference regarding the generalization of these 

results to real-world scenarios is limited by the nature of the experiments performed. Namely, 

drinking events were not intermixed amongst daily activities during collection. When deployed in-

the-wild, handling patterns which may result in missed drink detections for the proposed dynamic 

partitioning strategy may be envisioned. For example, if the container is first inclined during 

handling past the specified threshold, with a subsequent drink occurring less than two seconds 

later, the drink would be discarded due to the proposed separation criteria. The dynamic 

segmentation algorithm introduced in Chapter 3 addresses this concern by imposing temporal 

restraints on the candidate event duration, not inter-event spacing.  
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Moreover, the newly proposed segmentation technique is further improved through 

utilization of pose estimation. Namely, by estimating the container’s inclination, mechanistic 

thresholds may be established to quantify the intensity of the drinking event (i.e.: specification in 

degrees, versus raw units of acceleration). The proposed algorithm is further improved through the 

addition of a post-thresholding merging process to support capturing of the entire drinking event 

In addition, the feature space utilized in the final classification stage is modified herein to 

support discrimination between drinks and other motion events exhibiting similar inclination 

dynamics (i.e.: discharge of excess water). These improvements are assessed using a data 

collection specifically designed to test two challenging application scenarios – 1) closely separated 

drinking events, and 2) drinking events closely intermixed amongst daily living activities, 

including discharge events with similar motion patterns.  

Volume estimation results were provided in [15] for a separate experiment where seven 

subjects took ten drinks from a refillable bottle with the sensor attached. Various regression models 

using the aforementioned four-element feature space were evaluated. A best-case average 

aggregate consumption estimation error of 25% across subjects was achieved using support vector 

machine (SVM) regression models trained in a LOSO framework. No results were provided for 

per-drink estimation accuracy. As noted in Chapter 4, the models considered herein are 

demonstrated to improve aggregate estimation accuracy relative to these results. 
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Chapter 3 : A Dynamic Partitioning Algorithm for Improved Sip Detection 

3.1 Introduction 

Traditional activity classification algorithms partition sensor output into fixed duration 

frames using a sliding window. While commonly employed throughout the literature, this static 

segmentation is characterized by notable disadvantages [35]. These concerns are especially 

noteworthy for sparse events of variable duration such as drinking. Under these conditions, static 

segmentation algorithms are inherently inefficient, suffer from trade-offs regarding accuracy and 

spotting precision, and may exhibit misclassification due to activity boundary effects. 

The research presented within this chapter addresses these deficiencies through the 

development and verification of a novel two-stage sip detection algorithm. Adaptive segmentation 

of sensor data stream is initially performed to identify candidate drink intervals according to their 

unique inclination morphology. Intervals are spotted using a Threshold-Merge-Discard (TMD) 

algorithm. As this partitioning algorithm inherently discriminates against most daily use activities 

(i.e.: transport, maintenance, etc.), the classifier may be targeted for discriminating against actions 

with similar inclination kinematics to drinking (i.e.: discharging of excess water, etc.). The 

proposed algorithm is verified using a data set intended to thoroughly evaluate the proposed use-

case of the device within the restrictions of the collection system.   

The primary contribution of this chapter is the development and verification of the 

aforementioned two-stage temporal partitioning and classification algorithm for sip detection. The 

algorithm is demonstrated to improve true-positive detection rate while dramatically reducing the 

number of required classifier operations versus a traditional static sliding window (SSW) detection 

algorithm. Moreover, preliminary analysis suggests that spotting precision is also improved versus 

static segmentation.  
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A brief review of data partitioning strategies for activity recognition applications is provided 

at the beginning of this chapter. Next, a description of the data collection system and pre-

processing workflow employed in both the current and future chapters is provided. Experimental 

methods and results are subsequently discussed, along with suggestions for future sip detection 

research.  

3.2 Partitioning Strategies for Online Activity Classification 

While the literature applying IMU sensors for human activity recognition (AR) is well-

established [36], the problem of spotting activities within streaming sensor data remains an area 

of active interest. This problem is distinguished from more fundamental work where classification 

is performed on pre-segmented data [37]. As even this subset of work is of considerable breadth, 

this section attempts only to provide a broad taxonomy of temporal partitioning approaches 

previously considered in the literature.   

Static sliding window (SSW) techniques, in which streaming data is segmented into fixed 

length intervals (W) of pre-defined overlap (p), have been heavily explored for online AR [38-40]. 

This approach offers simplicity on both a conceptual and implementation level. Algorithm 

parameters are typically chosen using application-specific empirical data. For example, Tapia et 

al. set the static window duration at half the average of the shortest event duration observed, 

thereby ensuring sufficient temporal spotting resolution [41].  Beyond application-specific 

considerations, windowing parameters should also be considered in conjunction with classifier 

design decisions, especially for methodologies employing hand-engineered feature spaces.  

SSW temporal partitioning suffers from many disadvantages, including – 1) inherent 

inefficiencies for scenarios requiring the spotting of sporadically occurring short-duration events, 

2) performance challenges for situations where the window encompasses signals from multiple 
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activities of interest (i.e.: event boundaries, cases where window duration exceeds the event 

duration) and 3) challenges for scenarios where the window duration is less than the event duration. 

Visualizations of the segmentation cases described in 2) and 3) are shown in Figure 3-1 for the 

estimated container inclination using the current sensor architecture. 

 

Figure 3-1: Potential Failure Modes of Static Partitioning 

 

With respect to 2), the influence of window length on classification errors for fixed 

partitioning frameworks has been explored in the literature [42]. The coupling between the 

construction of the feature space and window parameters was investigated in [43], with adaptive 

selection of features and window parameters on a per-activity basis yielding optimal performance. 

As the current work is targeted for the spotting of drinks, which may be highly sporadic and of 

variable duration, static windowing is disadvantaged relative to the dynamic segmentation 

proposed within this chapter. 

To address the limitations of SSW segmentation, a variety of adaptive approaches have 

been explored. For example, Laguna et al. identified window boundaries using sensor state 
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changes (RFID and reed switches), thereby yielding event-specific dynamic window durations for 

in-home daily living activities [28]. As this approach requires discrete state-based sensor outputs 

to trigger event boundaries, it is not directly applicable for the current application. 

Various other techniques which dynamically segment streaming data according to some 

event-specific rule have been explored. For example, Junker et al. [44] used the sliding window 

and bottom-up algorithm, originally proposed by Keogh et al. [45], to partition estimates of the 

pitch and roll of the lower arm approximated by IMU sensors. While such complexity in 

partitioning may be mandated for wearable applications where multiple activities of interest 

exhibit similar kinematics, the difference in captured signal morphology for the current events of 

interest renders such complexity unnecessary. Inclination estimates during various daily activities 

as estimated by the attachable IMU sensor are shown in Figure 3-2. As noted, the kinematics of 

drinking are highly distinguished from most general handling, transport, and maintenance 

activities.  

More simplistic threshold-based partitioning approaches have been suggested for both 

wearable [46], and vision-based [47] AR frameworks. Our work is distinguished from these in 

both sensor placement and application, along with the utilization of multiple post-thresholding 

qualifiers to further improve the efficiency and specificity of the partitioning process. 
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Figure 3-2: Inclination Estimates During Various Daily Living Activities 

 

For example, Luckowicz et al. used acoustic intensities to segment accelerometer outputs for 

tracking assembly-related activities in a wood shop [48]. In relation to the current application, 

utilization of additional devices, such as a light sensor to indicate opening of a lid, have been 

proposed for providing temporal drink event markers [49]. As these and similar techniques require 

additional hardware, they are not suitable for integration within our proposed lightweight and 

retrofittable solution. 

3.3 Collection Hardware 

A three-node wireless sensor network composed of six degrees of freedom IMU sensors 

was used in all data collections described within this manuscript. Each IMU node contains a triaxial 

accelerometer (Analog Devices ADXL345), gyroscope (InvenSense IMU-3000), and 802.15.4 

wireless transceiver (IRIS Mote module). Sensors were fastened in the desired configuration using 
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a customized elastic strap with a Velcro connector. The specific configuration of each node during 

the various collections performed is provided in the appropriate forthcoming sections. Only the 

accelerometer signal is used within the current chapter, with processing of the gyroscope output 

for drink spotting applications targeted for future research.  

Data was transmitted from each node to a MEMSIC IRIS base-station interfaced to a PC 

through a USB port. This configuration demanded that the laptop be within the transmission range 

of the sensor during all data collection, thereby limiting in-the-wild testing. Data was polled from 

the sensor nodes by the base-station in a round-robin fashion at a target sampling interval of 50 ms 

per node. Data for each experiment was stored in a separate text file, which was controlled using 

a customized Python script. All files were processed offline using MATLAB. 

For all configurations in which a node was connected to the bottle, the relationship between 

the local sensor coordinate frame and bottle geometry is as follows - 1) the positive x-component 

of the sensor was aligned vertically along the bottle’s surface, yielding a static output value 

corresponding to the Earth’s gravitational constant when placed vertically on a surface (i.e.:  𝒂 =

𝑔𝒙̂),  and 2) the y and z-components were oriented parallel and normal to the bottle’s surface, 

respectively, with sign convention defined according to a traditional right-handed framework. A 

visualization of the sensor coordinate axes was provided in Figure 1-1. It should be noted that 

while care was taken to maintain the stated orientation during all trials, variations may have 

occurred during experimentation as part of the handling process. 

3.4 Signal Preprocessing 

Each accelerometer output was initially smoothed using a 2-sample moving average filter, 

and subsequently resampled using MATLAB’s resample function to account for variability in the 

base station polling interval. After conditioning, the inclination angle of the bottle was estimated 
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under the commonly employed assumption of minimal negligible acceleration as specified in (3.1), 

where 𝑎𝑗 denotes the 𝑗𝑡ℎ component of the accelerometer output. 

 𝜃 = tan−1(
√𝑎𝑦

2+𝑎𝑧
2

𝑎𝑥
)  (3.1) 

Under ideal alignment, this sensor’s inclination may be used to approximate that of the 

container. This assumption is examined in Chapter 8 using video-based positional tracking. 

3.5 Data Collection 

3.5.1 Overview 

Experiments were designed to mimic the intended use case of the device. The following 

general activity classes were identified for consideration - 1) maintenance activities (i.e.: 

discharging excess fluid, washing, etc.), 2) transport activities (i.e.: carrying in-hand, etc.), 3) use-

base handling (drinking, fidgeting, etc.), and 4) stationary placement. While the detachable nature 

of the sensor would ideally result in the removal of the device during maintenance activities, these 

were included for all current analysis.  

Experiments were conducted by multiple participants to assess inter-individual variability in 

both handling and drinking style. Participants were directed to perform each action according to 

their own personal preferences. The data collection was divided into three separate sessions 

denoted as follows - i) Training Set (TS) Collection, ii) Temporal Resolution Testing Collection 

(TR), and iii) Interleaved Daily Living Testing Collection (DL). A brief description of each 

collection is provided below. The TS collection was completed by seven individuals, while the 

testing collections were completed by only five of the original seven. 
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3.5.2 Training Collection 

To support the rapid acquisition of high-quality training data, individual collections were 

conducted for each activity described in Table 3-1. For all events other than drinking and 

discharging excess water, 35 minutes of data (5 minutes/participant) was collected. For drinking 

and discharge, 84 events (12/participant) were recorded for each activity.  

Two sensors were attached to the bottle during all activities in a position intended to 

minimize interference with handling and drinking. The first device, hereby denoted as the bottom 

sensor, was placed below the hinge at the bottom of the bottle as shown in Figure 1-1. The second 

sensor was placed midway up the bottle opposite the drinking hand of each participant. The third 

sensor was used only for marking the initiation and termination of drink events. Training was 

performed using only bottom sensor data, with the exploration of middle sensor data reserved for 

future work exploring performance robustness with respect to position.  

Conducting dedicated training collections where participants perform only a single activity 

of interest at a time offers notable advantages, including simplifying the assignment of ground-

truth (GT) labels (versus data containing multiple interleaving activities). Moreover, single-

activity trials simplify participant instruction, thereby ensuring the acquisition of high-quality data. 

Isolated training collections have also been employed in related work for similar motivations (i.e.: 

[26]).  This strategy is not without disadvantage, as it eliminates the direct deployment of models 

exploiting temporal variations within the activity sequence (i.e.: HMMs, LSTMs, etc.). Sample 

waveforms of each activity were depicted in Figure 3-2. 
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Table 3-1: Daily Use Activities Considered 

Activity ID Description 

Walking: Bottle 

In-Hand 

(W-IH) 

Participants walked on both flat ground and stairs in a 

repeated loop to remain in range of base station with 

bottle held in hand at an unspecified orientation/grip 

Walking: Bottle 

In-Bag 

(W-IB) 

Participants walked in same loop at W-IH, but with 

bottle placed in a bag supporting vibrational, 

rotational, and translational degrees of freedom. 

Instructions for holding the bag were not specified to 

participants 

Walking: Bottle 

In-Bag, 

Restricted 

(W-IB-R) 

Same as W-IB, but with additional objects placed in 

the bag to restrict rotational and translational 

degrees of freedom 

Stationary 

Placement (S) 
Bottle placed stationary in various orientations 

Transport: In-

Car 

(T-IC) 

Bottle placed in various locations (floorboard, seats, 

etc.) in vehicle traveling in various environments 

(highway, city, etc.) 

Fidgeting 

 (F) 

Participants held bottle in hand and were instructed 

to mimic activities which may occur while seated 

(i.e.: daydreaming, fidgeting, engaging in 

conversation, etc.) 

Mimic Washing 

(MW) 
Participants mimicked washing the bottle in a sink 

Drinking:  

(D) 

Participants completed 12 drinks each while 

standing, with the bottle retained in-hand between 

drinks 

Discharge 

Excess Water 

(DEW) 

Participants discharged excess water 12 times from 

various initial fill levels (full, half, and quarter 

filled) into a sink 

 

3.5.3 Temporal Resolution Testing Collection 

A dedicated testing collection was conducted to assess the capacity of the algorithm to 

resolve closely spaced drinks. Four target inter-drink spacings ({2, 5, 10, 20} 𝑠)were considered. 

To avoid spilling, participants retained the bottle in-hand between drinking commands, which were 

provided verbally by the experimental proctor. Data was collected in a series of four trials 
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containing six drinks each. Two trials contained spacings of two and 10 s, and the other two 

contained spacings of five and 20 s. This information is summarized in Table 3-2.  

TR collections used a bottom sensor as previously described, a sensor placed on the wrist of 

the drinking hand of the participant (to be explored in future work), along with a sensor held in the 

hand of the proctor. Similar to the TS collection, this latter sensor was shaken to mark the initiation 

and termination of the drinking event for GT labeling. A visualization of the wrist and sensor 

outputs for a 2/10 s spacing trial is provided in Figure 3-3. 

3.5.4 Simulated Daily Living Test Collection 

Further experiments were conducted to ensure algorithm viability for truncated daily living 

scenarios consisting of interleaved activities considered in the training collection. A series of four 

experiments were conducted – two employing transport in-hand, and two employing in-bag 

transport at two different orientations (vertical and horizontal). Each experiment contained 8 drinks 

with varying inter-drink separation. Summary information for the daily living simulated (DL) 

collection is also provided in Table 3-2. 



 

33 

 

Figure 3-3: Bottle and Wrist Sensor Outputs for TR Trial 

 

Table 3-2: Summary of Testing Collections 

Collection 

ID  

Interleaving 

Activities Considered 

Inter-Drink  

Spacings 

Considered   

Total Drinks  

Per 

Subject/Total 

TR ● In-Hand Holding {2,5,10,20} s 24 / 120 

DL 

● In-Hand Holding 

● W-IH 

● W-IB 

● DEW 

● MW 

{2, 10} s 

 

32/160 

 

 

The experiment utilized an identical hardware configuration as described for TR testing. A 

visualization of the estimated bottle inclination over the experiment is shown later in this chapter 

(Figure 3-5), after introduction of the proposed dynamic partitioning strategy. 

3.5.5 Ground-Truth Labeling 

The proctor was instructed to shake a hand-held sensor at the initiation and termination of 

the lifting motion for each drink. Labels were then assigned by applying an empirically determined 
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threshold to the magnitude of the acceleration signal, 𝑎𝑐, with the static acceleration due to gravity 

removed as shown in (3.2) 

 𝐴[𝑛] = |𝑎𝑐 − 1| > 𝜏  (3.2) 

For all samples exceeding the threshold in the local neighborhood of the 𝑗𝑡ℎ drink event 

(determined visually), GT values for the beginning (𝑡𝑠
𝑗
) and end (𝑡𝑒

𝑗
) of the drink were assigned as 

specified in (3.3) and (3.4), respectively. 

 𝑡𝑠
𝑗

= 𝑖𝑛𝑓{𝑛 | 𝐴𝑗[𝑛] > 𝜏}  (3.3) 

 𝑡𝑒
𝑗

= 𝑠𝑢𝑝{𝑛 | 𝐴𝑗[𝑛] > 𝜏}  (3.4) 

The consistency of GT estimates across drinks is inherently limited by the subjectivity of the 

proctor marking, along with the reliance on a specific threshold. Due to this limitation, the 

inference which may be drawn from subsequent measurements of localization error is restricted. 

3.6 Algorithm Development 

3.6.1 Overview 

Binary event detection schemes employing temporal partitioning with subsequent 

classification may be conceptualized as a two-phase processing workflow. The preliminary step 

involves temporal partitioning of streaming data, hereby denoted as {𝑥𝑖}, where 𝑖 is a time index 

corresponding to the sensor timestamp, by some mapping function 𝜓 as denoted in (3.5)

  𝜓:  {𝑥𝑖} → {𝒅𝑚}  (3.5) 

where 𝒅𝑚 = {𝑥1, 𝑥2, … , 𝑥𝑛}𝑚 is the 𝑚𝑡ℎ data partition, and 𝑥1
𝑚 and 𝑥𝑛

𝑚 are the starting and 

ending data points of the partition. For SSW approaches, 𝜓  is a buffering process which groups 

input data into fixed duration intervals of specified overlap (i.e.: 𝑛𝑚 is constant ∀ 𝑚). For dynamic 

partitioning strategies, 𝜓  exploits some characteristic of either the sensor or activity space of 
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interest to produce variable duration partitions. Classification is performed by some learned 

function 𝜑, which performs the mapping denoted in (3.6)  

 𝜑:  𝑓(𝒅𝒎) → 𝐿𝑚 (3.6) 

where 𝐿𝑚 ∈ {0,1} is a binary indicator of the presence of the event in the 𝑚𝑡ℎ partition, and 

𝑓 is a function computed on each data partition. For end-to-end architectures, 𝑓 is the identity 

function (i.e.: data is fed directly into the classifier). For classifiers employing hand-engineered 

feature spaces, 𝑓 is a mapping of the raw data to the designed feature representation. The detection 

process may require additional post-processing, especially for schemes employing SSW 

segmentation with considerable overlap. 

3.6.2 Dynamic Partitioning Strategy 

As was exhibited in Figure 3-2, the inclination signal follows a concave morphology during 

drinking events. The proposed dynamic partitioning strategy seeks to identify time intervals 

containing candidate drink signals by exploiting this distinguished inclination signature. This 

process is detailed in pseudocode in Figure 3-4, with a summary description provided in the 

following paragraph.  

To begin partitioning of the input stream, an amplitude threshold is applied to the inclination 

signal on a per-sample basis. This threshold is determined empirically ( 𝜃min = 12° ) as the 

minimum angle required to induce fluid flow from a full bottle. Next, adjacent intervals of samples 

exceeding the threshold which are separated by less than a merge parameter (𝑠 =3 samples) are 

combined. The merging process yields candidate data partitions 𝜃𝑗, with beginning and ending 

timestamps denoted as 𝑡̂𝑠
𝑗
 and 𝑡̂𝑒

𝑗
. 
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Temporal Partitioning Pseudocode 

Input:            Accelerometer-Based Inclination Estimate,  

                       𝜃[𝑛], 𝑛 ∈ 𝑵 = {1,  2,  … ,  𝑁} 
 
Output:         Ordered pairs estimating the start/stop of candidate drink intervals,     

{{𝑡̂𝑠, 𝑡̂𝑒}𝑗 } 
 
Parameters:   Point Amplitude Threshold, 𝜃min,  
                       Merge Parameter, 𝑠, 
                       Duration Criteria, 𝑑min, 𝑑max, 
                       Amplitude Criteria, 𝐴𝑚𝑖𝑛, 
                       Range Criteria, 𝑅𝑚𝑖𝑛, 

 

Threshold   𝜃[𝑛], 𝑵∗ ⊂ 𝑵 = {𝑛 |𝜃[𝑛] > 𝜃min} 
 
Merge resultant thresholded subset, 𝑵∗, to form candidate output set 𝐍𝐃

′  
 

Initialize 𝐍𝑫 = 𝐍𝑫
′ = {} 

Set 𝑡̂𝑠
1 = 𝑖𝑛𝑓 (𝑵∗),  𝑗=1 

for 𝑘 = 𝑡̂𝑠
1 + 1 :  |𝑵∗| 

if (𝑵∗[k] - 𝑵∗[k-1] > 𝑠) 

 𝑡̂𝑒
𝑗

= 𝑵[𝑘 − 1] 

𝐍𝑫
′ = 𝐍𝑫

′ ∪ (𝑡̂𝑠, 𝑡̂𝑒)𝑗 

 𝑗 = 𝑗 + 1 

 𝑡𝑠
𝑗

= 𝑵[𝑘] 

end if 

end for 

Discard events of insufficient maximum amplitude  
or duration range in 𝐍𝑫

′  to form output set 𝐍𝑫 
 

Set 𝑑𝑎𝑙𝑙𝑜𝑤 = [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥] 

for j = 1 : |𝑵𝑫
′ | 

if { (𝑡̂𝑒
𝑗

− 𝑡̂𝑠
𝑗
) ∈ 𝑑𝑎𝑙𝑙𝑜𝑤  & 𝑚𝑎𝑥(𝜃𝑗) > 𝐴𝑚𝑖𝑛 

& 𝑟𝑎𝑛𝑔𝑒(𝜃𝑗) > 𝑅𝑚𝑖𝑛  }  

𝐍𝑫= 𝐍𝑫 ∪ (𝑡̂𝑠, 𝑡̂𝑒)𝑗 

end if 

end for 

 

Return candidate drinking events, 𝐍𝑫 = {(𝑡̂𝑠, 𝑡̂𝑒)𝑗} 

Figure 3-4: Pseudocode of TMD Partitioning Algorithm 
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Partitions with a maximum inclination value or inclination range falling below a threshold (𝐴𝑚𝑖𝑛 =

50° and 𝑅𝑚𝑖𝑛 = 30° , respectively), or duration falling outside of a specified range (0.5 – 6 

seconds) are discarded. This qualifying process is intended to discard events not exhibiting the 

desired inclination signature (i.e.: stationary placements at non-vertical orientations, etc.), which 

is mandated due to the collection of data even when the lid is closed. The result of applying the 

algorithm to a DL data trial is shown in Figure 3-5. 

 

Figure 3-5: Example DL Testing Output with Estimated Drink Intervals 

 

3.6.3 Classification Algorithm 

As the TMD algorithm was designed to discard most confounding daily living activities, 

the subsequent classification process was targeted to differentiate solely between drinks and other 

events exhibiting a concave inclination (i.e.: excess discharges, etc.). Data visualization and 

domain knowledge were used to develop a candidate feature set suitable for distinguishing these 

events under normal operation (i.e.: users not attempting to spoof the device). As drinking is 

subject to somatosensory feedback and involves careful handling to avoid spills, it was 

hypothesized that the motion should be more controlled versus discharge and other pouring events 

away from the mouth. To reflect this hypothesis, features describing the maximum inclination 
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angle, mean inclination rate through the maximum angle, and residual energy after smoothing were 

used as defined in (3.7) – (3.9). 

 𝜃𝑗
𝑚𝑎𝑥 = 𝑚𝑎𝑥 ( 𝜃(𝑡𝑠

𝑗
: 𝑡𝑒

𝑗
)) (3.7) 

 
𝑑

𝑑𝑡
𝜃𝑗

𝑟𝑎 = 𝑚𝑒𝑎𝑛 (𝜃𝑗(𝑡𝑠
𝑗
: 𝑡𝑚𝑎𝑥

𝑗
)) (3.8) 

 ∆𝑒𝑗 = ∑ (
𝑡𝑒

𝑗

𝑡𝑠
𝑗 𝜃[𝑘] − 𝑠(𝜃[𝑘]))2  (3.9) 

where 𝑠(∙) is a smoothing operation implemented as a third-order Savitzky-Golay filter with 

a nine-sample frame length (with delay compensation), and 𝑡𝑚𝑎𝑥
𝑗

 is the time index of the maximum 

inclination angle. A scatter plot showing the clustering of drink and discharge training instances 

in this feature space is depicted in Figure 3-6. 

 

Figure 3-6: Scattering of Drink and Discharge Training Instances 

 

Training data (D and DEW only) was partitioned using five-fold cross-validation to 

minimize the effect of overfitting in the model evaluation process. A variety of classifier models 

were then evaluated using MATLAB’s Classification Learner Application. Cross-validation 

accuracy exhibited minimal variation across the various models considered (K-NNs: 98.2% for 
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fine clustering, SVMs: 98.2% for various kernels (linear, quadratic, etc.), etc.). A linear SVM was 

used for all subsequent analysis.  

The proposed algorithm was benchmarked against a slight variation of the previously 

considered technique for a container-attachable architecture [31]. Partitioning was performed 

using an SSW scheme (𝑊 = 3 𝑠, 𝑝 = 75%). A slightly modified version of the proposed four-

element feature space was employed as specified in (3.10) - (3.13). 

 𝜃𝑚
𝑟𝑎𝑛𝑔𝑒 = 𝑟𝑎𝑛𝑔𝑒 (𝜃[𝑡𝑖

𝑚: 𝑡𝑓
𝑚]) (3.10)

 𝑁𝑚 = 𝑛𝑛𝑧 (𝜃[𝑡𝑖
𝑚: 𝑡𝑓

𝑚] > 𝜃min) (3.11)

 𝜃𝑚
𝑚𝑒𝑎𝑛 = 𝑚𝑒𝑎𝑛(𝜃 [[𝑡𝑖

𝑚: 𝑡𝑓
𝑚]])  (3.12)

 𝑆𝑚 =
𝑎𝑟𝑔𝑚𝑎𝑥(𝜃̂[[𝑡𝑖

𝑚:𝑡𝑓
𝑚]]) 

𝑁𝑚−𝑎𝑟𝑔𝑚𝑎𝑥(𝜃̂[[𝑡𝑖
𝑚:𝑡𝑓

𝑚]])
  (3.13) 

where 𝑛𝑛𝑧 is a function counting the number of non-zero samples satisfying the threshold 

criteria, and 𝑡𝑖
𝑚and 𝑡𝑓

𝑚 are the initial and final timestamps in the 𝑚𝑡ℎwindow. Slight modifications 

of the feature space were necessary to reflect utilization of the inclination estimate in the current 

work (versus the axial component of acceleration in the prior).  

Features were computed across all activity classes, excluding drink and discharge events, by 

sliding a window with specified SSW parameters across the training data. For pour and drink 

events, the window was centered at the midpoint of the GT interval label. Data was again 

partitioned using five-fold cross validation, with a variety of classification models evaluated. A 

cubic SVM classifier exhibited a maximum cross-validation accuracy of 97.5% and is used in all 

testing experiments. Adjacent windows identified as containing drinks were merged into a single 

observation interval in post-processing. 
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3.6.4 Performance Metrics 

Performance was quantified by first mapping the midpoint of each estimated drink interval 

to the nearest GT interval, with each element of the GT interval considered only once. Next, error 

sets representing the underlap (𝑈𝑗) and overlap (𝑂𝑗) between the estimate and GT were defined 

using the non-commutative set difference operator. Localization error was measured as specified 

in (3.14), where | ∙ | denotes the set cardinality operator.  

 𝐸𝑗 =
(|𝑈𝑗|+|𝑂𝑗|)

|{𝑡𝑠
𝑗

,𝑡𝑠+1
𝑗

,…𝑡𝑒
𝑗

}|
     (3.14) 

To account for the expected variability in GT marking, successful detection was declared 

when the normalized intersection between the estimate and GT interval exceeded 50% . It should 

be noted that both the SSW and TMD algorithms were anticipated to produce some error for the 

GT marking protocol used herein. For the prior, the post-classification merging of adjacent 

windows is expected to produce overestimations. In contrast, thresholding to the minimum 

inclination angle in TMD does not necessarily allow for capturing of transport to and from the 

mouth, thereby resulting in potential underestimations. As consistency in GT estimates is limited 

by the aforementioned mechanisms, potential inference regarding the estimated localization error 

is restricted. 

3.7 Results 

3.7.1 TR Testing 

Both the TMD and SSW algorithms successfully detected each of the 120 drinks in the TR 

experiments. Total localization error for TMD was 36.3 ± 6.2% (mean ± standard deviation), 

versus 59.6 ± 23.7% for SSW. Error sources were consistent with those hypothesized based upon 

the mechanism of each algorithm as described in the prior section (average overlap of SSW: 58.9%, 
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average underlap of TMD: 36.3%). The total number of classifications performed for TMD 

processing was 120, versus 1,749 for SSW. 

3.7.2 DL Testing 

The TMD algorithm detected 162 drinks through 172 classification operations across the 

DL experiments. Of these detections, 160 corresponded to true positives, with two false positives 

produced (True-Positive Rate (TPR): 98.8%). Total observed localization error was 31.4 ±

23.1%. Consistent with TR experiments, localization errors largely resulted from underestimates 

of the GT interval (29.2% average). 

In contrast, the SSW algorithm detected 197 drinks through 4,310 classification operations. 

Of these, 148 were true positives, 43 were false positives, and six contained unresolved adjacent 

drinks (i.e.: two drinks in one interval), corresponding to a TPR of 75.1%. Total observed 

localization error was 65.3 ± 34.0%, with distributions for both testing trials shown in Figure 3-

7. SSW error was again dominated by overestimation (63.5% avg.). Performance statistics for the 

DL experiments are consolidated in Table 3-3. Examples of error modes associated with SSW 

classification are depicted in Figure 3-8. 
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Figure 3-7: Localization Error Distributions 

 

Table 3-3: Summary of DL Testing Performance 

Algorithm 

ID 

True Positive 

Detection Rate 

Mean Localization 

Error 

Total # of 

Classifications 

TMD 98.8% 31.4% 172 

SSW 75.1% 65.3% 4,310 

 

3.8 Conclusions and Future Work 

A novel dynamic temporal partitioning and classification algorithm for drink spotting was 

proposed herein. This approach is designed for implementation on streaming accelerometer data 

generated from a bottle-attachable IMU sensor. Benchmarked against a slightly modified version 

of a previously introduced static sliding window classifier, the algorithm was demonstrated to 

improve sip detection performance while reducing computational overhead. 
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Figure 3-8: Example Error Modes – DL Experiments, SSW Algorithm 

 

Namely, for a series of simulated daily living activities containing 160 intermixed drinks, 

true-positive detection rate was improved from 72.9% to 98.8%, while the total number of required 

classification operations was decreased from 4,310 to 172. Preliminary analysis also suggests 

improved spotting precision, although inference is limited by the subjectivity of the employed GT 

labeling process.  

Further investigation should be conducted to assess potential trade-offs between the design 

of the individual stages of the proposed algorithm. Namely, the current implementation imposes 

several qualifying criteria on the inclination signal in the discard stage of partitioning. These could 

be relaxed in alternative implementations, with discrimination against the target activities for 

which the criteria were implemented instead performed through classification. While this approach 
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increases the number of required classification operations, it would likely improve generalization 

for larger data sets including more diverse drinks.  

In addition to exploring these trade-offs, future work should also investigate the relationship 

between the employed drink spotting technique and the resulting volume estimations. Exploration 

of performance robustness with respect to sensor position, along with comparisons with wrist-

worn IMU data, should be conducted. Finally, the utilization of training data obtained from daily-

use scenarios should be investigated to support the deployment of models exploiting the temporal 

patterns of drinking events (i.e.: LSTMs, etc.). 
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Chapter 4 : The Inclination Signature Feature Set 

4.1 Introduction 

Previous motion-based approaches for estimating drink volume have achieved limited 

accuracy as noted in Chapter 1. Moreover, estimates have been shown to demonstrate considerable 

inter-subject variability. These previous models have utilized a limited description of the 

characteristic drinking motion pattern. For example, [11] described the drinking event using only 

its duration and the corresponding integral of two accelerometer channels. Research in [15] used 

a slightly expanded feature set for an attachable configuration. Namely, a four-element set 

including – 1) the duration of the drinking event, 2-3) the range and mean value of the 

accelerometer component parallel to the bottle’s axis, and 4) a measure of symmetry of the 

inclination and declination portion of the drink, was used. While both efforts qualitatively 

described the relationship between the reported feature space and bottle kinematics, direct 

estimation of the container’s inclination trajectory has not previously been explored within 

academic literature. 

This chapter describes preliminary efforts to improve upon motion-based volume accuracy 

by leveraging the accelerometry-based container inclination estimation technique described in 

Chapter 3. In addition, a richer description of the resulting motion pattern during drinking is 

proposed. This representation uses both summary kinematic features, along with a low-resolution 

description of the variation in inclination through amplitude binning. The proposed technique is 

utilized throughout the remainder of this dissertation in the various estimation models explored.  

This chapter begins with a review of reported volume estimation results in the literature. 

Approaches utilizing both volume and fill ratio estimates are presented. Next, details regarding the 

large-scale data collection conducted to support estimation efforts within this dissertation are 
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provided. A kinematically-inspired strategy for partitioning the entire captured motion sequence 

into transport and sip phases is also presented, followed by the proposed feature space description. 

Correlation with both volume and fill ratio are provided for the newly introduced feature set, along 

with the previously proposed four-element set in [15]. 

4.2 Data Collection 

Eighty-four college-aged subjects (52 M, 32 F) completed 161 trials of an experiment 

requiring the consumption of 12 drinks from a refillable 750 mL bottle. Subjects were permitted 

to complete a maximum of four trials over multiple sessions. To begin the experiment, the bottle 

was filled to a consistent level as determined visually by the experimental proctor. To ensure that 

a variety of drink volumes were captured, subjects were instructed to consume either a small, 

medium, or large drink prior to each sip according to their personal preferences. The bottle was 

placed on an electronic scale following each drink, with the ground truth mass recorded manually 

in a spreadsheet. Variations from protocol were noted by the proctor to allow for removal in post-

processing (i.e.: grasping and transporting the bottle without completing a drink, etc.). The ground-

truth fill level from which each drink was consumed was estimated offline using an empirically 

determined mapping between changes in bottle mass and fill level reductions. Subjects consumed 

the entire original volume of water in seven trials, requiring refilling of the bottle during the 

experiment. Two trials were discarded after collection due to hardware failure, yielding a total 

valid data set of 159 trials (1,908 drinks).  

All subject recruitment, data collection, and record storage was conducted according to 

protocol approved by the Institutional Research Board at Michigan State University. The 

univariate distribution of the initial fill ratio (fill level normalized to fillable height) and mass of 

each drink collected, along with their joint distributions, is depicted in Figure 4-1.  



 

47 

 
 

  

 
 

Figure 4-1: Univariate and Joint Distributions of Training Data 

 

4.3 Pre-processing and Drink Segmentation 

Data was collected using the sensor system described in Section 2.5. A sensor module was 

connected to the bottom of the bottle beneath the lid to avoid interference with grasping as depicted 

in Figure 1-1. A customized elastic strap with a Velcro connector was used to fasten the sensor to 

the bottle. For a subset of experiments, an additional sensor was attached midway up the bottle 

opposite the drinking hand. This second sensor was added to explore performance variability with 

respect to placement. Analysis of data from this additional sensor is reserved for future work. 
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To begin preprocessing, the bias of each component was estimated by averaging the initial 

50 samples of each recording. During this time interval, the bottle was rested in a stationary vertical 

position. Portions of the signal corresponding to variations in protocol were then removed 

manually from the recordings using experimental annotations. Next, each file was parsed into drink 

events using a threshold-based algorithm exploiting the stationary placement of the bottle between 

drinks. This process captures the entire time interval for which the bottle was in motion (i.e.: both 

transport to and from the mouth, along with sipping). 

After partitioning into drink events, signals were resampled to the target frequency of 20 

Hz to account for variability in the base station polling interval. Smoothing was performed using 

a two-sample moving average filter to mimic the frequency response of the original work 

conducted in [15]. The sensor’s inclination with respect to gravity, which is equivalent to that of 

the container under ideal sensor alignment, was then estimated under the assumption of negligible 

dynamic acceleration as specified in (3.1). 

Variation in the estimated container inclination over an experimental trial is depicted in 

Figure 4-2. As volume is depleted form the container through sequential drinks, the maximum 

inclination associated with each sip increases. 

4.4 Microevent Partitioning Strategy 

As the parsing algorithm captures the entire motion interval of the container, further 

partitioning is necessary to isolate the drinking event from the transport phase. As described in 

similar work (i.e.: [26]), this segmentation is motivated by the substantial variation that may occur 

in the transport motion pattern depending upon the specific drinking scenario. For the experiments 

described herein, variability in handling between drinking events may be associated with the order 

of the drink within the trial (i.e.: more careful handling for full containers, more rapid transport as 
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the subject becomes familiar with protocol, etc.). In addition, differing orientation of the container 

upon retrieval may also introduce variability in the transport motion pattern. Due to the scripted 

nature of the experiments, such variability is anticipated to be negligible versus that encountered 

during daily living scenarios.  

To isolate the drinking portion of the event, the asymmetry of the container about its axis 

is exploited. Namely, as the lid of the container encourages consumption from the opposite edge, 

we hypothesize that the transport phase will involve rotations about the axis of the bottle as 

necessary to achieve the desired drinking orientation. This orientation is reflected in the sensor’s 

position within the cross-sectional plane of the bottle, and may be estimated by computing the 

orientation of the resultant component of the static acceleration due to gravity as specified in (4.1). 

  𝛼 = 𝑡𝑎𝑛−1(
𝑎𝑧

𝑎𝑦
)  (4.1) 

As depicted for a random sample of drinks in Figure 4-3, 𝛼 maintains a stationary value 

near the center of each drinking event, corresponding to the hypothesized lack of axial rotation of 

the container during sipping. 

For preliminary analysis, the interval for which the sensor remains in this position is defined 

as the sip micro-event, yielding an aggregate micro-event partition defined as follows: 

Lift: The portion of the macro-event proceeding the sip micro-event 

Sip: The portion of the micro-event for which the cross-sectional sensor placement 

is estimated as stationary 

Place: The remainder of the macro-event after termination of the sip micro-event 

Strategies for further isolating the time period for which fluid is entering the mouth will be 

explored in future work. 
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(a) Wide View 

 
(b) Zoom View 

Figure 4-2: Variation in Estimated Container Inclination Over Experimental Trial 
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Figure 4-3: Variation in Coplanar Sensor Orientation During Randomly Chosen Drinks 

 

To estimate the duration of the sip micro-event, a threshold-merge algorithm with 

empirically determined parameter values was applied on the sample-over-sample difference of 𝛼. 

The difference signal was initially thresholded to a maximum value of 8 degrees. All intervals 

meeting the threshold criteria which were separated by less than 2 samples were merged to a 

continuous interval, with the largest interval extracted as the sip micro-event. The resulting micro-

partition for the four random drink events depicted in Figure 4-3 is shown in Figure 4-4.  
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Figure 4-4: Variation in Container Inclination During Randomly Chosen Drinks 

 

As shown in Table 4-1, sip duration is more strongly correlated with volume versus the two 

transport durations. The correlation between sip duration, along with the previously proposed 

motion feature related to the integral of the inclination [11], are shown in Table 4-2 for various 

ranges of controlled fill levels. 

Table 4-1: Correlation Between Features and Volume Label 

Micro-event 

Duration 

Pearson Correlation 

Coefficient (Corr. Coeff.) 

(Entire Dataset) 

Lift Duration 0.189 

Sip Duration 0.449 

Place Duration 0.159 
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Table 4-2: Correlation Between Previously Reported Motion Features and Volume 

Motion Feature Corr. Coeff. 

(Entire 

Dataset 

N = 1,908) 

Corr. Coeff. 

(FR > 50% 

N = 1,576 

Corr. Coeff. 

(FR > 70% 

N = 1,075) 

Corr. Coeff. 

(FR > 90% 

N = 413) 

Sip Duration 0.449 0.457 0.471 0.557 

Integral of 

Inclination Over 

Sip Duration 

0.536 0.543 0.571 0.672 

 

This two-factor description of the motion pattern captures two degrees-of-freedom which 

may be utilized by subjects to control the amount of fluid consumed (i.e.: drink duration and 

container inclination). Observations regarding the relationship between these motion factors and 

volume are consistent with [11], which reported a correlation coefficient with drink volume of 

0.69 and -0.60/-0.55 for sip duration and the integral of accelerometer signals not parallel to the 

wrist. Moreover, the strength of correlation between both features and volume increases when fill 

level is restricted within a narrower range of values. This increasing strength of relationship 

supports the prior observation of the interdependence of volume and fill level on the resulting 

motion signature. 

4.5 Feature Engineering 

Based upon examination of the estimated inclination curves, along with motion 

observations during data collection, a set of hand-engineered features describing the drinking 

kinematics were hypothesized. In addition to key kinematic quantities (i.e.: maximum inclination, 

maximum rate of inclination, etc.) and their associated statistical moments, amplitude values of 

both the raw and normalized curves were binned to create a low-level time-invariant feature 

description of the signal. This description, hereby denoted as the inclination feature (IS) set, is 

summarized in Table 4-3.  
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Table 4-3: Inclination Signature (IS) Feature Set 

Feature 

ID 

Feature 

Symbol 

Feature  

Definition 
Description 

1 𝜃∗ 𝑚𝑎𝑥 (𝜽𝑗) 
Maximum inclination angle 

during drink event 

2 𝐷 𝑙𝑒𝑛𝑔𝑡ℎ (𝜽𝑗) Duration of drinking event 

3-11 𝐴𝑘 

𝑐𝑜𝑢𝑛𝑡(𝜽𝑗 < 𝑇(𝑘)), 𝑘 = 1 

𝑐𝑜𝑢𝑛𝑡(𝑇(𝑘 − 1) ≤ 𝜽𝑗 < 𝑇(𝑘)) , 𝑘 ∈ {2,8} 

𝑐𝑜𝑢𝑛𝑡(𝜽𝑗 ≥ 𝑇(𝑘 − 1)), 𝑘 = 9 

𝑇(𝑘) ∈ {20°, … . 90°} 

Number of samples for which 

inclination angle satisfies 

specified amplitude range 

criteria 

12-20 𝐴𝑅𝑘 

𝑐𝑜𝑢𝑛𝑡(𝜽𝑗/𝜃∗ < 𝑃𝑘) , 𝑘 = 1 

𝑐𝑜𝑢𝑛𝑡(𝑃𝑘−1 ≤ 𝜽𝑗/𝜃∗ < 𝑃𝑘) , 𝑘 ∈ {2,8} 

𝑐𝑜𝑢𝑛𝑡(𝜽𝑗/𝜃∗ ≥ 𝑃𝑘−1) , 𝑘 = 9 

𝑃[𝑘] ∈ {20%, … .90%} 

Number of samples for which 

normalized inclination angle 

satisfies relative amplitude 

criteria 

21 𝑄𝜃 
𝜃∗

𝑙𝑒𝑛𝑔𝑡ℎ (𝜽𝑗)
 

Ratio of maximum inclination 

value to duration 

22 𝜃̅ 𝑚𝑒𝑎𝑛 (𝜽𝑗) Mean inclination angle 

23 𝐷𝜃𝑅
 

𝑎𝑟𝑔𝑚𝑎𝑥(𝜽𝑗)

𝑁𝑗 − 𝑎𝑟𝑔𝑚𝑎𝑥(𝜽𝑗)
 

Ratio of time for which 

inclination angle is increasing 

relative to decreasing 

24-25 𝑆𝜃, 𝑆𝜃
𝑇 ∑ 𝜃𝑚

𝑗
𝑇

𝑈

𝑚=1

 

Riemann sum approximation 

to integral of inclination curve 

over entire duration (𝑈 = 𝑁𝑗) 

or inclination interval (𝑈 =

𝑎𝑟𝑔𝑚𝑎𝑥(𝜽𝑗)) 

26 𝑅𝐸𝜃 
𝑚𝑎𝑥(𝜽𝑗) − 𝜃1

𝑎𝑟𝑔𝑚𝑎𝑥(𝜽𝑗) − 1
 

Slope of line intersecting 

inclination trajectory start of 

trajectory time of maximum 

value 

27 𝐹𝐸𝜃 
𝜃𝑁𝑗 − 𝑚𝑎𝑥(𝜽𝑗)

𝑁𝑗 − 𝑎𝑟𝑔𝑚𝑎𝑥(𝜽𝑗)
 

Slope of line intersecting 

inclination trajectory at time of 

maximum value and end of 

trajectory 

28/29 
𝜃𝑇

′ ∗
/ 

𝜃𝐴
′ ∗

 

𝑚𝑎𝑥 (𝜽(1: 𝑎𝑟𝑔𝑚𝑎𝑥(𝜽𝑗))′𝑗
)/ 

𝑚𝑎𝑥 (𝜽(𝑎𝑟𝑔𝑚𝑎𝑥(𝜽𝑗): 𝑁𝑗)′𝑗
) 

Maximum rate of 

inclination/declination, where 

𝜽′ is a numerically estimate of 

the derivative of 𝜽 

30/31 
𝜃̅𝑇

′ / 

𝜃̅𝐴
′  

𝑚𝑒𝑎𝑛 (𝜽(1: 𝑎𝑟𝑔𝑚𝑎𝑥(𝜽𝑗))′𝑗
)/ 

𝑚𝑒𝑎𝑛 (𝜽(𝑎𝑟𝑔𝑚𝑎𝑥(𝜽𝑗): 𝑁𝑗)′𝑗
) 

Mean rate of 

inclination/declination 

32/33 
𝑠𝜃𝑇

′  / 

𝑠𝜃𝐴
′  

𝑠𝑡𝑑 (𝜽(1: 𝑎𝑟𝑔𝑚𝑎𝑥(𝜽𝑗))′𝑗
)/ 

𝑠𝑡𝑑 (𝜽(𝑎𝑟𝑔𝑚𝑎𝑥(𝜽𝑗): 𝑁𝑗)′𝑗
) 

Standard deviation of 

inclination/declination rate 
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To explore the relationship of the proposed feature set with each recorded label of interest 

(i.e.: volume and fill ratio), the Pearson correlation coefficient between each element and the label 

were computed as specified in Table 4-4. As noted, the strongest correlation (𝜌 = 0.544) with 

volume is associated with feature 24, which corresponds to the integral of the inclination curve 

from the beginning of the event until the maximum value is reached. Strong correlation is also 

observed for feature 25 (𝜌 = 0.53), which corresponds to the integral of the inclination over the 

remaining portion of the event, along with feature 20 (𝜌 = 0.477), which corresponds to the 

number of samples for which the inclination exceeds 90% of the maximum value. The only other 

feature exhibiting a correlation exceeding 0.4 (𝜌 = 0.460) is feature 2, which corresponds to the 

entire event duration.  

Table 4-4: Correlation Between IS Feature Set and Volume/Fill Raito Labels 

Feature 

ID 
1 2 3 4 5 6 7 

𝝆𝑽𝒐𝒍 0.364 0.460 0.178 −0.057 −0.101 −0.148 −0.162 
𝝆𝑭𝑹 −0.834 0.009 0.245 0.445 0.491 0.420 0.386 

 
Feature 

ID 
8 9 10 11 12 13 14 

𝝆𝑽𝒐𝒍 −0.062 0.126 0.336 0.376 0.215 0.061 0.006 
𝝆𝑭𝑹 0.378 0.249 −0.341 −0.582 0.166 0.325 0.286 

 
Feature 

ID 
15 16 17 18 19 20 21 

𝝆𝑽𝒐𝒍 0.048 0.042 0.088 −0.122 0.307 0.477 −0.182 
𝝆𝑭𝑹 0.108 −0.063 −0.167 −0.184 −0.155 −0.168 −0.390 

 
Feature 

ID 
22 23 24 25 26 27 28 

𝝆𝑽𝒐𝒍 0.384 0.316 0.544 0.530 −0.194 −0.010 0.069 
𝝆𝑭𝑹 −0.659 0.085 −0.390 −0.340 −0.339 0.400 −0.421 

 
Feature 

ID 
29 30 31 32 33 

𝝆𝑽𝒐𝒍 0.006 −0.192 −0.013 0.028 0.086 
𝝆𝑭𝑹 −0.057 −0.345 0.405 −0.388 −0.432 

 



 

56 

While the relationship between volume and both the integral of inclination and event 

duration have been previously noted [11], the relationship between the relative threshold feature 

(20) has not been reported. It is hypothesized that the strength of the relative binned value versus 

the absolute binned value (feature 11, 𝜌 = 0.376) is associated with the previously described 

increase in requisite maximum inclination with declining fill ratio. As the volume remaining in the 

bottle decreases, the required inclination to induce fluid flow increases. Therefore, it is expected 

that the relationship between drink volume and inclination amplitude would be more pronounced 

in a relative amplitude sense.  

Correlation between fill ratio and the various elements of the feature space is most 

demonstrated by feature 1 (𝜌 = −0.834). This observation is consistent with the qualitative 

observation in the prior paragraph. Namely, as the fill level of the bottle decreases upon depletion 

of volume, the maximum inclination associated with a drink event increases. Strong fill ratio 

correlation is also exhibited for feature 22 (𝜌 = −0.659), which corresponds to the mean value of 

inclination, along with feature 11 (𝜌 = −0.582), which corresponds to the time duration where 

the inclination exceeds 90 degrees. Observed correlations with the feature space are generally 

stronger for the fill ratio versus volume label.  

For purposes of comparison, correlations with the two labels of interest are computed for the 

four-element feature set previously proposed for a container-attachable IMU in [15]. These 

features are defined in Table 4-5, with correlation values presented in Table 4-6. As noted, the 

observed label correlation of feature 1 in the IS set (maximum amplitude) and 1L in the legacy set 

(range of axial component of the accelerometer) is similar. This supports the prior observation in 

[15] that this quantity is related to inclination, and is verified by expressing (3.1) in terms of a 

decomposition involving solely this component and the resulting static acceleration due to gravity. 



 

57 

Moreover, this equivalent is demonstrated in comparing the observed relation for feature 23 and 

4L, along with 3L and 22. 

Table 4-5: Legacy Feature Set 

Feature 

ID 

Feature 

Symbol 

Feature  

Definition 
Description 

1L 𝐻 𝑟𝑎𝑛𝑔𝑒 (𝒂𝑎𝑥
𝑗

) 
Range of axial accelerometer 

signal during drinking  

2L 𝐷 𝑙𝑒𝑛𝑔𝑡ℎ (𝒂𝑎𝑥
𝑗

) Duration of drinking event 

3L 𝑀 𝑚𝑒𝑎𝑛 (𝒂𝑎𝑥
𝑗

) 

Mean value of axial 

accelerometer signal during 

drinking 

4L 𝑅𝑆 
𝑎𝑟𝑔𝑚𝑎𝑥(𝒂𝑎𝑥

𝑗
)

𝑁𝑗 − 𝑎𝑟𝑔𝑚𝑎𝑥(𝒂𝑎𝑥
𝑗

)
 

Ratio of time for which 

inclination angle is increasing 

relative to decreasing 

 

Table 4-6: Correlation Between Legacy Feature Set and Volume/Fill Ratio Labels 

Feature 

ID 
1L 2L 3L 4L 

𝝆𝑽𝒐𝒍 0.307 0.460 −0.416 0.316 

𝝆𝑭𝑹 −0.792 0.009 0.690 0.085 

 

4.6 Summary and Future Work  

Details regarding the large-scale data collection conducted to support volume estimation 

efforts within the remainder of this manuscript was described herein. Moreover, a hand-engineered 

feature set describing the container’s inclination during drinking was introduced, with the 

relationship between the two labels of interest (volume and fill ratio) explored.  

As quantified by the Pearson correlation coefficient, the proposed motion features generally 

exhibited a stronger linear relationship with fill ratio versus volume labels. Prior observations 

noting the relationship between both drink duration and the integral of inclination were also 

verified. Finally, the correlation between the labels of interest and a legacy feature set previously 

proposed for the attached sensor architecture was explored. Future work estimating both the 
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volume and fill ratio in the remainder of this dissertation compares estimation accuracy between 

the two feature sets. 



 

59 

Chapter 5 : Drink Volume Estimation Using Regression Models 

5.1 Introduction 

Support vector machine (SVM) models for estimating drink volume on both an individual 

and multi-drink basis are described within this chapter. Models utilize the hand-engineered 

inclination signature (IS) feature space described in the previous chapter. Results are verified using 

the large-scale data collection described in Chapter 4, with an analysis framework chosen to 

promote comparability with similar work conducted in [11]. Results are benchmarked against 

previously proposed linear regression (LR) motion models, along with SVMs employing the four-

element benchmark feature set proposed in [15].   

5.2 Data Partitioning 

Leave-one-trial-out (LOTO) validation was performed for all analysis conducted as the 

primary method of analysis within this chapter. This approach is consistent with the target use 

case, where models trained on a broad pool of users would be employed on a new user absent of 

customization. While a LOTO approach allows for the inclusion of some subject-specific training 

data, the magnitude of this contribution is limited (i.e.: maximum subject-specific training data of 

1.9% for scenarios where subjects completed the maximum number of trials). 

 A set of support vector machine (SVM) regression models with varying kernel functions 

were trained for both volume and fill ratio labels. Linear, medium (kernel scale = 5.7) and coarse 

(kernel scale = 23) Gaussian kernel functions were considered. Hyperparameters were set to the 

default values as established in MATLAB’s Regression Learner toolbox. SVMs were chosen for 

initial analysis based upon their superior performance for the current sensor architecture in [15]. 

Alternative regressor models should be explored in future work.   
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For purposes of benchmarking, LR models utilizing only the previously described 

characteristic motion features (i.e.: sip duration and integral of inclination) are also evaluated. 

While motivated by the methods of [11], it should be reemphasized that direct comparison is not 

applicable. Namely, differences in both sensor placement (i.e.: wearable versus attachable), along 

with utilization of the estimated container inclination (as opposed to the raw accelerometer signals) 

within the integrand distinguishes the two results. In addition, SVMs using the four-element 

feature set proposed in [15] for an attachable architecture are also evaluated. 

5.3 Performance Metrics 

Multiple performance metrics are used to assess the quality of the estimation models 

assessed herein. Mean Absolute Percentage Error (MAPE) is employed to quantify estimation 

performance on a per-drink basis. MAPE was chosen over alternative measures (i.e.: root mean 

squared error, etc.) due to its utilization in prior work (i.e.: [11], [25]).  

To assess estimation quality over a series of drinks, Mean Overall Absolute Percentage Error 

(MOAPE) was used. Similar to the overall error (OE) metric described in [11], MOAPE allows 

for cancelation of estimation errors across consecutive drinks within a single trial. However, 

MOAPE takes the absolute value before averaging across participants to avoid overstating 

performance through cancelation of errors across trials. While MAPE provides the most rigorous 

assessment of model performance, MOAPE is useful for exploring utility in practical scenarios 

where aggregate consumption is of primary concern (i.e.: estimating total daily consumption, etc.). 

5.4 Volume Estimation Results 

Volume MAPE is depicted in Figure 5-1 for the various models considered. Models 

computed on the sip interval only are labeled as Stat., with all other reported results are computed 
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on the entire drink duration. Consistent with wearable results in [11], LR models employing the 

integral of inclination outperform those using duration. The level of improvement is enhanced 

versus results presented in [11]. We hypothesize that this difference is associated with use of the 

inclination estimate of the container, as opposed to the individual accelerometer channels which 

are hypothesized as being related to this quantity in [11].  

 

Figure 5-1: Variation in Volume MAPE for Various Models Considered 

 

All SVM models outperformed the simplistic single factor LR motion models. Moreover, 

all SVM models exhibited superior performance to the previous best-case reported MAPE of 

58.9% for a single wearable sensor in an experiment using scale-based ground-truth described in 

[11]. Only minimal differences in MAPE were observed for models utilizing the proposed sip 

micro-event segmentation versus those computed on the entire drinking event. 

Comparison of volume MAPE for SVM models using both the IS and benchmark feature set 

are shown in Figure 5-2. As depicted, the expansion of the feature set improves average accuracy 

across kernel functions by 5.78%. 
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Figure 5-2: Variation in Volume MAPE Across Feature Sets 

 

Variation in MAPE across trials is depicted in Figure 5-3 for the best-case volume estimator 

(medium kernel, sip micro-event partition). Consistent with prior observations [11], dispersion in 

the observed error metric is substantial, with a standard deviation of 28.18%. 

Volume MOAPE for varying drink sequence lengths is presented in Table 5-1. Aggregate 

estimation accuracy generally improves with increased sequence length, with reductions more 

pronounced for the proposed IS-based SVM models. While not directly comparable due to the 

employment of the more stringent MOAPE cumulative metric herein, the best-case aggregate 

consumption estimation accuracy of 19.49% is improved versus the average value of 25% reported 

in [15] for a container-attachable IMU.  
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Figure 5-3: Distribution of Volume MAPE for Best-Case Estimator 

 

Variation between SVM models employing the IS and legacy feature sets exhibited 

negligible difference in the MOAPE metric across the various sequence lengths considered. While 

the best-case MOAPE(12) value exceeds that computed for the in-the-wild data set reported in 

[11] (16.95%), direct comparability is limited by the inclusion of potential sip detection related 

errors (i.e.: both false alarms and missed drink detections) in this latter metric, along with the 

utilization of a commercial smart-bottle for ground-truth labeling (a description on the 

manufacturer’s website reports an accuracy of “a fraction of an ounce” for this device). Moreover, 

differences in MOAPE between the IS and legacy feature space descriptions of inclination is 

negligible. 
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Table 5-1: Variation in Volume MOAPE for Multiple Prompt Periods 

Model Identifier MOAPE(3) MOAPE(6) MOAPE(9) MOAPE(12) 

Duration Only – 

LR 
36.74% 34.41% 33.51% 32.42% 

Integral Only – 

LR 
28.68% 27.76% 27.59% 27.79% 

IS – Linear SVM 32.87% 26.40% 23.44% 21.46% 

IS Stat. – Linear 

SVM 
33.74% 26.64% 23.52% 21.56% 

Legacy – Linear 

SVM 
32.43% 26.95% 24.07% 22.05% 

IS – Coarse 

Gaussian SVM 
31.55% 25.49% 22.58% 20.75% 

IS Stat. – Coarse 

Gaussian SVM 
31.79% 25.39% 22.48% 20.65% 

Legacy –Coarse  

Gaussian SVM 
33.17% 27.46% 24.00% 21.45% 

IS – Medium 

Gaussian SVM 
30.52% 24.98% 21.62% 19.64% 

IS Stat. – Medium 

SVM 
30.55% 24.86% 21.71% 19.49% 

Legacy – Medium 

Gaussian SVM 
34.30% 27.95% 23.62% 20.92% 

 

Variability of the best-case aggregate estimator (medium kernel, entire macro-event 

duration) is presented in Figure 5-4. Similar to the MAPE metric, inter-subject variability is 

considerable (standard deviation of  14.75%). For purposes of comparison, standard deviation 

across participants for the in-the-wild dataset in [11] was 14.17%. 

5.5 Individual-Specific Volume Estimation Results 

While not feasible for practical deployment, individual-specific models were also evaluated 

for purposes of comparability with [11]. These models are trained on a leave-one-drink-out 

(LODO) basis per trial. 
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Figure 5-4: Distribution of Volume MOAPE(12) for the Best-Case Estimator 

 

Namely, for each drink in a trial, a prediction was made using regression models trained on the 

additional 11 drinks. Only the two LR models were evaluated due to the aforementioned intent of 

this analysis. 

A volume MAPE of 55.16% was observed for a subject-specific duration LR model. This 

corresponds to an 20.63% absolute reduction versus a duration-based LR model trained in a LOTO 

framework. For purposes of comparison, a duration-based volume MAPE of 64.8% was reported 

in [11] for a wearable IMU employing subject-specific training. 

Variation in volume MAPE is depicted in Figure 5-5 for the subject-specific duration-based 

model. The dispersion of this metric is reduced substantially versus models trained in a LOTO 

framework (7.39% standard deviation for subject-specific model versus 58.98% for LOTO model). 

Variation in duration-based volume MAPE across trials for both training techniques considered is 

shown in Figure 5-6. 



 

66 

 

Figure 5-5: Distribution of Volume MAPE Across Trials for Subject-Specific Duration Model 

 

 

Figure 5-6: Variation in Duration-Based Volume MAPE Across Trials 

 

A volume MAPE of  54.70% was observed for a subject-specific integration-based LR 

model, corresponding to a 12.81% absolute reduction versus the LOTO-trained model. For 
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comparison, a MAPE of 29.1% was reported for an integration-based subject-specific model for 

the wearable sensor in [11]. Variation in subject-specific volume MAPE is depicted in Figure 5-7. 

As was the case for duration-based models, the dispersion of this metric is also reduced 

considerably versus models trained in a LOTO framework (7.31% standard deviation for a subject-

specific model versus 47.13% for a LOTO model). Variation in integration-based volume MAPE 

across trials for both individual-specific and LOTO models is depicted in Figure 5-8. 

 

Figure 5-7: Distribution of Volume MAPE for Subject-Specific Integration Model 
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Figure 5-8: Variation in Integration-Based Volume MAPE Across Trials 

 

5.6 Discussion 

A scatter plot of the best-case (medium kernel, sip micro-event partition, LOTO training) 

predicted versus ground-truth volume is shown in Figure 5-9.  While a general linear relationship 

between the estimated and ground-truth volume is observed, as quantified by a coefficient of 

determination of 77% for the best-fit linear mapping between the two quantities, accuracy is still 

limited. The relative performance improvement for subject-specific models suggests that this 

limited accuracy may be attributed to subject-specific factors influencing drink volume, such as 

the shaping of the mouth during fluid intake. 
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Figure 5-9: Scatter Plot of Estimate Versus Ground-Truth Volumes for Best-Case Estimator 

 

5.7 Summary and Future Work 

Support vector machine regression models for estimating drink volume were explored 

herein. The models utilized the hand-engineered IS feature space introduced in Chapter 3. Using 

a large-scale data collection consisting of 1,908 drinks consumed by 84 participants, mean absolute 

percentage error (MAPE) was reduced by 11.07% versus previous-state-of-the-art results for a 

single IMU sensor using a similar experimental set-up [11]. Moreover, measurements of aggregate 

consumption were reduced versus the previously reported best-case estimates for the container-

attachable architecture [15]. Consistent with prior motion-based volume estimation results, 

accuracy was generally limited and exhibited considerable inter-subject variability. Namely, the 

best-case volume MAPE exhibited a standard deviation of 28.22% across trials. While subject-

specific models were shown to enhance accuracy and reduce variability, the requirement of 

personalized training data limits the feasibility of implementing such models in practice.  
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Future work should focus on employing more sophisticated learning models for sip 

detection. While alterative models were explored as part of this research (i.e.: tree structures, 

Gaussian Regression Processes, end-to-end deep learning models, etc.), support vector machine 

approaches exhibited superior performance. This observation is consistent with the preliminary 

work described in [15]. The performance of more sophisticated models may improve with an 

expansion of training data. Specifically, collections which enhance the density in observations 

across fill ratio and volume may improve model generalization. 
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Chapter 6 : Aggregate Consumption Estimation 

6.1 Introduction 

As described in Chapter 1, augmented containers which estimate consumption using 

changes in the total amount of fluid within the container have been proposed. Technologies 

employing this approach are currently available in the commercial marketplace. For example, the 

Trago bottle cap utilizes sonar technology to estimate the fill level to a specified accuracy of 

fractions of an ounce [15].  

The research described in this chapter explores the feasibility of this technique using 

learning-based fill level estimates obtained from the proposed sensor architecture. Support vector 

machine regressors employing the IS feature set introduced in Chapter 4 are used for fill ratio 

estimation. While low resolution fill level classification has been suggested in prior academic 

literature for more complex sensing architectures, we are unaware of the application of such 

techniques using a high-resolution regression framework [2]. Low-resolution fill level 

classification is explored in Chapter 9 for the current sensor architecture across multiple types of 

drinking vessels.  

This chapter follows a similar structure to Chapter 4, with an initial presentation of fill ratio 

estimation accuracies achieved for the various models considered. The residual volume technique 

is then formalized, with corresponding volume estimation accuracies presented. A multi-target 

approach for integrating fill ratio information within the volume estimation process is then 

proposed. The chapter concludes with a summary and suggestions for future work. 
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6.2 Data Partitioning and Performance Metrics 

The leave-one-trial-out (LOTO) validation approach applied in Chapter 5 for volume 

estimation is used in the current chapter. Limited subject-specific analysis is also provided. The 

various performance metrics identified in the prior chapter are also utilized. 

6.3 Fill Ratio Estimation Results 

Variation in fill ratio MAPE for the multiple models considered is depicted in Figure 6-1. 

Sip duration was replaced with maximum inclination for a single-factor LR benchmark model due 

to its strong correlation with fill ratio. This relationship is emphasized by the variation in this 

quantity over the course of an experiment as shown in Figure 4-2. Fill ratio estimation accuracy is 

greatly improved versus volume prediction for both the single factor regression and more complex 

SVM models. A comparison of accuracy for SVM models implemented using the IS and legacy 

feature set is shown in Figure 6-2. IS models outperform legacy models for all kernel functions 

considered, with an average improvement of absolute 13.0% across kernels.  

Variability in MAPE for the best-case estimator (coarse kernel, entire macro-event partition) 

is shown in Figure 6-3. Error dispersion across trials is greatly reduced versus volume estimators. 

In particular, fill ratio MAPE standard deviation is 3.39%, versus 28.18% for the best-case volume 

MAPE.  
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Figure 6-1: Variation in Fill Ratio MAPE for Various Models Considered 

 

 

Figure 6-2: Variation in Fill Ratio MAPE Across Feature Sets 
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Figure 6-3: Distribution of Fill Ratio MAPE Across Trials for Best-Case Estimator 

 

Fill ratio MOAPE is shown in Table 6-1 for varying drink sequence lengths. In contrast to 

volume estimation, the point nature of fill ratio estimates does not allow for sequential error 

cancellation across multiple drinks. Minimal accuracy is observed for the 12-drink sequence. This 

may be associated with the aforementioned skewing of training data towards larger fill ratios.  

Variability in fill ratio MOAPE(12) estimates across trials is depicted in Figure 6-4 for the 

best-case estimator (coarse kernel, sip micro-event), with a standard deviation of 8.58% observed 

(versus 14.75% for volume MOAPE(12) estimates). 
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Table 6-1: Variation in MOAPE for Multiple Prompt Periods – Fill Ratio Estimation 

Model 

Identifier 
MOAPE(3) MOAPE(6) MOAPE(9) MOAPE(12) 

Max. 

Inclination 

Only – LR 

10.90% 7.64% 8.12% 12.57% 

Integral Only – 

LR 
18.20% 9.14% 13.27% 22.88% 

IS – Linear 

SVM 
8.82% 8.18% 7.99% 9.95% 

IS Stat. – 

Linear SVM 
9.29% 8.30% 8.20% 10.28% 

IS – Coarse 

Gaussian SVM 
8.82% 8.18% 7.99% 9.95% 

IS Stat. – 

Coarse 

Gaussian SVM 

8.68% 7.99% 7.96% 9.86% 

IS – Medium 

Gaussian SVM 
8.24% 8.22% 8.04% 10.80% 

IS Stat. – 

Medium SVM 
7.98% 7.87% 8.08% 11.10% 
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Figure 6-4: Distribution of Fill Ratio MOAPE(12) for the Best-Case Estimator 

  

6.4 Individual-Specific Fill Ratio Prediction Results 

Single factor subject-specific linear regression models were also investigated for fill ratio 

estimation. A FR MAPE of 8.04% was achieved for a subject-specific inclination LR model, 

corresponding to a 1.10% absolute reduction from models trained a LOTO framework. This 

reduction is minimal relative to the error reductions which were observed for volume subject-

specific versus LOTO models. Variation in fill ratio MAPE is shown in Figure 6-5 for this subject-

specific inclination model. A standard deviation of 4.52% is observed for this subject-specific fill 

ratio MAPE, versus 3.41% for LOTO models. This observation is again contrasted from the 

volume case, where dispersion for subject-specific models was drastically reduced. Variation in 

MAPE across trials for both training techniques is shown in Figure 6-6. 
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Figure 6-5: Distribution of Fill Ratio MAPE for a Subject-Specific LR Inclination Model 

 

 

Figure 6-6: Variation in Inclination-Based FR APE  
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A fill ratio MAPE of 14.21% was achieved for a subject-specific integration-based linear 

regression model. While slightly reduced from the LOTO case (15.87%), the lack of substantial 

difference between the two training techniques is also distinguished from volume models. 

Variation in APE across trials is shown in Figure 6-7. When compared to the subject-specific APE 

distribution for inclination models, the presence of large additional outliers is noticeable. A 

comparison of MAPE achieved across trials for the two training techniques (subject-specific and 

LOTO) is shown in Figure 6-8. As demonstrated, models trained out-of-subject exhibit greater 

consistency in estimation error versus subject-specific models. We hypothesize that this 

improvement is associated with the substantial increase in available training data for the prior case, 

along with the lack of subject-specific determinants in the motion pattern for a given fill ratio. 

 

Figure 6-7: Distribution of Fill Ratio MAPE for a Subject-Specific LR Integration Model 
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Figure 6-8: Variation in Inclination-Based FR MAPE  

6.5 Discussion 

A scatter plot of the best-case (coarse kernel, entire event partition, LOTO training) predicted 

versus ground-truth fill ratio is shown in Figure 6-9.  As described in the prior sections, the 

accuracy of fill ratio estimates is greatly enhanced versus volume estimation. A coefficient of 

determination (𝑅2) of 77.1% is observed for the best-fit linear mapping between the best-estimate 

and ground-truth quantities. 
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Figure 6-9: Approximated Versus Ground-Truth Fill Ratio for Best-Case Estimator 

 

6.6 Residual Volume Prediction Results 

Fill ratio estimates for pairs of drinks may be used to estimate aggregate consumption for 

a known container geometry as specified in (6.1), where 𝛼 is a container-specific linear density 

parameter, 𝑉̂𝑖:𝑓 denotes the estimated aggregate consumption from drink 𝑖 to 𝑓, and 𝑣𝑘 and 𝐹𝑅̂𝑘 

denote the ground truth volume and estimated fill ratio at the initiation of drink 𝑘.  

 𝑉̂𝑖:𝑓 ≈ ∑ 𝑣𝑘
𝑓
𝑘=𝑖 ≈ 𝛼(𝐹𝑅̂𝑖 − 𝐹𝑅̂𝑓+1)  (6.1) 

This mechanism, hereby denoted as residual volume estimation, was assessed based upon 

the noted superior accuracy and reduced inter-subject variability of fill ratio versus volume 

estimators. The estimation process is depicted in Figure 6-10. 
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Figure 6-10: Technique for Leveraging Fill Ratio for Residual Volume Estimation 

 

Comparison was performed using the MOAPE(11) metric. This sequence length was chosen 

as it represents the maximum number of drinks which can be assessed using initial fill ratio 

estimates for a 12-drink experimental protocol. As shown in Figure 6-11, this enhanced accuracy 

does not produce improved aggregate consumption estimates versus those formed through 

summation of drink-level volume estimates (hereby denoted as cumulative consumption 

estimation). 
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Figure 6-11: Comparison of Residual and Cumulative Techniques for Aggregate Estimation 

 

This discrepancy may be attributed to the ability of the latter method to benefit from 

cancelation of sequential estimation errors within a drink sequence. Moreover, normalization 

effects during conversion to aggregate consumption volume (i.e.: residual volume-based OAPE) 

serve to distort achieved accuracy in fill ratio estimation (i.e.: fill ratio APE). This distortion is 

more pronounced for trials with smaller levels of aggregate consumption, as depicted in Figure 6-

12 and summarized in (6.2).  

 𝑂𝐴𝑃𝐸(𝑗) =
|𝐹𝑅̂𝑗+1−𝐹𝑅𝑗+1|

1−𝐹𝑅𝑗+1
=

𝐴𝑃𝐸𝑗+1

1−𝐹𝑅𝑗+1
  (6.2) 
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Figure 6-12: Variation in Residual Volume-Based OAPE Versus FR  

 

6.7 Multi-Target Estimation Frameworks 

As noted in Table 4-2, the relationship between sip duration and drink volume strengthens 

for samples with increasingly controlled fill ratio. Based upon this observation, various techniques 

for incorporating fill ratio information into the volume estimation process were explored. The first 

approach conditioned the training set using fill ratio information. Namely, training data was 

restricted to the 150 samples whose fill level labels were closest to the estimated fill ratio in the 

Euclidean sense. While the computational overhead of this approach is not feasible in practical 

deployment, similar techniques could be realized by instead selecting from a pretrained model 

library for targeted fill ratio ranges based upon estimated fill ratio.   

For purposes of exploring the maximum achievable benefit using this approach, analysis 

was conducted using ground-truth fill ratio information in addition to estimates. Moreover, to 

assess the utility of explicitly mandating this form of fill ratio incorporation, a strategy of 
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appending the fill ratio into the feature space was also considered. Results for all four analysis 

combinations are presented in Figure 6-13 for the best-case macro-event volume estimator (coarse 

Gaussian SVM). Estimated fill ratios were obtained using the coarse Gaussian SVM regressor. As 

demonstrated, while ground truth fill ratio information improves estimate accuracy, no benefit is 

realized when noisy estimates are used. Moreover, the proposed approach of training data 

restriction produced only minimal error reduction versus feature space expansion. We hypothesize 

that this limitation is associated with the reduction in available training data using the prior method. 

 

Figure 6-13: Volume Estimation Accuracy Enhancement Using Fill Ratio Information 

 

6.8 Summary and Future Work 

Support vector machine regression models for estimating fill ratio were demonstrated 

within this chapter. Models utilized both the newly proposed IS feature space, along with the 4-

element legacy set. Estimate accuracy was improved and inter-subject variability was reduced 

considerably versus the volume estimators explored in Chapter 5. Models utilizing the IS feature 

set outperformed those employing the legacy feature set. 
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Contrary to the volume results presented in Chapter 5, subject-specific models did not 

improve fill ratio estimation accuracy. Error dispersion across trials also failed to exhibit the 

reduction observed in the volume case. These results indicate that fill ratio estimators exhibit less 

inter-subject variability, and are thus better suited for deployment without subject-specific training 

data. 

In spite of this accuracy improvement, aggregate consumption estimates formed using 

computed fill ratios demonstrated reduced accuracy versus those obtained through sequential 

summation of volume estimates. This is attributed both to the ability of the latter approach to 

benefit from error cancelation across drinks, along with the described normalization effects 

associated with the prior approach.  

In addition, a technique for utilizing fill ratio information to improve volume accuracy was 

presented. Namely, a strategy for conditioning the available training data distribution using fill 

ratio estimates was proposed. While utilization of ground-truth fill level data enhanced volume 

estimation accuracy, noisy estimated fill ratios did not produce an improvement.  

Future work should focus on further improving the accuracy of the fill ratio estimates 

described herein. This approach is especially promising for the target use case, given the noted 

capability of these models to be trained using subject-independent data. Accuracy would also 

likely be improved through modification of the experimental protocol to reduce the noise of ground 

truth fill level labels. Namely, rather than setting the initial fill level visually, a mass reading could 

be used to ensure consistent initial filling across trials. It is noted that this approach would likely 

increase data collection time due to difficulties in filling to the requisite precision. 
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Chapter 7 : Improving Aggregate Consumption Accuracy Through Heuristic 

Fusion 

7.1 Introduction 

As demonstrated in Chapter 5, estimating drink volume using the characteristics of 

container motion is a challenging problem. This complexity is driven by the mutual influence of 

both fill level and volume on the resulting motion pattern. Moreover, while key kinematic 

parameters, such as event duration and the integral of the inclination trajectory, provide limited 

utility for predicting volume on an individual basis, these relationships were observed to generalize 

poorly across subjects.  

While learned motion models offer improved fill level prediction, aggregate consumption 

estimates formulated using these values were less accurate than those achieved through summation 

of individual volume estimates as described in the prior chapter.  This inferior performance may 

be attributed to both normalization effects, along with the ability of the latter technique to benefit 

from error cancelation across adjacent volume predictions. Given this observation, further 

improvement of fill ratio estimates is essential for achieving sufficient consumption accuracy using 

the residual volume approach.   

  One possible solution for achieving this improvement is by combining results from the 

learned sensor model with estimates formed using a heuristic consumption model. Under this 

proposed scenario, the heuristic consumption model describes the anticipated change in fill ratio 

over a series of drinking events. The consumption model may be designed to exploit the mandated 

decrement of the target variable during drinking in the absence of filling events. Moreover, 

knowledge of typical drink volumes may be used to reduce uncertainty in produced estimates 

under the assumption of known container geometry. As both the described heuristic model and 
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sensor estimates are characterized by some degree of uncertainty, combining both values in an 

attempt to improve accuracy may be viewed as a traditional sensor fusion application.  

The research described within this chapter proposes a technique for implementing this 

proposed approach Namely, learning-based fill ratio estimates are combined with those obtained 

from an empirically parameterized consumption model describing the expected drink-over-drink 

decrement in the target variable. Fusion is accomplished using both a complementary and Kalman 

filtering framework. The chapter begins with a description of the analysis methods employed. 

Next, the proposed fusion frameworks are introduced, followed by a discussion of the accuracy 

improvements achieved. Recommendations for future fusion research is provided at the conclusion 

of this chapter. 

7.2 Methods 

7.2.1 Sensor-Based Fill Ratio Estimates 

The strategy for partitioning testing and training data within the current chapter is slightly 

modified from the previously applied LOTO approach. This modification was chosen due to the 

computational complexity of the brute force techniques employed for tuning filter parameters, 

which are described in the subsequent section. For current analysis, data was initially partitioned 

into an approximately 80/20% partition on a per-experiment level. The 32 testing trails were 

withheld for testing the proposed fusion approach, while the 127 training trials were used for both 

training the fill ratio regression model, along with forming parameter estimate for the proposed 

fusion operations. An SVM (coarse Gaussian kernel) regression model was then trained for 

estimating fill ratio. This model form was chosen as it exhibited the best performance amongst 

those for fill ratio estimation in Chapter 5.  Training was performed using the default parameters 

as established within MATLAB’s Regression Learner application. 
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7.2.2 Development of Fusion Models 

The decrement in the bottle’s fill ratio upon occurrence of a drinking event is specified as 

 𝐹𝑅𝑗 = 𝐹𝑅𝑗−1 − 𝛾𝑉𝑗−1 = 𝐹𝑅𝑗−1 − ∆𝐹𝑅𝑗−1  (7.1) 

where 𝐹𝑅𝑗 denotes the initial fill ratio of the 𝑗𝑡ℎ drink, 𝐹𝑅𝑗−1 and 𝑉𝑗−1denote the initial fill 

ratio and volume of the (𝑗 − 1)𝑡ℎ drink, and 𝛾 is a geometric constant mapping volume reductions 

to decreases in fill ratio. For blind estimation scenarios, this quantity may be modeled 

stochastically as specified in (7.2) 

 𝐹𝑅𝑗 = 𝐹𝑅𝑗−1 − ∆𝐹̅̅̅̅ + 𝑤𝑗  (7.2) 

where ∆𝐹̅̅̅̅  is a constant corresponding to the expected decrement in fill ratio associated with 

a typical drink, and 𝑤𝑗  is a random variable reflecting variation about this assumption. For 

subsequent discussion, this heuristic consumption model is denoted as the decrement model.  

As noted in the prior chapter, fill ratio may be approximated with reasonable accuracy 

using learned model based upon motion pattern of the sensor during drinking.  This relationship 

may also be modeled stochastically as  

 𝑌𝑗 = 𝐹𝑅𝑗 + 𝑣𝑗  (7.3) 

where 𝑌𝑗 denotes the estimated fill ratio for the 𝑗𝑡ℎ drink using the machine learning model, 

and 𝑣𝑗  is a random variable denoting the uncertainty of the estimate. For subsequent discussions, 

this relationship is denoted as the measurement model.  

 For the research conducted herein, 𝑤𝑗  and 𝑣𝑗  are modeled as independently distributed 

white noise Gaussian processes characterized by 𝑤𝑗~𝒩(0, 𝜎𝑤
2 )  and 𝑣𝑗~𝒩(0, 𝜎𝑣

2) . While the 

physical validity of this assumption is clearly limited (i.e.: the probability of an increase in fill ratio 

upon occurrence of a drinking event is non-zero as specified in (6.1)), this format was chosen to 
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yield closed-form tractable expressions for the optimal linear estimator using a Kalman filtering 

framework as described below. As noted in the subsequent section, 𝜎𝑤
2  was selected such that the 

likelihood of infeasible decrement model predictions is minimized. 

Under these aforementioned assumptions, the fill ratio may be iteratively estimated by 

combining information from the decrement and measurement models as follows. First, the 

decrement model is used to obtain an a priori (i.e.: not conditioned on the current sensor prediction) 

fill ratio estimate. This value is determined according to the decrement model by reducing the 

posterior (i.e.: formulated after obtaining the sensor prediction) estimate from the prior drink by 

the average decrement as shown in (7.4).  

 𝐹𝑅̂−
𝑗 = 𝐹𝑅̂𝑗−1 − ∆𝐹̅̅̅̅   (7.4) 

The above step is often denoted as the prediction stage within the sensor fusion literature. 

This estimate is then used to anticipate the value produced by the measurement model, which is 

denoted as 𝑌̂𝑗. For the assumed measurement model, this is equivalent to the a priori fill ratio 

estimate. Upon obtaining the actual sensor estimate, the innovation is computed as specified in 

(7.5) 

 ∆= 𝑌𝑗 − 𝑌̂𝑗 = 𝑌𝑗 − 𝐹𝑅̂−
𝑗  (7.5) 

This residual value may then be used to modify the a prior fill ratio estimate as shown in 

(7.6) 

 𝐹𝑅̂𝑗 = 𝐹𝑅̂𝑗
− + 𝑘∆    (7.6) 

where 𝑘  is a blending parameter specifying how new information contained within the 

innovation should be incorporated within the posterior estimate. Substituting (7.5) into (.6) yields 

the following formula expressing the posterior estimate as a convex combination of the 

measurement output and a priori measurement. 
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 𝐹𝑅̂𝑗 =  𝑘𝑌𝑗 + (1 − 𝑘)𝐹𝑅̂𝑗
−  (7.7) 

Fusion strategies using a constant blending parameter over the entire drink sequence (𝑘𝑗 =

𝑘 ∀ 𝑗) are often described as complimentary filtering (CF) within the sensor fusion literature. This 

approach is often employed in IMU data fusion to combine information from multiple sensor 

modalities, and is explored for improving inclination estimates in the subsequent chapter [51].   

 Using a Kalman filtering framework, the optimal linear estimate of the fill ratio may be 

determined by minimizing the mean squared posterior error estimate through appropriate 

adjustment of the blending parameter 𝑘. The a priori and posterior estimate errors are defined in 

(7.8) and (7.9), respectively 

 𝑒𝑗
− = 𝐹𝑅𝑗 − 𝐹𝑅̂𝑗

−  (7.8) 

 𝑒𝑗 = 𝐹𝑅𝑗 − 𝐹𝑅̂𝑗   (7.9) 

  Each of the above error quantities is a random variable characterized by a mean squared 

error as specified in (7.10) and (7.11), respectively 

 𝑝𝑗
− = 𝐸[ (𝑒𝑗

−)
2

]  (7.10) 

 𝑝𝑗 = 𝐸[𝑒𝑗
2]  (7.11) 

where 𝐸[∙] denotes the expectation operator. While details of the derivation are omitted 

herein, the optimal value of 𝑘𝑗, hereby denoted as the Kalman gain, may be determined as specified 

in (7.12) 

 𝑘 =
𝑝𝑗

−

𝑝𝑗
−+𝜎𝑣

2  (7.12) 

The above derivations result in the following simplified recursive solution for estimating fill 

ratio and using the decrement and measurement model 

Predict Stage 
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𝐹𝑅̂−
𝑗 = 𝐹𝑅̂𝑗−1 − ∆𝐹̅̅̅̅  

𝑝𝑗
− = 𝑝𝑗−1 + 𝜎𝑤

2  

Update Stage 

𝑘𝑗 =
𝑝𝑗

−

𝑝𝑗
− + 𝜎𝑣

2
 

𝐹𝑅̂𝑗 =  𝑘𝑗𝑌𝑗 + (1 − 𝑘𝑗)𝐹𝑅̂𝑗
− 

𝑝𝑗 = 𝑝𝑗
−(1 − 𝑘𝑗) 

Both the complementary and Kalman filtering framework were used to fuse decrement and 

measurement models within the subsequent analysis. Techniques for establishing model 

parameters are described in the following subsection. 

7.2.3 Establishment of Model Parameters 

For complementary filtering, the static blending parameter was set as value which 

minimizing root mean square (RMS) computed using the training set. This parameter was 

estimated using a grid search over all possible blending parameter values. Namely, 𝑘 was swept 

through the allowable range of [0,1] at a resolution of 0.01 The RMS error of the estimate was 

recorded for each value of 𝑘  considered. A minimum value of 8.70%  was obtained for 𝑘 =

0.6869, which is used in all subsequent analysis on the test set. Variation in test-set RMSE versus 

the various blending values considered is depicted in Figure 7-1. 



 

92 

 

Figure 7-1: Variation in Test-Set RMSE for Complementary Filtering Approach 

 

For the current analysis, 𝐹𝑅0 and 𝑝0were initialized to 1.0528 and 0, respectively. Model 

variances were obtained by setting 𝜎𝑣
2 to the square of the RMS error observed during model 

training (0.0097), with 𝜎𝑤
2  defined parametrically as  𝜎𝑤

2 = 𝑟𝜎𝑣
2 . The value of 𝑟  was tuned to 

minimize training set RMSE using a similar brute-force approach to that used to determine the 

static blending parameter, yielding an optimal value of 7.67% for  𝜎𝑤
2  =0.0017. Variation in 

training-set RMSE versus 𝑟 is depicted in Figure 7-2. 
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Figure 7-2: Variation in Training RMSE Versus Noise Multiple 

 

An example of the predictions provided by each technique for a single test set experiment is 

presented in Figure 7-3. 
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Figure 7-3: Example Outputs of Prediction Techniques 

 

7.3 Results 

Test set RMSE for each technique is reported in Table 7-1. As noted, while both heuristic 

fusion techniques improve estimation accuracy, the adaptive weighting (i.e.: variable across 

drinks) provided by the Kalman approach outperforms the static blending of the CF technique.  

Table 7-1: Test Set Fill Ratio RMSE 

Estimation 

Approach 

Test Set 

RMSE (%) 

Relative % 

Decrease Via 

Fusion 

Sensor Estimate 

Only 
9.29% - 

CF Fusion 7.33% 17.31% 

Kalman Fusion 5.74% 33.67% 
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Variation in estimation error across experiments was considerable. The maximum and 

minimum RMS errors for each technique are shown in Table 7-2. Variation in RMSE for all three 

techniques across trials is depicted in Figure 7-4. 

Table 7-2: Range of Fill Ratio RMSE Across Test Set 

Estimation Approach Min(RMSE) (%) Max(RMSE) (%) 

Sensor Estimate Only 5.43% 19.28% 

CF Fusion 3.04% 15.65% 

Kalman Fusion 1.32% 14.78% 

 

 

Figure 7-4: Variation in RMSE Across Trials in Test Set 

 

To promote comparability with results from Chapter 6, error metrics were converted to those 

previously employed (i.e. absolute percentage error). Moreover, the residual volume estimates 
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corresponding to each proposed fusion technique were also computed. MAPE across trials for the 

three techniques considered is shown in Table 7-3. MOAPE(11) values are shown in Table 7-4. 

Table 7-3: Test Set Fill Ratio MAPE 

Estimation 

Approach 

Test Set 

MAPE (%) 

Relative % 

Decrease Via 

Fusion 

Sensor Estimate 

Only 
7.61% - 

CF Fusion 6.01% 21.02% 

Kalman Fusion 4.82% 36.67% 

 

Table 7-4: Test Set Volume MOAPE(11) 

Estimation 

Approach 

Test Set 

MOAPE(11) (%) 

Relative % 

Decrease Via 

Fusion 

Sensor Estimate 

Only 
35.00% - 

CF Fusion 23.92% 31.67% 

Kalman Fusion 15.73% 55.06% 

 

For purposes of comparison, aggregate consumption for the test set was also computed 

using the cumulative technique described in the prior chapter, Namely, per-drink volume estimates 

were formed using the best-case SVM estimator from presented in Chapter 4, with aggregate 

consumption estimated through summing individual drink estimates. MOAPE(11) achieved using 

this approach was 20.72%. Comparative results of MOAPE(11) achieved using both the 

cumulative and best-case residual volume (i.e.: using Kalman filtering for fill ratio estimation) 

approaches are shown in Figure 7-5 across each trial in the test set. 
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Figure 7-5: Variation in Volume MOAPE(11) Across Trials in Test Set 

 

7.4 Summary and Future Work 

The heuristic fusion approach proposed herein was demonstrated to improve the accuracy 

of fill ratio estimates. The dynamic blending of the Kalman framework provided superior 

performance compared to the static approach of the CF. Dynamic blending allows the fused model 

to adjust for scenarios in which the sensor-based model does not generalize well to the specific 

individual (i.e.: the large maximum RMS error for sensor estimates denoted in Table 7-2), as well 

as for cases where individual consumption varies considerably from model assumptions. Future 

work should assess the sensitivity of the proposed methods to variation in model parameters, 

explore alternative dynamic fusion strategies, and investigate utilization of volume-based 

predictors within the estimation framework.  
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Chapter 8 : Verification of Inclination Estimates Using Video Motion Capture 

8.1 Introduction 

This chapter describes a simplified technique for estimating the inclination trajectory of 

the bottle by fusing accelerometer and gyroscope data. The proposed approach isolates pertinent 

information in the gyroscope channels using an accelerometer-based orientation estimate 

previously introduced in Chapter 4. Verification of estimate quality is conducted using motion 

capture results obtained using Blender, an open-source computer graphics program.  

The chapter begins by describing the experimental set-up and protocol utilized. The 

proposed techniques for estimating inclination trajectory using the IMU output are then described. 

Next, limited details regarding application of the motion capture software are provided. Multiple 

trajectory estimates developed from the IMU data are compared with video-based estimates 

according to a root mean squared (RMS) discrepancy metric. Conclusions and suggestions for 

future research are provided at the end of the chapter. 

8.2 Methods 

8.2.1  Data Collection 

The experimental protocol consisted of consuming ten drinks of water from a refillable 

bottle, with activity captured by both an attachable IMU sensor and video. This identical script 

was completed by five participants, resulting in 50 drink events. The IMU sensor was attached to 

the bottle by an elastic band at a controlled position and orientation as depicted in Figure 8-1.  
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Figure 8-1: Sensor and Marker Configuration 

 

The camera was positioned approximately 5 feet from the table, with zoom adjusted to focus 

the field of view on the region encompassing the expected bottle trajectory. Three markers were 

placed on the bottle to facilitate video tracking. Various parameters of the set-up, such as scene 

background and marker geometry, were determined empirically through multiple iterations before 

initiating the experiment. The attachable IMU sensor and supporting data collection system were 

described in Chapter 3. 

Three estimates of the inclination trajectory were formed using the IMU outputs. Signals 

were preprocessed using the procedure described in Chapter 3. Drinks were parsed from the IMU 

data using the algorithm described in Chapter 4 for the large-scale data collection. A similar 

algorithm exploiting the stationary placement of the bottle between drinks was used to parse video 

data.  

Accelerometer-based inclination estimates were computed using the technique previously 

introduced in Chapter 3. Under the assumption of negligible dynamic acceleration, this approach 

decomposes the static acceleration due to gravity in a global coordinate frame as described in (3.1).  
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To incorporate the gyroscope output, it is necessary to specify the axis about which 

subsequent rotations modify the inclination angle. This is accomplished by estimating the 

orientation of the resultant acceleration vector in the cross-sectional plane of the bottle as 

previously described in (4.1). Perturbations to the inclination occur through rotations about an axis 

which is perpendicular to this orientation angle 𝛼. To compute rotation about this axis using the 

gyroscope, sensor outputs in the local coordinate frame are projected onto the axis of rotation as 

described in (8.1)  

 𝑔𝑐𝑠 = 𝑷(𝒈𝒚𝒛′) = −𝑔𝑦′ sin 𝛼 + 𝑔𝑧′ cos 𝛼 (8.1) 

where 𝒈𝒚𝒛′ denotes the vector output of the gyroscope in the 𝑦𝑧 plane of the sensor, and 𝑔𝑐𝑠 

denotes the projection of this output along the hypothesized axis of rotation. 

The gyroscope component along the hypothesized axis of rotation is utilized to develop an 

estimate of the inclination trajectory through integration as specified in (8.2). 

 𝜃𝐺̂ =  𝜃𝐺̂(0) + 𝑔𝑟∆𝑡 (8.2) 

where 𝜃𝐺̂(0) denotes the initial condition imposed on the inclination estimate (defined as 0 

degrees at the drink parsing initiation), and ∆𝑡 denotes the sampling period of 50 ms.  

In addition to the individual estimates specified above, preliminary investigation was 

conducted exploring various fusion approaches which exploit the unique advantages of each 

sensing modality. Amongst simplistic fusion approaches, the complimentary filter (CF) estimates 

the output as a linear combination of the accelerometer and gyroscope estimates (8.3). 

 𝜃𝐶𝐹̂ = ℎ(𝜃𝐺̂) + 𝑙(𝜃𝐴̂) (8.3) 

where ℎ and 𝑙 are constants satisfying ℎ + 𝑙 = 1. To avoid errors associated with gyroscope 

drift during the translation portion of the drinking events, CF-based estimates only perform fusion 
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during the estimated stationary interval of 𝛼 (i.e.: the CF output is equal to the accelerometer 

estimate outside of this interval) . 

8.2.2 Video Inclination Tracking 

The motion tracking functionality of Blender, an open-source 3-D computer graphics 

program, was used for estimating the inclination angle of the bottle [52]. In the processing 

workflow, markers are identified through selection in the graphical user-interface, and then tracked 

using a SIFT feature-based approach. Figure 8-2 depicts the output of the tracking process, 

demonstrating the estimated marker trajectory in blue. 

 

Figure 8-2: Visualization of Blender Tracking Output 

 

The software produces estimated pixel locations, reported as ordered doubles, for each of 

the markers. These values were mapped to inclination estimates on a pairwise basis using 

trigonometry. The resulting inclination estimates were then parsed using an algorithm identical in 

concept to that described for the IMU data. Visualizations of the parsing process are depicted in 

Figures 8-3 and 8-4. 
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Figure 8-3: Video Parsing Process – Wide View 

 

 

Figure 8-4: Video Parsing Process – Zoom View 

As the three resulting video estimates were shown to exhibit strong correlation, all 

subsequent discussion references an average signal value denoted as 𝜃𝑉, which was down-sampled 

to 20 Hz for ease of comparison with IMU data. 
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8.2.3 Drink Event Synchronization 

To finalize the analysis framework, parsed drink events for each modality were 

synchronized. This was achieved by computing the cross-correlation of  𝜃𝐴̂ and 𝜃𝑉 as specified in 

(8.4), and subsequently shifting the signals by the maximizing lag value.  

 𝑅[𝑚] = {
∑ 𝜃𝐴̂[𝑛 + 𝑚]𝜃𝑉[𝑛],    𝑚 ≥ 0𝑁−𝑚−1

𝑛=0

𝑅[−𝑚],                                      𝑚 < 0
  (8.4) 

where 𝑁 is a common duration in samples of each drink event, achieved through a-priori 

zero-padding as necessary. A visualization of the synchronization process is provided in Figure 8-

5. 

 

Figure 8-5: Visualization of Synchronization Process 

8.3 Results 

A comparison metric indicating the discrepancy between the various IMU-based trajectory 

estimates and the reference video estimate is defined in the RMS sense in (8.5)  

 𝑅𝑀𝑆𝐸𝑗 = √∑ (𝜃𝑗̂−𝜃𝑉)
2𝑁′

1

𝑁′
 (8.5) 
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where 𝑁′ denotes the common duration of each drink event, and  𝑗 ∈ {1,2,3} denotes the 

IMU estimation modality. Initial discrepancy estimates were computed over the entire drink event, 

which were synchronized according to the technique described in the previous section. A brute-

force sensitivity analysis was conducted examining variability in 𝑅𝑀𝑆𝐸  for all possible 

combinations of CF parameter values at a resolution of 0.001. Results are plotted versus the 

gyroscope weighting parameter in Figure 8-6.  As noted, the error curve is convex with respect to 

the mixing parameter, exhibiting a minimum value of 3.85 degrees for ℎ = 0.425 and 𝑙 = 0.575. 

 

Figure 8-6: Variability in Discrepancy Metric for Varying Complimentary Filter Weights 

 

The discrepancy metric was then computed for each of the estimation modalities, with the 

resulting RMS distributions depicted in Figure 8-7. The CF estimate produces the least discrepancy 

in the average sense, followed by the accelerometer-based estimate. The gyroscope estimate 

exhibits the most discrepancy, largely associated with preliminary drift error occurring during the 

initial lifting phase. 
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Figure 8-7: Distribution of Discrepancy Metric for Various IMU-Based Estimations 

 

8.4 Conclusions and Future Work 

The research described in this chapter proposes and verifies a simplistic approach to estimate 

bottle inclination by fusing accelerometer and gyroscope outputs. Results are verified through 

comparison with estimates produced through video-based motion capture. Employing a simplistic 

fusion scheme using a complimentary filter, the resulting estimation was improved by over 25% 

versus estimates developed solely from the accelerometer. Future research should explore 

alternative fusion-based approaches, along with techniques for computing drink volume using the 

estimated inclination trajectory.  
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Chapter 9 : Feature Set Expansion Using Additional Sensor Channels 

9.1 Introduction 

This chapter investigates various approaches for improving both volume and fill ratio 

estimates using information available from additional IMU channels. Namely, characteristics of 

the container’s motion are estimated from the gyroscope sensor using the decomposition strategy 

introduced in Chapter 8. In addition, motion features are computed using the magnitude of the 

accelerometer output. This addition is intended to address limitations associated with the 

assumption of negligible dynamic acceleration in computing the inclination estimate. These 

developments produce an enriched feature set for describing the motion pattern of the container. 

The performance of this feature set is assessed against all previously considered feature 

sets within this chapter. Comparisons are performed for both volume and fill ratio models. In 

addition, models utilizing the various inclination estimates introduced in the prior chapter are 

developed herein. 

The chapter begins by formally defining each supplementary motion feature. Similar to 

Chapter 4, the relationship between the proposed features and labels of interest is quantified using 

the Pearson correlation coefficient. Next, results for volume and fill ratio estimation using the 

entire supplemented feature set are presented. In addition, the performance of models utilizing the 

fusion-based inclination estimates proposed in Chapter 8 are also presented. The chapter concludes 

with a summary and recommendations for future research. 



 

107 

9.2 Proposed Supplements to the IS Feature Set 

9.2.1 Additions from Accelerometer Channels 

The previously described technique for estimating container inclination in (3.1) assumes that 

dynamic acceleration is negligible. As the drink motion involves translation, the validity of this 

assumption is limited, especially for the transport portion of the motion. Based upon this 

observation, it was hypothesized that estimation performance may be improved by extracting 

information from the accelerometer channels directly. 

To describe the intensity of acceleration, five features describing the morphology of the 

resultant accelerometer output were computed. These features are listed in Table 9-1, with 

correlations for the target label values also presented. Features were computed using both the entire 

event duration and the micro-partitioning strategy suggested in Chapter 4. For purposes of 

visualization, an example of variation in the accelerometer magnitude during the drinking event is 

depicted in Figure 9-1 for four randomly chosen drink events. Estimated inclination is also shown 

in this figure for purposes of comparison. As shown, while the acceleration magnitude oscillates 

near the assumed static value (one) during the middle of the drinking event, considerable variation 

is observed, especially during the transport phase.  

As detailed in Table 9-1, the proposed summary features of the acceleration magnitude 

exhibit a stronger relationship with fill ratio versus volume labels. This is consistent with the 

results presented in Chapter 4, where elements of the IS feature set exhibited similar behavior. 
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Figure 9-1: Variation in Acceleration Magnitude During Drinking Events 

 

Table 9-1: Supplemental Features from Resultant Acceleration 

Feature 

Definition 

𝝆𝒗𝒐𝒍 

(Whole) 

𝝆𝒗𝒐𝒍 

(Lift) 

𝝆𝒗𝒐𝒍 

(Stat.) 

𝝆𝒗𝒐𝒍 

(Place) 

𝝆𝑭𝑹 

(Whole) 

𝝆𝑭𝑹 

(Lift) 

𝝆𝑭𝑹 

(Stat.) 

𝝆𝑭𝑹 

(Place) 

𝑚𝑎𝑥 (|𝒂𝒋|) 0.065 0.070 0.024 0.041 -0.273 -0.307 -0.114 -0.126 

𝑚𝑖𝑛 (|𝒂𝒋|) -0.116 -0.030 -0.129 -0.064 0.305 -0.121 0.342 0.029 

𝑚𝑒𝑎𝑛 (|𝒂𝒋|) -0.239 0.027 -0.214 0.037 0.325 -0.387 0.432 -0.179 

𝑠𝑡𝑑 (|𝒂𝒋|) 0.057 0.023 -0.030 0.038 -0.396 -0.243 -0.114 -0.127 

𝑟𝑎𝑛𝑔𝑒 (|𝒂𝒋|) 0.098 0.067 0.087 0.062 -0.343 -0.162 -0.269 -0.118 

 

9.2.2 Additions from Gyroscope Channels 

A similar technique was used to supplement the feature set with information from the 

gyroscope sensor. The decomposition proposed in the previous chapter was employed, with the 

gyroscope output represented in terms of two components – 1) the resultant component along the 

axis of rotation in the bottle’s cross-sectional plane (i.e.: 𝑔𝑐𝑠), and 2) the component parallel to the 
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vertical axis of the bottle (i.e.: 𝑔𝑥). Variation in the two quantities is depicted in Figure 9-2 for 

four randomly chosen drink events. 

 

Figure 9-2: Variation in Gyroscope Signals During Drinking Events 

 

Correlation coefficients for the newly introduced gyroscope features are summarized in 

Tables 9-2 and 9-3. Similar to all prior motion features evaluated, these values exhibited stronger 

correlation to fill ratio versus volume labels. Moreover, correlations with fill ratio were stronger 

for features computed using the resultant gyroscope component along the axis of rotation. These 

correlations were largely negative, indicating that the rate of inclination was decreased when the 

bottle mass was increased. 
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Table 9-2: Supplemental Features from Coplanar Gyroscope Resultant 

Feature 

Definition 

𝝆𝒗𝒐𝒍 

(Whole) 

𝝆𝒗𝒐𝒍 

(Lift) 

𝝆𝒗𝒐𝒍 

(Stat.) 

𝝆𝒗𝒐𝒍 

(Place) 

𝝆𝑭𝑹 

(Whole) 

𝝆𝑭𝑹 

(Lift) 

𝝆𝑭𝑹 

(Stat.) 

𝝆𝑭𝑹 

(Place) 

𝑚𝑎𝑥 (|𝑔𝑐𝑝
𝑗

|) 0.099 0.092 0.102 0.123 -0.430 -0.484 -0.443 -0.328 

𝑚𝑖𝑛 (|𝑔𝑐𝑝
𝑗

|) -0.159 -0.120 -0.214 -0.054 0.022 -0.150 0.039 0.062 

𝑚𝑒𝑎𝑛 (|𝑔𝑐𝑝
𝑗

|) -0.179 0.044 -0.229 0.050 -0.396 -0.476 -0.279 -0.206 

𝑠𝑡𝑑 (|𝑔𝑐𝑝
𝑗

|) 0.088 0.072 0.124 0.111 -0.599 -0.482 -0.541 -0.309 

𝑟𝑎𝑛𝑔𝑒 (|𝑔𝑐𝑝
𝑗

|) 0.103 0.099 0.113 0.126 -0.430 -0.434 -0.445 -0.331 

 

Table 9-3: Supplemental Features from Axial Gyroscope Component 

Feature 

Definition 

𝝆𝒗𝒐𝒍 

(Whole) 

𝝆𝒗𝒐𝒍 

(Lift) 

𝝆𝒗𝒐𝒍 

(Stat.) 

𝝆𝒗𝒐𝒍 

(Place) 

𝝆𝑭𝑹 

(Whole) 

𝝆𝑭𝑹 

(Lift) 

𝝆𝑭𝑹 

(Stat.) 

𝝆𝑭𝑹 

(Place) 

𝑚𝑎𝑥 (|𝑔𝑥
𝑗
|) 0.101 0.051 0.047 0.091 -0.103 -0.020 -0.101 -0.097 

𝑚𝑖𝑛 (|𝑔𝑥
𝑗
|) -0.179 0.044 -0.229 0.050 0.154 0.061 0.142 0.066 

𝑚𝑒𝑎𝑛 (|𝑔𝑥
𝑗
|) 0.047 -0.018 0.058 0.045 0.063 0.006 0.095 -0.018 

𝑠𝑡𝑑 (|𝑔𝑥
𝑗
|) 0.035 0.112 -0.076 0.055 -0.104 -0.148 -0.078 -0.132 

𝑟𝑎𝑛𝑔𝑒 (|𝑔𝑥
𝑗
|) 0.101 0.136 0.034 0.078 -0.138 -0.075 -0.140 -0.138 

 

In addition to the above quantities, the IS feature set was also with the various micro-event 

durations introduced in Chapter 4. 

9.3 Effect of Feature Set Supplementation on Performance 

An SVM regression model was trained to estimate volume using the LOTO technique 

described in Chapter 5. A medium Gaussian kernel function was employed for purposes of 

comparability with the previously demonstrated best-case model. A volume MAPE of 56.60% was 

achieved for the expanded feature set. This value is worsened from the 52.39% MAPE achieved 

for an identical model employed using the IS feature set.  
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 Similarly, an SVM regression model was trained to estimate fill ratio using an identical 

framework to that described in Chapter 6. A coarse Gaussian kernel function was used to promote 

comparability with the best-case model. A fill ratio MAPE of 7.71% was achieved using the 

expanded feature set. This result is slightly improved versus the best-case MAPE of 7.96% 

achieved using the IS feature set. 

9.4 Effect of Inclination Estimation Technique on Performance 

The best-case SVM models described in Chapters 5 and 6 were reevaluated using the various 

technique for estimating the container’s inclination demonstrated in Chapter 8. A volume MAPE 

of 57.88% was achieved using an inclination estimate formed from the gyroscope sensor only. 

This accuracy is decreased versus results obtained using the accelerometer-based estimate. FR 

MAPE using the gyroscope inclination estimate was also increased to 10.77%.  A volume and fill 

ratio MAPE of 54.06% and 8.24% were achieved using the complementary filter-based inclination 

estimate. Both results are inferior versus those produced using the accelerometer-based inclination 

estimate. 

9.5 Conclusions and Future Work 

Strategies for improving volume and fill ratio estimates using supplementary motion features 

were explored herein. Summary features of the acceleration magnitude and various gyroscope 

channels were proposed. Consistent with prior features, correlation values indicated a stronger 

linear relationship with fill ratio versus volume labels. SVM regression models were trained using 

an identical approach to the previously reported best-case models presented in Chapters 5 and 6. 

The volume regression model using the supplemented feature set exhibited worse performance 

compared to the IS model. Fill ratio MAPE was slightly improved using the supplemented feature 
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set.  

In addition, the aforementioned best-case models were reevaluated using the various 

inclination estimation techniques described in Chapter 8. Models utilizing the gyroscope estimate 

exhibited reduced estimation accuracy versus those employing accelerometer-based estimates. For 

the static complementary filter parameters considered, estimation accuracy was also decreased for 

both labels.  

As only the static fusion parameters developed in the prior chapter were evaluated herein, 

future work should explore variation in performance for alternative fusion parameters. Moreover, 

performance variation for more sophisticated fusion-based inclination estimation strategies should 

also be explored.
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Chapter 10 : Assessment of Sensor Performance for Alternative Drinking 

Containers 

10.1 Introduction 

While the reconfigurable nature of the proposed tracking solution supports deployment 

across multiple container types, prior research has focused solely on scenarios where the device is 

attached to refillable bottles. This chapter addresses this limitation by exploring placement on two 

additional common drinking vessels - a glass and mug. An image of all containers considered 

within this chapter is shown in Figure 10-1. 

 

Figure 10-1: Three Container Types Considered 

For preliminary proof-of-concept, two core sensing functions are demonstrated. Namely, 

the ability to classify the type of container to which the sensor is attached is shown. In practice, 

this functionality would support the deployment of container-specific consumption models. In 

addition, low-resolution fill level classification is also demonstrated. For sufficient resolution, this 

functionality could be used for implementing the residual volume techniques introduced in Chapter 

6.  
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The chapter begins with a description of the experimental methods employed. Feature 

engineering and classifier design are then discussed, followed by the presentation of results using 

various training strategies and learning models. The paper concludes with a discussion of findings 

and recommendations for future work. 

10.2 Methods 

Five participants took drinks from three containers at two initial fill levels during the 

experiment. Subjects were instructed to consume a normal volume for each drink. The container 

was placed stationary on an electronic kitchen scale between drinks to simplify event parsing and 

ensure consistency in fill level. Drinks were consumed when the container was either completely 

or half-filled. For every container type and fill level combination, each participant took 5 drinks 

(i.e.: 30 total drinks/participant).  

Data was collected using the system introduced in Chapter 3. Only data from the 

accelerometer is used in the current analysis, with examination of the gyroscope output reserved 

for future work. Results analyzed herein are obtained from a sensor placed at the bottom of each 

container. The sensor was oriented along the container’s cross-section at a 180-degree offset from 

the instructed point of drinking (i.e.: on the side opposite the mouth, approximately 90 degrees 

offset from the grasping hand). This orientation is depicted for the refillable bottle in Figure 1-1. 

Data from a second sensor placed at the vertical midpoint of each container opposite the drinking 

hand, along with a container worn on the wrist of the participant, is not presented in the current 

chapter.    

Data was preprocessed using the smoothing and resampling techniques detailed in Chapter 

3. Sensor outputs were then transformed to a common coordinate frame (i.e.: 𝑥′  component 

aligned with static acceleration due to gravity, 𝑦′ component parallel with the surface of the table). 
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This was necessary to account for the slant in the glass and mug walls due to tapering of the cross-

sectional area over the container height, and to adjust for any rotations of the sensor from ideal 

placement in the surface plane. This process was accomplished by determining offset angles during 

the initial portion of the recording while the containers were placed stationary on a level surface, 

under the assumption that only static acceleration due to gravity was present in the signal during 

this interval.  

After transformation, each container’s inclination with respect to gravity was estimated 

under the assumption of negligible translational forces as specified in (3.1). Drink parsing was 

performed using the algorithm introduced in Chapter 3. Example inclination signatures for the 

three containers considered are shown in Figure 10-2.  

Due to motivation described in Chapter 4, further inter-event parsing was used to parse the 

drinking event into microevents. All resulting features were computed on the sip microevent 

occurring in the middle of the drinking event. Rather than employ the parsing technique described 

in Chapter 4, a more simplistic segmentation technique was utilized based upon the observed signal 

morphologies during drinking. Namely, the largest continuous interval for which the inclination 

exceeded 20% of the maximum value was extracted. This relative threshold was employed to 

reflect the variation in inclination amplitude across containers. An example of this inter-event 

parsing is shown in Figure 10-3. 

A set of support vector machine (SVM) classifiers were trained for each application 

considered using the previously proposed inclination signature (IS) feature set. 
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Figure 10-2: Inclination Signatures for the Three Container Types (Half-Full Fill Level) 
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Figure 10-3: Partitioning the Drinking Interval Using Relative Thresholding 

 

The following kernel functions were evaluated in each scenario– 1) linear, 2) cubic, 3) 

quadratic, and 4) Gaussian. Hyperparameters were set to the default values employed in 

MATLAB’s Classification Learner application (i.e.: Box Constraint = 1, kernel scale = 5.7 for 

Gaussian kernel, with values for other kernels computed automatically using a heuristic procedure 

implemented within the software package). Classifiers were trained for container type 

classification at both individual fill levels (i.e.: full and half-full), along with mixed data from both 

fill levels. In addition, models were trained for fill level classification for each of the three 

container types considered. 

Two unique training scenarios were considered for each classification application. The first, 

hereby denoted as leave-one-subject-out (LOSO) training, trained each classifier using data 

exclusively from other subjects (i.e.: for testing on Subject 1, training data is gathered  exclusively 

from Subjects 2 – 5). In the second training approach, hereby denoted as subject-specific training, 



 

118 

only training data from the subject under test is utilized. To maximize the use of available data for 

subject-specific training, a leave-one-drink-out (LODO) cross-validation strategy was employed 

(i.e.: for a subject specific model attempting to classify container type, models for each drink under 

test are trained using the 14 remaining drinks). Each SVM model was trained using the default 

iterative single data algorithm as implemented within the fitscvm function in MATLAB. 

10.3 Results 

10.3.1 Container-Type Classification – LOSO Training 

Four SVM classifiers with varying kernels described in the prior section were used to 

classify container type. For LOSO training at both fill levels considered, each model was trained 

using the 60 drink samples gathered from other subjects, and subsequently tested on the 15 samples 

for the test subject. Classification accuracies for each model are presented in Tables 10-1 (half-

full) and 10-2 (full fill level). For the two fill levels considered, superior classification accuracy is 

observed for the half-full fill level. In this scenario, differences in container geometry are more 

clearly reflected in the inclination signal morphology. Namely, taller containers such as the bottle 

require greater inclination to induce fluid flow versus shorter containers such as the mug and glass. 

Table 10-1: Container Type Classification Accuracy: LOSO Training, Half-Full Fill 

Subj, ID 

/Kernel 
S1 S2 S3 S4 S5 Avg 

Linear 93.3% 100% 100% 100% 93.3% 97.3% 

Quadratic 73.3% 100% 93.3% 100% 93.3% 92.0% 

Cubic 73.3% 100% 86.7% 100% 93.3% 90.7% 

Gaussian 66.7% 100% 100% 100% 93.3% 92.0% 
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Table 10-2: Container Type Classification Accuracy: LOSO Training, Full Fill 

Subj, ID 

/Kernel 
S1 S2 S3 S4 S5 Avg 

Linear 73.3% 80.0% 86.7% 80.0% 66.7% 77.3% 

Quadratic 46.7% 73.3% 66.7% 80.0% 73.3% 68.0% 

Cubic 53.3% 66.7% 66.7% 60.0% 73.3% 64.0% 

Gaussian 66.7% 86.7% 73.3% 66.7% 66.7% 72.0% 

 

Table 10-3 shows classification accuracy for models trained on a mixture of data from both 

fill levels (i.e.: 120 training examples/subject). While considerable variability in the inclination 

signal morphology versus fill level complicates this classification, best-case performance across 

the set of models considered is only slightly reduced from the full fill level case. 

Table 10-3: Container Type Classification Accuracy: LOSO Training, Mixed Fill 

Subj, ID 

/Kernel 
S1 S2 S3 S4 S5 Avg 

Linear 73.3% 76.7% 60.0% 73.3% 66.7% 70.0% 

Quadratic 56.7% 73.3% 70.0% 90.0% 76.7% 73.3% 

Cubic 56.7% 70.0% 76.7% 73.3% 73.3% 70.0% 

Gaussian 63.3% 80.0% 66.7% 83.3% 76.7% 74.0% 

 

Container type misclassifications are most common amongst the glass and mug samples as 

demonstrated in the confusion matrices presented in Table 10-4. This error type is especially 

prevalent for scenarios where fill level is controlled. These matrices are obtained by taking the 

best-case classification accuracy for each considered scenario (i.e.: linear SVM for full and half-

full levels, Gaussian SVM for mixed data). 
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Table 10-4: Confusion Matrices: LOSO Training 

Half-Full – Linear 

 

Full – Linear 

True/ 

Predict 
Bottle Glass Mug 

True/ 

Predict 
Bottle Glass Mug 

Bottle 25 0 0 Bottle 25 0 0 

Glass 0 24 1 Glass 0 14 11 

Mug 0 1 24 Mug 0 6 19 

 

 

Mixed – Gaussian 

True/ 

Predict 

Bottle Glass Mug 

Bottle 40 6 4 

Glass 2 33 15 

Mug 1 11 38 

 

10.3.2 Container-Type Classification – Subject Specific Training 

The above process was repeated using the subject-specific training strategy described in 

III.C. Namely, on a per-subject basis, each drink was successively tested using a classifier trained 

from the remaining 14 drinks. Classification accuracies for the half-full, full, and mixed fill levels 

are presented in Tables 10-5, 10-6, and 10-7, respectively. As noted, although available training 

data is reduced from the LOSO strategy, best-case performance is improved for all three scenarios. 

Table 10-5: Container Type Classification Accuracy: S.S. Training, Half-Full  

Subj, ID 

/Kernel 
S1 S2 S3 S4 S5 Avg 

Linear 100% 100% 86.7% 100% 100% 97.3% 

Quadratic 100% 100% 93.3% 100% 100% 98.7% 

Cubic 100% 100% 93.3% 100% 100% 98.7% 

Gaussian 100% 100% 100% 100% 93.3% 98.7% 
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Table 10-6: : Container Type Classification Accuracy: S.S. Training, Full Fill 

Subj, ID 

/Kernel 
S1 S2 S3 S4 S5 Avg 

Linear 86.7% 66.7% 73.3% 80.0% 100% 81.3% 

Quadratic 93.3% 80.0% 73.3% 93.3% 100% 88.0% 

Cubic 86.7% 73.3% 66.7% 100% 100% 85.3% 

Gaussian 80.0% 66.7% 66.7% 86.7% 93.3% 78.7% 

 

Table 10-7: Container Type Classification Accuracy: S.S. Training, Mixed Fill 

Subj, ID 

/Kernel 
S1 S2 S3 S4 S5 Avg 

Linear 70.0% 53.3% 56.7% 66.7% 60.0% 61.3% 

Quadratic 93.3% 70.0% 66.7% 73.3% 70.0% 74.7% 

Cubic 93.3% 83.3% 66.7% 66.7% 76.7% 77.3% 

Gaussian 80.0% 70.0% 60.0% 73.3% 70.0% 70.7% 

 

As depicted in Table 10-8, classification errors follow a similar distribution to those 

observed for the LOSO models. 

Table 10-8: Confusion Matrices: Subject-Specific Training 

Half-Full – Linear 

 

Full – Linear 

True/ 

Predict 
Bottle Glass Mug 

True/ 

Predict 
Bottle Glass Mug 

Bottle 25 0 0 Bottle 25 0 0 

Glass 0 25 0 Glass 0 18 7 

Mug 0 1 24 Mug 0 2 23 

 

Mixed – Gaussian 

True/ 

Predict 

Bottle Glass Mug 

Bottle 41 8 1 

Glass 5 36 9 

Mug 0 11 39 
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10.3.3 Container Type Classification with Equivalent Training Samples 

To facilitate fairer comparisons between the two training techniques, the LOSO approach 

was analyzed using only 15 randomly chosen training samples from the 60 available. This process 

was repeated five times for varying random seeds for the linear SVM model only. Comparative 

classification accuracy between the three techniques (averaged across trials for LOSO-restricted) 

is depicted in Figure 10-3. For an equal amount of training samples, subject-specific models 

outperform those trained out-of-subject in all scenarios (14.1%, 13.8%, and 11.6% for full, half, 

and mixed fill levels, respectively). 

 

Figure 10-4: Variation in Container Type Classification Accuracy  

 

10.3.4 Fill Level Classification 

Classifiers were trained to distinguish the two initial fill levels considered for each of the 

three containers. Using the LOSO strategy, 100% accuracy was achieved for all subjects for both 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Full Half Mixed

Subject Specific LOSO - Restricted LOSO - All



 

123 

the glass and mug for each model considered. Variability in accuracy across subjects for the 

various bottle models is depicted in Table 10-9. As noted, classification performance is still strong 

for this container type (98.0% for the best performing model), with errors isolated to only two of 

the five subjects. 

Table 10-9: Fill Level Classification Accuracy: Bottle Container, LOSO Training  

Subj, ID 

/Kernel 
S1 S2 S3 S4 S5 Avg 

Linear 100% 100% 100% 100% 90.0% 98.0% 

Quadratic 100% 100% 100% 100% 90.0% 98.0% 

Cubic 100% 100% 100% 90.0% 90.0% 96.0% 

Gaussian 100% 100% 100% 100% 90.0% 98.0% 

 

Subject-specific models were also trained to classify fill level. As was the case with the 

LOSO strategy, 100% accuracy was achieved for all subjects and models considered for both the 

glass and mug. While 4 of the 5 models considered for bottle data produced 100% accuracy for 

each subject, the Gaussian kernel model experienced some misclassifications. Namely, misses 

occurred for both subjects 4 and 5, yielding an average accuracy of 96.0% across subjects for this 

kernel. 

10.4 Discussion 

As shown in the confusion matrices presented in Tables 10-4 and 10-8, drinks consumed from 

the bottle were easily distinguished from those taken from the glass and mug at a fixed fill level. 

We hypothesize that this is related to the highly distinctive geometry of the prior container type 

versus the latter two. This belief is strengthened through examination of the improved glass-mug 

classification accuracy for drinks consumed from the half-full versus the full fill level. When both 

containers are filled, flow may be induced with only slight inclinations from both drinking vessels. 
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However, when each container is half-full, greater inclination is required to induce flow from the 

glass versus the mug due to height differences. 

When initial fill levels were mixed, the accuracy of container type classification was 

reduced. In practical deployment, classification for a fixed fill level or limited range (i.e.: near full) 

is likely sufficient to provide users with the desired utility of the sensor. Namely, users could be 

instructed to consume an initial drink from a near-full fill level upon sensor repositioning to allow 

for automatic container type detection. This would support subsequent deployment of container-

specific consumption estimation models, which is the primary metric of concern for the intended 

use case of the device. 

While the fill level classification accuracies reported herein are promising, further 

investigation is necessary to assess the feasibility of employing this strategy for fluid consumption 

estimation. As the accuracy of consumption estimates using this approach is inherently limited by 

the resolution of fill levels which may be reliably classified, additional analysis for more closely 

separated fill levels is required. In addition, consideration must be given to the effect of user intent 

and associated drink volume within this estimation process. As was specified in Section 10.2, 

participants were instructed to take normal drinks in each trial. However, daily use will involve 

scenarios where the user intends to consume either an above or below average amount of fluid 

depending upon thirst. As shown in Figure 10-4, which depicts variability in drink volume versus 

maximum inclination angle, volume influences the amplitude of the inclination signature, further 

complicating classification. 
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Figure 10-5: Drink Volume Versus Maximum Inclination Angle 

 

10.5 Summary and Future Work 

The ability of a bottle-attachable IMU sensor to classify both container type (bottle, glass, 

and mug) and fill level (full and half-full) was demonstrated herein. Classification was performed 

using SVMs with hand-engineered features describing each container’s estimated inclination 

during drinking. A best-case accuracy of 98.7% was achieved for container type classification 

using subject-specific models at a fixed fill level. A best-case accuracy of 100% was achieved for 

container-specific fill level classification using subject-specific models Variability in accuracy 
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versus training strategy was also explored, with subject-specific training demonstrating superior 

performance versus out-of-subject training for an equal amount of training data (container type 

classification accuracy improvement of 13.3% for full, 11.4% for half, and 10.3%  for mixed fill 

levels using subject-specific models). 

Future work should focus on analyzing the additional data collected for this experiment. 

Data from the second sensor attached at the vertical midline of each container will be processed to 

explore potential performance variability as a function of sensor placement. In addition, data from 

the wrist-worn sensor will be analyzed to compare achievable accuracy between the two alternative 

sensing strategies.
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Chapter 11 : Conclusions 

11.1 Summary 

Various strategies for improving the performance of a container-attachable hydration tracking 

sensor were proposed and verified throughout this dissertation. A novel sip detection algorithm 

was introduced in Chapter 3. This technique was demonstrated to improve classification accuracy 

and enhance efficiency versus a benchmark algorithm employing static segmentation. Results were 

verified using a scripted experiment intended to mimic the intended daily use case of the device. 

Approaches for improving drink volume estimation accuracy were explored in Chapters 4 

- 9. Per-drink estimation accuracy was improved versus prior state-of-the-art results for a single 

inertial sensor. The accuracy of aggregate consumption estimates was also increased versus 

previously reported results for the sensor considered herein.  

An alternative technique for estimating aggregate consumption using fill ratio estimates was 

proposed and explored. Fill ratio estimators were shown to exhibit improved accuracy and reduced 

inter-subject variability compared to volume models. A heuristic fusion approach for enhancing 

the accuracy of these estimates was also verified. The manuscript concluded by demonstrating the 

feasibility of using the sensor for multiple types of drinking vessels. 

11.2 Limitations 

Although the proposed attachable architecture offers notable advantages versus 

competitive approaches, it is characterized by some fundamental limitations. Namely, the motion-

based sensing mechanism restricts use to drinking vessels in which flow is introduced through 

inclination (i.e.: no straw-based containers, etc.). Furthermore, the device limits ubiquity relative 

to wearable sensors, due to the requirement that dedicated hardware be manually repositioned on 

the container before each drinking episode.  
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Beyond these innate restrictions, generalization of the results presented herein is limited by 

the scripted nature of the described experiments. As noted in Chapters 3 and 4, scripted 

experiments were utilized due to limitations of the data collection system, along with the 

challenges of capturing scale-based ground truth data on a per-drink basis in an unscripted 

scenario. Moreover, volume prompts were used to ensure that a wide variety of drink volumes 

were captured to support regression model development. Further research should address these 

limitations by evaluating the proposed sip detection and volume estimation algorithms on data 

collected during free living conditions. The potential impact of evaluating the proposed techniques 

on such data is discussed in the following section where appropriate. 

11.3 Summary of Key Contributions and Recommendations for Future Work 

The key contributions of this work are summarized below. A discussion of each 

advancement is also provided. 

1. Proposal and verification of a novel two-stage dynamic partitioning and classification 

algorithm for sip detection 

The sip detection algorithm detailed within Chapter 3 was demonstrated to improve 

true positive detection rate from 75.1% to 98.8% versus a benchmark algorithm employing 

static segmentation. This static windowing approach was chosen as a benchmark due to its 

prevalence throughout traditional activity detection literature. The key novelty of the 

proposed algorithm is the first-stage strategy for spotting drinking events using the 

characteristic drinking motion pattern. Versus alternative approaches relying on 

component-level inertial sensor outputs, this technique allows for the setting of parameters 

in a mechanistic sense.  
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The configurable nature of the sensor greatly simplifies sip detection compared to 

wearable architectures. Additionally, sip detection results reported in the literature for all 

hydration tracking technologies are generally far superior to those presented for volume 

estimation. Therefore, while further investigation of both the proposed (i.e.: parameter 

optimization, etc.) and alternative algorithms may yield slight performance improvement 

for the target architecture, it is recommended that future research efforts focus on 

enhancing consumption estimation performance as described in the following sections.  

2. Demonstration of state-of-the-art volume estimation results for a single inertial sensor on 

a per-drink basis  

The SVM regression model proposed in Chapter 5 was demonstrated to improve 

the mean absolute percentage accuracy of volume estimates by 11.1% versus state-of-the-

art results for a single inertial sensor. While the proposed techniques were restricted to 

SVM regression models, it should be reemphasized that various other learning models (i.e.: 

trees, Gaussian Process Regression Models, end-to-end learning architectures, etc.) were 

also explored as part of this research, with the prior yielding superior performance. More 

sophisticated models may benefit from the enhancement of training data scale.  

The comparison of subject-specific models to those trained out of subject further 

elucidates the complexity of the volume estimation problem. Namely, while motion 

characteristics (i.e.: duration, inclination kinematics, etc.) may be related to drink volume 

on an individual level, these relationships do not appear to generalize across a broader 

population based upon the experiments performed herein. One possible explanation is 

individual-specific shaping of the mouth during periods of fluid intake. Therefore, while 

improvements in volume estimation accuracy should be explored, it is recommended that 
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future efforts are more focused on residual volume estimation strategies using estimated 

fill levels. 

3. Demonstration of improved aggregate consumption results for a container-attachable 

inertial sensor  

Aggregate consumption estimation was improved relative to prior reported results 

for the attachable sensor architecture. Accuracies were comparable to those reported for 

other sensor modalities. Further efforts should explore potential variations in aggregate 

performance for consumption sequences occurring during daily use in a non-scripted 

environment. Aggregate consumption estimation results may differ when the variance of 

volumes within a sequence of drinks is reduced versus the scripted results considered 

within this research.  

4. Demonstration of high-resolution fill ratio estimation using drink motion patterns 

SVM regression models for estimating the initial fill level from which a drink was 

consumed were introduced within this dissertation. While the classification of fill level had 

previously been demonstrated in the literature for low resolution labels, we are unaware of 

any prior work using regression-based approaches for high-resolution data. With respect 

to volume estimators, fill level regression models were shown to exhibit considerably 

improved accuracy. Variability in accuracy across trials was also significantly limited 

relative to volume results. Subject-specific analysis suggested that the relationship between 

the motion pattern during drinking and the associated fill level are largely subject-

independent. Given this observation, it is recommended that future research focus on 

residual volume techniques for estimating aggregate consumption. 
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While designed for the sensor architecture considered herein, this technique of 

training to fill ratio labels (or equivalently, aggregate container volume) could be 

implemented for alternative motion-based technologies. Although some limited collections 

were performed within this research using both a wearable and container-attachable sensor 

(i.e.: Chapters 3 and 10), additional large-scale data collection is recommended to fully 

assess the generalization of this phenomenon to alternative sensor placements. 

5. Demonstration of a heuristic fusion technique for improving fill ratio estimation 

performance 

A technique for fusing fill ratio estimates produced by regression models with those 

generated using a heuristic consumption model were demonstrated. This strategy was 

implemented using a Kalman filtering framework. Similar to the discussion for 

contribution 3, this technique should be reinvestigated for drink sequences exhibiting 

typical variation in volume across drinks. It is anticipated that this model will perform 

better for such scenarios.  

6. Demonstration of fill level and container type classification for multiple drinking vessels 

The ability of the sensor to track aggregate daily consumption across multiple types 

of containers is a key value proposition of the proposed device. The work presented in 

Chapter 10 demonstrates initial proof-of-concept of this functionality. Verification of the 

proposed techniques should be conducted for a large-scale data collection for all container 

types of interest.
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