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ABSTRACT
WEIGHTING IN MULTILEVEL MODELS
By
Bing Tong

Large-scale survey programs usually use complex sampling designs such as unequal
probabilities of selection, stratifications, and/or clustering to collect data to save time and money.
This leads to the necessity to incorporate sampling weights into multilevel models in order to
obtain accurate estimates and valid inferences. However, the weighted multilevel estimators have
been lately developed and minimal guidance is left on how to use sampling weights in multilevel
models and which estimator is most appropriate.

The goal of this study is to examine the performance of multilevel pseudo maximum
likelihood (MPML) estimation methods using different scaling techniques under the informative
and non-informative condition in the context of a two-stage sampling design with unequal
probabilities of selection. Monte Carlo simulation methods are used to evaluate the impacts of
three factors, including informativeness of the sampling design, intraclass correlation coefficient
(ICC), and estimation methods. Simulation results indicate that including sampling weights in the
model still produce biased estimates for the school-level variance. In general, the weighted
methods outperform the unweighted method in estimating intercept and student-level variance
while the unweighted method outperforms the weighted methods for school-level variance
estimation in the informative condition. In general, the cluster scaling estimation method is
recommended in the informative sampling design. Under the non-informative condition, the
unweighted method can be considered a better choice than the weighted methods for all the

parameter estimates. Besides, the ICC has obvious effects on school-level variance estimates in



the informative condition, but in the non-informative condition, it also affects intercept estimates.

An empirical study is included to illustrate the model.
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CHAPTER 1 INTRODUCTION

A survey is defined as a data collection tool and is commonly used in social science to
collect self-report data from study participants. It allows researchers to collect a large amount of
data quickly and less expensively. Besides, the samples in survey research are often large, and a
wide variety of variables can be examined (Boslaugh, 2007; Koziol, Bovaird, & Suarez, 2017),
including personal facts, attitudes, previous behaviors, and opinions. Also, a survey can be often
quickly created and easily administered. Thus, secondary data analysis is becoming increasingly
popular (Stapleton, 2006). Many large-scale survey programs in social science use complex
sampling designs to collect data, such as unequal probabilities of selection, stratification, and/or
cluster sampling due to the impracticality of simple random sampling. In educational research,
large scale data collection efforts such as National Assessment of Educational Progress (NAEP
afterwards), Early Childhood Longitudinal Study-Kindergarten Class of 1998-1999 (ECLS-K
afterwards), Early Childhood Longitudinal Study-Kindergarten Class of 2010-2011 (ECLS-K
afterwards), available through National Center for Education Statistics (NCES) or National
Science Foundation (NSF) use complex sampling plans. These three-stage surveys first involve
sampling geographic areas with different probabilities of selection according to characteristics.
These areas are often termed primary sampling units (PSUs). Then schools are sampled with
different probabilities from the selected areas and lastly students are sampled from each of the
selected schools, resulting in a cluster sampling design. Students chosen from the same school tend
to be more alike than students chosen from other schools, and these groups of students show some
degree of dependence (Hox & Kreft, 1994; Kish, 1965; Skinner, Holt & Smith, 1989) when

compared to students from other schools. This type of sampling design brings challenges when



performing statistical analyses. If we disaggregate higher order variables to individual variables,
ignoring the nested structure of the data and assuming each observation is independent, the
assumption of independence of observations is not tenable. Conventional parametric analytic
methods (e.g., regression, analysis of variance, t-tests) do not work well because they violate the
assumption of observation independence (Cohen, West, & Aiken, 2003). The standard errors for
the point estimates are estimated incorrectly, which could lead to erroneous conclusions arising
from increased Type-I errors due to the violation of this assumption (Arceneaux & Nickerson,
2009; Clarke, 2008; Hahs-Vaughn, 2005; Heck & Mahoe, 2004; Judd, McClelland, & Ryan, 2009;
Muscaetal., 2011). However, if all the individual level variables are aggregated to the higher level,
then important information could be lost. Multilevel models or Hierarchical linear models (HLM)
were proposed and have been widely used in education, because they can be used to account for
clustering, and allow the variance of the dependent variable to be partitioned explicitly into within-
and between-variance (Lee & Fish, 2010; Lubienski & Lubienski, 2006; Palardy, 2010;
Raudenbush & Bryk, 2002; Snijders & Bosker, 2012). They are an alternative to some of the
approaches used by survey analysis for dealing with nested data structures.

Furthermore, some groups of the population are oversampled for various reasons. Units
with higher data collection costs may be drawn with lower selection probabilities and individuals
from small subpopulations of particular interest may be sampled with higher probabilities. For
example, both ECLS-K and ECLS-K:2011 oversampled Asian, Native Hawaiians, and other
Pacific islanders with the rate of 2.5 compared with other racial groups. This feature suggests
applying sampling weights in the model to reflect the unequal probabilities of selection whenever
selection probabilities are related to the outcome variable after conditioning on covariates in the

model. The sampling design is said to be informative in this case (Fuller, 2009; Grilli & Pratesi,



2004). Ignoring this feature and without using weights, parameter estimates would be severely
biased (Korn & Graubard, 1995; Pfeffermann, Skinner & Goldstein, 1998; Rodriguez & Goldman,
1995, 2001; Zaccarin & Donati, 2008).

But, appropriately using weights is not an easy task. For large-scale data sets, for example,
ECLS-K:2011, there are many sampling weight variables, including school-level and student-level
weights. For student level, this includes weights generated for the child assessments, teacher-level
questionnaire, student-level questionnaire, parent interview, and care provider questionnaire.
Appropriate use of complex sampling weights is of great importance because ignoring them may
produce erroneous standard errors and consequently, inaccurate statistical inference. What’s more,
there is not much guidance on how to incorporate sampling weights in the multilevel models. It
can be dated back from the late 1980s (e.g., Pfeffermann & LaVange, 1989). The pseudo maximum
likelihood (PML) method, developed by Skinner (1989) and following the thoughts of Binder
(1983), is a well-established estimation procedure for any weighted single-level models. However,
flexible techniques for estimating weighted multilevel models have only newly been developed
(cf., Asparouhov, 2004, 2006; Grilli & Pratesi, 2004; Rabe-Hesketh & Skrondal, 2006; Koziol et
al., 2017). One possible reason for this is multilevel weights are not available, which is often the
case for public-released data file (Kovacevi¢ & Rai, 2003; Stapleton, 2012). The second reason
might be that weighted multilevel modeling requires scaling of the lower level sampling weights
(Pfeffermann et al., 1998). Currently, there is no well-established general multilevel consistent
estimation method incorporating weights.

It is controversial whether to weight or not (Bertolet, 2008; Kish, 1992; Skinner, 1994,
Smith, 1988; Xia & Torian, 2013). For example, on the one hand, some researchers (e.g., Graubard

& Korn, 1996; Korn & Graubard, 1995, 2003; Lohr & Liu, 1994) suggested using sampling



weights in the model, as mentioned above to take into account for the complex sampling scheme.
On the other hand, Winship and Radbill (1994) preferred unweighted estimators because estimates
were unbiased, and consistent because they produced smaller standard errors. However, although
the use of sampling weights will result in the increase of variance from unequal inclusion
probabilities, it is still required and necessary because it prevents producing biased parameter
estimates under informative sampling in multilevel models (Pfeffermann et al., 1998; Kim &
Skinner, 2013), protects against misspecification, and makes full use of population-level
information (Kim & Skinner, 2013).

The estimation quality can be affected by a number of factors and some of them have been
investigated in the past research across different conditions, such as cluster size, distribution of the
response variable, estimator/software program, informativeness of the sampling design, intraclass
correlation coefficient (ICC), model type, invariance of selection across clusters, number of
clusters, relative variance of weights, sample design features, and weight approximation method.
In this study, | focus on the multilevel pseudo maximum likelihood (MPML) estimation method.
First of all, although various conditions have been examined, conclusions are not inconclusive and
rely on the particular model or sampling mechanism. Second, there are limited number of studies
evaluating MPML (i.e., Asparouhov, 2006; Asparouhov & Muthén, 2006; Cai, 2013; Grilli &
Pratesi, 2004; Koziol et al., 2017; Rabe-Hesketh & Skrondal, 2006; Stapleton, 2012). Third,
MPML, compared with other estimators, are more flexible. Therefore, more studies are needed to
evaluate MPML.

The purpose of the present study is to evaluate the performance of MPML using different
scaling procedures in the context of a two-stage sampling design with unequal probabilities of

selection in the informative and non-informative conditions across different levels of ICC using a



linear random-intercept model with covariates at both levels. Monte Carlo simulation methods are
used to estimate the relative bias (RB), root mean square error (RMSE) and coverage
rate/probability (CR) of the corresponding 95% confidence interval estimators. The following
factors are manipulated: (a) informativeness; (b) ICC of the unconditional model; and (c)
estimation method. All factors are fully crossed.

Cai (2013) conducted Monte Carlo simulations and found that the unweighted estimator
produces biased estimates for the intercept and school-level variance, while the estimates for fixed
effects and student-level variance are nearly unbiased within 10% of the true value in terms of
Muthén and Muthén (2002). Generally speaking, the MPML estimators have higher coverage rates
than the unweighted estimator in the informative condition. Including sampling weights increases
MSE substantially and produces biased estimates for the intercept and school-level variance in the
informative sampling design. Furthermore, ignoring informative sampling design could produce
biased estimates. Pfeffermann et al. (1998) pointed out that the unweighted method only produced
biased estimates for the intercept and school-level variance, not for student-level variance when
the design is informative at school-level variance. Prior studies (e.g., Asparouhov & Muthén, 2006;
Kovacevic¢ & Rai, 2003) show that as the ICC increases the bias decreases for all the parameters
using an unconditional model. Asparouhov and Muthén (2007) also found that the MPML
estimator outperforms substantially the other estimators.

The plan of this study is as follows. Chapter 2 discusses theoretical background and reviews
the related literature. We briefly review multistage design and general multilevel models. Pseudo
maximum likelihood estimation (MPML) method is presented, followed by two scaling methods.
Intraclass correlation coefficient (ICC) and informativeness are also described in this section. In

Chapter 3, I introduce the empirical data set | use in this study: ECLS-K:2011, and procedures of



simulation for the present study. Chapter 4 presents the results of the empirical data analysis and
simulation analysis. Chapter 5 provides a discussion of overall findings, limitations, and topics for

future research.



CHAPTER 2 THEORETICAL BACKGROUND AND LITERATURE REVIEW

2.1 Research Goal

Using empirical and simulated data, the present study focuses on examining the
performance of MPML in the context of a two-stage sampling design with unequal probability of
selection. Since MPML is newly developed compared to PML, there are far fewer studies
examining MPML. And no consensus has been achieved on which one performs best and under
which condition for the existing weighted multilevel estimators. MPML is considered the most
flexible and popular method if the consistency of estimates and computation intensity are
considered for multilevel data. But it is also obvious that weighted estimators produce larger
standard errors than unweighted methods do. Therefore, it is controversial whether to use weight
to not. More studies are needed to compare them and examine the performance of MPML. What’s
more, the scaling effect used in the multilevel estimation method is inconclusive based on the
previous literature. Lastly, to my knowledge, except one study (c.f., Koziol et al., 2017), all other
previous simulation studies manipulating ICC values use only an unconditional random intercept
model.

Therefore, the main goal for this study is to examine the impact of sampling weights and
to evaluate the performance of the MPML methods with different scaling techniques in the context
of two-stage informative and non-informative sampling designs across different values of ICC
with unequal probability of selection using random intercept model with covariates at both levels.
Monte Carlo simulation methods are used to evaluate several factors, including: (a)
informativeness of the sample design (non-informativeness vs. informativeness at both stages); (b)

ICC with five different values; (c) estimation methods (unweighted, raw/unscaled weighted,



cluster scaling, effective scaling). All the factors are fully crossed. This gives rise to 2 x 5 x 4 =40
combination of conditions.

This study makes several contributions to the complex survey data literature. First, it
provides a comparison between unweighted and weighted multilevel approaches in the context of
unequal probability of selection. Second, it provides a comparison of estimation methods between
informative and non-informative sampling design. Third, it provides a comparison of estimation
methods under different levels of ICC values.

In order to cover the gaps of the current body of literature, the following research questions
are addressed:

1. How do MPML estimators differ from unweighted estimator in multilevel models in the
informative and non-informative sampling designs in terms of relative bias, root mean
square error and 95% confidence interval coverage rate?

2. How does intraclass correlation influence the performance of estimators under the
informative and non-informative condition in terms of relative bias, root mean square error
and 95% confidence interval coverage rate?

Large-scale surveys in social studies usually use complex sampling designs based on the
characteristics of the population to glean information in order to address various research
questions. This feature brings challenges to the analysis. This chapter includes several topics

which are central to understanding weighted multilevel analysis of survey data.

2.2 Multistage Sampling
Multistage designs are commonly used in many practical cases. For a two-stage sampling

in the educational setting, for example, clusters or PSUs such as schools are selected in the first



stage. In the second stage, individual units, such as students are then sampled from the clusters.
Each sampling stage corresponds to a multilevel model level. In this case, second stage
corresponds to Level 1, first stage to Level 2.

At the first stage, cluster j is sampled with probability p;, j =1, ..., m, where m is the
number of clusters to be sampled from the total number of clusters in the population, M. At the
second stage, individual i is sampled from the cluster selected at the first stage with conditional
probability p; ;, i =1, ..., n, where n is the cluster sample size. Usually, clusters are sampled with
probabilities that are proportional to their sizes, that is, the number of individual units in their

clusters, S s

mSj
Pj= sm
J ZJ, S;

(2.1)

and the weight at cluster level is the inverse of the probability p;, that is, w; = 1/p;. Each unit is

sampled from cluster j with conditional probability (assuming that equal number of units are

sampled from each cluster)
n
L= 2.2
pl|] sj ( )
and the weight for individual unit i given cluster j is the inverse of the conditional probability p;;,

that is, wy|; = 1/p;);. Then the unconditional probability is defined as

pij =pi|j * pj =% (23)

2.3 Multilevel Model
A typical two-level linear model can be specified with two equations. The first equation is
used to describe the relationship between dependent variables and the covariates at the student

level, within each group. Some or all of the parameters of the student-level equation are viewed as



varying randomly across the groups. The second equation, school-level equation, defines these
parameters as dependent variables with the school-level variables as covariates. If we combine
them together, a two-level linear mixed model can be specified in matrix vector form as follows,
based on Laird and Ware (1982),

Y, =Xja +Z;b; +e;. (2.4)
In the above equation, j indexes the cluster, with j = 1, ..., m, where m is the number of clusters.

For the jth cluster with size i = 1, .., n;, Y; is an n; x 1 vector of observed response, X;

j 1sann;

X p observed matrix for fixed effects, ais a p x 1 vector of unknown coefficients, Z; denotes an
n; X q random-effect design matrix, b; is a g x 1 vector of cluster-specified random effects, and
ej is an n; x 1 vector of random residual errors, where p is the number of unknown coefficients
including the intercept and q is the number of random effects. Since random intercept model is
used in the current study, g equals 1.

Either full maximum likelihood (ML/FIML) or the restricted maximum likelihood (REML)
estimation method is often used to estimate the unknown model parameters in a general linear
mixed model, such as fixed regression coefficients and variance components. Searle, Casella, and
McCulloch (1992) defines the likelihood function for a linear mixed model as follows,

—2(v-xa) v 1(y-Xx
L(Y|X,Z aD,o2) = exp(—5( azl Y-Xa))
(2m)2|v|

, (2.5)

1
z
where V is the covariance matrix of vector Y, V = ZDZ' + 621, D denotes covariance matrix for
the random effect vector b;, and in our case, it is a scalar 62, and a2 is the variance of the error

term. For computational convenience, the log likelihood function is more often used instead of

likelihood function. It is specified in mathematical form as
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I =log(L (Y|X,Z,a,D,02)) = —% Nlog(2m) —%loglVl - %(Y — Xa)' V-I(Y - Xa)

(2.6)

where N is the total number of observations, N =Y., n;.

2.4 Multilevel Pseudo-Maximum Likelihood (MPML) Estimation Methods

In order to achieve valid inference for the population, sampling weights must be used for
all the levels of the data. But the literature does not obviously describe when and how to use
sampling weights properly in the multilevel models. Using single-level weights to replace
multilevel weights, is not always appropriate for the following reasons. First, sampling weights
are placed into sum of squares and cross-products in a single-level regression. Final-level weights
are the product of multilevel weights. Based on Christ, Biemer, & Wiesen (2007), if we use final-
level weights, it might lead to biased estimates in multilevel models. Second, Pfeffermann et al.,
(1998) noted that single final-level weights or overall inclusion probabilities may not contain
sufficient information to correct for unequal sampling probabilities at higher levels, because units
at either level can be selected with differential probabilities. Therefore, multilevel weights need to
be used in multilevel models. We use sample data and the sampling weights to estimate unknown
parameters by maximizing the weighted sample likelihood.

So far, researchers have explored different estimation methods incorporating sampling
weights for complex surveys, such as multilevel pseudo maximum likelihood (MPML)
(Asparouhov, 2004, 2006; Grilli & Pratesi, 2004; Rabe-Hesketh & Skrondal, 2006), probability-
weighted iterative generalized least squares (PWIGLS) (Pfeffermann et al., 1998), sample
distribution methods (Eideh & Nathan, 2009; Pfeffermann, Moura, & Silva, 2006), weighted

composite likelihood (WCL) estimation (Rao, Verret, & Hidiroglou, 2013), and pseudo empirical
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likelihoods (Chaudhuri, Handcock, & Rendall, 2010; Chen & Sitter, 1999; Francisco & Fuller,
1991; Fuller, 1984; Lin, Steel, & Chambers, 2004; Rao & Wu, 2010; Scott & Holt, 1982). As
Asparouhov & Muthén (2006) stated that there is no best estimation method for multilevel models
if sampling weights are used. MPML method and PWIGLS method are the two most widely used
estimation methods in multilevel models incorporating sampling weights. Compared with
PWIGLS, MPML is more flexible and more widely applied, from the perspective of software
implementation. Currently, MPML has been applied in the software of Stata, Mplus, and SAS
while PWIGLS has been used in LISRAEL, HLM and MLwiN. Different software would generate
different output (Chantala, Blanchette, & Suchindran, 2011; Chantala & Suchindran, 2006). The
application of MPML, compared with PWIGLS, requires less computational intensity and is much
more flexible (Kovacevic¢ & Rai, 2003; Rabe-Hesketh & Skrondal, 2006). Besides, MPML can be
applied to any general multilevel model (Rabe-Hesketh & Skrondal, 2006) just as the PML method
can be used in any single-level models. The third advantage is that MPML is versatile and it can
be modified for different estimation issues (Asparouhov, 2004; Asparouhov & Muthén, 2006). In
addition, MPML can account for stratification and extra non-substantive clustering levels in the
estimation of standard errors without having to incorporate such design features into the
parameterization of the model (Asparouhov & Muthén, 2006; Koziol et al., 2017; Rabe-Hesketh
& Skrondal, 2006). Because of these advantages, only the MPML with different scaling techniques
is considered in the present study.

Let the estimates 8 = (8, 8,) be the parameters and the likelihood function for a general

multilevel model can be expressed as

L(64,0,) = [Tjx1 (I(H?ilf (yijl|xij, wi, 01) P (wjlz;, 0,) du) (2.7)
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where y;;is the response variable in cluster j = 1, ..., m of individual i = 1, ..., n and u; the
cluster-specific random effect; x;; is student-level covariates and z; the cluster level covariates;
f (vij|xi;, 45, 0,) is the density function of y;; and ¢ (u;|z;, 8,) the density function of u;, where
0, and 0, are the parameters to be estimated for the fixed effects for the student level and school
level, respectively.

If weighting is incorporated into the analysis, and scaling procedures are also applied in
order to reduce the bias arising from unequal probabilities of selection for complex survey data,
the population likelihood function is directly estimated by weighting the sampling likelihood

function,

L(81,6,) = Ty (JATZ, £ Ol 0)" ) d(uylzy, 6)du) M, (2.8)
where w; ; = 1/ p;; is student-level weights where p;,; is the conditional inclusion probability for
the ith unit in the jth cluster, given that the jth cluster is sampled; w; = 1/p; is the school-level
weights where p; is the inclusion probability for the jth cluster; A;; and 4,; are the scaling factors
for the school-level and individual level sampling weights, respectively.

Numerical techniques are needed to integrate out the unobserved school-level random
effect u; to approximate the weighted likelihood.

Sandwich variance estimator is employed to obtain standard errors because some
researchers (e.g., Huber, 1967; White, 1980) claimed that they are robust to nonnormality and
heterogeneity. The asymptotic covariance matrix of the parameter 6 using this method is defined
by

(@~ ar) ()1 (2.9)
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where " and " refer to the first and second derivative of the log-likelihoods with respect to the
parameters 8. Mplus (Muthén & Muthén 1998-2017) implements this method using a robust

variance estimator having the following form:

0%loglL dlogL ,dlogL 0% log L

() " CTa(QAyw))?) == () () ™ (2.10)

2.5 Scaling Sampling Weights for Multilevel Models

In multilevel weighted estimation literature, one of the main problems is the fact that the
parameter estimates are usually only approximately unbiased. There are many factors that have
substantial influence on the quality of the estimation, such as sample size of cluster,
informativeness of selection, variability of sampling weights, intraclass correlation and scaling
methods (Asparouhov, 2006; Asparouhov & Muthén, 2006; Bertolet, 2008; Cai, 2013; Grilli &
Pratesi, 2004; Jia, Stokes, Harris, & Wang, 2011; Kovacevi¢ & Rai, 2003; Pfeffermann et al., 1998;
Rabe-Hesketh & Skrondal, 2006). For instance, parameter estimation would be severely biased
when the cluster sample size is not sufficiently large enough (Asparouhov, 2006; Rabe-Hesketh
and Skondal, 2006). In order to correct this, two scaling methods were proposed by Pfeffermann
et al. (1998).

The scaling method is an indicator of how the weights are normalized at each level
(Asparouhov, 2006). The first method, assuming individual level weights are approximately non-
informative, may produce approximately unbiased estimator for both variance components. This
approach produces a scaling factor so that the individual level weights equal the ‘effective’ cluster
size (Longford, 1995, 1996; Pfeffermann et al., 1998). The scalar factor, which was referred to as

“Method 17 in Pfeffermann et al. (1998), is specified as follows
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A =2zt 2.11)

T2, wi
Method 2 in Pfeffermann et al. (1998) is used when both levels of sampling design are assumed to
be informative. The scaling factor is defined as

nj

, (2.12)

%2,
where n; is the number of sample units in the jth cluster. The scaling factor is set so that the
individual level weights equal the actual cluster size. These two scaling methods are termed as
effective cluster scaling (ES) and cluster scaling (CS) respectively in the current study.

Currently, there is no consensus about which scaling method works better and under what
conditions. For example, Pfeffermann et al. (1998) pointed out Method 2 (cluster scaling) works
better in reducing bias in simulation in the informative sampling design while Stapleton (2002)
found that Method 1 (effective cluster scaling) produces unbiased estimates in multilevel SEM
analysis. Asparouhov (2006) noted that the different scaling methods may have different effects
on different estimation techniques. If a scaling method performs well with the MPML approach,
it does not necessarily mean that it performs well with other estimation techniques, for example,
PWIGLS. Sometimes, which scaling method to use depends on the purpose of the research. If the
main interest is point estimates, cluster scaling method is recommended. If cluster variance

estimates are, then effective scaling method might be used (Asparouhov, 2006; Carle, 2009).

2.6 Intraclass Correlation Coefficient (ICC)
Besides sample size of cluster, informativeness of selection, variability of sampling
weights, and scaling methods, ICC also affects estimation quality (Asparouhov, 2006; Asparouhov

and Muthén, 2006; Bertolet, 2008; Cai, 2013; Grilli & Pratesi, 2004; Jia et al., 2011; Kovacevic
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& Rai, 2003; Pfeffermann et al., 1998; Rabe-Hesketh & Skrondal, 2006). Prior studies have found
that the larger the ICC values are, the less biased the estimates are in simulation studies
manipulating ICCs using random intercept models without any covariates at both levels
(Asparouhov, 2006; Jia et al., 2011; Kovacevi¢ & Rai, 2003).

ICC is one of the factors that is examined in this study. It can be used for model
construction because it helps to determine the predictors which are most important to account for
the outcome variable (Raudenbush & Bryk, 2002). It is also used as an index for including cluster
level in multilevel modeling if ICC is not close to zero. Larger ICC values usually represent larger
variations in cluster level, indicating larger proportion of total variance in the response variable
that is accounted for by the clustering and thus larger clustering effect. In addition, the ICC value
is informative for planning group-randomized experiments in education (Hedges & Hedberg, 2007,
2013).

To estimate the ICC for a given outcome, y, a multilevel model is fit for the ith student in
the jth school

Yij = Yoo + Ugj + &ij, (2.13)
and the REML estimates of the variance of u,;, (labeled as 6;), which is the variation between

schools, and the variance of ¢;; (labeled as 62), which represents variation at student level are used

to compute ICC. The estimate of the ICC, p, is then defined as

o4

62+

p= (2.14)
which is the proportion of total variability in scores due to the school-to-school differences.
Moreover, the ICC is used to calculate the design effect, which shows how much standard

errors are underestimated. The design effect is defined as follows

Designeffect = 1 + (averageclsutersize - 1) * p. (2.15)
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Based on Kish (1965), a design effect which is greater than 2 indicates that we need to take into

account the clustering effect of the data during estimation.

2.7 Informativeness of Selection

The informativeness of selection, according to Asparouhov (2006), is an indicator of how
biased the selection is. If the sampling design is informative, the inclusion probabilities are related
to the response variable after conditioning on the variables in the model (Fuller, 2009; Grilli &
Pratesi, 2004). Otherwise, it is non-informative. Pfeffermann (1993) and Cai (2013) pointed out
that if weights are informative, they are quite influential on the results and therefore, should be
considered in the multilevel analysis. However, if the sampling designs or weights are not
informative, the effect of weights could be negligible and it is not necessary to include weights in
the analysis. Therefore, to check whether the sampling design/weight is informative or not is
necessary. Following Laukaityte and Wiberg (2018), weights are informative if the effective
sample size is smaller than the real sample size. Effective sample size for two-level models can be
defined as follows. Effective sample size at level 2 (between schools) is calculated using the

following formulas:

jw,)?
Neff = j 2.16
W) (2.16)
and effective sample size at level 1 (within schools) for school j is obtained by
err — &) (2.17)

Pfeffermann (1993) developed a model to evaluate whether the sampling design is
informative or not. The informativeness of sampling design is examined by the x? test, which is

defined as follows
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=0y — 0)'[V(Bw) — V(06)1™*(Bw — o) ~ x (2.18)
where 8,, and 8, are the estimates of weighted and unweighted analyses, respectively, and 7 (8,,)
and 7 (8, ) are their variance estimates. The informativeness statistic follows a x2 distribution with

p = dim(6) degrees of freedom.
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CHAPTER 3 METHODS

Two primary sections are included in this chapter: one introduces methods for empirical

data; one introduces simulation design.

3.1 Empirical Data
3.1.1 Data and Variables

This study uses data from the public-use the Early Childhood Longitudinal Study,
Kindergarten Class of 2010-2011 (ECLS-K: 2011, see Mulligan, Hastedt, & McCarroll, 2012, for
an overview) data set, which is sponsored by the National Center for Education Statistics (NCES).
It is a latest study in early childhood longitudinal study that follows a U.S. nationally representative
sample of students entering Kindergarten in 2011-2012 to the spring of 2016, fifth grade. ECLS-
K:2011 provides descriptive information about children’s school experience. Data have been
collected related to family, classroom and school environment. Individual variables are available
as well, studying how cognitive, social and emotional development is related to them.

The ECLS-K: 2011 data are not a simple random sample of individuals or clusters. The
study employed a 3-stage cluster sampling design. 90 geographic areas (counties or groups of
counties) as the primary sampling units (PSUs) were first sampled at stage 1. Then samples of
public and private schools were selected at stage 2 from the selected PSUs. Lastly, five-year-old
children were randomly sampled within selected schools at stage 3. Stratification and probability
proportional to size sampling were used at the first two stages of selection; stratification and
unequal sampling were used at the final stage. In the base year, Asian, Native Hawaiians, and other

Pacific islanders were oversampled. The user’s manual for the ECLS-K: 2011 kindergarten data
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file and electronic codebook, public version (Tourangeau et al., 2015) offers an excellent overview
of the characteristics of complex sample designs including clustering, stratification, unequal
probabilities of selection, and non-response and poststratification.

The analytic samples in this paper only include kids in kindergarten, and data collected in
both the fall and the spring semesters. Approximately 18,200 children enrolled in 970 schools
during the 2010-11 school year participated during their kindergarten year.

Although the use of sampling weights will result in the increase of variance due to unequal
inclusion probabilities, it is still required and necessary because it prevents producing biased
parameter estimates under informative sampling in multilevel models (Pfeffermann et al., 1998;
Kim & Skinner, 2013), protects against misspecification, and makes full use of population-level
information (Kim & Skinner, 2013). The supplied sampling weights adjusted for school-level
nonresponse and inverses of estimated student-level response probability are used. Weights for
first sampling stage are not available. For student level, | use composite variables based on the
parent survey as the primary independent variables of interest, as well as controlling for the
student's fall test score in order to predict the spring score. The parent is used as a primary
component to adjust for non-response, suggesting that child base weight adjusting for non-
response associated with either fall or spring kindergarten parent interviews (W1_2P0) would be
a good choice of weight. For school-level weight, school base weight adjusted for non-response
associated with the school administrator questionnaire (W2SCHO) are used.

The academic outcome variables in this study are reading and mathematics scale scores
calibrated using Item Response Theory (IRT) procedures. The reading assessment (User’s Manual
for the ECLS-K:2011, Mulligan et al., 2012) measures basic skills (print familiarity, letter

recognition, beginning and ending sounds, rhyming words, word recognition), vocabulary
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knowledge, and reading comprehension. Reading comprehension consists of questions identifying
information specifically in text, making complex inferences within and across texts, and
considering the text objectively to judge its appropriateness and quality. The mathematics
assessment measures skills in conceptual knowledge, procedural knowledge, and problem solving.

The construct validity has been established for ECLS-K:2011 assessments as the
assessment, national and state performance standards in each of the domains were examined and
specifications for reading and mathematics were established based on NAEP framework.
Furthermore, curriculum specialists in the subject areas were recruited and the pool of items
created were examined for content and framework strand design, accuracy, on-ambiguity of
response options, and appropriate formatting.

The reliability of the reading score for Fall and Spring Kindergarten is 0.95, and the
reliability of the mathematics score is 0.92 for Fall Kindergarten, 0.94 for Spring. The kindergarten
mathematics mean score for this study’s sample was 45.28 (SD = 12.19). For reading, the sample’s
kindergarten mean score was 61.26 (SD = 13.56). To model mathematics and reading
achievements, we use three student-level covariates and two school-level covariates. Descriptive

statistics of these variables are presented in Table 3.1.
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Table 3.1. ECLS-K: 2011 Variable Descriptive Statistics

Variables Variable_in_the data Mean SD MIN MAX
Math XIMSCALKL 45 28 12.19 1.19 88.76
Reading XIRSCALK2 61.26 1356 2568 10992
Pre_Math XIMSCALK2 3167 11.37 7.19 111.58
Pre Reading XIRSCALK2 46.92 11.5 2545 109.92
SES X125ESL -0.05 0.81 -233 26
Female X _CHSEX R 049 0.5 0 1
School Locale X2LOCALE

Suburban 0.36 0.48 0 1
Rural 0.22 0.42 0 |
Student Weight W1 2P0 22308 1417 0 956.72
School Weight W2SCHO 6424 4786 0 372.02

Note: SD=standard deviation; MIN=minimum; MAX=maximum.

3.1.2 Statistical Models

The unexplained variance among randomly sampled clusters (e.g., schools) in outcomes of
interest could be inferred by using multilevel models. The effects of covariates at each level could
also be estimated. Researchers could use models with random intercepts to account for the
correlations within clusters caused by longitudinal or clustered design (West et al., 2015). In a
survey with multistage samples, there are always various levels of cluster. But only the lowest
level of clustering usually has the greatest impact on individual outcome (Asparouhov & Muthén,
2006). Furthermore, Stapleton and Kang (2016) found minor impacts could be found on inference
and no difference could be detected even if we disregard the first stage sampling design which is
beyond the levels in the model. For large-scale data sets, the first-stage weights are usually not
provided, for example, ECLS-K: 2011. Hence this first stage sampling design is not considered in
this study. Therefore, for simplicity, two-level random intercept regression models are used in this

study to fit multilevel models in which individual students are nested in schools to two academic
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dependent variables, reading IRT scale score, and mathematics IRT scale scores. But | would not
take account of IRT measurement errors in the analysis. Three different two-level models are
examined with different sets of covariates. Model 1 is an unconditional model without any
covariates at both levels, model 2 includes all the student level predictors and model 3 is a full
model consisting of all the student level and school level predictors.

Model 1: unconditional model

Level 1: Yij = ,301 + &j (31)
Level 2: Boj =Yoo *+ Uoj (3.2
Combined: Yij =Yoo + Upj + &j (33)

Model 2: student model with three student-level predictors

Level 1. y;; = Boj + 1 *Female + B, ;*SES + f5;*Pretest + ¢;; (3.4)
Level 2: Boj =Yoo * Uoj (3.5
Combined: y;; = yoo + B1j*Female + B, ;*SES + B3 *Pretest + ug; + &;; (3.6)

Model 3: full model including two level covariates
Level 1. y;; = Boj + 1 *Female + B, ;*SES + f5;*Pretest + ¢;; (3.7)
Level 2: Byj = Yoo + Vo1 *Suburb + yo,*Rural + y,*Suburban + u; (3.8)
Combined: y;; = yoo + B1*Female + B, ;*SES + 33 ;*Pretest + y,, *Suburb +
Yoz *Rural + yg,*Suburban + wuy; + &; (3.9
Since there are many factors affecting the quality of estimation in complex sampling design,
it is noteworthy to investigate both unweighted and weighted models. In this study, all the three
multilevel models above are explored using the following four estimation methods:
(a) maximum likelihood estimation method with no weights (UW),

(b) MPML using raw /unscaled weights (RW),
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(c) MPML using cluster scaling (CS),
(d) MPML using effective cluster scaling (ES).

The missing data at level 1 ranges from 0.2% for female to 14.2% for math pretest. Listwise
deletion is used for handling missing data for the empirical study. Multiple imputation can be used
in this case, but the exact models for real data is less important here. So listwise deletion is used
to simplify the problem. Missing data at level 2 is 3.6% for rural and suburban. Level 2 missing
values cannot be simply removed because they have impact on the lower level. Schafter and
Graham (2002) mentioned if the probabilities of missingness only depended on observed items,
missing data could be assumed to be missing at random (MAR afterwards). Therefore, | assume
missingness at level 2 here is MAR. Two methods are recommended for handling MAR data. One
method is multiple imputation method (Robin, 1987; Enders, 2010; Howell, 2008), and the other
is the full-information maximum likelihood (FIML) method (Danielsen, Wiium, Wilhelmsen, &
Wold, 2010; Enders, 2010; Laukaityte & Weibert, 2018). | use FIML for handling missing data in

this study.

3.2 Simulations
3.2.1 Simulation Design
The informativeness (Asparouhov, 2006; Cai, 2013) and the intraclass correlation were
found to be influential factors on the performance of weighted estimation in multilevel models
(Asparouhov, 2006; Jia et al., 2011; Kovacevi¢ & Rai, 2003). Monte Carlo simulation methods
are applied to evaluate the effect of ICC and examine the performance of MPML using different

scaling techniques in the context of two-stage informative and non-informative sampling design
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(please see Table 3.2 Simulation Design). All the conditions are fully crossed. The full study design

results in a total of 2 x 5 x 4= 40 simulation settings.

Table 3.2. Simulation Design
design ICC Uw RW C5 ES
ICC=0.5
ICC=03
Informative ICC=02
ICC=0.1
ICC=0.01
ICC=0.5
ICC=03
Non-Informative 1CC=0.2
ICC=0.1
ICC=0.01
Note: UW=unweighted estimation method; RW=estimation method

with raw weights; CS=estimation method with cluster scaling; ES=
estimation method with effective cluster scaling.

Five different ICC values are used in this simulation: 0.5, 0.3, 0.2, 0.1, and 0.01. The
unconditional ICCs that may typically be found in educational and psychological research in the
United States are in the range of 0.15 and 0.25 for academic large-scale assessments (Bloom, Bos,
& Lee, 1999; Bloom, Richburg-Hayes, & Black, 2007; Hedges & Hedberg, 2007, 2013; Kreft &
Yoon, 1994; Schochet, 2008). Accordingly, the values of 0.1, 0.2, and 0.3 are chosen for this study.
The lowest ICC value found in Hedges and Hedberg (2013) is 0.02, in which students were nested
in grades for each state. Raykov (2015) showed that the lower bound of 95% confidence interval
of ICC could be as low as 0.014. Murry and short (1995) found that in a school-based intervention
design, ICC values were generally smaller, in the range of 0.01 to 0.05. The current study considers
students may be nested in school district, or even larger geographic areas, which may result in a

lower ICC value. Therefore 0.01, a very small non-zero value, is chosen, because small ICC still
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affects estimates of standard errors if we ignore the dependency. Musca et al. (2011) said small
ICC would impact Type-I error dramatically.

Different values for 62 and 62 are used while the total variance of y is kept fixed, 2 + 62
= 60. This value is determined based on the empirical data results (See Table 3.5). Five different
ICC values 0.5, 0.3, 0.2, 0.1, and 0.01 are obtained by setting 62 to be 30, 18, 12, 6 and 0.6
respectively, while the value of 62 is 60 - 62, i.e., 30, 42, 48, 54, and 59.4 correspondingly.

3.2.2 Model

To evaluate the performance of MPML approach for a linear two-level regression model
under informative and non-informative sampling condition, the Monte Carlo simulation mimics
the sampling design in ECLS-K:2011. Specifically, about 18,200 kindergarteners from 970
schools were sampled. Overall, about 19 students were selected on average from each school.
Mulligan et al. (2012) indicated that the school and student selection probability (i.e., sampling
rate) is 0.02 and 0.25 respectively and the overall student selection probability is 0.02 x 0.25 =
0.005. All the school population are categorized into six groups based on the percentages of public
schools in ECLS-K:2011: 5.69% of schools have students ranging from 16 to 24; 11.49% of
schools have students ranging from 25 to 49, 43.53% of schools have students varying from 50 to
99, 25.3% of schools varying students from 100 to 149, 8.59% of schools have students ranging
from 150 to 199, then 5.22% of schools have more than 200 students. Then finally 150 schools
and 3915 students are drawn from the population with the expected sampling rate for schools and
students in ECLS-K:2011. The true values for the parameters are all obtained using the empirical
data set ECLS-K: 2011 with maximum likelihood estimation method (see Table 3.5). Thus, the
data are generated using the following model:

yij = 17.43 + 0.91*Female + 1.06*SES + 0.92*Pretest + 1.04*Rural + u; +¢;;  (3.10)
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where u; is school-level random effect and ¢;; is student-level error term, u; and &;; are normally

distributed with mean of 0 and variance 30, 18, 12, 6, and 0.6 for 2, and corresponding variance
of 60 - 62 for 62. Explanatory variables (e.g., female, social economic status (SES), pretest, rural
and suburban) are determined because they contribute significantly to the model and are also
variables other researchers are also interested in (e.g., Hedberg, 2016; Hedges & Hedberg, 2007).
Female follows Bernoulli distribution with probability of 0.49. Social economic status (SES)
follows normal distribution with mean -0.05 and variance 0.66 (SD = 0.81). Pretest score follows
normal distribution with mean 46.92 and variance 132.22 (SD = 11.50). Suburban follows
Bernoulli distribution with probability of 0.36. Rural follows Bernoulli distribution with
probability of 0.22.

3.2.3 Sampling Selection

Finite population are generated according to the model described above. The expected
sampling rate used in this study is still 0.02 for schools and 0.25 for students as in ECLS-K: 2011,
which results in the overall sampling rate of 0.005.

Sampling selection is determined by whether the sampling design is informative or non-
informative. In order to introduce unequal probability sampling at both levels and make our
sampling design informative, the present study uses the similar plan used by Asparouhov (2006),
Cai (2013) and Koziol et al. (2017). Poisson sampling is used to select the jth school with
probability:

1

prob (lj=1) = = (3.11)

T
1+ exp(—% + 4.02)

where the i j is equal to uy; (the random intercept effect for the jth cluster) but rescaled to have

a variance of 2. For the selected school, Poisson sampling is used to select the ith student within
the jth school with probability:
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prob (lijj=1) = 1;5 . (3.12)

ij
1+ exp(—T +1.23)

The & j is equal to ey (the residual effect for the ith student in the jth cluster) but rescaled to have

a variance of 2. This sampling plan results in a design which is informative at both levels, because
at both levels, the inclusion probabilities are linked to the response variable, according to the
definition of sampling design informativeness (c.f., Fuller, 2009; Grilli & Pratesi, 2004).

The random variable variance is rescaled in order to keep a constant level of
informativeness across different levels of the ICC. A variance of 2 for both random variables and
the slope coefficients (1/2) are selected to have approximately 0.3 of informativeness for both the
school level and student level, which Asparouhov (2006) used as a moderate level of
informativeness in his simulations. The intercept values (4.12 and 1.23 for school level and student
level, respectively) are determined using expected sampling rates (0.02 and 0.25 for the school
level and the student level, respectively) and the formulas above (equation 3.11 and 3.12) to obtain
desired sample sizes.

Under the non-informative sampling condition, aoj and é;; are replaced by other variables

that are not part of the population model. Still Poisson sampling is used to select the jth school

with probability

1

prob (lj=1) = (3.13)

ﬁ .
1+exp(—%+4.02)

where IBOj ~ N (0, 2) and is not related to any variables in the model. Conditional on the selected

school, Poisson sampling is used to select the ith student in the jth school with probability of

prob (lij = 1) = - (3.14)

7 .
1+exp(—7+ 1.23)
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where r;; ~ N (0, 2) and is not related to any variables in the model. Although this design uses

unequal probability of selection, it is not informative, because the selection probability is not
related to the response variable.

Data are generated using the software Stata. The syntax for data generation is provided in
APPENDIX A and APPENDIX B.
3.2.4 Mplus and Data Analysis

Each simulation is replicated 1000 times for each study condition. Each 1000 replications
are analyzed in Mplus Version 8 (Muthén & Muthén, 1998-2017) using the TYPE =
MONTECARLO option under the Mplus DATA command. The Mplus user’s manual (Muthén
& Muthén, 1998-2017) provides guidance on how to incorporate sampling weights and how to use
scaling methods in a two-level model.

The two scaling methods that are used are referred to ECLUSTER and CLUSTER
respectively in Mplus documentation, which correspond to effective cluster scaling and clustering
scaling respectively in this study.

Altogether, four estimation methods are considered: (a) unweighted estimation method
(UW); (b) MPML method using raw/unscaled weights (RW); (¢) MPML method using cluster
scaled (CS) weights, and (d) MPML method using effective cluster scaled (ES) weights.

Then Sandwich variance estimators (ESTIMATOR = MLR) are used in all instances. The
TYPE option is set to TWOLEVEL, and appropriate variables are identified for the CLUSTER,
WEIGHT, and BWEIGHT options. For MPML models, WTSCALE and BWTSCALE are also
specified based on different scaling methods: UNSCALED and UNSCALED are used respectively
for raw scaling method, CLUSTER and SAMPLE for cluster scaling method, and ECLUSTER

and SAMPLE for effective scaling method for three weighted methods respectively. For a general
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multilevel model ignoring weighting in the present study, WTSCALE and BWTSCALE are not
used under the VARIABLE command.
3.2.5 Evaluation Criteria

Empirical (absolute) Relative Bias, Root Mean Square Error (RMSE), and 95% Confidence
Interval Coverage Rate are used as the primary criteria to estimate the quality of the performance
of the estimators as previous simulation studies (e.g., Cai, 2013; Eideh & Nathan, 2009). In
measurement or sampling situations, bias is defined as “the difference between a population mean
of the measurements or test results and an accepted reference or true value” (Bainbridge, 1985).
Then the true value can be under- or overestimated. Since large number of replications are applied
in this study, even small values of bias may be deemed significantly different from 0. As such, the

relative bias instead of bias is used. The relative bias is defined as

RBias(8) = = (—— %1°°°(, — 0)). (3.15)

1000
where 6 is the true value set, and 8; is the estimated value in each iteration. It is noted in Muthén
and Muthén (2002) that, if the absolute relative bias is less than 10% of the true value, then the
parameter estimates can be considered unbiased.

A common accuracy measure called mean square error (MSE) is the mean of the squared
differences. It indicates how close the estimate is to the true value. This measure incorporates
concepts of bias and precision because it equals to the sum of the variance of the estimates and the
squared mean error. The root MSE (RMSE) tells us how far the approximation will be from the
true value on average. RMSE is used because it can penalize large values. It is computed using the

following formula

1000

RMSE(®) = \/OL $10009, — §)2, (3.16)
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where = 101% »1000 5. The smaller the RMSE is, the better the estimate is.

The coverage rate/probability (CR) in this study is set at 95%. It is utilized to evaluate the
proportion of replication in each parameter estimate that the interval estimator contains the
population parameter value (Muthén & Muthén, 1998-2017). It is recommended that the coverage
rate should be at least 0.91 by Muthén & Muthén (2002). That is, at least 91% of replications
having true parameter values within the 95% confidence interval.

Mplus syntax for analysis is provided in APPENDIX C.
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CHAPTER 4 RESULTS

This chapter consists of two primary sections: one for simulation results, the other for

empirical study results.

4.1 Simulation Results

The primary evaluation criteria are (absolute) relative bias, root mean square error (RMSE)
and coverage rate of the interval estimators. Simulation results are depicted in Table 4.1-4.6 and
Figure 4.1-4.16. Table 4.1-4.2 illustrate the Monte Carlo estimates of relative bias, RMSE and 95%
confidence interval coverage rate for the fixed effects, intercept and variance components in the
informative condition, Table 4.3-4.4 for those in the non-informative condition. Table 4.5-4.6
display the average standard errors of the estimates and the standard deviations in the informative
and non-informative design respectively. Figure 4.1-4.2, and Figure 4.13-4.14 plot relative bias
for the four covariates, intercept and variance components in the informative condition, and Figure
4.3-4.4 and Figure 4.15-4.16 for those in the non-informative condition. Dashed horizontal lines
indicate bounds for acceptable levels of relative bias (|JRB%| < 10; Muthén & Muthén, 2002).
Figure 4.5-4.6 plot RMSE for the four covariates and intercept and variance components in the
informative design and Figure 4.7-4.8 for those in the non-informative design. Figure 4.9-4.10 plot
coverage rate for the four covariates and intercept and variance components in the informative
design and Figure 4.11-4.12 for those in the non-informative design. Dashed horizontal lines
indicate the nominal coverage rate of 95%.

Results are organized by research questions and evaluation criteria. Under each evaluation

criteria, the results are illustrated by informative and non-informative condition respectively.
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4.1.1 Research Question One

Research question one allows me to evaluate the performance of weighted and unweighted
estimators under the informative and non-informative condition in terms of (absolute) relative bias,
RMSE, and 95% confidence interval coverage rate. Comparison between unweighted and
weighted estimators can give us a picture understanding whether differences among them are due
to sampling weights application and which estimator performs best.
4.1.1.1 (Absolute) Relative Bias

In general, all the fixed effects are estimated somewhat unbiasedly in both informative and
non-informative conditions if the criterion of Muthén and Muthén (2002) is applied. However, a
different story can be told for the intercept and variance components estimates. On average, the
absolute relative bias is comparatively larger in magnitude under the informative condition than
that in the non-informative design. The most variability in the absolute relative bias occurs for the
school-level variance estimators in both conditions.
4.1.1.1.1 Informative Design

From the presented simulation results in Table 4.1 and Figure 4.1, it is evident that all the
estimates of absolute relative bias for the four fixed effects are less than 10% of the true value and
can be considered unbiased if the criterion of Muthén and Muthén (2002) is used across the four
estimators. The absolute relative biases for the three student-level covariates (i.e., female, SES and
pretest) are less than or close to 1%. Although the relative bias for the school-level covariate (i.e.,
rural) is higher than those of student-level covariates, it is still within 10% of the true value.

Table 4.2 and Figure 4.2 show that the intercept and student-level variance are unbiasedly

estimated (in terms of Muthén & Muthén, 2002) except for the intercept estimate in the unweighted
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Table 4.1. RB(%), RMSE, 95% CI CR for Covariates in the Informative Design
Informative
ICC=0.5 ICC=0.3 ICC=0.2 ICC=0.1 ICC=0.01
Covariate Mean RB(%)RMSE CR  Mean RB(%)RMSE CR  Mean RB(%)RMSE CR  Mean RB(%)RMSE CR  Mean RB(%)RMSE CR
female 0910

uw 0.904 -0.714 0.19€ 0944 0903 -0.802 0.234 0944 0903 -0.824 0.250 0943 0903 -0.8153 0.264 0943 0903 -0.725 0.274 0.941
RW 0.906 -0.462 0318 0932 0905 -0.549 0.376 0932 00905 -0.593 0.402 0932 00904 -0.626 0426 0932 0904 -0.626 0.446 0932
Cs 0905 -0.527 0310 0936 0904 -0626 0367 0937 0904 -0.681 0.393 0936 0904 -0.714 0416 0937 0904 -0648 0433 0935
ES 0.905 -0.560 0290 0942 0.904 -0.692 0.344 0940 0.903 -0.747 0.368 0941 0903 -0.813 0.390 0944 0903 -0.780 0.404 0944
SES 1.060

uw 1.055 -0.481 0.125 0954 1054 -0575 0.148 0955 1.054 -0613 0.157 0954 1053 -0.651 0.167 0954 1053 -0651 0.173 0959
RW 1.050 -0.925 021 0939 1048 -1.094 0.244 0939 1.048 -1.160 0.261 0.938 1.047 -1.226 0.277 0938 1.046 -1.283 0.290 0938
C5 1.051 -0.830 0.200 0939 1.050 -0.972 0.237 0939 1.049 -1.038 0.255 0939 1.048 -1.104 0271 0938 1.047 -1.217 0.283 0945
ES 1.051 -0.821 0.188 0938 1050 -0962 0223 0939 1049 -1028 0239 0940 1048 -1.094 0254 0936 1047 -1226 0265 0943
pretest 0.920

uw 0921 0.054 0010 0948 0921 0065 0.010 0948 0921 0.076 0.010 0948 0921 0.076 0.014 0947 0921 0087 0.014 0949
RW 0921 0087 0014 0938 0921 0109 0017 0937 0921 0.109 0.017 0938 0921 0.120 0020 0939 0921 0.130 0.020 0939
CSs 0921 0.087 0.014 0941 0921 0.098 0.017 0.93%8 0921 0.109 0.017 0938 0921 0.120 0.020 0934 0921 0.130 0.020 0934
ES 0921 0087 0014 0941 0921 0098 0.014 0940 0921 0.109 0.017 0939 0921 0.120 0.017 0938 0921 0.141 0.017 0939
rural 1.040

uw 1.040 0.019 1.125 0942 1.039 -0.077 0.903 0.941 1.038 -0.154 0.766 0.943 1.038 -0.221 0.596 0945 1.036 -0.433 0.368 0943
RW 1.140 9577 1.698 0904 1.122 7885 1368 0904 1.111 6.779 1.169 0.908 1.095 528 0929 0910 1.068 21654 0638 0936
Cs 1.141 9731 1697 0902 1124 8077 1365 0909 1113 6990 1163 0913 1097 5481 0915 0908 1067 2558 0593 0932
ES 1.140 9615 1697 0904 1122 7894 1364 0909 1.110 6.731 1.159 0911 1.094 5154 0902 0912 1.062 2125 0571 0937

Note: RB=relative bias; RMSE=root mean square error; CR=95% confidence interval coverage rate; UW=unweighted estimation
method; RW=estimation method with raw weights; CS=estimation method with cluster scaling; ES=estimation method with effective
cluster scaling.
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Table 4.2. RB(%), RMSE, 95% CI CR for Intercept and Variance Components in the Informative Design
Informative
ICC=0.5 ICC=03 ICC=0.2 ICC=0.1 ICC=0.01
Covariates Mean RB(%) RMSE CR  Mean RB(%) RMSE CR  Mean RB(%) RMSE CR  Mean RB(%) RMSE CR  Mean RB(%) RMSE CR
intercept 17430

Uw 23.809 36.599 6415 0.000 23446 34512 6.052 0.000 23.129 32.694 5737 0.000 22.640 29.889 5250 0.000 21.676 24362 4.294 0.000
RW 17.702 1.562 1.105 0910 17.713 1624 1.092 0912 17.710 1.604 1.081 0917 17.694 1.516 1.065 0.925 17.621 1.267 1.037 0.924
Cs 17.708 1.594 1.091 0910 17.723 1679 1073 0916 17.723 1678 1.061 0917 17.713 1623 1.043 0919 17675 1403 1.007 0.925
ES 17.718 1.653 1.071 0904 17.745 1806 1049 0908 17.756 1869 1.035 0914 17.765 1921 1.018 0912 17761 1.900 0982 0.919
vl var 30.000 42.000 48.000 54.000 59.400

Uw 26948 -10.173 3.136 0.016 37.729 -10.169 4.388 0.016 43.122 -10.163 5.012 0.016 48521 -10.146 5.630 0.018 53437 -10.040 6.131 0.025
RW 27911 -6962 2424 0506 39.077 -6.959 3392 0.506 44661 -6.956 3.875 0.506 50248 -6948 4356 0.506 55288 -6.922 4778 0.506
Cs 28346 -5512 21042 0603 39689 -5.503 2855 0602 45365 -5489 3156 0.606 51.055 -5454 3646 0611 56250 -5303 3.936 0.6216
ES 27579 -8.069 1649 0367 38617 -8.054 3702 0368 44143 -8.036 4.223 0371 49687 -7987 4716 0376 54778 -7.780 5.088 0390
2 _var 30.000 18.000 12.000 6.000 0.600

Uw 29735 -0.884 3767 0920 18.189 1.049 2423 0936 12394 3283 1783 0946 6.565 9418 11950943 1.191 B81.750 0717 0.758
RW 31.707 5691 6.065 0.894 21202 17.791 5.051 0.886 15904 32531 4.899 0.713 10539 75.648 4.898 0.164 4563 660.550 4.111 0.001
Cs 30308 1.028 5796 0.865 19252 6957 4020 0902 13682 14015 3289 0909 8.042 34037 2737 0.815 2763 360433 2341 0.170
ES 29924 -0.255 5768 0.854 18.701 3.896 3.837 0.893 13.044 8699 12952 0907 7313 21.877 2.167 0.899 1.940 223.383 1.538 0.564

Note: RB=relative bias; RMSE=root mean square error; CR=95% confidence interval coverage rate; UW=unweighted estimation
method; RW=estimation method with raw weights; CS=estimation method with cluster scaling; ES=estimation method with effective
cluster scaling.
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case. The three weighted estimators perform almost equally well since all the relative biases of the
intercept estimates produced by them are less than 2. The unweighted estimator performs the worst
and produces substantially larger relative bias than the weighted estimators do. As for the student-
level variance, the absolute relative biases are all less than or close to 10%. Among the four
estimators, the unweighted method produces larger absolute relative bias than the weighted
methods do. The cluster scaling method has the smallest values of absolute relative bias. Therefore,
the cluster scaling method works the best and the unweighted method works the worst for the
student-level variance in terms of (absolute) relative bias. As for the estimates of school-level
variance, all four estimators do not perform well and have very large relative biases when the ICC
is extremely small. To be more specific, the relative bias is as large as over 600 with the raw
weighted method. Even for the best estimator, the unweighted one, has the relative bias of over 80,
which is much larger than the standard used in the present study. In general, the raw weighted
estimator performs the worst and the unweighted estimator performs the best for the school-level
variance across all the ICC levels.

In all, the weighted models perform quite similarly with each other and outperform the
unweighted estimator for the intercept and student-level variance while the unweighted model has
smaller relative bias and outperform the weighted estimators for the school-level variance. The
intercept is always overestimated and the student-level variance is underestimated. The school-
level variance, in most cases is overestimated, except with the unweighted method and effective
scaling method when ICC equals 0.5. The student-level variables Female and SES are
underestimated and pretest is overestimated. School-level variable, rural, is overestimated in the

weighted case, while underestimated in the unweighted case.
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4.1.1.1.2 Non-Informative Design

Table 4.3 and Figure 4.3 show that the absolute relative biases of the four covariate
estimates are all smaller than 10% in the non-informative condition. It means that these four
covariates are considered to be estimated unbiasedly in terms of Muthén & Muthén (2002). Also,
the two continuous covariates have smaller absolute relative biases than the two dichotomous
covariates do. At the same time, the unweighted method produces lower or equal absolute relative
bias for the four fixed effects than or as the other three weighted estimators do. So, the unweighted
estimator performs the best for all the fixed effects among the four estimators.

The intercept is precisely estimated since all the absolute relative biases are no more than
0.205 (see Table 4.4 and Figure 4.4). The unweighted method outperforms the other estimators
when the ICC equals 0.01, 0.1, and 0.2, while it performs the worst when the ICC equals 0.5.
Results also show that the student-level variance is estimated unbiasedly since the absolute relative
biases are all less than 5% across all the estimators. Among them, the raw weighted method has
the largest relative bias, indicating it works the worst. The effective scaling and unweighted
method outperform the other two. As for the school-level variance, all the four estimators produce
substantially large relative bias when the ICC is extremely small and all the estimators do not work
well when the ICC is 0.01. Comparatively, the raw weighted method works the worst while the
unweighted method performs the best across different levels of the ICC for the school-level

variance estimates.
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Table 4.3. RB(%), RMSE, 95% CI CR for Covariates in the Non-Informative Design
Noninformative
ICC=05 1CC=03 ICC=02 ICC=0.1 ICC=001
Covariate  Mean RB(%)RMSE CR  Mean RB(%)RMSE CR  Mean RB(%)RMSE CR  Mean RB(®%)RMSE CR  Mean RB(%) RMSE CR
female 0910

Uw 0922 1264 0203 0950 0924 1505 0240 0951 0925 1626 0256 0950 0926 1736 0271 0949 0927 1824 0281 0.950
RW 0924 1484 0278 0948 00926 1758 0329 0949 0927 1879 0352 0949 0928 2011 0373 0949 0930 2176 0.390 0.949
CSs 0922 1297 02750947 0924 13560 0325 0945 0926 1703 0347 0946 0927 1868 0367 0945 0930 2187 0383 0942
ES 0921 1242 0275 0944 0924 1505 0325 0944 0925 1648 0347 0943 0927 1813 0367 0.941 0930 2176 0.382 0941
SES

Uuw 1.054 -0.528 0.136 0951 1053 -06421 0.161 0949 1033 -0.708 0.172 0949 1052 -0774 0.182 0949 1051 -0.840 0.189 0.950
RW 1.049 -1.038 0.188 0.942 1.047 -1.236 0222 0941 1046 -1.330 0.238 0941 1.045 -1.425 0252 0940 1.044 -1.509 0264 0941
CSs 1.047 -1.208 0.187 0943 1044 -1472 0220 0941 1043 -1613 0236 0940 1041 -1.755 0249 0942 1040 -1906 0.259 0.943
ES 1.047 -1.236 0.187 0.941 1.044 -1.519 0221 0941 1.042 -1.660 0.236 0941 1.041 -1.811 0249 0944 1.03% -1972 0.260 0.935
pretest 0.920

Uuw 0920 0.000 0.010 0943 0920 0000 0.010 0.944 05920 0000 0014 0945 0920 0000 0.014 0945 0920 0000 0.014 0949
RW 0.920 0.043 0.014 0923 0921 0054 0.017 0.923 05921 0.054 0017 0923 0921 0054 0.017 0923 0921 0.065 0.020 0.924
CSs 0920 0043 0014 0927 0921 0054 0017 0927 0921 0034 0017 0926 0921 0065 0.017 0926 0921 0065 0017 0.929
ES 0.920 0.043 0.014 0933 0921 0054 0.017 0.932 0921 0.054 0.017 0929 0921 0065 0.017 0931 0921 0.065 0.017 0.937
rural 1.040

Uuw 1.032 -0.760 1.119 0.944 1030 -0962 0902 0945 1029 -1038 0.768 0947 1029 -1077 0603 0947 1031 -0856 0382 0944
RW 0.967 -6.990 1.416 0.936 00982 -5615 1.159 0937 0991 -4.740 1.002 0932 1.003 -3.635 0.811 0934 1.024 -1.587 0.570 0.938
CSs 0966 -7.135 1411 0937 00980 -35788 1.147 0939 00989 -4865 0986 0939 1002 -3654 07850936 1026 -1346 0519 0941
ES 0966 -7.106 1.410 0.936 0980 -5798 1.146 0935 0.989 -4885 0984 0936 1.002 -3.644 0.782 0937 1026 -1.346 0.510 0.939

Note: RB=relative bias; RMSE=root mean square error; CR=95% confidence interval coverage rate; UW=unweighted estimation
method; RW=estimation method with raw weights; CS=estimation method with cluster scaling; ES=estimation method with effective
cluster scaling.
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Table 4.4. RB(%), RMSE, 95% CI CR for Intercept and Variance Components in the Non-Informative Design
Noninformative
ICC=0.5 ICC=03 ICC=0.2 ICC=0.1 ICC=0.01
Covariates Mean RB(%)RMSE CR  Mean RB(%)RMSE CR  Mean RB(%)RMSE CR  Mean RB(%)RMSE CR  Mean RB(%) RMSE CR
mtercept 17430

Uw 17415 -0.085 0.705 0.944 17418 -0.072 0.698 0942 17419 -0.064 0.693 0941 17420 -0.056 0686 0939 17422 -0.046 0668 0944
RW 17424 -0.035 0946 0935 17417 -0.074 0955 0933 17413 -0.096 0958 0929 17409 -0.121 0958 0930 17403 -0.157 05949 0.934
CS 17426 -0.025 0936 0935 17418 -0.069 0942 0934 17413 -0.098 0942 0935 17407 -0.132 0937 0940 17397 -0.189 02916 0.936
ES 17425 -0.028 0935 0933 17417 -0.075 0941 0930 17412 -0.105 0941 0934 17406 -0.139 0936 0937 17394 -0.205 0908 0.938
Il var  30.000 42.000 48.000 54.000 59.400

Uw 29.629 -1.238 0.866 0906 41482 -1.234 1.211 0907 47411 -1.227 1383 0909 53349 -1.206 1.551 0911 58756 -1.084 1676 0918
RW 28485 -5.049 1.813 0.646 39880 -5.047 2.538 0.647 45579 -5.044 2899 0.647 51281 -5.036 3.258 0.647 56430 -5.001 3.567 0.650
Cs 29359 -2.138 1.196 0.867 41.105 -2.131 1.673 0.869 46982 -2.120 1.909 0869 52871 -2.091 2.140 0.870 58247 -1941 2313 0.883
ES 29.681 -1.064 1.067 0921 41555 -1.059 1493 0921 47495 -1.052 1.705 0921 53443 -1.032 1916 0920 58845 -0934 2095 0.920
W2 _var  30.000 18.000 12.000 6.000 0.600

Uw 30.145 0485 3.697 0936 18424 2354 2447 0941 12544 4537 1847 0942 6632 10533 1.275 0932  1.188 97950 0.737 0.779
RW 31.873 6.242 5070 0934 20857 15870 4250 0.891 15304 27534 4063 0.765 9679 61310 4005 0.251 4415 635.883 3914 0.002
Cs 30423 1409 4677 0922 18848 4713 3.173 0932 13.026 8553 2471 0934 7.152 19.192 1832 0914 1.688 181.250 1.258 0.615
ES 20987 -0.142 4645 0909 18223 1241 3.047 0915 12338 2818 2252 0923 6428 7130 1459 0931 1.022 70350 0.703 0.943

Note: RB=relative bias; RMSE=root mean square error; CR=95% confidence interval coverage rate; UW=unweighted estimation
method; RW=estimation method with raw weights; CS=estimation method with cluster scaling; ES=estimation method with effective
cluster scaling.

40



DTV relative bias(%) forfemale ...

5-
Z
@
t [ el iy snlls smn
ED‘
[id
-5-
B [ T
\CCID 01 ICCID1 ICCIDE |ccha ICdDE
factor(ICC)
DTV relative bias(%) forpretest ...
5-
7
@
E
g 0
ED‘
[id
5-
B [ T
\CCID 01 ICCID1 ICCIDE |ccha ICdDE
factor(ICC)

Method
| S
B
B =

uw

Method
| S
B
B =

uw

P p— relative bias(%) forSES. ...
5-
wn
»
L
o [~ NI g . —
5=
B e T T
ICCID 01 \Cc'nw \cc'nz ICCIDB ICCIDE
factor(ICC)
P p— relative bias(%) forrural ...
5-
®
a ]
o * - . .
-5-
B e T T
ICCID 01 \Cc'nw \cc'nz ICCIDB ICCIDE
factor(ICC)

Figure 4.3. Relative bias (%) for covariates in the non-informative design

10— relative bias(%) for intercept ...
5
5
©
©
ED‘
i3
-
B L e e T T T e
ICCﬁ.U1 \CCIEI.W ICCIU.E \CC‘EI.} ICCIU.S
factor{ICC)
relative bias(%) for level 2 variance
600-
5 400-
&
=
CD‘
14
200-

! ] l J l
ICC0.01 ICC01 ICC02 ICC0.3 ICC05
factor(ICC)

Figure 4.4. Relative bias (%) for intercept and variance components in the non-informative

design

Method
B
B
| BT

uw

WMethod
B
B :
| BT

uw

DT relative bias(%) for level 1.variance -

0-

RB_lv1var

=
-
-
-
-

1CC0.01 1CC0.1 ICCo.2 ICC0.3 ICC0.5
factor(ICC)

41

Method
S
B =
N =

uw

Method
S
| =
N =

uw

Method
B
|
B

uw



4.1.1.2 RMSE

An overview of the RSME of the fixed effect point estimators and the intercept and
variance component estimators across informativeness and ICCs is provided in Table 4.1-4.4,
Figure 4.5-4.8. There is not much difference on the RMSE for the fixed effects between
the informative and non-informative condition. However, on average, the RMSE is comparatively
larger under the informative condition than those in the non-informative condition.
4.1.1.2.1 Informative Design

Compared with weighted estimators, the unweighted estimator has smaller RMSE value
for the four covariates under the informative condition (see Table 4.1 and Figure 4.5). The
weighted estimates of the RMSE show almost the same patterns for the four covariates. The
unweighted estimator performs the most efficiently among the four estimators.

As the relative biases of the intercept and variance components, similar results are obtained
for the RMSE. For example, the unweighted method has comparatively much larger RMSE for the
intercept than the weighted estimators do and the three weighted estimators perform very much
similarly to each other (see Table 4.2 and Figure 4.6). The unweighted estimator produces the
largest RMSE for the student-level variance and performs the least efficiently among the four. The
cluster scaling method performs the most efficiently. As for the school-level variance, the
unweighted estimator has the smallest RMSE and performs the most efficiently among the four.
The raw weighted estimator has the least efficiency.

In all, the unweighted estimator performs the worst for the intercept and student-level
variance estimates, but performs the best for school-level variance estimates in terms of RMSE in

the informative design.
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4.1.1.2.2 Non-Informative Design

Table 4.3 and Figure 4.7 show that the unweighted method has the smaller RMSE for the
four covariates than the weighted methods do, and in most cases, there is not much difference
across the weighted methods for the four covariates at different levels of the ICC. Therefore, the
unweighted method performs the best among the four estimators for all the fixed effects.
Apparently, the unweighted method has the smallest RMSE for the intercept and the two variance
components across all the conditions in the non-informative condition (see Table 4.4 and Figure
4.8) and performs the most efficiently among the four estimators across all the levels of the ICC.
And the raw weighted method produces the largest RMSE among the four estimators for the

intercept and the two variance component estimates.
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Figure 4.7. RMSE for covariates in the non-informative design
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Figure 4.8. RMSE for intercept and variance components in the non-informative design

4.1.1.3 Coverage Rate

An overview of coverage of the fixed effects, intercept and variance component estimators
across informativeness and ICCs is provided in Table 4.1-4.4 and Figure 4.9-4.12. All the fixed
effects are estimated without much bias (<10%) in both the informative and non-informative
conditions if the criterion of Muthén & Muthén (2002) is applied. The corresponding coverage
rates for them are good and not much difference can be found among them. For the intercept and
variance components, on average, their coverage rates are much lower under the informative
condition than those under the non-informative condition. Under the informative condition, the
most variability in coverage occurs for the intercept estimators, whereas under the non-informative

condition, the most variability in coverage occurs for the school-level estimators.
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4.1.1.3.1 Informative Design

Because the four covariates are precisely or slightly biasedly estimated, the coverage rates

for them are all above or close to 0.91, especially for the three level-one predictors (see Table 4.1

and Figure 4.9).

Because the unweighted method produces substantially larger biases for the intercept and student-

level variance estimates, this leads to very poor coverage rates for both of them (see Table 4.2 and

Figure 4.10): with the coverage rate of 0 for the intercept and less than 3% for the student-level

variance. The three weighted methods perform almost equally well and have the coverage rates of

around or over 0.91 for the intercept. However, even the best student-level variance estimator, the

cluster scaling estimator, has the coverage rates no more than 0.63. For the school- level variance

estimates, raw weighted method performs the worst while the unweighted estimator performs the

best.
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Figure 4.9. Coverage rate for covariates in the informative design
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Figure 4.10. Coverage rate for intercept and variance components in the informative design
4.1.1.3.2 Non-Informative Design

The coverage rates for the four covariate estimates in the non-informative condition are all
above or close to 0.95. Among the four estimators, the unweighted method performs the best.

The unweighted method has the highest coverage rates for the intercept among the four
estimators as well and they are all above or around 0.94. As for the student-level variance, the
effective scaling method has the highest coverage rates, which are around 0.92 whereas the raw
weighted method has the lowest coverage rates, which are around 0.65. The unweighted estimator
has very similar coverage rate to the effective scaling method. The coverage rates for the school-
level variance with unweighted method are the highest among all the estimators and are all larger

than 0.93 except when the ICC is 0.01, while the raw weighted has the smallest one.
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4.1.2 Research Question Two

Research question two addresses the ICC effect on the different estimation methods in the
informative and non-informative design.
4.1.2.1 (Absolute) Relative Bias
4.1.2.1.1 Informative Design

Table 4.1 and Figure 4.13 show that, as the ICC increases, the absolute relative biases for
the two continuous covariates (e.g., SES and pretest) decrease. For the covariate female, there is
no monotonous pattern for its relative bias. As the ICC increases, it increases first and then starts
to decrease. For the covariate rural, the relative bias increases as the ICC increases in the weighted
case, while the absolute relative bias decreases in the unweighted case. Therefore, for all the fixed
effects, there is no overall consistent pattern.

It is evident (see Figure 4.14) that the absolute relative bias for the intercept estimate with
unweighted method increases as the increase of ICC, but no consistent monotonous pattern can be
found for the relative biases for the intercept estimate with the weighted methods and they do not
vary much across the weighted methods at each different levels of the ICC (see Table 4.2). The
absolute relative biases for the student-level variance estimates decrease as the ICC decreases with
all the four estimators, but the decrease rate is very tiny and hard to find from Figure 4.14. There
is an obvious increase pattern in the relative bias of the school-level variance estimates as the ICC

decreases with the four estimators (see Table 4.2 and Figure 4.14).

49



il i 0,
0.0-
-02-
@
o
_.nEg 0.4~
m\
fid
-0.6-
-0.8-
ICCID 01 ICCID‘W ICdﬂE ICdDE ICdﬂS
factor(ICC)
relative bias(%) for pretest
0.10-
i
@«
B
-
i
0.05-
0.00-
ICC0.01 ICC0A1 ICC02 Icco.3 ICC05
factor(ICC)

Method
M c:
[ =
M =
ouw

Method
M o
[ =
B
T uw

0

=3

w -05-

RB_SE

1.0~

7.5-

ICC0.5

ICC0.3

\CCID 01 ICdﬂ1 ICdDE
factor(ICC)
relative bias(%) for rural ‘
\CCﬁ 01 ICdD1 \CC‘DQ ICdﬂE ICdDS
factor(ICC)

Figure 4.13. Relative bias (%) for covariates in the informative design

relative bias(%) for intercept

1]

0

pt

RB_interce,

-
=)

|

i ' ' '
ICCo.1 ICCo.2 ICC0.3 ICC0.5

ICCID 01
factor{ICC)
relative bias(%) for level 2 variance
600~
& 400-
&
=
mI
i
200-
0- J— -t o = 0 __
ICCEI.U1 ICdUﬂ ICCIEI.Z ICCIU.3 ICCIEI.E
factor(ICC)

Method
B
[ =
B rw
T uw

Method
B
| =]
M rw
T ow

i i 0

0.0-

25~
.
©
z

= 50-
m
x

75~

-10.0-

| . . ! !
1CC0.01 1CC0.1 1CC0.2 1CCO.3 ICCO.5
factor(ICC)

Method
M s
H:
M =
B oow

Method
| =S
H:
H =
o uw

Method
B -
B
| B
T ow

Figure 4.14. Relative bias (%) for intercept and variance components in the informative design

50



4.1.2.1.2 Non-Informative Design

Clear patterns can be found under the non-informative sampling design. Table 4.3 and
Figure 4.15 indicate as the ICC increases, the absolute relative bias decreases for the three student-
level covariates, and increases for rural, the school-level covariate.

Simulation results show that as the increase of the ICC, the absolute relative bias for the
intercept decreases with the three weighted methods whereas it increases with the unweighted
model (see Table 4.4 and Figure 4.16). As for the relative bias of student-level variance, it
decreases as the ICC decreases, but the decrease rate is so small that similar patterns hold for the
estimators across different ICC values. The relative bias for the school-level variance increases as

the decreases of the ICC.
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4.1.2.2 RMSE

4.1.2.2.1 Informative Design

Contrary to the relative bias, there are clear patterns of RMSE for all the fixed effects (see

Table 4.1 and Figure 4.5). As the ICC increases, the RMSE decreases for all the student-level fixed

effects, and increases for the school-level fixed effect with all the estimators.

Table 4.2 and Figure 4.6 show that the RMSE for the intercept is increasing as the ICC

increases. The increase rate is quite obvious with the unweighted method but it is so small with

the three weighted methods that not much variation can be found across different ICC values. As

for the variance components, there are clear patterns for both of them. As the ICC increases, the

RMSE of the student-level variance decreases whereas the RMSE of the school-level variance

increases.
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4.1.2.2.2 Non-Informative Design

The RMSE decreases for the three student-level covariates, and increases for rural, the
school-level covariate as the ICC increases with all the four estimators (see Table 4.3 and Figure
4.7).

Figure 4.8 shows that the RMSE for the intercept remains almost unchanged across
different levels of the ICC with the four estimators, but Table 4.4 shows that the RMSE does
increase as the increase of the ICC consistently. It is clear that as the ICC increases, the RMSE for
the student-level variance decreases whereas the RMSE for the school-level variance increases
with all the estimators.
4.1.2.3 Coverage Rate
4.1.2.3.1 Informative Design

Table 4.1 and Figure 4.9 show as the increase of the ICC, there is not much variation on
the coverage rates for all the fixed effects.

The coverage rate for the intercept and student-level variance remains almost the same as
the ICC increases (see Table 4.2 and Figure 4.10). For the school-level variance, although the
coverage rate changes as the increase of ICC, no consistent pattern can be seen for the estimators
except for with the raw weighted method. Overall, coverage rate is not sensitive to the change of
the ICC in the current case.
4.1.2.3.2 Non-Informative Design

No obvious ICC effect can be found in terms of the coverage rate for all the parameter
estimates except for school-level variance (see Table 4.3-4.4, and Figure 4.11-4.12). The coverage
rates for the fixed effects, intercept, and student-level variance remain almost unchanged as the

increase of the ICC. Although there are some variations of the coverage rates for the school-level
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variance, there is no clear pattern with the four estimators. For example, the coverage rates with
the unweighted model and cluster scaling method increase first and then decreases later as the
increase of the ICC. The coverage rate keeps on increasing with the effective scaling method and
decreasing with the raw weighted method as the decrease of the ICC. In sum, the effect of ICC
cannot be found for the all the parameters in terms of the coverage rate in the non-informative
condition.
4.1.3 Simulated Standard Errors and Standard Deviations

If we tend to repeat the Monte Carlo simulation and tally the sample mean each time, a
normal distribution (based on Central Limit Theorem) would result in the distribution of the
sample mean. To assess how well the standard errors of the estimates approximate the true
sampling variation, the sample standard deviation of each replicate, that is, the Monte Carlo
standard deviation, can be compared to the average of the estimated standard errors. We might
expect the sample standard deviation, an approximation to the true sampling variation, to be “close”
to and the average of standard errors. It means that the standard error is a good estimate of the
standard deviation of the normal distribution if the sample size is sufficiently large. The
differences are calculated between the standard deviations and averaged standard errors of 1000
point estimates for all the seven parameters: four regression coefficients for female, SES, pretest
and rural, intercept, and two random effects (the student-level variance and school-level variance).
Table 4.5 presents the results of standard deviations of simulation and standard errors of estimates
in the informative sampling design. The differences between them for the four fixed effects and
intercept are on the second or even third decimal place. The differences for student-level variance

and school-level variance are a little bit larger, but still they are less than or close to 1. Clearly, the
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unweighted method produces the smallest standard errors and works best compared with the
weighted estimators.

Table 4.6 contains the results of standard deviations of simulation and standard errors of
estimates in the non-informative sampling design. It tells us the same story as in the informative
setting. The differences for all the parameter estimates are even smaller, and the largest absolute
difference is 0.273, indicating the estimation performs quite well. Still, the unweighted method

has the smallest standard errors and performs best compared with the three weighted models.
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Table 4.5. Simulation Standard Deviations and Standard Errors of Estimates in the Informative
Design

ICC0.5 ICCO0.3 ICCo.2 ICCO.1 ICC0.m
Covariates SD SE Diff SD SE Diff SD SE Diff SD SE  Diff SD  SE  Daff
female
W 0.198 0.193 0.005 0.234 0228 0.006 0.250 0.244 0.006 0.264 0.258 0.006 0.274 0.269 0.006
EW 0.318 0300 0.018 0376 0355 0.021 0402 0.380 0.023 0427 0403 0.024 0446 0422 0025
Cs 0.310 0.293 0.017 0.367 0348 0.020 0393 0.372 0.021 0.417 0.395 0.022 0433 0411 0.022
ES 0.290 0.277 0.013 0344 0320 0.015 0.368 0.352 0.016 0.390 0.374 0.017 0404 0389 0.016
SES
W 0.125 0.131 -0.006 0.148 0.155 -0.007 0.158 0.165 -0.008 0.167 0.175 -0.008 0.173 0.182 -0.008
EW 0206 0201 0.005 0244 0238 0.006 0261 0.254 0.007 0277 0270 0.007 0290 0282 0.008
Cs 0.200 0.196 0.004 0.237 0232 0.005 0255 0.249 0.006 0.271 0.264 0.007 0283 0275 0.008
ES 0.188 0.186 0.002 0.223 0220 0.003 0.239 0.235 0.004 0.234 0.250 0.004 0265 0260 0.005
pretest
W 0.009 0.009 0.000 0.011 0011 0.000 0012 0.012 0.000 0.012 0.012 0.000 0.013 0.013 0.000
EW 0.014 0.014 0.000 0.017 0017 0.000 0.018 0.018 0.000 0.019 0.019 0.000 0.020 0.020 0.000
Cs 0.014 0.014 0.000 0.017 0016 0.000 0018 0.018 0.000 0.019 0.019 0.000 0.020 0.019 0.000
ES 0.013 0.013 0.000 0.016 0.016 0.000 0.017 0.017 0.000 0.018 O.018 0.000 0.019 0.018 0.000
rural
UwW 1.125 1.096 0.030 0.903 0.884 0.020 0.767 0.754 0.013 0596 0.592 0.004 0.368 0373 -0.005
EW 1.696 1.485 0.211 1.366 1.207 0.160 1.168 1.040 0.128 0928 0.838 0.089 0.637 0.398 0.040
Cs 1.695 1482 0213 1364 1200 0.163 1.162 1.029 0.132 0913 0.821 0.093 0.393 03537 0.036
ES 1.695 1.481 0213 1362 1.198 0.164 1.158 1.025 0.133 0905 0.813 0.092 0.571 0.240 0.031
Intercept
UwW 0.676 0.682 -0.006 0.666 0.669 -0.004 0.660 0.662 -0.001 0.654 0.652 0.001 0.640 0.637 0.003
EW 1.072 1.009 0063 1.055 1.007 0.048 1.045 1.005 0.039 1032 1.002 0.030 1.014 0.997 0.017
Ccs 1.055 0996 0.059 1.033 0991 0042 1.020 0987 0.033 1005 0981 0024 0978 0968 0.010
ES 1.032 0.972 0.060 1.001 0.957 0.044 0983 0948 0.035 0962 0.937 0.025 0.925 0916 0.008
Ivl_wvar
UwW 0.720 0.712 0.008 1.008 0995 0.011 1.151 1.139 0.013 1.205 1281 0.014 1425 1400 0.015
EW 1.230 1.159 0071 1.722 1.623 0.099 1968 1.855 0.113 2213 2087 0.127 2.434 2205 0.139
Cs 1.198 1.137 0.061 1.676 1.592 0.084 1.915 1.819 0.096 2.151 2.046 0.105 2.361 2.251 0.110
ES 1076 1.044 0032 1505 1462 0.043 1.720 1.671 0.049 1934 1880 0054 2.128 2072 0.057
Iv2_var
UwW 3739 3356 0.203 2417 2314 0.103 1.740 1.683 0.057 1.054 1.036 0.017 0407 0406 0.001
EW 5.823 4738 1.085 3.908 3225 0.682 2962 2.474 0488 2.033 1.730 0.303 1.220 1.081 0.138
Cs 5791 4703 1.088 3.822 3.149 0.673 2.828 2.363 0466 1.823 1.364 0.260 0.896 0.823 0.073
ES 5770 4687 1.083 3.774 3.112 0.661 2.763 2310 0452 1.725 1 487 0238 0.756 0.709 0.047

Note: UW=unweighted estimation method; RW=estimation method with raw weights;
CS=estimation method with cluster scaling; ES=estimation method with effective cluster scaling;
SD=standard deviation; SE=standard error; Diff=difference.
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Table 4.6. Simulation Standard Deviations and Standard Errors of Estimates in the Non-
Informative Design

ICCO0.5 ICC03 ICCO0.2 ICCO0.1 ICC0.01
Covariates SD SE Inff SD SE Inff SD SE IDnff SD SE  Diff SD SE  Daff
female
uw 0.203 0.203 0.001 0.240 0.239 0.001 0.256 0.256 0.001 0.271 0.270 0.000 0.281 0.281 -0.001
EW 0.278 0.272 0.006 0320 0322 0.007 0.352 0.344 0.008 0.373 0.364 0.008 0.300 0.381 0.009
Cs 0.275 0.270 0.006 0.325 0318 0.007 0.347 0.340 0.007 0.367 0.360 0.008 0.383 0.375 0.008
ES 0.275 0.269 0.006 0.325 0318 0.007 0.347 0.340 0.007 0.367 0.360 0.007 0.382 0.374 0.007
SES
uw 0.136 0.136 0.000 0.161 0.161 0.000 0.172 0.172 0.000 0.182 0.182 0.000 0.189 0.189 0.000
EW 0.188 0.181 0.007 0.222 0.214 0.008 0.238 0.229 0.009 0.252 0.243 0.009 0.263 0.254 0.010
Cs 0.186 0.180 0.007 0.220 0.212 0.008 0.235 0.227 0.008 0.249 0.240 0.009 0.259 0.250 0.009
ES 0.186 0.180 0.007 0.220 0.212 0.008 0.235 0.227 0.009 0.249 0.240 0.009 0.259 0.250 0.009
pretest
uw 0.010 0.010 0.000 0.012 0011 0.000 0.012 0.012 0.000 0.013 0.013 0.000 0.014 0.013 0.000
EW 0.014 0.013 0.001 0.016 0.015 0.001 0.017 0.016 0.001 0.018 0.017 0.001 0.019 0.018 0.001
Cs 0.014 0.013 0.001 0.016 0.015 0.001 0.017 0.016 0.001 0.01% 0.017 0.001 0.019 0.018 0.001
ES 0.014 0.013 0.001 0.016 0.015 0.001 0.017 0.016 0.001 0.01% 0.017 0.001 0.019 0.018 0.001
rural
uw 1.119 1.109 0.011 0.902 0.896 0.006 0.769 0.766 0.003 0.603 0.604 -0.001 0382 0.384 -0.002
W 1.415 1.351 0.064 1.158 1.100 0.058 1.002 0948 0.053 0811 0.764 0.047 0.570 0.535 0.035
Cs 1.409 1.350 0.060 1.147 1.096 0.051 0.985 0.941 0.044 0.785 0.749 0.036 0.519 0.018 0.5301
ES 1.409 1.350 0.060 1.145 1.005 0.050 0.983 0940 0.043 0.781 0.746 0.035 0.510 0.486 0.025
Intercept
uw 0.705 0.699 0.006 0.699 0.691 0.008 0.694 0.686 0.008 0.686 0.678 0.008 0.668 0.664 0.004
EW 0.946 0.896 0.050 0.956 0.899 0.057 0.958 0.900 0.058 0.958 0.900 0.058 0.949 0.896 0.053
Cs 0.937 0.891 0.045 0.942 0.892 0.051 0.942 0.891 0.052 0.937 0.887 0.050 0.916 0.876 0.039
ES 0.936 0.892 0.044 0.942 0892 0.050 0.942 0.891 0.051 0.936 0.887 0.049 0907 0.875 0.032
vl var
uw 0.783 0.772 0.011 1.095 1.081 0.015 1.252 1.235 0.017 1.408 1.389 0.019 1.548 1.528 0.020
EW 0.007 0.001 0.006 1396 1388 0.008 1.595 1.580 0.009 1.795 1.785 0.011 1.976 1.964 0.012
Cs 1.010 1.008 0.002 1.414 1.411 0.003 1.616 1.613 0.003 1.819 1.815 0.004 2006 1.990 0.007
ES 1.019 1.018 0.001 1.426 1.426 0.001 1.630 1.629 0.001 1.834 1.833 0001 2.021 2.016 0.006
Iv2_wvar
W 3.696 3.626 0.070 2.412 2.366 0.046 1.766 1.726 0.040 1.107 1.071 0.037 0.445 0430 0.015
EW 4714 4441 0273 3148 2974 0.174 2,366 2.242 0.124 1.585 1.511 0.073 0.875 0.859 0.016
Cs 4.660 4413 0247 3.059 2.912 0.147 2.249 2,148 0.101 1.426 1.365 0.061 0.633 0.615 0.018
ES 4.648 4.408 0.240 3.040 2.898 0.142 2.227 2.128 0.100 1.396 1.335 0.061 0.563 0.5356 0.007

Note: UW=unweighted estimation method; RW=estimation method with raw weights;
CS=estimation method with cluster scaling; ES=estimation method with effective cluster scaling;
SD=standard deviation; SE=standard error; Diff=difference.
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4.2 Results for ECLS-K:2011

First, the informativeness of the weights is examined following Laukaityte and Wiberg

f

(2018). The student-level effective sample sizes nje Tare all smaller than the actual sample sizes

except those schools which have only one student. The school-level effective sample size N¢/7 is
614, which is smaller than the actual number of schools. Therefore, both level weights are
informative and both level weights would affect the results of the multilevel analysis.

Three two-level HLM models with different sets of covariates are used to fit two dependent
variables: reading achievement scores and mathematics achievement scores. The first model is a
null model, the second is the model with student-level predictors (I label it as student model), and
the third model is a full model with student-level and school-level predictors included. Table 4.7
presents the results of the unweighted and weighted null models. Even this simple model shows
there are important differences in the estimates of the variance components. Having no weights
produces the largest estimates of student-level variance, whereas using raw weights produces the
largest estimates of school-level variance. The estimates of intercept are found to be in the same
direction and have similar sizes to each other across the four estimators in reading and mathematics.
Still, the weighted intercept estimates are consistently larger than unweighted estimate. Overall,
the unweighted method has the smallest standard errors and largest test statistics consistently
among the four estimators. In addition, the two scaling methods perform more similarly with much
more similar results of point estimates, standard errors, and consequently the test statistics.

The ICC (see Table 4.7) shows 19.6% and 16.2% of the total variance in mathematics and
reading achievement are attributable to schools. Based on Equation 2.15, the design effects are
13.61 and 13.65 for mathematics and reading respectively. They are greater than 2, indicating that

using multilevel model to analyzed data here is reasonable.

58



Table 4.7. Null Model for ECLS-K: 2011 Mathematics and Reading

math reading
parameter UW EW CS ES Uw RW CSs ES
Intercept 45.100%%35 616***45 T12*%245 T3E*** 61 1275591 296%%% ] 410%*%5] 427%=*
SE 0.190 0.268 0.251 0.252 0.205 0316 0.273 0.273

Statistic  237.616 170419 182311 181.764 297933 170419 182311 224707

G2 119.447*= 10.235%= 15 811**[16.203%* Y50 821%** 35.376%* 44 198%=45.070 ===
SE 1615 2171 1.896 1.917 2.407 2998 2719 2.746
Statistic ~ 73.956 50.787 61.073 60.619 62.659 50787 61.073 52833
&3 29.049%=%50 512**430 189%*920 257%** 33 370%**51 268**534 361 ***33 08T=**
SE 1.544 1368 2.033 2.033 1.937 3.663 1593 2.609

Statistic  18.814 16.724 14852 14393 17.224 16724 14852 12.680

ICC 0.196 0.264 0207 0201 0.162 0275 0192  0.186

Note: UW=unweighted estimation method; RW=estimation method with raw
weights; CS=estimation method with cluster scaling; ES=estimation method with
effective cluster scaling; SE=standard error.

*p <.05; **p < .01; ***p < .001.

The results of the model with student-level predictors are depicted in Table 4.8. Contrary
to the null model, the intercept estimates in the weighted models are smaller than those in the
unweighted model. As in the null model, the unweighted model produces the largest estimate of
student-level variance and the raw weighted model produces the largest estimate of school-level
variance. Furthermore, the indices of goodness of fit AIC, BIC, and deviance are substantially
larger when raw weighted estimation method is applied. Compared with the null model, the
standard errors for the intercept increase, while the standard errors for student-level and school-
level variance decrease. The within-school variance decreases by 67% for both mathematics and
reading, the between-school variance decrease varies from by 68% to 72% for mathematics, and
from by 61% to 64% for reading. Similar results are obtained when both student-level and school-
level weights are used in the model. The standard errors of all the parameters with the unweighted

method are consistently smaller than those of weighted methods, and the test statistics of the
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unweighted estimator consistently larger than those of the weighted estimators, as expected. The

significance is stable for all the parameters as well.

Table 4.8. Model with Student-Level Predictors for ECLS-K: 2011 Mathematics and Reading

Mathematics Reading
parameter UW RW CS ES Uuw RW CS ES

Intercept 18.211%*%* 17.635%=%% [B.035%**18.038%** 17.650%%* 16.806%** 16.834 ***]6.817%=*
SE 0.257 0.366 0.315 0317 0.366 0.485 0.450 0.454
Statistic 70.736 48.214 57.217 56.881 48.162 34.677 37.390 37.057

female 0.094 0.092 0.046 0.040 0.901=** 1.001%** (O981%%* (OQ79%%=*

SE 0.110 0.163 0.133 0.134 0.128 0.194 0.144 0.144
Statistic 0.856 0.566 0.344 0.299 7.058 5.159 6.837 6.797
SES 0.876%== 1.178%*= (.990%== (.989=== 1.072%=** 1300**= 0(986%"* (0.9§5===
SE 0.088 0.138 0.104 0.104 0.104 0.180 0.126 0.127
Statistic 9924 8554 9.520 9487 10.297 7208 7.837 7775
pretest  0.853%%% () 8a0*=* (860=** (. ge0=** (922%%* (032%=%% (933%%* (034%==
SE 0.006 0.009 0.008 0.008 0.007 0.009 0.008 0.009

Statistic 132.816 93282 113.064 112305 131.044 101.76 109992 109.004

G2 39.459%%* 35 760%** 3E430%%23F 503%** 40 660%** 44 265%** 47 230%#X{T 250 ===
SE 0.577 0.816 0.664 0.669 0.985 1.242 0.968 0.976
Statistic 68.373 43827 57913 57554 50.405 35.654 48789 48427
&3 8. 132%=%= 12 827*%* Q. HI1*** g505%e [2 (3% 10.701%%* 12760 ***]2 T12¥==
SE 0.587 0921 0.759 0.762 0912 1.812 1.182 1.185

Statistic ~ 13.843 13.926 11373 11281 13.202 10919 10795 10733
deviance 89979 1630283364 E9670.5 E8OT701.1  933596.1 1689130119 9297182 09209934
AlIC 89091 1630283376 E96825 E8OT713.1  93608.1 1689150131 92984 82 930054
BIC 90036.1 1630285480 89727.6 897582 936532 1689150236 93029.96 930505
Note: UW=unweighted estimation method; RW=estimation method with raw weights;
CS=estimation method with cluster scaling; ES=estimation method with effective cluster
scaling; SE=standard error.

AIC: Akaike Information Criteria; BIC=Bayesian Information Criteria.

*p <.05; **p < .01; ***p < .001.

Table 4.9 reports the results of the full model. The covariate suburban is found not to
contribute significantly to the model for both reading and mathematics data. Another model

excluding suburban is also run. These two models are then compared using likelihood ratio test:
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Table 4.9. Full Model for ECLS-K: 2011 Mathematics and Reading

Mathematics Reading
parameter UW W C5 ES Uw W CS ES

Intercept 18.042%%* 17 42%%% [7 773%%2]7 775%%% 17427 **% 16.565%%% 16.571*%*]6.554%==*
SE 0.267 0.365 0328 0.330 0.377 0.502 0471 0475
Statistic ~ 67.620 47673 54260 53.930 46.188 33.026 35196 34.876

female 0.114 0.077 0.053 0.048 0.909%== ([ 034%== ([ Og0*=* (. 07g%==
SE 0.111 0.161 0.133 0.134 0.129 0.166 0.143 0.144
Statistic 1.026 0.475 0.401 0.358 7.052 5.635 6.835 6.796
SES 0.864%%* 1.181%**% (0.994%== 0.993%*= 1.056%** 1203*%* (968*** (0967 ***
SE 0.089 0.137 0.105 0.105 0.105 0.151 0.124 0.125
Statistic 9.736 g.604 9457 9428 10.055 7.957 7.789 7.730
pretest 0.853%=* (. 866%** (. §59%%= () §59==* (022%=%= (031%==% (033%== (033%==
SE 0.007 0.009 0.008 0.008 0.007 0.009 0.009 0.009
Statistic ~ 131.011 97.867 113103 112373 129325 102.808 107.969 106.949
rural 0.762%% 1201%*% (. O8E** (OF8¥* 1043%%% 1 265%*% 1.152%% [ 153%%

SE 0.271 0.368 0.346 0.346 0.304 0.432 0.385 0385
Statistic 2817 3.264 2.854 2.853 3434 2924 2.994 2992
G& 30.457%*® 36 118%%* 3B.628%**38.605%%% 40657%%* 44 011 *%*% 47 333%%347 371%%*
SE 0.579 0.779 0.662 0.667 0.996 0.982 0.961 0.969
Statistic 68.093 46.386 58354 5B.017 40880 44 824 49271 48895
&3 g.082%== 12 820%== E700%** §eo64*** 11.963%%* 10E871**= 12 B03***]11765%%*
SE 0.590 0.908 0.765 0.769 0.924 1.833 1.194 1.198

Statistic 13.696 14118 11367 11274 12,943 10.839 10.722  10.659
deviance 883346 1532438229 EB104.4 8E135& 918917 1584270571 91316.2 9133712
AlC BB348 6 1532438243 BR1184 RBEI1498 19057 1584270585 913302 913511
BIC 8B401.1 1532438364 EB1709 BE2023 Q19583 1584270706 913828 914037
Note: UW=unweighted estimation method; RW=estimation method with raw weights;
CS=estimation method with cluster scaling; ES=estimation method with effective cluster
scaling; SE=standard error.
AIC: Akaike Information Criteria; BIC=Bayesian Information Criteria.
*p <.05; **p < .01; ***p < .001.

one with suburban and one without. No significant result is found. Therefore, | simplify the model
and include the three student-level predictors and only one school-level predictor rural in the model
as full model in this study. The findings from comparison of weighted and unweighted analyses
are similar to the those obtained from the model with only student level predictors. The estimates,
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standard errors, and consequently the test statistics do not show much differences between the full
model and student model. However, one can see that the significance remains unchanged for all
the parameters except for school-level covariate rural. It changes, from being significant at 0.01
with raw weighted model to being significant at 0.001 with the other three models for mathematics
data. For reading data, the estimate for rural is significant at 0.001 with unweighted model, but it
changes to be significant at 0.01 with other three weighted models.

In general, for both reading and mathematics data in ECLS-K:2011, using weighted
approaches produce larger standard errors and smaller test statistics than unweighted model. Hah-
Vaughn (2005) pointed out that “the larger standard errors and resulting smaller test statistic values
generated suggest that, given a different model, the chance of committing Type I error will increase
substantially when weights are used, although rejection of the hypotheses remain the same across
all the models”. Among the weighted approaches, the raw weighted method produces larger
standard errors than the other two weighted methods do. The two scaling methods perform quite

similarly for all the parameters in all models.
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CHATPER 5 SUMMARY AND DISCUSSION

This chapter provides a summary, a discussion and limitations of the results. It consists of
four sections. The first section summarizes the research objectives, and results. The second section
presents the discussion of major findings, followed by the implications. Limitations of this study

and directions for future research are discussed in the final section.

5.1 Summary of This Study

The primary aim for this study is to examine the performance of the four estimators and
analyze the impact of sampling weights in multilevel models in the context of two-stage
informative and non-informative sampling designs. Large-scale data in social science usually
adopt complex sampling designs, such as clustering and unequal probability of selection, which
bring challenges in statistical analysis. Using multilevel models to analyze complex large-scale
assessment data accounting for clustering is becoming more and more popular, but it is still a
question in when and how to use sampling weights in such models, to correct for unequal
probability of selection. For example, there is controversy whether to use weight or not. It has long
history arguing this issue between model-based and design-based schools. Even if we have
determined to use weights, for instance, in a two-level model, using single-level weight derived
from the product of the weights from each level, or using multilevel weights is debatable. | use
multilevel weights in this study because single-level weight may not carry adequate information
to correct for unequal probability of selection. The analysis with real data shows that incorporating
sampling weights in the model does produce different parameter estimates, standard errors, test

statistics and even sometimes the significance of a certain variable from those obtained when both
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levels are informative. Weighted models have larger standard errors and smaller test statistics than
unweighted model does. And the cluster scaling and effective scaling method produce more similar
results compared with the unweighted and raw weighted model. Therefore, caution should be
exercised while weights are applied in the multilevel analysis.

In this study, Monte Carlo simulations are conducted to evaluate the performance of the
four estimation methods in the informative and non-informative sampling design in a linear
random-intercept model, because prior studies (e.g., Cai, 2013) found that the estimates were
biased if the informativeness was ignored. Summary of the comparisons of the estimators are
depicted in Table 5.1. Substantial differences are found among these four estimation methods
while estimating the intercept and variance components. In the informative design, in terms of bias,
the weighted estimators outperform the unweighted for the intercept and student-level variance
estimation, whereas the unweighted estimator works the best for school-level variance estimation.
Although the three weighted estimators produce almost unbiased estimates for the intercept and
student-level variance, they perform quite differently. The three weighted perform almost equally
well for intercept estimation, while the cluster scaling estimator performs the best for student-level
variance estimation. Raw weighted method works the worst and should be used with caution when
estimating school-level variance. The weighted methods give better coverage rates for the intercept
and student-level variance, but unweighted method does for school-level variance in the
informative design. In the non-informative setting, the unweighted method gives the better
coverage rate for all the parameter estimates. The unweighted estimator performs the best or the
second best in terms of relative bias in the non-informative condition. Furthermore, including

sampling weights decreases the RMSE for the intercept and student-level variance and increase
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Table 5.1. Summary of Comparisons of the Estimation Methods

Criterion  Estimate Informativeness Noninformativeness
(absolute) covariates They are all nearly unbiasedly estimated. They are all nearly unbiasedly estimated.
EB
intercept The three weighted estimators performs equally well and The unweighted estimator performs the best in most cases
better than the unweighted. and the effective scaling estimator the worst in most cases.
level-1 variance The cluster scaling estimator performs the best and the The effective scaling and the unweighted estimator perform
unweighted estimator the worst. the best and the raw weighted the worst.
level-2 variance The unweighted estimator worls the best and the raw The effective scaling and the unweighted estimator perform
weighted estimator the worst. the best and the raw weighted the worst.
EMSE covariates The unweighted performs the most efficiently the weighted. The unweighted estimator performs the most efficiently.
intercept The three weighted estimators performs equally well and The unweighted estimator performs the most efficiently.
more efficiently than the unweighted.
level-1 variance The cluster scaling estimator performs the most efficiently The unweighted estimator performs the most efficiently.
and the unweighted estimator the least.
lewel-2 variance The unweighted estimator performs the most efficiently and The unweighted estimator petforms the most efficiently.
the raw weighted estimator the least.
05%CR  covariates Most of the coverage rates are over (.94, Most of the coverage rates are over (.94,
intercept Thre weighted estiamtors have almost equal coverage rates The four estimators have similar coverage rates and they are

level-1 variance

level-2 variance

(>0.91) and the unweighted has the coverage rate of 0.
The cluster scaling estimator has the highest coverage rate

and the unweighted has the smallest coverage rate.
The unweighted estimator has the highest coverage rate and

the raw weighted has the smallest in most cases.

all over 0.93.
The effective scaling and the unweighted estimator have the

highest coverage rates and the raw weighted the smallest.
The unweighted estimator has higher coverage rates in most

cases and the raw weighted has the smallest in most cases.

Note: RB=relative bias; RMSE=root mean square error; 95%CR=95% confidence interval coverage rate.
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the RMSE for the school-level variance in the informative design. However, it increases the RMSE
for the intercept, student-level variance and school-level variance in the non-informative design.
Therefore, the unweighted method works the most efficiently for all the parameter estimates across
different levels of the ICC in the non-informative design. Tentatively, the cluster scaling estimator
and effective scaling estimator might be preferred in the informative condition.

ICC is one of the factors that influences the quality of estimation (e.g., Asparouhov &
Muthén, 2006; Kovacevi¢ & Rai, 2003). Therefore, it is manipulated in this study. Simulation
results are summarized in Table 5.2 and it shows, the effect of the ICC is related to relative bias
and RMSE, but not sensitive to coverage rate. As the ICC increases, the bias for student-level
variance increases and the bias for school-level variance decreases in both conditions. These
changes are quite obvious for school-level variance, but hard to see for student-level variance. No
monotonic patterns for the relative bias can be found as the ICC increases for fixed effects and
intercept in the informative condition, but clear patterns can be seen for fixed effects and intercepts
as the increase of the ICC.

RMSE shows the similar patterns in both conditions for all the parameters. As the ICC
increases, the RMSE decreases for the three student-level fixed effects and variance, and increases
for the school-level fixed effect and variance with all the four estimators.

Take the following scenario when ICC = 0.3 for example. In the informative condition,
when ICC = 0.3, the simulation results show that the cluster scaling estimator works best for the
intercept and student-level variance in terms of relative bias, RMSE and coverage rate. Although
it is not the best estimator for the school-level variance estimates among the weighted estimators,
it gives the best coverage rate and just slightly higher RMSE compared with the best weighted

estimator, the effective scaling estimator. In addition, it produces unbiased estimates for the
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Table 5.2. ICC Effect

Criterion  Estimate Informativeness Noninformativeness

(absolute) covariates No consistent pattern found. As the ICC increases, the absolute relative bias for the

EE three level-1 covariates decreases, whereas the relative

bias for level-2 covariate increases except with
unweighted estimator.
intercept as the ICC increases, the unweighted estimates increases,  As the ICC increases, the weighted estimates decreases
whereas the weighted estimates remain almost the same. while the unweighted estimates increases.
level-1 variance The increasing rate is so tiny that almost same patterns are  The increasing rate is so tiny that almost same patterns are
found for all the estiamtors. found for all the estiamtors.
level-2 vaniance As the ICC increases, the relative bias decreases. As the ICC increases, the relative bias decreases.

BMSE covariates As the ICC increases, the EMSE for the level-1 As the ICC increases, the BMSE for the level-1
covariates decreases and for the level-2 covariate covatiates decreases and for the level-2 covariate
increases. increases.

intercept As the ICC increases, the unweighted estimates increases  As the ICC increases, the EMSE for the intercept remains
as well, while the weighted estimates remain almost the dlmost the same.
same.

level-1 variance As the ICC increases, the EMSE for level-1 variance As the ICC increases, the BMSE for the level-1 variance
decreases. decreases.

level-2 variance As the ICC increases, the EMSE for level-2 variance As the ICC increases, the RMSE for the level-2 variance
increases as well. increases as well.

95%CR  covariates No obvious monotonic increasing or decreasing pattern No obvious monotonic increasing or decreasing pattern

ntercept No obvious monotonic increasing or decreasing pattern No obvious monotonic increasing or decreasing pattern

level-1 variance
level-2 variance

No obvious monotonic increasing or decreasing pattern
No obvious monotonic increasing or decreasing pattern

No obvious monotonic increasing or decreasing pattern
No obvious monotonic increasing or decreasing pattern

Note: RB=relative bias; RMSE=root mean square error; 95%CR=95% confidence interval coverage rate.
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school-level variance. Therefore, in the informative setting, cluster scaling estimator is preferred
in most cases. In the non-informative condition, when ICC is 0.3, the unweighted estimator has
the least (absolute) relative bias, RMSE and highest coverage rate in almost all the cases. Therefore,

the unweighted estimator is preferred in the non-informative condition.

5.2 Discussion of Results

The design of current simulation captures the general features of large-scale data sets
available in social studies, for example, large number of clusters with different sizes, unequal
probability of selection, and moderate informativeness values. Some of the findings from the
previous studies are confirmed, and some are not in this study. For example, prior studies showed
that the unweighted method produces biased estimate for the intercept and school-level variance
when the sampling design is informative at both levels (Cai, 2013; Pfeffermann et al., 1998).
Pfeffermann et al. (1998) pointed out that when the design is informative at the cluster level, the
unweighted method only produces biased estimates for intercept and school-level variance, not for
student-level variance. However, the current study shows that the unweighted method works quite
well most of the time for school-level variance estimation, and it only does not work well when
the ICC is extremely small in the informative design. None of the estimators works well when the
ICC is extremely small. This is expected because, based on the equation 3.15, we have a very small
denominator, 0.6, which results in a very large relative bias compared with relative bias when ICC
is comparatively larger. As for student-level variance, although the unweighted estimator works
the worst in the informative condition, it produces unbiased estimates. In addition, Cai (2013)
pointed out that including the sampling weights substantially increases the MSE. This is only

confirmed in the non-informative setting, but not in the informative setting in the current study.
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All the fixed effects are nearly unbiased estimated in terms of Muthén & Muthén (2002). This is
confirmed in both studies. In general, including sampling weights still produces biased estimates.
This is confirmed by all the studies. Asparouhov and Muthén (2007) reported that the MPML
estimator outperforms substantially the other estimators. This is partially confirmed in the present
study, since cluster scaling estimator performs better than others in the informative condition,
while raw weighted estimator needs to be used with caution, especially when we estimate variance
components in the informative condition.

Previous studies (e.g., Asparouhov & Muthén, 2006; Kovacevi¢ & Rai, 2003) found that
the bias increases for all the parameters as the ICC decreases. This is only partially confirmed in
the current study. Current results do not show monotonic patterns of the relative bias for the fixed
effects and intercept, but bias increases for student-level variance and decreases for school-level
variance as the ICC increases in the informative condition. In the non-informative condition, the
increase of the ICC decreases the bias for student-level fixed effects and variance, and increase the
bias for school-level fixed effect and variance. Therefore, the tentative conclusion is that weighted
estimators with cluster scaling and effective scaling weights are preferred when the ICC is not
extremely small in the informative design and unweighted method could be used in the non-
informative design.

The differences above might be due to the different settings of simulation. For example,
either the estimators are examined using random-intercept model with no covariates at both levels
(cf., Asparouhov & Muthén, 2006; Kovacevic & Rai, 2003) or the linear random-intercept model
is used with no school-level predictors (cf., Cai, 2013). Therefore, it is possible that our results

might not be replicated in different settings.
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5.3 Implications

The major finding from this study confirms that including sampling weights in the analysis
produce different estimates in the informative sampling design and the unweighted method works
best in the non-informative sampling design. The fair comparison between the weighted and
unweighted, and between the informative and non-informative design might indicate to use
sampling weights in the informative design and use unweighted estimation method in the non-
informative sampling design. Calculation of informativeness is necessary since it gives us the
extent to which the design is informative and indicate whether it is necessary to include sampling
weights. Second, researchers should examine the ICC and evaluate the magnitude and significance
of variance components to determine whether multilevel modeling is necessary. Lastly but not the

least, caution should be taken in using sampling weights when ICC is extremely small.

5.4 Limitations and Future Studies

There are several limitations in this study. The primary limitation is that only a simple
linear random-intercept model is applied. It is more real if the slopes are random and different
types of outcome variables, such as Poisson or nominal, may be used. This may provide us with a
clearer picture which estimator works best. Second, besides scaling the sampling weights,
trimming weights can be an alternative, which is not considered in this study. Third, I just roughly
divide the situation into two: informative or non-informative. It might be better idea if different
levels of informativeness, for example, low, medium and high levels of informativeness are all
included in the analysis. This might tell us under which condition of informativeness, the
parameter estimates can be estimated unbiasedly. Fourth, multistage sample selection is more

complicated in real life. Therefore, the simulation design may not well reflect the reality.
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Not all the findings in the prior studies are confirmed in this study. Therefore, more studies
are needed to evaluate MPML performance in different settings. For example, different types of
outcome variable, such as discrete response or count data can be used. There are more and more
research focusing on them (Chaudhuri, Handcock, & Rendall, 2008; Natarajan, Lipsitz,
Fitzmaurice, Moore, & Gonin, 2008; Nordberg, 1989; Rodriguez & Goldman, 1995, 2001), or
higher level HLM models (e.g., three-level model) can be used. Furthermore, as is true with any
simulation, conclusions from this study are restricted to a particular sampling design and modeling
context. In order to see if comparable findings happen in alternative situations, future research is
necessary. In this study, the simulation is conducted on the basis of a large of number of clusters.
Small samples are possible in practice. The performance of estimators might suffer from the small
number of clusters (Asparouhov & Muthén, 2005; Li & Redden, 2015; Mass & Hox, 2005).
Research to examine the performance of different estimation methods in unideal conditions is
necessary. Above all, future research is needed to enhance weighted multilevel models.
Asparouhov & Muthén (2010) stated that Bayesian estimation method could be an alternative with
maximum likelihood estimation methods when sample sizes are small if we have informative

priors, but few comparisons were made in the context of informative sampling designs.
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APPENDIX A. Stata Simulation Syntax in the Informative Sampling Design

/***************************************************************************/

set more off
local info 30 18 12 6 0.6 /*level 2 variance*/
forvalues i = 1/1000 {/*to repeat the process 1000 times*/
display "iteration "i"
foreach j in “info' {
clear
display "l2var “j™
*generate school level data
quietly: set seed 1'i'1
quietly: set obs 75000
quietly: gen uj = rnormal(0, sqrt('j")) /*need sd here, so need to square root j*/
*uj recaled
quietly: egen ujmean = mean(uj)
quietly: egen ujsd = sd(uj)
quietly: gen uj_scaled = ((uj-ujmean)/ujsd)*sqrt(2)
quietly: gen pj = 1/(1+exp(4.12-uj_scaled/2))
quietly: gen wj = 1/pj
quietly: gsample 150 [aw=pj] /*draws a unequal probability sample with sampling
probabilities pj.*/
quietly: genindex =1
quietly: gen school = _n

*school covariates

quietly: gen rand = runiform()

quietly: gen locale = cond(rand < 0.22, 1, cond(rand < 0.58, 2, 3))

quietly: gen rural = locale==1

quietly: gen suburb = locale==2

quietly: gen urban = locale==

*expand students based on percentages of different types of schools

quietly: expand 16+int((24-10+1)*runiform()) if school<=8 /*5.69% of 150
schools: 8*/

quietly: expand 25+int((49-25+1)*runiform()) if school>=9 &school<=25 /*11.49%

of 150 schools: 17*/

quietly: expand 50+int((99-50+1)*runiform()) if school>=26 & school<=91
1*43.53% of 150 schools:66*/

quietly: expand 100+int((149-100+1)*runiform()) if school>=92 & school<=129
1*25.48% of 150 schools:38*/

quietly: expand 150+int((199-150+1)*runiform()) if school>=130 & school<=142
/*8.59% of 150 schools:13*/
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quietly: expand 200+int((600-200+1)*runiform()) if school>=143 & school<=150
1*5.22% of 150 schools:8*/

quietly: bysort school: generate student = _n

*generate student data

quietly: gen eij = rnormal(0, sqrt(60-j"))

*eij recaled

quietly: egen eijmean = mean(eij)

quietly: egen eijsd = sd(eij)

quietly: gen eij_scaled = ((eij-eijmean)/eijsd)*sqrt(2)

quietly: gen pi_j = 1/(1+exp(1.23-eij_scaled/2))

quietly: genwi_j = 1/pi_j

quietly: gen pij = pi_j*pj

quietly: gen wij = 1/pij

*generate correlated data for female, SES and pretest

quietly: local p =0.49

quietly: matrix m = (0, -0.05, 46.92)

quietly: matrix sd = (0.5, 0.81, 11.50)

quietly: matrix input ¢ = (1, 0.005, 1, 0.07, 0.409, 1)

quietly: corr2data female SES pretest, corr(c) means(m) sds(sd) cstorage(lower)

[* Steps 2-3 for the one Bernoulli variable */

quietly: replace female = cond(normal(female)>=(1-"p"),1,0)

/*merge two level data*/

quietly: gen yij = 17.43+0.91*female+1.06*SES + 0.92*pretest+1.04*rural+uj+eij

quietly: rename yij achieve

quietly: rename wj schwgt

quietly: rename wi_j stdwgt

*select final sample

quietly: keep if index ==

quietly: gsample 3915 [aw=pi_j]

if j'==301localr=1

if j'==18local r=2

if j’==121local r=3

if j'==61localr=4

if j'==0.61localr=5

quietly: keep student schwgt school locale rural suburb urban stdwgt female SES
pretest achieve

gen iteration = i’

****************************************************************************/
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APPENDIX B. Stata Simulation Syntax in the Non-Informative Sampling Design

/********************************

set more off
local info 30 18 12 6 0.6 /*level 2 variance*/
forvalues i = 1/1000 {/*to repeat the process 1000 times*/
display "iteration "i"
foreach j in “info' {

clear

display "l2var “j™

*generate school level data

quietly: set seed 1'i'1

quietly: set obs 75000

quietly: gen uj = rnormal (0, sqrt('j"))

*betaj recaled

quietly: gen betaj = rnormal (0, sqrt(2))

quietly: egen betajmean = mean(betaj)

quietly: egen betajsd = sd(betaj)

quietly: gen betaj_scaled = ((betaj-betajmean)/betajsd)*sqrt(2)

quietly: gen pj = 1/(1+exp(4.12-betaj_scaled/2))

quietly: gen wj = 1/pj

quietly: gsample 150 [aw=pj] /*draws a unequal probability sample with sampling
probabilities pj.*/

quietly: genindex =1

quietly: gen school = _n

*school covariates

quietly: gen rand = runiform()

quietly: gen locale = cond(rand < 0.22, 1, cond(rand < 0.58, 2, 3))

quietly: gen rural = locale==1

quietly: gen suburb = locale==2

quietly: gen urban = locale==

*expand students based on percentages of different types of schools

quietly: expand 16+int((24-10+1)*runiform()) if school<=8 /*5.69% of 150
schools: 8*/

quietly: expand 25+int((49-25+1)*runiform()) if school>=9 &school<=25 /*11.49%

of 150 schools: 17*/

quietly: expand 50+int((99-50+1)*runiform()) if school>=26 & school<=91
1*43.53% of 150 schools:66*/

quietly: expand 100+int((149-100+1)*runiform()) if school>=92 & school<=129
1*25.48% of 150 schools:38*/

quietly: expand 150+int((199-150+1)*runiform()) if school>=130 & school<=142
/*8.59% of 150 schools:13*/
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quietly: expand 200+int((600-200+1)*runiform()) if school>=143 & school<=150
1*5.22% of 150 schools:8*/
quietly: bysort school: generate student = _n
*generate student data
quietly: gen eij = rnormal(0,sqrt(60-j"))
*rij recaled
quietly: gen eij = rnormal(0,sqrt(60-j"))
quietly: gen rij = rnormal(0,sqrt(2))
quietly: egen rijmean = mean(rij)
quietly: egen rijsd = sd(rij)
quietly: gen rij_scaled = ((rij-rijmean)/rijsd)*sqrt(2)
quietly: gen pi_j = 1/(1+exp(1.23-rij_scaled/2))
quietly: gen wi_j = 1/pi_j
quietly: gen pij = pi_j*pj
quietly: gen wij = 1/pij
*generate correlated data for female, SES and pretest
quietly: local p = 0.49
quietly: matrix m = (0, -0.05,46.92)
quietly: matrix sd = (0.5,0.81,11.50)
quietly: matrix input ¢ = (1, 0.006, 1, 0.07, 0.409, 1)
quietly: corr2data female SES pretest, corr(c) means(m) sds(sd) cstorage(lower)
[* Steps 2-3 for the one Bernoulli variable */
quietly: replace female = cond(normal(female)>=(1-"p"),1,0)
/*merge two level data*/
quietly: gen yij = 17.43+0.91*female+1.06*SES + 0.92*pretest+1.04*rural+uj+eij
quietly: rename yij achieve
quietly: rename wj schwgt
quietly: rename wi_j stdwgt
*select final sample
quietly: keep if index ==
quietly: gsample 3915 [aw=pi_j]
if j'==301localr=1
if j'==18local r=2
if j'==121localr=3
if j'==61localr=4
if j'==0.6localr=5
quietly: keep student schwgt school locale rural suburb urban stdwgt female SES
pretest achieve
gen iteration = i’
}
}

************************************************************************/
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APPENDIX C. Mplus Syntax

/*************************M plus VERSION 8*****************************/

/**************** *kkkkkk U nwe | g hted est | mat I onm ethod*********************/

Title: READING with NO weights;
Data: File is iteration_list.csv;
Type = MONTECARLDO;
Variable: Names are
schwgt school locale rural suburb urban student stdwgt female
SES pretest achieve iteration;
USEVARIABLES are achieve school female SES pretest rural;
CLUSTER = school;
WITHIN = female SES pretest;
BETWEEN = rural;
MODEL: %WITHIN%
achieve on female*.91 SES*1.06 pretest*.92;
achieve*30; !variance at levell
%BETWEEN%
achieve on rural*1.04;
[achieve*17.43]; '[gamma00]
achieve*30; !variance at level2
ANALYSIS:
TYPE = TWOLEVEL;

/**************** Estlmatlng methOd W|th raw We'ghts *********************/
Title: READING with raw weights (unscaled);
Data: File is iteration_list.csv;
Type = MONTECARLO;
Variable: Names are
schwagt school locale rural suburb urban student stdwgt female
SES pretest achieve iteration;
USEVARIABLES are achieve school female SES pretest rural;
CLUSTER = school;
WITHIN = female SES pretest;
BETWEEN = rural;
Weight is stdwgt;
Bweight = schwagt;
Witscale = UNSCALED;
Bwtscale = UNSCALED;
MODEL: %WITHIN%
achieve on female*.91 SES*1.06 pretest*.92;
achieve*30; lvariance at levell
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%BETWEEN%
achieve on rural*1.04;
[achieve*17.43]; '[gamma00]
achieve*30; !variance at level2
ANALYSIS:
TYPE = TWOLEVEL;
algorithm = integration;
estimator = MLR;

/********************Estimation method Wlth C|USter Scaling-k***********************/
Title: READING with scalingl;
Data: File is iteration_list.csv;
Type = MONTECARLO;
Variable: Names are
schwgt school locale rural suburb urban student stdwgt female
SES pretest achieve iteration;
USEVARIABLES are achieve school female SES pretest rural;
CLUSTER = school;
WITHIN = female SES pretest;
BETWEEN = rural;
Weight is stdwgt;
Bweight = schwagt;
Witscale = cluster;
Bwtscale = sample;
MODEL: %WITHIN%
achieve on female*.91 SES*1.06 pretest*.92;
achieve*30; lvariance at levell
%BETWEEN%
achieve on rural*1.04;
[achieve*17.43]; '[gamma00]
achieve*30; lvariance at level2
ANALYSIS:
TYPE = TWOLEVEL,;
algorithm = integration;
estimator = MLR;

[FrFEFFxFxRRRER Estimation method with effective scaling (ecluster scaling)****x*xxkxkxkxk]
Title: READING with scaling2;
Data: File is iteration_list.csv;
Type = MONTECARLO;
Variable: Names are
schwgt school locale rural suburb urban student stdwgt female
SES pretest achieve iteration;
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USEVARIABLES are achieve school female SES pretest rural;
CLUSTER = school;
WITHIN = female SES pretest;
BETWEEN = rural;
Weight is stdwgt;
Bweight = schwagt;
Witscale = ecluster;
Bwtscale = sample;
MODEL: %WITHIN%
achieve on female*.91 SES*1.06 pretest*.92;
achieve*30; lvariance at levell
%BETWEEN%
achieve on rural*1.04;
[achieve*17.43]; '[gamma00]
achieve*30; lvariance at level2
ANALYSIS:
TYPE = TWOLEVEL;
algorithm = integration;
estimator = MLR,;

79



REFERENCES

80



REFERENCES

Arceneaux, K., & Nickerson, D. W. (2009). Modeling certainty with clustered data: A comparison
of methods. Political Analysis, 17, 177-190. doi: 10. 1093/pan/mpp004

Asparouhov, T. (2004). Weighting for unequal probability of selection in multilevel modeling,
Mplus Web Notes: No. 8, available from http://www.statmodel.com/

Asparouhov, T. (2005). Sampling weights in latent variable modeling. Structural Equation
Modeling, 12(3), 411-434.

Asparouhov, T. (2006). General multi-level modeling with sampling weights. Communications in
Statistics—Theory and Methods, 35(3), 439-460.

Asparouhov, T., & Muthén, B. (2005). Multivariate statistical modeling with survey data (Mplus
Web Notes). Los Angeles, CA: Muthén & Muthén.

Asparouhov, T., & Muthén, B. (2007). Testing for informative weights and weights trimming in
multivariate modeling with survey data. Retrieved August 21, 2012 from
http://www.statmodel.com/download/JSM2007000745.pdf

Asparouhov, T., & Muthén, B. (2010). Bayesian analysis of latent variable models using Mplus
(Mplus Technical Report Version 4). Los Angeles, CA: Muthén & Muthén. Retrieved
from http://www.statmodel.com/download/Bayes-Advantages18.pdf

Asparouhov, T., & Muthén, B. (2006). Multilevel modeling of complex survey data. Paper
presented at the Proceedings of the Joint Statistical Meeting in Seattle.

Bainbridge, T. R. (1985). The Committee on standards: precision and bias. — ASTM
Standardization News 13, 44-46.

Bertolet, M. (2008). To weight or not to weight? Incorporating sampling designs into model-based
analyses. (Ph. D.), Carnegie Mellon University, Ann Arbor.

Binder, D. A. (1983). On the variances of asymptotically normal estimators from complex surveys.
International Statistical Review, 51(3), 279-292.

Bloom, H. S., Bos, J. M., & Lee, S. (1999). Using cluster random assignment to measure program

impacts: statistical implications for the evaluation of education programs. Evaluation
Review, 23(4), 445-469.

81


http://www.statmodel.com/
http://www.statmodel.com/download/JSM2007000745.pdf
http://www.statmodel.com/download/Bayes-Advantages18.pdf

Bloom, H. S., Richburg-Hayes, L., & Black, A. R. (2007). Using covariates to improve precision
for studies that randomize schools to evaluate educational interventions. Educational
Evaluation and Policy Analysis, 29(1), 30-59. doi: 10.3102/0162373707299550Schochet,
2008

Boslaugh, S. (2007). Secondary data sources for public health: A practical guide. New York, NY:
Cambridge University Press.

Cai, T. (2013). Investigation of ways to handle sampling weights for multilevel model analyses.
Sociological Methodology, 43(1), 178-2109.

Carle, A. C. (2009). Fitting multilevel models in complex survey data with design weights:
Recommendations. BMC Medical Research Methodology. doi:10.1186/1471-2288-9-49

Chantala, K., & Suchindran, C. M. (2006). Adjusting for unequal selection probability in
multilevel models: a comparison of software packages. Proceedings of the American
Statistical Association, Seattle, WA: American Statistical Association, 2815-2824.

Chantala, K., Blanchette, D., & Suchindran, C. M. (2011). Software to compute sampling weights
for multilevel analysis. Available from
http://www.cpc.unc.edu/research/tools/data_analysis/ml_sampling_weights/Compute%20
Weights%20for%20Multilevel%20Analysis.pdf.

Chaudhuri, S., Handcock, M. S., & Rendall, M. S. (2008). Generalized linear models incorporating
population level information: an empirical-likelihood-based approach. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 70(2), 311-328.

Chaudhuri, S., Handcock, M. S., & Rendall, M. S. (2010). A conditional empirical likelihood
approach to combine sampling design and population level information. Technical report
No. 3/2010, National University of Singapore, Singapore, 117546.

Chen, J., & Sitter, R. R. (1999). A pseudo empirical likelihood approach to the effective use of
auxiliary information in complex surveys. Statistical Sinica, 9(2), 385-406.

Christ, S., Biemer, P., & Wiesen, C. (2007). Guidelines for applying multilevel modeling to the
NSCAW data. Ithaca, NY: National Data Archive on Child Abuse and Neglect.

Clarke, P. (2008). When can group level clustering be ignored? Multilevel models versus single-
level models with sparse data. Journal of Epidemiology and Community Health, 62, 752-
758. doi: 10. 1136/jech.2007.060798

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation
analysis for the behavioral sciences. Mahwah, NJ: Lawrence Erlbaum.

82


http://www.cpc.unc.edu/research/tools/data_analysis/ml_sampling_weights/Compute%20Weights%20for%20Multilevel%20Analysis.pdf
http://www.cpc.unc.edu/research/tools/data_analysis/ml_sampling_weights/Compute%20Weights%20for%20Multilevel%20Analysis.pdf

Danielsen, A. G., Wiium, N., Wilhelmsen, B. U., & Wold, B. (2010). Perceived support provided
by teachers and classmates and students’ self-reported academic initiative. Journal of
School Psychology, 48(3), 247-67. doi:10.1016/j.jsp.2010.02.002

Eideh, A., & Nathan, G. (2009). Two-stage informative cluster sampling with application in small
area estimation. Journal of Statistical Planning and Inference, 139, 3088-3101.

Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford Press.

Francisco, C. A., & Fuller, W. A. (1991). Quantile estimation with a complex survey design. The
Annals of Statistics, 19(1), 454-469.

Fuller, W. (1984). Least squares and related analyses for complex survey design. The Annals of
Statistics, 10(1), 99-118.

Fuller, W. (2009). Sampling Statistics. Hoboken: Wiley.

Goldstein, H. (1986). Multilevel mixed linear model analysis using iterative generalized least
squares. Biometrika, 73, 43-56.

Graubard, B. 1., & Korn, E. L. (1996). Modeling the sampling design in the analysis of health
surveys. Statistical methods in medical research, 5(3), 43-56.

Grilli, L., & Pratesi, M. (2004). Weighted estimation in multilevel ordinal and binary models in
the presence of informative sampling designs. Survey Methodology, 30(1), 93-103.

Hahs-Vaughn, D. L. (2005). A primer for using and understanding weights with national datasets.
The Journal of Experimental Education, 73(3), 221-248. doi: 10.3200/JEXE.73.3.221-248

Heck, R. H., & Mahoe, R. (2004). An example of the impact of sample weights and centering on
multilevel SEM models. Paper presented at the annual meeting of the American Educational
Research Association, San Diego, CA.

Hedges, L. V., & Hedberg, E. C. (2007). Intraclass correlation values for planning group-
randomized trials in education. Educational Evaluation and Policy Analysis, 29(1), 60-87.
doi: 10.3102/0162373707299706

Hedges, L. V., & Hedberg, E. C. (2013). Intraclass correlations and covariate outcome correlations
for planning two- and three-level cluster-randomized experiments in education. Evaluation
Review, 37(6), 445-489.

Howell, D. C. (2008). The analysis of missing data. In Handbook of social science methodology,
ed. W. Outhwaite and S. Turner, (208-224). London, GB: Sage.

Hox, J. J., & Kreft, I. G. (1994). Multilevel analysis methods. Sociological Methods & Research,
22(3), 283-299.

83



Huber, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions.
In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and
Probability (Vol. 1, pp. 221-233). Berkeley, CA: University of California Press.
https://projecteuclid.org/euclid.bsmsp/1200512988

Jia, Y., Stokes, L., Harris, I., & Wang, Y. (2011). Performance of random effects model estimators
under complex sampling designs. Journal of Educational and Behavioral Statistics, 36(1),
6-32.

Judd, C. M., McClelland, G. H., & Ryan, C. S. (2009). Data analysis: A model comparison
approach. New York, NY: Routledge.

Kim, J. K., & Skinner, C. J. (2013). Weighting in survey analysis under informative sampling.
Biometrika, 100(2), 385-398. https://www.jstor.org/stable/43304565

Kish, L. (1965). Survey sampling. New York: Wiley.
Kish, L. (1992). Weighting for unequal Pi. Journal of Official Statistics, 8(2), 183-200.

Korn, E. L., & Graubard, B. I. (1995). Examples of differing weighted and unweighted estimates
from a sample survey. The American Statistician, 49(3), 291-295.

Korn, E. L., & Graubard, B. I. (2003). Estimating variance components by using survey data.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65(1), 175-190.

Kovacevi¢, M. S., & Rai, S. N. (2003). A pseudo maximum likelihood approach to multi-level
modeling of survey data. Communications in Statistics-Theory and Methods, 32(1), 103-
121.

Koziol, N. A., Bovaird, J. A., & Suarez, S. (2017). A comparison of population-averaged and
cluster-specific approaches in the context of unequal probabilities of selection.
Multivariate Behavioral Research, 52(3), 325-349. doi: 10.1080/00273171.2-17.1292115

Kreft, I. G. G., & Yoon, B. (1994). Are multilevel techniques necessary? An attempt at
demystification. Retrieved from http://eric.ed.gov/?id=ED371033

Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38,
963-974.

Laukaityte, 1., & Wiberg, M. (2018). Importance of sampling weights in multilevel modeling of
international large-scale assessment data. Communications in Statistics-Theory and
Methods, 47(20), 4991-5012. https://doi.org/10.1080/03610926.2017.1383429

Lee, J., & Fish, R. M. (2010). International and interstate gaps in value-added math-achievement:

multilevel instrumental variable analysis of age effect and grade effect. American Journal
of Education, 117(1), 109-137.

84


https://projecteuclid.org/euclid.bsmsp/1200512988
https://www.jstor.org/stable/43304565
http://eric.ed.gov/?id=ED371033
https://doi.org/10.1080/03610926.2017.1383429

Li, P., & Redden, D. T. (2015). Small sample performance of bias-corrected sandwich estimators
for cluster-randomized trials with binary outcomes. Statistics in Medicine, 34, 281-296.
http://dx.doi.org/10.1002/sim.6344

Lin, Y. X,, Steel, D., & Chambers, R. L. (2004). Restricted quasi-score estimating functions for
sample survey data. Journal of Applied Probability, 41, 119-130.

Longford, N. T. (1995). Model-based methods for analysis of data from 1990 NAEP trial state
assessment. Washington, DC.

Longford, N. T. (1995). Random coefficient models. Handbook of Statistical Modeling for the
Social and Behavioral Sciences, 519-570.

Lubienski, S. T., & Lubienski, C. (2006). School sector and academic achievement: a multilevel
analysis of NAEP mathematics data. American Educational Research Journal, 43(4), 651-
698.

Mass, C. J. M., & Hox, J. J. (2005). Sufficient sample sizes for multilevel modeling. Methodology,
1(3), 86-92. http://dx.doi.org/10.1027/1614-1881.1.3.86

Mels, G. (2006). LISREL for windows: getting started guide. Lincolnwood, IL: Scientific Software
International.

Mulligan, G. M., Hastedt, S., & McCarroll, J. C. (2012). First-Time Kindergarteners in 2010-2011:
First Findings From the Kindergarten Rounds of the Early Childhood Longitudinal Study,
Kindergarten Class of 20101-11 (ECLS-K:2011) (NCES 2012-049). U.S. Department of
Education. Washington, DC: National Center for Education Statistics.

Murray, D. M., & Short, B. (1995). Intraclass correlation among measures related to alcohol use
by young adults: estimates, correlates, and applications in intervention studies. Journal of
Studies on Alcohol, 56(6), 681-694.

Musca, S. C., Kamiejski, R., Nugier, A., Méot, A., Er-Rafiy, A., & Brauer, M. (2011). Data with
hierarchical structure: Impact of intraclass correlation and sample size on type-I error.
Frontiers in Psychology, 2(74). doi: 10.3389/fpsyg.2011.00074

Muthén, L. K., & Muthén, B. O. (1998-2017). Mplus User’s Guide. 8" ed. Los Angeles: Muthén
& Muthén.

Muthén, L. K., & Muthén, B. O. (2002). How to use a Monte Carlo study to decide on sample size
and determine power. Structural Equation Modeling, 9(4), 599-620.

Natarajan, S., Lipsitz, S. R., Fitzmaurice, G., Moore, C. G., & Gonin, R. (2008). Variance

estimation in complex survey sampling for generalized linear models. Journal of the Royal
Statistical Society: Series C (Applied Statistics), 57(1), 75-87.

85


http://dx.doi.org/10.1002/sim.6344
http://dx.doi.org/10.1027/1614-1881.1.3.86

Nordberg, L. (1989). Generalized linear modeling of sample survey data. journal of Official
Statistics, 5(3), 223.

Palardy, G. J. (2010). The multilevel crossed random effects growth model for estimating teacher
and school effects: Issues and extensions. Educational and Psychological Measurement,
70(3), 401-419.

Pfeffermann, D. (1993). The role of sampling weights when modeling survey data. International
Statistical Review, 61(2), 317-337. doi: 10.2307/1403631.

Pfeffermann, D., & LaVange, L. (1989). Regression models for stratified multi-stage cluster
samples. In C. J. Skinner, D. Holt, & T. M. F. Smith (Eds), Analysis of complex surveys
(237-260). New York, NY: John Wiley & Sons.

Pfeffermann, D., Krieger, A. M., & Rinott, Y. (1998). Parametric distributions of complex survey
data under informative probability sampling. Statistica Sinica, 8(4), 1087-1114.

Pfeffermann, D., Skinner, C. J., Holmes D. J., Goldstein, H. & Rasbash, J. (1998). Weighting for
unequal selection probabilities in multilevel models. Journal of Royal Statistical Society:
Series B, 60(1), 23-40.

Rabe-Hesketh, S. & Skrondal, A. (2006). Multilevel modeling of complex survey data. Journal of
Royal Statistical Society: Series A, 169(4), 805-827. https://doi.org/10.1111/j.1467-
985X.2006.00426.x

Rao, J. N. K., & Wu, C. (2010). Bayesian pseudo-empirical-likelihood intervals for complex
surveys. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(4),
533-544.

Rao, J. N. K., Verret, F., & Hidiroglou, M. A. (2013). A weighted composite likelihood approach
to inference for two-level models from survey data. Survey Methodology, 39(2), 263-282.

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear modes (2" ed.). Tousand Oaks, CA:
SAGE.

Raykov, T. (2011). Intraclass correlation coefficients in hierarchical designs: Evaluation using
latent variable modeling. Structural Equation Modeling, 18(1), 73-90. doi:
10.1080/10705511.2011.534319

Raykov, T., & Marcoulides, G. A. (2015). Intraclass correlation coefficient in hierarchical design
studies with discrete response variables: a note on a direct interval estimation procedure.
Educational and Psychological Measurement, 75(6), 1063-1071.

Robin, D. B. (1987). Multiple imputations for non-response in surveys. New York, NY: Wiley.

86


https://doi.org/10.1111/j.1467-985X.2006.00426.x
https://doi.org/10.1111/j.1467-985X.2006.00426.x

Rodriguez, G., & Goldman, N. (1995). An assessment of estimation procedures for multilevel
models with binary responses. Journal of the Royal Statistical Society: Series A (Statistics
in Society), 73-79.

Rodriguez, G., & Goldman, N. (2001). Improved estimation procedures for multilevel models with
binary response: a case study. Journal of the Royal Statistical Society: Series A (Statistics
in Society), 164(2), 339-355.

Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art.
Psychological Methods, 7(2), 147-177. doi: 10.1037//1082-989X.7.2.147

Schochet, P. Z. (2008). Statistical power for random assignment evaluations of educational
programs. Journal of Educational and Behavioral Statistics, 22(1), 62-87. doi:
10.3102/1076998607302714

Scientific Software International, 2005-2012. Multilevel Models. LISREL Documentation.
Retrieved July 22, 2011 from
http://www.ssicentral.com/lisrel/complexdocs/chapter4_web.pdf

Scott, A. J., & Holt, D. (1982). The effect of two-stage sampling on ordinary least squares methods.
Journal of the American Statistical Association, 77(380), 848-854.

Searle, S. R., Casella, G., & McCulloch, C. E. (1992). Variance Components. New York: Wiley.

Skinner, C. J. (1994). Sample models and weights. Paper presented at the Proceedings of the
Section on Survey Research Methods.

Skinner, C. J., Holt, D., & Smith, T. M. F. (1989). Analysis of complex surveys. Chichester, UK:
Wiley.

Snijder, T. A., & Bosker, R. J. (2012). Multilevel analysis: an introduction to basic and advanced
multilevel modeling, 2" edition. London: Sage Publication Ltd.

Stapleton, L. M. (2006). An assessment of practical solutions for structural equation modeling with
complex sample data. Structural Equation Modeling: A Multidisciplinary Journal, 13, 28-
58. doi: 10.1207/s15328007sem1301_2

Stapleton, L. M. (2012). Evaluation of conditional weight approximations for two-level models.
Communications in Statistics — Simulation and Computation, 41, 182-204. doi:
10.1080/03610918.2011.579700

Stapleton, L. M., & Kang, Y. (2018). Design effects of multilevel estimates from national
probability samples. Sociological Methods & Research, 47(3), 430-457.

87


http://www.ssicentral.com/lisrel/complexdocs/chapter4_web.pdf

Tourangeau, K., Nord, C., L&., T., Sorongon, A. G., Hagedorn, M. C., Daly, P., & Najarian, M.
(2015). Early Childhood Longitudinal Study, Kindergarten Class of 2010-11 (ECLS-
K:2011). User’s Manual for the ECLS-K:2011 Kindergarten Data File and Electronic
Cdebook, Public Version. NCES 2015-074. National Center for Education Statistics.

West, B. T., Beer, L., Gremel, G. W., Weiser, J., Johnson, C. H., Garg, S., & Skarbinski, J. (2015).
Weighted multilevel models: a case study. American Journal of Public Health, 105(11),
2214-2215.

White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for
heteroskedasticity. Econometrica, 48, 817-830. doi: 10.2307/1912934

Winship, C., & Radbill, L. (1994). Sampling weights and regression analysis. Sociological
Methods & Research, 23(2), 230-257.

Xia, Q., & Torian, L. V. (2013). To weight or not to weight in time-location sampling: why not do
both? AIDS and Behavior, 17(9), 3120-3123.

Zaccarin, S., & Donati, C. (2008). The effects of sampling weights in multilevel analysis of PISA
data (Working Paper No. 119). Universita Degli Studi di Trieste: Departimento di Scienze

Economiche e Statistiche. Retrieved from:
http://www2.units.it/nirdses/sito_inglese/working%20papers/files%20for%20wp/wp119.
pdf.

88


http://www2.units.it/nirdses/sito_inglese/working%20papers/files%20for%20wp/wp119.pdf.%20Accesssed
http://www2.units.it/nirdses/sito_inglese/working%20papers/files%20for%20wp/wp119.pdf.%20Accesssed

