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ABSTRACT 

WEIGHTING IN MULTILEVEL MODELS 

By 

Bing Tong 

Large-scale survey programs usually use complex sampling designs such as unequal 

probabilities of selection, stratifications, and/or clustering to collect data to save time and money. 

This leads to the necessity to incorporate sampling weights into multilevel models in order to 

obtain accurate estimates and valid inferences. However, the weighted multilevel estimators have 

been lately developed and minimal guidance is left on how to use sampling weights in multilevel 

models and which estimator is most appropriate. 

The goal of this study is to examine the performance of multilevel pseudo maximum 

likelihood (MPML) estimation methods using different scaling techniques under the informative 

and non-informative condition in the context of a two-stage sampling design with unequal 

probabilities of selection. Monte Carlo simulation methods are used to evaluate the impacts of 

three factors, including informativeness of the sampling design, intraclass correlation coefficient 

(ICC), and estimation methods. Simulation results indicate that including sampling weights in the 

model still produce biased estimates for the school-level variance. In general, the weighted 

methods outperform the unweighted method in estimating intercept and student-level variance 

while the unweighted method outperforms the weighted methods for school-level variance 

estimation in the informative condition. In general, the cluster scaling estimation method is 

recommended in the informative sampling design. Under the non-informative condition, the 

unweighted method can be considered a better choice than the weighted methods for all the 

parameter estimates. Besides, the ICC has obvious effects on school-level variance estimates in 



the informative condition, but in the non-informative condition, it also affects intercept estimates. 

An empirical study is included to illustrate the model.
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CHAPTER 1 INTRODUCTION 

 

A survey is defined as a data collection tool and is commonly used in social science to 

collect self-report data from study participants. It allows researchers to collect a large amount of 

data quickly and less expensively. Besides, the samples in survey research are often large, and a 

wide variety of variables can be examined (Boslaugh, 2007; Koziol, Bovaird, & Suarez, 2017), 

including personal facts, attitudes, previous behaviors, and opinions. Also, a survey can be often 

quickly created and easily administered. Thus, secondary data analysis is becoming increasingly 

popular (Stapleton, 2006). Many large-scale survey programs in social science use complex 

sampling designs to collect data, such as unequal probabilities of selection, stratification, and/or 

cluster sampling due to the impracticality of simple random sampling. In educational research, 

large scale data collection efforts such as National Assessment of Educational Progress (NAEP 

afterwards), Early Childhood Longitudinal Study-Kindergarten Class of 1998-1999 (ECLS-K 

afterwards), Early Childhood Longitudinal Study-Kindergarten Class of 2010-2011 (ECLS-K 

afterwards), available through National Center for Education Statistics (NCES) or National 

Science Foundation (NSF) use complex sampling plans. These three-stage surveys first involve 

sampling geographic areas with different probabilities of selection according to characteristics. 

These areas are often termed primary sampling units (PSUs). Then schools are sampled with 

different probabilities from the selected areas and lastly students are sampled from each of the 

selected schools, resulting in a cluster sampling design. Students chosen from the same school tend 

to be more alike than students chosen from other schools, and these groups of students show some 

degree of dependence (Hox & Kreft, 1994; Kish, 1965; Skinner, Holt & Smith, 1989) when 

compared to students from other schools. This type of sampling design brings challenges when 
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performing statistical analyses. If we disaggregate higher order variables to individual variables, 

ignoring the nested structure of the data and assuming each observation is independent, the 

assumption of independence of observations is not tenable. Conventional parametric analytic 

methods (e.g., regression, analysis of variance, t-tests) do not work well because they violate the 

assumption of observation independence (Cohen, West, & Aiken, 2003). The standard errors for 

the point estimates are estimated incorrectly, which could lead to erroneous conclusions arising 

from increased Type-I errors due to the violation of this assumption (Arceneaux & Nickerson, 

2009; Clarke, 2008; Hahs-Vaughn, 2005; Heck & Mahoe, 2004; Judd, McClelland, & Ryan, 2009; 

Musca et al., 2011). However, if all the individual level variables are aggregated to the higher level, 

then important information could be lost. Multilevel models or Hierarchical linear models (HLM) 

were proposed and have been widely used in education, because they can be used to account for 

clustering, and allow the variance of the dependent variable to be partitioned explicitly into within- 

and between-variance (Lee & Fish, 2010; Lubienski & Lubienski, 2006; Palardy, 2010; 

Raudenbush & Bryk, 2002; Snijders & Bosker, 2012). They are an alternative to some of the 

approaches used by survey analysis for dealing with nested data structures. 

Furthermore, some groups of the population are oversampled for various reasons. Units 

with higher data collection costs may be drawn with lower selection probabilities and individuals 

from small subpopulations of particular interest may be sampled with higher probabilities. For 

example, both ECLS-K and ECLS-K:2011 oversampled Asian, Native Hawaiians, and other 

Pacific islanders with the rate of 2.5 compared with other racial groups. This feature suggests 

applying sampling weights in the model to reflect the unequal probabilities of selection whenever 

selection probabilities are related to the outcome variable after conditioning on covariates in the 

model. The sampling design is said to be informative in this case (Fuller, 2009; Grilli & Pratesi, 



3 

 

2004). Ignoring this feature and without using weights, parameter estimates would be severely 

biased (Korn & Graubard, 1995; Pfeffermann, Skinner & Goldstein, 1998; Rodriguez & Goldman, 

1995, 2001; Zaccarin & Donati, 2008).  

But, appropriately using weights is not an easy task. For large-scale data sets, for example, 

ECLS-K:2011, there are many sampling weight variables, including school-level and student-level 

weights. For student level, this includes weights generated for the child assessments, teacher-level 

questionnaire, student-level questionnaire, parent interview, and care provider questionnaire. 

Appropriate use of complex sampling weights is of great importance because ignoring them may 

produce erroneous standard errors and consequently, inaccurate statistical inference. What’s more, 

there is not much guidance on how to incorporate sampling weights in the multilevel models. It 

can be dated back from the late 1980s (e.g., Pfeffermann & LaVange, 1989). The pseudo maximum 

likelihood (PML) method, developed by Skinner (1989) and following the thoughts of Binder 

(1983), is a well-established estimation procedure for any weighted single-level models. However, 

flexible techniques for estimating weighted multilevel models have only newly been developed 

(cf., Asparouhov, 2004, 2006; Grilli & Pratesi, 2004; Rabe-Hesketh & Skrondal, 2006; Koziol et 

al., 2017). One possible reason for this is multilevel weights are not available, which is often the 

case for public-released data file (Kovačević & Rai, 2003; Stapleton, 2012).  The second reason 

might be that weighted multilevel modeling requires scaling of the lower level sampling weights 

(Pfeffermann et al., 1998). Currently, there is no well-established general multilevel consistent 

estimation method incorporating weights.  

It is controversial whether to weight or not (Bertolet, 2008; Kish, 1992; Skinner, 1994; 

Smith, 1988; Xia & Torian, 2013). For example, on the one hand, some researchers (e.g., Graubard 

& Korn, 1996; Korn & Graubard, 1995, 2003; Lohr & Liu, 1994) suggested using sampling 
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weights in the model, as mentioned above to take into account for the complex sampling scheme. 

On the other hand, Winship and Radbill (1994) preferred unweighted estimators because estimates 

were unbiased, and consistent because they produced smaller standard errors. However, although 

the use of sampling weights will result in the increase of variance from unequal inclusion 

probabilities, it is still required and necessary because it prevents producing biased parameter 

estimates under informative sampling in multilevel models (Pfeffermann et al., 1998; Kim & 

Skinner, 2013), protects against misspecification, and makes full use of population-level 

information (Kim & Skinner, 2013). 

The estimation quality can be affected by a number of factors and some of them have been 

investigated in the past research across different conditions, such as cluster size, distribution of the 

response variable, estimator/software program, informativeness of the sampling design, intraclass 

correlation coefficient (ICC), model type, invariance of selection across clusters, number of 

clusters, relative variance of weights, sample design features, and weight approximation method. 

In this study, I focus on the multilevel pseudo maximum likelihood (MPML) estimation method. 

First of all, although various conditions have been examined, conclusions are not inconclusive and 

rely on the particular model or sampling mechanism. Second, there are limited number of studies 

evaluating MPML (i.e., Asparouhov, 2006; Asparouhov & Muthén, 2006; Cai, 2013; Grilli & 

Pratesi, 2004; Koziol et al., 2017; Rabe-Hesketh & Skrondal, 2006; Stapleton, 2012). Third, 

MPML, compared with other estimators, are more flexible. Therefore, more studies are needed to 

evaluate MPML.  

The purpose of the present study is to evaluate the performance of MPML using different 

scaling procedures in the context of a two-stage sampling design with unequal probabilities of 

selection in the informative and non-informative conditions across different levels of ICC using a 
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linear random-intercept model with covariates at both levels. Monte Carlo simulation methods are 

used to estimate the relative bias (RB), root mean square error (RMSE) and coverage 

rate/probability (CR) of the corresponding 95% confidence interval estimators. The following 

factors are manipulated: (a) informativeness; (b) ICC of the unconditional model; and (c) 

estimation method. All factors are fully crossed.  

Cai (2013) conducted Monte Carlo simulations and found that the unweighted estimator 

produces biased estimates for the intercept and school-level variance, while the estimates for fixed 

effects and student-level variance are nearly unbiased within 10% of the true value in terms of 

Muthén and Muthén (2002). Generally speaking, the MPML estimators have higher coverage rates 

than the unweighted estimator in the informative condition. Including sampling weights increases 

MSE substantially and produces biased estimates for the intercept and school-level variance in the 

informative sampling design. Furthermore, ignoring informative sampling design could produce 

biased estimates. Pfeffermann et al. (1998) pointed out that the unweighted method only produced 

biased estimates for the intercept and school-level variance, not for student-level variance when 

the design is informative at school-level variance. Prior studies (e.g., Asparouhov & Muthén, 2006; 

Kovačević & Rai, 2003) show that as the ICC increases the bias decreases for all the parameters 

using an unconditional model.  Asparouhov and Muth én (2007) also found that the MPML 

estimator outperforms substantially the other estimators.                                                                                   

The plan of this study is as follows. Chapter 2 discusses theoretical background and reviews 

the related literature. We briefly review multistage design and general multilevel models. Pseudo 

maximum likelihood estimation (MPML) method is presented, followed by two scaling methods. 

Intraclass correlation coefficient (ICC) and informativeness are also described in this section.  In 

Chapter 3, I introduce the empirical data set I use in this study: ECLS-K:2011, and procedures of 
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simulation for the present study. Chapter 4 presents the results of the empirical data analysis and 

simulation analysis. Chapter 5 provides a discussion of overall findings, limitations, and topics for 

future research.



7 

 

CHAPTER 2 THEORETICAL BACKGROUND AND LITERATURE REVIEW 

 

2.1 Research Goal 

 Using empirical and simulated data, the present study focuses on examining the 

performance of MPML in the context of a two-stage sampling design with unequal probability of 

selection. Since MPML is newly developed compared to PML, there are far fewer studies 

examining MPML. And no consensus has been achieved on which one performs best and under 

which condition for the existing weighted multilevel estimators. MPML is considered the most 

flexible and popular method if the consistency of estimates and computation intensity are 

considered for multilevel data. But it is also obvious that weighted estimators produce larger 

standard errors than unweighted methods do. Therefore, it is controversial whether to use weight 

to not. More studies are needed to compare them and examine the performance of MPML. What’s 

more, the scaling effect used in the multilevel estimation method is inconclusive based on the 

previous literature. Lastly, to my knowledge, except one study (c.f., Koziol et al., 2017), all other 

previous simulation studies manipulating ICC values use only an unconditional random intercept 

model.  

Therefore, the main goal for this study is to examine the impact of sampling weights and 

to evaluate the performance of the MPML methods with different scaling techniques in the context 

of two-stage informative and non-informative sampling designs across different values of ICC 

with unequal probability of selection using random intercept model with covariates at both levels. 

Monte Carlo simulation methods are used to evaluate several factors, including: (a) 

informativeness of the sample design (non-informativeness vs. informativeness at both stages); (b) 

ICC with five different values; (c) estimation methods (unweighted, raw/unscaled weighted, 



8 

 

cluster scaling, effective scaling). All the factors are fully crossed. This gives rise to 2 × 5 × 4 =40 

combination of conditions.  

This study makes several contributions to the complex survey data literature. First, it 

provides a comparison between unweighted and weighted multilevel approaches in the context of 

unequal probability of selection. Second, it provides a comparison of estimation methods between 

informative and non-informative sampling design. Third, it provides a comparison of estimation 

methods under different levels of ICC values. 

In order to cover the gaps of the current body of literature, the following research questions 

are addressed: 

1. How do MPML estimators differ from unweighted estimator in multilevel models in the 

informative and non-informative sampling designs in terms of relative bias, root mean 

square error and 95% confidence interval coverage rate? 

2. How does intraclass correlation influence the performance of estimators under the 

informative and non-informative condition in terms of relative bias, root mean square error 

and 95% confidence interval coverage rate? 

Large-scale surveys in social studies usually use complex sampling designs based on the 

characteristics of the population to glean information in order to address various research 

questions. This feature brings challenges to the analysis. This chapter includes several topics 

which are central to understanding weighted multilevel analysis of survey data. 

 

2.2 Multistage Sampling 

Multistage designs are commonly used in many practical cases. For a two-stage sampling 

in the educational setting, for example, clusters or PSUs such as schools are selected in the first 
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stage. In the second stage, individual units, such as students are then sampled from the clusters. 

Each sampling stage corresponds to a multilevel model level. In this case, second stage 

corresponds to Level 1, first stage to Level 2.  

At the first stage, cluster 𝑗 is sampled with probability 𝑝𝑗 , 𝑗 =1, …, 𝑚, where 𝑚 is the 

number of clusters to be sampled from the total number of clusters in the population, M. At the 

second stage, individual 𝑖 is sampled from the cluster selected at the first stage with conditional 

probability 𝑝𝑖|𝑗, 𝑖 = 1, …, 𝑛, where 𝑛 is the cluster sample size. Usually, clusters are sampled with 

probabilities that are proportional to their sizes, that is, the number of individual units in their 

clusters, 𝑆𝑗 ,   

𝑝𝑗  =  
𝑚𝑆𝑗 

∑ 𝑆𝑗
𝑀
𝑗

           (2.1) 

and the weight at cluster level is the inverse of the probability 𝑝𝑗, that is,  𝑤𝑗 = 1/𝑝𝑗. Each unit is 

sampled from cluster j with conditional probability (assuming that equal number of units are 

sampled from each cluster) 

𝑝𝑖|𝑗  =  
𝑛 

𝑆𝑗
          (2.2) 

and the weight for individual unit 𝑖 given cluster 𝑗 is the inverse of the conditional probability 𝑝𝑖|𝑗, 

that is, 𝑤𝑖|𝑗 = 1/𝑝𝑖|𝑗. Then the unconditional probability is defined as  

𝑝𝑖𝑗 = 𝑝𝑖|𝑗 ∗ 𝑝𝑗 = 
𝑛 𝑚

∑ 𝑆𝑗
𝑀
𝑗

         (2.3) 

 

2.3 Multilevel Model 

A typical two-level linear model can be specified with two equations. The first equation is 

used to describe the relationship between dependent variables and the covariates at the student 

level, within each group. Some or all of the parameters of the student-level equation are viewed as 
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varying randomly across the groups. The second equation, school-level equation, defines these 

parameters as dependent variables with the school-level variables as covariates. If we combine 

them together, a two-level linear mixed model can be specified in matrix vector form as follows, 

based on Laird and Ware (1982), 

  𝑌𝑗  = 𝑋𝑗𝛼 + 𝑍𝑗𝑏𝑗  + 𝑒𝑗 .         (2.4) 

In the above equation, 𝑗 indexes the cluster, with 𝑗 = 1, …, m, where m is the number of clusters. 

For the 𝑗th cluster with size 𝑖 = 1, …, 𝑛𝑗 , 𝒀𝒋 is an 𝑛𝑗  x 1 vector of observed response, 𝑿𝒋  is an 𝑛𝑗  

x 𝑝 observed matrix for fixed effects, 𝛂 is a 𝑝 x 1 vector of unknown coefficients, 𝒁𝒋 denotes an  

𝑛𝑗  x 𝑞 random-effect design matrix, 𝒃𝒋 is a 𝑞 x 1 vector of cluster-specified random effects, and 

𝒆𝒋 is an 𝑛𝑗  x 1 vector of random residual errors, where 𝑝 is the number of unknown coefficients 

including the intercept and 𝑞 is the number of random effects. Since random intercept model is 

used in the current study, 𝑞 equals 1.  

Either full maximum likelihood (ML/FIML) or the restricted maximum likelihood (REML) 

estimation method is often used to estimate the unknown model parameters in a general linear 

mixed model, such as fixed regression coefficients and variance components. Searle, Casella, and 

McCulloch (1992) defines the likelihood function for a linear mixed model as follows,  

𝐿 (𝑌|𝑋, 𝑍, 𝛼, 𝐷, 𝜎𝑒
2) = 

𝑒𝑥𝑝(−
1

2
(𝑌−𝑋𝛼)′ 𝑉−1(𝑌−𝑋𝛼))

(2𝜋)
𝑁
2 |𝑉|

1
2

,     (2.5) 

where 𝑉 is the covariance matrix of vector 𝑌, 𝑉 = 𝑍𝐷𝑍′ + 𝜎𝑒
2𝐼, 𝐷 denotes covariance matrix for 

the random effect vector 𝒃𝒊, and in our case, it is a scalar 𝝈𝑢
2 , and 𝝈𝑒

2 is the variance of the error 

term. For computational convenience, the log likelihood function is more often used instead of 

likelihood function. It is specified in mathematical form as  
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𝑙 = 𝑙𝑜𝑔(𝐿 (𝑌|𝑋, 𝑍, 𝛼, 𝐷, 𝜎𝑒
2)) = −

1

2
 𝑁𝑙𝑜𝑔(2𝜋) −

1

2
𝑙𝑜𝑔|𝑉| −  

1

2
(𝑌 − 𝑋𝛼)′ 𝑉−1(𝑌 − 𝑋𝛼) 

            (2.6) 

where 𝑁 is the total number of observations, 𝑁 = ∑ 𝑛𝑗
𝑚
𝑗=1 .  

 

2.4 Multilevel Pseudo-Maximum Likelihood (MPML) Estimation Methods 

In order to achieve valid inference for the population, sampling weights must be used for 

all the levels of the data. But the literature does not obviously describe when and how to use 

sampling weights properly in the multilevel models. Using single-level weights to replace 

multilevel weights, is not always appropriate for the following reasons. First, sampling weights 

are placed into sum of squares and cross-products in a single-level regression. Final-level weights 

are the product of multilevel weights. Based on Christ, Biemer, & Wiesen (2007), if we use final-

level weights, it might lead to biased estimates in multilevel models. Second, Pfeffermann et al., 

(1998) noted that single final-level weights or overall inclusion probabilities may not contain 

sufficient information to correct for unequal sampling probabilities at higher levels, because units 

at either level can be selected with differential probabilities. Therefore, multilevel weights need to 

be used in multilevel models. We use sample data and the sampling weights to estimate unknown 

parameters by maximizing the weighted sample likelihood.                     

So far, researchers have explored different estimation methods incorporating sampling 

weights for complex surveys, such as multilevel pseudo maximum likelihood (MPML) 

(Asparouhov, 2004, 2006; Grilli & Pratesi, 2004; Rabe-Hesketh & Skrondal, 2006), probability-

weighted iterative generalized least squares (PWIGLS) (Pfeffermann et al., 1998), sample 

distribution methods (Eideh & Nathan, 2009; Pfeffermann, Moura, & Silva, 2006), weighted 

composite likelihood (WCL) estimation (Rao, Verret, & Hidiroglou, 2013), and pseudo empirical 
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likelihoods (Chaudhuri, Handcock, & Rendall, 2010; Chen & Sitter, 1999; Francisco & Fuller, 

1991; Fuller, 1984; Lin, Steel, & Chambers, 2004; Rao & Wu, 2010; Scott & Holt, 1982). As 

Asparouhov & Muthén (2006) stated that there is no best estimation method for multilevel models 

if sampling weights are used. MPML method and PWIGLS method are the two most widely used 

estimation methods in multilevel models incorporating sampling weights. Compared with 

PWIGLS, MPML is more flexible and more widely applied, from the perspective of software 

implementation. Currently, MPML has been applied in the software of Stata, Mplus, and SAS 

while PWIGLS has been used in LISRAEL, HLM and MLwiN. Different software would generate 

different output (Chantala, Blanchette, & Suchindran, 2011; Chantala & Suchindran, 2006). The 

application of MPML, compared with PWIGLS, requires less computational intensity and is much 

more flexible (Kovačević & Rai, 2003; Rabe-Hesketh & Skrondal, 2006). Besides, MPML can be 

applied to any general multilevel model (Rabe-Hesketh & Skrondal, 2006) just as the PML method 

can be used in any single-level models. The third advantage is that MPML is versatile and it can 

be modified for different estimation issues (Asparouhov, 2004; Asparouhov & Muthén, 2006). In 

addition, MPML can account for stratification and extra non-substantive clustering levels in the 

estimation of standard errors without having to incorporate such design features into the 

parameterization of the model (Asparouhov & Muthén, 2006; Koziol et al., 2017; Rabe-Hesketh 

& Skrondal, 2006). Because of these advantages, only the MPML with different scaling techniques 

is considered in the present study. 

Let the estimates 𝜃 = (𝜃1, 𝜃2) be the parameters and the likelihood function for a general 

multilevel model can be expressed as 

𝐿(𝜃1, 𝜃2) = ∏𝑗=1
𝑚  (∫(∏

𝑖=1

𝑛𝑗 𝑓 (𝑦𝑖𝑗|𝑥𝑖𝑗 , 𝑢𝑗 , 𝜃1)𝜙(𝑢𝑗|𝑧𝑗 , 𝜃2)𝑑𝑢𝑗)   (2.7) 
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where 𝑦𝑖𝑗 is the response variable in cluster 𝑗  = 1, …, 𝑚  of individual 𝑖  = 1, …, 𝑛  and 𝑢𝑗  the 

cluster-specific random effect; 𝑥𝑖𝑗 is student-level covariates and 𝑧𝑗 the cluster level covariates; 

𝑓(𝑦𝑖𝑗|𝑥𝑖𝑗 , 𝑢𝑗 , θ1) is the density function of 𝑦𝑖𝑗 and 𝜙(𝑢𝑗|𝑧𝑗 , θ2) the density function of 𝑢𝑗 , where 

θ1 and θ2 are the parameters to be estimated for the fixed effects for the student level and school 

level, respectively.  

If weighting is incorporated into the analysis, and scaling procedures are also applied in 

order to reduce the bias arising from unequal probabilities of selection for complex survey data, 

the population likelihood function is directly estimated by weighting the sampling likelihood 

function, 

𝐿(𝜃1, 𝜃2) = ∏𝑗=1
𝑚  (∫(∏

𝑖=1

𝑛𝑗 𝑓(𝑦𝑖𝑗|𝑥𝑖𝑗 , 𝑢𝑗 , 𝜃1)
𝑤𝑖|𝑗𝜆2𝑗

) 𝜙(𝑢𝑗|𝑧𝑗 , 𝜃2)𝑑𝑢𝑗)𝑤𝑗𝜆1𝑗 , (2.8) 

where 𝑤𝑖|𝑗 = 1/ 𝑝𝑖|𝑗 is student-level weights where 𝑝𝑖|𝑗 is the conditional inclusion probability for 

the ith unit in the jth cluster, given that the jth cluster is sampled; 𝑤𝑗 = 1/𝑝𝑗 is the school-level 

weights where 𝑝𝑗 is the inclusion probability for the jth cluster; 𝜆1𝑗 and 𝜆2𝑗 are the scaling factors 

for the school-level and individual level sampling weights, respectively.  

Numerical techniques are needed to integrate out the unobserved school-level random 

effect 𝑢𝑗  to approximate the weighted likelihood.  

Sandwich variance estimator is employed to obtain standard errors because some 

researchers (e.g., Huber, 1967; White, 1980) claimed that they are robust to nonnormality and 

heterogeneity. The asymptotic covariance matrix of the parameter 𝜃 using this method is defined 

by  

(𝑙′′)−1Var(l′) (𝑙′′)−1         (2.9) 
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where ' and " refer to the first and second derivative of the log-likelihoods with respect to the 

parameters 𝜃. Mplus (Muthén & Muthén 1998-2017) implements this method using a robust 

variance estimator having the following form: 

(
𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝜃2 )−1 (∑ ((𝜆1𝑗𝑤𝑗)2)
𝜕𝑙𝑜𝑔𝐿

𝜕𝜃
(

𝜕𝑙𝑜𝑔𝐿

𝜕𝜃
)′𝑚

𝑗=1 )(
𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝜃2 )−1.    (2.10) 

 

2. 5 Scaling Sampling Weights for Multilevel Models 

In multilevel weighted estimation literature, one of the main problems is the fact that the 

parameter estimates are usually only approximately unbiased. There are many factors that have 

substantial influence on the quality of the estimation, such as sample size of cluster, 

informativeness of selection, variability of sampling weights, intraclass correlation and scaling 

methods (Asparouhov, 2006; Asparouhov & Muthén, 2006; Bertolet, 2008; Cai, 2013; Grilli & 

Pratesi, 2004; Jia, Stokes, Harris, & Wang, 2011; Kovačević & Rai, 2003; Pfeffermann et al., 1998; 

Rabe-Hesketh & Skrondal, 2006). For instance, parameter estimation would be severely biased 

when the cluster sample size is not sufficiently large enough (Asparouhov, 2006; Rabe-Hesketh 

and Skondal, 2006). In order to correct this, two scaling methods were proposed by Pfeffermann 

et al. (1998).  

The scaling method is an indicator of how the weights are normalized at each level 

(Asparouhov, 2006). The first method, assuming individual level weights are approximately non-

informative, may produce approximately unbiased estimator for both variance components. This 

approach produces a scaling factor so that the individual level weights equal the ‘effective’ cluster 

size (Longford, 1995, 1996; Pfeffermann et al., 1998).  The scalar factor, which was referred to as 

“Method 1” in Pfeffermann et al. (1998), is specified as follows 
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𝜆𝑗  = 
∑ 𝑤𝑖|𝑗

𝑛𝑗
𝑖=1

∑ 𝑤𝑖|𝑗
2

𝑛𝑗
𝑖=1

.          (2.11) 

Method 2 in Pfeffermann et al. (1998) is used when both levels of sampling design are assumed to 

be informative. The scaling factor is defined as  

𝜆𝑗  = 
𝑛𝑗

∑ 𝑤𝑖|𝑗

𝑛𝑗
𝑖=1

,          (2.12) 

where  𝑛𝑗  is the number of sample units in the jth cluster. The scaling factor is set so that the 

individual level weights equal the actual cluster size. These two scaling methods are termed as 

effective cluster scaling (ES) and cluster scaling (CS) respectively in the current study.  

Currently, there is no consensus about which scaling method works better and under what 

conditions. For example, Pfeffermann et al. (1998) pointed out Method 2 (cluster scaling) works 

better in reducing bias in simulation in the informative sampling design while Stapleton (2002) 

found that Method 1 (effective cluster scaling) produces unbiased estimates in multilevel SEM 

analysis. Asparouhov (2006) noted that the different scaling methods may have different effects 

on different estimation techniques. If a scaling method performs well with the MPML approach, 

it does not necessarily mean that it performs well with other estimation techniques, for example, 

PWIGLS. Sometimes, which scaling method to use depends on the purpose of the research. If the 

main interest is point estimates, cluster scaling method is recommended. If cluster variance 

estimates are, then effective scaling method might be used (Asparouhov, 2006; Carle, 2009). 

 

2.6 Intraclass Correlation Coefficient (ICC) 

Besides sample size of cluster, informativeness of selection, variability of sampling 

weights, and scaling methods, ICC also affects estimation quality (Asparouhov, 2006; Asparouhov 

and Muthén, 2006; Bertolet, 2008; Cai, 2013; Grilli &  Pratesi, 2004; Jia et al., 2011; Kovačević 
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& Rai, 2003; Pfeffermann et al., 1998; Rabe-Hesketh & Skrondal, 2006). Prior studies have found 

that the larger the ICC values are, the less biased the estimates are in simulation studies 

manipulating ICCs using random intercept models without any covariates at both levels 

(Asparouhov, 2006; Jia et al., 2011; Kovačević & Rai, 2003).  

ICC is one of the factors that is examined in this study. It can be used for model 

construction because it helps to determine the predictors which are most important to account for 

the outcome variable (Raudenbush & Bryk, 2002). It is also used as an index for including cluster 

level in multilevel modeling if ICC is not close to zero. Larger ICC values usually represent larger 

variations in cluster level, indicating larger proportion of total variance in the response variable 

that is accounted for by the clustering and thus larger clustering effect. In addition, the ICC value 

is informative for planning group-randomized experiments in education (Hedges & Hedberg, 2007, 

2013). 

To estimate the ICC for a given outcome, y, a multilevel model is fit for the ith student in 

the jth school 

𝑦𝑖𝑗  =  𝛾00 + 𝑢0𝑗  + 𝜀𝑖𝑗,        (2.13) 

and the REML estimates of the variance of 𝑢0𝑗, (labeled as 𝜎̂𝑢
2), which is the variation between 

schools, and the variance of 𝜀𝑖𝑗 (labeled as 𝜎̂𝑒
2), which represents variation at student level are used 

to compute ICC. The estimate of the ICC, 𝜌̂, is then defined as 

𝜌̂ = 
𝜎̂𝑢

2

𝜎̂𝑒
2+𝜎̂𝑢

2,          (2.14) 

which is the proportion of total variability in scores due to the school-to-school differences.  

Moreover, the ICC is used to calculate the design effect, which shows how much standard 

errors are underestimated. The design effect is defined as follows 

 Designeffect = 1 + (averageclsutersize – 1) * ρ̂.     (2.15) 
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Based on Kish (1965), a design effect which is greater than 2 indicates that we need to take into 

account the clustering effect of the data during estimation. 

 

2.7 Informativeness of Selection  

The informativeness of selection, according to Asparouhov (2006), is an indicator of how 

biased the selection is. If the sampling design is informative, the inclusion probabilities are related 

to the response variable after conditioning on the variables in the model (Fuller, 2009; Grilli & 

Pratesi, 2004). Otherwise, it is non-informative. Pfeffermann (1993) and Cai (2013) pointed out 

that if weights are informative, they are quite influential on the results and therefore, should be 

considered in the multilevel analysis. However, if the sampling designs or weights are not 

informative, the effect of weights could be negligible and it is not necessary to include weights in 

the analysis. Therefore, to check whether the sampling design/weight is informative or not is 

necessary. Following Laukaityte and Wiberg (2018), weights are informative if the effective 

sample size is smaller than the real sample size. Effective sample size for two-level models can be 

defined as follows. Effective sample size at level 2 (between schools) is calculated using the 

following formulas: 

𝑁𝑒𝑓𝑓=  
(∑ 𝒘𝒋 𝒋

)𝟐

∑ (𝒘𝒋
𝟐)𝒋

          (2.16)      

and effective sample size at level 1 (within schools) for school j is obtained by 

𝑛𝑗
𝑒𝑓𝑓=  

(∑ 𝒘𝒋 𝒊|𝒋
)𝟐

∑ (𝒘𝒊|𝒋
𝟐 )𝒋

.         (2.17) 

Pfeffermann (1993) developed a model to evaluate whether the sampling design is 

informative or not. The informativeness of sampling design is examined by the 𝑥2 test, which is 

defined as follows 
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I = (𝜃𝑤  −  𝜃0)′[𝑉̂(𝜃𝑤) − 𝑉̂(𝜃0)]−1(𝜃𝑤 −  𝜃0) ~ 𝑥𝑝
2     (2.18)                                                                                                                  

where 𝜃𝑤 and 𝜃0 are the estimates of weighted and unweighted analyses, respectively, and 𝑉̂(𝜃𝑤) 

and 𝑉̂(𝜃0) are their variance estimates. The informativeness statistic follows a 𝑥𝑝
2 distribution with 

p = dim(𝜃) degrees of freedom.
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CHAPTER 3 METHODS 

 

Two primary sections are included in this chapter: one introduces methods for empirical 

data; one introduces simulation design. 

 

3.1 Empirical Data 

3.1.1 Data and Variables 

This study uses data from the public-use the Early Childhood Longitudinal Study, 

Kindergarten Class of 2010–2011 (ECLS-K: 2011, see Mulligan, Hastedt, & McCarroll, 2012, for 

an overview) data set, which is sponsored by the National Center for Education Statistics (NCES). 

It is a latest study in early childhood longitudinal study that follows a U.S. nationally representative 

sample of students entering Kindergarten in 2011-2012 to the spring of 2016, fifth grade. ECLS-

K:2011 provides descriptive information about children’s school experience. Data have been 

collected related to family, classroom and school environment.  Individual variables are available 

as well, studying how cognitive, social and emotional development is related to them. 

The ECLS-K: 2011 data are not a simple random sample of individuals or clusters. The 

study employed a 3-stage cluster sampling design. 90 geographic areas (counties or groups of 

counties) as the primary sampling units (PSUs) were first sampled at stage 1. Then samples of 

public and private schools were selected at stage 2 from the selected PSUs. Lastly, five-year-old 

children were randomly sampled within selected schools at stage 3. Stratification and probability 

proportional to size sampling were used at the first two stages of selection; stratification and 

unequal sampling were used at the final stage. In the base year, Asian, Native Hawaiians, and other 

Pacific islanders were oversampled.  The user’s manual for the ECLS-K: 2011 kindergarten data 
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file and electronic codebook, public version (Tourangeau et al., 2015) offers an excellent overview 

of the characteristics of complex sample designs including clustering, stratification, unequal 

probabilities of selection, and non-response and poststratification.  

The analytic samples in this paper only include kids in kindergarten, and data collected in 

both the fall and the spring semesters. Approximately 18,200 children enrolled in 970 schools 

during the 2010-11 school year participated during their kindergarten year. 

Although the use of sampling weights will result in the increase of variance due to unequal 

inclusion probabilities, it is still required and necessary because it prevents producing biased 

parameter estimates under informative sampling in multilevel models (Pfeffermann et al., 1998; 

Kim & Skinner, 2013), protects against misspecification, and makes full use of population-level 

information (Kim & Skinner, 2013). The supplied sampling weights adjusted for school-level 

nonresponse and inverses of estimated student-level response probability are used. Weights for 

first sampling stage are not available. For student level, I use composite variables based on the 

parent survey as the primary independent variables of interest, as well as controlling for the 

student's fall test score in order to predict the spring score. The parent is used as a primary 

component to adjust for non-response, suggesting that child base weight adjusting for non-

response associated with either fall or spring kindergarten parent interviews (W1_2P0) would be 

a good choice of weight. For school-level weight, school base weight adjusted for non-response 

associated with the school administrator questionnaire (W2SCH0) are used.   

The academic outcome variables in this study are reading and mathematics scale scores 

calibrated using Item Response Theory (IRT) procedures. The reading assessment (User’s Manual 

for the ECLS-K:2011, Mulligan et al., 2012) measures basic skills (print familiarity, letter 

recognition, beginning and ending sounds, rhyming words, word recognition), vocabulary 
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knowledge, and reading comprehension. Reading comprehension consists of questions identifying 

information specifically in text, making complex inferences within and across texts, and 

considering the text objectively to judge its appropriateness and quality. The mathematics 

assessment measures skills in conceptual knowledge, procedural knowledge, and problem solving. 

The construct validity has been established for ECLS-K:2011 assessments as the 

assessment, national and state performance standards in each of the domains were examined and 

specifications for reading and mathematics were established based on NAEP framework. 

Furthermore, curriculum specialists in the subject areas were recruited and the pool of items 

created were examined for content and framework strand design, accuracy, on-ambiguity of 

response options, and appropriate formatting. 

The reliability of the reading score for Fall and Spring Kindergarten is 0.95, and the 

reliability of the mathematics score is 0.92 for Fall Kindergarten, 0.94 for Spring. The kindergarten 

mathematics mean score for this study’s sample was 45.28 (SD = 12.19). For reading, the sample’s 

kindergarten mean score was 61.26 (SD = 13.56). To model mathematics and reading 

achievements, we use three student-level covariates and two school-level covariates. Descriptive 

statistics of these variables are presented in Table 3.1. 
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Table 3.1. ECLS-K: 2011 Variable Descriptive Statistics 

 
Note: SD=standard deviation; MIN=minimum; MAX=maximum. 

 

3.1.2 Statistical Models 

The unexplained variance among randomly sampled clusters (e.g., schools) in outcomes of 

interest could be inferred by using multilevel models. The effects of covariates at each level could 

also be estimated. Researchers could use models with random intercepts to account for the 

correlations within clusters caused by longitudinal or clustered design (West et al., 2015). In a 

survey with multistage samples, there are always various levels of cluster. But only the lowest 

level of clustering usually has the greatest impact on individual outcome (Asparouhov & Muthén, 

2006). Furthermore, Stapleton and Kang (2016) found minor impacts could be found on inference 

and no difference could be detected even if we disregard the first stage sampling design which is 

beyond the levels in the model. For large-scale data sets, the first-stage weights are usually not 

provided, for example, ECLS-K: 2011. Hence this first stage sampling design is not considered in 

this study. Therefore, for simplicity, two-level random intercept regression models are used in this 

study to fit multilevel models in which individual students are nested in schools to two academic 
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dependent variables, reading IRT scale score, and mathematics IRT scale scores. But I would not 

take account of IRT measurement errors in the analysis. Three different two-level models are 

examined with different sets of covariates. Model 1 is an unconditional model without any 

covariates at both levels, model 2 includes all the student level predictors and model 3 is a full 

model consisting of all the student level and school level predictors. 

Model 1: unconditional model 

    Level 1: 𝑦𝑖𝑗 = 𝛽0𝑗 + 𝜀𝑖𝑗        (3.1) 

    Level 2: 𝛽0𝑗 = 𝛾00 + 𝑢0𝑗        (3.2) 

    Combined: 𝑦𝑖𝑗 = 𝛾00 + 𝑢0𝑗 + 𝜀𝑖𝑗       (3.3) 

Model 2: student model with three student-level predictors 

    Level 1: 𝑦𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗*Female + 𝛽2𝑗*SES + 𝛽3𝑗*Pretest +  𝜀𝑖𝑗   (3.4) 

    Level 2: 𝛽0𝑗 = 𝛾00 + 𝑢0𝑗        (3.5) 

    Combined: 𝑦𝑖𝑗 = 𝛾00 + 𝛽1𝑗*Female + 𝛽2𝑗*SES + 𝛽3𝑗*Pretest + 𝑢0𝑗 + 𝜀𝑖𝑗  (3.6) 

Model 3: full model including two level covariates 

    Level 1: 𝑦𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗*Female + 𝛽2𝑗*SES + 𝛽3𝑗*Pretest +  𝜀𝑖𝑗   (3.7) 

    Level 2: 𝛽0𝑗 = 𝛾00 + 𝛾01*Suburb + 𝛾02*Rural + 𝛾02*Suburban +  𝑢0𝑗  (3.8) 

    Combined: 𝑦𝑖𝑗 = 𝛾00 + 𝛽1𝑗*Female + 𝛽2𝑗*SES + 𝛽3𝑗*Pretest + 𝛾01*Suburb +   

                                𝛾02*Rural +  𝛾02*Suburban +  𝑢0𝑗 + 𝜀𝑖𝑗    (3.9)                                                                               

Since there are many factors affecting the quality of estimation in complex sampling design, 

it is noteworthy to investigate both unweighted and weighted models. In this study, all the three 

multilevel models above are explored using the following four estimation methods: 

(a) maximum likelihood estimation method with no weights (UW), 

(b) MPML using raw /unscaled weights (RW), 
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(c) MPML using cluster scaling (CS), 

(d) MPML using effective cluster scaling (ES). 

The missing data at level 1 ranges from 0.2% for female to 14.2% for math pretest. Listwise 

deletion is used for handling missing data for the empirical study. Multiple imputation can be used 

in this case, but the exact models for real data is less important here. So listwise deletion is used 

to simplify the problem. Missing data at level 2 is 3.6% for rural and suburban. Level 2 missing 

values cannot be simply removed because they have impact on the lower level. Schafter and 

Graham (2002) mentioned if the probabilities of missingness only depended on observed items, 

missing data could be assumed to be missing at random (MAR afterwards). Therefore, I assume 

missingness at level 2 here is MAR. Two methods are recommended for handling MAR data. One 

method is multiple imputation method (Robin, 1987; Enders, 2010; Howell, 2008), and the other 

is the full-information maximum likelihood (FIML) method (Danielsen, Wiium, Wilhelmsen, & 

Wold, 2010; Enders, 2010; Laukaityte & Weibert, 2018). I use FIML for handling missing data in 

this study. 

 

3.2 Simulations 

3.2.1 Simulation Design 

The informativeness (Asparouhov, 2006; Cai, 2013) and the intraclass correlation were 

found to be influential factors on the performance of weighted estimation in multilevel models 

(Asparouhov, 2006; Jia et al., 2011; Kovačević & Rai, 2003).  Monte Carlo simulation methods 

are applied to evaluate the effect of ICC and examine the performance of MPML using different 

scaling techniques in the context of two-stage informative and non-informative sampling design 
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(please see Table 3.2 Simulation Design). All the conditions are fully crossed. The full study design 

results in a total of 2 × 5 × 4= 40 simulation settings. 

 

Table 3.2. Simulation Design 

 
Note: UW=unweighted estimation method; RW=estimation method  

with raw weights; CS=estimation method with cluster scaling; ES= 

estimation method with effective cluster scaling. 

 

Five different ICC values are used in this simulation: 0.5, 0.3, 0.2, 0.1, and 0.01. The 

unconditional ICCs that may typically be found in educational and psychological research in the 

United States are in the range of 0.15 and 0.25 for academic large-scale assessments (Bloom, Bos, 

& Lee, 1999; Bloom, Richburg-Hayes, & Black, 2007; Hedges & Hedberg, 2007, 2013; Kreft & 

Yoon, 1994; Schochet, 2008). Accordingly, the values of 0.1, 0.2, and 0.3 are chosen for this study. 

The lowest ICC value found in Hedges and Hedberg (2013) is 0.02, in which students were nested 

in grades for each state. Raykov (2015) showed that the lower bound of 95% confidence interval 

of ICC could be as low as 0.014. Murry and short (1995) found that in a school-based intervention 

design, ICC values were generally smaller, in the range of 0.01 to 0.05. The current study considers 

students may be nested in school district, or even larger geographic areas, which may result in a 

lower ICC value. Therefore 0.01, a very small non-zero value, is chosen, because small ICC still 
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affects estimates of standard errors if we ignore the dependency. Musca et al. (2011) said small 

ICC would impact Type-I error dramatically. 

Different values for 𝜎̂𝑢
2 and 𝜎̂𝑒

2 are used while the total variance of y is kept fixed, 𝜎̂𝑢
2 + 𝜎̂𝑒

2 

= 60. This value is determined based on the empirical data results (See Table 3.5). Five different 

ICC values 0.5, 0.3, 0.2, 0.1, and 0.01 are obtained by setting 𝜎̂𝑢
2 to be 30, 18, 12, 6 and 0.6 

respectively, while the value of 𝜎̂𝑒
2 is 60 - 𝜎̂𝑢

2, i.e., 30, 42, 48, 54, and 59.4 correspondingly. 

3.2.2 Model 

To evaluate the performance of MPML approach for a linear two-level regression model 

under informative and non-informative sampling condition, the Monte Carlo simulation mimics 

the sampling design in ECLS-K:2011. Specifically, about 18,200 kindergarteners from 970 

schools were sampled. Overall, about 19 students were selected on average from each school. 

Mulligan et al. (2012) indicated that the school and student selection probability (i.e., sampling 

rate) is 0.02 and 0.25 respectively and the overall student selection probability is 0.02 × 0.25 = 

0.005.  All the school population are categorized into six groups based on the percentages of public 

schools in ECLS-K:2011: 5.69% of schools have students ranging from 16 to 24; 11.49% of 

schools have students ranging from 25 to 49, 43.53% of schools have students varying from 50 to 

99, 25.3% of schools varying students from 100 to 149, 8.59% of schools have students ranging 

from 150 to 199, then 5.22% of schools have more than 200 students. Then finally 150 schools 

and 3915 students are drawn from the population with the expected sampling rate for schools and 

students in ECLS-K:2011. The true values for the parameters are all obtained using the empirical 

data set ECLS-K: 2011 with maximum likelihood estimation method (see Table 3.5). Thus, the 

data are generated using the following model: 

𝑦𝑖𝑗 = 17.43 + 0.91*Female + 1.06*SES + 0.92*Pretest + 1.04*Rural + 𝑢𝑗  + 𝜀𝑖𝑗 (3.10) 
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where 𝑢𝑗  is school-level random effect and 𝜀𝑖𝑗 is student-level error term, 𝑢𝑗  and 𝜀𝑖𝑗 are normally 

distributed with mean of 0 and variance 30, 18, 12, 6, and 0.6 for 𝜎̂𝑢
2, and corresponding variance 

of 60 - 𝜎̂𝑢
2 for 𝜎̂𝑒

2. Explanatory variables (e.g., female, social economic status (SES), pretest, rural 

and suburban) are determined because they contribute significantly to the model and are also 

variables other researchers are also interested in (e.g., Hedberg, 2016; Hedges & Hedberg, 2007). 

Female follows Bernoulli distribution with probability of 0.49. Social economic status (SES) 

follows normal distribution with mean -0.05 and variance 0.66 (SD = 0.81). Pretest score follows 

normal distribution with mean 46.92 and variance 132.22 (SD = 11.50). Suburban follows 

Bernoulli distribution with probability of 0.36. Rural follows Bernoulli distribution with 

probability of 0.22. 

3.2.3 Sampling Selection 

Finite population are generated according to the model described above. The expected 

sampling rate used in this study is still 0.02 for schools and 0.25 for students as in ECLS-K: 2011, 

which results in the overall sampling rate of 0.005. 

Sampling selection is determined by whether the sampling design is informative or non-

informative. In order to introduce unequal probability sampling at both levels and make our 

sampling design informative, the present study uses the similar plan used by Asparouhov (2006), 

Cai (2013) and Koziol et al. (2017). Poisson sampling is used to select the jth school with 

probability: 

prob (Ij = 1) = 
1

1 + 𝑒𝑥𝑝 (−
𝑢̃0𝑗

2
 + 4.02)

       (3.11)                  

where the 𝑢̃0𝑗 is equal to 𝑢0𝑗 (the random intercept effect for the jth cluster) but rescaled to have 

a variance of 2. For the selected school, Poisson sampling is used to select the ith student within 

the jth school with probability: 
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prob (Ii|j = 1) = 
1

1 + 𝑒𝑥𝑝 (−
𝑒̃𝑖𝑗

 
2

 + 1.23)

.       (3.12) 

The 𝑒̃0𝑗 is equal to 𝑒0𝑗 (the residual effect for the ith student in the jth cluster) but rescaled to have 

a variance of 2. This sampling plan results in a design which is informative at both levels, because 

at both levels, the inclusion probabilities are linked to the response variable, according to the 

definition of sampling design informativeness (c.f., Fuller, 2009; Grilli & Pratesi, 2004). 

The random variable variance is rescaled in order to keep a constant level of 

informativeness across different levels of the ICC. A variance of 2 for both random variables and 

the slope coefficients (1/2) are selected to have approximately 0.3 of informativeness for both the 

school level and student level, which Asparouhov (2006) used as a moderate level of 

informativeness in his simulations. The intercept values (4.12 and 1.23 for school level and student 

level, respectively) are determined using expected sampling rates (0.02 and 0.25 for the school 

level and the student level, respectively) and the formulas above (equation 3.11 and 3.12) to obtain 

desired sample sizes. 

Under the non-informative sampling condition, 𝑢̃0𝑗 and 𝑒̃𝑖𝑗
 
 are replaced by other variables 

that are not part of the population model. Still Poisson sampling is used to select the jth school 

with probability 

prob (Ij = 1) = 
1

1+𝑒𝑥𝑝 (−
𝛽0𝑗

2
+4.02)

       (3.13)                  

where 𝛽0𝑗 ~ N (0, 2) and is not related to any variables in the model. Conditional on the selected 

school, Poisson sampling is used to select the ith student in the jth school with probability of  

prob (Ii|j = 1) = 
1

1+𝑒𝑥𝑝 (−
𝑟𝑖𝑗

 
2

+1.23)

.       (3.14) 
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where 𝑟𝑖𝑗
 
 ~ N (0, 2) and is not related to any variables in the model. Although this design uses 

unequal probability of selection, it is not informative, because the selection probability is not 

related to the response variable.  

Data are generated using the software Stata. The syntax for data generation is provided in 

APPENDIX A and APPENDIX B. 

3.2.4 Mplus and Data Analysis 

Each simulation is replicated 1000 times for each study condition. Each 1000 replications 

are analyzed in Mplus Version 8 (Muthén & Muthén, 1998-2017) using the TYPE = 

MONTECARLO option under the Mplus DATA command.  The Mplus user’s manual (Muthén 

& Muthén, 1998-2017) provides guidance on how to incorporate sampling weights and how to use 

scaling methods in a two-level model.  

  The two scaling methods that are used are referred to ECLUSTER and CLUSTER 

respectively in Mplus documentation, which correspond to effective cluster scaling and clustering 

scaling respectively in this study.  

Altogether, four estimation methods are considered: (a) unweighted estimation method 

(UW); (b) MPML method using raw/unscaled weights (RW); (c) MPML method using cluster 

scaled (CS) weights, and (d) MPML method using effective cluster scaled (ES) weights.  

Then Sandwich variance estimators (ESTIMATOR = MLR) are used in all instances. The 

TYPE option is set to TWOLEVEL, and appropriate variables are identified for the CLUSTER, 

WEIGHT, and BWEIGHT options.  For MPML models, WTSCALE and BWTSCALE are also 

specified based on different scaling methods: UNSCALED and UNSCALED are used respectively 

for raw scaling method, CLUSTER and SAMPLE for cluster scaling method, and ECLUSTER 

and SAMPLE for effective scaling method for three weighted methods respectively. For a general 
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multilevel model ignoring weighting in the present study, WTSCALE and BWTSCALE are not 

used under the VARIABLE command.  

3.2.5 Evaluation Criteria 

Empirical (absolute) Relative Bias, Root Mean Square Error (RMSE), and 95% Confidence 

Interval Coverage Rate are used as the primary criteria to estimate the quality of the performance 

of the estimators as previous simulation studies (e.g., Cai, 2013; Eideh & Nathan, 2009). In 

measurement or sampling situations, bias is defined as “the difference between a population mean 

of the measurements or test results and an accepted reference or true value” (Bainbridge, 1985). 

Then the true value can be under- or overestimated. Since large number of replications are applied 

in this study, even small values of bias may be deemed significantly different from 0. As such, the 

relative bias instead of bias is used. The relative bias is defined as 

RBias(θ̂) = 
1

θ
 (

1

1000
 ∑ (𝜃𝑖 −  θ)1000

1 ).       (3.15) 

where θ is the true value set, and 𝜃𝑖 is the estimated value in each iteration. It is noted in Muthén 

and Muthén (2002) that, if the absolute relative bias is less than 10% of the true value, then the 

parameter estimates can be considered unbiased. 

A common accuracy measure called mean square error (MSE) is the mean of the squared 

differences. It indicates how close the estimate is to the true value. This measure incorporates 

concepts of bias and precision because it equals to the sum of the variance of the estimates and the 

squared mean error. The root MSE (RMSE) tells us how far the approximation will be from the 

true value on average. RMSE is used because it can penalize large values. It is computed using the 

following formula 

RMSE(θ̂) = √
1

1000
 ∑ (𝜃𝑖 −  𝜃)21000

1 ,       (3.16)                                                                       
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where 𝜃 = 
1

1000
 ∑ 𝜃𝑖

1000
1 . The smaller the RMSE is, the better the estimate is. 

The coverage rate/probability (CR) in this study is set at 95%. It is utilized to evaluate the 

proportion of replication in each parameter estimate that the interval estimator contains the 

population parameter value (Muthén & Muthén, 1998-2017). It is recommended that the coverage 

rate should be at least 0.91 by Muthén & Muthén (2002). That is, at least 91% of replications 

having true parameter values within the 95% confidence interval. 

Mplus syntax for analysis is provided in APPENDIX C.  
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CHAPTER 4 RESULTS 

 

This chapter consists of two primary sections: one for simulation results, the other for 

empirical study results.  

 

4.1 Simulation Results 

The primary evaluation criteria are (absolute) relative bias, root mean square error (RMSE) 

and coverage rate of the interval estimators. Simulation results are depicted in Table 4.1-4.6 and 

Figure 4.1-4.16. Table 4.1-4.2 illustrate the Monte Carlo estimates of relative bias, RMSE and 95% 

confidence interval coverage rate for the fixed effects, intercept and variance components in the 

informative condition, Table 4.3-4.4 for those in the non-informative condition. Table 4.5-4.6 

display the average standard errors of the estimates and the standard deviations in the informative 

and non-informative design respectively. Figure 4.1-4.2, and Figure 4.13-4.14 plot relative bias 

for the four covariates, intercept and variance components in the informative condition, and Figure 

4.3-4.4 and Figure 4.15-4.16 for those in the non-informative condition. Dashed horizontal lines 

indicate bounds for acceptable levels of relative bias (|RB%| ≤ 10; Muthén & Muthén, 2002). 

Figure 4.5-4.6 plot RMSE for the four covariates and intercept and variance components in the 

informative design and Figure 4.7-4.8 for those in the non-informative design. Figure 4.9-4.10 plot 

coverage rate for the four covariates and intercept and variance components in the informative 

design and Figure 4.11-4.12 for those in the non-informative design. Dashed horizontal lines 

indicate the nominal coverage rate of 95%. 

Results are organized by research questions and evaluation criteria. Under each evaluation 

criteria, the results are illustrated by informative and non-informative condition respectively. 
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4.1.1 Research Question One 

Research question one allows me to evaluate the performance of weighted and unweighted 

estimators under the informative and non-informative condition in terms of (absolute) relative bias, 

RMSE, and 95% confidence interval coverage rate. Comparison between unweighted and 

weighted estimators can give us a picture understanding whether differences among them are due 

to sampling weights application and which estimator performs best.  

4.1.1.1 (Absolute) Relative Bias  

In general, all the fixed effects are estimated somewhat unbiasedly in both informative and 

non-informative conditions if the criterion of Muthén and Muthén (2002) is applied. However, a 

different story can be told for the intercept and variance components estimates. On average, the 

absolute relative bias is comparatively larger in magnitude under the informative condition than 

that in the non-informative design. The most variability in the absolute relative bias occurs for the 

school-level variance estimators in both conditions. 

4.1.1.1.1 Informative Design 

From the presented simulation results in Table 4.1 and Figure 4.1, it is evident that all the 

estimates of absolute relative bias for the four fixed effects are less than 10% of the true value and 

can be considered unbiased if the criterion of Muthén and Muthén (2002) is used across the four 

estimators. The absolute relative biases for the three student-level covariates (i.e., female, SES and 

pretest) are less than or close to 1%. Although the relative bias for the school-level covariate (i.e., 

rural) is higher than those of student-level covariates, it is still within 10% of the true value.  

Table 4.2 and Figure 4.2 show that the intercept and student-level variance are unbiasedly 

estimated (in terms of Muthén & Muthén, 2002) except for the intercept estimate in the unweighted  
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Table 4.1. RB(%), RMSE, 95% CI CR for Covariates in the Informative Design 

 
Note: RB=relative bias; RMSE=root mean square error; CR=95% confidence interval coverage rate; UW=unweighted estimation 

method; RW=estimation method with raw weights; CS=estimation method with cluster scaling; ES=estimation method with effective 

cluster scaling. 
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Table 4.2. RB(%), RMSE, 95% CI CR for Intercept and Variance Components in the Informative Design 

 
Note: RB=relative bias; RMSE=root mean square error; CR=95% confidence interval coverage rate; UW=unweighted estimation 

method; RW=estimation method with raw weights; CS=estimation method with cluster scaling; ES=estimation method with effective 

cluster scaling.
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Figure 4.1. Relative bias (%) for covariates in the informative design 

 

 

 
Figure 4.2. Relative bias (%) for intercept and variance components in the informative design 
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case. The three weighted estimators perform almost equally well since all the relative biases of the 

intercept estimates produced by them are less than 2. The unweighted estimator performs the worst 

and produces substantially larger relative bias than the weighted estimators do. As for the student-

level variance, the absolute relative biases are all less than or close to 10%. Among the four 

estimators, the unweighted method produces larger absolute relative bias than the weighted 

methods do. The cluster scaling method has the smallest values of absolute relative bias. Therefore, 

the cluster scaling method works the best and the unweighted method works the worst for the 

student-level variance in terms of (absolute) relative bias. As for the estimates of school-level 

variance, all four estimators do not perform well and have very large relative biases when the ICC 

is extremely small. To be more specific, the relative bias is as large as over 600 with the raw 

weighted method. Even for the best estimator, the unweighted one, has the relative bias of over 80, 

which is much larger than the standard used in the present study. In general, the raw weighted 

estimator performs the worst and the unweighted estimator performs the best for the school-level 

variance across all the ICC levels.  

In all, the weighted models perform quite similarly with each other and outperform the 

unweighted estimator for the intercept and student-level variance while the unweighted model has 

smaller relative bias and outperform the weighted estimators for the school-level variance. The 

intercept is always overestimated and the student-level variance is underestimated. The school-

level variance, in most cases is overestimated, except with the unweighted method and effective 

scaling method when ICC equals 0.5. The student-level variables Female and SES are 

underestimated and pretest is overestimated. School-level variable, rural, is overestimated in the 

weighted case, while underestimated in the unweighted case. 
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4.1.1.1.2 Non-Informative Design  

Table 4.3 and Figure 4.3 show that the absolute relative biases of the four covariate 

estimates are all smaller than 10% in the non-informative condition. It means that these four 

covariates are considered to be estimated unbiasedly in terms of Muthén & Muthén (2002). Also, 

the two continuous covariates have smaller absolute relative biases than the two dichotomous 

covariates do. At the same time, the unweighted method produces lower or equal absolute relative 

bias for the four fixed effects than or as the other three weighted estimators do. So, the unweighted 

estimator performs the best for all the fixed effects among the four estimators.  

The intercept is precisely estimated since all the absolute relative biases are no more than 

0.205 (see Table 4.4 and Figure 4.4). The unweighted method outperforms the other estimators 

when the ICC equals 0.01, 0.1, and 0.2, while it performs the worst when the ICC equals 0.5. 

Results also show that the student-level variance is estimated unbiasedly since the absolute relative 

biases are all less than 5% across all the estimators. Among them, the raw weighted method has 

the largest relative bias, indicating it works the worst. The effective scaling and unweighted 

method outperform the other two. As for the school-level variance, all the four estimators produce 

substantially large relative bias when the ICC is extremely small and all the estimators do not work 

well when the ICC is 0.01. Comparatively, the raw weighted method works the worst while the 

unweighted method performs the best across different levels of the ICC for the school-level 

variance estimates. 
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 Table 4.3. RB(%), RMSE, 95% CI CR for Covariates in the Non-Informative Design 

 
Note: RB=relative bias; RMSE=root mean square error; CR=95% confidence interval coverage rate; UW=unweighted estimation 

method; RW=estimation method with raw weights; CS=estimation method with cluster scaling; ES=estimation method with effective 

cluster scaling.
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Table 4.4. RB(%), RMSE, 95% CI CR for Intercept and Variance Components in the Non-Informative Design 

 
Note: RB=relative bias; RMSE=root mean square error; CR=95% confidence interval coverage rate; UW=unweighted estimation 

method; RW=estimation method with raw weights; CS=estimation method with cluster scaling; ES=estimation method with effective 

cluster scaling.
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Figure 4.3. Relative bias (%) for covariates in the non-informative design 

 

 
Figure 4.4. Relative bias (%) for intercept and variance components in the non-informative 

design 
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4.1.1.2 RMSE  

An overview of the RSME of the fixed effect point estimators and the intercept and 

variance component estimators across informativeness and ICCs is provided in Table 4.1-4.4, 

Figure 4.5-4.8. There is not much difference on the RMSE for the fixed effects between  

the informative and non-informative condition. However, on average, the RMSE is comparatively 

larger under the informative condition than those in the non-informative condition. 

4.1.1.2.1 Informative Design 

Compared with weighted estimators, the unweighted estimator has smaller RMSE value 

for the four covariates under the informative condition (see Table 4.1 and Figure 4.5). The 

weighted estimates of the RMSE show almost the same patterns for the four covariates. The 

unweighted estimator performs the most efficiently among the four estimators. 

As the relative biases of the intercept and variance components, similar results are obtained 

for the RMSE. For example, the unweighted method has comparatively much larger RMSE for the 

intercept than the weighted estimators do and the three weighted estimators perform very much 

similarly to each other (see Table 4.2 and Figure 4.6). The unweighted estimator produces the 

largest RMSE for the student-level variance and performs the least efficiently among the four. The 

cluster scaling method performs the most efficiently. As for the school-level variance, the 

unweighted estimator has the smallest RMSE and performs the most efficiently among the four. 

The raw weighted estimator has the least efficiency.  

In all, the unweighted estimator performs the worst for the intercept and student-level 

variance estimates, but performs the best for school-level variance estimates in terms of RMSE in 

the informative design. 
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Figure 4.5. RMSE for covariates in the informative design 

 

   
Figure 4.6. RMSE for intercept and variance components in the informative design 
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4.1.1.2.2 Non-Informative Design 

Table 4.3 and Figure 4.7 show that the unweighted method has the smaller RMSE for the 

four covariates than the weighted methods do, and in most cases, there is not much difference 

across the weighted methods for the four covariates at different levels of the ICC. Therefore, the 

unweighted method performs the best among the four estimators for all the fixed effects.  

Apparently, the unweighted method has the smallest RMSE for the intercept and the two variance 

components across all the conditions in the non-informative condition (see Table 4.4 and Figure 

4.8) and performs the most efficiently among the four estimators across all the levels of the ICC. 

And the raw weighted method produces the largest RMSE among the four estimators for the 

intercept and the two variance component estimates. 

 

 
Figure 4.7. RMSE for covariates in the non-informative design
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Figure 4.8. RMSE for intercept and variance components in the non-informative design 

 

4.1.1.3 Coverage Rate 

An overview of coverage of the fixed effects, intercept and variance component estimators 

across informativeness and ICCs is provided in Table 4.1-4.4 and Figure 4.9-4.12. All the fixed 

effects are estimated without much bias (<10%) in both the informative and non-informative 

conditions if the criterion of Muthén & Muthén (2002) is applied. The corresponding coverage 

rates for them are good and not much difference can be found among them. For the intercept and 

variance components, on average, their coverage rates are much lower under the informative 

condition than those under the non-informative condition. Under the informative condition, the 

most variability in coverage occurs for the intercept estimators, whereas under the non-informative 

condition, the most variability in coverage occurs for the school-level estimators. 
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4.1.1.3.1 Informative Design 

Because the four covariates are precisely or slightly biasedly estimated, the coverage rates 

for them are all above or close to 0.91, especially for the three level-one predictors (see Table 4.1 

and Figure 4.9).  

Because the unweighted method produces substantially larger biases for the intercept and student-

level variance estimates, this leads to very poor coverage rates for both of them (see Table 4.2 and 

Figure 4.10): with the coverage rate of 0 for the intercept and less than 3% for the student-level 

variance. The three weighted methods perform almost equally well and have the coverage rates of 

around or over 0.91 for the intercept. However, even the best student-level variance estimator, the 

cluster scaling estimator, has the coverage rates no more than 0.63. For the school- level variance 

estimates, raw weighted method performs the worst while the unweighted estimator performs the 

best. 

 

 
Figure 4.9. Coverage rate for covariates in the informative design 
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Figure 4.10. Coverage rate for intercept and variance components in the informative design 

 

4.1.1.3.2 Non-Informative Design 

The coverage rates for the four covariate estimates in the non-informative condition are all 

above or close to 0.95. Among the four estimators, the unweighted method performs the best.  

The unweighted method has the highest coverage rates for the intercept among the four 

estimators as well and they are all above or around 0.94. As for the student-level variance, the 

effective scaling method has the highest coverage rates, which are around 0.92 whereas the raw 

weighted method has the lowest coverage rates, which are around 0.65. The unweighted estimator 

has very similar coverage rate to the effective scaling method. The coverage rates for the school-

level variance with unweighted method are the highest among all the estimators and are all larger 

than 0.93 except when the ICC is 0.01, while the raw weighted has the smallest one.  
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Figure 4.11. Coverage rate for covariates in the non-informative design 

 

 
Figure 4.12. Coverage rate for intercept and variance components in the non-informative design 
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4.1.2 Research Question Two 

Research question two addresses the ICC effect on the different estimation methods in the 

informative and non-informative design. 

4.1.2.1 (Absolute) Relative Bias 

4.1.2.1.1 Informative Design  

Table 4.1 and Figure 4.13 show that, as the ICC increases, the absolute relative biases for 

the two continuous covariates (e.g., SES and pretest) decrease. For the covariate female, there is 

no monotonous pattern for its relative bias. As the ICC increases, it increases first and then starts 

to decrease. For the covariate rural, the relative bias increases as the ICC increases in the weighted 

case, while the absolute relative bias decreases in the unweighted case. Therefore, for all the fixed 

effects, there is no overall consistent pattern.  

It is evident (see Figure 4.14) that the absolute relative bias for the intercept estimate with 

unweighted method increases as the increase of ICC, but no consistent monotonous pattern can be 

found for the  relative biases for the intercept estimate with the weighted methods and they do not 

vary much across the weighted methods at each different levels of the ICC (see Table 4.2). The 

absolute relative biases for the student-level variance estimates decrease as the ICC decreases with 

all the four estimators, but the decrease rate is very tiny and hard to find from Figure 4.14. There 

is an obvious increase pattern in the relative bias of the school-level variance estimates as the ICC 

decreases with the four estimators (see Table 4.2 and Figure 4.14). 
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Figure 4.13. Relative bias (%) for covariates in the informative design 

 

 
Figure 4.14. Relative bias (%) for intercept and variance components in the informative design 
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4.1.2.1.2 Non-Informative Design  

Clear patterns can be found under the non-informative sampling design. Table 4.3 and 

Figure 4.15 indicate as the ICC increases, the absolute relative bias decreases for the three student-

level covariates, and increases for rural, the school-level covariate. 

Simulation results show that as the increase of the ICC, the absolute relative bias for the 

intercept decreases with the three weighted methods whereas it increases with the unweighted 

model (see Table 4.4 and Figure 4.16). As for the relative bias of student-level variance, it 

decreases as the ICC decreases, but the decrease rate is so small that similar patterns hold for the 

estimators across different ICC values. The relative bias for the school-level variance increases as 

the decreases of the ICC. 

 

 
Figure 4.15. Relative bias (%) for covariates in the non-informative design 
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Figure 4.16. Relative bias for intercept and variance components in the non-informative design 

 

4.1.2.2 RMSE 

4.1.2.2.1 Informative Design 

Contrary to the relative bias, there are clear patterns of RMSE for all the fixed effects (see 

Table 4.1 and Figure 4.5). As the ICC increases, the RMSE decreases for all the student-level fixed 

effects, and increases for the school-level fixed effect with all the estimators.  

Table 4.2 and Figure 4.6 show that the RMSE for the intercept is increasing as the ICC 

increases. The increase rate is quite obvious with the unweighted method but it is so small with 

the three weighted methods that not much variation can be found across different ICC values. As 

for the variance components, there are clear patterns for both of them. As the ICC increases, the 

RMSE of the student-level variance decreases whereas the RMSE of the school-level variance 

increases. 
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4.1.2.2.2 Non-Informative Design 

The RMSE decreases for the three student-level covariates, and increases for rural, the 

school-level covariate as the ICC increases with all the four estimators (see Table 4.3 and Figure 

4.7).  

Figure 4.8 shows that the RMSE for the intercept remains almost unchanged across 

different levels of the ICC with the four estimators, but Table 4.4 shows that the RMSE does 

increase as the increase of the ICC consistently. It is clear that as the ICC increases, the RMSE for 

the student-level variance decreases whereas the RMSE for the school-level variance increases 

with all the estimators. 

4.1.2.3 Coverage Rate 

4.1.2.3.1 Informative Design 

Table 4.1 and Figure 4.9 show as the increase of the ICC, there is not much variation on 

the coverage rates for all the fixed effects.  

The coverage rate for the intercept and student-level variance remains almost the same as 

the ICC increases (see Table 4.2 and Figure 4.10). For the school-level variance, although the 

coverage rate changes as the increase of ICC, no consistent pattern can be seen for the estimators 

except for with the raw weighted method. Overall, coverage rate is not sensitive to the change of 

the ICC in the current case. 

4.1.2.3.2 Non-Informative Design 

No obvious ICC effect can be found in terms of the coverage rate for all the parameter 

estimates except for school-level variance (see Table 4.3-4.4, and Figure 4.11-4.12). The coverage 

rates for the fixed effects, intercept, and student-level variance remain almost unchanged as the 

increase of the ICC. Although there are some variations of the coverage rates for the school-level 
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variance, there is no clear pattern with the four estimators. For example, the coverage rates with 

the unweighted model and cluster scaling method increase first and then decreases later as the 

increase of the ICC. The coverage rate keeps on increasing with the effective scaling method and 

decreasing with the raw weighted method as the decrease of the ICC. In sum, the effect of ICC 

cannot be found for the all the parameters in terms of the coverage rate in the non-informative 

condition. 

4.1.3 Simulated Standard Errors and Standard Deviations 

If we tend to repeat the Monte Carlo simulation and tally the sample mean each time, a 

normal distribution (based on Central Limit Theorem) would result in the distribution of the 

sample mean. To assess how well the standard errors of the estimates approximate the true 

sampling variation, the sample standard deviation of each replicate, that is, the Monte Carlo 

standard deviation, can be compared to the average of the estimated standard errors. We might 

expect the sample standard deviation, an approximation to the true sampling variation, to be “close” 

to and the average of standard errors.  It means that the standard error is a good estimate of the 

standard deviation of the normal distribution if the sample size is sufficiently large.  The 

differences are calculated between the standard deviations and averaged standard errors of 1000 

point estimates for all the seven parameters: four regression coefficients for female, SES, pretest 

and rural, intercept, and two random effects (the student-level variance and school-level variance). 

Table 4.5 presents the results of standard deviations of simulation and standard errors of estimates 

in the informative sampling design. The differences between them for the four fixed effects and 

intercept are on the second or even third decimal place. The differences for student-level variance 

and school-level variance are a little bit larger, but still they are less than or close to 1. Clearly, the 
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unweighted method produces the smallest standard errors and works best compared with the 

weighted estimators. 

Table 4.6 contains the results of standard deviations of simulation and standard errors of 

estimates in the non-informative sampling design. It tells us the same story as in the informative 

setting. The differences for all the parameter estimates are even smaller, and the largest absolute 

difference is 0.273, indicating the estimation performs quite well. Still, the unweighted method 

has the smallest standard errors and performs best compared with the three weighted models. 
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Table 4.5. Simulation Standard Deviations and Standard Errors of Estimates in the Informative 

Design 

 
Note: UW=unweighted estimation method; RW=estimation method with raw weights; 

CS=estimation method with cluster scaling; ES=estimation method with effective cluster scaling; 

SD=standard deviation; SE=standard error; Diff=difference. 
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Table 4.6. Simulation Standard Deviations and Standard Errors of Estimates in the Non-

Informative Design 

 
Note: UW=unweighted estimation method; RW=estimation method with raw weights; 

CS=estimation method with cluster scaling; ES=estimation method with effective cluster scaling; 

SD=standard deviation; SE=standard error; Diff=difference. 
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4.2 Results for ECLS-K:2011 

First, the informativeness of the weights is examined following Laukaityte and Wiberg 

(2018).  The student-level effective sample sizes 𝑛𝑗
𝑒𝑓𝑓

are all smaller than the actual sample sizes 

except those schools which have only one student. The school-level effective sample size 𝑁𝑒𝑓𝑓 is 

614, which is smaller than the actual number of schools. Therefore, both level weights are 

informative and both level weights would affect the results of the multilevel analysis. 

Three two-level HLM models with different sets of covariates are used to fit two dependent 

variables: reading achievement scores and mathematics achievement scores. The first model is a 

null model, the second is the model with student-level predictors (I label it as student model), and 

the third model is a full model with student-level and school-level predictors included. Table 4.7 

presents the results of the unweighted and weighted null models. Even this simple model shows 

there are important differences in the estimates of the variance components. Having no weights 

produces the largest estimates of student-level variance, whereas using raw weights produces the 

largest estimates of school-level variance. The estimates of intercept are found to be in the same 

direction and have similar sizes to each other across the four estimators in reading and mathematics. 

Still, the weighted intercept estimates are consistently larger than unweighted estimate. Overall, 

the unweighted method has the smallest standard errors and largest test statistics consistently 

among the four estimators. In addition, the two scaling methods perform more similarly with much 

more similar results of point estimates, standard errors, and consequently the test statistics. 

The ICC (see Table 4.7) shows 19.6% and 16.2% of the total variance in mathematics and 

reading achievement are attributable to schools. Based on Equation 2.15, the design effects are 

13.61 and 13.65 for mathematics and reading respectively. They are greater than 2, indicating that 

using multilevel model to analyzed data here is reasonable. 
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Table 4.7. Null Model for ECLS-K: 2011 Mathematics and Reading 

 
Note: UW=unweighted estimation method; RW=estimation method with raw  

weights; CS=estimation method with cluster scaling; ES=estimation method with  

effective cluster scaling; SE=standard error. 

*p < .05; **p < .01; ***p < .001. 

 

The results of the model with student-level predictors are depicted in Table 4.8. Contrary 

to the null model, the intercept estimates in the weighted models are smaller than those in the 

unweighted model. As in the null model, the unweighted model produces the largest estimate of 

student-level variance and the raw weighted model produces the largest estimate of school-level 

variance. Furthermore, the indices of goodness of fit AIC, BIC, and deviance are substantially 

larger when raw weighted estimation method is applied. Compared with the null model, the 

standard errors for the intercept increase, while the standard errors for student-level and school-

level variance decrease. The within-school variance decreases by 67% for both mathematics and 

reading, the between-school variance decrease varies from by 68% to 72% for mathematics, and 

from by 61% to 64% for reading. Similar results are obtained when both student-level and school-

level weights are used in the model. The standard errors of all the parameters with the unweighted 

method are consistently smaller than those of weighted methods, and the test statistics of the 
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unweighted estimator consistently larger than those of the weighted estimators, as expected. The 

significance is stable for all the parameters as well.  

 

Table 4.8. Model with Student-Level Predictors for ECLS-K: 2011 Mathematics and Reading 

 
Note: UW=unweighted estimation method; RW=estimation method with raw weights; 

CS=estimation method with cluster scaling; ES=estimation method with effective cluster  

scaling; SE=standard error. 

AIC: Akaike Information Criteria; BIC=Bayesian Information Criteria. 

*p < .05; **p < .01; ***p < .001. 

 

Table 4.9 reports the results of the full model. The covariate suburban is found not to 

contribute significantly to the model for both reading and mathematics data. Another model 

excluding suburban is also run. These two models are then compared using likelihood ratio test: 
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Table 4.9. Full Model for ECLS-K: 2011 Mathematics and Reading 

 
Note: UW=unweighted estimation method; RW=estimation method with raw weights; 

CS=estimation method with cluster scaling; ES=estimation method with effective cluster  

scaling; SE=standard error. 

AIC: Akaike Information Criteria; BIC=Bayesian Information Criteria. 

*p < .05; **p < .01; ***p < .001. 

 

one with suburban and one without. No significant result is found. Therefore, I simplify the model 

and include the three student-level predictors and only one school-level predictor rural in the model 

as full model in this study. The findings from comparison of weighted and unweighted analyses 

are similar to the those obtained from the model with only student level predictors. The estimates, 
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standard errors, and consequently the test statistics do not show much differences between the full 

model and student model. However, one can see that the significance remains unchanged for all 

the parameters except for school-level covariate rural. It changes, from being significant at 0.01 

with raw weighted model to being significant at 0.001 with the other three models for mathematics 

data. For reading data, the estimate for rural is significant at 0.001 with unweighted model, but it 

changes to be significant at 0.01 with other three weighted models.  

In general, for both reading and mathematics data in ECLS-K:2011, using weighted 

approaches produce larger standard errors and smaller test statistics than unweighted model. Hah-

Vaughn (2005) pointed out that “the larger standard errors and resulting smaller test statistic values 

generated suggest that, given a different model, the chance of committing Type I error will increase 

substantially when weights are used, although rejection of the hypotheses remain the same across 

all the models”. Among the weighted approaches, the raw weighted method produces larger 

standard errors than the other two weighted methods do. The two scaling methods perform quite 

similarly for all the parameters in all models. 
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CHATPER 5 SUMMARY AND DISCUSSION 

 

This chapter provides a summary, a discussion and limitations of the results. It consists of 

four sections. The first section summarizes the research objectives, and results. The second section 

presents the discussion of major findings, followed by the implications. Limitations of this study 

and directions for future research are discussed in the final section. 

 

5.1 Summary of This Study 

The primary aim for this study is to examine the performance of the four estimators and 

analyze the impact of sampling weights in multilevel models in the context of two-stage 

informative and non-informative sampling designs. Large-scale data in social science usually 

adopt complex sampling designs, such as clustering and unequal probability of selection, which 

bring challenges in statistical analysis. Using multilevel models to analyze complex large-scale 

assessment data accounting for clustering is becoming more and more popular, but it is still a 

question in when and how to use sampling weights in such models, to correct for unequal 

probability of selection. For example, there is controversy whether to use weight or not. It has long 

history arguing this issue between model-based and design-based schools. Even if we have 

determined to use weights, for instance, in a two-level model, using single-level weight derived 

from the product of the weights from each level, or using multilevel weights is debatable. I use 

multilevel weights in this study because single-level weight may not carry adequate information 

to correct for unequal probability of selection. The analysis with real data shows that incorporating 

sampling weights in the model does produce different parameter estimates, standard errors, test 

statistics and even sometimes the significance of a certain variable from those obtained when both 



64 

 

levels are informative. Weighted models have larger standard errors and smaller test statistics than 

unweighted model does. And the cluster scaling and effective scaling method produce more similar 

results compared with the unweighted and raw weighted model. Therefore, caution should be 

exercised while weights are applied in the multilevel analysis.  

In this study, Monte Carlo simulations are conducted to evaluate the performance of the 

four estimation methods in the informative and non-informative sampling design in a linear 

random-intercept model, because prior studies (e.g., Cai, 2013) found that the estimates were 

biased if the informativeness was ignored. Summary of the comparisons of the estimators are 

depicted in Table 5.1. Substantial differences are found among these four estimation methods 

while estimating the intercept and variance components. In the informative design, in terms of bias, 

the weighted estimators outperform the unweighted for the intercept and student-level variance 

estimation, whereas the unweighted estimator works the best for school-level variance estimation. 

Although the three weighted estimators produce almost unbiased estimates for the intercept and 

student-level variance, they perform quite differently. The three weighted perform almost equally 

well for intercept estimation, while the cluster scaling estimator performs the best for student-level 

variance estimation. Raw weighted method works the worst and should be used with caution when 

estimating school-level variance. The weighted methods give better coverage rates for the intercept 

and student-level variance, but unweighted method does for school-level variance in the 

informative design. In the non-informative setting, the unweighted method gives the better 

coverage rate for all the parameter estimates. The unweighted estimator performs the best or the 

second best in terms of relative bias in the non-informative condition. Furthermore, including 

sampling weights decreases the RMSE for the intercept and student-level variance and increase  
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Table 5.1. Summary of Comparisons of the Estimation Methods 

 
Note: RB=relative bias; RMSE=root mean square error; 95%CR=95% confidence interval coverage rate.
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the RMSE for the school-level variance in the informative design. However, it increases the RMSE 

for the intercept, student-level variance and school-level variance in the non-informative design. 

Therefore, the unweighted method works the most efficiently for all the parameter estimates across 

different levels of the ICC in the non-informative design. Tentatively, the cluster scaling estimator 

and effective scaling estimator might be preferred in the informative condition.  

ICC is one of the factors that influences the quality of estimation (e.g., Asparouhov & 

Muthén, 2006; Kovačević & Rai, 2003). Therefore, it is manipulated in this study. Simulation 

results are summarized in Table 5.2 and it shows, the effect of the ICC is related to relative bias 

and RMSE, but not sensitive to coverage rate. As the ICC increases, the bias for student-level 

variance increases and the bias for school-level variance decreases in both conditions. These 

changes are quite obvious for school-level variance, but hard to see for student-level variance. No 

monotonic patterns for the relative bias can be found as the ICC increases for fixed effects and 

intercept in the informative condition, but clear patterns can be seen for fixed effects and intercepts 

as the increase of the ICC. 

RMSE shows the similar patterns in both conditions for all the parameters. As the ICC 

increases, the RMSE decreases for the three student-level fixed effects and variance, and increases 

for the school-level fixed effect and variance with all the four estimators. 

Take the following scenario when ICC = 0.3 for example. In the informative condition, 

when ICC = 0.3, the simulation results show that the cluster scaling estimator works best for the 

intercept and student-level variance in terms of relative bias, RMSE and coverage rate. Although 

it is not the best estimator for the school-level variance estimates among the weighted estimators, 

it gives the best coverage rate and just slightly higher RMSE compared with the best weighted 

estimator, the effective scaling estimator. In addition, it produces unbiased estimates for the  
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Table 5.2. ICC Effect 

 
Note: RB=relative bias; RMSE=root mean square error; 95%CR=95% confidence interval coverage rate.
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school-level variance. Therefore, in the informative setting, cluster scaling estimator is preferred 

in most cases. In the non-informative condition, when ICC is 0.3, the unweighted estimator has 

the least (absolute) relative bias, RMSE and highest coverage rate in almost all the cases. Therefore, 

the unweighted estimator is preferred in the non-informative condition. 

 

5.2 Discussion of Results 

The design of current simulation captures the general features of large-scale data sets 

available in social studies, for example, large number of clusters with different sizes, unequal 

probability of selection, and moderate informativeness values. Some of the findings from the 

previous studies are confirmed, and some are not in this study. For example, prior studies showed 

that the unweighted method produces biased estimate for the intercept and school-level variance 

when the sampling design is informative at both levels (Cai, 2013; Pfeffermann et al., 1998). 

Pfeffermann et al. (1998) pointed out that when the design is informative at the cluster level, the 

unweighted method only produces biased estimates for intercept and school-level variance, not for 

student-level variance. However, the current study shows that the unweighted method works quite 

well most of the time for school-level variance estimation, and it only does not work well when 

the ICC is extremely small in the informative design. None of the estimators works well when the 

ICC is extremely small. This is expected because, based on the equation 3.15, we have a very small 

denominator, 0.6, which results in a very large relative bias compared with relative bias when ICC 

is comparatively larger. As for student-level variance, although the unweighted estimator works 

the worst in the informative condition, it produces unbiased estimates. In addition, Cai (2013) 

pointed out that including the sampling weights substantially increases the MSE. This is only 

confirmed in the non-informative setting, but not in the informative setting in the current study. 
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All the fixed effects are nearly unbiased estimated in terms of Muthén & Muthén (2002). This is 

confirmed in both studies. In general, including sampling weights still produces biased estimates. 

This is confirmed by all the studies. Asparouhov and Muthén (2007) reported that the MPML 

estimator outperforms substantially the other estimators. This is partially confirmed in the present 

study, since cluster scaling estimator performs better than others in the informative condition, 

while raw weighted estimator needs to be used with caution, especially when we estimate variance 

components in the informative condition.  

Previous studies (e.g., Asparouhov & Muthén, 2006; Kovačević & Rai, 2003) found that 

the bias increases for all the parameters as the ICC decreases. This is only partially confirmed in 

the current study. Current results do not show monotonic patterns of the relative bias for the fixed 

effects and intercept, but bias increases for student-level variance and decreases for school-level 

variance as the ICC increases in the informative condition. In the non-informative condition, the 

increase of the ICC decreases the bias for student-level fixed effects and variance, and increase the 

bias for school-level fixed effect and variance. Therefore, the tentative conclusion is that weighted 

estimators with cluster scaling and effective scaling weights are preferred when the ICC is not 

extremely small in the informative design and unweighted method could be used in the non-

informative design. 

The differences above might be due to the different settings of simulation. For example, 

either the estimators are examined using random-intercept model with no covariates at both levels 

(cf., Asparouhov & Muthén, 2006; Kovačević & Rai, 2003) or the linear random-intercept model 

is used with no school-level predictors (cf., Cai, 2013). Therefore, it is possible that our results 

might not be replicated in different settings.  
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5.3 Implications 

The major finding from this study confirms that including sampling weights in the analysis 

produce different estimates in the informative sampling design and the unweighted method works 

best in the non-informative sampling design. The fair comparison between the weighted and 

unweighted, and between the informative and non-informative design might indicate to use 

sampling weights in the informative design and use unweighted estimation method in the non-

informative sampling design. Calculation of informativeness is necessary since it gives us the 

extent to which the design is informative and indicate whether it is necessary to include sampling 

weights. Second, researchers should examine the ICC and evaluate the magnitude and significance 

of variance components to determine whether multilevel modeling is necessary. Lastly but not the 

least, caution should be taken in using sampling weights when ICC is extremely small.   

 

5.4 Limitations and Future Studies 

There are several limitations in this study. The primary limitation is that only a simple 

linear random-intercept model is applied. It is more real if the slopes are random and different 

types of outcome variables, such as Poisson or nominal, may be used. This may provide us with a 

clearer picture which estimator works best. Second, besides scaling the sampling weights, 

trimming weights can be an alternative, which is not considered in this study. Third, I just roughly 

divide the situation into two: informative or non-informative. It might be better idea if different 

levels of informativeness, for example, low, medium and high levels of informativeness are all 

included in the analysis. This might tell us under which condition of informativeness, the 

parameter estimates can be estimated unbiasedly. Fourth, multistage sample selection is more 

complicated in real life. Therefore, the simulation design may not well reflect the reality. 
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Not all the findings in the prior studies are confirmed in this study. Therefore, more studies 

are needed to evaluate MPML performance in different settings.  For example, different types of 

outcome variable, such as discrete response or count data can be used. There are more and more 

research focusing on them (Chaudhuri, Handcock, & Rendall, 2008; Natarajan, Lipsitz, 

Fitzmaurice, Moore, & Gonin, 2008; Nordberg, 1989; Rodriguez & Goldman, 1995, 2001), or 

higher level HLM models (e.g., three-level model) can be used. Furthermore, as is true with any 

simulation, conclusions from this study are restricted to a particular sampling design and modeling 

context. In order to see if comparable findings happen in alternative situations, future research is 

necessary. In this study, the simulation is conducted on the basis of a large of number of clusters. 

Small samples are possible in practice. The performance of estimators might suffer from the small 

number of clusters (Asparouhov & Muthén, 2005; Li & Redden, 2015; Mass & Hox, 2005). 

Research to examine the performance of different estimation methods in unideal conditions is 

necessary. Above all, future research is needed to enhance weighted multilevel models. 

Asparouhov & Muthén (2010) stated that Bayesian estimation method could be an alternative with 

maximum likelihood estimation methods when sample sizes are small if we have informative 

priors, but few comparisons were made in the context of informative sampling designs.
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APPENDIX A. Stata Simulation Syntax in the Informative Sampling Design 

 

/***************************************************************************/ 

set more off 

local info 30 18 12 6 0.6 /*level 2 variance*/ 

forvalues i = 1/1000 {/*to repeat the process 1000 times*/ 

 display "iteration `i'" 

            foreach j in `info' { 

  clear  

  display "l2var `j'" 

  *generate school level data 

  quietly: set seed 1`i'1 

  quietly: set obs 75000 

  quietly: gen uj = rnormal(0, sqrt(`j')) /*need sd here, so need to square root j*/ 

  *uj recaled 

  quietly: egen ujmean = mean(uj) 

  quietly: egen ujsd = sd(uj) 

  quietly: gen uj_scaled = ((uj-ujmean)/ujsd)*sqrt(2) 

  quietly: gen pj = 1/(1+exp(4.12-uj_scaled/2)) 

  quietly: gen wj = 1/pj 

  quietly: gsample 150 [aw=pj] /*draws a unequal probability sample with sampling 

probabilities pj.*/ 

  quietly: gen index = 1  

  quietly: gen school = _n 

   

  *school covariates  

  quietly: gen rand = runiform() 

  quietly: gen locale = cond(rand < 0.22, 1, cond(rand < 0.58, 2, 3)) 

  quietly: gen rural = locale==1 

  quietly: gen suburb = locale==2 

  quietly: gen urban = locale==3 

  *expand students based on percentages of different types of schools 

  quietly: expand 16+int((24-10+1)*runiform()) if school<=8  /*5.69% of 150 

schools: 8*/ 

  quietly: expand 25+int((49-25+1)*runiform()) if school>=9 &school<=25   /*11.49% 

of 150 schools: 17*/ 

  quietly: expand 50+int((99-50+1)*runiform()) if school>=26 & school<=91 

/*43.53% of 150 schools:66*/ 

  quietly: expand 100+int((149-100+1)*runiform()) if school>=92 & school<=129 

/*25.48% of 150 schools:38*/ 

  quietly: expand 150+int((199-150+1)*runiform()) if school>=130 & school<=142  

/*8.59% of 150 schools:13*/ 
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  quietly: expand 200+int((600-200+1)*runiform()) if school>=143 & school<=150  

/*5.22% of 150 schools:8*/   

  quietly: bysort school: generate student = _n 

  *generate student data 

  quietly: gen eij = rnormal(0, sqrt(60-`j')) 

  *eij recaled 

  quietly: egen eijmean = mean(eij) 

  quietly: egen eijsd = sd(eij) 

  quietly: gen eij_scaled = ((eij-eijmean)/eijsd)*sqrt(2)   

  quietly: gen pi_j = 1/(1+exp(1.23-eij_scaled/2)) 

  quietly: gen wi_j = 1/pi_j 

  quietly: gen pij = pi_j*pj 

  quietly: gen wij = 1/pij 

  *generate correlated data for female, SES and pretest  

                        quietly: local p = 0.49 

                        quietly: matrix m = (0, -0.05, 46.92)  

                        quietly: matrix sd = (0.5, 0.81, 11.50) 

                        quietly: matrix input c = (1, 0.005, 1, 0.07, 0.409, 1) 

                       quietly: corr2data female SES pretest, corr(c) means(m) sds(sd) cstorage(lower) 

  /* Steps 2-3 for the one Bernoulli variable */ 

                       quietly: replace female = cond(normal(female)>=(1-`p'),1,0) 

  /*merge two level data*/ 

  quietly: gen yij = 17.43+0.91*female+1.06*SES + 0.92*pretest+1.04*rural+uj+eij 

  quietly: rename yij achieve 

  quietly: rename wj schwgt 

  quietly: rename wi_j stdwgt  

  *select final sample 

  quietly: keep if index == 1 

  quietly: gsample 3915 [aw=pi_j]  

  if `j' == 30 local r = 1 

  if `j' == 18 local r = 2 

  if `j' == 12 local r = 3 

  if `j' == 6 local r = 4 

  if `j' == 0.6 local r = 5 

  quietly: keep student schwgt school locale rural suburb urban stdwgt female SES 

pretest achieve 

  gen iteration = `i' 

****************************************************************************/
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APPENDIX B. Stata Simulation Syntax in the Non-Informative Sampling Design 

 

/******************************** 

set more off 

local info 30 18 12 6 0.6 /*level 2 variance*/ 

forvalues i = 1/1000 {/*to repeat the process 1000 times*/ 

 display "iteration `i'" 

            foreach j in `info' { 

  clear  

  display "l2var `j'" 

  *generate school level data 

  quietly: set seed 1`i'1 

  quietly: set obs 75000 

  quietly: gen uj = rnormal (0, sqrt(`j'))  

  *betaj recaled 

  quietly: gen betaj = rnormal (0, sqrt(2)) 

  quietly: egen betajmean = mean(betaj) 

  quietly: egen betajsd = sd(betaj) 

  quietly: gen betaj_scaled = ((betaj-betajmean)/betajsd)*sqrt(2) 

  quietly: gen pj = 1/(1+exp(4.12-betaj_scaled/2)) 

  quietly: gen wj = 1/pj 

  quietly: gsample 150 [aw=pj] /*draws a unequal probability sample with sampling 

probabilities pj.*/ 

  quietly: gen index = 1  

  quietly: gen school = _n   

  *school covariates  

  quietly: gen rand = runiform() 

  quietly: gen locale = cond(rand < 0.22, 1, cond(rand < 0.58, 2, 3)) 

  quietly: gen rural = locale==1 

  quietly: gen suburb = locale==2 

  quietly: gen urban = locale==3 

  *expand students based on percentages of different types of schools 

  quietly: expand 16+int((24-10+1)*runiform()) if school<=8  /*5.69% of 150 

schools: 8*/ 

  quietly: expand 25+int((49-25+1)*runiform()) if school>=9 &school<=25   /*11.49% 

of 150 schools: 17*/ 

  quietly: expand 50+int((99-50+1)*runiform()) if school>=26 & school<=91 

/*43.53% of 150 schools:66*/ 

  quietly: expand 100+int((149-100+1)*runiform()) if school>=92 & school<=129 

/*25.48% of 150 schools:38*/ 

  quietly: expand 150+int((199-150+1)*runiform()) if school>=130 & school<=142  

/*8.59% of 150 schools:13*/ 
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  quietly: expand 200+int((600-200+1)*runiform()) if school>=143 & school<=150  

/*5.22% of 150 schools:8*/ 

  quietly: bysort school: generate student = _n 

  *generate student data 

  quietly: gen eij = rnormal(0,sqrt(60-`j')) 

  *rij recaled 

  quietly: gen eij = rnormal(0,sqrt(60-`j')) 

  quietly: gen rij = rnormal(0,sqrt(2)) 

  quietly: egen rijmean = mean(rij) 

  quietly: egen rijsd = sd(rij) 

  quietly: gen rij_scaled = ((rij-rijmean)/rijsd)*sqrt(2)   

  quietly: gen pi_j = 1/(1+exp(1.23-rij_scaled/2)) 

  quietly: gen wi_j = 1/pi_j 

  quietly: gen pij = pi_j*pj 

  quietly: gen wij = 1/pij 

  *generate correlated data for female, SES and pretest  

                       quietly: local p = 0.49 

                       quietly: matrix m = (0, -0.05,46.92)  

                       quietly: matrix sd = (0.5,0.81,11.50) 

  quietly: matrix input c = (1, 0.006, 1, 0.07, 0.409, 1) 

  quietly: corr2data female SES pretest, corr(c) means(m) sds(sd) cstorage(lower) 

  /* Steps 2-3 for the one Bernoulli variable */ 

                        quietly: replace female = cond(normal(female)>=(1-`p'),1,0) 

  /*merge two level data*/ 

  quietly: gen yij = 17.43+0.91*female+1.06*SES + 0.92*pretest+1.04*rural+uj+eij 

  quietly: rename yij achieve 

  quietly: rename wj schwgt 

  quietly: rename wi_j stdwgt  

  *select final sample 

  quietly: keep if index == 1 

  quietly: gsample 3915 [aw=pi_j]  

  if `j' == 30 local r = 1 

  if `j' == 18 local r = 2 

  if `j' == 12 local r = 3 

  if `j' == 6 local r = 4 

  if `j' == 0.6 local r = 5 

  quietly: keep student schwgt school locale rural suburb urban stdwgt female SES 

pretest achieve 

  gen iteration = `i' 

 } 

} 

 

************************************************************************/
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APPENDIX C. Mplus Syntax 

 

/*************************Mplus VERSION 8*****************************/ 

/**************** *******Unweighted estimation method*********************/ 

Title: READING with NO weights;  

Data: File is iteration_list.csv; 

        Type = MONTECARLO;  

Variable: Names are 

       schwgt school locale rural suburb urban student stdwgt female 

       SES pretest achieve iteration; 

     USEVARIABLES are achieve school female SES pretest rural; 

     CLUSTER = school; 

     WITHIN = female SES pretest; 

     BETWEEN = rural;      

MODEL: %WITHIN%  

       achieve on female*.91 SES*1.06 pretest*.92; 

       achieve*30; !variance at level1 

       %BETWEEN%  

       achieve on rural*1.04; 

       [achieve*17.43]; ![gamma00] 

       achieve*30; !variance at level2        

ANALYSIS: 

          TYPE = TWOLEVEL; 

 

/**************** Estimating method with raw weights *********************/ 

Title: READING with raw weights (unscaled);   

Data: File is iteration_list.csv; 

       Type = MONTECARLO;  

Variable: Names are 

  schwgt school locale rural suburb urban student stdwgt female 

             SES pretest achieve iteration; 

     USEVARIABLES are achieve school female SES pretest rural; 

     CLUSTER = school; 

     WITHIN = female SES pretest; 

     BETWEEN = rural; 

     Weight is stdwgt; 

     Bweight = schwgt; 

     Wtscale = UNSCALED; 

     Bwtscale = UNSCALED;  

MODEL: %WITHIN%  

       achieve on female*.91 SES*1.06 pretest*.92; 

       achieve*30; !variance at level1 
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       %BETWEEN%  

       achieve on rural*1.04; 

       [achieve*17.43]; ![gamma00] 

       achieve*30; !variance at level2 

ANALYSIS: 

         TYPE = TWOLEVEL; 

         algorithm = integration; 

         estimator = MLR; 

 

/********************Estimation method with cluster scaling************************/ 

Title: READING with scaling1;   

Data: File is iteration_list.csv; 

       Type = MONTECARLO;  

Variable: Names are 

  schwgt school locale rural suburb urban student stdwgt female 

          SES pretest achieve iteration; 

     USEVARIABLES are achieve school female SES pretest rural; 

     CLUSTER = school; 

     WITHIN = female SES pretest; 

     BETWEEN = rural; 

     Weight is stdwgt; 

     Bweight = schwgt; 

     Wtscale = cluster; 

     Bwtscale = sample;  

MODEL: %WITHIN%  

       achieve on female*.91 SES*1.06 pretest*.92; 

       achieve*30; !variance at level1 

       %BETWEEN%  

       achieve on rural*1.04; 

       [achieve*17.43]; ![gamma00] 

       achieve*30; !variance at level2 

ANALYSIS: 

         TYPE = TWOLEVEL; 

         algorithm = integration; 

         estimator = MLR; 

 

/************* Estimation method with effective scaling (ecluster scaling)***************/ 

Title: READING with scaling2; 

Data: File is iteration_list.csv; 

       Type = MONTECARLO;  

Variable: Names are 

  schwgt school locale rural suburb urban student stdwgt female 

             SES pretest achieve iteration; 
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     USEVARIABLES are achieve school female SES pretest rural;  

     CLUSTER = school; 

     WITHIN = female SES pretest; 

     BETWEEN = rural; 

     Weight is stdwgt; 

     Bweight = schwgt; 

     Wtscale = ecluster; 

     Bwtscale = sample; 

MODEL: %WITHIN%  

       achieve on female*.91 SES*1.06 pretest*.92; 

       achieve*30; !variance at level1 

       %BETWEEN%  

       achieve on rural*1.04; 

       [achieve*17.43]; ![gamma00] 

       achieve*30; !variance at level2 

ANALYSIS: 

        TYPE = TWOLEVEL; 

         algorithm = integration; 

         estimator = MLR;
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