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ABSTRACT
ROBUST GLOBAL MOTION COMPENSATION AND ITS APPLICATIONS
By
Seyed Morteza Safdarnejad

This thesis presents algorithms for robust global motion compensation (GMC). GMC algo-
rithms are used to remove camera motion and transform the video such that in the resultant video,
the background appears static and the only motion rises from foreground objects. Many computer
vision algorithms are tailored for static cameras, and using GMC as a pre-processing module, it
is possible to apply these algorithms on videos from moving cameras. For instance, motion-based
video analysis is strongly affected by camera motion. If camera motion is not compensated, it
interferes with the motion of interest, such as motion of human, and renders the analysis problem
to be more challenging.

Generally, in sequential schemes, GMC estimates the homography transformation between
two consecutive frames by matching keypoints on the frames, and maps the second frame to the
first frame.Then, by accumulating these transformations, a composite transformation is calculated
which maps each frame to the global coordinate. However, existing GMC algorithms are sensitive
to existence of foreground motion and fail easily in the case of considerable foreground motion or
ambiguous and low texture background.

To address the challenges in GMC, first, we propose a Robust Global Motion Compensation
(RGMC) algorithm which explicitly suppresses the foreground effect and utilizes a comprehensive
probabilistic verification model to find the best mappings between consecutive frames. Despite the
robustness offered by RGMC, we further identify the problem of temporal drift of the estimation,
due to accumulation of errors in estimation of mappings between consecutive coordinates. Further-

more, to address the issues of sequential GMC, we propose a Temporally Robust Global Motion



Compensation (TRGMC) algorithm which by joint alignment of input frames, estimates accurate
and temporally consistent transformations to the global coordinates. Joint alignment not only leads
to the temporal consistency of GMC, but also improves GMC stability by using redundancy of the
information.

Many applications can benefit from a reliable and accurate GMC algorithm. We first briefly
look into these applications. Then, among the many applications, we investigate the problem of se-
quence alignment, and propose an alignment algorithm for non-overlapping sequences, enabled by
performance of TRGMC. Given the transformation to a global coordinate, offered by TRGMC, and
the capability of background reconstruction using TRGMC results, we are able to align sequences
even if the spatial overlap between the sequences is minimal or nonexistent. To this end, we first
spatially align the sequences such that extrapolated backgrounds are aligned well and trajectories
of moving objects are spatially smooth in the global coordinate. Next, we temporally align the se-
quences based on the smoothness of spatio-temporal trajectory of moving objects across the fields

of view of different cameras.
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Chapter 1

Introduction and Contributions

Due to the boom of smartphones and the ever increasing amount of videos, video analysis has
received much attention in computer vision. A variety of problems is defined for video analysis
including activity recognition [45,51,52,71, 81, 122], event/action detection [25,47, 125], video
categorization [29,73,118,126,129,130], video saliency detection [21,56,84,91,94,123,131,132],
etc. Effective motion analysis is the gist of many vision problems, e.g., action recognition, video
annotation and video surveillance. On the other hand, as the video analysis research is maturing,
era of designing algorithms based on staged videos has passed and datasets of unconstrained real-
world videos are emerging.

However, unconstrained videos bring in new challenges in video analysis. For instance, motion-
based video analysis is highly affected by camera motion. Thus, global motion compensation al-
gorithms (GMC) are used to remove intentional (due to camera pan/tilt/zoom) and unwanted (e.g.,
due to hand shaking) camera motion. GMC is utilized in applications such as video stitching, or as
pre-processing for motion-based video analysis. Due to its importance, this dissertation focuses on
GMC and how it might be used in different applications. The term “global motion compensation"
is also used in video coding literature, where background motion is estimated roughly to enhance
the video compression performance [40, 98], in some compression formats such as MPEG-4.

Normally, GMC estimates the homography transformation between two consecutive frames by
matching keypoints on the frames, and maps the second frame to a global coordinate. To rem-

edy outliers in keypoint matches, robust techniques are proposed for homography estimation, e.g.,



RANSAC [35], by assuming the number of outliers to the correct homography is less than inliers.
However, in the presence of predominant foreground, i.e., moving objects and people, a larger
proportion of the putative matches are mismatches. Predominant foreground may result from a
higher percentage of coverage by foreground pixels, or occlusion, textureless and non-informative
background, blurred background (e.g., camera following the foreground motion), or a combination
of these reasons. In presence of predominant foreground, the common variations of RANSAC
have little chance of selecting a minimal set of background keypoints by random sub-sampling in
a limited number of iterations. Despite its importance, the predominant foreground problem has
been overlooked in both video stabilization and GMC algorithms. Since GMC estimates homog-
raphy between consecutive frames and then uses a cascade of homographies to map the current
frame to the global motion-compensated coordinate, failure in GMC at a single frame affects all
the subsequent frames. This renders the predominant foreground problem very common and sig-
nificant. Thus, GMC robustness is highly desirable. GMC problem is also aggravated as speed of
foreground motion increases, e.g., in sports videos.

To address the predominant foreground problem, we propose a robust GMC (RGMC) method
for suppressing foreground keypoint matches and mismatches, enabling a reliable homography
estimation in presence of predominant foreground and/or textureless background. Also, we pro-
pose a novel and efficient probabilistic model for homography verification that considers keypoint
matching error and consistency of the image edges after warping, and benefits from motion history
gleaned from prior matched frames. We demonstrate the superiority of RGMC on challenging
videos from three video datasets, when compared with state-of-the-art methods.

Our further investigations reveal that the sequential processing scheme causes frequent GMC
failures for multiple reasons: 1) Sequential GMC is only as strong as the weakest pair of consecu-

tive frames. A single frame with high blur or dominant foreground motion can cause the rest of the



video to fail. 2) Generally, multiple planes exist in the scene. The common assumption of a single
homography will accumulate residual errors into remarkable errors. 3) Even if the error of consec-
utive frames is in a sub-pixel scale, due to the multiplication of several homography matrices, the
error can be significant over time [74]. These problems are especially severe when processing long
videos and/or when the camera motion becomes more complicated. For instance, when the camera
pans to left and right repeatedly, or severe camera vibration exists, the GMC error is obvious by
exhibiting discontinuity on the background.Although RGMC introduces robustness to the failures,
it still suffers from accumulation of error.

To address the issues of sequential GMC, we propose a temporally robust global motion com-
pensation (TRGMC) algorithm which by joint alignment of input frames, estimates accurate and
temporally consistent transformations to the global motion compensated coordinate. TRGMC
densely connects pairs of frames, by matching local keypoints. Joint alignment (a.k.a. congealing)
of these frames is formulated as an optimization problem where the transformation of each frame is
updated iteratively, such that for each link interconnecting a keypoint pair, the spatial coordinates
of two end points are identical. This novel keypoint-based congealing, built upon succinct key-
point coordinates instead of high-dimensional appearance features, is the core of TRGMC. Joint
alignment not only leads to the temporal consistency of GMC, but also improves GMC stability
by using redundancy of the information. The improved stability is crucial for GMC, especially in
the presence of considerable foreground motion, motion blur, non-rigid motion like water, or low-
texture background. The joint alignment scheme also provides capabilities such as coarse-to-fine
alignment, i.e., alignment of the keyframes followed by non-keyframes, and appropriate weighting
of keypoints matches, which cannot be naturally integrated in sequential GMC. Our quantitative
experiments reveal that TRGMC pushes the alignment error close to human performance.

Many applications may benefit from an accurate and robust global motion compensation algo-



rithm. We briefly review these applications, namely human action recognition, motion panorama
creation, multi-object tracking for moving camera and when visual cues are insufficient for reliable
tracking, and spatio-temporal alignment of video sequences.

Furthermore, among many potential applications, we deeply investigate the problem of spatio-
temporal alignment of multiple video sequences, captured by freely panning handheld cameras.
We identify and tackle a novel scenario of this problem referred to as Non-Overlapping Sequences
(NOS). NOS are captured by multiple freely panning handheld cameras whose field of views might
even have no direct spatial overlap. However, over the progression of time, there are nearby re-
gions in the scene that are observed by the cameras independently and probably at distinct time
instants. This assumption is less restrictive than common region being observed by field of view of
different cameras over progression of time, and obviously much less restrictive than the common
requirement of direct spatial overlap between frames from different cameras. With the popularity
of mobile sensors, NOS rise when multiple cooperative users capture a public event to create a
panoramic video, or when consolidating multiple footages of an incident or crime scene into a
single video. This enables reconstruction of events or crime scenes captured by amateur users.

To tackle this novel scenario, we first spatially align the sequences by reconstructing the back-
ground of each sequence using TRGMC algorithm and then registering these backgrounds, even if
the backgrounds are not overlapping. To do this, first, reconstructed background images are extrap-
olated. Then, a cost function is defined and minimized such that while extrapolated backgrounds
are aligned well, trajectory of moving objects leaving field of view of one camera and entering
field of view of another camera are spatially smooth. Given the spatial alignment, we temporally
synchronize the sequences, such that the trajectories of moving objects (e.g., cars or pedestrians)
across sequences are consistent with the prediction of when a moving object leaving the field of

view of a camera, would appear in the field of view of another camera.



Finally, to develop algorithms for analyzing user-generated videos, unconstrained and repre-
sentative datasets are of great significance. For this purpose, we collected a dataset of Sports
Videos in the Wild (SVW), consisting of videos captured by users of a leading sports training smart-
phone app (Coach’s Eye®) while practicing a sport or watching a game. The dataset contains
4000+ videos selected by reviewing ~85,000 videos and consists of 30 sports categories and 44
actions. Videos of sports practice, which frequently happens outside the typical sports field, have
huge intra-class variations due to background clutter, unrepresentative environment, existence of
different training equipment and most importantly, imperfect actions. On the other hand, using
smartphones for video capturing by ordinary people, in comparison to videos captured by profes-
sional crew for broadcasting, leads to challenges due to camera vibration and motion, occlusion,
view point variation, and poor illumination. Given various manual labels, this dataset can be used
for a wide range of computer vision applications, such as action recognition, action detection,
genre categorization, and spatio-temporal alignment. On the sport genre categorization problem,
we also design the evaluation protocol and evaluate three different methods to provide baselines

for future works.

1.1 Organization

The remainder of this thesis is outlined as follows. In Chapter 2, we present the related background
and theory for global motion compensation. Chapters 3 presents robust global motion compensa-
tion (RGMC). The further refinements to GMC by TRGMC algorithm are discussed in Chapter 4.
In Chapter 5, we briefly review potential applications of GMC, and in Chapter 6, we focus on one
of these applications and propose an algorithms for spatio-temporal alignment of non-overlapping

sequences. In Chapter 7 we present the conclusion and the proposed future work. Details on the



collected amateur sports videos dataset, SVW, is presented in Appendix A.

1.2 Contributions

In this thesis, the challenging problem of global motion compensation for real world videos is ad-
dressed. There are many factors rendering this problem challenging. The following contributions

are made in consideration of these factors.

e To address the important challenge of foreground occlusion in global motion compensa-
tion, a novel sequential global motion compensation algorithm is proposed. Namely, Ro-
bust Global Motion Compensation (RGMC) explicitly suppresses the foreground effect on
estimation of the homography between the consecutive frames. Further, to evaluate each
candidate homography, a novel probabilistic verification model is proposed which integrates

motion history, edge matching, and point matching scores for homography evaluation.

e A novel joint alignment algorithm named Temporally Robust Global Motion Compensation
(TRGMC) is proposed. Benefiting from the joint alignment, TRGMC further avoids the
temporal drift problem. Also, further robustness is achieved as unlike sequential schemes,
failure in alignment of a single pair of consecutive frames will not affect all the upcoming

frames.

e Among many potential applications of RGMC and TRGMC, we further investigate the prob-
lem of sequence alignment. Based on the capability of transferring the frames to a global
coordinate and also background reconstruction, we identify a novel scenario in sequence
alignment and propose an algorithm for it. Namely, the proposed algorithm is capable of

performing spatio-temporal alignment of non-overlapping sequences from freely panning



cameras.

e A dataset of Sports Videos in the Wild (SVW) is collected, which consists of videos captured
by users of a leading sports training smartphone app while practicing a sport or watching a
game. SVW is more unconstrained than existing human action datasets, especially sports
dataset. On the sport genre categorization problem, we also design the evaluation protocol

and evaluate three different methods to provide baselines for future works.



Chapter 2

Background

In this chapter, an overview of related theory and mathematics for global motion compensation
is presented. Our proposed algorithms rely on estimating homography transformation. So, we
first cover this transformation. A robust algorithm for estimation of homography transformation
from noisy keypoint matches is called random sample consensus (RANSAC) [35]. We also review
RANSAC algorithm in this section. Finally, congealing as a technique for alignment of a stack of
images is closely related to our proposed temporally robust GMC. Basics of congealing are also

presented in this section.

2.1 Homography transformation

Homography estimation is a key step in many computer vision applications. Assuming a pinhole
camera model, two images taken from different viewpoints from the same planar scene are related
by a homography transformation. Under homography H, the 3D point coordinates of camera 1,

i.e. X1, are related to the 3D point coordinates of camera 2, i.e. X via,
X, = HX]. (2.1

Similarly, if a camera has pure rotation around its optical center, the images are related to each

other through homography transformation.



In the homogeneous image coordinates x; and X», there is scale ambiguity, and thus we have,

x> ~ HX]. 2.2)

There are a wide range of techniques for homography estimation. A good survey on these
techniques can be found in [1]. H is a 3 X 3 matrix, but as it is defined only up to a scale, the total
number of degrees of freedom is 8. As each point correspondence between two images provides
two constraints, four point correspondences are enough to find the homography describing the
transformation between two given images.

A simple homography estimation algorithm is Direct Linear Transform (DLT). First, the rela-

tionship between the two corresponding points is written as

u X
clv|=H]|y (2.3)
1 1
hi,ho, h3 u X
where ¢ is a non-zero constant, H = | p, hs he |>and |y | and | y | represent X, and X, re-
h7,hg, ho 1 1

spectively.

After some manipulation, we get the following equations,

—hix—hyy —h3 + (h7x+hgy—|—h9)u =0, 2.4)

—hyx — hsy — hg + (h7x+ hgy + ho)v = 0. (2.5)



Rewriting in the matrix form, we have,

Ah =0, (2.6)

_xv_y7_l7070507ux7uy7u r
where A = and h = (hl7h27h37h47h57h67h77h87h9) : Thus’ by
070707 —X, —y7—17WC7V)’;V

solving the equation 2.6, DLT algorithm finds the homography. Each point correspondence makes
up for two rows in A, so if there are at least four corresponding points available, the resultant 8 x 9

matrix A may be used and the 1D null space of A is the solution space for h.

2.2 RANSAC

The Random Sample Consensus (RANSAC), which first was introduced by Fischler and Bolles [35],
is an algorithm for fitting a mathematical model to experimental data. Specifically, when data con-
tains outliers, RANSAC fits the model by detecting the outliers and fitting to the inliers. A data
item is considered as an outlier if it does not fit to the true model reflecting the true set of param-
eters. Interestingly, the percentage of outliers for which RANSAC can find a proper model can be
larger than 50%, which is the breakdown point for many other techniques. In the context of homog-
raphy estimation from keypoint correspondences, RANSAC is very suitable as false matches due
to appearance ambiguities in keypoint matching are outliers to the homography model describing
the relationship between the points from the two images.

RANSAC is an iterative algorithm with two steps:

1. Hypothesize: A sample subset containing minimal data items, e.g. 4 keypoint correspon-
dences in the case of homography estimation, is randomly selected from the input dataset.
Using only this subset, the model is estimated. This is in contrary to methods such as least

square robust estimators which use all the available data, possibly with different weights, to
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estimate the model.

2. Test: RANSAC identifies the elements in the input dataset which are consistent with the

model, as the inliers to the model, or the consensus set.

The iterative procedure is repeated until the probability of finding a better consensus set drops
beyond a certain threshold.

Over time, many different variations of RANSAC have been proposed. RANSAC can be sen-
sitive to the choice of the correct noise threshold that defines which data points fit a model in-
stantiated with a certain set of parameters. If the threshold is too large, then all the hypotheses
may be ranked equally good. In contract, if the noise threshold is too small, the estimated pa-
rameters tend to be unstable, i.e. by adding or removing a single data item to the set of inliers,
the estimate of the parameters may change considerably. For instance, to partially compensate for
this undesirable effect, Torr et al. proposed MLESAC (Maximum Likelihood Estimation SAmple
and Consensus) [107]. Instead of ranking each consensus set based on its cardinality, MLESAC

evaluates quality of the consensus set by calculating its likelihood.

2.3 Congealing

Congealing refers to the problem of unsupervised alignment of an ensemble of images. Generally,
the parametric nature of misalignment (translation, similarity, affine, etc. ) should be known in
advance and images should have similar content and appearance. The seminal work of Learned-
Miller [53] utilizes a sum of entropy of ensemble of images as the cost function. To mitigate
the sensitivity issue of this method, Cox et al. [18] propose a SSD (sum of squared differences)

cost function, optimized via Gauss-Newton optimization method. The misalignment function & is
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defined over a stack of N images,

argmin& (P) (2.7)
D

where ® = {0,,6,,...,0y_1} is the set of N — 1 warp parameters vectors corresponding to the
images in the stack. Parametric warp function for the pixel coordinate x is denoted by #/(x; 0). In
the least squared congealing method of Cox et al. [18], the misalignment of image i, [;, relative to

the rest of the images in the stack is defined as,

Z 1 —1:(6 (2.8)

The nonlinear Eqn. 2.8 is difficult to minimize, so, it is linearized by taking the first order Taylor

expansion series around /;(0), and the increment A6 is estimated using,

oI, 2
argmin ) {1j+ a( ) AB — 1} (2.9)
AO - j=liji 0
T o onT
where 24 8(9) are the steepest descent images calculated by % = %VI i(0). The solution to
Eqn. 2.9 is given by,
N 9I;(6
A@:Hl[ ) 5(9 >(1]-(9)—1i))} (2.10)
j=Lj#i
where
d1;(6) 1;(6)"
2o

is referred to as pseudo-Hessian. So, iteratively solving for AB and updating 6 until convergence

is obtained, will lead to the set of aligning warp parameters.
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Chapter 3

Robust Global Motion Compensation

The objective of global motion compensation (GMC) is to remove intentional (due to camera
pan/tilt/zoom) and unwanted (e.g., due to hand shaking) camera motion. GMC is utilized in ap-
plications such as video stitching, or as pre-processing for motion-based video analysis. Effective
motion analysis is the gist of many vision problems, e.g., action recognition, video annotation and
video surveillance. For instance, in action recognition as an important computer vision problem,
motion analysis via dense trajectories has shown superior performance [87, 114, 116]. However,
the moving camera often interferes with the motion of human, thus it is desired to compensate for
camera motion. Note that a related problem is video stabilization, which aims to remove unwanted
camera motion, while GMC removes both intentional and unwanted camera motion [24].

Normally, GMC estimates the homography transformation between two consecutive frames by
matching keypoints on the frames, and maps the second frame to a global coordinate. To remedy
outliers in keypoint matches, robust techniques are proposed for homography estimation, e.g.,
RANSAC [35], by assuming the number of outliers to the correct homography is much less than
inliers. However, in the presence of predominant foreground, i.e., moving objects and people, a
larger proportion of the putative matches are mismatches.

Predominant foreground may result from a higher percentage of coverage by foreground pix-
els, or occlusion, textureless and non-informative background, blurred background (e.g., camera
following the foreground motion), or a combination of these reasons. In presence of predomi-

nant foreground, the common variations of RANSAC have little chance of selecting a minimal
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set of background keypoints by random sub-sampling in a limited number of iterations. Despite
its importance, the predominant foreground problem has been overlooked in both video stabiliza-
tion and GMC algorithms. Even for algorithms designed explicitly for robustness to foreground
motion [24, 30, 63], predominant foreground is reported to cause failure. Since GMC estimates
homography between consecutive frames and then uses a cascade of homographies to map the cur-
rent frame to the global motion-compensated coordinate, failure in GMC at a single frame affects
all the subsequent frames. This renders the predominant foreground problem very common and
significant. Thus, GMC robustness is highly desirable. GMC problem is also aggravated as speed
of foreground motion increases, e.g., in sports videos. We qualitatively investigate 500 videos from
Sports Videos in Wild (SVW) dataset [89], and observe 35% failure, i.e., background instability,
by the baseline method of MLESAC [107], in contrast to 5.1% failure for the proposed method.
This demonstrates that the robustness problem is very common and severe for real-world videos.
The main contribution of this chapter is a robust GMC (RGMC) method for suppressing fore-
ground keypoint matches and mismatches, enabling a reliable homography estimation in presence
of predominant foreground and textureless background. Also, we propose a novel and efficient
probabilistic model for homography verification that considers keypoint matching error and con-
sistency of the image edges after warping, and benefits from motion history gleaned from prior
matched frames. We demonstrate the superiority of RGMC on challenging videos from three

video datasets, when compared with state-of-the-art methods.

3.1 Previous Work

Due to existence of outliers, robust techniques are widely used for homography estimation, e.g.,

RANSAC [35] and its variants such as Locally-Optimized RANSAC [17], MLESAC [107] and
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Guided-MLESAC [106]. While RANSAC aims to maximize the number of inliers, MLESAC
searches the best hypothesis that maximizes the likelihood via RANSAC, assuming that the in-
liers are Gaussian distributed and outliers are distributed randomly. To handle the same outlier
issue, [57] directly rejects unreliable keypoint matches. However, in case of predominant fore-
ground, problematic matches from the foreground are not unreliable in terms of appearance. Re-
cent works focus on estimating the best or multiple homographies in case of multi-plane back-
ground [6, 69, 105, 109, 133]. For instance, Uemura et al. [109] segment each frame using color
MeanShift algorithm to multiple regions denoting different planes in the background and find the
dominant plane for homography estimation. Using RANSAC and based on the number of inliers
for estimated homography for each region, the dominant background planes is found and used for
final homography estimation. In contrast, we segment the frame to foreground and background
regions by analyzing motion vector clusters, and remove foreground for robust GMC.

Many works concentrate on rejecting mismatches from point correspondence, by relying on the
assumption that similarity of the mismatched key-points is not enough. For instance, in [57], key-
point mapping functions from frame I to I’ and reverse, denoted as f and f” are learned. If a point
mapped according to f and then f’ is actually mapped back to its original coordinates, then the
associated key-point is considered a good match. However, in case of moving foreground, matches
can be reliable in terms of appearance similarity, but considered mismatch due to inconsistency
with background transformation.

Yan et al. [124] propose a probabilistic framework to combine keypoint matching and ap-
pearance similarity to enhance estimation robustness. To model the latter, correlation coefficient
between pixels is used. Despite the improved estimation accuracy, for textureless background the
performance deteriorates. For large foreground, [124] tends to remove foreground, instead of

background, motion. In contrast, we use edge matching as an appearance similarity measure with
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a higher sensitivity and lower computational costs. Motion history-based foreground suppression
minimizes its interference with homography estimation. Also, we use motion history to reduce the
tendency of compensating the foreground motion.

If camera motion is modeled as 2D translation, simpler methods can be used for GMC. In [14],
video stabilization is conducted using the cross-correlation between horizontal and vertical pro-
jection of the consecutive frames, by assuming that the largest variation between frames is due to
2D translation. [24] uses the same idea to estimate 2D translation. To improve the robustness to
moving foreground, a RANSAC-like approach on projections of bands of the image is utilized.
However, [24] fails if the foreground object is too large or the background is textureless, and the
simplistic model of 2D translation is easily violated in real-world videos. Thus, we design our
RGMC algorithm to minimize the effect of textureless background and large foreground on ho-

mography estimation.

3.2 Proposed Method

The main objective of Robust Global Motion Compensation (RGMC) algorithm is to be robust to
the presence of predominant foreground. Thus, it is critical to suppress the foreground and rely
on keypoint matches of the background for global motion estimation. We perform foreground
suppression by clustering motion vectors computed from keypoint matches and identifying poten-
tial clusters corresponding to the background, which are merged to provide a set of background
keypoints for final homography estimation. As a key enabler for RGMC, a novel and reliable
homography verification model is presented to consider keypoint matching error and consistency
of the edges of images after transformation, and benefit from motion history gleaned from previ-
ous frames. Fig. 3.1 shows the flowchart of the RGMC algorithm, with details presented in the

following two subsections.
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Figure 3.1: RGMC algorithm flowchart: (a) color indicates various motion vector clusters, (b) the
merged cluster of background, (c) the motion history, and (d) the motion compensated video.

3.2.1 Foreground Suppression

We use SURF [10] algorithm for keypoint detection and description. To detect sufficient back-
ground keypoints, the Fast-Hessian keypoint detection threshold, 7y, is decreased drastically. This
helps in the cases of nearly uniform and textureless background, or blurred background due to
rapid camera motion (e.g., videos shot by smartphones). However, this also implies that more
keypoints will reside on the foreground, which calls for an effective foreground suppression.
Cluster analysis For foreground suppression, the motion vectors resulting from keypoint matches
between consecutive frames are clustered. Since motion vectors on the background result from
camera motion and are more consistent than foreground motion vectors, clustering will likely lead
to some candidate regions from the background (see Fig. 3.1 (a)). Each cluster is analyzed sepa-
rately by random subsampling of matches in that cluster and evaluating the resultant homography
against the cost function, discussed in Sec. 3.2.2.

Merging background clusters Due to the zooming or motion corresponding to different planes

of the background, and not knowing the optimal number of clusters a priori, we allow an over-
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Algorithm 1: Robust Global Motion Compensation
Data: Frames I, and I;_; and keypoints matches D, prior homography 6;_; and CFV
f(6:—1) and f(6,—2)
Result: Estimated homography 6; and motion history M;
1 Compute the set of motion vectors V from D;
2 repeat
3 Cluster Dinto D; (i € {1,..,K}) based on V, set f; = oo;
4 for i=1 to K do
5 while Number of iterations < Te do
6
7
8
9

Randomly select four matching keypoints Q from D; ;
if H(Q) > PH 0.9 then
Find homography 6,
if At least A% of keypoints in D; are inliers for 6, then

10 Calculate the cost function f via Eqn. 3.10;
11 fi < min(f, fi).
12 Regularize D; to D; by randomly selecting a maximum of C matches for each cluster;
13 Sort the f;’s in an ascending order and find the sorting index j(i), set
m; =oo, (i € {0,..,K}),i=0;
14 repeat
15 i <— i+ 1 and merge the top i clusters: M; = Ui(:l)j(l) Dy;
16 while Number of iterations < Ty do
17 Randomly select four matching keypoints Q from M; ;
18 if H(Q) > pr 0.9 then
19 Find homography 6 and calculate the cost function f via Eqn. 3.10;
20 iff<m,~, then 9,-<—éandm,-<—f.

21 until m; > m;_1 ANi < K;

2 | 6,=01,f(6)=mi1;

23 until £(6,) < n(f(6,_1)+ f(6,_2))/2 V Number of iterations < Tg;
24 Update motion history via Eqn. 3.6 and output 6; and f(6;).

w

clustering of K clusters. Thus, background motion vectors may be assigned to multiple clus-
ters. To merge background clusters, based on the estimated homography and cost function value
(CFV) of each cluster, a subset of the best clusters are selected to be merged in a greedy algorithm
(Fig. 3.1(b)). Prior to merging, the set of keypoints belonging to each cluster are regularized by
randomly selecting a maximum of C pairs for each cluster. Given that the keypoint matches in

background cluster are similar, the regularization has negligible impact on the RGMC accuracy,
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but remedies the case when part of the foreground (generally with a higher number of matches) is
mistakenly merged to the background clusters.
Error handling For GMC applications such as video stitching or pre-processing for motion anal-
ysis, failed compensation and homography estimation for a single frame deteriorates the overall
performance drastically. Since the context in consecutive frames are similar, we utilize the histor-
ical values of the cost function to assist the error handling. If the minimum CFV of homography
estimation at the current frame pair is significantly higher than those of previous pairs, we repeat
the estimation process with the hope that the randomness in the algorithm will recover the error.
Note that the significance of foreground suppression would be more obvious when plenty of
keypoints belong to the foreground, while a few belong to the background. For instance, if fore-
ground has 200 keypoints and background has 10, a RANSAC-like algorithm needs to run 450,000
iterations to ensure a 90% probability of selecting a quadruplet of keypoints from background.
However, by analyzing each cluster separately, RGMC efficiently focuses on background matches.
Algorithm 1 summarizes the proposed RGMC algorithm. Details of the homography verification

model used in the algorithm will be presented next.

3.2.2 Homography Verification Model

To evaluate the estimated homography from a quadruplet of keypoints matches, we derive a cost
function that unifies the keypoint matching score, edge matching score, and the information from
compensating previous frames. Denote the matching frames as I;_; and I;, their candidate homog-
raphy as 6;, and the set of keypoint matches under study as D. In Bayesian framework, similar

to [124], 6; can be estimated by maximizing

p<D;It7It—l‘9h et—l)p(etlet—l)
p(DallaIt—llel—l) ’

p(QZ|D7II7117179t71): (31)

19



where 6, is the obtained prior homography of frames I,_; and I, _,. The p(6;|6,_1) is the condi-
tional probability of 6, given the prior homography 6,_;. The denominator of Eqn. 3.1 is constant

w.r.t. 6;. By expanding the likelihood term, the homography can be verified using
p(6:D, 1,1, 1,6, 1) < p(DIT;,1;-1,6,60, 1) p(1;,1;-1]6;,6; 1) p(6:]6;—1). (3.2)

The term p(D|I;,1,—1,6;,6,—1) = p(D|I;,I;_1,6,) and represents how well the keypoint matches
D extracted from I, and I;_; are matched by 6;,. Knowing I, is independent from 6;_, the term
p(I,1,-1]6:,6,—1) = p(I;,I,—1]6;), and reflects how well the frame I, transformed under 6;, de-

noted as I g, matches I; ;. Thus, the homography is estimated by minimizing,

6, = argmin[—In(p(D|L;,L,—1,6;)) —In(p(L;,L,_1|6;)) — In(p(6;|6,—1))]- (3.3)

6

Keypoint matching error Based on the analysis of Yan et al. [124], the keypoint matching error
for inliers, p(Din|L;,L,—1,6;), is better represented by a Laplacian model than the conventional
Gaussian model. Denote (x4,y%) and (x%,y") as the ith matching keypoint coordinates of I; and
I, respectively, transformation of (x%,y%) under 6; as (xk;, Y%y ), transformation of (x4, y%) under
0, as (xhg,yrg) » and dj < |xhp — xb| + [Yhg — Vil + [Xor — X | 4 [Yir — ¥4|. We use the same

method as [124] to compute the keypoint matching error,

N 1 d:

P, 1, -1,6,) = e (3.4)
" g 16b*

where Nj, is the number of inliers and the scale b is the Laplacian distribution parameter. Denoting
¥ as an indicator variable for inlier/outlier and considering that an outlier has a uniform distribution

over the entire area of the frame, which is denoted as S, we have
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(a) (b)

(©) (d)
Figure 3.2: (a) Motion history My, (b) Mask M = [(M, > 7), (c) edge matching for an accurate 6,
that matches the background, (d) edge matching for an inaccurate 6, that matches the foreground.

D|
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Appearance consistency The appearance consistency under 6, transformation, p(I;,I,_1|6;), is
normally computed via pixel-based correlation [124]. We propose edge-based matching for mul-
tiple reasons. First, the pixel-based matching score is not sensitive enough for textureless back-
ground, e.g., a homography with error of few pixels displacement leads to similar scores as a per-
fect match. In contrast, the tolerance for error is much lower by matching the edges, which results
in more accurate homography models. Although low-texture images produce few and generally
noisy edge pixels, our experiments show that edge matching outperforms pixel-based correlation,
even in low-texture conditions, similar to the results reported in [119]. Second, when stitching

video frames based on global motion compensation, errors typically occur in mis-matched edges
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at the boundary of the frames. These errors are very distracting for viewers’ visual perception, and
they are more likely to be remedied by edge-based appearance matching. Finally, in pixel match-
ing, time-consuming image warping is needed for computing I;jg,. Edge matching only needs to
warp edge pixels in I, leading to a typical 10x speed-up over pixel matching.

To assure that the edge matching score reflects how well the background, not foreground, of

the two frames match, we iteratively update a motion history M; (see Fig. 3.1 (¢)) as,

M; < aM,_i + (1 —a)[L_ —Ljg |, (3.6)

where « is a weighting scalar within 0 and 1, and |.| denotes the element-wise absolute value

operator. We define the edge matching score (EMS) as,

_ 2[|2(1) OP(L2) OR|y
P BN = o) ORJ) + @) OR e o0

where & is edge detection operator, () is element-wise multiplication, R denotes the mask specify-
ing the region of interest for EMS calculation, || - ||} computes the L; matrix norm, and ¢(= 0.001)
is a constant to avoid division by zero. E(I;,I,R) ranges between 0 and 1 with 1 representing a
perfect match. In Eqn. 3.3, we use E(I;—1,I;6,,M), where M = [(M; > 7) is obtained by thresh-
olding the motion history and I(+) is an indicator function. Fig. 3.2 shows a motion history and
edge matching results for two candidate 6,’s. We will later discuss how the probability model for
E is obtained.

Conditional homography distribution Based on our experiments, and also prior work [24] on
YouTube Action Dataset [62], the largest variation between consecutive video frames is due to 2D

translation. Thus, to utilize the prior information of 6,_; for a stable homography estimation, we
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decompose the homography model into translation, scale, and rotation models [112]. Denote the
absolute difference in components of 6; and 6;_; after decomposition as 7, and ¢, for translation,

As for scale and A« for rotation angle. Assuming independence among components, we define

p(6:]6,-1) = p(t.) p(ty) p(As) p(Aa). (3.8)

Quadruplet filtering RGMC evaluates a large number of quadruplets of keypoint matches, and
computes their EMS. To improve the efficiency, we filter the candidate quadruplets before the
optimization of Eqn. 3.3. Intuitively, if the keypoint in the quadruplet are spatially close to each
other, it is less likely to have an accurate estimate of 6;, because homography estimation is more
sensitive to the accuracy of keypoint locations. Also, background keypoints have generally a higher
spatial dispersion than the foreground keypoints. Thus, only if the entropy (or dispersion) of a
candidate quadruplet is above a threshold, we fully evaluate the cost function. Specifically, we use

m-spacing estimate of entropy [54], similar to [24], as
1"& n
H==Y In(—xizm—xi)), 3.9
v & G G =) (3.9)

where m is the spacing parameter (set to 1) and n is number of points. We first sort the x values
prior to using them in Eqn. 3.9. Entropy estimates of x and y coordinates of the quadruplet are
calculated separately and the minimum of them is the entropy of the quadruplet.

Model training Having presented the Bayesian framework, we now introduce our empirical ap-
proach to learn the various probability models. For this learning, we manually stitch 250 pairs of
consecutive frames to find the best homography estimate. The labeler uses our developed GUI to
match four background keypoints in two consecutive frames and fine tune the matches to visually

minimize the background stitching error. The labeler also specifies a foreground mask, represent-
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Figure 3.3: (a-b) Two consecutive frames and the matched quadruplet by the labeler, (c) the abso-
lute difference of two frames matched via the quadruplet in (a,b), (d) manually labeled foreground
mask.

ing the region resulted from foreground movement. Fig. 3.3 shows two consecutive video frames
and the manually matched quadruplets. From the manually labeled sequences, we find the em-
pirical distribution of E, t, t,, As, A, and H. As shown in Fig. 3.4, E, As, Ac, and H are well
approximated by a normal distribution. For H distribution, 10% percentile (py 0.9), reflecting the
value that 90% of observed point entropies are larger than, is also shown. For 7, and #,, Laplacian
distribution is more appropriate. By plugging the probability models to Eqn. 3.3 and ignoring the
constants, the final cost function is,

Lt § + L In(s?) | (E(d-1.Lje, M) — pie)?

N in + N out 26%

L(AS_HAS)ZJT-l‘L(Aa_‘uAa)ZJT-F |_|Al‘x—,LlA;x’JT+|_|Aty_.uAty|JT,

2 2
ZGAS 26AOC btx bty

f(6) = +

(3.10)
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Figure 3.4: Empirical and fitted distributions for (a) E ~ N(0.52,0.04), (b) As ~ N(0,2x 1073), (c)
Aa ~N(0,2x 1073), (d) 1, ~ Laplace(0, 1.50), (e) t, ~ Laplace(0,0.95), and (f) H ~ N(2.1,0.25)

where N, is number of outliers and |x|7 = min(x,T) restricts the impact of prior information.
Since keypoint matching error is dependent on the number of keypoints, we normalize it with the

total number of keypoints. The homography 6, is estimated by

6, = argmin(f(6;)). (3.11)

3.3 Experimental Results

This section presents the experimental results of RGMC, and its comparison with our implemen-

tations of the RANSAC variation called MLESAC [107] and the HEASK method [124].

3.3.1 Dataset

We select 50 videos from SVW dataset [89], where 24 videos are used for model learning in

Sec. 3.2.2, and the rest for testing. SVW contains videos of amateurs practicing a sport, shot
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Figure 3.5: Sample frames of the test videos in (a) SVW, (b) HMDBS5I, and (c) Holleywood?2
datasets.

using smartphone by ordinary people. Thus, highly unconstrained SVW is an excellent example
of user-generated videos with predominant foreground of humans. We also use 10 videos from
Holleywood?2 [72] and 15 videos from HMDBS51 [49] datasets!. In total, 51 videos are used for

quantitative evaluation with sample frames shown in Fig. 3.5. 2

3.3.2 Parameters

In all the experiments, we have the same fixed parameter setting, i.e., T = 0.5, C = 50, Tz = 50,
Ty=100,Tg =2, K=10,1=1.5, ¢ = 0.5, A =70%, and T = 100. Our experiments show that
RGMC is robust to variation of parameters. The most important parameter is K. Large values of K
increase the computational cost. On the other hand, K should be large enough so that foreground,
background, and erroneous matches are mapped to different clusters. As a trade-off, we use K =

10

IFor these two datasets, videos are temporally trimmed around the signature motion in the video, practically dis-
abling effect of our motion history module. In HMDBS51, similar to many existing datasets such as UCF101 [100], the
video resolution is only 320 x 240, thus GMC suffers from both video content and the low resolution.

2In HMDBS51 [49] and UCF101 [100] datasets, only very low resolution videos (320 % 240) are publicly available
for which GMC basically suffers considerably from the resolution and in UCF-Sports [102], camera is static. Thus,
we limit our qualitative evaluation to SVW and available motion-compensated videos in HMDBS51 dataset.
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Algorithm | Ground Truth| MLESAC HEASK RGMC
Setting - DT LT | DT LT |(20,50) (50,100) (100,200) D-M D-E
BRE (x1079) 7.59 15.65 18.59(17.33 14.24| 11.77  10.11 10.02 11.60 11.25

Table 3.1: Impact of different settings on average BRE for each algorithm. DT and LT denote
default (73 = 1000) and lowered (7, = 100) detection threshold in SURF algorithm, respectively.
For RGMC 7, = 100 is used and 3 different setting of (7¢, Tjs) are reported. D-M and D-E denote
default setting of (T¢, Tys) = (50,100) with motion history and error handling turned off, respec-
tively.

3.3.3 Evaluation metric

For accuracy evaluation, we have manually matched a quadruplet of keypoints and found the
ground truth homography 6, for a total of 350 pairs of consecutive frames in challenging peri-
ods in 51 test videos. The same GUI described in Sec. 3.2.2 is used to obtain 6y and the fore-
ground mask. We denote the intersection of the complement of this mask, i.e., the background
mask, and the region covered by I, g, as B. We quantify the consistency of frames I and I, 19

(grayscale frames with pixels ranging between 0 and 1) using the background region error (BRE),

e = (-1~ L35)| OBl

3.3.4 Accuracy assessment

Table 4.1 represents the average BRE on test videos for different algorithms. Due to random
nature of algorithms, we repeat each experiment 5 times and report the average performance. To
ensure that comparisons are fair, we decrease the keypoint detection thresholds also for baseline
methods. HEASK has better performance with lowered threshold and thus we use this setting for
the experiments. We also report results for different iteration numbers 7¢ and 7y, for RGMC and
as a trade-off between accuracy and efficiency, select (7, Tyr) = (50,100) as default values for
RGMC. In addition, we turn off the modules of Motion History and Error Handling in RGMC

alternatively, to verify that their existence is helpful. Fig. 3.6 shows two consecutive frames of
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three sample videos matched by different algorithms, along with the ground truth matching. As
shown, RGMC produces very accurate background matching. Fig. 3.7 represents the average per-
video BRE, sorted by the BRE of ground truth matching. As shown, RGMC performance is very
robust and in most videos RGMC matching error is very close to the ground truth value. Finally,
Fig. 3.8 compares stitching results on a sample video using different algorithms. It is worth noting
that since a cascade of homographies are used for GMC and stitching of video frames, propagation
of errors of matching consecutive frames, gives rise to inaccuracy as the length of the input video
increases. Also, coexistence of textureless background and large foreground (in terms of the total
number of pixels covered by the foreground), may cause failure in the RGMC algorithm, especially

if the foreground motion exists starting the initial frames.

3.3.5 Computational cost

For the comparison with baseline methods, we test Matlab implementations of algorithms on a PC
with Intel i5-3470@2GHz CPU. The average time for matching frame pair of size 720 x 1,280
(480 x 854) by MLESAC, HEASK, and RGMC is 2.0 (0.3), 53.1 (21.3), and 4.3 (2.3) seconds,
respectively. We also have a C++ implementation of RGMC using the OpenCV libraries, which

takes 1.4 (0.7) seconds for matching frame pair of size 720 x 1,280 (480 x 854)3.

3.3.6 Qualitative evaluation

In addition to the aforementioned quantitative study, we also perform the qualitative evaluation on
unlabeled videos to demonstrate the severity of the predominant foreground issue in real-world
videos, and the superiority of RGMC on a large scale dataset. For each video, we run a GMC al-
gorithm, visually observe the motion-compensated videos, and claim a failure if an instable back-

ground is observed (e.g., Fig. 3.8 (a,b)). We observe a failure rate of 32% by the MLESAC method

3Source code is available at http://www.cse.msu.edu/~liuxm/RGMC
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(©) L (d)

Figure 3.6: Each row shows GMC results of two consecutive frames from video ID S17, S19, and
S9 by (a) manual labeling, (b) MLESAC, (c) HEASK, and (d) RGMC. In (a), colorful pixels show
the pixels that are different between overlaid frames. In (b-d), the pixel brightness indicates the
difference.
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Figure 3.7: Per-video BRE using the optimal setting for each algorithm compared with ground
truth (GT) matching BRE.

(a)

(b) (©)

Figure 3.8: A 40-frame sequence of gymnastics backflips in textureless background stitched using
(a) MLESAC, (b) HEASK, and (c) RGMC. Consistency of the background shows the superiority
of RGMC. For HEASK, stitching up to frame #10 is shown, after which the stitching drastically
fails.

among 225 videos from three categories of cartwheel, dive and dribble in HMDBS51 dataset. Fur-
ther, a 35% failure rate by MLESAC is observed from 500 videos of SVW dataset; in contrast on

the same data our RGMC has merely a 5% failure rate.

30



3.4 Conclusions

We presented a robust global motion compensation (RGMC) algorithm that delivers reliable re-
sults in the presence of predominant foreground and textureless or blurry background, enabling
its application to real-world unconstrained videos. By foreground suppression, RGMC is able to
tolerate large foreground and occlusion. Also, the proposed method successfully handles keypoint
matching with a very low matching threshold, required for GMC in low texture background. This
is achieved by clustering motion vectors, and analyzing each cluster to identify matches pertaining
to the background. A novel homography verification model is proposed to support the RGMC.
Extensive experiments and comparison with manually matched ground truth and baseline methods

demonstrate the superiority of RGMC.
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Chapter 4

Temporally Robust Global Motion

Compensation

As discussed in Chapter 3, Global motion compensation (GMC) removes the impact of intentional
and unwanted camera motion in the video, transforming the video to have static background with
the only motion coming from foreground objects. Video stabilization is a closely related problem
where unwanted camera motion, such as vibration, is removed, leaving a smooth camera motion in
the output video. It is important to note that the final product of GMC is a video with static back-
ground throughout the entire video. This sets a high bar on accuracy requirement for estimation
of transformations to the global coordinate, despite foreground motion and appearance ambigu-
ities. GMC can be re-purposed for video stabilization (VS) and mosaicing, but not vice versa -
given the accuracy requirement. GMC is an essential module for processing videos from non-
stationary cameras, which are abundant due to emerging mobile sensors, e.g., wearable cameras,
smartphones, and camera drones. First, the resultant motion panorama [8], as if virtually generated
by a static camera, is by itself appealing for visual perception. More importantly, many vision tasks
benefit from GMC. For instance, dense trajectories [114] are shown to be superior when camera
motion is compensated [117]. Otherwise, camera motion interferes with human motion, rendering
the analysis problem very challenging. Accurate and consistent GMC allows reconstruction of a

“stitched" background [74], and subsequently segmentation of foreground [103, 113]. This helps
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Figure 4.1: Schematic diagrams of proposed TRGMC and existing sequential GMC algorithms,
and resultant motion panorama for a video shot by panning the camera up and down. Background
continuity breaks easily in the case of the sequential GMC [88].

multi-object tracking by mitigating the unconstrained problem of tracking multiple in-the-wild
objects, to tracking objects with a static background [99].

In existing GMC work [9, 24, 88], frames are transformed to a global motion-compensated
coordinate (GMCC), by sequentially processing input frames. For a pair of consecutive frames, the
mapping transformation is estimated, and by accumulating the transformations, a composite global
transformation of each frame to the GMCC is obtained. However, the sequential processing scheme
causes frequent GMC failures for multiple reasons: 1) Sequential GMC is only as strong as the
weakest pair of consecutive frames. A single frame with high blur or dominant foreground motion
can cause the rest of the video to fail. 2) Generally, multiple planes exist in the scene. The common
assumption of a single homography will accumulate residual errors into remarkable errors. 3)
Even if the error of consecutive frames is in a sub-pixel scale, due to the multiplication of several
homography matrices, the error can be significant over time [74]. These problems are especially

severe when processing long videos and/or the camera motion becomes more complicated. E.g.,
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when the camera pans to left and right repeatedly, or severe camera vibration exists, the GMC error
is obvious by exhibiting discontinuity on the background (see Fig. 4.1 for an example). Although
RGMC algorithm discussed in Chapter 3 improves GMC robustness and considerably decreases
rate of drastic failures, still accumulation of error degrades RGMC performance. This degradation
is more obvious when video length increases and camera motion is more complicated.

To address the issues of sequential GMC, we propose a temporally robust global motion com-
pensation (TRGMC) algorithm which by joint alignment of input frames, estimates accurate and
temporally consistent transformations to GMCC. The result can be rendered as a motion panorama
that maintains perceptual realism despite complicated camera motion (Fig. 4.1). TRGMC densely
connects pairs of frames, by matching local keypoints. Joint alignment (a.k.a. congealing) of these
frames is formulated as an optimization problem where the transformation of each frame is up-
dated iteratively, such that for each link interconnecting a keypoint pair, the spatial coordinates
of two end points are identical. This novel keypoint-based congealing, built upon succinct key-
point coordinates instead of high-dimensional appearance features, is the core of TRGMC. Joint
alignment not only leads to the temporal consistency of GMC, but also improves GMC stability
by using redundancy of the information. The improved stability is crucial for GMC, especially in
the presence of considerable foreground motion, motion blur, non-rigid motion like water, or low-
texture background. The joint alignment scheme also provides capabilities such as coarse-to-fine
alignment, i.e., alignment of the keyframes followed by non-keyframes, and appropriate weighting
of keypoints matches, which cannot be naturally integrated in sequential GMC. Our quantitative
experiments reveal that TRGMC pushes the alignment error close to human performance.

In summary, this chapter makes the following contributions:

e An algorithm for joint alignment of video frames is proposed to produce a globally mo-

tion compensated video where, despite the complicated camera movement and considerable
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foreground motion, the background appears to be static over the progression of time.

e A keypoint-based congealing algorithm aligns the spatial coordinates of keypoints for an
image stack. It extends congealing applications from spatially cropped objects (faces and

letters) to complex motion-rich video frames.

e The capabilities and applications of TGRMC are demonstrated. Our collected video dataset,

manual labels, and the code will be publicly available.

4.1 Previous Work

TRGMC is related to many techniques in different aspects. We first review them and then compare
our work with existing GMC algorithms.

Firstly, homography estimation from keypoint matches is crucial to many vision tasks, e.g., im-
age stitching, registration, and GMC. A main challenge of homography estimation from keypoint
matches is the false matches due to appearance ambiguities. Robust methods are proposed to han-
dle the outliers, such as RANSAC [35] and its variants [17,106, 107]. Some methods also directly
reject false matches [57,70]. The hybrid methods [88, 124] combines appearance similarity and
keypoint matches in a probabilistic framework. All methods estimate a homography for a frame
pair. In contrast, in TRGMC, instead of direct calculation of homography transformation for each
pair of frame, we jointly optimize the set of homographies which map the set of input frames into a
global coordinate, such that the keypoints over a wide range of temporal distance are aligned well.
Thus, TRGMC leverages the redundant background matches over time to better handle outliers.

Image stitching (IS) and panoramic image mosaicing share similarity with GMC. IS aims to
minimize the distortions and ghosting artifact in the overlap region. Many works utilize multiple

homographies, instead of a single homography, due to existence of multiple scene planes [36,
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69, 104, 105, 109, 133]. Some recent works focus also on the parallax issue, by using a hy-
brid model that uses homograhy for non-overlapping parallax-free regions and allow some local
non-projective deviation to account for parallax and avoid stitching artifacts [59, 60, 127]. Li et
allet@tokeneonedot [58] generate panoramas from motion-blurred videos. In these works, in-
put images have much less overlap than GMC. On the other hand, video mosaicing takes in a
video which raster scans a wide angle static scene, and produces a single static panoramic im-
age [90,92,97]. When the camera path forms a 2D scan [92] or a 360° rotation [90], global re-
finement is performed via bundle adjustment (BA) [108], which ensures an artifact-free panoramic
image, assuming a static scene. Although a byproduct of TRGMC is a similar static reconstruction
of the scene, TRGMC focuses on efficient generation of an appealing video, where background
consistently appears static for visual perception (in contrast to an image), for a highly dynamic
scene. The important feature of such a video is that the only apparent motion in the video will rise
from foreground motion. While one may use BA to estimate camera pose and then transformation
between frames, our experiments reveal that BA is not reliable for videos with foreground motion
and is less efficient than TRGMC. Further, BA estimates 3D location of keypoints while TRGMC
needs 2D registration. Thus, by using BA, a harder problem needs to be solved which is unnec-
essary for the purpose of global motion compensation. Hence, image/video mosaicing and GMC
have different application scenarios and challenges.

Another related topic is the panoramic video [31, 43,44, 77, 128]. For instance, Perazzi et
allet@tokeneonedot [77] create a panoramic video from an array of stationary cameras by gen-
eralizing parallax-tolerant image stitching to video stitching. The fast video stitching in [128]
can handle proper stitching of objects at varying depths. Jiang and Gu [44] propose an algorithm
for stitching multiple video streams into a single panoramic video with spatial-temporal content-

preserving warping. In this work, for alignment of video frames, a spatial-temporal local warping
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is proposed, which locally aligns frames from different videos while maintaining the temporal
consistency. While these works focus on stitching multiple synchronized videos, GMC creates a
motion panorama from a single non-stationary camera. Unlike GMC, video panoramas do not
require the resultant video to have a stationary background.

Video stabilization (VS) is a closely related but different problem. TRGMC can be re-purposed
for VS, but not vice versa, due to the accuracy requirement. Given the accurate mapping to a
global coordinate using TRGMC, VS would mainly amount to cropping out a smooth sequence of
frames and handling rendering issues such as parallax. Among different categories of VS, 2D VS
methods calculate consecutive warping between the frames and have similarities with sequential
GMC, but any estimation error will not cause severe degradation in VS as long as it is smoothed.
While TRGMC targets long-term staticness of the background, VS mainly cares about smoothing
of camera motion, not removing it. In other words, TRGMC imposes a stronger constraint on the
result, which is background staticness by complete camera motion removal in comparison to VS
which deals with camera motion smoothing. This strict requirement differentiates TRGMC also
from Re-Cinematography [38]. Also, large occlusion by the foreground may result in VS failure,
however TRGMC handles this challenge by utilizing redundancy of background information in the
joint alignment scheme.

Congealing aims to jointly align a stack of images from one object class, e.g., faces and let-
ters [53, 64]. Congealing iteratively updates the transformations of all images such that the en-
tropy [53] or Sum of Squared Differences (SSD) [18] of the images, is minimized. However,
despite many extensions of congealing [19, 41, 50, 68, 96], almost all prior work define the en-
ergy based on the appearance features of two images. Since congealing is based on image-based
processing, it requires moderate initial alignment and is sensitive to intra-class variation and back-

ground clutter [50]. In [41], by incorporating deep learning into the congealing alignment frame-
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work, a combination of unsupervised joint alignment with unsupervised feature learning is pro-
posed. Through deep learning, authors obtain features that can represent the image at differing
resolutions based on network depth, and that are tuned to the statistics of the specific data being
aligned. In [50], a heuristic local feature based algorithm is proposed to rigidly align object class
images to a seed image. Best matching local features are selected as object landmark. To overcome
the problem of false matches, iteratively a minimal subset of matches are selected, homography is
estimated, and image points are transformed to the seed coordinate. Using a spatial scoring algo-
rithm, scores of the features matching are accumulated within a preset distance limit, resulting to
refined landmarks. Finally, the other images are aligned to the seed using only the best landmarks.
Note that [50] uses a heuristic local feature based algorithm to rigidly align object class images. In
contrast we formulate the joint alignment of keypoints as an optimization problem and solve it in
a principal way. Cox et allet@tokeneonedot [18] employ a sum of squared differences (SSD) cost
solved by Gauss-Newton gradient decent. Unlike entropy-based congealing, the details of each
image in the stack are used for alignment, rather than relying on the average image of the stack.
Our experiments on GMC show that appearance-based congealing is inefficient and sensitive to
initialization and foreground motion. Therefore, we propose a novel keypoint-based congealing
algorithm minimizing the SSD of corresponding keypoint coordinates, instead of appearance fea-
tures, to gain considerable efficiency enhancement and robustness to initialization.Further, most
prior works apply to a spatially cropped object such as faces, while we deal with complex video
frames with dynamic foreground and moving background, at a higher spatial-temporal resolution.
There are a few existing sequential GMC works, where the main problem is to accurately es-
timate a homography transformation between consecutive frames, given challenges such as appear-
ance ambiguities, multi-plane scene, and dominant foreground [8,24,88]. Bartoli et allet@tokeneonedot [9]

first estimate an approximate 4-degree-of-freedom homography, and then refine it. Sakamoto et
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Figure 4.2: Flowchart of the TRGMC algorithm.

allet@tokeneonedot [90] generate a 360° panorama from an image sequence. Assuming that mul-
tiplication of all consecutive homographies results in the identity mapping, and homography has
only 5 degrees of freedom, the camera rotation matrix has 3 degrees of freedom, to which are added
the focal lengths before and after the camera rotation, all the homographies are optimized jointly
to prevent error accumulation. In contrast, TRGMC employs an 8-degree-of-freedom homogra-
phy. Although using homography in the case of considerable camera translation and large depth
variation results in parallax artifacts, using a higher degrees-of-freedom homography than prior
works allows TRGMC to better handle camera panning, zooming, and translation. Safdarnejad et
allet@tokeneonedot [88] incorporate edge matching into a probabilistic framework that scores can-
didate homographies. Although [24,88] improve the robustness to foreground, error accumulation
and failure in a single frame pair still deteriorate the overall performance. Thus, TRGMC targets
robustness of the GMC in terms of both the presence of foreground and long-term consistency by

joint alignment of frames.

4.2 Proposed TRGMC Algorithm

The core of TRGMC is the novel keypoint-based congealing algorithm. Our method relies on
densely interconnecting the input frames, regardless of their temporal offset, by matching the de-
tected SURF [10] keypoints at each frame. We refer to these connections, shown in Fig. 4.2, as

links. Frames are initialized to their approximate spatial location by only 2D translation (Sec. 4.2.4).
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We rectify the keypoints such that majority of the links have end points on the background region.
Then the congealing applies appropriate transformation to each frame and the links connected to
it, such that the spatial coordinates of the end-points of each link are as similar as possible. In
Fig. 4.2, this translates to having the links as parallel to the —axis as possible.

For efficiency and robustness, TRGMC processes an input video in two stages. Stage one
selects and jointly aligns a set of keyframes. The keyframes are frozen, and then stage two aligns
each remaining frame to its two encompassing keyframes. The remainder of this section presents

the details of the algorithm.

4.2.1 Formulation of keypoint-based congealing

Given a stack of N frames {I()}, with indices i € K = {k, ...,ky}, the keypoint-based congealing

is formulated as an optimization problem,

mine = Y [e:(6,)]7Q"[e;(6))], (4.1)
{6:} icK

where 6; is the transformation parameter from frame i to GMCC, e;(6;) collects the pair-wise
alignment errors of frame i relative to all the other frames in the stack, and QM isa weight matrix.

We define the alignment error of frame i as the SSD between the spatial coordinates of the
endpoints of all links connecting frame i to the other frames, instead of the SSD of appearance [18].
Specifically, as shown in Fig. 4.3, we denote coordinates of the start and the end point of each
link & connecting frame i to the frame d,gi) € K\{i} as (x,(:),y,(:)) and (u,(:),v,(:)), respectively. For

simplicity, we omit the frame index i in 6;. Thus, the error e;(0) is defined as,

ei(6) = [AX;(6)T,A¥;(0)T, (4.2)
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Figure 4.3: The notation used in TRGMC.

where

AX;(0) =™ —u) Av () = w!) — v, (4.3)

are the errors in x— and y— axes. The vectors Wi — [V/X(x,(j),y,(f); )] and Wi — [V/y(x,(j),y,({i); 0)]

i i
denote the x and y— coordinates of (x,(:),y;(j)) warped by the parameter 0, respectively. The vec-

tors ul) = [u,(f)] and v\ = [v,(:)] denote the coordinates of the end points. Similarly, the vectors

and y() = [yki) ] denote the coordinates of the start points. If N; links emanate from

—
—

<) — [xki>]

frame i, e; is a 2/V;—dim vector. QU is a diagonal matrix of size 2N; X 2N; which assigns a weight
to each element in e;. The parameter 0 has 2, 6, or 8 elements for the cases of 2D translation, affine
transformation, or homography, respectively. In this chapter, we focus on homography transfor-

mation which is a projective warp model, parameterized as,

0
——t

V%C(X,(f)7y,(f);9) P1 P2 D3 x,(f)

Wy(xlg)7yl(j)§9) ~ |pa Ps DPs y,(f) : (4.4)

1 p7 ps | 1

Although the homography model assumes the planar scene and this assumption may be violated
in real world [127], we identify the problem of temporal robustness to be more fundamental for

GMC than the inaccuracies due to a single homography. Also, videos for GMC are generally
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swiped through the scene with high overlap, thus the discontinuity resulted from this assumption

1S minor.

4.2.2 Optimization solution
Equation 6.1 is a non-linear optimization problem and difficult to minimize. Following [18], we
linearize this equation by taking the first-order Taylor expansion around 6. Starting from an initial

0, the goal is to estimate A by,

AT [e;(0) + 9ei(0) AB] +YAOT.Z A0, (4.5)

argmin [e;(0) + 50

AO 00

where AOT.# A0 is a regularization term, with a positive constant Y setting the trade-off. We ob-
serve that without this regularization, parameter estimation may lead to distortion of the frames.
The indicator matrix .# is a diagonal matrix specifying which elements of A6 need a constraint.
We use & = diag([1,1,0,1,1,0,1,1]) to specify that there is no constraint on the translation pa-
rameters of the homography, but the rest of parameters should remain small.

By setting the first-order derivative of Eqn. 6.4 to zero, the solution for A is,

}
Qle;(0), (4.6)

H Q S 4.7
R= "5 S0 Y 4.7)
Using the chain rule, we have 83%6) = ()S"(We) %. Knowing that the mapping has two com-

ponents as # = (%, #5), and the first half of e; only contains x components and the rest only y
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components, we have,

(4.8)

= oy 1y,

where 1y, and O, are N;—dim vectors with all element being 1 and 0, respectively. For homography

N a I .
transformation, ‘55 = 3(1717pz,p3,p4,psy,p67p77ps) is given by,
o WI(X) Wz(y) IN, ONI ONi ONz —u(l)‘TV(x) _u(l)Wl()’)
96 . 4.9)
00 ‘ |
Oy, Oy, Oy WY & 1y —vOFY _yOgb)

At each iteration, and for each frame i, A6 is calculated and the start points of all the links
emanating from frame 7 are updated accordingly. Similarly, for all links with end points on frame
i, the end point coordinates are updated. !

We use the SURF [10] algorithm for keypoint detection with a low detection threshold, 7, =
200, to ensure sufficient keypoints are detected even for low-texture backgrounds. We use the
nearest-neighbor ratio method [65] to match keypoints and form links between each pair of keyframes.
Keyframe selection We select keyframes at a constant step of Af, i.e., from every Af frames, only
one is selected. Based on the experimental results, as a trade-off between accuracy and efficiency,

we use Af = 10 in TRGMC.

4.2.3 Weight assignment

We have defined all parameters in the problem formulation, except the weights of links, Q). we
consider two factors in setting Q). Firstly, the keypoints detected at larger scales are more likely
to be from background matches, since they cover coarser information and larger image patches.

Thus, to be robust to foreground, the early iterations should emphasize links from larger-scale

!In algorithm implementation, it is important to store the original coordinates of the detected keypoints and apply
the composite transformations accumulated in all the iterations to update the coordinates of the start and end points of
the links. Otherwise, accumulation of numerical errors will harm the performance.
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Figure 4.4: Comparison of the ratios of background-foreground matches for (a) sequential GMC and (b)
TRGMC.

keypoints, which forms a coarse-to-fine alignment. We normalize the scales of all keypoints such
that the maximum is 1, and denote the minimum of the normalized scales of the two keypoints
comprising the link & as si. Then, Q,(C’L is set proportional to sg.

Secondly, for each frame i, the links may be made either to all the previous frames, denoted
as backward scheme, or both the previous and upcoming frames, denoted as backward-forward
scheme. The former is for potential real time application, whereas the latter for offline video pro-

cessing. These schemes are implemented by assigning different weights to backward and forward

links,

. (B.sp)™; if d,gi) < i (Backward links)
alf (4.10)

(ct.s50)™; if d\) > i (Forward links)

where 0 < a, B < 1, ¢ is the iteration index, and O < r < 1 is the rate of change of the weights. Note
that the alignment errors in x and y—axes have the same weights, i.e., Q,(cliNhk N = Q,(jzc After a

few iterations, the weights of all the links will be restored to 1. In the backward scheme, we set

o=0.

4.2.4 Initialization

Initialization speeds up the alignment and decreases the false keypoint matches. The objective is

to roughly place each frame at the appropriate coordinates in the GMCC. For initialization, we
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Figure 4.5: (a) The input frame, (b) the reliability map, with the red color showing higher reliabil-
ity.

align the frames based only on rough estimation of translation without considering rotation, skew,
or scale. We use the average of the motion vectors in matching two consecutive frames as the
translation. Using this simple initialization, even if the camera has in-plane rotation, estimated
2D translations are zero, which is indeed correct and does not cause any problem for TRGMC.
Given the estimated translation, approximate overlap area of each pair of frames is calculated, and
only the keypoints inside the overlap area are matched, reducing number of false matches due to

appearance ambiguities.

4.2.5 Outlier handling

Links may become outliers for two reasons: (i) the keypoints reside on foreground objects not
consistent with camera motion; (ii) false links between different physical locations are caused by
the low detection threshold and similar appearances.

In order to prune the outliers, we assume that the motion vectors of background matches,
i.e., background links, have consistent and smooth patterns, caused by camera motion such as pan,
zoom, tilt, whereas, the outlier links will exhibit arbitrary pattern, inconsistent with the background
pattern. Specifically, we use Ma et allet@tokeneonedot [70] method to prune outlier links by

imposing a smoothness constraint on the motion vector field?. This method outperforms RANSAC

2We use the implementation provided by the authors and default parameters.
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if the set of keypoint matches contains a large proportion of outliers. Since keyframes have larger
relative time difference than consecutive frames, the foreground motion is accentuated and more
distinguishable from camera motion. This helps with better pruning of the foreground links. At
each stage that the keypoints from a pair of frames are matched to form the links, we perform the
pruning.

Congealing of an image stack also increases the proportion of background matches over the
outliers - another way to suppress outliers. The keypoints on background are more likely to form
longer range matches than the foreground ones, due to non-rigid foreground motion. Hence, when
(];) combinatorial pairs of frames are interconnected, there are a lot more background matches

(Fig. 4.4).

4.2.6 Alignment of non-keyframes

The keyframes alignment provides a set of temporally consistent motion compensated frames,
which are the basis for aligning non-keyframes. We refer to keyframes and non-keyframes with
superscripts i and j, respectively. For a non-keyframe j between the keyframes k; and k; 1, its
alignment is a special case of Eqn. 6.1, with indices K = {j}, and the destination of the links
d,gj ) e {ki,kiy1}, ie., only 6; of frame j is updated while the keyframes remain fixed. Each non-
keyframe between keyframes k; and k; is aligned independently.

However, given the small time offset between j and d Y ), the observed foreground motion may
be hard to discern. Also, frame j is linked only to two keyframes, thus there is no redundancy
of background information to improve robustness to foreground motion. Therefore, we need a
different means of outlier handling. We handle this issue by assigning higher weights to links that

are more likely to be connected to the background.

For each keyframe i, we quantify how well the links emanating from frame i are aligned with
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other keyframes. If the alignment error is small, i.e., 8,§i) = |7/x(x,(€i) , y,(:); 0)— u,(:) | + ‘V/y(x,(:) , y,(:); 0)—

v,(:) ‘ < 7, the link k is more likely on the background of frame i and thus, more reliable for aligning

non-keyframes. We create a reliability map for each keyframe i, denoted as RO (Fig. 4.5). For
() @)

each link k£ with elgi) < 7, a Gaussian function with i = (x;’,y,”) and oy = csy is superposed on

R(i), where the constant ¢ is 20. We define,

. ) (o)
Rjn = HZe J w , (@11
1
n

keB;

where B; = {k]slgi) < 7}, n > 0 is a small constant (set to 0.1), [x], = max(x,n) and [x|; =

min(1,n). Now, we assign the weight of the links connecting frame j to the keyframe d,gj ) at the

() (j))

coordinate (u,”,v

where a = d,Ej).

, as the reliability map of the keyframe at the endpoint, Q,(Cj ,2 (R(?J).) (j))rq’

uy”’ v

We summarize the TRGMC algorithm in Algorithm 2.

4.3 Experimental Results

We now present qualitative and quantitative results of the TRGMC algorithm and discuss how

different computer vision applications will benefit from TRGMC.

4.3.1 Baselines and details

We choose three sequential GMC algorithms as the baselines for comparison: MLESAC [107] and
HEASK [124] both based on our own implementation, and RGMC [88] based on the authors’ Mat-
lab code available online. We implement TRGMC in Matlab, and will publish the code. Denoting

the video frames of w x h pixels, we set the parameters as ¥y = 0.1wh, Ty = 300, 71 =5 X 1074,

h=50,1,=10"%r=0.7,7=1, Af =10, and B = 1. For the backward-forward scheme we set
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Algorithm 2: TRGMC Algorithm

o 0 N N T AR W =

10
11

12
13
14
15

16
17
18
19
20
21

Data: A set of input frames {I(")
Result: A set of homography matnces {6, M
/+ Align keyframes (Sec. 4.2. 2)

Specify K = {kj,...,ky } and initialize (Sec. 4.2.4);
Match keypoints of all frames i € K densely;
Prune links (Sec. 4.2.5) and set weights (Eqn. 4.10);
Store links’ start and end coordinates in (x;,y;) and (u;,v;);
repeat
forall the i € K do
Compute AB; (Eqn. 4.6), update 6;, x; and y; ;
Update (u,,, v,,;) according to 6; for m € K\{i};
Update weights (Eqn. 4.10);
qg<q+1;

until g < T; or (3 Liex ||A6]]> > 71);

/+ Align non-keyframes (Sec. 4.2.6)
Compute reliability map R forie K ;
fori=1:N—-1do

forall the j € {k;+1,....kiy1 — l} do

Match keypoints in j w1th dV) e {kikiv1};

Prune links (Sec. 4.2.5) and set weights Q,(C ,z,

Store links’ coordinates in (x;,y;) and (u;,v;);
repeat
Compute AB; (Eqn. 4.6), update 6;, x; and y;
Update weights (Eqn. 4.10), g < g+ 1;
until ¢ < T or (||A6;|]> > 12);

*/

o = 1 and for the backward scheme o = 0.

4.3.2 Datasets and metric

Given there is no public dataset for quantitative GMC evaluation, we form a dataset composed of

40 challenging videos from SVW [89] and 15 videos from UCF101 [100], termed “quantitative

dataset”.

SVW is an extremely unconstrained dataset including videos of amateurs practicing

sports, and is also captured by amateurs via smartphone. The min. and max. spatial size of videos

are 240 and 480 pixels, respectively. The average, min., and max. length of the videos are 14, 3,
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Algorithm | MLESAC | HEASK | RGMC | TRGMC GT*
Setting - - - BF* B* -
Avg. BRE 0.116 0.110 | 0.097 |0.058 0.060 | 0.038
Efficiency (s/f) 0.17 7.47 347 | 0.64 041 -

Table 4.1: Comparison of GMC algorithms on quantitative dataset (*GT: Ground truth, BF:
Backward-Forward, B: Backward).

and 45 seconds, captured at 25 or 30 FPS. In addition, we form another “qualitative dataset” with
200 unlabeled videos from SVW, in challenging categories of boxing, diving, and hockey.

To compare GMC over different temporal distances of frames, for each video of length M
in the quantitative dataset, we manually align all 10 possible pairs from the 5-frame set, F =
{1,0.25M,0.5M,0.75M , M }, as long as they are overlapping, and specify the background regions.
For this, a GUI is developed for a labeler to match 4 points on each frame pair, and fine tune them
up to a half-pixel accuracy, until the background difference is minimized. Then, the labeler selects
the foreground regions which subsequently identify the background region. Similar to [88], we
quantify the consistency of two warped frames I)(6;) and 1) (6 ;) (0 to 1 grayscale pixels) via the
background region error (BRE),

1
IMB|1

BRE(i, j) = 1119 (6;) —1Y)(8;))| © Mg |1, (4.12)

where © is element-wise multiplication and Mg is the background mask for the intersection of two

warped frames.

4.3.3 Quantitative evaluation

Average of BRE over all the temporal frames pairs is shown in Table 4.1. TRGMC outperform
all the baseline methods with considerable margin. The backward-forward (BF) scheme has a

slightly better accuracy than the backward (B) scheme, and is also more stable based on our visual
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Figure 4.6: Average BRE of frame pairs versus the time difference between the two frames.
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Figure 4.7: Top view of the frames and links (a) before and (b) after TRGMC. The parallel links
in (b) show successful spatial alignment of keypoints. Average of frames (c) before and (d) after
TRGMC. For better visibility, we show up to 15 links emanated per frame.

observation. Thus, we use BF as the default scheme for TRGMC.

To illustrate how the accumulation of errors over time affects the final error, Fig. 4.6 sum-
marizes the average error versus the time difference between the frames in F. This shows that
TRGMC error is almost constant over a wide temporal distance between the frames. Thus, even if
a frame is not aligned accurately, the error is not propagating to all the frames after that. However,

in sequential GMC, the error increases as the time difference increases.
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Figure 4.8: Composite image formed by overlaying the frame n on frame 1 for several videos after
TRGMC. Left to right, top to bottom, n is equal to 144, 489, 912, 93, respectively. In the overlap
region the difference between the frames is shown.

4.3.4 Qualitative evaluation

While quantitative results are comprehensive, the number of videos is limited by the labeling cost.
Thus, we further compare TRGMC and the best performing baseline, RGMC, on the larger qualita-
tive dataset. The resultant motion panoramas were visually investigated and categorized into three
cases: good, shaking, and failed (i.e., considerable background discontinuity). The comparison in
Tab. 4.2 again shows the superiority of TRGMC.

Figure 4.7 shows the links of a sample video processed by TRGMC, and the average frames,
before and after processing. Initialization module is disable for generating this figure to better
illustrate how well the spatial coordinate of the keypoints are aligned, resulting in links parallel to
the r— axis. This video also shows how GMC might be utilized for video stabilization. Figure 4.8
shows a composite image formed by overlaying the last frame (or a far apart frame with enough
overlap) on frame 1 for several videos, after TRGMC. In the overlap region, difference between

the two frames is shown, to demonstrate how well the background region matches for the frames
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with large temporal distance.

4.3.5 Computational efficiency

Table 4.1 also presents the average time for processing each frame for each method, on a PC with
an Intel 15-3470@3.2GHz CPU, and 8GB RAM. While obtaining considerably better accuracy
than HEASK or RGMC, TRGMC is on average 15 times faster than HEASK and 7 times faster
than RGMC. MLESAC is ~3 times faster than TRGMC, but with twice the error. For TRGMC,
the backward scheme is 50% faster than forward-backward, since it has approximately half the

links of BF.

4.3.6 Accuracy vs. efficiency trade-off

Fig. 4.9 presents the error and efficiency results for a set of 5 videos versus the keyframe selection
step, Af. For this set, the ground truth error is 0.049. As a sweet spot in the error and efficiency
trade-off, we use Af = 10 for TRGMC. This figure also justifies the two stage processing scheme
in TRGMC, as processing frames at a low selection step Af, is costly in terms of efficiency, but

only improves the accuracy slightly.

Alg. \Perfromance | Good | Shaking | Failed
RGMC 64% 33% 3%
TRGMC 93 % 5% 2%

Table 4.2: Comparison of GMC algorithms on qualitative dataset.

4.4 Conclusions

We proposed a temporally robust global motion compensation (TRGMC) algorithm by joint align-

ment (congealing) of frames, in contrast to the common sequential scheme. Despite complicated
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Figure 4.9: Error and efficiency vs. the keyframe selection step, Af.
camera motions, TRGMC can remove the intentional camera motion, such as pan, as well as un-
wanted motion due to vibration on handheld cameras. Experiments demonstrate that TRGMC

outperforms existing GMC methods, and applications of TRGMC.

The enabling assumption of TRGMC is that the camera motion in the direction of the optical
axis is negligible. For instance, TRGMC will not work properly on a video from a wearable camera
of a pedestrian, since in the global coordinate the upcoming frames grow in size and cause compu-
tational and rendering problems. Similar to panorama images, the best results are achieved if the
optical center of the camera has negligible movement during the capturing, making a homography-
based approximation of camera motion appropriate. However, if the optical center moves in the
perpendicular direction to the optical axis (e.g., a camera following a swimmer), TRGMC still

works well, but rendering the results in the form of motion panorama will be degraded by parallax

effect.

53



Chapter 5

Global Motion Compensation Applications

There are a wide range of applications which can benefit from a robust and accurate global motion
compensation (GMC) algorithm. Basically, many algorithms which are tailored to work only with
static cameras benefit from GMC, as GMC transforms the video from a freely moving camera to a
video from a pseudo-static camera in which background pixels are static over progression of time.
Besides, some byproducts of GMC such as background reconstructions and motion panoramas
themselves provide an interesting visualization of the captured video.

In these chapter, we briefly investigate these applications and then in Chapter 6 propose an algo-

rithms for spatio-temporal alignment of non-overlapping sequences which is enabled by TRGMC.

5.1 Motion panorama

By sequentially reading input frames, applying the transformation found by TRGMC, and over-
laying the warped frames on a sufficiently large canvas, a motion panorama is generated. Fur-
thermore, it is possible to reconstruct the background using the warped frames first (as will be
discussed later), and overlay the frames on that, to create a more impressive panorama. The last
frame on the video generated such, can be referred to as a panoramic mosaic [101]. Figure 5.1
shows a few exemplar panoramas along with the camera motion pattern. For all the input videos
of length M, we apply (1(6) + 6y)) ! to the transformations found by TRGMC to normalize the

result and have a better view of the scene in a smaller spatial area.
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5.2 Raster scan of scenes/Image mosaic

We may swipe the camera through a large scene in a raster scan fashion and use TRGMC to
reconstruct a big image mosaic. Note that this scenario is non-trivial since the accumulated error
can be obvious when the raster scan comes back to the original camera position. The long term

robustness presented by TRGMC is crucial in this scenario.

5.3 Background reconstruction

Background reconstruction is important for removing occlusions, or detecting foreground [74].
To reconstruct the background, a weighted average scheme is used to weight each frame by the
reliability map, RY), which assigns higher weights to background. Since the minimum value of

R is a positive constant 7, if no reliable keyframe exists at a coordinate, all the frames will

xR (6)19(6)

. , where
Yiex RO(6)

have equal weights. Specifically, the background is reconstructed by B = Lic
R(i)(Oi) and I(6;) are the reliability map and the input frame warped using the transformation

0;. Using our scheme, reconstructed background in Fig. 5.2 is sharper and less impacted by the

Figure 5.1: Temporal overlay of frames from different videos processed by TRGMC. Trajectory
of the center of image plane over time is overlaid on each plot to show the camera motion pattern,
where color changes from blue to red with progression of time.
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Figure 5.2: Background reconstruction results.

foreground.

5.4 Foreground segmentation

The reliable background reconstruction result B as calculated in Section 5.3 along with the GMC
result of frame I, i.e., 6;, can be easily used to segment the foreground by thresholding the

difference image, [B —I()(6;)| (See Fig. 5.3).

5.5 Human action recognition

State of the art human action recognition heavily relies on analysis of human motion. For instance,
the dense trajectories algorithm [114] for motion analysis reveals its power when camera motion is
compensated in the input video, either as pre-processing step, or internally [117]. Otherwise, cam-
era motion interferes with human motion, making the analysis problem very challenging. In [117],
camera motion is compensated by detecting human and removing motion vectors due to human

motion, and relying on RANSAC algorithm for outlier rejection. However, this internal GMC
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(©)

Figure 5.3: Foreground segmentation: (a) Input frame, (b) reconstructed background, (c) difference
of (a,b) on (a).

(b) -

Figure 5.4: Dense trajectories of the (a) original video, and (b) TRGMC-processed video.

requires accurate human detection, which has a high failure rate in videos in the wilds, specially
for highly articulated human body in sports videos, and loses performance when number of false
matches increases. Fig. 5.4 illustrates the difference of dense trajectories calculated on an input
video with and without application of TRGMC. As shown in this figure, utilizing TRGMC before

extraction of dense trajectories effectively suppresses the camera motion effect.
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5.6 Multi-object tracking (MOT)

When appearance cues for tracking are ambiguous, e.g., tracking players in team sports like foot-
ball, motion cues gain extra significance [26,55]. MOT is comprised of two tasks, data association
by assigning each detection a label, and trajectory estimation — both highly affected by camera
motion. TRGMC can be applied to remove camera motion and thus, revive the power of tracking
algorithms relying on motion cues. To verify the impact of TRGMC, we manually label the lo-
cations of all players in 566 frames of a football video (the one in Fig. 5.3) and use this ground
truth detection results to study how MOT using [3] benefits from TRGMC. Fig. 5.5 compares the
trajectories of players over time with and without applying TRGMC. Comparing number of la-
bel switches, this qualitatively demonstrates improvement of a challenging MOT scenario using
TRGMC. Also, the Multi-Object Tracking Accuracy (MOTA) [12] achieved for the original video

and the video processed by TRGMC are 63.79% and 84.23%, respectively.

5.7 Spatio-temporal alignment of non-overlapping sequences

Spatio-temporal alignment of multiple videos is an important computer vision problem with a wide
range of applications. Previous works study different aspects and scenarios of the spatio-temporal
alignment. Given the capabilities of the accurate GMC provided by TRGMC, it is possible to de-
sign algorithms for spatio-temporal alignment of sequences in new scenarios. Specifically, since it
is possible to transform each given sequence to a global coordinate and also reconstruct the back-
ground for each video sequence, it is possible to register the background images, and subsequently
register each frame of each sequence with other sequences. To this end, we propose a new algo-
rithm for spatio-temporal alignment of sequences, for non-overlapping sequences (NOS), which is

presented in details in Chapter 6. Targeted NOS are captured by freely and independently panning
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Figure 5.5: Multi-player tracking using [3] for a football video with camera panning to the right,
before (top) and after processing by TRGMC (bottom).

cameras from nearby viewpoints. In NOS, sequences might not have any pair of frames that have
spatial overlap and belong to the same world time instant. More interestingly, sequences might
even not cover some common regions of the same scene over the progression of time.

Our algorithm uses TRGMC to map each frame to a camera-motion-removed video and re-
construct the background for each sequence, independently. These potentially non-overlapping
backgrounds are aligned via appearance cues and also the prediction that where a moving object
leaving field of view of a camera will appear in field of view of another camera. Given the spatial
alignment, we predict when a moving object leaving field of view of one camera will appear in
field of view of another to come up with the temporal. We mathematically formulate this prediction

and estimate the temporal synchronization.
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Chapter 6

Spatio-Temporal Alignment of
Non-Overlapping Sequences from

Independently Panning Cameras

6.1 Introduction

Spatio-temporal alignment of multiple videos [16,27,28, 33, 39,76, 80,95, 120] is a well-studied
vision problem with a wide range of applications, e.g., human action recognition [82, 110], video
editing [120], markerless motion capture [39], video mosaicing, change detection [27], and aban-
doned object detection [48]. Previous works study different aspects and scenarios of the spatio-
temporal alignment. Some works target sequences from the same scene but different viewpoints [39,
76]. Some can handle sequences recorded at different times by independent moving cameras that
follow a similar trajectory [28,33,120]. The seminal work of Caspi and Irani [16] studies spatially
non-overlapping sequences when two fixed cameras move jointly in space.

Our work covers a novel unexplored aspect of spatio-temporal alignment of sequences, for non-
overlapping sequences (NOS). Targeted NOS are captured by freely and independently panning
cameras, from nearby viewpoints, with limited translation, especially in optical axis direction. In
NOS, sequences might not have any pair of frames that have spatial overlap and belong to the same

world time instant. More interestingly, sequences might even not cover some common regions
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Figure 6.1: (a) Top view of spatio-temporal FOV of two moving cameras capturing sequences S
and S;; Non-overlapping sequences (NOS) may not even cover some common spatial region over
the progression of time, i.e, no overall spatial overlap will exist. (b) Spatio-temporal alignment of
NOS results in displaying sequences from multiple freely panning cameras in a common coordinate
and at the correct time shift.

of the same scene over the progression of time. In other words, if we reconstruct the observed
background by these sequences, the backgrounds may be non-overlapping, i.e., in Fig. 6.1 (a),
overall spatial overlap does not exist.

Given the ubiquitousness of smartphones and wearcams, NOS are increasingly common. When
amateur users unsynchronizedly shoot videos of an event, aligning these videos leads to a single
comprehensive video, with greater spatial and temporal spans (Fig. 6.1 (b)). This resultant video
is essentially a panoramic video, shot by smartphones, without the need to fix the cameras to each
other or use tripods, with the best visual presentation achieved if there exists even a tiny overlap.
Further, in cases of crime actions or violations where many witnesses capture videos from the
incident, each sequence may cover part of the story. Aligning these videos into a unified large-
scale 3D volume provides a better grasp of the full picture.

The existing spatio-temporal alignment algorithms fail in the case of NOS, since even if there
is some overall spatial overlap, spatial alignment of apparently overlapping frames, as Fig. 6.1 (a)

shows for frames a and b, obviously violates the temporal alignment. However, by decompos-
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ing the task to spatial alignment first and then temporal alignment based on scene dynamics, the
problem can be solved. In general our proposed algorithm assumes NOS satisfy the following two
assumptions. 1) Although the sequences do not need to have any corresponding frames that share
a common scene at the same world time stamp, and no overall overlap as in Fig. 6.1 (a), they cover
nearby parts of a scene from similar view angles. 2) There are moving objects in the scene which
move from the field of view (FOV) of one camera to FOV of other cameras, or if the sequences
happen to have overlap, have motion in the overlap region.

Our algorithm uses global motion compensation to map each frame to a camera-motion-removed
video and reconstruct the background for each sequence, independently. With the two assumptions,
these potentially non-overlapping backgrounds are aligned via appearance cues and also the pre-
diction that where a moving object leaving FOV of a camera will appear in FOV of another camera.
Collection of the former mappings and the latter background alignment, can put each frame in each
sequence in correct spatial alignment w.r.t. frames from other sequences. Given the spatial align-
ment and the assumption 2, we predict when a moving object leaving FOV of one camera will
appear in FOV of another. We mathematically formulate this prediction and estimate the temporal
synchronization.

In summary, this chapter makes these contributions:

< A new scenario in spatio-temporal alignment of sequences is identified and targeted.

o A spatial alignment algorithm for NOS via alignment of reconstructed backgrounds and
consistency of objects movement is proposed.

¢ The trajectory of moving objects with smooth path are used as a clue for temporal alignment

of NOS.
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6.2 Previous Work

The prior work in spatio-temporal alignment of sequences mostly differ in their assumptions and
scenarios, e.g., the camera movement (static, jointly moving, or moving), camera view-point (sim-
ilar or distinct), extent of overlap in sequences, and extent of similarity of camera motion paths.
The work of [34] presents an excellent taxonomy of these assumptions, one of which is that, to
align sequences from the same event captured by freely moving cameras, coherent scene appear-
ance is assumed. We lift this assumption by handling non-overlapping sequences, although we do
assume negligible camera movement in the optical axis direction. We now review key scenarios in

prior work.

6.2.1 Jointly moving cameras

Caspi and Irani align spatially non-overlapping sequences when two closely attached cameras
move jointly in space (Fig. 6.2 (a)) [16]. Assuming cameras share the same projection center, their
relationship is modeled as a fixed homography H, estimated based on the idea that the apparent
motion in camera 1 is related to camera 2 with H. Esquivel et al. [32] relax the projection center
assumption and calibrate a multi-camera rig from non-overlapping views, assuming synchronized
sequences. In contrast, the cameras in NOS can pan freely with no overlap, which is substantially

more challenging.

6.2.2 Cameras following similar trajectories

The authors of [28,33,34,120] align sequences recorded at different times by independent moving
cameras that follow a similar trajectory (Fig. 6.2 (b)). [28] assumes one sequence as the reference
and the other sequences entirely contained (temporally) within the reference. The alignment is for-

mulated as an energy minimization problem alternately solved for temporal and spatial alignment
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Figure 6.2: Various scenarios in spatio-temporal alignment of sequences: (a) jointly moving cam-
eras, (b) independently moving cameras at different times following similar trajectories, (c) sta-
tionary cameras with different viewpoints, (d) the proposed independently panning cameras with
non-overlapping sequences.

parameters and is evaluated on four sets of real videos. In [120] an interactive method for nonlinear
temporal video alignments is proposed for video editing. All these methods require coherent scene
appearance and are not capable of handling sequences from moving cameras with no overlap in

FOV — the targeted scenario of NOS.

6.2.3 Stationary cameras at different views

Padua et al. [76] target n > 2 sequences from the same scene but different viewpoints (Fig. 6.2 (¢)).
The stationary cameras allow the estimated camera’s epipolar geometry remain fixed. Motion
trajectories are used as cues for both spatial and temporal alignment. Experimental results are
provided for 5 sequences, however, as the proposed method is not dependent on a specific tracker,

for each sequence, the optimal tracker is chosen based on the application in hand.

6.2.4 Time synchronization

Many prior works have focused on time synchronization of sequences. Assuming the known 3D
object location and calibrated stationary cameras, [15] synchronizes non-overlapping sequences

of these cameras. Gaspar et al. [37] propose a synchronization algorithm for the case that two
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Figure 6.3: Flowchart of our spatio-temporal alignment algorithm. First, spatial alignment is per-
formed by background reconstruction for each sequence (a) and aligning the backgrounds (b).
Second, given the spatial alignment parameters, keypoint trajectories (c) are mapped to the world
coordinate and the best temporal alignment in terms of continuity of moving object trajectories is
found (d). Finally, spatio-temporal alignment parameters are used for displaying the sequence in a
world coordinate system and at the correct time shift (e).

cameras move independently, even if different features are tracked in two sequences. It assumes the
known intrinsic camera parameters and two visible rigid objects in both sequences, whose relative
motion is used for synchronization. Lu and Mandal [67] model the video temporal alignment as
a spatio-temporal discrete trajectory alignment problem. The method is evaluated on synthetic
trajectories and 10 pairs of real videos. Our method also relies on existence of at least one moving
object for temporal synchronization. In fact, without spatial overlap between FOVs, any temporal
alignment algorithm has to track moving objects or egomotion [34]. However, we can work with
non-overlapping sequences where the same moving object is not visible at the same time in all

sequences, without relying on camera calibration or known moving object location.

6.3 Proposed Method

We discussed the assumptions for the proposed spatio-temporal alignment of NOS in Section 6.1.

The intrinsic and extrinsic camera parameters are not required. Also, the cameras might be un-
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synchronized, i.e., the capture starts at different times, with possibly distinct frame rates, and are
panned freely and independently. However, best results are achieved by small camera baseline and
limited translation of cameras, especially in the optical axis direction.

The proposed algorithm has two stages, (1) spatial alignment (Fig. 6.3(b)), which relies on
the reconstructed backgrounds’ appearance and consistency of movement of objects across the
sequences, (2) temporal alignment (Fig. 6.3(d)), which uses the continuity of objects’ trajectories
to synchronize the videos. Our method is feature-based, relying on keypoint correspondence for

the first stage and keypoint trajectories for the first and second stage.

6.3.1 Notations

As shown in Fig. 6.3, frame coordinate refers to the pixel coordinate in the input video, sequence
coordinate to the global coordinate of the reconstructed background of one video, and world co-
ordinate to the global coordinate of all input videos where the final aligned video is rendered. We
denote the coordinates and time stamps in the frame coordinate with plain letters, in the sequence
coordinate with ~ over the notation, e.g., X, and in the world coordinate with double ~, e.g., .
Accordingly, a transformation from the frame to sequence coordinate has ~ over the notation, and
a transformation from the sequence to world coordinate has double ~. We use superscript for the
sequence number and subscript for, either the frame number or trajectory number. E.g., éis is the

transformation of frame i in sequence s from the frame coordinate to sequence coordinate.

6.3.2 Spatial alignment

We break down the spatial alignment to two phases. First, for each sequence, we map all the
frames to the sequence coordinate, via global motion compensation (GMC), which also produces

a reconstructed background mosaic (Fig. 6.3(a)). A crucial assumption for successful GMC is the
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camera having small motion in the optical axis direction. Second, image alignment is conducted
on the reconstructed backgrounds and maps them to the world coordinate (Fig. 6.3(b)). However,
if the backgrounds are non-overlapping, common image alignment cannot be used. Thus, a new

alignment scheme is proposed in Sec. 6.3.2.3.

6.3.2.1 Global motion compensation

GMC removes any intentional or unwanted camera motion in a sequence, creating a video with
static background [86, 88]. Essentially, GMC estimates a per frame transformation to the sequence
coordinate. This work utilizes the TRGMC algorithm [86], discussed in Chapter 5, which handles
dynamic scenes and estimates the transformations by joint alignment of input frames. TRGMC
first detects SURF [11] keypoints in each frame, and performs keypoint matching to densely in-
terconnect all frames, regardless of their temporal offset. These connections are referred as links.
Then the keypoint-based congealing applies appropriate transformation to each frame and its links,
such that the spatial coordinates of the end-points of each link are as similar as possible.

For the convenience of readers, we briefly introduce the keypoint-based congealing. Given a
stack of N frames {I;}, with indices i € K = {ky,...,ky}, keypoint-based congealing is formulated

as an optimization problem,

mine’ = Y [ei(6)7 2 [ei(6)], (6.1)
{67} icK

where éis is an 8-dim homography transformation parameter from frame 7 of sequence s to the se-
quence coordinate, e,-(él:‘) collects pair-wise alignment errors of frame i relative to all other frames,
and 7 is a weight matrix. Since TRGMC uses homography transformation, it works best with
nodal camera motion. In the case of camera translation, TRGMC still works by matching the

dominant background, although the result may downgrade with parallax.
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The alignment error of frame i relative to all other frames is the sum of squared differences
(SSD) between the coordinates of the endpoints of all links connecting keypoints of frame i to
keypoints of other frames. The coordinates of the start and end point of each link k starting from

frame i are donated as (x;x,y;x) and (u;k, v k), respectively. The error ei(éis ) is,
ei(07) = [Axi(67)T, Ay, (6T, (6.2)

where

Ax(8) =% —u;, Ay (8) =W —v;, 6.3)

are the errors in x and y—axes. The vectors v‘vl(x) = W (xik,Yix; 67)] and Wl(y ) = (A5 (Xi e Vi ks éis )]
denote the x and y—coordinates of (x; x,y; x) warped by the parameter éis , respectively. The vectors
u; = [ug ;] and v; = [vi ;] denote the coordinates of the end points.

Equation 6.1 is solved by taking the Taylor expansion around éis and finding the increment Aéis
that minimizes,

argmin [e;(6;") + ——==AB;[TQ[e;(67) +

~ aes aés A ZS] + yAéiSTe]Aéig, (64)
A} i i

dei(6;)

where AB!T.#AB is a regularization term which stabilizes the changes to the transformation, with
a positive constant Y setting the trade-off. The indicator matrix .# is a diagonal matrix specifying
which elements of Aél:‘ need a constraint.

By setting the first-order derivative of Eqn. 6.4 to zero, a closed-form solution for Aéis is ob-
tained. After enough iterations, él-s will be the transformation mapping frame i of the input video

to the sequence coordinate.
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6.3.2.2 Spatial alignment of overlapping backgrounds

Given the éis for all the input videos, we follow [86] to reconstruct the backgrounds B® for them. If
there exists enough overlap between the backgrounds, common image alignment algorithms may
be used. Specifically, we estimate the transformation 0° that maps the background of sequence s
to the world coordinate, by matching SURF keypoints on background images via the vector field
consensus algorithm [70]. In summary, a point with the homogeneous coordinate (x,y, 1) in frame
i of sequence s is mapped to the sequence coordinate of sequence s, denoted as (%,¥,1), and the

world coordinate of all sequences, denoted as (%, 7, 1),

X X X
}7 =6° jl = 6°6; y (6.5)
1 1 1

Thus, the transformation 6* éis conducts spatial alignment for frame i in sequence s. Given the
homography transformation of 0%, as the cameras’ baseline increases, the dominant background

plane is aligned, and the foreground may be affected by parallax in the final composite video.

6.3.2.3 Spatial alignment of non-overlapping sequences

With freely panning cameras, it is likely that the backgrounds of sequences have no overlap, or the
overall overlap is too small to reliably estimate the spatial alignment, flagged with noisy keypoint
matches using vector field consensus [70]. One potential solution is to extrapolate the background
images, and align the extrapolated images, similar to [79]. However, our experiments reveal that
this is not reliable. First, extrapolation introduces many artifacts [7], or blurred areas [2, 79], lead-
ing to poor keypoint matching. Second, extrapolation in horizontal direction, helps with alignment

in vertical direction, but leaves lots of ambiguity in horizontal alignment. Third, a rigid Euclidean

69



! B B‘*(I'V(x:\ﬁj)): Extrapolated background
"= ~_._ warped by 6

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
|

/

B': Extrapolated background
Background ‘ ' /\ !
/‘ ) Moving Objﬁ !
, __ trajectories |
i ' i o fi

trajectories

i
i
i
i
|
|
|
| . . . -
i Moving objects trajectories
|
|
|
|
i
i
i
i
|

Figure 6.4: Spatial alignment of non-overlapping sequences using background extrapolation and

smoothness of object trajectories.

transformation, as in [79], does not suffice for a proper background alignment.

On the other hand, how objects move across the sequences in the spatial world coordinate,
irrespective of temporal synchronization, provides hints for spatial alignment (Fig. 6.4). There is
ambiguity in the exact spatial alignment, however, as more objects move across the sequences and
in more diverse directions, the ambiguity is decreased.

To enable spatial alignment for non-overlapping sequences, we propose a spatial alignment al-
gorithm that combines both aforementioned ideas. We first extrapolate the background images of
all sequences. Then, we perform motion tracking to obtain trajectories of all keypoints in each se-
quence. By transforming the trajectories to the sequence coordinate using éis and filtering out static

trajectories, we collect moving object trajectories. We create motion tracks by matching moving
object trajectories across sequences. Finally, we incrementally update the transformation applied
to the background images to increase the motion track smoothness in the world coordinate, while

ensuring that this update will not violate the appearance consistency of extrapolated backgrounds
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in the overlap region.

Motion tracking We perform tracking in consecutive frames to form the trajectories. Among
various schemes, we prefer the keypoint-based tracking for two reasons. 1) Object-based tracking
requires detecting generic objects on each frame, which could be error-prone and inefficient. 2)
Our experiments and also the analysis in [61] reveal that optical flow-based tracking such as dense
trajectories [115] leads to spurious motion trajectories close to the motion boundaries. We use
SURF [11] keypoint detector due to superior performance on blurry images, in comparison to
SIFT [65]. To detect newly emerging objects, we start tracking all the keypoints on frame i who
have no corresponding matches from frame i — 1.

Denote the jth trajectory in sequence s as Pj = [Xj’-,y‘;‘.,fj-], where X‘;

and y‘]‘. are the frame
coordinates, and fj- is the time stamp. To handle sequences at different frame rates, fj- should be
the absolute time unit such as milliseconds not frame number. We then compute the trajectory
15; in the sequence coordinate via él:‘. In this coordinate, trajectories of moving and stationary
keypoints are easily distinguishable, as sequence coordinates of static objects remain constant over

time (Fig. 6.3(d), bold vs. dashed lines). Denoting the trajectory length as l; and width and height

of the sequence as w* and h*, we omit stationary trajectories if,

I

s
-1
17

%5 =% |5’s-k_5’s'k 1
( Js ] + Js hs]7+ <T1, (66)

N

S
Jj k=1

where 7 is a threshold for the total displacement of the tracked object, and f(j . and Sfi . denote the
kth element in the vectors ij and yj-, respectively.

Creating motion tracks We describe each moving object trajectory j of sequence s with two
SURF descriptors, one for the keypoint starting the trajectory 5”]5 and one for the one ending it @@]S .

To match two trajectories j and k from sequences s; and s;, a classical keypoint matching algo-
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rithm [65] is used to match all 4 combinations of keypoints, i.e., @7;1 ), (é"J‘.” ,E2%), ((VJS L&)
and (6’; ‘,Yksz) , and the minimum distance decides a match. This way, more robustness against
view point variation is achieved, as the nearby keypoints of the trajectories (in the world coordi-
nate) will be the deciding factor in trajectory matching. We call each set of the matched trajectories
a track, denoted by I1;. For simplicity of notation, we assume that the trajectories contributing to a
track have been re-indexed such that IT;, = {ﬁs;s € {1,...,S}}. For a certain sequence s, Iglf might
be empty, i.e., no trajectories from this sequence is part of the track I1;. Note that not all trajecto-
ries should be matched to form tracks, as they might be due to noise or objects with non-smooth
motion path. Sec. 6.3.3.2 presents a method to remove non-smooth trajectories.

Spatial alignment formulation For simplicity, we discuss the alignment of 2 sequences, as more
sequences may be aligned in the same manner, sequentially. Also, we set 0! = L33 and use 6 for
62 to avoid cluttered equations. Given N tracks indexed by i, and extrapolated backgrounds B! and
B2, the goal is to find a transformation & which maps B> to B!, such that the pixel contents of the
extrapolated background are consistent in the overlap region Q(6) and trajectories of sequence 2
reside on the extension of trajectories in sequence 1. For image extrapolation, we use PatchMatch
algorithm [7]. To further improve extrapolation results, for extrapolating each background, we use
contents of both background images. Then, we formulate the problem as an optimization problem
(Fig. 6.4),

min Y [BA(#(x:0)) _Bl(x)}zwzei(e)Tei(e), (6.7)

9 xc0(s)
where 7 (x;0) warps x by the transformation 6, and e;(0) represents how far trajectory i of se-
quence 2 is from spatial extension of matching trajectory in sequence 1. The first term in Eqn. 6.7
is similar to Lucas-Kanade algorithm [5], operated only in the overlapping area. To define €;(0),

we fit a line, which based on our experiments works better than fitting polynomials, to the ith tra-
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jectory in sequence 1 (in the sequence coordinate), denoted by f;(x). The vector e;(0) collects the
y-distance between each point on the ith trajectory in sequence 2, after warped by 6, and the fitted
curve,

ei(0) = (W) — fi(w!)], 6.8)

where Wl(x) = [#x(xi2,yi2;0)] and v~vl(y) = [#;(xi2,yi2;0)] are the warped % and j—coordinates of
the ith trajectory in sequence 2 in the sequence coordinate.
The optimization problem is solved by taking the Taylor expansion around 6 and finding the

increment A8 by,

argmin

2
B> (¥ (x; 9))+V828—WA9 B'(x )}
A6 xc0(0)

6

+ﬁ); le,-(e) n ag(:)AeT [ei(G) n a‘;’ge)Ae +aABTIAD, (6.9)
where AOT.Z A0 is a regularization term penalizing some special changes on A6 controlled by .%
and a positive constant ¢. By setting .# = diag([0,0,1,0,0,1,0,0]), we penalize large changes on
translation elements of A8, so that frames are first aligned by warping them rather than translating
them. Based on our experiments, this leads to more stable result. We initialize the algorithm by
setting the sequences side by side (spatially) with the two possible layouts, and use the alignment

result of the layout with lower final cost. The solution to Eqn. 6.9 is,

AG=H"! <XE§(9) [VBZ%Q [B (x )—BQ(W(X;Q))} —B; [8329)]Tei(9)>, (6.10)
in which
A Sl A S I
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Fitted curve

Figure 6.5: Trajectories, tracks, and fitted space-time curve to the tracks from 3 videos.

Here % is the Jacobian evaluated at x. By the chain rule,

Jei(6)  dei(0) oW

I e CO Rt
56~ o o6 Wi AlGg

in which

aei(e) . 8el~(9) .
oW W Wy,

6.3.3 Temporal alignment

(6.12)

(6.13)

NOS are assumed to have moving objects, without which the temporal alignment is neither neces-

sary nor possible. Given moving objects and spatial alignment results, the temporal alignment of

NOS amounts to estimating when an object will appear in FOV of another camera, after it moves

out of the current FOV. If both cameras observe the object’s motion at the same time, the problem

is easier. For this purpose, we create motion tracks as discussed in Sec. 6.3.2. Then, we estimate

the temporal offset between sequences such that trajectories from the identical object follow a

continuous path in f—7and f— 7 coordinates, i.e., the motion tracks are smooth. Since not all

trajectories are due to moving objects, we filter motion trajectories with non-smooth paths, before

matching trajectories.
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6.3.3.1 Estimation of temporal offset

Given the collection of tracks, the objective is to make each track a smooth curve, by shifting
the temporal coordinates of the contributing trajectories appropriately (Fig. 6.5). For S sequences,
%— coordinate of trajectories forming the kth track is the vector [):(,1,):(%, ...,):(,f]T. y— coordinate of
each track is defined similarly. We assume that by temporally shifting each sequence s for Az, the
sequences are temporally aligned. To estimate Afy, we fit a polynomial curve of degree m to time
stamps versus % and y—coordinates of each track independently and estimate the time shifts, in
order to achieve the lowest curve fitting error. Here, we discuss only the F-% curve, and the 7 -3
curve is similar.

We denote the trajectory coordinates of sequence s and all the power terms of the polynomial

space-time curve as

20— 1, &R, R, (6.14)

where 13 is a [J-dim vector of all ones, and [.|”" denotes an element-wise power operation. For the
track k, all the required terms of the polynomial space-time curve are collected in a matrix X; of

size Y i I} x (m+ 1), and all the time stamps in a vector Te (At) of length Y, I},

_§1(m)_ tl + A
k
N FA G 2 +An
X = Ti(At) = : (6.15)
=S(m) -
_Xk " ] ti + Atg

We denote the coefficients of the kth polynomial curve fitting to the kth track as ¢, = [c,];q €

{0,...,m}. We can estimate the coefficients by solving a linear system, arg min,, || YZ"k(At) — Xk II.
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Since all tracks share the same At, we can efficiently solve for all tracks jointly,

¢*, At* = argmin || T(At) — Xc ||, (6.16)
c,At
in which ) )
X0 0 T (At) ¢
- 0 X 0 o fz (At) (V)
X = T(At) = o= (6.17)
0 0 --- Xg _7:"1( (At)_ ek |

Here, X is a Ny x K (m+ 1) matrix where Nx = Y, Y;/{ is the count of keypoints in all K
tracks. We alternatively estimate ¢ and At, until the change in At is negligible. We first estimate c,
with fixed At. Since Nx > K(m -+ 1), this linear system is over-constrained for ¢. We solve ¢ by
Orthogonal-triangular decomposition, which is numerically more accurate than the pseudo inverse
of X. Then, for a given ¢*, we set Az, as the average of residuals from the keypoints in trajectories
belonging to sequence s,

1 ~ =~
Aty =~ (T = Xe)T, (6.18)

N

where .7 is a binary indicator vector with an element equal to 1 if the corresponding row in T

comes from a trajectory in sequence s, and Ny =|| .%; ||; is the count of such rows.

6.3.3.2 Motion trajectory filtering

As mentioned before, not all trajectories are resulted from object motion with a smooth path. In
other words, some trajectories might be due to noise in keypoint locations while the camera moves.

So, before matching trajectories across sequences and collecting them to a track, we filter out the
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Sequence ID R1 R2 | R3 | R4 | RS | R6 | R7 | R8 | R9 | R10 | S1 | S2 S3 S4 S5

Camera baseline (m) 1 3 1 1 1 1 1 1 5 10 0 0 0 0 0
Temporal error (s) | 0.13 | 0.07 | 0.07 | 0.13 | 0.07 | 0.07 | 0.10 | 0.03 | 0.07 | 0.07 | O | 0.03 | 0.07 | 0.03 | 0.07

Spatial error (pixel) - - - - - - - - - - 2 3 7 2 2

Table 6.1: Temporal and spatial alignment error in seconds and pixels, respectively, for real (R)
and synthetic (S) sequences.

trajectories that cannot be well approximated with a smooth path, by fitting the order-m polynomial
to the trajectory,

¢ = argmin | § —X"¢} |2, (6.19)
¢

(m

and thresholding the total fitting residual to remove non-smooth trajectories, i.e., l% € —% )c,i* l1<
k

.

6.4 Experimental results

In this section, we present the experimental setup and both quantitative and qualitative results.
Note that since NOS is a novel scenario for spatio-temporal alignment of sequences, there is no
prior work for comparison. We set 8 = 100, & = 10%, m = 3 for the temporal curve fitting step,

and 7; = 0.03 and 7, = 0.15 for trajectory filtering.

6.4.1 Dataset

Given that there is no public dataset in this new scenario, we collect a NOS dataset including ten
real-world sequence sets, and five synthetic sequence sets. Real sets are captured by two or three
people using handhold smartphones with the distance between the cameras, i.e. baseline, as shown
in Tab. 6.1. Synthetic sets provide sequences for which the ground truth result are exactly known,
and are created by taking a sequence and cropping out two spatio-temporal tubes from the 3D
sequence volume. This emulates the case of independently panning cameras with almost identical
optical centers. To simulate a freely panning camera and hand shake, the spatial region used for

each tube at each frame has a fixed size of 640 x 360 pixels, but the region location has an additive
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zero-mean Gaussian noise. Also, if the original video is stationary, the regions shift in x—direction

to create a pan-like effect.

Figure 6.6: Spatial alignment of non-overlapping sequences. Top to bottom: reconstructed back-
grounds of two sequences with negligible overlap, extrapolated backgrounds, and aligned back-
ground with trajectory of moving objects overlaid on the background.

6.4.2 Qualitative results

Figure 6.6 presents the reconstructed backgrounds along with image extrapolation results. Further,
it is shown how the backgrounds are transformed so that moving object trajectories have smooth
path.

Figure 6.7 shows the alignment results for three sets of real sequences with some overall spa-
tial overlap. Similarly, Figure 6.9 shows the alignment results for three sets of real sequences with

no/minimal overall spatial overlap. For each set, two or three sample frames with moving objects
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Figure 6.7: Each row shows spatio-temporal alignment results on a set of real NOS, with some
overall spatial overlap. For each sequence, input frames at the estimated time shift and trajectories
of moving objects in the world coordinate are shown. The input frames are transformed to the
world coordinate to make a composite image via alpha blending.
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(c)

Figure 6.8: Results for two synthetic NOS from an accident footage (S2). (a) Trajectories of mov-
ing objects, (b) aligned input frames, (c) original frame where the synthetic frames are cropped.
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#  frames world coordinate
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Figure 6.9: Each row shows spatio-temporal alignment results on a set of real NOS, with no
overall spatial overlap. For each sequence, input frames at the estimated time shift and trajectories
of moving objects in the world coordinate are shown. The input frames are transformed to the

world coordinate to make a composite image via alpha blending.
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are shown, at the time shift estimated by the proposed algorithm. Also, keypoint trajectories from
both sequences in the world coordinate after spatio-temporal alignment are shown. Trajectories
of moving objects have considerable extent in the x—direction, whereas trajectories of stationary
objects are roughly parallel to #—axis. Finally, the two input frames are warped to the world coordi-
nate to make a composite image. Although the input frames may not have direct overlap, perceived
continuity of the scene and also relative location of the moving objects, demonstrate capabilities of
the proposed algorithm and the application scenarios. Note that in all test sequences cameras move
freely and independently, as shown by the range of trajectories in the world coordinate. For the
case of Fig. 6.9(a), the sequences are non-overlapping, but only a person is tracked moving across
the FOVs. Thus, as shown in this figure, spatial alignment has some error, which consequently
affects the accuracy of the temporal alignment.

Figure 6.8 represents a synthetic set where two sequences are created from a video of a car
accident. The two cropped frames after spatio-temporal alignment are shown in a composite image
and for comparison, the corresponding frame from the original video is also shown, demonstrating

the accuracy of the spatio-temporal alignment.

6.4.3 Quantitative results

To quantitatively evaluate the proposed algorithm, we compare the alignment errors with the
ground truth. For the case of synthetic sets, the original video from which the synthetic sequences
are cropped, provides the ground truth location of the center points of the cropped frames. We
measure the spatial location error of each aligned frame w.r.t. the ground truth location and report
sum of absolute errors in x and y—direction, averaged over the sum of the length of the sequences,
as the spatial alignment error. Also, since we create the synthetic sequences, the ground truth time

shift is known. For real sets, when the input frames do not have overlap, quantifying the spatial
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error is not feasible. For quantification of temporal alignment, we manually align the sequences by
relying on visual cues such as body pose, moving object location relative to background landmarks,
and consistency of appearance of moving objects in the composite image. Table 6.1 provides the
quantified temporal and spatial errors. As may be observed, temporal alignment works well even
when the camera baseline distance increases, although the final consolidated result may suffer from

parallax.

6.4.4 Computational cost

The main computational cost of the proposed algorithm comes from TRGMC. On average, for a
video of 15-second long, we spend 450 seconds on TRGMC and background reconstruction, using
a PC with an Intel i5-3470@3.2GHz CPU, and 8GB RAM. Spatial alignment is independent of
sequence length and takes ~162 seconds on average for NOS. Finally, temporal alignment takes

about 13 seconds on average over the database.

6.4.5 Limitations

Violation of as