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ABSTRACT

ROBUST GLOBAL MOTION COMPENSATION AND ITS APPLICATIONS

By

Seyed Morteza Safdarnejad

This thesis presents algorithms for robust global motion compensation (GMC). GMC algo-

rithms are used to remove camera motion and transform the video such that in the resultant video,

the background appears static and the only motion rises from foreground objects. Many computer

vision algorithms are tailored for static cameras, and using GMC as a pre-processing module, it

is possible to apply these algorithms on videos from moving cameras. For instance, motion-based

video analysis is strongly affected by camera motion. If camera motion is not compensated, it

interferes with the motion of interest, such as motion of human, and renders the analysis problem

to be more challenging.

Generally, in sequential schemes, GMC estimates the homography transformation between

two consecutive frames by matching keypoints on the frames, and maps the second frame to the

first frame.Then, by accumulating these transformations, a composite transformation is calculated

which maps each frame to the global coordinate. However, existing GMC algorithms are sensitive

to existence of foreground motion and fail easily in the case of considerable foreground motion or

ambiguous and low texture background.

To address the challenges in GMC, first, we propose a Robust Global Motion Compensation

(RGMC) algorithm which explicitly suppresses the foreground effect and utilizes a comprehensive

probabilistic verification model to find the best mappings between consecutive frames. Despite the

robustness offered by RGMC, we further identify the problem of temporal drift of the estimation,

due to accumulation of errors in estimation of mappings between consecutive coordinates. Further-

more, to address the issues of sequential GMC, we propose a Temporally Robust Global Motion



Compensation (TRGMC) algorithm which by joint alignment of input frames, estimates accurate

and temporally consistent transformations to the global coordinates. Joint alignment not only leads

to the temporal consistency of GMC, but also improves GMC stability by using redundancy of the

information.

Many applications can benefit from a reliable and accurate GMC algorithm. We first briefly

look into these applications. Then, among the many applications, we investigate the problem of se-

quence alignment, and propose an alignment algorithm for non-overlapping sequences, enabled by

performance of TRGMC. Given the transformation to a global coordinate, offered by TRGMC, and

the capability of background reconstruction using TRGMC results, we are able to align sequences

even if the spatial overlap between the sequences is minimal or nonexistent. To this end, we first

spatially align the sequences such that extrapolated backgrounds are aligned well and trajectories

of moving objects are spatially smooth in the global coordinate. Next, we temporally align the se-

quences based on the smoothness of spatio-temporal trajectory of moving objects across the fields

of view of different cameras.
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Chapter 1

Introduction and Contributions

Due to the boom of smartphones and the ever increasing amount of videos, video analysis has

received much attention in computer vision. A variety of problems is defined for video analysis

including activity recognition [45, 51, 52, 71, 81, 122], event/action detection [25, 47, 125], video

categorization [29,73,118,126,129,130], video saliency detection [21,56,84,91,94,123,131,132],

etc. Effective motion analysis is the gist of many vision problems, e.g., action recognition, video

annotation and video surveillance. On the other hand, as the video analysis research is maturing,

era of designing algorithms based on staged videos has passed and datasets of unconstrained real-

world videos are emerging.

However, unconstrained videos bring in new challenges in video analysis. For instance, motion-

based video analysis is highly affected by camera motion. Thus, global motion compensation al-

gorithms (GMC) are used to remove intentional (due to camera pan/tilt/zoom) and unwanted (e.g.,

due to hand shaking) camera motion. GMC is utilized in applications such as video stitching, or as

pre-processing for motion-based video analysis. Due to its importance, this dissertation focuses on

GMC and how it might be used in different applications. The term “global motion compensation"

is also used in video coding literature, where background motion is estimated roughly to enhance

the video compression performance [40, 98], in some compression formats such as MPEG-4.

Normally, GMC estimates the homography transformation between two consecutive frames by

matching keypoints on the frames, and maps the second frame to a global coordinate. To rem-

edy outliers in keypoint matches, robust techniques are proposed for homography estimation, e.g.,
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RANSAC [35], by assuming the number of outliers to the correct homography is less than inliers.

However, in the presence of predominant foreground, i.e., moving objects and people, a larger

proportion of the putative matches are mismatches. Predominant foreground may result from a

higher percentage of coverage by foreground pixels, or occlusion, textureless and non-informative

background, blurred background (e.g., camera following the foreground motion), or a combination

of these reasons. In presence of predominant foreground, the common variations of RANSAC

have little chance of selecting a minimal set of background keypoints by random sub-sampling in

a limited number of iterations. Despite its importance, the predominant foreground problem has

been overlooked in both video stabilization and GMC algorithms. Since GMC estimates homog-

raphy between consecutive frames and then uses a cascade of homographies to map the current

frame to the global motion-compensated coordinate, failure in GMC at a single frame affects all

the subsequent frames. This renders the predominant foreground problem very common and sig-

nificant. Thus, GMC robustness is highly desirable. GMC problem is also aggravated as speed of

foreground motion increases, e.g., in sports videos.

To address the predominant foreground problem, we propose a robust GMC (RGMC) method

for suppressing foreground keypoint matches and mismatches, enabling a reliable homography

estimation in presence of predominant foreground and/or textureless background. Also, we pro-

pose a novel and efficient probabilistic model for homography verification that considers keypoint

matching error and consistency of the image edges after warping, and benefits from motion history

gleaned from prior matched frames. We demonstrate the superiority of RGMC on challenging

videos from three video datasets, when compared with state-of-the-art methods.

Our further investigations reveal that the sequential processing scheme causes frequent GMC

failures for multiple reasons: 1) Sequential GMC is only as strong as the weakest pair of consecu-

tive frames. A single frame with high blur or dominant foreground motion can cause the rest of the
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video to fail. 2) Generally, multiple planes exist in the scene. The common assumption of a single

homography will accumulate residual errors into remarkable errors. 3) Even if the error of consec-

utive frames is in a sub-pixel scale, due to the multiplication of several homography matrices, the

error can be significant over time [74]. These problems are especially severe when processing long

videos and/or when the camera motion becomes more complicated. For instance, when the camera

pans to left and right repeatedly, or severe camera vibration exists, the GMC error is obvious by

exhibiting discontinuity on the background.Although RGMC introduces robustness to the failures,

it still suffers from accumulation of error.

To address the issues of sequential GMC, we propose a temporally robust global motion com-

pensation (TRGMC) algorithm which by joint alignment of input frames, estimates accurate and

temporally consistent transformations to the global motion compensated coordinate. TRGMC

densely connects pairs of frames, by matching local keypoints. Joint alignment (a.k.a. congealing)

of these frames is formulated as an optimization problem where the transformation of each frame is

updated iteratively, such that for each link interconnecting a keypoint pair, the spatial coordinates

of two end points are identical. This novel keypoint-based congealing, built upon succinct key-

point coordinates instead of high-dimensional appearance features, is the core of TRGMC. Joint

alignment not only leads to the temporal consistency of GMC, but also improves GMC stability

by using redundancy of the information. The improved stability is crucial for GMC, especially in

the presence of considerable foreground motion, motion blur, non-rigid motion like water, or low-

texture background. The joint alignment scheme also provides capabilities such as coarse-to-fine

alignment, i.e., alignment of the keyframes followed by non-keyframes, and appropriate weighting

of keypoints matches, which cannot be naturally integrated in sequential GMC. Our quantitative

experiments reveal that TRGMC pushes the alignment error close to human performance.

Many applications may benefit from an accurate and robust global motion compensation algo-
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rithm. We briefly review these applications, namely human action recognition, motion panorama

creation, multi-object tracking for moving camera and when visual cues are insufficient for reliable

tracking, and spatio-temporal alignment of video sequences.

Furthermore, among many potential applications, we deeply investigate the problem of spatio-

temporal alignment of multiple video sequences, captured by freely panning handheld cameras.

We identify and tackle a novel scenario of this problem referred to as Non-Overlapping Sequences

(NOS). NOS are captured by multiple freely panning handheld cameras whose field of views might

even have no direct spatial overlap. However, over the progression of time, there are nearby re-

gions in the scene that are observed by the cameras independently and probably at distinct time

instants. This assumption is less restrictive than common region being observed by field of view of

different cameras over progression of time, and obviously much less restrictive than the common

requirement of direct spatial overlap between frames from different cameras. With the popularity

of mobile sensors, NOS rise when multiple cooperative users capture a public event to create a

panoramic video, or when consolidating multiple footages of an incident or crime scene into a

single video. This enables reconstruction of events or crime scenes captured by amateur users.

To tackle this novel scenario, we first spatially align the sequences by reconstructing the back-

ground of each sequence using TRGMC algorithm and then registering these backgrounds, even if

the backgrounds are not overlapping. To do this, first, reconstructed background images are extrap-

olated. Then, a cost function is defined and minimized such that while extrapolated backgrounds

are aligned well, trajectory of moving objects leaving field of view of one camera and entering

field of view of another camera are spatially smooth. Given the spatial alignment, we temporally

synchronize the sequences, such that the trajectories of moving objects (e.g., cars or pedestrians)

across sequences are consistent with the prediction of when a moving object leaving the field of

view of a camera, would appear in the field of view of another camera.

4



Finally, to develop algorithms for analyzing user-generated videos, unconstrained and repre-

sentative datasets are of great significance. For this purpose, we collected a dataset of Sports

Videos in the Wild (SVW), consisting of videos captured by users of a leading sports training smart-

phone app (Coach’s Eye R©) while practicing a sport or watching a game. The dataset contains

4000+ videos selected by reviewing ∼85,000 videos and consists of 30 sports categories and 44

actions. Videos of sports practice, which frequently happens outside the typical sports field, have

huge intra-class variations due to background clutter, unrepresentative environment, existence of

different training equipment and most importantly, imperfect actions. On the other hand, using

smartphones for video capturing by ordinary people, in comparison to videos captured by profes-

sional crew for broadcasting, leads to challenges due to camera vibration and motion, occlusion,

view point variation, and poor illumination. Given various manual labels, this dataset can be used

for a wide range of computer vision applications, such as action recognition, action detection,

genre categorization, and spatio-temporal alignment. On the sport genre categorization problem,

we also design the evaluation protocol and evaluate three different methods to provide baselines

for future works.

1.1 Organization

The remainder of this thesis is outlined as follows. In Chapter 2, we present the related background

and theory for global motion compensation. Chapters 3 presents robust global motion compensa-

tion (RGMC). The further refinements to GMC by TRGMC algorithm are discussed in Chapter 4.

In Chapter 5, we briefly review potential applications of GMC, and in Chapter 6, we focus on one

of these applications and propose an algorithms for spatio-temporal alignment of non-overlapping

sequences. In Chapter 7 we present the conclusion and the proposed future work. Details on the

5



collected amateur sports videos dataset, SVW, is presented in Appendix A.

1.2 Contributions

In this thesis, the challenging problem of global motion compensation for real world videos is ad-

dressed. There are many factors rendering this problem challenging. The following contributions

are made in consideration of these factors.

• To address the important challenge of foreground occlusion in global motion compensa-

tion, a novel sequential global motion compensation algorithm is proposed. Namely, Ro-

bust Global Motion Compensation (RGMC) explicitly suppresses the foreground effect on

estimation of the homography between the consecutive frames. Further, to evaluate each

candidate homography, a novel probabilistic verification model is proposed which integrates

motion history, edge matching, and point matching scores for homography evaluation.

• A novel joint alignment algorithm named Temporally Robust Global Motion Compensation

(TRGMC) is proposed. Benefiting from the joint alignment, TRGMC further avoids the

temporal drift problem. Also, further robustness is achieved as unlike sequential schemes,

failure in alignment of a single pair of consecutive frames will not affect all the upcoming

frames.

• Among many potential applications of RGMC and TRGMC, we further investigate the prob-

lem of sequence alignment. Based on the capability of transferring the frames to a global

coordinate and also background reconstruction, we identify a novel scenario in sequence

alignment and propose an algorithm for it. Namely, the proposed algorithm is capable of

performing spatio-temporal alignment of non-overlapping sequences from freely panning
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cameras.

• A dataset of Sports Videos in the Wild (SVW) is collected, which consists of videos captured

by users of a leading sports training smartphone app while practicing a sport or watching a

game. SVW is more unconstrained than existing human action datasets, especially sports

dataset. On the sport genre categorization problem, we also design the evaluation protocol

and evaluate three different methods to provide baselines for future works.
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Chapter 2

Background

In this chapter, an overview of related theory and mathematics for global motion compensation

is presented. Our proposed algorithms rely on estimating homography transformation. So, we

first cover this transformation. A robust algorithm for estimation of homography transformation

from noisy keypoint matches is called random sample consensus (RANSAC) [35]. We also review

RANSAC algorithm in this section. Finally, congealing as a technique for alignment of a stack of

images is closely related to our proposed temporally robust GMC. Basics of congealing are also

presented in this section.

2.1 Homography transformation

Homography estimation is a key step in many computer vision applications. Assuming a pinhole

camera model, two images taken from different viewpoints from the same planar scene are related

by a homography transformation. Under homography H, the 3D point coordinates of camera 1,

i.e. X1, are related to the 3D point coordinates of camera 2, i.e. X2 via,

X2 = HX1. (2.1)

Similarly, if a camera has pure rotation around its optical center, the images are related to each

other through homography transformation.
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In the homogeneous image coordinates x1 and x2, there is scale ambiguity, and thus we have,

x2 ∼ Hx1. (2.2)

There are a wide range of techniques for homography estimation. A good survey on these

techniques can be found in [1]. H is a 3×3 matrix, but as it is defined only up to a scale, the total

number of degrees of freedom is 8. As each point correspondence between two images provides

two constraints, four point correspondences are enough to find the homography describing the

transformation between two given images.

A simple homography estimation algorithm is Direct Linear Transform (DLT). First, the rela-

tionship between the two corresponding points is written as

c


u

v

1

= H


x

y

1

 (2.3)

where c is a non-zero constant, H =


h1,h2,h3

h4,h5,h6

h7,h8,h9

, and


u

v

1

 and


x

y

1

 represent x2 and x1, re-

spectively.

After some manipulation, we get the following equations,

−h1x−h2y−h3 +(h7x+h8y+h9)u = 0, (2.4)

−h4x−h5y−h6 +(h7x+h8y+h9)v = 0. (2.5)
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Rewriting in the matrix form, we have,

Ah = 0, (2.6)

where A =

−x,−y,−1,0,0,0,ux,uy,u

0,0,0,−x,−y,−1,vx,vy,v

 and h =

(
h1,h2,h3,h4,h5,h6,h7,h8,h9

)T

. Thus, by

solving the equation 2.6, DLT algorithm finds the homography. Each point correspondence makes

up for two rows in A, so if there are at least four corresponding points available, the resultant 8×9

matrix A may be used and the 1D null space of A is the solution space for h.

2.2 RANSAC

The Random Sample Consensus (RANSAC), which first was introduced by Fischler and Bolles [35],

is an algorithm for fitting a mathematical model to experimental data. Specifically, when data con-

tains outliers, RANSAC fits the model by detecting the outliers and fitting to the inliers. A data

item is considered as an outlier if it does not fit to the true model reflecting the true set of param-

eters. Interestingly, the percentage of outliers for which RANSAC can find a proper model can be

larger than 50%, which is the breakdown point for many other techniques. In the context of homog-

raphy estimation from keypoint correspondences, RANSAC is very suitable as false matches due

to appearance ambiguities in keypoint matching are outliers to the homography model describing

the relationship between the points from the two images.

RANSAC is an iterative algorithm with two steps:

1. Hypothesize: A sample subset containing minimal data items, e.g. 4 keypoint correspon-

dences in the case of homography estimation, is randomly selected from the input dataset.

Using only this subset, the model is estimated. This is in contrary to methods such as least

square robust estimators which use all the available data, possibly with different weights, to
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estimate the model.

2. Test: RANSAC identifies the elements in the input dataset which are consistent with the

model, as the inliers to the model, or the consensus set.

The iterative procedure is repeated until the probability of finding a better consensus set drops

beyond a certain threshold.

Over time, many different variations of RANSAC have been proposed. RANSAC can be sen-

sitive to the choice of the correct noise threshold that defines which data points fit a model in-

stantiated with a certain set of parameters. If the threshold is too large, then all the hypotheses

may be ranked equally good. In contract, if the noise threshold is too small, the estimated pa-

rameters tend to be unstable, i.e. by adding or removing a single data item to the set of inliers,

the estimate of the parameters may change considerably. For instance, to partially compensate for

this undesirable effect, Torr et al. proposed MLESAC (Maximum Likelihood Estimation SAmple

and Consensus) [107]. Instead of ranking each consensus set based on its cardinality, MLESAC

evaluates quality of the consensus set by calculating its likelihood.

2.3 Congealing

Congealing refers to the problem of unsupervised alignment of an ensemble of images. Generally,

the parametric nature of misalignment (translation, similarity, affine, etc. ) should be known in

advance and images should have similar content and appearance. The seminal work of Learned-

Miller [53] utilizes a sum of entropy of ensemble of images as the cost function. To mitigate

the sensitivity issue of this method, Cox et al. [18] propose a SSD (sum of squared differences)

cost function, optimized via Gauss-Newton optimization method. The misalignment function ξ is
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defined over a stack of N images,

argmin
Φ

ξ (Φ) (2.7)

where Φ = {θ1,θ2, ...,θN−1} is the set of N − 1 warp parameters vectors corresponding to the

images in the stack. Parametric warp function for the pixel coordinate x is denoted by W (x;θ). In

the least squared congealing method of Cox et al. [18], the misalignment of image i, Ii, relative to

the rest of the images in the stack is defined as,

ξi(θ) =
N

∑
j=1; j 6=i

[I j− Ii(θ)]
2. (2.8)

The nonlinear Eqn. 2.8 is difficult to minimize, so, it is linearized by taking the first order Taylor

expansion series around Ii(θ), and the increment ∆θ is estimated using,

argmin
∆θ

∑
j=1; j 6=i

[
I j +

∂ I j(θ)
T

∂θ
∆θ − Ii

]2

(2.9)

where ∂ I j(θ)
T

∂θ
are the steepest descent images calculated by ∂ I j(θ)

T

∂θ
= ∂W

∂θ
∇I j(θ). The solution to

Eqn. 2.9 is given by,

∆θ = H−1
[ N

∑
j=1; j 6=i

∂ I j(θ)

∂θ

(
I j(θ)− Ii)

)]
(2.10)

where

H =
∂ I j(θ)

∂θ

∂ I j(θ)
T

∂θ
(2.11)

is referred to as pseudo-Hessian. So, iteratively solving for ∆θ and updating θ until convergence

is obtained, will lead to the set of aligning warp parameters.
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Chapter 3

Robust Global Motion Compensation

The objective of global motion compensation (GMC) is to remove intentional (due to camera

pan/tilt/zoom) and unwanted (e.g., due to hand shaking) camera motion. GMC is utilized in ap-

plications such as video stitching, or as pre-processing for motion-based video analysis. Effective

motion analysis is the gist of many vision problems, e.g., action recognition, video annotation and

video surveillance. For instance, in action recognition as an important computer vision problem,

motion analysis via dense trajectories has shown superior performance [87, 114, 116]. However,

the moving camera often interferes with the motion of human, thus it is desired to compensate for

camera motion. Note that a related problem is video stabilization, which aims to remove unwanted

camera motion, while GMC removes both intentional and unwanted camera motion [24].

Normally, GMC estimates the homography transformation between two consecutive frames by

matching keypoints on the frames, and maps the second frame to a global coordinate. To remedy

outliers in keypoint matches, robust techniques are proposed for homography estimation, e.g.,

RANSAC [35], by assuming the number of outliers to the correct homography is much less than

inliers. However, in the presence of predominant foreground, i.e., moving objects and people, a

larger proportion of the putative matches are mismatches.

Predominant foreground may result from a higher percentage of coverage by foreground pix-

els, or occlusion, textureless and non-informative background, blurred background (e.g., camera

following the foreground motion), or a combination of these reasons. In presence of predomi-

nant foreground, the common variations of RANSAC have little chance of selecting a minimal
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set of background keypoints by random sub-sampling in a limited number of iterations. Despite

its importance, the predominant foreground problem has been overlooked in both video stabiliza-

tion and GMC algorithms. Even for algorithms designed explicitly for robustness to foreground

motion [24, 30, 63], predominant foreground is reported to cause failure. Since GMC estimates

homography between consecutive frames and then uses a cascade of homographies to map the cur-

rent frame to the global motion-compensated coordinate, failure in GMC at a single frame affects

all the subsequent frames. This renders the predominant foreground problem very common and

significant. Thus, GMC robustness is highly desirable. GMC problem is also aggravated as speed

of foreground motion increases, e.g., in sports videos. We qualitatively investigate 500 videos from

Sports Videos in Wild (SVW) dataset [89], and observe 35% failure, i.e., background instability,

by the baseline method of MLESAC [107], in contrast to 5.1% failure for the proposed method.

This demonstrates that the robustness problem is very common and severe for real-world videos.

The main contribution of this chapter is a robust GMC (RGMC) method for suppressing fore-

ground keypoint matches and mismatches, enabling a reliable homography estimation in presence

of predominant foreground and textureless background. Also, we propose a novel and efficient

probabilistic model for homography verification that considers keypoint matching error and con-

sistency of the image edges after warping, and benefits from motion history gleaned from prior

matched frames. We demonstrate the superiority of RGMC on challenging videos from three

video datasets, when compared with state-of-the-art methods.

3.1 Previous Work

Due to existence of outliers, robust techniques are widely used for homography estimation, e.g.,

RANSAC [35] and its variants such as Locally-Optimized RANSAC [17], MLESAC [107] and
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Guided-MLESAC [106]. While RANSAC aims to maximize the number of inliers, MLESAC

searches the best hypothesis that maximizes the likelihood via RANSAC, assuming that the in-

liers are Gaussian distributed and outliers are distributed randomly. To handle the same outlier

issue, [57] directly rejects unreliable keypoint matches. However, in case of predominant fore-

ground, problematic matches from the foreground are not unreliable in terms of appearance. Re-

cent works focus on estimating the best or multiple homographies in case of multi-plane back-

ground [6, 69, 105, 109, 133]. For instance, Uemura et al. [109] segment each frame using color

MeanShift algorithm to multiple regions denoting different planes in the background and find the

dominant plane for homography estimation. Using RANSAC and based on the number of inliers

for estimated homography for each region, the dominant background planes is found and used for

final homography estimation. In contrast, we segment the frame to foreground and background

regions by analyzing motion vector clusters, and remove foreground for robust GMC.

Many works concentrate on rejecting mismatches from point correspondence, by relying on the

assumption that similarity of the mismatched key-points is not enough. For instance, in [57], key-

point mapping functions from frame I to I′ and reverse, denoted as f and f ′ are learned. If a point

mapped according to f and then f ′ is actually mapped back to its original coordinates, then the

associated key-point is considered a good match. However, in case of moving foreground, matches

can be reliable in terms of appearance similarity, but considered mismatch due to inconsistency

with background transformation.

Yan et al. [124] propose a probabilistic framework to combine keypoint matching and ap-

pearance similarity to enhance estimation robustness. To model the latter, correlation coefficient

between pixels is used. Despite the improved estimation accuracy, for textureless background the

performance deteriorates. For large foreground, [124] tends to remove foreground, instead of

background, motion. In contrast, we use edge matching as an appearance similarity measure with
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a higher sensitivity and lower computational costs. Motion history-based foreground suppression

minimizes its interference with homography estimation. Also, we use motion history to reduce the

tendency of compensating the foreground motion.

If camera motion is modeled as 2D translation, simpler methods can be used for GMC. In [14],

video stabilization is conducted using the cross-correlation between horizontal and vertical pro-

jection of the consecutive frames, by assuming that the largest variation between frames is due to

2D translation. [24] uses the same idea to estimate 2D translation. To improve the robustness to

moving foreground, a RANSAC-like approach on projections of bands of the image is utilized.

However, [24] fails if the foreground object is too large or the background is textureless, and the

simplistic model of 2D translation is easily violated in real-world videos. Thus, we design our

RGMC algorithm to minimize the effect of textureless background and large foreground on ho-

mography estimation.

3.2 Proposed Method

The main objective of Robust Global Motion Compensation (RGMC) algorithm is to be robust to

the presence of predominant foreground. Thus, it is critical to suppress the foreground and rely

on keypoint matches of the background for global motion estimation. We perform f oreground

suppression by clustering motion vectors computed from keypoint matches and identifying poten-

tial clusters corresponding to the background, which are merged to provide a set of background

keypoints for final homography estimation. As a key enabler for RGMC, a novel and reliable

homography verification model is presented to consider keypoint matching error and consistency

of the edges of images after transformation, and benefit from motion history gleaned from previ-

ous frames. Fig. 3.1 shows the flowchart of the RGMC algorithm, with details presented in the

following two subsections.
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Figure 3.1: RGMC algorithm flowchart: (a) color indicates various motion vector clusters, (b) the
merged cluster of background, (c) the motion history, and (d) the motion compensated video.

3.2.1 Foreground Suppression

We use SURF [10] algorithm for keypoint detection and description. To detect sufficient back-

ground keypoints, the Fast-Hessian keypoint detection threshold, τs, is decreased drastically. This

helps in the cases of nearly uniform and textureless background, or blurred background due to

rapid camera motion (e.g., videos shot by smartphones). However, this also implies that more

keypoints will reside on the foreground, which calls for an effective foreground suppression.

Cluster analysis For foreground suppression, the motion vectors resulting from keypoint matches

between consecutive frames are clustered. Since motion vectors on the background result from

camera motion and are more consistent than foreground motion vectors, clustering will likely lead

to some candidate regions from the background (see Fig. 3.1 (a)). Each cluster is analyzed sepa-

rately by random subsampling of matches in that cluster and evaluating the resultant homography

against the cost function, discussed in Sec. 3.2.2.

Merging background clusters Due to the zooming or motion corresponding to different planes

of the background, and not knowing the optimal number of clusters a priori, we allow an over-
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Algorithm 1: Robust Global Motion Compensation
Data: Frames It and It−1 and keypoints matches D, prior homography θt−1 and CFV

f (θt−1) and f (θt−2)
Result: Estimated homography θt and motion history Mt

1 Compute the set of motion vectors V from D;
2 repeat
3 Cluster D into Di (i ∈ {1, ..,K}) based on V, set fi = ∞;
4 for i=1 to K do
5 while Number of iterations < TC do
6 Randomly select four matching keypoints Q from Di ;
7 if H(Q)> pH,0.9 then
8 Find homography θ̂t ;
9 if At least λ% of keypoints in Di are inliers for θ̂t then

10 Calculate the cost function f̂ via Eqn. 3.10;
11 fi←min( f̂ , fi).

12 Regularize Di to D̄i by randomly selecting a maximum of C matches for each cluster;
13 Sort the fi’s in an ascending order and find the sorting index j(i), set

mi = ∞,(i ∈ {0, ..,K}), i = 0;
14 repeat
15 i← i+1 and merge the top i clusters: Mi =

⋃ j(i)
k= j(1) D̄k;

16 while Number of iterations < TM do
17 Randomly select four matching keypoints Q from Mi ;
18 if H(Q)> pH,0.9 then
19 Find homography θ̂ and calculate the cost function f̂ via Eqn. 3.10;
20 if f̂ < mi, then θi← θ̂ and mi← f̂ .

21 until mi > mi−1∧ i < K;
22 θt = θi−1, f (θt) = mi−1;
23 until f (θt)< η( f (θt−1)+ f (θt−2))/2 ∨ Number of iterations < TE ;
24 Update motion history via Eqn. 3.6 and output θt and f (θt).

clustering of K clusters. Thus, background motion vectors may be assigned to multiple clus-

ters. To merge background clusters, based on the estimated homography and cost function value

(CFV) of each cluster, a subset of the best clusters are selected to be merged in a greedy algorithm

(Fig. 3.1(b)). Prior to merging, the set of keypoints belonging to each cluster are regularized by

randomly selecting a maximum of C pairs for each cluster. Given that the keypoint matches in

background cluster are similar, the regularization has negligible impact on the RGMC accuracy,
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but remedies the case when part of the foreground (generally with a higher number of matches) is

mistakenly merged to the background clusters.

Error handling For GMC applications such as video stitching or pre-processing for motion anal-

ysis, failed compensation and homography estimation for a single frame deteriorates the overall

performance drastically. Since the context in consecutive frames are similar, we utilize the histor-

ical values of the cost function to assist the error handling. If the minimum CFV of homography

estimation at the current frame pair is significantly higher than those of previous pairs, we repeat

the estimation process with the hope that the randomness in the algorithm will recover the error.

Note that the significance of foreground suppression would be more obvious when plenty of

keypoints belong to the foreground, while a few belong to the background. For instance, if fore-

ground has 200 keypoints and background has 10, a RANSAC-like algorithm needs to run 450,000

iterations to ensure a 90% probability of selecting a quadruplet of keypoints from background.

However, by analyzing each cluster separately, RGMC efficiently focuses on background matches.

Algorithm 1 summarizes the proposed RGMC algorithm. Details of the homography verification

model used in the algorithm will be presented next.

3.2.2 Homography Verification Model

To evaluate the estimated homography from a quadruplet of keypoints matches, we derive a cost

function that unifies the keypoint matching score, edge matching score, and the information from

compensating previous frames. Denote the matching frames as It−1 and It , their candidate homog-

raphy as θt , and the set of keypoint matches under study as D. In Bayesian framework, similar

to [124], θt can be estimated by maximizing

p(θt |D,It ,It−1,θt−1) =
p(D,It ,It−1|θt ,θt−1)p(θt |θt−1)

p(D,It ,It−1|θt−1)
, (3.1)
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where θt−1 is the obtained prior homography of frames It−1 and It−2. The p(θt |θt−1) is the condi-

tional probability of θt given the prior homography θt−1. The denominator of Eqn. 3.1 is constant

w.r.t. θt . By expanding the likelihood term, the homography can be verified using

p(θt |D,It ,It−1,θt−1) ∝ p(D|It ,It−1,θt ,θt−1)p(It ,It−1|θt ,θt−1)p(θt |θt−1). (3.2)

The term p(D|It ,It−1,θt ,θt−1) = p(D|It ,It−1,θt) and represents how well the keypoint matches

D extracted from It and It−1 are matched by θt . Knowing It is independent from θt−1, the term

p(It ,It−1|θt ,θt−1) = p(It ,It−1|θt), and reflects how well the frame It transformed under θt , de-

noted as It|θt , matches It−1. Thus, the homography is estimated by minimizing,

θ
∗
t = argmin

θt

[−ln(p(D|It ,It−1,θt))− ln(p(It ,It−1|θt))− ln(p(θt |θt−1))]. (3.3)

Keypoint matching error Based on the analysis of Yan et al. [124], the keypoint matching error

for inliers, p(Din|It ,It−1,θt), is better represented by a Laplacian model than the conventional

Gaussian model. Denote (xi
R,y

i
R) and (xi

T ,y
i
T ) as the ith matching keypoint coordinates of It and

It−1 respectively, transformation of (xi
R,y

i
R) under θt as (xi

RT ,y
i
RT ), transformation of (xi

T ,y
i
T ) under

θ
−1
t as (xi

T R,y
i
T R) , and di← |xi

T R− xi
R|+ |yi

T R− yi
R|+ |xi

RT − xi
T |+ |yi

RT − yi
T |. We use the same

method as [124] to compute the keypoint matching error,

p(Din|It ,It−1,θt) =
Nin

∏
i=1

1
16b4 e−

di
b (3.4)

where Nin is the number of inliers and the scale b is the Laplacian distribution parameter. Denoting

γi as an indicator variable for inlier/outlier and considering that an outlier has a uniform distribution

over the entire area of the frame, which is denoted as S, we have
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(a) (b)

(c) (d)

Figure 3.2: (a) Motion history Mt , (b) Mask M = I(Mt > τ), (c) edge matching for an accurate θt
that matches the background, (d) edge matching for an inaccurate θt that matches the foreground.

p(D|It ,It−1,θt) =
|D|

∏
i=1

[γi
1

16b4 e−
di
b +(1− γi)

1
S2 ]. (3.5)

Appearance consistency The appearance consistency under θt transformation, p(It ,It−1|θt), is

normally computed via pixel-based correlation [124]. We propose edge-based matching for mul-

tiple reasons. First, the pixel-based matching score is not sensitive enough for textureless back-

ground, e.g., a homography with error of few pixels displacement leads to similar scores as a per-

fect match. In contrast, the tolerance for error is much lower by matching the edges, which results

in more accurate homography models. Although low-texture images produce few and generally

noisy edge pixels, our experiments show that edge matching outperforms pixel-based correlation,

even in low-texture conditions, similar to the results reported in [119]. Second, when stitching

video frames based on global motion compensation, errors typically occur in mis-matched edges
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at the boundary of the frames. These errors are very distracting for viewers’ visual perception, and

they are more likely to be remedied by edge-based appearance matching. Finally, in pixel match-

ing, time-consuming image warping is needed for computing It|θt . Edge matching only needs to

warp edge pixels in It , leading to a typical 10× speed-up over pixel matching.

To assure that the edge matching score reflects how well the background, not foreground, of

the two frames match, we iteratively update a motion history Mt (see Fig. 3.1 (c)) as,

Mt ← αMt−1 +(1−α)|It−1− It|θt |, (3.6)

where α is a weighting scalar within 0 and 1, and |.| denotes the element-wise absolute value

operator. We define the edge matching score (EMS) as,

E(I1,I2,R) =
2‖Φ(I1)

⊙
Φ(I2)

⊙
R‖1

‖Φ(I1)
⊙

R‖1 +‖Φ(I2)
⊙

R‖1 + c
, (3.7)

where Φ is edge detection operator,
⊙

is element-wise multiplication, R denotes the mask specify-

ing the region of interest for EMS calculation, ‖ ·‖1 computes the L1 matrix norm, and c(= 0.001)

is a constant to avoid division by zero. E(I1,I2,R) ranges between 0 and 1 with 1 representing a

perfect match. In Eqn. 3.3, we use E(It−1,It|θt ,M), where M = I(Mt > τ) is obtained by thresh-

olding the motion history and I(·) is an indicator function. Fig. 3.2 shows a motion history and

edge matching results for two candidate θt’s. We will later discuss how the probability model for

E is obtained.

Conditional homography distribution Based on our experiments, and also prior work [24] on

YouTube Action Dataset [62], the largest variation between consecutive video frames is due to 2D

translation. Thus, to utilize the prior information of θt−1 for a stable homography estimation, we
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decompose the homography model into translation, scale, and rotation models [112]. Denote the

absolute difference in components of θt and θt−1 after decomposition as tx and ty for translation,

∆s for scale and ∆α for rotation angle. Assuming independence among components, we define

p(θt |θt−1) = p(tx)p(ty)p(∆s)p(∆α). (3.8)

Quadruplet filtering RGMC evaluates a large number of quadruplets of keypoint matches, and

computes their EMS. To improve the efficiency, we filter the candidate quadruplets before the

optimization of Eqn. 3.3. Intuitively, if the keypoint in the quadruplet are spatially close to each

other, it is less likely to have an accurate estimate of θt , because homography estimation is more

sensitive to the accuracy of keypoint locations. Also, background keypoints have generally a higher

spatial dispersion than the foreground keypoints. Thus, only if the entropy (or dispersion) of a

candidate quadruplet is above a threshold, we fully evaluate the cost function. Specifically, we use

m-spacing estimate of entropy [54], similar to [24], as

H =
1
n

n−m

∑
i=1

ln(
n
m
(xi+m− xi)), (3.9)

where m is the spacing parameter (set to 1) and n is number of points. We first sort the x values

prior to using them in Eqn. 3.9. Entropy estimates of x and y coordinates of the quadruplet are

calculated separately and the minimum of them is the entropy of the quadruplet.

Model training Having presented the Bayesian framework, we now introduce our empirical ap-

proach to learn the various probability models. For this learning, we manually stitch 250 pairs of

consecutive frames to find the best homography estimate. The labeler uses our developed GUI to

match four background keypoints in two consecutive frames and fine tune the matches to visually

minimize the background stitching error. The labeler also specifies a foreground mask, represent-
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(a) (b)

(c) (d)

Figure 3.3: (a-b) Two consecutive frames and the matched quadruplet by the labeler, (c) the abso-
lute difference of two frames matched via the quadruplet in (a,b), (d) manually labeled foreground
mask.

ing the region resulted from foreground movement. Fig. 3.3 shows two consecutive video frames

and the manually matched quadruplets. From the manually labeled sequences, we find the em-

pirical distribution of E, tx, ty, ∆s, ∆α , and H. As shown in Fig. 3.4, E, ∆s, ∆α , and H are well

approximated by a normal distribution. For H distribution, 10% percentile (pH,0.9), reflecting the

value that 90% of observed point entropies are larger than, is also shown. For tx and ty, Laplacian

distribution is more appropriate. By plugging the probability models to Eqn. 3.3 and ignoring the

constants, the final cost function is,

f (θt) =
∑

Nin
i=1

di
b +∑

Nout
i=1 ln(S2)

Nin +Nout
+

(E(It−1,It|θ ,M)−µE)
2

2σ2
E

+

b(∆s−µ∆s)
2

2σ2
∆s

cT + b(∆α−µ∆α)
2

2σ2
∆α

cT + b|∆tx−µ∆tx |
btx

cT + b
|∆ty−µ∆ty |

bty
cT , (3.10)
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Figure 3.4: Empirical and fitted distributions for (a) E ∼N(0.52,0.04), (b) ∆s∼N(0,2×10−5), (c)
∆α ∼N(0,2×10−3), (d) tx∼ Laplace(0,1.50), (e) ty∼ Laplace(0,0.95), and (f) H ∼N(2.1,0.25)
.

where Nout is number of outliers and bxcT = min(x,T ) restricts the impact of prior information.

Since keypoint matching error is dependent on the number of keypoints, we normalize it with the

total number of keypoints. The homography θt is estimated by

θ
∗
t = argmin( f (θt)). (3.11)

3.3 Experimental Results

This section presents the experimental results of RGMC, and its comparison with our implemen-

tations of the RANSAC variation called MLESAC [107] and the HEASK method [124].

3.3.1 Dataset

We select 50 videos from SVW dataset [89], where 24 videos are used for model learning in

Sec. 3.2.2, and the rest for testing. SVW contains videos of amateurs practicing a sport, shot
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H1 H2                         H3 H4 H5 H6 H7 H8 H9 H10

S2 S3                  S4 S6 S7 S8 S11 S12 M5 M6  M7                M8

S14 S16              S18 S20 S21 S23 S24 S26 M13 M14                  M15

S5 S10

S13 S15 S22 S25

M1 M2                M3                   M4

M9 M10               M11             M12

S1

(a) (b)

(c)

Figure 3.5: Sample frames of the test videos in (a) SVW, (b) HMDB51, and (c) Holleywood2
datasets.

using smartphone by ordinary people. Thus, highly unconstrained SVW is an excellent example

of user-generated videos with predominant foreground of humans. We also use 10 videos from

Holleywood2 [72] and 15 videos from HMDB51 [49] datasets1. In total, 51 videos are used for

quantitative evaluation with sample frames shown in Fig. 3.5. 2

3.3.2 Parameters

In all the experiments, we have the same fixed parameter setting, i.e., τ = 0.5, C = 50, TC = 50,

TM = 100, TE = 2, K = 10, η = 1.5, α = 0.5, λ = 70%, and T = 100. Our experiments show that

RGMC is robust to variation of parameters. The most important parameter is K. Large values of K

increase the computational cost. On the other hand, K should be large enough so that foreground,

background, and erroneous matches are mapped to different clusters. As a trade-off, we use K =

10.
1For these two datasets, videos are temporally trimmed around the signature motion in the video, practically dis-

abling effect of our motion history module. In HMDB51, similar to many existing datasets such as UCF101 [100], the
video resolution is only 320×240, thus GMC suffers from both video content and the low resolution.

2In HMDB51 [49] and UCF101 [100] datasets, only very low resolution videos (320∗240) are publicly available
for which GMC basically suffers considerably from the resolution and in UCF-Sports [102], camera is static. Thus,
we limit our qualitative evaluation to SVW and available motion-compensated videos in HMDB51 dataset.
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Algorithm Ground Truth MLESAC HEASK RGMC
Setting – DT LT DT LT (20,50) (50,100) (100,200) D-M D-E

BRE (×10−3) 7.59 15.65 18.59 17.33 14.24 11.77 10.11 10.02 11.60 11.25

Table 3.1: Impact of different settings on average BRE for each algorithm. DT and LT denote
default (τs = 1000) and lowered (τs = 100) detection threshold in SURF algorithm, respectively.
For RGMC τs = 100 is used and 3 different setting of (TC,TM) are reported. D-M and D-E denote
default setting of (TC,TM) = (50,100) with motion history and error handling turned off, respec-
tively.

3.3.3 Evaluation metric

For accuracy evaluation, we have manually matched a quadruplet of keypoints and found the

ground truth homography θ0 for a total of 350 pairs of consecutive frames in challenging peri-

ods in 51 test videos. The same GUI described in Sec. 3.2.2 is used to obtain θ0 and the fore-

ground mask. We denote the intersection of the complement of this mask, i.e., the background

mask, and the region covered by It|θ0 , as B. We quantify the consistency of frames It and It−1|θ

(grayscale frames with pixels ranging between 0 and 1) using the background region error (BRE),

ε = 1
‖B‖1
‖|(It−1− It|θt )|

⊙
B‖1.

3.3.4 Accuracy assessment

Table 4.1 represents the average BRE on test videos for different algorithms. Due to random

nature of algorithms, we repeat each experiment 5 times and report the average performance. To

ensure that comparisons are fair, we decrease the keypoint detection thresholds also for baseline

methods. HEASK has better performance with lowered threshold and thus we use this setting for

the experiments. We also report results for different iteration numbers TC and TM for RGMC and

as a trade-off between accuracy and efficiency, select (TC,TM) = (50,100) as default values for

RGMC. In addition, we turn off the modules of Motion History and Error Handling in RGMC

alternatively, to verify that their existence is helpful. Fig. 3.6 shows two consecutive frames of
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three sample videos matched by different algorithms, along with the ground truth matching. As

shown, RGMC produces very accurate background matching. Fig. 3.7 represents the average per-

video BRE, sorted by the BRE of ground truth matching. As shown, RGMC performance is very

robust and in most videos RGMC matching error is very close to the ground truth value. Finally,

Fig. 3.8 compares stitching results on a sample video using different algorithms. It is worth noting

that since a cascade of homographies are used for GMC and stitching of video frames, propagation

of errors of matching consecutive frames, gives rise to inaccuracy as the length of the input video

increases. Also, coexistence of textureless background and large foreground (in terms of the total

number of pixels covered by the foreground), may cause failure in the RGMC algorithm, especially

if the foreground motion exists starting the initial frames.

3.3.5 Computational cost

For the comparison with baseline methods, we test Matlab implementations of algorithms on a PC

with Intel i5-3470@2GHz CPU. The average time for matching frame pair of size 720× 1,280

(480× 854) by MLESAC, HEASK, and RGMC is 2.0 (0.3), 53.1 (21.3), and 4.3 (2.3) seconds,

respectively. We also have a C++ implementation of RGMC using the OpenCV libraries, which

takes 1.4 (0.7) seconds for matching frame pair of size 720×1,280 (480×854)3.

3.3.6 Qualitative evaluation

In addition to the aforementioned quantitative study, we also perform the qualitative evaluation on

unlabeled videos to demonstrate the severity of the predominant foreground issue in real-world

videos, and the superiority of RGMC on a large scale dataset. For each video, we run a GMC al-

gorithm, visually observe the motion-compensated videos, and claim a f ailure if an instable back-

ground is observed (e.g., Fig. 3.8 (a,b)). We observe a failure rate of 32% by the MLESAC method

3Source code is available at http://www.cse.msu.edu/∼liuxm/RGMC
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(a) (b)

(c) (d)

Figure 3.6: Each row shows GMC results of two consecutive frames from video ID S17, S19, and
S9 by (a) manual labeling, (b) MLESAC, (c) HEASK, and (d) RGMC. In (a), colorful pixels show
the pixels that are different between overlaid frames. In (b-d), the pixel brightness indicates the
difference.
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Figure 3.7: Per-video BRE using the optimal setting for each algorithm compared with ground
truth (GT) matching BRE.

(a)

(b) (c)

Figure 3.8: A 40-frame sequence of gymnastics backflips in textureless background stitched using
(a) MLESAC, (b) HEASK, and (c) RGMC. Consistency of the background shows the superiority
of RGMC. For HEASK, stitching up to frame #10 is shown, after which the stitching drastically
fails.

among 225 videos from three categories of cartwheel, dive and dribble in HMDB51 dataset. Fur-

ther, a 35% failure rate by MLESAC is observed from 500 videos of SVW dataset; in contrast on

the same data our RGMC has merely a 5% failure rate.
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3.4 Conclusions

We presented a robust global motion compensation (RGMC) algorithm that delivers reliable re-

sults in the presence of predominant foreground and textureless or blurry background, enabling

its application to real-world unconstrained videos. By foreground suppression, RGMC is able to

tolerate large foreground and occlusion. Also, the proposed method successfully handles keypoint

matching with a very low matching threshold, required for GMC in low texture background. This

is achieved by clustering motion vectors, and analyzing each cluster to identify matches pertaining

to the background. A novel homography verification model is proposed to support the RGMC.

Extensive experiments and comparison with manually matched ground truth and baseline methods

demonstrate the superiority of RGMC.
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Chapter 4

Temporally Robust Global Motion

Compensation

As discussed in Chapter 3, Global motion compensation (GMC) removes the impact of intentional

and unwanted camera motion in the video, transforming the video to have static background with

the only motion coming from foreground objects. Video stabilization is a closely related problem

where unwanted camera motion, such as vibration, is removed, leaving a smooth camera motion in

the output video. It is important to note that the final product of GMC is a video with static back-

ground throughout the entire video. This sets a high bar on accuracy requirement for estimation

of transformations to the global coordinate, despite foreground motion and appearance ambigu-

ities. GMC can be re-purposed for video stabilization (VS) and mosaicing, but not vice versa -

given the accuracy requirement. GMC is an essential module for processing videos from non-

stationary cameras, which are abundant due to emerging mobile sensors, e.g., wearable cameras,

smartphones, and camera drones. First, the resultant motion panorama [8], as if virtually generated

by a static camera, is by itself appealing for visual perception. More importantly, many vision tasks

benefit from GMC. For instance, dense trajectories [114] are shown to be superior when camera

motion is compensated [117]. Otherwise, camera motion interferes with human motion, rendering

the analysis problem very challenging. Accurate and consistent GMC allows reconstruction of a

“stitched" background [74], and subsequently segmentation of foreground [103, 113]. This helps
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Figure 4.1: Schematic diagrams of proposed TRGMC and existing sequential GMC algorithms,
and resultant motion panorama for a video shot by panning the camera up and down. Background
continuity breaks easily in the case of the sequential GMC [88].

multi-object tracking by mitigating the unconstrained problem of tracking multiple in-the-wild

objects, to tracking objects with a static background [99].

In existing GMC work [9, 24, 88], frames are transformed to a global motion-compensated

coordinate (GMCC), by sequentially processing input frames. For a pair of consecutive frames, the

mapping transformation is estimated, and by accumulating the transformations, a composite global

transformation of each frame to the GMCC is obtained. However, the sequential processing scheme

causes frequent GMC failures for multiple reasons: 1) Sequential GMC is only as strong as the

weakest pair of consecutive frames. A single frame with high blur or dominant foreground motion

can cause the rest of the video to fail. 2) Generally, multiple planes exist in the scene. The common

assumption of a single homography will accumulate residual errors into remarkable errors. 3)

Even if the error of consecutive frames is in a sub-pixel scale, due to the multiplication of several

homography matrices, the error can be significant over time [74]. These problems are especially

severe when processing long videos and/or the camera motion becomes more complicated. E.g.,
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when the camera pans to left and right repeatedly, or severe camera vibration exists, the GMC error

is obvious by exhibiting discontinuity on the background (see Fig. 4.1 for an example). Although

RGMC algorithm discussed in Chapter 3 improves GMC robustness and considerably decreases

rate of drastic failures, still accumulation of error degrades RGMC performance. This degradation

is more obvious when video length increases and camera motion is more complicated.

To address the issues of sequential GMC, we propose a temporally robust global motion com-

pensation (TRGMC) algorithm which by joint alignment of input frames, estimates accurate and

temporally consistent transformations to GMCC. The result can be rendered as a motion panorama

that maintains perceptual realism despite complicated camera motion (Fig. 4.1). TRGMC densely

connects pairs of frames, by matching local keypoints. Joint alignment (a.k.a. congealing) of these

frames is formulated as an optimization problem where the transformation of each frame is up-

dated iteratively, such that for each link interconnecting a keypoint pair, the spatial coordinates

of two end points are identical. This novel keypoint-based congealing, built upon succinct key-

point coordinates instead of high-dimensional appearance features, is the core of TRGMC. Joint

alignment not only leads to the temporal consistency of GMC, but also improves GMC stability

by using redundancy of the information. The improved stability is crucial for GMC, especially in

the presence of considerable foreground motion, motion blur, non-rigid motion like water, or low-

texture background. The joint alignment scheme also provides capabilities such as coarse-to-fine

alignment, i.e., alignment of the keyframes followed by non-keyframes, and appropriate weighting

of keypoints matches, which cannot be naturally integrated in sequential GMC. Our quantitative

experiments reveal that TRGMC pushes the alignment error close to human performance.

In summary, this chapter makes the following contributions:

• An algorithm for joint alignment of video frames is proposed to produce a globally mo-

tion compensated video where, despite the complicated camera movement and considerable
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foreground motion, the background appears to be static over the progression of time.

• A keypoint-based congealing algorithm aligns the spatial coordinates of keypoints for an

image stack. It extends congealing applications from spatially cropped objects (faces and

letters) to complex motion-rich video frames.

• The capabilities and applications of TGRMC are demonstrated. Our collected video dataset,

manual labels, and the code will be publicly available.

4.1 Previous Work

TRGMC is related to many techniques in different aspects. We first review them and then compare

our work with existing GMC algorithms.

Firstly, homography estimation from keypoint matches is crucial to many vision tasks, e.g., im-

age stitching, registration, and GMC. A main challenge of homography estimation from keypoint

matches is the false matches due to appearance ambiguities. Robust methods are proposed to han-

dle the outliers, such as RANSAC [35] and its variants [17, 106, 107]. Some methods also directly

reject false matches [57, 70]. The hybrid methods [88, 124] combines appearance similarity and

keypoint matches in a probabilistic framework. All methods estimate a homography for a frame

pair. In contrast, in TRGMC, instead of direct calculation of homography transformation for each

pair of frame, we jointly optimize the set of homographies which map the set of input frames into a

global coordinate, such that the keypoints over a wide range of temporal distance are aligned well.

Thus, TRGMC leverages the redundant background matches over time to better handle outliers.

Image stitching (IS) and panoramic image mosaicing share similarity with GMC. IS aims to

minimize the distortions and ghosting artifact in the overlap region. Many works utilize multiple

homographies, instead of a single homography, due to existence of multiple scene planes [36,
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69, 104, 105, 109, 133]. Some recent works focus also on the parallax issue, by using a hy-

brid model that uses homograhy for non-overlapping parallax-free regions and allow some local

non-projective deviation to account for parallax and avoid stitching artifacts [59, 60, 127]. Li et

allet@tokeneonedot [58] generate panoramas from motion-blurred videos. In these works, in-

put images have much less overlap than GMC. On the other hand, video mosaicing takes in a

video which raster scans a wide angle static scene, and produces a single static panoramic im-

age [90, 92, 97]. When the camera path forms a 2D scan [92] or a 360◦ rotation [90], global re-

finement is performed via bundle adjustment (BA) [108], which ensures an artifact-free panoramic

image, assuming a static scene. Although a byproduct of TRGMC is a similar static reconstruction

of the scene, TRGMC focuses on efficient generation of an appealing video, where background

consistently appears static for visual perception (in contrast to an image), for a highly dynamic

scene. The important feature of such a video is that the only apparent motion in the video will rise

from foreground motion. While one may use BA to estimate camera pose and then transformation

between frames, our experiments reveal that BA is not reliable for videos with foreground motion

and is less efficient than TRGMC. Further, BA estimates 3D location of keypoints while TRGMC

needs 2D registration. Thus, by using BA, a harder problem needs to be solved which is unnec-

essary for the purpose of global motion compensation. Hence, image/video mosaicing and GMC

have different application scenarios and challenges.

Another related topic is the panoramic video [31, 43, 44, 77, 128]. For instance, Perazzi et

allet@tokeneonedot [77] create a panoramic video from an array of stationary cameras by gen-

eralizing parallax-tolerant image stitching to video stitching. The fast video stitching in [128]

can handle proper stitching of objects at varying depths. Jiang and Gu [44] propose an algorithm

for stitching multiple video streams into a single panoramic video with spatial-temporal content-

preserving warping. In this work, for alignment of video frames, a spatial-temporal local warping
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is proposed, which locally aligns frames from different videos while maintaining the temporal

consistency. While these works focus on stitching multiple synchronized videos, GMC creates a

motion panorama from a single non-stationary camera. Unlike GMC, video panoramas do not

require the resultant video to have a stationary background.

Video stabilization (VS) is a closely related but different problem. TRGMC can be re-purposed

for VS, but not vice versa, due to the accuracy requirement. Given the accurate mapping to a

global coordinate using TRGMC, VS would mainly amount to cropping out a smooth sequence of

frames and handling rendering issues such as parallax. Among different categories of VS, 2D VS

methods calculate consecutive warping between the frames and have similarities with sequential

GMC, but any estimation error will not cause severe degradation in VS as long as it is smoothed.

While TRGMC targets long-term staticness of the background, VS mainly cares about smoothing

of camera motion, not removing it. In other words, TRGMC imposes a stronger constraint on the

result, which is background staticness by complete camera motion removal in comparison to VS

which deals with camera motion smoothing. This strict requirement differentiates TRGMC also

from Re-Cinematography [38]. Also, large occlusion by the foreground may result in VS failure,

however TRGMC handles this challenge by utilizing redundancy of background information in the

joint alignment scheme.

Congealing aims to jointly align a stack of images from one object class, e.g., faces and let-

ters [53, 64]. Congealing iteratively updates the transformations of all images such that the en-

tropy [53] or Sum of Squared Differences (SSD) [18] of the images, is minimized. However,

despite many extensions of congealing [19, 41, 50, 68, 96], almost all prior work define the en-

ergy based on the appearance features of two images. Since congealing is based on image-based

processing, it requires moderate initial alignment and is sensitive to intra-class variation and back-

ground clutter [50]. In [41], by incorporating deep learning into the congealing alignment frame-
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work, a combination of unsupervised joint alignment with unsupervised feature learning is pro-

posed. Through deep learning, authors obtain features that can represent the image at differing

resolutions based on network depth, and that are tuned to the statistics of the specific data being

aligned. In [50], a heuristic local feature based algorithm is proposed to rigidly align object class

images to a seed image. Best matching local features are selected as object landmark. To overcome

the problem of false matches, iteratively a minimal subset of matches are selected, homography is

estimated, and image points are transformed to the seed coordinate. Using a spatial scoring algo-

rithm, scores of the features matching are accumulated within a preset distance limit, resulting to

refined landmarks. Finally, the other images are aligned to the seed using only the best landmarks.

Note that [50] uses a heuristic local feature based algorithm to rigidly align object class images. In

contrast we formulate the joint alignment of keypoints as an optimization problem and solve it in

a principal way. Cox et allet@tokeneonedot [18] employ a sum of squared differences (SSD) cost

solved by Gauss-Newton gradient decent. Unlike entropy-based congealing, the details of each

image in the stack are used for alignment, rather than relying on the average image of the stack.

Our experiments on GMC show that appearance-based congealing is inefficient and sensitive to

initialization and foreground motion. Therefore, we propose a novel keypoint-based congealing

algorithm minimizing the SSD of corresponding keypoint coordinates, instead of appearance fea-

tures, to gain considerable efficiency enhancement and robustness to initialization.Further, most

prior works apply to a spatially cropped object such as faces, while we deal with complex video

frames with dynamic foreground and moving background, at a higher spatial-temporal resolution.

There are a few existing sequential GMC works, where the main problem is to accurately es-

timate a homography transformation between consecutive frames, given challenges such as appear-

ance ambiguities, multi-plane scene, and dominant foreground [8,24,88]. Bartoli et allet@tokeneonedot [9]

first estimate an approximate 4-degree-of-freedom homography, and then refine it. Sakamoto et

38



. . . 

Input Frames Initialization Iterative UpdatesDense 
Interconnection

Aligned KeyframesIndependent Alignment of Non-keyframes

Pruning the Links

. . . 

Average of frames Average of frames

t

Sec. 3.5Sec. 3.4 Sec. 3.2

Sec. 3.6

Figure 4.2: Flowchart of the TRGMC algorithm.

allet@tokeneonedot [90] generate a 360◦ panorama from an image sequence. Assuming that mul-

tiplication of all consecutive homographies results in the identity mapping, and homography has

only 5 degrees of freedom, the camera rotation matrix has 3 degrees of freedom, to which are added

the focal lengths before and after the camera rotation, all the homographies are optimized jointly

to prevent error accumulation. In contrast, TRGMC employs an 8-degree-of-freedom homogra-

phy. Although using homography in the case of considerable camera translation and large depth

variation results in parallax artifacts, using a higher degrees-of-freedom homography than prior

works allows TRGMC to better handle camera panning, zooming, and translation. Safdarnejad et

allet@tokeneonedot [88] incorporate edge matching into a probabilistic framework that scores can-

didate homographies. Although [24,88] improve the robustness to foreground, error accumulation

and failure in a single frame pair still deteriorate the overall performance. Thus, TRGMC targets

robustness of the GMC in terms of both the presence of foreground and long-term consistency by

joint alignment of frames.

4.2 Proposed TRGMC Algorithm

The core of TRGMC is the novel keypoint-based congealing algorithm. Our method relies on

densely interconnecting the input frames, regardless of their temporal offset, by matching the de-

tected SURF [10] keypoints at each frame. We refer to these connections, shown in Fig. 4.2, as

links. Frames are initialized to their approximate spatial location by only 2D translation (Sec. 4.2.4).
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We rectify the keypoints such that majority of the links have end points on the background region.

Then the congealing applies appropriate transformation to each frame and the links connected to

it, such that the spatial coordinates of the end-points of each link are as similar as possible. In

Fig. 4.2, this translates to having the links as parallel to the t−axis as possible.

For efficiency and robustness, TRGMC processes an input video in two stages. Stage one

selects and jointly aligns a set of keyframes. The keyframes are frozen, and then stage two aligns

each remaining frame to its two encompassing keyframes. The remainder of this section presents

the details of the algorithm.

4.2.1 Formulation of keypoint-based congealing

Given a stack of N frames {I(i)}, with indices i ∈K= {k1, ...,kN}, the keypoint-based congealing

is formulated as an optimization problem,

min
{θi}

ε = ∑
i∈K

[ei(θi)]
ᵀ
Ω

(i)[ei(θi)], (4.1)

where θi is the transformation parameter from frame i to GMCC, ei(θi) collects the pair-wise

alignment errors of frame i relative to all the other frames in the stack, and Ω(i) is a weight matrix.

We define the alignment error of frame i as the SSD between the spatial coordinates of the

endpoints of all links connecting frame i to the other frames, instead of the SSD of appearance [18].

Specifically, as shown in Fig. 4.3, we denote coordinates of the start and the end point of each

link k connecting frame i to the frame d(i)
k ∈ K\{i} as (x(i)k ,y(i)k ) and (u(i)k ,v(i)k ), respectively. For

simplicity, we omit the frame index i in θi. Thus, the error ei(θ) is defined as,

ei(θ) = [∆Xi(θ)
ᵀ,∆Yi(θ)

ᵀ]ᵀ, (4.2)
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Figure 4.3: The notation used in TRGMC.

where

∆Xi(θ) = w̃(x)
i −u(i), ∆Yi(θ) = w̃(y)

i −v(i), (4.3)

are the errors in x− and y− axes. The vectors w̃(x)
i = [Wx(x

(i)
k ,y(i)k ;θ)] and w̃(y)

i = [Wy(x
(i)
k ,y(i)k ;θ)]

denote the x and y− coordinates of (x(i)k ,y(i)k ) warped by the parameter θ , respectively. The vec-

tors u(i) = [u(i)k ] and v(i) = [v(i)k ] denote the coordinates of the end points. Similarly, the vectors

x(i) = [x(i)k ] and y(i) = [y(i)k ] denote the coordinates of the start points. If Ni links emanate from

frame i, ei is a 2Ni−dim vector. Ω(i) is a diagonal matrix of size 2Ni×2Ni which assigns a weight

to each element in ei. The parameter θ has 2, 6, or 8 elements for the cases of 2D translation, affine

transformation, or homography, respectively. In this chapter, we focus on homography transfor-

mation which is a projective warp model, parameterized as,


Wx(x

(i)
k ,y(i)k ;θ)

Wy(x
(i)
k ,y(i)k ;θ)

1

=

θ︷ ︸︸ ︷
p1 p2 p3

p4 p5 p6

p7 p8 1




x(i)k

y(i)k

1

 . (4.4)

Although the homography model assumes the planar scene and this assumption may be violated

in real world [127], we identify the problem of temporal robustness to be more fundamental for

GMC than the inaccuracies due to a single homography. Also, videos for GMC are generally
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swiped through the scene with high overlap, thus the discontinuity resulted from this assumption

is minor.

4.2.2 Optimization solution

Equation 6.1 is a non-linear optimization problem and difficult to minimize. Following [18], we

linearize this equation by taking the first-order Taylor expansion around θ . Starting from an initial

θ , the goal is to estimate ∆θ by,

argmin
∆θ

[ei(θ)+
∂ei(θ)

∂θ
∆θ ]ᵀΩ

(i)[ei(θ)+
∂ei(θ)

∂θ
∆θ ]+ γ∆θ

ᵀI ∆θ , (4.5)

where ∆θ
ᵀI ∆θ is a regularization term, with a positive constant γ setting the trade-off. We ob-

serve that without this regularization, parameter estimation may lead to distortion of the frames.

The indicator matrix I is a diagonal matrix specifying which elements of ∆θ need a constraint.

We use I = diag([1,1,0,1,1,0,1,1]) to specify that there is no constraint on the translation pa-

rameters of the homography, but the rest of parameters should remain small.

By setting the first-order derivative of Eqn. 6.4 to zero, the solution for ∆θ is,

∆θ = H−1
R

∂ei(θ)
ᵀ

∂θ
Ω

(i)ei(θ), (4.6)

HR =
∂ei(θ)

∂θ

ᵀ

Ω
(i)∂ei(θ)

∂θ
+ γI . (4.7)

Using the chain rule, we have ∂ei(θ)
∂θ

= ∂ei(θ)
∂W

∂W
∂θ

. Knowing that the mapping has two com-

ponents as W = (Wx,Wy), and the first half of ei only contains x components and the rest only y
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components, we have,

∂ei(θ)

∂W
=
[1Ni 0Ni

0Ni 1Ni

]
, (4.8)

where 1Ni and 0Ni are Ni−dim vectors with all element being 1 and 0, respectively. For homography

transformation, ∂W
∂θ

=
∂ (Wx,Wy)

∂ (p1,p2,p3,p4,p5,p6,p7,p8)
is given by,

∂W

∂θ
=

w̃(x)
i w̃(y)

i 1Ni 0Ni 0Ni 0Ni −u(i)w̃(x)
i −u(i)w̃(y)

i

0Ni 0Ni 0Ni w̃(x)
i w̃(y)

i 1Ni −v(i)w̃(x)
i −v(i)w̃(y)

i

 . (4.9)

At each iteration, and for each frame i, ∆θ is calculated and the start points of all the links

emanating from frame i are updated accordingly. Similarly, for all links with end points on frame

i, the end point coordinates are updated. 1

We use the SURF [10] algorithm for keypoint detection with a low detection threshold, τs =

200, to ensure sufficient keypoints are detected even for low-texture backgrounds. We use the

nearest-neighbor ratio method [65] to match keypoints and form links between each pair of keyframes.

Keyframe selection We select keyframes at a constant step of ∆ f , i.e., from every ∆ f frames, only

one is selected. Based on the experimental results, as a trade-off between accuracy and efficiency,

we use ∆ f = 10 in TRGMC.

4.2.3 Weight assignment

We have defined all parameters in the problem formulation, except the weights of links, Ω(i). We

consider two factors in setting Ω(i). Firstly, the keypoints detected at larger scales are more likely

to be from background matches, since they cover coarser information and larger image patches.

Thus, to be robust to foreground, the early iterations should emphasize links from larger-scale

1In algorithm implementation, it is important to store the original coordinates of the detected keypoints and apply
the composite transformations accumulated in all the iterations to update the coordinates of the start and end points of
the links. Otherwise, accumulation of numerical errors will harm the performance.
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Figure 4.4: Comparison of the ratios of background-foreground matches for (a) sequential GMC and (b)
TRGMC.

keypoints, which forms a coarse-to-fine alignment. We normalize the scales of all keypoints such

that the maximum is 1, and denote the minimum of the normalized scales of the two keypoints

comprising the link k as sk. Then, Ω
(i)
k,k is set proportional to sk.

Secondly, for each frame i, the links may be made either to all the previous frames, denoted

as backward scheme, or both the previous and upcoming frames, denoted as backward-forward

scheme. The former is for potential real time application, whereas the latter for offline video pro-

cessing. These schemes are implemented by assigning different weights to backward and forward

links,

Ω
(i)
k,k =


(β .sk)

rq
; if d(i)

k < i (Backward links)

(α.sk)
rq

; if d(i)
k > i (Forward links)

(4.10)

where 0<α,β < 1, q is the iteration index, and 0< r < 1 is the rate of change of the weights. Note

that the alignment errors in x and y−axes have the same weights, i.e., Ω
(i)
k+Ni,k+Ni

= Ω
(i)
k,k. After a

few iterations, the weights of all the links will be restored to 1. In the backward scheme, we set

α = 0.

4.2.4 Initialization

Initialization speeds up the alignment and decreases the false keypoint matches. The objective is

to roughly place each frame at the appropriate coordinates in the GMCC. For initialization, we
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(a) (b)

Figure 4.5: (a) The input frame, (b) the reliability map, with the red color showing higher reliabil-
ity.

align the frames based only on rough estimation of translation without considering rotation, skew,

or scale. We use the average of the motion vectors in matching two consecutive frames as the

translation. Using this simple initialization, even if the camera has in-plane rotation, estimated

2D translations are zero, which is indeed correct and does not cause any problem for TRGMC.

Given the estimated translation, approximate overlap area of each pair of frames is calculated, and

only the keypoints inside the overlap area are matched, reducing number of false matches due to

appearance ambiguities.

4.2.5 Outlier handling

Links may become outliers for two reasons: (i) the keypoints reside on foreground objects not

consistent with camera motion; (ii) false links between different physical locations are caused by

the low detection threshold and similar appearances.

In order to prune the outliers, we assume that the motion vectors of background matches,

i.e., background links, have consistent and smooth patterns, caused by camera motion such as pan,

zoom, tilt, whereas, the outlier links will exhibit arbitrary pattern, inconsistent with the background

pattern. Specifically, we use Ma et allet@tokeneonedot [70] method to prune outlier links by

imposing a smoothness constraint on the motion vector field2. This method outperforms RANSAC

2We use the implementation provided by the authors and default parameters.
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if the set of keypoint matches contains a large proportion of outliers. Since keyframes have larger

relative time difference than consecutive frames, the foreground motion is accentuated and more

distinguishable from camera motion. This helps with better pruning of the foreground links. At

each stage that the keypoints from a pair of frames are matched to form the links, we perform the

pruning.

Congealing of an image stack also increases the proportion of background matches over the

outliers - another way to suppress outliers. The keypoints on background are more likely to form

longer range matches than the foreground ones, due to non-rigid foreground motion. Hence, when(N
2

)
combinatorial pairs of frames are interconnected, there are a lot more background matches

(Fig. 4.4).

4.2.6 Alignment of non-keyframes

The keyframes alignment provides a set of temporally consistent motion compensated frames,

which are the basis for aligning non-keyframes. We refer to keyframes and non-keyframes with

superscripts i and j, respectively. For a non-keyframe j between the keyframes ki and ki+1, its

alignment is a special case of Eqn. 6.1, with indices K = { j}, and the destination of the links

d( j)
k ∈ {ki,ki+1}, i.e., only θ j of frame j is updated while the keyframes remain fixed. Each non-

keyframe between keyframes ki and ki+1 is aligned independently.

However, given the small time offset between j and d( j)
k , the observed foreground motion may

be hard to discern. Also, frame j is linked only to two keyframes, thus there is no redundancy

of background information to improve robustness to foreground motion. Therefore, we need a

different means of outlier handling. We handle this issue by assigning higher weights to links that

are more likely to be connected to the background.

For each keyframe i, we quantify how well the links emanating from frame i are aligned with
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other keyframes. If the alignment error is small, i.e., ε
(i)
k =

∣∣Wx(x
(i)
k ,y(i)k ;θ)−u(i)k

∣∣+∣∣Wy(x
(i)
k ,y(i)k ;θ)−

v(i)k

∣∣< τ , the link k is more likely on the background of frame i and thus, more reliable for aligning

non-keyframes. We create a reliability map for each keyframe i, denoted as R(i) (Fig. 4.5). For

each link k with ε
(i)
k < τ , a Gaussian function with µk = (x(i)k ,y(i)k ) and σk = csk is superposed on

R(i), where the constant c is 20. We define,

R(i)
m,n =

⌈⌊
∑

k∈Bi

e
−

(
m−x(i)k

)2
+

(
n−y(i)k

)2

2σ2
k

⌋
1

⌉
η

, (4.11)

where Bi = {k|ε(i)k < τ}, η > 0 is a small constant (set to 0.1), dxeη = max(x,η) and bxc1 =

min(1,η). Now, we assign the weight of the links connecting frame j to the keyframe d( j)
k at the

coordinate (u( j)
k ,v( j)

k ), as the reliability map of the keyframe at the endpoint, Ω
( j)
k,k =

(
R(a)

u( j)
k ,v( j)

k

)rq
,

where a = d( j)
k .

We summarize the TRGMC algorithm in Algorithm 2.

4.3 Experimental Results

We now present qualitative and quantitative results of the TRGMC algorithm and discuss how

different computer vision applications will benefit from TRGMC.

4.3.1 Baselines and details

We choose three sequential GMC algorithms as the baselines for comparison: MLESAC [107] and

HEASK [124] both based on our own implementation, and RGMC [88] based on the authors’ Mat-

lab code available online. We implement TRGMC in Matlab, and will publish the code. Denoting

the video frames of w× h pixels, we set the parameters as γ = 0.1wh, T1 = 300, τ1 = 5× 10−4,

T2 = 50, τ2 = 10−4, r = 0.7, τ = 1, ∆ f = 10, and β = 1. For the backward-forward scheme we set
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Algorithm 2: TRGMC Algorithm

Data: A set of input frames {I(m)}M
m=1

Result: A set of homography matrices {θm}M
m=1

/* Align keyframes (Sec. 4.2.2) */
1 Specify K= {k1, ...,kN} and initialize (Sec. 4.2.4);
2 Match keypoints of all frames i ∈K densely;
3 Prune links (Sec. 4.2.5) and set weights (Eqn. 4.10);
4 Store links’ start and end coordinates in (xi,yi) and (ui,vi);
5 repeat
6 forall the i ∈K do
7 Compute ∆θi (Eqn. 4.6), update θi, xi and yi ;
8 Update (um, vm) according to θi for m ∈K\{i};
9 Update weights (Eqn. 4.10);

10 q← q+1;
11 until q < T1 or

( 1
N ∑i∈K ||∆θi||2 > τ1

)
;

/* Align non-keyframes (Sec. 4.2.6) */

12 Compute reliability map R(i) for i ∈K ;
13 for i = 1 : N−1 do
14 forall the j ∈ {ki +1, ...,ki+1−1} do
15 Match keypoints in j with d( j) ∈ {ki,ki+1} ;

16 Prune links (Sec. 4.2.5) and set weights Ω
( j)
k,k;

17 Store links’ coordinates in (x j,y j) and (u j,v j);
18 repeat
19 Compute ∆θ j (Eqn. 4.6), update θ j, x j and y j;
20 Update weights (Eqn. 4.10), q← q+1;
21 until q < T2 or

(
||∆θ j||2 > τ2

)
;

α = 1 and for the backward scheme α = 0.

4.3.2 Datasets and metric

Given there is no public dataset for quantitative GMC evaluation, we form a dataset composed of

40 challenging videos from SVW [89] and 15 videos from UCF101 [100], termed “quantitative

dataset”. SVW is an extremely unconstrained dataset including videos of amateurs practicing

sports, and is also captured by amateurs via smartphone. The min. and max. spatial size of videos

are 240 and 480 pixels, respectively. The average, min., and max. length of the videos are 14, 3,
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Algorithm MLESAC HEASK RGMC TRGMC GT*
Setting – – – BF* B* –

Avg. BRE 0.116 0.110 0.097 0.058 0.060 0.038
Efficiency (s/f) 0.17 7.47 3.47 0.64 0.41 –

Table 4.1: Comparison of GMC algorithms on quantitative dataset (*GT: Ground truth, BF:
Backward-Forward, B: Backward).

and 45 seconds, captured at 25 or 30 FPS. In addition, we form another “qualitative dataset” with

200 unlabeled videos from SVW, in challenging categories of boxing, diving, and hockey.

To compare GMC over different temporal distances of frames, for each video of length M

in the quantitative dataset, we manually align all 10 possible pairs from the 5-frame set, F =

{1,0.25M,0.5M,0.75M,M}, as long as they are overlapping, and specify the background regions.

For this, a GUI is developed for a labeler to match 4 points on each frame pair, and fine tune them

up to a half-pixel accuracy, until the background difference is minimized. Then, the labeler selects

the foreground regions which subsequently identify the background region. Similar to [88], we

quantify the consistency of two warped frames I(i)(θi) and I( j)(θ j) (0 to 1 grayscale pixels) via the

background region error (BRE),

BRE(i, j) =
1

‖MB‖1
‖|(I(i)(θi)− I( j)(θ j))|�MB‖1, (4.12)

where� is element-wise multiplication and MB is the background mask for the intersection of two

warped frames.

4.3.3 Quantitative evaluation

Average of BRE over all the temporal frames pairs is shown in Table 4.1. TRGMC outperform

all the baseline methods with considerable margin. The backward-forward (BF) scheme has a

slightly better accuracy than the backward (B) scheme, and is also more stable based on our visual
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Figure 4.6: Average BRE of frame pairs versus the time difference between the two frames.
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Figure 4.7: Top view of the frames and links (a) before and (b) after TRGMC. The parallel links
in (b) show successful spatial alignment of keypoints. Average of frames (c) before and (d) after
TRGMC. For better visibility, we show up to 15 links emanated per frame.

observation. Thus, we use BF as the default scheme for TRGMC.

To illustrate how the accumulation of errors over time affects the final error, Fig. 4.6 sum-

marizes the average error versus the time difference between the frames in F. This shows that

TRGMC error is almost constant over a wide temporal distance between the frames. Thus, even if

a frame is not aligned accurately, the error is not propagating to all the frames after that. However,

in sequential GMC, the error increases as the time difference increases.
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Figure 4.8: Composite image formed by overlaying the frame n on frame 1 for several videos after
TRGMC. Left to right, top to bottom, n is equal to 144, 489, 912, 93, respectively. In the overlap
region the difference between the frames is shown.

4.3.4 Qualitative evaluation

While quantitative results are comprehensive, the number of videos is limited by the labeling cost.

Thus, we further compare TRGMC and the best performing baseline, RGMC, on the larger qualita-

tive dataset. The resultant motion panoramas were visually investigated and categorized into three

cases: good, shaking, and failed (i.e., considerable background discontinuity). The comparison in

Tab. 4.2 again shows the superiority of TRGMC.

Figure 4.7 shows the links of a sample video processed by TRGMC, and the average frames,

before and after processing. Initialization module is disable for generating this figure to better

illustrate how well the spatial coordinate of the keypoints are aligned, resulting in links parallel to

the t− axis. This video also shows how GMC might be utilized for video stabilization. Figure 4.8

shows a composite image formed by overlaying the last frame (or a far apart frame with enough

overlap) on frame 1 for several videos, after TRGMC. In the overlap region, difference between

the two frames is shown, to demonstrate how well the background region matches for the frames
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with large temporal distance.

4.3.5 Computational efficiency

Table 4.1 also presents the average time for processing each frame for each method, on a PC with

an Intel i5-3470@3.2GHz CPU, and 8GB RAM. While obtaining considerably better accuracy

than HEASK or RGMC, TRGMC is on average 15 times faster than HEASK and 7 times faster

than RGMC. MLESAC is ∼3 times faster than TRGMC, but with twice the error. For TRGMC,

the backward scheme is 50% faster than forward-backward, since it has approximately half the

links of BF.

4.3.6 Accuracy vs. efficiency trade-off

Fig. 4.9 presents the error and efficiency results for a set of 5 videos versus the keyframe selection

step, ∆ f . For this set, the ground truth error is 0.049. As a sweet spot in the error and efficiency

trade-off, we use ∆ f = 10 for TRGMC. This figure also justifies the two stage processing scheme

in TRGMC, as processing frames at a low selection step ∆ f , is costly in terms of efficiency, but

only improves the accuracy slightly.

Alg. \Perfromance Good Shaking Failed
RGMC 64% 33% 3%

TRGMC 93% 5% 2%

Table 4.2: Comparison of GMC algorithms on qualitative dataset.

4.4 Conclusions

We proposed a temporally robust global motion compensation (TRGMC) algorithm by joint align-

ment (congealing) of frames, in contrast to the common sequential scheme. Despite complicated
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Figure 4.9: Error and efficiency vs. the keyframe selection step, ∆ f .

camera motions, TRGMC can remove the intentional camera motion, such as pan, as well as un-

wanted motion due to vibration on handheld cameras. Experiments demonstrate that TRGMC

outperforms existing GMC methods, and applications of TRGMC.

The enabling assumption of TRGMC is that the camera motion in the direction of the optical

axis is negligible. For instance, TRGMC will not work properly on a video from a wearable camera

of a pedestrian, since in the global coordinate the upcoming frames grow in size and cause compu-

tational and rendering problems. Similar to panorama images, the best results are achieved if the

optical center of the camera has negligible movement during the capturing, making a homography-

based approximation of camera motion appropriate. However, if the optical center moves in the

perpendicular direction to the optical axis (e.g., a camera following a swimmer), TRGMC still

works well, but rendering the results in the form of motion panorama will be degraded by parallax

effect.
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Chapter 5

Global Motion Compensation Applications

There are a wide range of applications which can benefit from a robust and accurate global motion

compensation (GMC) algorithm. Basically, many algorithms which are tailored to work only with

static cameras benefit from GMC, as GMC transforms the video from a freely moving camera to a

video from a pseudo-static camera in which background pixels are static over progression of time.

Besides, some byproducts of GMC such as background reconstructions and motion panoramas

themselves provide an interesting visualization of the captured video.

In these chapter, we briefly investigate these applications and then in Chapter 6 propose an algo-

rithms for spatio-temporal alignment of non-overlapping sequences which is enabled by TRGMC.

5.1 Motion panorama

By sequentially reading input frames, applying the transformation found by TRGMC, and over-

laying the warped frames on a sufficiently large canvas, a motion panorama is generated. Fur-

thermore, it is possible to reconstruct the background using the warped frames first (as will be

discussed later), and overlay the frames on that, to create a more impressive panorama. The last

frame on the video generated such, can be referred to as a panoramic mosaic [101]. Figure 5.1

shows a few exemplar panoramas along with the camera motion pattern. For all the input videos

of length M, we apply (1
2(θ1 +θM))−1 to the transformations found by TRGMC to normalize the

result and have a better view of the scene in a smaller spatial area.
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5.2 Raster scan of scenes/Image mosaic

We may swipe the camera through a large scene in a raster scan fashion and use TRGMC to

reconstruct a big image mosaic. Note that this scenario is non-trivial since the accumulated error

can be obvious when the raster scan comes back to the original camera position. The long term

robustness presented by TRGMC is crucial in this scenario.

5.3 Background reconstruction

Background reconstruction is important for removing occlusions, or detecting foreground [74].

To reconstruct the background, a weighted average scheme is used to weight each frame by the

reliability map, R(i), which assigns higher weights to background. Since the minimum value of

R(i) is a positive constant η , if no reliable keyframe exists at a coordinate, all the frames will

have equal weights. Specifically, the background is reconstructed by B = ∑i∈K R(i)(θi)I(i)(θi)

∑i∈K R(i)(θi)
, where

R(i)(θi) and Ii(θi) are the reliability map and the input frame warped using the transformation

θi. Using our scheme, reconstructed background in Fig. 5.2 is sharper and less impacted by the
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Figure 5.1: Temporal overlay of frames from different videos processed by TRGMC. Trajectory
of the center of image plane over time is overlaid on each plot to show the camera motion pattern,
where color changes from blue to red with progression of time.
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Figure 5.2: Background reconstruction results.

foreground.

5.4 Foreground segmentation

The reliable background reconstruction result B as calculated in Section 5.3 along with the GMC

result of frame I(i), i.e., θi, can be easily used to segment the foreground by thresholding the

difference image, |B− I(i)(θi)| (See Fig. 5.3).

5.5 Human action recognition

State of the art human action recognition heavily relies on analysis of human motion. For instance,

the dense trajectories algorithm [114] for motion analysis reveals its power when camera motion is

compensated in the input video, either as pre-processing step, or internally [117]. Otherwise, cam-

era motion interferes with human motion, making the analysis problem very challenging. In [117],

camera motion is compensated by detecting human and removing motion vectors due to human

motion, and relying on RANSAC algorithm for outlier rejection. However, this internal GMC
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(a) (b)

(c)

Figure 5.3: Foreground segmentation: (a) Input frame, (b) reconstructed background, (c) difference
of (a,b) on (a).

(a) (b)

Figure 5.4: Dense trajectories of the (a) original video, and (b) TRGMC-processed video.

requires accurate human detection, which has a high failure rate in videos in the wilds, specially

for highly articulated human body in sports videos, and loses performance when number of false

matches increases. Fig. 5.4 illustrates the difference of dense trajectories calculated on an input

video with and without application of TRGMC. As shown in this figure, utilizing TRGMC before

extraction of dense trajectories effectively suppresses the camera motion effect.
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5.6 Multi-object tracking (MOT)

When appearance cues for tracking are ambiguous, e.g., tracking players in team sports like foot-

ball, motion cues gain extra significance [26,55]. MOT is comprised of two tasks, data association

by assigning each detection a label, and trajectory estimation – both highly affected by camera

motion. TRGMC can be applied to remove camera motion and thus, revive the power of tracking

algorithms relying on motion cues. To verify the impact of TRGMC, we manually label the lo-

cations of all players in 566 frames of a football video (the one in Fig. 5.3) and use this ground

truth detection results to study how MOT using [3] benefits from TRGMC. Fig. 5.5 compares the

trajectories of players over time with and without applying TRGMC. Comparing number of la-

bel switches, this qualitatively demonstrates improvement of a challenging MOT scenario using

TRGMC. Also, the Multi-Object Tracking Accuracy (MOTA) [12] achieved for the original video

and the video processed by TRGMC are 63.79% and 84.23%, respectively.

5.7 Spatio-temporal alignment of non-overlapping sequences

Spatio-temporal alignment of multiple videos is an important computer vision problem with a wide

range of applications. Previous works study different aspects and scenarios of the spatio-temporal

alignment. Given the capabilities of the accurate GMC provided by TRGMC, it is possible to de-

sign algorithms for spatio-temporal alignment of sequences in new scenarios. Specifically, since it

is possible to transform each given sequence to a global coordinate and also reconstruct the back-

ground for each video sequence, it is possible to register the background images, and subsequently

register each frame of each sequence with other sequences. To this end, we propose a new algo-

rithm for spatio-temporal alignment of sequences, for non-overlapping sequences (NOS), which is

presented in details in Chapter 6. Targeted NOS are captured by freely and independently panning
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Figure 5.5: Multi-player tracking using [3] for a football video with camera panning to the right,
before (top) and after processing by TRGMC (bottom).

cameras from nearby viewpoints. In NOS, sequences might not have any pair of frames that have

spatial overlap and belong to the same world time instant. More interestingly, sequences might

even not cover some common regions of the same scene over the progression of time.

Our algorithm uses TRGMC to map each frame to a camera-motion-removed video and re-

construct the background for each sequence, independently. These potentially non-overlapping

backgrounds are aligned via appearance cues and also the prediction that where a moving object

leaving field of view of a camera will appear in field of view of another camera. Given the spatial

alignment, we predict when a moving object leaving field of view of one camera will appear in

field of view of another to come up with the temporal. We mathematically formulate this prediction

and estimate the temporal synchronization.
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Chapter 6

Spatio-Temporal Alignment of

Non-Overlapping Sequences from

Independently Panning Cameras

6.1 Introduction

Spatio-temporal alignment of multiple videos [16, 27, 28, 33, 39, 76, 80, 95, 120] is a well-studied

vision problem with a wide range of applications, e.g., human action recognition [82, 110], video

editing [120], markerless motion capture [39], video mosaicing, change detection [27], and aban-

doned object detection [48]. Previous works study different aspects and scenarios of the spatio-

temporal alignment. Some works target sequences from the same scene but different viewpoints [39,

76]. Some can handle sequences recorded at different times by independent moving cameras that

follow a similar trajectory [28,33,120]. The seminal work of Caspi and Irani [16] studies spatially

non-overlapping sequences when two fixed cameras move jointly in space.

Our work covers a novel unexplored aspect of spatio-temporal alignment of sequences, for non-

overlapping sequences (NOS). Targeted NOS are captured by freely and independently panning

cameras, from nearby viewpoints, with limited translation, especially in optical axis direction. In

NOS, sequences might not have any pair of frames that have spatial overlap and belong to the same

world time instant. More interestingly, sequences might even not cover some common regions
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Figure 6.1: (a) Top view of spatio-temporal FOV of two moving cameras capturing sequences S1
and S2; Non-overlapping sequences (NOS) may not even cover some common spatial region over
the progression of time, i.e, no overall spatial overlap will exist. (b) Spatio-temporal alignment of
NOS results in displaying sequences from multiple freely panning cameras in a common coordinate
and at the correct time shift.

of the same scene over the progression of time. In other words, if we reconstruct the observed

background by these sequences, the backgrounds may be non-overlapping, i.e., in Fig. 6.1 (a),

overall spatial overlap does not exist.

Given the ubiquitousness of smartphones and wearcams, NOS are increasingly common. When

amateur users unsynchronizedly shoot videos of an event, aligning these videos leads to a single

comprehensive video, with greater spatial and temporal spans (Fig. 6.1 (b)). This resultant video

is essentially a panoramic video, shot by smartphones, without the need to fix the cameras to each

other or use tripods, with the best visual presentation achieved if there exists even a tiny overlap.

Further, in cases of crime actions or violations where many witnesses capture videos from the

incident, each sequence may cover part of the story. Aligning these videos into a unified large-

scale 3D volume provides a better grasp of the full picture.

The existing spatio-temporal alignment algorithms fail in the case of NOS, since even if there

is some overall spatial overlap, spatial alignment of apparently overlapping frames, as Fig. 6.1 (a)

shows for frames a and b, obviously violates the temporal alignment. However, by decompos-
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ing the task to spatial alignment first and then temporal alignment based on scene dynamics, the

problem can be solved. In general our proposed algorithm assumes NOS satisfy the following two

assumptions. 1) Although the sequences do not need to have any corresponding frames that share

a common scene at the same world time stamp, and no overall overlap as in Fig. 6.1 (a), they cover

nearby parts of a scene from similar view angles. 2) There are moving objects in the scene which

move from the field of view (FOV) of one camera to FOV of other cameras, or if the sequences

happen to have overlap, have motion in the overlap region.

Our algorithm uses global motion compensation to map each frame to a camera-motion-removed

video and reconstruct the background for each sequence, independently. With the two assumptions,

these potentially non-overlapping backgrounds are aligned via appearance cues and also the pre-

diction that where a moving object leaving FOV of a camera will appear in FOV of another camera.

Collection of the former mappings and the latter background alignment, can put each frame in each

sequence in correct spatial alignment w.r.t. frames from other sequences. Given the spatial align-

ment and the assumption 2, we predict when a moving object leaving FOV of one camera will

appear in FOV of another. We mathematically formulate this prediction and estimate the temporal

synchronization.

In summary, this chapter makes these contributions:

� A new scenario in spatio-temporal alignment of sequences is identified and targeted.

� A spatial alignment algorithm for NOS via alignment of reconstructed backgrounds and

consistency of objects movement is proposed.

� The trajectory of moving objects with smooth path are used as a clue for temporal alignment

of NOS.
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6.2 Previous Work

The prior work in spatio-temporal alignment of sequences mostly differ in their assumptions and

scenarios, e.g., the camera movement (static, jointly moving, or moving), camera view-point (sim-

ilar or distinct), extent of overlap in sequences, and extent of similarity of camera motion paths.

The work of [34] presents an excellent taxonomy of these assumptions, one of which is that, to

align sequences from the same event captured by freely moving cameras, coherent scene appear-

ance is assumed. We lift this assumption by handling non-overlapping sequences, although we do

assume negligible camera movement in the optical axis direction. We now review key scenarios in

prior work.

6.2.1 Jointly moving cameras

Caspi and Irani align spatially non-overlapping sequences when two closely attached cameras

move jointly in space (Fig. 6.2 (a)) [16]. Assuming cameras share the same projection center, their

relationship is modeled as a fixed homography H, estimated based on the idea that the apparent

motion in camera 1 is related to camera 2 with H. Esquivel et al. [32] relax the projection center

assumption and calibrate a multi-camera rig from non-overlapping views, assuming synchronized

sequences. In contrast, the cameras in NOS can pan freely with no overlap, which is substantially

more challenging.

6.2.2 Cameras following similar trajectories

The authors of [28,33,34,120] align sequences recorded at different times by independent moving

cameras that follow a similar trajectory (Fig. 6.2 (b)). [28] assumes one sequence as the reference

and the other sequences entirely contained (temporally) within the reference. The alignment is for-

mulated as an energy minimization problem alternately solved for temporal and spatial alignment
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Figure 6.2: Various scenarios in spatio-temporal alignment of sequences: (a) jointly moving cam-
eras, (b) independently moving cameras at different times following similar trajectories, (c) sta-
tionary cameras with different viewpoints, (d) the proposed independently panning cameras with
non-overlapping sequences.

parameters and is evaluated on four sets of real videos. In [120] an interactive method for nonlinear

temporal video alignments is proposed for video editing. All these methods require coherent scene

appearance and are not capable of handling sequences from moving cameras with no overlap in

FOV — the targeted scenario of NOS.

6.2.3 Stationary cameras at different views

Padua et al. [76] target n≥ 2 sequences from the same scene but different viewpoints (Fig. 6.2 (c)).

The stationary cameras allow the estimated camera’s epipolar geometry remain fixed. Motion

trajectories are used as cues for both spatial and temporal alignment. Experimental results are

provided for 5 sequences, however, as the proposed method is not dependent on a specific tracker,

for each sequence, the optimal tracker is chosen based on the application in hand.

6.2.4 Time synchronization

Many prior works have focused on time synchronization of sequences. Assuming the known 3D

object location and calibrated stationary cameras, [15] synchronizes non-overlapping sequences

of these cameras. Gaspar et al. [37] propose a synchronization algorithm for the case that two
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Figure 6.3: Flowchart of our spatio-temporal alignment algorithm. First, spatial alignment is per-
formed by background reconstruction for each sequence (a) and aligning the backgrounds (b).
Second, given the spatial alignment parameters, keypoint trajectories (c) are mapped to the world
coordinate and the best temporal alignment in terms of continuity of moving object trajectories is
found (d). Finally, spatio-temporal alignment parameters are used for displaying the sequence in a
world coordinate system and at the correct time shift (e).

cameras move independently, even if different features are tracked in two sequences. It assumes the

known intrinsic camera parameters and two visible rigid objects in both sequences, whose relative

motion is used for synchronization. Lu and Mandal [67] model the video temporal alignment as

a spatio-temporal discrete trajectory alignment problem. The method is evaluated on synthetic

trajectories and 10 pairs of real videos. Our method also relies on existence of at least one moving

object for temporal synchronization. In fact, without spatial overlap between FOVs, any temporal

alignment algorithm has to track moving objects or egomotion [34]. However, we can work with

non-overlapping sequences where the same moving object is not visible at the same time in all

sequences, without relying on camera calibration or known moving object location.

6.3 Proposed Method

We discussed the assumptions for the proposed spatio-temporal alignment of NOS in Section 6.1.

The intrinsic and extrinsic camera parameters are not required. Also, the cameras might be un-
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synchronized, i.e., the capture starts at different times, with possibly distinct frame rates, and are

panned freely and independently. However, best results are achieved by small camera baseline and

limited translation of cameras, especially in the optical axis direction.

The proposed algorithm has two stages, (1) spatial alignment (Fig. 6.3(b)), which relies on

the reconstructed backgrounds’ appearance and consistency of movement of objects across the

sequences, (2) temporal alignment (Fig. 6.3(d)), which uses the continuity of objects’ trajectories

to synchronize the videos. Our method is feature-based, relying on keypoint correspondence for

the first stage and keypoint trajectories for the first and second stage.

6.3.1 Notations

As shown in Fig. 6.3, frame coordinate refers to the pixel coordinate in the input video, sequence

coordinate to the global coordinate of the reconstructed background of one video, and world co-

ordinate to the global coordinate of all input videos where the final aligned video is rendered. We

denote the coordinates and time stamps in the frame coordinate with plain letters, in the sequence

coordinate with ∼ over the notation, e.g., x̃, and in the world coordinate with double ∼, e.g., ˜̃x.

Accordingly, a transformation from the frame to sequence coordinate has ∼ over the notation, and

a transformation from the sequence to world coordinate has double ∼. We use superscript for the

sequence number and subscript for, either the frame number or trajectory number. E.g., θ̃ s
i is the

transformation of frame i in sequence s from the frame coordinate to sequence coordinate.

6.3.2 Spatial alignment

We break down the spatial alignment to two phases. First, for each sequence, we map all the

frames to the sequence coordinate, via global motion compensation (GMC), which also produces

a reconstructed background mosaic (Fig. 6.3(a)). A crucial assumption for successful GMC is the
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camera having small motion in the optical axis direction. Second, image alignment is conducted

on the reconstructed backgrounds and maps them to the world coordinate (Fig. 6.3(b)). However,

if the backgrounds are non-overlapping, common image alignment cannot be used. Thus, a new

alignment scheme is proposed in Sec. 6.3.2.3.

6.3.2.1 Global motion compensation

GMC removes any intentional or unwanted camera motion in a sequence, creating a video with

static background [86,88]. Essentially, GMC estimates a per frame transformation to the sequence

coordinate. This work utilizes the TRGMC algorithm [86], discussed in Chapter 5, which handles

dynamic scenes and estimates the transformations by joint alignment of input frames. TRGMC

first detects SURF [11] keypoints in each frame, and performs keypoint matching to densely in-

terconnect all frames, regardless of their temporal offset. These connections are referred as links.

Then the keypoint-based congealing applies appropriate transformation to each frame and its links,

such that the spatial coordinates of the end-points of each link are as similar as possible.

For the convenience of readers, we briefly introduce the keypoint-based congealing. Given a

stack of N frames {Ii}, with indices i ∈K= {k1, ...,kN}, keypoint-based congealing is formulated

as an optimization problem,

min
{θ̃ s

i }
ε

s = ∑
i∈K

[ei(θ̃
s
i )]

ᵀ
Ω

s
i [ei(θ̃

s
i )], (6.1)

where θ̃ s
i is an 8-dim homography transformation parameter from frame i of sequence s to the se-

quence coordinate, ei(θ̃
s
i ) collects pair-wise alignment errors of frame i relative to all other frames,

and Ωs
i is a weight matrix. Since TRGMC uses homography transformation, it works best with

nodal camera motion. In the case of camera translation, TRGMC still works by matching the

dominant background, although the result may downgrade with parallax.
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The alignment error of frame i relative to all other frames is the sum of squared differences

(SSD) between the coordinates of the endpoints of all links connecting keypoints of frame i to

keypoints of other frames. The coordinates of the start and end point of each link k starting from

frame i are donated as (xi,k,yi,k) and (ui,k,vi,k), respectively. The error ei(θ̃
s
i ) is,

ei(θ̃
s
i ) = [4xi(θ̃

s
i )

ᵀ,4yi(θ̃
s
i )

ᵀ]ᵀ, (6.2)

where

4xi(θ̃
s
i ) = w̃(x)

i −ui, 4yi(θ̃
s
i ) = w̃(y)

i −vi, (6.3)

are the errors in x and y−axes. The vectors w̃(x)
i = [Wx(xi,k,yi,k; θ̃ s

i )] and w̃(y)
i = [Wy(xi,k,yi,k; θ̃ s

i )]

denote the x and y−coordinates of (xi,k,yi,k) warped by the parameter θ̃ s
i , respectively. The vectors

ui = [uk,i] and vi = [vk,i] denote the coordinates of the end points.

Equation 6.1 is solved by taking the Taylor expansion around θ̃ s
i and finding the increment ∆θ̃ s

i

that minimizes,

argmin
∆θ̃ s

i

[ei(θ̃
s
i )+

∂ei(θ̃
s
i )

∂ θ̃ s
i

∆θ̃
s
i ]
ᵀ
Ω

s
i [ei(θ̃

s
i )+

∂ei(θ̃
s
i )

∂ θ̃ s
i

∆θ̃
s
i ]+ γ∆θ̃

s
i
ᵀ
I ∆θ̃

s
i , (6.4)

where ∆θ̃ s
i
ᵀ
I ∆θ̃ s

i is a regularization term which stabilizes the changes to the transformation, with

a positive constant γ setting the trade-off. The indicator matrix I is a diagonal matrix specifying

which elements of ∆θ̃ s
i need a constraint.

By setting the first-order derivative of Eqn. 6.4 to zero, a closed-form solution for ∆θ̃ s
i is ob-

tained. After enough iterations, θ̃ s
i will be the transformation mapping frame i of the input video

to the sequence coordinate.
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6.3.2.2 Spatial alignment of overlapping backgrounds

Given the θ̃ s
i for all the input videos, we follow [86] to reconstruct the backgrounds Bs for them. If

there exists enough overlap between the backgrounds, common image alignment algorithms may

be used. Specifically, we estimate the transformation ˜̃
θ s that maps the background of sequence s

to the world coordinate, by matching SURF keypoints on background images via the vector field

consensus algorithm [70]. In summary, a point with the homogeneous coordinate (x,y,1) in frame

i of sequence s is mapped to the sequence coordinate of sequence s, denoted as (x̃, ỹ,1), and the

world coordinate of all sequences, denoted as ( ˜̃x, ˜̃y,1),
˜̃x

˜̃y

1

= ˜̃
θ

s


x̃

ỹ

1

= ˜̃
θ

s
θ̃

s
i


x

y

1

 . (6.5)

Thus, the transformation ˜̃
θ sθ̃ s

i conducts spatial alignment for frame i in sequence s. Given the

homography transformation of ˜̃
θ s, as the cameras’ baseline increases, the dominant background

plane is aligned, and the foreground may be affected by parallax in the final composite video.

6.3.2.3 Spatial alignment of non-overlapping sequences

With freely panning cameras, it is likely that the backgrounds of sequences have no overlap, or the

overall overlap is too small to reliably estimate the spatial alignment, flagged with noisy keypoint

matches using vector field consensus [70]. One potential solution is to extrapolate the background

images, and align the extrapolated images, similar to [79]. However, our experiments reveal that

this is not reliable. First, extrapolation introduces many artifacts [7], or blurred areas [2, 79], lead-

ing to poor keypoint matching. Second, extrapolation in horizontal direction, helps with alignment

in vertical direction, but leaves lots of ambiguity in horizontal alignment. Third, a rigid Euclidean
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Figure 6.4: Spatial alignment of non-overlapping sequences using background extrapolation and
smoothness of object trajectories.

transformation, as in [79], does not suffice for a proper background alignment.

On the other hand, how objects move across the sequences in the spatial world coordinate,

irrespective of temporal synchronization, provides hints for spatial alignment (Fig. 6.4). There is

ambiguity in the exact spatial alignment, however, as more objects move across the sequences and

in more diverse directions, the ambiguity is decreased.

To enable spatial alignment for non-overlapping sequences, we propose a spatial alignment al-

gorithm that combines both aforementioned ideas. We first extrapolate the background images of

all sequences. Then, we perform motion tracking to obtain trajectories of all keypoints in each se-

quence. By transforming the trajectories to the sequence coordinate using θ̃ s
i and filtering out static

trajectories, we collect moving object trajectories. We create motion tracks by matching moving

object trajectories across sequences. Finally, we incrementally update the transformation applied

to the background images to increase the motion track smoothness in the world coordinate, while

ensuring that this update will not violate the appearance consistency of extrapolated backgrounds
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in the overlap region.

Motion tracking We perform tracking in consecutive frames to form the trajectories. Among

various schemes, we prefer the keypoint-based tracking for two reasons. 1) Object-based tracking

requires detecting generic objects on each frame, which could be error-prone and inefficient. 2)

Our experiments and also the analysis in [61] reveal that optical flow-based tracking such as dense

trajectories [115] leads to spurious motion trajectories close to the motion boundaries. We use

SURF [11] keypoint detector due to superior performance on blurry images, in comparison to

SIFT [65]. To detect newly emerging objects, we start tracking all the keypoints on frame i who

have no corresponding matches from frame i−1.

Denote the jth trajectory in sequence s as Ps
j = [xs

j,y
s
j, t̃

s
j], where xs

j and ys
j are the frame

coordinates, and t̃s
j is the time stamp. To handle sequences at different frame rates, t̃s

j should be

the absolute time unit such as milliseconds not frame number. We then compute the trajectory

P̃s
j in the sequence coordinate via θ̃ s

i . In this coordinate, trajectories of moving and stationary

keypoints are easily distinguishable, as sequence coordinates of static objects remain constant over

time (Fig. 6.3(d), bold vs. dashed lines). Denoting the trajectory length as ls
j and width and height

of the sequence as ws and hs, we omit stationary trajectories if,

1
ls

j

ls
j−1

∑
k=1

(
|x̃s

j,k− x̃s
j,k+1|

ws +
|ỹs

j,k− ỹs
j,k+1|

hs

)
< τ1, (6.6)

where τ1 is a threshold for the total displacement of the tracked object, and x̃s
j,k and ỹs

j,k denote the

kth element in the vectors x̃s
j and ỹs

j, respectively.

Creating motion tracks We describe each moving object trajectory j of sequence s with two

SURF descriptors, one for the keypoint starting the trajectory S s
j and one for the one ending it E s

j .

To match two trajectories j and k from sequences s1 and s2, a classical keypoint matching algo-
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rithm [65] is used to match all 4 combinations of keypoints, i.e., (S s1
j ,S s2

k ), (E s1
j ,E s2

k ), (S s1
j ,E s2

k )

and (E s1
j ,S s2

k ) , and the minimum distance decides a match. This way, more robustness against

view point variation is achieved, as the nearby keypoints of the trajectories (in the world coordi-

nate) will be the deciding factor in trajectory matching. We call each set of the matched trajectories

a track, denoted by Πk. For simplicity of notation, we assume that the trajectories contributing to a

track have been re-indexed such that Πk = { ˜̃Ps
k ;s ∈ {1, ...,S}}. For a certain sequence s, ˜̃Ps

k might

be empty, i.e., no trajectories from this sequence is part of the track Πk. Note that not all trajecto-

ries should be matched to form tracks, as they might be due to noise or objects with non-smooth

motion path. Sec. 6.3.3.2 presents a method to remove non-smooth trajectories.

Spatial alignment formulation For simplicity, we discuss the alignment of 2 sequences, as more

sequences may be aligned in the same manner, sequentially. Also, we set ˜̃
θ 1 = I3×3 and use θ for

˜̃
θ 2 to avoid cluttered equations. Given N tracks indexed by i, and extrapolated backgrounds B1 and

B2, the goal is to find a transformation θ which maps B2 to B1, such that the pixel contents of the

extrapolated background are consistent in the overlap region O(θ) and trajectories of sequence 2

reside on the extension of trajectories in sequence 1. For image extrapolation, we use PatchMatch

algorithm [7]. To further improve extrapolation results, for extrapolating each background, we use

contents of both background images. Then, we formulate the problem as an optimization problem

(Fig. 6.4),

min
θ

∑
x∈O(θ)

[
B2(W (x;θ))−B1(x)

]2
+β ∑

i
ei(θ)

ᵀei(θ), (6.7)

where W (x;θ) warps x by the transformation θ , and ei(θ) represents how far trajectory i of se-

quence 2 is from spatial extension of matching trajectory in sequence 1. The first term in Eqn. 6.7

is similar to Lucas-Kanade algorithm [5], operated only in the overlapping area. To define ei(θ),

we fit a line, which based on our experiments works better than fitting polynomials, to the ith tra-
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jectory in sequence 1 (in the sequence coordinate), denoted by fi(x). The vector ei(θ) collects the

y-distance between each point on the ith trajectory in sequence 2, after warped by θ , and the fitted

curve,

ei(θ) = [w̃(y)
i − fi(w̃

(x)
i )], (6.8)

where w̃(x)
i = [Wx(xi,2,yi,2;θ)] and w̃(y)

i = [Wy(xi,2,yi,2;θ)] are the warped x̃ and ỹ−coordinates of

the ith trajectory in sequence 2 in the sequence coordinate.

The optimization problem is solved by taking the Taylor expansion around θ and finding the

increment ∆θ by,

argmin
∆θ

∑
x∈O(θ)

[
B2(W (x;θ))+∇B2 ∂W

∂θ
∆θ −B1(x)

]2

+β∑
i

[
ei(θ)+

∂ei(θ)

∂θ
∆θ

]T [
ei(θ)+

∂ei(θ)

∂θ
∆θ

]
+α∆θ

ᵀI ∆θ , (6.9)

where ∆θ
ᵀI ∆θ is a regularization term penalizing some special changes on ∆θ controlled by I

and a positive constant α . By setting I = diag([0,0,1,0,0,1,0,0]), we penalize large changes on

translation elements of ∆θ , so that frames are first aligned by warping them rather than translating

them. Based on our experiments, this leads to more stable result. We initialize the algorithm by

setting the sequences side by side (spatially) with the two possible layouts, and use the alignment

result of the layout with lower final cost. The solution to Eqn. 6.9 is,

∆θ = H−1
(

∑
x∈O(θ)

[
∇B2 ∂W

∂θ

]T [
B1(x)−B2(W (x;θ))

]
−β∑

i

[
∂ei(θ)

∂θ

]T
ei(θ)

)
, (6.10)

in which

H = ∑
x∈O(θ)

[
∇B2 ∂W

∂θ

]T [
∇B2 ∂W

∂θ

]
+β ∑

i

[
∂ei(θ)

∂θ

]T [
∂ei(θ)

∂θ

]
+αI . (6.11)
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Figure 6.5: Trajectories, tracks, and fitted space-time curve to the tracks from 3 videos.

Here ∂W
∂θ

is the Jacobian evaluated at x. By the chain rule,

∂ei(θ)

∂θ
=

∂ei(θ)

∂W

∂W

∂θ
= [− f ′(w̃(x)

i ),1]
∂W

∂θ
. (6.12)

in which
∂ei(θ)

∂W
=

∂ei(θ)

∂Wx,Wy
= [− f ′(w̃(x)

i ),1]. (6.13)

6.3.3 Temporal alignment

NOS are assumed to have moving objects, without which the temporal alignment is neither neces-

sary nor possible. Given moving objects and spatial alignment results, the temporal alignment of

NOS amounts to estimating when an object will appear in FOV of another camera, after it moves

out of the current FOV. If both cameras observe the object’s motion at the same time, the problem

is easier. For this purpose, we create motion tracks as discussed in Sec. 6.3.2. Then, we estimate

the temporal offset between sequences such that trajectories from the identical object follow a

continuous path in ˜̃x− ˜̃t and ˜̃y− ˜̃t coordinates, i.e., the motion tracks are smooth. Since not all

trajectories are due to moving objects, we f ilter motion trajectories with non-smooth paths, before

matching trajectories.
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6.3.3.1 Estimation of temporal offset

Given the collection of tracks, the objective is to make each track a smooth curve, by shifting

the temporal coordinates of the contributing trajectories appropriately (Fig. 6.5). For S sequences,

˜̃x− coordinate of trajectories forming the kth track is the vector [ ˜̃x1
k ,

˜̃x2
k , ...,

˜̃xS
k ]
ᵀ. ˜̃y− coordinate of

each track is defined similarly. We assume that by temporally shifting each sequence s for ∆ts, the

sequences are temporally aligned. To estimate ∆ts, we fit a polynomial curve of degree m to time

stamps versus ˜̃x and ˜̃y−coordinates of each track independently and estimate the time shifts, in

order to achieve the lowest curve fitting error. Here, we discuss only the ˜̃t− ˜̃x curve, and the ˜̃t− ˜̃y

curve is similar.

We denote the trajectory coordinates of sequence s and all the power terms of the polynomial

space-time curve as

˜̃xs(m)
k = [1s

k, ˜̃xs
k, [ ˜̃x

s
k]

2, · · · , [ ˜̃xs
k]

m], (6.14)

where 1s
k is a ls

k-dim vector of all ones, and [.]m denotes an element-wise power operation. For the

track k, all the required terms of the polynomial space-time curve are collected in a matrix ˜̃Xk of

size ∑s ls
k× (m+1), and all the time stamps in a vector ˜̃Tk(∆t) of length ∑s ls

k,

˜̃Xk =



˜̃x1(m)
k

˜̃x2(m)
k

...

˜̃xS(m)
k


, ˜̃Tk(∆t) =



t̃1
k +∆t1

t̃2
k +∆t2

...

t̃S
k +∆tS


. (6.15)

We denote the coefficients of the kth polynomial curve fitting to the kth track as ck = [cq];q ∈

{0, ...,m}. We can estimate the coefficients by solving a linear system, argminck
‖ ˜̃Tk(∆t)− ˜̃Xkck ‖.
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Since all tracks share the same ∆t, we can efficiently solve for all tracks jointly,

c∗,∆t∗ = argmin
c,∆t

‖ ˜̃T (∆t)− ˜̃Xc ‖, (6.16)

in which

˜̃X =



˜̃X1 0 · · · 0

0 ˜̃X2 · · · 0

...
... . . . ...

0 0 · · · ˜̃XK


, ˜̃T (∆t) =



˜̃T1(∆t)

˜̃T2(∆t)

...

˜̃TK(∆t)


,c =



c1

c2

...

cK


. (6.17)

Here, ˜̃X is a NK ×K(m+ 1) matrix where NK = ∑k ∑s ls
k is the count of keypoints in all K

tracks. We alternatively estimate c and ∆t, until the change in ∆t is negligible. We first estimate c,

with fixed ∆t. Since NK � K(m+ 1), this linear system is over-constrained for c. We solve c by

Orthogonal-triangular decomposition, which is numerically more accurate than the pseudo inverse

of ˜̃X . Then, for a given c∗, we set ∆ts as the average of residuals from the keypoints in trajectories

belonging to sequence s,

∆ts =−
1
Ns

( ˜̃T − ˜̃Xc∗)ᵀIs, (6.18)

where Is is a binary indicator vector with an element equal to 1 if the corresponding row in ˜̃T

comes from a trajectory in sequence s, and Ns =‖Is ‖1 is the count of such rows.

6.3.3.2 Motion trajectory filtering

As mentioned before, not all trajectories are resulted from object motion with a smooth path. In

other words, some trajectories might be due to noise in keypoint locations while the camera moves.

So, before matching trajectories across sequences and collecting them to a track, we filter out the
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Sequence ID R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 S1 S2 S3 S4 S5
Camera baseline (m) 1 3 1 1 1 1 1 1 5 10 0 0 0 0 0

Temporal error (s) 0.13 0.07 0.07 0.13 0.07 0.07 0.10 0.03 0.07 0.07 0 0.03 0.07 0.03 0.07
Spatial error (pixel) - - - - - - - - - - 2 3 7 2 2

Table 6.1: Temporal and spatial alignment error in seconds and pixels, respectively, for real (R)
and synthetic (S) sequences.
trajectories that cannot be well approximated with a smooth path, by fitting the order-m polynomial

to the trajectory,

cs∗
k = argmin

cs
k

‖ t̃s
k− ˜̃xs(m)

k cs
k ‖2, (6.19)

and thresholding the total fitting residual to remove non-smooth trajectories, i.e., 1
ls
k
‖ t̃s

k− ˜̃xs(m)
k cs∗

k ‖1<

τ2.

6.4 Experimental results

In this section, we present the experimental setup and both quantitative and qualitative results.

Note that since NOS is a novel scenario for spatio-temporal alignment of sequences, there is no

prior work for comparison. We set β = 100, α = 103, m = 3 for the temporal curve fitting step,

and τ1 = 0.03 and τ2 = 0.15 for trajectory filtering.

6.4.1 Dataset

Given that there is no public dataset in this new scenario, we collect a NOS dataset including ten

real-world sequence sets, and five synthetic sequence sets. Real sets are captured by two or three

people using handhold smartphones with the distance between the cameras, i.e. baseline, as shown

in Tab. 6.1. Synthetic sets provide sequences for which the ground truth result are exactly known,

and are created by taking a sequence and cropping out two spatio-temporal tubes from the 3D

sequence volume. This emulates the case of independently panning cameras with almost identical

optical centers. To simulate a freely panning camera and hand shake, the spatial region used for

each tube at each frame has a fixed size of 640×360 pixels, but the region location has an additive
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zero-mean Gaussian noise. Also, if the original video is stationary, the regions shift in x−direction

to create a pan-like effect.

Figure 6.6: Spatial alignment of non-overlapping sequences. Top to bottom: reconstructed back-
grounds of two sequences with negligible overlap, extrapolated backgrounds, and aligned back-
ground with trajectory of moving objects overlaid on the background.

6.4.2 Qualitative results

Figure 6.6 presents the reconstructed backgrounds along with image extrapolation results. Further,

it is shown how the backgrounds are transformed so that moving object trajectories have smooth

path.

Figure 6.7 shows the alignment results for three sets of real sequences with some overall spa-

tial overlap. Similarly, Figure 6.9 shows the alignment results for three sets of real sequences with

no/minimal overall spatial overlap. For each set, two or three sample frames with moving objects
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ID    Frame    Input              Trajectories in                              Aligned frames
#       frames            world coordinate

a

b R3

c R4

415

49

130

175

187

248

204

ID    Frame    Input              Trajectories in                              Aligned frames
#       frames            world coordinate

a R7

b R8

c R10

58

83

177

167

390

366

Figure 6.7: Each row shows spatio-temporal alignment results on a set of real NOS, with some
overall spatial overlap. For each sequence, input frames at the estimated time shift and trajectories
of moving objects in the world coordinate are shown. The input frames are transformed to the
world coordinate to make a composite image via alpha blending.
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Figure 6.8: Results for two synthetic NOS from an accident footage (S2). (a) Trajectories of mov-
ing objects, (b) aligned input frames, (c) original frame where the synthetic frames are cropped.
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ID    Frame    Input              Trajectories in                              Aligned frames
#       frames            world coordinate

a

b R3

c R4

415

49

130

175

187

248

204

ID    Frame    Input              Trajectories in                              Aligned frames
#       frames            world coordinate

a R7

b R8

c R10

58

83

177

167

390

366

Figure 6.9: Each row shows spatio-temporal alignment results on a set of real NOS, with no
overall spatial overlap. For each sequence, input frames at the estimated time shift and trajectories
of moving objects in the world coordinate are shown. The input frames are transformed to the
world coordinate to make a composite image via alpha blending.
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are shown, at the time shift estimated by the proposed algorithm. Also, keypoint trajectories from

both sequences in the world coordinate after spatio-temporal alignment are shown. Trajectories

of moving objects have considerable extent in the x−direction, whereas trajectories of stationary

objects are roughly parallel to t−axis. Finally, the two input frames are warped to the world coordi-

nate to make a composite image. Although the input frames may not have direct overlap, perceived

continuity of the scene and also relative location of the moving objects, demonstrate capabilities of

the proposed algorithm and the application scenarios. Note that in all test sequences cameras move

freely and independently, as shown by the range of trajectories in the world coordinate. For the

case of Fig. 6.9(a), the sequences are non-overlapping, but only a person is tracked moving across

the FOVs. Thus, as shown in this figure, spatial alignment has some error, which consequently

affects the accuracy of the temporal alignment.

Figure 6.8 represents a synthetic set where two sequences are created from a video of a car

accident. The two cropped frames after spatio-temporal alignment are shown in a composite image

and for comparison, the corresponding frame from the original video is also shown, demonstrating

the accuracy of the spatio-temporal alignment.

6.4.3 Quantitative results

To quantitatively evaluate the proposed algorithm, we compare the alignment errors with the

ground truth. For the case of synthetic sets, the original video from which the synthetic sequences

are cropped, provides the ground truth location of the center points of the cropped frames. We

measure the spatial location error of each aligned frame w.r.t. the ground truth location and report

sum of absolute errors in x and y−direction, averaged over the sum of the length of the sequences,

as the spatial alignment error. Also, since we create the synthetic sequences, the ground truth time

shift is known. For real sets, when the input frames do not have overlap, quantifying the spatial
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error is not feasible. For quantification of temporal alignment, we manually align the sequences by

relying on visual cues such as body pose, moving object location relative to background landmarks,

and consistency of appearance of moving objects in the composite image. Table 6.1 provides the

quantified temporal and spatial errors. As may be observed, temporal alignment works well even

when the camera baseline distance increases, although the final consolidated result may suffer from

parallax.

6.4.4 Computational cost

The main computational cost of the proposed algorithm comes from TRGMC. On average, for a

video of 15-second long, we spend 450 seconds on TRGMC and background reconstruction, using

a PC with an Intel i5-3470@3.2GHz CPU, and 8GB RAM. Spatial alignment is independent of

sequence length and takes ∼162 seconds on average for NOS. Finally, temporal alignment takes

about 13 seconds on average over the database.

6.4.5 Limitations

Violation of assumptions, especially existence of moving objects with a trajectory which spans

FOVs of multiple cameras, results in alignment failures. Furthermore, when relying on non-rigid

or articulated moving objects for alignment, many keypoints are not tracked long enough due to

change of appearance, making alignment difficult. Also, in this case, matching trajectories among

different sequences is less reliable and error prone. Since the algorithm is independent of the type

of tracking involved, other tracking algorithms can be investigated in the future. Furthermore,

alignment of non-overlapping background images suffers from ambiguity and is error prone, al-

though the proposed algorithms makes use of available cues to conduct this task.
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6.5 Conclusions

We proposed an algorithm for spatio-temporal alignment of sequences, referred to as non-overlapping

sequences (NOS), from freely panning cameras for which FOVs of the cameras might not even

observe some common regions over progression of time. This new scenario of video alignment

is useful in reconstructing events, incidents, or crime scenes from multiple amateur-captured se-

quences, or creation of panoramic videos from cooperative users via handheld cameras without the

need for tripods. The spatial alignment of our algorithm relies on reconstructing background for

each sequence and aligning the backgrounds. When backgrounds are non-overlapping, the spatial

alignment uses clues from smoothness of moving objects’ paths and coherent appearance of back-

ground after image extrapolation. Smoothness of trajectory of moving objects is also utilized as

a clue for temporal alignment. Our experiments demonstrate capabilities of the proposed method,

despite the challenging scenario of NOS.
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Chapter 7

Conclusion and Future Work

7.1 Conclusions and discussions

In this research, algorithms for global motion compensation are proposed to remove effect of cam-

era motion and help with magnifying motions of interest in the videos from moving cameras. In

this regard, we proposed two robust global motion compensation algorithms, namely RGMC and

TRGMC. RGMC delivers reliable results in the presence of predominant foreground and texture-

less or blurry background, enabling its application to real-world unconstrained videos. By fore-

ground suppression, RGMC is able to tolerate existence of large foreground and occlusion. Also,

the proposed method successfully handles keypoint matching with a very low matching threshold,

required for GMC in low texture background, or poorly illuminated scene. This is achieved by

clustering motion vectors, and analyzing each cluster to identify matches pertaining to the back-

ground. Further, a novel homography verification model is proposed to support the RGMC. This

model unifies keypoint matching error and consistency of the edges of images after transforma-

tion, and benefits from motion history gleaned from previous frames to ensure that in case of

large foreground, foreground motion is not compensated instead of the camera motion affecting

the background. Extensive experiments and comparison with ground truth obtained by manually

matching the frames and baseline methods demonstrate the superiority of RGMC.

Furthermore, we proposed a temporally robust global motion compensation (TRGMC) algo-

rithm by joint alignment (congealing) of frames, in contrast to the common sequential scheme.
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This is done by dense connection of keypoints throughout all the frames and iteratively applying

transformation on each frame such that the keypoints are spatially aligned. Despite complicated

camera motions, TRGMC can remove the intentional camera motion, such as panning, as well as

unwanted motion due to vibration on handheld cameras. Redundancy of information in the joint

alignment of the stack of input images makes TRGMC capable of dealing with foreground mo-

tion and false matches without imposing further processing cost. Also, due to the joint alignment

scheme, in TRGMC, existence of blurry, low texture, or poorly illuminated frames will not lead

to total failure of GMC for all the upcoming frames. Beyond the robustness gained, experiments

demonstrate that TRGMC outperforms existing GMC methods in terms of accuracy.

It is worth noting that the enabling assumption of any global motion compensation algorithm

relying on homography estimation, is that the camera motion in the direction of the optical axis is

negligible. For instance, TRGMC will not work properly on a video from a wearable camera of

a pedestrian, since in the global coordinate the upcoming frames grow in size and cause compu-

tational and rendering problems. Similar to panorama images, the best results are achieved if the

optical center of the camera has negligible movement during the capturing, making a homography-

based approximation of camera motion appropriate. However, if the optical center moves in the

perpendicular direction to the optical axis (e.g., a camera following a swimmer), TRGMC still

works well, but rendering the results in the form of motion panorama will be degraded by parallax

effect.

Subsequently, we investigated the challenging problem of spatio-temporal alignment of mul-

tiple video sequences, captured by freely panning handheld cameras. We identified and tackled a

novel scenario of this problem referred to as Non-Overlapping Sequences (NOS) and proposed a

solution which is only feasible given the reliable global motion compensation and background re-

construction via TRGMC. NOS are captured by multiple freely panning handheld cameras whose
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field of views might even have no direct spatial overlap. However, over the progression of time,

there are nearby regions in the scene that are observed by the cameras independently and probably

at distinct time instants. In contrary to many existing works, this assumption is less restrictive

than common region being observed by field of views of different cameras over progression of

time, and obviously much less restrictive than the common requirement of direct spatial overlap

between frames from different cameras. With the popularity of mobile capturing devices such as

smartphones and wearable cameras, NOS rise when multiple cooperative users capture a dynamic

scene, such as public events, to create a panoramic video or when it is desired to consolidates

multiple footages of an incident or crime scenes into a single video. The proposed method makes

it possible to better reconstruct the events or crime scenes captured by amateur users, and obtain a

better understanding of the incident.

For this novel scenario, we first spatially align the sequences by reconstructing the background

of each sequence using TRGMC algorithm and then registering these backgrounds across the se-

quences, even if the backgrounds are not overlapping. To this end, the reconstructed background

images are first extrapolated. Then, a cost function is defined and minimized such that while

extrapolated backgrounds are aligned well, trajectory of moving objects leaving field of view of

one camera and entering field of view of another camera are spatially smooth. Given the spatial

alignment, and assuming smoothness of trajectories of moving objects, such as cars or pedestrians,

the sequences are temporally synchronized, such that the trajectories of moving objects across se-

quences are consistent with the prediction of when a moving object leaving the field of view of a

camera, would appear in the field of view of another camera.

Finally, to develop algorithms for analyzing user-generated videos, unconstrained and repre-

sentative datasets are of great significance. For this purpose, we collected a dataset of Sports

Videos in the Wild (SVW), consisting of videos captured by users of a leading sports training smart-
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phone app (Coach’s Eye R©) while practicing a sport or watching a game. The dataset contains

4000+ videos selected by reviewing ∼85,000 videos and consists of 30 sports categories and 44

actions. Videos of sports practice, which frequently happens outside the typical sports field, have

huge intra-class variations due to background clutter, unrepresentative environment, existence of

different training equipment and most importantly, imperfect actions. On the other hand, using

smartphones for video capturing by ordinary people, in comparison to videos captured by profes-

sional crew for broadcasting, leads to challenges due to camera vibration and motion, occlusion,

view point variation, and poor illumination. Given various manual labels, this dataset can be used

for a wide range of computer vision applications, such as action recognition, action detection,

genre categorization, and spatio-temporal alignment. On the sport genre categorization problem,

we also design the evaluation protocol and evaluate three different methods to provide baselines

for future works.

7.2 Future work

TRGMC is a powerful and useful algorithm which can be an essential module in utilizing many

existing algorithms designed for static cameras, for handheld and moving cameras. However, many

applications require high processing rate. In future, we will further investigate fast algorithms

for global motion compensation, and will investigate how a fast GMC algorithm benefits other

computer vision applications.

7.2.1 Speed-up TRGMC

One potential direction is to keep the alignment framework to be joint, however not as dense as

TRGMC. More specifically, TRGMC has O(n2) complexity due to dense linking of all the n frames
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(a) (b)

Figure 7.1: Comparison of the links made by (a) TRGMC with (b) the links which might be made
via the proposed speed-up scheme. Chosen links by minimum spanning tree are shown in red and
links between adjacent frames are shown in blue.

in the stack. Decreasing number of links such that each frame is only linked to a constant number

of other frames, for instance the two temporally neighboring frame and a few frames with longer

temporal distance to enforce temporal consistency, will improve the complexity to O(n). Selection

of the best linking choice can be casted to finding a minimum spanning tree in a weighted graph

G= (V,E). Each frames in the alignment stack is a node of the graph G, and each edge of the graph

connecting node i to j has a weight wi j showing suitability of the matching pair (i, j) to be included

in the joint alignment. To enforce long term robustness of the alignment, including frames with

larger temporal distance is preferred. Thus, if the normalized temporal difference of frames i and

j is denoted as ti j, we define wi j ∝ (1− ti j). Furthermore, frames with largest spatial overlap are

better matched with each other, and are less affected with view angle change. So, after initialization

step of TRGMC which results to finding approximate translation between the frames, it is possible

to collect the sequential translations to obtain the translation between arbitrary frames i and j and

find the normalized overlap area between these frames, denoted as ai j. Thus, the weights might

also be proportional to the overlap area, as wi j ∝ (1− ti j)(1−ai j). Figure 7.1 compares the links

made by TRGMC with the links which might be made via the proposed speed-up scheme. Beyond

the links of the minimum spanning tree, it is also beneficial to link the sequential frames to enforce
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both temporally long term and local consistencies.

7.2.2 Joint alignment and outlier rejection

In each keypoint matching stage between two given frames, TRGMC utilizes an outlier rejection

via Ma et allet@tokeneonedotmethod of vector field consensus [70]. This operation is repeated

frequently, and takes∼ 10 the keypoint matching step itself. So, one potential direction to improve

the efficiency is by embedding the outlier detection and rejection in the joint alignment formulation

via latent variables or appropriate weighting of each link. For instance, for each iteration of the al-

gorithm in which homographies are updated to decrease the alignment error, nonconforming links

which do not connect background keypoints, and thus have increased error with the homography

update, may be identified.
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Appendix A

Sports Videos in the Wild (SVW): A Video

Dataset for Sports Analysis

Considering the enormous creation rate of user-generated videos on websites like YouTube, there

is an immediate need for automatic categorization, recognition and analysis of videos. To develop

algorithms for analyzing user-generated videos, unconstrained and representative datasets are of

great significance. For this purpose, we collected a dataset of Sports Videos in the Wild (SVW),

consisting of videos captured by users of a leading sports training smartphone app (Coach’s Eye R©)

while practicing a sport or watching a game. The dataset contains 4000+ videos selected by re-

viewing ∼85,000 videos and consists of 30 sports categories and 44 actions. Videos of sports

practice, which frequently happens outside the typical sports field, have huge intra-class variations

due to background clutter, unrepresentative environment, existence of different training equipment

and most importantly, imperfect actions. On the other hand, using smartphones for video captur-

ing by ordinary people, in comparison to videos captured by professional crew for broadcasting,

leads to challenges due to camera vibration and motion, occlusion, view point variation, and poor

illumination. Given various manual labels, this dataset can be used for a wide range of computer

vision applications, such as action recognition, action detection, genre categorization, and spatio-

temporal alignment. On the sport genre categorization problem, we design the evaluation protocol

and evaluate three different methods to provide baselines for future works.
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A.1 Introduction

The amount of digital videos being created is increasing exponentially, e.g., YouTube has reached

the upload rate of 100 hours of video per minute. A great deal of this growth is due to the tremen-

dous popularity of smartphones and ubiquitous Internet access. This means that amateur-user-

generated videos form the new trend in content generation. Thus, there is an immediate need for

robust algorithms to automatically analyze and retrieve videos.

Many computer vision problems are data-driven and the existence of representative and realis-

tic datasets are necessary for developing robust algorithms. Therefore, there has been a trend from

research on controlled datasets toward unconstrained datasets. For instance, recent face recogni-

tion research focuses on datasets like Labeled Faces in the Wild (LFW) [42] rather than controlled

datasets like FERET [78]. Similarly, for human action recognition, datasets with less controlled

videos, e.g., Hollywood2 [71], HMDB [49] and UCF101 [100], are gaining popularity, compared

with staged datasets like KTH [93] or Weizmann [13]. While these datasets ( [49, 71, 100]) are

from YouTube videos and movies and thus have unconstrained environment and actions relative

to staged datasets, many of the videos are captured professionally. Therefore, in aspects like

camera vibration, view angle variation, and illumination, they are bound to common practices of

filmmaking. On the other hand, specifically for sports videos, most videos in public datasets are

representative of successful completion of the actions that may not truly reflect the highly com-

plex and diverse real-world sports activities. Finally, for sports videos, due to strong correlation of

background and the actions in existing datasets, the state-of-the-art performance on genre catego-

rization is very high.

Given the explosion of user-generated videos and the lack of real-world datasets for the research

community, we present a highly unconstrained dataset of sports videos, called Sport Videos in the
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1-Archery 2-Baseball 3-Basketball 4-BMX

5-Bowling 6-Boxing 7-Cheerleading 8-Discusthrow

9-Diving 10-Football 11-Golf 12-Gymnastics

13-Hammer throw 14-High jump 15-Hockey 16-Hurdling

17-Javelin 18-Long jump 19-Polevault 20-Rowing

21-Runnng 22-Shotput 23-Skating 24-Skiing

25-Soccer 26-Swimming 27-Tennis 28-Volleyball

29-Weight lifting 30-Wrestling

Figure A.1: Sample frames from all 30 sports categories of SVW.
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Wild (SVW). SVW is comprised of videos captured solely with smartphones by users of Coach’s

Eye R© smartphone app, a leading app for sports training developed by TechSmith corporation. The

app allows users to conveniently capture videos whenever they practice a sport or watch a game.

Fig. A.1 shows sample frames from different categories of SVW. Being captured by smartphone

and by ordinary people, along with the fact that many videos are of practices of amateurs, not

professional athletes, makes SVW the most unconstrained dataset of sports and action videos.

SVW is annotated to serve for multiple purposes. For action recognition, videos are labeled

with 44 different actions and timespan of each action. To make the dataset appropriate for action

detection, videos are not trimmed around each action, instead, time stamps are provided. In addi-

tion, more than 50% of the videos are annotated with spatio-temporal bounding boxes around each

and every action in the video. For sports genre categorization, each video is labeled with generic

name of the sport being practiced, resulting in 30 sports categories.

For the sport genre categorization problem, we design the evaluation protocol and compare

the performance of three algorithms on the proposed dataset as baselines for future research. First,

the performance of the state-of-the-art motion-based dense trajectories algorithm [114] is reported.

Second, purely context-based algorithm of describing videos with SIFT features [66] is presented.

Finally, experiments using a motion-assisted context-based algorithm are conducted. All data, in-

cluding the dataset, labels, evaluation protocol, and experimental results, will be publicly available

to the research community for future research1.

1http://cvlab.cse.msu.edu/svw-download.html
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A.2 Related Work

Table 1 summarizes different aspects of most popular action recognition (AR) datasets. To the best

of our knowledge, there is no publicly available dataset for sports genre categorization. Among

existing datasets, HMDB [49] and UCF101 [100] are the most challenging ones in terms of having

unconstrained videos.

KTH [93] and Weizmann [13] datasets contain simple actions and their AR accuracies are

reported to be above 90% [49]. IXMAS [121] contains staged actions captured by 5 calibrated

cameras, where an AR accuracy of 93.5% is reported in [116].

UCF Sports [102] and Olympic [75] are the only datasets that cover just sports activities. While

the environment is not controlled, the videos are captured by professional crew, the actions are

performed by professional athletes, and the background is restricted to official sports fields. As

noted in [49], the actions in these datasets are highly distinguishable from shape cues alone. For

Olympic, an accuracy of 91.1% is reported in [117]. Having limited number of categories and

distinct activities in each category, a recognition rate of 98% is reported in [49] for UCF Sports

using the information from static joint locations alone.

Hollywood2 [71] dataset is gathered from 69 movies and is labeled for both action recognition

and scene understanding. Being selected from movies, it contains unconstrained environment

and actions while benefiting from professional capturing. Its main restrictions include the limited

number of actions and the fact that clips extracted from the same movie share similar scenes.

In [117], an AR accuracy of 64.3% is reported for Hollywood2.

For UCF50 [83], Kuehne et al. [49] suggest that low-level features are as predictive as mid-

level features and Wang et al. [117] report a 91.2% AR accuracy. As an extension of UCF50,

UCF101 has 101 categories and is the largest AR dataset available [100]. Being collected from
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YouTube, the actions are fairly unconstrained, but no comment can be made about the capturing

process. Karpathy et al. [46] report a 66% AR accuracy for UCF101 (80% for the sports group).

Probably due to the low resolution of source videos, all clips are normalized to the relatively low

resolution of 320×240. At the mean clip length of 7.2 second, UCF101 is fairly short compared

to SVW, making it less suitable for action detection problems.

HMDB [49] is collected by looking for non-ambiguous human actions in Internet videos and

movies. As a quality standard, selection of videos has been constrained to having a single action

per clip and 40% of the clips are not affected by camera motion. The dataset is prepared in two

versions of original videos and stabilized videos and good performance is reported for stabilization.

In [117], an accuracy of 57.2% is reported for HMDB. HMDB is very challenging due to not only

the unconstrainedness of the dataset, but also having multiple shots in a single clip, where both

factors contribute to the low AR accuracy.

Although existing datasets have some levels of unconstrained actions and environment, there

is still more complexity in real-world videos that need to be represented in research datasets.

Specifically for sports videos, current datasets do not provide highly unconstrained conditions. For

UCF101, one of the most challenging datasets, sport videos achieve the highest recognition rate

( [46, 100]) among different types of videos. This is claimed to be due to distinctiveness of sports

motions and less cluttered background in official sports field than other types of actions, which does

not hold for sports in the wild. Considering high performances reported for UCF Sports, Olympic,

and sports groups of UCF101, SVW specifically fills the research gap for analyzing challenging

sports videos. On the other hand, uploading a video to YouTube implies that the action of desire

has been successfully performed and completed in the video. But for a completely unconstrained

video, there might be failure cases (e.g., batting practice). In addition, unlike UCF101 or Holly-

wood2, in SVW no two videos are trimmed from a single footage captured by users, which keeps
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Table A.1: Comparison of multiple datasets for action recognition (AR), scene understanding (SU),
and genre categorization (GC).

Dataset Purpose Categ. # Clip #
Avg.

length

Unconst.

actions

Unconst.

capturing

Camera

vibration
Orient. Sources

KTH

[93]
AR 6 100 NA No No No Lands, Staged

Weizmann

[13]
AR 9 9 NA No No No Lands, Staged

IXMAS

[121]
AR 11 30 NA No No No Lands, Staged

UCF
Sports [102]

AR 9 14+ NA Yes No No Lands, Broadcast TV

Olympic

[75]
AR 16 50 NA Yes No No Lands, YouTube

Hollywood2

[71]

AR

SU

12

10

61+

62+
NA Yes No No Lands, Movies

UCF50

[83]
AR 50 100+ NA Yes No Slight Lands, YouTube

HMDB

[49]
AR 51 101+ NA Yes No Slight Lands,

Movies &

Internet

UCF101

[100]
AR 101 100+ 7.2 Yes No Slight Lands, YouTube

SVW
AR

GC

44

30

50+

110+
11.6 Yes Yes Yes

Lands,

& Port.
Smartphone

the variance of the actions, environment, and shooting conditions in the dataset as high as possi-

ble. Furthermore, due to highly unconstrained environment and illumination condition as well as

a high rate of scene occlusion by people, video stabilization of SVW is very challenging and our

experiments show a high failure rate of stabilization using the common RANSAC algorithm [35].

Finally, the video resolution and clip length of SVW are larger than all the current datasets, and

SVW includes both lanscape and portrait orientaion of videos.
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A.3 Sports Videos in the Wild (SVW) Dataset

A.3.1 Dataset details and statistics

Dataset collection SVW is selected from the videos captured by ordinary users of Coach’s Eye R©

smartphone-based sports app developed by TechSmith corporation, when users practice a sport

or watch a game. The users can review the videos and compare them with those of coaches or

professional athletes side by side. A user may also upload the videos to the app server for other

users to review and comment on his sports training progress. At the time of writing this paper, an

average of 4 videos per minute are being uploaded to the app server by users, and among 700,000

uploaded videos, users have marked ∼418,000 as publicly usable. Due to the highly nonuniform

distribution of sports categories, 85,000 videos from the public set have been reviewed and labeled

to collect enough videos for 30 sports category and 44 action categories with at least 110 and 50

videos per category, respectively.

Challenges of SVW Compared to broadcasting videos, sports videos in the wild have many

unique challenges for visual analysis, due to both the imperfect practices of amateur players and

unprofessional capturing by amateur users. Firstly, the static image context is less discriminative

for categorization. For example, in a video of tennis forehand drill (Fig. A.2 (a)), no assumption

can be made about existence of the racquet (and in some cases the tennis court). The only reliable

clue may be the unique motion characteristics of the hands. Secondly, in these videos, existence of

training equipment is more likely than the broadcasting videos (Fig. A.2 (b)). On the other hand,

cluttered backgrounds as well as common environments also cause difficulties in unconstrained

sports videos; There are many SVW videos that the sport is practiced inside the house, in the

garage, or in the backyard (Fig. A.2 (b)). Thirdly, unprofessional capturing by amateur users intro-
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(a) Tennis category (b) Baseball category

(c) Archery category (d) Hurdling category

Figure A.2: SVW challenges: (a) Related equipment does not exist, (b) Background is cluttered
and uncorrelated with the sport, (c) Uncommon camera angles increase the intra-class variations,
(d) Multiple sports co-exist (1: Hurdling, 2: Long jump, 3: Cycling).

duces additional challenges like extreme camera vibration, improper camera movement, occlusion

from audience, judges and fences due to improper camera location, and uncommon view angles

(Fig. A.2 (c)). Finally, for amateur videos, it is more probable to have multiple activities in a single

video (Fig. A.2 (d)).

It is important to note that unlike other action recognition datasets that are recently widely

used, multiple actions defined in SVW may come from a single sport (see Fig. A.3). In other

words, while the environment is quite similar for these subsets of actions, movements are com-

pletely different. This introduces further challenges in visual analysis of sports videos in the wild

for the purpose of action recognition. On the other hand, this arises difficulties for genre catego-

rization. Each sport category has huge intra-class variation due to containing multiple actions that

can appear at any timespan of the whole video length.

100



f = 61 f = 211 f = 241 f = 301

f = 314 [f = 343 f = 349 f = 359]

[f = 380 f = 390 f = 400] f = 420

[f = 438 f = 446 f = 454]

Figure A.3: Annotated actions categories ([343, 359, Forearm], [380, 400, Set], [438, 454, Spike])
within a video from Volleyball genre category. Since distinct actions from the same sport genre
may share a common field, visual appearance alone is not enough for action recognition in SVW.

Dataset labelling Videos are manually labeled in a two-round scheme. First, for each clip, 6

frames uniformly sampled across the video length constitute a montage, which is saved as an im-

age. A GUI equipped with a button for each category shows the saved montage and records the

pressed button from the labeler. In the next round, all labeled clips are reviewed one by one. Clips

over 1-minute long are trimmed to loosely cover representative motions, but not precisely around

the action of interest so that the dataset is also suitable for action detection. To prepare SVW for ac-

tion recognition, at least 50% of the videos are reviewed closely to annotate all pre-defined actions

within a clip and their corresponding timespans. The same videos are also annotated with bound-

ing boxes around each action in the video for action detection application. Fig. A.3 represents how

different actions within a clip are annotated with the label and time stamps.
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For each video clip, we also label various meta tags. Fig. A.4 represents the distribution of

the number of participents in videos, commonality/uniqueness of the action environment, and the

camera view angles for 30 sports categories. Meta tags reveal that 19% of SVW videos are affected

by considerable camera vibration and the videos of three categories have the highest rates of train-

ing equipment usage, Running (9%), Weitgh lifting (9%), and Boxing (4%). Multipe activities in

a single video are more common for categories such as Hurdling, High jump, Running, Weight

lifting, and Diving.

Spatial resolution normalization The resolution of the original videos varies from 480×272 to

1280×720 (irrespective of video orientation) with 640×360 being the most common size. Since

for some analysis algorithms variation of video sizes might result in the confusion of scene scales,

a normalized version of the dataset is provided along with the original one. Having both landscape

and portrait orientations in the dataset, normalized clips have the maximum size (width or height)

of 480 pixels.

Evaluation protocol In line with UCF101 and HMDB, three splits of 70% training and 30%

testing are generated for the genre categorization application of SVW. We designate the splits by

aiming to evenly distribute different actions, camera view angles, and field characteristics over the

splits. The genre categorization accuracy is used as the performance metric and is defined as the

fraction of testing videos whose genres are correctly classified.

A.3.2 Potential applications of SVW

Action recognition Due to the huge number of video content available online and the desire to

content understanding, a great deal of effort has been focused on the problem of action recognition
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Figure A.4: Distribution of (a) number of participents in videos, (b) aspects of the action field
and (c) camera views angles, in 30 categories. Irrelevant field is a field that from its appearance,
the sports category cannot be deduced (e.g., practicing in the backyard). Shared field refers to the
condition in which from just field appearance, more than one sports category might be inferred
(e.g., track and field sports). Unique field is the one that just from field context, the corresponding
sports category can be conjectured (e.g., Bowling tracks).

from videos [45, 51, 52, 71, 81, 122]. Inherently, for sports videos, action recognition is a subset of

the genre categorization problem, i.e., for the former, labels for a single action are available but for

the latter, a group of different actions within each sport are all labeled with the genre of the sport,

resulting in higher intra-class variations.

Action detection Although there has been great emphasis on action recognition, the action detec-

tion problem has not been extensively studied. Action detection by itself and as part of recognition

by detection systems [85] is an important problem to be tackled. Especially, in real-world videos,

actions of interest may cover a relatively short period of a video and it is important to be able to

detect these actions. Existing approaches use rather simple datasets with short videos [47, 125] or

proprietary datasets [25]. SVW enables researchers to push the limit of action detection toward

more realistic videos.
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Genre categorization Sports genre categorization is vastly studied for broadcasting TV chan-

nels videos [29, 73, 118, 126, 129, 130]. In these works, it is assumed that sports occur in sports

arena (implicitly assuming the existence of specific equipment and field lining) and are captured by

professional TV broadcasting crew. Low-level features like color, motion, and histogram of edge

directions are used for categorization. Our experiments show that this type of approaches does

not perform well on sports in the wild. On the other hand, in [87], authors report superior perfor-

mance of the dense trajectories method [114] for genre categorization of unconstrained proprietary

videos. This paper aims to provide a dataset of such videos. Well-known sports-only datasets of

UCF Sports [102] and Olympic [75], include specific actions not generic sports categories, and

have been reported to achieve ∼90% accuracy ( [116, 117]) (The method in [116] achieves ∼62%

accuracy on SVW.). Thus, a challenging video dataset for this application is highly desirable.

Spatio-temporal alignment Given two video sequences of the same action, spatio-temporal

alignment is defined as finding the spatial and temporal coordinate transformation that maps the

actions of interest in one video to those of the other [4, 111]. For the case of sports videos, spatio-

temporal alignment of actions enables effective comparison of actions performed by different peo-

ple. This is specifically useful for the purposes of sports training and grading. Furthermore, the

joint alignment of multiple videos, from either one user over time or a diverse set of users, al-

lows us to study the temporal evolving and inter-subject variations of a particular action, which are

novel research problems by themselves. Having unconstrained videos where action of interest may

happen at any temporal segment of the video, SVW serves as a realistic and challenging dataset

for the alignment problem.
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Table A.2: Performances (genre categorization accuracy) of different baseline algorithms on SVW.

Method Motion-based Context-based
Motion-assisted

context
Performance 61.53% 37.08% 39.13%

A.4 Baseline Experiments

In this section, we present the performances of three different algorithms for the genre catego-

rization problem on SVW. The first algorithm summarizes features extracted from dense trajec-

tories [114] using the widely used Bag of Words (BoW) approach [20]. The second algorithm

analyzes the context of video frames using the BoW on the SIFT features [66]. The third one, a

motion-assisted context-based algorithm, segments the moving and stationary pixels using trajec-

tory information and then analyzes the appearance of these two groups of pixels separately. To

the interest of computational cost and memory, for all methods, a two-level bottom-up codebook

generation scheme is used [130]. At the first layer, for each class, a set of codewords are generated

using K-means clustering. At the second layer, codewords of all classes are aggregated and by

another round of clustering, the final codewords are obtained. We use Support Vector Machine

(SVM) as the classifier for all the algorithms. Table A.2 summarizes the genre categorization ac-

curacies of the baseline algorithms. Unlike UCF Sports, which is conjectured in [49] to be equally

predictable using contextual or motion information due to the fact that many sports in UCF Sports

are location-specific, and similarly Olympic dataset, sports videos in the wild are better recognized

using motion features due to existence of many practice videos in environments uncorrelated with

the activities. However, the accuracy achieved by motion-based algorithm is relatively low due

to miscellaneous aforementioned challenges of SVW. Fig. A.5 represents confusion matrices of

context-based and motion-based algorithms. The contrast of off-diagonal elements indicates the

potential benefits of fusing these two algorithms. More detail on all three algorithms follows.
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Table A.3: Performance of different combinations of trajectory descriptors on SVW.

Descriptors s HOG HOG + s MBH MBH + HOG MBH + HOG + s
Performance 44.65% 56.45% 60.43% 58.12% 60.69% 61.53%

Archery
Baseball

Basketball
BMX

Bowling
Boxing

Cheerleading
Discus-throw

Diving
Football

Golf
Gymnastics

Hammer-throw
High jump

Hockey
Hurdling
Javelin

Long jump
Pole vault
Rowing
Running
Shot put

Figure skating
Skiing
Soccer

Swimming
Tennis

Volleyball
Weight

wrestling
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Figure A.5: Confusion matrices of (a) context-based and (b) motion-based categorization algo-
rithms.

A.4.1 Motion-based algorithm

For motion-based algorithm, the state-of-the-art approach of dense trajectories is used [114]. The

BoW approach on top of dense trajectory based features has been reported to outperform those of

space-time interest points on various datasets [116]. This approach consists of three main steps:

video stabilization, trajectory extraction and description, and BoW representation of trajectory

information. We use implementations in [117] for the second step.

A.4.1.1 Video stabilization

Frame by frame motion stabilization is achieved by matching interest points on consecutive frames

and applying RANSAC [35] to obtain the affine transformation between frames. Due to issues
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such as poor illumination, moving subjects and audience, and uniform or non-rigid backgrounds

(like water), the failure rate of video stabilization is quite high, which deteriorates the overall

performance of the motion-based algorithm.

A.4.1.2 Dense trajectories

As proposed in [114], dense trajectories are extracted at multiple spatial scales. Each point pt =

(xt ,yt) at frame t is tracked to the next frame t + 1 by performing the median filtering in a dense

optical flow field W= (ut ,vt), pt+1 = (xt+1,yt+1) = (xt ,yt)+(K ∗W)|(xt ,yt), where K is the median

filtering kernel and (xt ,yt) is the rounded position of (xt ,yt). Trajectories are started from the

sample points on a grid spaced by W pixels (set to 5). The length of each trajectory is limited to L

(set to 15), and after reaching this length, the trajectory is removed from the tracking process and

new sample points are tracked.

A.4.1.3 Trajectory descriptors

The shape of the trajectories can be used as a representative feature, especially for sports analysis.

In [114], the displacements of trajectory, ∆pt = (xt+1−xt ,yt+1−yt), over L consecutive frames are

concatenated to be a vector, ŝ = [∆pt , ...,∆pt+L−1], which is further normalized to be a trajectory

descriptor s = ŝ/∑
t+L−1
j=t ‖∆p j‖. Similar to [114], the video volume of a neighborhood of each tra-

jectory is aligned and the resultant volume is described by using the Motion Boundary Histogram

(MBH) [23] and the Histogram of Oriented Gradients (HOG) [22]. Table A.3 shows the perfor-

mance of different combinations of descriptors. The highest accuracy of 61.53% is achieved by

combining MBH, HOG, and s descriptors.
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A.4.1.4 Context-based algorithm

We follow the algorithm in [130] for analyzing the videos using only the static contextual infor-

mation. In this algorithm, we sample one frame per one-second length of video and use the BoW

representation of SIFT descriptors for categorization. For this algorithm, no inter-frame informa-

tion is utilized, thus video stabilization is not required. For dictionary learning, we use 10 videos

per category. In our experiments, the size of codebook is set to 4000. As represented in Table A.2,

the categorization accuracy of 37.08% is achieved using this method.

A.4.1.5 Motion-assisted context algorithm

Along with the idea in [83], we augment the context-based method with the information of moving

and stationary pixels. This can be loosely considered as foreground-background segmentation

using motion information. For this purpose, the mean position of trajectories of the stabilized

videos, for which the standard deviation of the trajectory points is beyond a threshold, is considered

as a moving point. The decision about a moving point at a certain frame is propagated to 15 frames

before and after the frame on which the trajectory ends. Having groups of moving and stationary

pixels ready, SIFT descriptors and BoW representation are calculated for them separately and the

resulting histograms are concatenated to represent the video. This algorithm achieves an accuracy

of 39.13% (Table A.2), which is slightly better than the algorithm using context information only.

A.4.1.6 Discussion

Comparing ∼62% accuracy achieved by motion-based algorithm of dense trajectories on SVW

with ∼91% accuracy obtained by applying the same method to both UCF50 and Olympic Sports

datasets [117], demonstrates that SVW is a very challenging sports video dataset. In addition,

comparing accuracy obtained by applying motion-based and context-based algorithms (∼62% vs
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∼39%) reveals that in SVW, motion is the main cue for categorization and action recognition.

While the motion-assisted context based algorithm results in∼39% accuracy for SVW, as reported

in [83], similar method achieves accuracy of∼67% for UCF50. This essentially suggests that back-

ground and equipment appearance in SVW is not as informative as in UCF50 dataset. In [46], 80%

accuracy is reported for Sports group of UCF101 dataset. Considering all these results, we may

conclude that although sports videos feature unique movements, analysis of truly unconstrained

videos is still challenging and needs further research.

A.5 Conclusions

To advance computer vision research, and to push the limits of various video analysis problems to-

ward more realistic and unconstrained scenarios happening in the real world, representative and un-

constrained datasets are essential. In this regard, we introduced Sports Videos in the Wild (SVW),

as a very challenging real-world dataset of sports videos available for genre categorization, action

detection, action recognition, and spatio-temporal alignment. We evaluated three different baseline

algorithms for sports genre categorization. Experimental results suggest that due to uncorrelated-

ness of environment and actions in SVW, as well as amateur capturing of the videos, the presented

SVW dataset is indeed the most challenging sports and action dataset available.
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[17] Ondřej Chum, Jiří Matas, and Josef Kittler. Locally optimized RANSAC. Pattern Recogni-
tion, pages 236–243, 2003.

[18] Mark Cox, Sridha Sridharan, Simon Lucey, and Jeffrey Cohn. Least squares congealing
for unsupervised alignment of images. In Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), pages 1–8. IEEE, 2008.

[19] Mark Cox, Sridha Sridharan, Simon Lucey, and Jeffrey Cohn. Least-squares congealing for
large numbers of images. In Proc. Int. Conf. Computer Vision (ICCV), pages 1949–1956.
IEEE, 2009.

[20] Gabriella Csurka, Christopher Dance, Lixin Fan, Jutta Willamowski, and Cédric Bray. Vi-
sual categorization with bags of keypoints. In Workshop on statistical learning in computer
vision, ECCV, volume 1, page 22, 2004.

[21] Xinyi Cui, Qingshan Liu, and Dimitris Metaxas. Temporal spectral residual: fast motion
saliency detection. In Proceedings of the 17th ACM international conference on Multimedia,
pages 617–620. ACM, 2009.

[22] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In
Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), volume 1, pages 886–
893. IEEE, 2005.

114



[23] Navneet Dalal, Bill Triggs, and Cordelia Schmid. Human detection using oriented his-
tograms of flow and appearance. In Proc. European Conf. Computer Vision (ECCV), pages
428–441. Springer, 2006.

[24] Oscar Déniz, Gloria Bueno, E Bermejo, and Rahul Sukthankar. Fast and accurate global
motion compensation. Pattern Recognition, 44(12):2887–2901, 2011.

[25] Konstantinos G Derpanis, Mikhail Sizintsev, Kevin Cannons, and Richard P Wildes. Effi-
cient action spotting based on a spacetime oriented structure representation. In Proc. IEEE
Conf. Computer Vision and Pattern Recognition (CVPR), pages 1990–1997. IEEE, 2010.

[26] Caglayan Dicle, Octavia Camps, and Mario Sznaier. The way they move: tracking multiple
targets with similar appearance. In Proc. Int. Conf. Computer Vision (ICCV), pages 2304–
2311. IEEE, 2013.

[27] Ferran Diego, Daniel Ponsa, Joan Serrat, and Antonio M López. Video alignment for change
detection. IEEE Trans. Image Proc., 20(7):1858–1869, 2011.

[28] Ferran Diego, Joan Serrat, and Antonio M López. Joint spatio-temporal alignment of se-
quences. IEEE Trans. Multimedia, 15(6):1377–1387, 2013.

[29] Ling-Yu Duan, Min Xu, Qi Tian, Chang-Sheng Xu, and Jesse S Jin. A unified framework for
semantic shot classification in sports video. Multimedia, IEEE Transactions on, 7(6):1066–
1083, 2005.

[30] Rahul Dutta, Bruce Draper, and J Ross Beveridge. Video alignment to a common reference.
In IEEE Winter Conf. WACV, pages 808–815. IEEE, 2014.

[31] Motaz El-Saban, Mostafa Izz, Ayman Kaheel, and Mahmoud Refaat. Improved optimal
seam selection blending for fast video stitching of videos captured from freely moving de-
vices. In Proc. Int. Conf. Image Processing (ICIP), pages 1481–1484. IEEE, 2011.

[32] Sandro Esquivel, Felix Woelk, and Reinhard Koch. Calibration of a multi-camera rig from
non-overlapping views. In Pattern Recognition, pages 82–91. Springer, 2007.

[33] Georgios D Evangelidis and Christian Bauckhage. Efficient and robust alignment of unsyn-
chronized video sequences. In Pattern Recognition, pages 286–295. Springer, 2011.

[34] Georgios D Evangelidis and Christian Bauckhage. Efficient subframe video alignment using
short descriptors. IEEE Trans. Pattern Anal. Mach. Intell., 35(10):2371–2386, 2013.

115



[35] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Communications of
the ACM, 24(6):381–395, 1981.

[36] Junhong Gao, Seon Joo Kim, and Michael S Brown. Constructing image panoramas using
dual-homography warping. In Proc. IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), pages 49–56. IEEE, 2011.

[37] Tiago Gaspar, Paulo Oliveira, and Paolo Favaro. Synchronization of two independently
moving cameras without feature correspondences. In Proc. European Conf. Computer Vi-
sion (ECCV), pages 189–204. Springer, 2014.

[38] Michael L Gleicher and Feng Liu. Re-cinematography: Improving the camerawork of casual
video. ACM Transactions on Multimedia Computing, Communications, and Applications
(TOMM), 5(1):2, 2008.

[39] Nils Hasler, Bodo Rosenhahn, Thorsten Thormahlen, Michael Wand, Jürgen Gall, and Hans-
Peter Seidel. Markerless motion capture with unsynchronized moving cameras. In Com-
puter Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 224–
231. IEEE, 2009.

[40] Yuwen He, Bo Feng, Shiqiang Yang, and Yuzhuo Zhong. Fast global motion estimation
for global motion compensation coding. In Proc. IEEE Int. Symp. Circuits and Systems
(ISCAS), volume 2, pages 233–236. IEEE, 2001.

[41] Gary Huang, Marwan Mattar, Honglak Lee, and Erik G Learned-Miller. Learning to align
from scratch. In Advances in Neural Information Processing Systems (NIPS), pages 764–
772, 2012.

[42] Gary B Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled faces in the
wild: A database for studying face recognition in unconstrained environments. Technical
report, Technical Report 07-49, University of Massachusetts, Amherst, 2007.

[43] Muhammad Twaha Ibrahim, Rehan Hafiz, Muhammad Murtaza Khan, Yongju Cho, and
Jihun Cha. Automatic reference selection for parametric color correction schemes for
panoramic video stitching. In Advances in Visual Computing, pages 492–501. Springer,
2012.

[44] Wei Jiang and Jinwei Gu. Video stitching with spatial-temporal content-preserving warping.
In Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshops (CVPRW), pages
42–48. IEEE, 2015.

116



[45] Yu-Gang Jiang, Qi Dai, Xiangyang Xue, Wei Liu, and Chong-Wah Ngo. Trajectory-based
modeling of human actions with motion reference points. In Proc. European Conf. Com-
puter Vision (ECCV), pages 425–438. Springer, 2012.

[46] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, and
Li Fei-Fei. Large-scale video classification with convolutional neural networks. In Proc.
IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2014.

[47] Tae-Kyun Kim and Roberto Cipolla. Canonical correlation analysis of video volume tensors
for action categorization and detection. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 31(8):1415–1428, 2009.

[48] Hui Kong, Jean-Yves Audibert, and Jean Ponce. Detecting abandoned objects with a moving
camera. IEEE Trans. Image Process., 19(8):2201–2210, 2010.

[49] Hilde Kuehne, Hueihan Jhuang, Rainer Stiefelhagen, and Thomas Serre. HMDB51: A
large video database for human motion recognition. In High Performance Comput. Sci.
Eng., pages 571–582. Springer, 2013.

[50] Jukka Lankinen and Joni-Kristian Kämäräinen. Local feature based unsupervised alignment
of object class images. In Proc. British Mach. Vision Conf. (BMVC), volume 1, 2011.

[51] Ivan Laptev. On space-time interest points. Int. J. Comput. Vision, 64(2-3):107–123, 2005.

[52] Ivan Laptev, Marcin Marszalek, Cordelia Schmid, and Benjamin Rozenfeld. Learning real-
istic human actions from movies. In Proc. IEEE Conf. Computer Vision and Pattern Recog-
nition (CVPR), pages 1–8. IEEE, 2008.

[53] Erik G Learned-Miller. Data driven image models through continuous joint alignment. IEEE
Trans. Pattern Anal. Mach. Intell., 28(2):236–250, 2006.

[54] Erik G Learned-Miller et al. ICA using spacings estimates of entropy. J. Machine Learning
Research, 4:1271–1295, 2003.

[55] José Lezama, Karteek Alahari, Josef Sivic, and Ivan Laptev. Track to the future: Spatio-
temporal video segmentation with long-range motion cues. In Proc. IEEE Conf. Computer
Vision and Pattern Recognition (CVPR). IEEE, 2011.

[56] Qian Li, Shifeng Chen, and Beiwei Zhang. Predictive video saliency detection. In Pattern
Recognition, pages 178–185. Springer, 2012.

117



[57] Xiangru Li and Zhanyi Hu. Rejecting mismatches by correspondence function. Int. J.
Comput. Vision, 89(1):1–17, 2010.

[58] Yunpeng Li, Sing Bing Kang, Neel Joshi, Steve M Seitz, and Daniel P Huttenlocher. Gener-
ating sharp panoramas from motion-blurred videos. In Proc. IEEE Conf. Computer Vision
and Pattern Recognition (CVPR), pages 2424–2431. IEEE, 2010.

[59] Chung-Ching Lin, Sharathchandra U Pankanti, Karthikeyan Natesan Ramamurthy, and
Aleksandr Y Aravkin. Adaptive as-natural-as-possible image stitching. In Proc. IEEE Conf.
Computer Vision and Pattern Recognition (CVPR), pages 1155–1163. IEEE, 2015.

[60] Wen-Yan Lin, Siying Liu, Yasuyuki Matsushita, Tian-Tsong Ng, and Loong-Fah Cheong.
Smoothly varying affine stitching. In Proc. IEEE Conf. Computer Vision and Pattern Recog-
nition (CVPR), pages 345–352. IEEE, 2011.

[61] Ce Liu, William T Freeman, and Edward H Adelson. Analysis of contour motions. In
Advances in Neural Information Processing Systems (NIPS), pages 913–920, 2006.

[62] Jingen Liu, Jiebo Luo, and Mubarak Shah. Recognizing realistic actions from videos in the
wild. In Proc. IEEE Conf. CVPR, pages 1996–2003. IEEE, 2009.

[63] Shuaicheng Liu, Lu Yuan, Ping Tan, and Jian Sun. Steadyflow: Spatially smooth optical
flow for video stabilization. In Proc. IEEE Conf. CVPR, pages 4209–4216. IEEE, 2014.

[64] Xiaoming Liu, Yan Tong, and Frederick W. Wheeler. Simultaneous alignment and clustering
for an image ensemble. In Proc. Int. Conf. Computer Vision (ICCV), pages 1327–1334.
IEEE, 2009.

[65] David G Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Computer
Vision, 60(2):91–110, 2004.

[66] David G Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Comput.
Vision, 60(2):91–110, 2004.

[67] Cheng Lu and Mrinal Mandal. A robust technique for motion-based video sequences tem-
poral alignment. IEEE Trans. Multimedia, 15(1):70–82, 2013.

[68] Simon Lucey, Rajitha Navarathna, Ahmed Bilal Ashraf, and Sridha Sridharan. Fourier
lucas-kanade algorithm. IEEE Trans. Pattern Anal. Mach. Intell., 35(6):1383–1396, 2013.

118



[69] Jiayi Ma, Jun Chen, Delie Ming, and Jinwen Tian. A mixture model for robust point match-
ing under multi-layer motion. PloS one, 9(3):e92282, 2014.

[70] Jiayi Ma, Ji Zhao, Jinwen Tian, Alan L Yuille, and Zhuowen Tu. Robust point matching via
vector field consensus. IEEE Transactions on Image Processing, 23(4):1706–1721, 2014.

[71] Marcin Marszalek, Ivan Laptev, and Cordelia Schmid. Actions in context. In Proc. IEEE
Conf. Computer Vision and Pattern Recognition (CVPR), pages 2929–2936. IEEE, 2009.

[72] Marcin Marszałek, Ivan Laptev, and Cordelia Schmid. Actions in context. In Proc. IEEE
Conf. CVPR, 2009.

[73] C Krishna Mohan and B Yegnanarayana. Classification of sport videos using edge-based
features and autoassociative neural network models. Signal, Image and Video Processing,
4(1):61–73, 2010.

[74] Eduardo Monari and Thomas Pollok. A real-time image-to-panorama registration approach
for background subtraction using pan-tilt-cameras. In Proc. IEEE Conf. Advanced Video
and Signal Based Surveillance (AVSS), pages 237–242. IEEE, 2011.

[75] Juan Carlos Niebles, Chih-Wei Chen, and Li Fei-Fei. Modeling temporal structure of de-
composable motion segments for activity classification. In Proc. European Conf. ECCV,
pages 392–405. Springer, 2010.

[76] Flávio LC Pádua, Rodrigo L Carceroni, Geraldo AMR Santos, and Kiriakos N Kutu-
lakos. Linear sequence-to-sequence alignment. IEEE Trans. Pattern Anal. Mach. Intell.,
32(2):304–320, 2010.

[77] F Perazzi, A Sorkine-Hornung, H Zimmer, P Kaufmann, O Wang, S Watson, and M Gross.
Panoramic video from unstructured camera arrays. In Computer Graphics Forum, vol-
ume 34, pages 57–68. Wiley Online Library, 2015.

[78] P. J. Phillips, H. Moon, P. J. Rauss, and S. Rizvi. The FERET evaluation methodology for
face recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell., 22(10):1090–1104,
October 2000.

[79] Yair Poleg and Shmuel Peleg. Alignment and mosaicing of non-overlapping images. In
Computational Photography (ICCP), 2012 IEEE International Conference on, pages 1–8.
IEEE, 2012.

119



[80] Dmitry Pundik and Yael Moses. Video synchronization using temporal signals from epipolar
lines. In Proc. European Conf. Computer Vision (ECCV), pages 15–28. Springer, 2010.

[81] Cen Rao and Mubarak Shah. View-invariance in action recognition. In Proc. IEEE Conf.
Computer Vision and Pattern Recognition (CVPR), volume 2, pages II–316. IEEE, 2001.

[82] Cen Rao, Alper Yilmaz, and Mubarak Shah. View-invariant representation and recognition
of actions. Int. J. Computer Vision, 50(2):203–226, 2002.

[83] Kishore K Reddy and Mubarak Shah. Recognizing 50 human action categories of web
videos. Machine Vision and Applications, 24(5):971–981, 2013.

[84] Xiaobo Ren, Tony X Han, and Zhihai He. Ensemble video object cut in highly dynamic
scenes. In Proc. IEEE Conf. CVPR, pages 1947–1954. IEEE, 2013.

[85] Sreemanananth Sadanand and Jason J Corso. Action bank: A high-level representation of
activity in video. In Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR),
pages 1234–1241. IEEE, 2012.

[86] S. Morteza Safdarnejad, Yousef Atoum, and Xiaoming Liu. Temporally robust global mo-
tion compensation by keypoint-based congealing. In Proc. European Conf. Computer Vision
(ECCV), pages 101–119. Springer, 2016.

[87] S. Morteza Safdarnejad, Xiaoming Liu, and Lalita Udpa. Genre categorization of amateur
sports videos in the wild. In Proc. Int. Conf. ICIP. IEEE, 2014.

[88] S. Morteza Safdarnejad, Xiaoming Liu, and Lalita Udpa. Robust global motion compensa-
tion in presence of predominant foreground. In Proc. British Machine Vision Conf. (BMVC),
2015.

[89] S. Morteza Safdarnejad, Xiaoming Liu, Lalita Udpa, Brooks Andrus, John Wood, and Dean
Craven. Sports videos in the wild (SVW): A video dataset for sports analysis. In Proc. Int.
Conf. Automatic Face and Gesture Recognition (FG), pages 1–7. IEEE, 2015.

[90] Masatoshi Sakamoto, Yasuyuki Sugaya, and Kenichi Kanatani. Homography optimization
for consistent circular panorama generation. In Advances in Image and Video Technology
(PSIVT), pages 1195–1205. Springer, 2006.

[91] Pekka Sangi, Jari Hannuksela, Janne Heikkilä, and Olli Silvén. Sparse motion segmentation
using propagation of feature labels. In VISAPP (2), pages 396–401. Citeseer, 2013.

120



[92] Harpreet S Sawhney, Steve Hsu, and Rakesh Kumar. Robust video mosaicing through topol-
ogy inference and local to global alignment. In Proc. European Conf. Computer Vision
(ECCV), pages 103–119. Springer, 1998.

[93] Christian Schuldt, Ivan Laptev, and Barbara Caputo. Recognizing human actions: a local
svm approach. In Proc. Int. Conf. Pattern Recognition (ICPR), volume 3, pages 32–36.
IEEE, 2004.

[94] Hae Jong Seo and Peyman Milanfar. Static and space-time visual saliency detection by
self-resemblance. Journal of vision, 9(12):15, 2009.

[95] Joan Serrat, Ferran Diego, Felipe Lumbreras, and José Manuel Álvarez. Synchronization
of video sequences from free-moving cameras. In Pattern Recognition and Image Analysis,
pages 620–627. Springer, 2007.

[96] Fatemeh Shokrollahi Yancheshmeh, Ke Chen, and Joni-Kristian Kamarainen. Unsupervised
visual alignment with similarity graphs. In Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), pages 2901–2908. IEEE, 2015.

[97] Heung-Yeung Shum and Richard Szeliski. Construction and refinement of panoramic mo-
saics with global and local alignment. In Proc. Int. Conf. Computer Vision (ICCV).
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