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ABSTRACT

DECIPHERING THE GENETIC BASIS FOR COMPLEX TRAIT VARIATION: UTILIZING
ALTERNATIVE GENOME-WIDE ASSOCIATION METRICS AND MOLECULAR

PHENOTYPES

By

Scott A Funkhouser

Within any population, complex trait variation can be attributed to an impressive number of genetic

factors. Identification of such factors has been made possible, in part, by large biomedical datasets

comprised of genotypes and phenotypes for hundreds of thousands of individuals. Furthermore,

understanding the biological mechanisms through which genetic variation creates complex trait

variation has been facilitated by high-throughput sequencing technology, used to quantifymolecular,

intermediate phenotypes. Despite such datasets being widely available, we lack understanding of

the full spectrum of genetic effects, including gene-by-sex (G×S) interactions. We also have

yet to uncover various molecular phenotypes that may “link” genetic variation to complex trait

variation. To address these gaps in knowledge, the following chapters will 1) develop and utilize

statistical methodology for mapping G×S interactions among human traits, and 2) utilize a pig

model to characterize RNA editing—a relatively understudied form of transcriptional regulation—

and evaluate its potential to link genetic variation with complex trait variation.

Growing evidence from genome-wide parameter estimates suggest males and females from

human populations possess differing genetic architectures. Despite this, mapping G×S interactions

remains challenging, suggesting that the magnitude of a typical G×S interaction is exceedingly

small. We have developed a local Bayesian regression (LBR) approach to estimate sex-specific

single nucleotide polymorphism (SNP) marker effects after fully accounting for local linkage-

disequilibrium (LD) patterns. This providedmeans to infer G×S interactions either at the SNP level,

or by aggregating multiple sex-specific SNP effects to make inferences at the level of small, LD-

based regions. In simulations, LBRprovided greater power and resolution to detectG×S interactions

than the traditional approach to genome-wide association (GWA), single-marker regression (SMR).



When using LBR to analyze human traits from the UK Biobank (N ∼ 250,000) including height,

BMI, bone-mineral density, and waist-to-hip ratio, we find evidence of novel G×S interactions

where sex-specific effects explain a very small proportion of phenotypic variance (R2 < 1x10-4) but

are enriched in expression quantitative trait loci (eQTL). By leveraging large datasets and powerful

metrics, we are providing evidence that G×S interactions may influence phenotypic variance for a

variety of human complex traits.

Adenosine to inosine (A-to-I) RNA editing impacts gene function by converting adenosine

to inosine molecules within specific regions of the transcriptome and is catalyzed by adenosine

deaminase acting on RNA (ADAR). High-throughput sequencing studies, most of which utilizing

human models, have found thousands of A-to-I edited loci commonly located within repetitive

elements such as the primate-specific Alu element. Here, we utilized matched whole-genome

sequencing and RNA sequencing from the same animal to demonstrate that widespread RNA

editing occurs within pig transcriptomes, largely within pig-specific repetitive elements known as

PRE-1.

The degree that sites in the transcriptome are edited by ADAR—the “editing level”—has

been observed to vary within populations but it is largely unknown how genetic variation as

whole influences editing level variation. Using 168 F2 pigs with SNP genotyping data and RNA

sequencing from skeletal muscle, we identified five RNA editing sites across four genes whose

editing level variation was significantly attributed to the additive effects of all observed SNP

markers (estimated genomic heritability ĥ2
g = 0.31–0.56; p-value = 8.2x10-5–8.8x10-4). We then

used bivariate models to estimate how genetics influences covariance between site-specific RNA

editing levels and complex traits in pigs. We foundmodest evidence that SNPs nearADAR contribute

to covariance in RNA editing activity and numerous growth traits such as average daily gain (local

genetic correlation ρ̂glocal [SE] = -0.87 [0.16]; p-value = 0.029). These results suggest potential

pleiotropic effects between RNA editing activity and complex traits and encourages further use of

multi-variate mixed models determine if RNA editing can "link" genetic variation with complex

trait variation.
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CHAPTER 1

INTRODUCTION

1.1 Genetic factors that influence variation in complex traits

For more than a decade, genome-wide association studies (GWAS) have identified single-

nucleotide polymorphisms (SNPs) that associate with complex traits and diseases [1, 2]. Using

human height as a model complex trait, it became clear that the proportion of phenotypic variance

explained by GWAS-identified loci was much lower than the narrow-sense heritability [3, 4], where

narrow-sense heritability (or simply, heritability) is the proportion of phenotypic variance explained

by the additive effects at all quantitative trait loci (QTL). This “missing heritability” problem was

partially solved; by estimating the proportion of variance explained by all SNPs genome-wide

(estimating so-called “genomic” or “SNP” heritability), it became evident that many loci possess

exceedingly small additive effects that go undetected byGWASmainly due to the burden of multiple

test correction [5]. It is generally accepted that any “still missing heritability” can be attributed to

imperfect linkage-disequilibrium (LD) between observed SNPs and underlying QTL [6].

Although the nature of missing heritability is largely understood (in the sense that we understand

the large disparity between GWAS-identified loci and trait heritability), work is ongoing to map

the locations of both large- and small-effect QTL for a wide variety of complex, polygenic traits

[7, 8, 9, 10]. This has been made possible, in part, by large biomedical datasets that contain

genotypic and phenotypic records for hundreds of thousands of individuals (examples include

the UK Biobank, China Kadoorie Biobank, FinnGen, 23andMe®, etc). When using ∼700,000

individuals of European ancestry, GWAS-identified loci at a stringent p-value threshold of 1x10-8

are able to explain a much larger proportion of variance in height and BMI than before [11]. This

suggests locations of small additive effects can be revealed with increasing sample size.

Still, many additional genetic factors contribute to the variance of complex traits (by contributing

to broad-sense heritability). These factors cannot be discovered simply by increasing sample size
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but rely more on appropriate modeling and experimental design. They include a multitude of

complex interactions such as dominance effects (interactions between alleles at the same locus),

epistasis (interactions between alleles at different loci), and various gene-by-environment (G×E)

interactions. Conceptually, one may interpret G×E to be a locus with different effects depending on

the environment it’s placed in. Common approaches to GWAS or genomic heritability estimation

assume that additive effects at SNPs are homogenous (constant for every member in the population).

However, members within any population may undergo different environmental exposures (either

endogenous or exogenous) creating the possibility of heterogenous genetic effects, should G×E

exist.

Gene-by-sex (G×S) interactions are a form of G×E; sex directly influences both the endogenous

(for instance, sex hormones influence transcriptional mechanisms) and exogenous (for instance,

contraceptive use) environment. The existence of G×S interactions is one of several theories used

to explain sex differences for numerous complex traits (for quantitative traits such as height, these

include differences in both mean and variance). Evidence for G×S interactions largely stems from

“between-sex” or “cross-sex” genetic correlation estimates [12, 13, 14]. When evidently less than

one, these estimates indicate that genetic effects are disproportional between sexes [15]. Even

with relatively large sample sizes (> 100,000), mapping G×S interactions remains challenging

[16, 17], suggesting that for many traits the magnitude of any G×S is small and is likely escaping

GWASdetection due to the burden ofmultiple test correction. Just as numerous small, homogenous,

additive effects accumulate to influence narrow-sense heritability, numerous small G×S interactions

may influence broad-sense heritability by inducing mean and variance differences between sexes.

In chapter 2, individuals of European ancestry from the UK Biobank (N ∼ 250,000) are used

to map G×S interactions. In this chapter we discuss the difficulty of mapping G×S interactions

using traditional GWAS methods and develop an alternative strategy for mapping such events.

We find evidence of small-magnitude G×S interactions impacting such traits as height, BMI, and

bone-mineral density.
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1.2 Limitations to common GWAS techniques and alternative solutions

Despite sample sizes continuing to grow in recent years, the methods used for GWAS have

remained largely the same since the first reported GWAS in 2006 [18]. These methods, commonly

referred to as “single marker analysis” or “single marker regression” (SMR), test for an association

between a complex trait and a SNP, doing so one SNP at a time. To control the family-wise error

rate (probability of making at least one type I error), a p-value threshold of 5x10-8 is routinely

adopted.

Although this straightforward approach is useful, it has a few drawbacks. As mentioned

previously, the burden of multiple testing can severely hinder statistical power. Additionally,

patterns of LD are not fully accounted for; as sample size continuous to grow, mapping resolution

will worsen for moderate- to large-effect QTL. This is because many SNPs can be associated with

one or more QTL due to LD, creating spurious signals that amplify as sample size increases.

Numerous methods have been developed that treat GWAS like a variable selection problem,

one in which multiple covariates (SNPs, in this case) are considered simultaneously and only the

most relevant ones are selected as non-null, useful predictors. Such methods have shown improved

mapping resolution when compared to SMR [19, 20, 21, 22]. Under this variable selection

paradigm, one can estimate the additive effects of multiple SNPs simultaneously using Bayesian

multiple regressionmixture models [23, 24]. Bayesianmixture models have several nice properties:

i) the proportion of SNPs with non-null genetic effects (the polygenicity) can be treated as random

and inferred from the data and ii) inferring whether each SNP has a non-null effect can be done

formally by estimating the corresponding posterior probability (the probability of a non-null SNP

effect, given the data). The first point is crucial for achieving appropriate error control [25]. One

important criticism to Bayesian mixture models for GWAS (that applies to multiple regression

models in general) is that in regions of high LD, the association of any given SNP with a trait

may be exceedingly small when conditioning on all other SNPs in the region [26]. Fernando et

al. demonstrated that in instances when individual SNP-trait associations are small due to LD, the

aggregate effect of multiple SNPs in a window can more greatly associate with traits and be used

3



to locate QTL.

In chapter 2, we adapt Bayesian mixture models to infer sex-specific genetic effects and G×S

interactions. Using simulations, we show that aggregating sex-specific SNP effects within small

LD-based windows can enhance the power and precision to detect G×S interactions upon traditional

SMR techniques.

1.3 Functional implications of noncoding variants on gene expression

In 2009, Visscher et al. [27] popularized the term “causal variant” to mean the genetic variant

that causes an observed GWAS association signal. This term is somewhat unfortunate in that

GWAS is limited to finding loci with allele content that associates with one or more phenotypes

in a population, regardless if a causal relationship (such as a biological mechanism) can explain

the association or not. One major observation from GWAS however is that common variants that

explain some proportion of complex trait variation are typically within non-coding portions of

genomes and enriched in expression QTL [28] (eQTL; QTL that explain variation in transcript

abundance for one or more genes). This suggests variation in heritable complex traits is at least

partially driven by variation in transcript abundance. More recently, it has been shown that for

some complex traits, GWAS hits are equally enriched in splicing QTL (QTL that explain variation

in alternatively-spliced isoforms), many of which did not influence transcript abundance [29].

In chapter 2, we show that G×S interactions identified using Bayesian mixture models generally

show greater eQTL enrichment than G×S interactions identified from single marker regression.

This may indicate our approach for finding G×S interactions is working well toward identifying

functional regions that may contribute to sex differences and phenotypic variance. In chapter 3, we

characterize a relatively understudied form of gene expression known as RNA editing using a pig

model, and in chapter 4 we evaluate the potential that heritable RNA editing variation contributes

to complex trait variation in pigs.
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1.4 RNA editing and its role in gene expression

RNA editing comprises a wide set of modifications to RNA transcripts including deletion,

insertion, and substitution of ribonucleotides [30, 31]. In mammals, RNA editing predominantly

involves an adenosine to inosine transition within double-stranded pre-mRNA transcripts, catalyzed

by adenosine deaminase acting on RNA (ADAR) [32]. At many edited genes, ADAR catalyzes this

reaction without perfect efficacy, resulting in only a proportion of transcripts (named the editing

level) containing the inosine variant. This means that like alternative splicing, RNA editing enables

variation in transcript content from individual to individual, without necessarily affecting transcript

abundance.

RNA editing by ADAR has been shown to be essential for the function of some genes and

essential for life. For instance, the GluR-B receptor is highly edited at key positions (nearly all

transcripts contain the inosine variant) and reduction in GluR-B editing in mice leads to Ca2+

permeability in neural cells and death from seizures [33]. Other editing events are shown to

influence complex traits; editing of serotonin receptor 2C is known to influence energy dissipation

and fatmass [34]. PerhapsmostRNAediting sites showhighly variable editing levels in a population

[35]. Like SNPs, editing levels that show little variation in the population likely have large effects

or essential functions (such as GluR-B editing), while those that exhibit large variation are expected

to possess smaller effects but may still explain some proportion of complex trait variation.

Most RNA editing events in human transcriptomes are within Alu elements [32], a type of short

interspersed nuclear element (SINE) unique to primates. In chapter 3, we find evidence that RNA

activity among pigs largely occurs within PRE-1 elements, a type of SINE element unique to pigs,

hogs, and peccaries. This finding has been replicated among several subsequent pig RNA editing

studies [36, 37]. In chapter 4, we further evaluate the possibility that highly variable and heritable

editing levels may explain variation in complex traits.
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CHAPTER 2

DECIPHERING SEX-SPECIFIC GENETIC ARCHITECTURES USING LOCAL
BAYESIAN REGRESSIONS

This chapter is available on the bioRxiv (doi: 10.1101/653386). It was prepared alongside co-

authors Ana I Vazquez, Juan P Steibel, Catherine W Ernst, and Gustavo de los Campos.

2.1 Abstract

Many complex human traits exhibit differences between sexes. While numerous factors likely

contribute to this phenomenon, growing evidence from genome-wide studies suggest a partial ex-

planation: that males and females from the same population possess differing genetic architectures.

Despite this, mapping gene-by-sex (G×S) interactions remains a challenge likely because themagni-

tude of such an interaction is typically and exceedingly small; traditional genome-wide association

techniques may be underpowered to detect such events partly due to the burden of multiple test

correction. Here, we developed a local Bayesian regression (LBR) method to estimate sex-specific

SNP marker effects after fully accounting for local linkage-disequilibrium (LD) patterns. This

enabled us to infer sex-specific effects and G×S interactions either at the single SNP level, or by

aggregating the effects of multiple SNPs to make inferences at the level of small LD-based regions.

Using simulations in which there was imperfect LD between SNPs and causal variants, we showed

that aggregating sex-specific marker effects with LBR provides improved power and resolution

to detect G×S interactions over traditional single-SNP-based tests. When using LBR to analyze

traits from the UK Biobank, we detected a relatively large G×S interaction impacting bone-mineral

density within ABO and replicated many previously detected large-magnitude G×S interactions

impacting waist-to-hip ratio. We also discovered many new G×S interactions impacting such traits

as height and BMI within regions of the genome where both male- and female-specific effects

explain a small proportion of phenotypic variance (R2 < 1x10−4), but are enriched in known

expression quantitative trait loci. By combining biobank-level data and techniques to estimate
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sex-specific SNP effects after accounting for local-LD patterns, we are providing evidence that nu-

merous small-magnitude G×S interactions exist to influence sex differences in a variety of complex

traits.

2.2 Author Summary

Many complex human traits are known to be influenced by an impressive number of causal

variants each with very small effects, posing great challenges for genome-wide association studies

(GWAS). To add to this challenge, many causal variants may possess context-dependent effects

such as effects that are dependent on biological sex. While GWAS are commonly performed

using specific methods in which one single nucleotide polymorphism (SNP) at a time is tested for

association with a trait, alternatively we utilize methods more commonly observed in the genomic

prediction literature. Such methods are advantageous in that they are not burdened by multiple test

correction in the same way as traditional GWAS techniques are, and can fully account for linkage-

disequilibrium patterns to accurately estimate the true effects of SNP markers. Here we adapt

such methods to estimate genetic effects within sexes and provide a powerful means to compare

sex-specific genetic effects.

2.3 Introduction

Sex differences are widespread in nature, observed readily among many human traits and

diseases. For quantitative traits, sex may affect the distribution of phenotypes at various levels,

including mean-differences between genetic males and genetic females (hereafter referred to as

males and females, respectively) as well as differences in variance. Sex differences are likely

due to a myriad of factors including differential environmental exposures, unequal gene dosages

for sex-linked genes as well as sex-heterogeneity in the architecture of genetic effects at one or

more autosomal loci (i.e. gene-by-sex (G×S) interactions). In this way, sex is considered an

environmental variable, providing two well-defined conditions in which allele frequencies and

linkage disequilibrium (LD) patterns are equivalent but nevertheless genetic effects of one or many

7



autosomal loci may differ.

Evidence for different genetic architectures between sexes among human populations is largely

supported by genome-wide parameters [38, 12, 13, 14] including unequal within-sex heritabilities(
h2

male , h2
female

)
and between-sex genetic correlations less than one (rg < 1); the former suggests

that the proportion of phenotypic variance explained by genetic factors varies between sexes, while

the latter suggests genetic effects are disproportional between sexes [15]. Althoughmany traits seem

to have between-sex genetic correlation that is evidentially less than one, genome-wide association

(GWA) studies intended to map G×S interactions have struggled to pinpoint such loci [17, 39].

Based on this dichotomy, G×S interactions presumably exist for many traits, but the magnitude of a

typical G×S interaction is suspected to be exceedingly small, explaining why such events commonly

elude detection, particularly after multiple test correction. However, just as numerous small effect

causal loci accumulate to affect phenotypic variance, small G×S interactions may accumulate to

influence both sex differences and phenotypic variance.

Most GWA studies utilize single-marker regression (SMR), in which the phenotype is regressed

upon allele content one SNP at a time, thereby obtaining marginal SNP effect size estimates that

do not fully account for LD patterns. In contrast, whole-genome regression methods, in which the

phenotype is regressed upon all SNPs across the genome concurrently, fully account for multi-locus

LD. These methods are increasingly being used as a one-stop solution to estimate true (conditional)

effect sizes of SNP markers and to provide genome-wide estimates including genomic heritability

[23, 6, 5] and between-sex genetic correlations [12, 13, 14]. By estimating true SNP effect sizes, the

goal across many studies is to select SNPs with non-zero effects and to build a model for predicting

polygenic scores [40, 41, 42]. Other works have directly illustrated the use of whole-genome

regression methods for GWAS [26, 19, 43, 44]. Whole-genome regressions are computationally

challenging to use with biobank-level data; however, recent work suggests relatively accurate

genomic prediction and SNP effect estimation can be achieved by simply accounting for local LD

patterns (as opposed to global LD patterns) [45].

Building on the idea of utilizing true SNP marker effects, here we developed local Bayesian
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regressions (LBR) in which the phenotype is regressed upon multiple SNPs spanning multiple

LD blocks (thereby accounting for local LD patterns) to study sex differences in complex traits

from the UK Biobank. The LBR model uses random-effect SNP-by-sex interactions [46, 47]

that decompose conditional SNP effects into three components: i) one shared across sexes, ii) a

male-specific deviation from the shared component, and iii) a female-specific deviation from the

shared component. Using samples from the posterior distribution of conditional SNP effects, we

developed methods to infer sex-specific effects and G×S interactions at the single SNP level and

by aggregating SNP effects within small LD-based regions, offering multiple perspectives to study

sex-specific genetic architectures.

In this study, we have utilized genotypes for 607,497 autosomal SNPs from ∼259,000 distantly

related Caucasians from the UK Biobank for assessing LBR’s performance in analyzing simulated

and real complex traits including height, BMI, waist-to-hip ratio (WHR), and heel bone-mineral

density (BMD). Simulations showed that (i) for inferences of G×S interactions, LBR offers higher

power with lower FDR than methods based on marginal effects (aka single-marker regression) and

(ii) we show that under imperfect LD between SNPs and causal variants (i.e., when causal variants

are not genotyped), aggregating SNP effects within small LD-based regions offers higher power

than methods based on testing individual SNPs.

The traits analyzed in this study span a range of genome-wide metrics and G×S suggestibility;

from height and BMI for which previous studies indicate males and females possess very similar

genetic architectures [13], to WHR, a trait with well-documented G×S interactions [48, 16, 49, 50],

and BMD, for which G×S interactions are thought to exist but have eluded detection [51]. LBR

provided evidence of G×S interactions impacting height, BMI, and BMD at regions of the genome

where sex-specific genetic effects are relatively small, however such regions are enriched in known

eQTL. For WHR, LBR replicated many large-magnitude G×S interactions previously discovered

using single-marker regression, but also located novel G×S interactions near such genes as the

estrogen receptor ESR1.
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2.4 Results

2.4.1 Overview of the LBR model, inference methods, and implementation

To study sex differences we regressed male and female phenotypes (ym and yf) on male and female

genotypes (Xm and Xf) using a SNP-by-sex interaction model of the form


ym

yf

 =

1µm

1µf

 +

Xm

Xf

 b0 +


Xm

0

 bm +


0

Xf

 bf +


εm

εf

 . (2.1)

Above, µm and µf are male and female intercepts, b0 = b0 j ( j = 1, . . . , p) is a vector of main

effects, bm = bm j and bf = bf j are male and female interactions, respectively and εm = εmi and

εf = εfi are male and female errors which were assumed to follow normal distributions with zero

mean and sex-specific variances. Female-specific and male-specific SNP effects are defined as

βf j = b0 j + bf j and βm j = b0 j + bm j , respectively.

2.4.1.1 Prior assumptions

For SNP effects we adopted priors from the spike-slab family with a point of mass at zero and

a Gaussian slab [24] specifically, p
(
bk j

)
= πk N

(
0, σ2

bk

)
+ (1 − πk ) 1

(
bk j = 0

)
(where k = 0,

f or m). Here, πk and σ2
bk

are hyper-parameters representing the proportion of nonzero effects

and the variance of the slab; these hyper-parameters were treated as unknown and given their own

hyperpriors (see Methods).

2.4.1.2 Local-regression

Implementing the above model with whole-genome SNPs (p ∼ 600K) and very large sample size

(n ∼ 300K) is computationally extremely challenging. However, LD in homogeneous un-structured

human populations spans over relatively short regions (R2 between allele dosages typically vanishes

within 1-2 Mb; Fig A.1). Therefore, we applied LBR to long, overlapping chromosome segments

(Fig 2.1). Specifically, we divided the genome into “core” segments containing 1,500 contiguous
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Figure 2.1: Strategy for implementing local Bayesian regressions genome-wide
The phenotype is regressed upon multiple sequential SNPs using a sliding window approach. The core
region contained 1500 SNPs (roughly 8Mb, on average) and each buffer region contained 250 SNPs
(roughly 1Mb, on average). Core parameters (posterior samples) are stitched together, then sex-specific
effects and G×S interactions are inferred at the level of SNP j and window j∗.

SNPs (roughly 8Mb, on average), then applied the regression in equation 2.1 to SNPs in the core

segment plus 250 SNPs (i.e., roughly 1Mb) in each flanking region, which were added to account

for LD between SNPs at the edge of each core segment with SNPs in neighboring segments.

2.4.1.3 Inferences

We used the BGLR [52] software to draw samples from the posterior distribution of the model

parameters and used these samples to make inference about individual SNP effects including:

(i) the posterior probability that the jth SNP has a nonzero effect in males
(
PPMSNP j

)
and

females
(
PPFSNP j

)
and (ii) the posterior probability that the female and male effects are different(

PPDiffSNP j

)
.

In regions involving multiple SNPs in strong LD, inferences at the individual-SNP level may

be questionable. Therefore we borrowed upon previous work by Fernando et al. [26], enabling

us to aggregate multiple sex-specific SNP effects within relatively small regions using “window

variances”. For each SNP j we defined a window j∗ around the SNP based on local LD patterns (see

Methods). We then defined the male-specific and female-specific window variances as σ2
gm j∗

=
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var
(
X j∗βm j∗

)
and σ2

gf j∗
= var

(
X j∗βf j∗

)
, respectively. Here, X j∗ represent genotypes at SNPs

within the j∗ window and var() is the sample variance operator. Prior to model fitting, the

phenotype is scaled across sexes; thus, sex-specific window variances may be interpreted as the

proportion of total phenotypic variance explained by sex-specific SNP effects. From samples of

sex-specific window variances, we computed the posterior probability of (i) nonzero male-specific

window variance

(
PPM

σ2
g j∗

)
, (ii) nonzero female-specific window variance

(
PPF

σ2
g j∗

)
, and (iii)

sex difference in window variances

(
PPDiff

σ2
g j∗

)
.

2.4.2 LBR offers improved power with lower false-discovery rates

We used simulations to assess the power and false discovery rate (FDR) of LBR and to compare it

with that of standard single-marker-regression (SMR). Traits were simulated using SNP genotypes

from theAxiomUK-Biobank (119,190males and 139,738 females, all distantly relatedCaucasians).

We simulated a highly complex trait with one causal variant (CV) per ∼ 2Mb which on average

explained a proportion of the phenotypic variance equal to 3.3x10-4. Our simulation used a total

of 60,000 SNPs (consisting of 6,000 consecutive SNPs taken from 10 different chromosomes) and

150 CVs; on the complete human genome “scale” this corresponds to a trait with 1,500 CVs and

a heritability of 0.5 (see Methods for further details). 40% of the CVs (a total of 60 SNPs in our

simulation) had differing sex-specific effects and the remaining 60% (90 SNPs) had effects that

were the same in males and females.

2.4.2.1 Power and FDR when causal variants are genotyped

First, we analyzed the simulated phenotypes using all SNPs (including the 150 causal ones).

Initially interested in inferring G×S interactions, we ranked SNPs based on LBR’s PPDiffSNP j

metric and based on SMR’s p-value for sex difference (pvalue-diff , see Methods) and used the two

ranks to estimate power and FDR as a function of the number of SNPs selected (Fig 2.2). LBR

showed consistently higher power (achieving a power of 80% when selecting the top-50 SNPs with
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Figure 2.2: Estimated power and false-discovery rate for discovering observed SNPs with G×S
interactions
Shown as a function of the number of SNPs selected. Each point represents a sample average and error bars
represent 95% confidence intervals, each derived using 30 Monte Carlo replicates. LBR (SNP): local
Bayesian regression, utilizing PPDiffSNP j . SMR: single-marker regression, utilizing pvalue-diff.

highest PPDiffSNP j and lower FDR than SMR. The false discovery rate of LBR was very low when

selecting the top-50 SNPs with highest PPDiffSNP j and exhibited a very sharp phase-transition

with fast increase in FDR thereafter.

We also compared the two methods based on arbitrary, albeit commonly used, mapping thresh-

olds for SMR and LBR. At PPDiffSNP j ≥ 0.95, LBR selected an average (across simulation

replicates) of 38.33 SNPs with an estimated power of 0.634 and estimated FDR of 0.007. Con-

versely, at pvalue-diff ≤ 5x10-8, SMR selected an average of 50.7 SNPs with an estimated power of

0.436 and estimated FDR of 0.451. Altogether, these results suggest that for G×S discovery, LBR

offers higher power and lower FDR than SMR—the method most widely used in GWA studies—at

least when G×S interactions are observed.

When trying to map SNPs that had effect in at least one sex, we used

PPSNP j = max
[
PPMSNP j ,PPFSNP j

]
and p-values from an F-test (see Methods) as metrics for LBR and SMR methods, respectively.

Again, LBR showed higher power with lower FDR than a standard SMR p-value (Fig A.2). At

traditional mapping thresholds, LBR and SMR had similar power but LBR achieved that power
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with much lower FDR; at PPSNP j ≥ 0.95, the average number of SNPs selected was 120.83 with

an estimated power of 0.799 and estimated FDR of 0.009 while at p-value ≤ 5x10-8, the number of

SNPs selected was 374.56 with an estimated power of 0.794 and FDR of 0.66.

2.4.2.2 Power and FDR under imperfect LD

In a second round of analyses, we removed all CVs from the panel of SNPs used in the analysis to

represent a situation where CVs are not observed, and genotyped SNPs are tagging CVs at varying

degrees. As before, we initially assessed the relative performance of LBR to infer segments

harboring G×S interactions. Power and FDR were assessed at several resolutions: 1Mb, 500Kb

and 250Kb regions around each CV. At each resolution, a discovery was considered true if the

finding laid within a segment harboring a G×S CV. Power and FDR were computed at different

thresholds (PPDiffSNP j and PPDiff
σ2
g j∗

for LBR and pvalue-diff for SMR; Fig 2.3). When using

a 1Mb target area—such that correct G×S discoveries must be within 500Kb on either side of a

true G×S event—PPDiff
σ2
g j∗

thresholds (LBR’s window-based metrics) provided highest power

within an FDR range of 0-0.3, thereafter SMR provided slightly higher power. As expected,

when removing CVs, power was estimated to be much lower than when CVs were observed; at

PPDiff
σ2
g j∗
≥ 0.95, the estimated power and FDR were 0.454 and 0.004, respectively, while at

pvalue-diff ≤ 5x10-8, estimated power and FDR were 0.22 and 0.006. As seen in Fig 2.3, when

considering a finer resolution (500Kb and 250Kb) the performance of both LBR-based approaches

was more robust than SMR. Altogether this indicates that for the discovery and mapping of

unobserved G×S interactions, LBR’s window-based metric provides higher power with equivalent

FDR and finer resolution than single-marker regression methods.

To infer segments containing CVs that affect at least one sex, we again used LBR to decide

whether either sex-specific effect was nonzero at the level of individual SNPs or windows. Using a

1MB target area, LBR’s window-based metrics provided the highest power within an FDR range of

0-0.025. When decreasing the target area, LBR provided the highest power over larger FDR ranges

(Fig A.3).
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Figure 2.3: Power vs false-discovery rate for discovering genomic regions containing masked G×S
interactions
Here power is defined as the expected proportion of G×S interactions that are being tagged by at least one
selected SNP j or window j∗. False discovery rate is defined as the expected proportion of selected SNPs
or windows that are not tagging any G×S interactions. Each point is an estimate and error bars for both axes
represent 95% confidence intervals. Point estimates and intervals were derived using 30 Monte Carlo
replicates. Each facet corresponds to a different “target area”, a fixed width around each G×S interaction
that defines the set of SNPs effectively tagging it. LBR (SNP): uses the PPDiffSNP j metric spanning 1-0.
LBR (Window): uses the PPDiff

σ2
g j∗

metric spanning 1-0. SMR: uses the pvalue-diff metric spanning (on

the -log10 scale) 8-0.
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2.4.3 For real human traits, many newly discovered G×S interactions show relatively small
sex-specific effects

We analyzed four complex human traits (height, BMI, BMD, andWHR)measured among∼259,000

distantly related Caucasians from the UK Biobank (∼119,000 males and ∼140,000 females). For

each trait, we fit the LBR model (equation 2.1) across the entire autosome consisting of 607,497

genotyped SNPs using 417 overlapping segments (Fig 2.1) and obtained evidence of G×S interac-

tions at the level of SNP j and window j∗.

To compare both the magnitude and sign of sex-specific SNP effects, we plotted each β̂f j against

β̂m j (Fig 2.4A). The trait was scaled across sexes prior to model fitting; thus, male- and female-

specific effects were not constrained to the same scale. In this way, one might expect male-specific

SNP effects to uniformly differ from female-specific SNP effects by a multiplicative factor if the

variance of the phenotype is different between sexes (sample statistics within each sex are provided

within Table A.1). Surprisingly, we did not observe evidence of sex-specific SNP effects uniformly

differing due to differences in phenotypic scale; for height, BMD, and BMI, as seen in Fig 2.4A,

most large effect SNPs lie near the blue diagonal line. For WHR, we observed largely consistent

results from prior studies [48, 16, 49]: namely the prevalence of numerous SNPs with relatively

large effects in females but little to no effect in males. No traits exhibited evidence of any SNPs

with (i) high confidence male- and female- specific effects (no SNPs with PPMSNP j ≥ 0.9 and

PPFSNP j ≥ 0.9) and (ii) differing signs between sexes.

We then aggregated sex-specific SNP effects within small LD-based regions to estimate sex-

specific window variances σ2
gm j∗

and σ2
gf j∗

and compared the magnitude of each (Fig 2.4B).

Interestingly for traits such as height, many large effect regions bear slightly largerwindow variances

for males than for females. This was not observed at the single SNP level, suggesting that

many regions bearing numerous small effect SNPs produce aggregate effects that are potentially

larger (although not reaching a PPDiff
σ2
g j∗
≥ 0.9 threshold) in males than in females. One

example is the GDF5 locus, previously known to strongly associate with adult height [53], where a

peak PPDiff
σ2
g j∗

signal centered on rs143384 had slightly different estimated sex-specific window
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Figure 2.4: Comparing sex-specific genetic effects
(A) Plot of estimated female SNP effects against estimated male SNP effects for all 607,497 genotyped
autosomal SNPs. Points are colored by their posterior probability of sex difference at the level of individual
SNPs. (B) Plot of estimated female window variances against estimated male window variances for all
607,497 LD-based windows, with each window j∗ centered on a different focal SNP j. Points are colored
by their posterior probability of sex difference at the level of window variances. (C)Miami-like plot
depicting location and magnitude of G×S interactions identified through sex-specific window variances.
For each trait, showing estimated male window variance above the x-axis and estimated female window
variance below the x-axis. Vertical lines denote changing chromosomes. A sample of windows is labeled
with nearest gene annotation, obtained from Axiom UKB WCSG annotations, release 34. Gray labels
indicate nearest genes with relatively large window variances evidently shared across sexes, while red labels
indicate nearest genes with detected G×S interactions.
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variances (σ̂2
gm j∗

= 3.0x10-3 and σ̂2
gf j∗

= 2.6x10-3) but weak evidence of a G×S interaction

PPDiff
σ2
g j∗

= 0.544). For BMD, several large effect regions show suggestive evidence of G×S

interactions including the AKAP11 locus and the CCDC170 locus (PPDiff
σ2
g j∗

= 0.856 and 0.745,

respectively), both previously associated with bone mineral density [54, 55, 56, 57].

To make G×S inferences at the level of window variances irrespective of the magnitude of sex-

specific effects, we adopted a PPDiff
σ2
g j∗

threshold of 0.9, which in simulations (Fig 2.3) provided

optimal power at an estimated FDR of 0.029 when using a 1MB target area. For height, a total of

eight distinct regions possessed a PPDiff
σ2
g j∗
≥ 0.9, two of which possessed a PPDiff

σ2
g j∗
≥ 0.95.

For BMI, 5 distinct regions possessed a PPDiff
σ2
g j∗
≥ 0.9 with none reaching a more stringent

PPDiff
σ2
g j∗
≥ 0.95 threshold, and none overlapping with two previously suggested BMI G×S SNPs

[58]. As seen in Fig 2.4C, inferred G×S interactions for height and BMI possess relatively small

sex-specific window variances; as an example, for height, the window centered on SNP rs1535515

(near LRRC8C) had a PPDiff
σ2
g j∗

= 0.96, while σ̂2
gm j∗

= 2.1x10-5 and σ̂2
gm j∗

= 1.1x10-4. For BMD,

seven regions reached a 0.9 PPDiff
σ2
g j∗

threshold while one higher-confidence G×S interaction

(PPDiff
σ2
g j∗
≥ 0.95) was detected within ABO, the gene controlling blood type.

For WHR, roughly 45 distinct genomic regions possessed a PPDiff
σ2
g j∗
≥ 0.9, while 34 of

these possessed a PPDiff
σ2
g j∗
≥ 0.95. We found many previously detected G×S interactions known

to associate with WHR or a related trait, WHR adjusted for BMI (WHRadjBMI) [48, 16, 49, 50].

These included interactions at LYPLAL1,MAP3K1, COBLL1, RSPO3, and VEGFA among others.

We also detected numerous novel G×S interactions (Table 2.1) near physiologically intriguing genes

such as the estrogen receptor gene ESR1 and the ATP binding cassette transporter A1 gene ABCA1

known to play a role in HDL metabolism (PPDiff
σ2
g j∗
≥ 0.95). As seen in Table 2.1, both novel

signals possessed a high-confidence female-specific effect with weak evidence for a male-specific

effect (PPF
σ2
g j∗
≥ 0.95; PPM

σ2
g j∗
≤ 0.6), however the magnitude of the female-specific effect

was relatively small (σ̂2
gf j∗

≤ 1.4 × 10−4). As evident from Table 2.1, most novel WHR G×S

interactions detectable with LBR are those with relatively small sex-specific effects.

Additionally, we utilized a traditional SMR approach (see Methods) for the discovery of G×S
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Table 2.1: G×S interactions inferred through sex-specific window variancesa

Focal SNPb trait σ̂2
gm j∗

c σ̂2
gf j∗

c PPM
σ2
gj∗

PPF
σ2
gj∗

PPDiff
σ2
gj∗

Nearest gened location eQTLe

rs8176719 BMD 0.06000 0.00182 1.000 0.794 1.000 ABO exon/frameshift yes
rs1535515 height 0.00211 0.01170 0.819 0.999 0.956 LRRC8C intron yes
rs1544926 height 0.00763 0.00035 0.983 0.418 0.955 COL23A1 UTR-3 yes
rs6905288 WHR 0.00567 0.22200 0.920 1.000 1.000 VEGFA downstream
rs72961013 WHR 0.03260 0.18100 1.000 1.000 1.000 RSPO3 downstream
rs1128249 WHR 0.00132 0.10700 0.614 1.000 1.000 COBLL1 intron yes
rs12022722 WHR 0.00080 0.07180 0.490 1.000 1.000 LYPLAL1 downstream yes
rs1776897 WHR 0.00870 0.06140 0.976 1.000 0.950 HMGA1 upstream yes
rs11057401 WHR 0.00438 0.06030 0.846 1.000 1.000 CCDC92 exon/missense yes
rs17777180 WHR 0.00031 0.05950 0.291 1.000 1.000 CMIP intron yes
rs4607103 WHR 0.00195 0.05920 0.809 1.000 1.000 ADAMTS9-AS2 intron yes
rs6937293 WHR 0.00457 0.04660 0.839 1.000 1.000 LOC728012 downstream yes
rs16861373 WHR 0.00066 0.04300 0.389 1.000 0.995 PLXND1 intron
rs73068463 WHR 0.00068 0.04220 0.461 1.000 1.000 SNX10 intron yes
rs9376422 WHR 0.00107 0.04180 0.524 1.000 1.000 LOC645434 upstream
rs6867983 WHR 0.00192 0.03820 0.440 1.000 0.998 MAP3K1 upstream
rs2171522 WHR 0.00241 0.03650 0.561 1.000 0.998 ITPR2 downstream yes
rs3810068 WHR 0.00026 0.03590 0.174 1.000 1.000 EMILIN2 upstream yes
rs568890 WHR 0.00129 0.03110 0.809 1.000 1.000 NKX2-6 upstream yes
rs1332955 WHR 0.00647 0.02940 0.970 1.000 0.973 LOC284688 downstream yes
rs13133548 WHR 0.00019 0.02400 0.175 0.969 0.956 FAM13A intron yes
rs11263641 WHR 0.00207 0.02340 0.723 1.000 0.991 MYEOV downstream yes
rs2800999 WHR 0.00201 0.02220 0.691 1.000 0.979 TSHZ2 intron
rs2244506 WHR 0.00101 0.02070 0.453 0.998 0.985 MIR5694 downstream
rs7259285 WHR 0.00182 0.01710 0.767 1.000 0.989 HAUS8 downstream yes
rs4450871 WHR 0.00002 0.01680 0.027 1.000 1.000 CYTL1 downstream
rs4080890 WHR 0.00153 0.01630 0.594 0.999 0.975 KCNJ2 downstream
rs4684859 WHR 0.00039 0.01570 0.330 0.998 0.994 PPARG downstream
rs7704120 WHR 0.00049 0.01370 0.476 0.998 0.991 STC2 downstream
rs10991417 WHR 0.00048 0.01230 0.339 0.986 0.966 ABCA1 intron yes
rs12454712 WHR 0.00087 0.01020 0.360 0.996 0.965 BCL2 intron yes
rs62070804 WHR 0.00004 0.00887 0.052 0.969 0.961 ABHD15 exon/missense yes
rs10760322 WHR 0.00027 0.00812 0.282 0.986 0.968 LHX2 downstream
rs1361024 WHR 0.00022 0.00760 0.203 0.982 0.962 ESR1 intron
rs1358503 WHR 0.00021 0.00716 0.309 0.989 0.966 SEMA3C upstream yes
rs13156948 WHR 0.00016 0.00660 0.079 0.970 0.957 IRX1 downstream
rs12432376 WHR 0.01740 0.00074 1.000 0.552 0.994 STXBP6 upstream
a Listed are loci with at least 0.95 posterior probability that sex-specific window variances differ. The table is sorted first by trait, then by
magnitude of the female-specific window variance. Results are filtered such that each window listed consisted of a distinct set of SNPs. A
full list of all G×S signals at a PPDiff

σ2
gj∗
≥ 0.90 threshold is provided in Table A.2.

b Focal SNP is defined as the center SNP j in window j∗.
c The proportion of variance explained by sex-specific SNP effects, expressed as a percentage.
d Nearest gene and location identified through Axiom UKB WCSG annotations, release 34. The gene/locus is bold if it has been previously
detected as a G×S interaction for WHR or WHR adjusted for BMI [48, 16, 49, 50].

e If “yes”, the focal SNP is significantly associated with gene expression in at least one tissue, according to GTEx V7.
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interactions among traits to compare pvalue-diff signals to PPDiff
σ2
g j∗

signals (Fig A.4). At

pvalue-diff ≤ 5x10-8, there were no genome-wide significant G×S-interacting SNPs for height, one

significant SNP for BMI nearby a window with PPDiff
σ2
g j∗
≥ 0.9, and one significant peak within

ABO for BMD (the same signal detected using PPDiff
σ2
g j∗

). Regions with a PPDiff
σ2
g j∗
≥ 0.9

generally coincided with at least nominally-significant pvalue-diff signals; for height and BMD,

regions with PPDiff
σ2
g j∗
≥ 0.9 also possessed a peak SNP with pvalue-diff ≤ 0.01. For BMI,

PPDiff
σ2
g j∗
≥ 0.9 signals possessed a peak SNP of pvalue-diff ≤ 0.1. This, together with the fact

that novel G×S interactions found using LBR possess relatively small sex-specific effects, suggests

that LBR may be detecting G×S interactions that are otherwise missed due to low power. Lastly

for WHR, most of the high-confidence PPDiff
σ2
g j∗
≥ 0.9 signals coincided with clear and obvious

pvalue-diff peaks.

2.4.4 Inferred G×S interactions are enriched in tissue-specific eQTL

As seen previously, many G×S interactions inferred using LBR have exceedingly small sex-specific

effects. To further investigate whether G×S detections using the PPDiff
σ2
g j∗

metric may be func-

tionally relevant, we inferred whether such signals are enriched in eQTL identified from GTEx.

Specifically, using a hypergeometric test we asked whether PPDiff
σ2
g j∗

-selected focal SNPs (SNP

j within window j∗) were enriched in eQTL, then compared to eQTL enrichment from pvalue-

diff-selected SNPs as a function of the number of SNPs selected (Fig A.5). PPDiff
σ2
g j∗

-selected

focal SNPs showed consistently higher eQTL enrichment than pvalue-diff-selected SNPs for all

traits except WHR. For instance, at PPDiff
σ2
g j∗
≥ 0.9, the total number of windows (focal SNPs)

selected was 36, 264, 34, and 13, for height, WHR, BMD, and BMI, respectively. With these

selections, eQTL enrichment p-values were 2.39x10-4, 1.52x10-12, 2.01x10-12, and 8.33x10-4, for

height, WHR, BMD, and BMI, respectively. When selecting the same number of SNPs using

pvalue-diff, enrichment p-values were 2.25x10-2, 1.56x10-28, 5.54x10-8, 1.93-1, for height, WHR,

BMD, and BMI, respectively.

To provide more information about how genetic regions bearing G×S interactions may impact
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gene expression in specific tissues, we determined whether focal SNPs at PPDiff
σ2
g j∗
≥ 0.9 are

enriched in tissue-specific eQTL (Fig 2.5). For height, BMD, and WHR, such SNPs showed

significant eQTL enrichment in at least one tissue, using a conservative bonferroni corrected en-

richment p-value of 2.6x10-4 (correcting for 192 tests in total; 48 tissues and 4 traits). Interestingly,

BMD’s G×S signals are very strongly enriched in eQTL with associated eGenes (including ABO

and CYP3A5) expressed in the adrenal gland, among other tissues. For height, we observed small

enrichment p-values across many tissues since G×S focal SNPs are enriched in eQTL with as-

sociated eGenes (including LOC101927975 and CNDP2) expressed across many tissues. Lastly

for WHR, we observed G×S detections to be heavily enriched in eQTL with associated eGenes

expressed in fibroblast, adipose, and skin tissues.

2.5 Discussion

We have investigated the degree to which sex-specific genetic architectures differ at local

regions, using large biobank data (N∼ 119,000males and∼140,000 females) and Bayesianmultiple

regression techniques that estimate sex-specific marker effects accounting for local LD patterns.

The flexibility of the Bayesian approach enables multi-resolution inference of sex-specific effects:

from individual SNP effects to window-variances that aggregate SNP effects within chromosome

segments. These inferences can be drawn all using the results of the same model fit (equation 2.1)

but different post-processing of samples of SNP effects from the posterior distribution.

The Bayesian multiple regression technique performed in this study, along with estimation of

window variances, was largely inspired by Fernando et al. [26]. In that study, windows were

defined using disjoint, fixed intervals. In contrast, for each SNP we define a window based on local

LD patterns, resulting in heavily overlapping, dynamically sized windows. The methods presented

here also bear resemblance to those of Vilhjálmsson et al. [45], which utilized point-normal priors

to estimate human SNP effects after accounting for local LD patterns. In that study, posterior means

of SNP effects were estimated for the purposes of prediction while in this study, we numerically

derive the full posterior distribution, allowing for inference of non-null SNP effects and window
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Figure 2.5: Evidence that LBR-identified G×S interactions are enriched in tissue-specific eQTL
Plotted on the x-axis is the p-value obtained from a hypergeometic test providing evidence that focal SNPs
selected using PPDiff

σ2
g j∗
≥ 0.9 are enriched in tissue-specific eQTL. The dashed line represents a

Bonferroni corrected significance threshold of 2.6x10-4.
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variances.

Through simulations, we showed that local Bayesian regressions (LBR) provide superior power

and precision to detect causal variants and those specifically bearing G×S interactions. We rational-

ize improvements in power upon traditional SMRmethods by noting that the magnitude of a typical

causal variant or G×S interaction is exceedingly small and can elude hypothesis testing partly due to

the burden of multiple test correction. We also note that the resolution (peak size) in SMR signals

is relatively large when using large sample sizes (due to not fully accounting for local LD patterns).

To overcome this problem, we provided evidence that LBR methods—either by estimating true

marker effects or by aggregating true marker effects within relatively small regions—can achieve

improved resolution when working with large sample sizes such as biobank-level data.

When using LBR to analyze real human traits, we have provided credence to our posterior

probability-based discoveries by determining that LBR-detected G×S interactions are generally

more enriched in eQTL than SMR-detected interactions. For BMD, we provided new evidence

that sex-specific effects differ within ABO and that G×S interactions are highly enriched in adrenal

gland-specific eQTL. This encourages the hypothesis that some G×S are eQTL that may modulate

gene expression in the adrenal gland, with gene function dependent on the presence or absence of

sex hormones. This was also an intriguing finding given that ABO blood groups have been known

to associate with osteoporosis and osteoporosis severity [59, 60]. ForWHR, we detected previously

known, large-magnitude G×S interactions that were discovered using WHR or WHRadjBMI [48,

16, 49, 50], but additionally discovered novel, small magnitude G×S interactions near such genes

as ESR1 and ABCA1. In a previous work analyzing WHRadjBMI, ABCA1 showed a significant

female-specific genetic effect only, however the test for G×S interaction failed to reach significance

[50].

For traits like height and BMI, large effect loci are estimated to have very similar effects between

males and females and loci with evidence of G×S interactions were those possessing relatively small

sex-specific effects. As seen in Fig 2.4B, many relatively large window variances for height are

estimated to be slightly higher for males than for females albeit not reaching a PPDiff
σ2
g j∗
≥ 0.9
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threshold. This is consistent with the fact that the global genomic variance for height was estimated

to be higher in males than in females in a previous study using the interim release of the UKBiobank

[14]. Similarly, the same prior study estimated the global genomic variance of BMI to be higher

in females than in males and we observe, if anything, evidence of sex-specific window variances

leading to the same conclusion. These observations may potentially indicate that relatively large

causal variants have slightly different sex-specific effects for traits like height and BMI, however, if

that is the case we are still underpowered to confidently detect such interactions.

It is important to acknowledge that while the methods presented here appear useful to decipher

sex-specific genetic architectures from large human samples, additional work will be required to

determine how these techniques may infer heterogeneous genetic effects in other contexts (other

types of gene-by-covariate interactions), or when using different sample sizes or samples from

different populations. With large sample sizes, the increased power and flexibility of LBR comes

with the cost of a significantly larger computational burden than the one involved in the traditional

SMR approach; however, working with large datasets can be made manageable by adjusting the size

of each fitted segment (Fig 2.1) and parallel processing the fitting of each segment. Alternatively,

LBR may be used as a follow up to traditional SMR tests, using pre-selected regions of interest.

Another limitation inherent to aggregating SNP effects using window variances is that the sign of

the effect is lost. In this way, when inferring G×S interactions through window variance differences,

we cannot comment on whether sex-specific effects had the same sign or differing signs.

To conclude, we have demonstrated the powerful and flexible use of local Bayesian regressions

for GWA to infer sex-specific genetic effects and G×S interactions using the UK Biobank. This

was largely done by showing various means to utilize estimates of true (accounting for local LD),

sex-specific SNP marker effects for GWA even when causal variants are not on the SNP panel for

analysis. We anticipate that manymore traits will be analyzed with this method to increasingly learn

more about what is contributing to differences between males and females in human populations.
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2.6 Methods

2.6.1 Genotype data

Individuals from the UKBiobank [61] were genotyped using the customUKBiobank AxiomArray

(http://www.ukbiobank.ac.uk/scientists-3/uk-biobank-axiom-array/) containing∼

800,000 SNPs. SNP quality control proceeded with the Caucasian cohort (N = 409,700); SNPs

with a minor allele frequency < 0.01 and missing call rate > 0.05 were removed. SNPs from

sex chromosomes and the mitochondrial chromosome were not considered in this study, resulting

in 607,497 autosomal SNPs. Individuals with coefficient of relatedness of 0.03 or greater were

removed from analysis, resulting in 258,928 distantly related genotyped individuals for use in this

study.

2.6.2 Phenotype data

All phenotypic data was collected using baseline measurements of UK Biobank participants. For

height, the description “Standing height” from the UK Biobank was used. Individuals with heights

(cm) less than 147 or more than 210 were removed from analysis. For BMD, the descriptions “Heel

bone mineral density (BMD)”, “Heel bone mineral density (BMD) (left)”, and “Heel bone mineral

density (BMD) (right)” were used in conjunction; for individuals with missing “Heel bone mineral

density (BMD)” records, either the (left), the (right), or if available, the average between (left) and

(right) was used. For BMI, the description “Body mass index (BMI)” was used and for WHR,

the ratio of "Waist circumference” to “Hip circumference” was used. Prior to model fitting, all

traits were pre-corrected for sex, age, batch, genotyping center, and the first 5 principle components

derived from genomic data. The adjusted phenotypes consisted of least-squares residuals from a

model that included the effects listed above. For each trait, sample sizes and within-sex summary

statistics are provided in S1 Table.
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2.6.3 LBR hyperparameters

Hyperparameters used in the LBRmodel (eq. 1) were error variances for each sex, the proportion of

nonzero effects for each SNP effect component, and the variances of nonzero effects for each SNP

effect component
{
σ2
εm, σ

2
εf , π0, πm, πf, σ

2
b0
, σ2

bm, σ
2
bf

}
. Variances (of either SNP effect components

or sex-specific errors) were given a scaled-inverse Chi-square prior, parameterized by a degree of

freedom parameter df (set to 5) and scaling parameter S. S is set according to built-in rules

of the BGLR package using a prior model R-squared of 0.03 for main effects and 0.01 for the

sex-interaction terms. More detail on how the scale parameter S is calculated can be found in Perez

and de los Campos, 2014 [52]. πk was given a beta prior with shape parameters α = 2 and β = 2.

An example of how to implement LBR (eq. 2.1) using BGLR with the above hyperparameter

specifications is provided at https://github.com/funkhou9/LBR-sex-interactions.

2.6.4 Inference using post-processing of posterior samples

BGLR uses Markov chain Monte Carlo (MCMC) to sample from the posterior distribution of

sex-specific effects. For each MCMC sample we derived male and female effects using βm j(s) =

b0 j(s)
+ bm j(s) and βf j(s)

= b0 j(s)
+ bf j(s)

, where s = 1, . . . ,4,350 indexes MCMC samples. Here,

results were obtained using three separate MCMC chains. Each chain was obtained using 3,400

MCMC samples; the first 500 samples were discarded as burn-in and the remaining samples where

thinned by an interval of 2, leading to 1,450 samples per chain.

Estimates of sex-specific SNP effects
(
β̂m j and β̂f j

)
were obtained from their posterior means.

We estimated the posterior probability of a female-specific non-zero SNP effect using PPFSNP j =

max
[
Pr

(
βf j > 0 | D

)
,Pr

(
βf j < 0 | D

)]
, where D represents the observed data. This was done

by counting the proportion of βf j samples above zero and below zero. This was repeated for

inferring the male-specific SNP effect. The posterior probability of sex-difference at individual

SNP-effects was estimated using PPDiffSNP j = max
[
Pr

(
βm j > βf j | D

)
,Pr

(
βm j < βf j | D

)]
where again these probabilities were estimated using the corresponding frequencies from the

posterior distribution samples.
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For each MCMC sample we also aggregated SNP effects within window j∗ using um j∗(s) =

X j∗βm j∗(s) and uf j∗(s)
= X j∗βf j∗(s)

. For this calculation we used a common genotype matrix

X j∗ consisting of all N male and female genotypes to avoid differences in additive genetic val-

ues arising from allele frequency differences between males and females occurring by random

sampling. Samples of sex-specific window variances were obtained using the sample variance:

σ2
m j∗(s)

= (N−1)−1 ∑N
i=1

(
umi j∗(s)

− ūm j∗(s)

)2
andσ2

f j∗(s)
= (N−1)−1 ∑N

i=1

(
ufi j∗(s)

− ūf j∗(s)

)2
.

Estimates of sex-specific window variances were obtained from their posterior means. Infer-

ring sex-specific window variances was done by estimating PPM
σ2
g j∗
= Pr

(
σ2
gm j∗

> 0 | D
)
and

PPF
σ2
g j∗
= Pr

(
σ2
gf j∗

> 0 | D
)
and inferring a G×S interaction at window j* was done by estimat-

ing:

PPDiff
σ2
g j∗
= max

[
Pr

(
σ2
gm j∗

− σ2
gf j∗

> t j∗ | D

)
,Pr

(
σ2
gm j∗

− σ2
gf j∗

< t j∗ | D

)]
,

where t j∗ was used to exert judgment about how different sex-specific window variances must be

to declare a meaningful G×S interaction. Here, t j∗ was one-tenth of the mean of all posterior

samples of σ2
gm j∗

and σ2
gf j∗

. Functions to process posterior samples to estimate and infer non-

null sex-specific effects and G×S interactions is provided at https://github.com/funkhou9/

LBR-sex-interactions.

2.6.5 Defining local, LD-based windows

To define SNPs contained within window j∗, a region of LD centered on SNP j, we collected

all SNP j′ immediately surrounding SNP j for which cor(x j, x j′)
2 ≥ 0.1. We allowed up to

two consecutive SNPs in which cor(x j, x j′)
2 < 0.1 to allow for potential mapping errors or other

unexplained instances where LDwith SNP j dips only briefly. The function getWindows(), which

provides windows given a genotype matrix X , is provided in https://github.com/funkhou9/

LBR-sex-interactions.
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2.6.6 Single marker regression

We also performed single-marker regression analyses using following model:


ym

yf

 =

1µm

1µf

 +

xm j

xf j

 β j +


xm j

0

 βG×S +


εm

εf

 . (2.2)

As with the LBR model (equation 2.1), we assume sex-specific errors are distributed normally

with zero mean and sex-specific variances. SNP effects and interactions were estimated using

weighted least squares. To test for aG×S interaction at SNP j, a t-test is used: β̂ jG×S
/

SE
(
β̂ jG×S

)
∼

tN−3. The p-value from such a test is referred to as pvalue-diff. To test for any association (either

among males, females, or both), we used an F-test, comparing a restricted model:
ym

yf

 =

1µm

1µf

 +

εm

εf


against the unrestricted model in equation 2.2.

2.6.7 Simulations

Simulated traits were developed using 60,000 genotyped SNPs (the first 6,000 SNPs from the first

ten chromosomes) from 119,190 males and 139,738 females. Using these SNP genotypes, each

trait was simulated as follows:

1. A total of 150 causal variants (CVs) were randomly sampled from 60,000 SNPs.

Let Zm =
{
zmik

}Nm=119,190,q=150

i=1,k=1
and Zf =

{
zfik

}Nf=139,738,q=150

i=1,k=1
denote matrices of

male and female genotypes at sampled CVs.

2. Additive CV effect sizes were randomly sampled from the gamma distribution. 90 CVs

(those with homogenous effects) were sampled from Gamma(k = 10, θ = 1) and were made

negative with a probability of 0.5. Of the 60 CVs with differing sex-specific effects, 30 had

nonzero effects in both sexes but with deferring magnitudes: at random one sex’s effects
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were sampled from Gamma(k = 5, θ = 1) and the other from Gamma(k = 20, θ = 1). For

the remaining 30 CVs, at random one sex’s effects were exactly zero while the other sex’s

effects were sampled from Gamma(k = 10, θ = 1).

Let γm =
{
γmk

}q=150

k=1
and γf =

{
γfk

}q=150

k=1
denote vectors of male-specific and

female-specific CV effects, respectively, for all 150 CVs.

3. Error variances for males σ2
δm and females σ2

δf
were adjusted such that the proportion of

phenotypic variance explained by all QTL is 0.05 for bothmales and females (on the complete

genome scale this corresponds to a heritability of about 0.5).

Let δmi ∼ N
(
0, σ2

δm

)
and δfi ∼ N

(
0, σ2

δf

)
denote residual error for the ith male and ith

female.

4. Male traits φm =
{
φmi

}Nm=119,190
i=1 and female traits φf =

{
φfi

}Nf=139,738

i=1
were simulated

from a linear combination of QTL genotypes plus a residual error: φm = Zmγm + δm and

φf = Zfγf + δf

5. Steps 1-4 are repeated for 30 Monte Carlo replicates.
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CHAPTER 3

EVIDENCE FOR TRANSCRIPTOME-WIDE RNA EDITING AMONG SUS SCROFA
PRE-1 SINE ELEMENTS

This chapter has been published previously [62]. Themanuscript was prepared alongside co-authors

Juan P Steibel, Ronald O Bates, Nancy E Raney, Darius Schenk, and Catherine W Ernst.

3.1 Abstract

RNA editing by ADAR (adenosine deaminase acting on RNA) proteins is a form of transcrip-

tional regulation that is widespread among humans and other primates. Based on high-throughput

scans used to identify putative RNA editing sites, ADAR appears to catalyze a substantial number

of adenosine to inosine transitions within repetitive regions of the primate transcriptome, thereby

dramatically enhancing genetic variation beyond what is encoded in the genome. Here, we demon-

strate the editing potential of the pig transcriptome by utilizing DNA and RNA sequence data from

the same pig. We identified a total of 8550 mismatches between DNA and RNA sequences across

three tissues, with 75% of these exhibiting an A-to-G (DNA to RNA) discrepancy, indicative of a

canonical ADAR-catalyzed RNA editing event. When we consider only mismatches within repet-

itive regions of the genome, the A-to-G percentage increases to 94%, with the majority of these

located within the swine specific SINE retrotransposon PRE-1. We also observe evidence of A-to-G

editing within coding regions that were previously verified in primates. Thus, our high-throughput

evidence suggests that pervasive RNA editing by ADAR can exist outside of the primate lineage to

dramatically enhance genetic variation in pigs.

3.2 Background

Eukaryotes are known for relatively complex mechanisms used to regulate gene expression.

One such mechanism, RNA editing, enables the cell to alter sequences of RNA transcripts [30]

such that they are no longer forced to match the “hard-wired” genome sequence. High throughput
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methods for studying targets of this mechanism transcriptome-wide have been applied to primate

studies, where evidence for massive amounts of ADAR (adenosine deaminase acting on RNA)

catalyzed A-to-I RNA editing has been discovered, preferentially within SINE retrotransposons

such as the primate Alu [32, 63, 64, 65, 66, 67, 68]. Such work has yet to be performed with pig

transcriptomes using the latest sequencing technology. Although little is known about pig SINE

elements compared to those in primates, key features of the pig-specific PRE-1 retrotransposon

make pigs an intriguing model to further elucidate transcriptome-wide patterns of ADAR targets.

ADAR can only catalyze A-to-I editing within dsRNA. The high editibility of the primate

specific Alu element is attributed to its capacity to induce dsRNA; these elements have a high copy

number, are short, relatively undiverged from one another, and tend to cluster in gene rich regions

of the genome [69]. When appearing as tandem and inverted pairs within the same transcribed

region, these properties facilitate intra-molecular dsRNA formation that serve as ADAR targets

[32, 70]. Comparatively, the pig PRE-1 element possesses many of these same properties that are

believed to contribute to dsRNA formation within the transcriptome. Notably, PRE-1 has the 3rd

highest copy number of any SINE cataloged on SINEBase [71].

Since Alu elements are generally found within and near genes, ADAR editing in humans

preferentially targets non-coding regions of many genes such as introns, UTRs and upstream and

downstreamgene proximal regions. ADARediting of these regions is thought to be a key component

of RNA processing via mechanisms that include Alu exonization [72] and RNAi pathway alteration

[73]. By demonstrating that RNA editing in pigs generally targets SINE elements within non-

coding regions of genes, this would suggest that RNA processing by way of ADAR editing of SINE

elements predated the emergence of primate and pig-specific retrotransposons. Rarely, ADAR

editing occurs within coding regions to alter amino acid sequences [74]. This type of editing is

particularlymysterious in that its pattern is less traceable than non-coding editing, but is nevertheless

site-specific and required for the function of essential protein coding genes such as GluR-B in mice

[33]. Therefore, in addition to the regulation of transcripts by way of editing non-coding SINE

elements, editing of coding regions is an essential form of transcriptional regulation in mice, with
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the extent of its conservation across Mammalia yet to be fully determined.

Here, we demonstrate the pig’s capacity for RNA editing. By studying this process in a relatively

distant species to human with a distinct repetitive element repertoire, we want to determine if RNA

editing patterns seen in Alu bearing genomes can likewise be observed in pigs. RNA editing

detection was done by analyzing a single pig using whole genome sequencing data and RNA

sequencing data from liver, subcutaneous fat, and longissimus dorsi muscle. Based on previous

studies done in primates, a bioinformatic strategy was used to find A-to-I (observed as A-to-G)

DNA to RNA mismatches that give evidence of ADAR catalyzed RNA editing events.

3.3 Results and discussion

3.3.1 DNA and RNA sequencing

To provide the materials needed for a transcriptome-wide survey of RNA editing candidates,

genomic DNA as well as total RNA from liver, subcutaneous fat, and longissimus dorsi (LD)

muscle were purified from samples obtained from a single animal, similar to another single-animal

editome study [68]. Sequencing was done using the Illumina HiSeq 2500 to generate 150x2 paired

end reads from genomic DNA, with PolyA RNA sequencing used to generate cDNA reads in

the same format. Roughly 250M pass-filter genomic DNA reads were generated with an average

overall alignment rate of 89% to the Sus scrofa reference genome sequence (Sus scrofa 10.2.69).

An average of 106M pass-filter strand specific cDNA reads were obtained from each tissue, with

an average overall alignment rate of 76%.

3.3.2 Identification of candidate RNA editing events

To scan the transcriptome for possible RNA editing sites, we utilized a custom pipeline influenced

by previous studies done in human cell lines and primates [75, 68]. Prior to alignment, in order

to avoid utilizing bases with relatively poor base qualities at the ends of reads, raw genomic DNA

and cDNA sequencing reads were trimmed for base quality at their 3’ ends before aligning to the

Sus scrofa 10.2.69 reference genome. Additional trimming 6bp from the 5’ ends of cDNA reads
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was done to prevent misidentification of DNA RNA mismatches due to artifacts associated with

the use of random hexamers during cDNA library preparation [76]. When conducting a search for

RNA editing candidates with RNA-seq, strand-specific RNA-seq libraries can be utilized to account

for the strandedness of each transcript, thereby enabling A-to-G DNA-to-RNA mismatches to be

distinguished from T-to-C DNA-to-RNA mismatches. In order to utilize our strand-specific cDNA

alignments for variant calling while preserving the strandedness of each alignment to distinguish A-

to-G fromT-to-Cmismatches, plus-strand alignments were separated fromminus-strand alignments

for each cDNA sample. From all genomic DNA and cDNA alignments, we extracted those reads

that had only 1 recorded alignment in order to optimize our chances that genomic DNA and cDNA

reads arising from the same locus map to the same location. Joint variant calling using SAMTools

[77] was performed, combining genomic DNA alignments with cDNA plus-strand alignments from

each tissue. This was repeated for all cDNA minus-strand alignments. Both resulting VCF files

were analyzed using editTools, an in-house R package made to efficiently scan VCF files for DNA

RNA mismatches using C++ source code. editTools was developed to implement RNA editing

detection within the R framework and to provide visualization tools; editTools was used to generate

all figures in this manuscript pertaining to sequencing data. Default editTools parameters were

used, in which a mismatch was considered a candidate RNA editing site if at a particular locus 1)

the genotype is homozygous according to 95% of the DNA reads, 2) at least 10 reads were used to

determine the genotype, 3) neither genomic DNA nor cDNA samples are indels, 4) at least 5 cDNA

reads from the same tissue differ from the genotype call, and 5) these cDNA reads must have a

Phred-scaled strand-bias P-value of 20 or less. Specific thresholds for DNA and cDNA sequencing

depths were determined according to a previous study that profiled the rhesus macaque editome

from a single animal [68]. Using this approach, we identified a total of 6410 A-to-G mismatch

events representing 75% of all mismatches found (8550 total mismatches; Fig 3.1). When we

restrict our search to known swine repetitive sequences, 5993 out of 6410 A-to-G mismatches are

retained, representing 93.8% of all mismatches in repetitive regions. Of the remaining mismatches

in repetitive regions, 4.1% are T-to-C. It is not surprising that T-to-Cmismatches are the secondmost
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Figure 3.1: DNA to RNA mismatch counts
Comparing all mismatches found transcriptome wide (Left) to those within the body of a repetitive element
(Right). Percentages shown are out of all mismatches found in each category.

common since T-to-C artifacts could arise if at a true A-to-G editing site, plus-strand alignments

were incorrectly identified as minus-strand alignments or vice versa. Note that our observation of

8550 A-to-G mismatches is intended to be a conservative estimate of the total number of ADAR-

catalyzed editing sites in these three tissues, primarily because we have restricted our search to

homozygous sites; at heterozygous sites, it is not feasible to directly determine which allele is being

edited, or if editing is truly occurring at either allele.

3.3.3 Tissue differences

To understand differences in candidate RNA editing sites between tissues, canonical A-to-G mis-

matches were aligned across tissues if they were detected at the same physical position and on the

same strand. The number of candidate RNA editing events was fewer in LD compared to liver or

fat (Fig 3.1), consistent with lower RNA editing activity in muscle compared to other tissues for

rhesus macaque [68]. Despite candidate RNA editing sites showing strong tissue specificity, a total
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Figure 3.2: Shared A-to-G mismatches between tissues
A mismatch between two or more tissues was considered shared if it occurred at the same physical position
and on the same strand.

of 144 A-to-G mismatches were found to be common among all three tissues, whereas 748 were

found to be common between liver and fat (Fig 3.2).

One factor that may contribute to tissue specificity of RNA editing is differential expression

of ADAR [78]. Using RNA samples from 33 additional pigs, a quantitative real-time PCR assay

was used to infer ADAR transcript abundance differences between liver, subcutaneous fat, and

LD muscle (Fig 3.3). Average ADAR expression was determined to be significantly lower in LD

muscle tissue than in either fat (p < 0.0003) or liver (p < 0.00001) tissues, suggesting that differential

ADAR expression may contribute to differences in candidate RNA editing sites between tissues.

3.3.4 Controlling for errors due to mapping quality

After imposing such strict restrictions as excluding genomic DNA and cDNA reads that had more

than one recorded alignment and trimming the ends of reads pre-alignment, we wanted to assess

how well such measures protect against mapping errors, which are among the leading causes of

RNA editing misidentification when using short reads [76, 79]. Mapping quality is a measurement
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Figure 3.3: Relative ADAR transcript abundance between tissues
Expression was measured relative to the LD muscle sample used for sequencing. Using a one-way
ANOVA, a significant effect of tissue on ADAR expression was detected (p < 0.0001). Pairwise
comparisons of tissue means using Tukey HSD shows significant differences in ADAR expression between
LD and liver (p < 0.00001) and between LD and fat (p < 0.003), but no significant difference between fat
and liver (p = 0.0505563).

that provides a probability that a read is misaligned, given its number of possible alignments and

sum of base qualities for each alignment [80]. Knowing this, and under the assumption of no RNA

editing, for each mismatch locus i we computed the probability of observing at least 5 “edited”

reads given the cDNA sequencing depth Ni and average sample mapping quality MQi. Among

all 8550 repetitive and non-repetitive mismatch positions, the maximal probability of observing

at least 5 “edited” reads was ∼ 6.772 × 10−15 for a site with N = 13 and average MQ = 29.

If Bonferroni correction is used then 0.05 / 189,638 = 6.23x10-7 can be used as a threshold for

transcriptome-wide significance, where 189,638 was the total number of queried cDNA positions

with a sequencing depth of at least 5 cDNA reads that were at the location of homozygous loci in

the genomic sequence. From this evidence we conclude that our pipeline sufficiently minimizes

artifacts associated with mapping quality when using the Sus scrofa 10.2.69 assembly.
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3.3.5 Pig editome functional implications

Little is known about the average effect of RNA editing transcriptome wide. For humans, one

prevailing hypothesis is that the exonization of Alu SINE elements is controlled in part by A-to-G

editing. An instance of this mechanism has been demonstrated, where intronic A-to-G editing

events contribute to alternative splicing of nuclear prelamin A so that an Alu element is included in

an exon [72]. To explore the possibility that RNA editing in pigs targets introns to affect splicing,

editTools was used to synthesize mismatch data with Variant Effect Predictor data to find the

relative locations of each mismatch relative to annotated transcripts. Consistent with what has been

found in humans [32], nearly half of all detected A-to-G mismatches are located in retained introns

(Fig 3.4). The remaining sites are concentrated in other non-coding regions including 3’ UTRs,

intergenic, and gene proximal regions. While the majority of non-coding editing events in humans

are attributed to the position and orientation of SINE elements within transcripts [70], coding RNA

editing occurs rarely, usually outside repetitive elements but nevertheless site-specifically. It has

been suggested that site-specificity of coding RNA editing events is facilitated by nearby SINE

elements, which through their induction of long dsRNA regions, recruit ADAR in sufficient density

to affect coding regions in close proximity [75]. From our data, only 49 pig A-to-G mismatches

were found within coding regions and of those, 34 would result in a missense variant (Table 3.1).

It can be noted that a number of amino acid changes resulting from verified macaque DNA RNA

mismatches [68] can be found among our pig dataset – mismatches that control I/V in COPA,

Y/C in BLCAP, I/V in COG3, K/R in NEIL1, and Q/R in GRIA2. Interestingly, Y/C recoding

of BLCAP via RNA editing has been associated with hepatocellular carcinoma (HCC) in humans

as HCC samples were shown to express edited BLCAP in significantly higher amounts than non-

HCC samples [81]. Additionally, exon 6 K/R recoding of NEIL1 by RNA editing was previously

thought to be primate specific and attributed to the K/R site’s proximity to Alu dense regions [82],

however we witness evidence of the same K/R recoding of exon 6 via an A-to-G editing event in

pigs. If in fact SINE elements recruit ADAR to affect nearby coding regions, then our data suggest

the remarkable conservation of NEIL1 K/R recoding across genomes with entirely different SINE
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Figure 3.4: A-to-G mismatch locations relative to the nearest annotated genes
Percentages shown are out of all A-to-G mismatches.

elements.

3.3.6 Pig editome association with pig-specific SINE elements

Since properties of the primate Alu element are suggested to influence RNA editing in both coding

and non-coding regions, one of our primary interests was to determine which SINE elements in pigs

are capable of attracting the majority of ADAR activity. Again using the functionality of editTools,

we merged our mismatch data with data from RepeatMasker to determine which repetitive regions

contain putative RNA editing sites. As mentioned previously, 5993 out of 6410 A-to-G mismatches

are located within the body of a repetitive element. Upon closer inspection, 5715 of the 5993 are

within pig SINE elements as opposed to LINE elements and others (Fig 3.5A), although SINEs
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Table 3.1: A-to-G mismatches resulting in amino acid changes
Position Gene symbol/ID AA SIFT Tissues
1:63408856 ENSSSCG00000029003 L/P tolerated(1) Fat LD Liver
1:125424444 ENSSSCG00000024660 Q/R tolerated(1) Fat LD Liver
2:12622576 LDHB I/M tolerated(1) Fat LD Liver
2:49316285 ARNTL K/E tolerated low confidence(1) Liver
4:98044799 COPA I/V deleterious(0.02) Fat
5:42375023 KRR1 I/T deleterious(0.01) Liver
6:92516721 PTPRM K/R tolerated(1) Fat
6:146168578 NDC1 E/G deleterious(0.01) Liver
7:62951442 NEIL1 K/R deleterious(0.02) Fat LD
7:81602273 ENSSSCG00000002045 C/R tolerated(1) Fat LD Liver
7:102789222 ACOT4 T/A tolerated(0.61) Fat
7:129322238 RPS21 C/R - Fat LD Liver
8:28015971 ENSSSCG00000008767 H/R tolerated(1) Fat LD Liver
8:31629014 TLR1 I/V tolerated(1) Liver
8:32309809 RPL9 I/V tolerated(0.4) Fat
8:32309814 RPL9 E/G deleterious(0.01) Fat
8:48244993 GRIA2 Q/R tolerated(0.07) Fat
9:41146365 ENSSSCG00000023913 Q/R deleterious(0.04) Fat
9:74510703 ENSSSCG00000015294 K/R tolerated(0.13) Liver
9:83273454 SLC25A13 E/G deleterious(0.02) LD
11:22178068 COG3 I/V tolerated(1) Fat LD Liver
12:20231860 AOC3 Q/R tolerated(1) Liver
13:131377159 EIF2B5 Q/R tolerated(1) Fat
13:156760971 UBE2B D/G tolerated(0.48) Fat LD Liver
13:206979572 SON R/G - Fat
14:40832826 PLBD2 R/G tolerated low confidence(0.12) Fat
14:52398588 IGLV-3 E/G tolerated(0.05) Fat
14:59613334 LYST S/G - LD
14:81796679 OIT3 S/G tolerated(1) Liver
15:59811585 HNRNPA2B1 L/P tolerated(0.35) Fat LD Liver
15:98217885 ENSSSCG00000028949 R/G tolerated low confidence(1) Fat LD Liver
16:29335640 ENSSSCG00000016869 N/D tolerated(1) Fat LD
16:42512978 ELOVL7 S/G tolerated(1) Fat
17:46041505 BLCAP Y/C deleterious(0) Fat Liver

occupy just 11.4% of the swine genome, while LINEs occupy 17.5% [83]. Of the 5993 repetitive

A-to-G mismatches, 58.8% are found within the Pre0_SS element, a SINE element of the PRE1

family (Fig 3.2B). Little is known about Pre0_SS, but among all elements of the PRE1 family,

Pre0_SS is most identical to the consensus PRE1 sequence. In many instances, Pre0_SS elements

are > 99% identical to one another, indicating that it is currently actively transposing in pigs [84].

Additional members of the PRE1 family contain A-to-G mismatches, although at a much lower
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Figure 3.5: Distribution of repetitive A-to-G mismatches
The distribution is shown across major repetitive element families (A) and further broken down into
specific repetitive element types (B). Percentages shown are out of all repetitive A-to-G mismatches.

frequency than Pre0_SS.

3.4 Conclusions

While Alu elements enable substantial RNA editing among primate genomes, we show that

non-Alu bearing genomes can also utilize RNA editing as a means to achieve a similar result.

Our high-throughput scan suggests that pig transcriptomes are highly editable among PRE-1 SINE

retrotransposons. PRE-1, an element derived from an ancestral tRNA, has similar features to the

primate Alu, derived from an ancestral 7SL RNA; a copy number of 1x106, consensus length of

246bp, and very little diversity among such members as Pre0_SS. These features influence the

secondary structure of the transcriptome, which in turn affect ADAR editable targets. Surpris-

ingly, conservation of specific editing sites such as those in NEIL1 and BLCAP appears evident

between human and pigs. Therefore, we hypothesize that transcriptome secondary structure may

be conserved among mammals enough to preserve particular RNA editing sites, and that SINE
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elements, regardless of origin, may conform to certain positions and orientations in order to allow

conservation to occur.

By demonstrating that pig transcriptomes have potential to be highly edited, we propose that

pigs may be a valuable model to understand the patterns of ADAR controlled RNA editing.

Additionally, by shedding light on the pig editome, we can begin to understand the extent to which

this phenomenon enhances pig genetic variation. Such sources of variation may one day provide

valuable explanatory power for a variety of traits of interest to both biomedical and agricultural

communities.

3.5 Methods

3.5.1 Sequence data

From Michigan State University’s pig resource population (MSUPRP), an F2 population resulting

from crosses between 4 F0 Duroc sires and 15 F0 Pietrain dams [85], a single female animal

was chosen for whole genome and transcriptome sequencing. Total RNA was extracted from

subcutaneous fat, liver, and LD skeletal muscle using TRIzol, and a RIN greater than 7 was

determined with the Agilent 2100 Bioanalyzer. cDNA libraries were made using the Illumina

TruSeq Stranded mRNA Library Preparation Kit. Sequencing was performed using the Illumina

HiSeq 2500 in Rapid Run mode with 150x2 paired-end reads. Base calling was done by Illumina’s

Real TimeAnalysis v1.18.61 and the outputwas converted to FastQ formatwith Illumina’s Bcl2fastq

v1.8.4. Genomic DNA was purified from white blood cells using the Invitrogen Purelink Genomic

DNA Mini Kit and libraries were made using the Illumina TruSeq Nano DNA Library Preparation

Kit HT. Sequencing of genomic DNA was done using the Illumina HiSeq 2500 in Rapid Run mode

with 150x2 paired-end reads. Real Time Analysis v.1.17.21.3 and Bcl2fastq v1.8.4 were used for

base calling and FastQ conversion, respectively. Read quality of both whole genome and RNA data

was assessed using the FastQC program [86].
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3.5.2 Sequence preparation and mapping

DNA reads from whole genome sequencing were trimmed for quality at the 3’ end using Condetri

v2.2 [87] with parameters: -sc=33 -minlen=75 and b=fq. Resulting mate 1, mate 2 and

unpaired reads were mapped to Sus Scrofa 10.2.69 using Bowtie v2.2.1 [88] with parameters: -p 7

-X 1000. In order to filter out DNA reads that had more than one recorded alignment, alignments

containing the XS:i:<N> tag, where N indicates the number of alternative alignments for a read,

were removed. Strand specific cDNA sequencing reads from each tissue sample were trimmed with

Condetri with parameters: -sc=33 -minlen=75 -pb=fq -cutfirst=6 -pb=fq. Resulting

paired and unpaired cDNA reads were then mapped to Sus Scrofa 10.2.69 using TopHat v2.0.12

[89] with parameters: -p 7 �mate-inner-dist 400 �mate-std-dev 100 �library-type

"fr-firststrand”. Filtering out cDNA reads that had more than one recorded alignment

was done by selecting alignments with the NH:i:1 tag, while separating plus strand transcript

alignments from minus strand alignments was done by selecting alignments possessing the XS:A:+

or XS:A:- tags, respectively. The resulting DNA and cDNA alignments are the “filtered” data used

in downstream variant calling and mismatch detection.

3.5.3 Variant calling and mismatch detection

We utilized variant calling software Samtools v1.0 and Bcftools v1.2 to jointly call variants among

DNA and cDNA reads from plus strand transcripts using:

samtools mpileup -f <reference_genome.fa> -C50 -E -Q25 -ug -t DP,DV,SP <

↪→ DNA.bam> <liver_plusstrand.bam> <fat_plusstrand.bam> <LD_plusstrand.

↪→ bam>

where <DNA.bam> includes all filtered DNA alignments, and

<liver_plusstrand.bam>, <fat_plusstrand.bam>, <LD_plusstrand.bam>

are filtered cDNA alignments from plus strand transcripts. Likewise, DNA and cDNA reads from

minus strand transcripts were processed similarly with:
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samtools mpileup -f <reference\_genome.fa> -C50 -E -Q25 -ug -t DP,DV,SP <

↪→ DNA.bam> <liver_minusstrand.bam> <fat_minusstrand.bam> <

↪→ LD_minusstrand.bam>.

Note that the parameter �t DP,DV,SP is required for downstream mismatch detection with

editTools. Samtools output from each command was piped into bcftools with additional pa-

rameters: �O v �m �v. These steps produce two VCF files that are simultaneously processed

with find_edits(), a function within editTools available at https://github.com/funkhou9/

editTools. By default, find_edits() scans each variant site to search for candidate RNA edit-

ing sites according to the five criteria required for sufficient evidence (see Results and Discussion).

Most figures in this report were generated using editTools plotting methods, which utilized the

ggplot2 R package [90].

3.5.4 Quantitative real-time PCR

Total RNA was isolated from liver, LD skeletal muscle and subcutaneous fat tissues from 34

MSUPRP pigs, including the pig chosen for sequencing, using TRIzol reagent (Ambion) ac-

cording to the manufacturer’s instructions. Concentrations were measured using a NanoDrop

spectrophotometer (Thermo Scientific), and quality and integrity were determined using an Agilent

2100 Bioanalyzer (Agilent Technologies, Inc.). Total RNA was reverse transcribed using random

primers with the High Capacity cDNA Reverse Transcription Kit with RNase Inhibiter (Applied

Biosystems) according to the manufacturer’s instructions. A pig ADAR Custom TaqMan Gene Ex-

pression assay was designed using the online Custom TaqMan Assay Design Tool (ThermoFisher

Scientific). The assay was designed to span exons 2-3 of the pig ADAR gene (Accession No.

NC_010446.4). Assays were performed in triplicate using 50 ng cDNA and the TaqMan Gene

Expression Master Mix (20 µl final volume per reaction) in a StepOnePlus Real-Time PCR System

(Applied Biosystems). Cycling conditions were 52◦C for 2 min and 95◦C for 10 min, followed by

40 cycles of 95◦C for 15 s and 60◦C for 1 min. Relative expression values were obtained using the
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2-∆∆CT method, with the muscle sample used for sequencing as a calibrator and Ubiquitin C as a

reference gene (Applied Biosystems Assay No. Ss03374343_g1). Inference of differential ADAR

expression was calculated by one-way ANOVA (main effect of tissue on ADAR expression), and

Tukey HSD (pairwise comparisons of tissue means).

3.5.5 Calculating probability of mapping error

The average phred-scaled mapping quality MQ across all samples at mismatch site i is provided by

SAMTools output. From MQ we can compute the probability of mapping error p according to:

pi = 10
−MQi

10

It follows that the probability of observing 5 “edited” reads at a homozygous site with a cDNA

sequencing depth of N assuming no RNA editing can be modeled using the binomial distribution,

where:

P(X ≥ 5 | N, p) = 1 − P(X < 5) = 1 −
4∑

j=0

(
N
j

)
p j(1 − p)N− j

3.5.6 Incorporating RepeatMasker and Variant Effect Predictor data using editTools

The editTools function add_repeatmask() was used to merge a mismatch data object (generated

with find_edits()) with susScr3, a Repeatmasker dataset available for download at: http:

//www.repeatmasker.org/species/susScr.html. This function utilizes a binary search

algorithm implemented in C++ to process large RepeatMasker files efficiently. The function

write_vep() was used to generate Variant Effect Predictor input from a mismatch data object.

The output of Variant Effect Predictor was merged with the mismatch data object using add_vep().

Additional documentation for find_edits(), write_vep(), add_vep(), add_repeatmask()

is available within editTools v2.1.
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CHAPTER 4

ESTIMATING THE COHERITABILITY BETWEEN SITE-SPECIFIC RNA EDITING
AND ECONOMICALLY IMPORTANT TRAITS IN PIGS

4.1 Abstract

The highly conserved post-transcriptional mechanism known as adenosine to inosine (A-to-I)

RNA editing impacts gene function by converting adenosine to inosine molecules within specific

regions of the transcriptome. The degree that specific sites are edited—the “editing level”—has

been observed to vary within populations and can be considered a molecular quantitative trait

hypothesized to influence higher-order phenotypes. Here we utilized 940 F2 animals and a com-

bination of univariate and bivariate mixed models to study the shared genetic contributions to

RNA editing activity in longissimus dorsimuscle tissue and economically important pig traits. We

identified five RNA editing sites across four genes whose editing level variation was significantly

attributed to the additive effects of all observed SNP markers (estimated genomic heritability ĥ2
g =

0.31—0.56; p-value = 8.2x10-5—8.8x10-4). Using a multi-polygenic model to localize genomic

heritability estimates to a region of interest, across all five editing sites we found suggestive evi-

dence that a portion of the genomic heritability can be attributed to SNPs flanking ADAR. When

using bivariate models to estimate local genetic correlations between site-specific editing levels

and 67 complex traits, we found nominally-significant evidence that the ADAR locus contributes to

a negative relationship between editing activity and phenotypically related growth traits including

average daily gain (local genetic correlation ρ̂glocal [SE] = -0.87 [0.16]; p-value = 0.029). This

work suggests potential pleiotropy between RNA editing activity and complex growth traits in pigs

and encourages further use of mixed models to determine if RNA editing can link genetic variation

to complex trait variation.
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4.2 Introduction

According to popular and prevailing theory, quantitative trait loci (QTL) influence complex

traits largely by influencing gene expression. Functional geneticists have investigated this theory

primarily by performing genome-wide associations (GWA) to find QTL that associate with tran-

script abundance, otherwise known as expression QTL or eQTL [91, 92, 93]. Gene expression,

however, involves a complex array of processes beyond upregulating and downregulating transcript

abundance. For instance, RNA splicing has been shown to be influenced by genetic effects and can

explain a substantial part of complex trait and disease risk variation [29, 94].

Still, additional forms of gene expression are continually being evaluated for their ability

to link genetic variation to higher-order trait variation. A highly-conserved post-transcriptional

mechanism known as adenosine to inosine (A-to-I) RNA editing regulates gene expression by

converting adenosine to inosine molecules within pre-mRNA transcripts [31], a process catalyzed

by adenosine deaminase acting on RNA (ADAR). At numerous edited sites in the transcriptome, the

proportion of transcripts containing the edited inosine variant—the so-called “editing level”—has

been shown to vary between individuals in a population [35]. In this way, site-specific RNA editing

activity has been considered a heritable quantitative trait; numerous studies have performed GWA

to identify editing QTL (edQTL) in such species as humans, mice, drosophila, cattle, and pigs

[95, 96, 97, 98, 99, 36], with a general consensus across species and populations that genome-wide

significant edQTL routinely co-localize with the RNA editing site they are associated with.

While the strongest edQTL signals mostly appear cis-acting, the degree that additive genetic

effects (genome-wide) influence editing variation remains largely unknown. Similarly, we lack an

understanding of how similarity (or covariance) in RNA editing activity and complex traits may

be attributed to shared additive genetic sources. Here, we will refer to the proportion of variation

attributable to the additive effects of all single-nucleotide polymorphisms (SNPs) as “genomic

heritability” (h2
g). Likewise, we will refer to the component of covariance related to additive

effects of SNPs as “genomic covariance”, or what is sometimes referred to as “coheritability”

[100]. Indeed, if RNA editing activity and complex traits possess a genomic covariance, this could
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indicate pleiotropic effects between the two and further the hypothesis that RNA editing can serve

as a direct link from genetic variation to complex trait variation.

In this study, we have utilized animals fromMichigan StateUniversity’s PigResource Population

(MSUPRP) [85] to quantify genetic contributions to RNA editing activity in longissimus dorsi

muscle tissue. We utilize a combination of univariate and bivariate polygenic models to estimate

the genomic heritability of site-specific RNA editing activity and estimate the genomic covariance

between site-specific editing and economically important pig traits. We further decompose genomic

heritability and genomic covariance estimates into local regions of interest—namely the ADAR

locus—to infer how such regions may affect both RNA editing activity and higher-order traits.

Using a sample of highly heritable RNA editing sites, we find suggestive evidence that SNPs near

ADAR influence both RNA editing activity and complex growth traits, which encourages further

study.

4.3 Results

4.3.1 Heritable RNA editing activity impacts pig longissimus dorsi muscle gene expression

To study RNA editing activity in pig longissimus dorsi (LD) muscle tissue, we utilized a “discovery

cohort” consisting of three adult pigs, each with whole-genome sequencing (WGS) and LD RNA-

sequencing (RNASeq) to identify high-confidence RNA editing sites that were detectable across

multiple animals. We followed a standard procedure outlined previously [62] to identify DNA-to-

RNA mismatches, resulting in 104 A-to-G mismatches (indicative of potential A-to-I RNA editing

activity) detectable in at least two of the three discovery cohort animals.

We then utilized an “analysis cohort” consisting of a subset of animals from Michigan State

University’s Pig Resource Population (MSUPRP) each with LDRNAseq (N = 168); for each animal

we estimated editing levels at each of the 104 sites, where we define the estimated editing level

to be the ratio of the number of apparently edited reads (containing G) over the total number of

reads. Unsurprisingly, only 47 / 104 sites showed evidence that the editing level could be normally

distributed across pigs, using a low-threshold shapiro-wilk test (p-value ≥ 1x10-10). This may
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Table 4.1: RNA editing sites exhibiting heritable variability in longissimus dorsi muscle tissue

Site Strand Genea Locationa Nb σ̂2
g (SE)c σ̂2

ε (SE)d ĥ2
g p-valuee

Chr1:126,167,425 - BLOC1S6 3’-UTR 165 0.31 (0.16) 0.69 (0.14) 0.31 8.8x10-4

Chr6:39,368,241 - UQCRFS1 intron 166 0.41 (0.18) 0.60 (0.14) 0.41 1.6x10-4

Chr15:110,910,484 + CCNYL1 3’-UTR 166 0.39 (0.17) 0.61 (0.13) 0.39 1.7x10-4

Chr16:26,512,555 - OXCT1 intron/3’-UTRf 139 0.58 (0.22) 0.45 (0.15) 0.56 8.2x10-5

Chr16:26,512,645 - OXCT1 intron/3’-UTRf 159 0.34 (0.17) 0.65 (0.14) 0.34 2.3x10-4
a Gene annotation and editing site location provided by ensembl 95 predictions.
b Sample size (the number of animals with a detectable editing level)
c Genomic variance component. REML estimate (Standard Error)
d Residual variance component. REML estimate (Standard Error)
e p-value from a likelihood ratio test, testing H0 : σ2

g = 0.
f Multiple predicted isoforms present at editing site

reflect that while RNA editing activity may be allowed to vary in the population at some sites, other

sites show much more constraint, as shown previously [101].

For each of 47 RNA editing sites that showed variation in editing activity among the MSUPRP,

we fit a restricted maximum likelihood (REML)-based univariate genomic best unbiased linear

predictor (GBLUP) model (see Methods) to decompose editing level variance into genomic and

residual components. Exactly five sites showed a significant genomic variance component using

a likelihood ratio test (LRT) at a Bonferroni-corrected threshold of 0.05 / 47 = 0.001 (Table 4.1).

Variance component estimates and sample sizes are shown for all 47 editing sites in Table B.1.

4.3.2 Genetic variants near ADAR are suspected to contribute to editing level variation
across sites

For each heritable RNA editing site (Table 4.1), we sought to identify SNPs strongly associated

with editing levels using mixed-model GWAmethods that control for kinship among the F2 animals

(see section 4.5). We identified cis-acting genome-wide significant signals (p-value ≤ 1x10-5; 5%

estimated FDR) for both editing sites within OXCT1 but surprisingly no cis-acting genome-wide

significant signals were detected for the remaining three RNA editing sites (Fig 4.1A). Curiously,

we observed suggestive GWA peaks (peak p-values: 3x10-4—2.9x10-5) near ADAR (otherwise

known as ADAR1 in humans) for all five editing sites.

To investigate the suggestive ADAR-localized edQTL signals, pairwise linkage-disequilibrium
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Figure 4.1: GWA for site-specific editing levels
(A)Manhattan plot for each RNA editing site. Red line indicates estimated FDR of 10%. Each facet
corresponds to a different RNA editing site. For each facet, blue dashed lines indicate position of ADAR on
chromosome 4 and position of the editing site. (B) Pairwise LD plot between 26 SNPs selected flanking
ADAR. The SNP nearest ADAR is marked with a blue asterisk.

estimates (R2) were obtained for a 1MB region surrounding ADAR (Fig 4.1B). This utilized

genotypes at 26 SNPs for all genotyped MSUPRP animals (N = 1015), where pairwise two-SNP

haplotype frequencies used in R2 calculations were estimated using maximum likelihood [102].

Intriguingly, the SNP nearest ADAR (however not within ADAR), H3GA0013586, is in relatively

poor linkage-disequilibriumwith other SNPs in the∼1MB region (pairwise R2 with H3GA0013586

< 0.6). Longer-range linkage disequilibrium with H3GA0013586 was observed to drop beyond this

1MB region (Fig B.1). Hypothetically, if causal variants within ADAR contribute to variance in

RNA editing activity across sites, this suggests that a weak edQTL signal at ADAR could reflect

poor linkage-disequilibrium between ADAR causal variants and SNP markers.

For each RNA editing site we sought to quantify the proportion of genomic variance in editing

activity explained by SNPs flanking ADAR, as well as SNPs flanking OXCT1. We defined our
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Table 4.2: Proportion of editing level genomic variance explained by SNPs flanking ADAR and
OXCT1

Local region Editing Site (gene) σ̂2
glocal

(SE)a σ̂2
gBG

(SE)b σ̂2
glocal

/ σ̂2
g
c p-valued

ADAR chr1:126167425 (BLOC1S6) 0.121 (0.104) 0.125 (0.118) 0.49 8.02x10-4
chr6:39368241 (UQCRFS1) 0.192 (0.145) 0.186 (0.129) 0.51 1.70x10-4
chr15:110910484 (CCNYL1) 0.141 (0.115) 0.167 (0.124) 0.46 9.12x10-5
chr16:26512555 (OXCT1) 0.088 (0.091) 0.342 (0.176) 0.21 1.23x10-3
chr16:26512645 (OXCT1) 0.076 (0.080) 0.254 (0.151) 0.23 1.16x10-2

OXCT1 chr1:126167425 (BLOC1S6) 0.008 (0.026) 0.313 (0.162) 0.03 3.40x10-1
chr6:39368241 (UQCRFS1) 0.005 (0.022) 0.412 (0.177) 0.01 3.80x10-1
chr15:110910484 (CCNYL1) 0.000 (0.016) 0.387 (0.170) 0.00 5.00x10-1
chr16:26512555 (OXCT1) 0.885 (0.541) 0.256 (0.125) 0.78 7.26x10-14
chr16:26512645 (OXCT1) 0.338 (0.253) 0.251 (0.141) 0.57 1.37x10-5

a The “local” genomic variance REML estimate (Standard error)
b The “background” genomic variance REML estimate (Standard error)
c The ratio σ̂2

glocal

/
σ̂2
glocal

+ σ̂2
gBG

d p-value testing H0 : σ2
glocal

= 0

region of interest flanking ADAR to be the 27 SNPs identified previously (Fig 4.1B), and similarly

defined our region of interest flanking OXCT1 to be 25 SNPs within 500Kb on either side of the

chr16:26512555 editing site. Like before, we modeled RNA editing levels using a REML-based

univariate GBLUP model, but used a “local” polygenic random effect (aggregate effect of SNPs

within a region of interest) and “background” polygenic random effect (aggregate effect due to all

SNPs other than the SNPs of interest) (see section 4.5). With this model, we decomposed the

genomic variance into local and background components and used a LRT to determine whether

inclusion of the local polygenic effect fits the data any better than omitting it (Table 4.2). We

observed suggestive evidence that the aggregate effect of SNPs near ADAR contributes to editing

level variation (LRT p-values: 9.12x10-5—1.16x10-2), but were unable to confidently quantify

the proportion of genomic variance it explains due uncertainty in local and background genomic

variance estimates. Our best estimate showed that roughly 50% of the genomic variance in RNA

editing activity for BLOC1S6, UQCRFS1, and CCNYL1 sites can explained by SNPs flanking

ADAR, while that estimate reduces to 20% for OXCT1 editing activity.
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4.3.3 Suggestive evidence for a shared genetic architecture between RNA editing activity
and complex traits

Given that variation in RNA editing activity across sites is potentially attributable to SNPs flanking

ADAR, we sought to infer whether ADAR-flanking SNPs also contribute to variation in complex

traits. Using the same two-polygenic univariate model as before, and the full MSUPRP with

phenotype and SNP genotype data (N = 940), we tested whether variance among 67 growth, meat

quality, and carcass composition (GMQCC) traits could be attributed to 27 SNPs flanking ADAR.

Surprisingly, 15/67 traits (more than expected by chance) showed nominal evidence (p-value ≤ 0.05)

that ADAR-flanking SNPs contribute to their variance (Table B.2), with average daily gain (ADG)

possessing the strongest evidence (σ̂2
glocal

[SE]: 0.14 [0.08]; σ̂2
gBG

[SE]: 0.27 [0.05]; p-value =

2.9x10-4). In contrast, only 1/67 GMQCC traits showed nominal evidence that OXCT1-flanking

SNPs contribute to their variance.

We next utilized a bivariate model to decompose the covariance between site-specific editing

activity and GMQCC traits into genomic and residual components (see section 4.5) (Table 4.3).

All animals with RNA editing records (n1 ∼ 168) were among the larger set of MSUPRP animals

with GMQCC records (n2 ∼ 940), enabling us to model the residual covariance between editing

activity and GMQCC traits. For each of the five RNA editing sites, we inferred the genomic

covariance between editing levels and 67 GMQCC traits, totaling 335 tests. We observed no

significant genomic covariances after multiple test correction (p-value ≤ 0.05 / 335 = 1.5x10-4),

but observed that p-values begin deviating from what is expected at around p-value = 0.1 (Fig 4.2).

This provides small and subtle evidence that genomic covariances between RNA editing activity

and complex traits exist, but perhaps at a magnitude that we are underpowered to detect either due

to insufficient sample size or imperfect linkage-disequilibrium between SNPs and causal variants.

The most significant genomic covariances estimated were between longissimus muscle moisture

content (moisture) and the chr16:26,512,645 edited site within OXCT1 (ρ̂g [SE] = -0.70 [0.20];

p-value = 0.004), and between 45-min carcass temperature (temp_45m) and the chr15:110,910,484

edited site within CCNYL1 (ρ̂g[SE] = 0.70 [0.20]; p-value = 0.001). A full list of all genomic
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Figure 4.2: Quantile-quantile plot testing for genome-wide genomic covariances between
site-specific editing levels and complex traits

covariances estimated are shown in Table B.3.

Interestingly, ADG, which showed the highest evidence of local genomic variance attributable

to ADAR-flanking SNPs, showed modest evidence of a genomic covariance with editing activity at

chr15:110,910,484, given a LRT p-value of 0.1 (Table B.3) Given that genomic covariances provide

no information about where in the genome genetic effects are shared between traits, we sought to

infer local genomic covariances attributable toADAR-flanking SNPs using a two-polygenic bivariate

model (see section 4.5). As before, when consideringmultiple tests, we observed no significant local

genomic covariances attributable to ADAR-flanking SNPs. As expected however, ADG, along with

phenotypically related growth traits, showed the highest evidence of an ADAR-localized genomic

covariance with editing activity (Table 4.4). All our top ADAR-localized genomic covariance

estimates were negative (except for Days to 105kg); if these are true positive signals, it suggests

genetic variants near ADAR contribute to a negative relationship between RNA editing activity

(particularly at chr15:110910484) and growth traits such as average daily gain, body weight at 22

weeks, empty body lipid, total body fat tissue, etc. Even if this is true, additional work would be

needed to determine if ADAR variants exhibit pleiotropic effects between RNA editing activity and

growth traits, or if separate causal variants affecting editing activity and growth traits are simply in
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Table 4.3: Top genomic covariance estimates between site-specific RNA editing levels and growth,
meat quality, and carcass composition traitsa

Editing site (gene) Traitb ρ̂g (SE)c σ̂g1g2
d σ̂ε1ε2

e σ̂p1p2
f p-valueg

chr1:126,167,425 (BLOC16S) b 0.63 (0.21) 0.19 -0.04 0.16 0.006
temp_45m 0.67 (0.22) 0.17 -0.02 0.15 0.015
moisture -0.48 (0.23) -0.14 0.12 -0.02 0.050

chr15:110,910,484 (CCNYL1) temp_45m 0.70 (0.20) 0.19 -0.21 -0.02 0.001
conn_tiss -0.55 (0.23) -0.14 0.05 -0.08 0.020
fftoln -0.51 (0.19) -0.18 0.09 -0.09 0.023

chr16:26,512,555 (OXCT1) moisture -0.52 (0.18) -0.22 0.03 -0.19 0.011
picnic 0.62 (0.16) 0.33 -0.26 0.06 0.024
color -0.47 (0.19) -0.18 -0.02 -0.19 0.026

chr16:26,512,645 (OXCT1) moisture -0.70 (0.20) -0.22 0.05 -0.17 0.004
lrf_22wk 0.53 (0.21) 0.18 -0.01 0.17 0.012
fat 0.52 (0.19) 0.21 0.05 0.26 0.018

chr6:39,368,241 (UQCRFS1) boston -0.59 (0.14) -0.32 -0.09 -0.40 0.013
temp_24h -0.48 (0.20) -0.14 -0.34 -0.48 0.060
wt_3wk -0.69 (0.31) -0.09 0.04 -0.05 0.060

a Shown are the top three genomic covariance estimates (ranked by p-value) for each RNA editing site
b b = b* objective color; temp_45m = carcass temperature at 45m; conn_tiss = connective tissue
sensory panel analysis; fftoln = fat-free total lean tissue; picnic = picnic shoulder cut weight; color
= subjective color; lrf_22wk = last rib back fat at 22 weeks; fat = fat percentage; boston = boston
shoulder cut weight; wt_3wk = body weight at 3 weeks

c Genetic correlation estimate (Standard error), where ρg = σg1g2

/√
σ2
g1σ

2
g2

d Genomic covariance REML estimate
e Residual covariance REML estimate
f Phenotypic covariance
g P-value testing H0 : σg1g2

linkage-disequilibrium.

4.4 Discussion

To date, few RNA editing studies have estimated genome-wide parameters such as heritability,

including a previous study that evaluated regulation of 5-HT2C receptor editing activity [103].

Heritability estimates are valuable in that they estimate the degree that the aggregate effect of all

causal variants (including those with relatively weak effects) influence phenotypes such as RNA

editing levels. In comparison, traditional GWA techniques including those used to identify edQTL,

are known to be underpowered such that only relatively large effect loci are detectable [104].

Consistent with previous studies [95, 96, 97, 98, 99, 36], among our sample of five significantly

heritable RNA editing sites we observe the strongest genetic contributions of editing activity to be

cis-acting. However, only editing sites within OXCT1 were found to have genome-wide significant

cis-acting edQTL, suggesting the remaining three sites are under alternative genetic control. We

54



Table 4.4: Top local genomic covariance estimates attributable to ADAR-flanking SNPs between
site-specific RNA editing and growth, meat quality, and carcass composition traitsa

Editing site (gene) Traitb trait ĥ2
glocal

c ρ̂glocal (SE) d σ̂g1g2 local
e p-value f

chr15:110910484 (CCNYL1) ADG 0.14 -0.87 (0.16) -0.17 0.029
chr15:110910484 (CCNYL1) wt_22wk 0.06 -0.86 (0.21) -0.09 0.046
chr15:110910484 (CCNYL1) Days 0.09 0.75 (0.27) 0.09 0.052
chr15:110910484 (CCNYL1) mtfat 0.04 -0.88 (0.22) -0.07 0.054
chr15:110910484 (CCNYL1) tofat 0.09 -0.79 (0.24) -0.10 0.061
chr15:110910484 (CCNYL1) fftoln 0.03 -0.86 (0.24) -0.07 0.064
chr15:110910484 (CCNYL1) mtpro 0.05 -0.78 (0.27) -0.07 0.070
chr6:39368241 (UQCRFS1) Days 0.08 0.65 (0.33) 0.08 0.146
chr6:39368241 (UQCRFS1) wt_22wk 0.06 -0.73 (0.28) -0.09 0.146
chr15:110910484 (CCNYL1) bf10_22wk 0.05 -0.67 (0.35) -0.06 0.149
a Top 10 local genomic covariance estimates, ranked by p-value.
b ADG = average daily gain; wt_22wk = body weight at 22 weeks; Days = Days to 105kg; mtfat = empty
body lipid; tofat = total body fat tissue; fftoln = fat-free total lean tissue; mtpro = empty body protein;
bf10_22wk = 10th rib back fat at 22 weeks

c Estimated genomic heritability of the trait, localized to ADAR-flanking SNPs, as estimated from a
two-polygenic bivariate model

d Local genetic correlation (Standard error)
e Local genomic covariance REML estimate
f Phenotypic covariance
g P-value testing H0 : σg1g2 local

further provide suggestive evidence that variants near ADAR may be contributing a proportion of

editing level variation across multiple editing sites, using models that decompose the aggregate

effect of all causal variants to a region of interest.

Genomic covariances provide a high-level understanding of whether two traits are under similar

genetic control. Under the cascading hypothesis that genetic variation (A) contributes to editing

level variation (B), which contributes to complex trait variation (C) (A→ B→ C; an example of

“vertical pleiotropy” [100]), it is required that the genomic covariance between editing levels and

complex traits be non-null (this assumes sufficient linkage-disequilibrium between SNP markers

and causal variants). In pursuit of such evidence, we were unable to infer non-null genomic

covariances among 335 pairwise tests (5 RNA editing sites by 67 complex traits), but observed

subtle evidence that genomic covariance p-values begin deviating from what is expected at around

p-value = 0.1. This could indicate small-magnitude genomic covariances between RNA editing

activity and complex traits, possibly due to imperfect linkage-disequilibrium between SNPmarkers

and causal variants. We further localize genomic covariances to SNPs flanking ADAR to find

suggestive evidence that the ADAR locus contributes to a negative relationship between RNA

editing activity (particularly at the chr15:110910484 editing site) and numerous phenotypically
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related growth traits (Table 4.4). While many of our top genomic covariance signals did not

correspond with top ADAR-localized genomic covariance signals (comparing Table 4.3 and 4.4),

this is not unordinary given that genomic covariances reflect co-localization of causal variants, on

average across the whole genome. Curiously, we noticed that several editing-trait pairs with top

ADAR-localized genomic covariance evidence had genome-wide genomic covariance p-values that

deviated from what was expected (Table B.3; Figure 4.2). For example, ADG and the editing level

at chr15:110910484 had a genome-wide genomic covariance LRT p-value of 0.1, while fat-free

total lean tissue (fftoln) and chr15:110910484 had a LRT p-value of 0.02.

Despite finding suggestive evidence that variants near ADAR may influence both RNA editing

activity and numerous growth traits, our inability to obtain significant evidence of this hypothesis

after multiple test correction warrants further study; a larger sample size is suggested to obtain

sufficient statistical power and more precise estimates of local genomic variances/covariances. We

also note that our analysis of RNA editing activity was limited to five sites. As suggested from

an earlier study [101], perhaps relatively few RNA editing sites show considerable variation in

editing levels from individual to individual, and perhaps fewer still exhibit variation attributable

to genetic variation. Still, our ability to detect heritable RNA editing sites in LD muscle tissue

was likely affected to by two major factors: 1) skeletal muscle tissue is known to exhibit relatively

low RNA editing activity [35], and 2) the RNA sequencing depth of our analysis cohort (N = 168)

was relatively modest (∼63M reads for 24/168 animals and ∼23M reads for the remaining 144

animals). This second point meant we were limited to surveying edited genes that are relatively

highly expressed in LD muscle tissue. Another limitation affecting this study was that genotypes

at edited sites within the analysis cohort were unobserved. However, for each of the five sites

considered, it is unlikely that variation in the editing level (proportion of reads containing a G)

simply reflected allele content variation at a SNP because 1) all five sites possessed suggestive

edQTL signals at ADAR and 2) editing level genomic heritability estimates were relatively low (<

0.6); by definition, the heritability of allele content at a SNP is exactly one [105].

In this study we have utilized a combination of univariate and bivariate mixed models to
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decompose variation in RNA editing activity and variation in complex traits into shared genetic

sources. This approach is highly suggested to influence our understanding ofRNAediting regulation

and the degree that genetically regulated RNA editing activity could influence complex traits. As

data from more animals and more tissues becomes available, we foresee the answer to whether

RNA editing can directly link genetic variation to complex trait variation becoming clearer.

4.5 Materials and Methods

4.5.1 Sequencing data

To discover candidate RNA editing sites for downstream genetic analysis, a “discovery cohort”

consisting of three adult animals with matched whole genome sequencing and RNA sequencing

fromLDmuscle tissuewere used. Two animals wereYorkshire pigs from the Functional Annotation

ofAnimalGenomes Project (FAANG;https://www.animalgenome.org/community/FAANG/)

and the third was an F2 pig from Michigan State University’s pig resource population (MSUPRP),

originating from four F0 Duroc sires and 15 F0 Pietrain dams [85].

Whole genome sequencing of the two FAANG animals was done using 100bp paired-end reads;

one animal was sequenced at a depth of ∼489M reads and the other sequenced at ∼564M reads.

Whole genome sequencing of the F2 pig was done using 150bp paired-end reads, totaling ∼249M

reads. LD Muscle RNA sequencing from the FAANG animals was done using 100bp paired-end

strand-specific reads, with one animal sequenced at a depth of ∼56M cDNA reads and the other

sequenced at ∼42M cDNA reads. Finally, LD RNA seq from the F2 pig consisted of ∼104M 150bp

paired-end, strand-specific cDNA reads. More details regarding library prep and sequencing of the

F2 animal can be found in Funkhouser et al. [62].

At each candidate RNA editing site, editing levels were estimated among a subset of the

MSUPRP possessing LD muscle RNA sequencing (N = 168). RNA sequencing of these animals

is detailed in full in Velez-Irizarry et al. [106], resulting in a depth of ∼63M strand-specific cDNA

reads for 24/168 animals and ∼23M strand-specific cDNA reads for the remaining 144 animals.
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4.5.2 Genotyping data

To analyze the genetic architecture of each RNA editing site, we utilized theMSUPRP, a population

that has been genotyped using the Illumina PorcineSNP60 BeadChip with SNPs mapped to the

Sscrofa11.1 genome assembly. Genotype data pre-processing is detailed in an earlier study [106].

Briefly, using all MSUPRP genotyped animals (N = 940), the following SNPs were removed from

analysis: monomorphic and non-autosomal SNPs, SNPs with evident mendelian error, and SNPs

with a minor allele frequency less than 0.01. This resulted in 43,130 markers used in all genetic

analyses.

4.5.3 Phenotypes

Phenotypes from the MSUPRP have been described in previous studies [85, 106, 107]. A total of

67 traits (29 growth traits, 20 carcass composition traits, and 18 meat quality traits) were tested to

be genetically correlated with 5 heritable editing levels. Brief descriptions and summary statistics

for each trait can be found in [106].

4.5.4 Sequencing data preparation and RNA editing detection

Using the “discovery cohort” consisting of three animals with matchedWGS and RNA sequencing,

preparation of sequencing data and discovery of RNA editing sites was largely consistent with

Funkhouser et al. [62]. For both WGS and RNAseq, trimmomatic version 0.38 [108] was used

to remove low quality bases at the 3’ end, retaining minimum length sequences of 56 bps. Six

bases at the 5’ end were also removed from cDNA reads to remove any artifactual bases introduced

during cDNA synthesis [76]. Trimmed DNA reads were mapped to the Sus Scrofa 11.1 reference

assembly with Bowtie version 2.3.2 and trimmed RNA reads were mapped to the same reference

with TopHat version 2.1.1. DNA and RNA reads that had more than one recorded alignment were

removed from further analysis. Prior to variant calling, RNAseq alignments were split such that

plus-strand transcript alignments were separated from minus-strand transcript alignments.
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To detect RNA editing sites for downstream genetic analysis, variant calling was performed

using Samtools version 1.7 and bcftools 1.9.64, whereby, for each animal, variants were jointly

called between DNA and strand-specific RNA alignments. Resulting variant calling data is then

processed by editTools (https://github.com/funkhou9/editTools), a suite of compiled R

functions designed to rapidly screen variant calling data for RNA editing evidence. ADNA-to-RNA

mismatch, indicative of an RNA editing event, was detected according to the following criteria: 1)

the genotype is homozygous according to 95% of DNA reads, 2) 10 or more reads were used to

call the genotype, 3) at least 5 cDNA reads differed from the genotype, and 4) the cDNA reads

have a Phred-scaled strand-bias p-value of 20 or less. Once LD muscle DNA-to-RNA mismatches

were identified in each of the three discovery animals, editing sites were retained for downstream

analysis if 1) they were the of the canonical A-to-G form indicative of ADAR activity, 2) they were

detectable in both the F2 animal and at least one of the FAANG animals and 3) the genotype at the

RNA editing site was homozygous reference. This resulted in 104 putative ADAR-catalyzed RNA

editing sites for downstream analysis.

4.5.5 Editing level estimation

At each of the 104 putative RNA editing sites previously identified, editing levels were estimated

within the “analysis cohort”, a subset of MSUPRP pigs with LD muscle RNA sequencing data (N

= 168). RNA sequencing from the analysis cohort was trimmed and mapped in the same way as

RNA sequencing from the discovery cohort. For each of the 168 animals, variant calling at each of

the 104 putative RNA editing sites was performed with Samtools version 1.7 and bcftools 1.9.64;

at each site, editing levels were obtained by diving the number of high-quality (base quality >= 25)

reads supporting the edited allele by the total number of high-quality reads. Editing levels were

discarded if they were estimated with less than 10 high-quality reads.

To further identify RNA editing sites with variable editing levels across animals, we retained an

RNA editing site for analysis if 1) it was detectable in at least 10/168 MSUPRP animals, and 2) the

editing level was not fixed across animals and showed at least weak evidence of gaussian variance
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(shapiro wilk p-value > 1x10-10). This resulted in 47 RNA editing sites, suitable for genomic

heritability estimation.

4.5.6 Univariate variance component estimation and GWA

A genomic best linear unbiased prediction (GBLUP) model was used to decompose site-specific

editing level variance into genomic and residual components. The model can be expressed as:

y = 1µ + xβsex + g + ε (4.1)

where y is a vector of estimated editing levels for each animal (centered and scaled to mean

0 and unit variance) at one of 47 RNA editing sites, µ is an overall mean, x is an indicator of

the sex of each animal, g a vector of polygenic values, and ε are residuals. The overall mean and

sex-specific deviation from the mean (βsex) are assumed fixed values, while polygenic values and

residuals are assumed random and distributed as: ε ∼ N
(
0, Iσ2

ε

)
and g ∼ N

(
0,Gσ2

g

)
, where

genomic relationships G = Z Z′
tr(Z Z′)/n , and Z is a centered genotype matrix (with animals in rows

and SNPs in columns), centered by subtracting each column by its sample mean. Estimates of

interest, σ̂2
g and σ̂2

ε , and standard errors thereof were derived using REML and the inverse of the

information matrix, respectively.

For each model fit (eq. 4.1), GWA was performed by transforming predicted additive genomic

values ĝ to estimates of additive SNP effects b̂ and their (co)variances Var(b̂) [109, 110]. The

test statistic used to test the null hypothesis of no association between allele dosage at SNP j

and editing level were obtained with Tj =
b̂ j√

Var
(
b̂ j

) ∼ N(0,1). P-values from such a test have

been shown to be equivalent to a test in which a single SNP is associated with the trait, while

modeling a random polygenic effect (akin to EMMAX) [109, 110, 111]. Functions to fit equation

4.1, and transform genomic values to SNP effects and variances are provided in the gwaR package

(https://github.com/steibelj/gwaR).
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To estimate the genomic variance localized to a site of interest, we used a two polygenic effect

model:

y = 1µ + xβsex + glocal + gBG + ε (4.2)

where glocal are genomic values arising from selected SNP markers, and gBG are background

genomic values arising from all markers except the selected SNP markers. It is assumed glocal ∼

N
(
0,Glocalσ

2
glocal

)
and gBG ∼ N

(
0,GBGσ

2
gBG

)
, where genomic relationships Glocal and GBG

are derived using their corresponding SNP sets.

To test for non-null variance components of interest (such as σ2
g or σ2

gBG
), a chi-squared test

statistic from a likelihood ratio test is computed: LRT
σ2

k
= 2

(
L − L

σ2
k=0

)
, where L is the log

likelihood evaluated at the REML estimate for the full model (either equation 4.1 when testing

global genomic variance components or equation 4.2 when testing localized genomic variance

components) and L
σ2

k=0 is the log likelihood for a reduced model in which the kth variance

component of interest is removed. It has been shown that LRT
σ2

k
asymptotically follows a mixture

of χ2
1 and χ2

0 distributions [112], therefore the p-value from such a test was
1−F1

(
LRT

σ2
k

)
2 , where

F1() is the chi-squared cumulative distribution function with 1 degree of freedom.

4.5.7 Bivariate analysis to estimate genomic covariances

Jointly modeling site-specific editing levels and higher-order phenotypes was done using trait-

specific means, sex-specific effects, polygenic effects and residuals:


y1

y2

 =

1µ1

1µ2

 +

x1βsex1

x2βsex2

 +

g1

g2

 +

ε1

ε2

 ,
where y1 =

{
y1i

}n1∼168

i=1
are editing levels at one of 5 editing sites (those pre-determined to

possess a significant polygenic effect) and y2 =
{
y2i

}n2∼940

i=1
are phenotypes at one of 67 growth,
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carcass composition, or meat quality traits. The two traits (an editing level and a higher order

phenotype) are modeled to be jointly distributed as:


y1

y2

 ∼ N
©«

1µ1 + x1βsex1

1µ2 + x2βsex2

 ,


G1σ
2
g1 + In1σ

2
ε1 G1,2σg1g2 + Bn1,n2σε1ε2

G2,1σg1g2 + Bn2,n1σε1ε2 G2σ
2
g2 + In2σ

2
ε2


ª®®¬ ,

where for example, In1 is the n1-by-n1 identity matrix and Bn1,n2 is an n1-by-n2 logical matrix

consisting of 0s and 1s used to link common animals between y1 and y2 records. G1,2 are the

genomic relationships between y1 animals (in rows) and y2 (in columns) and G1 are the genomic

relationships between y1 animals only. The genetic correlation is defined as ρg =
σg1g2√
σ2
g1σ

2
g2

. Esti-

mates of individual variance components and covariances were obtained using REML, and standard

errors of genetic correlation estimates were approximated using the delta method [113]. Inferring

non-null genomic covariances or correlationswas done using LRTσg1g2 = 2
(
L − Lσg1g2=0

)
, with

a p-value calculated from
(
1 − F1

(
LRTσg1g2

))
. Estimating local genomic covariances were per-

formed similarly, only (co)variance structures used to estimate trait-specific variance components

and cross-trait covariances utilized “local” and “background” genomic relationship matrices.
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CHAPTER 5

CONCLUSION

5.1 Gene-by-sex interactions and ideas for future analyses

Among the four complex traits studied in chapter 2, they broadly fall into two categories: i)

subtle G×S interactions (such as height, BMI, and bone-mineral density), and ii) large-magnitude

G×S interactions (waist-to-hip ratio). For measurements in the second category, they may be

considered a different trait when measured in males than when measured in females. In other

words, if the factors (genetic or not) that contribute to a measurable outcome are dramatically

different between sexes, then one can properly define the male outcome differently from the female

outcome. To date, few additional human traits are known to fall into the second category. As a

caveat to this discussion, it is possible that small sex-specific effects at genomic regions possessing

suggestive G×S interactions could simply reflect poor linkage-disequilibrium between SNPs and

QTL. This is possible to check using higher-density (∼13 million SNP) imputed data.

To further explore howG×S interactions may influence population-level phenotypic variance by

creating mean and variance differences between sexes, it will be interesting to examine minor allele

frequencies (MAF) at each detected G×S interaction. Under a single causal variant model in which

sex-specific environmental variances are identical, and assuming Hardy-Weinberg equilibrium, a

G×S interaction with a highMAFwill mainly create differences in variances between sexes. On the

other hand, a lower MAF G×S interaction will create differences in means between sexes (as well

as differences in variances). It will be worthwhile to formulate the exact relationship between G×E

causal variant allele frequency and its effect on mean/variance differences between environments,

which will depend on certain assumptions but be applicable to any G×E scenario where allele

frequencies are identical between environments.

In Rawlik et al. [14], using a bivariate mixed model and data from the UK Biobank they

estimated genome-wide sex-specific additive genetic variances. If additive genetic variances differ

63



between sexes, this indicates additive SNP effects differ between sexes (because autosomal allele

frequencies between sexes are assumed the same). This alone does not indicate whether male-

specific and female-specific SNP effects uniformly differ by a proportionality constant, nor does

it indicate where in the genome sex-specific effects differ. It would be interesting to formally

decompose sex-specific additive variances into approximately independent genomic regions [114],

or decompose “cross-sex” genetic covariances to such regions as an alternative means to map G×S

interactions.

One plausible biological mechanism explaining why G×S interactions create observable differ-

ences between males and females is that some eQTL may have sex-dependent function [115] (only

regulate transcript abundance in males, or only in females). This is consistent with the observation

that many large effect G×S interactions have an effect in one sex but little to no effect in the other.

To further explore this hypothesis, it would be worthwhile to determine if G×S interactions are

enriched in G×S interacting eQTL.

5.2 Present limitations tomodeling RNA editing activity and ideas for future
functional genetics studies

In this work, we assess site-specific RNA editing activity by estimating editing levels at each

RNA editing site. Here we define the true editing level at an RNA editing site to be the proportion

of transcripts (in a population of transcripts transcribed from the same locus) containing the edited

inosine variant. In practice, we only estimate editing levels using sequencing data, with each

estimate subject to measurement error. If measurement error is substantial, this could negatively

impact power to detect global and local genomic variance components contributing to editing level

variance. This encourages RNA editing levels to be estimated using relatively deep sequencing to

limit editing level estimation error.

In chapter 4, we report modest evidence that covariance between editing activity (as measured

in skeletal muscle) and complex traits is driven by a shared genetic architecture. One potential

reason for this could be that the growth, carcass composition, and meat quality traits studied are
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under differing molecular control. For instance, it is possible that variation in these traits can

be attributed to RNA editing activity in a different tissue other than skeletal muscle tissue (RNA

editing activity measured in skeletal muscle may be lowly correlated with RNA editing activity in

other tissues [35]). It will be particularly interesting to re-visit the hypothesis that genetic variation

contributes to covariance between RNA editing activity and complex traits as data from more

(related) individuals and tissues becomes increasingly available.

In functional genetics studies such as RNA editing studies, it is fairly common to identify

eQTL (or edQTL [99]) that co-localize with phenotypic QTL. This provides evidence that a DNA

segment contributes to variation in gene expression and variation in phenotype, however it does not

necessarily imply that the DNA segment contributes to covariance between gene expression and

phenotype. In chapter 4, we find evidence that SNPs flanking ADAR contribute to variation in RNA

editing activity and variation in growth traits such as average daily gain, but only detect modest

evidence that ADAR-flanking SNPs contribute to covariance between RNA editing activity and

growth traits. Ultimately, it may be worth re-visiting many co-localizations between phenotypic

QTL and edQTL (or sQTL, eQTL, etc.) using bi-variate models to determine if the co-localized

DNA region contributes to covariance.

5.3 Overall conclusions

Here, multiple perspectives were used to address the long-standing question: how does genetics

contribute to phenotypic variation? Under a quantitative genetic perspective, we have provided

evidence that numerous small magnitude G×S interactions may together contribute to broad-sense

heritability among traits such as human height, BMI, bone-mineral density and waist-to-hip ratio.

From a functional genetic perspective, we have investigated the degree that RNA editing, as

measured from skeletal muscle tissue, may serve as a plausible biological mechanism linking

genetic variation with complex trait variation in pig populations.

This work illustrates the well-accepted belief that traditional GWAS methods—single marker

regression (SMR)—are severely underpowered to detect many QTL; in chapter 2, we provided
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evidence that SMR may be underpowered to detect typical G×S interactions, even with relatively

large sample sizes (N ∼ 250,000). In chapter 4, we found RNA editing activity for numerous sites

to be highly heritable, yet only a couple editing sites showed genome-wide significant editing QTL

(edQTL), suggesting numerous RNA editing sites may be influenced by small additive genetic

effects undetectable by SMR (given current sample sizes and SNP markers).

In total, this work encourages the use of local Bayesian regressions to further study G×S and

other G×E interactions among unstructured human populations for which large sample sizes exist.

It also encourages molecular phenotypes such as RNA editing to be studied using multi-variate

models to decompose covariance between molecular phenotypes and complex traits to genetic

sources.

66



APPENDICES

67



APPENDIX A

CHAPTER 2 SUPPLEMENTARY MATERIAL

Table A.1: Sex-specific phenotype statistics

trait statistic male female
height Sample size 119190 139738
height Sample mean 176 163
height Sample SD 6.76 6.2
height 25% Quantile 172 159
height 75% Quantile 181 167
WHR Sample size 119153 139681
WHR Sample mean 0.935 0.816
WHR Sample SD 0.0651 0.07
WHR 25% Quantile 0.892 0.766
WHR 75% Quantile 0.974 0.861
bhmd Sample size 106662 124970
bhmd Sample mean 0.574 0.516
bhmd Sample SD 0.145 0.118
bhmd 25% Quantile 0.482 0.434
bhmd 75% Quantile 0.647 0.587
BMI Sample size 119061 139591
BMI Sample mean 27.8 27
BMI Sample SD 4.22 5.13
BMI 25% Quantile 24.9 23.4
BMI 75% Quantile 30 29.6
Height units: cm
BMD units: g/cm2
BMI units: Kg/m2
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Table A.2: Inferred G×S interactions using sex-specific window variances. Listed are all

windows with PPDiff
σ2
gj∗
≥ 0.9

Focal SNPa trait σ̂2
gm j∗

b σ̂2
gf j∗

b PPM
σ2
gj∗

c PPF
σ2
gj∗

c PPDiff
σ2
gj∗

d nearby genese

rs1535515 height 0.0000211 0.0001174 0.8186207 0.9988506 0.9563218 LRRC8C LRRC8D

rs580251 height 0.0000134 0.0000901 0.7464368 0.9958621 0.936092 LRRC8C LRRC8D

rs519989 height 0.0000125 0.0000826 0.7232184 0.9903448 0.9165517 LRRC8C LRRC8D

rs12064668 height 0.0000134 0.0000901 0.7464368 0.9958621 0.936092 LRRC8C LRRC8D

rs10737711 height 0.0000134 0.0000901 0.7464368 0.9958621 0.936092 LRRC8C LRRC8D

rs6688061 height 0.0000194 0.0000907 0.8337931 0.997931 0.9225287 LRRC8C LRRC8D

rs55668929 height 0.0000194 0.0000907 0.8337931 0.997931 0.9225287 LRRC8C LRRC8D

rs1544926 height 0.0000763 0.0000034 0.9832184 0.4181609 0.9554023 COL23A1

rs10903280 height 0.0000765 0.0000042 0.983908 0.4586207 0.9514943 COL23A1

rs72819017 height 0.000076 0.0000032 0.982069 0.3947126 0.9549425 COL23A1

rs57478839 height 0.0000765 0.0000042 0.983908 0.4586207 0.9514943 COL23A1

rs35519588 height 0.0000693 0.000001 0.9643678 0.1514943 0.9455172 COL23A1

rs890802 height 0.0000763 0.0000034 0.9832184 0.4181609 0.9554023 COL23A1

rs61739424 height 0.0000693 0.000001 0.9643678 0.1514943 0.9455172 COL23A1

rs2913847 height 0.0000763 0.0000034 0.9832184 0.4181609 0.9554023 COL23A1

rs1388358 height 0.0001218 0.0000114 0.9931034 0.5034483 0.9445977 ANXA1 RORB

rs2172162 height 0.0001218 0.0000114 0.9931034 0.5034483 0.9445977 ANXA1 RORB

rs76907378 height 0.0001169 0.0000098 0.9903448 0.4004598 0.9388506 ANXA1 RORB

rs7020553 height 0.0001169 0.0000098 0.9903448 0.4004598 0.9388506 ANXA1 RORB

rs11143787 height 0.0001169 0.0000098 0.9903448 0.4004598 0.9388506 ANXA1 RORB

rs11021216 height 0.0000955 0.0000087 0.9848276 0.5333333 0.9397701 SESN3 FAM76B

rs11021219 height 0.0000955 0.0000087 0.9848276 0.5333333 0.9397701 SESN3 FAM76B

rs10831376 height 0.0000857 0.0000076 0.9751724 0.4908046 0.923908 SESN3 FAM76B

rs2636063 height 0.0000026 0.0000664 0.1724138 0.9326437 0.9135632 FAM189A1

rs2672705 height 0.0000048 0.0000669 0.3411494 0.9505747 0.9137931 FAM189A1

rs79512105 height 0.0000025 0.0000655 0.1868966 0.9250575 0.9032184 FAM189A1

rs77268983 height 0.0000938 0.0000028 0.9657471 0.2570115 0.9434483 SMAD6 SMAD3

rs12593707 height 0.0000938 0.0000028 0.9657471 0.2570115 0.9434483 SMAD6 SMAD3

rs1895886 height 0.0000653 0.0000073 0.9845977 0.6068966 0.9041379 FAM69C CNDP2

rs747175 height 0.0000738 0.0000086 0.9931034 0.6682759 0.9241379 FAM69C CNDP2

rs1365249 height 0.0000653 0.0000073 0.9845977 0.6068966 0.9041379 CNDP2

rs2278161 height 0.0000653 0.0000073 0.9845977 0.6068966 0.9041379 CNDP2

rs653004 height 0.0000906 0.0000026 0.9712644 0.2965517 0.9298851 SIK1 FLJ41733 LINC00322

rs4818928 height 0.0000906 0.0000026 0.9712644 0.2965517 0.9298851 SIK1 FLJ41733 LINC00322

rs1003792 height 0.0000906 0.0000026 0.9712644 0.2965517 0.9298851 SIK1 FLJ41733 LINC00322

rs12627203 height 0.0000906 0.0000026 0.9712644 0.2965517 0.9298851 SIK1 FLJ41733 LINC00322

rs2071931 WHR 0.0000898 0.0002293 0.9783908 1 0.9229885 H6PD
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Table A.2 (cont’d)

Focal SNPa trait σ̂2
gm j∗

b σ̂2
gf j∗

b PPM
σ2
gj∗

c PPF
σ2
gj∗

c PPDiff
σ2
gj∗

d nearby genese

rs7517657 WHR 0.0000451 0.0002563 0.9144828 0.9993103 0.962069 LOC284688 METTL11B

rs1332955 WHR 0.0000647 0.0002944 0.9696552 0.9997701 0.9726437 LOC284688 METTL11B

rs80290375 WHR 0.0000744 0.0003468 0.9374713 0.9995402 0.9390805 LOC284688 GORAB

rs6427245 WHR 0.0000647 0.0002944 0.9696552 0.9997701 0.9726437 LOC284688 GORAB

rs7537355 WHR 0.0001064 0.00041 0.9887356 0.9997701 0.9650575 LOC284688 GORAB

rs12139302 WHR 0.0001064 0.00041 0.9887356 0.9997701 0.9650575 LOC284688 GORAB

rs7522128 WHR 0.0000815 0.0003638 0.96 0.9997701 0.9537931 GORAB LOC284688

rs61838774 WHR 0.0000013 0.0001621 0.1308046 0.9751724 0.965977 LYPLAL1 RNU5F-1

rs2168333 WHR 0.0000075 0.0006972 0.4475862 1 1 LYPLAL1 RNU5F-1

rs12747505 WHR 0.0000029 0.0002979 0.2473563 0.9965517 0.9908046 LYPLAL1 RNU5F-1

rs12724708 WHR 0.0000058 0.0004579 0.3565517 0.9983908 0.9931034 LYPLAL1 RNU5F-1

rs6541227 WHR 0.000007 0.0006346 0.4273563 1 0.9997701 LYPLAL1 RNU5F-1

rs17005614 WHR 0.000002 0.0002048 0.1797701 0.9641379 0.9448276 LYPLAL1 RNU5F-1

rs12030989 WHR 0.000007 0.0006346 0.4273563 1 0.9997701 LYPLAL1 RNU5F-1

rs2820436 WHR 0.0000076 0.0007028 0.4574713 1 1 LYPLAL1 RNU5F-1

rs2605100 WHR 0.0000077 0.0007022 0.4671264 1 1 LYPLAL1 RNU5F-1

rs1538749 WHR 0.0000079 0.0007128 0.4802299 1 1 LYPLAL1 RNU5F-1

rs12022722 WHR 0.000008 0.0007184 0.4898851 1 1 LYPLAL1 RNU5F-1

rs2605110 WHR 0.0000077 0.0007022 0.4671264 1 1 LYPLAL1 RNU5F-1

rs2061154 WHR 0.000008 0.0007184 0.4898851 1 1 LYPLAL1 RNU5F-1

rs2791545 WHR 0.000013 0.0004375 0.5735632 0.9993103 0.9942529 LYPLAL1 RNU5F-1

rs3923113 WHR 0.0000126 0.0010649 0.5643678 1 1 GRB14 COBLL1

rs10195252 WHR 0.0000126 0.0010649 0.5643678 1 1 COBLL1 GRB14

rs1128249 WHR 0.0000132 0.0010696 0.6135632 1 1 COBLL1 GRB14

rs75297654 WHR 0.0000085 0.0007424 0.403908 1 1 COBLL1

rs17244632 WHR 0.0000096 0.0007438 0.4790805 1 1 COBLL1

rs13067911 WHR 0.0000027 0.0001533 0.1885057 0.9977011 0.9931034 PPARG TSEN2

rs4684859 WHR 0.0000039 0.000157 0.3298851 0.9983908 0.9937931 PPARG TSEN2

rs73029213 WHR 0.0000024 0.0001479 0.3204598 0.9958621 0.9914943 PPARG TSEN2

rs17036788 WHR 0.0000059 0.0001633 0.5314943 0.9990805 0.9935632 PPARG TSEN2

rs6795735 WHR 0.000017 0.0005836 0.7310345 1 1 ADAMTS9-AS2

rs4132228 WHR 0.0000164 0.0005834 0.6977011 1 1 ADAMTS9-AS2 MIR548A2

rs4607103 WHR 0.0000195 0.0005915 0.8091954 1 1 ADAMTS9-AS2 MIR548A2

rs7433808 WHR 0.0000195 0.0005915 0.8091954 1 1 ADAMTS9-AS2 MIR548A2

rs7638389 WHR 0.0000195 0.0005915 0.8091954 1 1 ADAMTS9-AS2 MIR548A2

rs2194094 WHR 0.0000164 0.0005834 0.6977011 1 1 ADAMTS9-AS2 MIR548A2

rs60960425 WHR 0.0000171 0.000287 0.7967816 0.9951724 0.983908 RPL32P3

rs79763737 WHR 0.0000015 0.0002008 0.111954 0.9708046 0.9590805 EFCAB12

rs16861373 WHR 0.0000066 0.0004297 0.3889655 0.9995402 0.9947126 PLXND1
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Table A.2 (cont’d)

Focal SNPa trait σ̂2
gm j∗

b σ̂2
gf j∗

b PPM
σ2
gj∗

c PPF
σ2
gj∗

c PPDiff
σ2
gj∗

d nearby genese

rs79870266 WHR 0.0000066 0.0004297 0.3889655 0.9995402 0.9947126 PLXND1

rs9833879 WHR 0.0000066 0.0004297 0.3889655 0.9995402 0.9947126 PLXND1 TMCC1

rs2306374 WHR 0.000001 0.0000661 0.1227586 0.9222989 0.9022989 MRAS

rs9818870 WHR 0.000001 0.0000661 0.1227586 0.9222989 0.9022989 MRAS

rs4301033 WHR 0.0000008 0.0000786 0.0763218 0.9501149 0.9367816 TSC22D2 LOC646903

rs73162462 WHR 0.0000008 0.0000786 0.0763218 0.9501149 0.9367816 TSC22D2 LOC646903

rs62271364 WHR 0.0000008 0.0000786 0.0763218 0.9501149 0.9367816 TSC22D2 LOC646903

rs4450871 WHR 0.0000002 0.0001683 0.0266667 1 1 CYTL1 MSX1

rs13133548 WHR 0.0000019 0.0002404 0.1754023 0.9687356 0.9558621 FAM13A

rs3822072 WHR 0.0000019 0.0002404 0.1754023 0.9687356 0.9558621 FAM13A

rs13147493 WHR 0.0000019 0.0002404 0.1754023 0.9687356 0.9558621 FAM13A

rs974801 WHR 0.000005 0.0000716 0.3668966 0.9616092 0.9064368 TET2

rs9884482 WHR 0.000005 0.0000716 0.3668966 0.9616092 0.9064368 TET2

rs2285720 WHR 0.000005 0.0000716 0.3668966 0.9616092 0.9064368 TET2

rs10488872 WHR 0.0000742 0.0000025 0.9774713 0.2917241 0.9448276 PAPSS1 DKK2

rs10000444 WHR 0.0000742 0.0000025 0.9774713 0.2917241 0.9448276 PAPSS1 DKK2

rs17037679 WHR 0.0000742 0.0000025 0.9774713 0.2917241 0.9448276 PAPSS1 DKK2

rs6818614 WHR 0.0000742 0.0000025 0.9774713 0.2917241 0.9448276 PAPSS1 DKK2

rs28399230 WHR 0.0000742 0.0000025 0.9774713 0.2917241 0.9448276 PAPSS1 DKK2

rs13156948 WHR 0.0000016 0.000066 0.0788506 0.9696552 0.9570115 IRX1 LOC340094

rs6867983 WHR 0.0000192 0.0003815 0.4404598 1 0.9981609 MAP3K1 ANKRD55

rs3936510 WHR 0.0000188 0.0003812 0.4091954 1 0.9981609 MAP3K1 ANKRD55

rs9687846 WHR 0.0000188 0.0003812 0.4091954 1 0.9981609 MAP3K1 ANKRD55

rs37521 WHR 0.0000033 0.000093 0.2901149 0.9645977 0.9243678 PLK2 ACTBL2

rs10073521 WHR 0.0000139 0.0001164 0.4147126 0.9701149 0.9002299 TNFAIP8

rs17145265 WHR 0.0000163 0.0001422 0.5262069 0.9935632 0.9363218 TNFAIP8

rs55682871 WHR 0.0000156 0.0001184 0.4924138 0.9811494 0.9050575 TNFAIP8

rs7704120 WHR 0.0000049 0.0001374 0.476092 0.9983908 0.9912644 STC2 NKX2-5

rs6879065 WHR 0.0000049 0.0001374 0.476092 0.9983908 0.9912644 STC2 NKX2-5

rs1023617 WHR 0.0000049 0.0001374 0.476092 0.9983908 0.9912644 STC2 NKX2-5

rs3836828 WHR 0.0000029 0.0001343 0.3045977 0.9981609 0.9908046 STC2

rs9502498 WHR 0.0000141 0.0001057 0.4783908 0.9954023 0.9301149 RREB1 LY86

rs4960245 WHR 0.0000136 0.0001 0.4445977 0.9931034 0.9133333 RREB1 LY86

Affx-37047069 WHR 0.0000133 0.0000978 0.4186207 0.9921839 0.9057471 RREB1 LY86

rs56005336 WHR 0.0000853 0.0006116 0.9726437 1 0.9503448 GRM4 HMGA1

rs76412020 WHR 0.0000855 0.0006109 0.9703448 1 0.9494253 GRM4 HMGA1

rs114355919 WHR 0.0000853 0.0006116 0.9726437 1 0.9503448 GRM4 HMGA1

rs7742369 WHR 0.0000853 0.0006116 0.9726437 1 0.9503448 GRM4 HMGA1

rs10947487 WHR 0.0000734 0.0005684 0.9452874 1 0.9349425 HMGA1 GRM4
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Table A.2 (cont’d)

Focal SNPa trait σ̂2
gm j∗

b σ̂2
gf j∗

b PPM
σ2
gj∗

c PPF
σ2
gj∗

c PPDiff
σ2
gj∗

d nearby genese

rs117525671 WHR 0.0000734 0.0005684 0.9452874 1 0.9349425 HMGA1 GRM4

rs1776897 WHR 0.000087 0.0006141 0.9758621 1 0.9503448 HMGA1 GRM4

rs2780226 WHR 0.000087 0.0006141 0.9758621 1 0.9503448 HMGA1 GRM4

rs114344942 WHR 0.0000853 0.0006116 0.9726437 1 0.9503448 HMGA1

rs139876191 WHR 0.0000734 0.0005684 0.9452874 1 0.9349425 HMGA1

rs35381162 WHR 0.0000734 0.0005684 0.9452874 1 0.9349425 HMGA1

rs1150781 WHR 0.000087 0.0006141 0.9758621 1 0.9503448 C6orf1

rs6918981 WHR 0.0000767 0.0005756 0.9517241 1 0.9363218 C6orf1 NUDT3

rs4711750 WHR 0.0000625 0.0022238 0.9533333 1 1 VEGFA LOC100132354

rs6899540 WHR 0.0000455 0.0011492 0.8533333 1 1 VEGFA LOC100132354

rs6905288 WHR 0.0000567 0.0022249 0.92 1 1 VEGFA LOC100132354

rs9472126 WHR 0.0000455 0.0011492 0.8533333 1 1 VEGFA LOC100132354

rs1885659 WHR 0.0000194 0.0004076 0.5958621 0.9997701 0.9744828 VEGFA LOC100132354

rs2396081 WHR 0.0000231 0.0007352 0.6774713 1 1 VEGFA LOC100132354

rs12526378 WHR 0.0000194 0.0004076 0.5958621 0.9997701 0.9744828 VEGFA LOC100132354

rs36184164 WHR 0.0000058 0.000163 0.3032184 0.9864368 0.9370115 VEGFA LOC100132354

rs4236084 WHR 0.0000194 0.0004076 0.5958621 0.9997701 0.9744828 VEGFA LOC100132354

rs10046368 WHR 0.0000005 0.00042 0.0604598 1 1 VEGFA LOC100132354

rs17789218 WHR 0.0000259 0.0002546 0.5377011 0.9825287 0.9121839 SIM1 LOC728012

rs2503097 WHR 0.0000434 0.000459 0.8036782 1 1 SIM1 LOC728012

rs743011 WHR 0.0000259 0.0002546 0.5377011 0.9825287 0.9121839 SIM1 LOC728012

rs2073267 WHR 0.0000434 0.000459 0.8036782 1 1 SIM1 LOC728012

rs7756047 WHR 0.0000431 0.000418 0.7921839 1 0.9990805 SIM1 LOC728012

rs6937293 WHR 0.0000457 0.0004656 0.8390805 1 1 SIM1 LOC728012

rs972275 WHR 0.0000301 0.0006924 0.7956322 1 1 CENPW RSPO3

rs2800725 WHR 0.0000301 0.0006924 0.7956322 1 1 CENPW RSPO3

rs2800734 WHR 0.0000289 0.0006845 0.757931 1 1 CENPW RSPO3

rs1936799 WHR 0.0000306 0.0006836 0.7983908 1 1 CENPW RSPO3

rs1936801 WHR 0.0000284 0.0006838 0.7462069 1 1 CENPW RSPO3

rs9491696 WHR 0.0000284 0.0006838 0.7462069 1 1 RSPO3

rs2745353 WHR 0.0000284 0.0006838 0.7462069 1 1 RSPO3

rs6932207 WHR 0.0000284 0.0006838 0.7462069 1 1 RSPO3

rs41285262 WHR 0.0000293 0.0006924 0.7671264 1 1 RSPO3

rs1892172 WHR 0.0000284 0.0006838 0.7462069 1 1 RSPO3

rs13202608 WHR 0.0000267 0.0006791 0.6834483 1 1 RSPO3

rs4620145 WHR 0.0000284 0.0006838 0.7462069 1 1 RSPO3

rs6569474 WHR 0.0000284 0.0006838 0.7462069 1 1 RSPO3

rs72961013 WHR 0.0003262 0.0018148 1 1 1 RNF146 RSPO3

rs7766444 WHR 0.0000109 0.0003721 0.4668966 0.997931 0.9917241 LOC645434 LOC100132735
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Table A.2 (cont’d)

Focal SNPa trait σ̂2
gm j∗

b σ̂2
gf j∗

b PPM
σ2
gj∗

c PPF
σ2
gj∗

c PPDiff
σ2
gj∗

d nearby genese

rs9376422 WHR 0.0000107 0.0004179 0.5241379 1 1 LOC645434 LOC100132735

rs74623604 WHR 0.0000107 0.0004179 0.5241379 1 1 LOC645434 LOC100132735

rs2908521 WHR 0.0000103 0.0004166 0.497931 1 1 LOC645434 LOC100132735

rs651837 WHR 0.0000103 0.0004166 0.497931 1 1 LOC645434 LOC100132735

rs632057 WHR 0.0000105 0.0004162 0.5285057 1 1 LOC645434 LOC100132735

rs668459 WHR 0.0000103 0.0004166 0.497931 1 1 LOC645434 LOC100132735

rs72976928 WHR 0.0000103 0.0004166 0.497931 1 1 LOC645434 LOC100132735

rs628751 WHR 0.0000086 0.0003786 0.4236782 1 0.9993103 LOC645434 LOC100132735

rs592423 WHR 0.0000093 0.0003973 0.4496552 1 0.9993103 LOC645434 LOC100132735

rs6570354 WHR 0.0000091 0.0003796 0.4696552 1 0.9993103 LOC645434 LOC100132735

rs12526447 WHR 0.000002 0.0000758 0.1816092 0.9806897 0.9616092 ESR1

rs7772579 WHR 0.0000078 0.0000771 0.3942529 0.9873563 0.9344828 ESR1

rs1999805 WHR 0.0000019 0.0000756 0.1606897 0.9788506 0.9611494 ESR1

rs2152750 WHR 0.0000019 0.0000756 0.1606897 0.9788506 0.9611494 ESR1

rs1361024 WHR 0.0000022 0.000076 0.2034483 0.9818391 0.962069 ESR1

rs2504069 WHR 0.0000099 0.0000913 0.4554023 0.991954 0.9452874 ESR1

rs1055144 WHR 0.0000032 0.0003506 0.2645977 1 0.9988506 MIR148A NPVF RNU6-16P

rs12700666 WHR 0.0000032 0.0003506 0.2645977 1 0.9988506 MIR148A RNU6-16P

rs12700667 WHR 0.0000032 0.0003506 0.2645977 1 0.9988506 MIR148A RNU6-16P

rs73068463 WHR 0.0000068 0.0004224 0.4613793 1 1 SNX10

rs74979045 WHR 0.0000046 0.0004204 0.3036782 1 1 SNX10

rs1534696 WHR 0.000005 0.0004217 0.3416092 1 1 SNX10

rs7798433 WHR 0.0000046 0.0004204 0.3036782 1 1 SNX10

rs1358503 WHR 0.0000021 0.0000716 0.3089655 0.9885057 0.9662069 SEMA3C HGF

rs35736598 WHR 0.0000015 0.0000669 0.2282759 0.9816092 0.9581609 SEMA3C HGF

Affx-30952281 WHR 0.0000021 0.0000716 0.3089655 0.9885057 0.9662069 SEMA3C HGF

rs10091014 WHR 0.000009 0.0002402 0.5581609 0.9954023 0.9777011 NKX2-6 STC1

rs568890 WHR 0.0000129 0.0003106 0.8089655 1 1 NKX2-6 STC1

rs6983481 WHR 0.0000045 0.0002015 0.2570115 0.9634483 0.9333333 NKX2-6 STC1

rs67846476 WHR 0.000009 0.0002402 0.5581609 0.9954023 0.9777011 NKX2-6 STC1

rs445114 WHR 0.0000065 0.0000898 0.3170115 0.9793103 0.916092 LOC727677 POU5F1B PCAT1

rs622856 WHR 0.0000065 0.0000898 0.3170115 0.9793103 0.916092 LOC727677 POU5F1B PCAT1

rs444318 WHR 0.0000081 0.0000953 0.4547126 0.9889655 0.9326437 LOC727677 POU5F1B PCAT1

rs17464492 WHR 0.0000065 0.0000898 0.3170115 0.9793103 0.916092 LOC727677 POU5F1B PCAT1

rs12541832 WHR 0.0000065 0.0000898 0.3170115 0.9793103 0.916092 LOC727677 POU5F1B PCAT1

rs13281615 WHR 0.000007 0.0000919 0.3597701 0.9827586 0.9236782 LOC727677 POU5F1B PCAT1

rs11783615 WHR 0.0000072 0.0000919 0.3935632 0.9845977 0.9245977 LOC727677 POU5F1B PCAT1

rs10991415 WHR 0.0000026 0.0001057 0.1963218 0.9590805 0.9347126 ABCA1

rs2472377 WHR 0.000012 0.000134 0.5333333 0.991954 0.9636782 ABCA1
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Table A.2 (cont’d)

Focal SNPa trait σ̂2
gm j∗

b σ̂2
gf j∗

b PPM
σ2
gj∗

c PPF
σ2
gj∗

c PPDiff
σ2
gj∗

d nearby genese

rs2515609 WHR 0.0000023 0.0001059 0.162069 0.957931 0.9354023 ABCA1

rs10991417 WHR 0.0000048 0.0001225 0.3388506 0.9862069 0.9664368 ABCA1

rs62568211 WHR 0.0000193 0.000143 0.5604598 0.9885057 0.9537931 ABCA1

rs10760322 WHR 0.0000027 0.0000812 0.2818391 0.9857471 0.9675862 LHX2 NEK6

rs943484 WHR 0.0000042 0.000082 0.3450575 0.9882759 0.9636782 LHX2 NEK6

rs76204549 WHR 0.0000026 0.0000792 0.2103448 0.9827586 0.9636782 LHX2 NEK6

rs117790707 WHR 0.0000002 0.0000771 0.0294253 0.9728736 0.965977 LHX2 NEK6

rs12002771 WHR 0.0000038 0.0000811 0.3131034 0.9862069 0.9643678 LHX2 NEK6

rs10986225 WHR 0.000003 0.0000803 0.242069 0.9841379 0.9641379 LHX2 NEK6

rs1998951 WHR 0.0000046 0.0000823 0.3813793 0.9889655 0.9634483 LHX2 NEK6

rs78393198 WHR 0.0000026 0.0000792 0.2103448 0.9827586 0.9636782 LHX2 NEK6

Affx-2640174 WHR 0.000003 0.0001563 0.2595402 0.971954 0.948046 FGFR2 MIR5694

rs2244506 WHR 0.0000101 0.0002068 0.4526437 0.9977011 0.9845977 FGFR2 MIR5694

rs7907754 WHR 0.000003 0.0001563 0.2595402 0.971954 0.948046 FGFR2 MIR5694

rs2254069 WHR 0.000003 0.0001563 0.2595402 0.971954 0.948046 FGFR2 MIR5694

rs4436487 WHR 0.000003 0.0001563 0.2595402 0.971954 0.948046 FGFR2 MIR5694

rs56297542 WHR 0.0000073 0.0000971 0.3986207 0.9563218 0.9009195 FGFR2 MIR5694

rs1907282 WHR 0.0000022 0.0000957 0.1898851 0.9404598 0.9068966 FGFR2 MIR5694

rs7089185 WHR 0.0000022 0.0000957 0.1898851 0.9404598 0.9068966 FGFR2 MIR5694

rs10788149 WHR 0.0000058 0.0000981 0.3445977 0.9542529 0.905977 FGFR2 MIR5694

rs578270 WHR 0.0000182 0.0001261 0.7381609 0.9887356 0.9252874 FRMD8

rs2073800 WHR 0.0000182 0.0001261 0.7381609 0.9887356 0.9252874 FRMD8

rs512715 WHR 0.0000249 0.0001482 0.8351724 0.9990805 0.9478161 NEAT1

rs673753 WHR 0.0000183 0.0001264 0.7450575 0.9891954 0.9264368 NEAT1 MIR612

rs1784859 WHR 0.0000182 0.0001261 0.7381609 0.9887356 0.9252874 NEAT1 MALAT1 MIR612

rs1783210 WHR 0.0000182 0.0001261 0.7381609 0.9887356 0.9252874 MALAT1 MIR612

rs1784100 WHR 0.0000182 0.0001261 0.7381609 0.9887356 0.9252874 MALAT1 MIR612

rs11263641 WHR 0.0000207 0.0002343 0.7227586 0.9997701 0.9908046 CCND1 MYEOV

rs74471298 WHR 0.0000075 0.0001749 0.3406897 0.9963218 0.9777011 CCND1 MYEOV

rs10160464 WHR 0.0000075 0.0001727 0.3533333 0.9963218 0.976092 LOC100505834 CCND1 MYEOV

rs4980785 WHR 0.0000083 0.0001809 0.4335632 0.9990805 0.9832184 LOC100505834 CCND1 MYEOV

rs7105934 WHR 0.0000079 0.00018 0.3885057 0.9990805 0.9832184 LOC100505834 CCND1 MYEOV

rs11233117 WHR 0.0000084 0.0000803 0.4733333 0.9765517 0.9112644 ANO1 FGF3

rs2343876 WHR 0.0000243 0.0003416 0.5390805 1 0.9914943 SSPN ITPR2

rs112251480 WHR 0.0000229 0.0003321 0.4482759 1 0.9885057 SSPN ITPR2

rs718314 WHR 0.0000232 0.0003606 0.5234483 1 0.997931 ITPR2 SSPN

rs931384 WHR 0.0000232 0.0003606 0.5234483 1 0.997931 ITPR2 SSPN

rs2171522 WHR 0.0000241 0.0003647 0.5606897 1 0.9981609 ITPR2 SSPN

rs10842713 WHR 0.0000233 0.0003561 0.5321839 1 0.9981609 ITPR2 SSPN
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Table A.2 (cont’d)

Focal SNPa trait σ̂2
gm j∗

b σ̂2
gf j∗

b PPM
σ2
gj∗

c PPF
σ2
gj∗

c PPDiff
σ2
gj∗

d nearby genese

rs598322 WHR 0.0000156 0.0001329 0.6898851 0.9967816 0.9528736 HCAR1 KNTC1 HCAR2

rs4759364 WHR 0.0000175 0.000169 0.7521839 0.9990805 0.9756322 HCAR1 KNTC1 HCAR2

rs10847452 WHR 0.0000166 0.0001329 0.7222989 0.9974713 0.9494253 HCAR1 KNTC1 HCAR2

rs10773433 WHR 0.0000166 0.0001329 0.7222989 0.9974713 0.9494253 HCAR1 KNTC1 HCAR2

rs1798219 WHR 0.0000175 0.000169 0.7521839 0.9990805 0.9756322 HCAR1 KNTC1 HCAR2

rs586573 WHR 0.0000166 0.0001329 0.7222989 0.9974713 0.9494253 HCAR1 KNTC1 HCAR2

rs118091133 WHR 0.0000166 0.0001329 0.7222989 0.9974713 0.9494253 HCAR1 HCAR3

rs1798192 WHR 0.0000166 0.0001329 0.7222989 0.9974713 0.9494253 HCAR1 HCAR3

rs1696352 WHR 0.0000166 0.0001329 0.7222989 0.9974713 0.9494253 HCAR1 HCAR3

Affx-7035109 WHR 0.0000166 0.0001329 0.7222989 0.9974713 0.9494253 HCAR1 HCAR3

rs71456771 WHR 0.0000175 0.000169 0.7521839 0.9990805 0.9756322 HCAR1 HCAR3

rs10847570 WHR 0.0000156 0.0001367 0.677931 0.9967816 0.9443678 HCAR1 HCAR3

rs1316952 WHR 0.0000438 0.0006033 0.8462069 1 0.9997701 DNAH10

rs11057396 WHR 0.0000438 0.0006033 0.8462069 1 0.9997701 DNAH10 CCDC92

rs11057401 WHR 0.0000438 0.0006033 0.8462069 1 0.9997701 CCDC92

rs10773048 WHR 0.0000315 0.0005557 0.7068966 1 0.9997701 CCDC92

rs4765127 WHR 0.0000438 0.0006033 0.8462069 1 0.9997701 ZNF664 ZNF664-FAM101A

rs74551816 WHR 0.0001551 0.0000048 0.9818391 0.382069 0.9641379 NOVA1 STXBP6

rs12432376 WHR 0.0001741 0.0000074 1 0.5524138 0.9942529 NOVA1 STXBP6

rs11627916 WHR 0.0001741 0.0000074 1 0.5524138 0.9942529 NOVA1 STXBP6

rs7161009 WHR 0.0001673 0.0000056 0.9997701 0.437931 0.9926437 NOVA1 STXBP6

rs4983099 WHR 0.0001546 0.000004 0.9811494 0.2878161 0.9627586 NOVA1 STXBP6

rs8021667 WHR 0.0001673 0.0000056 0.9997701 0.437931 0.9926437 NOVA1 STXBP6

rs1955872 WHR 0.0001587 0.0000058 0.9850575 0.431954 0.9645977 NOVA1 STXBP6

rs116145925 WHR 0.0000014 0.0000747 0.1425287 0.9632184 0.9356322 UBE2I

rs115466201 WHR 0.0000014 0.0000747 0.1425287 0.9632184 0.9356322 UBE2I

rs2286973 WHR 0.0000339 0.0001226 0.8763218 0.9986207 0.916092 CLEC16A

rs12930396 WHR 0.000004 0.0000937 0.2655172 0.9501149 0.9209195 LITAF LOC388210 RMI2

rs4131548 WHR 0.000004 0.0000937 0.2655172 0.9501149 0.9209195 LITAF LOC388210 RMI2

rs17777180 WHR 0.0000031 0.0005946 0.2905747 1 1 CMIP

rs4889326 WHR 0.0000019 0.000591 0.2151724 1 1 CMIP

rs2925979 WHR 0.0000016 0.0005902 0.177931 1 1 CMIP

rs11865332 WHR 0.0000016 0.0005902 0.177931 1 1 CMIP

rs9892297 WHR 0.0000262 0.0001187 0.8524138 0.9997701 0.9370115 TNFSF12 POLR2A

rs62070804 WHR 0.0000004 0.0000887 0.0521839 0.9689655 0.9609195 ABHD15

rs3110647 WHR 0.0000023 0.0000731 0.2696552 0.9563218 0.9285057 HNF1B DDX52

rs34064336 WHR 0.0000007 0.0000694 0.0556322 0.9273563 0.9158621 HNF1B DDX52

rs4080890 WHR 0.0000153 0.0001631 0.5944828 0.9986207 0.9747126 KCNJ2

rs1605750 WHR 0.0000188 0.0001683 0.654023 0.9990805 0.9717241 KCNJ2
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Table A.2 (cont’d)

Focal SNPa trait σ̂2
gm j∗

b σ̂2
gf j∗

b PPM
σ2
gj∗

c PPF
σ2
gj∗

c PPDiff
σ2
gj∗

d nearby genese

rs16975820 WHR 0.0000119 0.0001567 0.4781609 0.9981609 0.9731034 KCNJ2

rs17779747 WHR 0.0000188 0.0001683 0.654023 0.9990805 0.9717241 KCNJ2

rs1594476 WHR 0.0000119 0.0001567 0.4781609 0.9981609 0.9731034 KCNJ2

rs3810068 WHR 0.0000026 0.0003594 0.174023 1 1 EMILIN2 SMCHD1

rs684320 WHR 0.0000048 0.0003602 0.3062069 1 0.9997701 EMILIN2

rs9954931 WHR 0.0000048 0.0003602 0.3062069 1 0.9997701 EMILIN2

rs679153 WHR 0.0000048 0.0003602 0.3062069 1 0.9997701 EMILIN2

rs623561 WHR 0.0000052 0.0003603 0.34 1 0.9997701 EMILIN2

rs4800269 WHR 0.0000093 0.0000589 0.577931 0.988046 0.9036782 AQP4-AS1 AQP4 LOC728606

rs12454712 WHR 0.0000087 0.0001024 0.3604598 0.9958621 0.9648276 BCL2

rs4940576 WHR 0.0000087 0.0001024 0.3604598 0.9958621 0.9648276 BCL2

rs11661511 WHR 0.0000087 0.0001024 0.3604598 0.9958621 0.9648276 BCL2

rs2288404 WHR 0.0000024 0.0000727 0.268046 0.9698851 0.934023 INSR

rs1799815 WHR 0.0000006 0.0000702 0.0512644 0.9455172 0.9268966 INSR

rs10408374 WHR 0.000001 0.0000713 0.1367816 0.9563218 0.9312644 INSR

rs34465381 WHR 0.0000126 0.0000984 0.6216092 0.9947126 0.9236782 HAUS8 CPAMD8

rs7259285 WHR 0.0000182 0.0001711 0.7668966 1 0.9889655 HAUS8 CPAMD8

rs7260259 WHR 0.0000098 0.0000928 0.5264368 0.9903448 0.9163218 HAUS8

Affx-15620245 WHR 0.0000158 0.0001675 0.7227586 1 0.9885057 HAUS8

rs6512161 WHR 0.0000158 0.0001675 0.7227586 1 0.9885057 HAUS8

rs7259348 WHR 0.0000098 0.0000928 0.5264368 0.9903448 0.9163218 HAUS8

rs6102059 WHR 0.0000011 0.0000756 0.0827586 0.9588506 0.9303448 MAFB LOC339568

rs1936963 WHR 0.0000168 0.0002126 0.5498851 1 0.9749425 TSHZ2

rs2741366 WHR 0.0000135 0.0002118 0.4832184 1 0.9765517 TSHZ2

rs73140232 WHR 0.0000112 0.0001844 0.3977011 0.9990805 0.9462069 TSHZ2

rs2000339 WHR 0.000016 0.000208 0.483908 1 0.968046 TSHZ2

rs6013630 WHR 0.0000134 0.0001853 0.5002299 0.9990805 0.9455172 TSHZ2

rs2800999 WHR 0.0000201 0.0002224 0.6908046 1 0.9786207 TSHZ2

rs1293430 WHR 0.0000177 0.0001917 0.6374713 0.9993103 0.9450575 TSHZ2

rs2256596 BMD 0.0002546 0.0000714 1 0.9432184 0.9374713 RREB1

rs35742417 BMD 0.0002546 0.0000714 1 0.9432184 0.9374713 RREB1

rs2714341 BMD 0.0002347 0.0000711 0.9981609 0.9406897 0.9117241 RREB1 SSR1

rs9403141 BMD 0.0001358 0.0000005 0.9581609 0.0855172 0.9468966 MCHR2 PRDM13

rs7451306 BMD 0.0001358 0.0000005 0.9581609 0.0855172 0.9468966 MCHR2 PRDM13

rs17428220 BMD 0.0002729 0.0001293 0.9933333 0.8126437 0.9045977 EVX1 HIBADH

rs776746 BMD 0.0000308 0.000213 0.7701149 1 0.9457471 CYP3A5

rs45442295 BMD 0.0000128 0.0001952 0.4517241 0.9995402 0.9344828 CYP3A7 CYP3A7-CYP3AP1

rs45446698 BMD 0.0000091 0.000193 0.177931 0.9995402 0.9342529 CYP3A4 CYP3A7

rs6945984 BMD 0.0000308 0.000213 0.7701149 1 0.9457471 CYP3A4 CYP3A7
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Table A.2 (cont’d)

Focal SNPa trait σ̂2
gm j∗

b σ̂2
gf j∗

b PPM
σ2
gj∗

c PPF
σ2
gj∗

c PPDiff
σ2
gj∗

d nearby genese

rs12333983 BMD 0.0000308 0.000213 0.7701149 1 0.9457471 CYP3A4 CYP3A7

rs3735451 BMD 0.0000308 0.000213 0.7701149 1 0.9457471 CYP3A4

rs6956344 BMD 0.0000308 0.000213 0.7701149 1 0.9457471 CYP3A4

rs2242480 BMD 0.0000308 0.000213 0.7701149 1 0.9457471 CYP3A4

rs8176719 BMD 0.0006001 0.0000182 1 0.794023 1 ABO

rs687621 BMD 0.0005978 0.0000176 1 0.7783908 1 ABO

rs657152 BMD 0.0006001 0.0000182 1 0.794023 1 ABO

rs514659 BMD 0.0005978 0.0000176 1 0.7783908 1 ABO

rs643434 BMD 0.0006001 0.0000182 1 0.794023 1 ABO

rs612169 BMD 0.0005978 0.0000176 1 0.7783908 1 ABO

rs581107 BMD 0.0005984 0.0000115 1 0.623908 1 ABO

rs505922 BMD 0.0005978 0.0000176 1 0.7783908 1 ABO

rs507666 BMD 0.0005833 0.000007 1 0.4397701 1 ABO

rs651007 BMD 0.0005833 0.000007 1 0.4397701 1 ABO SURF6

rs579459 BMD 0.0005833 0.000007 1 0.4397701 1 ABO SURF6

rs495828 BMD 0.0005833 0.000007 1 0.4397701 1 ABO SURF6

rs635634 BMD 0.0005833 0.000007 1 0.4397701 1 ABO SURF6

rs56196860 BMD 0.0001283 0.0000016 0.9590805 0.0643678 0.9365517 FKBP4

rs1038196 BMD 0.000028 0.0001236 0.8227586 0.997931 0.9165517 HMGA2

rs1351394 BMD 0.000028 0.0001236 0.8227586 0.997931 0.9165517 HMGA2

rs1042725 BMD 0.000028 0.0001236 0.8227586 0.997931 0.9165517 HMGA2

rs8756 BMD 0.000028 0.0001236 0.8227586 0.997931 0.9165517 HMGA2

rs12424086 BMD 0.0000265 0.0001235 0.7912644 0.9970115 0.9197701 HMGA2 LLPH

rs34029815 BMD 0.0000265 0.0001235 0.7912644 0.9970115 0.9197701 HMGA2 LLPH

rs947211 BMI 9.52E-05 0.0000153 0.9898851 0.7687356 0.9022989 SLC41A1 RAB7L1

rs1775146 BMI 9.52E-05 0.0000153 0.9898851 0.7687356 0.9022989 SLC41A1 RAB7L1

rs13119835 BMI 2.31E-05 0.000109 0.8822989 0.9983908 0.9057471 NDST3

rs4833565 BMI 2.31E-05 0.000109 0.8822989 0.9983908 0.9057471 NDST3

rs10781293 BMI 2.00E-06 0.0001038 0.1848276 0.9448276 0.9121839 PIP5K1B

rs10869623 BMI 2.00E-06 0.0001038 0.1848276 0.9448276 0.9121839 PIP5K1B

rs941714 BMI 6.10E-06 0.0000667 0.514023 0.9763218 0.9094253 MIR656 MEG9

rs3742407 BMI 7.00E-06 0.0000687 0.5871264 0.9841379 0.9151724 MEG9

rs2295654 BMI 7.00E-06 0.0000687 0.5871264 0.9841379 0.9151724 MEG9

rs4906037 BMI 6.10E-06 0.0000667 0.514023 0.9763218 0.9094253 DIO3OS MEG9

rs2400968 BMI 7.00E-06 0.0000687 0.5871264 0.9841379 0.9151724 DIO3OS MEG9

rs235348 BMI 2.30E-06 0.0000694 0.2967816 0.9604598 0.9275862 TSPEAR UBE2G2

rs690333 BMI 1.16E-05 0.0000728 0.5243678 0.9694253 0.9006897 TSPEAR UBE2G2

a Focal SNP is defined as the center SNP j in window j∗.
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b Proportion of variance explained by sex-specific SNP effects within window j∗.
c Posterior probability that sex-specific effects are nonzero.
d Posterior probability that effects differ between sexes.
e Nearest genes identified through Axiom UKB WCSG annotations, release 34.
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Figure A.1: LD statistics across distances
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Figure A.2: Estimated power and false-discovery rate for discovering observed SNPs with effects
in at least one sex
Estimated power (left) and FDR (right) shown as a function of the number of SNPs selected. Each point
represents a sample average and error bars represent 95% confidence intervals, each derived using 30
Monte Carlo replicates. LBR (SNP): local Bayesian regression, utilizing PPSNP j . SMR: single-marker
regression, utilizing the F-test-based p-value.
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Figure A.3: Power vs false-discovery rate for discovering genomic regions containing masked
causal variants
Here power is defined as the expected proportion of causal variants that are being tagged by at least one
selected SNP j or window j∗. False discovery rate is defined as the proportion of selected SNPs or
windows that are not tagging any causal variants. Each point is an estimate and error bars for both axes
represent 95% confidence intervals. Point estimates and intervals were derived using 30 Monte Carlo
replicates. Each facet corresponds to a different “target area”, a fixed width around each causal variant that
defines the set of SNPs effectively tagging it. LBR (SNP): uses the PPSNP j metric spanning 1-0. LBR
(Window): uses the maximum between PPM

σ2
g j∗

and PPF
σ2
g j∗

spanning 1-0. SMR: uses the F-test-based

p-value spanning (on the -log10 scale) 30-0.
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Figure A.4: Comparison between SMR and LBR for discovering G×S interactions
Manhattan plot showing pvalue-diff for each analyzed SNP. SNPs are colored yellow if they were focal
SNPs with a PPDiff

σ2
g j∗
≥ 0.9 and colored red if they were focal SNPs with a PPDiff

σ2
g j∗
≥ 0.95. The

dashed horizontal lines denote p-diff thresholds of 1x10-5 and 5x10-8.
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Figure A.5: eQTL enrichment as a function of the number of SNPs selected
LBR (Window): uses the PPDiff

σ2
g j∗

metric. SMR: uses the pvalue-diff metric.
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CHAPTER 4 SUPPLEMENTARY MATERIAL

Table B.1: Heritability estimates for all RNA editing sites with sample size
Editing site position:strand Na σ̂2

g
b SE

(
σ̂2
g

)
c σ̂2

ε
d SE

(
σ̂2
ε

)
e ĥ2f p-valueg

16:26512555:minus 139 0.576 0.221 0.454 0.149 0.56 0.0000819
15:110910484:plus 166 0.386 0.171 0.609 0.134 0.388 0.0000859
6:39368241:minus 166 0.411 0.176 0.599 0.135 0.407 0.000157
16:26512645:minus 159 0.335 0.166 0.647 0.139 0.341 0.000234
1:126167425:minus 165 0.31 0.16 0.686 0.138 0.311 0.00088
X:60918926:plus 34 0.696 0.551 0.23 0.442 0.752 0.0302
6:115902177:plus 76 0.325 0.278 0.689 0.254 0.32 0.0662
8:67587714:minus 89 0.333 0.241 0.689 0.218 0.326 0.0698
14:91530951:plus 119 0.112 0.14 0.842 0.171 0.117 0.0752
2:30295839:minus 117 0.193 0.175 0.812 0.181 0.192 0.0758
6:93743264:minus 141 0.189 0.152 0.816 0.159 0.188 0.0786
10:56281853:minus 150 0.122 0.129 0.884 0.152 0.122 0.136
7:96470770:plus 34 0.512 0.524 0.378 0.44 0.575 0.137
6:48557105:minus 150 0.0979 0.123 0.901 0.15 0.098 0.151
X:60918925:plus 32 0.467 0.586 0.526 0.542 0.47 0.209
18:11662642:plus 54 0.196 0.324 0.816 0.338 0.194 0.263
1:126837057:minus 11 0.904 1.74 0.00000325 1.64 1 0.272
16:26513687:minus 117 0.067 0.132 0.919 0.174 0.068 0.288
6:62205750:minus 86 0.115 0.53 0.93 0.214 0.11 0.291
5:57668385:plus 23 0.243 0.633 0.67 0.614 0.266 0.3
15:77692835:plus 81 0.0832 0.186 0.899 0.228 0.0847 0.325
6:75654298:minus 36 0.166 0.325 0.565 0.345 0.227 0.358
18:11664433:plus 36 0.106 0.416 0.909 0.468 0.105 0.362
13:140729295:minus 68 0.069 0.219 0.933 0.265 0.0688 0.365
4:91383948:minus 10 0.876 2.06 0.126 1.49 0.874 0.366
14:87895203:minus 54 0.057 0.259 0.9 0.301 0.0595 0.379
6:159410531:minus 29 0.0676 0.609 0.95 0.599 0.0664 0.438
14:39851072:minus 33 0.0375 0.429 0.994 0.53 0.0363 0.474
18:17492309:plus 150 0.00431 0.089 0.998 0.146 0.0043 0.477
1:128090247:minus 74 0.0083 0.163 0.974 0.241 0.00845 0.48
10:29217567:plus 34 0.00000698 0.399 1.02 0.473 0.00000685 0.5
13:111022773:minus 60 0.00000731 0.221 0.999 0.288 0.00000732 0.5
13:111022791:minus 79 1.97E-09 0.172 1.01 0.237 1.94E-09 0.5
13:111023101:minus 80 1.86E-09 0.154 0.927 0.214 2.01E-09 0.5
13:146223066:plus 18 0.000000764 0.613 0.819 0.688 0.000000933 0.5
13:39922407:plus 16 0.000229 0.831 1.03 0.919 0.000222 0.5
13:86543564:minus 68 1.82E-09 0.182 0.943 0.248 1.92E-09 0.5
14:111666396:plus 42 7.92E-08 0.319 1.02 0.392 7.76E-08 0.5
15:110909979:plus 117 1.93E-09 0.111 1 0.173 1.92E-09 0.5
15:59690693:plus 88 0.000000047 0.135 0.904 0.194 0.000000052 0.5
16:23629281:minus 138 1.83E-09 0.094 0.997 0.154 1.84E-09 0.5
6:168677788:plus 15 0.382 0.971 0.472 1.05 0.448 0.5
6:62207065:minus 43 1.51E-09 0.322 0.978 0.384 1.55E-09 0.5
6:93743195:minus 124 2.01E-09 0.099 0.965 0.159 2.09E-09 0.5
7:3053788:plus 40 1.49E-09 0.365 1.03 0.436 1.45E-09 0.5
9:115531653:minus 31 4.66E-08 0.411 1.02 0.499 4.59E-08 0.5
X:60916145:plus 24 1.48E-09 0.578 1 0.665 1.47E-09 0.5

a Sample size (the number of animals with a detectable editing level)
b REML estimated genomic variance component
c Standard error of genomic variance estimate
d REML estimated residual variance component
e Standard error of residual variance estimate
f Genomic heritability estimate
g p-value from a likelihood ratio test, testing H0 : σ2

g = 0.
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Table B.2: ADAR-localized genomic variance estimates for

67 carcass composition, meat quality, and growth traits

traita Nb σ̂2
glocal

c SE
(
σ̂2
glocal

)
d σ̂2

gBG
e SE

(
σ̂2
gBG

)
f p-valueg

ADG 936 0.144 0.0849 0.266 0.0545 0.000293

last_lum 932 0.0265 0.0237 0.358 0.0615 0.000459

tofat 936 0.0773 0.051 0.247 0.0513 0.000774

bf10_22wk 940 0.0325 0.0259 0.315 0.0528 0.00118

car_bf10 927 0.0275 0.0227 0.287 0.0495 0.00264

mtpro 936 0.0355 0.0281 0.3 0.0539 0.0032

belly 933 0.0343 0.0284 0.205 0.0515 0.00912

wt_22wk 940 0.0541 0.0395 0.252 0.0548 0.00967

Days 940 0.0677 0.0467 0.231 0.0528 0.0109

WBS 923 0.0145 0.0166 0.259 0.0582 0.0154

lrf_22wk 940 0.0166 0.0168 0.368 0.0576 0.0219

fftoln 936 0.0328 0.0278 0.212 0.0532 0.0268

mtfat 936 0.0383 0.0309 0.221 0.0538 0.0276

car_wt 934 0.0254 0.0226 0.142 0.0442 0.0424

bf10_16wk 940 0.0163 0.0171 0.402 0.0621 0.0483

lrf_16wk 940 0.00887 0.0126 0.411 0.0659 0.0651

farm_wt 934 0.0211 0.0202 0.189 0.0498 0.0685

lma_22wk 940 0.0124 0.0153 0.339 0.064 0.0967

bf10_19wk 940 0.00681 0.0105 0.393 0.0602 0.0972

lrf_13wk 940 0.00817 0.0122 0.382 0.0648 0.115

wt_19wk 940 0.0169 0.0182 0.325 0.0626 0.123

bf10_10wk 940 0.00545 0.00957 0.362 0.0632 0.126

first_rib 845 0.00615 0.0104 0.203 0.0529 0.133

lrf_10wk 940 0.00541 0.0101 0.321 0.0622 0.164
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Table B.2 (cont’d)

traita Nb σ̂2
glocal

c SE
(
σ̂2
glocal

)
d σ̂2

gBG
e SE

(
σ̂2
gBG

)
f p-valueg

lrf_19wk 940 0.0041 0.00833 0.49 0.0679 0.181

lma_19wk 940 0.0107 0.014 0.315 0.0618 0.185

wt_16wk 940 0.0095 0.0129 0.255 0.0564 0.204

temp_24h 931 0.00549 0.00953 0.179 0.0488 0.205

lma_16wk 940 0.00488 0.0096 0.274 0.0583 0.207

off_flavor 928 0.00274 0.00605 0.0312 0.0254 0.211

ph_24h 913 0.00315 0.00748 0.192 0.0512 0.219

conn_tiss 928 0.00364 0.00779 0.135 0.0435 0.248

juiciness 928 0.00428 0.00767 0.0695 0.0337 0.252

tenderness 928 0.00439 0.0092 0.265 0.0582 0.262

last_rib 933 0.00259 0.00753 0.251 0.0538 0.284

bf10_13wk 940 0.00225 0.00717 0.363 0.0608 0.325

overtend 928 0.00246 0.00764 0.273 0.0591 0.354

firm 918 0.00147 0.00604 0.146 0.0453 0.397

lma_13wk 940 0.00147 0.00693 0.332 0.0637 0.409

wt_birth 940 0.000834 0.00557 0.213 0.0534 0.464

b 887 0.000294 0.00596 0.356 0.0645 0.476

temp_45m 933 0.00027 0.00534 0.2 0.0521 0.476

wt_3wk 940 2.06E-09 0.00388 0.0603 0.0313 0.5

wt_6wk 939 0.00000685 0.00484 0.166 0.0473 0.5

wt_10wk 940 2.06E-09 0.00515 0.225 0.0535 0.5

lma_10wk 940 2.06E-09 0.00545 0.3 0.0598 0.5

wt_13wk 940 0.0000122 0.00553 0.283 0.0596 0.5

dress_ptg 934 0.00000018 0.00542 0.25 0.0572 0.5

color 931 0.00000206 0.00531 0.227 0.0549 0.5
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Table B.2 (cont’d)

traita Nb σ̂2
glocal

c SE
(
σ̂2
glocal

)
d σ̂2

gBG
e SE

(
σ̂2
gBG

)
f p-valueg

L 887 2.06E-09 0.00586 0.342 0.0658 0.5

a 887 0.00000111 0.00572 0.408 0.0673 0.5

cook_yield 924 4.91E-08 0.00552 0.286 0.0598 0.5

marb 932 2.06E-09 0.0059 0.372 0.0671 0.5

driploss 932 0.00000275 0.00524 0.239 0.0551 0.5

ph_45m 920 2.06E-09 0.00442 0.107 0.0399 0.5

pH_dec 900 0.000000122 0.00418 0.0735 0.0347 0.5

car_length 933 0.000000163 0.00595 0.393 0.0684 0.5

num_ribs 655 0.00000781 0.00743 0.361 0.0811 0.5

car_lma 928 2.06E-09 0.00565 0.469 0.0687 0.5

ham 933 2.06E-09 0.00545 0.265 0.0582 0.5

loin 933 2.06E-09 0.0054 0.254 0.0571 0.5

boston 933 2.06E-09 0.0064 0.403 0.0726 0.5

picnic 933 2.06E-09 0.00697 0.519 0.0825 0.5

spareribs 930 2.06E-09 0.00601 0.389 0.0688 0.5

moisture 922 6.58E-08 0.00558 0.312 0.0616 0.5

fat 922 2.06E-09 0.00592 0.483 0.0717 0.5

protein 921 2.06E-09 0.00575 0.354 0.065 0.5

a More information about each trait can be found in Velez-Irizarry et al. [106]
b Sample size
c REML estimated ADAR-localized genomic variance component
d Standard error of ADAR-localized genomic variance estimate
e REML estimated background genomic variance component
f Standard error of background genomic variance estimate
g p-value from a likelihood ratio test, testing H0 : σ2

glocal
= 0.
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Table B.3: Genomic covariance estimates between site-specific RNA editing

levels and 67 carcass composition, meat quality, and growth traits

traita editing site ρ̂g
b SE

(
ρ̂g

)c σ̂g1g2
d σ̂ε1ε2

e σ̂p1p2
f p-valueg

temp_45m 15:110910484:plus 0.6978532 0.2006619 0.1947621 -0.2112079 -0.0164458 0.0013573

moisture 16:26512645:minus -0.7000733 0.2000639 -0.2168411 0.0504626 -0.1663786 0.0041762

b 1:126167425:minus 0.6289766 0.2138839 0.194918 -0.036493 0.158425 0.0064947

moisture 16:26512555:minus -0.5179504 0.177277 -0.2196051 0.02667 -0.1929351 0.0113916

lrf_22wk 16:26512645:minus 0.5314482 0.2058477 0.1795119 -0.0102409 0.1692709 0.0121452

boston 6:39368241:minus -0.5933886 0.1416324 -0.3154157 -0.0886732 -0.4040889 0.0133171

temp_45m 1:126167425:minus 0.667827 0.2164199 0.1734387 -0.0248664 0.1485723 0.0148532

fat 16:26512645:minus 0.5161289 0.1897534 0.2086495 0.0494572 0.2581067 0.0179607

last_lum 16:26512645:minus 0.5145507 0.1952752 0.1913932 -0.0039213 0.1874719 0.0194878

conn_tiss 15:110910484:plus -0.5527452 0.2268368 -0.1374818 0.0535365 -0.0839453 0.0197101

fftoln 15:110910484:plus -0.5108137 0.1923533 -0.1818749 0.0911418 -0.0907331 0.0228199

picnic 16:26512555:minus 0.6174721 0.162787 0.326789 -0.2618334 0.0649556 0.0236605

color 16:26512555:minus -0.4711909 0.1923727 -0.1755983 -0.0175018 -0.1931001 0.0256422

L 16:26512555:minus 0.4781228 0.1821823 0.2071758 -0.0436777 0.1634981 0.0263383

last_rib 16:26512645:minus 0.4859347 0.2266758 0.1353587 0.0587771 0.1941358 0.0391113

wt_3wk 16:26512555:minus -0.6893225 0.283316 -0.1189598 0.0715114 -0.0474485 0.0476917

mtfat 15:110910484:plus -0.4472025 0.2039263 -0.1522525 0.0757822 -0.0764703 0.0477578

car_bf10 16:26512645:minus 0.3805601 0.2066879 0.1216296 0.0658033 0.1874328 0.0481823

moisture 1:126167425:minus -0.4750748 0.2306446 -0.1433086 0.1190167 -0.0242919 0.0498548

pH_dec 16:26512645:minus 0.5150611 0.3327587 0.0772333 -0.1163237 -0.0390904 0.0498863

ph_45m 1:126167425:minus 0.5916669 0.2981662 0.1010036 -0.1692225 -0.0682189 0.0500024

num_ribs 16:26512555:minus -0.4653506 0.200344 -0.2025083 0.1169612 -0.0855471 0.0500832

b 15:110910484:plus 0.4728684 0.2177794 0.1524001 -0.0375163 0.1148838 0.0508777

pH_dec 1:126167425:minus 0.545542 0.3473278 0.0745804 -0.0602521 0.0143283 0.0517325

car_wt 16:26512645:minus 0.5843297 0.2535415 0.1309091 -0.1174667 0.0134424 0.0572019

dress_ptg 15:110910484:plus 0.3978575 0.2058523 0.136633 -0.0464345 0.0901985 0.0594525

temp_24h 6:39368241:minus -0.4792902 0.2032275 -0.1400908 -0.3415478 -0.4816387 0.0599582

wt_3wk 6:39368241:minus -0.6890714 0.3143074 -0.094669 0.0404951 -0.0541739 0.0599692

driploss 15:110910484:plus -0.3867181 0.2107094 -0.1298377 0.1519669 0.0221292 0.0630321

wt_10wk 15:110910484:plus -0.4181734 0.2175119 -0.1252656 -0.0017598 -0.1270255 0.0632891

belly 16:26512645:minus 0.5505696 0.2374497 0.1403632 0.0305953 0.1709586 0.0667876

marb 16:26512645:minus 0.4073535 0.2089169 0.1462183 0.0804837 0.226702 0.0783371

temp_24h 16:26512645:minus 0.5809202 0.2723509 0.1205994 -0.1429541 -0.0223547 0.0813252

b 16:26512555:minus 0.3182276 0.1857647 0.1465983 -0.0996418 0.0469565 0.0820527

lma_19wk 15:110910484:plus -0.3544394 0.1928252 -0.1416331 0.0641738 -0.0774593 0.0831723

lma_22wk 15:110910484:plus -0.3548259 0.185235 -0.1522617 0.0392898 -0.1129718 0.0841729
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Table B.3 (cont’d)

traita editing site ρ̂g
b SE

(
ρ̂g

)c σ̂g1g2
d σ̂ε1ε2

e σ̂p1p2
f p-valueg

wt_3wk 15:110910484:plus -0.5972737 0.3112136 -0.0873063 -0.0039575 -0.0912638 0.0886598

ADG 15:110910484:plus -0.3313927 0.1919747 -0.134748 0.1008835 -0.0338645 0.1009422

bf10_19wk 6:39368241:minus 0.2911484 0.181434 0.1274551 -0.1708141 -0.043359 0.1041676

bf10_22wk 16:26512645:minus 0.3444655 0.2183995 0.1121352 0.0114755 0.1236107 0.104852

a 1:126167425:minus -0.4000349 0.2477763 -0.1218053 0.1353083 0.013503 0.1066612

ph_45m 15:110910484:plus 0.5515001 0.1747256 0.0979464 -0.1123954 -0.014449 0.1081383

L 15:110910484:plus -0.3501275 0.1985502 -0.1386411 0.1738201 0.035179 0.1085107

a 16:26512555:minus -0.2911679 0.1825653 -0.1408192 0.147053 0.0062338 0.109653

ham 15:110910484:plus 0.3728721 0.2201093 0.1199787 -0.1438646 -0.0238859 0.1128409

wt_6wk 6:39368241:minus -0.4467673 0.2535047 -0.1049723 0.0962471 -0.0087252 0.1140483

wt_6wk 15:110910484:plus -0.3815983 0.2228853 -0.1076214 -0.0741062 -0.1817275 0.1148975

first_rib 16:26512645:minus 0.399654 0.2403603 0.111272 0.0607663 0.1720384 0.1233643

WBS 16:26512645:minus -0.3636745 0.2209916 -0.1186282 -0.0154713 -0.1340995 0.1266919

farm_wt 16:26512645:minus 0.4520142 0.2501198 0.1157098 -0.0985005 0.0172093 0.129934

wt_22wk 15:110910484:plus -0.3195801 0.2055025 -0.1153862 0.0797386 -0.0356475 0.1379282

mtpro 16:26512645:minus 0.3398009 0.2242867 0.1089872 -0.0133729 0.0956143 0.1434817

num_ribs 1:126167425:minus -0.3870412 0.2455344 -0.1281953 0.1351493 0.0069539 0.1510288

wt_6wk 16:26512645:minus -0.3778147 0.2514977 -0.0942609 -0.0085057 -0.1027666 0.1524548

a 6:39368241:minus -0.2674827 0.1846067 -0.1169186 -0.0956302 -0.2125488 0.1528527

lrf_19wk 16:26512645:minus 0.3072594 0.2080163 0.1187616 0.0643692 0.1831308 0.1605653

wt_10wk 16:26512645:minus -0.3241411 0.2409166 -0.0928159 0.1103734 0.0175575 0.1652651

Days 15:110910484:plus 0.3004014 0.2046399 0.1084417 -0.0099376 0.0985042 0.1662346

protein 1:126167425:minus 0.2926056 0.2187942 0.10401 -0.0876923 0.0163177 0.1663039

firm 16:26512645:minus 0.3378975 0.2632971 0.080186 -0.0424556 0.0377304 0.1711678

ph_45m 6:39368241:minus 0.3912599 0.2785512 0.079414 -0.0531326 0.0262814 0.1741369

bf10_13wk 15:110910484:plus 0.28291 0.2116243 0.100724 -0.1323884 -0.0316644 0.1787045

b 16:26512645:minus 0.28794 0.2252757 0.0978759 -0.0264436 0.0714323 0.1879715

a 15:110910484:plus -0.2780321 0.206455 -0.105727 -0.0030079 -0.1087349 0.1933367

conn_tiss 16:26512555:minus -0.3209072 0.2378448 -0.0917414 0.0243247 -0.0674166 0.1940133

car_lma 16:26512555:minus 0.2720148 0.1734739 0.1442266 -0.1099755 0.0342512 0.2045772

bf10_19wk 16:26512645:minus 0.2837844 0.2172744 0.0988265 0.0141858 0.1130123 0.2048029

off_flavor 1:126167425:minus -0.4994814 0.4187853 -0.0537841 0.0470309 -0.0067532 0.2088798

juiciness 1:126167425:minus -0.3695545 0.3075291 -0.0655989 0.0782349 0.012636 0.2111407

ph_45m 16:26512645:minus 0.4301392 0.3073378 0.0739628 -0.0103846 0.0635782 0.2132017

ph_24h 15:110910484:plus 0.2956059 0.2298783 0.0887444 -0.1305047 -0.0417603 0.2174268

last_lum 1:126167425:minus 0.2688917 0.2150534 0.0982519 -0.0501248 0.0481271 0.2227989

pH_dec 6:39368241:minus 0.3892706 0.3144992 0.0639188 -0.0038634 0.0600554 0.2259253

89



Table B.3 (cont’d)

traita editing site ρ̂g
b SE

(
ρ̂g

)c σ̂g1g2
d σ̂ε1ε2

e σ̂p1p2
f p-valueg

bf10_16wk 16:26512645:minus 0.2581885 0.2112177 0.0957501 -0.0083846 0.0873655 0.2270376

lrf_16wk 6:39368241:minus 0.2205575 0.1900252 0.0964238 -0.0872119 0.0092119 0.2331844

car_bf10 6:39368241:minus 0.2082403 0.1949637 0.0770797 -0.0462581 0.0308216 0.2338157

tenderness 15:110910484:plus -0.2758242 0.2151229 -0.0944788 0.0445027 -0.049976 0.2353996

last_lum 15:110910484:plus 0.2533347 0.2031338 0.0979362 -0.0214882 0.076448 0.237471

wt_16wk 15:110910484:plus -0.2590085 0.2138979 -0.0880929 -0.0200387 -0.1081316 0.2385872

protein 16:26512555:minus 0.2240531 0.1945021 0.1001846 -0.1833907 -0.083206 0.2408811

overtend 16:26512645:minus 0.288481 0.2282291 0.0928696 -0.0039821 0.0888875 0.2416114

driploss 6:39368241:minus -0.2436748 0.2204878 -0.0803892 0.1009261 0.0205368 0.2466252

overtend 15:110910484:plus -0.2732181 0.2152852 -0.0938704 0.0415702 -0.0523002 0.2468283

belly 15:110910484:plus 0.28095 0.2248886 0.0866608 0.0313898 0.1180506 0.24926

fftoln 6:39368241:minus -0.272801 0.2156793 -0.0927051 0.0060356 -0.0866695 0.251919

belly 1:126167425:minus 0.2893782 0.2463631 0.0800935 0.0049732 0.0850667 0.2525818

car_wt 16:26512555:minus 0.2947202 0.2305088 0.0920975 -0.0953904 -0.0032929 0.2643088

car_length 16:26512555:minus 0.2231852 0.1880947 0.1072539 -0.0550028 0.0522511 0.2646737

tofat 15:110910484:plus -0.217367 0.2033011 -0.079918 0.0369009 -0.0430171 0.2704865

temp_24h 1:126167425:minus -0.3140209 0.2579774 -0.0743201 -0.3131702 -0.3874903 0.2727324

pH_dec 15:110910484:plus 0.4554498 0.347066 0.0635814 -0.0123335 0.0512479 0.2730641

loin 16:26512555:minus 0.2595433 0.2109098 0.0980741 -0.0656056 0.0324685 0.2744468

ph_24h 16:26512645:minus -0.2828384 0.2572533 -0.0736194 0.110557 0.0369376 0.2748747

cook_yield 15:110910484:plus 0.2489873 0.2145452 0.0866483 -0.0049773 0.0816709 0.2786352

wt_19wk 16:26512555:minus -0.2211012 0.190224 -0.1007887 -0.0151277 -0.1159164 0.2793971

fat 16:26512555:minus 0.2073381 0.179037 0.1033649 0.1796151 0.28298 0.2803456

car_wt 15:110910484:plus 0.2998882 0.2578546 0.0736429 -0.1189525 -0.0453096 0.2828107

wt_19wk 15:110910484:plus -0.2276545 0.2056989 -0.0870598 0.0222916 -0.0647682 0.2887758

tenderness 16:26512645:minus 0.25802 0.2312266 0.0818423 0.0116808 0.093523 0.293002

lma_13wk 6:39368241:minus 0.2182071 0.2074296 0.0825468 -0.0036772 0.0788697 0.293991

marb 15:110910484:plus 0.232211 0.2061084 0.0898224 0.0101539 0.0999763 0.2948951

spareribs 6:39368241:minus -0.238048 0.1937929 -0.1013694 -0.0328957 -0.1342652 0.2970763

dress_ptg 16:26512645:minus 0.2471977 0.2438372 0.0725209 -0.0376742 0.0348467 0.2976703

lrf_16wk 16:26512645:minus 0.2246823 0.2145423 0.083247 0.0754287 0.1586757 0.2983286

spareribs 15:110910484:plus -0.2544918 0.2070737 -0.0984231 -0.0042541 -0.1026772 0.3023104

pH_dec 16:26512555:minus 0.3315993 0.308353 0.0647022 -0.0946616 -0.0299593 0.3060452

wt_6wk 1:126167425:minus -0.2834482 0.2751467 -0.0637884 0.0046975 -0.0590909 0.3072649

num_ribs 16:26512645:minus -0.272252 0.2404619 -0.0944863 -0.0739905 -0.1684768 0.308162

farm_wt 16:26512555:minus 0.2696127 0.2195012 0.0935755 -0.0893406 0.0042349 0.3085265

bf10_13wk 1:126167425:minus 0.2158451 0.2287056 0.0713476 -0.1296212 -0.0582736 0.3131989
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car_wt 1:126167425:minus 0.2779068 0.2741068 0.064099 -0.0963426 -0.0322436 0.3171421

first_rib 6:39368241:minus 0.2480959 0.2370649 0.0738355 -0.0609145 0.012921 0.3209069

num_ribs 6:39368241:minus -0.2255063 0.2144594 -0.0900992 -0.175821 -0.2659202 0.3276659

last_rib 1:126167425:minus -0.2083497 0.2375975 -0.0618438 0.0742384 0.0123946 0.3291292

mtfat 6:39368241:minus -0.2193661 0.2128225 -0.0763235 -0.0632297 -0.1395532 0.3333426

L 1:126167425:minus 0.2341815 0.2315646 0.07841 -0.0489712 0.0294389 0.3353028

belly 16:26512555:minus 0.2350459 0.2183797 0.0834237 0.008415 0.0918387 0.3360095

ADG 6:39368241:minus -0.1929044 0.1931165 -0.0792743 -0.0961642 -0.1754385 0.3402255

lrf_19wk 6:39368241:minus 0.1750989 0.1847332 0.0811234 -0.0362444 0.044879 0.3415369

color 15:110910484:plus 0.2234357 0.2261328 0.0715226 -0.1235983 -0.0520756 0.3437511

L 16:26512645:minus 0.2289738 0.2281236 0.0786197 -0.031651 0.0469687 0.3448456

lrf_10wk 6:39368241:minus 0.1852931 0.2079282 0.0697556 0.0491578 0.1189133 0.3502217

conn_tiss 6:39368241:minus -0.2302646 0.2528379 -0.0566242 -0.0961793 -0.1528035 0.3524339

lma_22wk 16:26512645:minus 0.2412204 0.2342659 0.0794976 0.002409 0.0819066 0.3548819

tofat 16:26512645:minus 0.2179066 0.2352458 0.06675 -0.0054048 0.0613452 0.3563514

bf10_22wk 15:110910484:plus 0.1791731 0.2057897 0.0644749 -0.0200097 0.0444652 0.36103

mtfat 16:26512555:minus -0.208964 0.2079981 -0.0811153 -0.0141015 -0.0952168 0.3614119

lma_10wk 6:39368241:minus 0.1840969 0.2106209 0.0668068 -0.0048988 0.061908 0.3640684

WBS 16:26512555:minus 0.1969153 0.2084988 0.0783108 -0.047497 0.0308138 0.3677198

off_flavor 15:110910484:plus -0.3819488 0.4347374 -0.040543 0.0357121 -0.0048309 0.3743531

farm_wt 1:126167425:minus 0.2414641 0.2603512 0.0622988 -0.0848597 -0.0225609 0.3754812

last_lum 6:39368241:minus 0.183068 0.2002154 0.0732312 0.0313499 0.1045812 0.3781264

loin 15:110910484:plus -0.217189 0.2285626 -0.0687994 0.0482158 -0.0205836 0.3820069

wt_birth 16:26512555:minus 0.2111275 0.2151731 0.0768658 -0.0217238 0.055142 0.3831235

firm 6:39368241:minus 0.2050648 0.2530462 0.0529088 -0.0544969 -0.0015881 0.3873636

wt_10wk 1:126167425:minus -0.2133004 0.2557446 -0.0561465 -0.0435573 -0.0997038 0.3892369

protein 15:110910484:plus 0.1782856 0.2122012 0.0661004 -0.0170241 0.0490763 0.3906322

bf10_10wk 1:126167425:minus 0.1713848 0.2254814 0.0593093 -0.0821068 -0.0227975 0.3966245

Days 16:26512555:minus 0.1830439 0.1978819 0.0770067 0.0044836 0.0814903 0.4004955

bf10_22wk 6:39368241:minus 0.149477 0.1947515 0.0586909 -0.0851445 -0.0264536 0.406966

marb 16:26512555:minus 0.1619657 0.1868475 0.0774346 0.1086784 0.1861131 0.4127097

protein 6:39368241:minus -0.1594778 0.1967758 -0.0666801 0.1319136 0.0652335 0.4145938

mtpro 1:126167425:minus 0.1737786 0.2237524 0.0577126 -0.0202291 0.0374835 0.4149834

juiciness 16:26512645:minus 0.2575322 0.3225344 0.0436639 0.0137643 0.0574282 0.4175586

lma_10wk 15:110910484:plus -0.1654816 0.2136592 -0.0581469 -0.0701406 -0.1282875 0.4184943

tenderness 6:39368241:minus -0.1774821 0.20296 -0.0658282 -0.1548923 -0.2207204 0.4194451

lma_22wk 6:39368241:minus -0.1695973 0.2034665 -0.0680204 0.084712 0.0166917 0.426322
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color 1:126167425:minus -0.2001555 0.2596138 -0.052825 -0.0123827 -0.0652077 0.4275635

bf10_19wk 1:126167425:minus 0.1635779 0.2164784 0.0586532 -0.0306371 0.0280161 0.4306564

b 6:39368241:minus 0.1636274 0.207116 0.0624275 0.0542659 0.1166934 0.4306727

conn_tiss 1:126167425:minus -0.2156408 0.2938451 -0.0441841 0.0627977 0.0186136 0.4372271

bf10_16wk 6:39368241:minus 0.1472387 0.1921934 0.062496 -0.0589849 0.0035111 0.4383716

first_rib 1:126167425:minus 0.2100715 0.2651923 0.0536197 0.0957624 0.1493821 0.4442219

mtfat 16:26512645:minus -0.1913746 0.2368362 -0.0587899 -0.0399691 -0.098759 0.4466127

lma_10wk 16:26512645:minus -0.1650294 0.2328298 -0.0534743 0.0766793 0.023205 0.4503357

ham 1:126167425:minus 0.1889276 0.2504659 0.0542388 -0.097682 -0.0434432 0.4528543

car_wt 6:39368241:minus 0.1986988 0.2475285 0.0531838 -0.1582138 -0.10503 0.4536542

wt_3wk 1:126167425:minus -0.2665715 0.3630597 -0.0362631 -0.080621 -0.1168841 0.4542367

bf10_10wk 16:26512645:minus -0.1467791 0.2142593 -0.0549716 0.0570213 0.0020497 0.4571014

picnic 16:26512645:minus 0.2417437 0.2162563 0.1000864 -0.0471375 0.0529489 0.4578164

car_bf10 1:126167425:minus 0.1445919 0.225077 0.0449817 -0.021583 0.0233987 0.4589563

wt_13wk 15:110910484:plus -0.15945 0.2136491 -0.0559987 -0.1231484 -0.1791472 0.4590514

ham 16:26512645:minus 0.1812063 0.2405252 0.0553937 -0.0554881 -0.0000944 0.4606909

ph_24h 16:26512555:minus -0.1701174 0.2279145 -0.0569059 0.1328594 0.0759534 0.4657904

lrf_22wk 6:39368241:minus 0.1288604 0.1883409 0.0541613 -0.1375891 -0.0834278 0.4674333

car_length 15:110910484:plus -0.1524818 0.2069982 -0.0605154 0.0543489 -0.0061665 0.467747

lma_19wk 6:39368241:minus -0.1558365 0.2129435 -0.0575692 0.1094468 0.0518776 0.4682166

ADG 16:26512555:minus -0.1478755 0.1897236 -0.0682718 -0.0023605 -0.0706322 0.475393

driploss 16:26512645:minus -0.1686144 0.2485945 -0.0478864 -0.0228969 -0.0707833 0.4754865

lma_10wk 1:126167425:minus -0.1626418 0.2430544 -0.0488912 -0.0108961 -0.0597873 0.4764479

lrf_10wk 1:126167425:minus 0.1544691 0.2357872 0.0501495 -0.0215955 0.028554 0.4768412

ADG 16:26512645:minus 0.1692704 0.2251502 0.0586575 -0.0609666 -0.0023091 0.4814227

boston 16:26512555:minus 0.204255 0.1877892 0.1017839 -0.0454032 0.0563807 0.4899681

juiciness 15:110910484:plus -0.2069683 0.3062559 -0.0382808 0.0854201 0.0471394 0.4907493

bf10_13wk 16:26512645:minus 0.140599 0.2168903 0.0502488 0.0249588 0.0752076 0.4923723

wt_birth 1:126167425:minus 0.1949795 0.2633105 0.0507076 -0.1353645 -0.0846569 0.495174

ham 16:26512555:minus 0.1482028 0.2081321 0.0590085 -0.0477163 0.0112922 0.4961451

ham 6:39368241:minus -0.1564239 0.2163433 -0.0546501 -0.0164437 -0.0710938 0.4984195

last_lum 16:26512555:minus 0.1355909 0.189248 0.0634519 0.0217243 0.0851762 0.5004708

juiciness 16:26512555:minus 0.2011498 0.2909916 0.042879 0.0443604 0.0872393 0.5095759

fat 15:110910484:plus 0.1393573 0.1957201 0.0610172 -0.0312756 0.0297416 0.5107377

lrf_13wk 1:126167425:minus 0.1289383 0.2167077 0.0479946 -0.0905471 -0.0425525 0.5122901

juiciness 6:39368241:minus 0.1987993 0.3046339 0.0372065 -0.0603744 -0.0231679 0.5155103

wt_22wk 6:39368241:minus -0.1303561 0.200148 -0.0504709 -0.1340778 -0.1845487 0.5275101
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fat 1:126167425:minus 0.1411743 0.2170744 0.0547474 -0.0664766 -0.0117293 0.5383842

last_rib 15:110910484:plus -0.1229844 0.2166575 -0.0410274 0.2114687 0.1704413 0.5401597

fftoln 16:26512555:minus -0.1432472 0.2129389 -0.0549381 0.0163072 -0.0386309 0.540564

WBS 1:126167425:minus 0.1624697 0.2543049 0.046345 -0.0686191 -0.0222741 0.5423175

lma_10wk 16:26512555:minus -0.1152547 0.2033807 -0.0476796 0.0312974 -0.0163822 0.5474477

bf10_19wk 15:110910484:plus 0.1205604 0.1997647 0.0473525 0.0171634 0.0645159 0.5543059

moisture 6:39368241:minus -0.132149 0.2170971 -0.0469339 0.0282772 -0.0186566 0.555355

boston 1:126167425:minus 0.2069861 0.2260322 0.0756742 -0.0572619 0.0184123 0.5576765

ADG 1:126167425:minus 0.1323108 0.2277962 0.0449251 0.0049455 0.0498706 0.5673039

car_length 16:26512645:minus -0.1282113 0.2235696 -0.0467479 0.0245737 -0.0221742 0.5676653

boston 15:110910484:plus -0.1702409 0.2073931 -0.0688635 -0.0423637 -0.1112272 0.571351

WBS 15:110910484:plus 0.1363886 0.2286853 0.0444778 0.0055971 0.0500749 0.5722162

farm_wt 6:39368241:minus 0.1446576 0.2332404 0.0436757 -0.147997 -0.1043213 0.5722967

temp_45m 6:39368241:minus -0.1502822 0.2395513 -0.0432328 -0.1496475 -0.1928803 0.5736385

spareribs 16:26512645:minus 0.1481132 0.2231766 0.054075 0.0254644 0.0795395 0.5754834

ph_24h 6:39368241:minus 0.1386448 0.2404243 0.0403208 -0.0342431 0.0060777 0.5763378

off_flavor 6:39368241:minus -0.2306106 0.4246238 -0.0262392 0.0078805 -0.0183587 0.5811339

bf10_13wk 6:39368241:minus 0.1057578 0.2033075 0.040972 -0.0966894 -0.0557173 0.5837899

wt_13wk 16:26512555:minus -0.1132874 0.2060728 -0.0461116 0.0090628 -0.0370488 0.584874

ph_24h 1:126167425:minus -0.1496535 0.2723411 -0.0361461 -0.069358 -0.1055041 0.5885506

last_rib 16:26512555:minus 0.105973 0.209809 0.0395416 0.1143323 0.1538739 0.5890126

wt_22wk 16:26512555:minus -0.1136835 0.1989365 -0.0482446 -0.0234481 -0.0716926 0.5930439

Days 1:126167425:minus -0.1283173 0.2409273 -0.0392281 0.0860409 0.0468128 0.5943441

cook_yield 6:39368241:minus 0.1223936 0.2198685 0.0425102 -0.0943446 -0.0518344 0.5966366

ph_45m 16:26512555:minus 0.1516595 0.275161 0.0361816 0.0260771 0.0622587 0.6006761

bf10_22wk 1:126167425:minus 0.1042059 0.2219571 0.0347694 -0.006106 0.0286634 0.6009449

fftoln 16:26512645:minus -0.1379222 0.2432724 -0.0414282 -0.0112717 -0.0526999 0.6021818

dress_ptg 16:26512555:minus 0.107475 0.2133221 0.0413156 -0.0195704 0.0217452 0.6025657

lma_16wk 1:126167425:minus 0.1251931 0.2412788 0.0382801 -0.0461075 -0.0078274 0.604718

temp_45m 16:26512555:minus 0.1280856 0.2263802 0.0439548 -0.0667698 -0.0228149 0.6057148

car_length 1:126167425:minus -0.1158889 0.2305331 -0.0404105 0.0402431 -0.0001674 0.609722

cook_yield 16:26512645:minus 0.1276 0.2390478 0.0398805 0.0180708 0.0579513 0.6121718

lrf_13wk 6:39368241:minus 0.0937985 0.201529 0.0380085 0.0321128 0.0701214 0.6156588

loin 1:126167425:minus -0.1354001 0.2568535 -0.0373797 0.0560479 0.0186681 0.6203779

wt_22wk 1:126167425:minus 0.1193795 0.239603 0.0368454 -0.0031671 0.0336783 0.6246045

Days 16:26512645:minus -0.1222784 0.2384499 -0.0380758 0.0480155 0.0099397 0.6274328

a 16:26512645:minus -0.0996815 0.2155526 -0.0377495 -0.0624146 -0.1001641 0.6303711
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bf10_19wk 16:26512555:minus -0.0830604 0.1810327 -0.0403962 0.0630358 0.0226396 0.6310913

wt_16wk 16:26512555:minus -0.0992865 0.208538 -0.0391869 0.001633 -0.037554 0.6396938

cook_yield 1:126167425:minus -0.1149566 0.2451556 -0.0344387 -0.038007 -0.0724457 0.6446724

first_rib 15:110910484:plus 0.1225542 0.2467426 0.035025 0.0586411 0.0936661 0.6450172

lrf_13wk 16:26512555:minus 0.081697 0.1877211 0.039355 -0.0173667 0.0219883 0.6457789

overtend 16:26512555:minus -0.1016838 0.2043616 -0.0421201 0.0801851 0.038065 0.6469964

picnic 15:110910484:plus 0.1352035 0.2066383 0.0585721 -0.1663812 -0.107809 0.649712

temp_24h 15:110910484:plus -0.1186655 0.248899 -0.0320029 -0.0082482 -0.0402512 0.650646

lrf_22wk 16:26512555:minus 0.0813195 0.1835097 0.0382327 -0.00958 0.0286527 0.6523264

overtend 6:39368241:minus -0.1002467 0.2041207 -0.0376138 -0.1831348 -0.2207486 0.6534165

fat 6:39368241:minus 0.0884439 0.1819734 0.042917 -0.1453352 -0.1024182 0.6542608

bf10_10wk 6:39368241:minus 0.0846975 0.2031756 0.0336485 -0.0978635 -0.064215 0.6545824

firm 16:26512555:minus -0.1025534 0.2486785 -0.0295026 -0.0389664 -0.068469 0.6583117

moisture 15:110910484:plus -0.1024474 0.2222102 -0.0351406 -0.0149755 -0.0501161 0.6635611

car_lma 1:126167425:minus -0.1052799 0.2144879 -0.040782 0.0543422 0.0135603 0.6707484

wt_13wk 16:26512645:minus -0.1023502 0.2422701 -0.0316575 0.1145418 0.0828843 0.6745644

dress_ptg 6:39368241:minus 0.0924685 0.2311743 0.0294511 0.0188937 0.0483448 0.6779402

picnic 6:39368241:minus 0.1272447 0.2107339 0.0538243 -0.1748191 -0.1209947 0.6805866

car_lma 15:110910484:plus 0.0969451 0.1988965 0.0408374 -0.0609388 -0.0201014 0.6816932

dress_ptg 1:126167425:minus 0.0973208 0.2539051 0.0275009 -0.0244175 0.0030834 0.6855967

lma_13wk 1:126167425:minus 0.0914911 0.2352427 0.0300887 -0.0351742 -0.0050855 0.6868016

lma_13wk 16:26512555:minus -0.0776127 0.1993232 -0.0341269 0.0150029 -0.0191239 0.6931593

lrf_19wk 15:110910484:plus 0.0751761 0.1931471 0.0329649 0.0100871 0.0430521 0.6976633

lma_19wk 1:126167425:minus -0.0927744 0.2403673 -0.0294269 0.0811806 0.0517537 0.6982174

off_flavor 16:26512645:minus -0.176229 0.4665122 -0.0175972 0.0548617 0.0372645 0.6997954

Days 6:39368241:minus 0.0813298 0.2041485 0.0306457 0.2161869 0.2468326 0.703174

lma_16wk 16:26512645:minus 0.0955141 0.2430472 0.0290555 -0.0345935 -0.005538 0.7050698

lrf_10wk 15:110910484:plus 0.0773913 0.2197702 0.0272958 0.0709857 0.0982815 0.7103721

boston 16:26512645:minus -0.1117029 0.2243104 -0.0419084 -0.00132 -0.0432284 0.7234848

tofat 6:39368241:minus -0.0664997 0.2014655 -0.0251202 -0.1065948 -0.131715 0.7289428

spareribs 16:26512555:minus 0.0797391 0.1926834 0.0379814 -0.0006944 0.037287 0.7310941

wt_19wk 6:39368241:minus -0.0719486 0.2067507 -0.0279894 -0.0852592 -0.1132486 0.7346876

bf10_16wk 15:110910484:plus 0.0661742 0.200787 0.0264741 -0.0186399 0.0078342 0.741028

driploss 1:126167425:minus -0.0763835 0.2559055 -0.0210051 0.0749105 0.0539053 0.7420244

lrf_22wk 1:126167425:minus 0.0650115 0.2145676 0.0233606 -0.0474056 -0.0240449 0.7437884

farm_wt 15:110910484:plus 0.082839 0.2468476 0.0231778 -0.0810389 -0.0578611 0.7580161

lrf_13wk 16:26512645:minus 0.0650751 0.2297954 0.0221296 0.1644947 0.1866243 0.7593929
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tofat 1:126167425:minus 0.0656985 0.2358232 0.0203366 0.00887 0.0292066 0.7643431

fftoln 1:126167425:minus 0.0820297 0.25393 0.0231438 0.046007 0.0691508 0.7648345

car_bf10 15:110910484:plus 0.0536883 0.2037739 0.0189283 0.0332653 0.0521937 0.7687679

mtfat 1:126167425:minus 0.0775479 0.2526576 0.022045 0.0260355 0.0480805 0.768823

car_lma 16:26512645:minus -0.07139 0.2071697 -0.0288831 -0.087058 -0.1159411 0.7717547

wt_birth 16:26512645:minus -0.0847345 0.2572912 -0.0227705 -0.1079413 -0.1307119 0.7728507

bf10_22wk 16:26512555:minus 0.0517128 0.1864257 0.0232568 0.0192372 0.0424941 0.7736674

lrf_13wk 15:110910484:plus -0.0524319 0.2019387 -0.02117 -0.0445553 -0.0657253 0.7801575

wt_10wk 6:39368241:minus -0.0618979 0.2273147 -0.0196546 -0.0692724 -0.0889271 0.7841681

loin 16:26512645:minus -0.0707188 0.2471477 -0.0208961 0.0286673 0.0077712 0.7893274

belly 6:39368241:minus 0.0630998 0.2358162 0.0192672 0.057424 0.0766912 0.7901433

wt_6wk 16:26512555:minus -0.0645583 0.2382651 -0.0199841 -0.0065554 -0.0265395 0.7965679

tenderness 16:26512555:minus -0.0545148 0.2082312 -0.0219981 0.0527379 0.0307398 0.8063238

cook_yield 16:26512555:minus -0.0539747 0.2087991 -0.0217456 0.0336472 0.0119016 0.8082364

lrf_19wk 1:126167425:minus 0.0494301 0.2086892 0.0199124 -0.0196591 0.0002533 0.8088257

lma_22wk 16:26512555:minus 0.0509056 0.1974898 0.0229958 0.039394 0.0623897 0.8113698

tofat 16:26512555:minus -0.0431893 0.1957682 -0.0184248 -0.0064753 -0.0249 0.8219577

lma_22wk 1:126167425:minus 0.0515857 0.2333947 0.0174564 -0.0087097 0.0087467 0.8279009

marb 6:39368241:minus 0.045541 0.2009511 0.0188274 -0.1487871 -0.1299597 0.8307879

mtpro 6:39368241:minus 0.0403107 0.1954781 0.0160683 -0.1077932 -0.0917249 0.8311801

lma_16wk 6:39368241:minus -0.0469076 0.2236622 -0.0158017 0.0891573 0.0733556 0.8366246

lrf_16wk 1:126167425:minus -0.0424866 0.2216924 -0.0154942 -0.0039458 -0.0194401 0.8391594

wt_birth 15:110910484:plus 0.0520304 0.2502773 0.0142693 -0.1784088 -0.1641395 0.8517117

num_ribs 15:110910484:plus -0.046148 0.2352905 -0.0169746 -0.1309972 -0.1479718 0.856189

temp_24h 16:26512555:minus -0.0414201 0.2307567 -0.0136441 0.1769013 0.1632572 0.858759

mtpro 15:110910484:plus -0.0351686 0.2054784 -0.0130801 0.0281308 0.0150508 0.8607926

wt_13wk 6:39368241:minus 0.0382724 0.2164188 0.0136476 -0.1217133 -0.1080657 0.861163

protein 16:26512645:minus -0.0381909 0.2288531 -0.012975 -0.1924175 -0.2053924 0.8628197

wt_16wk 16:26512645:minus -0.0406553 0.242841 -0.0123087 -0.0012041 -0.0135129 0.8666131

driploss 16:26512555:minus 0.0356692 0.2150485 0.0133817 0.0546035 0.0679852 0.8666922

temp_45m 16:26512645:minus 0.048772 0.263157 0.0127654 0.0254079 0.0381732 0.8706103

wt_birth 6:39368241:minus -0.0440749 0.2429699 -0.0127384 -0.0959784 -0.1087168 0.872635

bf10_10wk 16:26512555:minus -0.026251 0.1902752 -0.0122417 0.0740019 0.0617602 0.8791091

bf10_13wk 16:26512555:minus 0.026578 0.1840945 0.0125376 0.1185115 0.1310492 0.8799535

car_lma 6:39368241:minus -0.0329626 0.1913465 -0.0147553 0.0382447 0.0234894 0.8824579

bf10_16wk 1:126167425:minus -0.0300976 0.2187554 -0.0108983 -0.0144716 -0.02537 0.8859281

color 16:26512645:minus -0.0344413 0.2520494 -0.0097509 -0.0440156 -0.0537665 0.8901388
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Table B.3 (cont’d)

traita editing site ρ̂g
b SE

(
ρ̂g

)c σ̂g1g2
d σ̂ε1ε2

e σ̂p1p2
f p-valueg

car_bf10 16:26512555:minus -0.0224438 0.1941115 -0.0090602 0.0960906 0.0870304 0.8950399

lma_19wk 16:26512645:minus 0.0319783 0.2340198 0.0106262 0.044185 0.0548111 0.8971709

first_rib 16:26512555:minus -0.0277208 0.2235411 -0.009995 0.0842241 0.0742292 0.9048467

WBS 6:39368241:minus 0.025388 0.2102882 0.0093911 0.1383409 0.147732 0.9072824

firm 1:126167425:minus 0.0285841 0.2869703 0.0062276 0.1133976 0.1196252 0.9114846

lma_19wk 16:26512555:minus 0.0226767 0.2007018 0.0098648 0.0242411 0.0341059 0.9115242

picnic 1:126167425:minus 0.039421 0.2252794 0.0156001 -0.0449129 -0.0293128 0.9124973

color 6:39368241:minus -0.0237271 0.2353243 -0.0073135 -0.0191298 -0.0264433 0.9183845

wt_22wk 16:26512645:minus 0.0247414 0.2337634 0.0079986 -0.0444655 -0.0364669 0.92508

lrf_16wk 16:26512555:minus 0.016846 0.1865787 0.0081234 0.1381554 0.1462788 0.9295823

lrf_22wk 15:110910484:plus -0.0162969 0.1992203 -0.0063776 -0.0185724 -0.02495 0.9318165

last_rib 6:39368241:minus 0.0174823 0.2285796 0.0054738 0.0868618 0.0923356 0.9339904

wt_19wk 1:126167425:minus -0.0182972 0.2358962 -0.006036 0.0065993 0.0005632 0.9379897

conn_tiss 16:26512645:minus -0.0176857 0.287292 -0.003862 -0.000251 -0.004113 0.9486608

wt_13wk 1:126167425:minus 0.0154587 0.2464528 0.0046351 -0.0459512 -0.0413161 0.9505577

marb 1:126167425:minus 0.0147371 0.232828 0.0050407 -0.0251173 -0.0200765 0.953837

L 6:39368241:minus -0.0124359 0.2145004 -0.0046694 0.0849619 0.0802924 0.9555233

firm 15:110910484:plus -0.0138502 0.2668092 -0.0033419 0.0652463 0.0619045 0.9562916

lma_13wk 15:110910484:plus 0.0127701 0.2155959 0.0046818 -0.0368351 -0.0321533 0.9581677

lrf_10wk 16:26512645:minus 0.0120285 0.2349942 0.0039431 0.150634 0.1545772 0.9589063

lrf_19wk 16:26512555:minus -0.0091436 0.1793327 -0.0047481 0.0902383 0.0854902 0.9596086

tenderness 1:126167425:minus 0.0132823 0.2489693 0.0039214 -0.0261136 -0.0221922 0.9600551

wt_19wk 16:26512645:minus -0.0088705 0.2327081 -0.0030016 0.0538658 0.0508643 0.9702132

wt_16wk 6:39368241:minus -0.0086343 0.2199931 -0.0029587 -0.0682485 -0.0712071 0.9718213

lma_16wk 16:26512555:minus 0.0074161 0.209505 0.0029484 0.0505676 0.053516 0.9731017

bf10_16wk 16:26512555:minus 0.005716 0.1846633 0.002747 0.0755197 0.0782668 0.9751567

wt_16wk 1:126167425:minus -0.0061446 0.2494703 -0.0017801 0.0408541 0.039074 0.9826452

bf10_10wk 15:110910484:plus 0.0038918 0.2092594 0.0014812 -0.0027238 -0.0012427 0.9846833

lma_13wk 16:26512645:minus -0.0047349 0.235922 -0.0015644 0.0485605 0.0469961 0.9847688

lma_16wk 15:110910484:plus 0.0045142 0.224057 0.0015134 -0.0696241 -0.0681107 0.9853733

spareribs 1:126167425:minus 0.0101337 0.2309478 0.0035499 0.0160492 0.0195991 0.9861807

lrf_10wk 16:26512555:minus 0.0053121 0.2030586 0.0022666 0.079236 0.0815026 0.9871669

loin 6:39368241:minus -0.0031743 0.2258024 -0.0010487 -0.056781 -0.0578296 0.9910243

car_length 6:39368241:minus 0.0023048 0.2052394 0.0009366 -0.0153793 -0.0144427 0.9913493

off_flavor 16:26512555:minus 0.0018807 0.4125968 0.0002467 -0.0378749 -0.0376282 0.9967745

wt_10wk 16:26512555:minus 0.0026681 0.2191706 0.0009652 0.0077715 0.0087367 0.9970458

lrf_16wk 15:110910484:plus 0.001788 0.2008969 0.0007346 -0.0522624 -0.0515279 1
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Table B.3 (cont’d)

traita editing site ρ̂g
b SE

(
ρ̂g

)c σ̂g1g2
d σ̂ε1ε2

e σ̂p1p2
f p-valueg

mtpro 16:26512555:minus 0.0015277 0.1899246 0.0006824 0.0161665 0.0168489 1

overtend 1:126167425:minus -0.0024682 0.2488897 -0.0007309 0.032218 0.0314872 1

a More information about each trait can be found in Velez-Irizarry et al. [106]
b Genetic correlation estimate, where ρg = σg1g2

/√
σ2
g1σ

2
g2

c Standard error of genetic correlation estimate
d Genomic covariance REML estimate
e Residual covariance REML estimate
f Phenotypic covariance estimate
g P-value testing H0 : σg1g2

Figure B.1: Pairwise LD plot between SNPs flanking ADAR
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