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ABSTRACT 

DYNAMIC GEOMETRY TASK DESIGN FOR AXIOMATIC GEOMETRY:  
STUDENT ENGAGEMENT WITH AXIOMATIC REASONING 

By 

Younggon Bae 

Responding to calls for studies on task design and enactment using technology in 

geometry classroom, this dissertation connects theoretical and empirical studies to instructional 

practices by designing, enacting, and revising a sequence of tasks using DGEs for college 

students in an axiomatic geometry course. First, I discuss a set of mathematical activities using 

DGEs that consist the core of the task sequence in this study. I illustrate a sequence of 

instructional tasks designed and enacted in an axiomatic geometry course where a DGE plays a 

crucial role in students’ mathematical activities in class. The illustration of the task sequence 

consists of the mathematical activities intended in the design of each task as well as student 

reasoning. Student work collected in the actual classroom provides pedagogical implications to 

revise the task sequence 

Second, I report an empirical study on students’ uses of DGEs and their engagement in 

mathematical reasoning and axiomatic reasoning while enacting three tasks in the sequence. 

Students used DGEs to communicate their mathematical ideas and to examine mathematical 

statements describing properties of geometric objects within axiomatic systems and models of 

hyperbolic geometry. The analyses of this study revealed case themes describing student use of 

DGEs, engagement in mathematical reasoning and axiomatic reasoning, and relationships 

thereof. The findings of the analysis provide practical implications to revise the task design as 

well as theoretical implications to better understand the nature of student engagement in 

advanced mathematical reasoning in such technology-rich environments. 



 

At last, not the least, I address theoretical consideration on understanding of epistemic 

aspects of student learning in axiomatic geometry supported by technology and appropriate 

mathematical activities exploiting pedagogical roles of technology. I address students’ 

epistemological shifts that have been discussed in the existing literature of student learning of 

advanced geometry in connection with student work collected and analyzed in the empirical 

study reported above. First, students make a shift in the ontological view of geometric models 

from Euclidean to non-Euclidean geometry, in which the geometric models are considered 

conscious artifacts of mathematical design. Second, students make a shift in the epistemological 

view of mathematical proofs from absolutism to fallibilism, in which proofs can be characterized 

with a variety of functions and forms. Drawing on the prior literature, I argue that making 

successful shifts can benefit students in axiomatic geometry and that such shifts can be facilitated 

by engaging in mathematical activities with supports of dynamic geometry environments. In 

particular, I highlight examples of student work reported in the empirical study that illustrate 

those different views of geometric models and mathematical proofs captured observed from 

students who were on the process of such shifts. 
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CHAPTER 1: Introduction 

Dynamic Geometry Environments (DGEs) are powerful tools for learning and teaching 

of geometry (e.g., Common Core State Standards Initiative, 2012). These tools allow students to 

investigate geometric phenomena by engaging in experiments and modeling with interactive 

diagrams using the dragging feature of the tool (Olive, 2000). In particular, the drag feature of 

DGEs have been highlighted by many researchers and educators for its affordances allowing 

students to collect empirical evidence, create their own conjectures and construct formal proofs 

(e.g., Hollebrands & Okumuş, 2018; Komatsu, 2017). Some researchers focused on specific uses 

of the drag feature when students are engaging in proof-related activities and identified different 

types of such usages regarding the extant literature of proof and proving (e.g., Armella & 

Sriraman, 2005; Arzarello et al., 1998; Leung, 2008). Some researchers expanded their 

discussion on pedagogical use of DGEs to address new aspects of mathematical knowledge, 

practices, and proof and proving (e.g., de Villiers, 1998; Jones, Mackrell, & Stevenson, 2010). In 

the extant literature, researchers and practitioners also discussed pedagogical implication of 

using DGEs in geometry classroom in association with the nature of new aspects of teaching and 

learning of mathematics with technology. However, using DGEs in practice needs more 

attentions. Mathematics education research can shed light on effective use of technology 

grounded on the actual classroom practices of teachers and students.  

Since DGEs have been introduced and widely used in mathematics classroom, 

researchers have stressed that it is important to understand how teachers and students can use 

DGEs effectively in classroom. Though using DGEs in geometry education has been 

mainstream, there is not enough research on the role of technology and its specific effects on 

teaching and learning of geometry (Sinclair et al., 2016). This is attributed to complexities of 
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changes in ways of students’ interaction with geometric objects and discourse in technology-

integrated classroom. In this regard, researchers have investigated explorative and multifaceted 

questions, for instance, designing suitable tasks for exploiting a given technology and 

establishing theories to better understand pedagogical roles of technology (Sinclair, 2017). In 

particular, some researchers explored ways of designing mathematical tasks that make 

appropriate use of pedagogical merits of DGEs (e.g., Komatsu & Jones, 2019; Leung, 2011). 

They provided theoretical models and principles for designing effective DGE tasks for eliciting 

student engagement in advanced reasoning in mathematics (e.g., proof by contradiction, 

generalization). However, the existing literature indicate that there is little research investigating 

effects of task design on specific aspects of student learning in the actual classroom settings 

(Hollebrands & Okumuş, 2018; Komatsu & Jones, 2019). Beyond the design of such tasks, there 

is a need for more studies focused on gaps between students’ perceptions of mathematical tasks 

and intentions of teachers and task designers. Ainley and Margolinas (2015) argued that such 

gaps between student perception and intended tasks may result in missing opportunities to learn. 

Responding to calls for studies on task design and enactment using technology in 

geometry classroom, this dissertation connects theoretical and empirical studies to instructional 

practices by designing, enacting, and revising a sequence of tasks using DGEs for college 

students in an axiomatic geometry course. First, I discuss a set of mathematical activities using 

DGEs that consist the core of the task sequence in Chapter 2. Then, I report an empirical study 

investigating ways in which students interacted with DGEs while engaging in advanced 

mathematical reasoning including axiomatic reasoning in Chapter 3. At last, I address theoretical 

consideration on understanding of epistemic aspects of student learning in axiomatic geometry 
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supported by technology and appropriate mathematical activities exploiting pedagogical roles of 

technology in Chapter 4.  

In Chapter 2, I illustrate a sequence of instructional tasks designed and enacted in an 

axiomatic geometry course where a DGE plays a crucial role in students’ mathematical activities 

in class. The illustration of the task sequence consists of the mathematical activities intended in 

the design of each task as well as anticipated student reasoning along with supports of the DGE. 

It is followed by student work collected in the actual classroom that provide pedagogical 

implications to revise the task sequence. I hope to develop this chapter to publish an article 

written for practitioners of teaching collegiate mathematics who are interested in pedagogical 

initiatives and novel ideas that support student learning of geometry. I intend to submit this paper 

to a journal with such readership, which is dedicated to improving undergraduate mathematics 

teaching and learning. I believe this paper has a potential in contributing to the community of 

practitioners by exchanging ideas from various intellectual endeavors centered around practices 

including survey on particular topics in mathematics, examination of pedagogical approaches, 

and programmatic initiatives to affect individual students, courses, and institutions.  

In Chapter 3, I present an empirical study on students’ uses of DGEs and their 

engagement in mathematical reasoning and axiomatic reasoning while they enacted a task 

sequence in an axiomatic geometry course. In their enactment of three tasks of the sequence, 

students used DGEs to communicate their mathematical ideas and to examine mathematical 

statements describing properties of geometric objects within axiomatic systems and models of 

hyperbolic geometry. The analysis of this study revealed case themes describing student use of 

DGEs, engagement in mathematical reasoning and axiomatic reasoning, and relationships 

thereof. The findings of the analysis provide practical implications to revise the task design as 
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well as theoretical implications to better understand the nature of student engagement in 

advanced mathematical reasoning in such technology-rich environments. I intend to improve this 

chapter and submit it to one of the major mathematics education journals with the readership 

interested in connecting theories and practices in technology-integrated mathematics education.  

In Chapter 4, I address students’ epistemological shifts that have been discussed in the 

existing literature of student learning of advanced geometry in connection with student work 

collected and analyzed in the empirical study reported in Chapter 3. First, students make a shift 

in the ontological view of geometric models from Euclidean to non-Euclidean geometry, in 

which the geometric models are considered conscious artifacts of mathematical design. Second, 

students make a shift in the epistemological view of mathematical proofs from absolutism to 

fallibilism, in which proofs can be characterized with a variety of functions and forms. Drawing 

on the prior literature, I argue that making successful shifts can benefit students in axiomatic 

geometry and that such shifts can be facilitated by engaging in mathematical activities with 

supports of dynamic geometry environments. In particular, I highlight examples of student work 

reported in Chapter 3 that illustrate those different views of geometric models and mathematical 

proofs captured observed from students who were on the process of such shifts. I hope to 

develop this chapter to publish an article written for mathematical education researchers who are 

specifically interested in understanding how students engage in advanced reasoning using 

dynamic geometry. I intend to submit the paper to a journal with such readership, which aims 

and scopes specifically emphasize studies to clarify the process of student development in 

mathematics. This paper might indicate particular aspects of student development in axiomatic 

geometry using DGEs not commonly recognized as well as clarify potential obstacles to student 

learning that result from neglect of a need for supports to making successful shifts in their views 
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of geometric models and mathematical proofs. Note that this chapter is an extension of an article 

published in the proceedings of the 40th annual meeting of the North American chapter of the 

international group for the psychology of mathematics education (PME-NA 40) in 2018 (Bae, 

2018).   
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CHAPTER 2: DGE Task Design for Axiomatic Geometry 

Abstract 

Dynamic Geometry Environments (DGEs) have received attention by mathematic 

educators for supporting student learning in Euclidean and non-Euclidean geometries. With the 

attention to DGEs for axiomatic geometry, I illustrate a sequence of instructional tasks designed 

and enacted in an axiomatic geometry course where a DGE plays a crucial role in students’ 

mathematical activities in class. The illustration of the task sequence consists of the 

mathematical activities intended in the design of each task as well as anticipated student 

reasoning along with supports of the DGE.  

Introduction 

In advanced geometry courses offered in mathematics departments, students are 

encouraged to take an axiomatic approach to study foundations of geometry including Euclidean 

geometry and beyond. In this approach to geometry, students are given formal definitions and 

formal proofs to understand axiomatic systems of geometries with different natures (K. F. 

Hollebrands, Conner, & Smith, 2010). Learning geometry in this approach allows students to 

understand how different sets of axioms lead to different or contrasting results in Euclidean and 

non-Euclidean geometry (National Council of Teachers of Mathematics [NCTM], 1989). 

On the other hand, this axiomatic approach to geometry requires a departure from a 

significant reliance on concrete examples and visual representations in making sense of 

geometric objects. Making such shift in ways of perceiving and interacting with diagrams took 

hundreds of years even for past mathematicians in the history of discovering non-Euclidean 

geometry and establishing foundations of geometry in the modern language of mathematics (de 

Villiers, 1998). Not to mention, this shift to the axiomatic perspective on geometry has been 



 7 

considered the highest level in students’ cognitive development in geometry (van Hiele, 1986) 

and was reported in the literature with evidences of students’ difficulties in learning non-

Euclidean geometry due to this difference in views of geometry (e.g., Guven & Baki, 2010).  

Dynamic Geometry Environments (DGEs) have received attention by mathematic 

educators for supporting student learning in non-Euclidean geometry (Dwyer & Pfiefer, 1999; 

Guven & Karatas, 2009; K. F. Hollebrands et al., 2010; Hvidsten, 2017; Olive, 2000; Stevenson 

& Noss, 1999). The technology demonstrates diagrams in non-Euclidean geometry and allows 

students to interact with dynamic constructions while investigating properties of figures to build 

mathematical knowledge of non-Euclidean geometry (e.g., Dwyer & Pfiefer, 1999; Guven & 

Karatas, 2009; Olive, 2000), engaging in formal reasoning about abstract concepts (e.g., 

Hollebrands et al., 2010). Hvidsten (2017) published a college level textbook for axiomatic 

geometry in which he introduced Geometry Explorer, a DGE that he developed for Euclidean, 

hyperbolic, elliptic, and spherical geometry. With the attention to DGEs for axiomatic geometry, 

I illustrate a sequence of instructional tasks designed and implemented in an axiomatic geometry 

course where a DGE plays a crucial role in students’ mathematical activities in class. The 

illustration of the task sequence consists of the mathematical activities intended in the design of 

each task as well as anticipated student reasoning along with supports of the DGE. Note that, in 

this paper, axiomatic geometry means a study of foundations of geometry where various systems 

of geometry characterized by different sets of axioms. 

The Course 

In this section, I provide an overview of an axiomatic geometry course taught at a large 

public university where a DGE was integrated with the course design including the course 

material, class activities, course assignments, and assessments. The course design is inspired by 
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an instructional design theory of Realistic Mathematics Education (See Freudenthal, 1991) that 

emphasizes a role of guided reinvention in developing conceptual understanding. In this course, 

students built up an axiomatic system of neutral geometry by starting from the primitive axioms 

for incidence geometry and by introducing additional axioms to develop geometric concepts such 

as distance, betweenness, plane separation, congruence, and parallelism. In this section, I 

describe the course objectives and the course materials to provide an overview of the semester-

long course design and the context of the task sequence following in the next section. 

Course Objectives 

There are three major objectives in this course including (a) understanding concepts of 

axiomatic systems and models, (b) engaging in axiomatic reasoning, and (c) developing 

knowledge of non-Euclidean geometry. 

Understanding concepts of axiomatic systems and models. The concepts of axiomatic 

systems and models are crucial to establish the foundation of geometry where geometry is 

described by a set of selected axioms and represented by mathematical model that satisfy those 

axioms. Based on those concepts, students examine each axiom in a given system of a geometry 

to understand what it means to have that axiom in the system. Given a system, students construct 

and verify a model of the system by interpreting undefined terms in a particular way, which may 

involve sophisticated mathematical structure (e.g., stereographic projection onto disk of 

Euclidean geometry or Poincaré model for hyperbolic geometry). For instance, students 

investigate possible models of incidence geometry such as the four-point model or Cartesian 

space by verifying each axiom in the system holds in those models. In addition, robust 

understanding of axiomatic systems and models leads students to make a shift in their ways of 

perceiving diagrams in geometry (Bae, 2018). It allows students to make sense of diagrams in 
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non-Euclidean geometry where diagrams are parts of consciously designed model of the 

geometry that need to be interpreted in particular ways to satisfy the axioms. Otherwise, students 

might not understand why line segments in Poincaré model are curved in the Euclidean space. 

Engaging in axiomatic reasoning. As described in the previous studies on student 

understanding of mathematical concepts such as functions (Dubinsky, 1992) or limits (Cottrill et 

al., 1996), students in advance mathematics are expected to objectify complicated mathematics 

concepts. One aspect of student understanding in axiomatic geometry is to engage in axiomatic 

reasoning in which axioms, geometric models, and the whole system of a geometry turn into 

mathematical objects for investigation. Axiomatic reasoning means to reason about those 

metamathematical objects including axioms, systems of axioms, and models of systems with 

respect to their properties. To be specific, mathematical activities in this course involves this 

axiomatic reasoning when students investigate, modify, and create axioms and models of a 

geometry. Axiomatic reasoning is necessary to examine properties of axioms including 

consistency, completeness, and independence, all of which play crucial roles in reconstructing 

students’ existing knowledge of Euclidean geometry and expanding to non-Euclidean geometry 

in association with the relationship between different geometries. For instance, this approach to 

the foundations of Euclidean geometry opens up a space for a close examination of existing 

axioms in the system and possible variations of axioms. Students inquire about questions such as 

what if the system does not contain the parallel postulate, or what are alternative models of 

Euclidean geometry. Students also classify different systems of geometry including neutral, 

Euclidean, hyperbolic, and elliptic geometries and identify relationships between them by 

comparing axioms in those systems, especially different versions of parallel postulates. 
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Developing knowledge of non-Euclidean geometry. Students develop knowledge of 

non-Euclidean geometry by investigating properties of geometric objects in comparison with 

those in Euclidean geometry. Students identify differences in properties of geometric objects that 

are familiar with them from school geometry. For example, students investigate properties of 

quadrilaterals in hyperbolic geometry to see if how the classification of quadrilaterals is different 

from Euclidean geometry that they know from previous experience in geometry. Students 

encounter new concepts and geometric objects in non-Euclidean geometry that do not exist in 

Euclidean geometry. In hyperbolic geometry, for instance, students have infinitely many parallel 

lines to a given line and a point not on the line. They investigate this infinite set of parallel lines 

and explore particular parallel lines with special properties distinguished from others (See lines 

M and N in Figure 2.1). In Euclidean geometry where we have the unique parallel line, different 

types of parallel lines have never been investigated. 

 

 

Figure 2.1. Infinitely many lines passing through a point A that are parallel to a line L in 
Poincaré model of hyperbolic geometry  
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Course Material 

The main course materials include a lecture note and a textbook that is highly integrated 

with a DGE developed by the author of the textbook. The proof journal consists of undefined 

terms, postulates, definitions, and theorems to be proved by students. This journal is structured in 

a particular order to illustrate the development of an axiomatic system for Euclidean and 

hyperbolic geometries. It starts with a set of undefined terms and primitive postulates to 

introduce incidence geometry in the system, then introduces basic theorems that one can derive 

from the current set of axioms. By adding more definitions, postulates, and consequent theorems, 

the journal introduces the development of major concepts in geometry including distance, 

betweenness, angle measurements, congruence, and parallelism. Students are instructed to 

complete and submit their own proof journal by providing proofs for given theorems, working on 

examples and exercise problems, and filling in gaps between any significant changes in the 

system they developed throughout the course. 

Axiomatic system of Euclidean geometry in the course. Among several versions of 

axiomatic systems for Euclidean geometry, the proof journal of this course introduces a 

particular system from a collegiate geometry textbook, Elementary Geometry from an Advanced 

Standpoint (3rd edition) (Moise, 1990). This system was originally proposed by the School 

Mathematics Study Group (SMSG) in the 1960s as a part of the New Math curricula for high 

school students at that time. The authors wrote the SMSG axioms based on Birkhoff’s axioms 

where the number of axioms were significantly reduced from Hilbert’s system due to the real 

number system implanted within the system (e.g., the completeness of the reals). However, the 

SMSG system include a relatively large number of axioms that are not necessary in the sense that 

some of the axioms are logical consequences of others. This is because the intent of writing 
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axioms for high school geometry was not to emphasize excessive proofs of basic theorems from 

a minimal set of axioms in the system but elicit students’ intuition and encourage sense-making 

in learning of geometry even though it causes a redundancy in the system (Venema, 2012). Then, 

Moise, who was also a member of the SMSG, modified this SMSG system for college level 

courses where he used a reduced set of axioms to move faster for covering more of the substance 

of the theory in geometry than high school geometry (Moise, 1990). Thus, the modified SMSG 

system is considered appropriate for undergraduate mathematics major and minor students in this 

course to walk through one way to develop foundations of Euclidean geometry.  

Geometry Explorer. The curriculum of this course is highly integrated with a DGE, 

Geometry Explorer (GEX). In both the textbook and the proof journal, GEX plays central roles 

not only in demonstrating examples or working on exercise problems but also in developing key 

concepts and engaging in problem-solving during class and assignments. GEX provides common 

features of DGEs including creation and measurement of draggable figures that students can 

interact with while enacting DGE tasks. In particular, GEX offers multiple models for different 

geometric systems including Euclidean, hyperbolic, elliptic, and spherical geometries. For 

instance, there are Poincaré model, Klein model, and upper half-plane model for hyperbolic 

geometry (See Figure 2.2). 

Screencast software. In this course, students bring their laptops with GEX and 

screencast software installed into the classroom. As a part of class participations in classroom 

practice, they record their verbal presentations of their findings as well as their interactions with 

GEX on their computer screens that capture their uses of GEX while engaging in class activities. 

After each class, students submit their work including summary notes, GEX constructions, and 

the screencast video from the discussion. In addition, students create screencast presentation to 
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Figure 2.2. A diagram of triangle ∆𝐴𝐵𝐶 in three models of hyperbolic geometry: Upper half-
plane model (upper-left), Poincaré model (upper-right), Klein model (left-lower) 

  

respond to homework problems where they are asked to create and manipulate GEX 

construction. This audiovisual material of student work provides instructors with formative 

assessment to understand students’ work on DGE supported tasks. Screencast video contains 

students’ verbal presentation or group discussion with their uses of GEX, which capture their 

verbalized reasoning in relation to their observations, construction, and manipulations of 

dynamic figures in GEX.  

The Task Sequence 

In this section, I present a sequence of instructional tasks that aims at addressing the 

independence of parallel postulates and relative consistency of hyperbolic geometry that lead to 

the fork of Euclidean and hyperbolic geometries transitioning from the neutral geometry. This 

task sequence provides a snapshot of the course design that shows how DGE tasks are integrated 
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in the classroom instruction to address the three course objectives described in the previous 

section. For each task, I discuss mathematical activities intended in the task design along with 

task objectives in relation with the course objectives of axiomatic geometry.  

Tasks in a Sequence 

To begin with, I briefly summarize how researchers conceptualize a task sequence in 

their studies and explain what I meant by a task sequence in this study by addressing for what 

purposes this task sequence was designed and what constitute the task sequence to serve for such 

purposes. Researchers have studied students’ engagements in task sequences where they focused 

on student development guided throughout the sequence. In particular, the instructional design 

theory of Realistic Mathematics Education (RME) emphasizes a role of task sequence in which 

students first develop their mathematical knowledge and activity, which later serve as tools for 

sophisticated mathematical reasoning (Zandieh & Rasmussen, 2010). For instance, Zandieh and 

Rasmussen (2010) reported how students engaged in defining activity regarding planar triangles 

and spherical triangles in a task sequence. In their report, the authors described how the students 

defined planar triangles early in the sequence and use those definitions while creating and 

exploring spherical triangles later in the sequence. They also highlighted that how students’ 

engagement in this defining activity showed different levels of formal reasoning across the 

sequence. Andrews-Larson, Wawro, & Zandieh (2017) presented a hypothetical learning 

trajectory (HLT) supporting students in developing reasoning about linear transformations in 

linear algebra where they conceptualized a task sequence to construct the HLT in association 

with learning goals, evolution of students’ mathematical activities, and roles of instructors. In 

their report, participants developed local views (e.g., transformation of a vector) and global 

views (e.g., transformation of a space) of linear transformation across the sequence. In both 
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studies, researchers conceptualized a task sequence along with specific aspects of students’ 

development in reasoning across the sequence though those development was not necessarily 

sequential in nature. The researchers also provided detailed reports on students’ enactment of the 

tasks including their specific reference to their prior experience in the task sequences. Their 

reports on the participants’ continued engagements throughout the task sequences indicated that 

the design of task sequences aimed at supporting students carrying over their work in the 

previous tasks to the consequent tasks while engaging in the task sequence. 

In this study, a task sequence is a set of mathematical tasks designed for particular 

objectives that can be achieved by students engaging in those tasks in a particular order that 

reflects an anticipated progress of student development. Each task in the sequence is designed to 

serve a specific role in supporting the development in relation to the students’ work in previous 

tasks in the sequence. Thus, designing a task sequence involves arranging selected tasks with 

respect to anticipated students’ responses to each task and transitions between those tasks. In 

sum, what constitute a task sequence in this perspective include a set of mathematical tasks in a 

particular order, an overarching objective of the entire task sequence, and prompts to make 

explicit connections in both design and enactment of the task sequence that support students 

making transitions between those tasks to make progress in the anticipated development. In the 

following sections, I present the overarching objective of the task sequence with anticipated 

student development in reasoning. It is followed by descriptions of individual tasks in the 

sequence to encompass the objective of the task sequence. 

The Objective of the Task Sequence 

One of the key topics in advanced geometry courses with axiomatic perspective is the 

independence of Euclidean Parallel Postulates (EPP) that leads students to the fork of geometries 
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based on different parallelism. To establish the independence of EPP, it is necessary to examine 

the consistency of a system with all the axioms of the neutral geometry with EPP or the negation 

of the EPP. As seen in the history of mathematics, one and maybe the only practical way to 

prove the relative consistency of hyperbolic geometry is to build a model that satisfies all the 

axioms in the system such as Poincaré model or Klein model. Note that those models were built 

on Euclidean space, so the hyperbolic geometry is consistent as much as Euclidean geometry. 

However, verifying a geometric model of an axiomatic system is a lengthy job that has been 

dismissed in most textbook since it entails proving all the axioms in Euclidean system except its 

parallel postulate (Moise, 1990).  

The objective of the task sequence is to provide students with mathematical experience of 

investigating independence of EPP and consistency of hyperbolic geometry in a way that is 

feasible to enact in the classroom without excessive proofs involving significant work drawn 

from analytic geometry in Euclidean space. In this task sequence, students confirm the relative 

consistency of hyperbolic geometry by constructing and verifying Klein model in Euclidean 

plane in GEX and use this model to study parallelism of hyperbolic geometry including limiting 

parallel lines. Given the affordance of student-generated model of hyperbolic geometry in GEX, 

the use of technology in this task design exemplifies cognitive technology for classroom teaching 

and learning that “help transcend the limitations of the mind in thinking, learning, and problem-

solving activities” (Pea, 1987, p.91) by both amplifying and reorganizing students’ mental 

activities. 

In addition, this objective of the task sequence contributes to the three course objectives 

including (a) understanding concepts of axiomatic systems and models, (b) engaging in 

axiomatic reasoning, and (c) developing knowledge of non-Euclidean geometry. In the broader 
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context of the entire course, students would engage in this task sequence when they develop an 

axiomatic system for neutral geometry and investigate the properties of parallel lines in terms of 

what they can say for sure about parallel lines within the current system without particular 

parallel postulate. Students are asked to take a step back and probe two possible geometries 

depending on which parallel postulate they would include in their system. They reason about 

different axiomatic systems, possible models thereof, and the axioms that distinguish Euclidean 

and hyperbolic geometries. Later in the sequence, students are expected to use their model of 

hyperbolic geometry to explore limiting parallel lines and develop the concept in formal way of 

defining abstract geometric objects independent of particular models. Thus, the aforementioned 

three course objectives interweave as students engage in this task sequence.  

Prior to enacting the task sequence, students are expected to have knowledge of basic 

Euclidean constructions and experience with GEX features to construct, measure, and interactive 

with draggable diagrams. In this course, my students used GEX in class activities, homework, 

take-home midterm exam where they recorded their individual and group work on creating and 

analyzing draggable diagrams in Euclidean model, spherical model, and Poincaré model in GEX 

prior to the task sequence enactment in Week 11-13. In those course assignments using GEX, 

students practiced basic Euclidean constructions (e.g., equilateral triangle, circle passing three 

non-collinear points, etc.), analyzed a geometric proof by investigating counter-examples in the 

construction of the proof, and verified that a model satisfies axioms in a system. In particular, 

students were introduced Poincaré model of hyperbolic geometry in class and explored the 

model in GEX when verifying given geometric statements (e.g., angle sum of a triangle, 

existence of rectangles) in Week 5 group project (See Appendix B). For more details about the 

course design, the weekly schedule of the course with topics is in Appendix A, and DGE tasks 
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for in-class activities and homework of the course are in Appendix B. In the following sections, I 

present four tasks in the sequence with emphasis on the objective of individual task in 

association with its contribution to the overarching objective of the task sequence as well as its 

connections to other tasks in the sequence. 

Task 1: Construction and Verification of Klein Model 

The main objective of Task 1 is to establish a mathematical foundation of Klein model 

for hyperbolic geometry. The task is especially focused on constructing the angle measurement 

function and verifying postulates in the system that involve angle measurements. This is because 

the way of measuring angles in Klein model requires complicated geometric construction that 

students may not be able to investigate without the support of DGEs. In this task, students 

examine the mathematical structure of the angle measurement function that is consciously 

designed to satisfy all the postulates in the system of neutral geometry. In this experience, 

students engage in axiomatic reasoning where they reason about axioms in the system within the 

context of Klein model by interpreting diagrams in Euclidean constructions in terms of the 

undefined terms and definitions used in the axioms. The role of technology in the axiomatic 

reasoning is to provide draggable constructions of Klein angle measurement that instantiate 

arbitrary figures while students go back and forth between written statements of the postulate and 

draggable diagrams. In particular, this construction provides evidences of the covariation 

between given angles and the Klein measurements as students change the draggable diagrams of 

angles.  

Construction of Klein model.  

The first task of the sequence involves constructing angle measurement in Klein model 

and verifying that this construction satisfies the following five angle postulates in the system. 
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Note that these postulates elaborate plausible assumptions about a concept of angle 

measurements introduced in axiomatic systems for neutral geometry. 

• Postulate 10: There exists a function 𝑚 from the set of all angles 𝒜 to the set of real 

numbers ℝ. 

• Postulate 11: For every angle in 𝒜, the measurement of the angle is between 0 and 180. 

• Postulate 12: (Angle-Construction Postulate) Let 𝐴𝐵'''''⃗  be a ray on the edge of a half-plane 

𝐻. For every number 𝑟 between 0 and 180, there is exactly one ray 𝐴𝑃'''''⃗ , with a point 𝑃 in 

𝐻, such that 𝑚(∠𝑃𝐴𝐵) is 𝑟. 

• Postulate 13: (Angle-Addition Postulate) If a point 𝐷 is in the interior of an angle ∠𝐵𝐴𝐶, 

then 𝑚(∠𝐵𝐴𝐶) is the sum of 𝑚(∠𝐵𝐴𝐷) and 𝑚(∠𝐷𝐴𝐶). 

• Postulate 14: (Supplement Postulate) If two angles form a linear pair, then they are 

supplementary. 

In this task, students are given a GEX construction for Klein model in Euclidean plane. 

This construction contains a unit disk in Euclidean plane where two given lines 𝐴𝐵'⃖'''⃗  and 𝐵𝐶'⃖'''⃗  meet 

at a point 𝐵 inside the disk. Those lines with labeled points define an angle ∠𝐴𝐵𝐶 inside the disk 

that is to be measured by Klein angle measurement in this task (See Figure 2.3). 

 

  

Figure 2.3. Angle ∠𝐴𝐵𝐶 in Klein disk defined by two lines 𝐴𝐵'⃖'''⃗  and 𝐵𝐶'⃖'''⃗  
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To measure this angle as interpreted in Klein model, students use Euclidean constructions 

of orthogonal circle for each line that meets Klein disk at right angles on the two intersecting 

points between the line and the unit disk. Then students construct tangent lines on the 

intersection of the two orthogonal circles and measure the angle between the tangent lines in 

terms of Euclidean measurement (See Figure 2.4). Klein angle measurement is not necessarily 

consistent with students’ perceptions of angles that are more attuned to Euclidean geometry. For 

instance, the angle ∠𝐴𝐵𝐶 in Figure 2.4 does not look acute in Euclidean geometry but it is 

measured to be 73.72° by Klein angle measurement that refers the Euclidean measurement of the 

angle ∠𝐴′𝐵′𝐶′.  

   

Figure 2.4. Klein measurement of the angle ∠𝐴𝐵𝐶 that refers to Euclidean measurement of the 
angle ∠𝐴′𝐵′𝐶′  

 

The construction part of this task demonstrates the one-to-one correspondence between 

the given angle and corresponding angle formed by the tangent lines of the orthogonal circles so 

that students ensure the well-definedness of the angle measurement function in Klein model. 

Note that the existence of a hyperbolic geometry model in Euclidean geometry (e.g., Klein 
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model or Poincaré model) implies a relative consistency of the hyperbolic system as long as 

Euclidean geometry is consistent.  

Verification of Klein model. In the following verification part of the task, students are 

asked to verify that their constructions of Klein angle measurement satisfy the five angle 

postulates. Note that their constructions in GEX are draggable figures so that they can drag the 

given angle ∠𝐴𝐵𝐶 in Klein disk while observing dynamic changes within the whole construction 

including the corresponding orthogonal circles, tangent angles and the Euclidean measurements 

thereof. This allows students to change the dynamic diagram of ∠𝐴𝐵𝐶 by dragging independent 

points	𝐴, 𝐵, and 𝐶 determining the angle and show each statement of the angle postulates hold no 

matter how they drag those points. In Postulate 13 and 14, for instance, students construct an 

arbitrary ray 𝐵𝐷''''''⃗  where 𝐷 is in the interior of the angle ∠𝐴𝐵𝐶 and compute the sum of the 

measurements of two angles ∠𝐴𝐵𝐷 and ∠𝐷𝐵𝐶 (See Figure 2.5). 

 

  

Figure 2.5. The ray 𝐵𝐷''''''⃗  in Klein disk and the sum of Klein angle measurements 𝑚(∠𝐴𝐵𝐷) and 
𝑚(∠𝐷𝐵𝐶) that is equal to 𝑚(∠𝐴𝐵𝐶) 
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Note that the verification of the angle postulates primarily relies on the one-to-one 

correspondence between arbitrary angles in Klein disk and the angles between tangent lines of 

orthogonal circles. In other words, a key of this verification part of the task is to know that Klein 

model borrows its angle measurement from Euclidean geometry which also satisfies all the five 

postulates. For instance, Postulate 12 requires students’ attentions to the surjectivity of the 

measurement function 𝑚 in Klein model that relies on the surjectivity of angle measurements in 

Euclidean geometry. Verifying this postulate is a reverse process of constructing orthogonal 

circles and tangent lines given the assumption that for any real number 𝑟 between zero and 180 

there exists (or one can construct) a Euclidean angle with its measurement being 𝑟. 

Task 2: Analysis of Legendre’s Attempted Proof of Euclidean Parallel Postulate 

In the previous task of constructing and verifying Klein model, students are expected to 

confirm that this model satisfies all the postulate in the current system for Euclidean geometry 

except the EPP. In fact, this indicates the relative consistency of hyperbolic geometry and the 

independence of EPP in neutral geometry given the existence of a model of the system (e.g., 

Klein model) that does not satisfy EPP. In addition, this model implies that any attempt to prove 

EPP in this system must end up with failure such as the one suggested by a past mathematician 

Adrien-Marie Legendre. This implication leads to Task 2 where students are asked to analyze 

Legendre’s attempt to prove EPP by geometric construction in Klein model of GEX. Students 

are given a written document describing each step of a geometric construction by which 

Legendre argued for the uniqueness of the parallel line to a given line and a point not on the line. 

Given 𝑃 not on line 𝑙. Drop perpendicular 𝑃𝑄'⃖'''⃗ 	from 𝑃 to 𝑙 at 𝑄.  Let 𝑚 be the line through 

𝑃 perpendicular to 𝑃𝑄'⃖'''⃗ 	. Then 𝑚 is parallel to 𝑙.  Let 𝑛 be any line through 𝑃 distinct from 

𝑚 and 𝑃𝑄'⃖'''⃗ 	. We must show that 𝑛 meets 𝑙. (See Figure 2.7) 
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Given the existences of parallel lines in neutral geometry system, Legendre starts 

constructing a line 𝑚 that is parallel to the given line 𝑙 and that passes through a point 𝑃 not on 

the line 𝑙. It is followed by his assertion that any arbitrary line 𝑛 passing the point 𝑃 that is not 𝑚 

should meet the line 𝑙. 

Let 𝑃𝑅'''''⃗  be a ray of 𝑛 between 𝑃𝑄'⃖'''⃗  and a ray of 𝑚 with endpoint 𝑃. There is a point 𝑅′ on 

the opposite side of 𝑃𝑄'⃖'''⃗  from 𝑅 such that ∠𝑄𝑃𝑅′ ≅ ∠𝑄𝑃𝑅. Then 𝑄 lies in the interior of 

∠𝑅𝑃𝑅′. Since line 𝑙 passes through the point 𝑄, 𝑙 must intersect one of the sides of this 

angle. If 𝑙 meets 𝑃𝑅'''''⃗ , then certainly 𝑙 meets 𝑛. Suppose 𝑙 meets side 𝑃𝑅′''''''⃗  at a point 𝐴. Let 

𝐵 be the unique point on 𝑃𝑅'''''⃗  such that 𝑃𝐴;;;; ≅ 𝑃𝐵;;;;. Then ∆𝑃𝑄𝐴 ≅ ∆𝑃𝑄𝐵. Hence ∠𝑃𝑄𝐵 is 

a right angle, so that 𝐵 lies on 𝑙 (and 𝑛). Q.E.D. 

Given the existence of a model of the system where EPP does not hold, his proof cannot 

be valid and, in fact, includes a hidden assumption that is logically equivalent to EPP. Students 

analyze each step of the construction and identify the hidden assumption that causes a circular 

logical in this proof. Students build the construction in Klein model following each step in the 

written proof above and explore where the construction fail without an additional assumption. 

Note that this Klein model is not the Euclidean construction that students created in the previous 

task but the automated model offered in the software so students can construct basic figures as 

easy as they could do in Euclidean models. In GEX, students can choose one of hyperbolic 

geometry models including Poincaré model, Klein model, and half-plane model in which 

students can create and measure figures.  

While constructing their figures following the steps described in the material, students 

may see that the statement in the fourth step does not necessarily hold for an arbitrary ray 𝑃𝑅'''''⃗  and 

the angle ∠𝑅𝑃𝑅′ in their construction in Klein model. In this step of his proof, Legendre 
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assumed that any line passing through a point in the interior of an angle must intersect one of the 

rays of the angle. However, this assumption is not always true in a system without EPP or any 

statement logically equivalent to it. For instance, if students drag the angle ∠𝑅𝑃𝑅′ to make it 

wide enough to get close to the line 𝑚, neither of the rays 𝑃𝑅'''''⃗  nor 𝑃𝑅′''''''⃗  meet the line 𝑙. (See 

Figure 2.7). This provides a counter-example to the statement in the fourth step using the hidden 

assumption, which, in turns, refutes his argument. Note that there are at least three lines (in red), 

𝑚, 𝑛, 𝑃𝑅′'⃖''''⃗ , in this case where all they are parallel to the line 𝑙 and pass the point 𝑃.  

 

  

Figure 2.6. Counter-example to Legendre's attempted proof of EPP in Klein model 

 

The objective of this task is to construct a geometric proof in Klein model of GEX and 

use this dynamic construction to explain why this proof fails in this model. So, an essential 

mathematical activity in this task is that students identify independent elements of the 

construction and counter-examples of the construction by dragging those elements. This activity 

involves reasoning about generalization of a geometric construction that is necessary to check 
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the validity of the proof constructed. Technology plays a role in constructing the proof in a 

hyperbolic model and generalize the construction when students drag the independent elements 

(e.g., the point 𝑅 of the angle ∠𝑅𝑃𝑅′ in Figure 2.7) and look for any changes or invariants in the 

construction. 

Task 3: Exploration of Limiting Parallel Lines in Hyperbolic Geometry 

The previous two tasks in the sequence provide students with experiences of close 

examinations of a hyperbolic geometry model that is necessary to conclude the independence of 

EPP and the consistency of hyperbolic geometry. This experience involves constructing, 

verifying, and exploring the sophisticated structure of angle measurements in Klein model that is 

consciously designed to satisfy all the postulates of neutral geometry but EPP.  

In the third task, students use a particular construction feature in hyperbolic geometry 

mode of GEX that provides a pair of special parallel lines called limiting parallel lines. For a 

given line 𝑙 and a point 𝑃 not on 𝑙 in Klein model, for instance, this feature creates two lines 𝑚 

and 𝑛 that are pass 𝑃 and do not meet 𝑙 (See Figure 2.9).   

 

 

Figure 2.7. Limiting parallel lines to a given line 𝑙 and a point 𝑃 not on 𝑙 in Klein model 
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Note that the two lines 𝑚 and 𝑛 meet 𝑙 on Klein disk where those intersections are not 

interpreted as points in Klein model. A point is an undefined term in an axiomatic system, so it 

needs to be interpreted in each model of the system. Since the set of all points in Klein model is 

limited to the interior of the Klein disk, those two special lines 𝑚 and 𝑛	do not meet 𝑙 in Klein 

model although there are intersections on the disk. Exploring the limiting parallel lines allows 

students to attend to this interpretive nature of figures in the axiomatic geometry as well as 

explore properties of parallel lines in hyperbolic geometry comparing to what they know about 

parallel lines in Euclidean geometry.  

Task 3 is aimed at providing students with opportunities to make an initial sense of 

limiting parallel lines in Klein model of GEX that are new geometric objects to them. In this 

task, students are instructed to create limiting parallel lines based upon their examination of this 

given attempted proof from Task 2 and to respond the following three questions. 

• Are the limiting parallel lines examples or counter-examples of ∠𝑅𝑃𝑅’ in the Legendre’s 

proof? 

• Using the limiting parallel lines, how can you separate examples or counter-examples of 

∠𝑅𝑃𝑅’ in the Legendre’s proof? 

• How can you describe the limiting parallel lines in the Klein model? Do you think the 

description is applicable in any models of hyperbolic geometry? 

In the first question, students revisit their work in the previous task and determine if the 

limiting parallel lines meet the line 𝑙 or not. They interpret what they create in Klein model using 

the creation feature for limiting parallel lines that are two lines that seem to meet 𝑙 only on the 

Klein disk. Although students may see from the term, limiting parallel lines, that those lines are 

parallel lines, they may also see that those lines are different from other parallel lines from the 



 27 

term and/or from the diagrams thereof on the screen. It is followed by the last two questions 

about an essential property of the limiting parallel lines that separate parallel and non-parallel 

lines (See Figure 2.10). 

  

Figure 2.8. Limiting parallel lines 𝑚 and 𝑛 with respect to the line 𝑙 and a point 𝑃 not on 𝑙 that 
separate parallel lines (e.g. 𝑃𝑆'⃖''⃗ ) and non-parallel lines (e.g., 𝑃𝑄'⃖'''⃗ ) to 𝑙 

 

An arbitrary line 𝑃𝑄'⃖'''⃗  intersects 𝑙 if 𝑄 lies in the interior of the angle between 𝑚 and 𝑛 

where 𝑙 is also included in the interior of the angle otherwise the line does not intersect 𝑙 so is 

parallel to the line (e.g., 𝑃𝑆'⃖''⃗ ). In other words, the limiting parallel lines separate the entire plane 

except themselves into two pairs of vertical angles centered at 𝑃 such that one pair of vertical 

angles contains non-parallel lines to 𝑙 thru 𝑃 (e.g., 𝑃𝑄'⃖'''⃗ ) and the other pair contains parallel lines 

(e.g., 𝑃𝑆'⃖''⃗ ).  

The intent of introducing this property in this task is to have students develop a 

mathematical definition of limiting parallel lines applicable in any models of hyperbolic 

geometry. The third question specifically challenges students to describe this property or propose 

a definition in a way that relies only on the system of hyperbolic geometry excluding any other 
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specification of the model. In the following examples, students used diagrammatic features of 

Klein model in describing the diagrams of limiting parallel lines that were not necessarily 

applicable in other models of hyperbolic geometry. 

Task 4: Construction of Limiting Parallel Lines in Hyperbolic Geometry 

The last question in Task 3 indicates a need for defining limiting parallel lines for all 

possible models of hyperbolic geometry. In association with the previous task, Task 4 addresses 

this issue of a universal definition of limiting parallel lines beyond a particular model of the 

system and asks how to ensure the existence of such lines within the system (See Appendix B). 

The task is structured with multiple questions that lead students to engage in a mathematization 

process (Freudenthal, 1991) in which they are guided to reinvent the concept of limiting parallel 

lines. In this process, students make conjectures from their experience with Klein model in GEX 

and validate the conjectures by producing a constructive proof for the existence of limiting 

parallel lines that eventually comes with a rigorous definition.  

Students are given worksheets of the task that consists of observations, conjectures, and 

proof phases. In the observation phase, students revisit one of their homework problems where 

they proved the existence of a triangle with an arbitrary small interior angle using the following 

iterative construction of isosceles triangles (See Figure 2.11).  

 

 

Figure 2.9. Iterative construction of triangles ∆𝑅456𝑃𝑅4 that produces a sequence of lines 𝑃𝑅4'⃖'''''⃗  
in Euclidean geometry 
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In the diagram above, ∆𝑄𝑃𝑅6 is an isosceles triangle where 𝑃𝑄;;;;	and 𝑄𝑅6;;;;; are congruent, 

and ∆𝑅456𝑃𝑅4 are isosceles triangles where 𝑃𝑅456;;;;;;;; are 𝑅456𝑅4;;;;;;;;;; congruent. In the homework, 

students proved that 𝑚(∠𝑃𝑅4𝑄) gets small as 𝑛 increases so they can find a large natural 

number 𝑛 where ∠𝑃𝑅4𝑄 is arbitrarily small. Note that students needed particular axioms and 

their consequences in the system (e.g., Saccheri-Legendre theorem) as well as the Archimedean 

Postulate from the real number system. The key message of the task in the observation phase is 

to gain an insight from the construction of the previous homework problem so that students 

generate a conjecture to define limiting parallel lines and produce a constructive proof of the 

existence thereof. In this revisited construction, students are asked to think about a sequence of 

line G	𝑃𝑅4'⃖'''''⃗ 	H
4I6

J
 that looks converging to one of the limiting parallel lines of 𝑙 at 𝑃. They also 

connect this observation to their work in Task 3 where they observed how limiting parallel lines 

separate parallel and non-parallel lines in Klein model. Based on all these experience in their 

homework and the previous task in the sequence, the questions in the observation phase lead 

students to a conjecture to define limiting parallel lines as limits of non-parallel lines (e.g., 𝑃𝑅4'⃖'''''⃗  

in Figure 2.9) as they go further from the perpendicular line  𝑃𝑄'⃖'''⃗  and get close to parallel lines.  

This definition of limiting parallel lines would make sense to students given their 

experience in previous activities including their interaction with the diagrams in Klein model. 

However, this definition is not written in the language of formal mathematics because this 

informal idea of the limit of a sequence of figures cannot be articulated within the system in the 

axiomatic perspective. In the transition from the observation phase to the conjecture phase, 

students are encouraged to refine their conjectures by using the sequence of angle measurements 

K𝑚(∠𝑄𝑃𝑅4)L
4I6

J
. Since the angle measurement function in the system is a real-valued function, 
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this is a sequence of real numbers for which students can use the monotone convergence theorem 

from the theory of real numbers. Given this theorem gives the limit 𝑟 of the sequence, students 

argue for the existence of an angle ∠𝑄𝑃𝑅 where 𝑚M∠𝑄𝑃𝑅N = 𝑟 from the angle construction 

postulate (Postulate 12) in the system. Note that this limit 𝑟 is called the angle of parallelism with 

respect to the line 𝑙 and a point 𝑃 not on 𝑙. One can see the angle of parallelism should always be 

90° in Euclidean geometry where there is one and only parallel line, whereas hyperbolic 

geometry must have the angle of parallelism strictly less than 90° given it allows more than one 

parallel lines. 

In the following proof phase of the task, students provide a complete proof of the 

existence of the angle ∠𝑄𝑃𝑅 where 𝑚M∠𝑄𝑃𝑅N equals the angle of parallelism. To complete the 

mathematization process in this task connecting their informal observation of limiting parallel 

lines in Klein model with this formalized definition of ∠𝑄𝑃𝑅, expecially of 𝑃𝑅'⃖'''⃗ , students show 

the definition (or construction) is consistent with their observation on how the limiting parallel 

lines separate parallel and non-parallel lines in Klein model. The last two questions in the proof 

phase is to show that any line inside ∠𝑄𝑃𝑅 should meet the line 𝑙 otherwise it should not.  

Concluding Remarks 

In this paper, I presented a sequence of tasks designed and enacted in an axiomatic 

geometry course where a DGE plays a crucial role in students’ mathematical activities in class. 

Given the three objectives of the course, the task design aims at providing students with an 

experience of verifying a hyperbolic model and, based on the experience, to engage in axiomatic 

reasoning and to develop knowledge of axiomatic systems and hyperbolic geometry.  
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CHAPTER 3: Student Engagement in Axiomatic Reasoning in DGE Task Sequence 

Abstract 

In this chapter, I present an empirical study on students’ uses of DGEs and their 

engagement in mathematical reasoning and axiomatic reasoning while they enacted a task 

sequence in an axiomatic geometry course. The analysis of this study showed that students used 

DGEs for specific purposes with respect to the mathematical activities they engaged in 

responding the given tasks. DGEs provided students with experimental tools to model geometric 

figures and phenomena in hyperbolic geometry. Students reasoned about mathematical and meta-

mathematical objects involved in the enacted tasks in which they used DGEs to express their 

mathematical ideas and to examine mathematical statements describing properties of geometric 

objects within axiomatic systems and models of hyperbolic geometry. The findings of this study 

provided detailed portraits of student use of DGEs that were associated with their engagement in 

mathematical reasoning and axiomatic reasoning.   

Introduction  

A goal of geometry education at a collegiate level is to provide students with 

opportunities to experience the axiomatic approach to geometry and appreciate its usefulness for 

understanding different types of geometries other than Euclidean geometry. Students in college 

geometry courses are expected to make a shift from high school geometry to advanced geometry 

where they make meanings of geometric objects using formal definitions and rigorous proofs (K. 

F. Hollebrands et al., 2010; David Tall, 2008). In expanding their scopes beyond Euclidean 

geometry and their ways of interacting with diagrams thereof, students are expected to view 

geometry as an axiomatic structure, which is characterized by its axiomatic system and can be 

visualized and materialized by different models. This axiomatic perspective on geometry is 
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necessary to understand how the axioms in the system lead to quite different and often 

contradictory results in Euclidean and non-Euclidean geometry (National Council of Teachers of 

Mathematics [NCTM], 1989). In this study, axiomatic geometry means a study of geometry with 

a focus on this axiomatic approach to understand various geometries with different axiomatic 

systems including Euclidean and non-Euclidean geometries. 

Mathematics departments offer upper-division geometry courses introducing foundations 

of Euclidean and non-Euclidean geometries in this perspective of axiomatic geometry. As in 

other upper-division mathematics, students in these courses are usually given formal and abstract 

definitions of geometric objects. They are expected to produce rigorous proofs when they learn 

properties of figures in each geometry. On the other hand, they are not able to rely on visual 

representation as reasoning about those figures in ways the same as how they were able to do in 

Euclidean geometry. Due to this limited access to those resources supporting student reasoning 

in axiomatic geometry, educators have made efforts to use Dynamic Geometry Environments 

(DGEs) for non-Euclidean geometry in class. Comparing to school geometry at K-12 level, 

however, there is a lack of available tools, class practices, and empirical studies investigating 

how students reason in axiomatic geometry class using DGEs. The purpose of this chapter is to 

present an empirical study of students’ uses of DGEs and their reasoning in a task sequence 

using DGEs.   

DGEs Support Student Reasoning 

In the learning of geometry, DGEs provide students with explorative tools that allow 

them to create diagrams, make measurements, and drag components of a diagram. Mathematics 

education researchers and professional organizations have suggested that the contribution of 

DGE in the teaching and learning of geometry comes from dynamic interaction with manipulable 



 33 

graphical representations (e.g., Battista, 2007; Common Core State Standards Initiative, 2012; 

National Council of Teachers of Mathematics, 2000). In particular, researchers have argued for 

the importance of such interactions with DGEs in facilitating developments of student reasoning 

that plays a key role in achieving learning goals of axiomatic geometry (Dwyer & Pfiefer, 1999; 

K. F. Hollebrands et al., 2010; Laborde, Kynigos, Bollebrands, & Strasser, 2006; Olive, 2000; 

David Tall, 2008) In the following sections, I will address two examples of such developments 

of student reasoning in axiomatic geometry that had been highlighted along with the role of DGE 

activities and that are relevant to the task sequence of this study: Mathematization and 

conceptual embodiment of non-Euclidean geometry. 

Supporting student mathematization. Researchers have argued that DGEs serve as 

explorative tools for students engaging in mathematization process. In this process, students 

reconstruct geometry knowledge by conducting experiments, making conjectures, and 

mathematically explaining or proving their conjectures. In particular, researchers reported that 

the mathematization in geometry can be supported by the explorative nature of DGE activities 

(Armella & Sriraman, 2005; Arzarello, Olivero, Paola, & Robutti, 2002; Komatsu, 2017; 

Komatsu & Jones, 2019; Komatsu, Tsujiyama, Sakamaki, & Koike, 2014; Olive, 2000; Olivero, 

Paola, & Robutti, 2002; Sinclair et al., 2017). For instance, Laborde et al. (2006) highlighted a 

duality of reasoning in geometry, meaning the combination of empirical evidence from visual 

representations and deductive thinking. Problem-solving in geometry requires deductive 

reasoning, which includes making conjectures and proving properties of geometric objects. On 

the other hand, it also involves inductive reasoning, which takes place when students observe and 

interact with diagrams of the geometric objects. Those visual representations provide empirical 

evidence for students to generate initial conjectures and then revise them. Due to this duality of 
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deductive and inductive reasoning involved in mathematization of geometry, students can benefit 

from explorative DGE activities as they conduct their experiments and test their conjectures. 

Researchers conducted empirical studies on such DGE activities supporting students’ 

mathematization to reconstruct geometric knowledge in non-Euclidean geometry. In their 

studies, DGEs allowed participants to get access to empirical evidence to create their own 

conjectures and construct formal proofs. (Guven & Baki, 2010; K. F. Hollebrands et al., 2010; 

Stevenson & Noss, 1999). Guven and Baki (2010) reported how preservice teachers explored 

spherical geometry using a DGE for spherical geometry, Spherical Easel, and proved their own 

conjectures about triangles on sphere. The exploration on diagrams of triangles in spherical 

model provided the teachers with empirical evidence for their conjectures with considerable 

conviction as well as supported them in producing a mathematical proof of the conjectures. 

Hollebrands et al. (2010) investigated how a DGE for non-Euclidean geometry, NonEuclid, 

supported students making their arguments as they solve geometric construction problems in 

non-Euclidean geometry. In particular, the DGE enabled students to construct accurate diagrams 

and to abstract general properties and relationship of figures from the construction while making 

and qualifying their conjectures. Researchers argued that uses of DGEs in explorative activities 

can support students engaging in the mathematization process that involves both inductive and 

deductive reasoning. 

Conceptual embodiment of non-Euclidean geometry. Another role of DGEs in 

supporting student reasoning in non-Euclidean geometry is to promote the conceptual 

embodiment of geometric figures with formal definitions. The conceptual embodiment means a 

process of developing perceptual representations for abstract concepts of geometry and figures in 

non-Euclidean geometry given by formal definitions (David Tall, 2008). According to his 
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description, students “conceptually embody a geometric figure, such as a triangle consisting of 

three straight line-segments” (p. 7), then are able to access this embodied figure when they 

reason about the concept. A perceptual representation does not mean a static mental image, 

rather a dynamic mathematical structure that enables students to “allow a specific triangle to act 

as a prototype to represent the whole class of triangles” (p. 7). Olive (2000) also addressed the 

affordance of DGEs in non-Euclidean geometry that allow students to construct and measure 

diagrams in hyperbolic geometry (e.g., Poincare model constructed in Sketchpad using a script 

tool). In the learning of axiomatic geometry, students can benefit from developing perceptual 

representations in non-Euclidean geometry where they lack access to physical models (Junius, 

2008). 

Tall (2008) argued that the conceptual embodiment for non-Euclidean geometry can be 

supported by providing a physical embodiment so that students can build perception of 

geometric objects. In this regard, exploring behaviors of concrete figures in DGEs can facilitate 

students to develop perceptual representations of the abstract concepts and figures in non-

Euclidean geometry. Visual and manipulable diagrams in DGEs allowed students to drag 

diagrams dependent to each other and observe the dynamic responses the software return to their 

manipulations. Such experience of interacting with dynamic diagrams enables students to 

explore properties of abstract figures in non-Euclidean geometry, and in turn, develop their 

perceptual representations that they can access as engaging in formal reasoning. This idea of 

student development in DGEs was captured in a similar idea of situated abstraction and situated 

proofs (Armella & Sriraman, 2005). They argued that students’ explorative experience in DGEs 

allow them to encapsulate general statements describing mathematical properties they observed 

from the technology. 
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In their empirical study, Guven and Karatas (2009) showed that interactive diagrams of a 

DGE can support students' conceptual embodiments of triangles in spherical geometry. In their 

study, the participants explored triangles on a sphere of a DGE and abstracted properties of 

spherical triangles that they did not see in Euclidean triangles. After the DGE exploration, the 

participants could access their perceptual representations of spherical triangles of which they 

could refer to properties when they drew paper-and-pencil diagrams of spherical triangles in 

producing proofs of those properties.  

In the above two sections, I addressed two pedagogical benefits of using DGE activities 

that can support students reasoning involved in learning of axiomatic geometry. The literature 

indicates that exploring dynamic diagrams of abstract figures in DGEs can facilitate students to 

reconstruct geometric knowledge thru the process of mathematization and develop perceptual 

representation of non-Euclidean geometric figures.  

Drag Feature of DGEs 

Researchers have investigated and argue that the drag feature of DGEs provides students 

with opportunities to visually experience the variation of conceptual geometric figures in non-

Euclidean geometry (Arzarello et al., 1998; Baccaglini-Frank & Mariotti, 2010; Jones et al., 

2010; Leung, 2008). In the perspective of mathematical variation in exploration with DGE, 

students observe emerging variations of figures in dragging activities and discover invariant 

properties in varying components of the geometric constructions across different geometries 

(Leung, 2008). Through a lens of variation, therefore, we can describe how students’ interactions 

with DGE including dragging activities contribute to developing their understanding of 

axiomatic geometry.  
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Wandering dragging for contrasting. Leung (2008) interpreted students’ dragging 

activities in DGE in relation with different functions of variation. Drag for contrasting is to see 

differences in variations and make conjectures of what can be and cannot be. A primitive 

dragging strategy illustrating the drag for contrasting is wandering dragging, in which students 

drag around all the varying components of the constructions without strategic exploration, but 

survey overall changes of the construction. The number of varying components in a geometric 

construction can be regarded as the dimensions of variation in dragging activities. For example, a 

circle passing through three distinct points has three dimensions of variation, the three points 

defining the circle. In wandering dragging, students observe how the circle varies when they drag 

the three points with shuttling between them. Since students keep switching the dimension of 

variation, the number of dimensions is not constrained in wandering dragging.  

Guided dragging for separation. When a dimension of variation is being dragged while 

other dimensions are being kept constant, a potential invariant pattern or property might emerge. 

In this stage, called drag for separation, students attempt to separate out hidden geometric 

patterns or invariant properties. During the drag for separation, students need to decide what to 

focus on and what to temporally lay aside or keep fixed. Geometrical shape or numerical 

measurement guide students to determine their strategic dragging activities, which is called 

guided dragging. To visually separate out the hidden patterns and pin down on their conjectures, 

a transition in dragging strategies is needed. Although the shift to guided dragging can be 

regarded as refining wandering dragging strategy, students continue to interplay between two 

different dragging strategies until they finalize their conjectures with converging results from the 

variations.  
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Drag test for generalization. To verify the conjecture obtained from the constant 

interplay between wandering and guided dragging strategies, students need to move on the next 

stage, drag for generalization. It is to test the figure with respect to a given condition to see 

given diagram keep satisfying the condition while changing the dimensions of variations. In 

terms of dragging strategy, a generalized diagram should pass this drag test. A generalized 

diagram through the drag test is a robust construction, which means a “properly” constructed 

figure in DGE which is not just a static diagram rather a variable figure that the invariant or 

defining properties are preserved under dragging. A robust construction created by students in 

DGE can be an empirical evidence that they verify their conjectures in exploratory activities.  

Framing dragging as contrasting, separation, and generalization gives a way to 

understand pedagogical significance of the drag feature of DGE. The corresponding dragging 

strategies can be used to describe how students use of DGE and how the strategies shape 

geometrical knowledge in the context of a specific exploratory activities.  

Theoretical Framing 

In this section, I provide definitions of constructs and theoretical backgrounds to establish 

framework for analysis in this study. Then I presented the three research questions of the study.  

Students Uses of DGEs  

Prior study on students’ uses of DGEs. I investigated how students enacted a sequence 

of exploratory DGE tasks in an axiomatic geometry course at a large public university in Spring 

2016. The study allowed me to establish an analytic framework for investigating students' uses of 

DGE in the task enactment. In this study, I analyzed what features of DGE (e.g., selecting, 

creating, dragging, etc.) were used in their group work as well as how the students utilized drag 

features in their exploration. I created codes to describe the dragging activities with specific 
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purposes on which students use the drag feature in relation to their reasoning. This analysis 

allowed me to describe characteristics of DGE usage in groups who were successful in accessing 

comprehensive empirical evidence to make a generalizable argument. Successful groups spent 

more time on dragging activities than other features (e.g., point at diagrams or move diagrams, 

etc.) in their exploration, which provided students with active interactions with dynamic 

constructions in terms of frequent interchanges between their manipulation and response of the 

software. In addition, successful groups were strategic in using the drag feature to collect 

empirical evidence for creating conjectures. They dragged independent elements of given 

constructions to observe different examples as many as possible while collecting evidence to 

create their conjectures, then dragged those elements specific to their conjectures on particular 

example of diagrams. For instance, they would change all three vertices defining an arbitrary 

angle and see how measurement of the angle changes if the angle is getting close to the boundary 

of Klein disk. 

DGE features and DGE moves. Investigating students’ uses of DGEs requires 

observing all the instant behavioral or physical changes in geometric figures on the screen and to 

identify their purposes of such instant changes in the global context of the given geometric tasks. 

In this study, DGE features are technological features provided in the DGE software. Use of a 

DGE feature includes only the observable physical changes on the screen, not the students’ 

purpose or meaning of the action. A DGE move is a sequence of DGE features used for a 

specific purpose. For example, a student might move the cursor to a particular place on the DGE 

screen and stop there for a while or slightly shake or make circles around for the purpose of 

pointing out a particular figure. A student might drag a figure to place it at a certain position on 

the screen. 
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Dragging moves. Among other DGE moves, I identified multiple dragging moves with 

different purposes informed by an analytic framework of variation in drag mode of dynamic 

geometry with different modalities (Arzarello et al., 2002; Leung, 2008). Those different 

purposes were represented by dragging moves including wandering dragging, guided dragging, 

and dragging by accidents. In this study, wandering dragging means to drag a diagram around all 

the varying components of the construction without strategic exploration, but survey overall 

changes of the construction or measurement. Guided dragging happens when geometric diagrams 

or numerical measurement guide students to determine specific pathways of their dragging in a 

strategic way. The last dragging move, dragging by accident, was created in the early stage of the 

analysis of student work to distinguish miscellaneous moves that were not relevant to the local 

context of students uses of DGEs. Dragging by accident means cases when students select and 

drag accidentally a diagram right next another component they wanted to drag. In such cases, the 

student would make another dragging move by dragging the one they wanted to move. Among 

all the dragging moves identified from student work in this study, dragging by accident 

accounted for 1.6% (10” out of 10’35”) of the total duration. This in-depth analysis on the 

students’ different dragging moves enabled me to distinguish how differently students used drag 

features in relation to their engagement in mathematical reasoning.  

Mathematical Reasoning and Axiomatical Reasoning 

In mathematics education literature, mathematical reasoning has been defined in different 

ways as it encompasses various mathematical practices (Conner, Singletary, Smith, Wagner, & 

Francisco, 2014). Some researchers have focused on practices of making inferences (Thompson, 

1996) or drawing conclusions (National Council of Teachers of Mathematics, 2009) from given 

information about mathematical objects.  
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Mathematical reasoning. In this study, students enacted mathematical tasks as they 

were prompted to provide their responses to given problems. That means students’ task 

enactments entailed practices of making inferences that were inherently oriented towards 

particular purposes—producing acceptable responses to the problems. Adapting Thompson’s 

(1996) definition, I define mathematical reasoning as purposeful inference about mathematical 

objects grounded on evidence or assumed knowledge. To be specific, mathematical reasoning in 

this study is situated in the context of task enactments, where they are given instructional tasks 

with specific interventions and interpret what they are expected to do for successfully enacting 

the tasks for the course. For example, given a mathematical task of explaining why a 

mathematical statement holds in a geometric system but not in the other, students make 

inferences about the statement using empirical evidence or deduction from known theorems or 

axioms.  

Axiomatic reasoning. In this study, axiomatic reasoning is a specific kind of 

mathematical reasoning of which objects are meta-mathematical objects including axioms, 

systems of axioms, and models of axioms. When students engage in axiomatic reasoning, they 

make inferences about those meta-mathematical objects and properties thereof. This involves 

specific reference to axiomatic systems and models while making inferences about geometric 

objects in the task enactment. For instance, students would examine if an axiom is independent 

in a given system of axioms or verify a model of an axiomatic systems by checking if the model 

satisfies all the axioms in the system. In the sense that students are expected to objectify those 

meta-mathematical concepts while engaging in axiomatic reasoning, it has been considered an 

advanced level in student development of geometry (van Hiele, 1986). In addition, reasoning on 

those meta-mathematical objects inherently entail subsidiary mathematical objects so identifying 
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student engagement in axiomatic reasoning can be done in a broader scope of the analysis in this 

study. 

Given the context of task enactment using DGE, mathematical or meta-mathematical 

objects in the definitions above are not only represented in the students’ verbal or written 

responses but also represented in the forms of diagrams and its relationships that the students 

interacted with DGE. In this regard, students’ DGE moves interplay with their mathematical and 

axiomatic reasoning while students make inference about the geometric figures and axioms 

involved in their DGE moves with same or related purposes. 

Task Design and Enactment 

In this study, mathematical tasks are intentionally designed to guide students to engage 

with intended mathematical activities (e.g., creating geometric constructions, producing 

mathematical proofs), which in turn, are expected to provide opportunities to attend to the task 

objectives associated with learning goals of the course. Researchers highlighted that designing 

effective instructional tasks supporting student learning entails understanding this process from 

task design to student learning in order for task designers and instructors to refine the task design 

and improve instructional interventions to facilitate the task enactment in classroom (Ainley & 

Margolinas, 2015; Komatsu & Jones, 2019; Olive et al., 2010). In particular, I focus on what 

mathematical activities students actually engaged with during the task enactment in comparison 

with the intended activities, i.e., how the tasks were enacted as intended in the design. 

In this perspective, researchers have investigated mathematical tasks with attentions to 

multiple phases of tasks being designed, set up, and enacted in the instructional practices. Stein 

and Lane (1996) conceptualized this process of mathematical tasks represented in written 

materials, which are set up by teachers in classrooms, implemented by students in classroom, and 
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eventually contribute to the student learning (Figure 3.1). This framework provides a way to 

understand how task design may or may not support student learning as intended as well as to 

investigate effects of task design by comparing features of tasks in each phase and identifying 

factors that influence each transition between the phases. 

 

 

Figure 3.1. Mathematical Task Frame (Stein & Lane, 1996, p.56) 

 

In prior studies using the mathematical task frame (Stein & Lane, 1996), researchers had 

specific foci on particular aspects of students’ mathematical activities—cognitive demand (Stein 

& Lane, 1996) and proof-related tasks (Bieda, 2010)—in conceptualizing difference between 

task-as-intended and task-as-enacted. Stein and Lane (1996) found that tasks-as-enacted tended 

to involve lower cognitive demand than tasks as written or set-up in class by teachers due to 

various factors including students' intellectual habits, dispositions, or administrative factors like 

time constraints in class. With a specific focus on proof-related tasks in textbooks, Bieda (2010) 
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analyzed how tasks were enacted in class involved proof-related mathematical activities 

including generalization and argumentation as intended in the written curriculum and/or as 

intended by the teachers who introduced the tasks in the classroom. It is clear in their studies that 

both foci were not for making direct evidence about student learning from the tasks. Rather their 

analyses of task design and enactment were focused on examining how the tasks were enacted as 

intended and on investigating what factors caused such difference, if any.  

Task-as-designed and task-as-enacted. In this study, a mathematical task is an activity 

purposefully designed by an instructor and intended to support students’ mathematical learning 

and development. Through the process of task design, the instructor creates or adopts a set of 

mathematical activities along with a set of specific task objectives that are expected to be 

achieved while students enact the task in certain ways. In this regard, the product of this design 

process is called a task-as-designed, which consists of intended mathematical activities, specific 

task objectives related to learning goals of the course, and instructional interventions for class 

facilitation. Meanwhile, students do not necessarily enact the tasks in class as intended by the 

instructor. Task enactment is “the manner in which students actually work on the task” (Stein & 

Lane, 1996) while interpreting given tasks in their own ways and carrying out the task. This 

interpretative student work on the task produces a particular student activity that may or may not 

be as intended in the task-as-designed. The task enacted by the students in response to a given 

task-as-designed is called a task-as-enacted. It is notable that describing task-as-enacted in actual 

classroom settings can be done by analyzing student work produced in the classroom and by 

identifying differences between task-as-designed and task-as-enacted. This is because task-as-

enacted are results of students’ responses to the task-as-designed even though there are lots of 
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factors that affect those responses other than the task itself (e.g., student knowledge, classroom 

norm, etc.).  

Case of reasoning and case theme of student engagement in reasoning. In my use of 

this frame of task-as-designed and task-as-enacted, I focused on articulating student engagement 

in mathematical reasoning and axiomatic reasoning that appeared in the task-as-enacted. The 

task-as-designed in this study provided cases of mathematical reasoning and axiomatic reasoning 

that are descriptions of anticipated student reasoning with respect to the specific prompts and 

contents of the tasks. The analysis of the task-as-enacted in this study aimed at generating case 

themes (Creswell & Poth, 2017) that represent issues or specific situations in each case that 

emerged when the students actually engaged in the reasoning for each case. Thus, the analysis is 

not for comparing the task-as-designed and the task-as-enacted, rather the task-as-designed 

provided the initial guideline for analyzing student work and to specify different theme from 

each case of reasoning from the task-as-enacted.  

Research Questions 

RQ1. How did students use DGE when enacting the geometric proof tasks? 

a. What DGE features did students use when enacting tasks? 

b. What DGE moves did students make when enacting tasks? 

The first research question aims at producing comprehensive descriptions of all the 

identifiable students’ moves in the DGE screen. Students’ moves mean interpretations of the 

students’ uses of DGE features that served particular functions in the context of the task 

enactment. The first sub-question entails identifying instances of DGE software functions that 

result in observable changes on the screen–at the level of physical actions.  The second sub-

question focuses on the DGE moves, which involves achieving the students’ purposes in the 
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context of the geometric construction on the screen. These two sub-questions lead to the analysis 

of student moves, identifying all observable changes made on DGE screen and making 

interpretations of their functions in terms of geometric meanings of those changes. This analysis 

provided not only a comprehensive list of particular features of DGE used in the task enactment 

but also specific functions of the features to better understand how the students used those 

features. For example, a student may drag (a feature) a vertex of a triangle in the spherical model 

to see if one can move around the vertex freely on the sphere (a function of the drag feature). 

Also, the student may drag the vertex specifically toward the equator of the sphere to examine 

how it affects the angle sum of the triangle (another function of the drag feature). 

RQ2. What role did students’ DGE moves play in their mathematical reasoning? 

a. What mathematical reasoning did students engage in when enacting the tasks? 

b. How were students’ DGE moves involved in their mathematical reasoning? 

The second research question focuses on understanding student reasoning and its 

relationship with the students moves in the task enactment. The first subquestion is to identify 

inferences about mathematical objects that students made in response to the problems given in 

the tasks. Based on the identified student reasoning, the second subquestion focuses on how 

students’ DGE moves were included in conclusions or warrants thereof in their inferences. The 

analysis of students’ responses in the written/verbal forms will produce description of student 

reasoning involved in the task enactment, for instance, explaining why a given proof does not 

work in a particular geometry or defining a mathematical object. Then, it will be followed by the 

analysis of bidirectional relationship between the student reasoning and the student moves in 

DGE. This analysis will reveal how the students’ moves supported them to involve in particular 
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reasoning as well as how the students’ reasoning affects their ways of making moves in the task 

enactment. 

RQ3. What role did students’ DGE moves play in their axiomatic reasoning? 

a. What axiomatic reasoning did students engage in? 

b. How were students’ DGE moves involved in their axiomatic reasoning? 

The third research question focuses on identifying types of the student engagements with 

axiomatic reasoning in relation to the student moves in DGE. The subquestions for RQ3 are 

based on the previous analysis for RQ2, which will produce types of students’ mathematical 

reasoning and their DGE moves involved. The focus of RQ3 will be on identifying axiomatic 

aspects of student reasoning in terms of how their inferences entail axioms and models of given 

geometric systems. Those aspects may include distinguishing axioms from theorems, comparing 

different geometric systems, and generalizing their findings beyond particular models or 

systems. In addition, I will also identify particular student moves in DGE that relate such student 

engagement with axiomatic reasoning. 

Method 

Background 

In Spring 2016, I participated in an axiomatic geometry course at a large public 

university as a course facilitator and teaching assistant. In this course, I designed and 

implemented an instructional sequence of DGE-supported tasks for in-class activities. I collected 

student work from group discussions using a screencast software where the groups recorded their 

interactions with GEX while enacting the tasks. The analysis of the students’ uses of GEX during 

the task enactment showed how different the groups used DGE features and how the differences 

were associated with the task enactment. Groups who relatively spent more time on dragging 
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activities in their exploration than other groups were successful in attending to more various 

components of the given constructions and exhaustive variations thereof. Dragging activities 

provided students with more active interactions with dynamic constructions in GEX than other 

types of actions. In addition, those successful groups were strategic in using the drag feature of 

GEX in collecting empirical evidence and creating conjectures. They frequently shifted between 

wandering dragging and guided dragging as they collected data from wandering dragging for 

creating conjectures and verified the conjectures in guided dragging. The results from this 

analysis implied that task designers and instructors need to attend students’ strategic uses of the 

drag feature in designing and enacting DGE tasks. In addition, the analytic framework to 

investigate students’ uses of GEX informed the research design of my dissertation study, 

especially for the data collection and analysis (See more in Bae, 2017). 

In Spring 2017, when I taught the same course as an instructor-of-record, the course 

design and the task sequence were revised by reflecting on prior teaching experience in Spring 

2016 and the implications from the analysis (Bae, 2017). In the revised curriculum, students 

were introduced the basic skills of GEX in the first two weeks with an emphasis on the concepts 

of robust construction and drag test on dimensions of variations (Leung, 2008). Also, I adopted a 

textbook published by Michael Hvidsten, who also had developed GEX that have been used in 

this course. By adopting this textbook for the course, I revised the curriculum to integrate the 

textbook with the existing lecture notes and the task sequence. Although there was no research 

activity conducted in this class, I found the revised tasks resulted an improvement in 

communicating with students about the productive uses of drag features and their performance in 

DGE activities submitted for their course evaluation. The course design was used for the course 

in Spring 2018 with an emphasis on the study of hyperbolic and elliptical geometry after 
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completing the Euclidean system in the middle of the semester where the task sequence of this 

study was enacted.  

Context 

This study took place in an axiomatic geometry course offered at a large public university 

in Spring 2018. The goal of the course is to understand foundations of geometry through the 

axiomatic approach to develop a system of Euclidean geometry by investigating axioms, 

theorems, and geometric concepts that resulted throughout this process of developing geometry. 

In this course, Geometry Explorer (GEX), a DGE developed by Michael Hvidsten, served as a 

key technological material involved in the instructional sequence to allow students to explore the 

models of different geometries. The course material includes the textbook, also written by 

Michael Hvidsten, lecture notes, and the DGE-supported tasks for in-class activities including 

the task sequence of this study. The tentative weekly schedule of the course including the topics 

and relevant materials is in Appendix A. 

The course was taught in a class of 22 students that meet for three 50-minute class 

meetings on every Monday, Wednesday, and Friday during the 15 weeks of the semester. In 

Week 1-2, the students learned the basic concepts and terms related to axiomatic systems and 

models in the context of Euclidean geometry.  Also, they were given a set of homework 

assignments in which they learn the basic features of GEX and first use this tool to solve 

geometric construction problems.  The concepts of robust construction and drag test of 

dimensions of variations were introduced in the first two weeks. In Week 3-10, the students were 

guided to develop an axiomatic system of Euclidean geometry and to explore Euclidean and non-

Euclidean models. In this period of the course inspired by the guided reinvention and 

mathematization (Freudenthal, 1991), students began with introducing a set of undefined terms, 
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primitive postulates and definitions for incidence geometry, and develop the system by accepting 

additional postulates and definitions and by investigating consequent theorems. As the 

development proceeds, the language and concepts in the system gets richer in describing 

Euclidean geometry. In Week 11-15, students completed the development of axiomatic system 

for Euclidean geometry and shift to investigate hyperbolic, elliptic, and transformational 

geometry. The independence of parallel postulates was discussed in Week 11 that led to 

investigate differences between Euclidean and non-Euclidean geometry. The task sequence of 

this study was enacted in Week 11-12. See Chapter 2 of this dissertation for further details about 

the task sequence.   

Participants 

The research participants were junior and senior college students who enrolled the course 

and volunteered for the study. Among the 22 enrolled students of the course, 20 students agreed 

to participate in this study. This study was reviewed by the Institutional Review Board, and the 

participants were informed of how their rights are protected with respect to the participation in 

this study. The participants’ majors varied across mathematics majors, secondary mathematics 

education majors, and other majors (e.g., physics, chemistry, economics) with mathematics 

minor. Secondary mathematics education students were required to take either this course or 

Higher Geometry which is an advanced analytic Euclidean geometry in junior level. For math 

minor students, this course accounted for one elective senior level (400-level) mathematics 

course requirement. The prerequisite for the course is MTH 299 Transitions, an introductory 

proof course, or compatible course or qualification so that the students were expected to have 

experience with reading and writing formal mathematical proofs. Besides the prerequisite course, 
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the course survey showed that all the participants took more than one proof-based advanced 

courses such as abstract algebra or real analysis. 

 

Table 3.1. Groups of participating students during the task enactment 

Group Student Gender Nationality Stance Major(s) Minor(s) 
1 Bing Male Int’l Junior Physics  
 Eric Male Domestic Senior MathEd  
 Jeremy Male Domestic Sophomore MathEd & PhysicsEd  
2 Philipp Male Domestic Senior Math  
 Mike Male Domestic Senior Computational math  
 NP1 N/A N/A N/A N/A N/A 
3 Deshi Male Int’l Senior Physics Math 
 Lynn Female Domestic Senior MathEd  
 Yao Male Int’l Senior Computational math  
 NP2 N/A N/A N/A N/A N/A 
4 Naomi Female Domestic Senior Economics Math 
 Emily Female Domestic Senior Biotech & MathEd  
 Ling Female Int’l Junior Math  
 Odessa Female Domestic Senior MathEd Chemistry 

5 Kim Female Domestic Junior MathEd Spanish & 
TESOL 

 Yin Female Int’l Senior MathEd  
 Avery Male Domestic Junior MathEd  
 Yong Male Int’l Senior Math  
6 Tina Female Domestic Grad MathEd  
 Ben Male Domestic Senior Economics Math 
 Deming Male Int’l Senior Math  
 Jing Male Int’l Senior Physics  

     

Groups. Students participated in group work with three or four peers in each group. 

Table 3.1 shows the groups that worked together during the task sequence of this study. Those 

groups had worked together in class for five weeks prior to this task enactment. Note that NP1 in 

Group 2 and NP2 in Group 3 did not agree to participate in this study so any student work 

submitted from a pair or a group including those non-participating students were not used for the 
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research purpose. During the task sequence enactment in class, students were grouped into pairs 

or triples with their peers from the existing groups. Each group was told to break into pairs, if 

possible, and to share a laptop when they enacted the DGE tasks with recording their 

discussions. 

Data Collection 

In this study, the primary source of data was student work collected from the four days of 

class in Week 11-12 where students enacted the task sequence of this study. The student work 

included technological, verbal, visual, and written products corresponding to the GEX tasks in 

class that informed of students’ uses of GEX in the tasks and their reasoning (See Table 3.2). 

 

Table 3.2. Task Sequence and student work collected in Week 11-12 

Day Task Collected student work 
1 Task 1: Construction and verification of Klein model Screencast presentation 
2 Task 1: Construction and verification of Klein model 

(cont’d) 
Screencast presentation, 
GEX file, summary note 

3 Task 2: Analysis of Legendre’s attempted proof Screencast presentation, 
GEX file, summary note 

4 Task 3: Exploration of limiting parallel lines in Klein model Screencast presentation, 
summary note 

 

Screencast presentation. In this course, students brought their laptops with GEX and 

screencast software installed into the classroom. As a part of class participation, they were 

frequently asked to record their verbal discussions in groups with their computer screens that 

show their interactions with diagrams in GEX. After the class, the students would submit their 

work including summary notes, GEX constructions, and the screencast presentation from the 

discussion. In addition, students were asked to create screencast presentation for their homework 

assignment, take-home exam, and group exam at the final. In the presentations, student(s) would 
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show how they constructed a particular diagram or how they manipulated existing construction 

to answer non-trivial questions in those assignments. 

Screencast presentation provided empirical data to understand relationships between 

student reasoning and their uses of GEX while enacting the task sequence of this study. This 

audiovisual material contains video recording with their uses of GEX and audio recordings of 

students’ verbal explanation or group discussion. Those two recordings captured simultaneously 

during the task enactments inform the students’ verbalized reasoning in the discussion that are 

affected by their observations and manipulations of diagrams in GEX. The screencast 

presentations collected in the class of this study provided with empirical evidences of how 

students enacted the task sequence in terms of their uses of GEX that influenced their reasoning. 

Student work collected before and after those two focal weeks were also used in the data 

analysis to support interpretations of the primary data. For example, a particular pattern of a 

student’s use of DGEs or any significant changes identified in the primary data can be evident by 

referring the students’ prior work earlier in the course. In this regard, the student work that are 

collected before and after the focal weeks were used for the research purpose but limited to 

support the analysis of the primary data. 

Data analysis 

The analysis of this study was to address the three research questions investigating 

students uses of GEX and their engagements in mathematical reasoning and axiomatic reasoning 

during the task enactment. The stages of the analysis consist of preparation of the data, 

preliminary exploratory analysis, analysis of DGE features and DGE moves, and analysis of 

mathematical reasoning and axiomatic reasoning.  
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Preparation of the data. In the initial preparation of the data for analysis, I created a 

table to organize the student work collected from the task sequence of this study as well as 

another student work submitted for their course evaluation. The table includes the weekly 

schedule of the course with main topics discussed in class and student work collected each week 

for their course evaluations including in-class activities, homework, and exams with specific 

types of the student products such as written responses, screencast presentations, GEX files. This 

table lays out the participants’ course work submitted before and after the enactment of the task 

sequence, which informs anticipated student knowledge and reference to participants’ other work 

that are related to the student work from the task sequence of this study. After developing the 

table, I transcribed the students’ verbal explanation and discussions recorded in the screencast 

presentations.    

Preliminary analysis. At this early stage of the analysis after the preparation of the data, 

I watched screencast presentation with the transcripts while creating summaries of what each 

group presented in the recording in response to the given tasks. The summaries include 

descriptions of what they did on GEX screens and said to answer the questions given in the tasks. 

This brief summary provides an overview of how students interpreted the tasks and produced 

their work resulted from their interpretation of the tasks. In addition, the preliminary analysis 

includes examinations of student-generated GEX construction saved in gex files and submitted 

with the screencast presentations. 

Analysis of DGE features and DGE moves. The analysis of the students’ uses of GEX 

in the screencast presentations for Task 1-3 of the sequence was led by the analytic framework 

(See Appendix C) developed in my prior study (Bae, 2017). First, I analyzed the screencast 

presentations to identify all the actions arising in the GEX screen. I created DGE feature codes 
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which indicate visually identifiable changes on the screen resulted by students manipulating the 

software. The initial purpose of DGE feature coding is to visually illustrate the students’ use of 

different features of GEX. To diminish the subjectivity of interpretation, I generated those DGE 

feature codes using verbs to refer physical motions of cursors and figures manipulated by the 

students. For instance, DGE feature codes included select, move, drag, label, hide, measure 

visual objects on the screen such as the cursor, diagrams, label, measurements. When a DGE 

feature was identified from the video recording, I added written description of the feature code 

application to the segmented video and transcript associated with the use of DGE feature. This 

descriptive analysis of the video screen of GEX produced written transcripts integrating both 

visually observable uses of GEX and verbal expressions. At this stage of the analysis, I created a 

table consisting of columns for timestamp, snapshot, verbal transcripts and DGE feature codes 

where the associated components are place in the same row (See Appendix D). 

In the next step of the analysis, I identified DGE moves consisting of one or more DGE 

features being used across the video segments where I made an inference of students’ purposes 

of using those features in the global context of the task. Whereas the analysis of DGE features 

provide objective description of all the instances where students acted on the software, this 

analysis of DGE moves provides an inferential description of the students’ purposeful use of 

technology within the global purpose of enacting the tasks. I intended to create DGE move codes 

using words that are self-explanatory while those codes are less explicit that DGE features in the 

sense that one may not know what the purpose of certain changes on the screen made by 

students. So, identifying a DGE move is informed by the prior analysis of DGE features, verbal 

transcripts, and the summary of the screencast presentation produced in the preliminary analysis. 

For instance, students would use a DGE feature, “select a diagram” or “drag a diagram” to point 



 56 

at a particular diagram on the screen that represents a figure the student wants to explain. In this 

case, a DGE move, “point at a diagram” would be identified from this instance with the context 

in which the student wanted to refer to the diagram in her explanation.  

To analyze DGE moves involving drag feature, I used the framework of dragging 

activities with different purposes adopted from the existing studies (Arzarello et al., 2002; 

Leung, 2008) and developed in my prior study. The dragging strategies in this framework 

include wandering dragging, guided dragging, dragging by accident. Note that these codes are 

not to exclusively explain any cases of drag features used on the screen. Wandering dragging 

means to drag around all the varying components of the constructions without strategic 

exploration, but survey overall changes of the construction or measurement. Guided dragging 

means when diagrams or measurements guide students to determine specific pathways to which 

they drag a diagram or restrict their dragging. Dragging by accident means when students 

attempted to drag a non-draggable diagram or drag a diagram in a way to which it cannot be 

dragged. This in-depth analysis on the students’ different dragging strategies and shifts between 

them in a segment allowed me to interpret how drag feature affected students’ reasoning in the 

enactment of the tasks. 

Analysis of mathematics reasoning and axiomatic reasoning. Whereas the analysis of 

DGE features and moves were aimed to capture and codify all instances involving student 

(purposeful) uses of GEX, the analysis of reasoning is far from producing a thorough list of all 

the instances where students would reason about mathematical objects or axiomatic systems and 

determine if and how often DGE affected their reasoning. Rather the goal is to characterize case 

themes from the actual student work in class that are meaningful to me for understanding 

affordances and limitations of using DGEs when students enacting the task sequence. Given a 
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lack of empirical studies on student reasoning in axiomatic geometry using DGEs, it is to 

understand student reasoning in a particular context of this study from the empirical evidence 

collected from the actual classroom.  

Given the definition of mathematical reasoning in this study, the analysis started from 

identifying focal mathematical objects to which the students attended in the task enactment. The 

initial list of mathematical objects included, but not limited to, the focal concepts addressed in 

the intended mathematical activities instructed in the task ranging from particular geometric 

figures (e.g., lines, angles, circles) to more broad concepts including axioms, geometric models, 

and axiomatic systems. In particular, I intended to look for mathematical objects that were 

involved in the students’ purposeful inferences in responses to the given tasks. Then, I created 

case themes (Creswell & Poth, 2017) that represent issues or specific situations in each case 

where the cases in this analysis mean the mathematical (axiomatic) reasoning on particular 

mathematical (meta-mathematical) objects addressed in the task-as-designed. The case themes 

are to describe and compare how students engaged in mathematical reasoning on those objects 

that were evidenced in their verbal explanation and that were associated with DGE moves from 

the codified segments of audiovisual data from the prior stages of the analysis. It is followed by 

the analysis of axiomatic reasoning in which I address specific focus on students’ purposeful 

inference about meta-mathematical objects that are emphasized in axiomatic perspective of 

mathematics such as axioms, models, and systems of axioms.  

Findings: Analysis of Enacted Task Sequence 

In this section, I report the enacted task sequence of this study that consists of various 

student work collected from the class including screencast recordings, GEX construction files, 

worksheets and summary notes. The task sequence was enacted by students in class during four 
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50-min class meetings in Week 11 – 12 that were a part of the regular class meetings for the 15-

week course in Spring 2018. The class spent one or two days for each task that were mostly 

devoted to the student activities except short lectures to review prior classes, introduce and 

summarize the task of the day.  

In the following reports for each task, I provide the task design, the description of the 

class of the day when the task was enacted, and the analysis of their uses of DGEs and 

engagements in mathematical reasoning. First, I provide the detailed information about the task 

in terms of the task-as-designed that is focused on the intended mathematical activities and the 

ways in which students are guided to enact the task in class. This information also includes 

anticipated student knowledge and skills from the prior class. Second, I describe how the class 

was implemented and how students participated in the class. In this description, I took an 

instructor perspective on the overall class to provide readers with information to know what 

actually happened in the classroom. Lastly, I present the enacted task from student groups in 

class with specific attentions to students’ uses of DGE and their engagement in mathematical 

reasoning during the task enactment. After reporting the analyses of student uses of DGE and 

their engagement’ in mathematical reasoning, I present characteristics of students’ engagement 

in axiomatic reasoning that identified throughout the task sequence. This provides characteristics 

of students’ enacted tasks with respect to the relationship between their uses of DGE and 

engagement in axiomatic reasoning. 

Task 1: Construction and Verification of Klein Model  

Task design. The objective of this task is to establish a mathematical foundation of Klein 

model for hyperbolic geometry, especially focused on the angle measurement function. The first 

part of this task is to measure a given angle in Klein model using Euclidean constructions and 
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measurements with respect to how the angle measurement function is interpreted in this model. 

In this part, students are given a GEX construction for Klein model in Euclidean plane. This 

construction contains a unit disk in Euclidean plane where two given lines 𝐴𝐵'⃖'''⃗  and 𝐵𝐶'⃖'''⃗  meet at a 

point 𝐵 inside the disk. Those lines with labeled points define an angle ∠𝐴𝐵𝐶 inside the disk that 

is to be measured in this task by using Euclidean constructions of orthogonal circles and tangent 

lines at their intersection. The Euclidean measurement of the angle between the tangent lines 

determines the Klein angle measurement of the given angle ∠𝐴𝐵𝐶 (See Figure 3.2).  

 

 

Figure 3.2. Measurement of the angle ∠𝐴𝐵𝐶 in Klein model using Euclidean constructions of the 
corresponding orthogonal circles and tangent lines  

 

In the second part of the task, students verify the soundness of this particular 

interpretation of the function in Klein model by examining the constructed function in GEX 

satisfies all the five postulates containing angle measurements (See Figure 3.3). To verify 

Postulate 11, for instance, students may explore the range of the measurement function while 

they drag the angle ∠𝐴𝐵𝐶. Student are asked to submit a GEX file of their construction and a 

screencast recording to present their verification of those postulates. 
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Postulate 10: There exists a function 𝑚 from 𝒜 to ℝ where 𝒜 is the set of all angles and ℝ is 

the set of real numbers. 
Postulate 11: For every angle in 𝒜, the measurement of the angle is between 0 and 180. 
Postulate 12: (Angle-Construction Postulate) Let 𝐴𝐵'''''⃗  be a ray on the edge of a half-plane 𝐻. 

For every number 𝑟 between 0 and 180, there is exactly one ray 𝐴𝑃'''''⃗ , with a point 
𝑃 in 𝐻, such that 𝑚(∠𝑃𝐴𝐵) is 𝑟. 

Postulate 13: (Angle-Addition Postulate) If a point 𝐷 is in the interior of an angle ∠𝐵𝐴𝐶, then 
𝑚(∠𝐵𝐴𝐶) is the sum of 𝑚(∠𝐵𝐴𝐷) and 𝑚(∠𝐷𝐴𝐶). 

Postulate 14: (Supplement Postulate) If two angles form a linear pair, then they are 
supplementary. 

 
Figure 3.3. Angle postulates that include the definition or the properties of the angle 

measurement function in the neutral geometry system (Postulate 10-14) 
 

While enacting the task, students are expected to reason about each of the angle 

postulates that are interpreted in the context of Klein model and to make sense of draggable 

diagrams of Euclidean constructions in GEX in terms of representations of arbitrary figures in 

hyperbolic geometry. To support student engagement in the reasoning, GEX allows students to 

construct a draggable diagram of an arbitrary angle so that they can examine how the 

measurement and the corresponding constructions of orthogonal circles and tangent lines co-vary 

as they drag the angle. In this regard, students need knowledge the concepts of axiomatic 

systems and models, especially, understanding of what it means to be a model of a system. In 

particular, students need to understand how undefined terms of the system are interpreted in 

Klein model. Basic skills of using GEX to create and explore robust constructions are required to 

construct orthogonal circles and tangent lines in a given Euclidean plane and use it to verify the 

postulates. 

Description of the class. The class began with the review of the previous class about the 

Saccheri-Legendre theorem in the neutral geometry that says the sum of the measure of the three 

angles in any triangle is less than or equal to 180 degrees. This was the last theorem that the class 
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discussed and proved within the neutral geometry system without accepting any particular 

parallel postulates. Students also discussed consequences including properties of parallel lines 

that are consequences of the system for the last two weeks. The topic of the day started with 

introducing Euclidean and hyperbolic parallel postulates and showing the two possible 

geometries featured by those postulates of which the angle sum of an arbitrary triangle is always 

exactly equal to 180 degrees in one and strictly less than 180 degrees in the other. Regarding 

those parallel postulates, two overarching goals of the class and the task sequence for the next 

two weeks were presented in class: (a) independence of the parallel postulates, and (b) 

consequences of the parallel postulates. Before starting the task, students were introduced Klein 

model of hyperbolic geometry and its construction in Euclidean plane including the way of 

interpreting points, lines, planes, distance, and angles in this model. Students started the task 

following the instructions presented on the projection screen in the classroom (See Figure 3.4). 

 

• Open the given GEX template (Klein.gex) including the unit 
disk and two lines 𝐴𝐵'⃖'''⃗  and 𝐵𝐶'⃖'''⃗ . 

• Create orthogonal circles for two lines 𝐴𝐵'⃖'''⃗  and 𝐵𝐶'⃖'''⃗  and the angle 
consisting of the two tangent lines of the chords, which define 
the Klein angle measurement of ∠𝐴𝐵𝐶. 

• Using this GEX construction of Klein model, justify that this 
model satisfies Postulate 10-13 in our system. 

• Create and submit screencast video of your group discussion 
including your justification.  

 
Figure 3.4. Instructions of the Task 1 

 

First, students downloaded the GEX construction file that includes a unit disk in 

Euclidean plane with two lines 𝐴𝐵'⃖'''⃗  and 𝐵𝐶'⃖'''⃗  intersecting at a point 𝐵 inside the disk. Students first 

attempted to create orthogonal circles of the given lines 𝐴𝐵'⃖'''⃗  and 𝐵𝐶'⃖'''⃗ , then tangent lines of the 
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circles at their intersection inside the disk. Since most groups had difficulties in the basic 

constructions of the orthogonal circles, I went over the procedure of those constructions in the 

whole-class for the first five minutes during the task enactment. All groups created the 

construction of the Klein angle measurement and were encouraged to verify Postulate 10 and 13 

first, then the remaining postulates as time permits. In the last five minutes of the class, students 

were told to wrap up their activities and create a screencast recording. Except one group who 

completed all the postulates, most groups were still revising their constructions or verifying 

either Postulate 10 or 13. Groups submitted their screencast recording and GEX files to the class 

webpage as much as they completed in class. In the following day (Day 2), groups continued to 

work on the task and were asked to verify any of the remaining postulates. At the end, students 

submitted their screencast recordings, GEX construction file, and a written answer to the 

following reflective question asking what they think of this GEX construction activity helpful in 

understanding the Klein model and our axiomatic systems. 

Students’ uses of DGEs. The participating groups used a variety of DGE features in 

their enactment of Task 1 for different purposes as described in DGE moves associated with one 

or more of those features. As described in Method, DGE features mean students’ conscious uses 

of particular features in GEX that resulted changes on the screen in the recording. Based on those 

DGE features with transcribed students’ verbal explanation, DGE moves were identified and 

associated with one or more DGE features to interpret students’ purposes of using the DGE 

features. Table 3.3 shows 18 DGE features and 16 DGE moves are identified from the screencast 

presentations created by the participating student groups (see the Appendix E for all the DGE 

features and DGE moves identified from the entire student data in this study). 
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Table 3.3. DGE features and DGE moves identified in the enactment of Task 1 

DGE features Number of 
occurrences 

DGE moves Number of 
occurrences 

Move the cursor over diagrams 132 Point at a diagram 106 
Drag a diagram 84 Point at a measurement 34 
Select a diagram 35 Wandering dragging 33 
Select a measurement 12 Guided dragging 25 
Drag a measurement 7 Label a diagram 8 
Create a diagram 5 Fit diagrams to the screen 5 
De-select diagrams 4 Create a diagram 4 
Label a diagram 3 Point at a computation 4 
Measure a diagram 3 Dragging by accident 3 
Hide a diagram 2 Measure a diagram 3 
Rescale the screen 2 Place a diagram 3 
Scroll the screen 2 Place a measurement 1 
Un-hide a diagram 2 Undo last steps 1 
Drag a label 1   
Undo 1   
Total 295  231 

 

In the screencast presentations created in the enacted Task 1, there were 295 DGE 

features and 231 DGE moves identified from 25 minutes 18 seconds of the recordings in total. 

There were 29 DGE features identified in the presentation that didn’t have enough evidence to 

infer a purpose, so they were not associated with DGE moves. Also, some DGE moves were 

associated with more than one consecutive instances of DGE features. So, the numbers of DGE 

moves are less than or equal to the number of DGE features identified in each presentation 

because of those DGE features associated with no DGE moves and multiple DGE features 

associated with a single DGE move. For instance, groups used the drag feature in GEX for 

different purposes that include place a diagram in a particular spot on the screen, pointing at a 

diagram, surveying overall changes in diagrams and measurements, showing particular invariants 

in varying diagrams, searching for a particular diagram or measurement. On the other hand, 

students used different DGE features for the same purpose, for instance, they pointed at a 
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diagram in their presentations by moving the cursor on the diagram, selecting or dragging the 

diagram. 

The frequent DGE features include “move the cursor over diagrams”, “drag a diagram”, 

“select a diagram”, “select a measurement”. The frequent DGE moves include “point at a 

diagram”, “point at a measurement”, “wandering dragging”, “guided dragging”. In most cases 

when students moved the cursor over diagrams or select diagrams and measurements, those DGE 

features were associated with the frequent DGE moves for pointing at a particular component of 

the construction (e.g., diagrams, measurements). Sometimes, students dragged diagrams to point 

at those diagrams, but most cases of the feature were associated with dragging moves (e.g., 

wandering dragging, guided dragging). 

Given the number of pointing moves (point at a diagram, point at a measurement), this 

analysis indicates that the majority of students’ uses of GEX in Task 1 were to refer to particular 

diagrams or measurements thereof for their verbal explanation to verify the postulates in Klein 

model. Students pointed at a diagram or a measurement of a diagram by moving the cursor over 

them or by dragging and selecting (highlighting) them.  

Snapshot (00:24) Group Avery and Kim 

 

DGE move Point at a measurement 
DGE 
feature(s) 

Move the cursor over diagrams 

Transcript (00:15-00:30) 
  
Avery: (00:15) You can see that right here that goes 

from this angle TPU to  
Avery: (00:24) a real number. So, postulate 10 holds 

up that function m does exist. 
 

Figure 3.5. Example of pointing at a measurement by moving the cursor over diagrams 
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For instance, Avery and Kim pointed at the real-value 81.69 of 𝑚∠𝑇𝑃𝑈 by moving the 

cursor over that on the screen when they argued for Postulate 10 in their presentation (See Figure 

3.5). It is due to the nature of the task where the students were expected to verify their Klein 

models satisfy the angle postulates given that they were told Klein model satisfies the postulates 

of hyperbolic geometry. Also, the presentation only captured the verification part of the task 

enactment after given some time to construct their models before start recording. This 

confirmatory nature of the task, at least for the verification part, affected the students’ task 

enactments in which students didn’t have critical view of the model enough for a close 

examination.  

Despite the overall description of students’ uses of GEX responding to Task 1 with a 

confirmatory nature, student groups showed differences in their interpretation of the task and the 

ways to respond by presenting their work using GEX (See Table 3.4).  

 

Table 3.4. Summary of DGE features and DGE moves identified in Task 1 (Day 1 & 2) 

Day Pairs or Triples Postulates Duration  
(mm:ss) 

Number of  
DGE features 

Number of  
DGE moves 

1 Avery, Kim 10, 13 0:55 9 9 
 Bing, Eric, Jeremy 10, 11, 12, 13 3:56 62 55 
 Ben, Deming, Tina 10, 13 0:38 4 4 
 Emily, Ling 10, 13 1:14 7 7 
 Naomi, Odessa 10, 13 1:08 16 14 
 Yin, Yong 10, 11, 13 2:40 42 17 
2 Avery, Kim 11, 12, 14 1:15 14 9 
 Bing, Eric, Jeremy 14 1:00 14 9 
 Ben, Tina 14 0:39 5 3 
 Deming, Jing 14 0:38 14 13 
 Deshi, Yao 14 1:15 13 9 
 Emily, Ling 11, 12, 14 1:58 8 7 
 Naomi, Odessa 11, 12, 14 1:53 15 14 
 Yin, Yong 11, 12, 14 5:30 72 61 
Total   25:18 295 231 
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In particular, some groups presented Table 3.4 shows a summary of the data and the 

analysis in terms of the length of screencast presentations, postulates addressed in each 

presentation on Day 1 and 2, and the numbers of DGE features and DGE moves identified in 

each group. In the six and eight presentations submitted on each Day 1 and Day 2, the 

participating groups showed differences in the duration of their presentations. In those recordings 

with different durations, the numbers of DGE features and DGE moves were approximately 

proportional to the length of duration in each group’s recording. This indicates that all groups 

used DGE features and made DGE moves at similar paces in the sense that there was no group 

who used GEX significantly more often in a shorter presentation or rarely used in a longer 

presentation. 

The durations of the screencast presentations were different across the groups due to their 

progress on the task enactment and the nature of their interpretations of the task and their 

responses. Groups who verified more postulates on that day often created longer presentations 

such as Bing, Eric, and Jeremy who produced the longest presentation (3’56”) on Day 1 to verify 

Postulate 10 to 13. In their presentation (5’30”) on Day 2, Yin and Yong revisited some of the 

postulates verified on Day 1 again so more postulates were presented in this recording. The 

durations of recordings also depended on what DGE moves students made in response to their 

interpretations of the tasks. For instance, Bing, Eric, and Jeremy was the only group who used 

drag feature for guided dragging on Day 1 to show specifically when the range of the angle 

measurement is between 0 and 180. In addition, Yin and Yong was the only group who spent 

significantly more time in their presentations on constructing, labeling, measuring, and placing 

diagrams whereas other groups with shorter length of recordings often presented with completed 

constructions and used GEX for reference of their verbal responses to the task. Comparing to 
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other groups who seemed to present their work without delay or mistake in manipulating GEX, 

this difference indicates that students may interpret differently to what extent they have to show 

a perfect work in their presentation. 

Students’ engagement in mathematical reasoning on Klein angle measurement 

function. In Task 1, participating groups engaged in mathematical reasoning about geometric 

objects as they interact with GEX constructions for verifying the angle postulates. One of the 

primary mathematical objects they reasoned about in this task is the Klein angle measurement 

function that is interpreted in a particular way of using Euclidean construction. This function is 

based on the 1-1 correspondence between a given angle in Klein model, Euclidean constructions 

of corresponding orthogonal circles and tangent lines, and Euclidean angle measurement of the 

angle between the tangent lines. It is crucial in verifying Postulate 10 thru 14 that students 

interact with the GEX construction of those diagram dependent each other while reasoning about 

the existence (or well-definedness), range, and injectivity of the Klein angle measurement 

function.  

In this section, I present how the participating groups differently engaged in 

mathematical reasoning about the Klein angle measurement function with their emphasis on the 

following properties, (a) existence, (b) range, (c) injectivity and surjectivity. The case of student 

reasoning in Task 1 is their inference about one or more of the aforementioned properties of 

Klein angle measurement function. Students engagement with this case of student reasoning is 

elaborated with case themes that emerged in the analysis (See Table 3.5). I discuss roles of DGEs 

that were evidenced in the previous analysis of DGE features and DGE moves.  
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Table 3.5. Case themes of students’ engagement in mathematical reasoning about Klein angle 
measurement function in Task 1 

Case themes 
Theme 1.1. Students used the drag feature used when successfully matching input angles and 
output measurements of the Klein angle measurement function. 
• Some students demonstrated dynamic changes in the output measurement by dragging the 

input angle. They were successful in connecting the input and output of the function as 
described in Postulate 10 and used the drag feature to show the dependent relationships 
between axillary diagrams including orthogonal circles and tangent lines. 

• Other students presented a static diagram with a measurement without using drag feature in 
the recordings. They mismatched the input angles and output measurements of the Klein 
angle measurement function or didn’t have the diagrams dependent to each other.  

Theme 1.2. Students adapted their responses to dynamic changes of the diagram.  
• Some students presented overall changes in the measurement of an angle whereas other 

students additionally examined when the measurements are close to the end points of the 
range including 0 and 180.  

• Some students showed adaptive responses to dynamic changes of diagrams in the 
recording. They modified DGE moves and verbal explanation according to their 
interpretations of those changes in diagrams (e.g., disregarding, modifying their 
constructions, modifying their moves, attributing to technological limitation of the 
software, explaining technical feature of the software. 

Theme 1.3. Students used different features to demonstrate the 1-1 correspondence between 
input angles and output measurements.  
• Some students referred to the unique diagram of angle measurement functions as they 

verify the injectivity and surjectivity of the function.  
• Some students demonstrated continuous covariation between the input angles and output 

measurements to verify the surjectivity 
 

Theme 1.1. Students used the drag feature used when successfully matching input angles 

and output measurements of the Klein angle measurement function. In their verification of 

Postulate 10, most students presented their constructions including the given angle ∠𝐴𝐵𝐶 and 

corresponding orthogonal circles and tangent lines with the angle between tangent lines ∠𝐴′𝐵′𝐶′. 

Note that students used different labels for the points in their constructions. Postulate 10 states 

the existence of the Klein angle measurement function from a specific domain, the set of all 

angles, to the codomain, the set of real numbers. In most cases of presentations, verifying the 

existence of the function was done by pointing at or by dragging diagrams of angles and 
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measurements angles included in their constructions of Klein model although those input and 

output are not necessarily matched as described in the postulate. Except the two groups (Avery, 

Kim; Naomi, Odessa), four of the participating groups on Day 1 showed that their constructions 

kept working successfully to map angles to real numbers while changing the angles (wandering 

dragging). In the rest of the verification, groups specified the domain and codomain of the 

function by referring to different angles and measurements (See Table 3.6). 

  

Table 3.6. Different diagrams and measurements used to specify the domain and codomain of the 
Klein angle measurement function in Postulate 10 

Diagrams and measurements used for verifying Postulate 10 Groups 

Klein angle and Euclidean measurement of tangent angles 
(e.g., ∠𝐴𝐵𝐶 and 𝑚∠𝑈𝑄𝑉 in Figure 3.7)  	

Bing, Eric, Jeremy 
Deming, Ben, Tina 
Emily, Ling 
Yin, Yong 

Tangent angles and Euclidean measurement of tangent angles 
(e.g., ∠𝑇𝑃𝑈 and 𝑚∠𝑇𝑃𝑈 in Figure 3.6)   

Avery, Kim 
Naomi, Odessa 

  

Interestingly, two groups who didn’t use the drag feature described the Klein angle 

measurement function mapping tangent angles to its Euclidean measurements.  

 

Snapshot (00:19) Group Avery, Kim 

 

DGE move Point at a diagram 
DGE feature(s) Move the cursor over diagrams 
Transcript (00:15-00:30) 
  
Avery: (00:15) You can see that right here that 

goes from this angle  
Avery: (00:19) T 
Avery: (00:20) PU to a real number. So, 

postulate 10 holds up that function m does 
exist. 

 
Figure 3.6. Avery and Kim's verification of Postulate 10 
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For instance, Avery and Kim referred to ∠𝑇𝑃𝑈 in their construction, the angles between 

tangent lines corresponding to the given lines 𝐴𝐵;;;; and 𝐵𝐶;;;; and its Euclidean measurement (Figure 

3.6). In their presentation, Avery followed each vertex of the ∠𝑇𝑃𝑈 by pointing at the diagram 

using the cursor while explaining that the construction shows that 𝑚 “goes from” an angle ∠𝑇𝑃𝑈 

“to a real number”, 81.69 degrees. The function described in this verification maps an angle to 

its Euclidean measurement 𝑚∠𝑇𝑃𝑈 that is essentially identical to Euclidean measurement except 

the particular angle ∠𝑇𝑃𝑈 used instead of an arbitrary angle on Euclidean plane. Students did 

not engage with the dependent relationships between the given angle ∠𝐴𝐵𝐶, the orthogonal 

circles, and tangent lines that they previously created and already had on their screen. If he 

attempted to drag points 𝑇 or 𝑈 to show how 𝑚∠𝑇𝑃𝑈 changes corresponding to the dragging 

during the presentation or even before, he could have noticed that those points are fixed on the 

tangent lines and that he could not change the angle and its measurement at all. This unexpected 

response from GEX construction encouraged the students to examine what caused that response 

and provide a chance to revisit the postulate, construction, or what they were explaining in the 

presentation. 

On the other hand, the other four groups explained the Klein angle measurement function 

that maps Klein angle, ∠𝐴𝐵𝐶, to Euclidean measurement of the corresponding tangent angles, 

(e.g., ∠𝑈𝑄𝑉 in Yin and Yong’s construction in Figure 3.7 below). The four groups showed how 

the diagrams and the measurement dynamically responded to their dragging of the point 𝐴, 𝐵 or 

𝐶 when explaining the domain and codomain of the function. For instance, Yin and Yong were 

explicit in addressing the existence and uniqueness of the orthogonal circles, tangent lines and 

the angle between them, ∠𝑈𝑄𝑉. They explained how those sequence of figures ensures the well-
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definedness of the measurement function and assign a measurement to the Klein angle ∠𝐴𝐵𝐶 

while dragging the point 𝐶 on the screen as shown in Figure 3.7 above.  

 

Snapshot (00:35) Group Yin, Yong 

 

DGE move Wandering dragging 
DGE feature(s) Drag a diagram 
Transcript (00:15-00:46) 
  
Yin: (00:07) for angle ABC, we can only construct 

the two orthogonal circles and they only 
intersect at one point and so based on that point 
we can only construct the two lines. So that’s 
basically the 1-1 function to the angle for the, 
for the, to assign measurement to ABC. So, we 
can 

Yin: (00:35) drag to point C... And there are no other 
angles, measurements like for another angle. 

 
Figure 3.7. Yin and Yong's verification of Postulate 10 

 

In sum, students reasoned about the existence of the Klein angle measurement function 

by showing their construction including input angle and output measurements of the function. 

The complicated structure of the function consisting of multiple diagrams in this task was not 

always fully addressed in all the groups’ presentations. In particular, the elements of the domain 

and codomain of the function were mismatched in presentations where the groups did not use 

drag feature to show the mechanism of the construction assign a measurement to the varying 

angle even though they constructed those axillary diagrams. Though the data does not indicate 

student knowledge of the function or a lack thereof, the analysis revealed that their use of drag 

feature provided with a way to reason about the covarying relationships between dependent 

diagrams in their constructions of Klein angle measurement function. 
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Theme 1.2. Students adapted their responses to dynamic changes of the diagram . In their 

verification of Postulate 11, students examined the range of the Klein angle measurement 

function. In their presentations, they demonstrated the angle measurements that fall into the 

interval between 0° and 180° by showing examples of angles using DGE features with pointing 

or dragging diagrams. Students pointed at a diagram of the given angle and its measurement, 

dragged the diagram to show overall changes in the measurement that always less than 0° and 

greater ether 180°. 

Among the four groups who submitted their verification of Postulate 11, two groups 

showed guided dragging to specify particular examples of angles with certain measurement 

values. For instance, Bing, Eric, and Jeremy used drag feature for guided dragging to show 

specifically when the angle measurement gets to 0° and 180° but never reach those values. 

(Figure 3.8). 

 
Snapshot (00:53) Group Bing, Eric, Jeremy 

 

DGE move Guided dragging 
DGE feature(s) Drag a diagram 
Transcript (00:42-00:57) 
  
Eric: (00:42) And then postulate 11 is very similar. 

We always get an angle between 0 and 180, 
never 0 or 180. So, as you can see, we can try 
to get really close to 0 here  

Eric: (00:53) and it will never reach it 
 

Figure 3.8. Bing, Eric, and Jeremy's verification of Postulate 11  

 

In their examination on the range of the angle measurement function, Bing, Eric, and 

Jeremy tried to specifically show that 𝑚∠𝑇𝑄𝑈, the Klein measurement of ∠𝐴𝐵𝐶, gets close to 0 

when 𝐴𝐵'⃖'''⃗  and 𝐵𝐶'⃖'''⃗  overlap such that the points 𝐴 and 𝐶 are on the same side. What they 
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emphasized in this verification is that one cannot find an angle in Klein model which 

measurement is exactly 0° or 180°. It contrasts to other instances of dragging to demonstrate how 

the measurement of the angle runs thru the interval between 0° and 180° no matter how they 

dragged it within a limited space. In this case, however, Bing, Eric, and Jeremy tried to show that 

Postulate 11 holds when they specifically tried to find a minimum and maximum of the angle 

measurement function, not only when the angle looks normal. In this regard, the DGE feature 

and DGE move analysis revealed that this group used the drag feature of GEX for guided 

dragging and that their use of GEX supported a deep engagement with the range of the function 

and corresponding diagrams (e.g., two lines getting close to each other) where they closely 

examined a questions they generated in the context of the task (e.g., does this angle measurement 

never reach 0?, when does this angle measurement get close to 0 as much as possible?). The 

dynamic construction and drag feature of the software allowed students to initiate and continue 

their investigation on the particular examples of diagrams to address what they think critical in 

this verification of the range of a function. Similarly, Yin and Yong demonstrated when the 

diagram of angle ∠𝐴𝐵𝐶  gave certain values of their choice (e.g., 0°, 60°, 180°) and relationship 

between corresponding orthogonal circles and tangent lines at those values (Figure 3.9). 

Snapshot (01:20) Group Yin, Yong 

 

DGE move Guided dragging 
DGE feature(s) Drag a diagram 
Transcript (01:06-01:29) 
  
Yin: (01:06) And then it moves from 0 degree, so it 

moves from 0 degrees on the left when the 
blue circle is on the left to then 

Yin: (01:18) to 60 degrees with this measurement. 
And actually, it keeps increasing to 180 
degrees. 

 
Figure 3.9. Yin and Yong's verification of Postulate 11  
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This group placed the point 𝐶 on the left side of the line 𝐴𝐵'⃖'''⃗  where 𝑚∠𝑌𝑄𝑍, the Klein 

measurement of ∠𝐴𝐵𝐶, is close to 0° and dragged 𝐶 to the right so that the line 𝐵𝐶'⃖'''⃗  passing the 

center of the Klein disk when the corresponding orthogonal circle is extremely large. They noted 

the measurement 𝑚∠𝑌𝑄𝑍 about 60° and commented that the orthogonal circle flipped from the 

left to the right side. This indicates that this group investigated the mechanism of assigning a 

measurement value to the angle. It is also notable that this group voluntarily revisited Postulate 

11 after they turned in their first verification where they simply showed wandering dragging to 

demonstrate the overall changes in the measurement.  

Observing changes in dynamic constructions while dragging one side of given angles in 

their presentations, students encountered certain cases of diagrams that showed unexpected or 

unwanted results. In such cases, students were adaptive to those dynamic changes in GEX 

diagrams, so they tried to explain the situation, modified their constructions or modified DGE 

moves according to their interpretations of what they saw on the screen. Sometimes, they 

disregarded such instances and continued their explanation, attributed to technological limitation 

of the software, or tried to explain technical feature of the software that caused what was seen on 

the screen.  

In the previous example from Yin and Yong, for instance, the students explained what 

happened when one of the sides of ∠𝐴𝐵𝐶 passes thru the center of Klein disk–its orthogonal 

circle was flipped from the left to the right on the screen. As it comes close to the center of Klein 

disk, the orthogonal circle gets larger and flipped when the line 𝐴𝐵'⃖'''⃗  passes the center. This 

phenomenon caused a technical issue with the tangent line 𝑄𝐴6'⃖'''''⃗  at the intersection of the two 

orthogonal circles. 𝑄𝐴6'⃖'''''⃗  is defined on the one intersection of the circles inside the Klein disk 

when the blue orthogonal circle is on the right, but this intersection is switched with the other 
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intersection outside the Klein disk when the blue orthogonal circle is flipped. So tangent line 

𝑄𝐴6'⃖'''''⃗  lies outside the disk when the blue orthogonal circle is on the left (See Figure 3.10). 

 

 

Figure 3.10. Tangent line 𝑄𝐴6'⃖'''''⃗  outside the Klein disk when its corresponding orthogonal circle 
(blue) is on the left side of the center of Klein disk 

 

To resolve this issue, Yin and Yong used measurements of two supplementary angles on 

the tangent line ∠𝐴6𝑄𝑌 and ∠𝑌𝑄𝑍 so that they can refer to either of one no matter where the 

orthogonal circle is placed on the screen. In their presentation captured in Figure 3.9, they 

referred 𝑚∠𝐴6𝑄𝑌 when the orthogonal circle is on the left and switched their reference to 

𝑚∠𝑌𝑄𝑍 once the circle was flipped to the right (See Figure 3.11). 
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Figure 3.11. Students adjusted uses of two measurements ∠𝐴6𝑄𝑌 and ∠𝑌𝑄𝑍 according to the 
relationship between diagrams 

 

Another example of students’ response to the issue of flipping orthogonal circles is to 

restrict the examples they demonstrated in the presentations. In the following example from 

Naomi and Odessa’s verification of the range, they demonstrated the changing angle and 

measurement but only on the right side of Klein disk (Figure 3.12). 

 

Snapshot (00:13) Group Naomi, Odessa 

 

DGE move Guided dragging 
DGE feature(s) Drag a diagram 
Transcript (00:00-00:19) 
  
Naomi: (00:00) For postulate 11, we can see that if 

we move this point C over here, the angle 
VDW, um, will always be between 0 and 
180  

Naomi: (00:13) no matter how we move it. If we 
move it too much… it's just because of how 
the software was made. 

Figure 3.12. Naomi and Odessa's verification of Postulate 11 in Task 1 
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Although she said “[the angle] will always be between 0 and 180 no matter how we move 

it”, Naomi’s dragging didn’t cross the center of the Klein disk and moved back to the right side 

of the disk. Her dragging was guided by the relationship between the center of the Klein disk and 

𝐵𝐶;;;; so that the line does not cross the center. Then she said, “if we move it too much… it’s just 

because of how the software was made”.  Her following comment indicated that she knew what 

would happen when 𝐵𝐶;;;; moved too much across the center of the disk and that she wanted to 

exclude those unwanted examples in their presentation. To justify that decision which 

contradicted what she just said, she attributed the situation to the software but didn’t mention 

what the situation is and what specific feature of the software caused it. However, it didn’t affect 

their assertion that this demonstration verifies the range of the function and confirmed Postulate 

11.   

In sum, the analysis of student reasoning on the range of the Klein angle measurement 

function showed differences in the participating students’ ways of demonstrating the range of the 

function and of responding technical issues they encountered. All the groups used drag feature to 

demonstrate the overall changes in the angle measurement that falls between 0° and 180°, but 

two of them were more explicit than others in examining the end points of the range. When the 

model didn’t work smoothly as they expected, students modified their constructions and adjusted 

moves to present examples that work well for verifying the range of the function.   

Theme 1.3. Different features used to demonstrate the 1-1 correspondence between input 

angles and output measurements. Postulate 12 states the injectivity and surjectivity of the Klein 

angle measurement function which can always specify a particular angle with a base point and a 

ray in Klein model for any given real number between 0 and 180. Students verified this postulate 
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by demonstrating continuous co-variation of the diagram and its measurement and by specifying 

the uniqueness of the diagram or the measurement in the construction. 

In the following example from Avery and Kim, the continuous motion of the diagram and 

increasing value of the measurement confirmed that the existence and uniqueness of those angles 

specific to particular real number between 0 and 180 (Figure 3.13).  

 
Snapshot (00:46) Group Avery, Kim 

 

DGE move Guided dragging 
DGE feature(s) Drag a diagram 
Transcript (00:22-00:52) 
  
Avery: (00:22) Sure. Alright looking at postulate 12. 

Again, we're saying that this green line is a, 
another tangent line and you can see that if AB is 
the edge of the half plane as I'm moving around 
on this side,  

Avery: (00:46) it gets every single measure between 
zero and 180. here gets zero all the way up to 
180. So, postulate 12 is justified. 

 
Figure 3.13. Avery and Kim's verification of Postulate 12 

 

In the presentation, they dragged the point 𝐷 to show how the diagram of 𝐷𝐵;;;; and its 

measurement continuously covary while the measurement goes from 0° to 180°. Avery 

emphasized that this demonstration shows that the line “gets every single measure between 0 and 

180” assuming that the continuous motion he showed implied its completeness in covering all 

possible real numbers from 0 to 180. Another example of using dragging in verifying the 

injectivity is to argue that there’s no repeating numbers or angles while dragging a ray of the 

angle. In their presentation, for instance, Naomi said “wherever we move this point 𝐶, we can 

see that the angle 𝑉𝐷𝑊 there, um, there's no repeating numbers it's all between zero and 180 and 

the angles just don't repeat itself.” She dragged the point 𝐶 several times to indicate that the 
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values in measurement 𝑚∠𝑉𝐷𝑊, the Klein measurement of ∠𝐴𝐵𝐶 in their construction, showed 

monotone increase and decrease between 0 and 180 without repetition. Yin and Yong also 

specified the uniqueness of the angle for a given real number, but she used a particular example 

to restate the postulate (Figure 3.14). 

 

Snapshot (01:44) Group Yin, Yong 

 

DGE move Wandering dragging 
DGE feature(s) Drag a diagram 
Transcript (01:32-01:56) 
  
Yin: (01:32) And also, we can say about postulate 12. 

Like for 𝐴, for given ray 𝐵𝐴'''''⃗  and for given angle 
measurement, let’s say, 120,  

Yin: (01:44) we can only find a ray 𝐵𝐶'''''⃗  where the 
measurement is 120 and nothing else like no ray. 

  
Figure 3.14. Yin and Yong's verification of Postulate 12 

 

Yin and Yong selected a measurement, 𝑚∠𝑌𝑄𝑍 = 124.48° and dragged the point 𝐶 to 

highlight that this ray 𝐵𝐶'''''⃗  and the angle ∠𝐴𝐵𝐶 are unique diagrams on the screen. Their 

argument followed the statement in Postulate 12–For every number 𝑟 between 0 and 180, there is 

exactly one ray 𝐴𝑃'''''⃗ , with a point 𝑃 in 𝐻, such that 𝑚(∠𝑃𝐴𝐵) is 𝑟. Then they indicated the only 

diagram shown on the screen that got assigned the real number they specified by showing how 

the measurement changes when they dragged the ray around. 

In sum, students’ verification of injectivity and surjectivity of Klein angle measurement 

function relied on the unique diagram and its measurement. Students showed continuous 

covariation and emphasized the fact that they have only one diagram of the measurement that 

covaried together while dragging the diagram. When students reasoned about the existence and 
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uniqueness of the angle for an arbitrary real number, GEX provided a way to instantiate a 

particular number (e.g., 120° in Figure 3.14) and corresponding angle. Also, it allowed them to 

visualize 1-1 correspondence between covarying diagram and measurement by continuous 

motion of dragged diagrams.   

Task 2: Analysis of Legendre’s Attempted Proof of Euclidean Parallel Postulate 

Task design. The objective of this task is to create a geometric construction in Klein 

model of GEX and use this dynamic construction to explain why a proof for EPP fails in this 

model. In the previous task of constructing and verifying Klein model, it was confirmed that this 

model satisfies all the postulate in the current system for Euclidean geometry except the EPP. 

This implies that any attempt to prove EPP in this system must end up with failure such as the 

one suggested by a past mathematician Adrien-Marie Legendre. Task 2 is to analyze Legendre’s 

attempt to prove EPP by geometric construction in Klein model of GEX. Students are given a 

written document describing each step of a geometric construction by which Legendre argued for 

the uniqueness of the parallel line to a given line and a point not on the line (See Figure 3.15).  

 

Given 𝑃 not on line 𝑙. Drop perpendicular 𝑃𝑄'⃖'''⃗ 	from 𝑃 to 𝑙 at 𝑄.  Let 𝑚 be the line through 𝑃 
perpendicular to 𝑃𝑄'⃖'''⃗ 	. Then 𝑚 is parallel to 𝑙.  Let 𝑛 be any line through 𝑃 distinct from 𝑚 
and 𝑃𝑄'⃖'''⃗ 	. We must show that 𝑛 meets 𝑙. 
Let 𝑃𝑅'''''⃗  be a ray of 𝑛 between 𝑃𝑄'⃖'''⃗  and a ray of 𝑚 with endpoint 𝑃. There is a point 𝑅′ on the 
opposite side of 𝑃𝑄'⃖'''⃗  from 𝑅 such that ∠𝑄𝑃𝑅′ ≅ ∠𝑄𝑃𝑅. Then 𝑄 lies in the interior of ∠𝑅𝑃𝑅′. 
Since line 𝑙 passes through the point 𝑄, 𝑙 must intersect one of the sides of this angle. If 𝑙 
meets 𝑃𝑅'''''⃗ , then certainly 𝑙 meets 𝑛. Suppose 𝑙 meets side 𝑃𝑅′''''''⃗  at a point 𝐴. Let 𝐵 be the 
unique point on 𝑃𝑅'''''⃗  such that 𝑃𝐴;;;; ≅ 𝑃𝐵;;;;. Then ∆𝑃𝑄𝐴 ≅ ∆𝑃𝑄𝐵. Hence ∠𝑃𝑄𝐵 is a right angle, 
so that 𝐵 lies on 𝑙 (and 𝑛). Q.E.D. 

Figure 3.15. Legendre's attempt to prove EPP in neutral geometry 
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The essential mathematical activity in this task is to identify independent elements of the 

construction and demonstrate counter-examples by dragging those elements. This activity 

involves creating a robust construction of this faulty proof and reasoning on parallel lines in 

Klein model. Students are expected to analyze each step of the construction and identify the 

hidden assumption that causes a circular logical in this proof. In this task, students are allowed to 

use Klein model provide in the software so students can construct basic figures as easy as they 

do in Euclidean models. In GEX, students can choose one of hyperbolic geometry models 

including Poincaré model, Klein model, and half-plane model in which students can create and 

measure figures. In this task, students were asked to work on Klein model that they verified in 

the previous task of the sequence. 

While constructing their figures following the steps described in the material, students 

may see that the statement in the fourth step does not necessarily hold for an arbitrary ray 𝑃𝑅'''''⃗  and 

the angle ∠𝑅𝑃𝑅′ in their construction in Klein model. In this step of his proof, Legendre 

assumed that any line passing through a point in the interior of an angle must intersect one of the 

rays of the angle. However, this assumption is not always true in a system without EPP or any 

statement logically equivalent to it. For instance, if students drag the angle ∠𝑅𝑃𝑅′ to make it 

wide enough to get close to the line 𝑚, neither of the rays 𝑃𝑅'''''⃗  nor 𝑃𝑅′''''''⃗  meet the line 𝑙. (See 

Figure 3.7). This provides a counter-example to the statement in the fourth step using the hidden 

assumption, which, in turns, refutes his argument. Note that there are at least three lines (in red), 

𝑚, 𝑛, 𝑃𝑅′'⃖''''⃗ , in this case where all they are parallel to the line 𝑙 and pass the point 𝑃.  

Description of the class. The class started with a short review lecture for the previous 

two class meetings that summarized student work on Task 1. In this lecture, I recapped the 

independence of EPP in neutral geometry, which is the implication of student work on verifying 
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Klein model of hyperbolic geometry. It was followed by the introduction to the Legendre’s 

attempted proof of the uniqueness of parallel lines. I emphasized in class that his proof should be 

faulty as students already showed that there exists a valid model of hyperbolic geometry that 

satisfies all the postulates of neutral geometry but not EPP. Note that the existence of parallel 

lines in neutral geometry was discussed in class a few weeks ago. 

At the beginning of the task enactment, I introduced the task of the day and handed out 

printed copies of Legendre’s attempted proof (See Appendix F). In the given task, students were 

asked to construct this proof in Klein model of GEX and identify a flaw in this written proof that 

fails in Klein model. To respond this task, they were instructed to submit (a) GEX construction 

of the proof in Klein model, (b) screencast recording of their construction, and (c) written 

responses to the following prompt: Write a mathematical statement to describe the hidden 

assumption and explain why this assumption holds in Euclidean but not in hyperbolic geometry. 

In particular, the students were instructed to start the screencast recording from the beginning of 

the activity to capture the process of constructing and analyzing the proof as well as to let them 

focus on the process rather than producing final presentation as a complete product for the task. 

Students were also given a printout explaining how to copy an angle in GEX using reflection 

feature that is a skill needed in the construction.  

While students enacted the tasks for the rest of the class, I visited some groups who were 

confused about what they were supposed to do in the task at first and clarified the instructions in 

the task. Some groups did not start recording from the beginning and looked at the printouts first. 

Most groups had no troubles with using DGE features except the reflection feature, so I visited 

those groups to assist them when creating reflections.                                                            
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Towards the end of the class, I invited Lynn and asked her to share what she discussed 

with her groups. She drew their diagram and presented their findings to the class. She reported 

that there are lines that do not have a common perpendicular but are still parallel to each other in 

Klein model and that Legendre seems to miss those lines. She also said that the given parallel 

lines 𝑙 and 𝑚 “are not parallel” because the diagram in Klein model does not look like parallel 

lines in Euclidean geometry but, based on the definition of parallel lines, they are parallel. 

Students’ uses of DGEs. The participating groups used diverse DGE features in their 

enactment of Task 2 for constructing of Legendre’s attempted proof and exploring counter 

examples. Table 3.7 shows 10 DGE features and 13 DGE moves that were identified from the 

screencast presentations created by the five participating groups (see the Appendix E for all the 

DGE features and DGE moves identified from the entire student data in this study). 

 

Table 3.7. DGE features and DGE moves identified in the enactment of Task 2 

DGE features Number of 
occurrences 

DGE moves Number of 
occurrences 

Move the cursor over diagrams 184 Point at a diagram 162 
Select a diagram 54 Create a diagram 33 
Drag a diagram 49 Label a diagram 26 
Create a diagram 33 Guided dragging 23 
Label a diagram 26 Wandering dragging 16 
Measure a diagram 15 Measure a diagram 15 
Mirror a diagram 7 Reflect a diagram 8 
Hide a label 2 Hide a diagram 2 
De-select diagrams 1 Point at a feature icon 2 
Hide a diagram 1 Dragging by accident 1 
  Hide a label 1 
  Place a diagram 1 
  Point at a measurement 1 
Total 372  281 
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In the screencast presentations created in the enacted Task 2, there were 372 DGE 

features and 276 DGE moves identified from 40 minutes 20 seconds of the recordings in total. 

There were 19 DGE features identified in the presentation that didn’t have enough evidence to 

infer a purpose, so they were not associated with DGE moves. The frequent DGE features 

include “move the cursor over diagrams”, “select a diagram”, “drag a diagram”, “create a 

diagram”, “label a diagram. The frequent DGE moves include “point at a diagram”, “create a 

diagram”, “label a diagram”, “guided dragging”, “wandering dragging”, “measure a diagram”.  

The numbers of occurrences indicate that the majority of students’ uses of GEX were to 

point at diagrams by moving the cursor over diagrams, selecting or dragging diagrams while they 

collaborate to create and label diagrams following Legendre’s constructions. Given that most of 

the student work recorded in Task 2 were collaborative, the dominance of pointing moves among 

other DGE moves indicates that students used DGE features to communicate with their peers. 

The data evidences that GEX provides an environment supporting collaborative group work in 

which students can refer to diagrams on the screen. 

Among five participating groups submitted their work on Task 2, four groups included 

processes of constructing Legendre’s attempted proof in GEX in their screencast recordings. 

Students created diagrams for arbitrary figures, identified intersections of existing figures, and 

constructed particular diagrams that are dependent to existing diagrams (e.g., a perpendicular to 

an existing line, reflecting a point over an existing line, etc.). They also labeled diagram they 

created and placed diagrams so that they can refer to those diagrams in their conversations. 

Drag feature was not necessary in the construction part of this task, but students used it to 

make DGE moves including wandering dragging and guided dragging during the construction 
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and, mostly, after completing the construction when they identified the counter example of 

Legendre’s attempted proof. 

Table 3.8 shows the summary of student work in terms of the number of DGE features 

and DGE moves identified from their presentation. Since the groups recorded their work on 

construction, most groups produced significantly longer screencast presentations in Task 2 than 

in Task 1 except Deming and Tian who started recording after they completed their construction. 

  

Table 3.8. Summary of DGE features and DGE moves identified in each group in Task 2 

Pairs or Triples Construction or 
Presentation 

Duration  
(mm:ss) 

Number of  
DGE features 

Number of  
DGE moves 

Avery, Kim Both 11:44 81 56 
Bing, Eric Both 10:32 83 55 
Deming, Tina Presentation 1:49 14 13 
Deshi, Yao Both 8:00 86 66 
Naomi, Odessa Both 8:15 108 91 
Total  40:20 372 281 

 

Students’ engagement in mathematical reasoning on figures in hyperbolic geometry. 

In Task 2, students were instructed to record the entire process of constructing Legendre’s 

attempted proof in GEX and to respond the questions of the task for identifying a hidden 

assumption in this proof with a counter example in their construction. Two groups (Avery, Kim; 

Bing, Eric) created two separate recordings for each construction and presentation responding 

the questions of the task. There were groups (Deshi, Yao; Naomi, Odessa) who created a single 

recording that captured the construction and showed what they identified as a counter example 

and a hidden assumption without producing a separate recording for that. Naomi and Odessa 

recorded right from when they started the construction whereas Deshi and Yao presented a 

completed construction and demonstrated each step they followed to make the construction in 
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detail.  As noted in the earlier section, Deming and Tina produced a significantly shorter 

presentation that didn’t capture or explain their process of construction. The difference in the 

extent of student work captured in student-generated recordings, the analysis of the enacted task 

contained an inherent limitation in identifying students’ engagement in mathematical reasoning 

that are comparable across groups. In much the same way as the analysis of student work in other 

task, the focus in this report of the analysis is, therefore, not to compare groups but to highlight 

different ways of their engagement in the intended activities given in the task. On the other hand, 

it implied other aspects of students’ enactment of the task in terms of how students interpreted 

expectations of their work to be submitted, how much autonomy they can take control in the 

task, and to what extent they were willing to share their incomplete work as their final products 

responding this task. 

 

Table 3.9. Case themes of students’ engagement in mathematical reasoning about Legendre's 
attempted proof of EPP in Task 2 

Case themes 
Theme 2.1. Students demonstrated different ways of using DGEs in the step-by-step 
examination of statements in the attempted proof. 
• Students examined statements in the attempted proof and determined the validity of each 

step while interacting with DGE diagrams in different ways. 
• Students examined statements involving incidence (intersections of lines) or inclusion-

exclusion relationship (e.g., a point in the interior of an angle) of figures by pointing at the 
diagrams on the screen.  

• Students examined statements involving measurements by using measuring tool in GEX. 
Theme 2.2. Students used the drag feature used to identify counter examples. 
• Students created independent diagrams representing arbitrary figures and dragged those 

diagrams to examine if the construction gives them a counter example. 
• Some students used the drag feature to generate and test a conjecture in order to confirm 

that there always exist counter examples no matter how they changed the independent 
diagrams (a given line and a point not on the line). 

Theme 2.3. Students compared diagrams to figures in Euclidean geometry 
• Some students compared diagrams of lines in this model to those in Euclidean geometry 

where lines would not be limited by a boundary. They explained that the boundary of the 
disk restricts lines from extending further and makes this attempted proof fails. 
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Table 3.9 shows the case themes identified in this analysis of students’ engagement in 

mathematical reasoning about the geometric construction suggested in Legendre’s attempted 

proof of EPP. The focal mathematical objects that were identifiers of student engagement in 

reasoning in Task 2 include geometric figures represented by GEX diagrams in their construction 

(e.g. points, lines, angles).  

Theme 2.1. Students demonstrated different ways of using DGEs in the step-by-step 

examination of statements in the attempted proof. In students’ recordings including their 

processes of constructions, they created diagrams of figures following each step of the attempted 

proof. While executing those step-by-step constructions, students interpreted the meaning of the 

statements in those steps as well as corresponding diagrams they created on the screen. When 

they attended to a statement declaring a figure (e.g., let 𝑛 be a line such that), students created a 

diagram for the figure that was expected to satisfy the condition defining the figure in the 

statement. For instance, Avery and Kim discussed whether they want to create a diagram with 

respect to the following statement–Let 𝑛 be any line through 𝑃 distinct from 𝑚 and 𝑃𝑄'⃖'''⃗ . Avery 

thought they didn’t need to create a diagram for the line 𝑛 in their construction that was supposed 

to represent any line as described in the material. Kim suggested to create a diagram of a line in 

GEX that is defined by the point 𝑃 and an arbitrary point 𝐺. Note that a line needs two distinct 

points to be created in GEX. She showed that they can move this line freely but fixed at 𝑃 on the 

screen by dragging the other point 𝐺 and claimed that this can represent the arbitrary line 𝑛 in the 

statement. They interpreted the meaning of the line 𝑛 declared in the written statement and 

represented the arbitrary line with an independent diagram in GEX they can freely drag around. 

This construction of the line 𝑛 thru 𝑃 was generalized in this recording in the sense that the 

arbitrariness of the diagram was confirmed by the drag feature of GEX (Figure 3.16). 



 88 

Snapshot (02:23) Group Avery, Kim 

 

DGE move Wandering dragging 
DGE feature(s) Drag a diagram 
Transcript (01:55-02:25) 
  
Avery: (01:55) Then we're just calling n, any 

line through P that isn't m. And that 
isn't a PQ. 

Kim:  Okay 
Avery: I don't know if we actually have to 

make that line though. Maybe we just 
start doing this [the next step]. 

Kim: Okay 
Avery: Let PR be a ray of it. 
Kim: Why can't I just make a line that's any 

line through P. 
Avery: You can. 
Kim: (2:23) Now we can just move that in 

circle wherever we want it. 
Avery: Yeah. Good point. 

Figure 3.16. Avery and Kim's diagram of an arbitrary line 𝑛 in Task 2 

  

As they proceeded in the process of constructing the attempted proof, the students 

examined diagrams they created following each statement of the attempted proof that describes 

properties of figures. They determined such statements involving intersections of figures or 

inclusion-exclusion relationships of figures (e.g., a point in the interior of an angle) by looking at 

and referring to diagrams on the screen. To examine statements involving measurements (e.g., 

congruence of figures), students used measuring tools in GEX to see if their diagrams satisfy 

those statements.  

Students confirmed claims about incidences and inclusion-exclusions relationships from 

their observations of diagrams on the screen or didn’t even explain that. On the other hand, 

students were not confident with their diagrams of which measurements were supposed to satisfy 

the given statement as much as they were about incidence and inclusion-exclusion relationships. 
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This is attributed to the fact that measurements of distance and angles in Klein model are not 

represented in the same way as in Euclidean geometry whereas the existence of intersections or 

inclusion-exclusion of figures are represented by the same pictorial feature of diagrams in both 

models. In other words, students didn’t need a different way of interpreting diagrams with those 

properties in Klein model except points on the boundary of the disk. Students often checked the 

statements that claim about the existence of intersections or a figure included in another figure. 

For instance, students examined the congruence of triangles ∆𝐴𝑃𝑄 and ∆𝐵𝑃𝑄 by using 

measurement tool in GEX. Avery and Kim doubted about the side length of the corresponding 

sides in those triangles, so they measured length of two pairs of sides. Deshi and Yao also 

measured and compared all three pairs of corresponding sides in those triangles. 

Theme 2.2. Students used the drag feature used to identify counter examples. Students 

examined their diagrams to identify a counter example by students created independent diagrams 

representing arbitrary figures and dragged those diagrams to examine if the construction gives 

them a counter example. Most groups identified counter-examples in their constructions by 

dragging rays 𝑃𝑅'''''⃗  or 𝑃𝑅′''''''⃗  that were moved away from the line 𝐿. They identified the independent 

diagram representing an arbitrary point that define those rays and explored them to find when 

there is no intersection with 𝐿. In addition, there was a group (Bing, Eric) who also changed the 

point 𝑃 to search for more diverse cases of counter-examples. Note that 𝑃 is an arbitrary point 

not on the line 𝐿 so the construction was supposed to work no matter where students created it. 

After they identified a flaw in this construction, Bing and Eric continued investigation on ∠𝑅𝑃𝑅’ 

by changing all the points 𝑅, 𝑃, and 𝑅′. They tried to see if there is a case of the angle where they 

never find a ray 𝑃𝑅'''''⃗  meeting the line 𝐿 (Figure 3.17). 
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Figure 3.17. Bing and Eric's investigation on ∠𝑅𝑃𝑅’ 

  

They moved the point 𝑃 close to the left side of Klein disk toward its boundary. Once 

they placed 𝑃 they dragged 𝑅 or 𝑅′ to see if there is any case where they cannot make the rays 

𝑃𝑅'''''⃗  or 𝑃𝑅′''''''⃗  meet the line 𝐿. They didn’t explicitly make a statement in this recording, but they 

concluded that for any point 𝑃 inside the disk, they can always find 𝑃𝑅'''''⃗  for some point 𝑅 such 

that the ray definitely meets the line 𝐿. It is notable that they accessed all the dimensions of 

variations (Leung, 2008) that are independent diagrams necessary to define ∠𝑅𝑃𝑅’ so that, in 

theory, they could vary the diagram into any possible case. This shows that the students 

generated a conjecture from their interactions with GEX diagrams and tested it using the drag 

feature for exploring all possible cases of the diagram. This student work exemplifies an example 

of using the drag feature to facilitate students’ mathematical reasoning in mathematization where 
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they generated a conjecture and tested it by accessing variations of particular diagrams 

representing arbitrary figures.  

Theme 2.3. Students compared diagrams to figures in Euclidean geometry. Students 

compared diagrams of lines in Klein model to those in Euclidean geometry where lines would 

not be limited by a boundary. Due to the boundary of the disk that restrict lines from extending 

further, it is possible to have multiple parallel lines in Klein model that make Legendre’s 

attempted proof fails. In their interpretation of diagrams for lines in Klein model, Deming and 

Tina characterized lines in Klein model that are stopped by the boundary of the disk and cannot 

keep going forever and ever until the 𝑃𝑅'''''⃗  meets the line 𝐿 (Figure 3.18).  

 

Snapshot (01:32) Group Deming, Tina 

 

DGE move Guided dragging 
DGE feature(s) Drag a diagram 
Transcript (01:14-01:38) 
  
Tina: (01:14) Step four, however, is what 

we're finding our problems and where we 
think the assumption is. He says that 
since line L passes through point Q, L 
must intersect one of the sides of the 
angle, but the problem is that that 
assumes that these sides of the angle just 
extend arbitrary arbitrarily long and far.  

Tina: (01:32) Whereas in the Klein model, 
they kind of get stopped at the edge of 
the disk. They have boundaries. They 
don't just keep going forever and ever. 

Figure 3.18. Deming and Tina's identification of hidden assumption in Legendre’s attempted 
proof of EPP in Task 2 

 

In the above transcript, Deming and Tina articulated what they think of the hidden 

assumption in this argument where lines can be arbitrarily extended. They argued, however, that 

lines cannot go forever in Klein model because of the boundary of the disk and that this resulted 
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counter examples to the attempted proof. This indicates that what they think of a reason why this 

proof doesn’t work in this model is the boundary of the disk that prohibit lines from getting 

extended until meet each other. In addition, their conjecture of the assumption came from how 

diagrams of lines would look like in usual Euclidean plane and how this proof would be 

successful if it was in a space where lines can be arbitrarily extended. In their written responses, 

the students were more explicit in comparing to Euclidean geometry as follows. 

“The assumption is that you can extend a line segment infinitely in any direction. This 

holds in Euclidean geometry because it is one of Euclid’s 5 postulates and leads to the 

feature that lines and planes extend outward. This does not hold in hyperbolic geometry 

because of the feature of the boundary of the disk, which “stops” the lines. Even where 

distance is defined with a logarithmic function, the line would not extend beyond the 

boundary, so an intersection is not guaranteed.” (Deming and Tina’s written response in 

Task 2) 

Note that Deming and Tina were aware of the particular way of measuring distance in 

Klein model where the measurement uses a logarithmic function that maps a chord of the unit 

disk to the infinity. This implies that what they meant by lines going forever outside the disk was 

not about the length of lines but the diagrams representing lines with infinite length in this 

model. 

Task 3: Exploration of Limiting Parallel Lines in Klein Model 

Task Design. The previous two tasks in the sequence provide students with experiences 

of close examinations of a hyperbolic geometry model that is necessary to conclude the 

independence of EPP and the consistency of hyperbolic geometry. This experience involves 
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constructing, verifying, and exploring the sophisticated structure of angle measurements in Klein 

model that is consciously designed to satisfy all the postulates of neutral geometry but EPP.  

In Task 3, students use a particular construction feature in hyperbolic geometry mode of 

GEX that provides a pair of special parallel lines called limiting parallel lines. For a given line 𝑙 

and a point 𝑃 not on 𝑙 in Klein model, for instance, this feature creates two lines 𝑚 and 𝑛 that are 

pass 𝑃 and do not meet 𝑙 . This task is aimed at providing students with opportunities to make an 

initial sense of limiting parallel lines in Klein model of GEX that are new geometric objects to 

them. In this task, students are instructed to create limiting parallel lines based upon their 

examination of this given attempted proof from Task 2 and to respond the following three 

questions. 

• Are the limiting parallel lines examples or counter-examples of ∠𝑅𝑃𝑅’ in the Legendre’s 

attempted proof? 

• Using the limiting parallel lines, how can you separate examples or counter-examples of 

∠𝑅𝑃𝑅’ in the Legendre’s proof? 

• How can you describe the limiting parallel lines in the Klein model? Do you think the 

description is applicable in any models of hyperbolic geometry? 

In the first question, students revisit their work in the previous task and determine if the 

limiting parallel lines meet the line 𝑙 or not. They interpret what they create in Klein model using 

the creation feature for limiting parallel lines that are two lines that seem to meet 𝑙 only on the 

Klein disk. Although students may see from the term, limiting parallel lines, that those lines are 

parallel lines, they may also see that those lines are different from other parallel lines from the 

term and/or from the diagrams thereof on the screen. It is followed by the last two questions 
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about an essential property of the limiting parallel lines that separate parallel and non-parallel 

lines (Figure 3.19). 

 

Figure 3.19. Limiting parallel lines 𝑚 and 𝑛 with respect to the line 𝑙 and a point 𝑃 not on 𝑙 that 
separate parallel lines (e.g. 𝑃𝑆'⃖''⃗ ) and non-parallel lines (e.g., 𝑃𝑄'⃖'''⃗ ) to 𝑙 

 

Description of the class. The class started with reflecting on student work on the 

previous task of analyzing Legendre’s failed proof of EPP. I presented a summary of student 

responses collected from their submitted work. The summary included demonstration of counter-

examples (e.g., dragging arbitrary lines no to meet the line 𝐿) that showed flaws in the fourth and 

sixth steps in his construction. Also, I recapped some of the students’ comments made during the 

whole class discussion at the end of the last class. Those comments included how students 

connected their work to hyperbolic parallel postulate that was introduced at the beginning of the 

task sequence and how they emphasized the boundary of Klein disk in their argument.  

In transition to the task of the class, I highlighted the implication of our work on 

analyzing proofs that have flaws and may fail in some sense. I reminded students of what they 

had or would have learned from their exploration of a pattern in the examples or non-examples 
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of Legendre’s failed proof. The leading question of the day was presented: How can we extend 

our analysis and findings from Klein model to other models of hyperbolic geometry such as lines 

meeting at a boundary point of the disk. The question was deliberate in addressing the task 

objective on developing mathematical knowledge of hyperbolic geometry by mathematizing 

their observation in Klein model of GEX. Then, I introduced limiting parallel lines and how to 

create them in Klein model of GEX (Figure 3.20). This introduction was followed by the three 

focal questions for student’s exploration of the limiting parallel lines in Klein model. Students 

were instructed to submit screencast presentation of their answers to those questions and a 

written answer to the third question in document. 

 

• In your construction of Legendre’s proof, select 
the line 𝑙 and the point 𝑃.   

• Then, you may see the “parallel lines” icon 
activated in your construct panel of GEX (left-
middle).  Click it.   

• It will give you two particular lines from 𝑃 that are 
meet the line 𝑙 at the boundary circle. Those are 
limiting parallel lines.  

 

 
Figure 3.20. Introduction of limiting parallel lines in Klein model of GEX 

Students’ uses of DGEs. The participating groups used different DGE features in their 

enactment of Task 3 to answer the three questions given in the task that facilitate them to 

develop a concept of limiting parallel lines. Table 3.10 shows 9 DGE features and 9 DGE moves 

that were identified from the screencast presentations created by the seven participating groups 

(see the Appendix E for all the DGE features and DGE moves identified from the entire student 

data in this study). 
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Table 3.10. DGE features and DGE moves identified in the enactment of Task 3 

DGE features Number of 
occurrences 

DGE moves Number of 
occurrences 

Move the cursor over diagrams 81 Point at a diagram 124 
Select a diagram 52 Guided dragging 17 
Drag a diagram 34 Place a diagram 7 
Drag the cursor 10 Change the model 4 
De-select diagrams 6 Create a diagram 4 
Create a diagram 5 Undo the last step 3 
Open a file 5 Wandering dragging 2 
Undo 3 Dragging by accident 1 
Switch the mode 2 Point at a feature icon 1 
Total 198  163 

 

In the screencast presentations created in the enacted Task 3, there were 198 DGE 

features and 163 DGE moves identified from 17 minutes 28 seconds of the recordings in total. 

There were 10 DGE features identified in the presentation that didn’t have enough evidence to 

infer a purpose, so they were not associated with DGE moves. The frequent DGE features 

include “move the cursor over diagrams”, “select a diagram”, “drag a diagram”, “drag a 

diagram”. The frequent DGE moves include “point at a diagram”, “guided dragging”, 

“wandering dragging”.  

The numbers of occurrences indicate that the majority of students’ uses of GEX were to 

point at diagrams by moving the cursor over diagrams, selecting or dragging diagrams while they 

collaborate to explore limiting parallel lines and arbitrary lines at the point 𝑃 on the screen. In 

addition, there were a feature first used in the task sequence, “drag the cursor” when a group 

pointed at a particular part of limiting parallel lines in their presentation. In GEX, users can drag 

the cursor to make a rectangle that can enclose multiple diagrams to select them at once as the 
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users need.  However, Yin and Yong dragged the cursor to make a rectangle that enclose one of 

the opposite rays of the two limiting parallel lines centered around the point 𝑃 (Figure 3.21). 

Snapshot (01:32) Group Yin, Yong 

 

DGE move Point at a 
diagram 

DGE 
feature(s) 

Drag the 
cursor 

Transcript (01:07-01:41) 
  
Yin: (01:07) So the limiting 

parallel lines are like the 
limits for the parallel 
lines like any points 
about, about that like 
actually between, 
between P and top part 
and P and the bottom 
part  

Yin: (01:32) which is like 
this one here. So, this 
right here and this right 
here. 

  
Figure 3.21. Yin and Yong's response to the third question in Task 3 

 

When they explained how the two limiting parallel lines separate parallel lines and non-

parallel lines to the line 𝐿, they made rectangles by dragging the cursor to indicate the four rays 

of the two limiting parallel lines from the point 𝑃. This pointing move showed how the students 

identified the spaces where parallel line can be found (e.g., line 𝑚) in their construction of which 

boundaries are those four rays. At first, they selected limiting parallel lines that highlighted all 

the line including both opposite rays so they couldn’t indicate one ray of the line unless they 

create a point on each side of the ray, for instance, say 𝑈 and 𝑉, and refer to the points specifying 

rays 𝑃𝑈'''''⃗  and 𝑃𝑉'''''⃗ . So, they decided to drag the cursor to temporarily present rectangles that limit a 

space that only contains one side of the lines. This shows a wide range of different features used 
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by students, regardless of the original function of those features, in order for them to indicate 

particular diagrams as accurate and efficient as possible. In addition, it indicates that DGEs 

support student interacting with DGE diagrams not only an accuracy in diagrams that students 

can create (e.g., Hollebrands et al., 2010) but also an accuracy in their references to the diagrams 

in DGEs so that student can express their mathematical idea during their communications. 

Another new feature used in Task 3 is to switch between different models of hyperbolic 

geometry when students responded the third question about applicability of their construction 

and description of limiting parallel lines in other models of hyperbolic geometry. Two groups 

(Deshi, Yao; Ying, Yong) either created another file of their construction of limiting parallel 

lines in Poincaré model or changed the mode of the model in GEX to show how their 

construction of limiting parallel lines worked in the way much the same as how they had 

presented in Klein model.   

 

Snapshot (02:03) Group Deshi, Yao 

 

DGE move Change the model 
DGE feature(s) Switch the mode 
Transcript (01:58-02:12) 
  
Deshi: (01:58) And this limiting 

[parallel] line is always working 
in our models because if I 
change to  

Deshi: (2:03) the Poincare disk it 
should work because this [the 
point 𝑅’] will also not intersect. 

  

Figure 3.22. Deshi and Yao’s switch between Klein and Poincare models 
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At the end of their screencast recording, Deshi and Yao switched Klein model to 

Poincaré model in GEX and showed how their limiting parallel lines can still separate parallel 

lines in this model and that the rays 𝑃𝑅'''''⃗  and 𝑃𝑅′''''''⃗  do not meet the line 𝐿 (Figure 3.22). This shows 

that some students used multiple models of hyperbolic geometry provided in GEX to look for 

patterns or common characteristics between those models.  

In their use of drag feature, most of the dragging moves were guided dragging (90%) 

when students demonstrated arbitrary lines (e.g., 𝑃𝑅'''''⃗ ) approaching to the limiting parallel lines. 

Students made those moves as they characterized limiting parallel lines in their terms by using 

the metaphor of limits of parallel or non-parallel line. Given that the students seemed to have 

enough evidence or intuitive sense to make their conjectures, wandering dragging appeared 

rarely (10%) when they show how they can freely move diagram for arbitrary lines. 

 

Table 3.11. Summary of DGE features and DGE moves identified in each group in Task 3 

Pairs or Triples Duration  
(mm:ss) 

Number of  
DGE features 

Number of  
DGE moves 

Avery, Kim 1:47 13 10 
Bing, Eric, Jeremy 2:09 32 23 
Ben, Tina 2:20 5 5 
Deming, Jing 2:29 28 23 
Deshi, Yao 2:15 36 34 
Emily, Naomi, 
Odessa 

2:01 12 11 

Yin, Yong 4:27 50 48 
Total 17:28  163 

 

Table 3.11 shows the numbers of DGE feature and DGE moves identified from each 

group with different durations of screencast presentation. The numbers of moves relative to the 

duration of the recordings indicate the extent to which students interacted with GEX 
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constructions often in presenting their work and different types of presentations. For instance, 

Ben and Tina produced a screencast presentation with the duration of 2’20” while making five 

DGE moves, the least number among others in Task 3 regardless of the length of recordings. In 

their recording, their presentation was succinct and summative in the sense that they were well 

prepared to give a complete speech with rarely referencing diagrams on the screen. In that 

regard, most of their presentation was delivered by verbal explanation except when they 

characterized limiting parallel lines and demonstrated an arbitrary line approaching to limiting 

parallel line. On the other hand, Yin and Yong produced the longest recording (4’27”) with the 

most moves (48 moves) among the group where they referred to diagrams on the screen more 

often than Ben and Tina. They were more explicit in indicating examples (e.g., parallel lines 

between limiting parallel lines) and relied on diagrams more than verbal language when 

specifically indicating figures in their explanation.  

Students’ engagement in mathematical reasoning on limiting parallel lines. In their 

responses to the three questions of Task 3, student groups reasoned about limiting parallel lines 

with respect to its properties in Klein model and possible way to describe the figure in an 

abstract way. They justified why limiting parallel lines are one of the counter-examples of 

Legendre’s failed proof in Task 2, explained how those lines separate parallels and non-parallels 

with respect to a given line and a point not on the line, provided a description of limiting parallel 

lines that can be applicable to other possible models of hyperbolic geometry. In their 

presentations, they showed differences in ways of engaging in those reasoning about limiting 

parallel lines that entailed different uses of GEX (Table 3.12).  
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Table 3.12. Case themes of students' engagement in mathematical reasoning about limiting 
parallel lines in Task 3 

Case themes 
Theme 3.1. Students used different warrants to explain why limiting parallel lines are parallel. 
• Students argued that the limiting parallel lines do not meet the given line 𝐿 with different 

warrants.  
• Some groups referred to the technology that does not identify intersections between the 

limiting parallel lines. 
• Other groups referred to the interpretation of points in Klein model (e.g., points inside 

Klein disk) with assumption that the limiting parallel lines meet 𝐿 only at the boundary of 
the disk. 

Theme 3.2. Students referred to different aspects of diagrams when describing how limiting 
parallel lines separate parallel and non-parallel lines. 
• Some students described relationships between lines.  
• Some students identified particular region between diagrams inside the disk.  
• Some students compared measurements of angles. 

Theme 3.3. Students demonstrated different approaches to characterize limiting parallel lines 
using diagrams and mathematical concepts. 
• Some students described a procedure to construct the diagrams of the limiting parallel lines 

in Klein model.  
• Some students used the separation property of the limiting parallel lines to define them.  
• Some students brought in the concept of limiting mathematical objects. 

Theme 3.4. Students made different uses of examples of hyperbolic models to argue for an 
applicability of their descriptions of the limiting parallel lines. 
• Some students identified a feature common in hyperbolic models they observed in class, 

the existence of boundary circle.  
• Some students showed diagrams of the same construction that still works in two models of 

hyperbolic geometry they experienced in class. 
 

Theme 3.1. Students used different warrants to explain why limiting parallel lines are 

parallel. In the first question of the task, students created limiting parallel lines of a given 𝐿 that 

passes through a point 𝑃 not on the line 𝐿 using the parallel construction tool in GEX as 

instructed in class. They explored limiting parallel lines in Klein model of GEX and explained 

why they think those lines are parallel to the given line 𝐿. In their screencast presentation, three 

groups (Avery, Kim; Deming, Jing; Yin, Yong) selected a given line 𝐿 and one of the two 

limiting parallel lines, then showed that the software didn’t allow them to click the icon for the 
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intersection tool in GEX. For instance, Avery and Kim showed that there is no option activated 

to create an intersection in GEX when they selected the line 𝐿 and the limiting parallel lines 

(Figure 3.23).  

 

Snapshot (00:25) Group Avery, Kim 

 

DGE move Create a diagram 
DGE feature(s) Select a diagram 
Transcript (00:13-00:32) 
  
Kim: (00:13) So here we have a counter 

example of our angle RPR' 
intersecting line L. If we select line L 
and  

Kim: (00:25) our limiting parallel lines, 
there's no option to make a point of 
intersection in our GEX construction.   

Figure 3.23. Avery and Kim's response to the first questions in Task 3 

 

This means that GEX does not identify an intersection of those lines no matter what the 

diagrams look like to the students. The students took this response from the software (not 

allowing them to do further) as a warrant of non-existence of intersections. From there, they 

referred to the definition of parallel lines as non-intersecting lines and concluded that the limiting 

parallel line is parallel to the line 𝐿 because they are not intersecting each other. In this example 

of student reasoning, the DGE feature of identifying intersections of multiple diagrams was the 

warrant for their claims that limiting parallel lines are parallel even though those lines seem to 

meet at a point on the boundary circle.  

On the other hand, there were two groups (Ben, Tina; Deshi, Yao) who did not attempt to 

create an intersection between limiting parallel lines and 𝐿 in their presentation. They assumed 

that those lines meet only at a point on the boundary circle of the model. They argued that those 
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lines do not intersect each other in this model since the only intersection of them lies on the 

boundary circle, which is not included in the space of the model. For instance, Ben and Tina 

pointed at where the line L and one of the limiting parallel lines seem to meet on the boundary 

circle using the cursor on the screen and clearly explained that those lines technically didn’t 

intersect because boundary isn’t included in Klein disk (Figure 3.24). 

 

Snapshot (00:25) Group Ben. Tina 

 

DGE move Point at a diagram 
DGE feature(s) Move the cursor over diagrams 
Transcript (00:10-00:34) 
  
Tina: (00:10) So we think that the limiting parallel lines 

are possibly counter examples of, uh, Legendre's 
proof because the only potential intersection point 
is  

Tina: (00:25) over here out at the boundary line. And 
technically the boundary of the Klein disk isn't 
actually included in the Klein disk. So, they don't 
really intersect. 

Figure 3.24. Ben and Tina's response to the first question in Task 3 

 

In those groups’ reasoning, the warrant for the claim is primarily based on their 

observation of diagrams in GEX and interpretation of those diagrams based on their knowledge 

the way of Klein model in representing points. In this regard, the technology provided a warrant–

the non-existence of intersections–in the former example of student reasoning that may not need 

a further interpretation. 

Theme 3.2. Students referred to different aspects of diagrams when describing how 

limiting parallel lines separate parallel and non-parallel lines. Students explained how limiting 

parallel lines separate parallels and non-parallels of 𝐿 by describing different aspects of diagrams 

in their constructions. Students identified particular regions using relationship between diagrams 
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(Avery, Kim; Yin, Yong; Deshi, Yao), identified particular regions between diagrams using 

mathematical definitions of interior and/or exterior of angles (Bing, Eric, Jeremy; Ben, Tina; 

Emily, Naomi, Odessa), and compare measurements of angles (Deming, Jing). The followings 

are examples of those three types of student explanation of the separation of parallels and non-

parallels. First, Deshi and Yao identified where they can place an arbitrary ray 𝑃𝑅′''''''⃗  on the screen 

to find its intersection with the line 𝐿 or not in relation to diagrams of the limiting parallel lines 

(Figure 3.25).  

 

Snapshot (01:15) Group Deshi, Yao 

 

DGE move Point at a diagram 
DGE feature(s) Move the cursor over diagrams 
Transcript (00:34-00:58) 
  
Deshi: (00:34) In question 2, we try to take example 

or the counter example of this line so we can 
see this line is higher our… between the line 
the limiting line or this line and this line are 
examples of parallel lines. And between this 
line and…  

Deshi: (01:15) between these two limiting lines are 
the counter examples of the parallel lines 
intersect with the line L. 

Figure 3.25. Deshi and Yao's response to the second questions of Task 3 

 

In their presentations, they showed two examples of diagrams for 𝑃𝑅′''''''⃗  that represent 

particular regions inside Klein disk where the ray either intersects the line 𝐿 or not. In specifying 

both regions for parallels and non-parallels, they used the same verbal explanations that those 

regions are between the limiting parallel lines. However, they specified those different regions 

by pointing at different parts of the limiting parallel lines. This example shows that GEX feature 

was used to support students making accurate descriptions to present their ideas when their 
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language or diagrams were not specific enough to express the ideas. Similarly, Avery and Kim 

also identified those regions for parallel lines and non-parallels by describing where the arbitrary 

rays 𝑃𝑅'''''⃗  and 𝑃𝑅′''''''⃗  are underneath or above the limiting parallel lines. In this case, their verbal 

description relied on the diagrams on the screen in the moment that may not work if the entire 

construction flipped upside down. These groups were able to lighten the burden of using accurate 

and specific terms to specify figures by using relationships between diagrams on the screen. 

On the other hand, Emily, Naomi, and Odessa identified those regions for parallel lines or 

non-parallel lines by using mathematical definitions of interior and exterior of angles (Figure 

3.26).  

Snapshot (00:43) Group Emily, Naomi, Odessa 

 

DGE move Point at a diagram 
DGE feature(s) Select a diagram 
Transcript (00:17-00:58) 
  
Odessa: (00:17) Separating the examples and 

counter examples of Legendre's proof is time 
that this angle RPR', it meets this line L. 
Examples of this one. It doesn't meet this 
line L. So, in math terms, it's the RPR’ 

Odessa: (00:43) in the interior of this angle, parallel 
lines, which is the intersection of the two 
half planes that contain this line L. And our 
counter examples are when they fall in the 
exterior of the angles that you don't fall in 
that intersection of the half planes. 

Figure 3.26. Emily, Naomi, Odessa's response to the second question in Task 3 

 

They also started with describing relationship between an arbitrary ray 𝑃𝑅'''''⃗  and the 

limiting parallel line, but also recapped their demonstration using math terms, interior and 

exterior of angles, that were introduced earlier in class when they discussed plane separation 

postulate in Week 6. In brier, the interior of an angle ∠𝑋𝑌𝑍 is defined by the intersection of two 
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half planes of 𝑋𝑌'⃖'''⃗  and 𝑌𝑍'⃖''⃗  that contain each point 𝑍 and 𝑌. In their construction, the diagrams of 

the limiting parallel lines may represent four different angles at the intersection of the lines 𝑃 

because there were no particular points on the lines except 𝑃 that represent rays forming an 

angle. So, this group didn’t directly use the definition as describe above but modified the 

definition in their explanation to specify one of the four angles that contain the line 𝐿. It is 

notable that they attempted to provide a description of the separation using mathematical terms 

they had used in class.  

Theme 3.3. Students demonstrated different approaches to characterize limiting parallel 

lines using diagrams and mathematical concepts. Responding the third question in Task 3, 

students were asked to describe limiting parallel lines in a way that would be applicable to other 

possible models of hyperbolic geometry. They illustrated how to construct the diagrams of the 

limiting parallel lines in Klein model (Deming, Jing), used the property of the limiting parallel 

lines they explained in the second question (Ying, Yong; Bing, Eric, Jeremy; Emily, Naomi, 

Odessa), and brought in the idea of limit of mathematical objects (Avery, Kim; Ben, Tina; Bing, 

Eric, Jeremy; Deshi, Yao). To argue for an applicability of their descriptions of the limiting 

parallel lines, students identified a feature common in hyperbolic models they observed in class, 

the existence of boundary circle, and showed diagrams of the same construction that still works 

in another model of hyperbolic geometry.  

For instance, Deming and Jing described how to construct the limiting parallel lines and 

said that the limiting parallels can be obtained by identifying the intersections between the line 𝐿 

and the boundary circle and connecting those intersections to the point 𝑃 (Figure 3.27). Deming 

and Jing’s description is a pictorial illustration of the diagrams on the limiting parallel lines in 

Klein model that explained how they would draw those diagrams in Euclidean plane. In their 
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uses of GEX, they pointed at diagrams including the limiting parallel lines, the line 𝐿, and the 

two intersecting points on the boundary circle by moving the cursor over diagrams. In their 

recording, there was no argument for an applicability of their description in other models. 

 

 
Snapshot (02:10) Group Deming, Jing 

 

DGE move Point at a diagram 
DGE feature(s) Move the cursor over 

diagrams 
Transcript (01:59-02:26) 
  
Jing: (01:59) For questions 3, we think that if 

we find the intersection between the 
boundary of the circle and the line 𝐿,  

Jing: (02:10) there are two points, then we 
connect these two points to point P, so then 
extend it. So, these two lines are limiting 
parallels. 

 

Figure 3.27. Deming and Jing's description of the limiting parallel lines in Task 3 

 

Whereas Deming and Jing attended to the pictorial aspect of diagrams, there were other 

groups who attended to diagrams for explaining the property of the limiting parallel lines 

separating parallels and non-parallels. Emily, Naomi, and Odessa attended to the diagrams of 

parallels and non-parallels of the line 𝐿 separated by the limiting parallel lines (Figure 3.28). 

According to their description, the limiting parallel lines at a point 𝑃 to a given line 𝐿 are 

particular lines parallel to 𝐿 that separate parallel lines and non-parallel lines to 𝐿 passing thru 𝑃. 

This property allowed them to argue for an applicability to other models of hyperbolic geometry 

because there will be multiple parallel lines in any hyperbolic models. 

 



 108 

 

Snapshot (01:14) Group Emily, Naomi, 
Odessa 

 

DGE move Guided dragging 
DGE 
feature(s) 

Drag a diagram 

Transcript (00:59-02:00) 
  
Naomi: (00:59) The limiting parallel 

lines from question one, 
question two, you can say that 
it is the two parallel lines to the 
line L from point P that, um, 
that does not intersect the line 
L  

Naomi: (01:14) As you can see here, 
when the line is in the interior 
of the limiting parallel lines 
that, then it intersects the line L 
that it's in the exterior of the 
limiting parallel lines then it 
does not meet that point L. 
And we do think that this 
description is applicable in any 
models of hyperbolic geometry 
because in the hyperbolic 
geometry there is always 
unlimited amount of parallel 
lines thru a point not on the 
line, but there's only one or 
two lines that's the closest to 
that point. 

 
Figure 3.28. Emily, Naomi, Odessa's description of the limiting parallel lines in Task 3 

 

Bing, Eric, and Jeremy also described the limiting parallel lines using the separation 

property by demonstrating an arbitrary ray 𝑃𝑅'''''⃗  moving across the limiting parallel lines (Figure 

3.29). In this presentation, Bing, Eric, and Jeremy described the limiting parallel lines as 

boundaries of multiple parallel lines to the line 𝐿. 
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Snapshot (01:37) Group Bing, Eric, Jeremy 

 

DGE move Guided dragging 
DGE feature(s) Drag a diagram 
Transcript (01:24-01:50) 
  
Jeremy: (01:24) I think a good way to describe these 

limiting parallel lines is a boundary to, um, to 
raise that no longer intersect line L because 
right here at the boundary point. It's the,  

Jeremy: (01:37) well, it's the first line or you run into 
counter examples that don't interact with the 
line L at all. And then from there you're in this 
area where there's no intersection. 

Figure 3.29. Bing, Eric, Jeremy's description of the limiting parallel lines in Task 3 

 

They demonstrated the dragging of an arbitrary ray 𝑃𝑅'''''⃗  underneath the right limiting 

parallel line where it intersects 𝐿	then no longer intersects as it moves upward across the right 

limiting parallel line. They tried to specify the right limiting parallel line by dragging the ray 𝑃𝑅'''''⃗  

toward it from the underneath and argued that the first line that no longer intersects with the line 

𝐿 is the limiting parallel line.  

Theme 3.4. Students made different uses of examples of hyperbolic models to argue for an 

applicability of their descriptions of the limiting parallel lines. The last theme of student 

engagement in mathematical reasoning about limiting parallel lines in Task 3 was to use the idea 

of taking a limit of diagrams or measurements on the screen. Students pointed at or dragged a 

diagram representing an arbitrary ray from 𝑃 towards the intersection between the line 𝐿 and the 

boundary circle. In those cases, students demonstrated a process of taking the limit of those lines 

approaching to the limiting parallel lines, especially to the intersecting point at the boundary 
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circle. For instance, Avery and Kim explained that the limiting parallel lines of a line 𝐿 are lines 

that are arbitrarily close to 𝐿 but do not intersect it 

(Figure 3.30). 

 

Snapshot (01:16) Group Avery, Kim 

 

DGE move Point at a diagram 
DGE feature(s) Move the cursor over diagrams 
Transcript (01:06-01:21) 
  
Avery: (01:06) We would call them the parallel lines that 

get arbitrarily close to line, L or whatever, 
whatever your line is that you're making a parallel 
line to. In this case it was line L.  

Avery: (01:16) So there're, there’re those parallel lines, 
again, arbitrary close to line L without ever 
actually intersecting it. Um, and we do believe 
that this description is applicable in any models of 
hyperbolic geometry because all the models of 
hyperbolic geometry have that boundary circle. 
Um, and that's kind of the key of how they're 
constructed is. 

 
Figure 3.30. Avery and Kim's description of the limiting parallel lines in Task 3 

 

Although it was not clear in their verbal statement that the limiting parallel lines and 𝐿 

are arbitrarily close to each other, they seemed to indicate that those two lines are getting 

arbitrarily closer to each other as approaching to the boundary circle where they actually meet. It 

reminded of a graph of a function on the two-dimensional coordinate plane where the function 

goes to 0 as the independent variable 𝑥 goes to the infinity. However, they emphasized that the 

limiting parallel lines do not ever actually intersect 𝐿 although it gets arbitrarily close to 𝐿 around 

the boundary of the circle. In addition, their argument for an applicability of their description 

indicated that they emphasized the role of the boundary circle in this model and possibly other 
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models of hyperbolic geometry. The boundary circle is the key feature of hyperbolic models for 

them. In the other example of this theme, Ben and Tina also described the limiting parallel lines 

in terms of limit, specifically the limit of the sequence of angle ∠𝑅𝑃𝑅’ as the ray 𝑃𝑅'''''⃗  approaches 

to the line 𝐿 (Figure 3.31).  

 

Snapshot (01:16) Group Ben, Tina 

 

DGE move Guided dragging 
DGE feature(s) Drag a diagram 
Transcript (01:12-01:21) 
  
Tina: (01:12) So to describe the limiting parallel 

lines, we described them in terms of limit. As 
we see this angle, RPR' get larger and larger. 
We think it in terms of how it moves along 
our original line L.  

Tina: (01:26) We think of it in terms of 
approaching the edges of the line L limiting 
parallels or the point at which RPR' will no 
longer intersect this original line kind of right 
here. So, the limiting parallels or the point at 
which RPR' no longer intersects line L.  

 
Figure 3.31. Ben and Tina's description of the limiting parallel lines in Task 3 

 
Ben and Tina demonstrated ∠𝑅𝑃𝑅’ getting larger as they moved 𝑃𝑅'''''⃗  towards to the right 

limiting parallel line. According to their descriptions, limiting parallel lines are the limit of the 

𝑃𝑅'⃖'''⃗  and 𝑃𝑅′'⃖''''⃗ as ∠𝑅𝑃𝑅’ gets larger. As the angle gets larger, the intersecting point between 𝑃𝑅'''''⃗  and 

𝐿 approaches the boundary circle (or what they called the edge of 𝐿) where the line no longer 

intersects 𝐿. In this description, the boundary of the disk provided the representation of the limit 

point in this limiting process. With that in mind, it is not surprising that the boundary circle is the 

key feature of hyperbolic geometry for them that made their description applicable for other 
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hyperbolic models. They also mentioned that the angle measurement is the other key element in 

their description and exists in other models like Poincaré model. 

In sum, students engaged in mathematical reasoning about limiting parallel lines in Task 

3 where they justified why they are parallel to the given line, explore properties thereof, and 

described the figures in their own terms that can be applicable to other models of hyperbolic 

geometry. When they explained why limiting parallel lines are parallel to the given line, some 

groups relied on the software that does not identify intersection between lines while others 

reminded of how points are interpreted in Klein model and concluded that the limiting parallel 

lines are not intersecting the given line because they only meet outside of the set of all points. In 

the following questions, students explained how limiting parallel lines separate parallels and 

non-parallels by describing different aspects of diagrams in their constructions. Students 

identified particular regions using relationship between diagrams, identified particular regions 

between diagrams using mathematical definitions of interior and/or exterior of angles and 

compare measurements of angles. Responding the last question of the task, students described 

limiting parallel by illustrating how to construct the diagrams of the limiting parallel lines in 

Klein model, using the property of the limiting parallel lines they explained in the second 

question, and bringing in the idea of limit of mathematical objects. To argue for an applicability 

of their descriptions of the limiting parallel lines, students identified a feature common in 

hyperbolic models they observed in class, the existence of boundary circle and angle 

measurements, and showed diagrams of the same construction that still works in another model 

of hyperbolic geometry. 

As the students engaged in the mathematical reasoning, DGEs provides students with 

warrants of their claims (e.g., identifying intersections), reference to specific mathematical 
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objects they mentioned, and tools to demonstrate mathematical situation (e.g., limiting process) 

in their presentations. In their ways of using DGE features for those purposes, there were 

differences in their interactions with diagrams in DGE ranging from attending to the pictorial 

aspect of the drawings to interpreting the meanings of what they see on the screen to connecting 

diagrams to their mathematical knowledge (e.g., limiting process). 

Students’ Engagement in Axiomatic Reasoning 

In this section, I describe students’ engagement in axiomatic reasoning that were 

identified across the three enacted tasks. As addressed in the theoretical framing of this study, 

axiomatic reasoning means making purposeful inferences about meta-mathematical objects 

including axioms, systems of axioms, and models of systems. The previous analyses of students’ 

use of GEX and their engagement in mathematical reasoning informed of themes to describe 

how students reasoned about those meta-mathematical objects. In this perspective of axiomatic 

reasoning, students’ enactment of the task sequence entailed distinguishing different systems of 

geometries, and characterizing limiting parallel lines applicable to all possible models of 

hyperbolic geometry (Table 3.13).  

 

Table 3.13. Case themes of students' engagement in axiomatic reasoning in the task sequence  

Case themes 
Theme 4.1. Students distinguished their perceptions of diagrams and mathematical 
knowledge in Klein model from their prior experience in Euclidean geometry. 
• Some students referred to the different way of measuring figures in Klein model when 

accommodating their observations on diagrams in GEX.  
• Some students examined diagrams in Klein model to reassure the knowledge they had 

from prior experiences in Euclidean geometry. 
Theme 4.2. Students characterized hyperbolic geometry using concrete models. 
• Students characterized limiting parallel lines in hyperbolic geometry with using features 

common in two particular models they observed in class, Klein model and Poincaré model.  
• Students perceived features of hyperbolic geometry including parallelism and boundary of 

disks. 
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Theme 4.1. Students distinguished their perceptions of diagrams and mathematical 

knowledge in Klein model from their prior experience in Euclidean geometry. When 

students investigated Klein model, they tried to distinguish perceptions of diagrams and 

mathematical knowledge in Klein model from their prior experience in Euclidean geometry. 

First, students referred to the particular ways of measuring distance and angles in Klein model 

when they encountered unexpected or unwanted results from Klein model. For instance, Avery 

and Kim encountered diagrams of a perpendicular line in Klein model that didn’t look like what 

they would expect to see if it were in Euclidean plane (See Figure 3.32).  

 

Figure 3.32. The perpendicular line (highlighted) to 𝑃𝑄;;;; at 𝑃 in Avery and Kim’s construction of 
Legendre’s attempted proof of EPP 
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In the screenshot above in Figure 3.32, Avery and Kim used the perpendicular 

construction tool in GEX (see the cursor on the icon) and obtained the highlighted line that was 

returned by the software. Their reactions to this perpendicular line in Klein model recorded in the 

video indicated that they were surprised about what they saw on the screen. But then soon after 

Avery reminded of Klein angle measurement that is not the usual angle measurement they 

expected to see. 

Avery: Yes, yes, then perpendicular. 

Kim:  Baam [Kim clicked the icon for construction the perpendicular.] 

Avery: Wow. Woohoo. It's got to be… it, it must be a perpendicular. It's got to be. 

Both:  (Giggling) 

Avery: Remember this is like the orthogonal circles and stuff like that. 

Kim:  Yeah. 

Avery: Alright. Okay. 

Kim:  Yeah. It's probably? 

Avery: It... It has to be. 

Kim:  Okay 

They seemed convinced of this diagram of perpendicular line created by GEX tool when 

Avery reminded that Klein model has its own way of measuring angles using orthogonal circles 

different from Euclidean measurement. However, it wasn’t easy for them to fully accept and feel 

confident that this is the perpendicular line they expected. This shows their intuitive sense of 

geometric diagrams (e.g., how two perpendicular lines would look like) that led this reaction to 

what GEX returned them when they executed the perpendicular construction tool of GEX in 

Klein model. They reminded of what they know about the angle measurement in Klein model 
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and tried to convince themselves of that the diagram could be correct despite the gap between 

what they thought they created and what they saw on the screen. Furthermore, they enforced 

themselves (e.g., “it’s got to be”, “it has to be”) in interpreting diagrams of perpendicular lines in 

Klein model but still seem to feel uncomfortable with it.  

Later in the same task, Avery and Kim were doubt about two congruent line segments 

created by the reflection tool in GEX. When they completed the construction as described in the 

material, they didn’t see any problems in their construction that included ray 𝑃𝑅'''''⃗  intersecting 𝑙 so 

tried to identify a hidden assumption that should have made their construction fail. The first 

statement they revisited to confirm in their construction is the congruence of the line segments 

𝐴𝑃;;;; and 𝐵𝑃;;;; (See Figure 3.33 below).  

 

 

Figure 3.33. Congruent line segments 𝐴𝑃;;;; and 𝐵𝑃;;;; in Avery and Kim’s construction of 
Legendre’s attempted proof of EPP   
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What they saw on the screen didn’t look congruent. So, they used the measuring tool of 

GEX to see if they are congruent. At this point, their conjecture of a hidden assumption is the 

congruence of line segments created by reflection although the construction didn’t fail. 

Kim: Should I measure these side lengths? Cause this [𝐴𝑃;;;;] doesn't look equivalent to 

that [𝐵𝑃;;;;]. 

Avery: Because what doesn't... 

Kim: Like 𝐴𝑃;;;; doesn't look like 𝐵𝑃;;;;. 

Avery: Yeah. Why don't we measure some of these guys? 

Kim: Let's just test it. 

Avery: Alright 

Kim: Measure. Uh... man... What's wrong? Stop that [Kim selected a wrong diagram on 

the screen]. Distance from 𝐴 to 𝑃. Let's try 𝐵 to 𝑃. [When she saw the same 

length] Okay, bamboozled. So, what's the hidden assumption? 

The diagrams in Klein model bamboozled the students. They were surprised a bit when 

GEX showed the same length measured for both line segments in their test on the congruence. 

Avery measured other corresponding pair of line segments in the triangles, 𝐴𝑄;;;; and 𝐵𝑄;;;;, 

following the conversation above, but those were turned out to be congruent as well. Their 

perceptions on length conflicted to those diagrams in Klein model, and that led them to use GEX 

tools to test their conjectures–the line segments reflected each other are not congruent.  

To summarize both examples from this group, Avery and Kim encountered diagrams of 

perpendicular lines and congruent line segments in Klein model that conflicted the ways in 

which they were used to interpret those in Euclidean plane. To interpret those ‘bamboozling 

diagrams’, they recalled their previous work in construction Klein angle measurement function 
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or tested the diagrams using GEX tools. This indicates that students’ experiences in GEX tasks 

and available tools provided resources (e.g., construction of Klein angle measurement function, 

measuring tools) for them to accommodate these conflicts when they were engaging in axiomatic 

reasoning. However, the students were not fully convinced with their test on the congruent line 

segments and concluded in their recording that the hidden assumption in this construction was 

the reflection which may not always produce congruent line segments in Klein model.  

Another example of distinguishing between different geometries was students’ conscious 

doubt about their knowledge from Euclidean geometry when they worked in Klein model. For 

instance, Deshi and Yao didn’t assume Side-Angle-Side (SAS) triangle congruence in Klein 

model when they created two triangles ∆𝐴𝑃𝑄 and ∆𝐵𝑃𝑄 as described in Legendre’s attempted 

proof of Task 2. After they demonstrated that those triangles satisfy SAS condition (𝐴𝑃;;;; = 𝐵𝑃;;;;, 

∠𝐴𝑃𝑄 = ∠𝐵𝑃𝑄, 𝑃𝑄;;;; shared), they didn’t directly conclude the triangle congruence. Rather they 

said that it might not hold in Klein model and need to test the congruence of the other 

corresponding sides 𝐴𝑄;;;; and 𝐵𝑄;;;;. This indicates that the students distinguished different 

geometries where a known mathematical knowledge may or may not be applicable. The students 

nullified their knowledge about triangle congruence from Euclidean geometry and wanted to 

reassure that in Klein model. They used the measuring tool of GEX to check the other pair of 

corresponding sides, 𝐴𝑄;;;; and 𝐵𝑄;;;;, and confirmed that all three pairs of corresponding sides are 

congruent, which in turn, conclude that the triangles are congruent. 

In sum, the analysis of students’ screencast presentation in Klein model of hyperbolic 

geometry showed that the students reasoned about differences in hyperbolic and Euclidean 

geometries. Students encountered diagrams with measurements in Klein model that conflicted to 

their perceptions of those in Euclidean geometry. To accommodate those conflicts, they used 
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measuring tools in GEX and recalled the particular interpretation of angle measurement 

functions in Klein model. In addition, students doubted what they know about figures in 

Euclidean geometry and tried to confirm that knowledge in Klein model. As they engaged in 

axiomatic reasoning,   

Theme 4.2. Students characterized hyperbolic geometry using concrete models. In 

the enacted task sequence, characteristics of hyperbolic geometry emerged as the students 

interacted with Klein model in GEX and explored diagrams thereof. In particular, they reasoned 

about diagrams in the construction of Legendre’s attempted proof and limiting parallel lines of 

Klein model in Task 3. As reported in the previous section on students’ enactment of Task 3, 

they described limiting parallel lines in different ways such as illustrating how to construct 

limiting parallel lines in Klein model, elaborating the property of the limiting parallel lines, and 

bringing in the concept of limiting mathematical objects. To argue for an applicability in each of 

their descriptions of limiting parallel lines to all possible models of hyperbolic geometry, they 

drew on prior experience with axioms and models of hyperbolic geometry in which they 

characterized using parallelism and boundary of disks. 

Parallelism in hyperbolic geometry. Students were introduced two contrasting parallel 

postulates, Euclidean and hyperbolic parallel postulates at the beginning of the task sequence. 

The independence of those postulates was one of the major objectives of the task sequence 

presented to students in class. Some students referred to those different parallel postulates to 

describe and explain their observations of diagrams in hyperbolic model comparing to Euclidean 

plane in Task 2 and Task 3. For instance, there were two groups (Bing, Eric; Deming, Tina) who 

specifically mentioned Euclid’s fifth postulate to explain why Legendre’s construction didn’t 

work in Klein model. In particular, they brought this to compare why the construction would 
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work in Euclidean but not in Klein model by interpreting the Euclid’s fifth postulate to explain 

counter-examples of the attempted proof. In their reasoning, the construction fails in Klein model 

because the Euclid’s fifth postulate didn’t work. For instance, Bing and Eric wrote for Task 2 

where they argued that Euclid’s fifth postulate is the hidden assumption that Legendre had 

assumed in this construction, especially for the fourth step.  

“[…] The hidden assumption is that the ray 𝑃𝑅’ does intersect line 𝑙 in Klein’s model 

even though they may not. In Euclidean geometry, this assumption will hold for the lines 

do stretch to infinity, thus the lines must intersect before infinity. In step 4, it is assuming 

that since 𝑄 is in the interior of angle 𝑅𝑃𝑅′ (step 3), and 𝑙 passes through 𝑄, 𝑙 must 

intersect one of the sides of angle RPR’ by Euclid’s V postulate (sum of the angles is less 

than 180, on one side of the intersecting line). ” (Bing and Eric’s written response in Task 

2) 

In this response, Bing and Eric claimed that the hidden assumption is Euclid’s V 

postulate that holds in Euclidean plane but not in Klein model with a boundary. In other student 

work in Task 3, students relied on the multiple parallel lines when they argued for an 

applicability of their descriptions of limiting parallel lines that separate parallels and non-

parallels. When they claimed that their description is applicable in any hyperbolic models, the 

students referred to the hyperbolic parallel postulate that gives infinitely many parallel lines that 

could be separated from non-parallel lines in some ways.  

Boundary in hyperbolic models. One of the key features of hyperbolic geometry that 

students perceived from the two particular models in class, Poincaré model and Klein model, was 

the existence of boundaries. Students observed those models before and during the task 

enactment and characterized hyperbolic geometry using features of diagrams common in both 
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models. This abstraction from the limited number of examples of hyperbolic models led them to 

characterize hyperbolic geometry with boundary circle of the disks. In fact, one of the most 

significant and explicit features common in those two models is the existence of the boundary 

circles. This individual characteristic common in both the models was considered a key feature 

of hyperbolic geometry so students assumed that there must be such boundaries in any models of 

hyperbolic geometry. It is shown in their responses to Task 3 that students described limiting 

parallel lines using the Klein disk and argued that their description would work for any model of 

hyperbolic geometry where they could find a boundary. As reported in the previous section of 

the students’ enactment of Task 3, most groups used the boundary circle of Klein model to create 

a description applicable to any models of hyperbolic geometry. Four of them (Avery, Kim; Ben, 

Tina; Emily, Naomi, Odessa; Yin, Yong) specifically mentioned the existence of boundaries in 

any models of hyperbolic geometry in their written responses (See Appendix G). For instance, 

Ben and Tina described the limiting parallel lines using a sequence of lines intersecting the given 

line 𝑙 and argued for its applicability in their screencast presentation as follows. 

Tina: We do think that this description is applicable to other models of hyperbolic 

geometry because the main features that we used to describe this are the boundary circles, 

which we also have other models of hyperbolic geometry. 

Though they described limiting parallel lines as limits of sequences of parallel lines 

earlier in their recording, they needed the boundary of the model to argue for the existence of 

limits of those sequence. Given their observations on the boundaries in Poincare and Klein 

models, they assumed that such boundary circles exist in other hyperbolic models where their 

description of limiting parallel lines would work as well.  
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In sum, students engaged in axiomatic reasoning about key feature of hyperbolic 

geometry when they argued for the applicability of their descriptions of limiting parallel lines. 

Two different types of characteristics of hyperbolic geometry emerged. The first characteristic is 

the hyperbolic parallelism that allowed them to assume multiple parallel lines in any models of 

hyperbolic geometry and particular lines that separate parallel and non-parallel lines as they 

observed in the earlier task. The other characteristic of hyperbolic geometry is the structural 

feature common in Poincare and Klein models, the boundary circles, as they identify limiting 

parallel lines as lines that meet the given line on the boundary circles. In both types, students’ 

descriptions of limiting parallel lines stem from their observation and interaction with diagrams 

in GEX. However, it is notable that the first type entails students’ attentions to the parallel 

postulates that distinguish hyperbolic geometry to Euclidean geometry whereas the other type 

resulted from abduction from their experience with two concrete models.   

Summary of Findings 

The analysis of the enacted task sequence of this study showed how the participating 

students used various features in GEX while engaging in reasoning on mathematical and meta-

mathematical objects. I summarize the findings from the analyses of the enacted task sequence to 

answer the three research questions posed in this study. 

Answers to RQ1: Students’ uses of GEX. In all three of the tasks enacted in this study, 

the analysis of DGE features and DGE moves revealed students’ purposeful uses of DGE 

features responding the tasks. Students used DGE features for different purposes as identified in 

various DGE moves they made in their screencast presentations. To point at a particular diagram, 

for instance, students moved the cursor to the diagram, clicked the diagram, or dragged the 

diagram. The most frequent uses of GEX in all three tasks was to point at particular diagrams on 
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the screen while presenting their work to the audience or discussing with peers. Students moved 

the cursor over the diagrams, selected the diagrams, dragged the diagrams, and dragged the 

cursor to enclose parts of diagrams when they engaged with reasoning about the figures 

represented by the diagrams. In some cases, such pointing moves in GEX were subsidiary to 

their verbal statements in the sense that their verbal descriptions were specific enough to identify 

particular diagrams on the screen without the pointing moves. The audience wouldn’t need to 

watch the video to understand what the presenters meant. On the other hand, there were cases 

when students relied on pointing moves more than their verbal specification to specify geometric 

objects and phenomena such as certain parts of a diagram or a space that cannot be separated 

without adding new symbols or specific movements of diagrams by dragging (e.g., when a 

diagram moves to here). In the latter, pointing moves reduced students’ cognitive loads to use 

precise definitions and symbols to identify particular diagrams as well as allowed them to 

express their mathematical ideas referring to movements, changes, and measurements of 

geometric objects that would not be captured in static pictures or written/verbal statements. 

Enacting each task involving different natures of mathematical activities, students used 

DGE features to construct diagrams and investigate properties of diagrams. In particular, 

students used the drag feature to demonstrate variant or invariant properties of diagrams that 

represent arbitrary geometric figures. Students switched their dragging strategies between 

wandering and guided dragging as they generated, specified, and tested conjectures using 

empirical evidence obtained from concrete examples in DGEs responding the students’ dragging. 

For instance, students dragged diagrams for arbitrary angles in Klein model to demonstrate that 

the diagrams keep preserving certain properties to meet the angle postulates in Task 1 or 

identified counter-examples of the given proof in Task 2. They used wandering dragging to 
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survey overall changes in diagrams and switched to guided dragging as they identified 

interesting geometric phenomena in the varying diagrams and tried to look for particular 

instances to demonstrate their conjectures responding given questions in the task.  

Answers to RQ2: Students’ engagement in mathematical reasoning and roles of 

GEX. In the enactment of the task sequence, students verified their construction of Klein angle 

measurement function with respect to the five angle postulates in the system of hyperbolic 

geometry, constructed and analyzed Legendre’s attempted proof of EPP in Klein model, and 

develop the concept of limiting parallel lines in hyperbolic geometry. The analysis of this study 

revealed how students engaged in mathematical reasoning on the focal mathematical objects that 

were centered in each task (See Table 3.5, 3.9, 3.12).  

In each case of mathematics reasoning, DGE moves associated with the identified case 

themes showed that students used DGEs to communicate their mathematical ideas and to 

examine mathematical statements describing properties of geometric objects within axiomatic 

systems and models of hyperbolic geometry. In Task 1, DGEs allowed students to create Klein 

model in Euclidean plane so that they interacted with diagrams by referring to diagrams and 

measurements as they verified their models with respect to the angle postulates of the hyperbolic 

geometry system. For instance, the existence and uniqueness of corresponding diagrams and 

measurements provided warrants to their arguments for well-definedness, injectivity, and 

surjectivity of Klein angle measurement function. The dragging feature of DGEs supported 

students investigating the range of the measurement function, especially when they generated, 

specified, and tested their conjectures on the angles with measurements close to 0° or 180° or 

local geometric phenomena in their construction such as what happened when the line passes 

through the center of the Klein disk. In Task 2, students transformed the written geometric 
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construction in Legendre’s attempted proof and analyzed this working construction to identify 

counter-examples to EPP in Klein model and the hidden assumption in his proof. DGEs allowed 

students to critically assess each step of the proof by changing draggable points that represent 

arbitrary figures. This connects to students’ characterization of limiting parallel lines in Klein 

model while DGEs provided them with draggable arbitrary lines that represent parallel and non-

parallel lines separated by the limiting parallel lines. 

Answers to RQ3: Students’ engagement in axiomatic reasoning and roles of GEX. In 

the enactment of the task sequence, students engaged in axiomatic reasoning on axioms, models, 

and systems of axioms regarding Euclidean and non-Euclidean geometry (See Table 3.13). As 

they analyze Legendre’s attempted proof that only works for Euclidean geometry, students 

distinguished their perceptions of diagrams and mathematical knowledge in Klein model from 

their prior experience in Euclidean geometry. They referred to the different way of measuring 

figures in Klein model when accommodating their observations on diagrams in GEX. DGE 

allowed students to examine properties of diagrams in Klein model to determine if the 

knowledge they had from prior experiences in Euclidean geometry also hold in hyperbolic 

geometry. When they characterized limiting parallel lines in hyperbolic geometry, students 

referred to perceived features common in two Klein model and Poincaré model. Those perceived 

features of hyperbolic geometry, parallelism and boundaries of models, were developed though 

their interactions with DGEs during the task enactment. 

Discussion 

Task Design for Effective Use of DGEs 

The case themes of student engagement in mathematical reasoning and axiomatic 

reasoning while using DGEs in this study indicated that students may have different 
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interpretations of what they need to do for achieving the tasks. The differences in length, types, 

use of DGEs were affected by their interpretation of the nature of mathematical activities asked 

to respond the tasks. Understanding students’ ways of interpreting and enacting tasks is essential 

part of reflecting and revising task designs. It is notable that the focus is not on forcing students 

to follow one particular pathway of enacting such tasks rather on maximizing the affordance of 

the tools for their own learning. In this regard, Ainley & Margolinas (2015) argued for an 

importance of understanding students' perceptions of mathematical tasks comparing to intentions 

of teachers and task designers and that such gaps between student perception and intentions in 

task design may result in missing opportunities to learn. They pointed out that it is important for 

teachers implementing tasks in class to recognize didactic contract and milieu that affect 

students' task enactment. To minimize such gaps, the authors argued for an importance of 

recognition of students' implicit rules developed previously and/or during the task enactment in 

class so that teachers understand unexpected responses from their students. 

The findings of this study indicated that there exist the participating students’ implicit 

rules in using DGEs in their argument, producing an acceptable presentation in the form of video 

recordings. For instance, some students (e.g., Yin and Yong) wanted to and were willing to share 

their process of construction and unfinished diagrams in the submitted presentation, whereas 

other students (e.g., Ben and Tina) created recordings as if they were verbally reading aloud their 

written arguments with necessary amount of using DGEs on their screen. This shows students 

executed their agencies when interpret what if means to produce screencast presentations to 

make argumentation ranging from experimental exploration to more formal mathematical proofs. 

Although the findings of this study didn’t explicitly imply how such differences affect student 

learning, it is notable that the analysis revealed students’ active engagement in making their own 
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meaning of those mathematical tasks in technology-rich environments and that the awareness of 

such difference would help teachers and task designers to better understand what students 

created responding the given tasks as addressed in Ainley and Margolinas (2015). 

Another example of students’ implicit rules is the extent to which they were thoroughly 

demonstrate concrete examples in their audiovisual argumentation. To verify the angle postulates 

in Klein model, the participants in this study used DGEs to possibly convince themselves, 

convince their peers, convince the audience of their presentations, or create mathematical 

products to achieve the given tasks providing with evidence of their knowledge and skills asked 

in this coursework. The literatures addressed this issue of different student usage of DGEs that 

are affected by types of tasks in which students are making meaning of given mathematical 

statements or claims. For instance, Hollebrands and colleagues (2010) identified different uses of 

DGEs involved in students’ argumentation. Depending on types of arguments students produced, 

they used DGEs in different ways. In particular, the participants didn't use technology when 

provided explicit warrants for their justification and proof except reference to particular diagrams 

on the screen from which they reason. On the other hand, they used DGEs more actively when 

they were unsure as to the validity of a claim or to qualify (i.e., qualifier in Toulmin’s 

framework) the claim with uncertainty by generating new data from measurement and dragging. 

Their studies indicate that students use DGEs purposefully and possibly as least as they think 

needed for their arguments. It connects to different purposes of proofs and roles of empirical 

evidences in DGEs (de Villiers, 1998). Olive (2000) distinguished students' convincing evidence 

from DGEs to a formal proof and explain that students would regard those evidence as a proof if 

they only see a verifying purpose of proof except other purposes suggested by de Villiers 

including explanation. In other words, students who already convinced of a statement by 
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authority of teachers or textbook as external convince (Harel & Sowder, 1998) may not see a 

need for more empirical evidence or formal proof for the statement. In that regard, the task of 

verification of Klein angle measurement function in this study wasn't effective in soliciting 

students to thoroughly engage in generalization of diagrams. Students with external conviction 

(Harel & Sowder, 1998) of the validity of the model didn't seem to need for additional evidence 

from more examples by dragging diagrams. One way to motivate such students would be to ask 

them further explanation why the function satisfies angle postulates or when their constructions 

would likely to fail as some of the groups (e.g., Bing & Eric) voluntarily investigated and 

reported in their recordings.  

Using DGE for Supporting Mathematical Communication 

The most frequent DGE moves identified from student work throughout the task 

enactment was the pointing moves that are students’ purposeful behavior on the screen to 

indicate particular diagrams, measurements, or software tool icons. The analysis of audiovisual 

data of student work in GEX revealed that students made the pointing moves not only for 

presenting their work to the audience (e.g., instructor) but also to communicate with their peers 

while constructing figures in collaborative environment with sharing a device. In particular, the 

students were able to use less definitive terms (e.g., this, that, here) in their communication to 

indicate particular diagrams by pointing, selecting, dragging, and coloring them on the screen. 

Though one may argue that this can be done with a paper-and-pencil diagrams in printed 

materials, it is notable that this analysis implies that the students were able to interact with 

diagrams in DGE in ways much the same as how they would have done with printed diagrams 

and that this digital environment successfully functioned to transfer the traditional and important 

role of the pencil-and-paper diagrams. Moreover, additional features only available in DGE 
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allowed students to label, color, and rearrange diagrams more easily than ever. More 

importantly, students were able to communicate what and how they would like to change 

existing diagrams on the screen by dragging them without losing the geometric feature of the 

figures represented by those diagrams. The frequent uses of DGE for reference during 

collaborative work reassures an important role of DGE in supporting user’s mathematical 

communications by amplifying and reorganizing ways of demonstrating their ideas using 

features that aren’t easy or possible in traditional environment with printed diagrams.  

Using Screencast Environment in the Task Enactment 

Real-time response to dynamic changes in diagrams. Student reasoning captured in 

screencast presentation was affected by a particular technology environment used in this study 

where students manipulate diagrams on the screen and explained specific aspects of those 

varying diagrams in real-time. During the task enactment, students recorded their responses to 

given questions of tasks using screencast software. In the recordings, students were encouraged 

to use diagrams they had on the screen and to refer specific aspects of the diagrams as much as 

they need to produce their responses to the questions. Though the DGE features and DGE moves 

varied across groups and types of questions as reported in the analysis above, some groups used 

DGE features to make changes in the given constructions by creating, measuring, or dragging 

diagrams and referred to those changes in their verbal presentations. While referring to those 

dynamic changes made in their presentation, some groups encountered unexpected or undesired 

results that were not consistent with claims they were making in the presentations. In such cases, 

there were different types of responses to accommodate those inconsistent results. Some students 

paused their manipulations in GEX and verbal presentations for a while but ignored the 

inconsistent results and moved on without any further explanation. Also, there were some 
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students paused and attempted to accommodate the inconsistency by changing figures or 

interpreting figures in a different way. In some cases, students argued for technical limitations of 

software that may cause the results.  

Different interpretations of creating screencast presentations. In addition, students 

seemed to have different interpretations of the task in terms of expectations and nature of the 

screencast presentation they were supposed to produce to complete the task. The analysis showed 

differences between each group’s presentation of the ways in which they referred to visual 

representations while verbally explaining their ideas. In addition, students seemed to have 

different interpretation of what they were supposed to create to complete the tasks. For instance, 

Ben, Deming, and Tina produced relative short, succinct, and summative presentation to report 

their final products that consist of completed constructions and speech with well-formed 

sentences. There were no DGE feature or DGE moves made by accident or any cases they got 

unwanted or unexpected results from the software. Due to the limitation of the data collected in 

this study, all their work except the part recorded in their presentations were accessible in the 

analysis. So, the analysis doesn’t inform any of those work outside the presentation, but at least, 

it implies what they wanted to include in the screencast presentation to represent their response 

to the given tasks. This implies that their interpretation of screencast presentation might prohibit 

them from interacting with diagrams while presenting their work because it might cause 

situations they didn’t want to show in the recordings. On the other hand, other groups with 

longer recording often showed trial and errors in their manipulation of diagrams on the screen so 

their presentations included more active interaction with diagrams as well as their real-time 

response to what the software responded their manipulation. In sum, creating a screencast 

presentation to submit their work for the task was interpreted differently in groups and produced 
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different output in terms of their length, reference to diagrams, and interaction with dynamic 

diagrams. A question would be to see if how we can compare this difference in student 

interpretations of screencast presentation to their perception of written mathematical work such 

as well-constructed proof versus scratch work and how those interpretations informed us of 

student exercising their agencies during the task enactment where they can choose to go beyond 

simply answering the given task in a limited form.   

Conclusion 

In this chapter, I presented an empirical study on students’ uses of DGEs and their 

engagement in mathematical reasoning and axiomatic reasoning while they enacted a task 

sequence in an axiomatic geometry course. The analysis of this study showed that students used 

DGEs for specific purposes with respect to the mathematical activities they engaged in 

responding the given tasks. DGEs provided students with experimental tools to model geometric 

figures and phenomena in hyperbolic geometry. Students reasoned about mathematical and meta-

mathematical objects involved in the enacted tasks in which they used DGEs to express their 

mathematical ideas and to examine mathematical statements describing properties of geometric 

objects within axiomatic systems and models of hyperbolic geometry. 

The analysis of students’ uses of DGEs provided empirical evidence for pedagogical 

roles of technology on supporting students in communicating their mathematical ideas and 

engaging in advanced mathematical reasoning. These findings enrich and reassure the discussion 

on effective uses of DGEs for student learning in the extant literature. First, the pointing moves 

identified in this study indicated that DGEs were used for supporting students’ verbal statements 

in the screencast presentation and expressing ideas in group discussions. Though some pointing 

moves were subsidiary to students’ verbal statements so the audience wouldn’t need to see the 
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diagrams. Other pointing moves play significant roles in completing verbal statements by 

specifying geometric objects and phenomena. The latter cases of pointing moves were identified 

when students wanted to point at certain parts of a diagram or a space that cannot be specified 

with existing labels or specific movements of diagrams by dragging (e.g., when a diagram moves 

to here). This implies that pointing moves support students’ mathematical communications by 

providing alternative ways of referring to precise definitions and symbols and by allowing 

students to express their mathematical ideas referring to movements, changes, and measurements 

of geometric objects that would not be captured in static pictures or written/verbal statements. In 

the sense that using DGEs in group discussion and creating screencast presentations using DGEs 

allow students to communicate their ideas they may not able to express without those tools, 

DGEs provide opportunities of new practices of mathematical communication. This finding of 

the study extends the discussion on pedagogical affordance of DGEs encompassing new 

practices of mathematics in the extant literature (e.g., Olive et al., 2010) and online platform 

supporting remote communication between GeoGebra users (Alqahtani & Powell, 2017). 

Second, the dragging moves identified in this study support existing claims for pedagogical roles 

of DGEs on supporting students advanced mathematical reasoning with students’ uses of 

different drag modes (e.g., Arzarello et al., 2002; Leung, 2008). Some students in this study 

showed how they switched their dragging strategies between wandering and guided dragging as 

they generated, specified, and tested conjectures using empirical evidence obtained from 

concrete examples in DGEs responding the students’ dragging (e.g., Bing and Eric in Task 2). 

On the other hand, students who didn’t take advantage of the drag feature of DGEs in this study 

were not successful in engaging in the task (e.g., Theme 1.1). These findings indicate that 

students would benefit from task design and enactment supporting their instrumentation 
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(Hollebrands & Okumuş, 2018) that allow students to appreciate DGEs and changes their uses of 

the tools for their own learning. 
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CHAPTER 4: What We Can See in Diagrams:  

Epistemological Shifts in Geometric Models and Mathematical Proofs 

Abstract 

In this chapter, I address students’ ontological and epistemological shifts that have been 

discussed in the existing literature of student learning of geometry. First, students make a shift in 

the ontological view of geometric models from Euclidean to non-Euclidean geometry, in which 

the geometric models are considered conscious artifacts of mathematical design. Second, 

students make a shift in the epistemological view of mathematical proofs from absolutism to 

fallibilism, in which proofs can be characterized with a variety of functions and forms. Drawing 

on the prior literature, I argue that making successful shifts can benefit students in axiomatic 

geometry and that such shifts can be facilitated by engaging in mathematical activities with 

supports of dynamic geometry environments. Examples of those activities that involve 

constructing and analyzing geometric proofs are illustrated. 

Introduction 

In the past decade, there have been notable shifts in research questions investigating 

technology in mathematics education (Sinclair, 2017). Shifting from closed questions such as 

examining an effect or a necessity of technology in student learning, researchers have been 

posing explorative and multifaceted questions such as designing suitable tasks for exploiting a 

given technology and establishing theories to better understand pedagogical roles of technology. 

Responding this call for attention in complexities of technology integrated mathematics 

classroom, I explored differentiated aspects of student learning in axiomatic geometry supported 

by technology and appropriate mathematical activities exploiting pedagogical roles of 

technology.  



 135 

In this paper, axiomatic geometry means a study of geometry with a focus on the 

axiomatic approach to understand various geometries with different axiomatic systems including 

Euclidean and non-Euclidean geometries. In axiomatic geometry, students are usually expected 

to engage in formal reasoning independent from informal experience with visual representations. 

Researchers argued that this expectation in instructions may cause students’ difficulties (e.g., 

Hollebrands, Conner, & Smith, 2010). This paper aims at improving this traditional approach to 

instructions by proposing theories of student learning and mathematical activities in a new 

environment supported by technology.  

The purpose of this theoretical paper is to address students’ ontological and 

epistemological shifts that have been discussed in the existing literature of mathematics 

education regarding student learning of axiomatic geometry. First, students make a shift in the 

ontological view of geometric models from Euclidean to non-Euclidean geometry, in which the 

geometric models are considered conscious artifacts of mathematical design. Second, students 

make a shift in the epistemological view of mathematical proofs from absolutism to fallibilism 

(Lakatos, 1976), in which proofs can be characterized with a variety of functions and forms. 

Drawing on the prior literature, I argue that making successful shifts can benefit students in 

axiomatic geometry and that such shifts can be facilitated by engaging in mathematical activities 

with supports of Dynamic Geometry Environments (DGEs). 

A Shift in Ontology of Geometric Models for Axiomatic Geometry 

In axiomatic geometry, students need to make a shift in ways of perceiving and 

interacting with geometric models. In this section, I draw on the existing literature addressing 

ontology of geometric models in Euclidean and non-Euclidean geometry. In particular, the 

literature indicates that making such shifts can be conceptualized as developing perceptual 
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representations of non-Euclidean models. I highlight a pedagogical benefit for this student 

development from engaging in DGE-activities such as exploring behaviors of dynamic figures 

and creating non-trivial models. At the end of this section, I illustrate a DGE-activity of creating 

a model of hyperbolic geometry. 

Euclidean and Non-Euclidean Ontology 

Understanding axiomatic systems and models involves knowing how these models are 

constructed with sophisticated mathematical designs, and why these models satisfy the given 

postulates of the systems. In the axiomatic approach to geometry, the essence of a geometry is 

determined by a set of selected postulates describing the properties of figures with set-theoretic 

definitions. But the figures can be also realized in a concrete model, which is consciously 

designed to satisfy the postulates of the geometry. In many cases, especially for non-Euclidean 

geometry, the models are not just natural outcomes resulting from physical observations of 

existing figures. Rather, they are conscious artifacts produced by creative and elaborative 

mathematical design. For example, Poincaré designed a model of hyperbolic geometry that 

allows infinitely many parallel lines to a given line and a point not on the line. In this model, a 

hyperbolic line is defined by an orthogonal circle intersecting the unit disk at right angles (Figure 

4.1). The orthogonal circle (blue circle in Figure 4.1) created by Euclidean construction (red 

dotted lines in Figure 4.1) shows that the structure of the model is purposefully designed for the 

existence and uniqueness of a line passing through two given distinct points. For instance, the 

uniqueness of the orthogonal circle for a given two distinct points 𝐴 and 𝐵 inside the Poincaré 

disk (black circle in Figure 4.1) ensures the postulate in the system that states the uniqueness of 

lines between two distinct points.  
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Figure 4.1. A hyperbolic line defined by two points A and B in a Poincaré model (left) 
and the underlying design of the line using the orthogonal circle (right) 

 

This nature of non-Euclidean models indicates that students need to change their ways of 

perceiving the models, which have been developed through their prior experience in Euclidean 

geometry. This existing perception of geometric model from Euclidean geometry is described by 

Hegedus and Moreno-Armella (2011), who introduced a term, Euclidean ontology in their 

analysis of historical development of non-Euclidean geometry. With this ontology, when 

students draw a segment on paper, the drawing is the segment. This means that the paper-and-

pencil diagram of a segment is an iconic model of the pure abstraction of all segments. A 

diagram is merely a mirror of an a priori mathematical object.  

On the other hand, students cannot simply draw a hyperbolic line in Poincaré model on 

paper. The figural feature of the curved lines in the model (See Figure 4.1) cannot represent all 

hyperbolic lines because there is a model with straight lines such as Klein model. Without 

knowing the underlying mathematical structure of this conscious artifact, students may not be 

able to understand the relationship between the axiomatic systems and models. Therefore, 

students with Euclidean ontology in non-Euclidean geometry need to make a successful shift 

from to non-Euclidean ontology, in which geometric models are not simply representing figures, 
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rather being constructed, verified, and explored while students investigate the axiomatic nature 

of the geometry. 

Conceptual Embodiment of Non-Euclidean Geometric Models 

A process of making this shift in ontology of geometric model can be conceptualized in 

terms of conceptual embodiment of geometric models (Tall, 2008). The conceptual embodiment 

means a process of developing perceptual representations for abstract concepts of geometry and 

figures in non-Euclidean geometry given by set-theoretic definitions. According to his 

description, students “conceptually embody a geometric figure, such as a triangle consisting of 

three straight line-segments” (p. 7). This embodied figure does not mean a static mental image, 

rather a dynamic mathematical structure that realizes abstract concepts of geometry.   

Tall (2018) argued that the conceptual embodiment for non-Euclidean geometry can be 

supported by providing a physical embodiment so that students can build perception of objects. 

In this regard, exploring behaviors of dynamic diagrams of figures in DGEs can facilitate 

students to develop perceptual representations of abstract concepts of the figures in non-

Euclidean geometry. In this exploration, students can drag the figures and observe the dynamic 

responses to their manipulations. It enables students to build up their perceptual representations 

that they can access as engaging in formal reasoning. For example, Guven and Karatas (2009) 

showed that interactive diagrams of a DGE can support students' development of a conceptual 

embodiment of triangles in spherical geometry. In their study, the participants explored triangles 

on a sphere of a DGE and abstracted properties of spherical triangles that they did not see in 

Euclidean triangles. After the DGE exploration, the participants could access their perceptual 

representations of spherical triangles equipped with the properties in the following proving 
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activity where they were able to draw paper-and-pencil diagrams of spherical triangles in 

explaining the properties used in their proofs.  

In addition, a mathematical activity of developing a new geometric model can be an 

opportunity for students to learn the axiomatic systems of the geometry as well as develop 

ownership in mathematics classroom. For example, Otten and Zin (2012) proposed a 

mathematical task for designing non-Euclidean models to provide authentic mathematical 

experience. However, the task did not involve an interactive model in their study which may 

provide a limited opportunity for building up perception of objects being explored in the model. 

DGE-Construction of Poincaré Model 

Constructing an interactive model of hyperbolic geometry in DGEs can be a 

mathematical activity for experiencing both exploration of dynamic figures and design of 

mathematical models highlighted in the prior studies (Guven & Karatas, 2009; Otten & Zin, 

2012). In this activity, students can develop perceptual representation of hyperbolic figures that 

are equipped with the mathematics structures. This representation developed through DGE-

activities can allow students to connect the observed properties of figures and mathematical 

structures. For example, students may recognize a hyperbolic line in Poincaré model becomes 

straight as the two distinct points getting close to a diameter of the unit disk (Figure 4.2). 

Knowing the underlying design of the lines in this model enables students to explain this 

observation by imagining that the radius of the orthogonal circle diverges as the two points lie on 

the diameter.  
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Figure 4.2. Hyperbolic lines in Poincaré model 

 

Moreover, students can discover new concepts, which they have never seen in Euclidean 

geometry. For example, students can explore infinitely many parallel lines in hyperbolic 

geometry and discover particular set of parallel lines distinguished from others (Figure 4.3). 

Students can be guided to identify the limiting parallel lines M and N of the line L such that any 

line through the point A between M and N should meet the line L. In Euclidean geometry where 

we have the unique parallel line, different types of parallel lines have never been a focus of 

mathematical investigation for students.  

 

 
Figure 4.3. Limiting parallel lines M and N of L at A in Poincaré model 
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A Shift to Fallibilist View of Mathematical Proof 

In the axiomatic approach to geometry, college students encounter mathematical proofs 

less absolute and deterministic than what they have seen in their prior experience. First, there 

exist mathematical statements that have different truth values in different geometries. For 

instance, the angle sum of a triangle is equal to the straight angle in Euclidean geometry, but not 

in either hyperbolic or elliptic geometry. In addition, there are mathematical statements 

describing the properties of figures which cannot be proved nor disproved in a given system, 

called axioms or postulates. Students are expected to understand why Euclidean parallel 

postulate is not provable in neutral geometry, and why the angle sum of a triangle is not 

determined in non-Euclidean geometry. In axiomatic geometry, proving is not for generating an 

absolute certainty of a given mathematical statement as usually pursed in the absolutist view of 

mathematics. Instead, students can benefit from analyzing why proofs work in one geometry but 

not in another. In this regard, the purpose of proving and its form in axiomatic geometry shift 

from the absolutist to the fallibilist view, which provide a variety of functions and forms of 

proofs.  

Functions and Forms of Proofs in the Fallibilism 

The literature indicates that the fallibilist view of proofs is appropriate for the various 

mathematical activities for developing axiomatic reasoning and investigating multiple axiomatic 

systems of non-Euclidean geometry. Researchers have compared the two contrasting views of 

mathematics, absolutism and fallibilism, in terms of how proofs are perceived differently in each 

view (de Villiers, 1998; Ernest, 1991, Öner, 2008). In the fallibilist view, also frequently referred 

to as quasi-empiricist (Lakatos, 1976), mathematics is considered a product of social processes in 

which its concepts and proofs can be revised (Ernest, 1991). This view contrasts to the absolutist 
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view, in which absolute certainty exists in mathematics. A proof in the absolutist view is a 

requirement for verification or conviction of mathematical knowledge. On the other hand, in the 

fallibilist view, personal conviction motivates one to seek a proof to convince oneself and/or 

intended audiences of the proof (Öner, 2008). As a quasi-empiricist, de Villiers (1998) argues 

that proving involves a variety of functions, including explanation, discovery, communication, 

and systematization, which constitute a broader set of mathematical activities. This set of various 

functions of proofs in the fallibilist view can also foster a variety of mathematical ways of 

knowing for students of axiomatic geometry.  

In addition, these various functions of proofs in the fallibilist view can be promoted by an 

alternative form of proofs in exploring different results of the same proof in different geometries. 

In this exploration, DGEs enable students to transform a written proof into a form of geometric 

construction. This transformed proof in DGEs provides students with opportunities to analyze 

the logical deduction of the written proof by interacting with the dynamic construction. This 

proof analysis activity supported by DGE constructions facilitates students to discover hidden 

assumptions, logical flaws in proofs, and axiomatic feature of the geometry when they 

investigate a proof that may or may not work. 

Robust Constructions  

The new form of visual and interactive proofs in DGEs is called robust construction 

(Leung, 2008; Stylianides & Stylianides, 2005). Whereas a diagram in the written proof is a 

particular instantiation of generic objects from the abstract procedure of the construction, the 

constructed figures in DGEs serve as generic examples that can vary to represent any other 

particular example. Once a figure is constructed in DGEs, we can drag the components of the 

figure’s diagram (e.g., three vertices of a triangle) to represent a particular kind of figure with 
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certain properties (e.g., equilateral, obtuse triangle, etc.). This generalizability of the robust 

constructions in DGEs enables us to transform written proofs to geometric constructions without 

loss of generality. In the following section, I will describe a DGE-activity of generating and 

analyzing robust construction of a proof for the exterior angle theorem, which is one of 

statements varying across different geometries. 

Proof Analysis of Exterior Angle Theorem in Euclidean and Spherical Geometry 

In high school geometry, the exterior angle theorem means that an exterior angle of a 

triangle equals the sum of its two opposite interior angles. The statement of this theorem 

indicates the relationship between an exterior angle and the opposite interior angles in a triangle. 

However, this relationship varies across different geometries. For example, in neutral geometry, 

students cannot assume that the angle sum of a triangle equals the straight angle, which in turn, 

we cannot prove the theorem without the Euclidean parallel postulate. Instead, they may be able 

to prove that the exterior angle is greater than either of the two opposite interior angles in neutral 

geometry. However, this weak version of exterior angle theorem does not hold in spherical 

geometry in general, especially for the particular cases of triangles. Regarding the extent to 

which we can conclude about properties of exterior angle in different geometries, analyzing a 

proof of the weak exterior angle theorem allow students to investigate the axiomatic natures of 

the geometries related to the proof. 

In this proof analysis activity, students investigate why the (weak) exterior angle theorem 

holds in Euclidean, but not in spherical geometry. In this task, students create robust 

constructions of the same proof in the two different geometric models and explore the 

components of this construction that are equivalent to each step of the written proof (Figure 4.4). 

Students are expected to find a counter example in the robust construction in spherical geometry 
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by dragging the three vertices of the triangle ABC. They can see that the theorem fails when they 

stretch out the triangle enough to get two dotted lines intersecting each other, which never 

happens in Euclidean construction. This activity can enable students to figure out what feature of 

the spherical geometry – two distinct lines intersect at two distinct points – causes this 

inconsistent result between two geometries. Furthermore, this activity can lead student to 

experience developing new mathematical knowledge. Students generate their owe definition of a 

family of triangles that do not satisfy the exterior angle theorem in spherical geometry then 

refine the original statement by adding a specified condition describing such triangles.   

 

 

 

Figure 4.4. Robust constructions of the exterior angle theorem proof 
in Euclidean geometry (left) and spherical geometry (right) 

  
Discussions 

In this paper, I addressed students’ ontological shift in geometric models and 

epistemological shift in mathematical proofs that can be differentiated learning goals for 

axiomatic geometry integrated with technology. The DGE-activities illustrated in this paper 

showed a potential of pedagogical role of technology in pursuing such goals in classrooms. One 

pedagogical implication from this theoretical exploration is an alternative way of mathematical 
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communication for supporting these activities. I propose a concept of proving as performing that 

can be considered one differentiated learning activity for technology-integrated mathematical 

practice. Then, I discuss pedagogical merits related to complexities of teaching practices in 

mathematics classroom. The discussion includes how technology can empower teachers and 

students in inquiry-oriented and discourse-based geometry classroom.  

Proving as Performing: New Ways of Mathematical Communication 

Adding to the existing discussion on new mathematical knowledge and practices in 

technology-rich environment (Olive et al., 2010), the new functions and forms of proof in 

geometry allow us to take advantage of technology to introduce new ways of communicating 

students’ mathematics in geometry classrooms. The act of proving in this view is not just to 

produce a tangible material (e.g., written proofs or images of geometric constructions), but can 

be also to perform a proof transformed into the robust construction (Leung, 2008; Stylianides & 

Stylianides, 2005). For example, using screencast software, students can record their DGE-

activities with verbal annotation in the form of video clips, showing how they created this 

generalizable geometric construction that is equivalent to the formal written proof.  

One feature of this new way of mathematical communication by performing robust 

construction is that students can convey their formal reasoning involved in their thoughtful 

experiments of proof analysis. Students are expected to engage deductive reasoning to generate 

and understand robust construction of proofs. To see whether or not a given construction is 

robust enough to be generalized, they also need to identify the generic elements of the 

construction and test by dragging those elements (See Leung (2008) for a detailed description of 

the drag test). This implies an alternative way to support student development of formal 

reasoning in advance mathematics courses. Also, it indicates that researchers need to investigate 
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this new mathematical practice integrated with technology; how students interact with the 

technology while engaging in creating and analyzing proof constructions, how their ontology of 

geometric models and epistemology of proofs affect the engagement.  

Pedagogical Implications to Teaching Practice 

Screencast presentations of DGE practices are beneficial for implementing student-

centered and discourse-oriented geometry classrooms. First of all, it provides instructors with 

effective and efficient ways for formative assessment of students’ mathematical work in DGEs. 

Student-generated presentations afford a useful way for instructors to understand students’ 

mathematics. Video clips allow instructors to listen while students are verbally explaining their 

reasoning with using the dynamic construction. Neither the details of students’ interactions with 

DGEs, nor the mathematical arguments captured in video clips, are easily accessible for 

instructors in actual classrooms or in students’ written work.  

In addition, screencast presentation of DGE practices can empower teacher and students 

by establishing a mathematics register (Pimm, 1987) and enrich the communicative 

mathematical community in the classroom. The traditional meaning of showing or justifying 

students’ work in advanced mathematics courses usually means to produce a formal proof, which 

is the unique and acceptable form of mathematical communication. Given the generalizability of 

robust construction, the idea of performing mathematical proofs allows students to communicate 

their formal reasoning with others by creating and sharing their presentations. Peer review on 

screencast presentations can encourage students to listen to peers' mathematical thoughts and 

formalize student-generated mathematics. The use of student-generated presentations can also 

promote students’ agency in classroom by sharing their own mathematics, understanding their 

mathematical ideas, and interpreting these ideas into formal statements. Teachers can provide 
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screencast presentations of DGE practices as a supplementary material for their students. These 

materials serve as resources that support student-centered instruction to satisfy a need for 

teacher-centered lectures such as teacher’s demonstrations.  

Lastly, screencast presentations can support equitable teaching practices in discourse-

based geometry classrooms for all students. Teaching practices allowing students to share their 

voices with each other and listen to them can support equitable power dynamics between 

students (e.g., Esmonde & Langer-Osuna, 2013). Also, the task of producing screencast 

presentations allows students to have a safe place to practice explaining and showing their work 

in DGEs, especially for those who are not able to actively engage in classroom discussions for 

some reason (e.g., gender, negative mathematical identities, introverted personality, English as 

Second Language students). Students can rehearse how to show their work to others and prepare 

for the class discussion when they produce screencast presentations. These experiences help 

students to feel more comfortable and confident in communicating with others in groups and 

sharing their mathematical thoughts. 
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CHAPTER 5: Conclusion 

In this dissertation study, I reported the design, enactment, and reflection of a sequence of 

instructional tasks using DGEs for axiomatic geometry. As reported in the previous chapters, this 

reflective practice of teaching and research provided three strands of intellectual products with 

different perspectives to improve theories and practices. The practitioner paper in Chapter 2 

illustrated the design of the task sequence in light of the mathematics on which the tasks are 

grounded and addressed practical issues observed during the enactment of the tasks in the actual 

classroom. It is followed in Chapter 3 by the empirical analysis of students’ uses of DGEs and 

their engagement in mathematical reasoning and axiomatic reasoning showed that students used 

DGEs for specific purposes with respect to the mathematical activities they engaged in 

responding the given tasks. DGEs provided students with experimental tools to model geometric 

figures and phenomena in hyperbolic geometry. Students reasoned about mathematical and meta-

mathematical objects involved in the enacted tasks in which they used DGEs to express their 

mathematical ideas and to examine mathematical statements describing properties of geometric 

objects within axiomatic systems and models of hyperbolic geometry. The case themes identified 

in this analysis provided pedagogical implications to revise the task sequence as well as 

opportunities to expand the ongoing discussion of alternative views of mathematics that has been 

rapidly changed in technology-rich environments as discussed in Chapter 4. It is important to 

note that those ideas addressed in the three chapters emerged and developed in reciprocal 

relationship between multiple agencies of myself as a researcher-practitioner.  

In addition, writing was an opportunity to reflect on my work situated in the field where 

many researchers have made efforts on improving practices of teaching and learning of geometry 

in technology-rich environment. The process of writing forced me to elaborate and synthesize all 
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the ideas emerged around this journey in light of the extant literature. Those ideas include, but 

not limited to, affordances of technology in mathematics classroom, advanced mathematical 

reasoning, task design and enactment, and epistemology of mathematics. By adding a particular 

context, non-Euclidean geometry and axiomatic geometry, that have been less attended by the 

researchers, I hope that the existing discussion on relationships among those ideas is enriched 

and that connections between K-12 and post-secondary mathematics, between theories and 

practices, and between mathematics education are improved. In the following sections of this 

chapter, I discuss lessons I learned from this study that inform practical implication for revising 

the task sequence and the course design, implications for future research, and limitations of the 

analysis. 

Reflection on the Task Sequence and the Course Design 

In this section, I discuss critical reflection on the analysis of this study in a broader 

context of the entire course or the task sequence based on what I learned from the last three years 

of teaching experience. 

Supporting students' instrumentation of DGEs. As many researchers have pointed out 

in the extant literature, it is not easy to introduce technology in classroom and expect students to 

use those tools effectively for their learning. Learning to use technology for supporting their own 

learning is not an easy task for students and not a natural outcome that teachers, task designers, 

and technology developers can take for granted. For instance, some researchers have pointed out 

that students need to appropriate DGEs and transform them into instruments to act upon 

mathematical objects such as geometric figures (Alqahtani & Powell, 2017; Hollebrands & 

Okumuş, 2018). It requires develop students’ knowledge of how to use the tool and assign 

meaning to the tool, which happens through a process called instrumentation where students 
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change their uses of tools while assimilating or adapting a utilization scheme. So, designing a 

task sequence or a course highly integrated with technology involves strategic support for 

students to develop their own ways to use technology in mathematics classroom as an effective 

instrument. In this section, I discuss how the task sequence and the course design of this study 

have been refined over the last three years with consideration of such support for students’ 

instrumental genesis. In particular, I focus on using DGEs to create robust constructions and use 

them to engage in formal reasoning.  

One of the student difficulties with using DGEs common in the early stage of the course 

was to distinguish drawings and diagrams of geometric figures. When engaging in tasks for 

constructing geometric diagrams, students often created drawings that look exactly like the 

desired diagrams but do not necessarily represent figures defined by particular constructions. In 

the third task of Homework 1 (See Appendix B), for instance, some students created an arbitrary 

circle and created three points on the circle rather than creating three arbitrary points and using 

those independent points to construct a circle. Since the points are constructed to lie on the 

arbitrary circle, students cannot freely move those points out of the circle and cannot change the 

circle by dragging those points. The intended construction in the task is the circle that 

constructed to pass three arbitrary noncollinear points so that students can drag those points 

around while the circle dynamically change to follow the dragged points. As mentioned in 

Chapter 4, creating and using robust construction play key roles in engaging with formal 

reasoning (e.g., generalization of geometric properties) that are required for the tasks later in the 

course. In order to address this issue of drawings versus diagrams in class, I revised the course 

design over the last three years by adding different instructional interventions, (a) providing valid 

and invalid examples, (b) providing individual feedback on student work, and (c) explicitly 
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introducing the terms of robust construction and dimensions of variation (See more in Appendix 

B). Despite the difference in student population, student work on creating robust constructions 

have been advanced as the course design has been refined with those interventions. There were 

less students who submitted drawings instead of robust constructions in their homework. Later in 

the course, most students were able to create robust construction in their responses to DGE tasks 

as they were asked to represent figures defined by particular constructions.  

However, students were not able to carry out drag tests on their robust constructions or 

did not always appreciate their draggable diagrams as engage in reasoning. This is because 

students did not have opportunities to reflect on their uses of robust constructions and to receive 

feedback from the software or the instructor. One example where students are relatively active in 

interacting with robust construction than other tasks is the verification of Exterior Angle 

Theorem (EAT) in the take-home midterm exam (See Chapter 4 or Appendix B). In this task, 

students were asked to find a counter example of EAT on spherical geometry. Students were 

motivated to change constructions of the proof for EAT as much as possible until they find a 

counter example and actively engaged in dragging dimensions of variables (three vertices of the 

given triangle) in their screencast presentation. In this case, the counter example they would find 

is a feedback for their drag test so that students seek for all the independent variable of the 

construction and drag them as much as possible. Such feedback embedded in the tasks would be 

beneficial for students to appreciate the drag feature of DGEs and the robust construction as well 

as to be able to use DGEs for further exploration as they move forward in the course. 

Dual modes of interpreting geometric diagrams in Klein model. When students 

reasoned about incidence (e.g., intersections between figures) in Klein model, students were 

allowed to use Euclidean mode of reasoning: When they see two diagrams meet each other, there 
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exist an intersection between two figures. Despite a few exceptions such as points on the 

boundary circle of the disk, it is the exact same way of reasoning in which students rely on what 

they see in the diagrams to make conclusions about incidence in geometry. On the other hand, 

students were encouraged not to rely on their intuitive perception of measurements (e.g., 

distance, length, angle) when they interpret diagrams in Klein model. The student data of this 

study support the claim that students may see diagrams in Klein model much the same way as 

they have seen in Euclidean models and that this may cause a conflict that students need to 

resolve to make a valid interpretation of the hyperbolic model (e.g., Avery and Kim in Task 2). 

Thus, students were sometimes allowed to use the mode that they have been using for years in 

high school geometry whereas they were discouraged when reasoning about particular aspects of 

diagrams such as measurements. This implies that learning to make a valid interpretation of non-

Euclidean geometric models is not just a shift from Euclidean to non-Euclidean ways of 

interpretation, rather it is to be able to switch between those two modes and know when they 

need to use which mode to make a valid interpretation when reasoning about diagrams they see. 

Possible Revisions of the Task Sequence and the Course Design 

The student work collected from actual classroom informed of limitations of the current 

task design and further suggestions for revise the task design. In particular, there were limitations 

of the questions and hyperbolic models used in this task that were revealed in the unexpected 

student responses and difference between mathematical experience intended in the task design to 

what the students actually enacted in the classroom. In the followings, I explain two practical 

implications to revise the task design by adding and modifying questions and models in the task 

design. 
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Authentic problem-solving experience for eliciting students’ motivation. First, I 

suggest providing contexts and leading questions in the task sequence that provide students with 

authentic problem-solving experience. This can be done by addressing anticipated student 

questions that are reasonably posed in their early experiences with noble geometric models (e.g., 

why does Klein model have to use an angle measurement function other than Euclidean 

measurement?). Those questions will provide students with authentic context of the tasks and to 

deeply engage with geometric models as much as they are motivated to examine the axioms.  

Given that how past mathematicians had struggled in and made efforts to discover, 

accept, and understand non-Euclidean geometry and its models (Öner, 2008), it may not be a 

feasible and effective goal in task design to provide students with authentic experience of 

discovering how to develop a hyperbolic model on their own in actual classrooms. As addressed 

in the literature on principles and practical guidelines for task design (e.g., Ainley & Margolinas, 

2015; Komatsu & Jones, 2019), I believe the onus is on educators to identify essential 

components of such experience and to design tasks providing students with an environment 

where they can authenticate mathematical tasks situated in their contexts and take ownerships to 

solve the genuine problems by engaging in those mathematical practices that past 

mathematicians had engaged. In that regard, the task sequence provided students with accessible 

tools to explore non-Euclidean models but may miss some opportunities for them to ask why one 

had to make this model in this particular way. 

In the current task design for construction and verification of Klein model in Task 1, 

some students didn’t seem to be suspicious of the model or were not motivated to examine a 

possibility of failure in this model. They were given a particular way of creating a model of 

hyperbolic geometry that was named after a well-known mathematician. When they were asked 
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to create this model following a given instruction in class and to verify if this model truly satisfy 

all the postulates, students might not doubt about their final conclusion form this task–the model 

should be valid. The context of the task design and the way of introducing the task in class 

provided external conviction (Harel & Sowder, 1998) of the tasks that discourage students to 

critically investigate any example that disprove the validity of the model. For instance, the 

student examples illustrated in Task 1 shows that some students demonstrated how angles are 

measured in Klein model constructions they created following the given instructions but didn’t 

generate detailed questions they identified and wanted to confirm while presenting their work. In 

addition, there was no direct feedback from the software to allows students to attend the 1-1 

correspondence of the Klein angle measurement function.  

Appropriate feedback from the software and/or teachers in classroom are important for 

design of instructional intervention as addressed in the literature (Hoyles & Lagrange, 2010). 

One way to encourage students to authenticate tasks is ask for teacher’s role on addressing 

specific questions eliciting students’ perceptions of hyperbolic models from the beginning and 

promoting students to follow with close examinations on the models. For example, students 

would be given a question such as why one cannot use the Euclidean measurements for distance 

and angles in a limited space inside a unit disk. The examples showed that students’ early 

perceptions of Klein model relied on Euclidean perspective where a Klein disk is considered a 

unit circle that bounds straight line segments with finite length inside the circle. It would be 

closer to an early stage of student development of Klein model to ask what they see from the 

given diagram of Klein model and what would happen if figures are measured in Euclidean 

space. Such questions can lead students to further examinations where they would encounter 

some of the axioms in the system that would eventually result in counterexamples a model with 
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regular Euclidean measurements (Komatsu & Jones, 2019). This experience can provide students 

with more authentic context for them to probe other possibilities to measure figures.  

Variations of hyperbolic models with respect to student response. Second, I also 

suggest providing a varied set of geometric models adaptive to the anticipated and actual student 

responses where they interact with given models to abstract the nature of the axiomatic system 

thereof. Given the models introduced in a consciously designed sequence, students investigate 

those models and generate naïve theories to describe features of hyperbolic geometry while new 

models introduced in the task sequence support or challenge their theories to be revised. It is a 

goal for class activities to provide students with experience of doing mathematics by generating, 

proving, and refuting conjectures to build up mathematical knowledge rather than forcing 

students to submit an end product in a limited class time. 

Shifting from investigations on hyperbolic models to questions on axioms of hyperbolic 

geometry requires to get away from particular features of the models that are not necessarily 

applicable to other models. In the earlier version of the task sequence, one of the issues raised 

when students first studied Poincaré model of hyperbolic geometry was that they attributed what 

they see different from Euclidean plane (e.g., the fourth step in Legendre’s construction in Task 

2) to the curved diagrams representing straight lines in Poincaré model. For instance, students 

would explain that EPP does not hold in Poincaré model or in hyperbolic geometry because lines 

are curved in there.  

In the revised task design introduced in this paper, Klein model followed a few weeks 

after the students were introduced Poincaré model when they first studied non-Euclidean model 

that satisfies neutral geometry axioms. It helped students to see that both straight and curved 

lines are possible in models of hyperbolic geometry and that the representations would not matter 
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in studying the nature of hyperbolic geometry. However, the boundary circle of both models 

prohibited students from abstracting their observations on those models to describe properties of 

figures that are applicable in other models. In the student example in Task 2 above, the boundary 

of a space was considered a key feature of hyperbolic geometry beyond the two particular 

models they observed in class. 

The student work from the revised task design using both Poincaré model and Klein 

model implied that the variation of models (or examples of any abstract concepts) for teaching 

may address what students would see from the given models to develop abstract concept of 

hyperbolic geometry. For instance, a possible response to the student work describe in Task 2 

would be to provide another hyperbolic model without boundary or a Euclidean model with 

boundary. In that regard, a task sequence could be used to guide students to develop 

mathematical knowledge by providing a sequence of models or examples that are consciously 

chosen with respect to anticipated student development of the knowledge. In this experience, 

students are encouraged to engage in “conscious guessing” (Lakatos, 1976) that involves 

generating, proving, and refuting conjectures about relationships among those examples to 

elaborate their theories. Although this process does not guarantee an end product in practice, as 

highlighted by Lakatos (1976), engaging in this experience of doing mathematics provides a way 

for students to see a process of coming to know from “naive conjecture and counterexamples 

[that] do not appear in the fully fledged deductive structure” (p. 42).  

Limitations of the Student-Generated Data in this Study 

Most screencast recording data collected in this study, of which analysis were reported in 

Chapter 3, were the participating students’ final products submitted for their course evaluation. 

Unlike video recordings of student work collected in empirical studies in mathematics education, 
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those recordings in this study were produced by students who decided what they want to include 

in their final responses to the tasks. The student-created recordings induced inherent limitations 

of this study. First, the screencast presentation did not include what students did when they 

initiated the task before they started recording their work. This indicates that the data of this 

study did not inform how students initiated the task, interpreted what they were expected to do 

for successfully completing the task, and what trial-and-error they might go through before they 

were satisfied with what they had for creating their final answers to the task. Second, the 

participating students were able to choose what to report in their presentations by controlling the 

screencast software. When recording their presentations, for instance, some students paused and 

resumed the recording when they wanted to exclude or edit particular geometric diagrams on the 

screen or their prior verbal statements. Though students were asked to record from the beginning 

of their work in Task 2 as soon as they initiated the task, some students submitted recordings of 

their final responses to the task. Those limitations of the student data in this study indicates that 

the scope of the analysis is limited to what the participating students wanted to include in their 

final presentation rather than all of which actually happened in class.  

On the other hand, this limitation of the student data clarifies the scope of the analysis. If 

it were a task-based interview or a teaching experiment, student data would be more 

comprehensive to include all the student work from the beginning. However, this study was 

conducted in a natural classroom setting where students engaged in the task sequence for their 

coursework. Since the screencast presentations were their genuine coursework submitted for 

their evaluation, it is reasonable to assume that the participants engaged in the tasks with greater 

fidelity in this natural classroom setting than in a research setting. Thus, it is notable when 

interpreting the student-created data in the natural classroom setting in this study that those 
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student work presented in the recordings are what they thought they were expected to show in 

their responses to the tasks. This implies there is another layer of students’ interpretation of the 

tasks and their work between what they actually did in class and what researchers can make 

inference from interpreting the data. I hope readers can find places in this manuscript where this 

student-interpretation layer taken into account in the report of the data. 

I am excited to continue this journey of studying the complexity around mathematical 

task design using technology with more specific focused on particular contexts such as roles of 

teachers and task designers within the context of teacher education, methodology in task design 

studies for practitioners, and new perspectives for exploring uncharted world with ever-changing 

technology around our students and teachers in future. 
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APPENDIX A: Weekly Schedule of the Course 

 

Table 6.1. Weekly schedule of the course 

Week Topics  Relevant Materials 

1 Geometry and the Axiomatic Method  Textbook: Chap1 

2 Euclidean Geometry / Euclidean Construction  Textbook: Chap2 

3 Primitive concepts and postulates  Lecture note: Part 1 

4 Distance and ruler postulate / Between-ness  Lecture note: Part 2, 3 

5 Segments, rays, angles, and triangles  Lecture note: Part 4 

6 Convexity and separation  Lecture note: Part 5 

7 Angle measurement  Lecture note: Part 6 

8 Congruence of triangle  Lecture note: Part 7 

Spring Break (Mar 5 – 9) 

9 Parallel lines  Lecture note: Part 8 

10 Parallel postulates  Lecture note: Part 9 

11 Hyperbolic Geometry (1)  Textbook: Chap7  

12 Hyperbolic Geometry (2)  Textbook: Chap7  

13 Hyperbolic Geometry (3)  Textbook: Chap7  

14 Elliptic Geometry  Textbook: Chap8 

15 Transformational Geometry  Textbook: Chap5 

Final Exam (Thursday, May 3, 12:45pm - 2:45pm) 
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APPENDIX B: DGE Tasks for In-Class Activities and Homework of the Course 

 

Week Date Description 
1 01/12/18 Euclidean construction of equilateral triangles in GEX 

 
Figure 6.1. DGE task for in-class activity in Week 1 
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Week Date Description 
2 01/17/18 Euclid’s first postulate in spherical model: Verifying 

a postulate in spherical model and exploring counter 
examples (lines intersecting at two antipodal points) 

 
Figure 6.2. DGE task for in-class activity in Week 2 
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Week Due date Description 
2 01/19/18 Homework 1: Euclidean construction of equilateral triangles in GEX 

 

 
Figure 6.3. DGE tasks for Homework 1 (Slide) 
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Figure 6.4. DGE tasks for Homework 1 (TA1 document) 
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Figure 6.5. DGE tasks for Homework 1 (TA2 document) 
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Week Date Description 
3 01/22/18 In-class activity to address student work submitted for 

HW1 that did not attend the key ideas of robust 
constructions and did not qualify criteria 

 

 
Figure 6.6. DGE task for in-class activity in Week 3  
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Week Date Description 
5 02/09/18 Introduction to Poincare model of hyperbolic geometry 

and discuss axioms and consequences from Euclidean 
and neutral geometry systems.  

 

 
Figure 6.7. DGE task for in-class activity in Week 5 (Intro to Poincaré model)  
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Figure 6.8. DGE task for in-class activity in Week 3 (Questions)  
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Week Due date Description 
6 02/16/18 Homework 3: Explore Poincare model by 

comparing Euclidean and hyperbolic geometry 
with respect to particular constructions discussed 
in the earlier group project. 

 
Figure 6.9. DGE task for in-class activity in Week 6  
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Week Date Description 
7 02/23/18 Investigate power of a circle and orthogonal circles 

with their constructions in Euclidean geometry 

 
Figure 6.10. DGE task for in-class activity in Week 7  
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Week Date Description 
8 03/02/18 Analyze a proof for Exterior Angle Theorem (EAT) in 

Euclidean and spherical geometry 

 
Figure 6.11. DGE task for Midterm Take-Home exam (Intro) 
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Figure 6.12. DGE task for Midterm Take-Home exam (Problems) 
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Week Dates Description 
11 03/26/18 

03/28/18 
Construction and verification of Klein model of 
hyperbolic geometry (Task 1 in the task sequence 
of the study) 

 

 
Figure 6.13. DGE task for in-class activity in Week 11 (Task 1 of the sequence on Day 1) 
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Figure 6.14. DGE task for in-class activity in Week 11 (Task 1 of the sequence on Day 2) 
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Week Date Description 
11 03/30/18 Analysis of Legendre’s attempted proof of Euclidean 

Parallel Postulate (EPP) (Task 2 in the task sequence 
of the study) 

 
Figure 6.15. DGE task for in-class activity in Week 11 (Task 2 of the sequence) 
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Week Due date Description 
11 03/30/18 Homework 4: GEX construction problems on Lecture 

Note Part 6-7 

 
Figure 6.16. DGE task for Homework 4 (Problems 1 and 2)  
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Figure 6.17. DGE task for Homework 4 (Problems 3 and 4)  
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Week Date Description 
12 04/02/18 Exploration of limiting parallel lines in hyperbolic 

geometry (Task 3 in the task sequence of the study) 

 

 
Figure 6.18. DGE task for in-class activity in Week 12 (Task 3 of the sequence) 
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Week Date Description 
12 
12 
13 

04/04/18 
04/06/18 
04/09/18 

Construction of limiting parallel lines in hyperbolic 
geometry (Task 4 in the task sequence of the study) 

 
Figure 6.19. DGE task for in-class activity in Week 12-13 (Task 4 of the sequence, Page 1)  
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Figure 6.20. DGE task for in-class activity in Week 12-13 (Task 4 of the sequence, Page 2)  



 181 

 
Figure 6.21. DGE task for in-class activity in Week 12-13 (Task 4 of the sequence, Page 3)  
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Figure 6.22. DGE task for in-class activity in Week 12-13 (Task 4 of the sequence, Page 4)  
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Week Date Description 
13 04/11/18 GEX constructions for theorems in the Lecture Note Part 9 

 

 

 
Figure 6.23. DGE task for in-class activity in Week 13  
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Week Due date Description 
13 04/13/18 Homework 5: GEX construction problems for 

the Lecture Note Part 8-9 

 
Figure 6.24. DGE task for Homework 5 (Page 1)  
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Figure 6.25. DGE task for Homework 5 (Page 2)  
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Week Date Description 

14 04/20/18 Construct equilateral triangle in elliptic model and 
explore the range of angle sum of a triangle 

 
Figure 6.26. DGE task for in-class activity in Week 14 

 
 
 

Week Date Description 
15 04/25/18 Construct three reflections to transform a triangle to 

another 

 
Figure 6.27. DGE task for in-class activity in Week 15  



 187 

Week Due date Description 
15 04/27/18 GEX construction problems for non-Euclidean geometry 

 
Figure 6.28. DGE task for Homework 6  
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Week Date Description 
Final  Problems in the final exam that involve DGE tasks 

 
Figure 6.29. DGE task for Final exam (Problem 1)  
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Figure 6.30. DGE task for Final exam (Problem 3)  
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APPENDIX C: Analytic Framework of Different Dragging Strategies (Bae, 2017) 

 

 
 

The followings are multiple dragging strategies with different purposes and the ways of dragging 

figures identified in Bae (2017). This framework was based on the analytic framework of variation in 

drag mode of DGE (Leung, 2008) which had been influenced by the original work on multi-modalities 

of drag feature of DGE done by Arzarello and colleagues (Arzarello et al., 1998, 2002). The dragging 

strategies include wandering dragging (WDR), guided dragging (GDR), putting-back dragging (BDR), 

inappropriate dragging (IDR), and non-dragging (NDR).  Note that I adopted WDR and GDR for my 

dissertation study and created a new code, dragging by accident, mostly to integrate the two codes IDR 

and NDR. 

• Wandering dragging means to drag around all the varying components of the constructions 

without strategic exploration, but survey overall changes of the construction or measurement.  

• Guided dragging means when geometrical shape or numerical measurement guide students to 

determine their strategic dragging activities.  

• Putting-back dragging means to drag a figure to put it back to its original place as given in the 

task before the exploration.  

• Inappropriate dragging means to drag a component that result in an unintended variation of the 

construction.  

• Non-dragging means an attempt to drag a non-draggable component in the construction.  

Figure 6.31. Analytic framework of different dragging strategies   
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APPENDIX D: Example of the Analysis of Student Uses of GEX and Transcripts  

 

Table 6.2. Example of the analysis of student uses of GEX and transcripts 

Time Screen shot Transcript DGE screen Description   DGE 
features 

DGE moves: 
Purpose 

00:00 

  

E2: Okay, this is the 
Klein construction. 
We're going to 
show how 
postulate 10 
through 13 hold.  

The construction contains 
the two given lines AB and 
BC with the corresponding 
orthogonal circles and 
tangent lines. The 
corresponding diagram for 
each given line is colored 
same (red and blue) 

  

00:07 

 

E2: (cont’d) So first, 
postulate 10, as 
you can see, we 
have A, B, and C 
right here.  
 

Moved the cursor over the 
points A, B, C to indicate 
the diagram of the angle 
ABC. 

Move the 
cursor on 
diagrams 

Point a diagram: To 
indicate the angle 
ABC. 

00:13 

 

E2: So, if we move 
them around  

Selected the point A and 
dragged it around nearby: 
The corresponding 
orthogonal circle, tangent 
line, and the 
measurement changed. 

Drag a 
diagram 

Wandering 
dragging: To show 
how construction 
changes and so as 
the measurement 

00:16 

 

E2: (cont’d) we get 
measured angle 
out  

Dragged the measurement 
mTQU slightly down  

Drag a 
measureme
nt 

Point a 
measurement: To 
indicate the 
measurement 
mTQU 

00:18 

  

E2: (cont’d) for any 
angle ??, we 
constructed, and  

Selected the point B and 
dragged it around nearby: 
The corresponding 
orthogonal circle, tangent 
line, and the 
measurement changed. 

Drag a 
diagram 

Wandering 
dragging: To show 
how construction 
changes and so as 
the measurement 

00:21 

 

E2: (cont’d) we 
constructed these 
angles by making  

Moved the cursor 
between two lines TQ and 
UQ 

Move the 
cursor on 
diagrams 

To indicate a 
diagram of angle 
TQU 
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APPENDIX E: DGE Feature and DGE Move Code Applications 

 

Table 6.3. DGE feature and DGE move code applications 

DGE-F-Id Task Day Pair Time stamp Duration Feature Move 
DGE-F-001 1 1 A1_K1 0:15 0:04 Move the cursor over diagrams Point at a measurement 
DGE-F-002 1 1 A1_K1 00:19 0:05 Move the cursor over diagrams Point at a diagram 
DGE-F-003 1 1 A1_K1 00:24 0:06 Move the cursor over diagrams Point at a measurement 
DGE-F-004 1 1 A1_K1 00:30 0:08 Move the cursor over diagrams Point at a diagram 
DGE-F-005 1 1 A1_K1 00:38 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-006 1 1 A1_K1 00:41 0:03 Move the cursor over diagrams Point at a computation 
DGE-F-007 1 1 A1_K1 00:44 0:07 Move the cursor over diagrams Point at a diagram 
DGE-F-008 1 1 A1_K1 00:51 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-009 1 1 A1_K1 00:53 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-010 1 1 B1_E2_J1 0:07 0:06 Move the cursor over diagrams Point at a diagram 
DGE-F-011 1 1 B1_E2_J1 0:13 0:03 Drag a diagram Wandering dragging 
DGE-F-012 1 1 B1_E2_J1 0:16 0:02 Drag a measurement Point at a measurement 
DGE-F-013 1 1 B1_E2_J1 0:18 0:03 Drag a diagram Wandering dragging 
DGE-F-014 1 1 B1_E2_J1 0:21 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-015 1 1 B1_E2_J1 0:24 0:02 Drag a diagram Wandering dragging 
DGE-F-016 1 1 B1_E2_J1 0:26 0:01 Drag a diagram  Not identified 
DGE-F-017 1 1 B1_E2_J1 0:27 0:02 Drag a diagram Wandering dragging 
DGE-F-018 1 1 B1_E2_J1 0:29 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-019 1 1 B1_E2_J1 0:33 0:01 Select a diagram Point at a diagram 
DGE-F-020 1 1 B1_E2_J1 0:34 0:03 Drag a diagram Wandering dragging 
DGE-F-021 1 1 B1_E2_J1 0:37 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-022 1 1 B1_E2_J1 0:41 0:01 Drag a diagram Not identified 
DGE-F-023 1 1 B1_E2_J1 0:45 0:05 Drag a diagram Guided dragging 
DGE-F-024 1 1 B1_E2_J1 0:50 0:03 Drag a diagram Guided dragging 
DGE-F-025 1 1 B1_E2_J1 0:53 0:02 Drag a diagram Guided dragging 
DGE-F-026 1 1 B1_E2_J1 0:55 0:02 Drag a diagram Guided dragging 
DGE-F-027 1 1 B1_E2_J1 0:57 0:01 Drag a diagram Place a diagram 
DGE-F-028 1 1 B1_E2_J1 0:58 0:13 Drag a diagram Guided dragging 
DGE-F-029 1 1 B1_E2_J1 1:11 0:06 Move the cursor over diagrams Not identified 
DGE-F-030 1 1 B1_E2_J1 1:17 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-031 1 1 B1_E2_J1 1:18 0:01 Drag a diagram Point at a diagram 
DGE-F-032 1 1 B1_E2_J1 1:19 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-033 1 1 B1_E2_J1 1:22 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-034 1 1 B1_E2_J1 1:25 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-035 1 1 B1_E2_J1 1:28 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-036 1 1 B1_E2_J1 1:30 0:05 Drag a diagram Place a diagram 
DGE-F-037 1 1 B1_E2_J1 1:35 0:02 Drag a diagram Place a diagram 
DGE-F-038 1 1 B1_E2_J1 1:37 0:01 Drag a diagram Place a diagram 
DGE-F-039 1 1 B1_E2_J1 1:38 0:02 Drag a diagram Place a diagram 
DGE-F-040 1 1 B1_E2_J1 1:40 0:03 Drag a diagram Guided dragging 
DGE-F-041 1 1 B1_E2_J1 1:43 0:01 Drag a diagram Guided dragging 
DGE-F-042 1 1 B1_E2_J1 1:44 0:07 Drag a diagram Guided Dragging 
DGE-F-043 1 1 B1_E2_J1 1:51 0:03 Drag a diagram Guided dragging 
DGE-F-044 1 1 B1_E2_J1 1:54 0:01 Drag a diagram Guided dragging 
DGE-F-045 1 1 B1_E2_J1 1:55 0:05 Drag a diagram Guided dragging 
DGE-F-046 1 1 B1_E2_J1 2:00 0:02 Drag a diagram Guided dragging 
DGE-F-047 1 1 B1_E2_J1 2:02 0:03 Drag a diagram Guided dragging 
DGE-F-048 1 1 B1_E2_J1 2:05 0:04 Drag a label Dragging by accident 
DGE-F-049 1 1 B1_E2_J1 2:09 0:02 Drag a diagram Guided dragging 
DGE-F-050 1 1 B1_E2_J1 2:11 0:04 Drag a diagram Guided dragging 
DGE-F-051 1 1 B1_E2_J1 2:35 0:06 Select a diagram Point at a diagram 
DGE-F-052 1 1 B1_E2_J1 2:41 0:05 Move the cursor over diagrams Point at a diagram 
DGE-F-053 1 1 B1_E2_J1 2:46 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-054 1 1 B1_E2_J1 2:51 0:09 Move the cursor over diagrams Not identified  
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Table 6.3 (cont’d). DGE feature and DGE move code applications 

DGE-F-055 1 1 B1_E2_J1 3:00 0:03 Select a diagram Point at a diagram 
DGE-F-056 1 1 B1_E2_J1 3:03 0:03 Select a diagram Point at a diagram 
DGE-F-057 1 1 B1_E2_J1 3:06 0:02 Select a diagram Point at a diagram 
DGE-F-058 1 1 B1_E2_J1 3:08 0:02 Select a diagram Point at a diagram 
DGE-F-059 1 1 B1_E2_J1 3:10 0:09 Move the cursor over diagrams Not identified 
DGE-F-060 1 1 B1_E2_J1 3:19 0:04 Select a diagram Point at a diagram 
DGE-F-061 1 1 B1_E2_J1 3:23 0:03 Move the cursor over diagrams Point at a measurement 
DGE-F-062 1 1 B1_E2_J1 3:28 0:02 Select a diagram Point at a diagram 
DGE-F-063 1 1 B1_E2_J1 3:30 0:07 Move the cursor over diagrams  Point at a diagram 
DGE-F-064 1 1 B1_E2_J1 3:37 0:02 Select a diagram Point at a diagram 
DGE-F-065 1 1 B1_E2_J1 3:39 0:02 Select a diagram Point at a measurement 
DGE-F-066 1 1 B1_E2_J1 3:41 0:06 Move the cursor over diagrams  Point at a diagram 
DGE-F-067 1 1 B1_E2_J1 3:47 0:02 Select a diagram Point at a diagram 
DGE-F-068 1 1 B1_E2_J1 3:49 0:01 Select a diagram Point at a measurement 
DGE-F-069 1 1 B1_E2_J1 3:50 0:02 Select a diagram Point at a computation 
DGE-F-070 1 1 B1_E2_J1 3:52 0:01 Select a diagram Point at a computation 
DGE-F-071 1 1 B1_E2_J1 3:53 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-072 1 1 B2_D1_T1 0:06 0:14 Drag a diagram Wandering dragging 
DGE-F-073 1 1 B2_D1_T1 0:20 0:05 Move the cursor over diagrams Point at a diagram 
DGE-F-074 1 1 B2_D1_T1 0:25 0:05 Move the cursor over diagrams Point at a measurement 
DGE-F-075 1 1 B2_D1_T1 0:30 0:08 Drag a diagram Wandering dragging 
DGE-F-076 1 1 E1_L2 0:16 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-077 1 1 E1_L2 0:20 0:03 Move the cursor over diagrams Point at a measurement 
DGE-F-078 1 1 E1_L2 0:23 0:10 Drag a diagram Wandering dragging 
DGE-F-079 1 1 E1_L2 0:41 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-080 1 1 E1_L2 0:50 0:07 Move the cursor over diagrams Point at a measurement 
DGE-F-081 1 1 E1_L2 0:57 0:05 Move the cursor over diagrams Point at a measurement 
DGE-F-082 1 1 E1_L2 1:05 0:09 Drag a diagram Wandering dragging 
DGE-F-083 1 1 N1_O1 0:03 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-084 1 1 N1_O1 0:05 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-085 1 1 N1_O1 0:09 0:03 Move the cursor over diagrams Point at a measurement 
DGE-F-086 1 1 N1_O1 0:12 0:05 Move the cursor over diagrams Not identified 
DGE-F-087 1 1 N1_O1 0:23 0:03 Move the cursor over diagrams  Point at a diagram 
DGE-F-088 1 1 N1_O1 0:26 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-089 1 1 N1_O1 0:30 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-090 1 1 N1_O1 0:32 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-091 1 1 N1_O1 0:34 0:02 Move the cursor over diagrams Point at a measurement 
DGE-F-092 1 1 N1_O1 0:38 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-093 1 1 N1_O1 0:41 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-094 1 1 N1_O1 0:43 0:08 Move the cursor over diagrams Point at a measurement 
DGE-F-095 1 1 N1_O1 0:51 0:06 Move the cursor over diagrams Point at a diagram 
DGE-F-096 1 1 N1_O1 0:57 0:05 Move the cursor over diagrams Point at a measurement 
DGE-F-097 1 1 N1_O1 1:02 0:02 Drag a diagram Wandering dragging 
DGE-F-098 1 1 N1_O1 1:04 0:04 Drag a diagram Wandering dragging 
DGE-F-099 1 1 Y2_Y3 0:00 0:07 Move the cursor over diagrams Point at a diagram 
DGE-F-100 1 1 Y2_Y3 0:07 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-101 1 1 Y2_Y3 0:09 0:01 Drag a diagram Wandering dragging 
DGE-F-102 1 1 Y2_Y3 0:12 0:04 Drag a diagram Wandering dragging 
DGE-F-103 1 1 Y2_Y3 0:16 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-104 1 1 Y2_Y3 0:17 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-105 1 1 Y2_Y3 0:19 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-106 1 1 Y2_Y3 0:24 0:03 Move the cursor over diagrams Not identified 
DGE-F-107 1 1 Y2_Y3 0:27 0:03 Drag a diagram Wandering dragging 
DGE-F-108 1 1 Y2_Y3 0:30 0:01 Drag a diagram Wandering dragging 
DGE-F-109 1 1 Y2_Y3 0:31 0:01 Move the cursor over diagrams Wandering dragging 
DGE-F-110 1 1 Y2_Y3 0:32 0:03 Drag a diagram Wandering dragging 
DGE-F-111 1 1 Y2_Y3 0:35 0:11 Drag a diagram Wandering dragging 
DGE-F-112 1 1 Y2_Y3 0:46 0:01 Move the cursor over diagrams Not identified 
DGE-F-113 1 1 Y2_Y3 0:56 0:05 Drag a diagram Wandering dragging 
DGE-F-114 1 1 Y2_Y3 1:01 0:11 Drag a diagram Wandering dragging 
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DGE-F-115 1 1 Y2_Y3 1:20 0:02 Drag a diagram Wandering dragging 
DGE-F-116 1 1 Y2_Y3 1:22 0:02 Drag a diagram Wandering dragging 
DGE-F-117 1 1 Y2_Y3 1:24 0:07 Create a diagram Create a diagram 
DGE-F-118 1 1 Y2_Y3 1:31 0:04 Create a diagram Create a diagram 
DGE-F-119 1 1 Y2_Y3 1:35 0:02 Move the cursor over diagrams Measure a diagram 
DGE-F-120 1 1 Y2_Y3 1:37 0:05 Select a diagram Measure a diagram 
DGE-F-121 1 1 Y2_Y3 1:42 0:01 De-select diagrams Measure a diagram 
DGE-F-122 1 1 Y2_Y3 1:45 0:01 Select a diagram Measure a diagram 
DGE-F-123 1 1 Y2_Y3 1:46 0:01 De-select diagrams Measure a diagram 
DGE-F-124 1 1 Y2_Y3 1:47 0:07 Select a diagram Measure a diagram 
DGE-F-125 1 1 Y2_Y3 1:54 0:01 Measure a diagram Measure a diagram 
DGE-F-126 1 1 Y2_Y3 1:55 0:02 Drag a measurement Fit diagrams to the screen 
DGE-F-127 1 1 Y2_Y3 1:57 0:03 Drag a measurement Fit diagrams to the screen 
DGE-F-128 1 1 Y2_Y3 2:00 0:03 Scroll the screen Fit diagrams to the screen 
DGE-F-129 1 1 Y2_Y3 2:03 0:01 De-select diagrams Measure a diagram 
DGE-F-130 1 1 Y2_Y3 2:04 0:06 Select a diagram Measure a diagram 
DGE-F-131 1 1 Y2_Y3 2:10 0:03 Measure a diagram Measure a diagram 
DGE-F-132 1 1 Y2_Y3 2:13 0:01 Drag a measurement Fit diagrams to the screen 
DGE-F-133 1 1 Y2_Y3 2:14 0:02 Drag a measurement Fit diagrams to the screen 
DGE-F-134 1 1 Y2_Y3 2:19 0:03 Drag a diagram Not identified 
DGE-F-135 1 1 Y2_Y3 2:22 0:03 Move the cursor over diagrams  Not identified 
DGE-F-136 1 1 Y2_Y3 2:25 0:03 Move the cursor over diagrams Not identified 
DGE-F-137 1 1 Y2_Y3 2:28 0:01 Select a diagram Not identified  
DGE-F-138 1 1 Y2_Y3 2:29 0:02 Drag a diagram Wandering dragging 
DGE-F-139 1 1 Y2_Y3 2:31 0:01 Move the cursor over diagrams Wandering dragging 
DGE-F-140 1 1 Y2_Y3 2:32 0:08 Drag a diagram Wandering dragging 
DGE-F-141 1 2 A1_K1 00:10 0:05 Move the cursor over diagrams Point at a diagram 
DGE-F-142 1 2 A1_K1 0:15 0:03 Drag a diagram Guided dragging 
DGE-F-143 1 2 A1_K1 00:18 0:04 Drag a diagram Guided dragging 
DGE-F-144 1 2 A1_K1 00:30 0:05 Drag a diagram Wandering dragging 
DGE-F-145 1 2 A1_K1 00:35 0:01 Drag a diagram Guided dragging 
DGE-F-146 1 2 A1_K1 00:36 0:05 Drag a diagram Guided dragging 
DGE-F-147 1 2 A1_K1 00:41 0:05 Drag a diagram Guided dragging 
DGE-F-148 1 2 A1_K1 00:46 0:02 Drag a diagram Guided dragging 
DGE-F-149 1 2 A1_K1 00:58 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-150 1 2 A1_K1 00:59 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-151 1 2 A1_K1 01:04 0:02 Move the cursor over diagrams Point at a measurement 
DGE-F-152 1 2 A1_K1 01:06 0:02 Drag a diagram Wandering dragging 
DGE-F-153 1 2 A1_K1 01:08 0:03 Drag a diagram Wandering dragging 
DGE-F-154 1 2 A1_K1 01:11 0:04 Drag a diagram Guided dragging 
DGE-F-155 1 2 B1_E2_J1 0:05 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-156 1 2 B1_E2_J1 0:08 0:04 Move the cursor over diagrams Not identified 
DGE-F-157 1 2 B1_E2_J1 0:12 0:05 Move the cursor over diagrams Point at a diagram 
DGE-F-158 1 2 B1_E2_J1 0:17 0:01 Move the cursor over diagrams Point at a measurement 
DGE-F-159 1 2 B1_E2_J1 0:18 0:02 Drag a measurement Point at a computation 
DGE-F-160 1 2 B1_E2_J1 0:20 0:02 Move the cursor over diagrams Not identified 
DGE-F-161 1 2 B1_E2_J1 0:22 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-162 1 2 B1_E2_J1 0:26 0:05 Move the cursor over diagrams Not identified 
DGE-F-163 1 2 B1_E2_J1 0:31 0:02 Drag a diagram Dragging by accident 
DGE-F-164 1 2 B1_E2_J1 0:33 0:06 Drag a diagram Wandering dragging 
DGE-F-165 1 2 B1_E2_J1 0:39 0:03 Drag a diagram Guided dragging 
DGE-F-166 1 2 B1_E2_J1 0:42 0:08 Drag a diagram Wandering dragging 
DGE-F-167 1 2 B1_E2_J1 0:50 0:06 Move the cursor over diagrams Not identified 
DGE-F-168 1 2 B1_E2_J1 0:56 0:04 Drag a diagram Not identified 
DGE-F-169 1 2 B2_T1 0:09 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-170 1 2 B2_T1 0:13 0:01 Move the cursor over diagrams Not identified 
DGE-F-171 1 2 B2_T1 0:23 0:01 Move the cursor over diagrams Point at a measurement  
DGE-F-172 1 2 B2_T1 0:24 0:06 Move the cursor over diagrams Not identified 
DGE-F-173 1 2 B2_T1 0:30 0:09 Drag a diagram Wandering dragging 
DGE-F-174 1 2 D1_J2 0:11 0:02 Move the cursor over diagrams Point at a diagram 
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DGE-F-175 1 2 D1_J2 0:22 0:05 Move the cursor over diagrams Point at a diagram 
DGE-F-176 1 2 D1_J2 0:27 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-177 1 2 D1_J2 0:29 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-178 1 2 D1_J2 0:37 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-179 1 2 D1_J2 0:41 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-180 1 2 D1_J2 0:44 0:01 Move the cursor over diagrams Point at a measurement 
DGE-F-181 1 2 D1_J2 0:47 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-182 1 2 D1_J2 0:54 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-183 1 2 D1_J2 0:57 0:03 Move the cursor over diagrams Point at a measurement 
DGE-F-184 1 2 D1_J2 1:03 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-185 1 2 D1_J2 1:05 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-186 1 2 D1_J2 1:07 0:03 Move the cursor over diagrams Point at a measurement 
DGE-F-187 1 2 D1_J2 1:13 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-188 1 2 D2_Y1 0:00 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-189 1 2 D2_Y1 0:03 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-190 1 2 D2_Y1 0:05 0:01 Select a diagram Point at a diagram 
DGE-F-191 1 2 D2_Y1 0:06 0:01 Select a diagram Point at a diagram 
DGE-F-192 1 2 D2_Y1 0:07 0:01 De-select diagrams Point at a diagram 
DGE-F-193 1 2 D2_Y1 0:08 0:07 Move the cursor over diagrams Point at a diagram 
DGE-F-194 1 2 D2_Y1 0:15 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-195 1 2 D2_Y1 0:16 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-196 1 2 D2_Y1 0:17 0:09 Move the cursor over diagrams Not identified 
DGE-F-197 1 2 D2_Y1 0:26 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-198 1 2 D2_Y1 0:27 0:06 Move the cursor over diagrams Point at a measurement 
DGE-F-199 1 2 D2_Y1 0:33 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-200 1 2 D2_Y1 0:35 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-201 1 2 E1_L2 0:10 0:19 Drag a diagram Wandering dragging 
DGE-F-202 1 2 E1_L2 0:40 0:21 Drag a diagram Wandering dragging 
DGE-F-203 1 2 E1_L2 1:17 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-204 1 2 E1_L2 1:21 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-205 1 2 E1_L2 1:25 0:03 Move the cursor over diagrams  Not identified 
DGE-F-206 1 2 E1_L2 1:28 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-207 1 2 E1_L2 1:30 0:07 Move the cursor over diagrams Point at a measurement 
DGE-F-208 1 2 E1_L2 1:37 0:21 Drag a diagram Wandering dragging 
DGE-F-209 1 2 N1_O1 0:00 0:07 Select a diagram Point at a diagram 
DGE-F-210 1 2 N1_O1 0:07 0:06 Drag a diagram Wandering dragging  
DGE-F-211 1 2 N1_O1 0:13 0:04 Drag a diagram Guided dragging 
DGE-F-212 1 2 N1_O1 0:28 0:04 Move the cursor over diagrams Not identified 
DGE-F-213 1 2 N1_O1 0:32 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-214 1 2 N1_O1 0:34 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-215 1 2 N1_O1 0:37 0:03 Drag a diagram Dragging by accident 
DGE-F-216 1 2 N1_O1 0:47 0:13 Drag a diagram Wandering dragging 
DGE-F-217 1 2 N1_O1 1:09 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-218 1 2 N1_O1 1:12 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-219 1 2 N1_O1 1:16 0:12 Move the cursor over diagrams Point at a diagram 
DGE-F-220 1 2 N1_O1 1:28 0:05 Move the cursor over diagrams Point at a measurement 
DGE-F-221 1 2 N1_O1 1:33 0:06 Drag a diagram Wandering dragging 
DGE-F-222 1 2 N1_O1 1:39 0:02 Move the cursor over diagrams Point at a measurement 
DGE-F-223 1 2 N1_O1 1:41 0:12 Drag a diagram Wandering dragging 
DGE-F-224 1 2 Y2_Y3 0:03 0:05 Move the cursor over diagrams Not identified 
DGE-F-225 1 2 Y2_Y3 0:08 0:06 Move the cursor over diagrams Not identified 
DGE-F-226 1 2 Y2_Y3 0:15 0:10 Drag a diagram Not identified 
DGE-F-227 1 2 Y2_Y3 0:25 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-228 1 2 Y2_Y3 0:27 0:07 Rescale the screen Fit diagrams to the screen 
DGE-F-229 1 2 Y2_Y3 0:34 0:00 Select a diagram Point at a diagram 
DGE-F-230 1 2 Y2_Y3 0:34 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-231 1 2 Y2_Y3 0:36 0:07 Label a diagram Label a diagram 
DGE-F-232 1 2 Y2_Y3 0:43 0:04 Select a measurement Point at a measurement 
DGE-F-233 1 2 Y2_Y3 0:47 0:05 Drag a diagram Guided dragging 
DGE-F-234 1 2 Y2_Y3 0:55 0:06 Drag a diagram Guided dragging 
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DGE-F-235 1 2 Y2_Y3 1:01 0:05 Move the cursor over diagrams Point at a diagram 
DGE-F-236 1 2 Y2_Y3 1:06 0:03 Drag a diagram Guided dragging 
DGE-F-237 1 2 Y2_Y3 1:09 0:04 Select a measurement Point at a measurement 
DGE-F-238 1 2 Y2_Y3 1:13 0:05 Drag a diagram Guided dragging 
DGE-F-239 1 2 Y2_Y3 1:18 0:03 Drag a diagram Guided dragging 
DGE-F-240 1 2 Y2_Y3 1:21 0:02 Select a measurement Point at a measurement 
DGE-F-241 1 2 Y2_Y3 1:23 0:09 Drag a diagram Guided dragging 
DGE-F-242 1 2 Y2_Y3 1:32 0:02 Drag a diagram Place a diagram 
DGE-F-243 1 2 Y2_Y3 1:34 0:03 Select a diagram Point at a diagram 
DGE-F-244 1 2 Y2_Y3 1:38 0:05 Drag a diagram Wandering dragging 
DGE-F-245 1 2 Y2_Y3 1:43 0:01 Select a measurement Point at a measurement 
DGE-F-246 1 2 Y2_Y3 1:44 0:12 Drag a diagram Wandering dragging 
DGE-F-247 1 2 Y2_Y3 1:56 0:09 Move the cursor over diagrams Not identified 
DGE-F-248 1 2 Y2_Y3 2:05 0:04 Move the cursor over diagrams Not identified 
DGE-F-249 1 2 Y2_Y3 2:09 0:07 Select a diagram Point at a diagram 
DGE-F-250 1 2 Y2_Y3 2:16 0:10 Rescale the screen Fit diagrams to the screen 
DGE-F-251 1 2 Y2_Y3 2:26 0:02 Select a diagram Point at a diagram 
DGE-F-252 1 2 Y2_Y3 2:28 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-253 1 2 Y2_Y3 2:29 0:03 Select a diagram Point at a diagram 
DGE-F-254 1 2 Y2_Y3 2:33 0:06 Move the cursor over diagrams Point at a diagram 
DGE-F-255 1 2 Y2_Y3 2:39 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-256 1 2 Y2_Y3 2:42 0:04 Select a diagram Point at a diagram 
DGE-F-257 1 2 Y2_Y3 2:53 0:04 Hide a diagram Label a diagram 
DGE-F-258 1 2 Y2_Y3 2:57 0:04 Select a diagram Label a diagram 
DGE-F-259 1 2 Y2_Y3 3:01 0:13 Un-hide a diagram Label a diagram 
DGE-F-260 1 2 Y2_Y3 3:14 0:04 Label a diagram Label a diagram 
DGE-F-261 1 2 Y2_Y3 3:18 0:04 Select a diagram Point at a diagram 
DGE-F-262 1 2 Y2_Y3 3:22 0:06 Create a diagram Create a diagram 
DGE-F-263 1 2 Y2_Y3 3:28 0:03 Create a diagram Create a diagram 
DGE-F-264 1 2 Y2_Y3 3:31 0:02 Undo Undo last steps 
DGE-F-265 1 2 Y2_Y3 3:33 0:01 Create a diagram Create a diagram 
DGE-F-266 1 2 Y2_Y3 3:37 0:06 Hide a diagram Label a diagram 
DGE-F-267 1 2 Y2_Y3 3:43 0:06 Un-hide a diagram Label a diagram 
DGE-F-268 1 2 Y2_Y3 3:49 0:03 Label a diagram Label a diagram 
DGE-F-269 1 2 Y2_Y3 3:54 0:12 Measure a diagram Measure a diagram 
DGE-F-270 1 2 Y2_Y3 4:06 0:02 Drag a measurement Place a measurement 
DGE-F-271 1 2 Y2_Y3 4:08 0:06 Scroll the screen Fit diagrams to the screen 
DGE-F-272 1 2 Y2_Y3 4:14 0:03 Select a diagram Not identified 
DGE-F-273 1 2 Y2_Y3 4:17 0:02 Move the cursor over diagrams Point at a measurement 
DGE-F-274 1 2 Y2_Y3 4:19 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-275 1 2 Y2_Y3 4:23 0:05 Move the cursor over diagrams Point at a diagram 
DGE-F-276 1 2 Y2_Y3 4:28 0:03 Select a diagram Not identified 
DGE-F-277 1 2 Y2_Y3 4:31 0:02 Select a diagram Point at a diagram 
DGE-F-278 1 2 Y2_Y3 4:33 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-279 1 2 Y2_Y3 4:37 0:02 Select a diagram Point at a diagram 
DGE-F-280 1 2 Y2_Y3 4:39 0:03 Select a diagram Point at a diagram 
DGE-F-281 1 2 Y2_Y3 4:42 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-282 1 2 Y2_Y3 4:46 0:08 Move the cursor over diagrams Point at a diagram 
DGE-F-283 1 2 Y2_Y3 4:54 0:01 Select a measurement Point at a measurement 
DGE-F-284 1 2 Y2_Y3 4:55 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-285 1 2 Y2_Y3 4:58 0:02 Select a measurement Point at a measurement 
DGE-F-286 1 2 Y2_Y3 5:00 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-287 1 2 Y2_Y3 5:02 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-288 1 2 Y2_Y3 5:05 0:05 Drag a diagram Wandering dragging 
DGE-F-289 1 2 Y2_Y3 5:10 0:01 Select a measurement Point at a measurement 
DGE-F-290 1 2 Y2_Y3 5:11 0:02 Select a measurement Point at a measurement 
DGE-F-291 1 2 Y2_Y3 5:13 0:03 Select a measurement Point at a measurement 
DGE-F-292 1 2 Y2_Y3 5:16 0:04 Select a measurement Point at a measurement 
DGE-F-293 1 2 Y2_Y3 5:20 0:01 Select a measurement Point at a measurement 
DGE-F-294 1 2 Y2_Y3 5:21 0:01 Select a measurement Point at a measurement 
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DGE-F-295 1 2 Y2_Y3 5:22 0:08 Drag a diagram Wandering dragging 
DGE-F-296 2 3 A1_K1 0:10 0:07 Move the cursor over diagrams Not identified 
DGE-F-297 2 3 A1_K1 0:19 0:03 Move the cursor over diagrams Not identified 
DGE-F-298 2 3 A1_K1 0:28 0:02 Move the cursor over diagrams Not identified 
DGE-F-299 2 3 A1_K1 0:30 0:02 Move the cursor over diagrams Not identified 
DGE-F-300 2 3 A1_K1 0:32 0:05 Create a diagram Create a diagram 
DGE-F-301 2 3 A1_K1 0:43 0:03 Create a diagram Create a diagram 
DGE-F-302 2 3 A1_K1 0:46 0:09 Label a diagram Label a diagram 
DGE-F-303 2 3 A1_K1 1:00 0:02 Select a diagram Create a diagram 
DGE-F-304 2 3 A1_K1 1:02 0:02 Create a diagram Create a diagram 
DGE-F-305 2 3 A1_K1 1:08 0:02 Create a diagram Create a diagram 
DGE-F-306 2 3 A1_K1 1:10 0:07 Label a diagram Label a diagram 
DGE-F-307 2 3 A1_K1 1:28 0:05 Select a diagram Create a diagram 
DGE-F-308 2 3 A1_K1 1:33 0:01 Create a diagram Create a diagram 
DGE-F-309 2 3 A1_K1 2:14 0:03 Move the cursor over diagrams Not identified 
DGE-F-310 2 3 A1_K1 2:17 0:04 Create a diagram Create a diagram 
DGE-F-311 2 3 A1_K1 2:21 0:07 Drag a diagram Wandering dragging 
DGE-F-312 2 3 A1_K1 2:28 0:09 Label a diagram Label a diagram 
DGE-F-313 2 3 A1_K1 2:44 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-314 2 3 A1_K1 2:46 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-315 2 3 A1_K1 2:50 0:05 Move the cursor over diagrams Point at a diagram 
DGE-F-316 2 3 A1_K1 2:55 0:06 Drag a diagram Guided dragging 
DGE-F-317 2 3 A1_K1 3:01 0:08 Label a diagram Label a diagram 
DGE-F-318 2 3 A1_K1 3:09 0:10 Create a diagram Create a diagram 
DGE-F-319 2 3 A1_K1 3:19 0:03 Drag a diagram Wandering dragging 
DGE-F-320 2 3 A1_K1 3:40 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-321 2 3 A1_K1 3:44 0:04 Move the cursor over diagrams Not identified 
DGE-F-322 2 3 A1_K1 3:48 0:04 Move the cursor over diagrams Not identified 
DGE-F-323 2 3 A1_K1 3:58 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-324 2 3 A1_K1 4:00 0:06 Select a diagram Create a diagram 
DGE-F-325 2 3 A1_K1 4:06 0:02 Select a diagram Create a diagram 
DGE-F-326 2 3 A1_K1 4:12 0:02 Select a diagram Create a diagram 
DGE-F-327 2 3 A1_K1 4:14 0:03 Mirror a diagram Create a diagram 
DGE-F-328 2 3 A1_K1 4:17 0:13 Label a diagram Label a diagram 
DGE-F-329 2 3 A1_K1 4:38 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-330 2 3 A1_K1 4:39 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-331 2 3 A1_K1 4:44 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-332 2 3 A1_K1 4:56 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-333 2 3 A1_K1 4:59 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-334 2 3 A1_K1 5:04 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-335 2 3 A1_K1 5:06 0:04 Create a diagram Create a diagram 
DGE-F-336 2 3 A1_K1 5:27 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-337 2 3 A1_K1 5:28 0:04 Create a diagram Create a diagram 
DGE-F-338 2 3 A1_K1 5:32 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-339 2 3 A1_K1 5:47 0:02 Create a diagram Create a diagram 
DGE-F-340 2 3 A1_K1 5:49 0:06 Label a diagram Label a diagram 
DGE-F-341 2 3 A1_K1 6:07 0:09 Select a diagram Reflect a diagram 
DGE-F-342 2 3 A1_K1 6:16 0:02 Mirror a diagram Reflect a diagram 
DGE-F-343 2 3 A1_K1 6:18 0:07 Label a diagram Label a diagram 
DGE-F-344 2 3 A1_K1 6:33 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-345 2 3 A1_K1 6:36 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-346 2 3 A1_K1 6:41 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-347 2 3 A1_K1 6:47 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-348 2 3 A1_K1 6:48 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-349 2 3 A1_K1 6:49 0:26 Move the cursor over diagrams Point at a diagram 
DGE-F-350 2 3 A1_K1 7:15 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-351 2 3 A1_K1 7:16 0:06 Move the cursor over diagrams Point at a diagram 
DGE-F-352 2 3 A1_K1 7:22 0:13 Select a diagram Measure a diagram 
DGE-F-353 2 3 A1_K1 7:35 0:05 Select a diagram Measure a diagram 
DGE-F-354 2 3 A1_K1 7:40 0:05 Select a diagram Measure a diagram 
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DGE-F-355 2 3 A1_K1 7:45 0:05 Select a diagram Measure a diagram 
DGE-F-356 2 3 A1_K1 7:50 0:02 Move the cursor over diagrams Not identified 
DGE-F-357 2 3 A1_K1 7:53 0:07 Select a diagram Measure a diagram 
DGE-F-358 2 3 A1_K1 8:00 0:10 Select a diagram Measure a diagram 
DGE-F-359 2 3 A1_K1 8:43 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-360 2 3 A1_K1 8:46 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-361 2 3 A1_K1 8:49 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-362 2 3 A1_K1 8:53 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-363 2 3 A1_K1 8:55 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-364 2 3 A1_K1 8:57 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-365 2 3 A1_K1 8:58 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-366 2 3 A1_K1 9:00 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-367 2 3 A1_K1 11:15 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-368 2 3 A1_K1(2) 0:07 0:06 Drag a diagram Guided dragging 
DGE-F-369 2 3 A1_K1(2) 0:13 0:08 Drag a diagram Guided dragging 
DGE-F-370 2 3 A1_K1(2) 0:21 0:06 Drag a diagram Guided dragging 
DGE-F-371 2 3 B1_E2 0:24 0:09 Create a diagram Create a diagram 
DGE-F-372 2 3 B1_E2 0:33 0:06 Create a diagram Create a diagram 
DGE-F-373 2 3 B1_E2 0:39 0:09 Label a diagram Label a diagram 
DGE-F-374 2 3 B1_E2 0:48 0:10 Hide a label Hide a label 
DGE-F-375 2 3 B1_E2 0:58 0:07 Label a diagram Label a diagram 
DGE-F-376 2 3 B1_E2 1:12 0:01 Select a diagram Create a diagram 
DGE-F-377 2 3 B1_E2 1:13 0:02 Select a diagram Create a diagram 
DGE-F-378 2 3 B1_E2 1:15 0:01 Create a diagram Create a diagram 
DGE-F-379 2 3 B1_E2 1:23 0:02 Create a diagram Create a diagram 
DGE-F-380 2 3 B1_E2 1:25 0:06 Label a diagram Label a diagram 
DGE-F-381 2 3 B1_E2 1:40 0:03 Select a diagram Create a diagram 
DGE-F-382 2 3 B1_E2 1:43 0:01 Create a diagram Create a diagram 
DGE-F-383 2 3 B1_E2 1:51 0:05 Label a diagram Label a diagram 
DGE-F-384 2 3 B1_E2 2:15 0:02 Create a diagram Create a diagram 
DGE-F-385 2 3 B1_E2 2:17 0:04 Label a diagram Label a diagram 
DGE-F-386 2 3 B1_E2 2:25 0:04 Select a diagram Create a diagram 
DGE-F-387 2 3 B1_E2 2:29 0:03 Create a diagram Create a diagram 
DGE-F-388 2 3 B1_E2 2:42 0:02 Drag a diagram Wandering dragging 
DGE-F-389 2 3 B1_E2 2:56 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-390 2 3 B1_E2 2:57 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-391 2 3 B1_E2 3:01 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-392 2 3 B1_E2 3:05 0:18 Select a diagram Reflect a diagram 
DGE-F-393 2 3 B1_E2 3:23 0:07 Select a diagram Reflect a diagram 
DGE-F-394 2 3 B1_E2 3:30 0:02 Create a diagram Reflect a diagram 
DGE-F-395 2 3 B1_E2 3:32 0:05 Label a diagram Label a diagram 
DGE-F-396 2 3 B1_E2 3:45 0:03 Create a diagram Create a diagram 
DGE-F-397 2 3 B1_E2 3:51 0:03 Drag a diagram Wandering dragging 
DGE-F-398 2 3 B1_E2 3:58 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-399 2 3 B1_E2 4:08 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-400 2 3 B1_E2 4:09 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-401 2 3 B1_E2 4:14 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-402 2 3 B1_E2 4:16 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-403 2 3 B1_E2 4:47 0:02 Drag a diagram Wandering dragging 
DGE-F-404 2 3 B1_E2 4:49 0:06 Drag a diagram Wandering dragging 
DGE-F-405 2 3 B1_E2 4:57 0:11 Drag a diagram Guided dragging 
DGE-F-406 2 3 B1_E2 5:21 0:01 Select a diagram Point at a diagram 
DGE-F-407 2 3 B1_E2 5:22 0:01 Select a diagram Point at a diagram 
DGE-F-408 2 3 B1_E2 6:05 0:07 Move the cursor over diagrams Point at a diagram 
DGE-F-409 2 3 B1_E2 6:12 0:02 Drag a diagram Guided dragging 
DGE-F-410 2 3 B1_E2 6:14 0:03 Drag a diagram Guided dragging 
DGE-F-411 2 3 B1_E2 6:17 0:01 Create a diagram Create a diagram 
DGE-F-412 2 3 B1_E2 6:18 0:08 Label a diagram Label a diagram 
DGE-F-413 2 3 B1_E2 6:30 0:03 Hide a diagram Hide a diagram 
DGE-F-414 2 3 B1_E2 6:33 0:02 Hide a diagram Hide a diagram 
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DGE-F-415 2 3 B1_E2 6:44 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-416 2 3 B1_E2 7:10 0:02 Select a diagram Reflect a diagram 
DGE-F-417 2 3 B1_E2 7:12 0:03 Mirror a diagram Reflect a diagram 
DGE-F-418 2 3 B1_E2 7:15 0:04 Label a diagram Label a diagram 
DGE-F-419 2 3 B1_E2 7:32 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-420 2 3 B1_E2 7:34 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-421 2 3 B1_E2 7:57 0:07 Move the cursor over diagrams Not identified 
DGE-F-422 2 3 B1_E2 8:04 0:02 Select a diagram Point at a diagram 
DGE-F-423 2 3 B1_E2 8:06 0:01 Select a diagram Point at a diagram 
DGE-F-424 2 3 B1_E2 8:07 0:02 Select a diagram Point at a diagram 
DGE-F-425 2 3 B1_E2 8:09 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-426 2 3 B1_E2 8:11 0:06 De-select diagrams Not identified 
DGE-F-427 2 3 B1_E2 8:17 0:04 Drag a diagram Wandering dragging 
DGE-F-428 2 3 B1_E2 8:21 0:04 Drag a diagram Wandering dragging 
DGE-F-429 2 3 B1_E2 8:25 0:05 Drag a diagram Wandering dragging 
DGE-F-430 2 3 B1_E2 8:31 0:02 Drag a diagram Wandering dragging 
DGE-F-431 2 3 B1_E2(2) 0:09 0:03 Drag a diagram Wandering dragging 
DGE-F-432 2 3 B1_E2(2) 0:13 0:07 Drag a diagram Wandering dragging 
DGE-F-433 2 3 B1_E2(2) 0:20 0:04 Drag a diagram Guided dragging 
DGE-F-434 2 3 B1_E2(2) 0:24 0:03 Drag a diagram Wandering dragging 
DGE-F-435 2 3 B1_E2(2) 0:27 0:07 Drag a diagram Wandering dragging 
DGE-F-436 2 3 B1_E2(2) 0:34 0:04 Drag a diagram Guided dragging 
DGE-F-437 2 3 B1_E2(2) 0:38 0:04 Drag a diagram Wandering dragging 
DGE-F-438 2 3 B1_E2(2) 0:47 0:01 Drag a diagram Dragging by accident 
DGE-F-439 2 3 B1_E2(2) 0:48 0:03 Drag a diagram Guided dragging 
DGE-F-440 2 3 B1_E2(2) 0:51 0:06 Drag a diagram Guided dragging 
DGE-F-441 2 3 B1_E2(2) 0:57 0:03 Drag a diagram Guided dragging 
DGE-F-442 2 3 B1_E2(2) 1:02 0:04 Drag a diagram Wandering dragging 
DGE-F-443 2 3 B1_E2(2) 1:07 0:05 Move the cursor over diagrams Point at a diagram 
DGE-F-444 2 3 B1_E2(2) 1:15 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-445 2 3 B1_E2(2) 1:21 0:03 Drag a diagram Guided dragging 
DGE-F-446 2 3 B1_E2(2) 1:31 0:02 Drag a diagram Guided dragging 
DGE-F-447 2 3 B1_E2(2) 1:33 0:04 Drag a diagram Guided dragging 
DGE-F-448 2 3 B1_E2(2) 1:37 0:03 Drag a diagram Guided dragging 
DGE-F-449 2 3 B1_E2(2) 1:40 0:03 Drag a diagram Guided dragging 
DGE-F-450 2 3 B1_E2(2) 1:43 0:06 Drag a diagram Guided dragging 
DGE-F-451 2 3 B1_E2(2) 1:49 0:02 Drag a diagram Wandering dragging 
DGE-F-452 2 3 B1_E2(2) 1:52 0:01 Drag a diagram Wandering dragging 
DGE-F-453 2 3 B1_E2(2) 1:53 0:06 Drag a diagram Guided dragging 
DGE-F-454 2 3 D1_T1 0:07 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-455 2 3 D1_T1 0:08 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-456 2 3 D1_T1 0:09 0:05 Move the cursor over diagrams Point at a diagram 
DGE-F-457 2 3 D1_T1 0:14 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-458 2 3 D1_T1 0:19 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-459 2 3 D1_T1 0:21 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-460 2 3 D1_T1 0:26 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-461 2 3 D1_T1 0:44 0:06 Select a diagram Reflect a diagram 
DGE-F-462 2 3 D1_T1 0:50 0:01 Mirror a diagram Reflect a diagram 
DGE-F-463 2 3 D1_T1 0:56 0:03 Create a diagram Create a diagram 
DGE-F-464 2 3 D1_T1 1:08 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-465 2 3 D1_T1 1:27 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-466 2 3 D1_T1 1:29 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-467 2 3 D1_T1 1:41 0:08 Drag a diagram Guided dragging 
DGE-F-468 2 3 D2_Y1 0:10 0:03 Move the cursor over diagrams Point at a feature icon 
DGE-F-469 2 3 D2_Y1 0:17 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-470 2 3 D2_Y1 0:23 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-471 2 3 D2_Y1 0:24 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-472 2 3 D2_Y1 0:27 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-473 2 3 D2_Y1 0:32 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-474 2 3 D2_Y1 0:33 0:05 Move the cursor over diagrams Point at a diagram 
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DGE-F-475 2 3 D2_Y1 0:38 0:01 Select a diagram Point at a diagram 
DGE-F-476 2 3 D2_Y1 0:39 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-477 2 3 D2_Y1 0:47 0:06 Select a diagram Not identified 
DGE-F-478 2 3 D2_Y1 0:53 0:01 Select a diagram Point at a diagram 
DGE-F-479 2 3 D2_Y1 0:54 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-480 2 3 D2_Y1 1:00 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-481 2 3 D2_Y1 1:01 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-482 2 3 D2_Y1 1:02 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-483 2 3 D2_Y1 1:05 0:05 Move the cursor over diagrams Point at a diagram 
DGE-F-484 2 3 D2_Y1 1:17 0:01 Drag a diagram Point at a diagram 
DGE-F-485 2 3 D2_Y1 1:28 0:04 Move the cursor over diagrams Point at a feature icon 
DGE-F-486 2 3 D2_Y1 1:36 0:10 Drag a diagram Wandering dragging 
DGE-F-487 2 3 D2_Y1 1:59 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-488 2 3 D2_Y1 2:00 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-489 2 3 D2_Y1 2:20 0:12 Drag a diagram Wandering dragging 
DGE-F-490 2 3 D2_Y1 2:32 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-491 2 3 D2_Y1 2:37 0:11 Drag a diagram Guided dragging 
DGE-F-492 2 3 D2_Y1 2:48 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-493 2 3 D2_Y1 3:12 0:15 Drag a diagram Guided dragging 
DGE-F-494 2 3 D2_Y1 3:29 0:03 Drag a diagram Guided dragging 
DGE-F-495 2 3 D2_Y1 3:46 0:03 Drag a diagram Guided dragging 
DGE-F-496 2 3 D2_Y1 3:51 0:03 Create a diagram Create a diagram 
DGE-F-497 2 3 D2_Y1 3:57 0:07 Label a diagram Label a diagram 
DGE-F-498 2 3 D2_Y1 4:09 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-499 2 3 D2_Y1 4:12 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-500 2 3 D2_Y1 4:18 0:11 Select a diagram Reflect a diagram 
DGE-F-501 2 3 D2_Y1 4:29 0:02 Select a diagram Reflect a diagram 
DGE-F-502 2 3 D2_Y1 4:31 0:03 Mirror a diagram Reflect a diagram 
DGE-F-503 2 3 D2_Y1 4:34 0:11 Create a diagram Create a diagram 
DGE-F-504 2 3 D2_Y1 4:52 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-505 2 3 D2_Y1 4:53 0:05 Move the cursor over diagrams Point at a diagram 
DGE-F-506 2 3 D2_Y1 4:58 0:01 Select a diagram Create a diagram 
DGE-F-507 2 3 D2_Y1 4:59 0:01 Select a diagram Create a diagram 
DGE-F-508 2 3 D2_Y1 5:00 0:01 Create a diagram Create a diagram 
DGE-F-509 2 3 D2_Y1 5:04 0:06 Label a diagram Label a diagram 
DGE-F-510 2 3 D2_Y1 5:14 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-511 2 3 D2_Y1 5:17 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-512 2 3 D2_Y1 5:19 0:06 Select a diagram Measure a diagram 
DGE-F-513 2 3 D2_Y1 5:25 0:09 Select a diagram Measure a diagram 
DGE-F-514 2 3 D2_Y1 5:42 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-515 2 3 D2_Y1 5:45 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-516 2 3 D2_Y1 5:50 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-517 2 3 D2_Y1 5:51 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-518 2 3 D2_Y1 5:52 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-519 2 3 D2_Y1 5:55 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-520 2 3 D2_Y1 5:57 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-521 2 3 D2_Y1 5:58 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-522 2 3 D2_Y1 5:59 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-523 2 3 D2_Y1 6:00 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-524 2 3 D2_Y1 6:08 0:02 Select a diagram Not identified 
DGE-F-525 2 3 D2_Y1 6:10 0:01 Select a diagram Measure a diagram 
DGE-F-526 2 3 D2_Y1 6:11 0:01 Select a diagram Measure a diagram 
DGE-F-527 2 3 D2_Y1 6:22 0:01 Measure a diagram Measure a diagram 
DGE-F-528 2 3 D2_Y1 6:25 0:02 Select a diagram Measure a diagram 
DGE-F-529 2 3 D2_Y1 6:27 0:01 Select a diagram Measure a diagram 
DGE-F-530 2 3 D2_Y1 6:30 0:01 Measure a diagram Measure a diagram 
DGE-F-531 2 3 D2_Y1 6:33 0:07 Move the cursor over diagrams Point at a diagram 
DGE-F-532 2 3 D2_Y1 6:46 0:05 Move the cursor over diagrams Point at a diagram 
DGE-F-533 2 3 D2_Y1 7:02 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-534 2 3 D2_Y1 7:04 0:02 Move the cursor over diagrams Point at a diagram 
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DGE-F-535 2 3 D2_Y1 7:06 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-536 2 3 D2_Y1 7:23 0:01 Select a diagram Measure a diagram 
DGE-F-537 2 3 D2_Y1 7:24 0:02 Select a diagram Measure a diagram 
DGE-F-538 2 3 D2_Y1 7:26 0:02 Select a diagram Measure a diagram 
DGE-F-539 2 3 D2_Y1 7:30 0:01 Measure a diagram Measure a diagram 
DGE-F-540 2 3 D2_Y1 7:31 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-541 2 3 D2_Y1 7:33 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-542 2 3 D2_Y1 7:35 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-543 2 3 D2_Y1 7:37 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-544 2 3 D2_Y1 7:41 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-545 2 3 D2_Y1 7:44 0:01 Select a diagram Point at a diagram 
DGE-F-546 2 3 D2_Y1 7:45 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-547 2 3 D2_Y1 7:46 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-548 2 3 D2_Y1 7:47 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-549 2 3 D2_Y1 7:50 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-550 2 3 D2_Y1 7:52 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-551 2 3 D2_Y1 7:58 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-552 2 3 N1_O1 0:00 0:08 Create a diagram Create a diagram 
DGE-F-553 2 3 N1_O1 0:08 0:10 Label a diagram Label a diagram 
DGE-F-554 2 3 N1_O1 0:18 0:04 Create a diagram Create a diagram 
DGE-F-555 2 3 N1_O1 0:22 0:06 Label a diagram Label a diagram 
DGE-F-556 2 3 N1_O1 0:32 0:04 Select a diagram Create a diagram 
DGE-F-557 2 3 N1_O1 0:36 0:02 Create a diagram Create a diagram 
DGE-F-558 2 3 N1_O1 0:38 0:03 Create a diagram Create a diagram 
DGE-F-559 2 3 N1_O1 0:44 0:08 Label a diagram Label a diagram 
DGE-F-560 2 3 N1_O1 0:54 0:01 Select a diagram Not identified 
DGE-F-561 2 3 N1_O1 0:57 0:02 Drag a diagram Place a diagram 
DGE-F-562 2 3 N1_O1 1:03 0:03 Select a diagram Create a diagram 
DGE-F-563 2 3 N1_O1 1:06 0:02 Select a diagram Create a diagram 
DGE-F-564 2 3 N1_O1 1:08 0:01 Create a diagram Create a diagram 
DGE-F-565 2 3 N1_O1 1:09 0:05 Label a diagram Label a diagram 
DGE-F-566 2 3 N1_O1 1:23 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-567 2 3 N1_O1 1:24 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-568 2 3 N1_O1 1:37 0:07 Create a diagram Create a diagram 
DGE-F-569 2 3 N1_O1 1:44 0:10 Label a diagram Label a diagram 
DGE-F-570 2 3 N1_O1 1:58 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-571 2 3 N1_O1 2:00 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-572 2 3 N1_O1 2:04 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-573 2 3 N1_O1 2:10 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-574 2 3 N1_O1 2:12 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-575 2 3 N1_O1 2:24 0:02 Create a diagram Create a diagram 
DGE-F-576 2 3 N1_O1 2:26 0:07 Label a diagram Label a diagram 
DGE-F-577 2 3 N1_O1 2:37 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-578 2 3 N1_O1 2:39 0:05 Select a diagram Reflect a diagram 
DGE-F-579 2 3 N1_O1 2:44 0:01 Select a diagram Reflect a diagram 
DGE-F-580 2 3 N1_O1 2:45 0:05 Mirror a diagram Reflect a diagram 
DGE-F-581 2 3 N1_O1 2:50 0:06 Label a diagram Label a diagram 
DGE-F-582 2 3 N1_O1 3:00 0:05 Create a diagram Create a diagram 
DGE-F-583 2 3 N1_O1 3:12 0:04 Select a diagram Measure a diagram 
DGE-F-584 2 3 N1_O1 3:16 0:03 Measure a diagram Measure a diagram 
DGE-F-585 2 3 N1_O1 3:19 0:08 Select a diagram Measure a diagram 
DGE-F-586 2 3 N1_O1 3:27 0:01 Measure a diagram Measure a diagram 
DGE-F-587 2 3 N1_O1 3:33 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-588 2 3 N1_O1 3:35 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-589 2 3 N1_O1 3:40 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-590 2 3 N1_O1 3:42 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-591 2 3 N1_O1 3:49 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-592 2 3 N1_O1 3:50 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-593 2 3 N1_O1 3:53 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-594 2 3 N1_O1 3:56 0:01 Move the cursor over diagrams Point at a diagram 



 202 

Table 6.3 (cont’d). DGE feature and DGE move code applications 

DGE-F-595 2 3 N1_O1 3:58 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-596 2 3 N1_O1 4:02 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-597 2 3 N1_O1 4:05 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-598 2 3 N1_O1 4:07 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-599 2 3 N1_O1 4:12 0:03 Create a diagram Create a diagram 
DGE-F-600 2 3 N1_O1 4:15 0:09 Label a diagram Label a diagram 
DGE-F-601 2 3 N1_O1 4:30 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-602 2 3 N1_O1 4:32 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-603 2 3 N1_O1 4:35 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-604 2 3 N1_O1 4:38 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-605 2 3 N1_O1 4:41 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-606 2 3 N1_O1 4:44 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-607 2 3 N1_O1 4:46 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-608 2 3 N1_O1 4:47 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-609 2 3 N1_O1 4:51 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-610 2 3 N1_O1 4:57 0:02 Select a diagram Reflect a diagram 
DGE-F-611 2 3 N1_O1 4:59 0:01 Mirror a diagram Reflect a diagram 
DGE-F-612 2 3 N1_O1 5:00 0:09 Label a diagram Label a diagram 
DGE-F-613 2 3 N1_O1 5:13 0:06 Select a diagram Measure a diagram 
DGE-F-614 2 3 N1_O1 5:19 0:01 Measure a diagram Measure a diagram 
DGE-F-615 2 3 N1_O1 5:24 0:03 Select a diagram Measure a diagram 
DGE-F-616 2 3 N1_O1 5:27 0:02 Measure a diagram Measure a diagram 
DGE-F-617 2 3 N1_O1 5:29 0:06 Move the cursor over diagrams Point at a measurement 
DGE-F-618 2 3 N1_O1 5:35 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-619 2 3 N1_O1 5:38 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-620 2 3 N1_O1 5:40 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-621 2 3 N1_O1 5:50 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-622 2 3 N1_O1 5:51 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-623 2 3 N1_O1 5:54 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-624 2 3 N1_O1 5:58 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-625 2 3 N1_O1 6:00 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-626 2 3 N1_O1 6:04 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-627 2 3 N1_O1 6:06 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-628 2 3 N1_O1 6:10 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-629 2 3 N1_O1 6:14 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-630 2 3 N1_O1 6:15 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-631 2 3 N1_O1 6:19 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-632 2 3 N1_O1 6:20 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-633 2 3 N1_O1 6:25 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-634 2 3 N1_O1 6:30 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-635 2 3 N1_O1 6:33 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-636 2 3 N1_O1 6:49 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-637 2 3 N1_O1 6:50 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-638 2 3 N1_O1 6:51 0:05 Move the cursor over diagrams Point at a diagram 
DGE-F-639 2 3 N1_O1 6:56 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-640 2 3 N1_O1 6:59 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-641 2 3 N1_O1 7:01 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-642 2 3 N1_O1 7:09 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-643 2 3 N1_O1 7:10 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-644 2 3 N1_O1 7:11 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-645 2 3 N1_O1 7:16 0:05 Move the cursor over diagrams Point at a diagram 
DGE-F-646 2 3 N1_O1 7:21 0:09 Move the cursor over diagrams Point at a diagram 
DGE-F-647 2 3 N1_O1 7:30 0:06 Move the cursor over diagrams Point at a diagram 
DGE-F-648 2 3 N1_O1 7:36 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-649 2 3 N1_O1 7:39 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-650 2 3 N1_O1 7:42 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-651 2 3 N1_O1 7:43 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-652 2 3 N1_O1 7:47 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-653 2 3 N1_O1 7:48 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-654 2 3 N1_O1 7:51 0:07 Drag a diagram Guided dragging 
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Table 6.3 (cont’d). DGE feature and DGE move code applications 

DGE-F-655 2 3 N1_O1 7:58 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-656 2 3 N1_O1 8:00 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-657 2 3 N1_O1 8:04 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-658 2 3 N1_O1 8:06 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-659 2 3 N1_O1 8:11 0:04 Drag a diagram Guided dragging 
DGE-F-660 3 4 A1_K1 0:13 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-661 3 4 A1_K1 0:16 0:07 Move the cursor over diagrams Point at a diagram 
DGE-F-662 3 4 A1_K1 0:23 0:02 Select a diagram Create a diagram 
DGE-F-663 3 4 A1_K1 0:25 0:02 Select a diagram Create a diagram 
DGE-F-664 3 4 A1_K1 0:27 0:02 Create a diagram Create a diagram 
DGE-F-665 3 4 A1_K1 0:30 0:01 Create a diagram Create a diagram 
DGE-F-666 3 4 A1_K1 0:44 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-667 3 4 A1_K1 0:49 0:01 Select a diagram Point at a diagram 
DGE-F-668 3 4 A1_K1 0:50 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-669 3 4 A1_K1 0:52 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-670 3 4 A1_K1 1:18 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-671 3 4 A1_K1 1:30 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-672 3 4 A1_K1 1:42 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-673 3 4 B1_E2_J1 0:08 0:04 Drag a diagram Place a diagram 
DGE-F-674 3 4 B1_E2_J1 0:27 0:01 Drag a diagram Place a diagram 
DGE-F-675 3 4 B1_E2_J1 0:30 0:06 Move the cursor over diagrams Point at a diagram 
DGE-F-676 3 4 B1_E2_J1 0:36 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-677 3 4 B1_E2_J1 0:38 0:02 Select a diagram Point at a diagram 
DGE-F-678 3 4 B1_E2_J1 0:40 0:01 Select a diagram Point at a diagram 
DGE-F-679 3 4 B1_E2_J1 0:43 0:01 Select a diagram Point at a diagram 
DGE-F-680 3 4 B1_E2_J1 0:45 0:02 Drag a diagram Point at a diagram 
DGE-F-681 3 4 B1_E2_J1 0:48 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-682 3 4 B1_E2_J1 0:49 0:01 Drag a diagram Point at a diagram 
DGE-F-683 3 4 B1_E2_J1 0:53 0:01 Select a diagram Point at a diagram 
DGE-F-684 3 4 B1_E2_J1 0:55 0:01 Select a diagram Point at a diagram 
DGE-F-685 3 4 B1_E2_J1 0:56 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-686 3 4 B1_E2_J1 0:58 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-687 3 4 B1_E2_J1 1:00 0:01 Select a diagram Point at a diagram 
DGE-F-688 3 4 B1_E2_J1 1:04 0:02 Drag a diagram Place a diagram 
DGE-F-689 3 4 B1_E2_J1 1:06 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-690 3 4 B1_E2_J1 1:09 0:01 Select a diagram Point at a diagram 
DGE-F-691 3 4 B1_E2_J1 1:11 0:01 Select a diagram Point at a diagram 
DGE-F-692 3 4 B1_E2_J1 1:13 0:01 Select a diagram Point at a diagram 
DGE-F-693 3 4 B1_E2_J1 1:19 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-694 3 4 B1_E2_J1 1:21 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-695 3 4 B1_E2_J1 1:22 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-696 3 4 B1_E2_J1 1:26 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-697 3 4 B1_E2_J1 1:27 0:04 Drag a diagram Guided dragging 
DGE-F-698 3 4 B1_E2_J1 1:31 0:02 Drag a diagram Guided dragging 
DGE-F-699 3 4 B1_E2_J1 1:35 0:06 Drag a diagram Guided dragging 
DGE-F-700 3 4 B1_E2_J1 1:43 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-701 3 4 B1_E2_J1 1:45 0:04 Drag a diagram Guided dragging 
DGE-F-702 3 4 B1_E2_J1 2:01 0:01 Drag a diagram Wandering dragging 
DGE-F-703 3 4 B1_E2_J1 2:05 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-704 3 4 B1_E2_J1 2:06 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-705 3 4 B2_T1 0:09 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-706 3 4 B2_T1 0:24 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-707 3 4 B2_T1 0:44 0:01 Select a diagram Point at a diagram 
DGE-F-708 3 4 B2_T1 1:03 0:10 Drag a diagram Guided dragging 
DGE-F-709 3 4 B2_T1 1:19 0:23 Drag a diagram Guided dragging 
DGE-F-710 3 4 D1_J2 0:25 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-711 3 4 D1_J2 0:35 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-712 3 4 D1_J2 0:41 0:05 Create a diagram Create a diagram 
DGE-F-713 3 4 D1_J2 0:46 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-714 3 4 D1_J2 1:05 0:08 Drag a diagram Guided dragging 
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Table 6.3 (cont’d). DGE feature and DGE move code applications 

DGE-F-715 3 4 D1_J2 1:13 0:04 Drag a diagram Guided dragging 
DGE-F-716 3 4 D1_J2 1:19 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-717 3 4 D1_J2 1:20 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-718 3 4 D1_J2 1:21 0:05 Drag a diagram Wandering dragging 
DGE-F-719 3 4 D1_J2 1:26 0:05 Move the cursor over diagrams Point at a diagram 
DGE-F-720 3 4 D1_J2 1:31 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-721 3 4 D1_J2 1:33 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-722 3 4 D1_J2 1:39 0:03 Drag a diagram Guided dragging 
DGE-F-723 3 4 D1_J2 1:43 0:08 Drag a diagram Guided dragging 
DGE-F-724 3 4 D1_J2 1:52 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-725 3 4 D1_J2 1:55 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-726 3 4 D1_J2 1:56 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-727 3 4 D1_J2 2:02 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-728 3 4 D1_J2 2:05 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-729 3 4 D1_J2 2:08 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-730 3 4 D1_J2 2:10 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-731 3 4 D1_J2 2:11 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-732 3 4 D1_J2 2:14 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-733 3 4 D1_J2 2:15 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-734 3 4 D1_J2 2:16 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-735 3 4 D1_J2 2:18 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-736 3 4 D1_J2 2:20 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-737 3 4 D1_J2 2:22 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-738 3 4 D2_Y1 0:05 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-739 3 4 D2_Y1 0:07 0:01 Select a diagram Point at a diagram 
DGE-F-740 3 4 D2_Y1 0:08 0:01 Select a diagram Point at a diagram 
DGE-F-741 3 4 D2_Y1 0:11 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-742 3 4 D2_Y1 0:17 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-743 3 4 D2_Y1 0:21 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-744 3 4 D2_Y1 0:22 0:04 Move the cursor over diagrams Point at a diagram 
DGE-F-745 3 4 D2_Y1 0:27 0:02 Select a diagram Point at a diagram 
DGE-F-746 3 4 D2_Y1 0:29 0:01 Select a diagram Point at a diagram 
DGE-F-747 3 4 D2_Y1 0:43 0:04 Select a diagram Point at a diagram 
DGE-F-748 3 4 D2_Y1 0:47 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-749 3 4 D2_Y1 0:52 0:01 Select a diagram Point at a diagram 
DGE-F-750 3 4 D2_Y1 0:53 0:01 Select a diagram Point at a diagram 
DGE-F-751 3 4 D2_Y1 0:56 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-752 3 4 D2_Y1 0:57 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-753 3 4 D2_Y1 0:58 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-754 3 4 D2_Y1 0:59 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-755 3 4 D2_Y1 1:00 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-756 3 4 D2_Y1 1:02 0:04 Drag a diagram Point at a diagram 
DGE-F-757 3 4 D2_Y1 1:06 0:03 Drag a diagram Place a diagram 
DGE-F-758 3 4 D2_Y1 1:11 0:01 Select a diagram Point at a diagram 
DGE-F-759 3 4 D2_Y1 1:13 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-760 3 4 D2_Y1 1:15 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-761 3 4 D2_Y1 1:19 0:01 Drag a diagram Point at a diagram 
DGE-F-762 3 4 D2_Y1 1:20 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-763 3 4 D2_Y1 1:25 0:06 Drag a diagram Place a diagram 
DGE-F-764 3 4 D2_Y1 1:33 0:02 Select a diagram Point at a diagram 
DGE-F-765 3 4 D2_Y1 1:35 0:02 De-select diagrams Point at a diagram 
DGE-F-766 3 4 D2_Y1 1:37 0:01 Select a diagram Point at a diagram 
DGE-F-767 3 4 D2_Y1 1:44 0:01 Select a diagram Point at a diagram 
DGE-F-768 3 4 D2_Y1 1:45 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-769 3 4 D2_Y1 1:58 0:01 Select a diagram Point at a diagram 
DGE-F-770 3 4 D2_Y1 2:04 0:01 Switch the mode Change the model 
DGE-F-771 3 4 D2_Y1 2:05 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-772 3 4 D2_Y1 2:08 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-773 3 4 D2_Y1 2:14 0:01 Switch the mode Change the model 
DGE-F-774 3 4 E1_N1_O1 0:00 0:07 Move the cursor over diagrams Point at a diagram 
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Table 6.3 (cont’d). DGE feature and DGE move code applications 

DGE-F-775 3 4 E1_N1_O1 0:08 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-776 3 4 E1_N1_O1 0:10 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-777 3 4 E1_N1_O1 0:19 0:07 Move the cursor over diagrams Not identified 
DGE-F-778 3 4 E1_N1_O1 0:26 0:13 Drag a diagram Guided dragging 
DGE-F-779 3 4 E1_N1_O1 0:40 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-780 3 4 E1_N1_O1 0:41 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-781 3 4 E1_N1_O1 0:43 0:01 Select a diagram Point at a diagram 
DGE-F-782 3 4 E1_N1_O1 0:44 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-783 3 4 E1_N1_O1 0:46 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-784 3 4 E1_N1_O1 0:48 0:02 Move the cursor over diagrams Point at a diagram 
DGE-F-785 3 4 E1_N1_O1 0:50 0:05 Drag a diagram Place a diagram 
DGE-F-786 3 4 E1_N1_O1 1:02 0:02 Move the cursor over diagrams Not identified 
DGE-F-787 3 4 E1_N1_O1 1:13 0:21 Drag a diagram Guided dragging 
DGE-F-788 3 4 Y2_Y3 0:10 0:01 Select a diagram Point at a diagram 
DGE-F-789 3 4 Y2_Y3 0:11 0:01 Select a diagram Point at a diagram 
DGE-F-790 3 4 Y2_Y3 0:13 0:01 Select a diagram Point at a diagram 
DGE-F-791 3 4 Y2_Y3 0:14 0:03 Move the cursor over diagrams Not identified 
DGE-F-792 3 4 Y2_Y3 0:17 0:03 Move the cursor over diagrams Point at a feature icon 
DGE-F-793 3 4 Y2_Y3 0:24 0:04 De-select diagrams Not identified 
DGE-F-794 3 4 Y2_Y3 0:28 0:01 Select a diagram Point at a diagram 
DGE-F-795 3 4 Y2_Y3 0:34 0:01 Select a diagram Point at a diagram 
DGE-F-796 3 4 Y2_Y3 0:35 0:01 De-select diagrams Not identified 
DGE-F-797 3 4 Y2_Y3 0:40 0:01 Select a diagram Point at a diagram 
DGE-F-798 3 4 Y2_Y3 0:46 0:01 Select a diagram Point at a diagram 
DGE-F-799 3 4 Y2_Y3 0:49 0:05 Move the cursor over diagrams Point at a diagram 
DGE-F-800 3 4 Y2_Y3 1:11 0:06 Drag a diagram Guided dragging 
DGE-F-801 3 4 Y2_Y3 1:18 0:01 Select a diagram Point at a diagram 
DGE-F-802 3 4 Y2_Y3 1:22 0:01 Select a diagram Point at a diagram 
DGE-F-803 3 4 Y2_Y3 1:23 0:02 De-select diagrams Not identified 
DGE-F-804 3 4 Y2_Y3 1:25 0:02 Select a diagram Point at a diagram 
DGE-F-805 3 4 Y2_Y3 1:27 0:03 Drag the cursor Point at a diagram 
DGE-F-806 3 4 Y2_Y3 1:30 0:01 Select a diagram Point at a diagram 
DGE-F-807 3 4 Y2_Y3 1:31 0:02 Drag the cursor Point at a diagram 
DGE-F-808 3 4 Y2_Y3 1:34 0:04 Drag the cursor Point at a diagram 
DGE-F-809 3 4 Y2_Y3 1:39 0:02 Drag the cursor Point at a diagram 
DGE-F-810 3 4 Y2_Y3 1:43 0:08 Drag a diagram Guided dragging 
DGE-F-811 3 4 Y2_Y3 1:51 0:01 Drag a diagram Place a diagram 
DGE-F-812 3 4 Y2_Y3 1:53 0:01 Drag a diagram Guided dragging 
DGE-F-813 3 4 Y2_Y3 1:55 0:03 Move the cursor over diagrams Point at a diagram 
DGE-F-814 3 4 Y2_Y3 1:58 0:02 Drag a diagram Not identified 
DGE-F-815 3 4 Y2_Y3 2:02 0:05 Create a diagram Create a diagram 
DGE-F-816 3 4 Y2_Y3 2:08 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-817 3 4 Y2_Y3 2:09 0:02 Create a diagram Create a diagram 
DGE-F-818 3 4 Y2_Y3 2:11 0:05 Undo Undo the last step 
DGE-F-819 3 4 Y2_Y3 2:16 0:02 Undo Undo the last step 
DGE-F-820 3 4 Y2_Y3 2:18 0:02 Undo Undo the last step 
DGE-F-821 3 4 Y2_Y3 2:20 0:05 Drag a diagram Dragging by accident 
DGE-F-822 3 4 Y2_Y3 2:25 0:08 Drag a diagram Guided dragging 
DGE-F-823 3 4 Y2_Y3 2:39 0:05 Open a file Change the model 
DGE-F-824 3 4 Y2_Y3 2:44 0:01 Select a diagram Point at a diagram 
DGE-F-825 3 4 Y2_Y3 2:45 0:01 Select a diagram Point at a diagram 
DGE-F-826 3 4 Y2_Y3 2:46 0:01 Select a diagram Point at a diagram 
DGE-F-827 3 4 Y2_Y3 2:52 0:02 Select a diagram Point at a diagram 
DGE-F-828 3 4 Y2_Y3 2:54 0:01 Select a diagram Point at a diagram 
DGE-F-829 3 4 Y2_Y3 2:55 0:02 Select a diagram Point at a diagram 
DGE-F-830 3 4 Y2_Y3 2:57 0:08 Drag a diagram Guided dragging 
DGE-F-831 3 4 Y2_Y3 3:07 0:01 Select a diagram Point at a diagram 
DGE-F-832 3 4 Y2_Y3 3:08 0:01 Drag the cursor Point at a diagram 
DGE-F-833 3 4 Y2_Y3 3:09 0:01 Drag the cursor Point at a diagram 
DGE-F-834 3 4 Y2_Y3 3:10 0:01 Drag the cursor Point at a diagram 
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Table 6.3 (cont’d). DGE feature and DGE move code applications 

DGE-F-835 3 4 Y2_Y3 3:11 0:02 Drag the cursor Point at a diagram 
DGE-F-836 3 4 Y2_Y3 3:20 0:01 Select a diagram Point at a diagram 
DGE-F-837 3 4 Y2_Y3 3:21 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-838 3 4 Y2_Y3 3:22 0:01 Select a diagram Point at a diagram 
DGE-F-839 3 4 Y2_Y3 3:23 0:01 Move the cursor over diagrams Point at a diagram 
DGE-F-840 3 4 Y2_Y3 3:24 0:01 De-select diagrams Not identified 
DGE-F-841 3 4 Y2_Y3 3:25 0:02 De-select diagrams Not identified 
DGE-F-842 3 4 Y2_Y3 3:27 0:01 Select a diagram Point at a diagram 
DGE-F-843 3 4 Y2_Y3 3:32 0:06 Move the cursor over diagrams Point at a diagram 
DGE-F-844 3 4 Y2_Y3 3:38 0:04 Drag a diagram Not identified 
DGE-F-845 3 4 Y2_Y3 3:43 0:01 Open a file Change the model 
DGE-F-846 3 4 Y2_Y3 3:49 0:01 Open a file Change the model 
DGE-F-847 3 4 Y2_Y3 3:50 0:01 Open a file Change the model 
DGE-F-848 3 4 Y2_Y3 3:51 0:01 Open a file Change the model 
DGE-F-849 3 4 Y2_Y3 3:52 0:01 Select a diagram Point at a diagram 
DGE-F-850 3 4 Y2_Y3 3:56 0:02 Drag a diagram Point at a diagram 
DGE-F-851 3 4 Y2_Y3 3:58 0:02 Drag the cursor Point at a diagram 
DGE-F-852 3 4 Y2_Y3 4:00 0:01 Drag the cursor Point at a diagram 
DGE-F-853 3 4 Y2_Y3 4:01 0:02 Select a diagram Point at a diagram 
DGE-F-854 3 4 Y2_Y3 4:03 0:15 Select a diagram Point at a diagram 
DGE-F-855 3 4 Y2_Y3 4:18 0:01 Select a diagram Point at a diagram 
DGE-F-856 3 4 Y2_Y3 4:19 0:01 Select a diagram Point at a diagram 
DGE-F-857 3 4 Y2_Y3 4:20 0:02 Move the cursor over diagrams Point at a diagram 
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APPENDIX F: Legendre’s Attempted Proof of the Euclidean Parallel Postulate in Task 2 

 

 

Figure 6.32. Legendre’s attempted proof of the Euclidean Parallel Postulate in Task 2 
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APPENDIX G: Students’ Written Responses in Task 2 

 

Table 6.4. Students' written responses in Task 2 

Avery, Kim 
We found a hidden assumption in the original Legendre’s construction through the omission of specific 
cases in which line n does not meet line l. This happens when the construction of line PB=PA but ray PR 
doesn’t intersect line l. Thus, the flaw lines in step 4 where we assume line l must intersect one side of the 
constructed angle <RPR’. 
Bing, Eric 
In Legendre’s proof attempt, he says in step 6, “Suppose l meets side (ray)PR’ at point A.” But, in Klein’s 
model, the lines are not infinitely long if we use Euclid’s method of measurements rather than Klein’s 
(because they are infinitely long in Klein’s measurements), so as we saw in the construction, the ray PR’ 
may or may not intersect line l due to the boundary of the Klein disc. The hidden assumption is that the ray 
PR’ does intersect line l in Klein’s model even though they may not. In Euclidean geometry, this 
assumption will hold for the lines do stretch to infinity, thus the lines must intersect before infinity. In step 
4, it is assuming that since Q is in the interior of angle RPR’ (step 3), and l passes through Q, l must 
intersect one of the sides of angle RPR’ by Euclid’s V postulate (sum of the angles is less than 180, on one 
side of the intersecting line). This goes back to the boundary issue where the Klein disc is limited to the 
circle and Euclidean geometry does not have such boundaries. 
Deming, Tina 
The assumption is that you can extend a line segment infinitely in any direction. This holds in Euclidean 
geometry because it is one of Euclid’s 5 postulates and leads to the feature that lines and planes extend 
outward. This does not hold in hyperbolic geometry because of the feature of the boundary of the disk, 
which “stops” the lines. Even where distance is defined with a logarithmic function, the line would not 
extend beyond the boundary, so an intersection is not guaranteed. 
Deshi, Yao 
All of those are hold in both Euclidean and hyperbolic geometry excluding 4) because there exists another 
line that distinct with line m but still parallel to the line L because they will not interest each other. So, when 
ray PR and PR’ reach to those point, their end point which lie on the disk edge will above the endpoint of 
line l so they will not always intersect. 
Naomi, Odessa 
The flaw in the Legendre’s Proof of EPP is that he based his proof on the assumption that the ray PR meets 
the line l. From our GEX construction, we can see that point R can be moved around so that Q still lies in 
the interior of <RPR’, but the line l does not intersect one of the sides of the angle (Step 4 fails). In addition, 
l does not always meet PR and thus, it does not always meet n (Step 5 fails). This assumption holds in 
Euclidean but not hyperbolic geometry because of the difference in the ways lines are defined in each of the 
models. In Euclidean geometry, lines are linear and two lines n and l that are not parallel will intersect 
indefinitely, no matter how n is moved around (as long as it is not parallel to l).So, this case where line l 
doesn’t meet line n is never true in Euclidean geometry. In hyperbolic geometry, lines are on a sphere, so 
they act more like an arc. So, by the shape of them, the ends of the two lines could arc differently, and don’t 
necessarily have to intersect. 
Yin, Yong 
In step 4, it says there are only 2 cases where line l must intersect either ray(PR’) or ray(PR); however, we 
found that l might not intersect with both. In this case, there exists no triangle PQA or triangle PQB. 
Since they don’t intersect, it means that they are all parallel to line l. And in Poincare model, there exists 
more than one parallel lines through a given point to the given line which is not the case in Euclidean 
geometry where there is only one. Hence, if the proof is in Euclidean geometry, it would be true. 
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APPENDIX H: Students’ Written Responses in Task 3 

 

Table 6.5. Students' written responses in Task 3 

Avery, Kim 
A limiting parallel line is a line comes arbitrarily close to the line you are making it parallel to without 
touching the line it is parallel to.  We do believe that limiting parallel lines are applicable in any model of 
hyperbolic geometry because all models of hyperbolic geometry have a boundary circle.  Limiting parallel 
lines intersect line l on the boundary circle.  However, because the boundary circle is not part of our system, 
the lines are parallel to line l. 
Bing, Eric, Jeremy 
Q3: The limiting parallel lines in the Klein model basically acts as the boundaries of the area for point R 
where ray PR does not intersect line l. We can apply this similar description to other types of hyperbolic 
geometries for in hyperbolic geometry, there are no unique parallel lines, there are multiple parallel lines. 
(Q2: In other words, let us have a point M on line m on the same side of the perpendicular line to R and 
have a point N on the limiting parallel line on the same side of line m to R, then we can say if R is in the 
interior of angle NPM, then the proof fails.) 
Q3 (Resubmission): Let r be the limit for the angle measure PQR where R is a point on line l. If r exists, 
then that angle defines the limiting parallel line. 
Ben, Tina 
The limiting parallel lines are the limit for the lines RP and R’P. As they move toward the edges of line l 
from the interior of the limiting parallels, the limiting parallels are the boundary at which RP and R’P no 
longer intersect the original line l. If the boundary circle were to exist within the Klein disk, line l and the 
limiting parallels would intersect on the boundary circle. We think this description is applicable in other 
models of hyperbolic geometry. For example, in the Poincare model we still have a boundary circle, we still 
have the possibility of multiple parallel lines, however the method of angle measurement is different. 
Therefore, we could use the adapted method of angle measurement, with the same description of limiting 
parallels. 
Deshi, Yao 
According to the graph, we can see the line that parallel to the given line is the closest parallel line to it, 
because the potential intersection point is when we go one step further, it will intersect with the given line. 
So that’s sort of the limiting parallel line in the Klein model, and I think the description is applicable in any 
models of hyperbolic geometry, since for those two lines, they formed a normal triangle, so it will never 
intersect with each other as long as they are triangle, no matter what model we use, the edge of triangle 
would never intersect. 
Emily, Naomi, Odessa 
The limiting parallel lines in the Klein model shows the two closest line to l through the point P, that does 
not intersect the line l. This being said, the limiting parallel lines creates a boundary for Legendre’s 
argument to be true. Every ray in the interior of the angle will meet the line l, and every ray in the exterior 
will not meet the line l. This exists in other hyperbolic geometry because there is always a boundary, so 
there are only 2 limiting parallel lines that are the closest to the given line without intersecting it (as the 
definition of a parallel line states). 
Yin, Yong 
The limiting parallel lines in Klein model are intersecting the original line l on the disk (not inside), which 
means they intersect l at the same point they would intersect the border of the model. So, they are not 
technically intersecting the original line l in the disk. 
In a hyperbolic model, same thing would happen when clicking a point and a line a for parallel line. The 
limiting parallel lines also intersect the line a on the disk, i.e. intersect at a point where the border, line a and 
the limiting parallel lines are concurrent. So, the description is applicable in this model as well. 
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