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ABSTRACT

MODELING PHYSICAL CAUSALITY OF ACTION VERBS FOR GROUNDED LANGUAGE
UNDERSTANDING

By

Qiaozi Gao

Building systems that can understand and communicate through human natural language is one

of the ultimate goals in AI. Decades of natural language processing research has been mainly

focused on learning from large amounts of language corpora. However, human communication

relies on a significant amount of unverbalized information, which is often referred as commonsense

knowledge. This type of knowledge allows us to understand each other’s intention, to connect

language with concepts in the world, and to make inference based on what we hear or read.

Commonsense knowledge is generally shared among cognitive capable individuals, thus it is rarely

stated in human language. This makes it very difficult for artificial agents to acquire commonsense

knowledge from language corpora. To address this problem, this dissertation investigates the

acquisition of commonsense knowledge, especially knowledge related to basic actions upon the

physical world and how that influences language processing and grounding.

Linguistics studies have shown that action verbs often denote some change of state (CoS) as the

result of an action. For example, the result of “slice a pizza” is that the state of the object (pizza)

changes from one big piece to several smaller pieces. However, the causality of action verbs and its

potential connection with the physical world has not been systematically explored. Artificial agents

often do not have this kind of basic commonsense causality knowledge, which makes it difficult for

these agents to work with humans and to reason, learn, and perform actions.

To address this problem, this dissertation models dimensions of physical causality associated

with common action verbs. Based on such modeling, several approaches are developed to incor-

porate causality knowledge to language grounding, visual causality reasoning, and commonsense

story comprehension.
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CHAPTER 1

INTRODUCTION

Linguistics studies have shown that action verbs often denote some change of state (CoS) as the

result of an action, where the change of state often involves an attribute of the direct object of the

verb [54]. For example, the result of “slice a pizza” is that the state of the object (pizza) changes

from one big piece to several smaller pieces. This change of state can be perceived from the

physical world. In Artificial Intelligence [126], decades of research on planning, for example, back

to the early days of the STRIPS planner [33], have defined action schemas to capture the change

of state caused by a given action. Based on action schemas, planning algorithms can be applied

to find a sequence of actions to achieve a goal state [39]. The state of the physical world is a

very important notion and changing the state becomes a driving force for agents’ actions. Thus,

motivated by linguistic literature on action verbs and AI literature on action representations, in our

view, modeling change of physical state for action verbs, in other words, physical causality, can

better connect language to the physical world.

Physical causality is one important aspect of human commonsense knowledge. Suppose we are

given a statement “the apple is in small pieces”, or given an image as shown in Figure 1.1, what

actions could possibly cause the situation described in the text or illustrated by the image? We

humans have no problem of inferring potential causes: an external action such as cut or slice most

likely have happened to a whole apple. What allows us to make such inference is the common sense

knowledge we have, especially in this case the very basic cause-effect knowledge about how actions

(and thus action verbs) may affect the state of the world. Let’s suppose we give the same statement

and the same image to an artificial agent, will the agent be able to infer the potential causes? The

answer is most likely no.

Despite tremendous progress in knowledge representation, automated reasoning, and machine

learning, artificial agents still lack the understanding of naive causal relations regarding the physical

world. This is one of the bottlenecks in machine intelligence. If artificial agents ever become
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Figure 1.1: An image showing apple slices. Question: “What actions could possibly cause this
situation?”

capable of working with humans as partners, they will need to have this kind of physical action-

effect understanding to help them reason, learn, and perform actions.

In this dissertation, to address these limitations mentioned above, a series of investigations on

physical causality of action verbs are performed. First, crowd-sourcing experiments were designed

and conducted to collect physical causality knowledge from human users. Based on the collected

causality knowledge data, two different approaches were developed to model causality knowledge:

a categorization-based approach and a language embedding-based approach. These modeling ap-

proaches transform human causality knowledge to machine understandable representations, which

can enable commonsense reasoning. We then developed several approaches to incorporate physical

causality knowledge to language grounding, visual causality reasoning, and commonsense story

understanding, where such knowledge plays an important role.

1.1 Modeling Physical Causality of Action Verbs

Causation in the physical world has long been a central discussion to philosophers who study

casual reasoning and explanation [28, 44], to mathematicians or computer scientists who apply

computational approaches to model cause-effect prediction [107], and to domain experts (e.g.,

medical doctors) who attempt to understand the underlying cause-effect relations (e.g., disease and

2



symptoms) for their particular inquires. Apart from this wide range of topics, this dissertation

investigates a specific kind of causation, the very basic causal relations between a concrete action

(expressed in the form of a verb-noun pair such as “cut-cucumber”) and the change of the physical

state caused by this action. We believe that physical causality knowledge forms an essential

component of verb semantics, and is crucial to better connecting natural language with the physical

world.

Verb semantics have been studied extensively. Theoretical linguistics use a frame of semantic

roles to capture semantics of verbs [73]. Semantic roles include agent, patient, instrument, source,

destination, etc. Several knowledge base resources on verb semantics have been made available,

such as VerbNet [127], FrameNet [7], and PropBank [66]. However these resources mainly focus

on organizing verbs into classes, and representing verb semantics with action frames. They do not

provide a detailed and formal account of potential causality denoted by verbs.

In the NLP community, there is an increasing amount of effort on capturing common knowledge

or commonsense knowledge. Except for few [167] which acquires commonsense knowledge from

annotated images, most of the previous effort applies information extraction techniques to extract

facts from a large amount of web data. For example, DBpedia [71] and YAGO [144] knowledge

bases containmillions of facts about theworld such as people and places. However, these knowledge

bases do not contain basic cause-effect knowledge related to concrete actions such as “drop a glass

will cause the glass to break into pieces”; “grind coffee beans will cause coffee beans to become

powder”. Lacking this kind of basic physical cause-effect knowledge hinders artificial agents from

connecting natural language to the physical world, and thus inhibits the capability of reasoning,

learning and performing actions.

Motivated by these observations, this dissertation investigates the acquisition and modeling of

commonsense causality knowledge associated with concrete action verbs. The basic cause-effect

knowledge is so fundamental for human beings and is shared by cognitive capable individuals.

This kind of knowledge is often presupposed in our communication and not explicitly stated. Thus,

it is difficult to extract cause-effect relations from existing textual data (e.g., web). To overcome
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this problem, several crowd-sourcing tasks were designed to collect physical causality data. In

these crowd-sourcing tasks, human subjects were asked to explicitly express their knowledge on

action verbs, through natural language descriptions or through answering designed multiple choice

questions.

After data collection, we propose two different approaches to model physical causality knowl-

edge. One approach is categorization-based, where the changes of state are categorized by the

physical attributes of objects, and the causality knowledge for an action verb is represented as

its association vector with those attributes. Another approach utilizes neural network embedding

models, where causality knowledge is modeled through similarities between language embedding

vectors.

For the first approach, in order to examine the potential types of causality associated with

action verbs, a pilot crowd-sourcing experiment was first conducted on a selected set of action

verbs. Motivated by linguistics studies on typology for gradable adjectives, which also have a

notion of change along a scale [23], we developed a set of eighteen main categories to characterize

physical causality. Then, the evaluation results on verb similarity judgement task and thematic fit

estimation task demonstrate that categorization-based causality modeling can be a good supplement

of distributional semantics for verb meanings.

For the second approach, we first collected a dataset of natural language cause-effect descrip-

tions for a set of most frequently used action verbs. A neural network structure was developed to

learn a cause and effect embedding space from the collected language data to capture common-

sense causality knowledge. The proposed embedding models were evaluated on causal question

answering, for example, to answer questions such as “what action could cause the state of the world

described in the text?” or “what state change could happen to the object as a result of this action?”

The experimental results have shown the potential of this embedding approach in enabling causal

reasoning of actions for artificial agents.

Further, we applied the collected physical causality knowledge together with different modeling

approaches to several novel tasks, demonstrating that physical causality modeling has a good
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potential for intelligent systems that can deeply understand human language and better connect

language with the physical world.

1.2 Physical Causality Modeling for Language Grounding Task

Physical causality knowledge captures potential changes of physical states caused by action

verbs. The change of state can be perceived from the physical world. Therefore, modeling physical

causality knowledge can help themachine to better ground natural language components to concepts

of the world, in other words, connecting words, phrases or sentences to objects, states and actions

in the physical world.

We conduct a study to incorporate categorization-based physical causality modeling in a lan-

guage grounding task [36]. In this task, a system is given parallel language and visual data as input,

and the goal is to ground language components to objects from the visual data. Our hypothesis is

that modeling physical causality can provide guidance for visual processing: once a parallel lan-

guage and visual data about an action is given, the potential causality of the verb or the verb-noun

pair can trigger some visual detectors that mainly focus on potential state changes caused by this

action. Applying these visual detectors to the visual data can potentially improve the performance

of grounded language understanding.

Based on the categorization of physical causality attributes, we designed a set of change-of-state

detectors to detect the corresponding changes from visual perception of the physical environment.

We further applied two approaches, a knowledge-driven approach and a learning-based approach,

to incorporate causality modeling in grounded language understanding. The knowledge-driven

approach incorporates the collected human physical causality knowledge with the change-of-state

detectors to find the best groundings for semantic roles. The learning-based approach utilizes

Conditional Random Field (CRF) to model the relations between physical objects and language

components. Instead of using the collected human physical causality knowledge, it learns the

association between causality attributes and verbs from training data. The empirical results have

demonstrated that both of these approaches achieve significantly better performance in grounding
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language to perception compared to previous approaches [162].

1.3 Visual Causality Reasoning

We humans share a vast amount of commonsense causality knowledge, and we use them in our

daily lives without even noticing it. For example, given a verb (e.g., grind) and a noun (e.g., coffee

beans), we can predict the effect on the state of the world caused by this action. Given a photo, for

example, showing many small cucumber pieces, we can infer that some external action (e.g., cut)

on a cucumber could cause such state. We can make such action-effect prediction because we have

developed an understanding of this kind of basic action-effect relations at a very young age [6].

What about machines? Will artificial agents be able to make the same kind of predictions? The

answer is not yet.

To address this problem, we introduce a new task on naive physical action-effect prediction [37].

This task includes both cause prediction: given an image which describes a state of the world,

identify the most likely action (in the form of a verb-noun pair, from a set of candidates) that

can result in that state; and effect prediction: given an action in the form of a verb-noun pair,

identify images (from a set of candidates) that depicts the most likely effects on the state of the

world caused by that action. Note that there could be different ways of formulating this problem,

for example, both causes and effects are in the form of language or in the form of images/videos.

Here we intentionally frame the action as a language expression (i.e., a verb-noun pair) and the

effect as depicted in an image in order to make a connection between language and perception.

This connection is important for physical agents that not only can perceive and act, but also can

communicate with humans in language and act to the environment through planning. To our

knowledge, there is no prior work in this nature that attempts to connect actions (in language) and

effects (in images).

As a first step, we collected a dataset of 140 verb-noun pairs. Each verb-noun pair is annotated

with possible effects described in language and depicted in images (where language descriptions

and image descriptions are collected separately). We have developed an approach that applies
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distant supervision to harness web data for bootstrapping action-effect prediction models. Our

empirical results have shown that, using a simple bootstrapping strategy, our approach can combine

the noisy web data with a small number of seed examples to improve action-effect prediction.

In addition, for a new verb-noun pair, our approach can infer its effect descriptions and predict

action-effect relations only based on 3 image examples. This opens up the possibility for humans

to teach robots new tasks through language communication and small number of examples.

1.4 Commonsense Reasoning about Physical Actions

While it is trivial for humans to use natural language to communicate about actions and changes

in the physical world, machines still struggle in developing similar skills. To investigate deeper

understanding of human natural language, we create a new language benchmark, which can be used

to evaluate machines’ capability of understanding and reasoning about human physical actions.

This benchmark contains short stories created by human annotators. Each story describes a short

sequence of human physical actions in our daily lives. For example, a story could describe the

action sequence of making a sandwich in the kitchen, or the actions of repairing a bike in the garage.

Based on the collected stories, we present two tasks for evaluating machine reading systems: the

cloze task (selecting the correct sentence to fill in the blank in a story) and the ordering task

(selecting the correct order of sentences in a story).

Although the proposed tasks are easy for humans to solve, they are very challenging for

machines. An analysis shows that understanding the stories and solving these tasks requires various

types of commonsense knowledge, e.g., knowledge about action verbs, objects, and naive physics

rules. Therefore, we believe this benchmark will be a valuable resource for evaluating machines’

capability of acquiring and applying physical commonsense knowledge. Further, the setting of two

sub-tasks can be naturally used to evaluate models generalization ability, via training on one task

and evaluating on the other task. If a model can successfully learn the fundamental knowledge and

the reasoning abilities via training on the data of one subtask, it can potentially perform well on the

other subtask. By doing this, we encourage models that focus on learning underlying knowledge
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instead of overfitting to shallow language patterns.

A neural network model was proposed for tackling the commonsense reasoning tasks. This

model solves both the cloze task and the ordering task via explicitly examining the compatibility of

each actionwith its context in those stories. Since the action-effect knowledge plays an essential role

in understanding these commonsense stories, we further incorporated physical causality knowledge

into the proposed model. Experiments were designed to compare the proposed model with several

state-of-the-art models for machine comprehension tasks. The results demonstrate the effectiveness

of the proposed model, and further show the improvement introduced by external physical causality

knowledge. The results also suggests that this benchmark is challenging for current approaches,

and better solving this task requires wider range of commonsense knowledge and richer semantic

representation of actions and objects.

1.5 Contributions

In this dissertation, we focus on an investigation on verb semantics from a new angle of how

they may change the state of the physical world. The contributions of this dissertation is listed as

below:

1. A categorization of physical causality was developed, motivated by existing theoretical

linguistic studies. This categorization provides a stepping stone for systematically exploring

the physical causality knowledge.

2. Two human annotated physical causality knowledge datasets were created. One dataset was

annotated with causality attributes defined in this dissertation. Another dataset was annotated

with open-ended natural language.

3. Two novel approaches were presented to solve the semantic role grounding task via causality

modeling. The empirical results have shown the potential of causalitymodeling on connecting

language with the physical world.
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4. A physical causality embedding structure was proposed. The embedded cause-effect knowl-

edge will allow the agent to better infer underlying causes or predict potential effects given a

situation. It can be applied to answer causal questions, which are an important type of ques-

tions for artificial agents, yet not well explored in either traditional QA or Visual Question

Answering (VQA).

5. The bootstrapping approach for visual causal reasoning provides a cost-efficient way to

connect causality embedding with a large number of images from the web. This approach is

general and can be extended to other applications involving visual causal reasoning.

6. A benchmark dataset for physical commonsense reasoning task was created. This dataset

evaluates a system’s capability of understanding and reasoning about state changes in the

physical world.

7. A novel approach that leverages external knowledge for the physical commonsense reason-

ing task were proposed. Empirical results have shown the potential of physical causality

knowledge on facilitating machines to better comprehend and reason about commonsense

stories.

1.6 Organization of this Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we reviewworks from different

research fields that are closely related to our study of physical causality knowledge. Chapter 3

presents our modeling of physical causality knowledge, a categorization-based approach and a

language embedding-based approach. Both approaches are also evaluated on several preliminary

tasks. In Chapter 4, we utilize the categorization of causality attributes and causality knowledge

to improve the language grounding task. In Chapter 5, we introduce the visual causality reasoning

task, as well as a bootstrapping approach that harnesses large amount of web images to tackle this

task. In Chapter 6, we introduce the benchmark dataset for understanding human physical actions

through natural language stories, as well as several neural models trying to solve the proposed
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tasks. Finally, in Chapter 7, we summarize this dissertation and discuss several promising future

directions.
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CHAPTER 2

RELATEDWORK

The researchwork in this dissertation ismotivated by studies frommultiple research fields, including

natural language processing, theoretical linguistics, psycholinguistic, computer vision, robotics, etc.

2.1 Theoretical Linguistics on Verbs

Verb semantics have been studied extensively in linguistics [110, 73, 7, 66]. Previous work [54]

has divided action verbs into manner verbs and result verbs. Result verbs usually specify a result

effect of an action, which often indicates objects’s Change of State [74]. Hovav and Levin [54]

also propose that result verbs often specify movement along a scale [54]. A scale usually denotes

an attribute of an object, like size, temperature, cost. For example, “Mary shortened the skirt”

indicates that the length of the object skirt has decreased. The analysis of gradable predicates in

terms of scale structure motivates us to model verb causality using object attribute categories. A

detailed description of scale structure can be found in Kennedy and McNally’s work [60].

Several large-scale verb lexicon databases have been built, for example, VerbNet [127], FrameNet [7]

and PropBank [66]. These resources have enabled significant strides in computational semantic

processing such as semantic role labeling [105, 109, 20, 175] and its applications in information

extraction [29] and question answering[135]. While instrumental for text processing, the current

modeling of verb semantics only plays a limited role in moving language processing towards the

physical world. Despite an increasing research effort on grounding language to the environment,

connections that link verbs to perception and action in the physical world are still missing. There-

fore, the study of verb causality knowledge in this dissertation could be a valuable supplement to

these existing knowledge bases.
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2.2 Grounding Language to Perception

We humans use natural language to communicate about things in the physical world: objects,

actions, events, and their properties and relations. However, for the decades research of language

processing, linguistic meaning is explained mainly by symbolic models. The circular definitions

in symbolic explanation of linguistic meaning restricts language meaning to only symbols. For

example, if a person had to learn his first language only from a dictionary, he would be passing

endlessly from one meaningless symbol to another. To ground symbol meaning in something other

than just more meaningless symbols, it is the task of symbol grounding problem [50]. Researchers

have been trying to give machines the same abilities as human, to “bridge the symbolic realm of

language with the physical realm of real-world referents” [124].

Recent years have seen an increasing amount of work on grounding language to perception [171,

150, 79, 98, 78]. The common goal of language grounding researches is to enable machines to

automatically acquire beliefs about the physical world and to exchange their beliefs with humans

through natural language communication.

Solving the symbol grounding problem and connecting language and the physical world is

fundamental tomany tasks, from identifying context-dependent shifts ofwordmeanings, to enabling

situated natural language communication between human and robots. Here we give a brief review

on existing works on language grounding.

2.2.1 Grounding Words in Perception

One of the most fundamental tasks in grounded language learning is to associate words with

perceptual input.

2.2.1.1 Grounding to Discretized Perceptual Signal

Words are discrete symbols and perceptions are usually represented by continuous sensory data.

Therefore a commonway of connecting them is to discretize the sensory feature space into categories
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that are associated with linguistic words. Examples include models for grounding color names [38,

116, 56, 88] and grounding spatial terms [115, 140, 47]. In computer vision, this task of associating

linguistic labels with perceptual categories is usually called recognition, e.g., object recognition,

action recognition.

Grounding color terms is an actively studied topic in linguistic and cognitive science, since

color is an important type of object properties in human visual system. And the studies of color

name grounding could inspire newmodels of learning vaguemeanings for other continuous domains

as quantity, space, and time.

In computational systems, color is usually represented by values in a color space, e.g., red-

green-blue (RGB) or hue-saturation-value (HSV) color space. A cross-linguistic study of color

naming [116] shows that the color prototypes for English are close to the clusters in other different

languages, e.g., white, black, red, green, yellow, and blue. This result suggests that the human

perceptual system tends to have strong bias on the meaning of basic color terms. The task of

grounding color terms is usually done by associating color term with a prototypical point [2]

or a convex region in an underlying color space [38, 56]. Since the association between words

and perception is not definitive, McMahan and Stone [88] propose a Bayesian model of color

naming that takes into account the uncertainty in categorization boundaries and distributions over

vocabulary.

Grounding spatial terms is another actively studied topic. Regier and Carlson [115] propose

the attention vector-sum (AVS) model to predict the acceptability judgement of linguistic spatial

terms given two objects in a two-dimensional space. They use vector sum representation to model

the human concerning attention. Skubic et al. [140] use a histogram of force to model spatial

relations between 2D objects. In Guadarrama et al. [47] and Golland et al. [43], spatial relations

between 3D objects are learned through logistic regression.

Object recognition tasks in computer vision can also be seen as grounding tasks. In object

recognition tasks, we assign name tags to objects in the image. Generally, this is also a process of

grounding language (object labels) to perceptual signals (object images). Thanks for large scale
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image recognition datasets (e.g., ImageNet [22]), computer algorithms are closing their performance

gap between human on object recognition task, or even overtaking human performance [51].

However, this does not mean computers have the same level of abilities as human in grounding

language to perceptions. Because there are clear limitations in those studies: algorithms are

only trained to recognize a fixed set of discrete categories (usually up to thousands of classes).

Their training data are provided either with explicit labels for image classification task, or with

localization annotations (e.g. bounding boxes) for object localization task. Fully annotated image

datasets usually cost a lot to create and they have very limited categories. The number of categories

provided by vision systems is still far from human-level vision.

That said, the task of object recognition still provides us valuable knowledge and tools for more

complex language grounding tasks, like the representation of images (e.g., bag-of-visual-words,

pre-trained CNN features).

Attribute-based recognition has recently gained in popularity in the computer vision commu-

nity. Instead of assigning name tags for objects in an image, attribute-based recognition describes

object properties using learned attributes [30]. Since attributes can be shared by different objects,

the learned attributes can be used to recognize novel objects with a few or zero training exam-

ple [1, 57]. The attribute words can be seen as an intermediate representation that bridges the

visual space and the label space, therefore they provide useful information about relations between

class labels. However, the process of attribute learning also requires more human annotation efforts

when collecting attributes annotation.

2.2.1.2 Learning from Ambiguous Parallel Data

Above works need to learn from fully annotated language and perception data, which are expensive

to collect and usually contain very limited words. Now we look at the more general task of learning

from parallel language and perception data that have some sort of ambiguity. For example, when

learning from parallel image and sentence data, we need to deal with the association relation

between words and image locations; in the task of situated language perception, apart from the
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ambiguity in aligning language and perceptual input, we also need to deal with speech recognition

errors.

Learning the joint distribution of words and image features. There are large numbers of

data sets that consist of parallel image and language data. These data usually do not contain

alignment between words and image regions. In order to learn word grounding from this kind of

image dataset, Barnard et al. [9] present an approach that links image segments and word semantics

through clustering. The clusters captures the joint distribution of words and image segments.

Barnard et al. [8] study a couple models of learning the joint distribution of image regions and

words, including a multi-modal extension of Latent Dirichlet Allocation. Yu and Ballard [169] use

a generative graphical model to model the correspondence of word and objects. It first generates a

latent variable, then visual objects are generated based on the latent variable, and finally, words are

generated conditioned on visual objects.

Models of infant word learning. In the community of NLP and cognitive science, plenty

researches are focused on understanding the mechanism of how human acquire language. For

example, the CELL system [125] acquires word meaning from speech and image input, mimicking

the language learning process of infants. In this system, wordmeanings are represented by prototype

feature vectors along with radii around them. A prototype can be seen as an ideal point for that

category in the feature space. If an input perceptual feature vector is within the radius to a prototype,

it will be treated as a member of this perceptual category.

Weakly supervised object recognition/localization. As mentioned earlier, the number of

categories provided by vision systems is still far from human-level visual perception. Apart from

large number of object categories, real world objects also have different states. For example, a

potato can be in the state of “peeled”, “in pieces”, “cooked”, etc. Recognizing object state is a

more difficult task. Due to the high cost of human annotation, it is very difficult to establish an

open-domain image dataset that covers a large set of objects with state annotations. Therefore

people seek ways of utilizing parallel language and vision data in weakly supervised settings. With

the recent success of the Deformable Parts Model (DPM) detector [106], weakly-supervised object
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localization techniques [102] have risen back to popularity. These works use weak supervision

from web search images to train concept detectors (localization). Utilizing automatic web-search

images helps to remove the obstacle of high-cost for collecting fully annotated image dataset. In

Chapter 5, we borrow the similar idea of using web search images with distance supervision to

facilitate the learning of action-effect prediction.

2.2.1.3 Grounding Verbs

Based on the representation of verb meanings, verb grounding researches can be categorized into

several different types, 1) representation using world state, 2) representation using action control

structures, 3) representation using motion profile.

Representation using world state. World state includes object properties (e.g., color, shape)

and object relations (e.g., spatial relation). In Siskind’s work [137, 138, 139], state changes in

force-dynamic relations between participant objects are visually recognized, and their temporal

schemas are used to infer actions (verbs). Yang et al. [164] use a visual semantic graph to represent

the consequence of manipulation actions. A number of work [133, 131, 94] explicitly model verbs

with predicates describing the resulting states of actions.

Representation using action control structures. In robotic studies, in order for robot to carry

out an action, the verb meaning need to be grounded to the control of action. Bailey et al. [5] uses

x-schema to represent action verbs, which captures verb semantics using action control structures.

Misra et al. [93] propose a data driven approach to ground natural language commands to sequences

of robot basic actions.

Representation using motion profiles. Motion profiles are widely used for recognizing

actions through computer vision [129, 151]. Approaches in this category usually perform well in

recognizing actions from human gesture and motions. However, they usually highly rely on the

training data (e.g., actors, lighting conditions, camera angle), and can hardly be generalized to

grounding action verbs to robot actions.

Although lots of work have been done in grounding language to perception, no previous work
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has investigated the link between physical causality denoted by action verbs and the change of state

visually perceived. Chapter 4 intends to address this limitation and examine whether the causality

denoted by action verbs can provide top-down information to guide visual processing and improve

grounded language understanding. In this dissertation, we are particularly interested in using world

state to represent verb meaning. World state changes capture the causality information of action

verbs, thus they can be beneficial for action reasoning and planning. Also as shown by experimental

results [139, 164], using state change can be a more robust way to model verb meanings than using

motion profiles.

2.2.1.4 Context-Dependent Word Meaning

One thing to notice is that, the grounding of words could be influenced by language context, e.g.,

the RGB values of “red wine” and “red hair” are likely to be different. [38] models the shift of

word meaning given contexts. In fact, word meanings are determined by both linguistic convention

and visual perception. Experiments in [18] show that human understanding of language depends

on the listener’s evaluation of how to achieve the goal based on current situation. McMahan and

Stone [88] claim that it is not accurate to use definitive mappings between words and the world.

Their work models speaker judgment and speaker choice in the grounding of color words.

To summarize, a typical system that learns grounded word meanings usually takes two steps:

1) “parsing” the perception into ontological types and relations that could be explained by human

language semantics; 2) learning the association between word and those perception categories.

Sometime these two steps are done jointly.

2.2.2 Grounding Phrases and Sentences

2.2.2.1 Referent Grounding

Reference Grounding is the task of resolving referring expressions to a referent, the entity in the

physical world to which they are intended to refer. In [122], perspective-taking mechanism is used
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to find the referent based on a set of language descriptors. When the given information is not

sufficient to make prediction, the agent can automatically raise a question for more distinguishing

information.

In [85] and [62], the objects are distinct and represented via symbolically specified properties,

such as color and shape. They use pre-defined property classifiers, like ‘green’, ‘trigangle’, to

identify object properties. In [63], wordmeaning is represented by a function fromobject perception

features to a score of how well the word and that object fit each other. Phrases are represented by

compositions of individual words. For example, a simple noun phrase is composed by averaging

word meaning functions, a relational phrases (e.g., the book to the left of the mug) is composed by

multiplying different word meaning functions.

2.2.2.2 Grounding Action Frames

Several works from computer vision community focus on the extraction of action frames from

images [48, 168]. Yatskar et al. [168] creates an image dataset imSitu, where images are annotated

with activities and semantic roles from FrameNet. The goal is to detect the activity and localize

the objects of interactions from image input.

Yang et al. [162] extend traditional semantic role labeling (SRL) to grounded SRL where

arguments of verbs are grounded to participants of actions in the physical world. Using a graphical

probabilistic model to jointly learn the correspondence between language and vision, their approach

grounds both explicit semantic roles and implicit semantic roles. In Chapter 4 of this dissertation,

we model the physical causality of action verbs from crowd-sourced data, and demonstrates that

physical causality modeling helps with the grounded semantic role labeling task.

2.2.2.3 Parsing and Perception

Many researchers treat grounded language acquisition as two subproblems: parsing and percep-

tion [70]. The first step is semantic parsing, which tries to map language to formal meaning

representation. One of the most commonly used meaning representation is first-order logic. The
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second step is mapping the meaning representation to perception categories. Researches in this

direction often focus on the semantic parsing step, assuming that we have easy access to a logical

representation of the world.

Zelle and Mooney [174] propose a natural language interface for database queries. Based

on the CHILL parser acquisition system [172, 173], this interface transform the natural language

queries to a logic form which can be used to query the database. Here the logic form bridges the

natural language and database slots. The parser acquisition is regarded as a problem of learning

search-control rules in a logic program through inductive logic programming. Apart from the

logic form representation, there are other forms of semantic meaning representations. In Lu et al.’s

work [83], they propose using hybrid trees to represent semantic meanings, where each tree node

includes both natural language words and the corresponding meaning elements.

Borschinger et al. [14] propose that the grounded language learning problem can be solved by

addressing the unsupervised Probabilistic Context Free Grammar (PCFG) induction problem. In

their approach, the semantic information is encoded as part of the text string. However, this approach

includes every possible meaning representation constituent as a nonterminal in the PCFG. It will

have difficulties when dealing with complex sentences with a large number of potential meanings,

since the number of possible subgraphs grows exponentially. Later, Kim and Mooney [64] propose

to address the combinatorial explosion problem by introducing the LexemeHierarchyGraph (LHG),

where a hierarchy of semantic lexemes is build for each ambiguous landmarks plan. In another

work, Lin et al. [76] study the task of retrieving videos using complex natural language queries.

In their proposed approach, a sentence is first parsed into semantic graph, and objects and their

motions are detected from the video, then language ismatched to visual concepts using a generalized

bipartite matching algorithm.

Combinatory Categorial Grammar (CCG) is a popular tool for semantic parsing. It can model

both the syntax and the semantics (expressions in λ-calculus) of a sentence. Matuszek et al. [86]

propose a framework that uses CCG parsing to grounds natural language sentences to perceptions.

A sentence is first parsed into logical forms using probabilistic CCG. Then an explicit model is
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used to align logical constants and perception attribute classifiers. However this work only study a

very limited number of objects and several attributes, like color and shape.

2.2.2.4 Jointly Modeling Parsing and Perception

There are also some grounding works that do not need explicitly semantic parsing as a first

step. Yu and Siskind [171] propose an unsupervised approach to ground language descriptions

to video clips of human interacting with multiple objects. They use an HMM-based model to

jointly learn the object tracking and word meaning grounding. In their approach, each language

element (verb, noun, adjective, adverb, preposition, etc) is modeled by an HMM, and the visual

perception is represented by object detection results. Later, this model was extended to handle

different application tasks [170]: 1) Language generation from vision, 2) Video/image retrieval

using langauge query, 3) Language-Guided Activity Recognition.

In [147, 148], a probabilistic graphical model was created to map natural language commands

to physical world groundings, like objects, paths and locations. Each command sentence is first

decomposed into Spatial Description Clauses (SDCs) [68] with types of event, object, path,

and place. The system then infers groundings in the world corresponding to each SDC using a

Conditional Random Field (CRF) model.

Artzi and Zettlemoyer [4] present a joint model of meaning and context for interpreting and

executing instructional sentences, using a grounded CCG semantic parsing approach. The joint

modeling improves grounding performance by providing situated environment cues, like the set

of visible objects. Matuszek et al. [87] build a joint model of linguistic meaning and action

execution in a grounded CCG semantic parsing framework. In this work, a parser is learned to map

language instructions to robot control language (RCL), which can later be executed by the robot in

a simulation environment.

Above work which jointly address parsing and perception has some drawbacks, including: 1)

the learning phase of thesemodels requires large amounts of manual annotation, and 2) the semantic

representations are limited by pre-defined predicates [68, 147, 87]. Krishnamurthy and Kollar [70]
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partially solve these limitations by introducing a Logical Semantics with Perceptron(LSP) model,

which jointly models the perception information and language meanings. Their task is given

an environment with multiple objects, to map natural language statements to the referents in the

environment. The authors introduce a weakly supervised method to train the LSP.

2.2.2.5 Neural Network approaches

Recent researches deploy deep-learning frameworks to model both image and word sequence. End-

to-end deep neural network models have shown good performance in the tasks of visual description

generation [26] and visual question answering tasks [3]. One drawback of end-to-end deep learning

framework is the lacking of transparency. If the system fails on one example, it is hard for human

to understand the reason. Therefore, researchers have been trying to develop neural models with

explicit intermediate representations, e.g., the use of attention models.

Karpathy et al. [59] present an learning approach that grounds dependency-tree relations to

regions in the image using a ranking technique. Rohrbach et al. [120] use attention model to ground

phrases to image regions, their model works both with or without grounding supervision. Recently

people start to utilize caption generation framework on grounding task. Hu et al. [55] propose

Spatial Context Recurrent ConvNet (SCRC) to transfer visual-linguistic knowledge from image

captioning taskes to facilitate the grounding of language query to bounding boxes in the image.

A common approach in processing parallel image and language data is to learn an embedding

model that maps text and images into a shared latent space. In this shared space, vector representa-

tions for text and images can be compared directly. Therefore it is very convenient to retrieve related

images given text, or retrieve related text given an image. For example, Wang et al. [152] propose

an approach called Deep Structure-Preserving Embedding, which formulates the image-sentence

retrieval as a ranking problem.
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2.3 Natural Language Inference Tasks

Recent years have seen a trend that new language processing benchmarks shift from only

targeting linguistic context to ones requiring world knowledge and reasoning process to solve.

For instance, the Winograd Schema Challenge [72] requires commonsense knowledge to resolve

pronouns. Some of the machine comprehension benchmarks [153, 113, 95] require comprehending

and reasoning based on supporting documents, where world knowledge can be critical in deeply

understanding the documents.

Natural Language Inference (NLI) is one of the most widely studied task that focuses on

understanding and reasoning about natural language. NLI is the task of reasoning about the truth

given some linguistic statement and premise. Researchers have created many challenging tasks

that require language understanding and inference. Solving these challenges usually requires large

amount of knowledge. Next we will review some popular language inference challenges and

frameworks.

2.3.1 Recognizing Textual Entailment (RTE)

The Recognizing Textual Entailment (RTE) task aims to evaluate machines’ capability of deter-

mining whether the meaning of one text is entailed by another text [21]. Given two sentences A

and B, we say A entails B if a human reading A would infer that B is holding true. For example:

• Text: The purchase of Houston-based LexCorp by BMI for $2Bn prompted widespread sell-

offs by traders as they sought to minimize exposure. LexCorp had been an employee-owned

concern since 2008.

– Hyp 1: BMI acquired an American company.

– Hyp 2: BMI bought employee-owned LexCorp for $3.4Bn.

– Hyp 3: BMI is an employee-owned concern.
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• Text: On 18 April 1955, Aortic aneurism killed Albert Einstein. This is when blood vessels

gather in the aorta stretching out this part of the heart..

– Hyp 1: A health issue caused Einstein to die.

– Hyp 2: The Bell Inequalities were not presented while Einstein was alive.

– Hyp 3: Einstein was executed by Nazi Germany.

In RTE tasks, the text is always an inherent part of the inference process for predicting the

answer. In other words, solving a valid RTE question always requires information from both

sentences.

2.3.2 Winograd Schema Challenge (WSC)

The Winograd Schema Challenge (WSC) is proposed by Hector Levesque [72]. One of the

motivation of this challenge is to provide an alternative to the Turing Test, by enforcing human-like

reasoning. Unlike the Turing Test, Winograd Schema does not involve a conversation between

human and machine. Instead, the machine needs to answer binary questions. For example:

• The trophy would not fit in the brown suitcase because it was too big (small). What was too

big (small)?

– Answer 0: the trophy

– Answer 1: the suitcase

• The town councilors refused to give the demonstrators a permit because they feared (advo-

cated) violence. Who feared (advocated) violence?

– Answer 0: the town councilors

– Answer 1: the demonstrators

Note there is a word (“big”, “feared”) in each of the original sentence. If we switch this word

with its alternative (“small”, “advocated”), the correct answer becomes the opposite. In the first

23



example, when “big” is used in the sentence, the answer is “the trophy”; when “small” is used in

the sentence, the correct answer is “the suitcase”.

The questions in Winograd Schema Challenge are carefully designed to test a system’s world

knowledge and human-like reasoning capability. Levesque introduces guidelines of creating the

questions: 1) The questions are easy for human to answer; 2) The questions cannot be solved by

coreference resolution techniques like selectional restrictions; 3) Mining statistical measures from

large text corpora will not be suffice to solve them. These guidelines provide valuable insights to

the process of creating natural language understanding benchmarks. Recently, people are becoming

more aware of the problem that machine learning models are often memorizing shallow statistical

cues instead of truly understanding natural language [58, 100]. In Levesque’s design, a swap of the

special word with its alternative leads to opposite ground-truth answer. This is closely related to

the idea of building adversarial examples to eliminate the power of memorizing shallow statistical

cues [100].

2.3.3 Causal Reasoning

The notion of causality or causation has been explored in psychology, linguistics, and computational

linguistics from awide range of perspectives. For example, different types of causal relations such as

causing, enabling, and preventing [42, 156] have been studied extensively as well as their linguistic

expressions [155, 141, 99] and automated extraction of causal relations from text [12, 97, 111, 118].

2.3.3.1 Choice of Plausible Alternatives (COPA)

The Choice of Plausible Alternatives (COPA) task [119] is created to evaluate a system’s capability

of dealing with commonsense causal reasoning. It contains a thousand questions and each question

contains a premise and two alternatives. The task is to select one of the alternatives that is most

likely to be the cause or effect of the premise. Here are some examples:

• Premise: The man broke his toe. What was the CAUSE of this?
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– Alternative 1: He got a hole in his sock.

– Alternative 2: He dropped a hammer on his foot.

• Premise: I knocked on my neighbor’s door. What happened as a RESULT?

– Alternative 1: My neighbor invited me in.

– Alternative 2: My neighbor left his house.

The COPA is a relatively challenging task in Natural Language Understanding. Since solving

these questions requires more commonsense knowledge than the training data can provide. And

causal relations in text are usually difficult to obtain. Common ways of acquiring causality

knowledge adopted by existing approaches includes automatic extraction of causal relations, and

pre-training on large-scale external datasets. Luo et al. [84] proposed an text data-based approach

for the COPA task. They extracted causal-effect terms from a large web corpus and their approach

achieves 70.2% accuracy. Li et al. [75] train a neural network model using data from two external

datasets. They feed the model with training examples from other tasks, via transforming data from

other tasks into COPA-style plausibility questions.

2.3.3.2 Story Cloze Test

The Story Cloze Test [95] consists of five-sentence stories with two alternate endings, requiring a

system to decide which ending is more plausible. Below is an example story:

Context: Karen was assigned a roommate her first year of college. Her roommate asked

her to go to a nearby city for a concert. Karen agreed happily. The show was absolutely

exhilarating.

– Right Ending: Karen became good friends with her roommate.

– Wrong Ending: Karen hated her roommate.
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This benchmark contains lots of everyday events, which is related to a wide variety of commonsense

knowledge. Most of the stories focus on human’s emotions, intentions and attitudes, i.e., naive

psychology. In this dissertation, we are more interested in physical commonsense knowledge.

There are also many research works modeling cause-effect relations [40, 19, 24, 163], par-

ticularly for question answering (e.g., addressing why questions). Most of these works address

high-level causal relations between events, for example, “the collapse of the housing bubble”

causes the effect of “stock prices to fall” [130]. They do not concern the lower-level cause-effect

relations associated with concrete actions. Different from these previous works, this dissertation

has a specific focus on the physical causality of action verbs, in other words, change of state in the

physical world caused by action verbs as described in [54].

2.4 Knowledge Resources

One bottleneck towards natural language inference is that machines lack world knowledge.

Thus, there is an increasing amount of effort on developing knowledge representations and building

knowledge resources. In this section, we discuss some of the major knowledge resources. Based

on the approaches creating the knowledge resources, we categorize them into hand-built knowledge

resources and automatically extracted knowledge resources.

2.4.1 Hand-built Knowledge Resources

WordNet [92] is a large lexical database for English. Words are grouped into synsets and then

organized into a network structure. Each of the synsets is linked with other synsets by some

conceptual relations. For nouns and verbs, they are arranged into hierarchies, with hypernymy

and hyponymy representing links going up or going down the hierarchies. WordNet contains

117,000 synsets and provides different types of knowledge regarding the relations between them.

However, WordNet mainly focus on conceptual-semantic and lexical relations, it does not contain

commonsense knowledge about how the world changes.

ConceptNet [81] is a network that records large amounts of commonsense knowledge. Here
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the term commonsense refers to “the millions of basic facts and understandings possessed by

most people.” ConceptNet is built based on the human annotated database Open Mind Common

Sense (OMCS) [136]. Extraction rules are designed to automatically extract ConceptNet’s binary

relations from the OMCS sentences. Later, ConceptNet has grown to include knowledge from other

human-built resources. In ConceptNet 5.5 [142], it contains over 21 million links between over 8

million nodes. Although ConceptNet has grown rapidly in size and coverage, it is still far from

obtaining human-level commonsense knowledge. For example, causal relations are still sparse in

ConceptNet, making it difficult to making inference in a human-like way.

2.4.2 Automatically Extracted Knowledge

Human annotation is usually very expensive to obtain. Therefore a large amount of studies have

been done to automatically extract knowledge from existing large collections of data sets. Except

for few that acquires knowledge from images [167], most of the previous effort apply information

extraction techniques to extract facts from a large amount of text data [27, 112]. A commonly

adopted way is to discover relations between named entities and automatically extract facts about

those entities from the raw textual data [27, 112]. DBPedia [71], Freebase [13], and YAGO [144]

extract structured information from document repositories on Wikipedia. Wikipedia is an ideal

resource for knowledge extraction since it is maintained by a large community and it contains

semi-structured documents that have great semantic heterogeneity.

These automatically minded knowledge base cover millions of facts about the world such as

people and places, saving a lot of time and expenses compared with human annotation. However

they emphasize more on relations and properties related to named entities (e.g., places, people, and

organizations). They do not contain an important type of commonsense knowledge, which people

usually do not mention explicitly, but is still critical for our communication. Physical causality

knowledge is among this type.
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2.5 Related Work in Computer Vision and Robotics

The idea of modeling object physical state change has also been studied in the computer vision

community and the robotics community.

2.5.1 Related Work in Computer Vision

A recent trend in computer vision has started looking into intermediate representations beyond

lower-level visual features for action recognition, for example, by incorporating object affor-

dances [69] and causality between actions and objects [31]. Fathi and Rehg [31] have broken down

detection of actions to detection of state changes from video frames. Yang and colleagues [164, 165]

have developed an object segmentation and tracking method to detect state changes (or, in their

terms, consequences of actions) for action recognition. More recently, Fire and Zhu [34] have

developed a framework to learn perceptual causal structures between actions and object statuses

in videos. However these previous works only focus on the visual presentation of motion effects.

In Chapter 5, we aim to make a connection between visual presentation and human language

descriptions.

Recent years have seen an increasing amount of work integrating language and vision, for

example, visual question answering [3, 35, 82]. Different approaches have been developed such

as Multimodal Compact Bilinear Pooling (MCB) [35], Dynamic Memory Network [158], and the

use of external knowledge bases [157]. Most of these work mainly focus on the Yes/No questions

and what type questions related to object recognition. While many approaches require a large

amount of training data, more recent works have developed zero/few shot learning for language

and vision [96, 160, 159, 161, 149]. Different from these previous works, in Chapter 5 of this

dissertation, we introduce a new task that connects language with vision for physical action-effect

prediction, focusing on the causal relation between actions and state changes depicted by both

language and visual data.
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2.5.2 Related Work in Robotics

In the robotics community, an important task is to enable robots to follow human natural language

instructions. Previous works [134, 94, 131, 132] explicitly model verb semantics as desired goal

states and thus linking natural language commands with underlying planning systems for action

planning and execution. In these works, action schemas are defined to capture the change of state

caused by a given action. Based on action schemas and the goal state, planning algorithms can be

applied to find a sequence of actions to achieve the goal [39]. Therefore, the state of the physical

world is a very important notion and changing the state becomes a driving force for robot’s actions.

However, these studies were carried out either in a simulated world or in a carefully curated

simple environment within the limitation of the robot’s manipulation system. And they only focus

on a very limited set of domain specific actions which often only involve the change of locations.

In Chapter 5 of this dissertation, we study a set of open-domain physical actions and a variety of

effects perceived from the environment (i.e., from images).
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CHAPTER 3

MODELING PHYSICAL CAUSALITY OF VERBS

In order to enable a robot or a computer to acquire and utilize the physical causality knowledge

of verbs, we need to collect this kind of knowledge and transfer it into machine-understandable

representations. Usually the most natural way for human to pass knowledge is through language.

However, physical causality knowledge is usually not explicitly stated in human language, since

we assume everyone possesses this kind of common sense knowledge. This makes it difficult to

extract physical causality knowledge from existing language datasets, like large-scale text corpora.

Therefore, in this study, crowd-sourcing tasks were designed to collect physical causality data. In

these crowd-sourcing tasks, human subjects were asked to explicitly express their knowledge on

action verbs, through natural language or through answering designed multiple choice questions.

After data collection, we investigate two different approaches to model physical causality

knowledge. In one approach, the changes of state are categorized into classes, and the causality

knowledge for an action verb is represented as its associations with those changes of state classes.

In another approach, language descriptions of actions and their effects are embedded using neural

network into a common vector space. The causality knowledge is modeled through similarities

between embedding vectors.

3.1 Categorization of Physical Causality 1

3.1.1 Linguistics Background on Action Verbs

Verb semantics have been studied extensively in linguistics [110, 73, 7, 66]. In this dissertation, we

only focus on concrete action verbs (such as run, throw, cook), which denote physical actions in

the world, instead of denoting states or abstract actions that can not be visually perceived. Hovav

and Levin [54] propose that action verbs can be divided into two types: manner verbs that “specify

1This is a joint work with Malcolm Doering. Part of this section (Section 3.1.1, 3.1.2 and 3.1.3)
is also included in Doering’s Master of Science dissertation [25].
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as part of their meaning a manner of carrying out an action” (e.g., nibble, rub, scribble, sweep,

flutter, laugh, run, swim), and result verbs that “specify the coming about of a result state” (e.g.,

clean, cover, empty, fill, chop, cut, melt, open, enter). Result verbs can be further classified into

three categories: Change of State verbs, Inherently Directed Motion verbs and Incremental Theme

verbs [74]. Change of State verbs denote a change in the property of object (e.g. “to melt”).

Inherently Directed Motion verbs indicate a movement in regard to a landmark object (e.g. “to

arrive”). Incremental Theme verbs stand for the incremental change of object, like mass, volume

or area change (e.g. “to eat”). This dissertation has a main focus on result verbs. Unlike Levin and

Hovav’s definition of Change of State verbs, here the term change of state is used in a more general

way such that the location, volume, and area of an object are part of its state.

Previous linguistic studies have also shown that result verbs often specify movement along a

scale [54]. A scale usually denotes an attribute of an object, like size, temperature, cost. For

example, “Mary shortened the skirt” indicates that the length of the object skirt has decreased. A

detailed description of scale structure can be found in Kennedy and McNally’s work [60].

Interestingly, gradable adjectives also have their semantics defined in terms of a scale structure.

Dixon and Aikhenvald have defined a typology for adjectives which include categories such as

Dimension, Color, Physical Property, Quantification, and Position [23]. The connection between

gradable adjectives and result verbs through scale structure motivates us to use the Dixon typology

as a basis to define our categorization of causality for verbs.

In summary, previous linguistic literature has provided abundant evidence and discussion on

change of state for action verbs. It has also provided extensive knowledge on potential dimensions

that can be used to categorize change of state as described in this work.

3.1.2 A Crowd-Sourcing Study

Motivated by the above linguistic insight, we have conducted a pilot study to examine the feasibility

of causality modeling using a small set of verbs which appear in the TACoS corpus [117]. This

corpus is a joint data of text and videos, where the videos capture different human subjects doing
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cooking activities, and the text sentences describe the actions of the human subjects. The TACoS

dataset contains mainly descriptions of physical actions, and a majority of the verbs belong to result

verbs, which denote some changes of state that can be observed in the world. Therefore the TACoS

dataset is very suitable for our study.

More specifically, we chose ten verbs (clean, rinse, wipe, cut, chop, mix, stir, add, open, shake)

based on the criteria that they occur relatively frequently in the corpus and take a variety of different

objects as their patient. We paired each verb with three different objects in the role of patient.

Nouns (e.g., cutting board, dish, counter, knife, hand, cucumber, beans, leek, eggs, water, break,

bowl, etc.) were chosen based on the criteria that they represent objects dissimilar to each other,

since we want to investigate the verb causality knowledge under different contexts.

Each verb-noun pair was presented to human annotators via Amazon Mechanical Turk (AMT)

and they were asked to describe (by text) the changes of state that occur to the object as a result of the

verb. The descriptions were collected under two conditions: (1) without showing the corresponding

video clips (so annotators would have to use their imagination of the physical situation) and (2)

showing the corresponding video clips. For each condition and each verb-noun pair, we collected

30 annotators’ responses, which resulted in a total of 1800 natural language responses describing

changes of state.

3.1.3 Categorization of Change of State

Based on Dixon and Aikhenvald’s typology for adjectives [23] and human annotators’ responses,

we identified a categorization to characterize causality, as shown in Table 3.1. This categorization is

also driven by the expectation that these attributes can be potentially recognized from the physical

world by artificial agents. The first column specifies the type of state change and the second

column specifies specific attributes related to the type. The third column specifies some possible

values associated with the attribute, e.g., it could be a binary categorization on whether a change

happens or not (i.e., changes), or a direction along a scale (i.e., increase/decrease), or a specific

value (i.e., specific such as “five pieces”). In total, we have identified eighteen causality categories
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Type Attribute Attribute Value
Dimension Size, length, volume Changes, increases, decreases, specific

Shape Changes, specific (cylindrical, flat, etc.)

Color/Texture Color Appear, disappear, changes, mix, separate,
specific (green, red, etc.)

Texture Changes, specific (slippery, frothy, etc.)
Physical Property Weight Increase, decrease

Flavor, smell Changes, intensifies, specific
Solidity Liquefies, solidifies, specific
Wetness Becomes wet(ter), dry(er)
Visibility Appears, disappears
Temperature Increases, decreases
Containment Becomes filled, emptied, hollow
Surface Integrity A hole or opening appears

Quantification Number of pieces Increases, one becomes many, decreases,
many become one

Position Location Changes, enter/exit container, specific
Occlusion Becomes covered, uncovered
Attachment Becomes detached
Presence No longer present, becomes present
Orientation Changes, specific

Table 3.1: Categorization of physical causality.

corresponding to eighteen attributes as shown in Table 3.1.

Through analyzing the crowd-sourcing data, we have made several interesting and important

observations:

1. A verb can be associated with multiple changes of state. Our data show that each human

description contains as many as three different changes of state. 43% descriptions contained only a

single change of state, and 36% descriptions contained no change of state. 19% described two CoS

and 2% described three CoS. Since our causality categories aremainly designed to capture low-level

states, they do not include higher level attributes like cleanliness. For some of those descriptions

counted as no change of state, they actually describe changes of high level state attributes.

Figure 3.1 shows the distributions of causality labels applied to two verbs, clean and rinse.

Intuitively, these two verbs have similar meanings. As shown in the figure, their distribution of

causality labels are also similar. They both have high weights on PresenceOfObject and Wetness.
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Figure 3.1: Distributions of causality labels for verbs clean and rinse.

However, the differences between these two verbs are also captured by the distributions. Human

tends to describe the effect of clean with more PresenceOfObject label, and to describe the effect

of rinse with more Wetness label. Partly because the result verb clean is more related to the final

state that “dirt is no longer present”, while the manner verb rinse is more related to the use of water.

2. The causality for a verb is context dependent. Human’s description of verb causality not

only depends on the nouns filling a particular semantic role for the verb, but also on the physical

scenes where the verb-noun pairs appear in. Based on the collected data, we developed a metrics

called variability using Jensen-Shannon divergence (JSD) to compare the distributions of causality

labels associated to a verb under different conditions (e.g., taking different nouns or whether a video

clip was shown or not).

The JSD of two distributions P and Q is defined as below.

JSD(P | |Q) =
1
2

D(P | |M) +
1
2

D(Q | |M), (3.1)

where M = (P +Q)/2, and D is the well-known Kullback-Leibler divergence. JSD is a symmetric

measure (i.e., JSD(P | |Q) = JSD(Q | |P)). The smaller JSD means two distributions are more

similar.
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Verb +/-Scene 3 Objects
clean 0.03 0.04
rinse 0.01 0.05
wipe 0.02 0.14
cut 0.01 0.02
chop 0.02 0.03
mix 0.05 0.13
stir 0.09 0.21
add 0.12 0.22
open 0.09 0.32
shake 0.18 0.42

Table 3.2: Variability of causality labels over different object and scene conditions.

Variability describes how the causality label distributions of a verb vary with different condi-

tions. The conditions include filling the patient role with different objects, or whether a video clip

was shown to the human annotators. The variability is defined as below.

variability =

∑
(i, j),i, j

JSD(di, d j )

num pairs
(3.2)

where (i, j) indicates a pair of two distributions. The variability is an average of JSD for all pairs

of causality label distributions. Each pair of distributions correspond to a pair of different values

for the context variable. For example, the variability over the object conditions of a verb chop is

calculated by averaging the JSD of three unique pairs of causality label distributions, i.e., averaging

over JSD(chop cucumber, chop bean), JSD(chop cucumber, chop leek), and JSD(chop bean, chop

leek).

The variabilities over objects and scenes for each verb are shown in Table 3.2. The second

column of the table shows that with or without video clips can influence human’s judgement of

action effects. And some verbs (e.g., shake) are more sensitive to the changes of visual scenes.

The third column of the table shows that for some verbs, their causality information is also closely

related to the objects. These observations indicates that the causality of a verb depends on its

context.

3. Causality models can be used to reflect similarities between verbs. Based on the data,

we further applied Jensen-Shannon divergence (JSD) to calculate the divergence of causality label
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distributions between different verbs. Our results indicate that similarity between verbs based

on causality distributions is consistent with similarity based on verb semantics, for example, for

two similar verbs JSD(cut, chop) = 0.01 and JSD(mix, stir) = 0.03, for two dissimilar verbs,

JSD(cut, shake) = 0.59 and JSD(rinse, chop) = 0.68. This shows that the causality labels for

verbs, while adding another dimension to verb semantics, still preserve the original meaning of

these verbs.

In summary, the results from our empirical studies, although preliminary due to a small dataset,

have shown it is possible to systematically model causality knowledge for a set of common verbs

through crowd-sourcing studies. These results have motivated us to conduct more in-depth inves-

tigations on modeling and utilizing causality knowledge.

3.1.4 Evaluation: Verb Similarity Judgement and Thematic Fit Estimation

In this section, we demonstrate verb causality categorizations can potentially improve semantic

modeling of verbs based on distributional semantics.

We collected a larger dataset of verb causality annotations based on sentences from the TACoS

Multilevel corpus [121], through crowd-sourcing on Amazon Mechanical Turk. Annotators were

shown a sentence containing a verb-object pair (e.g., “The person chops the cucumber into slices

on the cutting board”). And they were asked to annotate the change of state that occurred to the

patient as a result of the verb by choosing up to three options from the 18 causality attributes. Each

sentence was annotated by three different annotators.

The dataset contains 4391 sentences, where there are 178 verbs, 260 nouns, and 1624 verb-

object pairs. Note that multiple sentences could have a same verb-object pair. Each verb-object pair

always contain a single verb, but could have two or more object nouns. 41.6% of the verb-object

pairs contain two or more object nouns, e.g., “move-egg, bowl”. The causality annotation result for

each sentence is represented as a 18-dimension binary valued vector, each dimension is 1 if at least

two annotators labeled the corresponding causality attribute as true, 0 otherwise. In 80% of the

vectors, only one dimension is 1, showing that on most sentences, at least two annotators agreed on
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one causality attribute. In 3% of the vectors, more than one dimensions are 1, meaning at least two

annotators agreed on more than one attributes. 17% of the vectors are zero vectors, meaning there

is no agreed attribute between three annotators. All the experiments in this section are conducted

on this dataset.

If an annotator believes that none of the 18 attributes is applicable to the verb, he/she has other

choices of selecting “Current change of state frame is not applicable” (CoS-NA), or “No change of

state” (No-CoS). In the overall annotation results, less than 1 percent of instances are labeled with

CoS-NA or No-CoS, illustrating that the coverage of the proposed causality label categorization is

quite thorough.

3.1.4.1 Verb Similarity Judgement

Distributional Semantic Models (DSM) [10, 17] use contextual distributions to represent word

meaning. However, only using contextual information does not provide a complete picture of

word meaning. In this section, we augment verb representation with causality information, and

evaluate the performance of augmented models with human annotated verb similarity dataset.

Since causality information captures possible change of the state of the physical world denoted by

the verb, it could be a good supplement to the contextual information of DSM in terms of verb

semantics.

For each verb, we use a vector of 18 dimension to represent its causality information. The

vector is obtained by averaging all causality vectors of the sentences that contain this verb. For

the contextual information, we adopt the Distributional Memory (typeDM) [10], from which we

can get a vector representation for each verb. DM was constructed from three large-scale corpora,

ukWaC, WackyPedia and BNC. To assemble the DM vector Ft and causality vector Fs, we use the

linear weighted combination function from [17]:

F = α × Ft ⊕ (1 − α) × Fs (3.3)

where ⊕ is the vector concatenation operator. The parameter α can be determined from a develop-
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ment dataset.

As there is no existing word similarity dataset that has a good coverage on the verbs we study,

we need to develop new benchmarks. Following previous work on similarity measurement [16, 10],

we developed two benchmarks. Each of the benchmark contains 378 pairs of frequent verbs in

the TACoS dataset. Each pair has an averaged similarity score obtained by crowd-sourcing on the

Amazon Mechanical Turk. Ten different annotators were asked to rate each verb pair with a scale

between 1 to 5. For example, the pair cut-slice receives a high average rating 4.2, clean-pull receives

a low rating 1.2, in one of the benchmarks. The only difference between the two benchmarks is that,

during the collection of one, annotators were informed that these verbs describe cooking activities

in the kitchen, while no such information is provided during the other one. In this way, we can get

human judgement of verb similarity both in a specific domain and in general domain.

We evaluate the models of verb meaning in terms of their Spearman correlation to the human

rating benchmarks. Cosine similarity is used to measure the similarity between two verbs in these

vector models. In order to tune the parameter α, the general domain benchmark was divided into

development set and test set, each contain half of the data. We found the optimal value of α is

around 0.5 on the development set. We set α = 0.5 for the experiments. Tabel 3.3 reports the

evaluation results. No significant differences were observed between results on two benchmarks.

As expected, the concatenation model (DM+Causality) clearly outperforms the DMmodel on both

benchmarks. This illustrates the effectiveness of causality information in capturing verb meaning.

Model General Domain Cooking Domain
DM 0.4460 0.4382

DM+Causality 0.5554 0.5328

Table 3.3: Results of verb similarity judgement task using Distributional Memory (DM) model,
and concatenation model (DM+CoS). (Pearson’s correlation ρ, all values are significant with
p < 0.001.)
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3.1.4.2 Thematic Fit Estimation

First we define the causality vector for a verb and the affordance vector for a noun. The causality

vector for a verb is the same vector defined in the last application, which is calculated by averaging

all causality vectors of the sentences that contain this verb. This vector shows the possible changes

of state to the physical world caused by the verb. The affordance vector for a noun is calculated

through averaging all causality vectors of the sentences that contain this noun as patient role. This

vector shows the possible change of state for the corresponding object as a consequence of actions.

Thus, we can estimate the possibility of a noun being the patient role (or direct object) of a verb by

calculating the similarity between the two vectors. For example, the causality vector of “cut” has a

heavy weight on the causality attribute “Quantity”, and the affordance vector of “carrot” also has a

heavy weight on the same attribute, thus we can tell “carrot” fits well as the object of verb “cut”.

I implemented typeDM [10] for comparison, since it has shown state of the art performance

in thematic fit tasks [10, 46]. In typeDM model, to determine how well a noun fits the patient

role of a verb, we first find out 20 most popular nouns for the patient role of the verb, by counting

the syntactic dependence links of object. Then a centroid is calculated through normalizing and

averaging the DM vectors of the 20 nouns. The thematic fit score is the cosine similarity between

the DM vector of the target noun and the centroid.

To show the advantage of including the causality information in thematic fit estimation task,

again we adopted the concatenation model from Equation 3.3 to integrate DM and CoS information

(α = 0.5). The cosine similarity between vectors is used to measure the possibility of a noun being

the object of a verb.

Since there is no existing thematic fit benchmark that has a good coverage on the verbs and

nouns we study, we created a new dataset of human judgements on thematic fit of patient role,

following previous work on thematic fit estimation [89, 104]. 32 verbs and 36 nouns were sampled

from the TACoS Multilevel dataset. These verbs and nouns were used to randomly construct 520

verb-noun pairs. Each verb-noun pair was rated by 5 different annotators from AmazonMechanical

Turk. They rated the pair based on the plausibility of the noun as patient of the verb. The rating was
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on a scale 1 to 5, and judgement were then averaged from 5 annotators (e.g., cook-broccoli receives

a high average rating 4.8, cut-salt receives a low rating 1.0). Tabel 3.4 reports the evaluation

results. The concatenation model significantly outperforms DM model, indicating that causality

information play an important role in measuring thematic fitness.

Model Pearson’s ρ
DM 0.3007

DM+Causality 0.3732

Table 3.4: Results of thematic fitness estimation using Distributional Memory (DM) model and
concatenation model (DM+Causality). (Pearson’s correlation ρ, all values are significant with
p < 0.001.)

The above two applications of modeling physical causality of verbs illustrate that this kind of

knowledge is an important complement to the distributional semantics of verbs. It can be used not

only to measure similarity among words, but also to capture more abstract semantic relations.

3.2 Modeling Causality Knowledge via Embedding Methods

Previous discussions have shown the potential of modeling verb causality knowledge using pre-

defined categories. However, the most natural way for humans to communicate and pass knowledge

is through open-ended language. In this section, our goal is to directly model causality knowledge

from human natural language, instead of manually translating natural language into pre-defined

categories.

3.2.1 Cause-Effect Data Collection

As mentioned earlier, the commonsense causality knowledge associated with concrete action verbs

is often pre-supposed and not explicitly stated in language. It is difficult to extract cause-effect

data from existing text collections. Therefore, we applied human computing and collected a set of

cause-effect data through crowd-sourcing.

We startedwith the top 1000 frequent English verbs from theCorpus ofContemporaryAmerican

English. By querying these verbs from two dictionaries (LDOCE dictionary and the American

40



Cause Text Effect Text
slice bread The bread went from being a solid loaf to several pieces.
file nails The nails became smooth.
fry potato The potatoes become crisp and golden and go from raw to cooked.
stain carpet There is a visible soiled mark on the carpet.

Table 3.5: Example cause and effect text from our collected data.

Heritage 3rd edition) using patterns provided by the dictionary (e.g., transitive verbs with direct

object), we identified a subset of verbs which take concrete nouns as their patient (in another word,

direct object). We then extracted all example sentences for this subset of verbs from the dictionaries.

Finally, two undergraduate students manually extracted the verb and its patient (i.e., the noun that

serves as direct object) from each example sentence to form a verb-noun pair (or referred to as

verb-patient pair). Only those verb-noun pairs where the verb has a clear effect on the state of

the world related to the noun are chosen for our crowd-sourcing data collection. This process has

resulted in a total of 558 verb-noun pairs with 251 different verbs and 356 different nouns.

The crowd-sourcing data collection was carried out on Amazon Mechanical Turk. Annotators

were shown a verb-noun pair, and they were asked to use their own words to describe what changes

might occur to the object (denoted by the noun) as a result of the action (denoted by the verb). Each

verb-noun pair was annotated by 10 different annotators, which has led to a total of 5580 effect

descriptions. Table 3.5 shows some examples of collected effect descriptions.

3.2.2 Causality Embedding Models

We propose a text embedding method to model verb causality knowledge. The structure of our

model is shown in Figure 3.2. It is composed of two sub-networks: one for verb-noun pairs (i.e.,

cause) and the other one for effect descriptions (i.e, effect). The cause and effect can be represented

either by words or phrases (as explained later) using their pre-trained embeddings vc and ve. The

pre-trained embedding is fed to a fully-connected layer and transformed into a new (or adapted)

cause embedding v̂c and a new effect embedding v̂e. The adapted embeddings are learned by
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• cucumber into small pieces 
• cucumber is split
• cucumber no longer long
• ……

Pre-trained 
Embedding

Causal 
Embedding

Cosine Loss

• cut cucumber
• throw baseball
• pile boxes
• ……

Pre-trained 
Embedding

Causal 
Embedding

Cause Text Effect Text

Figure 3.2: Architecture of the verb causality embedding model.

minimizing the following loss function l:

l = [s(v̂c, v̂e) − γ]2, (3.4)

where

γ =




1, if (c, e) ∈ C

s(vc, ve), if (c, e) < C
(3.5)

s(·, ·) is the cosine similarity between vectors. C is the set of cause-effect tuples in our collected

data. Suppose c is an input for cause and e is an input for effect, this loss function will learn a new

cause and effect space that maximizes the similarities between c and e if they have a cause-effect

relation (i.e., (c, e) ∈ C) while maintaining their original similarity if they don’t have a cause-effect

relation (i.e., (c, e) < C). Essentially this approach learns an adaptation of the original embedding

space, which is encoded by two nonlinear transforms. To prevent the overfitting problem, we also

add a dropout layer with 0.5 probability to the input of the adapted embedding layer.

As mentioned earlier, cause and effect can be represented by either words or phrases as follows.
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Example patterns Example extracted State Phrases (bold)
VP with a verb ∈ {be, become, turn, get} The ship is destroyed.
VP + PRT The wall is knocked off.
VP + ADVP The door swings forward.
ADJP The window would begin to get clean.
PP + NP The eggs are divided into whites and yolks.

Table 3.6: Example patterns that are used to extract state phrases (bold) from sample sentences.

Word Causality Embedding (cEmbedWord). In this setting, the cause and effect text are

first broken into words. For a verb-noun pair (as cause) and one of its effect description (as

effect), after filtering out stop words, each word in the verb-noun pair is coupled with each word

in the effect description to generate a cause-effect tuple. In this setting, we use the 300-dimension

Word2Vec [90] weights pre-trained on Google News corpus.

Phrase Causality Embedding (cEmbedPhrase). In this setting, we first apply chunking

(shallow parsing) using the SENNA software [20] to break an effect description into phrases such

as noun phrases (NP), verb phrases (VP), prepositional phrases (PP), adjectives (ADJP), adverbs

(ADVP), etc. After examining the syntactic structure of the collected effect descriptions, we found

that most of the descriptions follow simple syntactic patterns. For a verb-noun pair, around 80%

of its effect descriptions start with the same noun as the subject. In an effect description, the

change of state associated with the noun is mainly captured by some key phrases. For example, an

adjective phrase usually describes a physical state; verbs like be, become, turn, get often indicate

a description of change of the state. Based on these observations, we defined a set of patterns to

identify phrases that describe physical states of an object. We call these phrases state phrases.

Table 3.6 shows some example patterns to identify state phrases and example state phrases that

were extracted based on the patterns. Besides, if an effect sentence begins with a noun phrase as

the subject, we also concatenate that noun phrase with each of the extracted state phrases.

After extracting state phrases from an effect description, we couple the corresponding verb-

noun phrase with each of the extracted state phrases to form a (cause, effect) tuple. If no phrase

is extracted from an effect description, we treat the whole description as a long phrase to form the
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tuple. We encode phrases into vector representations using skip-thought, an RNN pre-trained on a

large-scale book corpus [67].

3.2.3 Evaluation: Causality Embedding in Causal QA

The learned causality embedding can be applied to Causal Question Answering (cQA). This cQA is

different from traditional question answering that involves cause-effect relations between high-level

events. It was mainly designed to test machines/artificial agents’ ability in causal reasoning related

to concrete actions. More specifically, we evaluate two types of questions.

Cause-to-Effect (Cause2Effect) questions. Given a verb-noun phrase, the question is: “what

would likely happen to the object denoted by the noun as a result of the action denoted by the verb?”

The answer would be an effect description describing the potential effect.

Effect-to-Cause (Effect2Cause) questions. Given a description illustrating a state of the

world, the question is: “what action would likely cause the state of the world described in the text?”

The answer would be a verb-noun pair that can potentially serve as the cause.

3.2.3.1 Ranking Algorithm

We adopt a simple ranking algorithm to retrieve answers for a question. Given a query q (i.e., either

a verb-noun pair for Cause2Effect questions or a description of the state for Effect2Cause

questions), we rank all candidate answers a based on their similarity score with the query in the

embedded space as in the following.

score(q, a) =
1
|q |

∑
c∈q

max
e∈a

s(v̂c, v̂e) (3.6)

where s(v̂c, v̂e) is the cosine similarity between two words (or phrases) c, e in the causality embed-

ding space, |q | is the number of words (or phrases) in the query.
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3.2.3.2 Dataset

We use our collected data (described in Section 3.2.1) for this task. The verb-noun phrases were

split into 70%, 10%, and 20% for training, development, and testing respectively. The model

parameters were selected based on the performance on the development set. Note that each unique

verb-noun pair only appears in one of the training, validation and testing sets. The goal here

is to evaluate whether the learned causality model can be applied to answer questions related to

unknown verb-noun pairs.

3.2.3.3 Models for Comparison

We compare the following models:

(1) The word embedding model (cEmbedWord) described in Section 3.2.2. The dimension of

pre-trained Word2Vec embeddings is 300. The dimension of new word embeddings is set to 100.

During training the negative sampling ratio is set to five. That is, for each positive cause-effect

sample, five negative samples are created through random sampling.

(2) The phrase model (cEmbedPhrase) described in Section 3.2.2. The dimension of pre-

trained skip-thoughts embeddings is 4800. The dimension of new phrase embeddings is set to 800.

The negative sampling ratio is set to five during training.

(3) A baseline causal alignment model (cAlign). Alignment models have been successfully

used in traditional QA tasks [146, 166, 130]. Here we use IBM Model 1 [15] and GIZA++ tool

[101]. This baseline model is trained to “translate” questions to answers, using the question-answer

training set.

(4) A random baseline to show the absolute lower bound.

3.2.3.4 Evaluation Results

The above models were first trained using the training data. As a ranked list of answers is retrieved,

we apply mean average precision (MAP) as an evaluation metric.
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Cause2Effect Effect2Cause
cEmbedPhrase 0.7274 0.8132
cEmbedWord 0.7909 0.6478
cAlign 0.4498 0.4723
random 0.0144 0.0494

Table 3.7: MAP results for verb causality question answering task.

Table 3.7 shows the evaluation results. In general, our embedding models demonstrate good

performance, considering that all the verb-noun pairs in the test data have never been seen in the

training and validation data before. Both models significantly outperform the baseline (cAlign).

This suggests that embedding models have a good potential in modeling physical causality knowl-

edge.
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CHAPTER 4

PHYSICAL CAUSALITY MODELING FOR LANGUAGE GROUNDING TASK

4.1 Introduction

Although recent years have seen an increasing amount of work on grounding language to

perception [171, 150, 79, 98, 78], no previous work has investigated the link between physical

causality denoted by action verbs and the change of state visually perceived. In this chapter, we

intend to address this limitation and examine whether the causality denoted by action verbs can

provide top-down information to guide visual processing and improve language grounding.

In the language grounding task, the input is parallel language and visual data, and the goal is to

ground language components to entities in the visual data. Our expectation is that the categorization

of physical causality can provide guidance for visual processing: once a parallel language and visual

data about an action is given, the potential causality of the verb or the verb-noun pair can trigger

some visual detectors that mainly focus on the potential state changes caused by this action. And

applying these visual detectors to the visual data can potentially improve the performance of

grounded language understanding.

Based on the categorization of physical causality attributes, we designed a set of change-of-state

detectors to detect the corresponding changes from video data. We further applied two approaches,

a knowledge-driven approach and a learning-based approach, to incorporate causality modeling

in grounding. The empirical results have demonstrated that both of these approaches achieve

significantly better performance compared to previous approaches. Moreover, we have shown that

causality knowledge for verbs can be generalized to novel verbs through simple learned models.

This chapter has been published in the following paper: Qiaozi Gao, Malcolm Doering, Shao-
hua Yang, and Joyce Chai. Physical causality of action verbs in grounded language understanding.
In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), vol. 1, pp. 1814-1824. 2016.
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4.2 Visual Detectors based on Physical Causality

An important motivation of modeling physical causality is to provide guidance for visual pro-

cessing. Our hypothesis is that once a language description is given together with its corresponding

visual scene, potential causality of verbs or verb-noun pairs can trigger some visual detectors

associated with the scene. This can potentially improve grounded language understanding (e.g.,

grounding nouns to objects in the scene). Next we give a detailed account on these visual detectors

and their role in grounded language understanding.

The changes of state associated with the eighteen attributes can be detected from the physical

world using various sensors. In this work, we only focus on attributes that can be detected by visual

perception. More specifically, we chose the subset: Attachment, NumberOfPieces, Presence,

Visibility, Location, Size. They are chosen because: 1) according to the pilot study, they are highly

correlated with our selected verbs; and 2) they are relatively easy to be detected from vision.

Corresponding to these causality attributes, we defined a set of rule-based detectors as shown

in Table 4.1. These in fact are very simple detectors, which consist of four major detectors and

a refined set that distinguishes directions of state change. These visual detectors are specifically

applied to the potential objects that may serve as patient for a verb to identify whether certain

changes of state occur to these objects in the visual scene.

Attribute Rule-based Detector Refined Rule-based Detector
Attachment /
NumberPieces

Multiple object tracks merge into one,
or one object track breaks into multiple.

Multiple tracks merge into one.
One track breaks into multiple.

Presence /
Visibility Object track appears or disappears. Object track appears.

Object track disappears.

Location Object’s final location is different from
the initial location.

Location shifts upwards.
Location shifts downwards.
Location shifts rightwards.
Location shifts leftwards.

Size Object’s x-axis length or y-axis length
is different from the initial values.

Object’s x-axis length increases.
Object’s x-axis length decreases.
Object’s y-axis length increases.
Object’s y-axis length decreases.

Table 4.1: Causality detectors applied to patient of a verb.
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4.3 Verb Causality in Language Grounding

In this section, we demonstrate how verb causality modeling and visual detectors can be used

together for a language grounding task. As shown in Figure 4.1, given a video clip V of human

action and a parallel sentence S describing the action, our goal is to ground different semantic roles

of the verb (e.g., get) to objects in the video. This is similar to the grounded semantic role labeling

task [162]. Here, we focus on a set of four semantic roles {agent, patient, source, destination}. We

also assume that we have object and hand tracking results from video data. Each object in the video

is represented by a track, which is a series of bounding boxes across video frames. Thus, given a

video clip and a parallel sentence, the task is to ground semantic roles of the verb λ1, λ2, . . . , λk to

object (or hand) tracks γ1, γ2, . . . , γn, in the video1. We applied two approaches to this problem.

4.3.1 Knowledge-driven Approach

We intend to establish that the knowledge of physical causality for action verbs can be acquired

directly from the crowd and such knowledge can be coupled with visual detectors for grounded

language understanding.

4.3.1.1 Acquiring Knowledge

To acquire knowledge of verb causality, we collected a larger dataset of causality annotations

based on sentences from the TACoS Multilevel corpus [121], through crowd-sourcing on Amazon

Mechanical Turk. Annotators were shown a sentence containing a verb-patient pair (e.g., “The

person chops the cucumber into slices on the cutting board”). And they were asked to annotate the

change of state that occurred to the patient as a result of the verb by choosing up to three options

from the 18 causality attributes. Each sentence was annotated by three different annotators.

1For manipulation actions, the agent is almost always one of the human’s hands (or both hands).
So we constrain the grounding of the agent role to hand tracks, and constrain the grounding of the
other roles to object tracks.
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Language	descrip.on:	The	man	gets	a	knife	from	the	drawer. 

Verb:	“get”	
	

Agent:	ground	to	the	hand	in	the	green	box	
	

Pa.ent:	“knife”,	ground	to	the	object	in	the	red	box	
	

Source:	“drawer”,	ground	to	the	object	in	the	blue	box 

Figure 4.1: Grounding semantic roles of the verb get in the sentence: the man gets a knife from the
drawer.

This dataset contains 4391 sentences, with 178 verbs, 260 nouns, and 1624 verb-noun pairs.

After summarizing the annotations from three different annotators, each sentence is represented by

a 18-dimension causality vector. In the vector, an element is 1 if at least two annotators labeled the

corresponding causality attribute as true, 0 otherwise. For 83% of all the annotated sentences, at

least one causality attribute was agreed on by at least two people.

From the causality annotation data, we can extract a verb causality vector c(v) for each verb by

averaging all causality vectors of the sentences that contain this verb v.

4.3.1.2 Applying Knowledge

Since the collected causality knowledge was only for the patient, we first look at the grounding of

patient. Given a sentence containing a verb v and its patient, we want to ground the patient to one
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of the object tracks in the video clip. Suppose we have the causality knowledge, i.e., c(v), for the

verb. For each candidate track in the video, we can generate a causality detection vector d(γi),

using the pre-defined causality detectors. A straightforward way is to ground the patient to the

object track whose causality detection results has the best coherence with the causality knowledge

of the verb. The coherence is measured by the cosine similarity between c(v) and d(γi). 2

Semantic Role Rule-based Detector

Source

Patient track appears within its
bounding box.
Its track is overlapping with the
patient track at the initial frame.

Destination

Patient track disappears within
its bounding box.
Its track is overlapping with the
patient track at the final frame.

Agent

Its track is overlapping with the
patient track when the patient track
appears or disappears.
Its track is overlapping with the
patient track when the patient track
starts moving or stops moving.

Table 4.2: Causality detectors for grounding source, destination, and agent.

Since objects in other semantic roles often have relations with the patient during the action, once

we have grounded the patient, we can use it as an anchor point to ground the other three semantic

roles. To do this, we define two new detectors for grounding each role as shown in Table 4.2. These

detectors are designed using some common sense knowledge, e.g., source is likely to be the initial

location of the patient; destination is likely to be the final location of the patient; agent is likely

to be the hand that touches the patient. With these new detectors, we simply ground a role to the

object (or hand) track that has the largest number of positive detections from the corresponding

detectors.

It is worth noting that although currently we only acquired knowledge for verbs that appear in

the cooking domain, the same approach can be extended to verbs in other domains. The detectors
2In the case that not every causality attribute has a corresponding detector, we need to first

condense c(v) to the same dimensionality with d(γi).
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Figure 4.2: The CRF factor graph of the sentence: the man gets a knife from the drawer.

associated with attributes are expected to remain the same. The significance of this knowledge-

driven method is that, once you have the causality knowledge of a verb, it can be directly applied

to any domain without additional training.

4.3.2 Learning-based Approach

Our second approach is based on learning from training data. A key requirement for this approach

is the availability of annotated data where the arguments of a verb are already correctly grounded

to the objects in the visual scene. Then we can learn the association between detected causality

attributes and verbs. We useConditional RandomField (CRF) tomodel the semantic role grounding

problem. In this approach, causality detection results are used as features in the model.

An example CRF factor graph is shown in Figure 4.2. The structure of CRF graph is created

based on the extracted semantic roles, which already abstracts away syntactic variations such

as active/passive constructions. This CRF model is similar to the ones in [147] and [162], where

φ1, . . . , φ4 are binary random variables, indicating whether the grounding is correct. In the learning
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stage, we use the following objective function:

p(Φ|λ1, . . . , λk, γ1, . . . , γk, v) =
1
Z

∏
i
Ψi (φi, λi, γ1, . . . , γk, v) (4.1)

whereΦ is the binary random vector [φ1, . . . , φk ], and v is the verb. Z is the normalization constant.

Ψi is the potential function that takes the following log-linear form:

Ψi (φi, λi, Γ, v) = exp *.
,

∑
l
wl f l (φi, λi, Γ, v)+/

-
(4.2)

where f l is a feature function, wl is feature weight to be learned, and Γ = [γ1, . . . , γk ] are the

groundings. In our model, we use the following features:

1. Joint features between a track label of γi and a word occurrence in λi.

2. Joint features between each of the causality detection results and a verb v. Causality detection

includes all the detectors in Table 4.1 and Table 4.2. Note that the causality detectors shown

in Table 4.2 capture relations between groundings of different semantic roles.

During parameter learning, we use gradient ascent with L2 regularization.

Compared to [147] and [162], a key difference in our model is the incorporation of causality

detectors. These previous works [147, 162] apply geometric features, for example, to capture

relations, distance, and relative directions between grounding objects. These geometric features

can be noisy. In our model, features based on causality detectors are motivated and informed by

the underlying causality models for corresponding action verbs.

In the inference step, we want to find the most probable groundings. Given a video clip and its

parallel sentence, we fix the Φ to be true, and search for groundings γ1, . . . , γk that maximize the

probability as in Equation 4.1. To reduce the search space we apply beam search to ground in the

following order: patient, source, destination, agent.

4.3.3 Experiments and Results

We conducted our experiments using the dataset from [162]. This dataset was developed from a

subset of the TACoS corpus [117]. It contains parallel video clips and natural language descriptions.
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The videos capture human performing two cooking tasks “cutting cucumber” and “cutting bread”.

Each cooking task has 5 different people performing it, and all the videos were split into pairs of

video clips and corresponding sentences. For each video clip, objects are annotated with bounding

boxes, tracks, and labels (e.g. “cucumber”’, “cutting board” etc). For each sentence, the semantic

roles of a verb are extracted using PropBank [66] definitions and each of them is annotated with

the ground truth groundings in terms of the object tracks in the corresponding video clip. We

selected the 11 most frequent verbs (get, take, wash, cut, rinse, slice, place, peel, put, remove,

open) and the 4 most frequent explicit semantic roles (agent, patient, source, destination) in this

evaluation. In total, this dataset includes 977 pairs of video clips and corresponding sentences, and

1096 verb-patient occurrences.

We compare our knowledge-driven approach (VC-Knowledge) and learning-based approach

(VC-Learning) with the following two baselines.

Label Matching. This method simply grounds the semantic role to the track whose label

matches the word phrase. If there are multiple matching tracks, it will randomly choose one of

them. If there is no matching track, it will randomly select one from all the tracks.

Yang et al., 2016. This work studies grounded semantic role labeling. The evaluation data

from this work is used in this study. It is a natural baseline for comparison.

To evaluate the learning-based approaches such as VC-Learning and (Yang, et al., 2016), 75%

of video clips with corresponding sentences were randomly sampled as the training set. The

remaining 25% were used as the test set. For approaches which do not need training such as Label

Matching and VC-Knowledge, we used the same test set to report their results.

The results of the patient role grounding for each verb are shown in Table 4.3. The results

of grounding all four semantic roles are shown in Table 4.4. The scores in bold are statistically

significant (p < 0.05) compared to the Label Matchingmethod. The scores with an asterisk (∗) are

statistically significant (p < 0.05) compared to (Yang et al., 2016).

As it can be difficult to obtain labels for the track, especially when the vision system encounters

novel objects, we further conducted several experiments assuming we do not know the labels for
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All take put get cut open wash slice rinse place peel remove
# Instances 279 58 15 47 29 6 28 13 29 29 10 15

With Ground-truth Track Labels
Label Matching 67.7 70.7 46.7 72.3 69.0 16.7 85.7 69.2 82.8 37.9 90.0 60.0
Yang et al., 2016 84.6 93.2 91.7 93.6 77.8 80.0 93.5 86.7 90.0 66.7 80.0 38.9
VC-Knowledge 89.6∗ 94.8 73.3 100∗ 93.1 83.3 100 92.3 96.6 58.6 90.0 73.3∗
VC-Learning 90.3∗ 94.8 86.7 100∗ 93.1 83.3 89.3 92.3 96.6 75.9 80.0 66.7∗

Without Track Labels
Label Matching 9.0 12.1 13.3 2.1 10.3 16.7 3.6 7.7 10.3 10.3 20.0 6.7
Yang et al., 2016 24.5 11.9 8.3 17.0 50.0 10.0 29.0 40.0 40.0 0 60.0 11.1
VC-Knowledge 60.2∗ 82.8∗ 60.0∗ 87.2∗ 58.6 50.0 39.3 46.2 41.4 48.3∗ 10.0 40.0
VC-Learning 71.7∗ 91.4∗ 33.3 87.2∗ 72.4 83.3∗ 46.4 84.6∗ 51.7 65.5∗ 80.0 60.0∗

Table 4.3: Grounding accuracy on patient role

Overall Agent Patient Source Destination
Number of Instances 644 279 279 51 35

With Ground-truth Track Labels
Label Matching 66.3 68.5 67.7 41.2 74.3
Yang et al., 2016 84.2 86.4 84.6 72.6 81.6
VC-Knowledge 86.8 89.3 89.6∗ 60.8 82.9
VC-Learning 88.2∗ 88.2 90.3∗ 76.5 88.6

Without Track Labels
Label Matching 33.5 66.7 9.0 7.8 2.9
Yang et al., 2016 48.2 86.1 24.5 15.7 13.2
VC-Knowledge 69.9∗ 89.6 60.2∗ 45.1∗ 25.7
VC-Learning 75.0∗ 87.1 71.7∗ 41.2∗ 54.3∗

Table 4.4: Grounding accuracy on four semantic roles

the object tracks. In this case, only geometric information of tracked objects is available. Table 4.3

and Table 4.4 also include these results.

From the grounding results, we can see that the causalitymodeling has shown to be very effective

in grounding semantic roles. First of all, both the knowledge-driven approach and the learning-

based approach outperform the two baselines. In particular, our knowledge-driven approach (VC-

Knowledge) even outperforms the trained model (Yang et al., 2016). Our learning-based approach

(VC-Learning) achieves the best overall performance. In the learning-based approach, causality

detection results can be seen as a set of intermediate visual features. The reason that our learning-

based approach significantly outperforms the similarmodel in (Yang et al., 2016) is that the causality

categorization provides a good guideline for designing intermediate visual features. These causality

detectors focus on the changes of state of objects, which are more robust than the geometric features
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used in (Yang et al., 2016).

In the setting of no object recognition labels, VC-Knowledge and VC-Learning also generate

significantly better grounding accuracy than the two baselines. This once again demonstrates the

advantage of using causality detection results as intermediate visual features. All these results

illustrate the potential of causality modeling for grounded language understanding.

The results in Table 4.4 also indicate that grounding source or destination is more difficult than

grounding patient or agent. One reason could be that source and destination do not exhibit obvious

change of state as a result of action, so their groundings usually depend on the correct grounding

of other roles such as patient.

Since automated tracking for this TACoS dataset is notably difficult due to the complexity of

the scene and the lack of depth information, our current results are based on annotated tracks. But

object tracking algorithms have made significant progress in recent years [164, 91]. We intend to

apply our algorithms with automated tracking on real scenes in the future.

4.4 Causality Prediction for New Verbs

While various methods can be used to acquire causality knowledge for verbs, it may be the

case that during language grounding, we do not know the causality knowledge for every verb.

Furthermore, manual annotation/acquisition of causality knowledge for all verbs can be time-

consuming. In this section, we demonstrate that the existing causality knowledge for some seed

verbs can be used to predict causality for new verbs of which we have no knowledge.

We formulate the problem as follows. Suppose we have causality knowledge for a set of seed

verbs as training data. Given a new verb, whose causality knowledge is not known, our goal is to

predict the causality attributes associated with this new verb. Although the causality knowledge

is unknown, it is easy to compute Distributional Semantic Models (DSM) for this verb. Then our

goal is to find the causality vector c′ that maximizes

argmax
c′

p(c′|v), (4.3)

where v is the DSM vector for the verb v. The usage of DSM vectors is based on our hypothesis
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that the textual context of a verb can reveal its possible causality information. For example, the

contextual words “pieces” and “halves” may indicate the CoS attribute “NumberOfPieces” for the

verb “cut”.

We simplify the problem by assuming that the causality vector c′ takes binary values, and also

assuming the independence between different causality attributes. Thus, we can formulate this task

as a group of binary classification problems: predicting whether a particular causality attribute

is positive or negative given the DSM vector of a verb. We apply logistic regression to train a

separate classifier for each attribute. Specifically, for the features of a verb, we use the Distributional

Memory (typeDM) [10] vector. The class label indicates whether the corresponding attribute is

associated with the verb.

All take put get cut open wash slice rinse place peel remove
VC-Knowledge 89.6 94.8 73.3 100 93.1 83.3 100 92.3 96.6 58.6 90.0 73.3
P-VC-Knowledge 89.9 96.6 73.3 100 96.6 66.7 100 92.3 96.6 65.5 90.0 60.0

Table 4.5: Grounding accuracy on patient role using predicted causality knowledge.

In our experiment we chose six attributes to study: Attachment, NumberOfPieces, Presence,

Visibility, Location, and Size. For each one of the eleven verbs in the grounding task, we predict

its causality knowledge using classifiers trained on all other verbs (i.e., 177 verbs in training set).

To evaluate the predicted causality vectors, we applied them in the knowledge-driven approach

(P-VC-Knowledge). Grounding results were compared with the same method using the causality

knowledge collected via crowd-sourcing. Table 4.5 shows the grounding accuracy on the patient

role for each verb. Formost verbs, using the predicted knowledge achieves very similar performance

compared to using the collected knowledge. The overall grounding accuracy of using the predicted

knowledge on all four semantic roles is only 0.3% lower than using the collected knowledge. This

result demonstrates that physical causality of action verbs, as part of verb semantics, can be learned

through Distributional Semantics.
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4.5 Conclusion

In this Chapter, we have applied the category-based causality modeling to the task of grounding

semantic roles to the environment using two approaches: a knowledge-based approach and a

learning-based approach.

Our empirical evaluations have shown encouraging results for both approaches. When annotated

data is available (in which semantic roles of verbs are grounded to physical objects), the learning-

based approach, which learns the associations between verbs and causality detectors, achieves

the best overall performance. On the other hand, the knowledge-based approach also achieves

competitive performance (even better than previous learned models), without any training. The

most exciting aspect about the knowledge-based approach is that causality knowledge for verbs

can be acquired from humans (e.g., through crowd-sourcing) and generalized to novel verbs about

which we have not yet acquired causality knowledge.

In the future, we plan to build a resource for modeling physical causality for action verbs. As ob-

ject recognition and tracking are undergoing significant advancements in the computer vision field,

such a resource together with causality detectors can be immediately applied for any applications

that require grounded language understanding.
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CHAPTER 5

VISUAL CAUSALITY REASONING

5.1 Introduction

We humans rely on a vast amount of commonsense causality knowledge to understand and

reason about the changing world states caused by actions. However, machines do not have such

knowledge, which hinders their capability to reason, learn, and perform actions. To address this

problem, we introduce a new task on naive physical action-effect prediction, which models the

relations between concrete actions (expressed in the form of verb-noun pairs) and their effects on

the state of the physical world as depicted by images. This task includes both cause prediction:

given an image which describes a state of the world, identify the most likely action (in the form of

a verb-noun pair, from a set of candidates) that can result in that state; and effect prediction: given

an action in the form of a verb-noun pair, identify images (from a set of candidates) that depicts the

most likely effects on the state of the world caused by that action.

We develop an approach that utilizes natural language effect descriptions as side knowledge to

help acquiring web image data and bootstrap training. The empirical results have shown that, using

a simple bootstrapping strategy, our approach can combine the noisy web data with a small number

of seed examples to improve action-effect prediction. In addition, for a new verb-noun pair, our

approach can infer its effect descriptions and predict action-effect relations only based on several

image examples.

This chapter has been published in the following paper: Qiaozi Gao, Shaohua Yang, Joyce
Chai, and Lucy Vanderwende. What action causes this? towards naive physical action-effect
prediction. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), vol. 1, pp. 934-945. 2018.
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5.2 Action-Effect Data Collection

First we collected a dataset to support the investigation on physical action-effect prediction. This

dataset consists of actions expressed in the form of verb-noun pairs, effects of actions described

in language, and effects of actions depicted in images. Note that, as we would like to have a wide

range of possible effects, language data and image data are collected separately.

5.2.1 Actions (verb-noun pairs)

We selected 40 nouns that represent everyday life objects, most of them are from the COCO

dataset [77], with a combination of food, kitchen ware, furniture, indoor objects, and outdoor

objects. We also identified top 3000 most frequently used verbs from Google Syntactic N-gram

dataset [41] (Verbargs set). And we extracted top frequent verb-noun pairs containing a verb from

the top 3000 verbs and a noun in the 40 nouns which hold a dobj (i.e., direct object) dependency

relation. This resulted in 6573 candidate verb-noun pairs. As changes to an object can occur at

various dimensions (e.g., size, color, location, attachment, etc.), we manually selected a subset of

verb-noun pairs based on the following criteria: (1) changes to the objects are visible (as opposed

to other types such as temperature change, etc.); and (2) changes reflect one particular dimension

as opposed to multiple dimensions (as entailed by high-level actions such as “cook a meal”, which

correspond to multiple dimensions of change and can be further decomposed into basic actions).

As a result, we created a subset of 140 verb-noun pairs (containing 62 unique verbs and 39 unique

nouns) for our investigation.

5.2.2 Effects Described in Language

The basic knowledge about physical action-effect is so fundamental and shared among humans. It

is often presupposed in our communication and not explicitly stated. Thus, it is difficult to extract

naive action-effect relations from the existing textual data (e.g., web). This kind of knowledge is also

not readily available in commonsense knowledge bases such as ConceptNet [143]. To overcome
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Action Effect Text
ignite paper The paper is on fire.
soak shirt The shirt is thoroughly wet.
fry potato The potatoes become crisp and golden.
stain shirt There is a visible mark on the shirt.

Table 5.1: Example action and effect text from our collected data.

this problem, we applied crowd-sourcing (Amazon Mechanical Turk) and collected a dataset of

language descriptions describing effects for each of the 140 verb-noun pairs. The annotators were

shown a verb-noun pair, and were asked to use their own words and imaginations to describe what

changes might occur to the corresponding object as a result of the action. Each verb-noun pair was

annotated by 10 different annotators, which has led to a total of 1400 effect descriptions. Table 5.1

shows some examples of collected effect descriptions. These effect language descriptions allow us

to derive seed effect knowledge in a symbolic form.

5.2.3 Effects Depicted in Images

For each action, three students searched the web and collected a set of images depicting potential

effects. Specifically, given a verb-noun pair, each of the three students was asked to collect at

least 5 positive images and 5 negative images. Positive images are those deemed to capture the

resulting world state of the action. And negative images are those deemed to capture some state

of the related object (i.e., the nouns in the verb-noun pairs), but are not the resulting state of the

corresponding action. Then, each student was also asked to provide positive or negative labels for

the images collected by the other two students. As a result each image has three positive/negative

labels. We only keep the images whose labels are agreed by all three students. In total, the dataset

contains 4163 images. On average, each action has 15 positive images, and 15 negative images.

Figure 5.1 shows several examples of positive images and negative images of the action peel-orange.

The positive images show an orange in a peeled state, while the negative images show oranges in

different states (orange as a whole, orange slices, orange juice, etc.).

61



Figure 5.1: Positive images (top row) and negative images (bottom row) of the action peel-orange.

5.3 Action-Effect Prediction

Action-effect prediction is to connect actions (as causes) to the effects of actions. Specifically,

given an image which depicts a state of the world, our task is to predict what concrete actions

could cause the state of the world. This task is different from traditional action recognition as the

underlying actions (e.g., human body posture/movement) are not captured by the images. In this

regard, it is also different from image description generation.

We frame the problem as a few-shot learning task, by only providing a few human-labelled

images for each action at the training stage. Given the very limited training data, we attempt to

make use of web-search images. Web search has been adopted by previous computer vision studies

to acquire training data [32, 61, 11, 103]. Compared with human annotations, web-search comes

at a much lower cost, but with a trade-off of poor data quality. To address this issue, we apply a

bootstrapping approach that aims to handle data with noisy labels.

The first question is what search terms should be used for image search. There are two options.

The first option is to directly use the action terms (i.e., verb-noun pairs) to search images and

the downloaded web images are referred to as action web images. As desired images should
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Example patterns Extracted Effect Phrases (bold)
VP with a verb ∈ {be, become, turn, get} The ship is destroyed.
VP + PRT The wall is knocked off.
VP + ADVP The door swings forward.
ADJP The window would begin to get clean.
PP + NP The eggs are divided into whites and yolks.

Table 5.2: Example patterns that are used to extract effect phrases (bold) from sample sentences.

be depicting effects of an action, terms describing effects become a natural choice. The second

option is to use the key phrases extracted from language effect descriptions to search the web. The

downloaded web images are referred to as effect web images.

5.3.1 Extracting Effect Phrases from Language Data

We first apply chunking (shallow parsing) using the SENNA software [20] to break an effect

description into phrases such as noun phrases (NP), verb phrases (VP), prepositional phrases (PP),

adjectives (ADJP), adverbs (ADVP), etc. After some examination, we found that most of the

effect descriptions follow simple syntactic patterns. For a verb-noun pair, around 80% of its effect

descriptions start with the same noun as the subject. In an effect description, the change of state

associated with the noun is mainly captured by some key phrases. For example, an adjective phrase

usually describes a physical state; verbs like be, become, turn, get often indicate a description of

change of the state. Based on these observations, we defined a set of patterns to identify phrases that

describe physical states of an object. In total 1997 effect phrases were extracted from the language

data. Table 5.2 shows some example patterns and example effect phrases that are extracted.

5.3.2 Downloading Web Images

The purpose of querying search engine is to retrieve images of objects in certain effect states. To

form image searching keywords, the effect phrases are concatenated with the corresponding noun

phrases, for example, “apple + into thin pieces”. The image search results are downloaded and used

as supplementary training data for the action-effect prediction models. However, web images can
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book� book	is	on	fire� book	is	set	aflame�

Figure 5.2: Examples of image search results.

be noisy. First of all, not all of the automatically extracted effect phrases describe visible state of

objects. Even if a phrase represents visible object states, the retrieved results may not be relevant.

Figure 5.2 shows some example image search results using queries describing the object name

“book”, and describing the object state such as “book is on fire”, “book is set aflame”. These state

phrases were used by human annotators to describe the effect of the action “burn a book”. We

can see that the images returned from the query “book is set aflame” are not depicting the physical

effect state of “burn a book”. Therefore, it’s important to identify images with relevant effect states

to train the model. To do that, we applied a bootstrapping method to handle the noisy web images

as described in Section 5.3.3. For an action (i.e., a verb-noun pair), it has multiple corresponding

effect phrases, and all of their image search results are treated as training images for this action.

Since both the human annotated image data (Section 5.2) and the web-search image data were

obtained from Internet search engines, they may have duplicates. As part of the annotated images

are used as test data to evaluate the models, it is important to remove duplicates. We designed a

simple method to remove any images from the web-search image set that has a duplicate in the

human annotated set. We first embed all images into feature vectors using pre-trained CNNs. For

each web-search image, we calculate its cosine similarity score with each of the annotated images.

And we simply remove the web images that have a score larger than 0.95.
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5.3.3 Models

We formulate the action-effect prediction task as a multi-class classification problem. Given an

image, the model will output a probability distribution q over the candidate actions (i.e., verb-noun

pairs) that can potentially cause the effect depicted in the image.

Specifically for model training, we are given a set of human annotated seeding image data {x, t}

and a set of web-search image data {x′, t′}. Here x and x′ are the images (depicting effect states),

and t and t′ are their classification targets (i.e., actions that cause the effects). Each target vector is

the observed image label, t ∈ {0, 1}C ,
∑

i ti = 1, and C is the number of classes (i.e., actions). The

human annotated targets t can be trusted. But the targets of web-search images t′ are usually very

noisy. Bootstrapping method has been shown to be an effective method to handle noisy labelled

data [123, 154, 114]. The objective of the cross-entropy loss is defined as follows:

L(t, q) =
C∑

i=1
ti log (qi), (5.1)

where q are the predicted class probabilities, and C is the number of classes. To handle the

noisy labels in the web-search data {x′, t′}, we adopt a bootstrapping objective following Reed’s

work [114]:

L(t′, q) =
C∑

i=1
[βt′i + (1 − β)zi] log (qi), (5.2)

where β ∈ [0, 1] is a model parameter to be assigned, z is the one-hot vector of the prediction q,

zi = 1, if i = argmax qk, k = 1 . . .C.

The model architecture is shown in Figure 5.3. After each training batch, the current model

will be used to make predictions q on images in the next batch. And the target probabilities is

calculated as a linear combination of the current predictions q and the observed noisy labels t′. The

idea behind this bootstrapping strategy is to ensure the consistency of the model’s predictions. By

first initializing the model on the seeding image data, the bootstrapping approach allows the model

to trust more on the web images that are consistent with the seeding data.
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Figure 5.3: Architecture for the action-effect prediction model with bootstrapping.

5.3.4 Evaluation

We evaluate the models on the action-effect prediction task. Given an image that illustrates a state

of the world, the goal is to predict what action could cause that state. Given an action in the form

of a verb-noun pair, the goal is to identify images that depict the most likely effects on the state of

the world caused by that action.

For each of the 140 verb-noun pairs, we use 10% of the human annotated images as the seeding

image data for training, and use 30% for development and the rest 60% for test. The seeding image

data set contains 408 images. On average, each verb-noun pair has less than 3 seeding images

(including positive images and negative images). The development set contains 1252 images. The

test set contains 2503 images. The model parameters were selected based on the performance on

the development set.

As a given image may not be relevant to any effect, we add a background class to refer to images

where effects are not caused by any action in the space of actions. So the total of classes for our

evaluation model is 141. For each verb-noun pair and each of the effect phrases, around 40 images

were downloaded from the Bing image search engine and used as candidate training examples. In
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total we have 6653 action web images and 59575 effect web images.

5.3.4.1 Methods for Comparison

All the methods compared are based on one neural network structure. We use ResNet [51] pre-

trained on ImageNet [22] to extract image features. The extracted image features are fed to a fully

connected layer with rectified linear units and then to a softmax layer to make predictions. More

specifically, we compare the following configurations:

(1) BS+Seed+Act+Eff. The bootstrapping approach trained on the seeding images, the action

web images, and the effect web images. During the training stage, the model was first trained on

the seeding image data using vanilla cross-entropy objective (Equation 5.1). Then it was further

trained on a combination of the seeding image data and web-search data using the bootstrapping

objective (Equation 5.2). In the experiments we set β = 0.3.

(2) BS+Seed+Act. The bootstrapping approach trained in the same fashion as (1). The only

difference is that this method does not use the effect web images.

(3) Seed+Act+Eff. A baseline method trained on a combination of the seeding images, the web

action images, and the web effect images, using the vanilla cross-entropy objective.

(4) Seed+Act. A baseline method trained on a combination of the seeding images and the action

web images, using the vanilla cross-entropy objective.

(5) Seed. A baseline method that was only trained on the seeding image data, using the vanilla

cross-entropy objective.

5.3.4.2 Evaluation Results

We apply the trained classification model to all of the test images. Based on the matrix of prediction

scores, we can evaluate action-effect prediction from two angles: (1) given an action class, rank all

the candidate images; (2) given an image, rank all the candidate action classes. Table 5.3 and 5.4

show the results for these two angels respectively. We report both mean average precision (MAP)

and top prediction accuracy.
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Figure 5.4: Several example test images and their predicted actions and predicted effect descriptions.
The actions in blue are ground-truth labels.

MAP Top 1 Top 5 Top 20
BS+Seed+Act+Eff 0.290 0.414 0.750 0.921
BS+Seed+Act 0.252 0.414 0.721 0.893
Seed+Act+Eff 0.247 0.314 0.679 0.886
Seed+Act 0.241 0.371 0.650 0.814
Seed 0.182 0.329 0.629 0.807

Table 5.3: Results for the action-effect prediction task (given an action, rank all the candidate
images).

MAP Top 1 Top 5 Top 20
BS+Seed+Act+Eff 0.660 0.523 0.843 0.954
BS+Seed+Act 0.642 0.508 0.802 0.924
Seed+Act+Eff 0.289 0.176 0.398 0.625
Seed+Act 0.481 0.301 0.724 0.926
Seed 0.634 0.520 0.765 0.892

Table 5.4: Results for the action-effect prediction task (given an image, rank all the actions).
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Overall, BS+Seed+Act+Eff gives the best performance. By comparing the bootstrap ap-

proach with baseline approaches (i.e., BS+Seed+Act+Eff vs. Seed+Act+Eff, and BS+Seed+Act

vs. Seed+Act), the bootstrapping approaches clearly outperforms their counterparts, demonstrating

its ability in handling noisy web data. Comparing BS+Seed+Act+Eff with BS+Seed+Act, we can

see that BS+Seed+Act+Eff performs better. This indicates the use of effect descriptions can bring

more relevant images to train better models for action-effect prediction.

In Table 5.4, the poor performance of Seed+Act+Eff and Seed+Act shows that it is risky to

fully rely on the noisy web search results. These two methods had trouble in distinguishing the

background class from the rest.

We further trained another multi-class classifier with web effect images, using their correspond-

ing effect phrases as class labels. Given a test image, we apply this new classifier to predict the

effect descriptions of this image. Figure 5.4 shows some example images, their predicted actions

based on our bootstrapping approach and their predicted effect phrases based on the new classifier.

These examples also demonstrate another advantage of incorporating seed effect knowledge from

language data: it provides state descriptions that can be used to better explain the perceived state.

Such explanation can be crucial in human-agent communication for action planning and reasoning.

5.4 Generalizing Effect Knowledge to New Verb-Noun Pairs

In real applications, it is very likely that we do not have the effect knowledge (i.e., language

effect descriptions) for every verb-noun pair. And annotating effect knowledge using language

(as shown in Section 5.2) can be very expensive. In this section, we describe how to potentially

generalize seed effect knowledge to new verb-noun pairs through an embedding model.

5.4.1 Action-Effect Embedding Model

The structure of our model is shown in Figure 5.5. This model is based on the causality embedding

model in Chapter 3.2.2. It is composed of two sub-networks: one for verb-noun pairs (i.e., action)

and the other one for effect phrases (i.e, effect). The action or effect is fed into an LSTM encoder
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Figure 5.5: Architecture of the action-effect embedding model.

and then to two fully-connected layers. The output is an action embedding vc and effect embedding

ve. The networks are trained by minimizing the following cosine embedding loss function:

L(vc, ve) =




1 − s(vc, ve), if (c, e) ∈ T

max(0, s(vc, ve)), if (c, e) < T

s(·, ·) is the cosine similarity between vectors. T is a collection of action-effect pairs. Suppose c

is an input for action and e is an input for effect, this loss function will learn an action and effect

semantic space that maximizes the similarities between c and e if they have an action-effect relation

(i.e., (c, e) ∈ T). During training, the negative action-effect pairs (i.e., (c, e) < T) are randomly

sampled from data. In the experiments, the negative sampling ratio is set to 25. That is, for each

positive action-effect pair, 25 negative pairs are created through random sampling.

At the inference step, given an unseen verb-noun pair, we embed it into the action and effect

semantic space. Its embedding vector will be used to calculate similarities with all the embedding

vectors of the candidate effect phrases.
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MAP Top 1 Top 5
BS+Seed+Act+Eff 0.529 0.643 0.928
BS+Seed+Act+pEff 0.507 0.642 0.893
BS+Seed+Act 0.435 0.643 0.964
Seed 0.369 0.678 0.786

Table 5.5: Results for the action-effect prediction task (given an action, rank all the candidate
images).

MAP Top 1 Top 5
BS+Seed+Act+Eff 0.733 0.574 0.947
BS+Seed+Act+pEff 0.729 0.551 0.961
BS+Seed+Act 0.724 0.557 0.933
Seed 0.705 0.557 0.898

Table 5.6: Results for the action-effect prediction task (given an image, rank all the actions).

5.4.2 Evaluation

We divided the 140 verb-noun pairs into 70% training set (98 verb-noun pairs), 10% development

set (14) and 20% test set (28). For the action-effect embedding model, we use pre-trained GloVe

word embeddings [108] as input to the LSTM. The embeddingmodel was trained using the language

effect data corresponding to the training verb-noun pairs, and then it was applied to predict effect

phrases for the unseen verb-noun pairs in the test set. For each unseen verb-noun pair, we collected

its top five predicted effect phrases. Each predicted effect phrase was then used as query keywords

to download web effect images. This set of web images are referred to as pEff and will be used in

training the action-effect prediction model.

For each of the 28 test (i.e., new) verb-noun pairs, we use the same ratio 10% (about 3 examples)

of the human annotated images as the seeding images, which were combined with downloaded web

images to train the prediction model. The remaining 30% and 60% are used as the development

set, and the test set. We compare the following different configurations:

(1) BS+Seed+Act+pEff. The bootstrapping approach trained on the seeding images, the action

web images, and the web images downloaded using the predicted effect phrases.

(2) BS+Seed+Act+Eff. The bootstrapping approach trained on the seeding images, the action

web images, and the effect web images (downloaded using ground-truth effect phrases).

71



Action Text Predicted Effect Text

chop carrot

carrot into sandwiches,
carrot is sliced,
carrot is cut thinly,
carrot into different pieces,
carrot is divided

ignite paper

paper is being charred ,
paper is being burned,
paper is set,
paper is being destroyed,
paper is lit

mash potato

potato into chunks,
potato into sandwiches,
potato into slices,
potato is chewed,
potato into smaller pieces

Table 5.7: Example predicted effect phrases for new verb-noun pairs. Unseen verbs and nouns are
shown in bold.

(3) BS+Seed+Act. The bootstrapping approach trained on the seeding images and the action

web images.

(4) Seed. A baseline only trained on the seeding images.

Table 5.5 and 5.6 show the results for the action-effect prediction task for unseen verb-noun

pairs. From the results we can see that BS+Seed+Act+pEff achieves close performance compared

with BS+Seed+Act+Eff, which uses human annotated effect phrases. Although in most cases,

BS+Seed+Act+pEff outperforms the baseline, which seems to point to the possibility that semantic

embedding space can be employed to extend effect knowledge to new verb-noun pairs. However,

the current results are not conclusive partly due to the small testing set. More in-depth evaluation

is needed in the future.

Table 5.7 shows top predicted effect phrases for several new verb-noun pairs. After analyzing

the action-effect prediction results we notice that generalizing the effect knowledge to a verb-noun

pair that contains an unseen verb tends to be more difficult than generalizing to a verb-noun pair

that contains an unseen noun. Among the 28 test verb-noun pairs, 12 of them contain unseen verbs

and known nouns, 7 of them contain unseen nouns and known verbs. For the task of ranking images
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given an action, the mean average precision is 0.447 for the unseen verb cases and 0.584 for the

unseen noun cases. Although not conclusive, this might indicate that, verbs tend to capture more

information about the effect states of the world than nouns.

5.5 Discussion and Conclusion

When robots operate in the physical world, they not only need to perceive the world, but also

need to act to the world. They need to understand the current state, to map their goals to the world

state, and to plan for actions that can lead to the goals. All of these point to the importance of the

ability to understand causal relations between actions and the state of the world. To address this

issue, this work introduces a new task on action-effect prediction.

Particularly, we focus on modeling the connection between an action (a verb-noun pair) and its

effect as illustrated in an image and treat natural language effect descriptions as side knowledge

to help acquiring web image data and bootstrap training. Our current model is very simple and

performance is yet to be improved. We plan to apply more advanced approaches in the future,

for example, attention models that jointly capture actions, image states, and effect descriptions.

We also plan to incorporate action-effect prediction to human-robot collaboration, for example, to

bridge the gap of commonsense knowledge about the physical world between humans and robots.

This chapter presents an initial investigation on action-effect prediction. There are many

challenges and unknowns, from problem formulation to knowledge representation; from learning

and inference algorithms to methods and metrics for evaluations. Nevertheless, we hope this work

can motivate more research in this area, enabling physical action-effect reasoning, towards agents

which can perceive, act, and communicate with humans in the physical world.
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CHAPTER 6

UNDERSTANDING PHYSICAL ACTIONS THROUGH NATURAL LANGUAGE
STORIES

6.1 Introduction

To further investigate machines’ ability in reasoning about cause-effect of physical actions as

part of language understanding, we create a new language benchmark. This benchmark contains

short stories created by human annotators. Each story describes a short sequence of human physical

actions in our daily lives. For example, a story could describe the actions sequence of making a

sandwich in the kitchen, or packing a suitcase in the bedroom. Based on the collected stories, we

create two tasks to evaluate machine reading systems. The first task is to select the correct sentence

from two alternatives to fill in the blank in a story, and it is called the cloze task. The second task

is to select the correct order of sentences in a story, and it is called the ordering task.

Although the proposed tasks are easy for humans to solve, they are very challenging for

machines. An analysis shows that understanding the stories and solving these tasks requires various

types of commonsense knowledge, e.g., knowledge about action verbs, objects, and naïve physics

rules. Therefore, we believe this benchmark will be a valuable resource for evaluating machines’

capability of acquiring and applying physical commonsense knowledge. Further, the setting of two

sub-tasks can be naturally used to evaluate a model’s generalization ability, via training on one task

and evaluating on the other task. If a model can successfully learn the fundamental knowledge and

the reasoning abilities via training on the data of one sub-task, it can potentially perform well on the

other sub-task. By doing this, we encourage models that focus on learning underlying knowledge

instead of over-fitting to shallow statistical cues.

To tackle the commonsense reasoning tasks, we present a new neural network model. This

model solves both the cloze task and the ordering task via explicitly examining the compatibility of

each actionwith its context in those stories. Since the action-effect knowledge plays an essential role
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in understanding these commonsense stories, we further incorporated physical causality knowledge

into the proposed model. Experiments were designed to compare the proposed model with several

state-of-the-art models for machine comprehension tasks. The results demonstrate the effectiveness

of the proposed model, and further show the improvement introduced by external physical causality

knowledge. The results also suggests that this benchmark is challenging for current approaches,

and better solving this task requires a wider range of commonsense knowledge and richer semantic

representation of actions and objects.

6.2 Physical Commonsense Reasoning Tasks

The proposed benchmark includes two subtasks. The cloze task is to select the correct sentence

to fill in the blank in a story. The ordering task is to select the correct order of sentences in a story.

In both tasks, each story describes a short sequence of human physical actions in our daily lives.

Examples are shown in Figure 6.1.

Figure 6.1: Example story data for the cloze task and the ordering task. Candidates in red are
correct answers.

For the cloze task, one sentence in an original story is replaced with a blank. That sentence

is then put together with a distraction sentence to form the candidates set. Given the story with a

blank, a system needs to select the correct sentence from the candidates to fill in the blank. The

distraction sentences are created in such a way that they describe very common human actions in
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the corresponding environment, but adding them to the story will make the story irrational in the

physical world.

For the ordering task, two sentences in an original story are chosen and their positions are

switched. These sentences are selected in a manner that if we switch their positions, the story

becomes irrational in the physical world. Given the original story and the reordered story, a system

needs to determine which story makes more sense.

In our data, the cloze task and the ordering task are different in their setups, but they are also

closely related, since both of them rely on the knowledge of action prerequisites and effects, and the

capability of tracking the state changes introduced by human actions. The design of including two

different but closely related subtasks is motivated by the recent criticisms on data biases introduced

to natural language benchmarks during data collection [128, 49]. For example, Schwartz et al.

[128] have shown that the Story Cloze Test [95] (which has a similar setting with our cloze task)

can be solved with up to 75% accuracy by only exploiting stylistic features, even without looking at

the story context. With two parallel tasks in this benchmark, we can use them to evaluate a model’s

generalization ability, via training on one task and evaluating on the other task. If a model can

successfully acquire the underlying commonsense knowledge and learn the reasoning abilities via

training on the data of one task, it is very likely to perform well on the other task. By doing this,

we encourage models that focus on learning underlying knowledge instead of overfitting to shallow

language patterns.

6.2.1 Data Collection through Crowdsourcing

We collected a set of human-written stories via Amazon Mechanical Turk. Each story describes

a sequence of physical actions in human daily lives. During data collection, the annotators were

shown a person’s name and a location name, and they were asked to use their imagination to

write a short story describing a sequence of physical actions the person takes in that location.

Possible locations includes kitchen, living room, bathroom, garage, bathroom, office, park. Several

requirements were given to the annotators: 1) All described actions should be entirely realistic; 2)
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Figure 6.2: Interface used for annotating stories for the cloze task.

Figure 6.3: Interface used for annotating stories for the ordering task.

The actions should be carried out in a short time period; 3) The story must include at least five

sentences.

After collecting the original stories, we asked a different group of annotators to read the stories

and prepare them for the cloze task and the ordering task. Specifically, to prepare data for the

cloze task, we asked annotators to write a new sentence to replace an original sentence in the story,

such that the story after replacement is not likely to happen in the physical world. The annotation
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interface is shown in Figure 6.2. The new sentences will be used as distraction alternatives in the

cloze task. To make this task more challenging, we asked the annotator to come up with sentences

that are entirely realistic in real life. For example, sentences like “Mary fried eggs on the printer”,

or “Tom ate the spoon”, are not acceptable, since they are not realistic. In this way, one can not

determine which is the correct sentence to fill the blank by only looking at the candidate sentences.

You always need to put the sentences back into the story context to determine.

To prepare data for the ordering task, we asked annotators to switch two sentences in the original

story, so that the story after switching is not likely to happen in the physical world. The annotation

interface is shown in Figure 6.3. After data collection, we also filtered out words like “the”, “a”,

“an”, just to get rid of some trivial cues for the correct order between some sentences. Since “the”

is usually used to refer something mentioned before, while “a” and “an” are usually used to refer

something not mentioned before. For example, a system can easily determine the order of the

following two sentences, “Tom got an apple out of the fridge" and “Tom peeled the apple with a

knife”, only by looking at the usage of “an apple” and ”the apple”.

In total, we have collected 727 human-written stories. And based on these original stories, we

created 1,672 instances for the cloze task and 4,577 instances for the ordering task.

6.2.2 Underlying Commonsense Knowledge

After data collection, we analyzed the task data and discovered several categories of commonsense

knowledge that are essential to solve the tasks. Here we list the knowledge categories and also show

task examples that require them to make prediction.

1. Verb Causality Knowledge describes how a physical action changes the involving objects’

physical states. For example, the key point of solving the following cloze problem is knowing that

the action bake the potato causes the potato to become hot.

- Story:

1. Tom preheated the oven.
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2. Tom took out a potato from the fridge.

3. Tom put the potato in a metal pan.

4. Tom baked the potato in the oven.

5. .

- Select the correct sentence to fill in the blank:

A. Tom sprinkled some grated cheese on the potato.

B. Tom ate the cold potato.

- Correct Answer: A

2. Action Precondition is the requirement that must be satisfied before an action happens. For

example, you can cut a solid object instead of liquid, or you can stir liquid instead of a solid object.

To solve the following cloze problem, one needs to know that the butter is in liquid form after

melting (this information belongs to verb causality knowledge), and you cannot cut liquid (action

precondition knowledge).

- Story:

1. Tom took the potato out of the oven.

2. Tom mashed the potato.

3. Tom melted butter in the microwave.

4. .

5. Tom ate the mashed potato with a spoon.

- Select the correct sentence to fill in the blank:

A. Tom put the mashed potato and butter in a bowl.
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B. Tom cut the butter into cubes.

- Correct Answer: A

3. Object Functionality involves information about specific functions of objects, especially

for tools. For example, a microwave oven can be used to heat objects, and a wrench can be used to

repair cars. In the following ordering task, it is critical to infer that the wrench was used to tighten

the bolt.

- Story:

1. John opened the toolbox.

2. John took out the wrench.

3. John tightened a bolt on his bicycle.

4. John put the wrench back in the box.

5. John rode the bicycle to the store.

- Select the correct order:

A. 12345

B. 13245

- Correct Answer: A

4. Intuitive Physics is human’s common understanding about basic physical phenomena. For

example, a solid object can not pass through another solid object; an existing object continues to

exist unless being moved away or destroyed; an object is in a container, if the container moves, the

object also moves along. Psychological studies have shown that human naive physics rules usually

develop at a very young age, even before the development of language ability [6]. Thus, we rarely

explicitly express this kind of information in our communication. We simply assume everyone
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knows that. If an AI system ever deeply understand human natural language, it needs to acquire

this kind of knowledge. For the following cloze problem, the key is to infer that the hammer is not

accessible since it is locked in the trunk.

- Story:

1. John took off a bucket from the shelf.

2. John picked up a hammer and a rope from the floor.

3. John put the hammer and rope into the bucket.

4. John locked the bucket in his car trunk.

5. .

- Select the correct sentence to fill in the blank:

A. John used the hammer to repair the bike.

B. John drove his car into the street.

- Correct Answer: B

6.2.3 Comparison with Existing Tasks

The proposed tasks are similar to existing machine comprehension tasks, for example, bAbI [153],

SQuAD [113], and the Story Cloze Test [95]. Since in all of these tasks, a model needs to make

predictions based on its understanding of the provided supporting text data. However the proposed

tasks are also different from them. In bAbI [153] and SQuAD [113], the evaluation is done in

a question answering setting, where the input includes a supporting document together with a

question, and the model needs to select words from the supporting document as answer. In the

Story Cloze Test [95], the input includes a short story and two alternative endings to the story, and

the model needs to predict which ending is the correct one. For our proposed cloze task, it is very
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similar to the Story Cloze Test task, except that the blanks are not always at the end of the stories.

In the Story Cloze Test, most of the stories focus on human’s emotions, intentions and attitudes

(i.e., naive psychology), while our tasks have a specific focus on human’s physical actions.

6.3 Methods

For the cloze task, a model needs to make a selection between two candidate sentence to fill

in the blank. For the ordering task, a model needs to make a selection between two sequences of

sentences. In order to unify these the two proposed tasks, we treat them as a story ranking task:

given two candidate stories, predicting which one is more rational. For the cloze task, we get two

candidate stories via replacing the blank with each candidate sentence. For the ordering task, we

can also get two candidate stories via treating each sequence as a candidate story.

To tackle the proposed commonsense reasoning tasks, we propose a neural network model that

explicitly examines each action in terms of its compatibility with the actions happening before it

and actions happening after it. This model is motivated by the fact that the order of sentences are

very important in understanding the narrative.

As discussed earlier, solving these tasks requires a lot of commonsense knowledge. Given the

fact that commonsense knowledge is not usually explicitly stated in natural language, and also given

the limited size of our data set, it is not practical to acquire all the commonsense knowledge from

training data. So in this work, we also explore methods that can leverage external commonsense

knowledge for better understanding and reasoning about the stories.

6.3.1 The Attentive-Reader Model

The architecture of the Attentive-Reader is shown in Figure 6.4. In this model, we adopt sentence-

level representations. We first use a bi-directional gated recurrent unit (Bi-GRU) to embed the

sentences into vectors. Then for each sentence, we examine its compatibility with the rest parts

of the story. Taking sentence 3 as the target sentence, we use its embedding vector e3 to attend

every sentence before it (e1 and e2) and every sentence after it (e4 and e5), separately. For sentence
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Figure 6.4: Network architecture for the Attentive-Reader. Note that this architecture only shows
the computation structure for the anomaly scores corresponding to sentence 3 (score s31 and score
s32). The anomaly scores for other sentences are computed via similar processes.

before it, we calculate the attentions with

αi =
exp (e3Waei)∑

i<3 exp (e3Waei)
, (6.1)

where Wa is the parameter matrix to be learned. Then we represent the before-context with a

weighted sum

c12 =
∑
i<3

αiei . (6.2)

Then the context representation is used to calculate the anomaly score s31 between the target

sentence and the context before it.

s31 = tanh(W1[c12 : e3] + b1) (6.3)

Here W1 and b1 are parameters to be learned, and “:” denotes concatenation. The after-context

representation c45 and the anomaly score s32 are computed in a similar way. After calculating the
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anomaly scores for every target sentence, we apply a max/mean-pooling on them and generate the

final score. We use a cross entropy loss at the final layer.

6.3.1.1 Leveraging Physical Causality Knowledge

Since the action-effect knowledge plays an essential role in understanding these commonsense

stories, we further incorporated physical causality knowledge into the proposed model. To inject

the verb causality knowledge, we introduce an external knowledge module in the Attentive-Reader

architecture. This module takes external knowledge in the form of natural language sentences. As

shown in Figure 6.4, we use the same bi-directional gated recurrent unit (Bi-GRU) to embed the

knowledge into vector representations. Later they will be concatenated with story sentence vectors

to form knowledge-aware sentence representations.

6.3.1.2 Typed Physical Causality Knowledge

To form the external knowledge base, we start with the category-based knowledge data in Chap-

ter 4.3.1. Given a verb, this knowledge data only tells us which state categories are likely to

changes, but can not tell us how will they change. Theoretical linguistic studies on verbs have

shown that result verbs often specify movement along a scale [60]. Inspired by this, we introduce

state changing directions (or types) to the categories. Specifically, we selected a subset (presence,

integrity, location, containment, temperature, wetness) of the 18 attributes from Chapter 3.1, and

added types to them (shown in Table 6.1). Then, we manually annotated the 329 transitive verbs

from the current story dataset based on the typed causality attributes. When applying the knowledge

to a story sentence, we first run dependency parsing on this sentence to find out the verb, direct

object and location (if exists). After extracting the typed attribute values for this verb, we replace

the terms object and location with the corresponding terms in the sentence. For example, the

external knowledge for “Tom put the potato in the fridge” will be “potato be in fridge”.
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State Attributes Typed attribute values
Presence object be present; object be not present
Location object be in location; object be out of location
Integrity object be broken; object be integral
Containment object be full; object be empty
Wetness object be wet; object be dry
Temperature object be cold; object be hot

Table 6.1: Typed state attributes for physical causality knowledge.

6.3.2 Models for Comparison

The EntNet-Reader Model is based on the Recurrent Entity Network (EntNet) [52, 80], a neural

framework with external memory chains. Neural models with long-term memory and attention

mechanism have exhibited good reasoning capabilities in machine comprehension tasks [145, 45,

52, 80]. And particularly, the EntNet model has been proven to be very effective on similar

reasoning tasks like bAbI [52], CBT (Children’s Book Test) [53, 52] and the Story Cloze Test [80].

Figure 6.5: Network architecture for the EntNet-based approach.
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The architecture of the EntNet-Reader is shown in Figure 6.5. First, a bi-directional gated

recurrent unit (Bi-GRU) is used to embed the context information of the story at word level. Then

the context-dependent word representations are taken as input to a bi-directional Recurrent Entity

Network (EntNet) [52, 80], where the model tracks the state of world with memory chains. Each

memory chain is a special RNN network, where there is a key governing what kind of information

can pass the gates and be stored in the memory. The state representations of all memory chains

are then gathered into a 2D array and a convolution filter is applied on top of it. Specifically, the

filter covers the memory states from two adjacent time points, and outputs an anomaly score. This

score basically tells us given the world state of the previous time point, how irrational is the next

state/action. Lastly, a max/mean pooling layer will output the final anomaly score. We adopt a

cross entropy loss on the final score.

The Bi-GRUBaseline. For comparison, we also introduce a baselinemodel that uses a Bi-GRU

to embed thewhole story into one single vector representation and then generates the final prediction

score with MLP (multilayer perceptron). Again, we use the cross entropy as loss function.

6.4 Experiments

6.4.1 Experimental Settings

For both the cloze task and the ordering task, we randomly divided the data for training (20%),

validation (20%) and test (60%). The task instances derived from one original story all appear in

the same set (either in training set, validation set or test set). This data split strategy is to prevent a

trivial solution that memorizes positive action sequences from the training data.

For all the models, pre-trained GloVE embeddings [108] with 300 dimension are used as input

word embeddings. The hidden size for Bi-GRU and EntNet are set to 300. Training is carried out

with the Adam optimizer [65] and a batch size of 32.

86



Using 100% of the training data
Bi-GRU EntNet Attentive Attentive+KB

Cloze Task 0.634 0.668 0.681 0.701
Ordering Task 0.662 0.648 0.682 0.687

Using 67% of the training data
Bi-GRU EntNet Attentive Attentive+KB

Cloze Task 0.622 0.647 0.660 0.688
Ordering Task 0.644 0.623 0.653 0.684

Using 33% of the training data
Bi-GRU EntNet Attentive Attentive+KB

Cloze Task 0.565 0.585 0.597 0.630
Ordering Task 0.619 0.619 0.628 0.656

Table 6.2: Prediction accuracy results on the physical commonsense reasoning tasks.

6.4.2 Results and Analysis

Table 6.2 shows the evaluation results for different models on the cloze task and the ordering task.

We vary the training size to evaluate the models’ performance with different training sizes. Here

EntNet refers to the EntNet-Reader, Attentive refers to the Attentive-Reader, and KB denotes the

use of external physical causality knowledge.

Overall the Attentive-Reader performs better than the EntNet-Reader and the Bi-GRU model.

This might suggest that the sentence-level representation works better on the proposed tasks. After

introducing external causality knowledge, the Attentive-Reader achieves the best performance on

both tasks. This indicates the effectiveness of the external knowledgemodule in Figure 6.4, together

with the typed physical causality knowledge base.

Given that a random guessing method could achieve 0.5 accuracy, these results also suggest

that this benchmark is very challenging for current approaches. More advanced approaches are

required, with better coverage of commonsense knowledge and richer semantic representation of

actions and world states.

As mentioned earlier, although the cloze task and the ordering task are different in their task

setups, they require very similar reasoning processes to solve. The key to tackle both tasks

includes reliably tracking object state changes, and successfully detecting anomaly about action
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Bi-GRU EntNet Attentive Attentive+KB
Cloze - Ordering 0.535 0.550 0.545 0.579
Ordering - Cloze 0.543 0.561 0.560 0.607

Table 6.3: Prediction accuracy results of training on one task and evaluating on the other task.

preconditions and effects. To evaluate how different models generalize to an unseen task, we carried

out a new set of experiments of training these models on one task and testing them on the other

task.

The results of evaluating on a new task are shown in Table 6.3. Again the best performingmodel

is the Attentive-Reader with external causality knowledge. This suggests that the typed physical

causality knowledge helps the model better tracking object state changes instead of overfitting to

shallow language patterns.

6.4.3 Predicting Breakpoints in Negative Stories

For both the EntNet-Reader model and the Attentive-Reader model, their designed network struc-

tures enable them to make predictions about which part of stories does not make sense. For

example, each of the intermediate anomaly scores s21, s31, . . . , s42 indicates the compatibility of

the corresponding sentence with the sentences before it or after it. Therefore, a sentence with the

maximum anomaly score basically suggests that this sentence is most likely to be conflicting with

its context, according to the trained model.

Note that for each negative story (selecting the wrong candidate sentence in the cloze task, or

selecting the wrong order in the ordering task), there are at least two sentences conflicts with each

other. A manual analysis of the results (models trained using 100% training data) shows that, both

the Att-Reader and the EntNet-Reader have a good chance (around 80%) to successfully find out

at least one of the conflicting sentences for negative stories. The following are several examples of

the Attentive-Reader’s breakpoint predictions on negative stories.

Negative story 1 (cloze):

1. Mary took pan from cupboard.
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2. Mary put pan on stove.

3. Mary took out bowl.

4. Mary cracked open egg.

5. Mary made hardboiled egg.

Conflicting sentences: 4 and 5

Model’s prediction: 5

Negative story 2 (cloze):

1. John locked window.

2. John unplugged tv.

3. John turned off fan.

4. John closed up his suitcase.

5. John stayed in and watched tv.

Conflicting sentences: 2 and 5

Model’s prediction: 2

Negative story 3 (ordering):

1. John opened freezer and took out ice cream.

2. John scooped out some ice cream and put it in blender.

3. John cleaned up his mess with broom.

4. John knocked over bowl of butter.

5. John put fruit in blender and made some shake.

Conflicting sentences: 3 and 4

Model’s prediction: 3

6.5 Summary

In this chapter we propose a new benchmark for physical commonsense reasoning. To the best

of our knowledge, this is the first crowdsourced natural language story dataset specifically targeted
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for evaluating machines’ capability of understanding and reasoning about human physical actions.

This benchmark contains two sub-tasks: a cloze task and an ordering task. The setting of two

sub-tasks in this benchmark can be naturally used to evaluate a model’s generalization ability, via

training on one task and evaluating on the other task. We believe this benchmark will serve as an

valuable resource for physical commonsense reasoning.

As the first attempt to tackle the proposed tasks, we present a neural network architecture

together with an external knowledge module. This model solves both the cloze task and the

ordering task via explicitly examining the compatibility of each action with its context in those

stories. The experimental results demonstrate the best performing setup is the proposed model

with typed verb causality annotation as external knowledge. The relative low performance of all

the tested models suggests that the proposed tasks are far from being solved by current approaches.

A careful analysis of the task data suggests that future investigates could focus on modeling a

wider range of commonsense knowledge and providing richer semantic representation of actions

and objects.
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CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

This dissertation presents a series of investigation on collecting, modeling and utilizing physical

causality knowledge of action verbs. First, physical causality knowledgewere collected from human

contributors through crowdsourcing. Two representation methods were adopted to model physical

causality knowledge, one is based on pre-defined categories, and the other one is based on natural

language embedding models. Both approaches have demonstrated their potential on modeling

verb semantics and connecting language to the physical world. We further incorporated causality

modeling in solving several challenging tasks: language grounding, visual causality reasoning, and

commonsense story understanding.

In Chapter 4, we applied the category-based causality modeling to the task of grounding

semantic roles from sentences to visual perceptions using two approaches: a knowledge-based

approach and a learning-based approach. The empirical evaluations have demonstrated that both

of the proposed approaches outperform previous work, indicating that causality categorization

provides a good guideline for designing intermediate visual features. Moreover, we have shown

that physical causality knowledge can be generalized to novel verbs using simple learned models.

In Chapter 5, we introduced a novel task of visual causality reasoning, which focuses on the

connection between an action (a verb-noun pair) and its effect as illustrated in an image. We

have developed an approach that applies distant supervision to harness web data for bootstrapping

action-effect predictionmodels. The empirical results have shown that, using a simple bootstrapping

strategy, our approach can combine the noisy web data with a small number of seed examples to

improve action-effect prediction. Furthermore, our approach can infer effect descriptions for new

verb-noun pairs and thus to facilitate the training of action-effect prediction. This opens up the

possibility for humans to teach robots new tasks through language communication and small number

of examples.

In Chapter 6, we introduced a new benchmark for physical commonsense reasoning, which
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contains two sub-tasks, a cloze task and an ordering task. This benchmark evaluates a system’s

capability of understanding and reasoning about human physical actions from story data. We

presented a novel neural network model that explicitly examines the compatibility of each sen-

tence with its context. Experimental results have demonstrated the effectiveness of the proposed

model, and further show the improvement introduced by incorporating external physical causality

knowledge.

Apart from the studies shown in this dissertation, there are many interesting and promising

directions left for future exploration. Here we mention several:

1. Building a general purpose knowledge base for physical causality of action verbs. Our studies

have shown that the proposed physical causality knowledge datasets are good supplements to

current verb meaning models and resources. Thus, a natural extension is to build a large-scale

physical causality knowledge base for open-domain tasks.

2. Connecting verb causality knowledge with other types of intuitive physics knowledge. As

mentioned in Chapter 6.2, there are different types of commonsense knowledge closely

related to the understanding and reasoning about physical actions. Therefore, one interesting

research topic is to explore how to acquire these different types of knowledge and model them

with a unified framework.

3. Exploring methods that better ground language to perceptions. In Chapter 5 we present

an initial investigation on connecting language with action effect images. There are many

challenges and unknowns in grounding language to more complex forms of perceptions, from

video data to live human-robot interactions.

4. Extending verb causality knowledge to metaphorical uses. The studies we have done are

only focused on literal uses of verbs, i.e., mainly about concrete actions applied on concrete

objects. However, metaphorical uses of verb are very common in human natural language.

For example, “Two planes were shot down” is a literal usage of the verb “shot”, while

“The proposals were shot down” is a metaphorical usage. Given the value of verb causality
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knowledge on literal verb uses, one would anticipate that extending verb causality knowledge

to metaphorical uses will help comprehending and reasoning about natural language in more

general situations.
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