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ABSTRACT 
 

THEORY AND APPLICATIONS OF INTRACLASS CORRELATION 
COEFFICIENTS AT CLUSTER RANDOMIZED DESIGN FOR 

STATISTICAL PLANNING VIA HIERARCHICAL MIXED MODELS 
 

By 
 

Chun-Lung Lee 

Research investigators rely on information of intraclass correlation coefficients for 

planning and conducting designs and experiments for scientific inquiries in educational and 

social studies. Randomized controlled trials and cluster randomized studies are deemed as 

the gold standard for evidence-based interventions, and both approaches have been applied 

successfully in many situations for more effective decision-making in education and social 

research. The cluster randomized designs for community-based research, in particular, have 

been widely used in the modern era, since they are often operated at the group level, like a 

whole community or worksite, in order for researchers more easily to deal with random 

assignment of an entire intact group rather than that of each individual subject. Hence, such 

cluster-randomized trials or group-randomized experiments have become important and 

useful to provide evidence-guided practice models for scientific inquiry and research.  

The aim of this dissertation is to develop the methods for the intraclass correlation 

coefficients for binary and continuous outcomes in cluster-based intervention designs using 

hierarchal mixed model based on the scenarios of unconditional and conditional multilevel 

structures with cluster sampling schemes. Simulation studies are used to assess the statistical 

properties of intraclass correlation estimation and inference via the real data set of RSA-911 

for people with disabilities served in the Michigan Rehabilitation Services Programs.  

The results show that the average (unadjusted) intraclass correlation is about 0.01 for  

 



competitive employment and about 0.02 for weekly earnings (quality employment) in 

Michigan. These average (unadjusted) intraclass correlations from RSA-911 are relatively 

low in comparison to education interventions or academic programs for assessments in 

reading and mathematics across K-12 (Bloom et al., 1999, 2007; Hedges & Hedberg, 2007; 

Schochet, 2008); however, they seem comparable to some extent from those psychological 

and mental health data in school-based intervention designs (Murray & Short, 1995).  

For future study, researchers may look into different types of integrated large-scale 

complex data sets such as RSA-911 data with a set of covariates from Census data for 

investigating how intraclass correlation performs in statistical estimation and inference 

across multiple platforms. In addition, it would be interesting to study how to deal with 

missing values in the estimation procedure of intraclass correlation, and what remedial 

procedure can be added to improve estimation process. For the proposed method, it would 

recommend the total sample size should be greater than 1,500 and within group sample size 

would be better to be larger than 100 (with the number of groups about 15). 

In conclusion, this study provides a comprehensive methodology for intraclass 

correlation estimation and inference using the mixed “analysis of variance” approach along 

with the derived sampling distribution (i.e., F-distribution) for testing hypothesis as well as 

building confidence interval on intraclass correlation estimates. Such proposed statistical 

procedures can be easily used and applied in any large-scale or small-scale data sets, 

whereas small total sample size and small within group size and missing data are limitations 

on intraclass correlation estimation in terms of precision and accuracy.  

 Keywords: Intraclass Correlation Coefficient, Cluster Randomized Design, Multilevel 

Structure, Hierarchical Linear Modeling, Evidence-based Practice Models 
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PREFACE 
 
 
 

The history of intraclass correlation can be traced back to the last century that Sir Ronald A. Fisher 

introduced it to research communities as a new tool for measuring the level of similarity within a 

group. Since then, the intraclass correlation has been used as one of the most important statistical 

tools in scientific inquiries. In education, for example, it is often to use the intraclass correlation 

coefficient (or ICC) to measure the degree of intra-cluster resemblance in student educational 

outcomes (e.g., test scores) between different classrooms or schools. Although the ICC was a 

great success in the idea of how to measure within-group “correlation,” it was not until later that 

Allan Donner and his colleagues provided a comprehensive and practical framework of the ICC 

estimation and inference (e.g., point estimates are derived by multivariate normal theory, and 

hypothesis tests are based on variance components using analysis of variance, ANOVA). In the 

contemporary era, ICC plays another key role in quantifying the inherent clustering effect size 

(i.e., within-group variation) in multilevel designs by using hierarchical linear models (HLM). 

Stephen Raudenbush is a pioneer for the development and application of HLM in education, and 

he sheds light on how to evaluate the effect magnitude of multilevel structure by ICC. Moreover, 

Larry Hedges, renowned for his work of meta-analysis in education, finds a novel approach to 

“empowering (i.e., power analysis)” sampling designs through design effect (i.e., a function of 

ICC). Lastly, Tenko Raykov gives new insight into strategies for ICC estimates in the complex 

statistics setting (e.g., a categorical outcome variable) for HLM via latent variable models. The 

goal of this dissertation is to draw together in one place the major ICC developments, then to 

further develop a new thinking in statistical inquiry of ICC estimation and inference. In addition, 

the evidence-based paradigm in vocational rehab is another “painted picture” of this research. 
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CHAPTER 1 
 

INTRODUCTION 
 
 

The need for more scientific evidence-based research has been increasingly concerned 

in 21st century education (Schneider et al., 2007). The use of rigorous methods such as 

randomized control trial (RCT) and cluster randomized trial (CRT) experiments in particular, is 

important to not only reinforce sound research but also build a solid basis of evidence-guided 

knowledge for informing policymakers and practitioners (Menon et al., 2009; Slavin, 2002). 

Under The Every Student Succeeds Act of 2016 (amended after No Child Left Behind), the 

U.S. Department of Education (2016) wrote the new guidelines of implementation of scientific 

research. Specifically, as for use of evidence-based interventions, researchers need to be guided 

by auxiliary research evidence from previous studies in order to conduct scientifically rigorous 

research as well as promote better and effective outcomes in education, according to the 

statistical standards and guidelines for the National Center for Education Statistics at The What 

Works Clearinghouse (https://ies.ed.gov/ncee/wwc/). With that goal in mind, RCTs and CRTs 

are often highly suggested by federal education research agencies, such as Institute of 

Education Sciences and its affiliated centers, and constantly deemed as the gold standard in 

scientific research and evidence-informed practice, since both RCT and CRT approaches have 

already been proved successfully in many circumstances for making decisions in education. 

One key element to making any meaningful scientific conclusions is to produce 

evidential base through designs and experiments (Anderson & Shattuck, 2012; Barab & Squire, 

2004; Cobb et al., 2003; Odom et al., 2005; Shavelson et al., 2003). For education policy and 

practice in the 21st century (Slavin, 2008), the pursuit of research soundness has been already 
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reinforced persistently by means of education legislation, e.g., NCLB Legislation (2002) and 

ESRA Legislation (2008). The No Child Left Behind Act of 2001 (NCLB), for example, 

supported scientifically based research involving rigorous and systematic methods to obtain 

applicable and generalizable knowledge for improving school programs, teaching methods and 

learning outcomes. Furthermore, The Education Sciences Reform Act of 2002 (ESRA) was 

proposed to reform education sciences through principles of scientific research such as 

randomized experiments to measure causal impacts on educational outcomes. 

In the era of evidence-based practice (EBP), rehabilitation counseling is also embracing 

the concepts of best practice and knowledge translation to incorporate scientific advances and 

changes that have redefined the relationship between impairments and the capability to work 

(Leahy et al., 2014a). As for the state-federal vocational rehabilitation (VR) services, the public 

VR agencies are a major force of employment assistance for individuals with disabilities. 

Recent legislation for The Workforce Innovation and Opportunity Act (WIOA) of 2014, state 

VR programs have to assist the target disability populations, with educational or vocational 

training services, to succeed in the labor market and further to compete, with professional 

competency skills, in the global economy (WIOA Legislation, 2018). Therefore, nowadays the 

rehabilitation counseling workforce (including all those counselors, educators, practitioners, 

and researchers) need to work together to embrace the new era of the EBP paradigm to help VR 

customers improve the accessibility of quality rehabilitation services with informed choices of 

effective interventions or treatments. Moreover, it is important to use data-driven or evidence-

based rehabilitation counseling best practices to improve accountability and outcomes for 

people with disabilities by conducting systematic reviews and well-designed studies, as a way 

to get more reliable and valid evidence for translating knowledge and making good decisions in 
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VR (Chan et al., 2009; Leahy et al., 2009; Leahy & Arokiasamy, 2010; Leahy et al., 2014b). 

The evidence-based practice (EBP) has become a new norm today by conducting valid 

research and gathering reliable data for improving practices and outcomes (Eignor, 2013). In 

education (including rehabilitation counseling), the EBP research along with well-constructed 

designs and experiments can provide fundamental and significant improvements over practices. 

Not only can the proper use of EBP results help make better decisions about individuals (e.g., 

people with disabilities) and programs (e.g., VR agencies), but it can also provide a successful 

pathway to gaining broader access to quality education or full employment, according to the 

standards for research conduct by educational researchers (American Educational Research 

Association, American Psychological Association, National Council on Measurement in 

Education, & Joint Committee on Standards for Educational and Psychological Testing, 2014).  

Professionals in the field of rehabilitation counseling, such as VR counselors and 

practitioners, are often expected to integrate clinical judgement skills (including scientific 

attitude, cognitive complexity, evidence-based practice, and counselor biases) with research 

evidence via scientific-based methods to make best informed decisions that maximize the well-

being outcomes of the clients (e.g., people with disabilities in public VR) (Austin & Leahy, 

2015; Menon et al., 2009). The emphasis of best EBP lends VR counselors a significantly 

renewed impetus, so that they can be more accurate in clinical judgement by getting research-

informed knowledge in clinical issues of interventions and outcomes (Chan et al., 2010).   

Since the Pearson’s correlation coefficient was introduced last century, it has been used 

as one of the most important statistical tools for scientific inquiries in educational and social 

research (Agresti & Finlay, 2009; Fisher, 1915; Olkin & Pratt, 1958; Pearson & Lee, 1903; 

Pearson, 1904; Pearson, 1920; Soper et al., 1917; Student, 1917; Thorndike, 2005). When using 
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correlation to interpret statistical results, researchers have to be aware of “correlation does not 

imply causation” and always need to be cautious about post hoc fallacy (Latin: “post hoc, ergo, 

propter hoc”; English: “after this, therefore, because of this”) – whereas, this issue, which has 

the potential for an informal fallacy, can be rectified by using a well-designed experiment, by 

means of which researchers are more likely to go the extra mile to obtain valid statistical 

inference or even causality in studies (Fisher, 1925a, 1942, 1958a, 1958b; Holland, 1986). 

Of the different types of effect magnitude measures for the correlation ratio (e.g., 

Intraclass Correlation, Eta-squared, Omega-squared, R-squared, and Rho-squared indexes), the 

intraclass correlation (ICC) is a parametric estimator in the random-effect (or mixed-effect) 

model to quantify the true proportion of total variance accounted for in the outcome variable 

(Hays, 1994; Raudenbush & Bryk, 2002). Furthermore, the ICC can summarize the clustering 

effect magnitude (i.e., the relatedness) at a hierarchical design (Note: In statistics, this technique 

is called the “random” coefficients in multilevel models) (Hays, 1994; Hedges & Olkin, 1985). 

In this study, one main research goal is to investigate the ICC in hierarchical linear models 

(HLM) and hierarchical generalized linear models (HGLM) by using the mixed-effect analysis 

of variance (ANOVA), in order to better understand the ICC’s statistical properties on different 

simulation-based scenarios with respect to complex modeling structures and sampling designs.  

Both RCTs and CRTs have been widely viewed as the one of the best EBP approaches 

(i.e., the gold standard) for appraising and measuring the efficacy and effectiveness of 

interventions or treatments in educational and social research studies, since not only can such a 

methodology for designing experiments efficiently identify “how works” and “what works” in 

relation to the intervention or treatment given by using an experimental design, but it can also 

effectively provide more robust and valid evidence in EBP for scientific inquiry and research 
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(Connolly et al., 2018; Menon et al., 2009; Schneider et al., 2007; Sullivan, 2011).  

 

Figure 1.1 Conceptual Flowchart of the Intraclass Correlation Study at Hierarchical Design 

 

 

The current study is to address the following research questions under an EBP paradigm 

with the hierarchical design (i.e., CRT) driven by the intraclass correlation coefficient (ICC) 

analytic strategies (see Figure 1.1 for an illustration of the overall “big picture” concept of 

ICC). Moreover, this research is to evaluate the statistical performance of ICC in various 

simulation-based scenarios designed by the complex hierarchical data structures through the 

existing RSA-911 data set, where clients in VR were represented as real-world connections into 

computer simulations in the two-level CRT setting (i.e., clients are in level 1, and offices are in 

level 2). Also note that, in simulations using real data via the RSA-911, the selected variables 

are incorporated into multilevel modeling (i.e., HLM & HGLM) to represent the pivotal VR 

relationships between demographic characteristics, rehabilitation services, and employment 
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outcomes. In order to answer the proposed research questions, a computer simulation study 

(i.e., the Monte Carlo Method) is conducted using the bootstrapping procedure with the real 

data of RSA-911 (Note: The bootstrap method is a resampling technique without replacement 

from a given sample). More details of this computer simulation framework with RSA-911 data 

are provided in Chapter 4 (Methods and Research Questions) and Chapter 5 (Results). 

This study is to address the following three research questions with respect to the ICC.  

Research Question 1. Consider RSA-911 data for those people with disabilities served 

in Michigan in FY 2015. What are the empirical distributions of ICC (estimate, standard error, 

p-value and 95% confidence limits) for the usable samples of RSA-911 data?  

(a). Compare the method performance of statistical estimation and inference among 

Models 1-4, where Model 1 is fully unconditional, Model 2 is conditional on individual 

characteristics of gender, minority, age, education and social security insurance benefits, Model 

3 is conditional on rehabilitation service predictors (job placement, on-the-job supports and 

rehabilitation technology), and Model 4 is a combination of Models 2 and 3. 

(b). What are the empirical distributions of ICC estimates given by different breaking 

variables (disability type, disability significance and severity, and previous work experience) for 

subset analysis under Models 1-4? What are the differences among Models 1-4 in (a) and (b)? 

Research Question 2. Given the cluster randomized design structure of RSA-911 data, 

there are three different “cluster” settings at level 2 - the number of groups = 5, 15, or 25; and 

there are three “individual” settings at level 1 - the number of subjects = 50, 100, or 150. Based 

on the bootstrapping procedure by 100 times, what are the empirical distributions of ICC 

(estimate, standard error, and p-value) in each bootstrap scenario under Models 1-4? 
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(a). Given by each of bootstrap resampling scenarios (the number of bootstrap 

repetitions=100), compare the ICC estimates among Models 1-4 and examine which model 

(from Models 1-4) can provide better statistical performance of ICC estimation and inference. 

(b). Evaluate which bootstrap sampling scenarios (based on the number of groups and 

the number of subjects) can provide more accurate and precise ICC estimates (i.e., less bias and 

less mean squared error in statistical estimates)? What are the recommended sampling strategies 

(the number of groups and subjects) for cluster randomized trials using RSA-911 data? 

Research Question 3. Comparing the results between Research Question 1 (RQ1: 

Population Model) and Research Question 2 (RQ2: Resampling Model), which model (in 

Models 1-4) can provide the best statistical properties of ICC estimation and inference, in terms 

of statistical bias (expected difference in ICC estimates between RQ1 and RQ2), mean squared 

error (mean squared deviations in ICC estimates between RQ1 and RQ2), and ICC parameter 

coverage rate (proportion of true parameter “hits” by 95% confidence interval for ICC, based on 

the subsamples in RQ2, in comparison with the overall sample result in RQ1)? 

The next two chapters are to present both the literature review of statistical methods and 

applications for intraclass correlation plus the motivation for the study (Chapter 2), as well as 

the literature of statistical approaches in rehabilitation counseling using RSA-911 data (Chapter 

3). The rest of the dissertation is organized as follows. In Chapter 4, it covers a mathematical 

framework and notation in the proposed methodology for investigating intraclass correlation in 

multilevel structure. In Chapter 5, it shows the results using the real data set of RSA-911 via an 

exploratory bootstrap simulation approach to ICC estimation and related statistical inference. 

Last but not least, simulation results and study findings are discussed in Chapter6.    
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CHAPTER 2 

 

LITERATURE REVIEW OF STATISTICAL METHODS 

 

 

In this chapter, a comprehensive introduction to the history of intraclass correlation 

coefficients (ICC) at experimental designs is provided to serve a basic framework of this study. 

ICC has been one of the oldest statistical measures since Sir Ronald A. Fisher coined it last 

century. The fundamental idea of ICC is presented first to show the basic context of intraclass 

correlation, and then is followed by a series systematic review of its developments in statistical 

estimation & hypothesis testing, effect size measurement, and Fisher transformation using ICC. 

In addition, a review of the literature pertinent to the current major developments in ICC by 

Allan Donner, Larry Hedges, and Tenko Raykov, as well as their proposed analytic strategies 

for using ICC, are all provided to serve a fundamental basis of the study and then to understand 

the ICC’s statistical phenomenon at multilevel design especially for cluster randomized trials.   

 

2.1 Fisher Approach 

 

Since the correlation coefficient was introduced last century, it has been used as one of 

the most popular and important tools in scientific inquiries including biometrical work as well 

as social and educational research studies (Fisher, 1915; Olkin & Pratt, 1958; Pearson, 1920; 

Rodgers & Nicewander, 1988; Soper et al., 1917; Student, 1917). The inheritance of physical 

and mental characters in human is one classical example to show how powerful this statistical 

tool can be applied to across all our scientific fields. For example, Pearson and his colleague 

used U.K. school children data in the late 1800s to investigate a variety of basic human 
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mechanisms from physical characteristics (e.g., age, body size, stature, and even eye color) to 

latent or psychic abilities (e.g., mental status or intelligence), and further to compare those 

measures, using Person product-moment correlation, to understand ancestral heredity, natural 

inheritance, and family resemblance (Pearson & Lee, 1903; Pearson, 1904).  

When using correlation to interpret statistical results, researchers need to be aware of 

“correlation does not imply causation” and always be cautious about post hoc fallacy (Latin: 

“post hoc, ergo, propter hoc”; English: “after this, therefore, because of this”), although the 

issue can be dealt with by a carefully designed experiment (like randomized control trials), 

and it may help go the extra mile to test causality and further to make a valid statement of 

causal inference (Fisher, 1958a, 1958b; Holland, 1986). In the experimental field, scientific 

inquiries can be done synthetically with three key ingredients – replication (for adding 

precision), randomization (for bringing validity), and control (for reducing interference), and 

so research workers therefore are able to reach out safely (or “with statistical soundness and 

completeness”) and then obtain fiducial and unchallengeable conclusions (Fisher, 1958a, pp. 

409-410); on the other hand, in the observational study, some may be found it useful in the 

exploratory stages to express a statistical inquiry in the form of a correlation coefficient, but, 

with the previous cautious statement “correlation is not causation,” it is seldom to draw a 

valid foundation of making causal links rather than simply to produce spurious correlations or 

even counterfactual connections, due to a reasonable suspicion that, if any, various possible 

contributory causes of a studied phenomenon cannot be controlled (Fisher, 1925a, Chapter Six 

“The Correlation Coefficient”), unless researchers use other remedial and modified methods 

(like quasi-experimentation or regression discontinuity) to circumvent, or at least to alleviate, 

the difficulty and problem by adjusting “uncontrolled observations (or uncontrollable events)” 
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with “artificially controlled (or statistically manipulated)” quasi-experimental conditions (i.e., 

pseudo experimental models) to appropriately but properly estimate causal impacts (i.e., 

treatment or intervention effects) using Neyman-Rubin Model (Schneider et al., 2007).  

 

In a theoretical perspective, mathematical features (algebraic relationships) and key 

properties (statistical functions) of Pearson’s correlation coefficient are listed as follows.  

Let (𝑥1,𝑦1) ,⋯ , (𝑥𝑁, 𝑦𝑁) are N pairs of independent samples with bivariate normal 

with means [𝜇1, 𝜇2] , variances [𝜎12, 𝜎22] and correlation 𝜌 . The frequency can be written in 

the form 

 

𝑓(𝑥, 𝑦 | 𝜇1, 𝜇2, 𝜎1, 𝜎2, 𝜌) =
1

2𝜋𝜎1𝜎2√1 − 𝜌2
 𝑒

−1
2(1−𝜌2){(

𝑥−𝜇1
𝜎1

)
2
−2𝜌(𝑥−𝜇1𝜎1

)(𝑦−𝜇2𝜎2
)+(𝑦−𝜇2𝜎2

)
2
}
 

 

 , where the correlation 𝜌 may be positive or negative or zero but cannot exceed unity in 

magnitude (Fisher, 1925a; Roussas, 2002). If one variate has an assigned value (e.g., 𝑥 = 𝑎), 

then by giving 𝑥 a constant value 𝑎, this conditional frequency (i.e., the total frequency above 

is divided by the frequency with which 𝑥 = 𝑎 occurs) can be expressed by a general formula 

 

𝑓(𝑦 | 𝑥 = 𝑎) =
1

√2𝜋(1 − 𝜌2)  𝜎2
 𝑒

−1
2(1−𝜌2)𝜎2

2 {𝑦−[𝜇2+𝜌
𝜎2
𝜎1
(𝑎−𝜇1)]}

2

 

  

, where the conditional distribution (𝑦 of 𝑥 given 𝑎) is normal with mean 𝜇2 + 𝜌
𝜎2
𝜎1
(𝑎 − 𝜇1) 

and variance (1 − 𝜌2)𝜎22 , and it implies that the total variance of 𝑦 in the fraction (1 − 𝜌2)  



 11 

is independent of 𝑥, while the remaining variation of 𝑦 in the fraction 𝜌2 is determined by 

(and calculable from) the value of 𝑥 (Fisher, 1925a; Mood, Graybill, & Boes, 1974).  

The statistical estimation of the correlation is the ratio of the covariance to the 

geometric mean of the two variances; if 𝑆(𝑥) and 𝑆(𝑦) represent the deviations of the two 

variates from their means [𝜇̂1, 𝜇̂2], then the correlation coefficient (or product moment) 

estimator 𝑟 would be given by  

 

𝑟 =
𝑆(𝑥𝑦)

√𝑆(𝑥)𝑆(𝑦)
=

∑ (𝑥𝑖 − 𝜇̂1)(𝑦𝑖 − 𝜇̂2)𝑁
𝑖=1

√∑ (𝑥𝑖 − 𝜇̂1)2𝑁
𝑖=1 ∑ (𝑦𝑖 − 𝜇̂2)2𝑁

𝑖=1

 

 

, where the mean estimates [𝜇̂1, 𝜇̂2] can be approximated by sample means [𝑥̅, 𝑦̅].  

 

By Olkin and Pratt (1958), the probability density of 𝑟 is derived as 

 

𝑓(𝑟) =
2𝑁−2

𝜋 Γ(𝑁 − 1)
(1 − 𝜌2)𝑁/2(1 − 𝑟2)(𝑁−3)/2 𝐹 (

1
2 ,
1
2 ;  

(𝑁 − 1)
2  ; 1 − 𝑟2) 

 

, where 𝐹(∝, 𝛽; 𝛾; 𝑥) = ∑ Γ(∝+𝑘)Γ(𝛽+𝑘)Γ(𝛾)
Γ(𝛼)Γ(𝛽)Γ(𝛾+𝑘)

(𝑥)𝑘

𝑘!
∞
𝑘=0   is the hypergeometric function, and the last 

term therefore can be computed and simplified as  ∑ Γ2 (𝑁+𝑘
2
) (2𝜌𝑟)

𝑘

𝑘!
∞
𝑘=0  . It is noteworthy that 

under the null hypothesis of 𝜌 is true (i.e., 𝐻𝑂: 𝜌 = 0), the asymptotic distribution of a sample 

correlation 𝑟 is a normal density with mean 0 and variance (1 − 𝑟2)2. In the general case of 𝜌 

(i.e., −1 ≤ 𝜌 ≤ 1), by using Laplace transformation and Taylor series expansion through on 

that previous density function of sample correlation 𝑟, Olkin and Pratt (1958) derived the 
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uniformly minimum-variance unbiased estimator (UMVUE: an unbiased estimator that has 

lower variation error than any other unbiased estimators for all plausible values of the 

parameter), which is shown to be 

 

𝑈𝑀𝑉𝑈𝐸(𝜌) ≅ 𝑟 + 𝑟 
1 − 𝑟2

2(𝑁 − 1) + 𝑟 
9(1 − 𝑟2)2

8(𝑁2 − 1) + 𝑟 𝑂
(𝑁−3) ≈  𝑟 + 𝑟 

1 − 𝑟2

2(𝑁 − 3)  

 

Note that there is another simple estimator of correlation coefficient to adjust biased 

correlation especially for a small sample size (𝑁 < 30), according to Kelly (2018) and Flom 

(2015): 

𝑟 = 𝑠𝑔𝑛(𝑟)√1 −
(1 − 𝑟2)(𝑁 − 1)

(𝑁 − 2)  

 

, where the formula is resulted from adjusted 𝑅2 = 1 − (1 − 𝑅2) (𝑁−1)
(𝑁−𝑃−1)

 for 𝑃 = # predictors.  

 

To test whether a correlation is different from zero (i.e., 𝐻𝑂: 𝜌 = 0), the test statistic 

is  

𝑡 =
𝑟

√(1 − 𝑟2) (𝑁 − 2)⁄
= 𝑟√

𝑁 − 2
1 − 𝑟2

 

 

, which is t-distributed with 𝜈 = 𝑁 − 2 degrees of freedom (Lomax & Hahs-Vaughn, 2012, 

pp.267-268; Roussas, 2002, pp. 472-473). It is interesting to note that the probability density 

of a correlation (when 𝜌 = 0) can be found using a linear transformation of 𝑡-statistic above 
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by  

𝑓(𝑟) =
1
√𝜋

 Γ((𝑁 − 1) 2⁄ )
 Γ((𝑁 − 2) 2⁄ )

(1 − 𝑟2)(𝑁/2)−2 

 

, where this density is only true for the case of 𝜌 = 0 (independence) (Roussas, 2002, pp. 

474). 

Comparing to the previous 𝑡-statistic approach of testing significance of a correlation 

coefficient, transformed correlations is another way to deal with the issue of testing the 

significance of an observed correlation coefficient. By using a well-known standard normal 𝑍 

testing statistic, Fisher (1925a) proposed a more reliable and accurate transformation method 

that employs the information of a given correlation 𝑟 to approximate to the standard normal 𝑍 

distribution in which this test can be carried out without much difficulty in laborious 

calculation. The Fisher’s 𝑍 transformation is defined as the formula   

 

𝑍 =
1
2 𝑙𝑜𝑔𝑒 { 

1 + 𝑟
1 − 𝑟 } = 1 2⁄ {𝑙𝑜𝑔𝑒(1 + 𝑟) − 𝑙𝑜𝑔𝑒(1 − 𝑟)} =∑

1
1 + 2(𝑖 − 1) 𝑟

1+2(𝑖−1)
∞

𝑖=1
 

 

, where the statistic value 𝑍 ranges from 0 to ±∞ as the sample correlation 𝑟 changes from 0 

to ±1 , the Fisher’s 𝑍 can also be approximated by 𝑟 + 𝑟3 3⁄ + 𝑟5 5⁄ + 𝑟7 7⁄ +⋯ , and the 

standard error of 𝑍 is derived in a simpler form approximately as 𝜎𝑍 = 1 √𝑁 − 3⁄   which is 

practically independent of any value of correlation in the population from which the sample is 

drawn. There are three advantages of this transformation of 𝑟 into 𝑍 (Fisher, 1925a, pp. 198-

199) : (1) the standard error of 𝑍 does not depend on the true value of the correlation 𝜌 , so 

can provide a true weight for the value of the estimate (i.e., 𝜎𝑍 is a so-called ancillary statistic 
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which contains no information about the parameter interest 𝜌, but sometimes it paradoxically 

provides “additional” valuable information in statistical inference say like our knowledge of 

the accuracy and precision of the estimate 𝑍 here; Casella & Berger, 2002, pp. 282-284; Cox, 

1971; Efron & Hinkley, 1978; Fisher, 1925b, p. 724); (2) although the distribution of  𝑟 is not 

normal in small samples and even remains far from normal for large samples with a high 

correlation (e.g., the correlation 𝜌 is close to  ±1) , the sampling distribution 𝑍 still tends to 

converge to asymptotic normality as the sample size 𝑁 increases, no matter what the value of 

the correlation may be (either large or small, positive or negative); (3) while the distribution 

of 𝑟 changes rapidly in terms of its shape (i.e., skewness and kurtosis) as the parameter 𝜌 is 

changed (given by 𝜌 ∈ [−1 ,1] ), the sampling distribution of 𝑍 is probabilistically more 

stable and nearly constant in the form of a symmetrical bell shape (i.e., values are normally 

distributed) and therefore it would be reasonable to assume a sample correlation by Fisher’s 𝑍 

transformation follows approximate normality with mean the true correlation parameter 𝜌 and 

variance 1 (𝑁 − 3)⁄ .  Also see below Figure 2.1 for demonstrating the comparisons of the 

sampling distributions between non-transformed and transformed correlation coefficients at 

the three different levels (i.e., correlation coefficients 𝜌 are set at 0.2, 0.5, and 0.8, while 

Fisher’s Z are given by 0.20, 0.55, 1.10, respectively). In Figure 2.1, it shows that Fisher’s Z 

distributions are relatively more robust and stable than “raw” distributions of non-transformed 

Pearson’s correlation coefficient across the continuum domain (i.e., 𝜌 ∈ [−1 , 1] and 𝑍 ∈ ℝ). 
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Figure 2.1 Sampling Distributions of Non-Transformed and Transformed Correlations at 

Three Different Levels 

 

 

Note. The original idea of this graph (Figure 2.1) comes from Fisher’s 𝑍 transformation 

(1925a, p.200). The upper panel demonstrates the sampling distributions of correlation at the 

levels of r = 0.2, 0.5, and 0.8; and the lower panel shows the respective sampling distributions 

by Fisher’s Z transformation in which the values are shown as z = 0.20, 0.55, and 1.10.  
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In terms of correlation-based measures, Jacob Cohen (1988, pp. 77-81) proposed that 

|𝑟| < 0.2 (or the threshold of |𝑟| around 0.1) as a small or weak effect, 0.2 < |𝑟| < 0.4 (or |𝑟| 

around 0.3) as a medium or moderate effect, and 0.4 < |𝑟| < 0.6 (or |𝑟| around 0.5) as a large 

or strong effect, and |𝑟| > 0.6 (or |𝑟| around 0.7 or above) as a very large or extremely strong 

effect, to determine the effect size magnitude of a studied phenomenon of interest (Cohen, 

1988; Ellis, 2009; Rosenthal, 1996). It is cautious to note that these standards for correlation 

thresholds may need to be modified or even re-evaluated & re-justified in different areas of 

scientific inquiries, especially for the fields other than behavioral and social sciences (such as 

clinical and social psychology), since J. Cohen (as a clinical and social psychologist) was 

originally working on this effect-size magnitude research using the data in his field 

(specifically, unique to psychology and social sciences) for developing “qualitative” 

descriptors of strength of association with respect to a “quantitative” product-moment 𝑟. 

In the family of effect size measures of correlation, there are other types of effect size 

estimates that are calculated based on different variance components (e.g., effect magnitude 

(EM) = [explained variance] / [total variance] ≡ 𝜌2, which is translated into plain language – 

EM is the amount of the explained variance can be accounted for by the total variation within 

an experimental design model; Cohen, 1988, p. 78.) For instance, the coefficient of 

determination (aka R-squared, or 𝑅2 = 𝑆𝑆𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛/𝑆𝑆𝑇𝑜𝑡𝑎𝑙) is widely known and used 

especially in regression models. In addition, the correlation ratio Eta-squared (𝜂2 =

𝑆𝑆𝐵𝑒𝑡𝑤𝑒𝑒𝑛/𝑆𝑆𝑇𝑜𝑡𝑎𝑙) is another form of the squared correlation in analysis of variance 

(ANOVA) models (Pearson, 1923; Richardson, 2011). Also, Hays (1994) introduced a similar 

one – the omega-squared index (𝜔2) – as a ratio of the relative reduction in uncertainty say 

about 𝑌 due to 𝑋, which shows the variance component in 𝑌 given by 𝑋, and this index can be 
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described as 𝜔2 = (𝜎𝑌2 − 𝜎𝑌|𝑋2 ) 𝜎𝑌2⁄ . Last but not least, the intraclass correlation coefficient 

(ICC) is defined as  

 

𝜌𝐼 = 𝜎𝐵𝑒𝑡𝑤𝑒𝑒𝑛−𝐺𝑟𝑜𝑢𝑝2 (𝜎𝐵𝑒𝑡𝑤𝑒𝑒𝑛−𝐺𝑟𝑜𝑢𝑝2 + 𝜎𝑊𝑖𝑡ℎ𝑖𝑛−𝐺𝑟𝑜𝑢𝑝2 )⁄  

 

, the formula of which is another idea to quantify the true proportion of variance accounted for 

in the outcome (by cluster effect) in random-effect mixed models (Hays, 1994; Raudenbush & 

Bryk, 2002). Note that the intraclass correlation (or the so-called cluster effect) is defined only 

in the random-effect (esp. random-intercept) models, while the omega-squared index can also 

be used in the fixed-effect analysis (Hays, 1994, p.535; Hedges & Olkin, 1985, p. 103). In this 

study, one main focus is to investigate ICC in hierarchical models (mixed effects ANOVA) so 

as to better understand its properties on different scenarios by design effect and sample size.  

Another application of the use of intraclass correlation is to measure the level of 

similarity or resemblance (Fisher, 1925a; see Figure 2.2 below as an illustration of intraclass 

correlation). In one case like plant biology fields, the resemblance between leaves or pods on 

the same tree was studied say by picking 30 seed pods from a number of different 100 trees. 

In another case of human & family correlation studies, for example, we have a sample of 

anthropometric measurements of about 1500 pairs of siblings of the same family (e.g., two 

classes: elder kid vs younger kid); and we may want to calculate correlation between siblings. 

Here, if an association of interest is based on differences between two classes (or groups) of 

measurements, then it would be so-called “interclass” correlation that is also equivalent to a 

typical Pearson’s correlation coefficient 𝜌 between two sets of measurements. On the other 

hand, suppose that all the subjects (e.g., a combination of both older and younger siblings) 
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belong to the same class (only one group of a single whole study overall) with a common 

mean and a common standard deviation about that mean for all measurements, and then 

correlation now is distinguished as “intraclass” correlation (Fisher, 1925a, pp. 211-215).  

 

Figure 2.2 Intraclass Correlation Between Two Classes of Measurements 

 

Note. This illustration of ICC is motivated by an original idea by Fisher (1925a). 

 

In the special case of having two classes of measurements given by N pairs of samples 

(𝑥11, 𝑥12) ,⋯ , (𝑥𝑁1, 𝑥𝑁2), intraclass correlation is defined as  
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𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 =  
∑ {[𝑥𝑖1 − 𝑋̅][𝑥𝑖2 − 𝑋̅]}𝑁
𝑖=1

𝑁𝑆2     

 

, where the common mean is 𝑋̅ = (2𝑁)−1 ∑ [𝑥𝑖1 + 𝑥𝑖2]𝑁
𝑖=1 , and the common variance is 𝑆2 =

(2𝑁)−1[∑ (𝑥𝑖1 − 𝑋̅)2𝑁
𝑖=1 + ∑ (𝑥𝑖2 − 𝑋̅)2𝑁

𝑖=1 ]. When it considers the general case of having a 

set of 𝑘 classes of measurements given by N samples with [𝑥̅1,… , 𝑥̅𝑁] representing a set of 

means from the k classes in each sample, the general formula of intraclass correlation can be 

written by  

 

𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 =  
[𝑘 ∑ (𝑥̅𝑖 − 𝑋̅)2𝑁

𝑖=1 ] − 𝑁𝑆2

𝑁𝑆2(𝑘 − 1)     

 

, where the common mean is 𝑋̅ = (𝑘𝑁)−1 ∑ [𝑥𝑖1 + 𝑥𝑖2 + ⋯+ 𝑥𝑖𝑘]𝑁
𝑖=1 , the common variance is 

𝑆2 = (𝑘𝑁)−1[∑ (𝑥𝑖1 − 𝑋̅)2𝑁
𝑖=1 + ∑ (𝑥𝑖2 − 𝑋̅)2𝑁

𝑖=1 +⋯+ ∑ (𝑥𝑖𝑘 − 𝑋̅)2𝑁
𝑖=1 ], and the range of 

intraclass correlation values is always positive or should not be less than −1/(𝑘 − 1). See 

Figure 2.3 for a geometric interpretation of ICC by illustrating the resemblance of 10 paired 

observations (i.e., siblings of A’s and B’s) as to some measure of within-pair association (or 

intraclass correlation) between the two siblings in the same family. It is interesting to note that 

the ICC in Figure 2.3 can be geometrically represented as well as numerically approximated 

by the overall Euclidean distance (or norm) between the paired samples on the standardized 

scale (i.e., the overall Euclidean length can be defined by the standardized difference between 

the measures of sibling A and sibling B in the Cartesian coordinate system ℝ2). 
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Figure 2.3 Demonstration Example of Intraclass Correlation by Two Classes of Measurements 

 

 

Note. This illustration comes from the concept of intraclass correlations by Fisher’s approach 

of having the common mean and standard deviation for all the measurements (1925a, Section 

38 of Intraclass Correlations and the Analysis of Variance, pp.211-214). The intraclass 

correlation (or within-pair correlation) can be estimated by the Euclidian distance of the 

paired measurements between the two related groups of samples (i.e., the true ICC is set at 

0.303, and the estimated ICC is given by 0.298 using the standardized length between a pair 

of measurements from Sibling A and Sibling B). 
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2.2 Donner Approach 

 

In the analysis of family data, it is frequent to use the intraclass correlation coefficient 

to measure the degree of intra-family resemblance among family members with regard to 

family health history in quantitative traits of biological or psychological attributes such as 

human body proportion (e.g., arm’s span, leg’s length), blood pressure level, and cognitive 

intelligence (IQ).  Donner & Koval (1980a) derived the maximum likelihood estimator 

(regarding no prior knowledge of statistical estimates) of the intraclass correlation 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠  

using multivariate normal theory in variance component models (assuming unequal 

group/family sample size).  

In statistical theory, suppose one observation on the j-th member (𝑗 = 1,… , 𝑛) of the i-

th family (𝑖 = 1,… , 𝑘) is used to investigate the intraclass resemblance 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠  among the 

class of 𝑛 samples from each of 𝑘 families, which can be stated mathematically as  

 

𝑌𝑖𝑗 = 𝜇 + 𝑎𝑖 + 𝑒𝑖𝑗 

 

, where 𝑌𝑖𝑗 is an observation for which i is the index of a family or group factor (𝑖 = 1, … , 𝑘) 

and j is an individual member within that family or group factor (𝑗 = 1, … , 𝑛), 𝜇 is the grand 

mean of all the observations, 𝑎𝑖 is designed as the random effect (identically distributed) with 

mean 0 and variance 𝜎𝑎2 (i.e., NID(0, 𝜎𝑎2)), 𝑒𝑖𝑗 is a random normal error term for j-th subject in 

i-th group (i.e., independently and identically distributed with mean 0 and variance 𝜎𝑒2; viz., 

NID(0, 𝜎𝑒2)), and both random components, {𝑎𝑖} and {𝑒𝑖𝑗}, are assumed to be mutually 

independent.   
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By summing the additive variance components (i.e., a sum of both between-group and 

within-group variation is equal to total variation), the variance of 𝑌𝑖𝑗 is given by 𝜎𝑌2 = 𝜎𝑎2 +

𝜎𝑒2, and then the intraclass correlation is defined by the Fisher’s concept as 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 =

𝜎𝑎2 (𝜎𝑎2 + 𝜎𝑒2)⁄ , where this index will be zero when 𝜎𝑎2 = 0, and it will be unity if 𝜎𝑒2 = 0 

(assuming that 𝜎𝑌2 > 0). Notice that the intraclass correlation represents the true proportion of 

variance attributable to Factor 𝑎, and that the intraclass correlation is similar to the omega-

squared index (𝜔2) in the general form, although the intraclass correlation (𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠) applies 

to the random-effect model but the omega-squared index (𝜔2) often only to the fixed-effect 

model (Hays, 1994, p.535). 

 

Equivalently, from a point of view of statistical theory, the intraclass correlation can 

also be fundamentally defined as the ordinary correlation coefficient between any two 

observations in the same class (group or family), say 𝑌𝑖𝑗 & 𝑌𝑖𝑘, since their statistical 

relationship holds that 

 

𝐶𝑜𝑟𝑟(𝑌𝑖𝑗, 𝑌𝑖𝑘) = 𝐸{[(𝑌𝑖𝑗 − 𝜇)(𝑌𝑖𝑘 − 𝜇)] 𝜎𝑌2⁄ } = 𝐸(𝑎𝑖2) 𝜎𝑌2⁄ = 𝜎𝑎2 𝜎𝑌2⁄  

 

, where 𝐶𝑜𝑣({𝑎𝑖}, {𝑒𝑖𝑗}) = 𝐶𝑜𝑣({𝑎𝑖}, {𝑒𝑖𝑘}) = 0, and 𝑎𝑖~𝑁𝐼𝐷(0, 𝜎𝑎2) (Donner & Koval, 

1980a).  

Since the traditional method (Fisher’s approach) above requires distributional 

assumptions of observations (based upon multivariate normal theory), it is the analysis of 

variance (ANOVA) that provides an alternative estimator of intraclass correlation (for 

relaxing the assumptions) in the classical linear models (Donner & Koval, 1980a). The new 
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practical method for estimating intraclass correlation is to utilize relevant information in the 

ANOVA table shown as following (without loss of generosity, it is assumed to be a balanced 

design with equal group/family size). 

 

Table 2.1 Analysis of Variance (ANOVA) for Intraclass Correlation (ICC) Calculations 

 
Source of 
Variation 

Degree of 
Freedom (DF) 

Sum of Squares 
(SS) 

Mean Squares 
(MS) F Statistic 

Among Groups k-1 SSA MSA MSA / MSW 
Within Groups k(n-1) SSW MSW  

Total kn-1 SST   
 
 

, where the between-group variation SSA = ∑ ∑ (𝑌𝑖∙̅ − 𝑌∙∙̅)2𝑛
𝑗=1

𝑘
𝑖=1 , the within-group variation 

SSW = ∑ ∑ (𝑌𝑖𝑗 − 𝑌𝑖∙̅)
2𝑛

𝑗=1
𝑘
𝑖=1 , the total variation SST = ∑ ∑ (𝑌𝑖𝑗 − 𝑌∙∙̅)

2𝑛
𝑗=1

𝑘
𝑖=1 , the mean 

squares among groups MSA = SSA / DF(Among Groups) = SSA / (k-1) = 

∑ ∑ (𝑌𝑖∙̅ − 𝑌∙∙̅)2𝑛
𝑗=1

𝑘
𝑖=1 (𝑘 − 1)⁄ , the mean squares within groups (or the mean squared error) 

MSW = SSW / DF(Within Groups) = SSW / [k(n-1)] = ∑ ∑ (𝑌𝑖𝑗 − 𝑌𝑖∙̅)
2𝑛

𝑗=1
𝑘
𝑖=1 [𝑘(𝑛 − 1)]⁄ , the 

between-group degrees of freedom DF(Among Groups) is 𝑘 − 1 (for 𝑘 = the number of 

groups), the within-group degrees of freedom DF(Within Groups) is 𝑘(𝑛 − 1) (for 𝑛 = the 

number of within-group subjects). 

It is interesting to note that, by Hays (1994, pp. 533-535), the expectation of mean 

square among groups E[MSA] = 𝑛𝜎𝑎2 + 𝜎𝑒2, and that the expectation of mean square within 

groups E[MSE] = 𝜎𝑒2 (i.e., MSE is an unbiased estimate of error variance; Hays, 1994, p.532). 

Therefore, the intraclass correlation estimator can be indirectly obtained in such a way (via 

ANOVA) that: 
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𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 =
𝜎𝑎2

𝜎𝑌2
⁄ = 𝐸[𝑀𝑆𝐴] − 𝐸[𝑀𝑆𝐸] 𝐸[𝑀𝑆𝐴] − (𝑛 − 1) × 𝐸[𝑀𝑆𝐸]⁄  

 

, where the total variance consists of two independent variance components and hence is given 

by 𝜎𝑌2 = (𝜎𝑎2 + 𝜎𝑒2) for 𝜎𝑎2 = {𝐸[𝑀𝑆𝐴] − 𝐸[𝑀𝑆𝐸]} 𝑛⁄  and 𝜎𝑒2 = 𝐸[𝑀𝑆𝐸]; the best estimate of 

the total variance (𝜎𝑌2) is to use the estimates of group variance (𝜎𝑎2) and error variance (𝜎𝑒2), 

so that 𝜎̂𝑌2 = 𝜎𝑎2 + 𝜎𝑒2 = [𝑀𝑆𝐴 − (𝑛 − 1) × 𝑀𝑆𝐸] 𝑛⁄ . Also notice: an unbiased estimate of 

group variance may be found 𝜎𝑎2 = 0 when MSE is greater than or equal to MSA (Hays, 

1994, p.534).     

For an unbalanced “natural” design with unequal family or group size 𝑛𝑖 (for 𝑖 =

1,… , 𝑘) in ANOVA, the common family or group size 𝑛0 is calculated for representing the 

mean within-group individuals, and the intraclass correlation coefficient (Donner & Koval, 

1982) is given by 

 

𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠  =
(𝑀𝑆𝐴 − 𝑀𝑆𝑊)

[𝑀𝑆𝐴 + (𝑛0 − 1)𝑀𝑆𝑊]⁄  

 

, where 𝑛0 = [𝑁 − ∑ 𝑛𝑖2 𝑁⁄𝑘
𝑖=1 ] (𝑘 − 1)⁄  and 𝑁 is defined by the number of total sample size 

(i.e.,  𝑁 = ∑ 𝑛𝑖𝑘
𝑖=1 ). Also note that, by Donner & Koval (1980a), the mean within-group 

subjects can be alternatively calculated by 𝑛0′ = 𝑛̅ − ∑ (𝑛𝑖 − 𝑛̅)2 [𝑁(𝑘 − 1)]⁄𝑘
𝑖=1 , where the 

approximate group size 𝑛̅ = ∑ 𝑛𝑖 𝑘⁄𝑘
𝑖=1 = 𝑁/𝑘, and this latter formula of the average within-

group size (𝑛0′ ) is mathematically equivalent to the former (𝑛0), yet the computation (𝑛0′ ) is 

more laborious. Since 𝜎̃𝑎2 = (𝑀𝑆𝐴 −𝑀𝑆𝑊) 𝑛0′⁄  and 𝜎̃𝑒2 = 𝑀𝑆𝑊 are deemed, respectively, as 
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the unbiased estimates of 𝜎𝑎2 and 𝜎𝑒2, it is intuitive and straightforward to find the estimator of 

intraclass correlation via the Fisher’s definition:  

  

𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠  = 𝜎̃𝑎2 (𝜎̃𝑎2 + 𝜎̃𝑒2)⁄ = (𝑀𝑆𝐴 − 𝑀𝑆𝑊) [𝑀𝑆𝐴 + (𝑛0′ − 1)𝑀𝑆𝑊]
⁄  

 

, where it is equivalent to the previous formula due to 𝑛0′ = 𝑛0 (Donner & Koval, 1980a). 

As for statistical testing of intraclass correlation, by Donner & Koval (1980a), there is 

a test of significance for the estimate of intraclass correlation in analysis of variance using F-

distribution with 𝑘 − 1 and 𝑁 − 𝑘 degrees of freedom at the chosen level of significance, with 

respect to testing the hypotheses 𝐻𝑜: 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 = 0 vs. 𝐻𝑎: 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 > 0. A significant F 

testing statistic value (i.e., 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 > 0) implies that members of the same group tend to be 

more alike and similar to each other with respect to the attribute or characteristic in question 

than those from a different group, and also that the estimated intraclass correlation coefficient 

shows the idea of the true proportion of variance accounted for in the population by that factor 

of interest (e.g., families or groups). 

For the sake of another mathematical and statistical expression of the intraclass 

correlation index, the intraclass correlation coefficient can be re-defined using the quantity 

𝜃 = 𝜎𝑎2 𝜎𝑒2 ⁄ as 

 

𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 = 𝜃 (1 + 𝜃)⁄  

 

, where there is a basic statistical assumption of the normal distribution for the random effect 

(𝑎𝑖~𝑁𝐼𝐷(0, 𝜎𝑎2)) and the error term (𝑒𝑖𝑗~𝑁𝐼𝐷(0, 𝜎𝑒2)) (Hays, 1994, p.535). Further, in linear 
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modeling theory (Hays, 1994, pp.535-536; Kutner et al., 2005, pp.1040-1041; Stapleton, 

2009, p.285), the testing statistic of the proposed intraclass correlation estimator can be shown 

that  

 

𝐹0 =
𝑀𝑆𝐴 (𝑛 × 𝜎𝑎2 + 𝜎𝑒2)⁄

𝑀𝑆𝑊 𝜎𝑒2⁄⁄ =
𝑀𝑆𝐴
𝑀𝑆𝑊 (

1
1 + 𝑛 × 𝜃) 

 

, where this proposed method is mainly based on the random-effect ANOVA with a balanced 

design, and it follows an 𝐹 distribution with 𝑑𝑓1 = 𝑘 − 1 and 𝑑𝑓2 = 𝑘(𝑛 − 1) = 𝑁 − 𝑘 

degrees of freedom, so that a 100(1 − 𝛼)% confidence interval on 𝜃 = 𝜎𝑎2 𝜎𝑒2 ⁄  can be 

obtained by 

 

1−∝ = 𝑃 (𝐹𝛼
2,𝑑𝑓1,𝑑𝑓2

≤ 𝐹0 ≤ 𝐹1−𝛼2,𝑑𝑓1,𝑑𝑓2
)

= 𝑃(
1
𝑛 [

𝐹∗

𝐹1−𝛼2,𝑑𝑓1,𝑑𝑓2
− 1] ≤ 𝜃 ≤

1
𝑛 [

𝐹∗

𝐹𝛼
2,𝑑𝑓1,𝑑𝑓2

− 1]) 

 

, where 𝐹∗ = 𝑀𝑆𝐴 𝑀𝑆𝑊⁄  is the sample 𝐹 ratio value in ANOVA table. By the algebraic 

relationship 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 = 𝜃 (1 + 𝜃)⁄ , the corresponding interval for intraclass correlation is  

 

𝑃(
𝐹∗ − 𝐹1−𝛼2,𝑑𝑓1,𝑑𝑓2

𝐹∗ + (𝑛 − 1) × 𝐹1−𝛼2,𝑑𝑓1,𝑑𝑓2
≤ 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 ≤

𝐹∗ − 𝐹𝛼
2,𝑑𝑓1,𝑑𝑓2

𝐹∗ + (𝑛 − 1) × 𝐹𝛼
2,𝑑𝑓1,𝑑𝑓2

) = 1 − 𝛼 

 

, where this confidence limit, with confidence coefficient 1 − 𝛼, for intraclass correlation 
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𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠  represents the degree of total variability accounted for by the mean differences 

among different factor levels (or the effect of the extent of variation between groups or 

families in the analysis of family data). Note that this interval estimate (for either 𝜃 or 

𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠) may not be very precise, if it results from a relatively small sample size, or if 

variance components are much more difficult (e.g., relatively low reliability in measurements) 

to be estimated precisely than means. Also note that it may occasionally happen that the lower 

limit of the confidence interval for either 𝜃 or 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠  is negative, but since this ratio (𝜃 or 

𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠) normally should not be negative, the usual practice is to replace the “negative” 

lower limit with the best value to the zero lower bound – that is, simply, zero in this case.  

The maximum likelihood estimator of intraclass correlation can be derived by using a 

theory of multivariate normal distribution (with the common mean and variance-covariance 

structure). Let 𝕐𝑖 = (𝑌𝑖1, … , 𝑌𝑖𝑛) represent measurements taken on the 𝑖-th groups (𝑖 =

1,⋯ , 𝑘), each consisting of 𝑛 subjects, with a total size 𝑁 = 𝑘 × 𝑛. Assume this 𝑛-variate 

follows a multivariate normal 

 

𝕐𝑖 ~ ℕ𝑛(𝕞𝑖 , 𝕍𝑖)                 ,             𝑓𝑜𝑟 𝑖 = 1,⋯ , 𝑘 

 

or equivalently, the (𝑛-variate normal) probability density function is given by 

 

𝑓(𝕐𝑖) = (2𝜋)−𝑛/2|𝕍𝑖|−1/2𝑒𝑥𝑝 [−
1
2
(𝕐𝑖 − 𝕞𝑖)′𝕍𝑖−1(𝕐𝑖 −𝕞𝑖)] 

 

, where the mean vector is 𝕞𝑖 = (𝜇, … , 𝜇)1×𝑛′  for a common mean 𝜇 across all groups, and the 
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variance-covariance matrix is 𝕍𝑖 = (
𝜎2 ⋯ 𝜌𝜎2
⋮ ⋱ ⋮
𝜌𝜎2 ⋯ 𝜎2

)
𝑛×𝑛

for the diagonal element = 𝜎2 (or a 

common variance across groups) and the off-diagonal element = 𝜌𝜎2 (or a common 

covariance over groups), |𝕍𝑖| denotes the determinant of 𝕍𝑖 (i.e., the scaling factor in matrix 

algebra), and 𝑖 is the index of groups for 𝑖 = 1,⋯ , 𝑛. In a balanced design (the common 

correlation model), the estimate of intraclass correlation 𝜌 can be obtained by using Pearson 

product-moment correlation (Donner & Koval, 1980a), and the explicit form of the estimator 

can be expressed by 

 

𝜌𝑃𝑒𝑎𝑟𝑠𝑜𝑛 =
∑ ∑ ∑ (𝑌𝑖𝑗 − 𝑌̅)(𝑌𝑖𝑙 − 𝑌̅)𝑛

𝑙≠𝑗
𝑛
𝑗=1

𝑘
𝑖=1

[𝑁(𝑛 − 1)𝑆𝑌2]
⁄  

 

, where 𝑌̅ and 𝑆𝑌2 represent the common sample mean and variance, respectively, and can be 

computed across all observations 𝑁 using the concept of intraclass correlation by Fisher 

(1925a).  

And, by a large sample theory (asymptotic normality), the variance of the proposed 

estimator is  

 

𝑉𝑎𝑟(𝜌𝑃𝑒𝑎𝑟𝑠𝑜𝑛) =
2(1 − 𝜌)2[1 + (𝑘 − 1)𝜌]2

𝑛(𝑛 − 1)𝑘⁄           . 

 

Note that when a balanced design is considered (i.e., 𝑛𝑖 = 𝑛 for all 𝑖 = 1,… , 𝑘), this 

estimator 𝜌𝑃𝑒𝑎𝑟𝑠𝑜𝑛  is also equivalent to the result of the maximum likelihood estimate (MLE) 

of intraclass correlation (i.e., the multivariate normal density is taken by the maximum 
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likelihood method).  

On the other hand, for an unbalanced design, the asymptotic (large sample) variance of 

the proposed estimator 𝜌𝑃𝑒𝑎𝑟𝑠𝑜𝑛 is given by 

 

𝑉𝑎𝑟(𝜌𝑃𝑒𝑎𝑟𝑠𝑜𝑛) =
2𝑁(1 − 𝜌)2

𝑁∑ [𝑛𝑖(𝑛𝑖 − 1)𝑉𝑖𝑊𝑖−2]𝑘
𝑖=1 − 𝜌2[∑ 𝑛𝑖(𝑛𝑖 − 1)𝑊𝑖

−1𝑘
𝑖=1 ] ⁄  

 

, where the sampling weights are 𝑉𝑖 = 1 + (𝑛𝑖 − 1)𝜌2 & 𝑊𝑖 = 1 + (𝑛𝑖 − 1)𝜌, total sample 

𝑁 = ∑ 𝑛𝑖𝑘
𝑖=1 , and Pearson correlation is used as the estimate of 𝜌 (Donner & Koval, 1982).  

 

In addition, as for the estimators of 𝜇 and 𝜎2, the MLE solutions can be found by  

 

𝜇̂𝑀𝐿𝐸 =
∑ (𝑛𝑖𝑌𝑖̅ 𝑊𝑖⁄ )𝑘
𝑖=1

∑ (𝑛𝑖 𝑊𝑖⁄ )𝑘
𝑖=1

⁄ =
∑ 𝑊𝑖

−1(∑ 𝑌𝑖𝑗
𝑛𝑖
𝑗=1 )𝑘

𝑖=1

∑ (𝑛𝑖 𝑊𝑖⁄ )𝑘
𝑖=1

⁄         , 

 

and 

 

𝜎𝑀𝐿𝐸2  = [𝑁(1 − 𝜌)]−1 {[∑ (
𝑊𝑖 − 𝜌
𝑊𝑖

)
𝑘

𝑖=1
∑ (𝑌𝑖𝑗 − 𝜇)

2𝑛𝑖

𝑗=1
]

− 𝜌 [∑ ∑ ∑ (
(𝑌𝑖𝑗 − 𝜇)(𝑌𝑖𝑙 − 𝜇)

𝑊𝑖
)

𝑛𝑖

𝑙≠𝑗

𝑛𝑖

𝑗=1

𝑘

𝑖=1
]}                               . 

 

Hence, with 𝜇̂𝑀𝐿𝐸 and 𝜎𝑀𝐿𝐸2 , the MLE of intraclass correlation in this case can be 

computed as 
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𝜌𝑀𝐿𝐸

=
{∑ (𝑛𝑖 − 1)−1[∑ ∑ (𝑌𝑖𝑗 − 𝜇̂𝑀𝐿𝐸)(𝑌𝑖𝑙 − 𝜇̂𝑀𝐿𝐸)

𝑛𝑖
𝑙≠𝑗

𝑛𝑖
𝑗=1 ]𝑘

𝑖=1 }
{∑ (𝑛𝑖 − 1)−1[∑ (𝑌𝑖𝑙 − 𝜇̂𝑀𝐿𝐸)2

𝑛𝑖
𝑖=1 ]𝑘

𝑖=1 }
⁄  . 

 

Alternatively, it is equivalent to 

 

𝜌𝑀𝐿𝐸 = 𝜎𝑀𝐿𝐸−2 × {∑ (𝑛𝑖 − 1)−1 [∑ ∑ (𝑌𝑖𝑗 − 𝜇̂𝑀𝐿𝐸)(𝑌𝑖𝑙 − 𝜇̂𝑀𝐿𝐸)
𝑛𝑖

𝑙≠𝑗

𝑛𝑖

𝑗=1
]

𝑘

𝑖=1
}            . 

 

 

Note that Karlin et al. (1981) derived this MLE of intraclass correlation in an 

unbalanced design (by using invariance property of MLEs; Casella & Berger, 2002, p.320, “If 

𝜃 is the MLE of 𝜃, then for any function 𝜏(𝜃), the MLE of 𝜏(𝜃) is 𝜏(𝜃).”), although Donner 

& Koval (1980b) used a different approach to solving the MLE of 𝜌 by numerically 

“minimizing” the multivariate log-likelihood function (the logarithm of 𝑛-variate normal 

density) with a scaling factor of −2 : 

 

−2𝑙𝑜𝑔𝐿(𝜌|𝑌, 𝜇̂𝑀𝐿𝐸, 𝜎̂𝑀𝐿𝐸2 )

= 𝑁(1 + 𝑙𝑜𝑔𝜎𝑀𝐿𝐸2 + 𝑙𝑜𝑔2𝜋) + (𝑁 − 𝑘)𝑙𝑜𝑔(1 − 𝜌) +∑ 𝑙𝑜𝑔𝑊𝑖

𝑘

𝑖=1
 

 

, where this optimization method takes differentiation with respect to 𝜌 to find the MLE. 
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2.3. Hedges Approach 

 

Hedges used intraclass correlation to summarize the information of variance 

components in multilevel structure of 2-Level, 3-Level, and 4-Level hierarchical design 

(Hedges et al., 2012; Hedges & Hedberg, 2013). Further, intraclass correlation has been 

considered as an important tool/statistic to provide design effect parameters for statistical 

planning (power analysis) in experimental design and survey sampling (e.g., randomized 

controlled trials or large-scale experiments in education settings). In hierarchical linear 

models, intraclass correlation plays a key role in quantifying the amount of inherent clustering 

effects (i.e., within-cluster variation) in multilevel data. Look back at the development of ICC 

in hierarchical designs. The ICC was first introduced by Fisher (1925a), who created the 

oldest measure for within-group correlation and provided a significance testing procedure in 

experimental designs (such as RCTs and CRTs). Later on, Raudenbush (1997) built on 

hierarchical linear models in education to evaluate the clustering effect of multilevel data 

structure through ICC. Furthermore, Hedges used the meta-analytic framework to rethink the 

ICC by using design effect to improve multilevel designs in education and social research.  

 

The Hedge’s theoretical framework of intraclass correlation in multilevel design (like 

a cluster randomized trial, CRT) using hierarchical linear model (HLM) is: 

In a two-level HLM, suppose that the variance components associated with fully 

unconditional model (no covariates at any level of the model). Let 𝜎12 and 𝜎22 be the variance 

components at Level 1 and Level 2, respectively, and 𝑠12 and 𝑠22 be the MLEs of 𝜎12 and 𝜎22, 

respectively. Let the variances of 𝑠12 and 𝑠22 be 𝑣1 ≡ 𝑉𝑎𝑟(𝑠12 ) and 𝑣2 ≡ 𝑉𝑎𝑟(𝑠22 ), 
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respectively. Without loss of generality, suppose that 𝜎12 ≈ 𝑠12 (note: in most large-scale 

studies by hierarchical design, the Level-1 variance component is usually known, i.e., 𝜎12 is a 

given constant and 𝑣1 ≈ 0, or can most likely be estimated precisely, i.e., 𝑠12 ≈ 𝜎12, since there 

are many Level-1 units that provide sufficient information for estimation; Hedges et al., 

2012.) Let 𝑚 denote the number of groups or clusters (Level-2 units) and 𝑛𝑖 denote the 

number of Level-1 units in the 𝑖-th Level-2 unit of group or cluster. When the study is a 

balanced design analysis (i.e., 𝑛1 = 𝑛2 = ⋯ = 𝑛𝑚 = 𝑛), the intraclass correlation in the two-

level HLM model is  

 

𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 =
𝜎22

(𝜎12 + 𝜎22)
⁄  

 

, and the intraclass correlation estimator (based on cluster random samples) is given by 

  

𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 = 𝑟𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 =
𝑠22
(𝑠12 + 𝑠22)
⁄  

 

, then the asymptotic variance (based on large sample theory and delta method) is shown by  

 

 

𝑉𝑎𝑟(𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠) =
[(1 − 𝜌)2𝑣2]

(𝜎12 + 𝜎22)2
⁄ = 𝜎𝑇−4[(1 − 𝜌)2𝑣2] 

 

, where the total variance component is 𝜎𝑇2 = 𝜎12 + 𝜎22, and the variance of 𝑠22 is 𝑣2 ≡

𝑉𝑎𝑟(𝑠22 ) which is the variance (or squared standard error) estimate of the Level-2 variance 
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component. As for the estimate of the variance of 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠  (i.e., sampling variability of the 

sample ICC), the large sample variance is given by  

 

𝑉𝑎𝑟(𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠) =
[(1 − 𝑟)2𝑣2]

(𝑠12 + 𝑠22)2
⁄ = 𝑠𝑇−4[(1 − 𝑟)2𝑣2] 

 

, where 𝑟 is the intraclass correlation estimate 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠  (or 𝑟𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠), and the variance of 

𝑠22 is defined by 𝑣2 = 2[𝜎12 + 𝑛𝜎22]2 [𝑛2(𝑚− 1)]⁄ = 2𝜎𝑇4[1 + (𝑛 − 1)𝜌]2 [𝑛2(𝑚 − 1)]⁄ , so 

that the estimate is 𝑣2 = 2𝑠𝑇4[1 + (𝑛 − 1)𝑟]2 [𝑛2(𝑚 − 1)]⁄  for 𝑠𝑇2 = 𝑠12 + 𝑠22. (Note: the 

assumption of 𝑣1 ≈ 0, or 𝜎12 ≈ 𝑠12, is imposed on the large-sample variance of intraclass 

correlation estimates.) 

Fisher (1925a, p.220) derived a similar formula (large sample variance) for the 

intraclass correlation in a balance design (note: Fisher did not consider the assumption of 𝑣1 ≈

0): 

 

𝑉𝑎𝑟(𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠) =
{2(1 − 𝜌)2[1 + (𝑛 − 1)𝜌]2}

[𝑛(𝑛 − 1)(𝑚 − 1)]⁄           . 

 

Donner & Koval (1980b) showed the large sample variance of intraclass correlation in 

an unbalanced design (note: Donner & Koval did not consider the assumption of 𝑣1 ≈ 0) as 

 

𝑉𝑎𝑟(𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠) =
[2𝑁(1 − 𝜌)2]

{𝑁∑ 𝑛𝑖(𝑛𝑖 − 1)[1 + (𝑛𝑖 − 1)𝜌2]
[1 + (𝑛𝑖 − 1)𝜌]2

𝑚
𝑖=1 − 𝜌2 [∑ 𝑛𝑖(𝑛𝑖 − 1)

1 + (𝑛𝑖 − 1)𝜌
𝑘
𝑖=1 ]

2
}
     . 
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In a cluster (or group) randomized design, researchers often operate interventions or 

assign treatments at a group level (say Level-2 such as classrooms, schools, or sites) rather 

than at an individual level (say Level-1 for individual subjects like students) for some 

practical reasons that it is sometimes too expensive (or even not feasible) to work on 

interventions to each subject but rather than deal with an entire intact group (e.g., a whole 

community, school, worksite, or family). Therefore, cluster-randomized trials (or group-

randomized experiments) recently have become more and more important and popular in 

educational and social research studies for effectively and economically evaluating 

educational and social interventions (Donner et al., 1981; Hauck et al., 1991; Hedges & 

Hedberg, 2007; Klar & Donner, 2015). For example, a research investigator could save money 

(or increase the effectiveness of cost) by using group interventions, e.g., CRTs, instead of 

individual ones like RCTs (Tachibana et al., 2018). Also note that researchers find CRTs are 

more suitable than RCTs for the construction of economically-efficient and economically-

productive samples that have the desired statistical properties (Connelly, 2003). 

In a theoretical framework of cluster sampling experiments (i.e., cluster-randomized 

trials), suppose a sample of subjects are collected from 𝑚 clusters (or organizational units 

such as classrooms, schools, or district sites) of a group size 𝑛 which are assigned to an 

intervention (or a treatment group) with randomization. In this cluster sampling design, the 

classical simple random sampling approach doesn’t hold (i.e., all 𝑚 × 𝑛 individual samples 

are not independent to each other, but rather are highly dependent on the cluster to whom a 

subject, he or she, belongs or is assigned; Lohr, 1999, Chapter 2 Simple Probability Samples 

& Chapter 5 Cluster Sampling with Equal Probability). Therefore, the sampling distribution of 

a statistic using cluster samples needs to take into account both between-group correlation and 
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within-group variation at the same time in analysis. Suppose that in this cluster sampling 

structure, the total variance 𝜎𝑇2 consists of a within-cluster variance 𝜎𝑊2  and a between-cluster 

variance 𝜎𝐵2, i.e., 𝜎𝑇2 = 𝜎𝑊2 + 𝜎𝐵2.  Then, comparing with the formula of the population mean 

variance estimator for a simple random sample 𝜎𝑇
2

𝑚 × 𝑛⁄  , the population average variance 

for an individual sample (from 𝑚 clusters with size 𝑛) is shown as [1 + (𝑛 − 1)𝜌]𝜎𝑇
2

𝑚 × 𝑛⁄  , 

where the intraclass (or sometimes called intra-cluster) correlation coefficient is 𝜌 =

𝜎𝐵2 (𝜎𝐵2 + 𝜎𝑊2 )⁄ = 1 − 𝜎𝑊2 (𝜎𝐵2 + 𝜎𝑊2 )⁄  which provides a statistical measure of homogeneity 

within the clusters (i.e., if the clusters are perfectly homogeneous, then 𝜎𝑊2 = 0 and 𝜌 = 1), 

and the design effect (DE) or variance inflation factor (VIF) is defined as [1 + (𝑛 − 1)𝜌] 

(Donner et al., 1981; Lohr, 1999, pp.138-140). Note that clustering has more variation than 

simple random sampling by a factor of DE (or VIF>1) due to the major part of cluster-to-

cluster variability plus the minor portion of within-cluster variance (i.e., samples in different 

clusters often vary more than those samples in the same cluster). See Figure 2.4 as an example 

of 2-level hierarchical structure with regard to intraclass correlation and design effect. 

In experimental design, statistical planning for sample size determination and power 

calculation is critical for researchers to better produce evidence-based conclusions by 

rigorously detecting true effects at the desired level of significance. Traditionally, the 

experimental planning approach of sample and power computation considers the classical 

assumption of simple random samples. Therefore, power analysis for cluster sampling design 

or group randomized experiments need to use intraclass correlation coefficient along with 

non-centrality parameters (of 𝐹-distribution) to account for variability in multilevel design 

(e.g., between-group and within-group variations) (Cohen, 1992; Hedges & Hedberg, 2007, 

2013; Raudenbush, 1997; Rutterford et al., 2015). 
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Figure 2.4 Intraclass Correlation & Design Effect in 2-Level Hierarchical Linear Model 

 

Note. Each level has its own variation, where variation between sites is sigma-square of 

between, and variation within site is sigma-square of within, and the total variation is the sum 

of these two, i.e., “sigma-square of between” + “sigma-square of within”. 
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In a two-level hierarchical design structure (i.e., individuals are at the level 1, and 

groups or clusters at the level 2), the unconditional model (involving with no covariates) is 

written by 

 

(𝐿𝑒𝑣𝑒𝑙 1) 𝑌𝑖𝑗 = 𝛽0𝑖 + 𝜀𝑖𝑗
(𝐿𝑒𝑣𝑒𝑙 2) 𝛽0𝑖 = 𝜋00 + 𝜍𝑖
(𝑂𝑣𝑒𝑟𝑎𝑙𝑙) 𝑌𝑖𝑗 = 𝜋00 + 𝜍𝑖 + 𝜀𝑖𝑗

 

 

, where 𝑌𝑖𝑗 represents an outcome for the 𝑗-th individual subject (at the level 1) in the 𝑖-th 

cluster group (at the level 2), 𝜋00 is a grand mean outcome ∑ ∑ 𝑌𝑖𝑗𝑛
𝑗=1

𝑚
𝑖=1 (𝑚 × 𝑛)⁄ , 𝜀𝑖𝑗 is a 

random error term at the level 1 (i.e., 𝜀𝑖𝑗~𝑁𝐼𝐷(0, 𝜎𝑊2 )) corresponding to the 𝑗-th person in the 

𝑖-th group, 𝜍𝑖 is a random effect (i.e., 𝜍𝑖~𝑁𝐼𝐷(0, 𝜎𝐵2)) associated with the 𝑖-th cluster (or a 

random error term at the level 2), the within-group (between-person) variance component is 

given by 𝑉𝑎𝑟(𝜀𝑖𝑗) = 𝜎𝑊2 , the between-group variance component is given by 𝑉𝑎𝑟(𝜍𝑖) = 𝜎𝐵2, 

and the random error terms at the level 1 and level 2 are not correlated (i.e., 𝐶𝑜𝑣({𝜍𝑖}, {𝜀𝑖𝑗}) =

0). 

The (unconditional) intraclass correlation coefficient associated with the unconditional 

model is  

 

𝜌 = 𝜎𝐵
2

(𝜎𝑊2 + 𝜎𝐵2)
⁄ = 𝜎𝐵

2

𝜎𝑇2
⁄  

 

, where the (unconditional) total variance is defined as 𝜎𝑇2 = 𝜎𝑊2 + 𝜎𝐵2, 𝜎𝑊2  and 𝜎𝐵2 represents 

the error variances corresponding to the within- and between-group random variation, 
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respectively. 

In a hierarchical design (such as cluster-randomized experiment) involving statistical 

adjustment by covariate(s), the (covariate-adjusted, or conditional) intraclass correlation is 

defined by 

 

𝜌𝐴 =
𝜎𝐴𝐵2

(𝜎𝐴𝑊2 + 𝜎𝐴𝐵2 )
⁄ = 𝜎𝐴𝐵2

𝜎𝐴𝑇2
⁄  

 

, where the (covariate-adjusted) total variance is defined as 𝜎𝐴𝑇2 = 𝜎𝐴𝑊2 + 𝜎𝐴𝐵2 , 𝜎𝐴𝑊2  and 𝜎𝐴𝐵2  

represents the “adjusted” residual variances (or random-effect variance components adjusted 

by covariates) corresponding to the within- and between-group random variation, 

respectively. 

In order to evaluate the relative efficiency between unconditional and conditional 

hierarchical models, Hedges & Hedberg (2007) proposed two statistical auxiliary quantities  

 

𝜂𝐵2 =
𝜎𝐴𝐵2

𝜎𝐵2
⁄  

and 

𝜂𝑊2 = 𝜎𝐴𝑊2
𝜎𝑊2
⁄  

 

, where 𝜂𝐵2  indicates the proportion of between-group variance remaining, and 𝜂𝑊2  indicates 

the proportion of within-group variance remaining. Note that these two measures, along with 

𝑅𝐵2 = 1 − 𝜂𝐵2  and 𝑅𝑊2 = 1 − 𝜂𝑊2 , are useful to provide information of statistical variation for 

power and sample size computations, where 𝑅𝐵2  and 𝑅𝑊2  are defined as the proportion of 
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between-group and within-group variance explained by covariate(s) in hierarchical design, 

respectively. 

 

 

2.4. Raykov Approach 

 

In classical test theory (CTT), a given test score (𝑋) consists of two parts – the true 

score (𝑇) and the measurement error (𝐸) (Raykov & Marcoulides, 2011, pp.117-118); hence, 

the relationship can be mathematically described as 𝑋 = 𝑇 + 𝐸, where the true score variance 

is 𝑉𝑎𝑟(𝑇) ≡ 𝜎𝑇2, the error variance is 𝑉𝑎𝑟(𝐸) ≡ 𝜎𝐸2, plus the true score and error score are 

assumed to be mutually independent, i.e., 𝜌𝑇,𝐸 ≡ 𝐶𝑜𝑟𝑟(𝑇, 𝐸) = 0. According to the CTT 

equation, reliability coefficient (𝜌𝑋) is the ratio of the true score variance to observed score 

variance, and can be expressed as 𝜌𝑋 ≡ 𝜎𝑇2 𝜎𝑋2⁄ = 1 − 𝜎𝐸2 𝜎𝑋2⁄  , which is equivalent to a similar 

idea of the 𝑅2 index in regression analysis when predicting true score from observed score. 

Moreover, it is interesting to note that the standard error of measurement (SEM) is 𝜎𝐸 =

𝜎𝑋√1 − 𝜌𝑋 (Raykov & Marcoulides, 2011, pp.137-145). Thereby, within the CTT framework, 

it appears a strong connection between reliability coefficient and intraclass correlation 

coefficient in terms of statistical concepts and mathematical definitions (i.e., both share 

common ground to utilize variance accounted for).  

 

By the latent variable modeling (LVM) approach (Bartholomew, 1987), Raykov & 

Penev (2010) showed a procedure to evaluate reliability coefficients (such as point and 

interval estimators) in 2-level HLM unconditional and conditional models, and further derived 
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standard error (SE) estimates for reliability coefficients with logit transformation (i.e., 𝑘̂ ≡

𝑙𝑜𝑔𝑖𝑡(𝜌𝑋) = 𝑙𝑛[𝜌𝑋 (1 − 𝜌𝑋)⁄ ]) via Taylor series expansion method (aka Delta method) as 

𝑆𝐸(𝑘̂) = 𝑆𝐸[𝑙𝑜𝑔𝑖𝑡(𝜌𝑋)] = 𝑆𝐸(𝜌𝑋) [𝜌𝑋(1 − 𝜌𝑋)]⁄ , which can lead to an 100(1 − 𝛼)% large 

sample confidence interval using the standard normal Z distribution by 𝑘̂ ± 𝑍(1−𝛼) × 𝑆𝐸(𝑘̂) 

where 𝛼 ∈ (0,1) , and 𝑘̂ is a logit-transformed reliability coefficient, and 𝑆𝐸(𝑘̂) is the error 

measurement. 

 

As for intraclass correlation coefficients (ICC) in hierarchical designs (e.g., two-level 

models) within the LVM framework (Bartholomew et al., 2011), Raykov (2011) used the 

restrictive maximum likelihood (REML) estimators to find ICC in the two-level HLM 

structure (aka factorial random-effect ANOVA): 

 

(𝐿𝑒𝑣𝑒𝑙 1 𝑈𝑛𝑖𝑡) 𝑌𝑖𝑗 = 𝛽0𝑖 + 𝑟𝑖𝑗
(𝐿𝑒𝑣𝑒𝑙 2 𝑈𝑛𝑖𝑡) 𝛽0𝑖 = 𝑟00 + 𝑢0𝑖
(𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑈𝑛𝑖𝑡) 𝑌𝑖𝑗 = 𝑟00 + 𝑢0𝑖 + 𝑟𝑖𝑗

 

 

, where 𝑌𝑖𝑗 represents a response outcome score for the 𝑗-th individual subject (at the level 1; 

𝑗 = 1,… , 𝑛𝑖) in the 𝑖-th cluster group (at the level 2; 𝑖 = 1,… , 𝑘), 𝑟00 is the grand mean, 𝑟𝑖𝑗 is 

a random error term at the level 1 and assumed to be normally distributed with mean 0 and 

within-group variance 𝜎𝑊2  (i.e., 𝑟𝑖𝑗~𝑁𝐼𝐷(0, 𝜎𝑊2 )) corresponding to the 𝑗-th person in the 𝑖-th 

group, 𝑢0𝑖 is a random effect and assumed to be normally distributed with mean 0 and 

between-group variance 𝜎𝐵2 (i.e., 𝑢𝑖~𝑁𝐼𝐷(0, 𝜎𝐵2)) associated with the 𝑖-th cluster’s random 

deviation term at the level 2, and the random error terms at the level 1 and level 2 are 
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supposed to be mutually uncorrelated (i.e., 𝐶𝑜𝑟𝑟({𝑢0𝑖}, {𝑟𝑖𝑗}) = 0). In this LVM framework, 

the ICC is defined as the ratio of between-group variance to observed total variance 

𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 = 𝜎𝐵2 (𝜎𝐵2 + 𝜎𝑊2 )⁄  , where the within-group variance is 𝑉𝑎𝑟(𝑟𝑖𝑗) = 𝜎𝑊2 , and the 

between-group variance is 𝑉𝑎𝑟(𝑢0𝑖) = 𝜎𝐵2. The visualization of this LVM modeling approach 

using a path diagram is shown in Figure 2.5. 

 

 

Figure 2.5 Latent Variable Model for Estimation of Intraclass Correlation in 2-Level Design 

 

Note. The path diagram is inspired by the visualization of 2-level random coefficient models 

in the book of statistical multilevel modeling (Muthén & Muthén, 2012, Chapters 9 & 10).  

 

 

With the invariance property of MLE for the variance estimates in LVM, the ICC is 

given by 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 = 𝜎𝐵2 (𝜎̂𝐵2 + 𝜎𝑊2 )⁄ , where 𝜎𝐵2 and 𝜎𝑊2  are the between- and within-group 

variation estimates, respectively, obtained by the REML method in the two-level  LVM 

model. Note that according to Casella & Berger (2002, p.320), the invariance property of 

MLEs is stated as follows: If 𝜃 is the MLE of 𝜃, then for any one-to-one function 𝜏(𝜃), the 

MLE of 𝜏(𝜃) is 𝜏(𝜃). As for hypothesis testing, the test statistic for intraclass correlation is 
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given by a standard normal 𝑍 distribution for the pivotal quantity  

 

𝑍0 = (𝜌̂𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 − 𝜌0) 𝑆𝐸(𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠)⁄  

 

is used to test the simple hypotheses 𝐻0: 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 = 𝜌0 vs 𝐻𝑎: 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 ≠ 𝜌0 (i.e., a two-

tailed test at the significance level of 𝛼), or 𝐻0: 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 = 𝜌0 vs 𝐻𝑎: 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 ≥ 𝜌0 (i.e., a 

one-tailed test at the 𝛼 level), albeit this analytic strategy may only work for the large sample 

case, plus the lower bound of an interval estimation for 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 by this method may reach 

out below zero (i.e., an out-of-bounds value from the valid domain of ICC [0,1]).   

The LVM procedure can also be extended and used to evaluate ICC at two-level 

designs with discrete response variables (Raykov & Marcoulides, 2015a). Suppose the same 

two-level LVM setting above, but assume that the observed outcome score 𝑌𝑖𝑗 is recorded on a 

categorical scale (i.e., a discrete variable for the 𝑗-th unit at the level-1 of individual subject 

(𝑗 = 1,… , 𝑛𝑖) in the 𝑖-th unit at the level-2 of cluster group (𝑖 = 1,… , 𝑘)). In this situation 

with categorical responses, the traditional approach of ICC estimation (which presumes the 

outcome is continuous) needs to be modified by the following modification procedure via the 

LVM framework (Raykov & Marcoulides, 2011, Chapter 10 Introduction to Item Response 

Theory). First, consider the underlying latent structure “behind” an observed response variable 

(𝑘 possible cateogries) as  

 

𝑌𝑖𝑗 =

{
 
 

 
   1, 𝑖𝑓      𝜏0 < 𝑌𝑖𝑗∗ ≤ 𝜏1  
2, 𝑖𝑓      𝜏1 < 𝑌𝑖𝑗∗ ≤ 𝜏2 

⋮
  𝑘, 𝑖𝑓   𝜏𝑘−1 < 𝑌𝑖𝑗∗ ≤ 𝜏𝑘
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, where 𝑌𝑖𝑗∗  (∀ 𝑖, 𝑗) plays an important role of a continuous latent variable (i.e., 𝑌𝑖𝑗∗ ∈ ℝ), which 

is not only linked with the observed measure 𝑌𝑖𝑗 by a one-to-one linear transformation from 

one domain (latent space) to another (real space), but also used to assign a specific categorical 

value through the given thresholds points from {𝜏0, 𝜏1,… , 𝜏𝑘−1, 𝜏𝑘} (note: each threshold or 

cut-off point is a real number, and it holds that −∞ = 𝜏0 < 𝜏1 < ⋯ < 𝜏𝑘−1 < 𝜏𝑘 = ∞) 

(Raykov & Marcoulides, 2015b).  

Given this underlying latent structure above, the ICC estimator for a binary outcome (a 

special case of categorical outcome variables; Raudenbush & Bryk, 2002, p.334) can be 

derived by  

 

𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 =
𝜎𝐵2

(𝜎𝐵2 + 𝜋2 3⁄ )⁄  

 

, where 𝜎𝐵2 is the between-group variation, and 𝜋 is a mathematical constant 3.14159⋯ (note: 

the standard logistic distribution, with location = 0 and shape = 1, has a variance of 𝜋2 3⁄ ). 

Also notice that this ICC estimator for the dichotomous outcome case (say, 0 or 1) makes a 

strong assumption that the within-group variance 𝜎𝑊2  is held as a constant of 𝜋2 3⁄  over all 

individual subjects and groups; yet, this assumption of “a given constant within-group 

variance” is often not met in real-life data, and so the modified analytic strategies are needed 

for building non-constant within-group variances (which are data-driven and more flexible for 

a real world situation) into hierarchical generalized linear models (HGLM).  

Furthermore, the standard error of the ICC above (for the binary response case) can be 

approximately derived via Delta method (Raykov & Marcoulides, 2004; Hedges et al., 2012), 
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which is given by  

 

𝑆𝐸(𝜌̂𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠) ≈ √
(1 − 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠)2

𝜎𝑇4
⁄ × 𝑉𝑎𝑟(𝜎𝐵2) = √

(1 − 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠)2
𝜎𝑇4
⁄ × 𝑆𝐸(𝜎𝐵2) 

 

, where 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠  is the ICC estimate, the total variance estimate is 𝜎𝑇2 = 𝜎̂𝐵2 + 𝜋2 3⁄  

(assuming the within-group variance is a constant of 𝜋2 3⁄ ), and 𝜎̂𝐵2 is the between-group 

variance estimate.  
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CHAPTER 3 
 

LITERATURE IN REHABILITATION COUNSELING 
 
 

This chapter presents literature of EBP in rehabilitation counseling using the RSA-911. 

The state vocational rehabilitation (VR) agencies collect and report summary data in a 

federally mandated format called the Rehabilitation Services Administration (RSA) Case 

Service Report, aka the RSA-911 (Schwanke & Smith, 2004). The RSA-911 provides 

researchers in the field of rehabilitation counseling an open playground and additional resource 

for deep learning and data mining. Not only does the RSA-911 allow multi-faceted explorations 

of complex issues about people with disabilities in VR, but rehabilitation researchers can also 

probe extensively into big data to examines the hidden components or latent factors contributed 

to successful VR outcomes (Pi & Thielsen, 2011). Moreover, rehabilitation practitioners and 

scholars can take full advantage of the RSA-911 data to develop evidence-based practices, 

particularly for individual-level and employment-focused interventions, effective strategies, as 

well as best practices to promote independent living and positive outcomes for individuals with 

disabilities (Fleming et al., 2013).  

With EBP as a cookbook approach to rehabilitation counseling (Kosciulek, 2010), it 

provides the fundamental framework for rehabilitation counseling practitioners that 

incorporates the available scientific evidence with the expertise of clinical judgement skills to 

make best decisions about interventions, services, or treatments for people with disabilities. In 

this manner, EBP guidelines also suggests rehabilitation counselors to identify relevant 

literature and systematic research, to assess different available information resources such as the 

RSA-911 data, and to constitute “best available evidence” on rehabilitation services for people 
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with disabilities. So, with the data-driven framework using information on RSA-911, which 

research method or statistical approach can provide insights to work best for whom (target 

populations), how (intervention or treatment programs), and under what condition 

(rehabilitation support or other types of services)? This literature review surveys recent 

academic knowledge on those key questions and provides a firm foundation to this study.  

 

The following is a summary of literature review of statistical methods using the RSA-911. 

 

3.1. Multilevel Analysis 

 

Hierarchical data structures are often seen in educational and social research studies. For 

example, in rehabilitation counseling, VR clients are grouped into organizational buildings and 

structures or field offices, which are nested into different local districts, and local districts can 

be nested into states or regions, and so on. So, it is important to take into account all these 

hierarchical data structures and topological data relationships by using multilevel analysis 

(hierarchical linear models). Note that conventional regression models often underperform 

statistical estimation and inference (e.g., inflation of standard errors, and relative bias in ICC) in 

hierarchically structured data due to non-normal residuals resulted from the interrelation 

between subjects (which somewhat leads to violation of the important assumptions of 

independence, homogeneity and normality) (Maas & Hox, 2004; Raudenbush & Bryk, 2002).  

Chan and his colleagues (2014) used RSA-911 data in FY 2005 (before the economic 

recession) and FY 2009 (after the economic recession) to study the impact of the contextual 
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factor of state unemployment rate, and its impact on the employment opportunities and 

outcomes in VR. By the (2-level) hierarchical (generalized) linear modeling approach, they 

found state unemployment rate (the contextual variable) was having a significant moderation 

effect on the relationship between personal factors (demographic and disability variables) and 

competitive employment. 

Alsaman & Lee (2017) examine the relationships between contextual factors, individual 

factors, and employment outcomes of transition youth with disabilities in VR using the RSA-

911 in FY 2013 by the 2-level hierarchical generalized linear modeling. They found state 

unemployment rates were having the indirect interaction impacts on the relationships between 

individual characteristics, rehabilitation services, and successful employment. For example, the 

state unemployment rate increased, the disparity in successful VR closure decreased across 

some types of disabilities such as intellectual disabilities, TBI, or youth with autism and other 

communicative disabilities (in comparison to the reference group of physical disabilities). 

Pi (2006) constructed the 2-level hierarchical structure model with the micro- and 

macro-level factors related to VR outcomes using RSA-911 in FY 2002. Results showed the 

micro-level variables (i.e., age, education, minority, SSI/DI, disability significance, services – 

rehabilitation technology, job placement assistance, on-the-job-support, and diagnosis & 

treatment) were more related to rehabilitation outcomes than the macro-level variables (i.e., 

counselors who met CSPD requirements, proportion of clients with significant disabilities, 

unemployment rate, proportion of minority population). Note: CSPD=Comprehensive System 

of Personnel Development. 
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3.2. Structural Equation Model  

 

The structural equation modeling (SEM) with latent constructs (unobserved factors) and 

manifest variables (truth realizations) is one type of structural causal modeling (statistical 

models for causation) that is built (through a path diagram for visualization) to identify the 

underlying factor structure explaining the direct and/or indirect effects of latent constructs and 

their inter-relationships on outcomes of interest (Raykov & Marcoulides, 2006). In the VR 

context, SEM can be used to understand complex theoretical models (or EBP) and to find 

important predictive associations (using latent factor analysis) among individual characteristics, 

rehabilitation services, and employment outcomes (Austin & Lee, 2014).  

Kosciulek & Merz (2001) conducted structural analysis of consumer-directed theory of 

empowerment for consumers with disabilities in the community rehabilitation program. 

Chan et al. (2007) provided an overview of the basic concepts and applications of SEM 

(e.g., confirmatory factor analysis) in counseling, psychology, and rehabilitation research.  

Austin & Lee (2014) built a structural equation model of VR services (consisting of job-

related and person-related factors) via RSA-911 in FY 2009, to study predictors of employment 

outcomes in VR for people with intellectual and co-occurring psychiatric disabilities. The study 

found job-related services such as job placement, job search, job readiness, and on-the-job 

support, were to significantly predict competitive employment outcomes.    
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3.3. Classification Tree Model 

 

The tree model is a data-mining technique via the classification method of CHAID – 

Chi-squared Automatic Interaction Detection algorithm – to explore hidden relationships and 

predictive information in a large database (Tan et al., 2005). In the classification tree procedure, 

the tree-based model is designed to classify all subjects into homogeneous subgroups by their 

attributes. Additionally, the “exhaustive” classification procedure is quite useful to uncover the 

complex multivariate system like the VR process by providing useful “grouping” information.  

Rosenthal et al. (2007) used the data mining approach via RSA-911 data in FY 2001 to 

examine factors (i.e., services) affecting outcomes in the VR process for individuals suffering 

psychiatric disabilities. Results showed receiving job placement services was found to be the 

most important variable and had a positive effect for the target population in VR. 

Schoen (2010), and Schoen & Leahy (2012) conducted an examination of 

demographics, services, and employment outcomes for people with spinal cord injury in VR 

between FY 2004 and FY 2008 by data mining models via RSA-911 data. Findings suggested 

the most significant predictors of employment were level of education attained, cost of 

purchased services, days from application to closure, rehabilitation technology, job placement 

assistance, and job supports. 

Lee and his colleagues (2012), and Lee (2014) tried to discover the VR evidence-based 

best practices using a data mining approach of decision (or classification) tree models through 

the RSA-911 data in FY 2011 and FY 2013, respectively, to study the inter-relationships of VR 

measurements between services delivery, personal backgrounds and rehabilitation outcomes for 
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people with disabilities in State of Michigan. 

 

3.4. Other Methods such as Social Network Analysis and Spatial Analysis   

 

Spatial analysis is a type of geographical/locational analysis (statistics) which seeks to 

explain patterns of human behavior (e.g., rehabilitation outcomes) and its spatial expression 

(residential areas). The geostatistical model can predict the spatial patterns (using geographical 

information) in the complex networks or systems (like RSA-911) for spatial decision-making 

support and solving geographic issues in planning and policy development (Mayhew, 2015). 

Sink et al. (2014) developed location theory in VR to study effectiveness of service 

delivery and consumption for persons with disabilities using the geographic information system 

(GIS) and data from West Virginia Division of Rehabilitation Services (including RSA-911 and 

Census data). The findings supported the value of public VR field office or facility location and 

its effectiveness and efficiency for people with disabilities to achieve or maintain employment. 

Social network analysis is the process of investigating social structures through the use 

of graph and network theory. The social networking model characterizes individual links or ties 

(relationships or interactions) within a networked structure (such as the VR system). One key 

feature of this social network analysis is visual representation (via sociograms) which provides 

pivotal information about attributes within a network (e.g., positive or negative relationships 

between services and outcomes in the VR network data) (Schneider, 2018).  

Ditchman et al. (2018) applied social network analysis, via the RSA-911 data in FY 

2009, to examine service patterns and their relationships with employment outcomes for 
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transition-age individuals with autism spectrum disorder (ASD). By social network analysis, six 

core VR services were found positively linked with a better employment outcome, including: 

assessment, counseling & guidance, job placement, job search, job support and transportation. 

 

3.5 Justification for Covariates Used in Multilevel Analysis  

 

The Rehabilitation Act of 1973 (and its Amendments of 1986, 1992) was legislated with 

the goal of providing individuals with disabilities with equal opportunities to achieve 

employment, independent living, and self-sufficient as the general population without 

disabilities. Under the law, state VR programs are to help people with disabilities to obtain or 

maintain employment through rehabilitation services, which may include but not limited to 

assessment, vocational rehabilitation counseling & career guidance, educational training (e.g., 

colleges or universities), job coaching, job placement services, on-the-job support training, 

transportation and miscellaneous services (see Appendix A for the definitions of VR variables 

used in the study; Rehabilitation Services Administration Policy Directive, 2013).  Many 

research studies have been conducted to examine the relationships between various factors (i.e., 

individual characteristics, VR services, VR counselors, and environmental factors) and 

rehabilitation outcomes. Based on a systematic review on VR outcomes in relation to VR 

factors, previous rehabilitation studies confirms the VR variables of interest in this study 

(including individual characteristics, employment backgrounds, rehabilitation services) are all 

supported by the VR foundations with the significance of associations with successful 

employment outcomes for people with disabilities (Alsaman & Lee, 2016; Bolton et al., 2000; 

Chan et al., 2014; Dutta et al., 2008; Moore et al., 2000, 2001, 2002a, 2002b, 2004).        
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CHAPTER 4  
 

METHODS AND RESEARCH QUESTIONS 
 
 

In this chapter, it provides analytic strategies of experimental planning for cluster (or 

group) randomized design structure with respect to power & sample size calculations using 

intraclass correlation coefficient (or ICC) via hierarchical linear model (HLM) and hierarchical 

generalized linear model (HGLM). By the bootstrapping simulations (Givens & Hoeting, 2012; 

Rizzo, 2007), the methods are proposed to evaluate statistical performance of ICC, in terms of 

relative bias, estimation error, and inference on parameter, via HLM & HGLM using the real 

data set of RSA-911 from the U.S. Department of Education and Labor. In the RSA-911 data of 

this study, the target population focuses on those people with disabilities who had been served 

in Michigan in fiscal year (FY) 2015. In addition, the two-stage sampling approach is used to 

generate the simulated data sets with the cluster-randomized design structure, where individual 

subject (person with disability) is for Level 1 and structure (rehabilitation office) is for Level 2.  

 

4.1 Research Methods 

 

Three proposed ICC estimation methods are shown for different statistical settings and 

experimental design purposes using multilevel models:  

Method 1 – the ICC estimator (via Pearson correlation & F of ANOVA) given by a 

balance design (equal size of 𝑛 individual subjects across 𝑘 groups) is shown in Equations 1 
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and 2: 

 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 =  
{[𝑘 ∑ (𝑥̅𝑗 − 𝑋̅)

2𝑛
𝑗=1 ] − 𝑛𝑆2}

𝑛𝑆2(𝑘 − 1)
⁄     (1) 

and 

 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠  =
(𝑀𝑆𝐴 −𝑀𝑆𝑊)

[𝑀𝑆𝐴 + (𝑛 − 1)𝑀𝑆𝑊]⁄  (2) 

 

, where 𝑛 is group sample size, 𝑗 is the index of samples, the among-group mean is 𝑥̅𝑗 (from 

the 𝑗-th sample over all 𝑘 groups), the common mean is 𝑋̅, the common variance is 𝑆2, 𝑀𝑆𝐴 

and 𝑀𝑆𝑊 are Mean Squares Among and Mean Squares Within from ANOVA, respectively. 

Method 2 – the ICC estimator (via Pearson correlation & F of ANOVA) given by an 

unbalance design (unequal size of 𝑛𝑖 individual subjects across 𝑘 groups, for 𝑖 = 1,⋯ , 𝑛) is 

shown in Equation 3: 

 

 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠  =
(𝑀𝑆𝐴 − 𝑀𝑆𝑊)

[𝑀𝑆𝐴 + (𝑛0 − 1)𝑀𝑆𝑊]⁄  (3) 

 

, where 𝑛0 = [𝑁 − ∑ 𝑛𝑖2 𝑁⁄𝑘
𝑖=1 ] (𝑘 − 1)⁄  is the “adjusted” group sample size for ICC 

estimation, and 𝑁 is the total sample size (i.e.,  𝑁 = ∑ 𝑛𝑖𝑘
𝑖=1 ), 𝑀𝑆𝐴 and 𝑀𝑆𝑊 are Mean 

Squares Among and Mean Squares Within from ANOVA, respectively. 

Note that Pearson correlation estimate requires numerical approximation of -2 log likelihood. 
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Method 3 – find auxiliary information (based on the ICC estimate from Method 1 or 2) 

for experimental planning in designs (design effect and minimum detectable effect size with 

respect to desired power & required sample size):  

(a) Design effect (DE), or variance inflation factor (VIF), is defined in Equation 4 as 

 

 𝐷𝐸 = 𝑉𝐼𝐹 = [1 + (𝑛 − 1)𝜌] (4) 

 

, where the intraclass correlation coefficient is 𝜌 = 𝜎𝐵2 (𝜎𝐵2 + 𝜎𝑊2 )⁄  , or alternatively 𝜌 =

1 − 𝜎𝑊2 (𝜎𝐵2 + 𝜎𝑊2 )⁄ , which provides a statistical measure of homogeneity within the 

clusters, 𝑛 is group sample size for a balanced design case (or, alternatively, 𝑛0 can be 

substituted for 𝑛 in an unbalanced design). 

(b) The unconditional intraclass correlation coefficient is shown in Equation 5: 

 

 𝜌 = 𝜎𝐵
2

(𝜎𝑊2 + 𝜎𝐵2)
⁄ = 𝜎𝐵

2

𝜎𝑇2
⁄  (5) 

 

, where the unconditional total variance is 𝜎𝑇2 = 𝜎𝑊2 + 𝜎𝐵2 , 𝜎𝑊2  and 𝜎𝐵2 represent the 

error variances corresponding to the within- and between-group variation, respectively. 

In a hierarchical design, such as cluster-randomized experiment, involving statistical 

adjustment by covariate(s), the conditional (or covariate-adjusted) intraclass correlation 

is described in Equation 6:  
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 𝜌𝐴 =
𝜎𝐴𝐵2

(𝜎𝐴𝑊2 + 𝜎𝐴𝐵2 )
⁄ = 𝜎𝐴𝐵2

𝜎𝐴𝑇2
⁄  (6) 

 

, where the covariate-adjusted total variance is 𝜎𝐴𝑇2 = 𝜎𝐴𝑊2 + 𝜎𝐴𝐵2  , 𝜎𝐴𝑊2  and 𝜎𝐴𝐵2  

represent the random-effect variance components, adjusted by covariates, corresponding 

to the within- and between-group random variation, respectively. 

(c) Four proposed statistical auxiliary quantities for evaluating the relative efficiency 

between unconditional and conditional hierarchical models, are shown as follows. The 

first two for measuring “variance remaining” are described in Equations 7 and 8: 

 

 𝜂𝐵2 =
𝜎𝐴𝐵2

𝜎𝐵2
⁄  (7) 

and 

 𝜂𝑊2 = 𝜎𝐴𝑊2
𝜎𝑊2
⁄  (8) 

 

, where 𝜂𝐵2  indicates the proportion of between-group variance remaining, and 𝜂𝑊2  

indicates the proportion of within-group variance remaining.  

The other two supplementary measures for variance explained by covariates (also 

serving the complementary side of measurements in Equations 7 and 8) are described below in 

Equations 9 and 10: 
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 𝑅𝐵2 = 1 − 𝜂𝐵2  (9) 

and  

 𝑅𝑊2 = 1 − 𝜂𝑊2  (10) 

 

, where 𝑅𝐵2  and 𝑅𝑊2  are defined as the proportion of between-group and within-group 

variance explained by covariate(s) in hierarchical design, respectively. 

 

4.2 Proposed Models 

 

Four hierarchical modeling structures (Models 1-4 as shown below) are considered in 

the study to test the proposed methods. And three “breaking variables” – significance of 

disability (yes/no), type of disability (nominal measure with 10 categories), and previous work 

experience (yes/no) – are included in all four models for separate (subgroup-specific) analyses 

by breaking down the whole sample into different subsets based on the shared characteristics. 

Model 1 – Unconditional Model (no covariate-adjusted) 

Model 2 – Conditional Model (covariate-adjusted by Covariate Set 1) 

Covariate Set 1 consisting of demographic characteristics includes: (a) gender (male or 

female); (b) minority (yes or no); (c) age (continuous measure); (d) SES by social security 

and/or insurance benefits (yes or no); (e) educational background (ordinal measure). 
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Model 3 – Conditional Model (covariate-adjusted by Covariate Set 2) 

Covariate Set 2 consisting of VR service variables includes: (a) job placement 

assistance (binary; received or not received); (b) on-the-job supports (binary; received or not 

received); and (c) rehabilitation technology (binary; received or not received). 

Model 4 – Conditional Model (covariate-adjusted by Covariate Set 3) 

Covariate Set 3 combines both Covariate Sets 1 and 2 altogether into one set. 

There are two different VR outcomes used in simulation analyses – (1) competitive 

employment outcome (yes/no); and (2) weekly earnings (a continuous measure) = rehabilitation 

outcome (a dichotomous 0 or 1 measure) X weekly income (a continuous measure), where the 

weekly earnings can also be deemed as an indicator of quality of employment outcomes 

achieved at exit in the VR (Chan et al., 2016; O’Neill et al., 2015). 

Note. The total number of all combinations of analyses (4 Models X 2 Outcomes) = 8. 

 

4.3 Research Questions 

 

Our proposed methods are used to address the following research questions: 

In order to evaluate the simulation results, descriptive statistics of ICC are provided to 

answer Research Question 1 (RQ1) & Research Question 2 (RQ2) below. In addition, statistical 

performance (precision and accuracy) of ICC under the designated conditions using randomized 

cluster samples is examined by statistical bias (or average bias) and its error variance (or mean 

square error) to answer Research Question 3 (RQ3) below. Furthermore, the usable samples in 
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the “whole” data set of RSA-911 are used as a collection of the true parameters of ICC in RQ1; 

then, in the bootstrapping computations (Ross, 2013), the full data set of RSA-911 is resampled 

100 times (number of bootstrapping repetitions=100) under the given sampling conditions for 

ICC estimation using the “bootstrap” samples in RQ2. At the end, by comparing the differences 

in ICC estimates between RQ1 and RQ2, it shows which one of estimation methods, designated 

models, and sampling conditions, can provide the best results of statistical performance of ICC 

estimation and inference at multilevel design with randomized cluster samples (RQ3). 

Research Question 1 (RQ1): What are the “true” intraclass correlation values (ICC 

estimate, standard error, p-value and 95% confidence limits) in the usable samples given by the 

breaking variables for subset analysis (Models 1-4)? How are ICC estimates distributed in 

Models 1-4? What are the differences in the ICC estimates among Models 1-4?    

Research Question 2 (RQ2): Given the designated cluster randomized structure (i.e., the 

number of groups = 5, 15, 25; the number of subjects = 50, 100, 150), what are the intraclass 

correlation estimates (ICC estimate, standard error, and p-value) using the “bootstrap” samples 

(the number of bootstrap repetition=100) given by breaking variables under Models 1-4? 

Research Question 3 (RQ3): Comparing the results between Research Question 1 

(population model) and Research Question 2 (bootstrap subsample model), which modeling 

structure (Models 1-4) can provide the best statistical properties of ICC estimation and 

inference, in terms of statistical bias (mean difference in ICC estimates between RQ1 and 

RQ2), mean squared error or mean squared deviation (average squared difference in ICC 

estimates between RQ1 and RQ2), and parameter coverage rate (proportion of true parameter 

“hits” by 95% confidence interval for ICC, using the results of RQ1 and RQ2)? 
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4.4 Description of RSA-911 Data 

 

The RSA-911 data in FY 2015 (which RSA-911 is supporting information by state VR 

agencies for rehabilitation services administration by the U.S. Department of Education) is used 

to test the proposed methods for the ICC in different simulation scenarios of multilevel 

structure models. As for the foundations of evidence-based rehabilitation, the target population 

is defined as the entire group of the “usable” clients (who were having an individualized plan 

for employment, IPE, and had been receiving VR services already by their IPE) from the public 

VR program in the State of Michigan. There are 33 VR office structures in Michigan that are 

used as an indicator of level-2 units in HLM & HGLM analyses in the simulation study. 

 

4.5 Simulation and Analysis Plan 

 

To address the proposed research questions, a simulation study via the existing RSA-

911 data (representing a complex system in a real-world situation) is conducted by 2-level 

hierarchical design modeling, where individual is on level-1, and office is on level-2. Two types 

of the proposed hierarchical models are considered in analyses: (1) unconditional model 

(without covariates) is designed by Model 1; and (2) conditional model (with covariates) is 

given by Models 2-4.  To test proposed multilevel designs and their modeling structures in 

different sampling scenarios (i.e., “full data set” versus “three schemes of cluster samples”), we 

apply a simulation analysis to compare the results between unconditional and conditional 
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models, with respect to four different sampling schemes (i.e., the “population” model by the full 

data set in RQ1, plus three different cluster sampling procedures in RQ2). Furthermore, in test 

design and evaluation, three outcomes of interest in the study (rehabilitation outcome, 

competitive employment, and quality of employment) are used to examine the statistical 

performance (effectiveness analyses) of the proposed models and the simulation results, in 

terms of statistical bias, error bias, and accuracy & precision (in RQ3). 

 

A graphic overview of the simulation process in the study is shown as a workflow chart 

below in Figure 4.1. 

Figure 4.1 A Workflow Diagram of Simulation-based Exploration and Evaluation for the ICC 

 

 

In computer simulations via the RSA-911, the statistical software R (Linear Mixed 
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Model lmer and Generlized Linear Mixed Model glmer in the package of lme or lme4), IBM 

SPSS (Mixed Effect Model by MIXED; Generalized Linear Mixed Model by GENLINMIXED; 

Variance Component Analysis by VARCOMP), SAS (Mixed Effect Modeling through Proc 

Mixed; Generalized Linear Mixed Model via Proc Glimmix), and Stata (Multilevel Mixed 

Model through Xtmixed or Mixed) are used for conducting statistical analysis and outcome 

performance evaluation for simulation results of ICC estimation and statistical inference. 

 

4.6 Theoretical Framework of HLM and HGLM in 2-Level Cluster Randomized Design 

 

This section provides mathematical details of multilevel modeling structures used in the 

study. 

 

4.6.1. HLM in 2-Level Cluster Randomized Structure via RSA-911 

 

In the two-level hierarchical design structure (i.e., individuals are at the level 1, and 

offices are at the level 2), the unconditional model (involving with no covariates) is described in 

Equation 11: 

 

 
(𝐿𝑒𝑣𝑒𝑙 1) 𝑌𝑖𝑗 = 𝛽0𝑖 + 𝜀𝑖𝑗
(𝐿𝑒𝑣𝑒𝑙 2) 𝛽0𝑖 = 𝜇00 + 𝜉𝑖
(𝑂𝑣𝑒𝑟𝑎𝑙𝑙) 𝑌𝑖𝑗 = 𝜇00 + 𝜉𝑖 + 𝜀𝑖𝑗

 (11) 
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, where 𝑌𝑖𝑗 represents an outcome for the 𝑗-th individual subject (at the level 1; 𝑗 = 1,… , 𝑛𝑖) in 

the 𝑖-th office (at the level 2; 𝑖 = 1,… ,𝑚), 𝜇00 is a grand mean outcome that can be estimated 

by ∑ ∑ 𝑌𝑖𝑗
𝑛𝑖
𝑗=1

𝑚
𝑖=1 (𝑚 × 𝑛)⁄ , 𝜀𝑖𝑗 is a random error term (or individual variation) at the level 1 

(i.e., 𝜀𝑖𝑗~𝑁𝐼𝐷(0, 𝜎𝑊2 )) corresponding to the 𝑗-th person in the 𝑖-th group, 𝜉𝑖  is a random effect 

(i.e., 𝜉𝑖~𝑁𝐼𝐷(0, 𝜎𝐵2)) associated with the 𝑖-th office (or cluster variation at the level 2), the 

within-cluster (i.e., between-person) variance component is given by 𝑉𝑎𝑟(𝜀𝑖𝑗) = 𝜎𝑊2 , the 

between-cluster variance component is given by 𝑉𝑎𝑟(𝜉𝑖) = 𝜎𝐵2, and the random error terms at 

the level 1 and level 2 are assumed to be not mutually correlated (i.e., 𝐶𝑜𝑣({𝜉𝑖}, {𝜀𝑖𝑗}) = 0). 

 

When a covariate (e.g., age groups) used in the hierarchical design, the conditional 

model (involving with one covariate centered at the group mean) is written in Equation 12: 

 

 
(𝐿𝑒𝑣𝑒𝑙 1) 𝑌𝑖𝑗 = 𝛽0𝑖 + 𝛽1𝑖(𝑋𝑖𝑗 − 𝑋̅𝑖∙) + 𝜀𝑖𝑗
(𝐿𝑒𝑣𝑒𝑙 2) 𝛽0𝑖 = 𝜇00 + 𝜇01 𝑋̅𝑖∙ + 𝜉𝑖
(𝑂𝑣𝑒𝑟𝑎𝑙𝑙) 𝑌𝑖𝑗 = 𝜇00 + 𝜇01 𝑋̅𝑖∙ + 𝛽1𝑖(𝑋𝑖𝑗 − 𝑋̅𝑖∙) + 𝜉𝑖 + 𝜀𝑖𝑗

 (12) 

 

, where the covariate model uses group (office) mean centering for reducing correlation 

between groups (Paccagnella, 2006; Raudenbush & Bryk, 2002), the Level 1 model is for the 𝑗-

th person (𝑗 = 1, … , 𝑛𝑖) and the Level 2 is for the 𝑖-th group (𝑖 = 1, … ,𝑚), 𝑋𝑖𝑗 is the covariate 

for the 𝑗-th individual subject in the 𝑖-th office, 𝑋̅𝑖∙ is group mean for the 𝑖-th group, 𝜉𝑖  is a 
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random effect of the 𝑖-th office (a random residual at Level 2), 𝜀𝑖𝑗 is an individual error term for 

the 𝑗-th person (a random residual at Level 1), 𝛽1𝑖 is the common covariate’s slope (assuming 

all covariate’s slopes are equal across offices), 𝜇00 is grand mean, and independence between 

errors at levels 1 and 2. 

 

4.6.2. HGLM in 2-Level Cluster Randomized Structure via RSA-911 

 

Suppose that 𝑌𝑖𝑗 is a binary outcome variable for the 𝑗-th individual subject (at the level 

1; 𝑗 = 1,… , 𝑛𝑖) from the 𝑖-th cluster (office). In the 2-level cluster randomized trial, the 2-level 

hierarchical generalized linear model, HGLM, (involving with no covariates) is given in 

Equation 13:  

 

 𝑙𝑜𝑔𝑖𝑡(𝑌𝑖𝑗) = 𝑙𝑜𝑔[𝑃𝑖𝑗 (1 − 𝑃𝑖𝑗)⁄ ] = 𝜇00 + 𝜉𝑖 + 𝜀𝑖𝑗 (13) 

 

, where 𝑌𝑖𝑗 denote a dichotomous outcome (coded as zero or one) for the 𝑗-th individual subject 

(at the level 1; 𝑗 = 1, … , 𝑛𝑖) from the 𝑖-th office (at the level 2; 𝑖 = 1,… ,𝑚), 𝜇00 is grand 

mean, 𝜀𝑖𝑗 is an individual error term at the level 1 (i.e., 𝜀𝑖𝑗~𝑁𝐼𝐷(0, 𝜎𝑊2 )) corresponding to the 

𝑗-th person in the 𝑖-th group, 𝜉𝑖  is a random effect (i.e., 𝜉𝑖~𝑁𝐼𝐷(0, 𝜎𝐵2)) associated with the 𝑖-th 

group (or office variation at the level 2), the within-group variance is given by 𝑉𝑎𝑟(𝜀𝑖𝑗) = 𝜎𝑊2 , 

the between-group variance is given by 𝑉𝑎𝑟(𝜉𝑖) = 𝜎𝐵2, and the random error terms at the level 

1 and level 2 are assumed to be not mutually independent (i.e., 𝐶𝑜𝑣({𝜉𝑖}, {𝜀𝑖𝑗}) = 0). 
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When a covariate (e.g., minority groups) used in the 2-level generalized hierarchical 

design, the conditional model (involving with one covariate centered at the group mean) is 

written in Equation 14: 

 

 
𝑙𝑜𝑔𝑖𝑡(𝑌𝑖𝑗) = 𝑙𝑜𝑔[𝑃𝑖𝑗 (1 − 𝑃𝑖𝑗)⁄ ]

= 𝜇00 + 𝜇01 𝑋̅𝑖∙ + 𝛽1𝑖(𝑋𝑖𝑗 − 𝑋̅𝑖∙) + 𝜉𝑖 + 𝜀𝑖𝑗 
(14) 

 

, where the generalized or binary covariate model is centered by cluster (office) mean, Level 1 

is denoted for the 𝑗-th person (𝑗 = 1,… , 𝑛𝑖) and Level 2 is denoted for the 𝑖-th group (𝑖 =

1,… ,𝑚), 𝑋𝑖𝑗 is a covariate for the 𝑗-th person in the 𝑖-th group, 𝑋̅𝑖∙ is group mean for the 𝑖-th 

cluster, 𝜉𝑖  is a random effect of the 𝑖-th office (a residual at Level 2), 𝜀𝑖𝑗 is an individual error 

for the 𝑗-th subject (a residual at Level 1), 𝛽1𝑖 is the common covariate’s slope (assuming 

covariate’s slopes are not the same across office structures), 𝜇00 is grand mean, and random 

errors at levels 1 and 2 are assumed to be mutually independent (Klar & Donner, 2001; 

Raudenbush & Bryk, 2002). 
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CHAPTER 5  
 

RESULTS 
 
 
 

5.1 Data Source and Sample Characteristics 

 

This study used the real data set of Rehabilitation Services Administration, RSA-911, in 

FY 2015 to examine and verify the proposed analytic methods of intraclass correlation (ICC) 

estimation and related inferential statistics (e.g., confidence interval and p-value) in different 

types of scenarios with respect to hierarchical design and modeling structure. The target 

samples are selected from people with disabilities who had been receiving services in the 

Michigan Rehabilitation Services Programs for vocational rehabilitation and supported 

employment. Note that in order to select usable samples for data simulations, this study only 

includes those samples having an individualized plan for employment (IPE) for services in 

vocational rehabilitation (VR), while all other subjects (ineligible for VR or not having an IPE) 

are excluded from the target samples and not considered further in data analysis for ICC 

calculations. In simulation analysis of the study, the target sample is of size N=17,633, while 

the usable sample size is n=11,819 for ICC estimation and inference. By hierarchical design & 

model considerations (i.e., individuals are on Level 1 and offices are on Level 2), all usable 

samples are distributed across 33 office units statewide in Michigan (see Tables B.1 and B.2 

and Figure B.1 in Appendix B for an illustration of the hierarchical spatial data structure for 

usable samples in Michigan from RSA-911). Individual characteristics of the usable samples 
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are described in Tables 5.1, 5.2 and 5.3 for more details.   

 
 
Table 5.1 Individual Characteristics of the Usable Samples (n=11,819) 
 

Demographic Background Frequency Percentage 

Gender   
Female 5,069 42.90% 
Male 6,750 57.10% 

Age   
Younger than 22 3,771 31.91% 
Ages 22-40 2,905 24.58% 
Ages 40-64 4,734 40.05% 
Older than 65 409 3.46% 

Minority   
Yes (Non-Whites) 7,757 65.63% 
No (Whites) 4,062 34.37% 

Education   
Elementary or Secondary 3,177 26.88% 
Special Education 840 7.11% 
High School  5,075 42.94% 
College Above 2,727 23.07% 

Social Security Benefits   
No 9,168 77.60% 
Yes 2,651 22.40% 

Total 11,819 100.00% 
Note1. Minority group is defined as the non-white populations (e.g., Black or African American, 
American Indian or Alaska Native, Asian, Native Hawaiian or Other Pacific Islanders). Non-
minority is defined as the white population (i.e., an individual’s origins come from Europe, the 
Middle East or North African, according to the RSA-911 Report Manual; also see Appendix A). 
Note2. Mean of Age = 36.4, and Standard Deviation of Age = 16.3. 
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Table 5.2 Disability & Rehabilitation Characteristics of the Usable Samples (n=11,819) 
 

Disability & Rehabilitation 
Information Frequency Percentage 

Type of Disability   
VI: Visual Impairments 87 0.70% 
HI: Hearing Impairments 1,989 16.80% 
PI: Physical Impairments 2,154 18.20% 
LD: Learning Disability 2,276 19.30% 
ADHD 443 3.70% 
ID 652 5.50% 
TBI 132 1.10% 
ASD: Autism  436 3.70% 
MI: Mental Illness 3,073 26.00% 
SA: Substance Abuse 577 4.90% 

Significance of Disability   
No 1,259 10.65% 
Yes 10,560 89.35% 

Previous Work Background   
No Work Experience  8,836 74.76% 
Had Work Experience 2,983 25.24% 

Job Placement Assistance Service   
Not Received 7,347 62.20% 
Received 4,472 37.80% 

On-the-job Supports Service   
Not Received 11,076 93.70% 
Received 743 6.30% 

Rehabilitation Technology Service   
Not Received 9,610 81.30% 
Received 2,209 18.70% 

Total 11,819 100.00% 
Note. VI=Visual Impairments or Blindness; HI=Hearing Impairments or Deafness; 
PI=Physical Impairments; LD=Learning Disabilities; ADHD= Attention Deficit Hyperactivity 
Disorder; ID=Intellectual Disability; TBI= Traumatic Brain Injury; ASD=Autism Spectrum 
Disorder; MI=Mental Illness; SA=Substance Abuse. 
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Table 5.3 Outcomes of the Usable Samples (n=11,819) 
 

Outcome Measure Frequency Percentage 

Rehabilitation Outcome   
Not Employment 5,201 44.01% 
Employment 6,618 55.99% 

Competitive Employment   
Not Competitive Employment 6,787 45.60% 
Competitive Employment 6,429 54.40% 

Weekly Earnings   
Below $100 Weekly Income 5,409 45.80% 
$100-$200 Weekly Income 1,647 13.90% 
$200-$300 Weekly Income 1,506 12.70% 
Above $300 Weekly Income 3,257 27.60% 

Total 11,819 100.00% 
Note1. Median of Weekly Earnings = 148.0, Mean of Weekly Earnings = 224.5, and Standard 
Error of Mean (SEM) of Weekly Earnings = 3.0. 
Note2. Weekly Earnings can also be deemed as an indicator of quality employment. 
 
 
 
 

5.2 Models and Variables Used for Simulations of ICC Analysis  

 

There are four multilevel modeling structures (Models 1-4; M1-M4) in the study to test 

the proposed methods of ICC estimation and inference. Furthermore, three disability-related 

covariates – significance of disability (dichotomous; W1), type of disability (nominal; W2), and 

previous work experience (dichotomous; W3) – are used as a “breaking” variable for subgroup 

analysis (i.e., separating the whole usable sample into different and mutually exclusive sub-

samples) in the all four designated models (M1-M4). Three covariate sets are considered for 

statistical adjustment in the multilevel modeling procedure: (1) Covariate Set 1 (CVS1) 
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includes demographic information such as gender (dichotomous; X1), minority (dichotomous; 

X2), age (continuous; X3), social security benefits (dichotomous; X4), and education 

background (ordinal or approximately continuous; X5); (2) Covariate Set 2 (CVS2) includes 

rehabilitation service information such as job placement assistance (dichotomous; X6), on-the-

job supports (dichotomous; X7), and rehabilitation technology (dichotomous; X8); (3) 

Covariate Set 3 (CVS3) combines the previous covariate sets together (both CVS1 and CVS2) 

to account for all individual information in multilevel modeling. Two different outcome 

measures, competitive employment (dichotomous; Y1) and weekly earnings (continuous; Y2), 

are used in the evaluation of each proposed method of ICC calculations. Note that the Pearson’s 

correlation structures between predictors, covariates and outcomes are shown in Tables 5.4 and 

5.5, and that the associations between disability type and outcomes are described via one-way 

analysis of variance (ANOVA) in Table 5.6. For outcome measure Y1, except for X1 (p-

value=0.41), all other predictors (X2-X8) and covariates (W1 & W3) are correlated with the 

outcome measure Y1 at the significance level of 0.05 (see Table 5.4). For outcome measure Y2, 

all predictors (X1-X8) and covariates (W1 & W3) are correlated with the outcome measure Y2 

at the significance level of 0.05 (see Table 5.5). For the association of W2 (Type of Disability) 

with both outcome measures Y1 & Y2, it demonstrates in Table 5.6 that disability type is a 

significant factor in explaining total variation of both outcome measures, and that the measure 

of strength of association (i.e., F-statistic in ANOVA along with Eta-squared as an  ICC effect 

size measure) is significant at the alpha level of 0.05. 

In all, it suggests those predictors (X1-X8) and covariates (W1-W3) have prospective 

associations with key outcome variables (Y1-Y2), and that this statistical evidence may provide 

supportive information linked to favorable and promising ICC calculations in the study. 
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Table 5.4 Correlation Structure of All Predictors and Outcome Y1 in Hierarchical Analysis 
 
 Y1 X1 X2 X3 X4 X5 X6 X7 X8 W1 W3 

Y1 1.00 0.01 -0.09 0.18 -0.16 0.16 0.07 0.07 0.31 -0.21 0.31 
X1 0.01 1.00 -0.01 -0.04 -0.02 -0.08 0.02 0.03 -0.05 0.03 -0.06 
X2 -0.09 -0.01 1.00 0.01 0.10 -0.05 -0.01 -0.06 -0.23 0.13 -0.19 
X3 0.18 -0.04 0.01 1.00 0.01 0.51 -0.16 -0.13 0.40 -0.26 0.36 
X4 -0.16 -0.02 0.10 0.01 1.00 0.00 0.10 0.12 -0.15 0.18 -0.17 
X5 0.16 -0.08 -0.05 0.51 0.00 1.00 -0.08 -0.10 0.29 -0.18 0.28 
X6 0.07 0.02 -0.01 -0.16 0.10 -0.08 1.00 0.21 -0.25 0.17 -0.26 
X7 0.07 0.03 -0.06 -0.13 0.12 -0.10 0.21 1.00 -0.10 0.07 -0.08 
X8 0.31 -0.05 -0.23 0.40 -0.15 0.29 -0.25 -0.10 1.00 -0.38 0.56 
W1 -0.21 0.03 0.13 -0.26 0.18 -0.18 0.17 0.07 -0.38 1.00 -0.39 
W3 0.31 -0.06 -0.19 0.36 -0.17 0.28 -0.26 -0.08 0.56 -0.39 1.00 

Note1. Y1=Competitive Employment; X1=Gender; X2=Minority; X3=Age; X4=Social Benefits; 
X5=Education; X6=Job Placement; X7=On-the-job Supports; X8=Rehabilitation Technology; 
W1=Significance of Disability; W3=Previous Work Experience. 
Note2. Except for X1 (p-value=0.41), all other predictors (X2-X8) and covariates (W1 & W3) 
are correlated with the outcome measure Y1 at the significance level of 0.05. 
Note3. W2 (Type of Disability) is not included, due to the categorical (nominal) measurement.  
 
   
Table 5.5 Correlation Structure of All Predictors and Outcome Y2 in Hierarchical Analysis 
 
 Y2 X1 X2 X3 X4 X5 X6 X7 X8 W1 W3 

Y2 1.00 0.05 -0.14 0.32 -0.22 0.28 -0.16 -0.07 0.51 -0.34 0.47 
X1 0.05 1.00 -0.01 -0.04 -0.02 -0.08 0.02 0.03 -0.05 0.03 -0.06 
X2 -0.14 -0.01 1.00 0.01 0.10 -0.05 -0.01 -0.06 -0.23 0.13 -0.19 
X3 0.32 -0.04 0.01 1.00 0.01 0.51 -0.16 -0.13 0.40 -0.26 0.36 
X4 -0.22 -0.02 0.10 0.01 1.00 0.00 0.10 0.12 -0.15 0.18 -0.17 
X5 0.28 -0.08 -0.05 0.51 0.00 1.00 -0.08 -0.10 0.29 -0.18 0.28 
X6 -0.16 0.02 -0.01 -0.16 0.10 -0.08 1.00 0.21 -0.25 0.17 -0.26 
X7 -0.07 0.03 -0.06 -0.13 0.12 -0.10 0.21 1.00 -0.10 0.07 -0.08 
X8 0.51 -0.05 -0.23 0.40 -0.15 0.29 -0.25 -0.10 1.00 -0.38 0.56 
W1 -0.34 0.03 0.13 -0.26 0.18 -0.18 0.17 0.07 -0.38 1.00 -0.39 
W3 0.47 -0.06 -0.19 0.36 -0.17 0.28 -0.26 -0.08 0.56 -0.39 1.00 

Note1. Y2=Weekly Earnings; X1=Gender; X2=Minority; X3=Age; X4=Social Benefits; 
X5=Education; X6=Job Placement; X7=On-the-job Supports; X8=Rehabilitation Technology; 
W1=Significance of Disability; W3=Previous Work Experience. 
Note2. All predictors (X1-X8) and covariates (W1 & W3) are correlated with the outcome 
measure Y2 at the significance level of 0.05. 
Note3. W2 (Type of Disability) is not included, due to the categorical (nominal) measurement.  
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Table 5.6 Summary of Mean Differences in the Outcomes between Type of Disability 
 

Type of Disability 
(W2) 

Competitive Employment 
Outcome (Y1) 

Quality of Employment 
Outcome (Y2) 

VI 0.62 250.15 
HI 0.86 578.54 
PI 0.49 199.74 
LD 0.48 140.62 
ADHD 0.47 135.19 
ID 0.48 103.63 
TBI 0.48 180.94 
ASD 0.52 123.64 
MI 0.46 138.34 
SA 0.50 173.38 
Overall Mean 

(Standard Error) 
0.54 

(SE=0.01) 
224.48 

(SE=3.02) 
F-value 

(p-value) 
118.36  

(p-value < 0.01) 
               421.52 

(p-value < 0.01) 
Eta-squared 

(or ICC) 0.08 0.24 

Note1. VI=Visual Impairments or Blindness; HI=Hearing Impairments or 
Deafness; PI=Physical Impairments; LD=Learning Disabilities; ADHD= Attention 
Deficit Hyperactivity Disorder; ID=Intellectual Disability; TBI= Traumatic Brain 
Injury; ASD=Autism Spectrum Disorder; MI=Mental Illness; SA=Substance Abuse. 
Note2. F-value is based on One-way Analysis of Variance (ANOVA). 
Note3. Eta-squared (𝜂2 = 𝑆𝑆𝐵𝑒𝑡𝑤𝑒𝑒𝑛/𝑆𝑆𝑇𝑜𝑡𝑎𝑙) is a measure of strength of 
association in ANOVA, and it can be computed as between-group sum of squares 
divided by total sum of squares, which is another form of effect-size measure of 
intraclass correlation coefficients (ICC). See more detail in Section 2.1. 

 

  There are two types of multilevel modeling structures in the simulation study. The first 

one is unconditional model (Model 1, or M1) with no covariates adjusted; and the second one is 

conditional model (Model 2-4, or M2-4) with an adjustment of covariates (i.e., M2|CVS1, 

M3|CVS2, and M4|CVS3). Note that CVS1 is a pre-specified covariate set 1 about 

demographic information in Model 2 (M2), CVS2 is about rehabilitation service information in 
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Model 3 (M3), and CVS3 is about all individual information linking both CVS1 and CVS2 in 

Model 4 (M4).   

 

The statistical model specification for both unconditional model (M1) and conditional 

model (M2-M4) is described as following: 

(1) Unconditional Model (Model 1; M1): 

In the two-level multilevel design structure (i.e., individual subjects are on the level 1, 

and office units are on the level 2), the unconditional model with no covariates-adjusted is 

shown in the system of Equation 15: 

 

 
(𝐿𝑒𝑣𝑒𝑙 1) 𝑌𝑖𝑗 = 𝛽0𝑖 + 𝜀𝑖𝑗
(𝐿𝑒𝑣𝑒𝑙 2) 𝛽0𝑖 = 𝜇00 + 𝜉𝑖
(𝑂𝑣𝑒𝑟𝑎𝑙𝑙) 𝑌𝑖𝑗 = 𝜇00 + 𝜉𝑖 + 𝜀𝑖𝑗

 (15) 

 

, where 𝑌𝑖𝑗 represents an outcome measure for the 𝑗-th individual subject (at the level 1; 𝑗 =

1,… , 𝑛𝑖;) in the 𝑖-th office unit (at the level 2; 𝑖 = 1,… ,𝑚; ∑ 𝑛𝑖𝑚
𝑖=1 = 𝑁), 𝜇00 is a grand mean 

outcome that can be estimated as ∑ ∑ 𝑌𝑖𝑗
𝑛𝑖
𝑗=1

𝑚
𝑖=1 𝑁⁄ , 𝜀𝑖𝑗 is a random error term (or individual 

variation) at the level 1 (i.e., 𝜀𝑖𝑗~𝑁𝐼𝐷(0, 𝜎𝑊2 )) corresponding to the 𝑗-th person in the 𝑖-th 

group, 𝜉𝑖  is a random effect (i.e., 𝜉𝑖~𝑁𝐼𝐷(0, 𝜎𝐵2)) associated with the 𝑖-th office (or cluster 

variation at the level 2), the within-cluster (i.e., between-person) variance component is given 

by 𝑉𝑎𝑟(𝜀𝑖𝑗) = 𝜎𝑊2 , the between-cluster variance component is given by 𝑉𝑎𝑟(𝜉𝑖) = 𝜎𝐵2, and the 
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random error terms at the level 1 and level 2 are assumed to be 𝐶𝑜𝑣({𝜉𝑖}, {𝜀𝑖𝑗}) = 0. 

 

(2) Conditional Model (Models 2-4; M2-M4) 

When a pre-specified covariate set (i.e., CSV1-CSV3) is added in the previous 

unconditional model (M1), the conditional model with a covariate set-adjusted, where the 

covariate set 𝑪𝑺𝑽 = [𝑋1𝑖𝑗, … ,𝑋𝑘𝑖𝑗] is to be centered at the group mean on each level, can be 

described in the system of Equation 16: 

 

 

(𝐿𝑒𝑣𝑒𝑙 1) 𝑌𝑖𝑗 = 𝛽0𝑖 + 𝛽1𝑖(𝑋1𝑖𝑗 − 𝑋̅1𝑖∙) + ⋯+ 𝛽𝑘𝑖(𝑋𝑘𝑖𝑗 − 𝑋̅𝑘𝑖∙) + 𝜀𝑖𝑗
(𝐿𝑒𝑣𝑒𝑙 2) 𝛽0𝑖 = 𝜇00 + 𝜇01 𝑋̅1𝑖∙ + ⋯+ 𝜇0𝑘 𝑋̅𝑘𝑖∙ + 𝜉𝑖

(𝑂𝑣𝑒𝑟𝑎𝑙𝑙) 𝑌𝑖𝑗 = 𝜇00 +∑ 𝜇0𝑙 𝑋̅𝑙𝑖∙
𝑘

𝑙=1
+∑ 𝛽𝑙𝑖(𝑋𝑙𝑖𝑗 − 𝑋̅𝑙𝑖∙)

𝑘

𝑙=1
+ 𝜉𝑖 + 𝜀𝑖𝑗

 (16) 

 

, where the conditional model with covariate mean adjustment uses group-mean centering for 

reducing correlation between groups (Paccagnella, 2006; Raudenbush & Bryk, 2002), Level 1 

is for the 𝑗-th person (𝑗 = 1, … , 𝑛𝑖) and Level 2 is for the 𝑖-th group (𝑖 = 1, … ,𝑚), 𝑋𝑙𝑖𝑗 is the 𝑙-

th covariate for the 𝑗-th individual subject in the 𝑖-th office, 𝑋̅𝑙𝑖∙ is group mean of the 𝑙-th 

covariate for the 𝑖-th group, 𝜉𝑖  is a random effect of the 𝑖-th office (a random residual at the 

level 2), 𝜀𝑖𝑗 is an individual error term for the 𝑗-th person (a random residual at the level 1), 𝛽𝑙𝑖 

is the 𝑙-th covariate’s slope for the 𝑖-th group (assuming each of slopes are varied across 

offices), 𝜇00 is grand mean, 𝜇0𝑙 is the slope regressed on the grand mean for the 𝑙-th covariate 

adjusted by group mean, and independence is assumed between errors at levels 1 and 2. 
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5.3 ICC Estimation Method and Its Inferential Statistics 

 

The proposed intraclass correlation (ICC) estimator via Analysis of Variance 

(ANOVA), shown below in Equation 17, is suitable for either a balanced (equal size over 

groups) or unbalance design (unequal size across groups): 

 

 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠  =
(𝑀𝑆𝐴 − 𝑀𝑆𝑊)

[𝑀𝑆𝐴 + (𝑛0 − 1)𝑀𝑆𝑊]⁄  (17) 

 

, where MSA is Mean Squares Among Groups in the ANOVA, MSW is Mean Squares Within 

Groups in the ANOVA, 𝑛𝑖 is the 𝑖-th group size, 𝑛0 = [𝑁 − ∑ 𝑛𝑖2 𝑁⁄𝑘
𝑖=1 ] (𝑘 − 1)⁄ , and 𝑁 is the 

total sample size, i.e., 𝑁 = ∑ 𝑛𝑖𝑘
𝑖=1 . Note that computational information pertinent to the 

ANOVA for the ICC estimator (in Equation 17) is specified below in great detail.  

 Suppose 𝑌𝑖𝑗 is decomposed by analysis of variance (ANOVA) for the intraclass 

correlation (ICC) estimator, where 𝑌𝑖𝑗 is an outcome measure for the 𝑗-th person (𝑗 = 1,… , 𝑛𝑖) 

in the 𝑖-th group (𝑖 = 1,… , 𝑘). The source of overall variation (or sum of squares, SS) is 

defined by 𝑆𝑆𝑇 = 𝑆𝑆𝐴 + 𝑆𝑆𝑊, where the among-group variation 𝑆𝑆𝐴 = ∑ ∑ (𝑌𝑖∙̅ −
𝑛𝑖
𝑗=1

𝑘
𝑖=1

𝑌∙∙̅)2, the within-group variation 𝑆𝑆𝑊 = ∑ ∑ (𝑌𝑖𝑗 − 𝑌𝑖∙̅)
2𝑛𝑖

𝑗=1
𝑘
𝑖=1 , and the total variation 𝑆𝑆𝑇 =

∑ ∑ (𝑌𝑖𝑗 − 𝑌∙∙̅)
2𝑛𝑖

𝑗=1
𝑘
𝑖=1 . The mean squares source (MS) in ANOVA can be obtained through 

the formula (i.e., regression toward the mean or the average of variation) 𝑀𝑆 = 𝑆𝑆/𝐷𝐹, that 
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is, 𝑀𝑆𝐴 = 𝑆𝑆𝐴/𝐷𝐹(𝐴𝑚𝑜𝑛𝑔 𝐺𝑟𝑜𝑢𝑝𝑠) and 𝑀𝑆𝑊 = 𝑆𝑆𝑊/𝐷𝐹(𝑊𝑖𝑡ℎ𝑖𝑛 𝐺𝑟𝑜𝑢𝑝𝑠), where 

𝑀𝑆𝐴 = 𝑆𝑆𝐴
𝐷𝐹(𝐴𝑚𝑜𝑛𝑔 𝐺𝑟𝑜𝑢𝑝𝑠)

= 𝑆𝑆𝐴
(𝑘−1)

= ∑ ∑ (𝑌𝑖∙̅ − 𝑌∙∙̅)2
𝑛𝑖
𝑗=1

𝑘
𝑖=1 (𝑘 − 1)⁄  is the mean variation 

among groups, 𝑀𝑆𝑊 = 𝑆𝑆𝑊
𝐷𝐹(𝑊𝑖𝑡ℎ𝑖𝑛 𝐺𝑟𝑜𝑢𝑝𝑠)

= 𝑆𝑆𝑊
𝑘(𝑛0−1)

= ∑ ∑ (𝑌𝑖𝑗 − 𝑌𝑖∙̅)
2𝑛𝑖

𝑗=1
𝑘
𝑖=1 [𝑘(𝑛0 − 1)]⁄  is 

the mean variation within groups (or the mean squared error), 𝐷𝐹(𝐴𝑚𝑜𝑛𝑔 𝐺𝑟𝑜𝑢𝑝𝑠) is 𝑘 − 1 

(for 𝑘 = the number of groups) representing the between-group degrees of freedom, the within-

group degrees of freedom 𝐷𝐹(𝑊𝑖𝑡ℎ𝑖𝑛 𝐺𝑟𝑜𝑢𝑝𝑠) is 𝑘 × (𝑛0 − 1) (for 𝑛0 = the average number 

of within-group subjects = weighted mean group size). Note that the original idea of analysis of 

variable (ANOVA) for ICC estimation can be referred to Table 2.1 (Donner & Koval, 1980a). 

Furthermore, the variance of the ICC estimate can be obtained by  

 

 

𝑉𝑎𝑟(𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠)

= 2𝑁(1 − 𝜌)2
𝑁∑ [𝑛𝑖(𝑛𝑖 − 1)𝑉𝑖𝑊𝑖

−2]𝑘
𝑖=1 − 𝜌2[∑ 𝑛𝑖(𝑛𝑖 − 1)𝑊𝑖

−1𝑘
𝑖=1 ] ⁄  

(18) 

 

, where the sampling weights are 𝑉𝑖 = 1 + (𝑛𝑖 − 1)𝜌2 and 𝑊𝑖 = 1 + (𝑛𝑖 − 1)𝜌, the total 

sample size is 𝑁 = ∑ 𝑛𝑖𝑘
𝑖=1 , and 𝜌 is the ICC estimate as 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 .  

Thus, the standard error of the ICC estimate is 𝑆𝐸(𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠) = √𝑉𝑎𝑟(𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠) . 

The proposed testing statistic of the ICC estimate (𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠) can be written that  

 

 𝐹0 =
𝑀𝑆𝐴
𝑀𝑆𝑊 (19) 
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, where the test statistic 𝐹0 follows an 𝐹 distribution with degrees of freedom 𝑑𝑓1 = 𝑘 − 1 and 

𝑑𝑓2 = 𝑘 × (𝑛0 − 1), for hypothesis testing 𝐻0: 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 = 0 versus 𝐻𝑎: 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 ≠ 0. 

Given the sampling 𝐹 distribution for the ICC estimate, the 100(1 − 𝛼)% confidence 

interval on the intraclass correlation can be obtained by  

 

 
𝑃(

𝐹0 − 𝐹1−𝛼2,𝑑𝑓1,𝑑𝑓2
𝐹0 + (𝑛0 − 1) × 𝐹1−𝛼2,𝑑𝑓1,𝑑𝑓2

≤ 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 ≤
𝐹0 − 𝐹𝛼

2,𝑑𝑓1,𝑑𝑓2

𝐹0 + (𝑛0 − 1) × 𝐹𝛼
2,𝑑𝑓1,𝑑𝑓2

)

= 1 − 𝛼 

(20) 

 

, where this 100(1 − 𝛼)% confidence limit for the ICC (𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠) represents the degree of 

total variability accounted for by between-group variation in multilevel design. It is noteworthy 

that the interval estimate on 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 may not be very accurate and precise for a small sample 

size (i.e., small 𝑛0 or 𝑁) or low reliability in measurements (i.e., large MSW or 𝜎̂𝑊2 ). Also, it 

should be pointed out that the lower confidence limit on 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 could be negative 

(especially when small sample size or large measurement error occurs in hierarchical 

modeling), but since 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠  normally should not be negative anyway by its mathematical 

definition (i.e., 0 ≤ 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 ≤ 1), it is customary to replace the negative lower bound with 

“zero” for a post hoc adjustment. 

For statistical planning in multilevel design, the proposed auxiliary statistics are used to 

help understand minimum detectable effect size with respect to desired power and required 
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sample size. Three types of measures linked with the intraclass correlation (ICC) estimator are:  

(i) Design effect (𝐷𝐸), or variance inflation factor (𝑉𝐼𝐹), is written by 

 

 𝐷𝐸 = 𝑉𝐼𝐹 = [1 + (𝑛0 − 1)𝜌̂] (21) 

 

, where 𝜌 is the ICC estimate (𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠) which provides a statistical measure of 

homogeneity within groups (i.e., if within-group subjects are homogeneous perfectly 

𝜎𝑊2 → 0, then 𝜌 → 1 and hence 𝐷𝐸 → 𝑛0). In general, grouping creates more variation 

than simple random sampling by a factor of 𝐷𝐸 (or 𝑉𝐼𝐹 > 1), due to the major part of 

group-to-group variability plus the minor portion of within-group variation (i.e., samples 

in different groups vary more than those in the same group). 

 

(ii) The unconditional intraclass correlation coefficient is given by  

 

 𝜌 = 𝜎𝐵
2

(𝜎𝑊2 + 𝜎𝐵2)
⁄ = 𝜎𝐵

2

𝜎𝑇2
⁄  (22) 

 

, where the unconditional total variance is 𝜎𝑇2 = 𝜎𝑊2 + 𝜎𝐵2, 𝜎𝑊2  and 𝜎𝐵2 represent error 

variances corresponding to the within- and between-group variation, respectively, in the 

unconditional model with no covariates adjusted in multilevel design. 
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In hierarchical models with covariates for statistical adjustment, the conditional 

intraclass correlation coefficient is defined as  

 

 𝜌𝐴 =
𝜎𝐴𝐵2

(𝜎𝐴𝑊2 + 𝜎𝐴𝐵2 )
⁄ = 𝜎𝐴𝐵2

𝜎𝐴𝑇2
⁄  (23) 

 

, where the covariate-adjusted total variance is 𝜎𝐴𝑇2 = 𝜎𝐴𝑊2 + 𝜎𝐴𝐵2 , 𝜎𝐴𝑊2  and 𝜎𝐴𝐵2  

represent the variance components, adjusted by covariates, corresponding to the within- 

and between-group variation, respectively, in the conditional multilevel model. 

(iii) For evaluating the relative efficiency of measures of homogeneity and heterogeneity in 

multilevel design, two statistical ancillary quantities, based on random variations of both 

unconditional and conditional hierarchical models, are given by 

 

 𝜂𝐵2 =
𝜎𝐴𝐵2

𝜎𝐵2
⁄  (24) 

and 

 𝜂𝑊2 = 𝜎𝐴𝑊2
𝜎𝑊2
⁄  (25) 

 

, where 𝜂𝐵2  indicates the proportion of between-group variance remaining (after given by 

covariate adjustment) in multilevel design, and 𝜂𝑊2  indicates the proportion of within-

group variance remaining (after given by covariate adjustment) in multilevel design.  
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Both 𝜂𝐵2  and 𝜂𝑊2  measures show efficacy and effectiveness of covariate adjustment for 

between-group and within-group random variation in multilevel design and modeling. 

 

The other two opposite measures (like a pseudo R-squared) for random variation by 

covariate adjustment in hierarchical modeling, are written by 

 

 𝑅𝐵2 = 1 − 𝜂𝐵2  (26) 

and  

 𝑅𝑊2 = 1 − 𝜂𝑊2  (27) 

 

, where 𝑅𝐵2  and 𝑅𝑊2  are defined as the proportion of between-group and within-group, 

respectively, variation explained by covariates adjusted in hierarchical design. Note that 

both 𝑅𝐵2  and 𝑅𝑊2  can also show efficacy of covariate adjustment in multilevel design. 

        

5.4 Results of ICC Estimates and Inferential Statistics 

 

There are two outcome measures in ICC’s simulation studies: (1) One is a binary 

measure for competitive employment (Y1); (2) The other one is a continuous measure for 

weekly earned income or quality employment (Y2). Further, there are four different multilevel 

models for ICC calculations: (1) Unconditional Model (M1) is of no covariate adjustment; (2) 
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Conditional Model (M2) is fitted with covariate adjustment by the demographic predictors 

(Covariate Set1); (3) Conditional Model (M3) is fitted with covariate adjustment by the 

rehabilitation service predictors (Covariate Set2); (4) Conditional Model (M3) is fitted with 

covariate adjustment by both the demographic and service predictors (Covariate Set3). In 

addition, three breaking variables are considered for subset analysis of ICC estimation and 

inference using usable samples (n=11,819) in multilevel design: (1) Previous Work Experience 

– binary measure (i.e., yes or no); (2) Significance Disability – binary measure (i.e., yes or no); 

(3) Disability Type – nominal measure with 10 different disability categories (i.e., VI, HI, PI, 

LD, ADHD, ID, TBI, ASD, MI, and SA). In this section, the main results of the study are 

presented in the following Tables 5.7-5.16.  

 

5.4.1 Competitive Employment Outcome Measure 

 

The competitive employment (Y1) is fitted as a dichotomous outcome measure in the 2-

level hierarchical generalized linear modeling (HGLM) framework, where individual subjects 

are on the level 1 and office units are on the level 2. The main results of the unconditional 

model M1 (Model 1) are shown in Table 5.7; the conditional model M2 (Model 2) in Table 5.8; 

the conditional model M3 (Model 3) in Table 5.9; the conditional model M4 (Model 4) in Table 

5.10; Table 5.11 provides all the auxiliary information of ICC estimates such as design effect 

(DE), unconditional and conditional ICC’s, and relative efficiency measures of 𝜂𝐵2 , 𝜂𝑊2 , 𝑅𝐵2  and 

𝑅𝐵2 ; and Table 5.12 shows ICC evaluation results based on the bootstrap sampling procedure 

(the number of bootstrap repetitions=100).   
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The ICC estimates (including standard error, p-value, 95% confidence interval) for 

competitive outcome measure (Y1) under unconditional (Model 1) and conditional (Models 2-

4) multilevel modeling structure, are summarized as follows.  

For competitive employment (Y1 under Model 1; refer to Tables 5.7), the average 

(unadjusted) intraclass correlation is about 0.01 (SE=0.003, p<0.01, 95% CI = [0.01,0.02]). 

Given by work experience (binary coding of yes or no) for partitioning subset samples, both 

show the average (unadjusted) ICC of 0.01 (SE=0.004, p<0.01, 95% CI = [0.01, 0.02]). By 

significance disability (binary coding of yes or no) for subset analyses, both show the average 

(unadjusted) ICC of 0.02 (SE=0.009, p<0.01, 95% CI = [0.01, 0.05]). Breaking down by 

disability types, it finds that autism spectrum disorder (ASD) has the highest (unadjusted) ICC 

of 0.06 (SE=0.03, p<0.01, 95% CI = [0.00, 0.15]), followed by learning disability (LD; 

ICC=0.03, SE=0.01, p<0.01, 95% CI = [0.01, 0.07]), hearing impairments (HI; ICC=0.02, 

SE=0.01, p<0.01, 95% CI = [0.01, 0.05]), physical impairments (PI; ICC=0.02, SE=0.01, 

p<0.01, 95% CI = [0.01, 0.04]), and mental illness (MI; ICC=0.02, SE=0.01, p<0.01, 95% CI = 

[0.01, 0.04]). Also noted that at the significance level of 0.05, it shows non-significance for the 

unadjusted ICC estimates in the following disabilities – visual impairments (VI, ICC=0.07, 

SE=0.10, p=0.25), attention deficit hyperactivity disorder (ADHD; ICC=0.00, SE=0.01, 

p=0.54), intellectual disability (ID; ICC=0.02, SE=0.02, p=0.06), traumatic brain injury (TBI; 

ICC=0.02, SE=0.05, p=0.36), and substance abuse (SA; ICC=0.00, SE=0.01, p=0.48).   

For competitive employment (Y1 under Model 2; refer to Tables 5.8), the average 

(adjusted by demographic information) intraclass correlation is about 0.01 (SE=0.003, p<0.01, 

95% CI = [0.01,0.02]). Given by work experience (binary coding of yes or no) for partitioning 

subset samples, both show the average (adjusted by demographic information) ICC of 0.01 
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(SE=0.004, p<0.01, 95% CI = [0.01, 0.03]). By significance disability (binary coding of yes or 

no) for subset analyses, both show the average (adjusted by demographic information) ICC of 

0.02 (SE=0.01, p<0.01, 95% CI = [0.01, 0.05]). Breaking down by disability types, it finds that 

autism spectrum disorder (ASD) has the highest (adjusted) ICC of 0.06 (SE=0.03, p<0.01, 95% 

CI = [0.00, 0.15]), followed by learning disability (LD; ICC=0.03, SE=0.01, p<0.01, 95% CI = 

[0.01, 0.06]), hearing impairments (HI; ICC=0.02, SE=0.01, p<0.01, 95% CI = [0.01, 0.05]), 

physical impairments (PI; ICC=0.02, SE=0.01, p<0.01, 95% CI = [0.01, 0.04]), and mental 

illness (MI; ICC=0.02, SE=0.01, p<0.01, 95% CI = [0.01, 0.04]). Also noted that at the 

significance level of 0.05, it shows non-significance for the adjusted ICC estimates in the 

following disability types – visual impairments (VI, ICC=0.07, SE=0.10, p=0.26), attention 

deficit hyperactivity disorder (ADHD; ICC=0.00, SE=0.01, p=0.54), intellectual disability (ID; 

ICC=0.02, SE=0.02, p=0.05), traumatic brain injury (TBI; ICC=0.02, SE=0.05, p=0.37), and 

substance abuse (SA; ICC=0.00, SE=0.01, p=0.48).    

For competitive employment (Y1 under Model 3; refer to Tables 5.9), the average 

(adjusted by rehabilitation services information) intraclass correlation is about 0.01 (SE=0.003, 

p<0.01, 95% CI = [0.01,0.02]). Given by work experience (binary coding of yes or no) for 

partitioning subset samples, both show the average (adjusted by rehabilitation services 

information) ICC of 0.01 (SE=0.005, p<0.01, 95% CI = [0.01, 0.03]). By significance disability 

(binary coding of yes or no) for subset analyses, both show the average (adjusted by 

rehabilitation services information) ICC of 0.02 (SE=0.01, p<0.01, 95% CI = [0.01, 0.05]). 

Breaking down by disability types, it finds that autism spectrum disorder (ASD) has the highest 

(adjusted) ICC of 0.08 (SE=0.04, p<0.01, 95% CI = [0.02, 0.17]), followed by learning 

disability (LD; ICC=0.03, SE=0.01, p<0.01, 95% CI = [0.02, 0.07]), intellectual disability (ID; 
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ICC=0.03, SE=0.02, p=0.02, 95% CI = [0.02, 0.09]), hearing impairments (HI; ICC=0.02, 

SE=0.01, p<0.01, 95% CI = [0.01, 0.05]), physical impairments (PI; ICC=0.02, SE=0.01, 

p<0.01, 95% CI = [0.01, 0.04]), and mental illness (MI; ICC=0.02, SE=0.01, p<0.01, 95% CI = 

[0.01, 0.04]). Also noted that at the significance level of 0.05, it shows non-significance for the 

adjusted ICC estimates in the following disability types – visual impairments (VI, ICC=0.09, 

SE=0.10, p=0.20), attention deficit hyperactivity disorder (ADHD; ICC=0.01, SE=0.02, 

p=0.29), traumatic brain injury (TBI; ICC=0.02, SE=0.05, p=0.35), and substance abuse (SA; 

ICC=0.00, SE=0.01, p=0.47).   

For competitive employment (Y1 under Model 4; refer to Tables 5.10), the average 

(adjusted by both demographics and rehabilitation services) intraclass correlation is about 0.01 

(SE=0.003, p<0.01, 95% CI = [0.01,0.02]). Given by work experience (binary coding of yes or 

no) for partitioning subset samples, both show the average (adjusted by both demographics and 

rehabilitation services) ICC of 0.01 (SE=0.005, p<0.01, 95% CI = [0.01, 0.03]). By significance 

disability (binary coding of yes or no) for subset analyses, both show the average (adjusted by 

both demographics and rehabilitation services) ICC of 0.02 (SE=0.01, p<0.01, 95% CI = [0.01, 

0.05]). Breaking down by disability types, it finds that autism spectrum disorder (ASD) has the 

highest (adjusted) ICC of 0.06 (SE=0.03, p<0.01, 95% CI = [0.01, 0.15]), followed by learning 

disability (LD; ICC=0.03, SE=0.01, p<0.01, 95% CI = [0.01, 0.06]), hearing impairments (HI; 

ICC=0.02, SE=0.01, p<0.01, 95% CI = [0.01, 0.05]), physical impairments (PI; ICC=0.02, 

SE=0.01, p<0.01, 95% CI = [0.01, 0.04]), and mental illness (MI; ICC=0.02, SE=0.01, p<0.01, 

95% CI = [0.01, 0.04]). Also noted that at the significance level of 0.05, it shows non-

significance for the adjusted ICC estimates in the following disability types – visual 

impairments (VI, ICC=0.07, SE=0.10, p=0.26), attention deficit hyperactivity disorder (ADHD; 
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ICC=0.00, SE=0.01, p=0.54), intellectual disability (ID; ICC=0.02, SE=0.02, p=0.05), 

traumatic brain injury (TBI; ICC=0.02, SE=0.05, p=0.37), and substance abuse (SA; ICC=0.00, 

SE=0.01, p=0.48).      

For auxiliary information of ICC Estimates for Outcome Measure Y1 (see Tables 5.11), 

the unconditional model (Model 1; unconditional ICC=0.01 and design effect DE=4.44) is used 

as a baseline for measuring relative efficiency of between-group variance (𝜂𝐵2  and 𝑅𝐵2) and 

within-group variance (𝜂𝑊2  and 𝑅𝑊2 ) for ICC estimates.  The conditional model (Model 2; 

conditional ICC=0.01 and design effect DE=4.59) with a covariate set of demographic 

information has a decrease of 3.05% of within-group variation and 0.00% of change in 

between-group variation, in comparison with the unconditional model (Model 1).  The 

conditional model (Model 3; conditional ICC=0.01 and design effect DE=4.83) with a covariate 

set of rehabilitation service information has a decrease of 8.06% of within-group variation and 

an increase of 4.17% in between-group variation, in comparison with the unconditional model 

(Model 1).  The conditional model (Model 4; conditional ICC=0.01 and design effect DE=4.59) 

with a covariate set of both demographic and rehabilitation service information has a decrease 

of 3.38% of within-group variation and no change (0.00%) in between-group variation, in 

comparison with the unconditional model (Model 1). 

     For evaluation of bootstrapping ICC estimates (bootstrap repetition of 100 times) for 

outcome measure Y1 in the different resampling scenarios of the number of groups and subjects 

(see Table 5.12), it provides important information of sampling schemes in multilevel structure 

(based on Model 4 with the full set of covariates of demographics and rehabilitation services). 

For the low level of cluster samples (i.e., number of groups=5), the mean bias is about 0.0068, 

MSE is about 0.0004, the proportion of successful hits is about 34%. For the medium level of 
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cluster samples (i.e., number of groups=15), the mean bias is about 0.0049, MSE is about 

0.0002, the proportion of successful hits is about 66%. For the high level of cluster samples 

(i.e., number of groups=25), the mean bias is about 0.0047, MSE is about 0.0001, the 

proportion of successful hits is about 68%. On the other hand, For the low level of subject 

samples (i.e., number of subjects=50), the mean bias is about 0.0062, MSE is about 0.0003, the 

proportion of successful hits is about 41%. For the medium level of subject samples (i.e., 

number of subjects=100), the mean bias is about 0.0053, MSE is about 0.0002, the proportion 

of successful hits is about 59%. For the high level of subject samples (i.e., number of 

subjects=150), the mean bias is about 0.0047, MSE is about 0.0001, the proportion of 

successful hits is about 70%. Overall, the sampling scheme with the high level of group 

samples (i.e., 25) and high level of subject samples (i.e., 150) achieve the best outcome (i.e., 

lowest bias & MSE, and highest successful hits); the sampling scheme with moderate cluster 

and subject samples (i.e., number of groups=15 and number of subjects=100) can provide the 

average performance of ICC estimation;  the sampling scheme with the low level of group 

samples (i.e., 5) or the level of group subject samples (i.e., 50) is more likely to result in poor 

performance of ICC estimates in hierarchical generalized linear modeling structure. 
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Table 5.7 ICC Estimates of Unconditional Model M1 for Outcome Measure Y1 
 

Model 1 
Total 

Sample 
Size 𝑁 

Number 
of 

Groups 

Within 
Group 
Size 𝑛0 

ICC 
Estimate 

SE of 
ICC 

Estimate 
p-value 

Lower 
Bound 
of ICC 

Upper 
Bound 
of ICC 

Overall 
Sample 11,819 33 356 0.0097 0.0031 0.00 0.0053 0.0187 

Work Experience 
No  8,821 33 266 0.0119 0.0038 0.00 0.0064 0.0232 
Yes 2,998 33 90 0.0101 0.0053 0.00 0.0026 0.0254 
Significance Disability 
No 1,233 33 36 0.0297 0.0145 0.00 0.0093 0.0675 
Yes 10,586 33 319 0.0107 0.0034 0.00 0.0058 0.0208 
Disability Type 
VI 87 29 3 0.0732 0.1008 0.25 -0.1241 0.3253 
HI 1,989 32 61 0.0201 0.0093 0.00 0.007 0.0459 
PI 2,154 33 65 0.0187 0.0084 0.00 0.0067 0.0429 
LD 2,276 33 68 0.0286 0.0105 0.00 0.0134 0.0585 
ADHD 443 33 13 -0.0032 0.0149 0.54 -0.0303 0.0495 
ID 652 33 19 0.0223 0.0173 0.06 -0.0041 0.0727 
TBI 132 27 5 0.0212 0.0513 0.36 -0.0823 0.1919 
ASD 436 33 13 0.0641 0.0329 0.00 0.0141 0.1505 
MI 3,073 33 92 0.0175 0.0070 0.00 0.0075 0.0376 
SA 577 31 18 -0.0006 0.0085 0.48 -0.0208 0.0405 

Note1. VI=Visual Impairments or Blindness; HI=Hearing Impairments or Deafness; 
PI=Physical Impairments; LD=Learning Disabilities; ADHD= Attention Deficit Hyperactivity 
Disorder; ID=Intellectual Disability; TBI= Traumatic Brain Injury; ASD=Autism Spectrum 
Disorder; MI=Mental Illness; SA=Substance Abuse. 
Note2. P-value=0.00 indicates that the level of significance is below 0.01 (i.e., p<0.01). 
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Table 5.8 ICC Estimates of Conditional Model M2 for Outcome Measure Y1 
 

Model 2 
Total 

Sample 
Size 𝑁 

Number 
of 

Groups 

Within 
Group 
Size 𝑛0 

ICC 
Estimate 

SE of 
ICC 

Estimate 
p-value 

Lower 
Bound 
of ICC 

Upper 
Bound 
of ICC 

Overall 
Sample 11,819 33 356 0.0101 0.0032 0.00 0.0055 0.0194 

Work Experience 
No  8,821 33 266 0.0119 0.0038 0.00 0.0064 0.0232 
Yes 2,998 33 90 0.0119 0.0057 0.00 0.0038 0.0284 
Significance Disability 
No 1,233 33 36 0.0356 0.0160 0.00 0.0131 0.0767 
Yes 10,586 33 319 0.0109 0.0034 0.00 0.0059 0.0211 
Disability Type 
VI 87 29 3 0.0671 0.0996 0.26 -0.1289 0.3190 
HI 1,989 32 61 0.0236 0.0102 0.00 0.0093 0.0517 
PI 2,154 33 65 0.0188 0.0084 0.00 0.0067 0.0430 
LD 2,276 33 68 0.0289 0.0105 0.00 0.0136 0.0588 
ADHD 443 33 13 -0.0032 0.0149 0.54 -0.0303 0.0495 
ID 652 33 19 0.0234 0.0176 0.05 -0.0034 0.0743 
TBI 132 27 5 0.0190 0.0501 0.37 -0.0837 0.1892 
ASD 436 33 13 0.0640 0.0329 0.00 0.0140 0.1504 
MI 3,073 33 92 0.0175 0.0070 0.00 0.0075 0.0376 
SA 577 31 18 -0.0006 0.0085 0.48 -0.0208 0.0405 

Note1. VI=Visual Impairments or Blindness; HI=Hearing Impairments or Deafness; 
PI=Physical Impairments; LD=Learning Disabilities; ADHD= Attention Deficit Hyperactivity 
Disorder; ID=Intellectual Disability; TBI= Traumatic Brain Injury; ASD=Autism Spectrum 
Disorder; MI=Mental Illness; SA=Substance Abuse. 
Note2. P-value=0.00 indicates that the level of significance is below 0.01 (i.e., p<0.01). 
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Table 5.9 ICC Estimates of Conditional Model M3 for Outcome Measure Y1 
 

Model 3 
Total 

Sample 
Size 𝑁 

Number 
of 

Groups 

Within 
Group 
Size 𝑛0 

ICC 
Estimate 

SE of 
ICC 

Estimate 
p-value 

Lower 
Bound 
of ICC 

Upper 
Bound 
of ICC 

Overall 
Sample 11,819 33 356 0.0108 0.0033 0.00 0.0060 0.0206 

Work Experience 
No  8,821 33 266 0.0130 0.0041 0.00 0.0071 0.0250 
Yes 2,998 33 90 0.0124 0.0059 0.00 0.0041 0.0291 
Significance Disability 
No 1,233 33 36 0.0356 0.0160 0.00 0.0131 0.0767 
Yes 10,586 33 319 0.0119 0.0037 0.00 0.0066 0.0228 
Disability Type 
VI 87 29 3 0.0905 0.1038 0.20 -0.1105 0.3430 
HI 1,989 32 61 0.0215 0.0097 0.00 0.0079 0.0482 
PI 2,154 33 65 0.0192 0.0085 0.00 0.0070 0.0437 
LD 2,276 33 68 0.0340 0.0116 0.00 0.0170 0.0672 
ADHD 443 33 13 0.0096 0.0189 0.29 -0.0219 0.0694 
ID 652 33 19 0.0320 0.0199 0.02 0.0023 0.0877 
TBI 132 27 5 0.0224 0.0519 0.35 -0.0815 0.1935 
ASD 436 33 13 0.0782 0.0356 0.00 0.0238 0.1705 
MI 3,073 33 92 0.0187 0.0073 0.00 0.0083 0.0396 
SA 577 31 18 0.0001 0.0089 0.47 -0.0204 0.0416 

Note1. VI=Visual Impairments or Blindness; HI=Hearing Impairments or Deafness; 
PI=Physical Impairments; LD=Learning Disabilities; ADHD= Attention Deficit Hyperactivity 
Disorder; ID=Intellectual Disability; TBI= Traumatic Brain Injury; ASD=Autism Spectrum 
Disorder; MI=Mental Illness; SA=Substance Abuse. 
Note2. P-value=0.00 indicates that the level of significance is below 0.01 (i.e., p<0.01). 
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Table 5.10 ICC Estimates of Conditional Model M4 for Outcome Measure Y1 
 

Model 4 
Total 

Sample 
Size 𝑁 

Number 
of 

Groups 

Within 
Group 
Size 𝑛0 

ICC 
Estimate 

SE of 
ICC 

Estimate 
p-value 

Lower 
Bound 
of ICC 

Upper 
Bound 
of ICC 

Overall 
Sample 11,819 33 356 0.0101 0.0032 0.00 0.0055 0.0195 

Work Experience 
No  8,821 33 266 0.0119 0.0038 0.00 0.0064 0.0232 
Yes 2,998 33 90 0.0120 0.0058 0.00 0.0038 0.0286 
Significance Disability 
No 1,233 33 36 0.0359 0.0161 0.00 0.0133 0.0771 
Yes 10,586 33 319 0.0109 0.0034 0.00 0.0060 0.0211 
Disability Type 
VI 87 29 3 0.0673 0.0996 0.26 -0.1287 0.3192 
HI 1,989 32 61 0.0237 0.0102 0.00 0.0094 0.0519 
PI 2,154 33 65 0.0188 0.0084 0.00 0.0067 0.0430 
LD 2,276 33 68 0.0290 0.0106 0.00 0.0137 0.0591 
ADHD 443 33 13 -0.0033 0.0148 0.54 -0.0304 0.0493 
ID 652 33 19 0.0237 0.0177 0.05 -0.0032 0.0749 
TBI 132 27 5 0.0191 0.0501 0.37 -0.0837 0.1893 
ASD 436 33 13 0.0645 0.0330 0.00 0.0144 0.1511 
MI 3,073 33 92 0.0175 0.0070 0.00 0.0075 0.0377 
SA 577 31 18 -0.0006 0.0085 0.48 -0.0208 0.0405 

Note1. VI=Visual Impairments or Blindness; HI=Hearing Impairments or Deafness; 
PI=Physical Impairments; LD=Learning Disabilities; ADHD= Attention Deficit Hyperactivity 
Disorder; ID=Intellectual Disability; TBI= Traumatic Brain Injury; ASD=Autism Spectrum 
Disorder; MI=Mental Illness; SA=Substance Abuse. 
Note2. P-value=0.00 indicates that the level of significance is below 0.01 (i.e., p<0.01). 
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Table 5.11 Auxiliary Information of ICC Estimates for Outcome Measure Y1 
 

Modeling 
Structure 

ICC 
Estimate 

Between 
Group 

Variance 

Within 
Group 

Variance 

Design 
Effect 
(DE) 

𝜂𝐵2  𝜂𝑊2  𝑅𝐵2  𝑅𝑊2  

Model 1 
(M1) 0.0097 0.0024 0.2458 4.4436 NA NA NA NA 

Model 2 
(M2) 0.0101 0.0024 0.2383 4.5856 1.0000 0.9695 0.0000 0.0305 

Model 3 
(M3) 0.0108 0.0025 0.2260 4.8341 1.0417 0.9194 -0.0417 0.0806 

Model 4 
(M4) 0.0101 0.0024 0.2375 4.5856 1.0000 0.9662 0.0000 0.0338 

Note1. The ICC estimate for M1 represents the unconditional ICC quantity, while the ICC’s for 
M2-M4 show the conditional ICC quantity. 
Note2. Relative efficiency measures for ICC estimates between unconditional and conditional 
models (M1 versus M2-M4) are 𝜂𝐵2 , 𝜂𝑊2 , 𝑅𝐵2  and 𝑅𝐵2 . 
 
 
 
 
Table 5.12 Evaluation of Bootstrap ICC Estimates for Outcome Measure Y1 
 

Number of 
Group 

Within Group 
Size Bias MSE Hits 

5 50 0.0078 0.0005 0.19 
5 100 0.0069 0.0004 0.34 
5 150 0.0056 0.0003 0.50 

15 50 0.0054 0.0003 0.50 
15 100 0.0048 0.0002 0.70 
15 150 0.0045 0.0001 0.78 
25 50 0.0053 0.0002 0.54 
25 100 0.0042 0.0001 0.73 
25 150 0.0033 0.0000 0.82 

Note1. Bias is defined as the mean difference between Bootstrap ICC and True ICC.  
Note2. MSE is the mean squared error difference between Bootstrap ICC estimates. 
Note3. Hits shows the proportion of Bootstrap ICC estimates successfully lying within the 95% 
confidence interval of True ICC. 
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5.4.2 Earnings or Quality Employment Outcome Measure 

 

The weekly earned income, or quality employment, (Y2) is fitted as a continuous 

outcome measure in the 2-level hierarchical linear modeling (HLM) framework, where 

individual subjects are on the level 1 and office units are on the level 2. The main results of the 

unconditional model M1 (Model 1) are shown in Table 5.13; the conditional model M2 (Model 

2) in Table 5.14; the conditional model M3 (Model 3) in Table 5.15; the conditional model M4 

(Model 4) in Table 5.16; and Table 5.17 provides all the auxiliary information of ICC estimates 

such as design effect (DE), unconditional and conditional ICC’s, and relative efficiency 

measures of 𝜂𝐵2 , 𝜂𝑊2 , 𝑅𝐵2  and 𝑅𝐵2 ; and Table 5.18 shows ICC evaluation results based on the 

bootstrap sampling procedure (the number of bootstrap repetitions=100).   

The ICC estimates (including standard error, p-value, 95% confidence interval) for 

quality of employment outcome measure (Y2) under unconditional (Model 1) and conditional 

(Models 2-4) multilevel modeling structure, are summarized as follows.  

For quality employment (Y2 under Model 1; refer to Tables 5.13), the average 

(unadjusted) intraclass correlation is about 0.02 (SE=0.01, p<0.01, 95% CI = [0.01,0.04]). 

Given by work experience (binary coding of yes or no) for partitioning subset samples, both 

show the average (unadjusted) ICC of 0.03 (SE=0.01, p<0.01, 95% CI = [0.02, 0.05]). By 

significance disability (binary coding of yes or no) for subset analyses, both show the average 

(unadjusted) ICC of 0.05 (SE=0.01, p<0.01, 95% CI = [0.03, 0.09]). Breaking down by 

disability types, it finds that learning disability (LD) has the highest (unadjusted) ICC of 0.03 

(SE=0.01, p<0.01, 95% CI = [0.02, 0.07]), followed by substance abuse (SA; ICC=0.03, 
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SE=0.02, p=0.04, 95% CI = [0.00, 0.09]), hearing impairments (HI; ICC=0.03, SE=0.01, 

p<0.01, 95% CI = [0.01, 0.06]), physical impairments (PI; ICC=0.02, SE=0.01, p<0.01, 95% CI 

= [0.01, 0.05]), and mental illness (MI; ICC=0.02, SE=0.01, p<0.01, 95% CI = [0.01, 0.04]). 

Also noted that at the significance level of 0.05, it shows non-significance for the ICC estimates 

in the following disability types – visual impairments (VI, ICC=0.00, SE=0.08, p=0.50), 

attention deficit hyperactivity disorder (ADHD; ICC=0.00, SE=0.01, p=0.87), intellectual 

disability (ID; ICC=0.02, SE=0.02, p=0.05), traumatic brain injury (TBI; ICC=-0.08, SE=0.03, 

p=0.88), and autism spectrum disorder (ASD; ICC=0.02, SE=0.02, p=0.13).   

For quality employment (Y2 under Model 2; refer to Tables 5.14), the average (adjusted 

by demographic information) intraclass correlation is about 0.02 (SE=0.01, p<0.01, 95% CI = 

[0.01,0.04]). Given by work experience (binary coding of yes or no) for partitioning subset 

samples, both show the average (adjusted by demographic information) ICC of 0.03 (SE=0.01, 

p<0.01, 95% CI = [0.02, 0.05]). By significance disability (binary coding of yes or no) for 

subset analyses, both show the average (adjusted by demographic information) ICC of 0.05 

(SE=0.01, p<0.01, 95% CI = [0.03, 0.09]). Breaking down by disability types, it finds that 

learning disability (LD) has the highest (adjusted by demographic information) ICC of 0.03 

(SE=0.01, p<0.01, 95% CI = [0.02, 0.07]), followed by hearing impairments (HI; ICC=0.03, 

SE=0.01, p<0.01, 95% CI = [0.01, 0.06]), substance abuse (SA; ICC=0.03, SE=0.02, p=0.04, 

95% CI = [0.00, 0.09]), physical impairments (PI; ICC=0.02, SE=0.01, p<0.01, 95% CI = 

[0.01, 0.05]), and mental illness (MI; ICC=0.02, SE=0.01, p<0.01, 95% CI = [0.01, 0.04]). Also 

noted that at the significance level of 0.05, it shows non-significance for the ICC estimates in 

the following disability types – visual impairments (VI, ICC=0.00, SE=0.08, p=0.49), attention 

deficit hyperactivity disorder (ADHD; ICC=0.00, SE=0.01, p=0.87), intellectual disability (ID; 
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ICC=0.02, SE=0.02, p=0.05), traumatic brain injury (TBI; ICC=-0.08, SE=0.03, p=0.87),and 

autism spectrum disorder (ASD; ICC=0.02, SE=0.02, p=0.13). 

For quality employment (Y2 under Model 3; refer to Tables 5.15), the average (adjusted 

by rehabilitation services) intraclass correlation is about 0.02 (SE=0.01, p<0.01, 95% CI = 

[0.01,0.04]). Given by work experience (binary coding of yes or no) for partitioning subset 

samples, both show the average (adjusted by rehabilitation services) ICC of 0.03 (SE=0.01, 

p<0.01, 95% CI = [0.02, 0.05]). By significance disability (binary coding of yes or no) for 

subset analyses, both show the average (adjusted by rehabilitation services) ICC of 0.05 

(SE=0.01, p<0.01, 95% CI = [0.03, 0.09]). Breaking down by disability types, it finds that 

learning disability (LD) has the highest (adjusted by rehabilitation services) ICC of 0.04 

(SE=0.01, p<0.01, 95% CI = [0.02, 0.07]), followed by substance abuse (SA; ICC=0.03, 

SE=0.02, p=0.04, 95% CI = [0.00, 0.09]), hearing impairments (HI; ICC=0.03, SE=0.01, 

p<0.01, 95% CI = [0.01, 0.06]), intellectual disability (ID; ICC=0.03, SE=0.02, p=0.03, 95% CI 

= [0.00, 0.08]), physical impairments (PI; ICC=0.02, SE=0.01, p<0.01, 95% CI = [0.01, 0.05]), 

and mental illness (MI; ICC=0.02, SE=0.01, p<0.01, 95% CI = [0.01, 0.04]). Also noted that at 

the significance level of 0.05, it shows non-significance for the ICC estimates in the following 

disability types – visual impairments (VI, ICC=0.00, SE=0.08, p=0.52), attention deficit 

hyperactivity disorder (ADHD; ICC=0.00, SE=0.01, p=0.81), traumatic brain injury (TBI; 

ICC=-0.08, SE=0.03, p=0.86),and autism spectrum disorder (ASD; ICC=0.02, SE=0.02, 

p=0.12). 

For quality employment (Y2 under Model 4; refer to Tables 5.16), the average (adjusted 

by both demographics and rehabilitation services) intraclass correlation is about 0.02 (SE=0.01, 

p<0.01, 95% CI = [0.01,0.04]). Given by work experience (binary coding of yes or no) for 
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partitioning subset samples, both show the average (adjusted by both demographics and 

rehabilitation services) ICC of 0.03 (SE=0.01, p<0.01, 95% CI = [0.02, 0.05]). By significance 

disability (binary coding of yes or no) for subset analyses, both show the average (adjusted by 

both demographics and rehabilitation services) ICC of 0.05 (SE=0.01, p<0.01, 95% CI = [0.03, 

0.09]). Breaking down by disability types, it finds that learning disability (LD) has the highest 

(adjusted by both demographics and rehabilitation services) ICC of 0.03 (SE=0.01, p<0.01, 

95% CI = [0.02, 0.07]), followed by substance abuse (SA; ICC=0.03, SE=0.02, p=0.04, 95% CI 

= [0.00, 0.09]), hearing impairments (HI; ICC=0.03, SE=0.01, p<0.01, 95% CI = [0.01, 0.06]), 

physical impairments (PI; ICC=0.02, SE=0.01, p<0.01, 95% CI = [0.01, 0.05]), and mental 

illness (MI; ICC=0.02, SE=0.01, p<0.01, 95% CI = [0.01, 0.04]). Also noted that at the 

significance level of 0.05, it shows non-significance for the ICC estimates in the following 

disability types – visual impairments (VI, ICC=0.00, SE=0.08, p=0.49), attention deficit 

hyperactivity disorder (ADHD; ICC=0.00, SE=0.01, p=0.87), intellectual disability (ID; 

ICC=0.02, SE=0.02, p=0.05), traumatic brain injury (TBI; ICC=-0.08, SE=0.03, p=0.87),and 

autism spectrum disorder (ASD; ICC=0.02, SE=0.02, p=0.12).   

For auxiliary information of ICC Estimates for Outcome Measure Y2 (see Tables 5.17), 

the unconditional model (Model 1; unconditional ICC=0.02 and design effect DE=8.49) is used 

as a baseline for measuring relative efficiency of between-group variance (𝜂𝐵2  and 𝑅𝐵2) and 

within-group variance (𝜂𝑊2  and 𝑅𝑊2 ) for ICC estimates.  The conditional model (Model 2; 

conditional ICC=0.02 and design effect DE=9.38) with a covariate set of demographic 

information has a decrease of 9.75% of within-group variation and an increase of 1.27% of 

between-group variation, in comparison with the unconditional model (Model 1).  The 

conditional model (Model 3; conditional ICC=0.02 and design effect DE=8.70) with a covariate 
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set of rehabilitation service information has a decrease of 2.47% of within-group variation and 

an increase of 0.32% in between-group variation, in comparison with the unconditional model 

(Model 1).  The conditional model (Model 4; conditional ICC=0.02 and design effect DE=9.41) 

with a covariate set of both demographic and rehabilitation service information has a decrease 

of 10.02 % of within-group variation and an increase of 1.31% of between-group variation, in 

comparison with the unconditional model (Model 1).  

For evaluation of bootstrapping ICC estimates (bootstrap repetition of 100 times) for 

outcome measure Y2 in the different resampling scenarios of the number of groups and subjects 

(see Table 5.18), it provides important information of sampling schemes in multilevel structure 

(based on Model 4 with the full set of covariates of demographics and rehabilitation services). 

For the low level of cluster samples (i.e., number of groups=5), the mean bias is about 0.0164, 

MSE is about 0.0009, the proportion of successful hits is about 34%. For the medium level of 

cluster samples (i.e., number of groups=15), the mean bias is about 0.0152, MSE is about 

0.0004, the proportion of successful hits is about 55%. For the high level of cluster samples 

(i.e., number of groups=25), the mean bias is about 0.0149, MSE is about 0.0003, the 

proportion of successful hits is about 64%. On the other hand, For the low level of subject 

samples (i.e., number of subjects=50), the mean bias is about 0.0160, MSE is about 0.0007, the 

proportion of successful hits is about 40%. For the medium level of subject samples (i.e., 

number of subjects=100), the mean bias is about 0.0154, MSE is about 0.0004, the proportion 

of successful hits is about 54%. For the high level of subject samples (i.e., number of 

subjects=150), the mean bias is about 0.0148, MSE is about 0.0004, the proportion of 

successful hits is about 66%. Overall, the sampling scheme with the high level of group 

samples (i.e., 25) and high level of subject samples (i.e., 150) achieve the best outcome (i.e., 
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lowest bias & MSE, and highest successful hits); the sampling scheme with moderate cluster or 

subject samples (i.e., number of groups=15 or number of subjects=100) can provide the average 

performance of ICC estimates in multilevel structure;  the sampling scheme with the low level 

of group samples (i.e., 5) or the level of group subject samples (i.e., 50) is more likely to result 

in poor performance of ICC estimates in hierarchical linear modeling structure. 

      
 
 
 
Table 5.13 ICC Estimates of Unconditional Model M1 for Outcome Measure Y2 
 

Model 1 
Total 

Sample 
Size 𝑁 

Number 
of 

Groups 

Within 
Group 
Size 𝑛0 

ICC 
Estimate 

SE of 
ICC 

Estimate 
p-value 

Lower 
Bound 
of ICC 

Upper 
Bound 
of ICC 

Overall 
Sample 11,819 33 356 0.0211 0.0054 0.00 0.0127 0.0381 

Work Experience 
No  8,821 33 266 0.0134 0.0042 0.00 0.0073 0.0257 
Yes 2,998 33 90 0.0408 0.0118 0.00 0.0227 0.0758 
Significance Disability 
No 1,233 33 36 0.0797 0.0237 0.00 0.0422 0.1434 
Yes 10,586 33 319 0.0171 0.0048 0.00 0.0100 0.0316 
Disability Type 
VI 87 29 3 -0.0044 0.0798 0.50 -0.1832 0.2422 
HI 1,989 32 61 0.0273 0.0110 0.00 0.0117 0.0577 
PI 2,154 33 65 0.0223 0.0092 0.00 0.0090 0.0488 
LD 2,276 33 68 0.0342 0.0116 0.00 0.0171 0.0676 
ADHD 443 33 13 -0.0219 0.0081 0.87 -0.0425 0.0198 
ID 652 33 19 0.0233 0.0176 0.05 -0.0034 0.0743 
TBI 132 27 5 -0.0773 0.0281 0.88 -0.1447 0.0604 
ASD 436 33 13 0.0226 0.0225 0.13 -0.0138 0.0899 
MI 3,073 33 92 0.0190 0.0074 0.00 0.0085 0.0401 
SA 577 31 18 0.0283 0.0207 0.04 -0.0026 0.0853 

Note1. VI=Visual Impairments or Blindness; HI=Hearing Impairments or Deafness; 
PI=Physical Impairments; LD=Learning Disabilities; ADHD= Attention Deficit Hyperactivity 
Disorder; ID=Intellectual Disability; TBI= Traumatic Brain Injury; ASD=Autism Spectrum 
Disorder; MI=Mental Illness; SA=Substance Abuse. 
Note2. P-value=0.00 indicates that the level of significance is below 0.01 (i.e., p<0.01). 
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Table 5.14 ICC Estimates of Conditional Model M2 for Outcome Measure Y2 
 

Model 2 
Total 

Sample 
Size 𝑁 

Number 
of 

Groups 

Within 
Group 
Size 𝑛0 

ICC 
Estimate 

SE of 
ICC 

Estimate 
p-value 

Lower 
Bound 
of ICC 

Upper 
Bound 
of ICC 

Overall 
Sample 11,819 33 356 0.0236 0.0059 0.00 0.0143 0.0423 

Work Experience 
No  8,821 33 266 0.0135 0.0042 0.00 0.0074 0.0259 
Yes 2,998 33 90 0.0457 0.0126 0.00 0.0260 0.0838 
Significance Disability 
No 1,233 33 36 0.0869 0.0246 0.00 0.0471 0.1540 
Yes 10,586 33 319 0.0183 0.0050 0.00 0.0108 0.0336 
Disability Type 
VI 87 29 3 -0.0016 0.0808 0.49 -0.1811 0.2453 
HI 1,989 32 61 0.0293 0.0115 0.00 0.0130 0.0610 
PI 2,154 33 65 0.0227 0.0093 0.00 0.0093 0.0495 
LD 2,276 33 68 0.0346 0.0117 0.00 0.0174 0.0682 
ADHD 443 33 13 -0.0218 0.0081 0.87 -0.0425 0.0198 
ID 652 33 19 0.0238 0.0177 0.05 -0.0031 0.0750 
TBI 132 27 5 -0.0750 0.0287 0.87 -0.1433 0.0636 
ASD 436 33 13 0.0233 0.0226 0.13 -0.0134 0.0908 
MI 3,073 33 92 0.0193 0.0074 0.00 0.0087 0.0405 
SA 577 31 18 0.0283 0.0207 0.04 -0.0026 0.0853 

Note1. VI=Visual Impairments or Blindness; HI=Hearing Impairments or Deafness; 
PI=Physical Impairments; LD=Learning Disabilities; ADHD= Attention Deficit Hyperactivity 
Disorder; ID=Intellectual Disability; TBI= Traumatic Brain Injury; ASD=Autism Spectrum 
Disorder; MI=Mental Illness; SA=Substance Abuse. 
Note2. P-value=0.00 indicates that the level of significance is below 0.01 (i.e., p<0.01). 
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Table 5.15 ICC Estimates of Conditional Model M3 for Outcome Measure Y2 
 

Model 3 
Total 

Sample 
Size 𝑁 

Number 
of 

Groups 

Within 
Group 
Size 𝑛0 

ICC 
Estimate 

SE of 
ICC 

Estimate 
p-value 

Lower 
Bound 
of ICC 

Upper 
Bound 
of ICC 

Overall 
Sample 11,819 33 356 0.0217 0.0055 0.00 0.0131 0.0391 

Work Experience 
No  8,821 33 266 0.0136 0.0042 0.00 0.0074 0.0260 
Yes 2,998 33 90 0.0429 0.0121 0.00 0.0241 0.0793 
Significance Disability 
No 1,233 33 36 0.0855 0.0244 0.00 0.0462 0.1520 
Yes 10,586 33 319 0.0175 0.0049 0.00 0.0103 0.0324 
Disability Type 
VI 87 29 3 -0.0099 0.0777 0.52 -0.1872 0.2361 
HI 1,989 32 61 0.0273 0.0111 0.00 0.0117 0.0577 
PI 2,154 33 65 0.0223 0.0092 0.00 0.0091 0.0488 
LD 2,276 33 68 0.0359 0.0120 0.00 0.0182 0.0703 
ADHD 443 33 13 -0.0171 0.0100 0.81 -0.0394 0.0274 
ID 652 33 19 0.0275 0.0187 0.03 -0.0007 0.0807 
TBI 132 27 5 -0.0727 0.0292 0.86 -0.1419 0.0669 
ASD 436 33 13 0.0242 0.0229 0.12 -0.0128 0.0922 
MI 3,073 33 92 0.0193 0.0074 0.00 0.0087 0.0405 
SA 577 31 18 0.0282 0.0207 0.04 -0.0027 0.0851 

Note1. VI=Visual Impairments or Blindness; HI=Hearing Impairments or Deafness; 
PI=Physical Impairments; LD=Learning Disabilities; ADHD= Attention Deficit Hyperactivity 
Disorder; ID=Intellectual Disability; TBI= Traumatic Brain Injury; ASD=Autism Spectrum 
Disorder; MI=Mental Illness; SA=Substance Abuse. 
Note2. P-value=0.00 indicates that the level of significance is below 0.01 (i.e., p<0.01). 
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Table 5.16 ICC Estimates of Conditional Model M4 for Outcome Measure Y2 
 

Model 4 
Total 

Sample 
Size 𝑁 

Number 
of 

Groups 

Within 
Group 
Size 𝑛0 

ICC 
Estimate 

SE of 
ICC 

Estimate 
p-value 

Lower 
Bound 
of ICC 

Upper 
Bound 
of ICC 

Overall 
Sample 11,819 33 356 0.0237 0.0059 0.00 0.0144 0.0424 

Work Experience 
No  8,821 33 266 0.0135 0.0042 0.00 0.0074 0.0259 
Yes 2,998 33 90 0.0458 0.0126 0.00 0.0261 0.0840 
Significance Disability 
No 1,233 33 36 0.0872 0.0246 0.00 0.0473 0.1544 
Yes 10,586 33 319 0.0184 0.0050 0.00 0.0108 0.0337 
Disability Type 
VI 87 29 3 -0.0015 0.0808 0.49 -0.1810 0.2454 
HI 1,989 32 61 0.0293 0.0115 0.00 0.0130 0.0610 
PI 2,154 33 65 0.0227 0.0093 0.00 0.0093 0.0495 
LD 2,276 33 68 0.0348 0.0117 0.00 0.0175 0.0684 
ADHD 443 33 13 -0.0216 0.0082 0.87 -0.0424 0.0201 
ID 652 33 19 0.0240 0.0178 0.05 -0.0030 0.0753 
TBI 132 27 5 -0.0754 0.0286 0.87 -0.1436 0.0630 
ASD 436 33 13 0.0235 0.0227 0.12 -0.0132 0.0912 
MI 3,073 33 92 0.0193 0.0074 0.00 0.0087 0.0406 
SA 577 31 18 0.0283 0.0207 0.04 -0.0026 0.0853 

Note1. VI=Visual Impairments or Blindness; HI=Hearing Impairments or Deafness; 
PI=Physical Impairments; LD=Learning Disabilities; ADHD= Attention Deficit Hyperactivity 
Disorder; ID=Intellectual Disability; TBI= Traumatic Brain Injury; ASD=Autism Spectrum 
Disorder; MI=Mental Illness; SA=Substance Abuse. 
Note2. P-value=0.00 indicates that the level of significance is below 0.01 (i.e., p<0.01). 
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Table 5.17 Auxiliary Information of ICC Estimates for Outcome Measure Y2 
 

Modeling 
Structure 

ICC 
Estimate 

Between 
Group 

Variance 

Within 
Group 

Variance 

Design 
Effect 
(DE) 

𝜂𝐵2  𝜂𝑊2  𝑅𝐵2  𝑅𝑊2  

Model 1 
(M1) 0.0211 2,275.62 105,264.82 8.4907 NA NA NA NA 

Model 2 
(M2) 0.0236 2,304.53 95,000.22 9.3782 1.0127 0.9025 -0.0127 0.0975 

Model 3 
(M3) 0.0217 2,282.94 102,665.47 8.7037 1.0032 0.9753 -0.0032 0.0247 

Model 4 
(M4) 0.0237 2,305.32 94,718.63 9.4137 1.0131 0.8998 -0.0131 0.1002 

Note1. The ICC estimate for M1 represents the unconditional ICC quantity, while the ICC’s for 
M2-M4 show the conditional ICC quantity. 
Note2. Relative efficiency measures for ICC estimates between unconditional and conditional 
models (M1 versus M2-M4) are 𝜂𝐵2 , 𝜂𝑊2 , 𝑅𝐵2  and 𝑅𝐵2 . 
 
 
 
 
Table 5.18 Evaluation of Bootstrap ICC Estimates for Outcome Measure Y2 
 

Number of 
Group 

Within Group 
Size Bias MSE Hits 

5 50 0.0175 0.0013 0.20 
5 100 0.0162 0.0007 0.37 
5 150 0.0156 0.0006 0.45 

15 50 0.0154 0.0005 0.47 
15 100 0.0153 0.0003 0.51 
15 150 0.0148 0.0003 0.66 
25 50 0.0152 0.0004 0.52 
25 100 0.0147 0.0003 0.75 
25 150 0.0139 0.0002 0.86 

Note1. Bias is defined as the mean difference between Bootstrap ICC and True ICC.  
Note2. MSE is the mean squared error difference between Bootstrap ICC estimates. 
Note3. Hits shows the proportion of Bootstrap ICC estimates successfully lying within the 95% 
confidence interval of True ICC. 
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CHAPTER 6  
 

CONCLUSION & DISCUSSION 
 
 
 

6.1 Summary of the Results 

 

The proposed method for ICC estimation and inference is based on the real-world data 

set of RSA-911, where the usable samples are those individuals with disabilities served in the 

Michigan Rehabilitation Services Programs in FY 2015 (n=11,819). To address the research 

questions of the study, the two-level multilevel modeling approach to the cluster-randomized 

design data structure, is used to fit the data simulations, where individual subjects are at the 

level 1 (i.e., the average within cluster size is 356 per unit) and rehabilitation offices are at the 

level 2 (i.e., there are 33 of vocational rehabilitation office structures statewide in Michigan).  

There are two types of multilevel modeling in data simulations: (1) unconditional model 

(Model 1); and (2) conditional models (Models 2-4).  To evaluate which multilevel modeling 

structures match better with which sampling schemes, a bootstrap resampling procedure is 

adopted in data simulation and analysis, to compare the ICC estimates between population 

(Research Question 1) and subsample (Research Question 2) models, in terms of statistical 

properties of accuracy and precision on ICC estimation and inference (Research Question 3).   

(a) Research Question 1 for Outcome Measure Y1 (see Tables 5.7-5.10) 

For overall sample of competitive employment, the ICC estimate on average is about 

0.01 (SE=0.003, p<0.01). Given by work experience (i.e., no work experience, in 

particular), the ICC estimate is inflated slightly (i.e., 0.002) but so is the standard error 
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(i.e., 0.002), comparing with the overall sample. Given by disability significance (i.e., no 

disability significance, in particular), the ICC estimate is inflated more (i.e., 0.02) and so 

is the standard error (i.e., 0.01), comparing with the overall sample. Given by disability 

type, the ICC estimate is inflated most (i.e., 0.05) for ASD, followed by LD (i.e., 0.02), 

HI (i.e., 0.01), PI (i.e., 0.01), and MI (i.e., 0.01). Also note that VI has the highest ICC 

(i.e., about 0.07), but the estimate is not significant at the level of 0.05, due to small 

sample size (i.e., total sample size is 87 across 29 office units). 

(b) Research Question 1 for Outcome Measure Y2 (see Tables 5.13-5.16) 

For overall sample of quality employment, the ICC estimate on average is about 0.02 

(SE=0.005, p<0.01). Given by work experience (i.e., having work experience, in 

particular), the ICC estimate is inflated to some extent (i.e., 0.02) and so is the standard 

error (i.e., 0.006), comparing with the overall sample. Given by disability significance 

(i.e., no disability significance, in particular), the ICC estimate is inflated much (i.e., 

0.06) and so is the standard error (i.e., 0.02), comparing with the overall sample. Given 

by disability type, the ICC estimate for LD is inflated most (i.e., 0.01) followed by SA 

(i.e., 0.01), HI (i.e., 0.01), and PI (i.e., 0.001). Also note that the ICC estimate for MI is 

relatively lower than the overall sample by about 0.002. 

(c) Research Question 2 for Outcome Measure Y1 (see Tables 5.11-5.12) 

As for examination of bootstrapping ICC estimates (repetitions=100) for competitive 

employment in the different sampling scenarios, it provides important sampling design 

information about hierarchical modeling with the full set of covariates of individual 

characteristics and rehabilitation services. With an average cluster sample size (e.g., the 
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number of clusters is about 10-15), the mean bias is about 0.005, MSE is about 0.0002, 

the proportion of successful hits is about 70%. With an average level of subject sample 

size (e.g., the number of subjects is around100), the mean bias is about 0.0053, MSE is 

about 0.0002, the proportion of successful hits is close to 60%. That is, the within-cluster 

subject size also plays an auxiliary role in quality of ICC estimation and inference, while 

the between-cluster sample size determines overall quality of ICC estimates. 

In general, with large cluster samples (e.g., cluster size is 15-25) and average within-

cluster samples (e.g., within-cluster size is 100-150), the ICC estimation and inference 

can result in effective performance in terms of accuracy and precision; on the other side, 

with a smaller cluster size (e.g., 5 or below) or a smaller within-cluster sample size (e.g., 

50 or below), the ICC estimate is susceptible to be less reliable and more biased in the 

hierarchical generalized linear modeling framework for a binary outcome measure. 

(d) Research Question 2 for Outcome Measure Y2 (see Tables 5.17-5.18) 

As for examination of bootstrapping ICC estimates (repetitions=100) for quality of 

employment in the different resampling scenarios, it provides crucial sampling design 

information about multilevel modeling with the full set of covariates of individual 

characteristics and rehabilitation services. With an average cluster sample size (e.g., the 

number of clusters is about 10-15), the mean bias is about 0.015, MSE is about 0.0003, 

the proportion of successful hits is about 55%. With an average level of subject sample 

size (e.g., the number of subjects is around 100), the mean bias is also about 0.015, MSE 

is about 0.0004, the proportion of successful hits is close to 55% as well. That is, the 

within-cluster size also plays a supplemental role in ICC estimation and inference, while 

the between-cluster size still can boost effective performance of ICC estimates. 



 104 

In general, with large cluster samples (e.g., cluster size is 15-25+) and average within-

cluster samples (e.g., within-cluster size is 100-150+), the ICC estimation and inference 

can result in effective performance in terms of accuracy and precision; on the other hand, 

with a smaller cluster size (e.g., 10 or less) or a smaller within-cluster sample size (e.g., 

50 or less), the ICC estimate is prone to be less consistent and more biased in the 

hierarchical linear modeling framework for a continuous outcome measure. 

(e) Research Question 3 for Outcome Measure Y1 (see Tables 5.11-5.12) 

As for auxiliary statistics of the ICC estimates for competitive employment, the 

unadjusted ICC is about 0.01 (DE=4.44), while the adjusted ICC is also about 0.01 

(DE=4.67). The unconditional model is used as a baseline to measure relative efficiency 

of between- and within-group variances for ICC estimates in conditional models. Among 

the three competing conditional models (Models 2-4), Model 3 (the one with a covariate 

set of service information) has the most decrease of 8.06% of within-group variation as 

well as a significant increase of 4.17% in between-group variation, comparing with the 

baseline model (Model 1).  Note that both Model 2 (demographic model) and Model 4 

(full model) have similar performance that result in a decrease of 3.05% of within-group 

variation and 0.00% of change in between-group variation, comparing with the baseline. 

(f) Research Question 3 for Outcome Measure Y2 (see Tables 5.17-5.18) 

As for auxiliary statistics of the ICC estimates for quality of employment, the unadjusted 

ICC is about 0.02 (DE=8.49), while the adjusted ICC is also about 0.02 (DE=9.17). The 

unconditional model is used as a baseline to measure relative efficiency of between- and 

within-group variances for ICC estimates in conditional models. Among the three 
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competing conditional models (Models 2-4), Model 4 (the one with the full covariate set 

of demographics and services) and Model 2 (the one with a covariate set of demographic 

information) has the most decrease of about 9.88% of within-group variation as well as a 

slight increase of 1.29% in between-group variation, comparing with the baseline model 

(Model 1). Note that Model 3 (service model) has relatively ineffective performance that 

result in a modest decrease of 2.47% of within-group variation and a tiny increase of 

0.32% in between-group variation, comparing with the baseline model. 

 

6.2 Implications 

 

(a) Statistical perspectives on the ICC estimation and inference 

The intraclass correlation coefficients (ICC) at experimental designs has been one of the 

oldest statistical measures since Sir RA Fisher invented it last century (Fisher, 1925a). 

Like Pearson’s correlation coefficient, it has been used as one of the most popular and 

important tools in scientific inquiries including educational and social research.  In a 

theoretical perspective, both correlation coefficient and intraclass correlation share 

mathematical similarities and features. For example, ICC can be used to measure the 

level of similarity or resemblance within a group of measurements (e.g., students in a 

classroom or school), and the general formula of intraclass correlation can be written 

by a very similar form of Pearson’s product moment correlation coefficient. Fisher 

(1925a) also pointed out that the ICC can be geometrically equivalent to the overall 

Euclidean distance between the paired samples on the standardized scale (see Figures 
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2.2 and 2.3 as examples). In terms of effect size measures, both correlation and ICC can 

determine the effect size magnitude of a studied phenomenon of interest; in particular, 

the ICC can show the amount of total variance explained by between-group variation in 

an experimental design model (e.g., hierarchical linear models), and that it is another 

form of the squared correlation (R-squared) in analysis of variance models which 

accounts for the true proportion of outcome variance across different clusters. 

One research gap in methodology for ICC estimation and inference is about the testing 

statistic and its related sampling distribution. This study aims to address that important 

issue by developing the mathematical foundations of the ICC estimator at a hierarchical 

design (e.g., cluster randomized trials).  Donner & Koval (1980a) derived maximum 

likelihood estimator (MLE) of the intraclass correlation using variance component in 

analysis of variance (ANOVA) models. Since the traditional method (Fisher’s 

approach) requires distributional assumptions (based on multivariate normal theory), it 

is analysis of variance (ANOVA) that provides an alternative estimator of intraclass 

correlation (by relaxing the multi-normal assumptions) via classical ANOVA. This 

study finds the estimator of intraclass correlation via the Fisher’s definition, but further 

extends it to utilize relevant information in the ANOVA table by Donner’s approach 

(i.e., utility of between- and within-group variation) for developing a general statistical 

framework for the ICC in the multilevel structure (i.e., a flexible approach to either a 

balanced design with equal group size or an unbalanced “natural” design with unequal 

group size). It is noteworthy that the approximate group size (or the average within-

group size by Donner & Koval, 1980a) is a key in an unbalanced design case for 

computation of the proposed ICC estimator (see Figure 2.4 as an illustration). 
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As for statistical testing of the proposed ICC estimator (𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠), this study suggests 

the use of F-distribution (with 𝑘 − 1 and 𝑁 − 𝑘 degrees of freedom) and F-testing 

statistic (based on ANOVA) for determining if the null or alternative hypothesis of the 

magnitude of effects is true at the chosen level of significance (i.e., 𝐻𝑜: 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 = 0 

vs. 𝐻𝑎: 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 > 0). A significant F-testing statistic value implies that members of 

the same group tend to be more alike and similar with respect to the attribute or 

characteristic in question than those from different groups (i.e., if within-group subjects 

are perfectly homogeneous, or equivalently 𝜎𝑊2 = 0, then it implies 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 = 1). 

As for a 100(1 − 𝛼)% confidence interval on the ICC, this study provides the formulas 

for the corresponding interval for an ICC estimand (i.e., the true proportion of variance 

accounted for by a grouping factor of interest in a hierarchical design). Also, it is 

notable to be pointed out that the lower confidence limit on an ICC interval estimate 

could be negative using the proposed method, especially when a small sample size or 

large measurement error occurs in hierarchical modeling; but since ICC is normally 

non-negative in anyway by the mathematical definition, it is a common practice to 

replace the negative lower bound with “zero” for a post-hoc adjustment (Hays, 1994). 

As for the variance of the proposed ICC estimator, this study uses the MLE approach 

(multivariate normality in a large sample theory) by Donner & Koval (1980a) to obtain 

the standard error of the ICC estimate. It is interesting to note that the MLE of ICC is 

statistically equivalent to the Pearson’s product moment correlation (i.e., a quick 

shortcut solution for the ICC estimation) for a balanced design in hierarchical 

modeling; but for an unbalanced design, the MLE of ICC needs to be solved by a 

different approach – either numerical optimization via multivariate log-likelihood by 
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Donner & Koval (1908b) or using invariance property of MLEs by Karlin et al. (1981). 

The proposed theoretical framework for ICC in the study is mainly inspired by Hedges’ 

approach (Hedges & Hedberg, 2007) that uses ICC via hierarchical modeling to collect 

the clustering information of variance components in cluster randomized trials (CRT). 

Nowadays CRT have become more and more popular in education and social studies 

for some practical reasons that RCT (randomized control trial) is too expensive for the 

assignment of each individual subject, whereas CRT is more economical by dealing 

with an entire intact group at one time. Since ICC has been considered as an ancillary 

statistic to provide design effect (DE, or variance inflation factor, VIF) for statistical 

planning in multilevel design, ICC can play a key role in effectively quantifying the 

amount of inherent clustering effects for a CRT survey study (Hedges et al., 2012; 

Hedges & Hedberg, 2013). It is important to note that clustering design (CRT) has 

more total variation (i.e., cluster-to-cluster plus within-cluster variance) than simple 

random sampling (RCT) by a factor of DE (that is why it is also called VIF). 

As for experimental design with a binary outcome (e.g., a dichotomous variable), the 

proposed ICC estimator in this study is derived by using the hierarchical generalized 

linear modeling framework (HGLM; Raudenbush & Bryk, 2002). It is conventional 

(and also mathematically convenient) to use a constant variance (i.e., 𝜋2 3⁄ ) as within-

group variance based on the standard logistic distribution (location = 0 and shape = 1), 

whereas this strong assumption of “holding within-group variance as a constant” often 

is not met in real world, so the recommended modification strategy from the study is to 

introduce a more flexible estimation procedure by incorporating a data-driven within-

group variance via HGLM for the proposed ICC estimation and inference. 
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Last but not least, the proposed ICC method is also connected with statistical planning 

in experimental design for sample size determination and power calculation, which is 

critical for researchers to conduct rigorous scientific investigations for detecting true 

effects at a desired effect size, statistical power, and significance level. Traditionally, 

the design and planning for sample and power calculations requires a classical 

restrictive assumption of simple random samples, which is not quite met for multilevel 

modeling. Hence, this study proposes a theoretical framework for the ICC estimator to 

circumvent such a shortcoming by taking into account heterogeneity in hierarchical 

structures of cluster samples (such as CRT). The proposed ICC estimation and 

inference is feasible via the use of between- and within-group variance in ANOVA of 

hierarchical linear modeling, and the testing statistic is based on 𝐹-distribution to serve 

a foundation for statistical inference of the ICC estimand in a multilevel design. 

 

(b) Policy perspectives on the ICC estimation and inference 

 

In behavior, educational, psychological and social research, cluster randomized design 

that assigns intact groups (e.g., classrooms or schools) to interventions, has been 

become more increasingly adopted in the era of evidence-based education and policy 

(Lingard, 2013). Since experimental design with such a cluster randomization is 

deemed as a hierarchical data structure (i.e., subjects nested within a cluster), statistical 

planning would require relevant information of ICC to account for clustering effects to 

achieve adequate power and collect sufficient sample. Through the real data set of 
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RSA-911 from U.S. Department of Education, this study provides a comprehensive 

analysis of ICC of employment outcomes (i.e., competitive employment and quality of 

employment measures) which are adjusted by covariates of interest (i.e., demographics 

and rehabilitation services) that can be used for statistical planning on CRT research 

(randomized trials or quasi experiments) in future education studies. In addition, this 

study also provides relative variance component information (i.e., between-group and 

within-group variation) that can be useful to understand which types of covariates 

should be involved in multilevel design for statistical planning and analysis. 

In an era of evidence-based practice in rehabilitation counseling & education, 

researchers are more aware of incorporation of scientific inquiry for finding “best” 

ways to empower people with impairments through effective services (Chan et al., 

2009). The recent legislation of The Workforce Innovation and Opportunity Act of 

2014 (WIOA), state and federal VR agencies have to assist the target disability 

populations, to succeed in the today’s jobs and prepare for tomorrow’s labor markets in 

the global economy (WIOA Legislation, 2018). Thus, those rehabilitation counselors, 

educators, practitioners, and researchers all need to work together to adopt the new 

EBP paradigm to improve the quality of life for VR customers through rehabilitation 

services. Further, evidence-based best practices in rehabilitation counseling would 

significantly improve outcomes for people with disabilities by translating knowledge 

and making good decisions in VR (Leahy et al., 2009, 2010, 2014a, 2014b).  

The use of EBP has become a new standard to conduct effective research and gather 

reliable data for improving practices and outcomes (Eignor, 2013). Rehabilitation 

counselors and practitioners can integrate best EBP research evidence with clinical 
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judgement expertise, to make better decisions that enhance the outcomes, so the EBP 

can provide a significant improvement of knowledge translation in practice (Kosciulek, 

2010). So, not only does EBP provide the foundations incorporating scientific evidence 

as well as clinical judgement expertise, to make best decisions about interventions, 

services, or treatments for people with disabilities, but EBP also assists rehabilitation 

counselors to identify relevant “evidence” of literature, assess “available” information 

such as the RSA-911 data, and constitute “best available evidence” on rehabilitation 

services for people with disabilities. So, under the data-driven framework with RSA-

911, this study provides the proposed method of ICC in multilevel data structure (i.e., 

individual subjects are on level 1 and rehabilitation office units are on level 2) that can 

help rehabilitation counseling researchers better understand the target population of 

people with disabilities when conducting CRT design and analysis for gathering 

relevant information of EBP by taking into account of the clustering effects via the ICC 

(w.r.t. the office units statewide) in the RSA-911 data using hierarchical linear models. 

Hierarchical data structures are ubiquitous in education and social studies (Raudenbush 

& Bryk, 1992). In rehabilitation counseling & education, for example, clients are 

nested into field office structures, which are also nested into local districts, and local 

districts are nested into states, and states are nested into regions, and so on. So, it is 

important to take into account all these multilevel structures and related topological 

relationships by using the hierarchical modeling framework for design and analysis.   

As for the origin of the RSA-911 data, Rehabilitation Services Administration Case 

Service Report (RSA-911for short) is the state vocational rehabilitation agencies collect 

and report summary data in a federally mandated format. The RSA-911 provides 
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researchers a good resource for gathering evidence of EBP (Schwanke & Smith, 2004). 

Through data mining and deep learning of the RSA-911 data, rehabilitation researchers 

can study complex issues to build EBP for people with disabilities (Pi & Thielsen, 

2011), and they can also explore big data of RSA-911 to examine what and how factors 

(e.g., variables in the individual level or office level) affect VR outcomes in which type 

disability groups. Therefore, rehabilitation researchers can exploit the RSA-911 data to 

develop EBP (either by CRT design or quasi-experimental analysis), in particular, for 

conducting individual-level and employment-related interventions, finding effective 

strategies for VR outcome improvement, and best VR practices to achieve successful 

outcomes for individuals with disabilities (Fleming et al., 2013; Pi, 2006). 

In previous literature of multilevel modeling using RSA-911 data, Alsaman & Lee 

(2017) examined the cross-sectional inter-relationships between contextual factors 

(unemployment rates at the state level), individual factors (demographic background at 

the person level) , and employment outcomes (competitive employment of a binary 

measure) for the youth population with disabilities using the 2-level hierarchical 

generalized linear modeling (HGLM) framework. Chan et al. (2014) studied the impact 

of the economic recession on VR employment by controlling for the contextual factor 

of unemployment rate in each state, where the 2-level HGLM approach is applied. Pi 

(2006) used the 2-level HLM method with the micro- and macro-level factors related to 

VR outcomes, to study relationship between predictors across levels in the VR.  

One knowledge gap in rehabilitation counseling research and literature for the ICC 

applications is about how to incorporate relevant ICC information into design and 

analysis using the RSA-911 data by taking into account the clustering effects via the 
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ICC and the related DE estimates using multilevel models. This study aims to address 

that important issue by examining the ICC values via HLM and HGLM. The proposed 

framework for ICC estimation and inference in the study is examined via the real-life 

data set of RSA-911, where the target samples of interest are people with disabilities in 

Michigan Rehabilitation Services in FY 2015 (n=11,819). To address the ICC-related 

research questions of the study, the two-level HLM and HGLM approach to the CRT (or 

clustering RCT) type of study design is used to conduct the simulations, where person 

subjects are on the level and cluster units are on the level 2. Results show that: (i) the 

overall ICC estimate for both outcome measures (competitive employment and quality 

employment) tends to be low (0.01 and 0.02, respectively), implying that the clustering 

effects of rehabilitation office structures cannot capture much total variation in the RSA-

911 data; (ii) rehabilitation services play a bigger role than individual characteristics in 

accounting for total variation in the both employment outcome measures; (iii) previous 

work experience, significance of disability, and type of disability (i.e., covariates for 

subgroup analysis) can affect outcome measures, but also they show differences in the 

ICC estimates, which indicates that researchers should pay attention to those groups with 

a high ICC value when conducting a CRT design study; (iv) should a CRT experiment be 

conducted, the recommended minimum cluster samples are about 10-15 units, and person 

samples are about 100-150 subjects, for attaining sufficient quality sample in analysis. It 

is interesting to notice that the average (unadjusted) ICC estimates in the simulation study 

are comparable to those psychological mental health data in school-based intervention 

designs in which ICCs range from 0.01 to 0.05 (Murray & Short, 1995), although they are  

relatively lower than the standards of 0.05-0.15 based on education data in reading and 
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mathematics across Grades K-12 (Bloom et al., 1999, 2007; Hedges & Hedberg, 2007; 

Schochet, 2008). The low ICC is an indicator of small clustering effects in the multilevel 

design and analysis, but the effective sample size (i.e., a total sample size divided by design 

effect) is inflated to a certain degree, meaning the bottom line (minimum sample size) is 

risen to maintain high statistical power and low standard error given by the same model.  

 

6.3 Limitations of the Study 

 

There are four limitations in the study.  

(1) Of the different types of effect magnitude measures for the correlation ratio (𝜌), 

the intraclass correlation (ICC; 𝜌𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠) is a parametric estimator in ANOVA via HLM to 

quantify the true proportion of total variance (𝜎𝑌2 = 𝜎𝑎2 + 𝜎𝑒2) accounted for in the outcome. 

Although the underlying ANOVA framework in HLM suggests the total variance consists of 

two independent variance components (i.e., both always be a positive real number) – group 

variance (𝜎𝑎2) and error variance (𝜎𝑒2), an unbiased estimate of group variance may be failed 

and found 𝜎𝑎2 = 0, especially when MSE (𝜎𝑒2) is greater than or equal to MSA (𝜎𝑎2) (Hayes, 

1994). As a consequence, the ICC estimate value is forced to become zero, which would be 

shown as a warning of “estimation failure” from the command for HLM or HGLM in 

statistical software (like lmer or glmer from the package of lme or lme4 in R). In this case of 

estimation failure in HLM, model modification is suggested to remedy the situation that there 

is more within-group error variation than between-group variation, i.e., 𝜎̂𝑎2 ≤ 𝜎𝑒2, in ANOVA 

via HLM (Raudenbush & Bryk, 2002).   
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(2) In the simulation using the RSA-911 data, there have other options to build a 

different multilevel design and analysis for ICC estimation and inference. In this study, a two-

level hierarchical design structure (i.e., individuals are at the level 1, and offices at the level 

2) is fitted by HLM and HGLM to find the unadjusted ICC (by the unconditional model 

without any covariates) and adjusted ICC (by the conditional model with covariates). On the 

other side, alternative modeling choice can be the latent variable modeling (LVM) approach 

to investigate the multilevel data of RSA-911. Austin & Lee (2014) built a structural equation 

model (SEM) of VR services via RSA-911, to study predictors of employment outcomes in 

VR for people with intellectual and co-occurring psychiatric disabilities. And Alsaman & Lee 

(2017) examine the relationships between contextual factors, individual factors, and 

employment outcomes of transition youth with disabilities in VR using the RSA-911 data in 

by the 2-level HGLM (individuals are on Level 1, and states are on Level 2). Since the 

current study does not use latent factors in the HLM and HGLM framework due to the 

limitation of HLM and HGLM modeling structure, the alternative LVM approach can provide 

a holistic modeling structure with latent constructs and manifest variables both at the same 

time to study latent factor structures of interest  (Raykov & Marcoulides, 2006). In the VR 

context, SEM can also be used to examine important predictive associations between 

individual characteristics, rehabilitation services, and employment outcomes, while HLM is 

essentially to provide the overall “big picture” of ICC in multilevel design (such as CRT). 

(3) In the simulation study using the RSA-911 data, it does not consider any 

interactions at the person level or the office level (e.g., demographic variables and service 

indicators at the level 1, or their group means at the level 2) due to statistical simplicity for 

simulations, but they may exist two-way interactions somewhat between those individual 
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characteristic and rehabilitation service variables. For example, age group (X3) can be related 

to education (X5), rehabilitation services (X6-X8) for both employment outcome measures 

(Y1 and Y2), according to the sample correlation structures of all predictors in hierarchical 

analysis (see Tables 5.4 and 5.5). With those important two-way interactions added into HLM 

and HGLM, the ICC estimation and inference can be influenced to some degree due to 

between- and within-group variation affected by new predictors (those important two-way 

interactions) in the HLM and HGLM model. Theoretically, after adding those significant 

predictors in an HLM or HGLM model, MSE (within-group variation) would be decreasing 

to some extent, and the new ICC could be increasing to a certain degree, comparing with the 

old ICC (based on the baseline model without newly added important two-way interactions).  

(4) The ICC estimation would require a minimum total sample size (𝑁), the number of 

groups (𝑘), and within-group size (𝑛0). If one of the criteria (i.e., 𝑁, 𝑘, and 𝑛0) is not met, it 

is very likely to obtain an invalid ICC estimate value (either the ICC estimate is a negative 

value or zero, or the lower bound of confidence interval is not positive at all). For example, 

the lower bound of ICC confidence interval (CI) for visual impairments (VI) on Y1 under 

Model 1 is not valid (see Table 5.7), due to the small total sample size (𝑁 = 87) and within 

group size (𝑛0 = 3); similarly, the lower bound of ICC confidence interval (CI) for visual 

impairments (VI) on Y2 under Model 1 is not valid either (see Table 5.13) and so is the ICC 

estimate negative, due to again the small total sample size (𝑁 = 87) and within group size 

(𝑛0 = 3). The threshold of sample size criteria for ICC estimation and inference would need 

future research to determine the minimum sample size for statistical analysis in HLM and 

HGLM. From the simulations, the rule of thumb is total sample size (𝑁) greater than 600 and 

within group size (𝑛0) larger than 20, given by the number of groups about 30. In other 
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words, the quick formula is 𝑁 = 𝑛0 × 𝑘, where 𝑁 is total sample size, 𝑘 is the number of 

groups, 𝑛0 is within group size; and the simulation finding in the study (based on the RSA-

911 data) suggests that the sample size criterion 𝑁 ≥ 30 × 𝑛0 , or 𝑛0 ≥ 𝑁 30⁄ , would assure 

the ICC estimation and inference is more likely to get a valid and reliable result in the case of 

CRT (or cluster RCT) via the HLM and HGLM framework using the RSA-911 data.  

 

6.4 Future Research 

 

Future work should address the following five potential issues that have not been fully 

addressed in this study.  

First, as for the traditional approach to ICC estimation, the practical method is based on 

a two-level multilevel structure (e.g., the person level is defined as Level 1, and the group 

level is defined as Level 2), where the ICC estimation is to utilize relevant information from 

the ANOVA table including the source of both between- and within-group variation in the 

HLM and HGLM framework. For more complex multilevel structure in CRT experiments 

(e.g., 3-level and 4-level hierarchical design), ICC estimation (using variance component 

decomposition in ANOVA via HLM) has been discussed (Hedges et al., 2012; Hedges & 

Hedberg, 2013), but ICC inference (hypothesis testing by confidence interval and p-value) 

has not been done yet for complex 3-level or 4-level multilevel models. For this development, 

one statistical challenge and difficulty is to find out an effective way to quantify standard 

error of ICC (based on the pooled weighted variance of ICC across different levels) in 

complex multilevel design via the HLM or HGLM framework, or to extend the 2-level 
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multilevel framework in the study to 3- or 4-level HLM or HGLM by using multiple 

comparison procedures for ANOVA (e.g., Bonferroni’s correction method, and Benjamini-

Hochberg procedure) to control for familywise Type I error rate or the overall false discovery 

rate (i.e., the probability of making one or more Type I errors or false discoveries when 

performing multiple hypotheses tests).  

Second, complex data integration (or data fusion) has become an important issue in 

the big-data era with today’s technology, and researchers may look into multiple sources of 

large-scale complex data sets (or data platforms) to conduct interdisciplinary studies. For 

example, it would be interesting to integrate the RSA-911 data with a set of covariates from 

Census data for a comprehensive research investigation about how the between- and within 

group variation sources are varied by the ICC estimates, in terms of statistical effectiveness 

perspectives for design and analysis, for statistical estimation and inference at each level of 

multilevel modeling across different data platforms. In such a way, multilevel design models 

are inherently nested at each level in different data platforms (note: data platform can be 

viewed as a “block” and treated as an additional level in the HLM and HGLM framework) 

Given by this complex design structure (multiple data platforms), it would be interesting to 

study how statistical planning can be conducted for power and sample size calculations, and 

what ICC estimates are varied (using sensitivity analysis) to a point in different platforms.  

Third, covariate adjustment is an important technique in statistical modeling to take 

into account the confounder effects in a model (HLM or HGLM). In the complex multilevel 

design (i.e., more than two levels in hierarchal models), it would be interesting to understand 

how covariate adjustment (with or without subgroup analysis or stratification) affects adjusted 

ICC estimation and inference. In the study (as the case of 2-level hierarchical design), 
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simulations show covariate adjustment (with stratification by a “breaking” variable) can 

improve the ICC estimates to some extent, yet in some cases (especially for a small total 

sample size or within-group sample size) the ICC estimation and inference cannot work at all 

(i.e., estimation failure). Therefore, it would be important to find out how to develop the 

remedial strategy for statistical adjustment and stratification in complex multilevel design via 

HLM and HGLM, and what type of statistical centering or standardizing procedures can be 

used to modify (or “customize”) covariate adjustment (e.g., group and grand centering or 

standardizing) at each level to make “adjusted” ICC estimation and inference more accurate 

and precise by accounting for the localized multilevel substructure adjusted by covariates.  

Fourth, this study considers only one-year data (FY 2015) of RSA-911 for simulations 

to testify the proposed method of ICC estimation and inference. It would be interesting to 

study the statistical properties of ICC by extending the current framework to a complex 

multilevel structure such as longitudinal design across multiple years or cross-cohort design 

with multiple year data resources. In this type of complex multilevel modeling structure (e.g., 

longitudinal analysis in HLM and HGLM), the variance-and-covariance structure (i.e., a 

random component on the “time” factor in ANOVA) needs to be considered (e.g., compound 

symmetry for homogeneous data, and autoregressive structure for heterogeneous data) so as 

to take into account the correlation structure across different time periods or cohorts. In 

addition, it would be interesting to use multiple year data sets of RSA-911 to verify statistical 

performance of ICC estimation and inference in terms of consistency and efficiency.  

Lastly, missing data analysis is a common issue in statistics. Although the listwise 

procedure (i.e., only include complete data, but exclude those subjects with any incomplete 

information) is a convenient way to deal with missing data, it would often lose much 
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statistical information and compromise statistical power in analysis (e.g., HLM or HGLM). 

Hence, it would be important to study how to cope with missing values (assuming missing at 

random) in a multilevel design data structure for ICC estimation and inference, and what 

remedial procedures (EM or multiple imputation for discrete or continuous variables) can be 

applied to improve the ICC estimation process via sensitivity analysis in HLM or HGLM. For 

the proposed method of ICC with a full complete data, the simulation results suggest the total 

sample size needs to be greater than 1,500 and within group sample size larger than 100 (over 

15 groups). Nevertheless, the guidelines need to be adjusted for incomplete data case. 

 

6.5 Conclusion 

 

In conclusion, this study provides a comprehensive methodology for intraclass correlation 

(ICC) estimation and inference using the hierarchical mixed modeling framework. The proposed 

methodology for ICC estimation and inference incorporate the analysis of variance (ANOVA) 

approach to the development of the ICC estimator and its inferential statistic of the pivotal 

quantity of the ICC estimand for deriving the sampling distribution (F-distribution) to test ICC as 

well as construct confidence interval on ICC. The proposed statistical procedures for ICC 

estimation and inference can be easily used and applied in any large-scale or small-scale data sets, 

whereas small total sample size and small within group size and missing data are limitations can 

affect the results of ICC estimates to a certain degree in terms of precision and accuracy. More 

research study is needed to better understand the ICC in complex multilevel design structures.  
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APPENDIX A: Definitions of the VR Variables in RSA-911 
 
 
 

The following are the definitions of VR variables, according to the manual of 
RSA-911 (Policy Directive of RSA-PD-16-04 for Revision of RSA-PD-14-01; 
https://www2.ed.gov/policy/speced/guid/rsa/subregulatory/pd-16-04.pdf).   

 
This appendix section includes three tables: (1) VR services are shown in Table 

A.1; (2) demographic backgrounds are listed in Table A.2; and (3) rehabilitation outcomes 
are given in Table A.3. 
 
 
Table A.1. List of the Definitions of VR Service Variables Used in the Study  
 

Rehabilitation Service RSA Definition 

Job Placement Assistance 

This is a referral to a specific job 
resulting in setting up a job interview 
and obtaining a job on behalf of a 
customer 
(1=received; 0=not received) 

On-the-Job Supports 

Services such as job coaching, follow 
along services to assist a customer 
adjust to the job and become stable to 
enhance job retention  
(1=received; 0=not received) 

Rehabilitation Technology 

The application of rehabilitation 
engineering, assistive devices, 
technologies, or services, to meet the 
needs and address the barriers  
(1=received; 0=not received) 
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Table A.2. List of the Definitions of VR Demographic Variables Used in the Study  
 

VR Demographics RSA Definition 

Age Indicate age when he or she is applied 
for VR services (continuous measure)  

Gender Indicate an individual is male or female 
(1=male; 0=female)  

Minority 
(Non-White) 

Indicate an individual’s race/ethnicity if 
s/he is minority (including Black, 
Native, Asian, Pacific Islander, and 
Hispanic) or not (White) 
(1=minority; 0=non-minority) 

Social Security Benefits  
(Insurance Benefits) 

Indicate if an individual receives Social 
Security Disability Insurance (SSDI) or 
Supplemental Security Income (SSI)  
(1=received; 0=not received) 

Employment Status at Application 
(Previous Work Background) 

Employment status of the individual at 
application 
(1=employment; 0=not employed) 

Type of Disability 

Individual’s primary physical or mental 
impairment includes: blindness/visual 
impairment, deafness/hearing 
impairment, physical or 
orthopedic/neurological impairment, 
LD, ADHD, intellectual disability (ID), 
TBI, autism, mental illness (MI), 
substance abuse (SA) 
(categorical/qualitative measure)  

Level of Education  

Level of education the individual had 
attained includes: elementary/secondary 
education, special education, high 
school graduate or equivalency 
certificate (GED), college or above 
(categorical/ordinal measure) 

Significance of Disability 

Whether the individual was considered a 
person with a significant disability or a 
most significant disability during VR 
(1=yes; 0=no)  
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Table A.3. List of the Definitions of VR Outcome Variables Used in the Study  
 

Rehabilitation Outcome RSA Definition 

Rehabilitation Outcome 

Individual exited the VR program either 
with or without an employment 
outcome after receiving services 
(1=exited with an employment; 
0=exited without an employment) 

Competitive Employment 
Employed either at or above minimum 
wage in integrated setting 
(1=yes; 0=no) 

Weekly Earnings (or Quality of 
Employment) 

The approximate amount of money 
earned in a typical week 
(continuous measure) 
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APPENDIX B: Descriptive Data Statistics 
 
 
Table B.1 Descriptive Summary of Usable Sample by Office Level in Michigan 
(n=11,819) 

Office Unit Frequency Percentage 

Adrian Unit 244 2.06% 
Alpena Unit 160 1.35% 
Ann Arbor Unit 484 4.10% 
Battle Creek Unit 298 2.52% 
Bay City Unit 281 2.38% 
Benton Harbor Unit 289 2.45% 
Big Rapids Unit 175 1.48% 
Clinton Township Unit 732 6.19% 
Detroit Fort Street Unit 320 2.71% 
Detroit Grand River Unit 423 3.58% 
Detroit Hamtramck Unit 463 3.92% 
Detroit Mack Unit 332 2.81% 
Detroit Porter Unit 421 3.56% 
Flint Unit 418 3.54% 
Gaylord Unit 174 1.47% 
Grand Rapids Unit 764 6.46% 
Holland Unit 335 2.83% 
Jackson Unit 163 1.38% 
Kalamazoo Unit 345 2.92% 
Lansing Unit 631 5.34% 
Livonia Unit 441 3.73% 
Marquette Unit 405 3.43% 
Midland Unit 125 1.06% 
Monroe Unit 200 1.69% 
Mt. Pleasant Unit 136 1.15% 
Muskegon Unit 366 3.10% 
Oak Park Unit 540 4.57% 
Pontiac Unit 416 3.52% 
Port Huron Unit 485 4.10% 
Saginaw Unit 281 2.38% 
Taylor Unit 213 1.80% 
Traverse City Unit 377 3.19% 
Wayne Unit 382 3.23% 

Total 11,819 100.00% 
Note. There are 33 offices located statewide in Michigan, serving the target population of 
people with disabilities of N=17,633 in FY 2015. Of the target samples, the usable sample 
size is n=11,819 for data analysis in the study and ICC calculations. 
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Table B.2.  A Summary of the Geographic Information System of Office Units in Michigan  
 

Latitude 
(N) 

Longitude 
(W) Abbreviation MRS Unit 

41.90 84.04 ADR Adrian 
45.06 83.43 ALP Alpena 
42.28 83.73 AA Ann Arbor 
42.30 85.23 BCK Battle Creek 
43.60 83.89 BC Bay City 
42.10 86.48 BH Benton Harbor 
43.70 85.48 BR Big Rapids 

42.31 83.21 CT Clinton 
Township 

42.38 83.10 DT 

Detroit Fort 
Street 
Detroit Grand 
River 
Detroit 
Hamtramck 
Detroit Mack 
Detroit Porter 

43.02 83.69 FL Flint 
45.03 84.67 GL Gaylord 
42.96 85.66 GR Grand Rapids 
42.78 86.10 HD Holland 
42.25 84.40 JAK Jackson 
42.27 85.59 KAZ Kalamazoo 
42.71 84.55 LAN Lansing 
42.40 83.37 LV Livonia 
46.55 87.41 MRQ Marquette 
43.62 84.23 ML Midland 
41.92 83.40 MR Monroe 
43.60 84.77 MP Mt. Pleasant 
43.23 86.26 MKG Muskegon 
42.47 83.18 OP Oak Park 
42.65 83.29 PT Pontiac 
42.98 82.60 PH Port Huron 
43.42 83.95 SAG Saginaw 
42.24 83.27 TL Taylor 
44.77 85.62 TC Traverse City 
42.28 83.39 WY Wayne 
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Figure B.1 Spatial Network of Target Sample in Michigan by Hierarchical Structure 
 

 
 
Note1. MRS represents the Michigan Rehabilitation Services Programs. 
Note2. Client’s Zip code indicates an individual’s residence; each MRS local office is 
plotted on geometric graph according to the geographic information system (GIS) in Table 
B.2. 
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APPENDIX C: Glossary of Abbreviations 
 

This glossary contains abbreviations, acronyms and some definition used in this study. 
 
 

Table C.1 Glossary of Abbreviations  
 

ANOVA Analysis of Variance 
ASD Autism Spectrum Disorder 
CSPD Comprehensive System of Personnel Development 
CTT Classical Test Theory 
EBP Evidence Based Practice 
ESRA Education Sciences Reform Act 
FY Fiscal Year 
GIS Geographic Information System 
HGLM Hierarchical Generalized Linear Model 
HLM Hierarchical Linear Model 
ICC Intraclass Correlation Coefficient 
ID Intellectual Disability 
IPE Individualized Plan for Employment 
LVM Latent Variable Modeling 
MI Mental Illness 
MLE Maximum Likelihood Estimate 
MRS Michigan Rehabilitation Services 
NCLB No Child Left Behind 
RCT Randomized Control Trial 
REML Restrictive Maximum Likelihood 
RSA Rehabilitation Service Administration 
SE Standard Error 
SEM Standard Error Measurement 
SEM Structural Equation Model 
TBI Traumatic Brain Injury 
VR Vocational Rehabilitation 
WIOA Workforce Innovation and Opportunity 
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