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ABSTRACT 

DIAGNOSTIC TOOLS FOR IMPROVING THE AMOUNT OF ADAPTATION  

IN ADAPTIVE TESTS USING OVERALL AND CONDITIONAL INDICES OF 

ADAPTATION 

By 

Unhee Ju 

In recent years, computerized adaptive testing (CAT) has been widely used in educational 

and clinical settings. The basic idea of CAT is relatively straightforward. A computer is used to 

administer items tailored for individuals to maximize the measurement precision of their 

proficiency estimates. However, the administration of CAT is not so simple. Those who 

administer CATs must, while trying to optimize an item selection criterion, consider a variety of 

practical issues such as test security, content balancing, the purpose of testing, and other test 

specifications. Such extraneous factors make it possible that a CAT might have so many 

constraints that in practice it is barely adaptive at all. This concern is at the forefront of the 

current study, which poses two key questions: How adaptive is a highly adaptive test really? 

How can the level of adaptation be improved?  

This study aims to develop three new statistical indicators to measure the amount of 

adaptation conditional on the examinees’ proficiency levels in CAT. It also aims to evaluate the 

feasibility and utility of these adaptation measures in helping to diagnose and improve adaptivity 

that occurs during the CAT administration. Extending work done by Reckase, Ju, and Kim 

(2018), the proposed measures are based on three components—the differences in the locations 

between the selected items and the examinee’s current proficiency estimates, the variations in the 

item locations administered to each examinee, and the magnitude of information that the test 

presents to each examinee. Hence, they can be used to assess adaptivity during the CAT process, 
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as well as to identify differences in the level of adaptation for individuals or subgroups of 

examinees.  

To demonstrate the performance of the proposed adaptation indices, this study conducted 

analyses of real operational testing data from a healthcare licensure examination, as well as 

comprehensive simulation studies under various conditions that affect adaptivity in a CAT. The 

key findings of the study suggest that the proposed adaptation indices are likely to function as 

intended to sensitively detect the magnitude of adaptivity for a CAT over the proficiency 

continuum. These new measures shed light on how much adaptation of a given test occurs across 

individual proficiency levels or subpopulations. With some guidelines for the interpretation of 

these measures recommended in this study, the adaptation indices can also readily serve as 

diagnostic tools in practice for helping test practitioners design item pools and adaptive tests that 

support high adaptivity. 



 

Copyright by 

UNHEE JU 

2019



  v 

ACKNOWLEDGEMENTS 

 

I would like to express deep gratitude to my advisor and committee chair, Dr. Mark D. 

Reckase. The support, guidance, and encouragement that he has provided throughout my 

doctorate training years has been priceless. He has given me numerous opportunities to conduct 

research with him, showing me I could enjoy doing research and with self-motivation. A 

passionate scholar and wise educator, he has been a great role model to me. I would not have 

come this far without his tremendous academic support and emotional encouragement. 

For their support and invaluable comments, I also sincerely appreciate my committee 

members, Dr. Kimberly Kelly, Dr. Richard Houang, and Dr. Christopher Nye. I thank National 

Council of State Boards of Nursing (NCSBN), especially Dr. Qian Hong for allowing me to have 

access to operational data used for this dissertation study. Also, I am deeply thankful to Dr. Carl 

F. Falk for sharing his knowledge and research experience, as well as to Dr. Eunsoo Cho for 

providing financial support the last two years and research opportunities in applied research 

areas. I also want to thank my advisor in South Korea, Dr. Eunlim Chi who first sparked my 

interest in Educational Measurement (Psychometrics) and took me under her wing until the end 

of my PhD journey.  

My special thanks go out to Nancy Duchesneau and William Sullivan for reading over 

my dissertation, and to my close colleagues and friends at Michigan State University who have 

helped me stay steady and throughout the six years always stood by me—especially Jiahui Zhang 

(I’m really lucky to have had you from the beginning to the end of this journey!), Ina Choi, 

Jihyun Park, Ajin Lee, and Susie Kim. I’m so grateful to all of you for showing me true 

friendship, cheering me on, and being with me through every important stage of this journey.  



vi 

Most importantly, I dedicate this dissertation to my family. No words can fully express 

my heartfelt gratitude and appreciation to my mom and dad, Taesook Kang and Yeonghwan Ju, 

and my brother, Bongseop for their unconditional love, patience, confidence, and belief in me. 

None of this would have been possible without your love, support, and encouragement.  

 

 



vii 

TABLE OF CONTENTS 

 

LIST OF TABLES ................................................................................................................................................... ix 

LIST OF FIGURES .................................................................................................................................................. xi 

CHAPTER 1. INTRODUCTION ........................................................................................................................... 1 
1.1 Background .................................................................................................................... 1 
1.2 Research Questions ........................................................................................................ 4 

CHAPTER 2. LITERATURE REVIEW ............................................................................................................... 6 
2.1 Item Response Theory.................................................................................................... 6 

2.1.1 Rasch (1PL) model .................................................................................................... 7 

2.1.2 2PL model ................................................................................................................. 7 
2.1.3 3PL model ................................................................................................................. 7 
2.1.4 Information function for dichotomous IRT models .................................................. 8 

2.2 Computerized Adaptive Testing .................................................................................... 9 
2.2.1 Item pool ................................................................................................................. 10 

2.2.2 Item selection procedure ......................................................................................... 12 
2.2.3 Scoring procedure ................................................................................................... 18 
2.2.4 Stopping rules .......................................................................................................... 20 

2.2.5 Adaptive test designs ............................................................................................... 20 

2.3 Factors Affecting Adaptation ....................................................................................... 21 

CHAPTER 3. INDICES FOR THE AMOUNT OF ADAPTATION ............................................................. 25 
3.1 Existing Measures of the Amount of Adaptation ......................................................... 27 

3.1.1 Correlation index ..................................................................................................... 27 
3.1.2 Ratio of standard deviations index .......................................................................... 28 

3.1.3 Proportion of reduction in variance index ............................................................... 29 
3.1.4 Percent of optimal information index ...................................................................... 30 

3.2 New Conditional Measures of the Amount of Adaptation .......................................... 31 
3.2.1 Deviation of difficulty index ................................................................................... 31 

3.2.2 Conditional proportion of reduction in variance index ........................................... 33 

3.2.3 Ratio of information index ...................................................................................... 33 

CHAPTER 4.  METHODS .................................................................................................................................... 37 
4.1 Common CAT Specifications ...................................................................................... 37 
4.2 Research Question 1 ..................................................................................................... 38 

4.2.1 Item pool ................................................................................................................. 38 
4.2.2 Simulation design .................................................................................................... 39 

4.2.3 Evaluation criteria ................................................................................................... 44 
4.3 Research Question 2 ..................................................................................................... 45 

4.3.1 Item pool ................................................................................................................. 46 
4.3.2 Simulation procedure .............................................................................................. 47 

4.3.3 Evaluation criteria ................................................................................................... 48 



viii 

4.4 Research Question 3 ..................................................................................................... 48 
4.4.1 Simulation design .................................................................................................... 48 

4.4.2 Evaluation criteria ................................................................................................... 54 
4.5 Research Question 4 ..................................................................................................... 55 

4.5.1 Item pool ................................................................................................................. 55 
4.5.2 Test design ............................................................................................................... 55 
4.5.3 Evaluation criteria ................................................................................................... 58 

4.6 Research Question 5 ..................................................................................................... 59 
4.6.1 CAT specifications for the NCLEX-RN exam ....................................................... 59 
4.6.2 Item pool ................................................................................................................. 61 
4.6.3 Evaluation criteria ................................................................................................... 63 

CHAPTER 5. RESULTS ....................................................................................................................................... 64 
5.1 Research Question 1 ..................................................................................................... 64 

5.1.1 Variation in item pool size ...................................................................................... 64 

5.1.2 Variation in item pool spread .................................................................................. 86 
5.2 Research Question 2 ................................................................................................... 107 

5.2.1 Baseline for the CATs ........................................................................................... 107 
5.2.2 Region 1: -0.25 < θ < 0.25 .................................................................................... 109 
5.2.3 Region 2: 1.75 < θ < 2.25 ...................................................................................... 111 

5.3 Research Question 3 ................................................................................................... 114 
5.3.1 Measurement accuracy and precision ................................................................... 114 

5.3.2 Amount of adaptation ............................................................................................ 117 

5.3.3 Test security .......................................................................................................... 121 

5.4 Research Question 4 ................................................................................................... 123 
5.4.1 Measurement accuracy and precision ................................................................... 123 

5.4.2 Amount of adaptation ............................................................................................ 125 
5.5 Research Question 5 ................................................................................................... 128 

5.5.1 Conditional adaptivity ........................................................................................... 129 

5.5.2 Overall adaptivity .................................................................................................. 130 

CHAPTER 6. CONCLUSION AND DISCUSSION ...................................................................................... 132 
6.1 Summary of Findings ................................................................................................. 132 

6.2 Practical Utility of Conditional Adaptation Indices ................................................... 138 

6.2.1 Diagnostic tools for improving adaptivity ............................................................ 138 

6.2.2 Use of conditional adaptation indices in automated test assembly ....................... 140 
6.3 Alternative Ways to Define Conditional Adaptation Indices .................................... 141 
6.4 Implications ................................................................................................................ 143 
6.5 Limitation and Future Research ................................................................................. 145 

APPENDIX ............................................................................................................................................................ 149 

REFERENCES ...................................................................................................................................................... 158 
 

 



ix 

LIST OF TABLES 

 

Table 4.1  Descriptive Statistics and Zero-Order Correlations of Item Parameters for the Item 

Pool from Minnesota Comprehensive Assessment (MCA) Grade 6 Mathematics Adaptive Test 

(n = 635) ........................................................................................................................................ 39 

Table 4.2  Descriptive Statistics of Generated Item Pools by Item Pool Size .............................. 42 

Table 4.3  Descriptive Statistics of Generated Item Pools by Item Pool Spread (n = 400) .......... 43 

Table 4.4  Item Distributions for Item Pools Considered in Research Question 3 ....................... 52 

Table 4.5  Descriptive Statistics of b-Parameters by Stage for Each MST Design ...................... 57 

Table 4.6  Content Distribution of the First 60 Items for the NCLEX-RN in 2016 ..................... 61 

Table 4.7  Descriptive Statistics of b-Parameters for the NCLEX-RN Item Pool ........................ 62 

Table 5.1  Overall Statistics of Measurement Precision of Proficiency Estimates for a Rasch-

based CAT by Item Pool Size and Proficiency Estimator ............................................................ 66 

Table 5.2  Overall Adaptation Statistics for a Rasch-based CAT by Item Pool Size and 

Proficiency Estimator.................................................................................................................... 75 

Table 5.3  Overall Statistics of Measurement Precision of Proficiency Estimates for a 3PL-based 

CAT by Item Pool Size and Proficiency Estimator ...................................................................... 78 

Table 5.4  Overall Adaptation Statistics for a 3PL-based CAT by Item Pool Size and Proficiency 

Estimator ....................................................................................................................................... 85 

Table 5.5  Overall Statistics of Measurement Precision of Proficiency Estimates for a Rasch-

based CAT by Item Pool Spread and Proficiency Estimator ........................................................ 89 

Table 5.6  Overall Adaptation Statistics for a Rasch-based CAT by Item Pool Spread and 

Proficiency Estimator.................................................................................................................... 96 

Table 5.7  Overall Statistics of Measurement Precision of Proficiency Estimates for a 3PL-based 

CAT by Item Pool Spread and Proficiency Estimator .................................................................. 99 

Table 5.8  Overall Adaptation Statistics for a 3PL-based CAT by Item Pool Spread and 

Proficiency Estimator.................................................................................................................. 106 

Table 5.9  Overall Statistics of Measurement Precision of Proficiency Estimates for the 3PL-

based 40-item CAT by Exposure Control Procedure and Item Pool Distribution ...................... 117 

Table 5.10  Overall Adaptation Statistics for a 3PL-based 40-item CAT by Exposure Control 

Procedure and Item Pool Distribution ......................................................................................... 121 



x 

Table 5.11  Overall Statistics of Measurement Precision of Proficiency Estimates for the 3PL-

based 40-Item Adaptive Test by Test Design and Item Pool Distribution ................................. 125 

Table 5.12  Overall Adaptation Statistics for a 3PL-based 40-item CAT by Exposure Control 

Procedure and Item Pool Distribution ......................................................................................... 128 

Table 5.13  Overall Adaptation Statistics for a Rasch-Based Variable-Length CAT for an 

Operational NCLEX-RN Test..................................................................................................... 131 

Table 6.1  Benchmark Values of Conditional and Overall Adaptivity Indices by IRT Models and 

Proficiency Estimators ................................................................................................................ 133 

 
 

  



xi 

LIST OF FIGURES 

 

Figure 4.1. Item distribution for the master pool (N = 3,000). ..................................................... 47 

Figure 4.2. Number of items needed in the ideal item pool for a 3PL-based CAT of 40 items. .. 50 

Figure 4.3. Distribution of b-parameters for the regular and optimal item pools. ........................ 51 

Figure 4.4. Distribution of exposure control parameters for the Sympson-Hetter procedure for the 

regular item pool (left) and the optimal item pool (right) of 300 items. ....................................... 53 

Figure 4.5. A 1-2-3 three-stage MST design used in the study. ................................................... 56 

Figure 4.6. Information function by each path for the 10-10-20 MST using regular item pool and 

optimal item pool. ......................................................................................................................... 58 

Figure 4.7. Information function by content strand for the NCLEX-RN item pool. .................... 63 

Figure 5.1. Conditional bias, TSEM, and RMSE of proficiency estimates for a Rasch-based CAT 

by item pool size and proficiency estimator. ................................................................................ 67 

Figure 5.2. Conditional adaptivity statistics (DOD, CPRV, and ROI) for a Rasch-based CAT by 

item pool size and proficiency estimator. ..................................................................................... 72 

Figure 5.3. Plot of a POI index for a Rasch-based CAT by item pool size and proficiency 

estimator. ....................................................................................................................................... 73 

Figure 5.4. Relationship of TSEM with conditional adaptivity indices (DOD, CPRV, and ROI) 

for a Rasch-based CAT by item pool size and proficiency estimator. .......................................... 73 

Figure 5.5. Conditional bias, TSEM, and RMSE of proficiency estimates for a 3PL-based CAT 

by item pool size and proficiency estimator. ................................................................................ 77 

Figure 5.6. Conditional adaptivity statistics (DOD, CPRV, and ROI) for a 3PL-based CAT by 

item pool size and proficiency estimator. ..................................................................................... 82 

Figure 5.7. Plot of a POI index for a 3PL-based CAT by item pool size and proficiency 

estimator. ....................................................................................................................................... 83 

Figure 5.8. Relationship of TSEM with conditional adaptivity indices (DOD, CPRV, and ROI) 

for a 3PL-based CAT by item pool size and proficiency estimator. ............................................. 83 

Figure 5.9. Conditional bias, TSEM, and RMSE of proficiency estimates for a Rasch-based CAT 

by item pool spread and proficiency estimator. ............................................................................ 88 



xii 

Figure 5.10. Conditional adaptivity statistics (DOD, CPRV, and ROI) for a Rasch-based CAT by 

item pool spread and proficiency estimator. ................................................................................. 93 

Figure 5.11. Plot of a POI index for a Rasch-based CAT by item pool spread and proficiency 

estimator. ....................................................................................................................................... 94 

Figure 5.12. Relationship of TSEM with conditional adaptivity indices for a Rasch-based CAT 

by item pool spread and proficiency estimator. ............................................................................ 94 

Figure 5.13. Conditional bias, TSEM, and RMSE of proficiency estimates for a 3PL-based CAT 

by item pool spread and proficiency estimator. ............................................................................ 98 

Figure 5.14. Conditional adaptivity statistics (DOD, CPRV, and ROI) for a 3PL-based CAT by 

item pool spread and proficiency estimator. ............................................................................... 103 

Figure 5.15. Plot of a POI index for a 3PL-based CAT by item pool spread and proficiency 

estimator. ..................................................................................................................................... 104 

Figure 5.16. Relationship of TSEM with conditional adaptivity indices (DOD, CRPV, and ROI) 

for a 3PL-based CAT by item pool spread and proficiency estimator. ...................................... 104 

Figure 5.17. A plot of conditional adaptivity indices over the proficiency continuum for the CAT 

using the 300-item pool (baseline). ............................................................................................. 108 

Figure 5.18. A plot of bias, TSEM, and RMSE over the proficiency continuum for the CAT 

using the 300-item pool (baseline). ............................................................................................. 109 

Figure 5.19. Distributions of conditional adaptivity indices by number of items added at Region 

1 (-0.25 < θ < 0.25). .................................................................................................................... 110 

Figure 5.20. Distributions of statistics for measurement accuracy and precision by number of 

items added at Region 1 (-0.25 < θ < 0.25). ............................................................................... 111 

Figure 5.21. Distributions of conditional adaptivity indices by number of items added at Region 

2 (1.75 < θ < 2.25). ..................................................................................................................... 112 

Figure 5.22. Distributions of statistics for measurement accuracy and precision by number of 

items added at Region 2 (1.75 < θ < 2.25). ................................................................................. 113 

Figure 5.23. Conditional bias, TSEM, and RMSE of proficiency estimates for the 3PL-based 40-

item CAT by exposure control procedure and item pool distribution. ....................................... 116 

Figure 5.24. Conditional adaptivity statistics (DOD, CPRV, and ROI) for a 3PL-based 40-item 

CAT by exposure control procedure and item pool distribution. ............................................... 120 



xiii 

Figure 5.25. Exposure rate distribution of 300 items ordered by b-parameter (top) and exposure 

rate (bottom) for a 3PL-based 40-item CAT by exposure control procedure and item pool 

distribution. ................................................................................................................................. 122 

Figure 5.26. Conditional bias, TSEM, and RMSE of proficiency estimates for a 3PL-based 

adaptive test by test design and item pool distribution. .............................................................. 124 

Figure 5.27. Conditional adaptivity statistics (DOD, CPRV, and ROI) for a 3PL-based 40-item 

adaptive test by exposure control procedure and item pool distribution. ................................... 127 

Figure 5.28. Conditional adaptivity statistics (DOD, CPRV, and ROI) for a Rasch-based 

variable-length CAT for an operational NCLEX-RN test. ......................................................... 130 

Figure A.1. Relationship of RMSE with conditional adaptivity indices (DOD, CPRV, and ROI) 

for a Rasch-based CAT by item pool size and proficiency estimator ......................................... 150 

Figure A.2. Relationship of RMSE with conditional adaptivity indices (DOD, CPRV, and ROI) 

for a 3PL-based CAT by item pool size and proficiency estimator ............................................ 152 

Figure A.3. Relationship of RMSE with conditional adaptivity indices (DOD, CPRV, and ROI) 

for a Rasch-based CAT by item pool spread and proficiency estimator .................................... 154 

Figure A.4. Relationship of RMSE with conditional adaptivity indices (DOD, CPRV, and ROI) 

for a 3PL-based CAT by item pool spread and proficiency estimator ....................................... 156 

 



1 

CHAPTER 1. 

INTRODUCTION 

 

1.1 Background 

Computerized adaptive testing (CAT) has been used in a wide range of settings. These 

include licensure and certification examination (e.g., National Council Licensure Examination 

[NCSBN, 2016]), admissions tests (e.g., Graduate Record Examinations®, Graduate 

Management Admission Test), achievement assessments within statewide educational system 

(e.g., Minnesota [Minnesota Department of Education, 2017]), and clinical settings to assess 

psychological or health-related outcomes (e.g., anxiety- and depression-CAT [Walter, 2010]), 

and still others. The popularity of CAT is attributed to its merits of efficient testing and high 

measurement precision of proficiency estimates. As CAT is implemented, it selects, administers, 

and scores items tailored for each individual, based on optimizing criteria such as maximizing 

the Fisher information at the current proficiency estimate.  

The basic idea of CAT is relatively straightforward. However, numerous practical 

challenges to the deployment of CAT have persisted. These concern the design, implementation, 

and maintenance of a CAT program with respect to development and maintenance of the item 

pool, test administration (e.g., item selection, scoring, and termination procedures), test security, 

and examinee issues. The success of a CAT program is dependent on how well these practical 

concerns are addressed (see Wise & Kingsbury, 2000, for details). Measurement professionals 

have resolved a number of these issues in CAT using alternative options. For instance, a variety 

of appropriate constraints are imposed on item selection to conform to test specifications (e.g., 

Kingsbury & Zara, 1989; van der Linden & Reese, 1998) and item exposure control 
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requirements (e.g., Chang, Qian, & Ying, 2001; Sympson & Hetter, 1985). Some CATs adapt at 

the testlet level to incorporate the grouped items associated with a common stimulus (e.g., 

Wainer & Kiely, 1987). Multistage testing (MST), a special version of CAT, adapts at the stage 

level using pre-constructed modules, allowing reviews on psychometric and content properties 

and more efficient handling of complex test constraints (e.g., Yan, von Davier, & Lewis, 2016). 

In addition, CATs differ in their item pool design, their stopping rule, and estimation procedures. 

All of these features have influence on an operational CAT program.  

Although many of these designs and variations in the implementation of CATs are given 

the label “adaptive tests,” questions arise about whether they would be equally adaptive to 

examinees’ proficiency. An administered CAT may not be very adaptive if it imposes too many 

constraints on item selection for the purpose of strong exposure control and strict content-

balancing using a small item pool with limited spread in item difficulty. A severely constrained 

CAT may lead to all examinees getting almost the same test, making it nearly the same as paper-

and-pencil tests. If a CAT has a relatively large item pool, however, without any constraints on 

item selection, examinees may receive an optimal set of items customized for their proficiency 

levels during a test, showing a high level of adaptation. Another issue for the consideration is the 

test fairness for examinees. Sometimes, a testing program uses multiple item pools for the test 

administration. In this situation, some examinees receive the items given in the test that match 

well with the students’ proficiency levels from the pool of high-quality items, while others could 

take the items less adapted for their abilities due to the different item pool characteristics 

assembled from the master item pool.  

Spurred by such concerns, Reckase and colleagues (Reckase, Ju, & Kim, 2018) proposed 

three adaptation indices to quantify the amount of adaptation that occurs in CAT based on the 
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variance of the difficulty parameters for the items administered to the examinees. While these 

measures are useful and work fairly well (e.g., Reckase, Ju, & Kim, 2017, 2019), they are limited 

to the evaluation of the adaptivity of tests over the entire group of examinees, rather than for 

individuals or subgroups. The measures give us the overall diagnosis of the adaptivity of 

administered tests but provide no specific information about the degree of the adaptivity 

conditional on the examinee’ proficiency level. The latter information would be useful to modify 

test designs or the quality of the item pool for reaching the optimal adaptation desired for the 

test’s purpose. In addition, the overall indices introduced by Reckase et al. (2018) focus on how 

appropriately the items administered to examinees are customized to their final proficiency 

estimates, while item selection is driven by interim proficiency estimates. The adaptation indices 

thus do not know the quality of adaptation during the intermediate stages of CAT because the 

final proficiency estimate is not known until the end of the test administration. In other words, 

these adaptation measures conduct the post-evaluation of whether the items presented in the test 

are optimal for the examinee’s final proficiency levels, but they are blind to whether the test 

provides the items that well match their momentary proficiency estimates during the CAT 

process.     

In response to this perceived necessity, Kingsbury and Wise (2018) suggested a new 

measure of adaptation based on item response theory (IRT) test information. Although this index 

is informative, it fails to take into account the alignment of and variations in difficulty for the 

items administered to each examinee, as well as it focuses on the actual test information based on 

the final proficiency estimates. Plus, as found in Reckase et al. (2018, 2019), a single index may 

be insufficient to assess all the relevant information about the magnitude of adaptation that 
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happens during a CAT because adaptivity is intertwined with item pools, item selection 

algorithms, proficiency estimators, and other test specifications.  

1.2 Research Questions 

 To address practical needs and the gap in CAT literature, this study proposes new 

statistical indicators to examine the level of adaptation conditional on an examinee’s proficiency 

using (1) the locations of the items (item difficulty or the location of the maximum information) 

administered to each examinee, (2) their variances, and (3) their IRT information. The study then 

explores the capabilities of these three new adaptation measures as tools for understanding how 

well adaptivity occurs in the applications of CATs, as well as demonstrates the practical utility of 

these indices using real operational data from the licensure and certification examination. 

Consequently, a new class of the adaptivity indices introduced here can help measurement 

professionals and test developers understand the adaptation costs associated with item pool 

designs, test designs, constraints on item selection, and so forth. Overall, this study is guided by 

five research questions:  

1. How sensitive are the conditional adaptation indices to changing characteristics of the 

item pool, proficiency estimators, and IRT models? 

2. For a given population of examinees, test specifications, and an item pool, how can the 

conditional adaptation measures be used to revise the item pool in such a way that a CAT 

works better?  

3. Do the conditional adaptation indices capture the varying degree of adaptivity resulting 

from constraints imposed on item selection for exposure control?  

4. Can the conditional adaptation indices be used to gauge the amount of adaptation 

incurred by adaptive test designs (fully adaptive tests vs. multistage adaptive tests)?  
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5. Do the conditional adaptation indices function appropriately to diagnose the adaptivity of 

an operational CAT program? 

The first four research questions are answered through comprehensive simulation studies, 

and the last research question is demonstrated using operational variable-length CAT data. The 

next chapter reviews the features of the item response theory (IRT) models, the components of 

CAT, and factors that possibly affect the amount of adaptation. Chapter 3 describes indices to 

measure the amount of adaptation, followed by a chapter that gives details about simulation 

designs and real operational data of the CAT program. Finally, the last two chapters (Chapter 4 

and Chapter 5) present the findings for the performance of the proposed indices and discuss how 

the new set of adaptation measures can be efficiently and directly utilized for comparing the 

quality of adaptivity at individuals or subpopulations and for improving the amount of adaptation 

by revising the item pools or the test designs and specifications. 
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CHAPTER 2. 

LITERATURE REVIEW 

 

This literature review chapter consists of three main sections. The first section explores 

the characteristics of item response theory (IRT), which is the fundamental basis of computerized 

adaptive testing (CAT) in terms of scoring and item selection. The second section summarizes 

the components of CAT. The last section discusses plausible factors that have influences on the 

amount of adaptation for CAT.   

2.1 Item Response Theory 

 Item response theory (IRT; Lord, 1980) describes the interaction between test items and 

examinees through a mathematical model, called an item response function (IRF) that specifies 

the probability of a correct response on a given item, with item parameters, as a function of an 

examinee’s proficiency (θ). Item parameters, in general, include (1) an item difficulty parameter 

that indicates the relative difficulty or easiness of an item (i.e., location parameter) to examinees, 

(2) an item discrimination parameter that describes how well an item distinguishes between 

examinees of varying proficiency levels, and (3) an item pseudo-guessing parameter that 

indicates the possibility of giving a correct answer by chance.  

IRT models are usually classified into two types based on how the item responses are 

scored: dichotomous IRT models and polytomous IRT models. Since the study focuses on the 

tests of dichotomously scored items, this section only describes dichotomous IRT models, which 

are commonly applied to binary scored multiple-choice (MC) items or true/false items (e.g., 

correct/incorrect). Three frequently-noted dichotomous IRT models include the one-parameter 
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logistic (1PL) or Rasch model (Rasch, 1961), the two-parameter logistic (2PL) model 

(Birnbaum, 1968), and the three-parameter logistic (3PL) model (Birnbaum, 1968).  

2.1.1 Rasch (1PL) model  

The 1PL model, also known as the Rasch model, is the most parsimonious model among 

the commonly considered IRT models. It assumes unit discrimination for all items and no 

guessing. The IRF of the Rasch model specifies the probability of a correct response on item i for 

examinee j by: 

 
𝑃𝑖𝑗(𝑢𝑖𝑗 = 1|𝜃𝑗) =

exp(𝜃𝑗 − 𝑏𝑖)

1 + exp(𝜃𝑗 − 𝑏𝑖)
 (2.1) 

where 𝜃𝑗  represents the proficiency level of examinee j, and 𝑏𝑖 denotes the item difficulty 

parameter of item i.  

2.1.2 2PL model  

 The 2PL model considers not only the item difficulty (𝑏𝑖) but also the item discrimination 

parameter (𝑎𝑖). However, it does not assume that guessing contributes to the examinee’s 

response on an item. In this model, the probability of a correct response on item i administered to 

examinee j can be defined as: 

 

𝑃𝑖𝑗(𝑢𝑖𝑗 = 1|𝜃𝑗) =
exp (𝑎𝑖(𝜃𝑗 − 𝑏𝑖))

1 + exp (𝑎𝑖(𝜃𝑗 − 𝑏𝑖))
 . 

(2.2) 

2.1.3 3PL model  

 Unlike the 2PL model, the 3PL model considers that, for an examinee with very low 

proficiency, there is a possibility that the examinee correctly answers an item through a pseudo-

guessing parameter (𝑐𝑖), especially by chance with a MC item. The probability of examinee j 

having a correct response for item i is: 
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𝑃(𝑢𝑖𝑗 = 1|𝜃𝑗) = 𝑐𝑖 + (1 − 𝑐𝑖)
exp (𝑎𝑖(𝜃𝑗 − 𝑏𝑖))

1 + exp (𝑎𝑖(𝜃𝑗 − 𝑏𝑖))
 . (2.3) 

2.1.4 Information function for dichotomous IRT models 

IRT provides a measurement precision for the items over the proficiency continuum 

through the usage of an item information function. The IRT information function of 

dichotomously scored items can be expressed as follows (Lord, 1980): 

 
𝐼(𝜃) =

𝑃′(𝜃)2

𝑃(𝜃)(1 − 𝑃(𝜃))
 , (2.4) 

where 𝑃(𝜃) is the probability of correctly answering the item given 𝜃, and 𝑃′(𝜃) is the first 

derivative of the probability function.  

For the 3PL logistic model, Equation 2.4 can be represented as: 

 
𝐼(𝜃) = 𝑎2

𝑄(𝜃)

𝑃(𝜃)
[
𝑃(𝜃) − 𝑐

1 − 𝑐
]

2

, (2.5) 

where 𝑄(𝜃) = 1 − 𝑃(𝜃). Based on Equation 2.5, the information function for the 2PL model can 

be obtained by setting 𝑐 = 0, and the information function for the Rasch model is obtained by 

setting 𝑐 = 0 and 𝑎 = 1. High information for an item at a particular proficiency level indicates 

that the item is very informative to precisely measure the examinee’s proficiency. The amount of 

information is greatly affected by a-parameter. Note that for the 1PL model, the items have the 

same amount of maximum information at the location where the proficiency is close to the b-

parameter of the item (i.e., 0.25). In addition, the test information function can be simply 

calculated by summing the information functions for the test items contingent on proficiency.  
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2.2 Computerized Adaptive Testing  

In recent years, with discussion about visions for next-generation assessment, CAT has 

received great re-attention in educational system for personalized assessments (e.g., Conely, 

2018; Embretson, 2001). CAT delivers an individualized test tailored to a test-taker, and thus it 

can shorten the test length without sacrificing measurement precision. Compared to paper and 

pencil (P&P) linear tests, the advantages of CAT reported in the literature (e.g., Chang, 2004; 

Gibbons et al., 2008; Meijer & Nering, 1999; van der Linden, 2010) include shorter tests, 

improved test reliability, and immediate test scoring and reporting. Also, CAT allows one to 

obtain information that are not available in P&P tests, including response time (e.g., Wise, 

Bhola, & Yang, 2006), graphical entries, mouse/eye movements, and so forth, which may open 

new avenues for future research that helps understand examinee’s testing behaviors or cognitive 

activities. Furthermore, CAT enables the use of a variety of innovative items and technology-

enhanced items, which leads to improvement in the validity evidence of tests that cannot be 

obtained in P&P tests (Luecht & Clauser, 2002).  

Basically, the CAT algorithm starts with a selection of the first item whose b-parameter is 

matched with a pre-determined initial proficiency estimate. After the item is scored and the 

examinee’s proficiency estimate is updated, the next item is then selected at the current 

proficiency estimate from the given item pool based on the item selection criterion. This 

procedure continues until a stopping rule is satisfied. Reckase (1989) reported four core 

components for an operational CAT: item pool, item selection procedure, scoring procedure, and 

stopping rules. Constraints for content balancing and exposure control are considered in the item 

selection procedure. In what follows, these four components will be briefly illustrated.  
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2.2.1 Item pool 

A paramount element that affects the performance of a CAT in numerous ways is the 

item pool. For instance, the item pool affects the proficiency estimates, eventually influencing a 

subsequent item to be administered. In real operational settings, there are two types of item pools 

for CAT. One is a master pool, called “vat”, which consists of the large number of items to 

supply the testing program. The other is an operational item pool, which is used during a testing 

implementation period to provide items tailored to the individuals’ proficiency levels. A testing 

company typically assembles the operational item pools from the master pool so as to renew the 

item pools after a certain period of time usages or a certain number of students take the test using 

the same item pool.  

Without a well-designed item pool, a CAT cannot be successfully implemented. Thus, 

the size and the quality of the item pool is very essential. The desired item pool for CAT has 

been recommended to include an adequate number of good quality of items to provide 

informative tests to the sample of examinees (Flaugher, 2000; McBride, 1977). Here, the good 

quality of items (i.e., optimal items) generally have high item discriminations (e.g., a > .08) and 

low guessing parameters (e.g., c < .03). At the same time, the range of item difficulty in the item 

pool should cover the distribution of examinee’s proficiency levels to ensure that all examinees 

can take items well-tailored to their proficiency levels (Mills & Stocking, 1996; Urry, 1977). In 

addition to the statistical requirements of the optimal item pool, the pool should contain items 

that measure the intended construct for the testing purpose and the use of the test scores (Kane, 

2013).  

Some research (e.g., Gu & Reckase, 2007; He & Reckase, 2013; Reckase, 2010; 

Veldkamp & van der Linden, 2010) introduced approaches to design the item pool for CAT but 
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with different definitions of an optimal item pool. Veldkamp and van der Linden (2010) 

proposed a method for designing an optimal blueprint for a CAT item pool with the integer 

programming model that minimizes an estimate of item-writing costs using the classification 

table defined by item attributes figuring in test specifications (e.g., content, format, word count, 

item difficulty). The goal of this item pool design process is to figure out the number of items 

required for each cell of the classification table, guiding the item writing process. However, this 

method uses the characteristics of a previous or existing item pool as a starting point to define 

item-writing costs.  

Another line of research on item pool design (e.g., Gu & Reckase, 2007; He & Reckase, 

2013; Mao, 2014) has been based on the bin-and-union method (Reckase, 2010) with more 

emphasis on the psychometric properties of an optimal item pool, in lieu of the item-writing 

costs. It also does not require pre-existing information about the item pool. An optimal item pool 

defined in this method should include a desired item available for every stage of item selection 

that matches the current proficiency estimate for each examinee. The optimal item pool is 

determined by tallying the location of the sequential proficiency estimates for each examinee 

with the expectation that there would be an item in the pool whose information peaks at that 

location on the proficiency scale. As the items used for a single examinee can be used for other 

examinees, the full item pool is determined from the union of the items required for the entire set 

of examinees of interest (see Reckase (2010) and He and Reckase (2013) for more details of the 

process). Exposure control, content balancing, and other specifications can be incorporated into 

the CAT simulations to identify the design for the optimal item pool. I employed this bin-and-

union method to design the ideal item pool in Section 4.4.1.1.     



12 

The item pool size, another important aspect of the item pool, is dependent on the testing 

purpose, the CAT specifications (e.g., exposure control and content balancing), and the 

examinee’s proficiency distribution (Parshall, 2002; Reckase, 2010). Prior research (e.g., Chen, 

Ankenmann, & Spray, 2003; Gönülates, 2015) has generally supported that the size of the item 

pool should be 10 to 12 times larger than the test length (Stocking, 1994). To investigate the 

effect of item pool size on adaptivity for CAT, I manipulate the item pool size as a factor in the 

simulation studies (see Section 4.2.2.1). 

2.2.2 Item selection procedure 

Another key component of CAT is the item selection algorithm. The most frequently 

used item selection algorithm is maximum Fisher information (MFI; Lord, 1977) due to its easy 

implementation. The MFI select the next item that has the maximum information in Equation 

(2.4) at the current proficiency estimate from the available item pool. In other words, it selects 

the item that most precisely measures the current proficiency estimate. Thus, as this algorithm 

selects the most informative item, the efficiency of CAT also increases. However, MFI has some 

disadvantages. At the beginning stages of CAT, there is not enough information of an 

examinee’s proficiency location to guide the MFI item selection procedure, resulting in selected 

items that might not be the best ones. The items administered earlier in the test could also bring 

about big jumps in the proficiency estimates. This is the reason why it is recommended for 

examinees to be extra careful while answering the first few questions of the test. Such issue 

could be mitigated by using prior information to select items or using different item selection 

rules such as the Kullback-Leibler measure (Chang & Ying, 1996) at least at the early stages of 

CAT, especially for a short test (Chen, Ankenmann, & Chang, 2000).  
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Owen’s Bayesian item selection approach (Owen, 1975) is also commonly used in CAT 

programs. This approach selects the items that minimize the expected posterior variances of the 

proficiency estimates. To calculate the posterior distribution of the proficiency for item selection 

in CAT, Owen used a normal approximation with closed-form expressions, instead of the true 

posterior, in order to minimize the computational complexity. He proved that as the number of 

the administered items become infinite, the expected value of the posterior distribution will 

converge to the true value of proficiency. In general, an examinee receives the first item that 

matches well with the initial proficiency estimate that is equal to the expected value of the prior 

distribution. The algorithm then searches for a next item that will reduce the posterior variance 

the most. After each item is administered, a new posterior distribution is computed using the 

response strings and the prior distribution (usually, normal distribution), and then this updated 

posterior becomes the prior distribution for selecting the next item. As Owen’s Bayesian method 

is an approximate empirical Bayes procedure for CAT which requires simpler computation, this 

method is faster than other Bayesian item selection approaches.  

In addition to these two item selection approaches, there are other Bayesian item 

selection procedures. For instance, van der Linden (1998a) proposed several Bayesian item 

selection criteria based on the full posterior, including maximum posterior-weighted information 

(MPWI), maximum expected information (MEI), minimum expected posterior variance 

(MEPV), maximum expected posterior weighted-information (MEPWI). Penfield (2006) 

compared the performance of MEI and MPWI to MFI, reporting that the Bayesian procedures 

yielded slightly more precise estimates than MFI. Prior studies (e.g., Choi & Swartz, 2009) also 

found that these Bayesian item selection procedures are computationally intensive but produce 
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comparable results to the simpler MFI procedure. Therefore, the MFI procedure is the most 

widely used in item selection of CAT and used in this dissertation, as well. 

Other practical considerations are made in item selection to address the issues of over- or 

under-exposed items, content validity, students’ fairness, and item characteristics for CAT. To 

handle these practical issues, constraints are generally imposed on the item selection procedures. 

The constraints on item selection include but are not limited to exposure control, content 

balancing, and item enemies (Eignor, Stocking, Way, & Steffen, 1993; Weiss, 2011). Among 

these numerous constraints, the following selections will briefly discuss some constraints on item 

selection for exposure control and content balancing in CAT.  

2.2.2.1 Exposure control  

In CAT, selecting items without considerations other than the objective selection criterion 

usually leads to a disproportionate use of particular items in the pool. That is, some items are 

much more frequently administered to examinees, and other items are rarely or never 

administered. Test developers do not want examinees to have pre-knowledge of the items and do 

not want to waste the cost of developing the unused items. To limit the exposure of items in 

CAT, exposure control procedures have been introduced by putting some constraints on item 

selection during the CAT administration (e.g., Chang & Ying, 1999; Davey & Parshall, 1995; 

Kingsbury & Zara, 1989; McBride & Martin, 1983; Stocking, 1993; Revuelta & Ponsoda, 1998; 

Sympson & Hetter, 1985). These exposure control procedures can be divided into four main 

types: randomized, conditional, stratified, and combined procedures (Georgiadou, Triantafillou, 

& Economides, 2007).  

Randomized procedures include several variations on randomization of items in item 

selection for exposure control (e.g., Bergstrom, Lunz, & Gershon, 1992; Eignor et al., 1993; 
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Way, Zara, & Leahy, 1996). For instance, McBride and Martin’s (1983) 5-4-3-2-1 procedure 

randomly selects the first item from a group of the most informative five at the beginning of the 

test. After the current proficiency is updated, a group of the four most optimal items are selected 

and the second item is chosen at random from this subset. This procedure continues until the 

subset is defined as the best single available item. Kingsbury and Zara (1989) proposed the 

randomesque procedure, which is the most commonly used in operational settings due to its 

simplicity. This procedure randomly selects one item from the most informative n items (e.g., 

five or seven) based on an examinee’s current proficiency estimate throughout the entire CAT 

process.   

Conditional procedures control the exposure of items based on a given criteria (e.g., the 

frequency of item usage for a target sample of examinees). The most representative example of 

conditional procedures is the Sympson-Hetter method (Sympson & Hetter, 1985). This 

procedure requires an item exposure parameter, say k, ranging from 0 to 1 (i.e., the conditional 

probability that the item will be administered given the item has been selected) obtained 

iteratively from simulations for a target sample of simulated examinees prior to the 

administration of CAT. The value of k is high for a certain item, indicating this item has been 

rarely administered and thus has a higher probability of being administered if selected. The value 

of k is low for a particular item, implying the item has been frequently administered and has a 

lower probability of being administered if selected. During the CAT administration, after 

selecting an optimal item to be administered, a random number from a uniform distribution 

between 0 and 1 is generated and compared to the exposure parameter k of the selected optimal 

item. This item is administered if this random value is smaller than the value k of the selected 

item. Otherwise, the next optimal item is selected, and the same procedure is applied to this item 
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until an item is administered to the examinee.  This procedure successfully controls the over-

exposed items, but it is very time-consuming because the iterative simulations must be done a 

priori (Georgiadou et al., 2007).   

Stratified procedures stratify the item pool according to statistical properties such as item 

discrimination and difficulty, and then administer an item from a given stratum. The a-stratified 

method (Chang & Ying, 1999) is an example of the stratified methods. This procedure is 

motivated by the situation where items are solely chosen based on their information, resulting in 

disproportionate usage of some highly informative items. As informative items are unnecessarily 

used earlier in the test, in which the interim proficiency estimates contain too much error to be 

considered accurate, the final proficiency estimates are more likely to be over or under estimated. 

To regulate the use of highly informative items, this method first administers items with lower a-

parameters at the earlier stages of the test and administers items with higher a-parameters at the 

later of the test to improve the efficacy of the items. Following this solution, many variations 

have been proposed, including the a-stratified with b-blocking (Chang, Qian, & Ying, 2001) and 

the 0-1 stratification strategy (Chang & van der Linden, 2003), etc.  

Lastly, combined procedures attempt to combine two or more exposure control methods. 

Revuelta and Ponsoda’s (1998) progressive-restricted combined procedure is a notable example. 

This combined procedure, derived from the maximum information method and the restricted 

maximum information method, is intended to prevent the overexposure of items and to increase 

the usage of rarely or unused items while maintaining precision of proficiency estimates. The 

modified version of this method, the progressive-restricted standard error method was also 

developed (see McClarty, Sperling, & Dodd, 2006 for details).  
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Among these exposure control procedures, I choose the randomesque method, the 

Sympson-Hetter method, and the a-stratified with b-blocking method to see how the different 

procedures affect the level of customization for CAT using the proposed adaptivity statistics (see 

Section 4.4.1.2). 

2.2.2.2 Content balancing 

Like the P&P test, a CAT should conform to a test blueprint, especially to cover multiple 

content areas, which is closely associated with the interpretation and validity of the test scores. 

This can be realized through content balancing procedures.  Although a variety of strategies for 

content balancing exist, the most commonly used procedure in research and operational settings 

is Kingsbury and Zara’s (1989) constrained CAT. In this procedure, the target proportions of 

each content area are first prespecified. After the administration of each item, the current 

proportions of each content area are calculated and compared to the pre-specified target 

proportions. The content area with the largest discrepancy between the target and current 

proportions is selected, while items from other content areas are filtered out from the item pool, 

and the next item with the highest information will be selected from the available items from that 

content area. Previous research (e.g., McClarty et al., 2006) has provided evidence to support 

that this procedure successfully administers specified proportions of items per content area.  

In addition to this simple procedure, more complex strategies for content balancing are 

also available. These content balancing methods include the weighted deviations model 

(Swanson & Stocking, 1993), the shadow test approach (van der Linden & Reese ,1998), the 

weighted penalty model (Shin, Chien, Way, & Swanson, 2009), the maximum priority index 

method (Cheng & Chang, 2009), and the bin-structured method (Davey, 2005), among others.  
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2.2.3 Scoring procedure 

In the beginning of the test, an initial proficiency value is arbitrarily determined because 

there is no available information about an examinee. The initial proficiency value is typically set 

to 0.0, which is the mean of the proficiency’s distribution in the test population. The proficiency 

estimate is then updated after each item is administered based on the item responses. Proficiency 

estimation methods are essential because the methods could affect not only the reporting score of 

the test, but also the selection of items to be administered and the decision of terminating the test 

(e.g., standard error of proficiency estimates). Previous studies have proposed proficiency 

estimation approaches (e.g., Bock & Mislevy, 1982; Lord, 1986; Owen, 1975), provided ways to 

overcome some challenges that a particular estimation method has for CAT (e.g., Han, 2016) and 

compared their performance, as well (e.g., Wang & Vispoel, 1998). Among the existing 

proficiency estimation methods, maximum likelihood estimation (MLE) and Bayesian estimation 

methods such as expected a posteriori (EAP; Bock & Mislevy, 1982), maximum a posteriori 

(MAP; Samajima, 1969), and Owen’s empirical Bayesian method (Owen, 1975) are the most 

widely used in CAT programs.  

MLE determines the most likely location of an examinee’s proficiency by multiplying the 

probabilities of a response string with the location independence assumption (Hambleton & 

Swaminathan, 1985). To find the most likely value of proficiency estimates that maximizes the 

likelihood, the Newton-Raphson method can be used. The MLE approach provides proficiency 

estimates which are consistent, efficient, and asymptotically normally distributed. The normality 

property is a very practical advantage of MLE because it allows the standard error of the 

proficiency estimate to be calculated using the information function shown in Equation (2.4). 

However, the MLE provides an infinite proficiency estimate if the item responses are either all 
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correct or incorrect so that at the beginning of CAT, the estimates cannot be computed until both 

correct and incorrect responses exist. To tackle this problem, in practice, either a step parameter 

(e.g., 0.7; Reckase, 1976) or arbitrary lower and upper bound values of proficiency estimates 

(e.g., say -4 and +4) are used early in the CAT. Another way to solve this issue is to start with a 

Bayesian estimation procedure and switch to MLE after both correct and incorrect responses are 

obtained (e.g., NCSBN, 2016). 

Bayesian estimation methods are alternatives to MLE for handling this infinity problem. 

EAP determines the most likely location of proficiency as the expected mean of the posterior 

distribution, and MAP as the model of the posterior distribution. These Bayesian approaches can 

estimate the examinee’s proficiency level even after the first response is obtained with the help 

of the prior distribution. Although the Bayesian estimation methods have such an advantage, a 

well-known weakness is that their estimates are generally biased toward the mean of the prior 

distribution, resulting in a shrunken score scale (e.g., Ho & Dodd, 2012; Kim & Nicewander, 

1993; Wang & Vispoel, 1998; Weiss, 1982). Another example of a Bayesian estimation 

approach is Owen’s empirical Bayesian method. At every update of proficiency estimate in 

CAT, the posterior proficiency distribution from the previous one is used as a prior distribution 

for the estimation. Owen’s Bayesian method is also very popular because it is straightforward to 

compute the proficiency estimates and faster than other Bayesian methods. However, this 

method has the major downside that the proficiency estimates are affected by the sequence of the 

item presentation. This problem might be alleviated by re-estimating the response strings at the 

end of CAT using an alternative proficiency estimation method such as maximum likelihood 

estimation (Wang & Vispoel, 1998). 
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Taken together, I focus on MLE and EAP (Section 4.2.2.3). These two proficiency 

estimation methods are notably used in CAT (Hambleton, Swaminathan, & Rogers, 1991, p. 148; 

Weiss, 1982). 

2.2.4 Stopping rules 

Stopping rules are closely tied with the purpose of tests. In general, there are two ways to 

decide when the test terminates: fixed length of the tests and variable length of the tests. A fixed-

length test requires all the examinees to receive an equal number of items given in the test.  

However, this feature of the same number of items that every student takes might cause the 

measurement precision of final proficiency estimates to differ across students’ proficiency levels 

depending on the distribution of items in the pool.  

A variable-length test provides a different number of the items to students until a pre-

specified standard error (i.e., measurement precision) of proficiency estimates is satisfied. A 

target measurement precision (e.g., < 0.3 or 0.2) is considered a test termination criterion in order 

for each examinee to have the same magnitude of measurement precision. One problem in 

variable-length CAT is that the examinees with very high or low proficiency levels will have a 

longer test than others due to the fact that the item pool could run out of suitable items to be 

administered. One suggested approach to deal with this issue is to combine the measurement 

precision rule with setting the maximum/minimum number of items in practice (Thissen & 

Mislevy, 2000). In this dissertation, all simulation studies of CAT were based on the fixed-length 

test, and the empirical illustration using an operational adaptive test was a variable-length CAT.   

2.2.5 Adaptive test designs 

Due to the benefits drawn from CAT, there has increased the applications of CAT with 

some modifications in test designs for compensating for its weaknesses and for encouraging the 
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practical uses in real educational and operational settings. For example, the full item-level CAT 

cannot review in advance the test items to be administered to each examinee, implying the 

potential of a lack of quality control (Luecht & Nungester, 1998). Also, the full CAT may 

require more funding for its development and implementation.  

However, multistage adaptive testing (MST), as a special form of CAT, adapts at the 

stage/module level, and it has some practical advantages over the item-level CAT in operational 

settings (e.g., Stark & Chernyshenko, 2006). With MST, examinees can not only skip items but 

also review and revise their responses to the items within the stage during the testing, which is 

not available in CAT. Modules (i.e., a group of items) are also pre-assembled before test 

administration. So, MST allows test developers to control the quality of tests and content 

balancing while maintaining a comparable measurement precision to the full CAT when the test 

is well designed (Xing & Hambleton, 2004). However, MST may reduce adaptivity compared to 

the item-level adaptation of CAT (e.g., Reckase et al., 2019).  

Recently, another form of CAT, called hybrid CAT (Wang, Lin, Chang, & Douglas, 

2016), has been introduced that combines characteristics of item-level CAT and MST. 

Administering an MST in the beginning of the test contributes to improving an initial proficiency 

estimate for the later implementation of CAT but also achieving content balancing more 

systematically. In this dissertation, how much adaptation occurs across proficiency levels is 

examined depending on the different adaptive test designs of the item-level CAT and MST (see 

Section 4.5.2). 

2.3 Factors Affecting Adaptation 

 The amount of adaptation can be affected by numerous factors associated with the 

characteristics of an item pool and the CAT specifications. First of all, the item pool is a 
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fundamental and vital element for the development and deployment of a CAT. The best, 

sophisticated CAT program cannot function well if an item pool consists of poor-quality items or 

items suitable for the limited range of proficiency (Flaugher, 2000; van der Linden, Ariel, & 

Veldkamp, 2006). The higher the quality of the item pool, the more likely the adaptive algorithm 

will work well. Accordingly, it needs to understand the extent to which the amount of adaptation 

during the CAT would be affected by characteristics of the item pool. To do this, previous 

studies examined the effects of the item pool’s characteristics on the adaptation in terms of item 

pool size and the spread of difficulty of the items in the pool at the entire group level (Ju & Lee, 

2018; Kim, Ju, & Reckase, 2018; Reckase et al., 2018). The results of these studies suggested 

that the item-pool composition would, in predictable ways, influence the amount of adaptation. 

That is, the item pool should be about more than ten times the test length with more spread in 

difficulty of items for the adequate adaptivity of the CAT. In addition to that, the shape of the 

item pool could affect the results of the CAT and, plausibly, the performance of the adaptive 

algorithm, taking into account the shape of the proficiency distribution (e.g., Gönülates, 2015; 

Reckase, 2010). 

 Intertwined with the item-pool characteristics, a variety of components of the CAT would 

also impact the consequences of the CAT, including adaptivity. For example, IRT models would 

affect the measures of adaptivity such as the IRT model’s scaling and scoring functions, which 

may eventually affect the selection of items at the momentary proficiency estimate. Kim et al. 

(2018) compared the overall adaptation measures using the 3PL model to those using the Rasch 

model. Because of the effects of discrimination and guessing parameters, the suggested 

benchmark values were slightly different for the two models, though their conclusions appeared 

to be the same.  
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Meanwhile, proficiency estimation plays a pivotal role in a successful CAT 

implementation because it is closely related to the item-selection procedure. The MFI item 

selection method is the most frequently used in the CAT because of measurement precision and 

efficiency. This method assumes a perfect correspondence between the current proficiency 

estimate and the true proficiency level of an examinee. If the assumption is violated due to poor 

accuracy of the proficiency estimates, the item-selection algorithm may select items that are not 

well associated with the target true proficiency, resulting in selecting less optimal items that 

contribute to increasing errors in subsequent proficiency estimates (Ho & Dodd, 2012). This 

issue might be more severe in the early stages of CAT because, generally speaking, little 

adaptation occurs before the proficiency is well estimated. Given this fact, in previous research 

(Reckase et al., 2018), adaptation statistics were computed using all of the items administered to 

examinees during a CAT and also for the items used in the last half of their tests. It was shown 

that higher values of the adaptivity statistics were reported with the last half of the test, though 

the extent of the increment was small.  

 Most previous research has used MLE in the CAT. Ju and Lee (2018) explored the 

performance of the overall adaptivity measures across different proficiency estimators. They 

found that the correlation index and the ratio of standard deviations index were robust to 

different estimation methods. Yet the proportion of reduction in variance (PRV) index appeared 

to be affected by the proficiency estimates, especially with an increase in the PRV benchmark 

value using the EAP method. This impact was due to the Bayesian estimator’s property of 

regressing toward the mean or mode of the prior distribution (e.g., Kim & Nicewander, 1993). 

Test length also might matter; after all, with a longer test, there might be more chances of a test 
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being customized for a test taker. However, the adaptivity measures appeared to be robust to the 

test length (Ju & Lee, 2018). 

 Constraints on the item-selection algorithm should negatively influence the selection of 

optimal items at the interim proficiency estimate during a CAT, resulting in a degrading of the 

amount of adaptation. Constraints include content constraints, exposure-control constraints, and 

item-type constraints. Previous research (Reckase et al., 2017, 2018) has demonstrated the 

effects of exposure control on adaptation. For example, the Sympson-Hetter exposure-control 

procedure seemed to limit the amount of adaptation with a relatively small item pool; no limit, 

however, was shown with the randomesque procedure and a-stratified with b-blocking 

procedure. Recently, many content constraints can be easily controlled through, among others, 

constrained CAT, shadow test approach, weighted deviation model.  

 Observations of operational CATs have presented that all test designs are not equally 

adaptive because of different units of the customization of the test and designs of test 

specifications. For instance, a full regular CAT adapts at the item level, while MST adapts at the 

stage/module level. In recent years, researchers have introduced a new hybrid design that 

incorporates both item-level and stage-level CAT (Wang et al., 2016). Reckase and colleagues 

(2017; 2019) compared the adaptivity across-item level CAT and different designs of MST, 

identifying that the MST design appeared to be less adaptive than the others.  

 Taken all together, this dissertation explores, among the various factors that affect the 

amount of adaptation during a CAT, the interaction effects of the pool characteristics and 

proficiency estimators on a new class of conditional adaptation indices. The effects of constraints 

for exposure control and adaptive testing designs on the amount of adaption are additionally 

examined through simulations.  
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CHAPTER 3. 

INDICES FOR THE AMOUNT OF ADAPTATION 

 

Before discussing the indices to measure the amount of adaptation, it is necessary to 

define operationally what test adaptation (i.e. adaptivity) is. Reckase and his colleagues (Reckase 

et al., 2018, 2019) defined adaptation as the extent to which a CAT gives items that properly 

match the final proficiency estimate for the examinee. Kingsbury and Wise (2018) similarly 

defined test adaptation but with more focus on test information, given the available item pool and 

test specifications. In this dissertation, test adaptation or adaptivity can be defined as the extent 

to which a CAT provides the informative items that properly match current proficiency estimates 

at each stage of the CAT process. Thus, a test can be viewed as being highly adaptive when the 

items administered to each examinee match well with the provisional proficiency estimates at the 

start of each item during the CAT.   

 To quantify the amount of adaptation of a CAT, it is assumed that test taker j has a 

known location on a latent continuum (θ𝑗) and that the goal of the CAT is to select the optimal 

set of items that will produce an accurate estimate of that location (θ̂𝑗) given the available item 

pool and CAT specifications (Reckase et al., 2018). In the hypothetical case in which the 

location of the test taker on the continuum is known with an infinite item pool, an optimal set of 

test items for each test taker j would have maximum information at θ𝑗 when the maximum Fisher 

information (MFI) item selection method is used.  

Consider the simple case of the Rasch model. In that hypothetical case, all the selected 

items would have item-difficulty parameters (i.e., b-parameters) equal to θ𝑗, resulting in a set of 

items that had the average of b-parameters equal to θ𝑗 and their standard deviation equal to zero. 
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Extending this case to a sample of test takers with true locations on the proficiency scale, the 

mean b-parameter for each examinee would be perfectly correlated with θ𝑗, and the standard 

deviation of the mean b-parameters would be equal to that of θ𝑗’s (Reckase et al., 2018).  

Alternatively, using the 3PL IRT model for scaling and scoring, the location of the 

maximum information for each optimal item i for a test (θ𝑖
∗; Birnbaum, 1968) can be substituted 

for the b-parameter: 

 
θ𝑖
∗ = 𝑏𝑖 +

1

𝐷𝑎𝑖
log (

1 + √1 + 8𝑐𝑖
2

) (3.1) 

where ai is an item-discrimination parameter, bi is an item-difficulty parameter, ci is an item-

pseudo-guessing parameter, and D is a scaling constant that makes the logistic function similar to 

the normal ogive function. Since the location (θ𝑖
∗) of maximum information is slightly higher 

than the b-parameter, the selection of items might be a little bit different than the selection based 

on the difficulty parameter, but the concept of the adaptation is still the same with use of the 

location (θ𝑖
∗) of maximum information (Kim, Ju, & Reckase, 2018). 

This ideal type of CAT never exists in real operational settings because we never know 

the true location of a test taker on the proficiency continuum. Nevertheless, the hypothetical case 

does give some direction toward the possible types of measures that can be used to quantify the 

amount of adaptation that occurs in an operational adaptive testing. This conceptualization of 

adaptation and the ideal features of a CAT thus leads to existing adaptivity measures (Reckase et 

al., 2018; 2019) and a new class of conditional statistics of the amount of adaptation proposed in 

this dissertation. This chapter reviews the current measures of the amount of adaptation and then 

introduces three new conditional adaptation indices.  
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3.1 Existing Measures of the Amount of Adaptation 

 Under the conceptualization and assumptions of a desired CAT, Reckase and his 

colleagues (Reckase et al., 2018) proposed three overall statistics: Correlation index, ratio of 

standard deviations index, and proportion of reduction in variance index. These measures were 

mostly based on the variance of the b-parameters (or the location of maximum information) for 

the items administered to test takers. Note that the location of maximum information in Equation 

(3.1) can be substituted for the b-parameters for computing the three statistics when the 3PL 

model is used. They performed well in assessing the overall adaptivity of a CAT over examinees; 

they could not, however, be applied to evaluate the adaptation contingent on proficiency level. 

Motivated by this perceived concern, Kingsbury and Wise (2018) introduced a new index of the 

amount of adaptation using the IRT test information that could be used to diagnose adaptivity for 

both the entire group and the individual test events. 

3.1.1 Correlation index  

The first adaptivity measure that Reckase and his colleagues proposed is the correlation 

between the mean b-parameter for the items administered to examinees and the final estimate of 

their proficiency:   

 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 =  𝑟(�̅�𝑗, θ̂𝑗) (3.2) 

where �̅�𝑗 is the mean b-parameter for the items administered to a test taker j, and θ̂𝑗 is the final 

estimate of the location on the θ-scale for a test taker j. This index indicates whether examinees 

with various levels of proficiency receive tests that are different in difficulty and that the 

difficulty levels match well the estimated proficiency levels. As shown in Reckase et al. (2018), 

higher values of the index imply better adaptivity of a CAT. The suggested benchmark value for 
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interpreting this statistic is for the Rasch model the “low .90s” (Reckase et al., 2018) and for the 

3PL model the “high .90s” (Kim et al., 2018). 

3.1.2 Ratio of standard deviations index 

Even if the correlation index shows a high value close to 1.0, it is possible that the 

adaptivity of the CAT might not be good because of poor qualities of the item pool or some 

problems with the item selection algorithm. The second index helps assess such aspects of 

adaptivity. It is the ratio of the standard deviation of the averages of the b-parameters for the 

items administered to examinees, 𝑠�̅�𝑗, to the standard deviation of the final proficiency estimates 

for those examinees, 𝑠θ̂𝑗: 

 𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑆𝐷 𝐼𝑛𝑑𝑒𝑥 =  𝑠�̅�𝑗 𝑠θ̂𝑗⁄  (3.3) 

where the subscript j indicates the particular examinee. This index indicates whether the spread 

of the mean b-parameters of the items selected to examinees matches the spread of their 

proficiency estimates. If the item selection algorithm is working properly but an item pool has a 

limited range of difficulty, the correlation index may yield a high value, but this ratio index may 

report a lower value because of the small 𝑠�̅�𝑗 relative to 𝑠θ̂𝑗 (Reckase et al., 2018).  

 For this statistic, unlike other adaptation indices, the value of 1.0 is optimal, as higher 

values than 1.0 can be obtained. For instance, values larger than 1.0 can be obtained when the 

item pool has an unusual distribution of the b-parameters with many extremely easy and difficult 

items but insufficient items in the middle range of difficulty. In this case, the 𝑠�̅�𝑗 value could be 

large relative to 𝑠θ̂𝑗, ending up with the index value greater than 1.0. Therefore, the distance 

from 1.0 is important when interpreting this statistic for evaluating adaptivity. Since the unusual 

type of item pool is rarely found in the real word, previous studies suggested the benchmark 
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value below 1.0, which for the Rasch model is the “middle .80s” (Reckase et al., 2018) and the 

“high .70s” for the 3PL model (Kim et al., 2018). 

3.1.3 Proportion of reduction in variance index 

The last index that Reckase et al. (2018) introduced is the proportion of reduction of the 

variance (PRV) of the b-parameters for the items selected for the examinee, on average, from the 

amount of variance of the b-parameters for all of the items in the pool: 

 
𝑃𝑅𝑉 =

𝑠𝑏
2 − 𝑝𝑜𝑜𝑙𝑒𝑑 𝑠𝑏𝑗

2

𝑠𝑏
2  (3.4) 

where 𝑝𝑜𝑜𝑙𝑒𝑑 𝑠𝑏𝑗
2  is the average of the within-examinee variances of b-parameters for the items 

selected for each examinee, and 𝑠𝑏
2 is the variance of the b-parameters for all the items in the 

pool. This index focuses more on the adaptivity within the examinee regarding the item pool, 

especially in a situation where the item pool has insufficient items in the area in which the final 

estimate of the examinee’s proficiency is located. If such a situation is encountered, the 

adaptation of the CAT may also be poor because the item selection algorithm may have to select 

items whose b-parameters poorly match the current proficiency estimates. Hence, the variation of 

the b-parameters for that test taker might be large, though the mean b-parameter might be close 

to the final proficiency estimate. The index would reflect this situation and be constructed in the 

same form as Hoyt’s reliability (Hoyt, 1914).  

 Regarding the interpretation of the PRV indicator, a value less than 1.0 represents the 

average amount of within-examinee variation in difficulty of the items administered over a 

sample of examinees relative to the amount of variation in difficulty for all the items in the pool. 

That is, if the variation of b-parameters is zero – meaning that for each examinee it is constant as 

in the aforementioned hypothetical ideal case – but the item pool has variation in b-parameters 
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for the items, then this PRV value is 1.0. The suggested benchmark value is .80 regardless of the 

IRT model (Kim et al., 2018; Reckase et al, 2018). 

3.1.4 Percent of optimal information index 

Kingsbury and Wise (2018) introduced a new statistical indicator to measure the amount 

of adaption using the IRT test information that can be applied to not only a group of examinees 

but also to individual or subgroup test events. Their index, called the percent of optimal 

information (POI), is based on the ratio of observed test information to the maximum 

information possible given the item pool and the IRT model and defined as follows: 

 

𝑃𝑂𝐼 = 100 ∗

∑
𝑇𝐴𝑗
𝑇𝑂𝑗

𝐽
 

(3.5) 

where 𝑇𝐴𝑗 is the actual test information observed for an examinee j based on its final estimated 

proficiency, and 𝑇𝑂𝑗 is the optimal amount of test information that can be obtained by 

administering a 40-item test at the true proficiency level of an examinee from a given item pool 

and IRT model. An alternative way to compute the optimal information is to calculate the test 

information available in the pool from the most informative test items at the final estimated 

proficiency. By the summation over the examinees in the group of interest (i.e., J refers to the 

group size), the POI index can also be used as an overall measure of the adaptation. This index is 

easily interpretable, but it has not yet been thoroughly examined across numerous item pool 

conditions or constraints on item selection. In addition, it is still blind to the extent information 

obtained during the CAT process based on interim proficiency estimates. 
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3.2 New Conditional Measures of the Amount of Adaptation 

 This dissertation proposes new three indices to investigate the amount of adaptation 

conditional on an examinee’s proficiency level using (1) b-parameters of items administered to 

each examinee (deviation of difficulty; DOD), (2) their within-examinee variances (conditional 

proportion of reduction in variance; CPRV), and (3) the IRT information (ratio of information; 

ROI). These statistics have the same assumptions and the same goal of the CAT to the overall 

adaptation measures (Reckase et al., 2018). The only difference is that these new measures can 

evaluate the various aspects of adaptivity that result from the implementation of the CAT 

conditional on the proficiency level or by subgroups of test events. Also, they focus more on the 

characteristics of the items based on the interim proficiency estimates during the CAT process, 

instead of the final proficiency estimates at the end of the tests. Note that like the overall 

adaptation statistics described above, the b-parameters can be replaced with the location of 

maximum information (Birnbaum, 1968) when the 3PL model is used for scaling and scoring. 

3.2.1 Deviation of difficulty index  

The first index that the study proposes is the deviation of difficulty (DOD) index that 

focuses on the observed difference between the b-parameter of the administered item and the 

examinee’s interim proficiency estimate at which that item was selected (i.e., desired item 

difficulty). The DOD index can assess how well a CAT uses the available item pool to match 

item characteristics to the examinee’s provisional proficiency estimate. It can also allude to how 

well the potential efficiency of an item is realized, given the fact that the expected efficiency 

gain is attained if the examinee’s proficiency is close to the location of that item.  

The DOD index for each examinee j is, over the test items administered, the average 

proportionate reduction of the observed location match between the item and the interim 
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proficiency estimate relative to the average deviation of all the eligible items in the pool from the 

current proficiency estimate. The index is represented by: 

 

𝐷𝑂𝐷𝑗 =
1

𝐿𝑗 − 𝑛𝑖
∑

1
𝑃𝑆
∑ |𝑏ℎ − 𝜃(𝑖−1)𝑗| 
𝑃𝑆
ℎ=1 − |𝑏𝑖𝑗 − 𝜃(𝑖−1)𝑗|

1
𝑃𝑆
∑ |𝑏ℎ − 𝜃(𝑖−1)𝑗| 
𝑃𝑆
ℎ=1

𝐿𝑗

𝑖=𝑛𝑖+1

 
(3.6) 

where 𝜃(𝑖−1)𝑗 is examinee  j’s interim proficiency estimate prior to selecting the ith item, 𝑏𝑖𝑗 is 

the difficulty parameter of the ith item for the examinee j, 𝐿𝑗 is the test length for examinee j, and 

𝑃𝑆 is the number of available items in the pool at the interim proficiency estimate, 𝜃(𝑖−1)𝑗. Note 

that 𝑛𝑖 is the number of initial items before the first update of the proficiency estimate occurs. 

For instance, for fully adaptive testing, a single initial item is generally administered, while for 

multistage adaptive testing, a group of items in the routing module may be administered. Since 

there is no interim proficiency estimate other than the arbitrary starting value prior to selecting 

the first item(s), the initial item set is not taken into account in the index calculation. 

 The DOD index is a concept similar to that of the examinee j’s difficulty mismatch (DM) 

index to quantify the CAT’s difficulty alignment (Wise, Kingsbury, & Webb, 2015): 

 
𝐷𝑀𝑗 =

∑ |𝜃𝑖𝑗 − 𝑏𝑖𝑗|
𝐿
𝑖=2

(𝐿 − 1)𝜎
 

 

where 𝜎 is the standard deviation of proficiency level estimates. While useful with the similar 

interpretation of z-scores, this DM index does not have an upper limit of the possible values, and 

it considers only the distance of difficulty from the provisional proficiency estimate. It thus 

needs some criteria in advance to provide the upper limit indicating a high informative test.  

 However, the proposed DOD index is readily interpretable. The value of 1.0, the highest 

attainable, indicates a test event where items were perfectly matched to the momentary 

proficiency estimate at each item selection. The distance from 1.0 represents an average of the 
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deviation of the difficulty of the administered item from the interim proficiency estimate relative 

to the average deviation of the difficulty of all the eligible items in the pool from that proficiency 

estimate. Thus, a higher value of 𝐷𝑂𝐷𝑗  indicates a higher match level, implying better adaptation 

in that the CAT is providing, throughout the test administration, close to the maximum 

information available at the interim proficiency estimate.  

3.2.2 Conditional proportion of reduction in variance index  

The second proposed index is the conditional proportion of reduction in variance 

(CPRV) index, which is a modified version of the PRV index. It determines if the item pool has 

sufficient items in the region of the final proficiency estimate of each examinee. This index 

would be particularly useful in a situation where the item selection algorithm may have to select 

some items whose difficulty parameters poorly match the current proficiency estimate. Hence, 

the variation of the difficulty parameters for that examinee might be large, though the mean 

difficulty might be close to the final proficiency estimate. The CPRV is expressed as:  

 
𝐶𝑃𝑅𝑉𝑗 =

𝑠𝑏
2 − 𝑠𝑏𝑗

2

𝑠𝑏
2  (3.7) 

where 𝑠𝑏
2 is the variance of the b-parameters for all the items in the item pool and 𝑠𝑏𝑗

2  is the 

within-examinee variance of the b-parameters for the items administered to examinee j. Like the 

PRV index, a value deviating from 1.0 indicates the amount of variation in difficulty for the 

items selected for examinee j compared to the amount of variation in difficulty for the items in 

the full item pool.  

3.2.3 Ratio of information index 

The last index, called the ratio of information (ROI) index, is equal to, over the 

administered 𝐿𝑗-items for examinee j, the average ratio of the information of item 𝑖𝑘 at the 
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interim proficiency estimate prior to selecting the kth item i for examinee j, 𝐼𝑖𝑘[𝜃(𝑘−1)𝑗], to the 

maximum potential information that item i can have, 𝐼𝑖[𝜃𝑖
∗]: 

 

𝑅𝑂𝐼𝑗 =
1

𝐿𝑗
∑
𝐼𝑖𝑘[𝜃(𝑘−1)𝑗]

𝐼𝑖[𝜃𝑖
∗]

𝐿𝑗

𝑖=1

 (3.8) 

where  𝜃𝑖
∗ is the point at which the item i can reach maximum information (Birnbaum, 1968; e.g., 

𝜃𝑖
∗ = 𝑏𝑖 for 1PL/2PL model). Alternatively, the observed information of each of the administered 

items can be computed at the final proficiency estimate, 𝜃j, rather than the interim estimate. 

While being readily useful in practice, this method could be blind to the appropriateness of the 

items customized to the examinee in the middle of the CAT administration. For instance, if a 

high-proficiency student, say θ = 2, begins with an easy item (due to an initial estimate of 0.0) 

but happens to miss that item, the student will get the low proficiency estimate after the first 

item, leading to the student receiving a couple of relatively easy items for the next few items; 

however, if the student then improves the proficiency estimate continuously by answering 

correctly all the rest of the items, the ROI value using the final proficiency estimate shows the 

test is relatively low informative because the student gets less informative items close to the 

examinee’s final proficiency estimate. The original ROI index in Equation (3.8), on contrary, 

indicates good informative items presented to the student during the CAT process. Overall, this 

index can assess how informative a test is compared to the maximum potential information that 

the administered items can have. The ROI index can range from 0.0 to 1.0. A value of 1.0 

indicates that a test is appropriately constructed and administered to the examinee using the items 

whose maximum potential information is realized at that examinee’s proficiency. The higher the 

values, the more informative a test for the examinee. 
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 In addition to the utilization of ROI conditional on the proficiency level in Equation (3.8), 

it can also be used for the overall diagnosis of adaptivity by simply averaging the ROI values 

over the entire group of examinees: 

 

𝑅𝑂𝐼𝑗 =
1

𝑁
∑(

1

𝐿𝑗
∑
𝐼𝑖𝑘[𝜃(𝑘−1)𝑗]

𝐼𝑖[𝜃𝑖
∗]

𝐿𝑗

𝑖=1

)

𝑁

𝑗=1

 
(3.9) 

where N is the total number of examinees that took the adaptive test. It would help test 

developers or practitioners understand the overall picture of adaptivity of CATs at the entire 

group or target group levels of interest.  

 The ROI index is originally derived from the concept of relative efficiency (Lord & 

Novick, 1968) that compares the Fisher information functions. This may also be in line with the 

POI index (Kingsbury & Wise, 2018). However, the ROI index is conceptualized differently 

from the POI index with respect to the definition of optimal information (i.e., the denominator of 

the index). Kingsbury and Wise (2018) identified the optimal test information through the 

administration of the entire test at the true or final proficiency level using the actual item pool. 

They also stated that the optimal information can be defined using the theoretical limit from the 

known value of the maximum information given the Rasch model. This is actually a similar 

concept to the item-pool utilization index (Gönülates, 2015) used for evaluating the efficiency of 

item pool performance. For the proposed ROI index, however, the optimal information focuses 

more on the maximum potential that the administered item has; this is similar to the expected 

item efficiency that Han (2012) used as a step to item selection. Thus, the ROI index is expected 

to evaluate the adaptivity of the CAT from whether an administered item fulfills the maximum 

level of the attainable information at the examinee’s interim proficiency estimate. Moreover, the 

ROI index is reflective of how well the items are informatively presented to the examinees 
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during the whole process of the CAT, while the POI index cares more about whether informative 

items are provided to the examinee around the final proficiency estimate.   
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CHAPTER 4.  

METHODS 

 

This dissertation proceeds with five main studies to evaluate the feasibility and utility of 

three new conditional indices to measure the amount of adaptation in the implementation of 

computerized adaptive testing (CAT) with dichotomously scored items using simulated data and 

real operational CAT data. All the analyses were conducted using MATLAB R2015b (The 

MathWorks, Inc., 1984-2015) and the visualization of the results were completed using R 

software (R Core Team, 2018). This chapter describes details about the research designs for 

replying to the five research questions (see Section 1.2). 

4.1 Common CAT Specifications  

All item-level CATs in the first four studies share some common CAT specifications. 

The CAT was a fixed-length test of 40 items. An initial item-level proficiency estimate of 0.0 

was used for all examinees. Items were selected using the maximum Fisher information (MFI) 

algorithm that chooses the item to be administered that has the maximum information at the 

current proficiency estimate. Other than Research Question 1, maximum likelihood estimation 

(MLE) was used to estimate the interim and final proficiency after both correct and incorrect 

responses existed in the response string. When only either correct or incorrect responses are 

present, the maximum likelihood estimates are infinite. To deal with this problem, prior to MLE, 

the last proficiency estimate was incremented by the step size of 0.7 after a correct response and 

decremented by 0.7 after an incorrect response (Patience & Reckase, 1980; Reckase, 1975). 

Also, maximum likelihood estimates were confined between -4 and 4 to restrict some extreme 

proficiency estimates within a practical interval.  
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 For each study condition, item-level CATs were administered to 2,000 examinees 

randomly sampled from a standard normal distribution, N (0, 1). This sample size is reflective of 

large-scale operational testing settings to get a representative sample from the proficiency 

population. To simulate examinee’s responses, a random number was drawn from the uniform 

distribution ranging from 0.0 to 1.0. The random uniform number was then compared to the 

examinee’s probability of correctly answering the item to determine the examinee’s response for 

the item. If the probability of correct response was greater than the random number, a score of 1 

was assigned as a response; otherwise, a score of 0 was recorded. In all cases, the results were 

replicated 50 times for computing the stability of the adaptivity statistics. 

4.2 Research Question 1 

The first set of simulations were intended to evaluate the sensitivity of the three 

conditional adaptation indices to various item-pool quality conditions, proficiency estimators, 

and IRT models with the goal of providing some guidelines for interpreting these indices. It was 

hypothesized that the values of the conditional adaptivity indices will increase as the item pool 

size and item pool spread increase, but that the indices will be rarely affected by proficiency-

estimation methods and IRT models. 

4.2.1 Item pool 

To simulate an item pool for the 3PL model as realistically as possible, the simulated 

item pool was modeled after the multivariate distribution of the a-, b-, and c-parameters but with 

different marginal distributions, respectively, using only multiple-choice items in the item pool 

from the Minnesota Comprehensive Assessment (MCA) Grade 6 Mathematics adaptive 

assessment. The descriptive statistics and zero-order Pearson correlations of the item parameters 

are presented in Table 4.1. Specifically, while taking into account the correlation among the item 
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parameters, a-parameters were drawn from a lognormal distribution, b-parameters from a normal 

distribution, and c-parameters from a beta distribution. Based on the multivariate distribution, 

sets of item pools that act like the empirical pool were generated according to simulation 

conditions of interest. Note that an item pool based on the Rasch model was generated, only 

taking into account the distribution of b-parameters shown in Table 4.1. 

Table 4.1  

Descriptive Statistics and Zero-Order Correlations of Item Parameters for the Item Pool from 

Minnesota Comprehensive Assessment (MCA) Grade 6 Mathematics Adaptive Test (n = 635) 

 Descriptive Statistics Correlations 

 M SD Min. Max. a-parameter b-parameter c-parameter 

a-parameter 1.03 0.30 0.20 1.99    

b-parameter 0.27 0.95 -2.53 3.14 0.24   

c-parameter 0.16 0.10 0.00 0.60 0.06 0.00  

 

4.2.2 Simulation design 

The first simulation study was conducted to examine the sensitivity of the three 

conditional indices to item pool characteristics, proficiency estimator, and IRT model. Here, the 

item-pool quality was operationalized by two aspects: (1) item-pool size and (2) item-pool 

spread in b-parameters. These item-pool characteristics were fully crossed with proficiency 

estimators and IRT models, forming a total of 72 conditions (10 pool sizes × 2 proficiency 

estimators × 2 IRT models + 8 pool spreads × 2 proficiency estimators × 2 IRT models).  

4.2.2.1 Item pool size 

Using each IRT model, 10 item pools were generated that varied in item pool size from 

50 to 500 in increments of 50. First, using the observed multivariate distribution described 

above, 500 sets of item parameters were generated that had descriptive statistics and correlations 
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as similar as possible to the empirical set in Table 4.1. These full sets of item parameters were 

then randomly divided into 10 sets with 50 items each in a way that item characteristics were 

similar across the 10 sets. Then, the first set of 50 items were used for the simulation of a 50-

item pool. The first set was then combined with the second set of 50 items to construct the 100-

item pool. This process was repeated, adding a set of 50 items each time, until the simulation was 

conducted using the full set of 500 items in the pool. This elaborated way of creating different 

sizes of item pools allows a researcher to solely explore the relationships between pool size and 

values of the adaptivity statistics. Otherwise, it is possible that a small item pool with high-

quality items (i.e., items with high discrimination and small guessing parameters) could perform 

better than a larger pool with low-quality items given no other constraints imposed on item 

selection. Table 4.2 summarizes descriptive statistics and correlations among item parameters for 

the 10 generated item pools.  

4.2.2.2 Item pool spread 

Another aspect of item-pool characteristics that could affect the amount of adaptation is 

the degree of spread in difficulty of the items in the pool. That is, if the difficulty of items is in a 

limited range, even with the large item pool, the adaptive test cannot be suitably customized for 

examinees who are located outside that range. To quantify this situation, a CAT was simulated 

using eight 400-item pools that differed in the level of standard deviation of b-parameters from 

0.2 to 1.6 in increments of 0.2 with the mean of b-parameters set to 0.0. Other a- and c-

parameters were controlled to be the same as the 400-item pool generated above and were also 

fixed across all the item pools. Table 4.3 displays the summary of the simulated item pools by 

the level of spread in b-parameter. In all the conditions manipulated by the pool spread, the item 
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pool size was 400, which is at least 10 times larger than the test length of 40 items as 

recommended by Stocking (1994).   

4.2.2.3 Proficiency estimation methods 

Two proficiency estimation methods were considered. One was MLE, most frequently 

used in operational settings, and the other was expected a posteriori (EAP; Bock & Mislevy, 

1982) using the standard normal distribution as the prior distribution and using 81 evenly spaced 

quadrature points to determine the posterior distribution.  

4.2.2.4 IRT models 

The performance of the three conditional indices were further inspected using two IRT 

models: (1) Rasch model (i.e., one-parameter logistic model) and (2) three-parameter logistic 

(3PL) model. Comparing the performance between the two IRT models can inform us of how the 

c-parameter affect the stability of the indices over the proficiency continuum.  
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Table 4.2  

Descriptive Statistics of Generated Item Pools by Item Pool Size 

Pool 

Size 

a-parameter b-parameter c-parameter Correlation 

M SD Min. Max. M SD Min. Max. M SD Min. Max. (a, b) (a, c) (b, c) 

50 0.98 0.27 0.57 1.91 0.10 1.00 -1.85 1.89 0.17 0.09 0.01 0.54 .24 .00 .06 

100 1.00 0.26 0.57 1.91 0.28 0.94 -1.85 2.29 0.16 0.10 0.01 0.59 .27 .00 -.03 

150 1.01 0.27 0.54 1.95 0.33 1.00 -2.43 2.96 0.16 0.11 0.01 0.59 .24 .05 -.01 

200 0.99 0.27 0.54 1.95 0.31 0.98 -2.43 2.96 0.16 0.10 0.01 0.59 .24 .08 -.00 

250 1.01 0.29 0.54 2.07 0.28 0.95 -2.43 2.96 0.16 0.10 0.01 0.59 .23 .01 .02 

300 1.01 0.29 0.52 2.23 0.27 0.96 -2.43 2.96 0.16 0.10 0.01 0.59 .26 .04 .00 

350 1.02 0.30 0.52 2.23 0.28 0.96 -2.43 2.96 0.16 0.10 0.01 0.59 .28 .05 .04 

400 1.02 0.30 0.52 2.23 0.27 0.96 -2.43 2.96 0.16 0.10 0.01 0.59 .24 .07 .03 

450 1.02 0.29 0.46 2.23 0.27 0.96 -2.43 3.19 0.16 0.10 0.01 0.59 .26 .06 .00 

500 1.03 0.30 0.46 2.35 0.27 0.95 -2.43 3.19 0.16 0.10 0.01 0.60 .24 .03 -.01 

Note. The simulated item pool based on the Rasch model had the same distribution of b-parameters. 
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Table 4.3  

Descriptive Statistics of Generated Item Pools by Item Pool Spread (n = 400) 

SD of  

b-parameter 

a-parameter b-parameter c-parameter Correlation 

M SD Min. Max. M SD Min. Max. M SD Min. Max. (a, b) (a, c) (b, c) 

0.2 1.02 0.30 0.52 2.23 0.00 0.20 -0.55 0.54 0.16 0.10 0.01 0.59 .03 .07 .05 

0.4 1.02 0.30 0.52 2.23 0.02 0.41 -1.11 1.36 0.16 0.10 0.01 0.59 .03 .07 .05 

0.6 1.02 0.30 0.52 2.23 0.01 0.60 -1.58 1.83 0.16 0.10 0.01 0.59 -.04 .07 -.01 

0.8 1.02 0.30 0.52 2.23 0.02 0.81 -1.84 2.60 0.16 0.10 0.01 0.59 .13 .07 .01 

1.0 1.02 0.30 0.52 2.23 0.00 1.00 -2.65 3.11 0.16 0.10 0.01 0.59 .08 .07 -.04 

1.2 1.02 0.30 0.52 2.23 0.02 1.21 -2.84 3.30 0.16 0.10 0.01 0.59 -.04 .07 -.08 

1.4 1.02 0.30 0.52 2.23 0.01 1.41 -3.62 3.83 0.16 0.10 0.01 0.59 .01 .07 .04 

1.6 1.02 0.30 0.52 2.23 0.01 1.59 -4.20 4.86 0.16 0.10 0.01 0.59 .02 .07 .07 

Note. The simulated item pool based on the Rasch model had the same distribution of b-parameters. 
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4.2.3 Evaluation criteria 

For each condition, the recovery of proficiency estimates and the amount of adaptation 

were evaluated. For the precision and accuracy of the final proficiency estimates, conditional 

statistics including bias (CB), standard error of measurement based on test information 

(CTSEM), and root mean square error (CRMSE) were computed at each proficiency level: 
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where 𝜃𝑗  is the final proficiency estimate for the examinee j, 𝜃𝑗 is the true proficiency of the 

examinee j, 𝐼𝑖(𝜃𝑗) is the Fisher information of the ith item at the current estimate, 𝜃𝑗 , L is the test 

length, and R is the total number of replications (i.e., R = 50). 

 Overall statistics were considered to provide summary information of the recovery 

aggregated over the proficiency levels. The overall statistics including bias, TSEM, RMSE, and 

the Pearson correlation between true and final estimates of proficiency (i.e., the fidelity 

coefficient, 𝑟𝜃�̂�; McBride, 1977) were computed across all examinees within a single replication, 

where N is the total number of examinees, �̅� is the mean of true proficiency values over N 

examinees, and  �̅� is the mean of final proficiency estimates over N examinees: 
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 More importantly, to evaluate the performance of statistical indicators of the amount of 

adaptation, existing adaptation measures (Kingsbury & Wise, 2018; Reckase et al., 2018) and the 

conditional adaptation measures I proposed were calculated using the equations listed in (3.2) 

through (3.8).  Furthermore, relationship between the proposed conditional adaption indices and 

the conditional measurement statistics was visually inspected via a scatter plot. 

4.3 Research Question 2 

 To demonstrate the practical utility of the proposed conditional measures for the amount 

of adaptation as diagnostic tools for improving the adaptivity of a CAT, this research question 

investigated how many items need to be added to attain an acceptable level of adaptation over 

the proficiency continuum under the hypothesized scenario.  

 Suppose a state-wide achievement testing program is planning to improve an adaptive 

test with the goal of reaching comparable measurement precision of a student’s proficiency 
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across the entire range of proficiency levels. To do this, the first basic step that they want to take 

is to revise an item pool that makes a CAT that gives items that match well the examinee’s 

proficiency estimate. According to their history of students’ proficiency distributions, the test 

developers found that students’ proficiency generally followed a standard normal distribution, 

locating many students in the middle proficiency levels. However, given the proficiency 

population with the currently available item pool, some range of proficiency levels is adequate 

for the customization of the CAT to students, whereas other areas may not be. To improve 

adaptivity at the proficiency area that is currently below the criterion, items whose information 

peaks over that area need to be added to the existing item pool. The items to be added are 

selected from the master pool, which is usually available in real-world operational settings.  

4.3.1 Item pool 

The 300-item pool for the 3PL model developed for the item-pool-size study in the first 

research question was employed as the existing item pool to be revised later. The reason for 

choosing that pool size is that the item-pool-size study would suggest that a pool size of 300 

presented acceptable adaptation, and at the same time, there is still room to approach a better 

level of adaptation for a fixed-length CAT of 40 items.  

Next, the master pool, known as a “vat” (e.g., Way, 1998), was created that has a larger 

number of items than required by a CAT. I generated 3,000 sets of item parameters for the 

master pool that mimics the target distribution of item parameters described in Table 4.1, taking 

into account the correlations among a-, b-, and c-parameters. The resulting distributions of item 

parameters for the master pool were very similar to the target of Table 4.1. The distributions of 

b-parameters for the master pool is presented in Figure 4.1. 
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Figure 4.1. Item distribution for the master pool (N = 3,000). 

4.3.2 Simulation procedure 

First, 2,000 examinees were randomly sampled from a standard normal distribution,  

N (0, 1). A 40-item CAT was then administered to examinees using the 300-item pool with the 

3PL model. I then identified the values of the conditional adaptation measures, which were 

considered as a baseline. Looking at those values over the entire proficiency level range, I 

determined which region on the proficiency scale needs to improve adaptivity of the CAT giving 

more appropriate items which are customized to examinees’ proficiency level. Then, better 

targeting items were added that ought to be sufficient to gain the desired level of adaptivity. At 

each θ-region under the benchmark values of the three statistics, the fixed numbers of items to be 

added to the item pool are 5, 10, 15, 20, 30, 40, 50, and 100.  
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4.3.3 Evaluation criteria 

To answer the second research question, three conditional measures for the amount of 

adaptation were computed using equations in (3.6) through (3.8) to see whether the test can be 

labeled as having “good” adaptation at the area of interest after the items have been added to the 

existing item pool. Conditional statistics listed in (4.1) to (4.3) were also calculated for checking 

to what extent the measurement precision of the proficiency estimates was improved after the 

item pool was revised.   

4.4 Research Question 3 

 Imposing constraints on item selection for exposure control may contribute to reducing 

the amount of adaptation during a CAT. In Research Question 3, I examined whether the 

proposed indices can properly capture the changes of adaptivity resulting from the exposure-

control procedure over the proficiency continuum.  

4.4.1 Simulation design 

I designed the effects of exposure-control procedures moderated by item pool designs to 

emphasize the capability of the indices that identify the differences in adaptivity given by item 

pool quality and constraints on item selection. In total, there are eight conditions (2 item pools × 

4 exposure control procedures). For each condition, CATs were administered to 2,000 examinees 

randomly sampled from the standard normal distribution, N (0, 1) over 50 replications. 

4.4.1.1 Item pool 

I created two item pools: (1) an optimal operational item pool and (2) a regular 

operational item pool. First, the optimal item pool was designed using the bin-and-union method 

(see Reckase, 2010 for details on this procedure). The optimal pool has a sufficient number of 

items with a distribution that satisfies the desired features of a CAT administered to the target 
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population of examinees (e.g., Veldkamp & van der Linden, 2000). Using the bin-and-union 

method, the blueprint of the ideal item pool design can be identified in terms of the distribution 

of items, item characteristics, and item pool size for the predetermined CAT specifications of 

interest. More specifically, the ideal item pool was first determined by tallying the number of 

selected items needed in each range, called “bins”, of the proficiency estimates, which are 

specified on the proficiency scale, producing a target distribution for items over bins. The bin 

size is the median range of near maximum information, which was determined based on having 

information within 90% of the maximum for an item. In this case, the bin width was 0.7.  

To design the ideal pool, through simulations, a 40-item CAT selected from the master 

pool was administered to 2,000 examinees, and as each CAT is administered and the union of the 

required items is taken, the ideal item pool grows in size when simulated examinees that are 

different than those previously selected are chosen. Here, the master pool was the same as one 

that was already created in Research Question 2. As seen in Figure 4.2, the size of the ideal item 

pool quickly grows early in this process and then reaches an asymptote once most of students’ 

proficiency range is covered. The number of items at the asymptote is an estimate of the number 

of items needed for the ideal item pool. Since the simulation is a random process, it was 

replicated 10 times and then the median pool size and the median value in each of the bins were 

determined for the ideal item pool. The median of the sizes for the ideal item pool was 400 items.  
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Figure 4.2. Number of items needed in the ideal item pool for a 3PL-based CAT of 40 items. 

However, the ideal item pool is sometimes not realistic because it requires items for 

extremely high or low proficiency levels that are not encountered very often in practice. 

Therefore, after identifying the distribution of items for the ideal item pool, items from a master 

pool then filled in the requirements of the frequency distribution over bins in the ideal pool 

design. Items were selected that had maximum information for the proficiency range defined by 

the bin boundaries. In some bins, no items were available in the master item pool. The union of 

the selected items is viewed as the optimal operational item pool because this does not contain 

extremely easy or difficult items, it can be considered reasonably an optimal pool, in practice. 

The size determined for this optimal pool was 300. To make the two pools of similar size, the 

regular operational item pool consisted of 300 items. The 300-item pool developed in Research 

Question 1 was used as a typical operational pool because that pool was generated in a way that 

mimicked the real item pool from the state-wide testing program.  
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Table 4.4 presents the distributions of items over bins for the ideal item pool, the optimal 

item pool, and the regular item pool. Compared to the other two item pools, the ideal item pool 

had 32 items with maximum information in the -3.85 to -3.15 bin, 35 items with the maximum in 

the -3.15 to -2.45 bin, and 34 items with the maximum in the 3.15 to 3.85 bin. These items were 

relatively extreme in difficulty given the distribution of items. Since the master pool did not have 

sufficient items that had maximum information at such extreme proficiency regions, the optimal 

operation item pool had 1, 6, and 5 items, respectively in those ranges on the proficiency scale. 

Other than the extremes, the optimal item pool had almost identical distribution of items to the 

ideal item pool that included items fairly uniformly distributed from -2.45 to 3.15. Meanwhile, 

the real item pool had a visibly narrower distribution of items with the largest frequency in the 

0.35 to 1.05 range of the proficiency scale. Given the purpose of the test is not to classify 

students into mastery vs. non-mastery using the single cut-off score but to attain equal 

measurement precision over the proficiency continuum, at the least the test would need more 

easy items for the low proficiency students. Despite the same pool size, the optimal pool and the 

regular pool apparently had a different distribution, which is visualized in Figure 4.3. 

(a) Regular Item Pool (b) Optimal Item Pool 

  

Figure 4.3. Distribution of b-parameters for the regular and optimal item pools. 
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Table 4.4  

Item Distributions for Item Pools Considered in Research Question 3 

Bin Boundaries (θ-Scale) 
Ideal Item Pool 

Optimal 

Item Pool 

Regular 

Item Pool Lower bound Upper bound 

-3.85 -3.15 32 1 0 

-3.15 -2.45 35 6 0 

-2.45 -1.75 37 24 3 

-1.75 -1.05 38 38 13 

-1.05 -0.35 39 39 53 

-0.35 0.35 39 39 73 

0.35 1.05 38 38 88 

1.05 1.75 38 38 45 

1.75 2.45 37 37 23 

2.45 3.15 35 35 1 

3.15 3.85 34 5 1 

 Total 400 300 300 

 

4.4.1.2 Exposure control methods 

Along with a no-exposure control as a reference, the study considered three commonly 

used exposure-control methods. The first exposure-control approach is the randomesque 

procedure (Kingsbury & Zara, 1989), in which an item to be administered is randomly selected 

from the N items that have the best information at the current proficiency estimate. In this study, 

one item was selected out of the 10 most informative items at the current proficiency estimate.  

The second procedure is the Sympson-Hetter method (Sympson & Hetter, 1985) with a 

target rate of maximum item exposure, which was 0.20 in this study. This method is a 

probabilistic item exposure control in CAT by separating the item selection process from the 

item administration process. Specifically, this approach employs a simulation of the CAT 

procedure using the actual item pool to determine how often items will be selected for 

administration given an expected distribution of examinees. In this process, an exposure control 
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parameter is estimated for each item in the item pool, which is the conditional probability that 

the item will be administered if that item is selected. The control parameters have to be 

determined through an iterative process of the CAT until the exposure control parameters are 

stabilized. In this study, the stable values of the exposure control parameters were obtained after 

15 iterations of the CAT process with each of the regular and optimal item pools. Figure 4.4 

presents the distribution of the estimated exposure control parameters for the two item pools. For 

these pools, over 125 items had exposure control parameter values of 1.0, which means that no 

exposure control was needed for these items. These items might be unused or underexposed in 

the CAT process. For the regular item pool, over 50 items had the control parameter values of 

around 0.4, while for the optimal item pool, about 100 items had the control parameters of 

around 0.3 and 0.4. 

 

Figure 4.4. Distribution of exposure control parameters for the Sympson-Hetter procedure for 

the regular item pool (left) and the optimal item pool (right) of 300 items. 
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 Lastly, the a-stratified with b-blocking procedure (BAS; Chang et al., 2001) was 

considered for exposure control. For the implementation of BAS, the item pool was partitioned 

into four levels (strata) based on the magnitude of the a-parameters, but the strata were blocked 

on the b-parameter to ensure that the mean and standard deviations for the b-parameters were 

about identical across the four strata. That is, the item pool was first sorted according to the 

magnitude of the b-parameters and divided into 75 groups with each group consisting of four 

items that were homogeneous in the b-parameter. Then, starting with the first block of four 

items, the item with the lowest a-parameter was located in the lowest stratum, the item with the 

next lowest a-parameter in the second stratum, and so on. This procedure continued for each 

block of items to create four strata of item pools that differed in the magnitude of a-parameters 

but spanned the similar range of b-parameters. Note that for BAS, an item was selected with its 

b-parameter closest to the interim estimate of proficiency instead of the MFI item selection.   

4.4.2 Evaluation criteria 

Similar to previous research questions, conditional statistics in Equations (3.6) through 

(3.8) and overall statistics for the amount of adaptation in Equations (3.2) through (3.4) were 

compared across eight conditions along with statistics for evaluating measurement precision and 

accuracy in the proficiency estimates. In addition, so as to further examine test security, I 

reported the distribution of observed item exposure rates, computed using Equation (4.8).  

 
𝑟𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒,𝑖 =

𝑡

𝑁
 

(4.8) 

where t is how many times an item i was administered and N is the total number of examinees. 
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4.5 Research Question 4 

The fourth simulation study investigated the utility of these conditional adaptivity 

measures to identify the difference in the amount of adaptation that occurs when a MST is used 

instead of a fully item-level CAT, moderated by different item pool designs. Two study factors 

were manipulated: (a) item pool design and (b) adaptive test design. Since all factors studied 

were fully crossed with each other, four conditions (2 item pool × 2 test design) were examined. 

For each condition, each adaptive test was administered to a simulated sample of 2,000 

examinees over 50 replications. 

4.5.1 Item pool 

As with Research Question 3, two types of item pools were used. One is an optimal item 

pool that had more uniform counts of items across the proficiency levels. The other is a regular 

item pool, which is a bell-shaped distribution of items usually found, in practice. In this study, I 

used the same item pools that were created in the study for Research Question 3. The regular 

item pool contained more items whose information peaked in the range of -1.05 to 1.05 on the θ-

Scale, whereas the optimal item pool included items of which difficulty were broadly distributed. 

Again, the size of the two pools was 300.  

4.5.2 Test design 

The test length for both CAT (i.e., item-level adaptive test design) and 1-2-3 three-stage 

MST (i.e., module/stage-level adaptive design) was 40 items. A fixed length CAT design with 

the same specifications as above was employed. Regarding the 1-2-3 MST design (as presented 

in Figure 4.5), I utilized a single panel with increasing module length, staring with the short 

module in the routing test and ending with a longer module in Stage 3 (i.e., 10-10-20 design). 

Prior research (e.g., Kim & Kim, 2018; Reckase et al., 2017; Svetina, Liaw, Rutkowski, & 
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Rutkowski, 2019) found that administering few items in the beginning stage and more items in 

the last stage tended to produce more accurate final proficiency estimates.  

 

Figure 4.5. A 1-2-3 three-stage MST design used in the study. 

For the stage and module configurations, two MST designs were formed from the 

different item pools. From each of the item pools, a routing module in Stage 1 was constructed 

so that the test information function (TIF) would match the “target” TIF as closely as possible 

based on a single decision point of 0.0 to route examinees to one of two second stage modules. 

The second stage modules were also designed to make accurate classifications of examinees into 

the three modules in Stage 3 so that items for each second-stage module with TIF peaked at a 

cut-off point of -1 and 1, respectively, were selected. Lastly, items for the third-stage modules 

were selected to provide approximately uniform information of the final estimates across the 

proficiency levels, taking into account the amount of information obtained from the previous 

stages. Thus, in Stage 3, the easy module was designed for the proficiency (θ) range from -2 to -

1, the moderate module was for the θ-range from -1 to 1, and the difficult module was designed 

for the θ-range from 1 to 2. Table 4.5 displays descriptive statistics of item difficulty parameters 
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by stage modules for each MST design. The medium module in Stage 3 consisted of relatively 

easy items, as more informative items were needed to make the information curve flat over the θ-

range of -1 to 1.  

Among numerous routing strategies, each examinee was routed through modules of 

which the difficulty levels match the examinee’s proficiency level as closely as possible. 

Examinees were routed based on the IRT MLE proficiency estimate and were not allowed to 

take non-adjacent paths based on the findings of previous research (Kim & Kim, 2018; Svetina et 

al., 2019). The TIF function for four possible paths of each MST design in Figure 4.6 showed 

that the height of the TIF was higher for the MST from the regular pool over the middle range of 

proficiency (θ), while the breadth of the TIF was broader for the MST formed from the optimal 

item pool.  

Table 4.5  

Descriptive Statistics of b-Parameters by Stage for Each MST Design 

Stage Module Number 

of Items 

b-parameters 

M SD Min Max 

Regular Item Pool       

Stage 1 Routing 10 -0.02 0.33 -0.62 0.40 

Stage 2 Easy 10 -0.93 0.18 -1.21 -0.65 

 Difficult 10 0.86 0.27 0.48 1.30 

Stage 3 Easy 20 -1.35 0.65 -2.43 -0.15 

 Medium 20 -0.29 0.18 -0.60 -0.07 

 Difficult 20 1.50 0.14 1.26 1.81 

Optimal Item Pool       

Stage 1 Routing 10 0.07 0.22 -0.25 0.33 

Stage 2 Easy 10 -0.86 -1.35 -1.18 0.15 

 Difficult 10 0.99 0.28 0.62 1.43 

Stage 3 Easy 10 -1.66 0.80 -2.58 -0.14 

 Medium 10 -0.45 0.33 -1.15 -0.09 

 Difficult 20 1.53 0.18 1.19 1.88 
Note. Routing points were 0.0 for the first stage module, -1 for the easy module in Stage 2, and +1 for the 

difficulty module in Stage 2.
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Figure 4.6. Information function by each path for the 10-10-20 MST using regular item pool and 

optimal item pool. 

Note. Path 1 = Stage 1 – Easy in Stage 2 – Easy in Stage 3; Path 2= Stage 1 – Easy in Stage 2 – 

Medium in Stage 3; Path 3 = Stage 1 – Difficult in Stage 2 – Medium in Stage 3; Path 4= Stage 1 

– Difficult in Stage 2 – Difficult in Stage 3. 

 

4.5.3 Evaluation criteria 

The performance of the two test designs using different item pools was evaluated in terms 

of measurement precision and the amount of adaptation. First, I examined how proficiency was 

accurately and precisely estimated in adaptive testing using bias, TSEM, and RMSE over the 

sample of examinees, listed in Equations (4.4) to (4.6), and contingent on the proficiency levels 

in Equations (4.1) to (4.3). The Pearson correlation between “true” and final estimates of 

proficiencies in Equation (4.7) was also calculated to gauge the relation between true and 

estimated proficiency. More importantly, the conditional adaptation measures that I proposed in 
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Equations (3.6) to (3.8) were calculated to investigate the adaptivity at each proficiency level. 

The existing overall adaptation indices in Equations (3.2) though (3.4) were also computed to 

understand the adaptivity over the entire group of examinees. 

4.6 Research Question 5 

In the last question, the performance of the proposed adaptivity measures were examined 

using real operational CAT data. To do this, the National Council Licensure Examination for 

Registered Nurse (NCLEX-RN) examination was used. The NCLEX-RN (National Council of 

State Boards of Nursing [NCSBN], 2017) is a nursing licensure examination delivered by the 

CAT format, which is administered by NCSBN. This exam assesses “the knowledge, skills, and 

abilities that are essential for the entry-level nurse to use in order to meet the needs of clients 

requiring the promotion, maintenance, or restoration of health” (NCSBN, 2016). The full sample 

for this quarter administration period was about 70,000, which was huge. Instead of computing 

adaptation statistics using the entire sample, multiple samples of 2,000 examinees were randomly 

drawn from the total sample, resulting in 35 samples in total. Thus, adaptive measures were 

computed over 35 samples of 2,000 examinees, allowing for the evaluation of the stability of the 

adaptation values, as well.  In what follows, the details of the NCLEX-RN exam are described in 

terms of the CAT specifications and the item pool used in this study.  

4.6.1 CAT specifications for the NCLEX-RN exam 

The NCLEX-RN examination employs the Rasch-based variable-length CAT. On an 

operational examination, proficiency is estimated using an Owen Bayesian estimation (Vale & 

Weiss, 1977) with a prior with the mean of -1.0 logit and the standard deviation of 2.0 first until 

both correct and incorrect responses exist for an examinee. The proficiency estimate is then 

updated using the MLE with Newton-Raphson. An examinee starts with an item that has 1.0 
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logit below the cut-off score. The current NCLEX-RN’s cut score is 0.0. To pass the 

examination, the candidate’s proficiency estimate should be 1.65 times the standard error (95% 

confidence interval, one-tail) higher than the cut score. In the same logic, an examinee will fail 

the exam if their proficiency estimate is 1.65 times the standard error lower than the cut score. 

Here, the standard error is recalculated after each item. Based on the stopping rule of CAT using 

a standard error, resulting in a variable-length CAT, the minimum test length of operational 

items is 60 and the maximum is 250. Each examinee also take additional 15 pretest items in each 

examination between the 10th and 60th operational items, which are not included in proficiency 

estimation and analyses in this study. If it cannot be clearly decided whether an examinee passes 

or fails an examination, the decision then would be made on the basis of the proficiency estimate 

after taking the final items by examining whether the final proficiency estimate exceeds the cut 

score of 1.0 to pass.    

More importantly, the NCLEX-RN exam has three parts to the content and item selection 

procedure. First, the computer system determines the number of items for each of eight content 

strands for the minimum length exam. Every examinee will receive the same number of items 

per content area for the first 60 items shown in Table 4.6. The second component is that the order 

of items is determined by randomly selecting a content area with equal probability. Once a 

content area has been exhausted (e.g., an examinee took the maximum number of items from a 

category), items from that content area will no longer be tested during the minimum length test. 

After the minimum length test, the content strand presenting the greatest divergence from the 

desired testing percentage is selected (Kingsbury & Zara, 1989). The divergence from the 

desired percentage is computed using the following formula: 
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𝐷 = (𝑇𝑃𝐶 −

𝑁

𝑇
) (4.9) 

where TPC is the target percentage for the content strand, N is the number of items previously 

presented from the content area, and T is the total number of items previously presented. After 

determining the content area, 15 items are picked that have maximum information based on 

examinee’s proficiency estimate. Then one out of the 15 items is randomly administered to that 

examinee. 

Table 4.6  

Content Distribution of the First 60 Items for the NCLEX-RN in 2016 

Content Strand Number 

of Items 

Target %   Lowest % 

- Highest % 

Content 1 Management of Care 12 20 17-23 

Content 2 Safety and Infection Control  7 12 9-15 

Content 3 Health Promotion and Maintenance 6 9 6-12 

Content 4 Psychosocial Integrity 5 9 6-12 

Content 5 Basic Care and Comfort 5 9 6-12 

Content 6 Pharmacological and Parenteral Therapies 9 15 12-18 

Content 7 Reduction of Risk Potential 7 12 9-15 

Content 8 Physiological Adaptation 9 14 11-17 

Total  60 100  

 

4.6.2 Item pool 

For this quarter period in 2016, the NCLEX-RN exam used an operational item pool of 

1,244 items across eight content areas. Table 4.7 summarizes the descriptive statistics of b-

parameters for the item pool used in this study. The distribution of b-parameters for each content 

strand was similar across all eight content areas, with the mean of b-parameters close to the cut-

off score of 0.0. As shown in Figure 4.7, the information for all content areas peaked around 0.0, 
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indicating that the item pool includes adequately informative items near the cut-score for the 

NCLEX-RN exam. It was also expected that the amount of information was greater for the 

content areas consisting of more items.  

Table 4.7  

Descriptive Statistics of b-Parameters for the NCLEX-RN Item Pool  

Content Strand b-parameters n 

M SD Min. Max. 

Content 1 0.02 0.85 -2.35 2.22 248 

Content 2 0.03 0.83 -2.27 2.19 150 

Content 3 0.06 0.83 -2.22 2.30 112 

Content 4 0.00 0.84 -2.13 2.23 112 

Content 5 0.00 0.79 -2.24 2.07 112 

Content 6 0.04 0.81 -2.24 2.17 186 

Content 7 0.01 0.84 -2.32 2.22 150 

Content 8 0.06 0.83 -2.24 2.19 174 

Total 0.03 0.83 -2.35 2.30 1,244 
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Figure 4.7. Information function by content strand for the NCLEX-RN item pool. 

4.6.3 Evaluation criteria 

To investigate the amount of adaptation for the NCLEX-RN exam during the quarter of a 

year in 2016 (April to June), three conditional adaptivity indices listed in Equations (3.6) to (3.8) 

and three overall adaptivity indices were computed to evaluate adaptivity at individual 

proficiency level and over the entire sample of examinees.  
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CHAPTER 5. 

RESULTS 

 

This chapter summarizes the results of the analyses organized into five sections 

corresponding to the five research questions described in Chapter 1. The first four sections 

present the results of the comprehensive simulation studies that investigated the feasibility and 

utility of the proposed adaptivity indices conditional on examinees’ proficiency levels under 

numerous conditions. The last section illustrates the empirical demonstration for the conditional 

adaptivity indices using the real data from the licensure and certification exam. 

5.1 Research Question 1 

In the first study, comprehensive simulations were conducted to examine the sensitivity 

of the proposed adaptivity statistics to item pool characteristics, IRT models, and proficiency 

estimation methods. In particular, item pool characteristics related to the quality of an item pool, 

were manipulated by (1) varying item pool size and (2) varying item pool spread. These 

manipulations help understand how well CATs use the available item pool to match item 

characteristics to each examinee’s location on the proficiency continuum. The following two 

major sections summarize the impacts of these two aspects across different IRT models and 

proficiency estimation methods in terms of the amount of adaptation as well as measurement 

accuracy and precision. For each of the studied conditions, all results of the 40-item CATs were 

averaged across 50 replications. 

5.1.1 Variation in item pool size 

First, item pool size was investigated to see whether three new conditional adaptation 

statistics sensitively identify the differences in the amount of adaptation for the CATs using 10 
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item pools that differed in size from 50 to 500 in increments of 50. This section describes the 

effect of item pool size across two proficiency estimators (MLE and EAP) when each of IRT 

models (Rasch model and 3PL model) was used in the CATs, respectively. To better understand 

the new indices, measurement accuracy and precision were first inspected, followed by the 

amount of adaptation.  

5.1.1.1 Rasch model 

Measurement accuracy and precision.  Examinees’ final proficiency estimates were 

evaluated using conditional and overall statistics for measurement accuracy and precision. The 

smaller bias, test-information-based standard error of measurement (TSEM), and root mean 

square error (RMSE) are, the better the recovery of proficiency estimates is. Also, higher 

correlation between true and final proficiency estimates (𝑟𝜃�̂�) is associated with better recovery. 

Conditional statistics.  Figure 5.1 shows the mean bias, TSEM, and RMSE across evenly-

spaced bins on the proficiency (θ) continuum. The MLE approach presented little bias in 

proficiency estimates, while the EAP approach reported bias regressing the proficiency estimates 

toward the mean of prior distribution over the entire θ-continuum. With the EAP, in other words, 

the proficiency estimates were underestimated at the positive extremes of the θ-scale but 

overestimated at the negative extremes. The TSEM and RMSE values displayed the slight U-

shape pattern showing the higher standard errors at the extremes of θ-continuum than at the 

moderate proficiency region. The degree of the U-shape pattern was obviously greater for the 

EAP compared to the MLE. Furthermore, with the bigger item pool, the proficiency estimates 

appeared to be better recovered, especially for the extreme ends of the scale regardless of their 

estimation approaches. 
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Overall statistics.  Table 5.1 presents the summary information about overall accuracy 

and precision of proficiency estimates over the entire sample of examinees. As the pool size 

increases, the values for bias, TSEM, and RMSE were small, and the correlation coefficients 

were high. Although the correlations were almost identical between MLE and EAP, EAP 

produced slightly higher overall bias but lower overall standard errors compared to MLE across 

the 10 item pools. The differences were getting negligible with larger item pools, though. 

Table 5.1  

Overall Statistics of Measurement Precision of Proficiency Estimates for a Rasch-based CAT by 

Item Pool Size and Proficiency Estimator 

Pool  

Size 

MLE  EAP 

Bias TSEM RMSE 𝑟𝜃�̂�  Bias TSEM RMSE 𝑟𝜃�̂� 

50 -0.002 0.366 0.371 0.941  -0.006 0.356 0.338 0.942 

100 -0.004 0.338 0.342 0.948  -0.002 0.331 0.317 0.949 

150 0.000 0.332 0.336 0.949  -0.004 0.327 0.314 0.950 

200 -0.001 0.330 0.333 0.950  -0.001 0.325 0.313 0.951 

250 -0.001 0.329 0.332 0.950  -0.003 0.325 0.312 0.951 

300 0.000 0.328 0.332 0.950  -0.003 0.324 0.311 0.951 

350 -0.001 0.328 0.331 0.950  -0.002 0.324 0.311 0.951 

400 0.001 0.328 0.330 0.950  -0.003 0.324 0.312 0.951 

450 0.000 0.327 0.329 0.951  -0.002 0.323 0.310 0.951 

500 -0.003 0.327 0.329 0.951  -0.001 0.323 0.311 0.951 
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Figure 5.1. Conditional bias, TSEM, and RMSE of proficiency estimates for a Rasch-based CAT 

by item pool size and proficiency estimator. 
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Amount of adaptation.  Adaptivity for CATs were evaluated over the entire sample of 

examinees using the existing overall statistics, as well as at the individual proficiency levels 

using the conditional statistical indicators proposed in this dissertation. 

Conditional adaptivity.  To evaluate the amount of adaptation for CAT contingent on the 

proficiency levels, three adaptation statistics were proposed in this dissertation, including 

deviation of difficulty (DOD), conditional proportion of reduction in variance (CPRV), and ratio 

of information (ROI) indices. As shown in Figure 5.2, all three adaptivity measures did 

sensitively detect differences in the amount of customization across the proficiency levels for the 

CATs using the varying sizes of the item pools. That is, the increase in the item pool size led to 

higher values of the DOD, CPRV, and ROI indices, implying better adaptation. However, for a 

given 40-item CAT and its administration procedure, there was not much improvement in 

adaptivity for pool sizes greater than 300. The POI index (Kingsbury & Wise, 2018) exhibited 

little sensitivity to item pool sizes and proficiency estimation methods (see Figure 5.2). 

Additionally, based on the ribbon representing the empirical standard error in Figure 5.2, the 

values of three adaptation indices appeared to be stable over the 50 replications, though the 

CPRV index was relatively less precise.  

Focusing on the individual proficiency levels, moderate proficiency ranging from -0.5 to 

1.5 on the θ-scale produced better adaptivity compared to other proficiency levels across the 10 

item pools. This implies that the CAT appropriately selected relatively good items adapted to the 

students’ proficiency estimates from an item pool, and also the item pool contained enough 

informative items for the students whose proficiency were around the middle level. Interestingly, 

using the smallest item pool of 50 items reported a slightly different pattern of the three measures 

compared to other item pools. Although the ROI and DOD indices showed approximately a 
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symmetric pattern, the CPRV values were asymmetrically distributed. For instance, Student A (θ 

= -1) took the items whose difficulty varied more than Student B (θ = 1) did, implying that the 

item pool contained relatively more informative items for Student B compared to those for 

Student A.  

Regarding the comparison of results between the MLE and EAP approaches, the DOD 

and ROI measures looked more sensitive to the MLE, as the range of their values over the 

proficiency continuum was greater for the MLE. Also, the values of these two indices for the 

EAP were generally larger than those for the MLE especially at the extreme regions of the 

proficiency scale, which is associated with the features of the EAP estimator in terms of the 

accuracy of proficiency estimates as well as the distribution of the item pool. That is, EAP 

proficiency estimates were more under- or overestimated at the extreme regions (see Figure 5.3), 

and the given bell-shaped item pool included fewer good items for the very high or low 

proficiency levels. Accordingly, their biased proficiency estimates provided more chances of 

administering informative items to students during the CAT administration. This is evidence that 

the adaptivity of CAT is closely related to the performance of the proficiency estimation. 

Meanwhile, CPRV presented a similar pattern between the two estimators, but MLE reported 

generally lower values with greater empirical standard errors compared to EAP. The latter can be 

also explained by the property of the proficiency estimation. The MLE used a step size of 0.7 

until the examinee had both correct and incorrect responses in the beginning of the CAT, 

resulting in selecting more heterogeneous items for determining the approximate location of 

proficiency earlier in the test. The EAP, however, had the benefit of using a prior for the 

estimation earlier in the test but the biased estimates regressed toward the mean of the prior 
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distribution, leading to CPRV values that were more stable over the replications and higher in the 

broader proficiency regions.    

In summary, these results suggest that a value in the mid 0.90s for the DOD index, a 

value in the high 0.70s for the CPRV, and a value in the high 0.90s for the ROI index indicate 

good adaptation when the Rasch model is used for the CATs with MLE. For the CATs using the 

Rasch model and EAP, a value in the high 0.90s for the DOD, and a value in high .80s for the 

CPRV, and a value in the high 0.90s indicate good adaptation.  

Overall adaptivity.  Table 5.2 reported the results of overall adaptation measures. As 

expected, the increase in the item pool size was more likely due to increasing the values of the 

correlation, ratio of SDs, and PRV indices. Similar to conditional adaptivity indices, adaptivity 

was not much improved for item pool sizes larger than 300 items. However, the POI index 

yielded an unexpected pattern; as the pool size increases, the POI index decreases. It may be due 

to the fact that with the smaller item pool, there may be little variation in the administered test 

items selected between using the provisional proficiency estimate and the final/true proficiency 

estimate, leading to the POI value of 1.0. Regarding the proficiency estimation methods, the ratio 

of SDs index was smaller for EAP than for MLE due to the property of the EAP estimates 

shrinking to the mean of a prior distribution, allowing the CAT to select relatively more 

homogeneous items for each examinee. On the contrary, other indices including the correlation, 

PRV, and POI measures were slightly higher for EAP.  

MLE results for the 40-item test provided evidence to support the benchmark values from 

a previous study with the 30-item test (Reckase et al., 2018): low 0.90s for the correlation index, 

mid 0.80s for the ratio of SDs index, and about 0.80 for the PRV index. EAP results for the 40-

item test additionally suggest some benchmark values for interpreting these overall indices for 
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CATs; a value in the mid 0.90s for the correlation index, a value in the high 0.70s for the ratio of 

SDs index, and a value in the high 0.80s for the PRV can be considered good adaptation. 

Relationship between conditional adaptivity and measurement precision.  To 

visualize their relationships, the TSEM values were plotted against the DOD, CPRV, and ROI 

measures, respectively by item pool size and proficiency estimator (see Figure 5.4). Within each 

item pool size condition, the DOD and the ROI measures showed similarly a negative and 

curvilinear association with the standard errors (TSEM). Despite their nonlinearity, the Pearson 

correlation coefficients were computed for information purposes only, yielding greater than .90 

across all conditions. However, the CPRV measure did not display an obvious linear or 

curvilinear relation with the standard errors. Instead, there were two lines identified for MLE and 

EAP, which may be due to the larger TSEM values at the positive and negative extremes of 

proficiency (remember, the U-shaped distribution of TSEM) but relatively constant CPRV values 

at these regions. A clear finding is that the standard errors were apparently small when CPRV is 

greater than or equal to its benchmark value, or vice versa. In addition, plots for the relation of 

RMSE and the adaptation indices are provided in Appendix A. Because RMSE considers both 

bias and standard errors, their relationships were not as apparent as those with TSEM. 

 



72 

 

Figure 5.2. Conditional adaptivity statistics (DOD, CPRV, and ROI) for a Rasch-based CAT by 

item pool size and proficiency estimator. 
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Figure 5.3. Plot of a POI index for a Rasch-based CAT by item pool size and proficiency 

estimator. 

 

Figure 5.4. Relationship of TSEM with conditional adaptivity indices (DOD, CPRV, and ROI) 

for a Rasch-based CAT by item pool size and proficiency estimator. 
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Figure 5.4. (cont’d) 
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Table 5.2  

Overall Adaptation Statistics for a Rasch-based CAT by Item Pool Size and Proficiency Estimator 

Pool 

Size 

MLE  EAP 

𝑟(�̅�𝑗 , θ̂j) 𝑠�̅�𝑗 𝑠θ̂𝑗⁄  PRV POI  𝑟(�̅�𝑗 , θ̂j) 𝑠�̅�𝑗 𝑠θ̂𝑗⁄  PRV POI 

M (SE) M (SE) M (SE) M (SE)  M (SE) M (SE) M (SE) M (SE) 

50 0.86 (.003) 0.27 (.003) 0.36 (.001) 99.79 (.016)  0.89 (.003) 0.31 (.003) 0.37 (.001) 99.97 (.004) 

100 0.90 (.003) 0.61 (.006) 0.73 (.002) 97.91 (.060)  0.95 (.002) 0.62 (.004) 0.79 (.001) 99.03 (.033) 

150 0.92 (.002) 0.74 (.006) 0.80 (.002) 96.88 (.063)  0.96 (.002) 0.71 (.005) 0.87 (.001) 98.25 (.049) 

200 0.93 (.002) 0.78 (.006) 0.81 (.003) 96.32 (.075)  0.96 (.001) 0.74 (.005) 0.89 (.001) 97.70 (.052) 

250 0.93 (.002) 0.81 (.005) 0.80 (.003) 95.99 (.071)  0.96 (.001) 0.76 (.005) 0.88 (.001) 97.44 (.049) 

300 0.94 (.002) 0.83 (.007) 0.80 (.003) 95.77 (.079)  0.96 (.001) 0.78 (.004) 0.89 (.001) 97.24 (.051) 

350 0.94 (.002) 0.85 (.007) 0.80 (.003) 95.60 (.065)  0.96 (.001) 0.78 (.005) 0.89 (.002) 97.11 (.052) 

400 0.94 (.002) 0.86 (.007) 0.80 (.003) 95.51 (.085)  0.96 (.001) 0.79 (.005) 0.89 (.002) 97.01 (.051) 

450 0.94 (.002) 0.88 (.005) 0.80 (.003) 95.41 (.070)  0.96 (.001) 0.80 (.005) 0.89 (.001) 96.95 (.054) 

500 0.94 (.002) 0.88 (.006) 0.80 (.003) 95.35 (.086)  0.96 (.001) 0.80 (.004) 0.89 (.001) 96.89 (.041) 
Note. All statistics were computed using final estimated proficiencies (θ). 
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5.1.1.2 3PL model 

Measurement accuracy and precision.  Like the results for the Rasch model, 

examinees’ final proficiency estimates were evaluated using conditional and overall statistics.  

Conditional statistics.  Figure 5.5 shows the mean bias, TSEM, and RMSE across evenly-

spaced bins on the proficiency (θ) continuum. Unlike the findings for the Rasch model, both the 

MLE and EAP approaches presented more bias and large standard errors of proficiency estimates 

at the extreme ends of the proficiency continuum due to the adverse effect of c-parameters on the 

estimations (Thissen & Wainer, 1982). Specifically, the EAP approach for the 3PL model 

reported greater regress-toward-the-mean bias, whereas the MLE yielded much greater standard 

errors (TSEM) at the proficiency extremes. While there was more bias of proficiency estimates, 

implying less accurate estimates for the EAP than for the MLE model, there were large standard 

errors (TSEM) in the estimates, implying less precision for MLE than for EAP. Considering both 

bias and standard errors, the RMSE values were higher for EAP at the extreme proficiency 

regions but they were similar to each other at the middle ranges of the proficiency scale. 

Moreover, with the smaller item pool, the proficiency estimates appeared to be less accurate and 

less stable regardless of their estimation approaches. 

Overall statistics.  Overall accuracy and precision of proficiency estimates were 

summarized in Table 5.2. As the pool size increased, the values for bias, TSEM, and RMSE 

decreased, and the correlation coefficients increased. Although the correlations and mean bias 

were similar to one another, the MLE yielded higher standard errors (TSEM), which results in 

larger RMSE values across the 10 item pools compared to the EAP.  
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Figure 5.5. Conditional bias, TSEM, and RMSE of proficiency estimates for a 3PL-based CAT 

by item pool size and proficiency estimator. 
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Table 5.3  

Overall Statistics of Measurement Precision of Proficiency Estimates for a 3PL-based CAT by 

Item Pool Size and Proficiency Estimator 

Pool  

Size 

MLE  EAP 

Bias TSEM RMSE 𝑟𝜃�̂�  Bias TSEM RMSE 𝑟𝜃�̂� 

50 -0.003 0.429 0.345 0.950  -0.003 0.307 0.295 0.956 

100 -0.007 0.324 0.280 0.966  -0.002 0.253 0.245 0.970 

150 -0.005 0.255 0.245 0.973  -0.002 0.228 0.224 0.975 

200 -0.002 0.237 0.231 0.976  -0.001 0.216 0.212 0.978 

250 -0.002 0.219 0.213 0.979  -0.001 0.202 0.199 0.980 

300 -0.003 0.209 0.207 0.980  -0.002 0.197 0.194 0.981 

350 -0.001 0.203 0.203 0.981  -0.001 0.192 0.189 0.982 

400 -0.001 0.196 0.196 0.982  -0.001 0.186 0.185 0.983 

450  0.000 0.193 0.193 0.982  -0.001 0.184 0.183 0.983 

500 -0.001 0.187 0.188 0.983  -0.001 0.179 0.178 0.984 

 

Amount of adaptation.  Adaptivity for CATs were evaluated using the existing overall 

statistics as well as conditional statistical indicators proposed in this dissertation. 

Conditional adaptivity.  Results indicated that the three measures appeared to be 

sensitive to variation in item pool size across the proficiency levels shown in Figure 5.6. As the 

pool size increased, all three measures showed higher values, indicating better adaptation. For 

the given 40-item test and CAT administration procedure, there was not much improvement in 

three adaptivity indices for pool sizes greater than 300. Note that, compared to the patterns for 

the Rasch model, all the values of three adaptation measures were smaller across the proficiency 

levels. The middle proficiency area produced better adaptivity than other proficiency areas. Not 

only that, but with the smallest item pool of 50 items, the ROI and DOD indices showed 

approximately a symmetric pattern centered on 0.0, whereas the CPRV values were 

asymmetrically distributed.  
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In addition, according to the shading ribbon representing the empirical standard error of 

the adaptation measures in Figure 5.6, the values of three adaptation indices appeared to be 

stable over the 50 replications, but there were relatively higher empirical standard errors in the 

measures at the very ends of the proficiency continuum. The latter might be due to the limited 

items available for the extreme or due to the larger standard errors of the proficiency estimates at 

the very high or low proficiency levels, which is more likely affected by c-parameters. However, 

the POI index was neither sensitive to variation in item pool size nor to proficiency estimators in 

Figure 5.7. 

In comparison to the EAP approach, three adaptation measures appeared to be more 

sensitive to the MLE across the 10 item pools, and the empirical standard errors of these 

measures were larger for MLE. These might be related to the measurement properties of the 

abilities estimators’ capability to handle the unstable estimation issues caused by the c-

parameters when the 3PL model is used. In particular, the CPRV presented a similar pattern 

between the two estimators, but MLE reported slightly lower values with the greater empirical 

standard errors compared to EAP. The latter can also be explained by the properties of the 

proficiency estimation. Along with the c-parameter issue, MLE used a step size of 0.7 until MLE 

can be computed earlier in the CAT, resulting in selecting more heterogeneous items for 

determining the approximate location of the proficiency level. EAP, however, had the benefit of 

using a prior for the estimation earlier in the test but presented biased estimates regressed toward 

the mean of the prior distribution, leading to the CPRV values that were more stable over the 

replications and higher in the broader proficiency regions.    

 Taken all together, these results suggest some guidelines for interpreting the adaptation 

measures; a value in the mid 0.70’s is good for DOD, a value in the low 0.80’s is considered a 
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good adaptation for the CPRV, and a value in the mid 0.80’s is good for ROI when the 3PL 

model is used for scaling and scoring with MLE. Results of the 3PL CATs using EAP support 

the guidelines found using Rasch model, but they suggest a slightly higher benchmark value for 

the CPRV, which is a value in the mid 0.80’s.   

Overall adaptivity.  Table 5.4 presents the findings of the overall adaptation measures. As 

item pool size increased, all three measures increased, but these values were not much improved 

for item pool sizes larger than 300. However, as identified in the pattern for the Rasch model, the 

POI index decreased, as item pool size increased. Unlike the Rasch model, the differences in the 

overall adaptivity measures between MLE and EAP were relatively small. While EAP presented 

slightly higher PRV values across the pool size conditions, other overall measures performed 

similarly regardless of the proficiency estimators, which is consistent with the findings from a 

previous study (Ju & Lee, 2018). Furthermore, these results confirmed again the benchmark 

values for interpreting the overall adaptation statistics suggested from previous studies (Ju & 

Lee, 2018; Kim et al., 2018). A value in the high 0.90s for the correlation index and a value in 

the high 0.70s for the ratio of SDs index can be considered good adaptation for the CAT 

regardless of the proficiency estimation methods. However, the benchmark value for the PRV 

index is a value in the low 0.80s for the CATs with combination of 3PL/MLE and a value in the 

mid 0.80s for 3PL/EAP. Again, as with the CPRV index, which is a modified version of PRV, 

the PRV index might be affected by the properties of proficiency estimation approaches. 

Relationship between conditional adaptivity and measurement precision.  For 

brevity, plots of relations of the standard errors (TSEM) with the DOD, CPRV, and ROI indices 

are displayed in Figure 5.8, which were similar to the relations found using the Rasch model. For 

each item pool, the DOD and ROI measures were negatively related with the standard errors, 
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showing a slightly nonlinear pattern for both MLE and EAP. In spite of their nonlinearity, the 

Pearson correlation coefficients were computed for information purposes only, reporting very 

strong, negative relationships between the TSEM and either DOD or ROI. However, again, the 

CPRV measure did not present an apparent pattern for the relation of standard errors. The 

relations between RMSE and adaptivity indices are presented in Appendix A. 
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Figure 5.6. Conditional adaptivity statistics (DOD, CPRV, and ROI) for a 3PL-based CAT by 

item pool size and proficiency estimator. 
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Figure 5.7. Plot of a POI index for a 3PL-based CAT by item pool size and proficiency 

estimator. 

 

Figure 5.8. Relationship of TSEM with conditional adaptivity indices (DOD, CPRV, and ROI) 

for a 3PL-based CAT by item pool size and proficiency estimator. 
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Figure 5.8. (cont’d) 
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Table 5.4  

Overall Adaptation Statistics for a 3PL-based CAT by Item Pool Size and Proficiency Estimator 

Pool 

Size 

MLE  EAP 

𝑟(�̅�𝑗 , θ̂j) 𝑠�̅�𝑗 𝑠θ̂𝑗⁄  PRV POI  𝑟(�̅�𝑗 , θ̂j) 𝑠�̅�𝑗 𝑠θ̂𝑗⁄  PRV POI 

M (SE) M (SE) M (SE) M (SE)  M (SE) M (SE) M (SE) M (SE) 

50 0.83 (.004) 0.25 (.002) 0.30 (.001) 99.92 (.007)  0.86 (.003) 0.28 (.002) 0.30 (.001) 99.95 (.005) 

100 0.93 (.004) 0.55 (.005) 0.70 (.001) 99.34 (.027)  0.96 (.001) 0.59 (.003) 0.71 (.001) 99.48 (.021) 

150 0.95 (.003) 0.66 (.006) 0.76 (.001) 98.98 (.033)  0.97 (.001) 0.69 (.003) 0.77 (.001) 99.16 (.021) 

200 0.96 (.003) 0.70 (.004) 0.79 (.001) 98.54 (.041)  0.98 (.001) 0.73 (.003) 0.81 (.001) 98.82 (.034) 

250 0.97 (.003) 0.72 (.005) 0.80 (.001) 98.12 (.051)  0.98 (.001) 0.74 (.003) 0.82 (.001) 98.51 (.033) 

300 0.97 (.002) 0.74 (.004) 0.81 (.002) 97.68 (.060)  0.98 (.001) 0.75 (.002) 0.83 (.001) 98.23 (.042) 

350 0.97 (.002) 0.75 (.004) 0.82 (.002) 97.44 (.062)  0.99 (.001) 0.76 (.003) 0.84 (.001) 98.07 (.041) 

400 0.98 (.002) 0.77 (.003) 0.82 (.002) 97.29 (.059)  0.99 (.001) 0.78 (.003) 0.84 (.001) 97.90 (.038) 

450 0.98 (.002) 0.78 (.004) 0.82 (.002) 97.16 (.070)  0.99 (.001) 0.79 (.003) 0.84 (.001) 97.81 (.045) 

500 0.98 (.001) 0.78 (.004) 0.83 (.002) 97.49 (.062)  0.99 (.001) 0.79 (.002) 0.85 (.001) 97.94 (.040) 

Note. All statistics were computed using final estimated proficiencies (θ). 
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5.1.2 Variation in item pool spread 

Another characteristic of item pools that could affect the amount of adaptation is the 

magnitude of the spread of item characteristics (b-parameter or location of maximum 

information) in the item pool. The second section of Research Question 1 aimed to examine the 

sensitivity of three conditional adaptation indices to variations in item pool spread. It was 

hypothesized that if the difficulty of the items in the pool is in a limited range, even though the 

item pool is large, the CAT cannot be suitably customized for students whose proficiency levels 

are outside that range covered by the item pool. To test the hypothesis, eight item pools were 

simulated that differed in the SDs of b-parameters in an item pool from 0.2 to 1.6 at 0.2 intervals. 

The size of all item pools considered here was 400. In the following, the impact of item pool 

spread was investigated moderated by IRT models (Rasch and 3PL) and proficiency estimators 

(MLE and EAP) in terms of measurement accuracy and precision as well as the amount of 

adaptation.  

5.1.2.1 Rasch model 

Measurement accuracy and precision.  The final proficiency estimates were evaluated 

using three conditional- and four overall statistics for measurement accuracy and precision. A 

smaller bias value indicates a more accurate proficiency estimate, and a smaller TSEM value 

indicates a more precise and stable proficiency estimate. The RMSE considers both bias and 

standard errors together so that a smaller RMSE is associated with better recovery of proficiency 

estimates. Also, the higher correlation between true and final proficiency estimates (𝑟𝜃�̂�) is 

associated with better recovery. 

Conditional statistics.   As shown in Figure 5.9, MLE presented little bias scattering the 

mean proficiency estimates around 0.0, while EAP showed biased estimates regressed toward the 
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mean of a prior distribution (i.e., 0.0) on the proficiency scale. These findings were consistent 

across all eight item pools that had different SDs of b-parameters, though the limited item pool 

with small SDs of b-parameters showed slightly more bias in the estimates. However, MLE 

provided larger standard errors (TSEM) for the proficiency estimates than EAP, especially at the 

extreme regions of the proficiency continuum. As the item pool spread was restricted, TSEM 

increased, implying less precision in the proficiency estimates. Overall, the RMSE values of the 

two estimators were similar to each other at the moderate proficiency levels, whereas they were 

obviously greater for EAP at the extreme positive and negative ends of the proficiency scale.  

Overall statistics.  Table 5.5 presents the summary of four overall statistics by variation 

in item pool spread and proficiency estimator. In general, slightly more bias was found in the 

estimates using EAP, while larger standard errors (TSEM) were identified using MLE over the 

entire sets of data. The differences either in bias or in standard errors between the two estimators 

were small, becoming negligible with larger item pools. The correlation coefficients, 𝑟𝜃�̂�, were 

almost identical between the two estimators, and the degree of the correlation improved as the 

SDs of b-parameters increased in the item pool. More interestingly, regardless of variations in 

item pool spread, the RMSE was smaller for EAP than for MLE, implying that the final 

proficiency estimates were more accurately, precisely measured using EAP, on average, over the 

entire sample of students.   
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Figure 5.9. Conditional bias, TSEM, and RMSE of proficiency estimates for a Rasch-based CAT 

by item pool spread and proficiency estimator. 
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Table 5.5  

Overall Statistics of Measurement Precision of Proficiency Estimates for a Rasch-based CAT by 

Item Pool Spread and Proficiency Estimator 

Pool 

SD (bs)  

MLE  EAP 

Bias TSEM RMSE 𝑟𝜃�̂�  Bias TSEM RMSE 𝑟𝜃�̂� 

0.2 0.002 0.356 0.361 0.945  -0.002 0.341 0.325 0.947 

0.4 0.001 0.340 0.343 0.948  -0.003 0.331 0.318 0.949 

0.6 0.001 0.332 0.336 0.950  -0.002 0.326 0.314 0.950 

0.8 0.000 0.329 0.331 0.950  -0.002 0.324 0.311 0.951 

1.0 -0.001 0.327 0.330 0.951  -0.003 0.323 0.311 0.951 

1.2 0.000 0.326 0.330 0.950  -0.002 0.323 0.311 0.951 

1.4 0.001 0.326 0.330 0.950  -0.002 0.323 0.311 0.951 

1.6 0.000 0.326 0.329 0.951  -0.002 0.323 0.310 0.951 

Note. bs = b-parameters. 

 

Amount of adaptation.  The proposed conditional adaptivity indices, along with the 

overall indices, were used to assess the difference in adaptivity for the CATs. 

Conditional adaptivity.  Figure 5.10 presents the distributions of three conditional 

adaptation indices over the proficiency continuum using eight item pools that varied in the SDs 

of b-parameters by two proficiency estimators. Overall, the three adaptivity measures sensitively 

detected each corresponding aspect of the amount of adaptation for the CATs depending on the 

extent of the item pool spread. The proposed statistics generally increased as the b-parameters 

were more broadly spread out in the pool. In particular, at the extreme regions of the proficiency 

continuum, it was clearly observed that the values of the three indices gradually improved as the 

item pool contained more difficult or easy items. For the item pool with 1.6 SD of the b-

parameters, the three measures indicated that the CATs were almost equally well adapted across 

all proficiency levels. Looking at the performance of each index, the DOD and ROI indices 

functioned as expected depending on variation in item pool spread over the proficiency 
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continuum; however, for the CPRV index, an unexpected pattern was observed when the SD of 

b-parameters in the item pool was very small (i.e., 0.2 or 0.4). The CPRV values using those 

item pools were exceptionally small, closer to 0.0 or even below 0.0 on the moderate proficiency 

levels. Since the CPRV index compares the variation of the b-parameters of the items selected 

for each examinee relative to the variation of b-parameters in the entire item pool, if the item 

pool includes most items whose difficulty were in a very restricted range, say 0.04 or 0.16 

variances, even if the within-examinee variance is per se small, that variance could be larger 

relative to the item pool variance. Note that as with the findings for the item-pool-size study, the 

POI index showed little sensitivity across the proficiency continuum and variation in the spread 

of b-parameters in the item pool (see Figure 5.11). 

The three adaptation measures showed similar patterns between the MLE and the EAP 

using the eight item pools, but their observed ranges of the values over the proficiency 

continuum were different with broader ranges for the MLE. That is, compared to the MLE, all 

three adaptation measures presented less variations in the corresponding values across the 

proficiency levels for the CATs using EAP, which was consistent across the eight item pools. 

Again, this might due to the features of the EAP estimator yielding the regress-toward-the-mean 

bias in the estimates. 

Regarding the stability of the indices, the DOD and ROI measures reported small 

empirical standard errors over the proficiency scales regardless of variations in item pool spread. 

However, the CPRV index showed poor stability when the b-parameters were in a very restricted 

range in the pool, although the index was stable with the item pools that had the SD of b-

parameters larger than 0.8. This instability was even greater when the MLE was used for the 

CATs because a fixed-step size of 0.7 was used earlier in the test until the MLE can be 
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computed. This suggests that given that students’ abilities followed the standard normal 

distribution, N (0, 1), the variation of b-parameters for an item pool should be about equal to or 

greater than the variation in the final proficiency estimates in order for the CPRV index to be 

precise. 

Finally, these findings for the item-pool-spread study support the benchmark values of 

the proposed conditional indices, suggested in the previous item-pool-size study in Section 5.1.1, 

when the Rasch model is used for the CATs. For the 40-item test, mid 0.90s for DOD, high 0.70s 

for CPRV, and high 0.90s for ROI indicate good adaption using the MLE, while using the EAP, 

high 0.90s for DOD, high 0.80s for CPRV, and high 0.90s for ROI considered good adaptation.    

Overall adaptivity.  The results of overall adaptivity for the item pool spread showed that 

the correlation, ratio of SDs, and PRV indices gradually improved as the spread of the item pool 

difficulty increased (see Table 5.6). Compared to the MLE, using the EAP reported larger values 

of the correlation and PRV measures but smaller values for the ratio of SDs index. As mentioned 

earlier, the latter is attributed to the property of the EAP estimator. However, as with the results 

for the item pool size study, the POI index was rarely sensitive to the spread of the item pool 

difficulty, and its value decreased as the spread of the item pool increased. Overall, these results 

were in line with the item-pool-size study when selecting benchmark values for the measures. At 

the same time, it can be confirmed that based on the benchmark values, the variation of b-

parameters for an item pool should be larger than the variation in proficiency estimates for the 

CATs to be well adapted to students whose proficiency is at the extremes of the proficiency 

scale. 

Relationship between conditional adaptivity and measurement precision.  Figure 

5.12 displays the relations of the standard errors (TSEM) with the DOD, CPRV, and ROI 
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indices. The DOD and ROI measures were negatively associated with the standard errors with a 

linear relationship but with a slightly nonlinear relation between DOD and TSEM for MLE with 

the limited spread of the item pool difficulty. The Pearson correlation coefficients were also 

computed, showing high, strong correlation with one another. The DOD and TSEM correlations 

were in the range of -0.98 to -0.90 for EAP as well as in -0.98 to -0.74 for MLE. The ROI and 

TSEM correlations were in the range of -0.98 to -0.81 for EAP as well as -0.97 to -0.81 for MLE. 

However, for the relation with CPRV, it is interesting to note that on the one hand, when the SD 

of b-parameters in the pool was smaller than 0.6, the CPRV values were in general positively 

correlated with the TSEM values; on the other hand, when the spread of b-parameters was equal 

or greater than 0.8, their relationship appeared to be negative. Again, the former can be explained 

by the unusual pattern identified in Figure 5.10 with the restricted spread of the item pool. Also, 

when the spread of difficulty in the pool was large, the relation between CPRV and TSEM 

looked linear.  
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Figure 5.10. Conditional adaptivity statistics (DOD, CPRV, and ROI) for a Rasch-based CAT by 

item pool spread and proficiency estimator. 
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Figure 5.11. Plot of a POI index for a Rasch-based CAT by item pool spread and proficiency 

estimator. 

 

Figure 5.12. Relationship of TSEM with conditional adaptivity indices for a Rasch-based CAT 

by item pool spread and proficiency estimator. 
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Figure 5.12. (cont’d) 
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Table 5.6  

Overall Adaptation Statistics for a Rasch-based CAT by Item Pool Spread and Proficiency Estimator 

 

Pool 

SD (bs) 

MLE  EAP 

𝑟(�̅�𝑗 , θ̂j) 𝑠�̅�𝑗 𝑠θ̂𝑗⁄  PRV POI  𝑟(�̅�𝑗 , θ̂j) 𝑠�̅�𝑗 𝑠θ̂𝑗⁄  PRV POI 

M (SE) M (SE) M (SE) M (SE)  M (SE) M (SE) M (SE) M (SE) 

0.2 0.84 (.003) 0.26 (.003) 0.15 (.016) 98.61 (.034)  0.87 (.003) 0.30 (.002) 0.30 (.012) 98.82 (.027) 

0.4 0.88 (.003) 0.50 (.004) 0.43 (.011) 97.30 (.064)  0.91 (.002) 0.53 (.004) 0.61 (.006) 97.97 (.053) 

0.6 0.91 (.003) 0.68 (.004) 0.65 (.005) 96.45 (.066)  0.94 (.002) 0.68 (.004) 0.78 (.003) 97.41 (.052) 

0.8 0.93 (.002) 0.81 (.004) 0.74 (.004) 95.78 (.087)  0.96 (.001) 0.77 (.004) 0.85 (.002) 97.13 (.056) 

1.0 0.94 (.002) 0.88 (.006) 0.82 (.002) 95.42 (.076)  0.97 (.001) 0.80 (.004) 0.90 (.001) 96.94 (.048) 

1.2 0.95 (.002) 0.93 (.006) 0.87 (.002) 95.18 (.082)  0.97 (.001) 0.83 (.005) 0.93 (.001) 96.82 (.056) 

1.4 0.96 (.001) 0.96 (.006) 0.90 (.001) 95.10 (.078)  0.97 (.001) 0.83 (.004) 0.95 (.001) 96.82 (.052) 

1.6 0.96 (.001) 0.97 (.005) 0.92 (.001) 95.13 (.073)  0.97 (.001) 0.83 (.004) 0.96 (.001) 96.88 (.049) 
Note. All statistics were computed using final estimated proficiencies (θ). 
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5.1.2.2 3PL model 

Measurement accuracy and precision.  The final proficiency estimates were evaluated 

using three conditional- and four overall statistics for measurement accuracy and precision.  

Conditional statistics.  As shown in Figure 5.9, using the 3PL model, the MLE yielded 

small bias when the restricted spread of the item pool was used, while the EAP reported bias in 

the estimates regressed toward the mean of a prior distribution over the proficiency continuum 

regardless of the spread of the item pools. The extent of bias became smaller with the bigger 

spread of the item pools. The estimates for the MLE were underestimated while those for the 

EAP were overestimated at the negative extreme region of the proficiency scale, and vice versa 

at the positive extreme proficiency region. Meanwhile, as with the results for the Rasch model, 

the MLE produced larger standard errors (TSEM) in the proficiency estimates compared to the 

EAP especially at the extremes of the proficiency scale. As the SD of b-parameters in the item 

pool increased, the standard errors reduced, indicating more precision in the estimates. 

Considering both bias and standard errors, the RMSE values were small to a similar extent for 

the two estimators at the middle proficiency levels around 0.0, whereas they were greater at the 

extremes of the proficiency scale and even the EAP presented higher values at the very ends of 

the scale than MLE did.   

Overall statistics.  In general, as the spread of the item pool increased, the standard errors 

(TSEM and RMSE) decreased and the correlation coefficients, 𝑟𝜃�̂�, improved. Although the 

correlations were similar between MLE and EAP, as similar to the results for the Rasch model, 

the grand means of standard errors were greater for MLE than for EAP. The differences became 

small as the SD of b-parameters increased, though. Again, it suggests that the final proficiency 
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estimates were more precisely measured using EAP on average over the entire group of students 

compared to MLE.    

 

Figure 5.13. Conditional bias, TSEM, and RMSE of proficiency estimates for a 3PL-based CAT 

by item pool spread and proficiency estimator. 
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Table 5.7  

Overall Statistics of Measurement Precision of Proficiency Estimates for a 3PL-based CAT by 

Item Pool Spread and Proficiency Estimator 

Pool 

SD (bs)   

MLE  EAP 

Bias TSEM RMSE 𝑟𝜃�̂�  Bias TSEM RMSE 𝑟𝜃�̂� 

0.2 -0.003 0.376 0.320 0.960  -0.001 0.253 0.234 0.973 

0.4 -0.001 0.295 0.262 0.971  -0.001 0.218 0.208 0.978 

0.6 0.000 0.244 0.225 0.978  -0.001 0.195 0.190 0.982 

0.8 0.002 0.196 0.195 0.982  0.000 0.183 0.179 0.984 

1.0 0.003 0.182 0.184 0.984  -0.001 0.177 0.175 0.985 

1.2 0.004 0.178 0.180 0.985  -0.001 0.176 0.176 0.985 

1.4 0.005 0.177 0.180 0.985  -0.001 0.176 0.176 0.985 

1.6 0.005 0.175 0.178 0.985  -0.001 0.174 0.174 0.985 

Note. bs = b-parameters. 

 

Amount of adaptation.  Adaptivity of the CATs was evaluated using the conditional 

measures at the individual proficiency level and the overall indices over the entire sample of 

students. 

Conditional adaptivity.  Results for the effects of variation in item pool spread using the 

3PL model indicated that the three adaptation measures (DOD, CPRV, and ROI) appeared to be 

sensitive to the spread of the item pool across the examinees’ proficiency levels (see Figure 

5.14). The proposed statistics mostly increased as the difficulty parameters were more broadly 

spread out in the pool. In particular, at the extreme regions of the proficiency continuum, it was 

observed that the values of the three indices gradually improved as the item pool contained more 

difficult or easy items. Given the assumed standard normal distribution of examinee’s 

proficiency and the 40-item test, these results suggested that the variation of b-parameters in an 

item pool should be larger than the variation of examinees’ proficiency in order to achieve good 

adaptivity over the examinees, especially for those at the extremes of proficiency. However, as 
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found in the previous investigations, the POI index appeared to be insensitive to the spread of 

items in the pool using the 3PL model, though the POI values were slightly lower at the extremes 

of the proficiency scale regardless of the proficiency estimators (see Figure 5.15). Considering 

the concept of the index, it might be expected that given the available item pool, the optimal test 

information would be similar to the observed test information unless the interim estimate 

deviated far from the final estimate or the CAT included many constraints on the item selection.  

Compared to the results for the Rasch model in Section 5.1.2.1, even though the 

conditional adaptation statistics were computed using the location of maximum information 

(Birnbaum, 1968) instead of b-parameters, the values of the three indices were relatively lower 

over the proficiency continuum when the 3PL model was used for the CATs. Also, the unusual 

pattern was not identified in the plot of CPRV for the 0.2 SD of b-parameters for the item pool 

condition. These might be due to the effect of a- and c-parameters on proficiency estimation as 

well as on the information function, affecting the item selection procedure for the CATs using 

3PL model. However, the pattern of DOD was slightly different from the DOD’s pattern using 

the Rasch model because of the characteristics of the restricted item pool interacted with the 

effect of a- and c-parameters. With respect to the comparison between MLE and EAP, the three 

statistics showed similar patterns between the two proficiency estimators across the eight item 

pools, but their observed values were generally greater with the smaller ranges over the 

proficiency continuum for the EAP.  

Regarding the stability of the three measures, as with the results of the variation-in-pool-

size study using the 3PL model, the three statistics had greater empirical standard errors at the 

very top and bottom ends of the proficiency continuum rather than those at the moderate 
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proficiency levels. As mentioned before, this may be due to the effect of c-parameters on the 

proficiency estimates for the 3PL model.  

 In sum, these results were consistent with the findings for the item pool size study when 

the 3PL model was used for the CATs, supporting the benchmark values for the three statistics to 

indicate good adaptation: For MLE, a value in the mid 0.70’s for DOD, a value in the low 0.80’s 

for CPRV, and a value in the mid 0.80’s for ROI. For EAP, a value in the high 0.70’s for DOD, a 

value in the mid 0.80’s for CPRV, and a value in the mid 0.80’s for ROI.  

Overall adaptivity.  Similar to prior studies using the 3PL model (Reckase et al., 2018; Ju 

& Lee, 2018), as the spread of the b-parameters for the item pool increased, the overall 

adaptivity indices gradually improved with the most sensitive of the ratio of standard deviations 

index (see Table 5.8). These results gave additional evidence to support the statistics selected for 

indicating good adaptation over the entire group of students using the overall measures: For 

MLE, a value in the high 0.90’s for the correlation, a value in the high 0.70’s for the ratio of 

SDs, and a value in the low 0.80’s for PRV. For EAP, a value in the high 0.90’s for the 

correlation, a value in the high 0.70’s for the ratio of SDs, and a value in the mid 0.80’s for PRV. 

Relationship between conditional adaptivity and measurement precision.  As seen in 

Figure 5.16, except for the very large spread of the item pool whose SD of b-parameters was 

greater than 1.2, the DOD measure was negatively, strongly correlated with TSEM (-.93 < rs < -

0.80 for MLE; -0.98 < rs < -0.73 for EAP).  While the relationship between ROI and TSEM was 

slightly nonlinear for the very restricted spread of the item pool, they were negatively and very 

closely associated with one another for other pool spread conditions (-0.99 < rs < -.83 for MLE; -

0.99 < rs < -.81 for EAP). This was expected because both TSEM and ROI were computed using 

the information. Lastly, for the relation of CPRV, it was hard to find a systematic pattern of the 



102 

relation across the item pool spread conditions, but with the high spread of the item pool whose 

b-parameters were greater than 1.0, regardless of the proficiency estimators, TSEM had a 

negative, strong, and linear relation with CPRV (-0.93 < rs < -.74 for MLE; -0.97 < rs < -0.68 for 

EAP). 
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Figure 5.14. Conditional adaptivity statistics (DOD, CPRV, and ROI) for a 3PL-based CAT by 

item pool spread and proficiency estimator. 
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Figure 5.15. Plot of a POI index for a 3PL-based CAT by item pool spread and proficiency 

estimator. 

 

Figure 5.16. Relationship of TSEM with conditional adaptivity indices (DOD, CRPV, and ROI) 

for a 3PL-based CAT by item pool spread and proficiency estimator. 
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Figure 5.16. (cont’d) 
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Table 5.8  

Overall Adaptation Statistics for a 3PL-based CAT by Item Pool Spread and Proficiency Estimator 

Pool 

SD (bs)  

MLE  EAP 

𝑟(�̅�𝑗 , θ̂j) 𝑠�̅�𝑗 𝑠θ̂𝑗⁄  PRV POI  𝑟(�̅�𝑗 , θ̂j) 𝑠�̅�𝑗 𝑠θ̂𝑗⁄  PRV POI 

M (SE) M (SE) M (SE) M (SE)  M (SE) M (SE) M (SE) M (SE) 

0.2 0.87 (.006) 0.18 (.002) 0.45 (.003) 97.43 (.065)  0.96 (.002) 0.21 (.001) 0.49 (.002) 98.55 (.025) 

0.4 0.92 (.006) 0.38 (.004) 0.57 (.002) 98.24 (.040)  0.96 (.001) 0.42 (.002) 0.59 (.002) 98.59 (.027) 

0.6 0.95 (.005) 0.56 (.005) 0.73 (.001) 98.04 (.038)  0.98 (.001) 0.59 (.002) 0.75 (.001) 98.41 (.027) 

0.8 0.97 (.003) 0.71 (.005) 0.79 (.002) 98.03 (.051)  0.98 (.001) 0.72 (.002) 0.81 (.001) 98.47 (.033) 

1.0 0.98 (.001) 0.79 (.004) 0.84 (.002) 97.91 (.060)  0.99 (.001) 0.79 (.002) 0.85 (.001) 98.31 (.036) 

1.2 0.99 (.001) 0.88 (.002) 0.88 (.001) 97.81 (.056)  0.99 (.000) 0.88 (.002) 0.89 (.001) 98.15 (.040) 

1.4 0.99 (.000) 0.91 (.002) 0.91 (.001) 97.96 (.043)  1.00 (.000) 0.90 (.002) 0.91 (.000) 98.43 (.031) 

1.6 0.99 (.000) 0.90 (.002) 0.93 (.001) 98.27 (.043)  1.00 (.000) 0.89 (.002) 0.93 (.000) 98.53 (.028) 
Note. All statistics were computed using final estimated proficiencies (θ). 
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5.2 Research Question 2 

 The second research question demonstrates the practical utility of the proposed 

conditional statistics for the amount of adaptation as diagnostic tools for improving the 

adaptivity of a CAT. To do this, a hypothetical scenario of a state-wide testing program was 

introduced in Section 4.3. It would be expected that findings from this demonstration can inform 

us of some insights about how many items need to be added to achieve an acceptable level of 

adaptation in a particular proficiency region of interest.  

5.2.1 Baseline for the CATs 

 As a first step, results for the current 40-item CATs administered to 2,000 examinees 

using the 300-item pool were evaluated in terms of three perspectives of conditional adaptivity 

and measurement precision. The statistics were computed to be served as a baseline to determine 

the proficiency levels where the amount of adaptation was not adequate during the CAT 

administration. Figure 5.17 presents the distributions of three conditional adaptation measures 

over the proficiency continuum. Based on the benchmark values for the 3PL model with MLE, 

two proficiency regions, colored by red in the plot, were selected where either DOD, CPRV, or 

ROI was below the suggested criteria for good adaptation: (1) -0.25 < proficiency (θ) < 0.25 and 

(2) 1.75 < proficiency (θ) < 2.25. Out of 2,000 students, the former includes about 400 students, 

and the latter includes about 60 students.  

For the first proficiency region (-0.25 < θ < 0.25), the DOD values were below the 

criterion value of mid .70s, while CRPV and ROI were acceptable. It means that students in that 

region received items whose characteristics on average deviated to some extent from the 

proficiency estimate at which those items were selected, relative to the average distance between 

all the eligible pool items from that current estimate. As variation in the characteristics of the 
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administered items was small, it is plausible that the item pool did not include items whose 

information peaks at that proficiency region. For the other region (1.75 < θ < 2.25), although the 

DOD and ROI values were acceptable, the CPRV value was lower than the criterion value of low 

0.80s. It indicates that while the students took items whose characteristics were generally well 

matched, the item pool did not include sufficiently good items for the students in that region so 

that the item selection algorithm may have to select some items whose characteristics poorly 

match their interim proficiency estimates. In addition, given the bias, TSEM, and RMSE values 

(see Figure 5.18), the measurement accuracy and precision of the proficiency estimates in these 

two regions were similar. Therefore, it would be interesting to see how many items need to be 

added in the item pool to approach to the acceptable levels of adaptivity in these two regions.   

 

Figure 5.17. A plot of conditional adaptivity indices over the proficiency continuum for the CAT 

using the 300-item pool (baseline). 
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Figure 5.18. A plot of bias, TSEM, and RMSE over the proficiency continuum for the CAT 

using the 300-item pool (baseline). 

Once the proficiency region of interest was determined, a series of fixed numbers of 

items were added to attain an acceptable level of adaptation at each region. The items to be 

added were selected whose information was high at that proficiency region from the master pool. 

Note that to mimic the real-word situation, the items in the master pool were normally 

distributed, instead of uniform information. Hence, the quality of items to be added was not fully 

controlled so that the item quality may not be equal across the items to be selected from the 

master pool. For each region, the fixed numbers of items to be added to the item pool are 5, 10, 

15, 20, 30, 40, 50, and 100, and the results were replicated over 50 times.  

5.2.2 Region 1: -0.25 < θ < 0.25   

As a starting point, the mean value of each adaptivity index at the first proficiency region 

(-0.25 < θ < 0.25) was 0.69 (SD = .01) for DOD, 0.84 (SD = .02) for CRPV, and 0.85 (SD = .01) 
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for ROI. While the CPRV and ROI were acceptable, the DOD index was below the criterion of 

mid 0.70s suggested in the study for Research Question 1 (see Section 5.1). To improve 

adaptivity to the acceptable levels, 5, 10, 15, 20, 30, 40, 50, and 100 items from the master pool 

were sequentially added to the existing operational item pool. Results reported that compared to 

the baseline for the three conditional adaptation statistics, as the items that were the most 

informative in the master pool at that proficiency region were added to the operation item pool, 

the three aspects of adaptivity were gradually improved (see Figure 5.19). In particular, when 30 

informative items were additionally included to the operational pool, the DOD values at the 

Region 1 of students showed clear, visible improvement, exceeding the benchmark value of 

mid .70s, and the other two statistics also obviously increased. The three statistics were not much 

improved after more than 40 items were added to the item pool.  

 

Figure 5.19. Distributions of conditional adaptivity indices by number of items added at Region 

1 (-0.25 < θ < 0.25). 

Regarding the measurement accuracy and precision, a similar pattern was identified. As 

more items were added to the item pool, the bias and standard errors decreased. In particular, 

similar to the distributions of the adaptivity indices, when 30 items were additionally included to 

the operational pool, the standard errors (TSEM, RMSE) were reduced. This suggests that the 
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improvement of adaptivity for the CAT can lead to enhancing the measurement precision of 

proficiency estimates. 

 

Figure 5.20. Distributions of statistics for measurement accuracy and precision by number of 

items added at Region 1 (-0.25 < θ < 0.25). 

5.2.3 Region 2: 1.75 < θ < 2.25 

Another proficiency region that need to be improved is the proficiency levels ranging 

from 1.75 to 2.25, called Region 2. For the baseline at Region 2 (1.75 < θ < 2.25), the mean 

value of each adaptivity index was 0.78 (SD = .004) for DOD, 0.67 (SD = .007) for CRPV, and 

0.81 (SD = .012) for ROI.  In contrast with the results for Region 1, the DOD values were 

acceptable, whereas the CPRV values were lower than the guideline of low 0.80s and the ROI 

was also slightly below the benchmark of mid 0.80s.  

To improve all adaptivity indices to be acceptable, again, 5, 10, 15, 20, 30, 40, 50, and 

100 items from the master pool were sequentially added to the existing operational item pool. As 

a result, compared to the baseline for the three conditional adaptation statistics, as more items 

that were the most informative in the master pool at that proficiency region were included in the 

operation item pool, the three adaptivity indices clearly increased (see Figure 5.21). In particular, 

when 30 items that were the most informative at Region 2 among the eligible items in the master 
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pool were additionally included to the operational pool, the CPRV values increased but were still 

below the acceptable level. After adding 50 items, the CPRV reached an acceptable level of 

adaptivity. As with the findings for the CPRV, the DOD and ROI measures presented visible 

enhancement after 30 items were additionally included in the operational item pool. The ROI 

index exceeded the benchmark value when at least 40 items were added to the item pool. One 

thing that should be noted is that the DOD value decreased when 100 items were added. 

Although the variances in the eligible items for the pool were similar, as the quality of items in 

the master pool was not fully controlled, some items added were relatively informative to those 

students at Region 2 but the location of these items whose information was optimal deviated 

from the current proficiency estimates. This might be plausible because of the impact of the a-

parameter on the information function. It thus resulted in reducing the DOD value. 

 

Figure 5.21. Distributions of conditional adaptivity indices by number of items added at Region 

2 (1.75 < θ < 2.25). 

The resulting distributions of bias, TSEM, and RMSE for Region 2, shown in Figure 

5.22, were consistent with the results for the Region 1 study. The more informative items there 

are in the operation item pool, the smaller bias and standard errors of the proficiency estimates 

there are. Particularly, the TSEM values were apparently reduced when 30 informative items 
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were added to the operational item pool. After more than 40 items were added, the measurement 

precision was not much improved. Comparing the adaptivity to the measurement precision, it 

provides some evidence showing that the amount of adaptation for CATs would not always 

function together with the measurement precision. 

 

Figure 5.22. Distributions of statistics for measurement accuracy and precision by number of 

items added at Region 2 (1.75 < θ < 2.25). 

To sum up, the results for these simulation studies can answer how many items need to 

be added to improve the adaptivity for the CATs. Although the item quality was not fully 

controlled in the study, it suggests that for the given CAT specifications and the item pool 

distribution, in general, adding about 30 items that are informative at the particular proficiency 

levels of interest can contribute to visible enhancement of the amount of adaptation. However, it 

should be noted that the number of items can be adjusted depending on the item quality. 
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5.3 Research Question 3 

Exposure control is a vital aspect of CAT for test security purpose in large-scale 

assessments. Because of the limited availability of computers, test sessions are usually scheduled 

multiple times per day or every day over the week. That means that examinees can share 

information about the test items that they have taken before and after their tests, resulting in 

threats to test security. To tackle this concern, exposure control procedures have been suggested 

as a way of putting some constraints on item selection to limit the number of items that students 

can share in common. Such constraints might affect the amount of adaptation of a CAT by 

preventing it from selecting the best items that match well with the current proficiency estimate.  

This chapter primarily explores the effect of the exposure control on the level of 

adaptivity for a CAT and then further investigates whether these effects can be moderated by the 

item pool characteristics. Three exposure control procedures that are commonly used in practice 

were considered in this study: (a) the randomesque procedure, (2) a-stratified method with b-

blocking (BAS), and (3) the Sympson-Hetter method. A CAT with no exposure control 

procedure was administered for comparison purposes. Also, two 300-item pools with different 

shapes of distributions of item difficulty were employed: (1) a bell-shaped regular item pool, and 

(2) a rectangular-shaped optimal item pool that was created using the bin-and-union method (see 

Section 4.4.1.1 for technical details). The results were summarized in terms of the relation 

between true and estimated proficiency (i.e., measurement accuracy/precision), the amount of 

adaptation, and test security in the following sections. 

5.3.1 Measurement accuracy and precision 

Conditional statistics.  Figure 5.23 displays the measurement accuracy and precision of 

proficiency estimates contingent on proficiency level in term of bias, TSEM, and RMSE. Results 
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indicated that regardless of exposure control procedures, there was little bias in proficiency 

estimates over the proficiency scale except for the extreme ends of the scale. Compared to the 

CAT performance with no exposure control, the BAS and Sympson-Hetter methods produced 

slightly larger standard errors of the proficiency estimates than the randomesque procedure did, 

which was consistent when either item pool was used. However, with the well-designed optimal 

item pool, the standard errors were noticeably reduced especially at the extreme proficiency 

regions, suggesting the proficiency estimates were nearly equally precise across the proficiency 

levels.  

Overall statistics.  Without exposure control, the CAT using the optimal item pool 

reported slightly smaller standard errors (TSEM and RMSE), implying that proficiency was 

more precisely estimated over the entire sample of examinees. Compared to the results of CAT 

with no exposure control, all three exposure control procedures presented larger standard errors, 

implying less precise proficiency estimates. With the regular item pool, the BAS design provided 

larger RMSE and smaller fidelity (𝑟𝜃�̂�), whereas with the optimal item pool the Sympson-Hetter 

approach reported larger RMSE and smaller fidelity. Unlike the other two exposure control 

procedures, the Sympson-Hetter method did not result in a difference in overall measurement 

precision between the regular item pool and the optimal item pool.  
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Figure 5.23. Conditional bias, TSEM, and RMSE of proficiency estimates for the 3PL-based 40-

item CAT by exposure control procedure and item pool distribution. 

 



117 

Table 5.9  

Overall Statistics of Measurement Precision of Proficiency Estimates for the 3PL-based 40-item 

CAT by Exposure Control Procedure and Item Pool Distribution 

Item Pool Exposure Control Procedure Statistic 

 Bias TSEM RMSE 𝑟𝜃�̂� 

Regular  No exposure control -0.002 0.209 0.207 0.980 

item pool Randomesque procedure -0.002 0.213 0.211 0.979 

 a-stratification with b-blocking 0.004 0.245 0.244 0.972 

 Sympson-Hetter method -0.002 0.245 0.242 0.973 

Optimal No exposure control 0.003 0.197 0.199 0.981 

Item pool Randomesque procedure 0.003 0.200 0.203 0.980 

 a-stratification with b-blocking 0.010 0.228 0.236 0.974 

 Sympson-Hetter method 0.006 0.240 0.244 0.972 

 

5.3.2 Amount of adaptation 

Conditional adaptivity.  As shown in Figure 5.24, in general, using the well-designed 

optimal item pool, higher adaptability was attained over a broad range of the proficiency 

continuum across the exposure control procedure conditions. Regardless of item pool 

characteristics, the BAS design for exposure control led to an improvement in adaptivity over the 

proficiency continuum even compared to the CAT procedure with no exposure control. The 

DOD and ROI indices noticeably increased over the proficiency levels ranging from -1.0 to 2.0 

for the regular item pool and over the proficiency ranging from -3 to 3 for the optimal item pool. 

This is expected to some degree in that for the BAS, the items were selected whose b-parameters 

had a good match with the current proficiency estimate, which is closely associated with the 

concepts of the DOD index.  Also, the BAS forced items with high a-parameters providing more 

information than those with the low as, to be used in later stages of a test. Since the efficiency of 

an item with high a might not be fully utilized if the (true) proficiency is not close to the 
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difficulty of that item (Hambleton & Swaminathan, 1985, pp. 108-115), the item with high a-

parameter should be used later in the test when more accurate proficiency estimates are 

available. Accordingly, the BAS yielded higher ROI values, suggesting that a test was efficiently 

adapted to each examinee.  

However, the Sympson-Hetter method reduced the level of adaptation regardless of item 

pool characteristics. The DOD values were dramatically low. A plausible explanation is that the 

Sympson-Hetter method controls for overexposed items by distinguishing the item selection and 

administration processes, but it does not contribute to using underexposed or never used items 

that are rarely selected based on the maximum information item selection criterion. For the 3PL 

model an item with high a- and small c-parameters usually has high information, resulting in that 

item being more likely selected and administered even though the b-parameter (or location of the 

maximum) of that item is not closely matched with the current proficiency level. This poor usage 

of informative items (i.e., mismatch between the item location and the current proficiency 

estimate) can be made even worse by limiting the highly exposed items by the Sympson-Hetter 

procedure so that the DOD values yielded were very low. The randomesque procedure did not 

have much effect on the level of adaptation over the proficiency continuum.  

Overall adaptivity.  The overall adaptivity results are summarized in Table 5.10. With 

no exposure control, the CAT procedure clearly performed very well with the designed optimal 

item pool rather than with the regular item pool. The latter reported the ratio of SDs index, 0.74, 

slightly below the suggested benchmark value of high 0.70s. With the optimal item pool, all the 

overall adaptivity measures were very high even though the exposure control was imposed on the 

item selection for the CAT. Regardless of item pool characteristics, the BAS led to the increase 

in the ratio of SDs index but with a small decrease in the correlation and PRV indices. The 
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former may be due to the fact that items were selected from only one quarter of the full item pool 

across stages of a test. The latter may be because selecting items within each stratum leads to the 

selection of more extreme items as b-blocking makes extreme items available for the item 

selection. In addition, the Sympson-Hetter method reduced the PRV values. As previously 

mentioned, the Sympson-Hetter method limits overexposed items to keep the exposure under the 

pre-specified value, leading to items being administered to each examinee on average that are 

more widely spread around their final proficiency estimates than the other procedures. However, 

the PRV value was still above the criterion of good adaptation with the optimal item pool, 

suggesting the sensitivity of the Sympson-Hetter method to the item pool characteristics. Again, 

as with the conditional adaptivity measures, it was observed that the randomesque procedure 

barely affected the amount of adaptation for a CAT for the entire group level of examinees.    
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Figure 5.24. Conditional adaptivity statistics (DOD, CPRV, and ROI) for a 3PL-based 40-item 

CAT by exposure control procedure and item pool distribution. 
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Table 5.10  

Overall Adaptation Statistics for a 3PL-based 40-item CAT by Exposure Control Procedure and 

Item Pool Distribution 

Item Pool Exposure Control Procedure Statistic 

 𝑟(�̅�𝑗, θ̂j) 𝑠�̅�𝑗 𝑠θ̂𝑗⁄  PRV 

Regular  No exposure control 0.97 (.002) 0.74 (.004) 0.81 (.002) 

item pool Randomesque procedure 0.97 (.002) 0.73 (.005) 0.80 (.002) 

 a-stratification with b-blocking 0.94 (.002) 0.80 (.006) 0.80 (.003) 

 Sympson-Hetter method 0.96 (.004) 0.74 (.005) 0.74 (.002) 

Optimal No exposure control 0.99 (.001) 0.91 (.003) 0.91 (.001) 

Item pool Randomesque procedure 0.99 (.001) 0.91 (.003) 0.90 (.001) 

 a-stratification with b-blocking 0.95 (.002) 0.95 (.005) 0.90 (.001) 

 Sympson-Hetter method 0.98 (.002) 0.99 (.004) 0.85 (.001) 

 

5.3.3 Test security 

As shown in Figure 5.25, the Sympson-Hetter method presented better exposure control 

of the highly exposed items than the other procedures but did not successfully control for the 

underexposed or unused items. However, the BAS approach had well-balanced item exposure 

and better utilization of items, showing a decrease in exposure rates for the items that were 

highly exposed and an increase in exposure rates for the items that were rarely or never used 

compared to the results with no exposure control. It is noted that the BAS approach had more 

items whose exposure rates were greater than 0.20 for the optimal item pool rather than for the 

regular item pool.  The randomesque procedure led to reducing the overexposure rates of the 

items whose difficulty was around 0.0. Without the exposure control procedure, all examines had 

the same initial proficiency estimates of 0.0, resulting in taking the same first item with b-

parameter closest to 0.0. That first item reported the perfect exposure rate shown in Figure 5.25. 
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Figure 5.25. Exposure rate distribution of 300 items ordered by b-parameter (top) and exposure 

rate (bottom) for a 3PL-based 40-item CAT by exposure control procedure and item pool 

distribution.  
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5.4 Research Question 4 

To further demonstrate the utility of the proposed measures of conditional adaptivity with 

the benchmark values obtained in the first research question, this section for Research Question 4 

evaluates the functioning of different adaptive test designs moderated by item pool 

characteristics in terms of the property of proficiency estimates and the amount of adaptation. In 

this study, two adaptive testing designs were considered: (1) an item-level CAT, in which 

individual items are fully adapted to an examinee’s proficiency estimate during the CAT 

procedure; and (2) a multistage adaptive test (MST), which is adapted to the stage or module 

(i.e., a set of items) level of items for an examinee. As previously mentioned, the 1-2-3 three-

stage MST with increasing module length through stages (i.e., 10-10-20 items) was constructed 

by selecting 90 items from an item pool. It was hypothesized that MST reported less adaptivity 

than item-level CAT, although MST can achieve a similar level of measurement precision. In 

addition, as with the study for Research Question 3, the same two item pools (i.e., regular item 

pool and optimal item pool) were used.  

5.4.1 Measurement accuracy and precision 

Conditional statistics.  Figure 5.26 presents the distributions of the bias, TSEM, RMSE 

values across the proficiency continuum by test design and item pool characteristics. In general, 

both test designs had comparable measurement accuracy and precision in the moderate 

proficiency range; however, the MST design obviously had more bias and standard errors at the 

extreme regions of the proficiency scale than the fully adaptive CAT. With the optimal item 

pool, the CAT reported smaller values of all three statistics than those with the regular item pool 

and had even measurement precision (i.e., TSEM) over the entire proficiency continuum. 

Meanwhile, the MST did not make big differences in the recovery of proficiency estimates 
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between the two item pools, reporting fairly high standard errors and bias at the extreme ends of 

the proficiency scale.   

 

Figure 5.26. Conditional bias, TSEM, and RMSE of proficiency estimates for a 3PL-based 

adaptive test by test design and item pool distribution. 
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Overall statistics.  Results indicated that regardless of item pool characteristics, the fully 

adaptive testing (CAT) reported better recovery of proficiency estimates giving lower TSEM and 

RMSE values and higher fidelity correlation than the MST. For the item-level CAT, the optimal 

item pool contributed to slightly improved measurement precision of proficiency estimates 

relative to the typical operational item pool. Although the MST design created from the regular 

item pool showed a similar pattern of conditional measurement statistics to the MST using the 

optimal item pool, the overall statistics, except for the bias, indicated slightly better measurement 

precision for the latter. 

Table 5.11  

Overall Statistics of Measurement Precision of Proficiency Estimates for the 3PL-based 40-Item 

Adaptive Test by Test Design and Item Pool Distribution 

Item Pool Test Design Bias TSEM RMSE 𝑟𝜃�̂� 

Regular Item Pool Full CAT -0.003 0.209 0.207 0.980 

 MST -0.001 0.420 0.259 0.970 

Optimal Item Pool Full CAT 0.003 0.197 0.200 0.981 

 MST 0.005 0.402 0.243 0.973 

 

5.4.2 Amount of adaptation 

Conditional adaptivity.  Which examinees were not administered items of appropriate 

quality? Putting it differently, how can we improve the test designs or the quality of an item pool 

for better adaptivity across the proficiency levels of interest? The conditional adaptation 

measures proposed in this study can help tackle these concerns. As shown in Figure 5.27, the 

CAT gave items better adapted for students’ proficiency levels than the MST from three aspects 

of adaptivity across proficiency levels, though they had similar level of adaptation at some 
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proficiency regions. In fact, the MSTs did not satisfactorily meet the guidelines of the DOD (i.e., 

mid .70s), CPRV (low .80s), and ROI (mid .80s) measures, and their adaptivity seemed different 

across the individual proficiency levels. For instance, adaptivity around the proficiency of θ = 0 

was better than other proficiency regions in that informative items were properly administered 

and adapted for the students according to the CPRV and ROI values close to the guidelines. On 

the contrary, the CAT using the optimal item pool yielded equally high values of the proposed 

three indices that exceed the guidelines over the broader range of the proficiency levels than the 

results of the CAT using the regular item pool. The latter met the suggested benchmark values of 

good adaptation in the moderate proficiency range but did not in other proficiency areas. 

Overall adaptivity.  Table 5.12 summarizes the overall measures of adaptation by test 

designs and item pools. As with the results of conditional adaptivity, using either item pool, the 

values of correlation, ratio of SDs, and PRV indices for the MST design were notably lower than 

those for CAT. This is because MSTs adapted at the module/stage level while CATs are adapted 

at the item level. Also, all students took the same routing module of 10 items, and students who 

took the same path through the stages received identical test items, which can contribute to 

limiting the amount of adaptation to some extent. For the item-level CAT, using the optimal item 

pool led to obviously improved values of the ratio of SDs and the PRV index, implying that 

CATs presented items well-customized to the final proficiency estimates. This is due to the fact 

that the optimal pool included more informative items over the entire range of examinees’ 

proficiency, meaning a larger SD of the difficulty parameters. Interestingly, for the MST, the 

value of ratio of SDs for the optimal pool was greater than that for the regular pool due to the 

same reason previously mentioned, whereas the other two indices were comparable to one 

another. This implies that the optimal pool allowed students to take on average the items that 
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more closely matched to their proficiency level but showed similar degree of other aspects of 

adaptivity to the regular item pool. It should be noted that overall adaptation indices for either 

MST were apparently lower than the guidelines, implying not as good as adaptation of CAT.  

 

Figure 5.27. Conditional adaptivity statistics (DOD, CPRV, and ROI) for a 3PL-based 40-item 

adaptive test by exposure control procedure and item pool distribution. 



128 

Table 5.12  

Overall Adaptation Statistics for a 3PL-based 40-item CAT by Exposure Control Procedure and 

Item Pool Distribution 

Item Pool Test Design 𝑟(�̅�𝑗, θ̂j) 𝑠�̅�𝑗 𝑠θ̂𝑗⁄  PRV 

 M (SE) M (SE) M (SE) 

Regular Item Pool Full CAT 0.97 (0.002) 0.74 (0.004) 0.81 (0.002) 

 MST 0.88 (0.005) 0.55 (0.008) 0.75 (0.002) 

Optimal Item Pool Full CAT 0.99 (0.001) 0.91 (0.003) 0.91 (0.001) 

 MST 0.88 (0.006) 0.65 (0.007) 0.74 (0.001) 

 

5.5 Research Question 5 

Lastly, this section demonstrates whether both conditional and overall adaptivity statistics 

function as expected using the real operational dataset to examine the amount of adaptation over 

the entire sample of examinees and at the individual proficiency levels. To do this, the finial 

proficiency estimates of examinees, the list of item parameters for the items administered to each 

examinee, the list of item scores or interim proficiency estimates for the items administered to 

each examinee, and the item parameters for the item pool are required for computing conditional 

and overall statistics. These data were available for the NCLEX-RN licensure examination in 

2017, which employed a variable-length CAT with a minimum test length of 60 and a maximum 

length of 250 operational items. Note that the pretest items were removed from this analysis. The 

total sample for this administration period included about 70,000 examinees. Like a previous 

study (Reckase et al., 2018), 35 subsamples of 2,000 examinees were randomly sampled from 

the full sample without replacement. This allowed me to evaluate the stability of the adaptation 

measures, as well.   
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5.5.1 Conditional adaptivity 

The conditional adaptivity indices clearly provided evidence about how the NCLEX 

exam was designed for their classification (pass/fail) purpose based on the cut-off scores of 0.0. 

Around the cut-score of θ = 0, all three adaptivity measures met the guidelines suggested in the 

study for Research Question 1, implying that the test provided informative items efficiently 

customized to classify students whose proficiency was above or below their criterion, 0.0. To be 

specific, the DOD value was slightly below the guideline of mid .90s, but the CPRV and ROI 

measures were far better than the guidelines at the cut-off value of θ = 0.0. In addition, these 

measures were stable across 35 samples of 2,000 examinees randomly sampled from the full 

dataset. Their empirical standard deviations were in the ranges of 0.04 to 0.12 for the CPRV 

index, 0.02 to 0.06 for the DOD index, and 0.01 to 0.07 for the ROI index. Compared to the 

other two statistics, the CRPV showed slightly more variations in the measure across samples, 

which might due to the property of the proficiency estimation procedure used in the NCLEX-RN 

test. That is, the Owen Bayesian estimation (Vale & Weiss, 1977) with a prior with a mean of -

1.0 and a standard deviation of 2.0 was used in the beginning of the test and then the MLE was 

employed after both correct and incorrect responses exist for an examinee. In this procedure, the 

selected items were affected by the current proficiency estimate, causing more within-examinee 

variation in b-parameters of the CPRV. At any rate, there was no doubt that the NCLEX-RN test 

reported outstanding adaptation at their cut point, which is well aligned with their test purpose.   
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Figure 5.28. Conditional adaptivity statistics (DOD, CPRV, and ROI) for a Rasch-based 

variable-length CAT for an operational NCLEX-RN test. 

 

5.5.2 Overall adaptivity 

Table 5.13 summarizes the results for the overall values to gauge the level of adaptation 

for the NCLEX test over the sample of examinees during this administration period. For three 

overall adaption measures, this test complied with the guidelines suggested by the simulation 

studies for Research Question 1 in Section 5.1. Specifically, the correlation index was 0.91, 

which was in the low 0.90s, the ratio of SDs index was 0.90, which exceeded the benchmark 

value in the mid 0.80s, and the PRV value met the guideline of about 0.80. Taken all together, 

these indices indicated that this NCLEX test is worthy of being labeled an “adaptive” test. 

Despite the constraints of the item selection algorithm for content balancing and exposure 
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control, this test showed good adaptivity resulting from the well-designed item pool and a strong 

item selection algorithm.  

Table 5.13  

Overall Adaptation Statistics for a Rasch-Based Variable-Length CAT for an Operational 

NCLEX-RN Test 

 𝑟(�̅�𝑗 , θ̂j) 𝑠�̅�𝑗 𝑠θ̂𝑗⁄  PRV 

 M SD M SD M SD 

NCLEX 0.91 0.004 0.90 0.010 0.80 0.003 

Benchmark Values Low 0.90s  Mid 0.80s  0.80  

Note.  SD = Empirical standard deviation over 35 samples of data. 
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CHAPTER 6. 

CONCLUSION AND DISCUSSION 

 

6.1 Summary of Findings 

This study’s aim was twofold. First, it was to propose new statistical indicators to 

measure the amount of adaptation conditional on proficiency levels for computerized adaptive 

testing (CAT). Second, it was to evaluate their feasibility and utility at detecting how much a test 

is customized to a student’s proficiency. This customization is a function of the quality of item 

pool, proficiency estimators, constraints on item selection, and test design through simulations 

and empirical demonstration using real data analysis. Three conditional adaptation measures 

were (1) the deviation of difficulty (DOD), (2) the conditional proportion of reduction in 

variance (CPRV) index, and (3) the ratio of information (ROI). The proposed measures provide 

slightly different information about the amount of adaptation assessed over the entire sample of 

examinees using the existing overall adaptation indices. These measures can help us understand 

the adaptivity of a test for an individual examinee or for subgroups of particularly interest. For a 

particular subgroup of students, for example, the CAT reported a high CPRV value but low DOD 

and ROI values. In these test events, it is plausible that the students received items of similar 

difficulty, but the administered items deviated, on average, widely from their provisional 

proficiency estimate. This might be because an item pool did not contain informative items for 

those students or there were some problems with the item-selection procedure. Taken together, 

these conditional statistics function toward the goal of gauging the differences in the amount of 

adaptation from these three viewpoints. From both the simulation studies and real data analysis, 

five key findings were drawn. 
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First, the results of comprehensive simulations in Research Question 1 suggest some 

guidelines for interpreting the proposed conditional adaptation indices for adaptive testing by 

different IRT models and proficiency estimators. When the Rasch model is used for scaling and 

scoring, these benchmark values, as summarized in Table 6.1, indicate good adaptation—a DOD 

value in the mid 0.90s, with a maximum likelihood estimation (MLE) for proficiency estimator, 

a CPRV value in the high 0.70s, and a ROI value in the high 0.90s. Not only that, but a DOD in 

the mid 0.70s, a CPRV in the low .80s, and a ROI in the mid 0.80s indicate good adaptation 

when the 3PL IRT model is used, meaning that an adaptive test administers items that are well 

customized to an individual student. With the expected a posteriori (EAP) estimation method, the 

guidelines for the CPRV index were slightly higher than those for the MLE method, but the 

guidelines for the DOD and ROI indices were the same as the ones for the MLE.  

Table 6.1  

Benchmark Values of Conditional and Overall Adaptivity Indices by IRT Models and Proficiency 

Estimators  

 Rasch  3PL 

 MLE EAP  MLE EAP 

Conditional Indices      

DOD  Mid 0.90s =  Mid 0.70s = 

CPRV High 0.70s High 0.80s  Low 0.80s  Mid 0.80s 

ROI High 0.90s =  Mid 0.80s = 

Overall Indices      

𝑟(�̅�𝑗 , θ̂j) Low 0.90s  =  High 0.90s = 

𝑠�̅�𝑗 𝑠θ̂𝑗⁄  Mid 0.80s =  High 0.70s = 

PRV 0.80 High 0.80s  Low 0.80s  Mid 0.80s 
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One thing to note is for the simulated 40-item test, these conditional statistical descriptors 

were stable in the middle proficiency, ranging from -2.0 to 2.0 based on the small values of 

empirical standard errors of the statistics. With the 3PL model, however, the statistics generally 

had fairly large standard errors at the extremes of the proficiency range, particularly with a small 

item pool or a restricted item pool. As the pool size increased and more items were located at the 

extremes, the stability of these measures improved but was still large compared to the error in the 

middle proficiency range. This instability at the extremes may be due partly to the effect of c-

parameters in the proficiency estimation. However, this concern was resolved with the Rasch 

model.  

The findings also provide evidence that regardless of IRT models and proficiency 

estimators, the bigger the item pool size is, the more spread of difficulty in the item pool there is, 

the better adaptation there is, and the more accurate proficiency estimates there are, which is 

consistent with the results of previous studies (Reckase et al., 2018; Ju & Lee, 2018). For a high 

level of adaptivity in CAT, for the 40-item test, the recommended pool should be at least a 300-

item pool with the standard deviation (SD) of difficulty larger than the SD of the examinee’s 

proficiency distribution. The required item-pool size for a CAT relies on the distribution of a 

student’s proficiency population and the number of students (Reckase, 2010). However, it has 

typically been recommended that an item pool should be at least 10 to 12 times larger than the 

length of the CAT (Stocking, 1994). Along with the results of the overall adaptivity indices and 

the measurement precision of proficiency estimates, the performance of the proposed adaptivity 

measures provides more supportive evidence of Stocking’s findings.  

The amount of adaptation was closely associated with the standard errors in the 

proficiency estimation. Given the inspection of the relation between conditional adaptivity 
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measures and the standard errors of proficiency estimates, the DOD and ROI measures had 

strong and negative relations with the TSEM values. This suggests that good adaptation for CAT 

can lead to improving the measurement precision of proficiency estimates, and vice versa. This 

might be due to the fact that more precise proficiency estimates contribute to giving more 

appropriate information on the item-selection algorithm, leading to suitable customization of the 

items for a student’s proficiency level. With TSEM and RMSE, however, a systematic pattern of 

CPRV was not found. In sum, the adaptivity of CAT should be closely associated with the 

measurement precision of proficiency estimates, but it was shown that they are different.   

Second, the study demonstrated the practical utility of the proposed conditional 

adaptation statistics as diagnostic tools for improving the amount of adaptation for CAT in 

Research Question 2. The findings of the second simulation study indicated that the conditional 

adaptivity indices can provide insight into how to revise the existing item pool so as to improve 

the level of adaptation. Although the measurement accuracy and precision of the proficiency 

estimates were similar, the amount of adaptation could differ. Based on the initial computation of 

the adaptivity indices shown in Figure 5.17, a good example is the two proficiency regions of -

0.25 < θ < 0.25 and 1.75 < θ < 2.25.  

As a result of adding to the existing item pool a series of fixed numbers of items, the 

information of which was high at each proficiency region, the more informative items available 

in the pool improved the level of adaptation at both regions. In particular, given the test length of 

40 items and the composition of the item pool, the adaptivity indices were visibly improved and 

met the guidelines suggested in the first study when 30 informative items were added to the 

operational item pool at each region. To mimic a realistic situation, I did not fully control the 

quality of items in the master pool. That is, the master pool included items normally distributed, 
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implying that there might not be sufficiently high-quality items at each region. Hence, some of 

the added items were not as good as others for each region. The number of items to be added 

may depend on the quality of an item. For instance, an item with a high a-parameter to be 

administered at the proficiency level closer to its b-parameter can contribute a good deal to 

improving the adaptivity compared to low-quality items. With the high-quality items at a 

particular proficiency region, the smaller number of items may be needed to enhance the amount 

of adaptation for a CAT. 

Third, the study in Research Question 3 examined how much “adaptation cost” occurred 

when the constraints of exposure control were imposed on the item-selection algorithm. The 

three exposure-control procedures considered in this study reported comparable measurement 

precision of proficiency estimates; nonetheless, the magnitude of adaptation was apparently 

different across the exposure-control procedures. The randomesque procedure did not 

compromise adaptation using either the regular or the optimal item pool. The Sympson-Hetter 

method, though, reduced the level of adaptation, especially for the DOD index. Interestingly, the 

a-stratified with b-blocking (BAS) approach contributed to improving adaptivity across the 

proficiency levels. Although this pattern would be consistent across different properties of item 

pools, the well-designed optimal item pool presented greater adaptivity across a broader range of 

proficiency levels for all exposure-control approaches of CAT. This suggests that, when 

exposure control is employed, good adaptation can occur with a good-quality item pool. It is 

additionally noted that the Sympson-Hetter method controlled well for overexposed items, 

whereas the BAS design showed more balanced-usage of items in the pool by controlling for 

underexposed items. 
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Fourth, another notable result of this research focused on the amount of adaptation 

presented by adaptive testing designs using the 3PL IRT model and the MLE for proficiency 

estimation. The specific designs considered here for a 40-item test were a fully item-level 

adaptive test (i.e., CAT) and a 1-2-3 three-stage multistage adaptive test (MST). It was shown 

that a MST reported obviously less adaptation than a CAT regardless of item-pool 

characteristics, though the two testing designs reported comparable accuracy of proficiency 

estimates in the moderate proficiency levels ranging from -1 to 2. The MST did not satisfy the 

guidelines of the three conditional adaptation indices across the proficiency levels. For the MST, 

the middle proficiency region showed relatively better adaptivity than other proficiency regions. 

An unanticipated result was that the MST formed from the optimal item pool did not present 

clearly higher adaptation than the MST created from the regular item pool. This differed from the 

CAT case. The CAT showed better adaptation over the full range of students’ proficiency using 

the optimal item pool than it did when using the typical operational item pool.  

Last but not least, empirical demonstration was made using real operational data from the 

NCLEX nursing licensure examination. Three conditional adaptivity measures indicated that this 

variable-length test was well designed, with a high-quality item pool for satisfying the purpose of 

the test showing good adaptivity, being near the cut-score of 0.0. That is, at the proficiency level 

closer to the cut-score, the three adaptivity indices met the benchmark values. This suggests that 

the test was very adaptive for classifying examinees into mastery and non-mastery of their 

proficiency for the nursing licensure—even when considering content balancing and exposure 

control. Overall, the proposed statistics were properly functioned as a diagnostic tool for 

understanding the amount of adaptation contingent on the proficiency continuum for an 

operational CAT.   
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6.2 Practical Utility of Conditional Adaptation Indices  

The findings of the entire study reported that new conditional adaptivity measures were 

sensitive to item-pool characteristics, test designs, and test specifications that could affect the 

amount of adaptation and suggested some guidelines for interpreting the statistics. The study also 

provided evidence to support the usage of these conditional indices for helping test developers 

and measurement professionals revise test design or an item pool to improve the test adaptivity. 

This section presents a discussion of the practical utility of the conditional adaptation indices.  

6.2.1 Diagnostic tools for improving adaptivity 

The proposed adaptation indices can be used not only as quality control tools to monitor 

the adaptivity of an adaptive testing program, but also as diagnostic tools for improving 

adaptivity by revising an item pool or a test design. Practitioners may want to maintain the level 

of adaptation for adaptive tests across testing windows, item pools, subgroups of examinees, or 

time occasions. In practice, not all examinees can take the tests at the same time. Some may take 

the tests earlier than others, and some may take the tests through different windows or using a 

different item pool assembled from the master pool. Sometimes, test developers may be 

interested in inspecting a particular subgroup of examinees to determine if the tests adequately 

function well for the test purpose. Examinees may want to take a fair test that measures their 

proficiency as accurately and precisely as possible as well as a test with items well adapted for 

their proficiency levels. This desire may come to realization with adaptation statistics, as they 

can play a role in evaluating and tracking the amount of adaptation for the administered tests.  

Beyond the quality control, the newly proposed adaptation indices are particularly useful 

in diagnosing a current test and to provide some directions for improving the adaptivity of the 

test by revising an item pool, test specifications, or test designs. A pivotal element of a CAT is 
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the item pool, such that the quality of the CAT is closely tied with the properties and the quality 

of the item pool (Flaugher, 2000). As demonstrated in Research Question 2, the level of 

adaptation can be improved by adding items that are informative at a proficiency region of 

interest to the existing item pool. Some test events can occur using multiple item pools even 

within the same session. To facilitate test fairness for students, the adaptation indices can be 

used, along with the item pool utilization index (Gönülates, 2015), to assess the performance of 

the tests with each item pool in such a way that the multiple item pools include sufficiently good 

items adapted for students as equally as possible.  

The proposed adaptation indices can be used to determine the adaptive test design but 

also to revise test specifications that optimize the adaptivity over the proficiency continuum 

within a test design. As with the study connected with Research Question 4, measurement 

professionals and test practitioners can utilize the adaptation statistics to compare the 

performances of different test designs (e.g., linear fixed-test, item-level CAT, MST, and hybrid 

CAT [Wang et al., 2016]). Not only can this be done for individuals or subgroups of examinees 

using the conditional adaptivity indices but also for the entire sample of examinees using the 

overall indices.  

Furthermore, the conditional adaptivity measures are particularly useful for modifying 

tests to improve adaptivity within an adaptive test design. A good example would be an MST. 

The amount of adaptation and measurement quality for the MST depends on how the MST is 

designed and structured using the available item pools. With the optimal item pool, for example, 

the MST did not outperform, as shown in Figure 5.27, the test created using the regular item 

pool. In this case, the composition of items for each module through stages can be modified, 

based on the resulting plot of adaptation indices, so as to enhance the adaptivity of the test for 
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high or low proficiency students. That is, if the goal of a test is to achieve equal measurement 

precision and adaptability for all students.  

Regarding the case of an item-level CAT, the test specifications can be determined by 

comparing differences in the amount of adaptation. Such differences are based on constraints in 

the item-selection algorithm for content balancing, exposure control, and avoiding test 

speededness. Based on the resulting values of the adaptivity statistics, test practitioners can 

decide whether some constraints should be relaxed or whether items should be added to the item 

pool. Taken together, the new adaptation metrics suggested here contribute to gauging the 

potential improvement of adaptivity for CAT, conditional on an individual student’s proficiency 

level or those of examinee subgroups. Of course, practical concerns in the testing situation and 

the purpose of the tests must be taken into account. 

6.2.2 Use of conditional adaptation indices in automated test assembly 

The proposed conditional adaptation indices can be used as a constraint or as an objective 

function to assemble adaptive tests from a given item pool. Based on van der Linden’s (1998b) 

distinction of test specifications in automated (optimal) test assembly, constraints are a test 

attribute or a function of item attributes that need to be met by setting an upper and/or a lower 

limit. Meanwhile, objective functions are the attribute(s) to be optimized by attaining a minimum 

or maximum value. The test assembly algorithm can be defined in numerous ways using the 

proposed conditional indices. With a constraint, for instance, a lower limit of each of the three 

adaptation measures can be set so that all students receive the test items yielding at least a certain 

value of the lower limit for each adaptation index. In a similar vein, the adaptivity indices can 

serve as an objective function of automated test assembly. They do so by setting the target values 

of the three adaptation indices so as to assemble, while satisfying all of the test constraints, the 
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test items customized for students’ proficiency levels. The target values may be identified as the 

maximum mean value of each adaptation measure through preliminary analyses using sets of 

field tests or a small simulation study.   

6.3 Alternative Ways to Define Conditional Adaptation Indices 

The amount of adaptation can be quantified differently depending on how its concept is 

operationally defined. This study quantifies the amount of adaptation based on concepts of a 

highly adaptive test and provides well-customized items for the examinees’ proficiency levels. 

To measure the amount of adaptation, this study establishes three quantities: (1) the DOD index, 

(2) the CPRV index, and (3) the ROI index. The overall adaptation indices (Reckase et al., 2018) 

focused on whether the characteristics of the administered items were well matched for students’ 

final proficiency estimates. The conditional adaptivity quantities proposed here, in contrast, 

focus more on how well a CAT uses—during its administration—an available item pool and 

item-selection algorithm to give the items adapted for an individual’s provisional proficiency 

estimate. The latter is beneficial in that the final proficiency estimates cannot be known during 

the CAT process. Furthermore, the current proficiency estimates can assess whether the item-

selection algorithm is working correctly so as to provide a well-matched item during the CAT 

process even though the interim estimate may deviate from the final estimates. It was found, via 

comprehensive simulation and empirical studies, that the proposed three indices functioned as 

expected. Nonetheless, it is still necessary to discuss here alternative ways to define the current 

conditional adaptation indices. 

 Rather than the usage of interim proficiency estimates, the conditional adaptation indices 

can be computed using the examinee’s final proficiency estimates. In this case, the adaptation 

indices are conceptually more associated with seeing whether the optimal set of items are 
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administered to each examinee, assuming that their final proficiency estimates are not biased and 

sufficiently close to their true proficiency levels. Taken as an example is the DOD index. With 

the final proficiency estimate, the DOD can evaluate whether the items were properly 

administered for matching their location (either item difficulty or the location of maximum 

information) to the examinee’s final proficiency estimate. So, the deviation of the item location 

from the final proficiency estimate can be large early on in the test, more likely yielding a DOD 

value below 0.  

Another example is the ROI index. The current ROI index compares the information 

function of the administered item at the provisional proficiency estimate to the potential 

maximum information that the item can reach. Instead, the observed item information, or the 

numerator of the ROI quantity, can be computed at the final proficiency estimate. This might 

allow for knowing the amount of information that the test provides to individual examinees 

around their final proficiency estimate. It can be blind, though, to whether the items were, during 

the intermediate stages of the CAT process, appropriately presented and well utilized for the 

examinees.  

Moreover, the ROI index can have a differently defined criterion value, which is placed 

in the denominator of the index. This study identifies the optimal criterion value of the 

information as the maximum potential information that an item can have. However, the optimal 

information can be determined through one of two ways. It can be through the maximum 

information available in an existing item pool—the theoretical limit of the maximum information 

given the Rasch model. Or it can be through the maximum information that can be obtained from 

the most informative items in the pool at the true or the final estimated proficiency levels. In 

such cases, the ROI would not evaluate how much of an item’s potential information is realized 
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at the interim proficiency estimate during the CAT. It would instead assess whether a perfect 

item (that matches well the true or final estimated proficiency) is presented to each examinee 

using the current item pool (e.g., Gönülates, 2015). For instance, the percent of information 

index (Kingsbury & Wise, 2018) compared the observed actual test information to the optimal 

information obtained by administering a test at the true proficiency level. Although the ROI 

seems to have different conceptualizations depending on how the optimal information is 

identified, these conceptualizations still have something in common—they are information-based 

measures.    

6.4 Implications 

Overall, with the help of guidelines and their own understanding of the concepts, 

researchers and practitioners could easily interpret the three conditional adaptivity indices 

investigated in this study. These new measures allow us to understand how much adaptation of a 

given test occurs across proficiency levels or subgroups of students. They also help us 

understand the “adaptation costs” resulting from item pool characteristics, adaptive test designs, 

constraints on the item selection, among other test specifications. Together with the overall 

adaptivity measures for the entire groups of examinees, the newly proposed conditional measures 

for the amount of adaptation offer unique contributions. Indeed, they enable practitioners to have 

a better sense of which adaptive test may not be very adaptive for individual examinees or 

particular subgroups of examinees.  

Another benefit of these indices are the various ways in which one can summarize the 

distribution of conditional adaptivity measures. The most intuitive way is to visualize, as I did in 

chapter 5, the values of the adaptation statistics against the students’ entire proficiency 

continuum or against particular proficiency regions of interest using a scatter plot, histogram, or 
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box plot. As with the overall adaptation statistics, the distribution of the conditional adaptation 

measures can also be summarized using the descriptive statistics such as a mean, median, and 

standard deviation of the values for a set of tests administered to a group of examinees in the 

population. If the distribution is skewed, the mean and median values of the statistics are 

discrepant. It would be advisable here to look at the entire distribution of the conditional 

measures using a graphical method. One thing that has to be noted here is that the amount of 

adaptation using the distribution of the adaptivity indices should be understood given the specific 

goals of a testing program. Although some examinees received items that were poorly 

customized for their proficiency levels, this might, depending on the testing purpose, matter 

little. 

The concept for the amount of adaptation should be understood differentially from that of 

measurement accuracy and precision, despite their being tightly associated with each other. The 

relations of the standard errors in proficiency estimates with each of three adaptivity indices, 

were not, as we noted above, perfectly correlated to one another; even the CRPV index did not 

show the apparent pattern with the measurement quality. Although students had similarly 

acceptable levels of measurement quality of their proficiency estimates, the quality of adaptation 

could differ, as seen in Research Question 2, depending on numerous issues. These include the 

size and characteristics of an item pool, the functioning of the item-selection algorithm, test 

design, and other issues that can affect adaptivity of CAT. That is, the proficiency was accurately 

and precisely estimated to some extent, but the test could not provide best items adapted to the 

examinees because of deficiencies in the item pool or some problems in the item-selection 

algorithm.  
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The tests, in contrast, were very adaptive. The quality of measurement, however, could be 

poor. This statement is evidenced, for instance, by the findings of the comparison of the 

conditional adaptivity values between the MLE and the EAP in Research Question 1. In general, 

the EAP estimator showed the greater adaptivity for the 40-item test than the MLE over the 

proficiency continuum. The proficiency estimates obtained using EAP, however, were biased. 

This bias is due to the property of the EAP regressing the proficiency estimates toward the mean 

of a prior distribution (Ho & Dodd, 2012; Kim & Nicewander, 1993). Students took the items 

that were well adapted for their current proficiency estimates, but this will not accordingly 

reduce the bias caused by the property of proficiency estimator. Additionally, it may be imagined 

that with a very short test, the level of adaptation could be high with the well-designed item pool 

and test specifications, but the proficiency would be poorly estimated because the number of 

items might not be adequate for a precise and accurate estimation of the proficiency. Therefore, 

the high adaptivity of a CAT does not always guarantee the high measurement efficiency of 

proficiency estimates.  

6.5 Limitation and Future Research 

This section briefly discusses some limitations of the study while also offering directions 

for future research. First, reported findings from this study examined the differences in the 

amount of adaptation affected by limited aspects. While the concepts and measures to evaluate 

the level of adaptation have recently received growing attention, more research is needed in this 

area. Future study should elaborate on the current adaptation measures by examining their 

performance under other factors that plausibly affect the adaptivity. These factors include not 

only other adaptive testing designs (e.g., hybrid CAT design) and test specifications such as 

latency-constraints for preventing test speededness and content-constraints for content balancing, 
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but also using other real operational adaptive testing data with a different purpose of a test (e.g., 

equal measurement precision over the proficiency continuum). Researchers may come up with 

further alternatives to the existing adaptivity indices with different assumptions and definitions 

of “the amount of adaptation.”  

Second, in Research Question 2, the quality of the items to be added from the master pool 

were not fully controlled. The current study found that to visibly improve the level of adaptation 

from all three aspects called for approximately 30 items. However, the number of items needed 

to improve the level of adaptation can differ, depending on the quality of an item and the location 

in which that item is efficiently presented. What are the features of a high-quality item? 

According to Eignor, Stocking, Way, & Steffen (1993), a high-quality item is one that is the 

most informative at a student’s current proficiency estimate. Given the Fisher information 

function, the amount of the information is maximized when an item has a high a-parameter and 

b-parameter close to the examinee’s true proficiency level (Hambleton & Swaminathan, 1985). 

The approach in this study requires multiple iterative procedures to improve the amount of 

adaptation given the distribution of test takers. These procedures are selected by checking the 

statistics after the removal or addition of proper items from the available item pool. 

Occasionally, this iterative approach may be time-consuming in real operational settings. Future 

research can explore possible ways of coming up with an equation that computes how many 

items need to be added, taking into account the amount of information that an item has at the 

current proficiency estimate. With the help of that equation, the item pool or test designs are 

expected to be more efficiently revised by adding the items necessary to improve adaptivity, in 

lieu of the iterative procedure taken in this study.  
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Third, the findings gleaned from Research Question 4 underscores the paramount 

importance of optimally designing MST modules. To obtain more precise proficiency estimates, 

the literature has mostly focused on either MST path structures or the stage and module 

configurations (e.g., Luo & Kim, 2018; Patsula, 1999; Xiong, 2018; Zenisky, 2004). Relatively 

little is known, though, about how the ways of assembling the modules and composition of item 

characteristics affect the proficiency estimates and the level of customization for MST given the 

examinees’ proficiency distribution. Future research could address this concern by exploring 

other ways of optimally designing MST beyond the approach of using the target TIF.   

Fourth, little research has yet explored the measures of the amount of adaptation in the 

mixed-format adaptive testing context. Mixed-format tests that include multiple-choice (MC) 

items, constructed-response (CR) items, and testlets have been commonly used in educational 

large-scale testing (Kim, Walker, & McHale, 2010; Kuechler & Simkin, 2010; Yao & Schwarz, 

2006). Due to their enhanced psychometric features, mixed-format tests can be more 

informative, efficient, and valid as well as more promising for future applications implementing 

innovative items (e.g., technology-enhanced items, multiple-response items, hot-spot items) in 

CAT programs. This results in enhanced content coverage and measurement accuracy (Jiao, Liu, 

Haynie, Woo, & Gorham, 2012; Wendt, 2008). It is recommended to polytomously score and 

calibrate such innovative items, CR items, and testlets using the polytomous IRT models in CAT 

programs (e.g., Jiao et al., 2012). It would be interesting for future research to investigate 

whether the existing adaptation measures could work well with the polytomously scored items 

when their item parameters are calibrated using the polytomous IRT models with the overall item 

difficulty parameterization. Also, existing studies have explored the influences of test designs 

using only dichotomous items and without consideration of content balancing. Multiple item 
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types and content balancing may produce more variations in the test designs, resulting in 

different levels of adaptation. This calls into question how much adaptation occurs as a result of 

the mixed-format test designs with content balancing approaches.  

Lastly, this dissertation suggests some guidelines to interpret the indices based on the 

current simulations results, but the benchmarks were not solely evaluated yet. Hence, further 

research is needed to work on elaborating the benchmark values for the adaptation indices via a 

Type I error study and a power study. Additionally, the dissertation evaluated the performance of 

the adaptation indices using the maximum Fisher information (MFI) item selection procedure. In 

fact, the proposed measures were developed based on the MFI item selection criterion. In 

literature and operational CAT programs, there are numerous item selection criteria out there 

(see Section 2.2.2). It is worthy of exploring whether the adaptation measures properly work 

with other item selection procedures such as b-matching and Bayesian criteria in future research. 

A promising testing format has emerged in recent years for the next-generation 

assessments; that format is adaptive testing. In fact, numerous testing programs have already 

employed a variety of adaptive tests. It is now time to reconsider and evaluate how adaptive the 

current tests are and how the tests can be improved so that they rise to the purpose of “adaptive” 

tests. It is also strongly recommended that adaptive testing be implemented knowing the 

following: such testing is attended with psychometric impacts from the test designs and 

specifications on adaptivity. This is particularly true in a situation where a testing agency has just 

started transitioning its testing format from the paper-and-pencil linear testing to the adaptive 

testing. In the area of adaptive testing, therefore, the newly established adaptation indices in this 

study can direct test practitioners toward consequential consideration of improving the item 

pools and test designs for adaptive tests. 
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APPENDIX  

SUPPLEMENTARY FIGURES FOR RESEARCH QUESTION 1 

 

 

Figure A.1. Relationship of RMSE with conditional adaptivity indices (DOD, CPRV, and ROI) 

for a Rasch-based CAT by item pool size and proficiency estimator 
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Figure A.1. (cont’d) 
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Figure A.2. Relationship of RMSE with conditional adaptivity indices (DOD, CPRV, and ROI) 

for a 3PL-based CAT by item pool size and proficiency estimator 
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Figure A.2. (cont’d) 
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Figure A.3. Relationship of RMSE with conditional adaptivity indices (DOD, CPRV, and ROI) 

for a Rasch-based CAT by item pool spread and proficiency estimator 
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Figure A.3. (cont’d) 
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Figure A.4. Relationship of RMSE with conditional adaptivity indices (DOD, CPRV, and ROI) 

for a 3PL-based CAT by item pool spread and proficiency estimator 
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Figure A.4. (cont’d) 
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