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ABSTRACT

BAYESIAN VARIABLE SELECTION: EXTENSIONS OF NONLOCAL PRIORS

By

Guiling Shi

In presence of high dimensional cavariates, variable selection is an important technique

for any further data analysis. Bayesian analysis can reach the aim of model selection based

on shrinkage priors. First I would explain Bayesian variable selection technique through

three methods, which have been demonstrated giving plausible performance when working

on high dimensional model selection problems. I also compared these methods based on

both simulation results and real data application. Further I extend the method based on

Dirichlet-Laplace prior from normal means problem to linear regression model, and show the

minimax contraction rate still holds under mild conditions.

While most developments in Bayesian model selection literature are based on local prior

on regression parameters, Johnson and Rossell(2012, 2013) proposed a nonlocal prior distri-

bution for model selection. Enlightened by this idea, I applied nonlocal prior while perform-

ing spike and slab variable selection method. I used a point mass density for spike prior,

while applied nonlocal prior as slab density, this setting could make overlap between spike

and slab prior very little, which could achieve variable selection result efficiently. Following

I proved the consistency for variable selection of proposed method.

At last, I extended nonlocal prior model selection method from Johnson and Rossell’s

method to logistic regression and to generalized linear models. Laplace approximations are

used in implementation process due to complicated likelihood. Also, convergence rate is

derived under some regularity conditions. The selection based on a nonlocal prior elimi-

nates unnecessary variables and recommends a simple model. This method is validated by



simulation study and illustrated by real data example.
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Chapter 1

Introduction

With the emerge of high dimensional data in many industry, especially in clinical and genetic

research, variable selection is one of the most commonly used technique now. The aim of

variable selection is to select the best subset of predictors. Remove the redundant predictors

is a good way to explain the data in simple way, since unnecessary predictors will add noise

to the estimation of interested variables. Many research has been done related with variable

selection under both frequentist and Bayesian framework.

Under frequentist statistics, the simple method for variable selection procedure is back-

ward elimination, forward selection and stepwise regression. While some issues are related

with stepwise regression, for example, collinearity can be a major issue, some variables may

be removed from the model when they are deemed important. Criterion based model selec-

tion procedures is popular under frequentist study. Some popular methods include Akaike

information criterion, Bayesian information criterion, Mallows Cp. Recommendation could

be provided based on comparison of these criterion for each subset model. However, with p

potential predictors, there are 2p possible models. If p is large, it is impossible to fit all these

models and choose the best one according to some criterion. This limitation encourages the

emergence of many penalization based ideas. Among which, some popular and proved to

be effective methods incorporate least absolute shrinkage and selection operation(LASSO),

smoothly clipped absolute deviation(SCAD), elastic net and ridge regression. Variable se-

lection methods for generalized linear model are also based on criterion based procedure, or
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regularization path.

In Bayesian analysis, variable selection is achieved by shrinking priors. Under appropri-

ate priors, the solution for Bayesian methods could be equivalent to frequentist penalized

approach. For example, Laplacian prior for each coefficient could result to LASSO solu-

tion, Gaussian prior is corresponding with L2 penalty result. However, instead of searching

through model space and selection criteria for choosing between competing models, Bayesian

methods focus on the marginal posterior probability of covariates that should be in the model.

Many shrinkage priors have been proposed in Bayesian literature, most of them are local pri-

ors, which means prior function value is positive when parameter value is zero. Examples of

local priors include Gaussian, Cauchy and Laplacian prior. The positive density around zero

could shrink coefficient value to zero and achieve the aim of variable selection result.Among

all local priors, one special example is horseshoe prior. horseshoe prior is unbounded with

singularity at zero, it is formulated to obtain marginals having a high concentration around

zero with heavy tails. The singularity at zero point coupled with tail robustness properties

leads to excellent empirical performance of the horseshoe. Compared with common shrinkage

priors, horseshoe concentrates more along sparse regions of the parameter space, reference

as in [Carvalho, Polson, and Scott(2009)] and [Carvalho, Polson, and Scott(2010)]. While

another prior used to contrary with horseshoe is nonlocal prior density. Nonlocal prior den-

sities are exactly zero whenever a model parameter equals its null value. It is first defined by

[Johnson and Rossell(2010)] in the context of hypothesis testing, then it is extended in model

selection problems in [Johnson and Rossell(2012)], where product moment and product in-

verse moment prior densities were introduced as priors on a vector of regression coefficients.

Model selection consistency property was demonstrated for model selection procedures based

on these nonlocal priors when p ≤ n. More recently, [Rossell et al. (2013)] proposed product
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exponential moment prior density with similar behavior to product inverse moment prior.

However, model selection property of nonlocal priors in p� n settings remain understudied.

In high-dimensional data, one of the most useful technique for Bayesian variable selec-

tion is spike and slab prior, which introduces a latent variable for each covariate to indicate

whether the covariate is active in the model or not. First proposed by [Mitchell and Beauchamp(1988)],

then generalized by [Ishwaran and Rao (2005)], various selection procedures with spike and

slab structure have been proposed, they essentially differ in the form of spike priors and slab

priors. For example, Gaussian distributions for both spike and slab prior in [George and McCulloch (1993)],

uniform distribution for the slab prior in [Mitchell and Beauchamp(1988)]. In addition, vari-

able selection consistency have been established for spike and slab prior in [Ishwaran and Rao (2011)]

and [Narisetty and He(2014)].

In this thesis, I did thoroughly study on Bayesian variable selection method for both

linear model and generalized linear model. First of all, I explained Bayesian variable selection

procedure by reviewing three demonstrated performance methods, and extended one of the

method(Dirichlet-Laplace prior) from normal means problem to linear model. In this review

study, nonlocal prior method outperforms the other method from application study, also it

has some unique properties. This is the motivation of why I believe extensions of nonlocal

prior is an interesting topic. This is covered by Chapter 2. In chapter 3, I explored spike

and slab variable selection method when slab prior is nonlocal density. The performance of

proposed method can be validated by simulation and data application results. In chapter

4, I extended variable selection method based on nonlocal prior to generalized linear model.

Convergence rate under proposed method is derived under some regularity conditions. For

clarification, each chapter uses independent notations.

3



Chapter 2

Comparison study on

high-dimensional Bayesian variable

selection methods

2.1 Introduction

Variable selection is a problem where we identify a subsets of the covariates {x1, x2, ..., xn}

thats forms a causal features of the given data y. It becomes a great challenge in a small n

large p situation. The penalised likelihood approach is to find a linear model where a subset

of {x1, x2, ..., xn} minimize a penalized likelihood. For example L1 penalty norm leads to

the LASSO method.

[Tibshirani(1996)] pointed out that the LASSO estimator can be interpreted as the max-

imum a posteriori (MAP) estimator when the regression parameters have independent and

identical Laplace priors. For large n small P regression, [Liang, Truong and Wong(2001)]

established an explicit relationship between the Bayesian approach and the penalised likeli-

hood approach for linear regression. They showed empirically that Bayesian subset regression

(BSR) is choosing priors such that the resulting negative log-posterior probability of the sub-

set model can be approximately reduced to frequentists subset model selection statistic upto

a multiplicative constant.
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Extending from the idea of spike and slab prior, [Narisetty and He(2014)] introduced

shrinking and diffusing priors to establish the strong selection consistency of the approach

for p = eo(n). Under the global-local prior, [Bhattacharya et al.(2014)] proposed a Dirichlet-

Laplace prior, and showed the minimax optimal rate of posterior contraction. [Johnson(2013)]

proposed a coupled Metropolis-Hastings algorithm, which allows moving between any two

models. These three paper are focusing on high-dimensional Bayesian variable selection,

while through different prior and algorithm. In this chapter, we review the idea for these

three paper, and compare the result with application results.

2.2 Methodology

In this section, we present three Bayesian methods solving problem in high-dimensional

case. They take Dirichlet-Laplace prior(DL), shrinking and diffusing prior(SD) and product

moment prior respectively. See following for specific method.

2.2.1 Dirichlet-Laplace prior(DL)

This part is based on paper Dirichlet-Laplace(DL) priors for optimal shrinkage([Bhattacharya et al.(2014)]),

which proposed DL prior to shrink some coefficients into zero.

In high-dimensional settings, most penalization approaches have a Bayesian interpre-

tation as corresponding to the mode of a posterior distribution under a shrinkage prior.

Different penalty method can be explained by different priors. [Polson and Scott(2010)]

showed that essentially all such shrinkage priors can be represented as global-local(GL)

mixtures of Gaussians. In this part, we consider normal means problem, expressed by

yi = θi + εi, εi ∼ N(0, 1), 1 ≤ i ≤ n.
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We can describe the setting of GL prior specifically.

(θi|τ, ψi) ∼ N(0, ψτ)

ψi ∼ f(ψi)

τ ∼ g(τ)

Here, ψ is a vector with components ψi, and each ψi is called a local variance component,

it allows deviations in the degree of shrinkage, while τ is the global variance component, it

controls global shrinkage towards the origin. In the penalized-likelihood formulation, τ plays

the role of regularization parameter.

If we choose f and g appropriately, a lot of frequentist regularization procedures such as

ridge, lasso, bridge and elastic net can be explained under GL prior.

One example is double exponential prior. If θi follows double exponential prior, that is

θi ∼ 1
2bexp

(
− |θi|b

)
, then to maximize a posteriori probability estimator corresponding to

L1 or LASSO penalty. If f(ψi) is an exponential distribution, after integrating out the local

scales ψi, θi follows a double exponential prior. And LASSO solution is obtained in this

setting. In a specific case, if f(ψi) is an exponential distribution with scale parameter 1
2 ,

that is ψi ∼ Exp(1/2), then θi follows a double exponential distribution with parameter τ ,

that is θi ∼ 1
2τ exp

(
− |θi|τ

)
. We assume this is the case throughout this paper for DL prior.

Another example is horseshoe prior. If f is half Cauchy prior, ψ
1/2
i ∼ Ca+(0, 1),

this resulting θi is horseshoe prior. Horseshoe prior is unbounded with a singularity at

zero. Along with tail robustness property leads to excellent empirical performance of the

horseshoe([Carvalho, Polson, and Scott(2010)]).

6



In proposed Dirichlet-Laplace prior setting, instead the single global scale τ , we use a

vector of scales (φ1τ, . . . , φnτ), where φ = (φ1, . . . , φn) satisfy {φj ≥ 0,
∑n
j=1 φj = 1}, and

is assigned a Dirichlet density prior, φ ∼ Dir(a, . . . , a). Additionally, we assume τ follows

a Gamma density prior, τ ∼ Gamma(λ, 1/2), with λ = pa, p is the number of covariates.

Then the full DLa prior can be represented as

θi ∼ N(0, ψiφ
2
i τ

2), ψi ∼ Exp(1/2), φ ∼ Dir(a, . . . , a), τ ∼ Gamma(na, 1/2)

The posterior sampler cycles can be obtained based on (a) θ|ψ, φ, τ, y and (b) ψ, φ, τ |θ,

holds with the fact that ψ, φ, τ |θ is independent of y. Also, we have (ψ, φ, τ |θ)

= (ψ|φ, τ, θ)(τ |φ, θ)(φ|θ), so the complete cycle to get posterior sampler is: (1) draw θ|ψ, φ, τ, y,

by sample θj independently followsN(µj , σ
2
j ), here µj =

yj

1+1/(ψjφ
2
j τ

2)
and σ2

j = 1
1+1/(ψjφ

2
j τ

2)

(2) draw ψ|φ, τ, θ , by sample ψi independently from ψi ∼ giG(1
2 , 1,

θ2i
φ2
i τ

2 ) (3) sample τ |φ, θ

from τ ∼ giG(pa−n, 1, 2
∑p
i=1
|θi|
φi

) (4) sample Ti independently from Ti ∼ giG(a−1, 1, 2|θi|),

and T =
∑
i Ti, then φi|θ will has the same distribution with Ti/T . Note, Y ∼ giG (λ, ρ, χ)

if f(y) ∝ yλ−1e−0.5(ρy+χ/y) for y > 0.

[Bhattacharya et al.(2014)] explained specifically the process to derive these posterior

densities, also proved the minimax rate of convergence on posterior contraction with appro-

priate choice of the Dirichlet prior parameter a. With Gibbs samples, we can get posterior

estimation and Bayesian credible region.

2.2.2 Shrinking and diffusing prior(SD)

This part is according to paper Bayesian variable selection with shrinking and diffusing

priors([Narisetty and He(2014)]). This paper worked on model with spike and slab prior,
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and calculate the posterior probability of each covariate included in the model.

A natural assumption in high dimensional settings is that the regression function is

sparse, only a small number of covariates have nonzero coefficients. If one covariate has

nonzero coefficient, it is active in the model. The purpose of this paper is to develop a

Bayesian methodology for selecting the active covariates that is asymptotically consistent

and computationally convenient. If the selected model equals the true model with prob-

ability converging to one, this is called selection consistency. In Bayesian methods, if the

posterior probability of the true model converges to one, then it is referred as strong selection

consistency by [Bondell and Reich(2012)].

In the hierarchical model, we can place prior distributions on the regression coefficients,

also we can put prior on model space. The linear regression model considered is Yn×1 =

Xn×pβp×1+εn×1, the subscripts is used to specify the dimension. We introduce latent binary

variables for each of the covariates to be denoted by Z = (Z1, . . . , Zp). Each Zi indicates

whether the i-th covariate Xi is active in the model or not. The prior distribution on the

regression coefficient βi under Zi = 0 is a point mass at zero, but a diffused prior under

Zi = 1. The concentrated prior of βi under Zi = 0 is referred as the spike prior, and the

diffused prior under Zi = 1 is called the slab prior. The prior on model space is applied by

assuming a prior distribution on the binary random vector Z. A Bayesian variable selection

method then selects the model with highest posterior probability. Different form of spike

and slab priors yield different selection procedures.

In [Narisetty and He(2014)], shrinking and diffusing priors are introduced as spike and

slab priors, and established strong selection consistency of the approach for p = eo(n). This

approach is computationally advantageous because a standard Gibbs sampler can be used

to sample from the posterior.
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From here, we use pn to denote the number of covariates to indicate that it grows with

n. Specific model can be described as following:

Y |(X, β, σ2) ∼ N(Xβ, σ2I),

βi|(σ2, Zi = 0) ∼ N(0, σ2τ2
0,n),

βi|(σ2, Zi = 1) ∼ N(0, σ2τ2
1,n),

P (Zi = 1) = 1− P (zi = 0) = qn,

σ2 ∼ IG(α1, α2)

where i runs from 1 to pn. Also, qn, τ0,n and τ1,n are constants that depend on n. We use

the posterior probabilities of the latent variable Z to identify the active covariates. Some

threshold value can be set here. In general, if the posterior probability of Zi = 1 is greater

than 0.5, then covariate Xi will be included in the model.

In the simple case, we consider the case where the number of covariates pn < n, and

assume that the design matrix X is orthogonal, that is X ′X = nI. We also assume σ2 to

be known. After some calculation, the posterior probability of Zi can be obtained from

P (Zi = 0|σ2, Y ) =
(1− qn)E

β̂i
(π0(B))

(1− qn)E
β̂i

(π0(B)) + qnEβ̂i
(π1(B))

here β̂i is OLS estimator of βi, and for k = 0 and 1,

E
β̂i

(πk(B)) =
1√

2πak,n
exp

− β̂i
2

2a2
k,n


with ak,n =

√
σ2/n+ τ2

k,n.
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First, assume all the parameters are fixed. Fix τ2
0n = τ2

0 < τ2
1n = τ2

1 and qn = q = 0.5.

Then the limiting value of P (Zi = 1|σ2, Y ) will be less than 0.5 as n→∞. This implies that

even as n→∞, we would not be able to identify the active coefficient in this case. Second,

consider the case when shrinking τ2
0,n, fixed τ2

1,n and qn. τ2
0,n goes to 0 with n. After some

argument, we can get P (Zi = 0|σ2, Y )→P I(βi = 0). That is, for orthogonal design matrix,

the marginal posterior probability of including an active covariate or excluding an inacive

covariate converges to one under shrinking τ2
0,n and fixed τ2

1,n and qn. However, this does

not assure the consistency of overall model selection. Some arguments show that having τ2
1,n

and qn fixed leads to inconsistency of selection if the number of covariates is much greater

than
√
n. So, to get consistency of model selection, τ2

0,n need to be shrinking, and τ2
1,n need

to be diffusing.

Under some conditions described in paper, we can get the consistency of model selection,

P (Z = t|Y, σ2)→P 1 as n→∞, that is, the posterior probability of the true model goes to

1 as the sample size increases to ∞. Here we do not need the true σ2 to be known. Even

for a misspecified σ̃2 6= σ2, we can still have this consistency under some conditions.

Gibbs sampler can be obtained from the posterior distributions of parameters.

2.2.3 Coupled MH algorithm (CMH)

This part is based on paper on numerical aspects of Bayesian model selection in high and

ultrahigh-dimensional settings([Johnson(2013)]). This paper works not only about how to get

the marginal probability for each covariate included in model, but also the way to calculate

the posterior probability of a specific model.

This method imposes nonlocal prior density on model parameters. Local prior density is

positive at null parameter value, which is typically 0 in model selection settings. Nonlocal
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prior density is function that are identically zero whenever a model parameter is equal to

the null value. This paper shows model selection procedures based on nonlocal prior density

assign a posterior probability of 1 to the true model as the sample size n increases when the

number of possible covariates p is bounded by n and certain regularity conditions hold.

Linear model is of the form

y|βk, σ2 ∼ Nn(Xkβk, σ
2In)

Here k denote a statistical model.

Two classes of nonlocal prior density was discussed. The first class of prior density for β

is the product moment(pMOM) density, which is defined as

π(β|τ, σ2, r) = dp(2π)−p/2(τσ2)−rp−p/2|Ap|1/2exp
[
− 1

2τσ2
β′Apβ

] p∏
i=1

β2r
i

Here dp is normalizing constant, τ > 0 is a scale parameter, which determines the dispersion

of prior densities on β around 0. For a specific model k with number of covariates p, Ap

is assumed to be the p × p identity matrix if no subjective information regarding the prior

correlation between regression coefficients in model k, and r is called the order of density,

can pick any positive integer.

For the second class of prior density, β is assumed to follow a product inverse moment

(piMOM) density, which has the general form

π(β|τ, σ2, r) =
(rσ2)rp/2

Γ(r/2)p

p∏
i=1

|βi|−(r+1)exp

(
−τσ

2

β2
i

)

In piMOM density, τ > 0 is a scale parameter explained the same as pMOM density, r
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can take any positive integer.

These two density classes are nonlocal density at 0 because they are identically 0 when

any component of β is 0. In model selection procedures, this is a good property, in the

sense that it could efficiently eliminate regression models which contain any unnecessary

explanatory variables.

For variance σ2 known, the marginal density of the data can be expressed by

mk(yn) =

∫
p(yn|β)p(β)dβ.

If the variance σ2 is not known, a common inverse gamma density is assumed for the

value of σ2. Then the marginal density of data under model k is

mk(yn) =

∫ ∫
p(yn|β, σ2)p(β)p(σ2)dβdσ2

In pMOM prior, the exact expressions for mk(yn) can be obtained, see [Kan(2008)], even

though the computational effort associated with the resulting expression increase exponen-

tially with increasing model size. In piMOM prior, the analytic expression for mk(yn) is not

available. To fix these issues, Laplace approximation is recommended to approximate the

marginal likelihood of the data mk(yn) under each model.

Then, the posterior probability of a model t can be calculated by p(t|y) =
p(t)mt(y)∑

k∈J p(k)mk(y)

based on the approximations of marginal density, assume the prior of a model p(k) follows a

beta function. The model space J has 2p dimensions, which makes it impossible to compute

the marginal density for all possible models when p is large. So a Markov chain Monte

Carlo(MCMC) scheme is applied to obtain posterior samples of model from the model space.

Metropolis-Hastings algorithm is implemented in the scheme to decide whether to update the
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model for a new added covariate. Based on the posterior samples of model from model space,

we can pick the model with highest posterior probability, also get the posterior probability

for other probable models. After selecting the model, we can use ordinary least square

estimation to estimate the coefficient.

2.2.4 Remark on methodology

First, we compare each method by their theoretical properties.

Three methods all focus on high-dimensional problems. While DL emphasize on estimat-

ing the coefficients of each covariate, and shrink some covariates into zero during estimation

through shrinking prior. SD can calculate the posterior probability of each covariate in-

cluded in the model, and set a threshold for the posterior probability to decide whether

certain covariate should be in the true model. And CMH calculate the posterior probability

for all possible models, then the model with highest posterior probability will be the resulted

model.

There are some desired properties for these methods. SD has been proved with con-

sistency in model selection, that is the posterior probability of the true model goes to 1

as the sample size increases to infinity. Minimax optimal rate of posterior contraction for

DL has been established in [Bhattacharya et al.(2014)]. [Johnson and Rossell(2012)] also

showed that CMH method can consistently select the true model when p < n.

SD allows dimension increases exponentially with sample size, that is logpn = o(n), and

still has model selection consistency, this is a very desirable condition. Consistency on model

selection for CMH does not hold when p > n, but the algorithm can be applied in settings

p � n. Until now, DL only develop optimal minimax convergence rate for normal means

problem, that is p = n, later we will show the convergence rate also holds for p = O(n2−ε).
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Then, if we ponder over the process of each method, we can get Gibbs sampler from the

process of DL and SD, if use the median of Gibbs sampler as the estimation of coefficient, we

are applying the same prior for both model selection and parameter estimation. This is the

one-stage method. While for CMH, we first select model based on pMOM(or piMOM) prior,

then apply least square for estimation of coefficients. Least square estimation is the same as

applying flat prior in Bayesian way. So CMH is a two-stage method in model selection and

estimation. We may get the hint that it has some advantage due to its two-stage setting.

And we will show this is the case in application results in Section 2.4.

In addition, we try to explain how to choose hyper-parameters in each model.

There are different parameters in prior setting for each method. For these parameters,

some are default setting, some are recommended in paper. Here is a summary on how to

choose the parameters.

In DL setting, the local variance ψi ∼ f(ψi), the default distribution for this f here is

exponential distribution with mean 1/2. For vector φ ∼ Dir(a, . . . , a), a = 1/n. The global

variance τ ∼ g(τ), the default setting for g is Gamma distribution with parameters (na, 1/2).

In SD setting, for the spike prior variance term τ2
0n, it is suggested use σ̂2

10n to apply.

While for the slab prior variance term τ2
1n, σ̂2max

(
p2.1n
100n , logn

)
is proposed to plug in.

Here σ̂2 is the sample variance of response vector Y , and choose qn = P [Zi = 1] such that

P [
∑p
i=1(Zi = 1) > K] = 0.1, and default value for K is max(10, log(n)). As stated in

section 2.2.2, even for a misspecified σ̃2 6= σ2, we can still have the consistency, so the choice

of α1 and α2 is trivial.

In CMH setting, the prior for σ2 is inverse Gamma distribution, σ2 ∼ IG(10−3, 10−3)

is proposed. And for model k, p(k) ∼ B(k + a, p − k + b), here B(., .) is the beta func-

tion, and default value of a and b recommended by [Scott and Berger.(2010)] are a =
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b = 1, p is the number of covariates. The recommended value of τ has been proposed

in [Johnson and Rossell(2010)]. In practice, calculating inverse of X ′kXk + 1
τAk is involved,

so we need to adjust the value of τ when X ′kXk is singular.

2.3 Extension of DL to linear model

In [Bhattacharya et al.(2014)], Dirichlet-Laplace priors are proposed for normal means prob-

lem. It said most of the ideas developed in this paper generalize directly to high-dimensional

linear and generalized linear models. We try to extend the whole process to linear regression

model. Following arguments also hold when p > n.

Linear model with Dirichlet-Laplace prior can be written as

y = Xβ + ε, ε ∼ N(0, In) (2.1)

βi ∼ N(0, ψiφ
2
i τ

2), i = 1, . . . , p

ψi ∼ exp(1/2), i = 1, . . . , p

φ ∼ Dir(a, . . . , a)

τ ∼ Gamma(pa, 1)

Denote Σ =



ψ1φ
2
1τ

2 0 · · · 0

0 ψ2φ
2
2τ

2 · · · 0

...
...

. . .
...

0 0 · · · ψpφ
2
pτ

2


Then conditional distribution can be expressed by following:
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(a)

β|ψ, φ, τ, y ∝ exp{−1

2
(y −Xβ)′(y −Xβ)}exp{−1

2
β′Σ−1β}

∼MVNorm
(

(Σ−1 +X ′X)−1X ′Y, (Σ−1 +X ′X)−1
)

(b)

ψi|φi, τ, βi ∝ p(βi|φi, τ, ψi) ∗ p(ψi)

∝ (ψi)
−1/2exp

−1

2

(
β2
i

φ2
i τ

2
∗ 1

ψi
+ ψi

)
∼ giG(

1

2
, 1,

β2
i

φ2
i τ

2
)

Note: generalized inverse Gaussian(giG) distribution Y ∼ giG(λ, ρ, χ) if we have f(y) ∝

yλ−1e−0.5(ρy+χ/y) for y > 0.

(c)

τ |φ, β ∝ p(β|φ, τ) ∗ p(τ)

∝ τ−p+pa−1exp

−1

2

(2
∑
i

|βi|
φi

)
1

τ
+ τ


∼ giG(pa− p, 1, 2

p∑
i=1

|βi|
φi

)

(d) φ|β has the same distribution with T1/T, . . . , Tn/T , where Ti ∼ giG(a − 1, 1, 2|βi|)

independently and T =
∑p
i=1 Ti.

In before process, steps (b), (c) and (d) are exactly the same as normal means problem.

But in step (a), we draw β from multi-variate normal distribution.
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While in this multi-variate normal distribution, the covariance matrix is written as(
Σ−1 +X ′X

)−1
. Rewrite (Σ−1 + X ′X)−1 as the form of (I + ΣX ′X)−1Σ, this matrix

can work well even X ′X is singular.

In [Bhattacharya et al.(2014)], the property is developed for normal means problem. Un-

der some restrictions on model means ‖θ0‖, the posterior arising from the DL setting in

[Bhattacharya et al.(2014)] contracts at the minimax rate of convergence for appropriate

choice of Dirichlet concentration parameter a. Here, we can get similar result for linear

regression model. If we put some conditions on design matrix, we can also get the mimimax

optimal rate of posterior contraction, which means the posterior concentrates most of its

mass on a ball around β0 of squared radius of the order of qnlog(p/qn).

Theorem 1 Consider model (2.1) where a = p−(1+β) for some β > 0 small. Assume

β0 ∈ l0[qn; p] with qn = o(n) and ‖β0‖22 ≤ qnlog
4p. Also, for design matrix X, suppose the

elements in X are bounded, that is, there is a constant K, so that maxi,jXi,j ≤ K. And the

dimension of β is within the order of n2−ε, i.e. p = O(n2−ε) for any ε > 0. Then, with

s2
n = qnlog(p/qn) and for some constant M > 0,

limn→∞Eβ0
P (‖β − β0‖2 < Msn|y) = 1 (2.2)

If a = 1/p instead, then (2.2) holds when qn � logn.

2.4 Simulation and application

To compare the performance of these three methods, we show the results from some simula-

tion study and application result on real data analysis.
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2.4.1 Simulation on normal means problem

In this part, we investigate the performance of different methods when estimating the normal

means problem. In each setting, model is yi = θi + εi, εi ∼ N(0, 1), i = 1, . . . , n, suppose

n = 100, and the true model size is 10. That is y sampled from a N100(θ0, I100) distribution,

with θ0 having 10 non-zero entries which are all set to be a constant A > 0. We choose

different values of A, A = 0.75, 1.5, 3, 4, 5, 6, 7, 8. But for the simplicity of table, we only

show the result for A = 0.75, 1.5, 4, 7, 8 in this part. We have 50 replicates for each case,

and compare the average squared error and average absolute error in the table. The result

is shown in table 2.1.

Table 2.1a shows the estimation result based on Gibbs sampler median. Squared error loss

in the table is squared deviance between the posterior median and true value of coefficients,

and take the average across the 50 replicates, the expression for squared error can be written

as

∑50
i=1

(∑100
j=1(θ̂ij−θij)2

)
50 . While the absolute error loss is the table is the absolute deviance

between the estimator and the true parameters, also averaged across 50 replicates, absolute

error can be expressed by

∑50
i=1

(∑100
j=1 |θ̂ij−θij |

)
50 . To better understand the source of error,

we divide the squared error into two parts. The first part error comes from those parameters

with nonzero true coefficients, that is

∑50
i=1

(∑10
j=1 |θ̂ij−θij |

)
50 . The second part error is from

parameters with zero true coefficients, which is

∑50
i=1

(∑100
j=10 |θ̂ij−θij |

)
50 . We denote them

respectively as sq.error1 and sq.error2 in the table. In the same way, we divide the absolute

error in two parts, denote as abs.error1 and abs.err2 in table.

From the result in table 2.1a, we can see some interesting results. For the error calculated

in DL, all the error comes from error1, that is the error for covarites with nonzero coefficients,

and the error from zero coefficients are all zero. This implies DL could always shrink the
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Table 2.1: Summary of error on estimation in normal means model. In each table, true
model contains 10 nonzero constant entries, with value equals A. The number of total entry
is 100.

(a) Summary of error on estimation based on Gibbs sampler median by each
method. sq.error denotes for squared error of estimation. abs.error denotes
for absolute error of estimation. sq.error1 represents for error from actually
nonzero covariates, sq.error2 is error from actually zero covariates.

A 0.75 1.5 4 7 8
DL sq.error 5.625 22.500 122.659 26.276 14.233

sq.error1 5.625 22.500 122.659 26.276 14.233
sq.error2 0 0 0 0 0
abs.error 7.500 15.000 32.593 11.289 9.376
abs.error1 7.500 15.000 32.593 11.289 9.376
abs.error2 0 0 0 0 0

SD sq.error 5.752 24.883 24.389 8.733 8.131
sq.error1 5.234 18.735 24.389 8.733 8.131
sq.error2 0.518 6.1478 0 0 0
abs.error 7.905 17.188 11.504 7.081 8.452
abs.error1 7.127 13.090 11.504 7.081 8.452
abs.error2 0.778 4.098 0 0 0

CMH sq.error 5.625 22.500 18.411 5.643 5.540
sq.error1 5.625 22.500 8.336 5.643 5.540
sq.error2 0 0 10.075 0 0
abs.error 7.500 15.000 11.120 5.890 5.584
abs.error1 7.500 15.000 7.946 5.890 5.584
abs.error2 0 0 3.174 0 0

(b) Squared error based on least square estimation by each
method

A 0.75 1.5 4 7 8
DL 5.625 22.500 157.865 53.301 7.092
SD 13.591 28.501 12.451 5.643 5.540
CMH 5.625 22.5 18.411 5.643 5.540

(c) Variable selection performance for each method. FP represents for false positive
rate. FN represents for false negative rate.

A 0.75 1.5 4 7 8
Type FP FN FP FN FP FN FP FN FP FN
DL 0 10 0 10 0 9.86 0 0.98 0 0.12
SD 1.56 9.04 3.24 7.88 0.7 0 0 0 0 0
CMH 0 10 0 10 1 1 0 0 0 0
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zero coefficients into exactly zero, which is a good property in high-dimension problem.

While for SD, in any case, most of the error comes from error1. Compared to DL, SD yields

smaller error1, which means SD gives better estimation for those nonzero coefficients. When

θ is 4 or greater, CMH gives good estimate. Since it can pick up the correct covariates

when θ is 7 or 8, its error all comes from error1. Obviously OLS gives good result with true

nonzero covariates.

Note when the true parameters are around A = 4, the squared error is kind of large for

all methods. It seems when the true parameter is around 4, this signal is not strong enough

to be identified by this method, while the estimation result is still shrinking toward zero,

makes the squared error large.

Since error1 and error2 here depend on which covarite is included in the model, we further

see how each method performed when selecting the true model. When selecting variables,

the ideal result should include all the nonzero coefficients in the model, while exclude all the

zero coefficients. While in application each method inevitably make some mistakes. Table

2.1c summarize the variable selection result. In this table, FP represents for false positive

rate, which means estimate a zero coefficient incorrectly as a nonzero one. FN stands for

false negative rate, it is the mistake that estimate a nonzero coefficients into a zero one.

Both FP and FN in this table is averaged across 50 replicates.

From table 2.1c, DL never estimates a zero coefficient as a nonzero one, while it shrinks

all nonzero covariates into zero one when θ is small. In the case when θ is 0.75 or 1.5, it

is quite weak signal compared to the noise variance which is 1. All three methods make

obvious mistake when deciding which covariate should be included in the model. They just

assume every covairate has zero coefficients. If θ is 7 or 8, any method could recognize the

correct model in most cases, while CMH gives better estimation from the previous table.
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We have explained the use of different priors for model selection and estimation in CMH,

here we want to compare three methods accordingly, so we also applied least square estimate

as in CMH method, and see how the estimation result will change. Table 2.1b gives the result.

From table 2.1b, the estimation does not improve, even get worse after applying flat prior

for both DL and SD, since in most cases, for example when signal value is less than 7, either

method has misspecified some predictors in the model. If the identified model is not the true

model, then least square will give poor estimation on coefficient. In this case, DL and SD

can give better estimation with the same prior as they applied in paper.

2.4.2 Simulation for linear regression case

As discussed in section 2.3, we can extend DL prior to linear model, even in the case when

p > n. In this part, we first consider the linear regression case when p < n. The model

is yn×1 = Xn×pβp×1 + εn×1, εi ∼ N(0, 1). Set n = 100, p = 60. For design matrix X,

covariates Xi and Xj are standard normal with correlation given by ρ|i−j|, ρ = 0.5. The

true model size is 10. The true value of β contains 10 identical nonzero entries, and 50

zero entries. The value of non-zero entries are set to be A = 0.75, 1.5, 4, 7, 8. Table 2.2a

summarized the result of squared error loss for estimation. For the full table with more

information, see supplementary document.

From table 2.2a, CMH gives best estimation among the three. The result from SD is

better than DL. If we look at the divided error, as long as signal coefficient greater than 1,

the error of SD and CMH all comes from error1, that is the true parameters are not zero.

All the error from zero coefficient part is zero, which means these two methods could always

recognize the zero coefficients, or FP rate is zero. To check our speculation, we can see the

variable selection performance, table 2.2c summarizes the result.
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Table 2.2: Summary of error on estimation in linear regression model. In each table, the
true model contains 10 non-zero constant entries, whose value equals A. The number of total
possible covariates is 60.

(a) Squared error on estimation based on Gibbs sampler
median by each method

A 0.75 1.5 4 7 8
DL 0.620 0.745 0.451 0.625 0.521
SD 0.204 0.176 0.332 0.252 0.389
CMH 0.201 0.117 0.077 0.085 0.187

(b) Squared error based on least square estimation by
each method

A 0.75 1.5 4 7 8
DL 0.185 0.442 0.077 0.085 0.187
SD 0.132 0.117 0.077 0.085 0.187
CMH 0.201 0.117 0.077 0.085 0.187

(c) Variable selection performance for each method. FP represents for false
positive rate. FN represents for false negative rate.

A 0.75 1.5 4 7 8
Type FP FN FP FN FP FN FP FN FP FN
DL 0.6 0 1 0 0 0 0 0 0 0
SD 0 0 0 0 0 0 0 0 0 0
CMH 1 0 0 0 0 0 0 0 0 0
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From table 2.2c, SD and CMH can recognize all the correct covariates even when A = 1.5,

which is a desirable result. Combine the information in table 2.2a, all three methods give

estimator pretty close to the true parameter value.

If we apply least square for all three methods, the squared error of estimation result is

summarized in second part of table 2.2b.

From table 2.2b, the squared error loss is decreasing compared with the result based on

Gibbs sampler, which means after applying flat prior, the estimation results improve toward

the true value. Since in most cases, any method could pick up the correct model, then least

square could give desirable results.

2.4.3 Simulation on high-dimension case

All these three methods are designed to solve high dimensional variable selection problems,

so we want to check how they work in high-dimensional case. We compare the results of

DL, SD and CMH when p > n. The basic settings are similar with before part. The model

is yn×1 = Xn×pβp×1 + εn×1, εi ∼ N(0, 1). In high-dimension case, p is greater than n. In

simulation, we set two scenarios, n = 100, p = 120 and n = 100, p = 200. To construct

design matrix X, covariates Xi and Xj are standard normal with correlation given by ρ|i−j|,

ρ = 0.5. For each case, the true model size is 10, and true value of β contains 10 identical

nonzero entries, 110 zero entries in the case p = 120 and 190 zero entries in case p = 200.

The value of non-zero entries are set to be A = 0.75, 1.5, 4, 7, 8. The result are summarized

in table 2.3a. Each case has 50 replicates, and the squared error loss presented in table 2.3a

are the average of squared error over 50 replicates.

In table 2.3a, whenever p = 120 or p = 200, estimation results are close to the true value,

since all error in this table is quite small. If we look at the variable selection performance
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Table 2.3: Summary of error on estimation in high-dimensional case. In each table, the true
model contains 10 non-zero constant entries, whose value equals A. The number of total
possible covariates is p.

(a) Squared error on estimation based on Gibbs sampler median by
each method

p = 120 A 0.75 1.5 4 7 8
DL 0.245 0.086 0.265 0.067 0.319
SD 0.560 0.334 0.855 1.415 0.432

CMH 0.132 0.147 0.258 0.088 0.225
p = 200 A 0.75 1.5 4 7 8

DL 1.476 0.177 0.259 0.280 0.433
SD 2.562 0.205 0.213 0.215 0.216

CMH 0.246 0.070 0.141 0.266 0.189

(b) Squared error by least square estimation

p = 120 A 0.75 1.5 4 7 8
DL 0.372 0.147 0.257 0.087 0.224
SD 0.297 0.147 0.257 0.087 0.224

CMH 0.132 0.147 0.257 0.087 0.224
p = 200 A 0.75 1.5 4 7 8

DL 2.887 0.070 0.141 0.266 0.189
SD 2.351 0.070 0.141 0.266 0.189

CMH 0.246 0.070 0.141 0.266 0.189
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result, all the FP and FN rate are zero for signal value A ≥ 1.5, which means all three

methods could recognize the true model.

While for p = 200, CMH can always pick out the correct predictors even when A = 0.75,

this is an outstanding performance. Here DL and SD can identify the correct model in most

cases when A = 0.75, the estimation is also comparable with the case for p < n. So all three

methods give excellent performance in high-dimensional problems.

After applying least square estimation for estimation, table 2.3b are obtained for n = 120

and n = 200 respectively.

Compared table 2.3a with table 2.3b, the estimation improved slightly in some case, since

the true model could always be identified.

2.4.4 Remark on simulation

Each method gives acceptable estimation and variable selection results. When the true

nonzero signal is strong, like greater than 7 in simulation study, CMH will always be a good

choice, since it can pick up the correct model, and give estimation with small error. If the

nonzero signal is moderate, SD can be a good choice, it can correctly tell which covariate

should be included in the model on most cases, also estimation is quite close to the true

coefficients. If the signal is too weak, none of the methods could correctly estimate the

model. DL works desirably in normal means problem and when we don’t want too many

covariates appeared in the model, since DL best shrinks all the zero parameters as zero, and

it can be nicely explained in the context of relieving rely on one single global scale parameter.

Also, computation-consuming time is different for each method. If we make 8000 itera-

tions, SD takes about 8 minumtes when n=100 and p=200, while it takes DL 16 minutes for

the same setting, and 17 minutes for CMH. In the simulation study, SD always has advantage
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in computing time.

2.4.5 Real data application

In this part, we apply these three variable selection method to a real data set to examine

how they work in practice. We use the data from experiment to study the genetics of

two inbred mouse populations. The data include expression levels of 22,575 genes of 31

female and 29 male mice resulting in a total of 60 arrays. Some physiological phenotypes

are measured by quantitative real time PCR. The gene expression data and the phenotypic

data are available at GEO(http://www.ncbi.nlm.nihgov/geo). Because this is an ultra-high

dimensional problem with pn = 22, 575, we prefer to perform simple screenings of the genes

first based on the magnitude of marginal correlations with the response. After the screening,

the dataset for each of the responses consisted of p = 200 predictors (including the intercept

and gender) by taking 198 genes based on marginal screening. We choose GPAT(glycerol-3-

phosphate acyltransferase) as response. We performed variable selection with SD, DL and

CMH.

We split the sample into a training set of 55 observations and a test set with the remaining

five observations. We use the training set to get the fitted model, and predict the response

in the test set.

By ordering the posterior inclusion probability for each method, we can list the highest

10 variables. For DL, we use the rank of Gibbs sampler median instead, since we are using

Bayesian credible region to decide whether a covariate should be included in a model, the

rank of Gibbs sampler median could provide information about the importance of a covariate.

Table 2.4 lists 10 covariates with highest marginal inclusion probability for each method. The

results are based on average rank of 30 replicates, the process is, first give the rank for each
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Table 2.4: Order of covariates by highest posterior probability

DL 152, 149, 113, 25, 182, 183, 191, 139, 194, 125
SD 152, 149, 113, 191, 25, 183, 182, 34, 199, 56
CMH 152, 191, 194, 182, 199, 113,149, 25, 183, 69

replication, and then calculate the average rank among 30 replicates, which gives the result

rank in table 2.4.

From table 2.4, variable with id 152 ”1457715 at” has the highest posterior inclusion

probability. Variables with id 25, 113, 149, 152, 182, 183, 191 are the common variables

proposed by each method. The recommend model by CMH is size 2 model with covariates

152 and 194. If we see this as a variable selection problem, we can pick up the covariates

included in model first, calculate the coefficients through LSE. We compare the mean squared

prediction error for different model size with each method. We choose model size equals 2,

4, 6, 8 and 10. Since CMH gives the posterior probability of each model, for each model size,

we pick out the model with highest posterior probability among certain model size.

It is an advantage for CMH to get the posterior probability of each model. To be com-

parable with other methods, we can also include those covariates with highest marginal

posterior probability. So, we also calculate the MSPE including the covariates required by

model size with highest marginal posterior probability.

Figure 2.1 compares MSPE obtained by each method. CMH1 represents model chosen

from highest model posterior probability among certain model size. CMH2 represent for

model including covariates with highest marginal posterior probability. From figure 2.1, we

can see CMH gives best prediction if the model is chose based on model posterior probability.

Instead of marginal inclusion probability for each covariate, it consider the probability of a

whole model, this is advantageous since it combine all the covariates in a model.
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Figure 2.1: Plots of MSPE for each method. For the results shown in this figure, all the
hyper-parameters are chosen by default value or recommended value as discussed in section
2.2.4. CMH1 is the MSPE resulted from choosing model with highest posterior probability
among certain model size. CMH2 represents for model including covariates with highest
marginal posterior probability.

On the other hand, we would like to know what will happen if we just use the median of

posterior Gibbs sampler as the coefficient for SD and DL. The result is given in figure 2.2.

From figure 2.2, we can see prediction is not good if use the median of Gibbs sampler as

estimation of coefficient, since either SD or DL is over shrinking the estimator, makes every

coefficients close to zero. So from the application result, we may believe the model results

from CMH method with highest posterior probability is more reliable according to the result

of prediction.

2.4.6 Remark on application result

We can see that model with highest posterior probability based on CMH gives outstanding

performance in most cases. And if SD or DL is employed, the recommendation is first choose

the covariates, then apply least square estimation to get the model coefficients.
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Figure 2.2: Plot of MSPE for each method. For the results shown in this figure, all the
hyper-parameters are chosen by default value or recommended value as discussed in section
2.4.2. And estimation here use median of Gibbs sampler

To explain this further, in DL and SD, we assumed a prior for all the model parameters.

And then we get the posterior distribution for each parameter, get Gibbs sample from each

step, and obtain estimator from Gibbs sample. Since we draw the Gibbs sample under the

assumption of prior, we are using the same prior for model selection also for parameter

estimation. While this may be not the best idea, since for the aim of model selection, we

are using shrinking prior. In CMH method, the Coupled MH algorithm is used for model

selection, after we decide which model is selected, we use least square to estimate. Least

square estimation is essentially we assume a flat prior for each parameter, this is more

reasonable when we don’t have evident information about parameters, and we know the

selected model is the true model. From these argument, we can conjecture CMH has smaller

estimation error as long as the correct model is selected.

Since CMH is using two-stage method to give estimation, while SD and DL just use

one-stage for both model selection and estimation, this feature disadvantages SD and DL. If

we also use two-stage like CMH method, suppose we use the same flat prior, that is the
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least square result after we decide the model, then the estimation is comparable with

CMH, like the result in first reveals.

2.5 Conclusion

In this chapter, we compared three different Bayesian methods for model selection, the

comparison in both theory and application can give us some lights on how to work on

high-dimensional problems in Bayesian perspective. Also, we extend the DL method into

general linear regression case, and show the minimax convergence rate under some conditions.

Each method has advantages in some sense, while how to develop a method that could be

advantage in general may be an interesting topic.

2.6 Proof

This section shows proof sketch for Theorem.

The whole proof is based on the theorem of [Bhattacharya et al.(2014)]. First, we need

to get a similar version of Theorem 3.2 [Bhattacharya et al.(2014)]. Follow the procedure

in the paper, we can obtain the similar form of inequality (A.7). And then, by Lemma 5.2

in [Castillo and vander Vaart(2012)], we have A′n = {D′n ≥ e−r
2
nP (‖Xβ − Xβ0‖2 ≤ rn)}.

If we have max|Xi,j | ≤ M , with tn = rn/M , the same expression can be obtained as

A′n = {D′n ≥ e−r
2
nP (‖β0‖2 ≤ tn)} with Pβ0

(
ACn

)
≤ e−r

2
n . Then follow the other steps, we

can get the similar expression as in Theorem 3.2 [Bhattacharya et al.(2014)].

Then, follow the steps in proof of Theorem 3.1 in [Bhattacharya et al.(2014)]. Similar

with previous argument, we can get An = {Dn ≥ e−4r2nP (‖β − β0‖2 ≤ 2tn)} such that
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Pβ0
(ACn ) ≤ e−r

2
n , here tn = rn/M . Then by constructing the net similarly, we can get

‖βS,j,i − β‖22 = ‖βS,j,iS − βS‖22 + ‖β
SC
‖22 ≤ (jrn)2 + (p− qn)r2

n/n
2 ≤ 4j2r2

n

, the last inequality holds if p = O(n2−ε) for any ε > 0. Then we can finish the proof by

similar argument in [Bhattacharya et al.(2014)] Proof of Theorem 3.1.
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Chapter 3

Variable Selection by mixing spike

and a nonlocal slab prior

3.1 Introduction

The literature of Bayesian variable selection is rapidly growing. Bayesian variable selection

is equipped with natural measures of uncertainty, such as the posterior probability of each

possible models and the marginal inclusion probabilities of each predictors. Given model

with prior and likelihood, there are formal justifications for choosing a particular model.

Many Bayesian methods have been proposed for variable selection in recent years, includ-

ing the stochastic search variable selection ([George and McCulloch (1993)]), empirical Bayes

variable ([George and Foster(2000)]), penalized credible regions([Bondell and Reich(2012)]),

nonlocal prior method ([Johnson and Rossell(2012)]), just to name a few. The spike and

slab selection method proposed by [Mitchell and Beauchamp(1988)], then the method was

further modified and developed by several authors, e.g., [Madigan and Raftery(1994)] and

[George and McCulloch (1997)]. [Ishwaran and Rao (2005)] further generalized this model

selection procedure with detail computational steps. Although the spike and slab prior has

been surfacing in the literature for a while, very recently [Narisetty and He(2014)] developed

model selection consistency under high-dimensional set up. Another notable development
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of spike and slab prior was done by [Xu and Ghosh(2015)] in the context of bi-level

selection who showed how to use spike and slab priors for selecting variables both at the

group level as well as within a group.

Spike and slab prior assumed that the regression coefficients were mutually independent

with a two-point mixture distribution made up of a uniform flat distribution (the slab) and

a degenerate distribution at zero (the spike). Several variations of spike and slab priors have

been proposed in the literature. Zero inflated mixture priors have been utilized to a Bayesian

approach for variable selection([Mitchell and Beauchamp(1988)]). [George and McCulloch (1997)]

used zero inflated normal mixture priors in the hierarchical formulation for variable selection

in linear model.

Spike and slab prior is an efficient method for variable selection. A latent binary variable

is introduced for each of the covariates to be denoted by Z = (Z1, . . . , Zp). Zi would indicate

whether the i-th covariate is active in the model or not. Prior distribution on the regression

coefficient βi under Zi = 0 is a point mass at zero, and a diffused prior is preferred under

Zi = 1. The concentrated prior of βi under Zi = 0 is called the spike prior, and the diffused

prior under Zi = 1 is called the slab prior. For slab prior, we would like to take a density

which is flat and with heavy tails. Most commonly used slab prior is normal density with

large standard deviation. While normal prior puts nontrivial density at point zero, this is

overlapped with spike prior, which may cause some non-identifiablity issue.

In this chapter, a nonlocal prior is proposed as slab prior. Since nonlocal prior is zero when

the parameter is zero, this could avoid overlap with spike prior, which is one natural desired

property for spike and slab prior. Figure 3.1 are comparison between normal mixture spike

and slab prior, with mixing spike and nonlocal slab prior. In extreme case, if the standard

deviation for spike prior is closing to zero, then spike prior degenerates to a point mass
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density at zero. In this chapter, we apply degenerated point mass density as spike prior,

with nonlocal density as slab prior.
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Figure 3.1: Comparison between normal-normal and normal-nonlocal mixture priors

3.2 Proposed model specification

We discussed the motivation for employing nonlocal prior as spike prior, which is symmet-

ric bimodal density function, with function value closes to 0 whenever the parameter value

approaches 0. Johnson (2010) proposed several forms of nonlocal densities, for example,

product moment(pMOM) density, t-moment(tMOM) density, inverse moment(iMOM) den-

sity and so on. Among these, pMOM is derived from multivariate normal distribution with

nonlocal properties. We use this pMOM density to explain nonlocal spike and slab prior

model selection method. The functional form of pMOM density is

π(β|τ, σ1) = (2π)−1/2(τσ2
1)(−3/2)exp

(
− β2

2τσ2
1

)
β2 (3.1)
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Suppose τ and σ1 are given hyperparameters. By denoting (2π)−1/2(τσ2
1)(−3/2) as C, the

pMOM density can be expressed as

π(β|τ, σ1) = C ∗ exp

(
− β2

2τσ2
1

)
β2

Now, we will define the linear model specification. In linear model regression, we use P

to denote the number of covariates, and response dimension is n × 1, n × P design matrix

corresponding to P covariates of interest. β stands for the regression coefficient vector. Also,

we assume β is sparse in the sense that only a few components of β are non zero. The goal

of variable selection in high dimensional data is dimension reduction, which is to identify

the nonzero coefficients to explore the active covariates. The formal normal linear model is

Yn×1|βP×1, σ
2 ∼ N(Xn×PβP×1, σ

2In) (3.2)

For each component in regression vector, that is for each j in {1, 2, . . . , P}, we assign a spike

and slab prior for βj , which is

βj ∼ Zjδ(βj) + (1− Zj)π(βj) (3.3)

where δ(βj) is point mass when βj = 0, and π(βj) is simplified notation for π(βj |τj , σ1j),

which has the nonlocal prior form in (3.1), written as

π(βj |τj , σ1j) = (2π)−1/2(τjσ
2
1j)

(−3/2)exp

− β2
j

2τjσ
2
1j

 β2
j
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In addition, we define the following prior distributions

Zj ∼ Bernoulli(p0)

p0 ∼ Beta(a1, b1)

σ2 ∼ InverseGamma(α1, α2)

Denote β as the vector of (β1, β2, . . . , βP ) and Z as the vector of (Z1, Z2, . . . , ZP ). Under

the above setting, we can write down the joint likelihood function as

p(β, Z, σ2) ∝
(
σ2
)−n/2

exp

− 1

2σ2

n∑
i=1

Yi −∑
p

Xipβp

2


× ΠPj=1

(Zj)(2π)−1/2(τjσ
2
1j)

(−3/2) ∗ exp

− 1

2τjσ
2
1j

β2
j

 β2
j + (1− Zj)δ(βj)


× pa1−1

0 (1− p0)b1−1 ×
(
σ2
)−α1−1

exp

{
−α2

σ2

}

Here Zj = 0 means βj is excluded from model and Zj = 1 means βj included in the model.

3.2.1 Posterior median as thresholding estimator

In [Xu and Ghosh(2015)], a bi-level variable selection model with spike and slab prior is

proposed, also the role of posterior median for thresholding is pointed out. Enlightened

by them, I would like to propose similar posterior median with [Xu and Ghosh(2015)], and

further analysis the property of proposed method based on posterior median estimator.

Consider the case when p < n and orthogonal design matrix, with model defined by (3.2)

and (3.3) with fixed τj,n and σ2
1j,n, j = 1, . . . , P . Here, we use subscript n in τj,n and σ2

1j,n
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to emphasize that τj and σ2
1j depend on n for developing asymptotic theory. Under this

model and assumptions, the marginal posterior distribution for βj conditional on observed

data is also a spike and slab distribution, which has the form of

βj |Y,X ∼ lj,nδ0(βj) + (1− lj,n)exp


(
βj −

(
1−Bj,n

)
|β̂LSj |

)2

2σ2
n

(
1−Bj,n

)
 β2

jDj (3.4)

where β̂LSj is the least squares estimator of βj , Bj,n = σ2

σ2+nτj,nσ
2
1j,n

, Dj is normalization

constant and is calculated as

Dj =
1((1−Bj,n

)
|β̂LSj |

)2

+
σ2
(

1−Bj,n
)

n

√2σ2
(

1−Bj,n
)

n π

(3.5)

In addition, the posterior probability of Zj = 0, which is the same as probability of βj = 0

conditional on observed data can be calculated as

lj,n = P (βj = 0|Y,X)

=
π0

π0 + (1− π0)
(

1 + nτj,nσ
2
1j,n

)−1/2
exp

{
Gj,n

}(
1
2 +Gj,n

)(
2σ2

nτj,nσ
2
1j,n+σ2

)3
2

(3.6)

where Gj,n =

(
1−Bj,n

)
2σ2 n

(
β̂LSj

)2
. The specific expression and deduction for (3.4) and (3.6)

can be seen in section 3.3.

Denote Fj,n as cumulative function of exp


(
βj−

(
1−Bj,n

)
|β̂j |LS

)2

σ2
n

(
1−Bj,n

)
 β2

jDj , and quantile

function of Fj,n is defined as
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Qj,n = F−1
j,n

max(0,
0.5− lj,n
1− lj,n

) (3.7)

Then, the resulting median of βj , a soft thresholding estimator, can be given by

β̂Med
j = Med

(
βj |Y,X

)
= sgn

(
β̂LSj

)(
Qj,n

)
+

(3.8)

3.2.2 Consistency

To further investigate the property of proposed thresholding estimator in (3.8), we assume

orthogonal design matrix for the rest of this chapter, i.e., XTX = nIP . This assumption

will simply the proof process in following theorem.

Let β1, β2, . . . , βP denote the true coefficients value for P covarites respectively. Define the A

as model index vector, with element value 1 if the corresponding covariate with nonzero coef-

ficient, and with element value 0 if the corresponding covariate with zero coefficient. In other

words, A =
(
I{βj 6= 0}

)
for j = 1, 2, . . . , P . While selected model index vector by thresh-

olding estimator β̂Med
j in (3.8) is defined as AMed

n =
(
I{β̂Med

j 6= 0}
)

for j = 1, 2, . . . , P .

Model selection consistency is achieved if limn→∞P
(
AMed
n = A

)
= 1. Following theorem

states model selection consistency holds under very mild assumption.

Theorem 2 Assume orthogonal design matrix, i.e., XTX = nIP . Suppose

√
n
(
τj,nσ

2
1j,n

)
→ ∞ and log

(
τj,nσ

2
1j,n

)
/n → 0 as n → ∞, for j = 1, . . . , P , then the

median thresholding estimator has variable selection consistency as

limn→∞P
(
AMed
n = A

)
= 1 (3.9)
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Theorem 2 states that we can select the true model based on threshold estimator with

probability 1 for large enough sample size. Proof deduction is attached at section 3.6.

3.3 Gibbs samplers

In Bayesian variable selection methods, inference on parameter can be summarized from

Gibbs sampler of posterior distribution. For special case, when prior distribution and pos-

terior distribution are conjugate, which means they belong to the same density category, it

is easier to update parameter value by analyzing posterior distribution. However, in many

cases, posterior distribution is not conjugate with prior density, then we need to derive

specific expression of posterior distribution.

In this part, we show the exact Gibbs samplers generating formula for each parameter.

Specific deduction process is attached in last section.

3.3.1 Gibbs sampler for βj

For each coefficient βj , where j runs through {1, 2, . . . , P}, posterior distribution also follows

spike and slab distribution as a result of spike and slab prior. Then spike part would be

point mass at zero, and slab part can be calculated from comprehensive integration. After

calculation, the slab part of posterior distribution for βj has following form:

slab βj |rest ∝ exp

{
−A

(
βj −

B

A

)2
}
× β2

j
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where A =

(
1

2τjσ
2
1j

+ 1
2σ2

∑n
i=1X

2
ik

)
, B =

∑n
i=1Xij

(
Yi−

∑
p6=j Xipβp

)
2σ2 , C =

1
2σ2

∑n
i=1

(
Yi −

∑
p 6=j Xipβp

)2

This is a non-symmetric and unknown density with a high peak around B
A . The normal-

ization constant for this density can be obtained by doing integration. We can denote the

density of
{

slab βj |rest
}

as DENj . Gibbs sampler from this density can be obtained by

sampling scheme, similar to generate a random number from a distribution with cumulative

distribution function information. Then the complete density for posterior distribution of

βk would be

βj |rest ∼ pjδ(βj) + (1− pj)DENj

Here, pj stands for the probability of βj follows a point mass at zero density, which means

the probability of βj = 0.

3.3.2 Gibbs sampler for pj

Since pj is the probability of βj = 0 for j = {1, 2, . . . , P}, so it is critical when deciding

which coefficient is significant in variable selection problem. In practice, we employed a

latent variable Zj corresponding to βj , Zj is generated from binomial distribution with

success probability
(

1− pj
)

. So Zj takes value either 0 or 1, Zj = 0 implies βj = 0,

and Zj = 1 implies βj follows DENj . The calculation for pj is as following. The specific
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deduction process is attached in section 3.7.

pj = P (Zj = 0) =
p0

p0 + (1− p0)× T

T = K (2π)
1
2

 σ2∑n
i=1X

2
ij + σ2

τjσ
2
1j


1
2

 σ2∑n

i=1X
2
ij + σ2

τjσ
2
1j

+M2



where K = Cexp

 1
2σ2

(∑n
i=1X

2
ij + σ2

τσ2
1

)
M2

 and M =

∑n
i=1Xij

(
Yi−

∑
p 6=j Xipβp

)
∑n
i=1X

2
ij+ σ2

τjσ
2
1j

.

3.3.3 Gibbs sampler for σ2 and p0

It is easier to obtain Gibbs sampler for error variance σ2 and global proportion of nonzero

coefficient p0, since posterior are conjugate with prior densities for them. Posterior for σ2 is

also inverse gamma distribution

σ2|rest ∼ InverseGamma

n
2

+ α1,
1

2

n∑
i=1

Yi −∑
p

Xipβp

2

+ α2


While posterior for p0 is still beta distribution

p0|rest ∼ Beta
(
# (β = 0) + a1,# (β 6= 0) + b1

)

3.3.4 Comment on τ

Without any hands-on information, we can choose the same value of τj for j ∈ 1, 2, . . . , P ,

that is use same prior for each coefficient. For simplicity, we use τ without subscript to denote

this value is the same for every j. τ is an important tuning parameter for adjusting the prior
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distributions. With large τ , the nonlocal slab prior is more flat, which puts majority density

away from 0, and nonlocal density function approaches 0 when parameter value closes to

zero, so large τ means strong penalty to small parameter value. This property helps avoiding

selecting unnecessary covariates, however, it has the risk of missing important covaraites. On

the other hand, with small τ , the prior distribution assigns more density to values around 0,

this prior could easily detect small magnitude values, while too small τ value may result in

over selection issue. It is critical to determine appropriate τ value such that we can balance

the over selection issue and omit important covariates risk. From our empirical experiment,

τ = 0.01 could achieve satisfactory performance.

3.4 Simulation study

3.4.1 Eestimation performance by Mean Squared Errors

In linear regression case, model is Yn×1 = Xn×PβP×1 + εn×1, εi ∼ N(0, 1). Set n = 100,

consider three different P value, P = 60, 120, and 200. For design matrix X, covariates Xi

and Xj are standard normal with correlation given by ρ|i−j|, ρ = 0.3. The true model size

is 10. The true value of β contains 10 identical nonzero entries, and 50 zero entries. The

value of non-zero entries are set to be Coef = 1, 1.5, 4, 7 respectively. For example, when

Coef = 1, true nonzero coefficients are (1, 1, . . . , 1)10×1.

Table 3.1 summarized the result of mean squared error loss(MSE) for estimation. The

simulation result also shows that there is no falsely selected covariate or omitted important

covariate, so this mass-nonlocal prior could correctly identify the true model. Then MSE in

table 3.1 are all caused by estimating the 10 nonzero coefficients, with definition MSE =

1
10

∑10
i=1

(
β̂i − βi

)2
. From table 3.1, we can notice that MSE are very small, which means
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Table 3.1: MSE for n=100 with mass-nonlocal prior

Coef 1 1.5 4 7
dim=60 0.0635 0.0601 0.0766 0.0743
dim=120 0.0798 0.0767 0.0785 0.0824
dim=200 0.268 0.2475 0.2052 0.257

this method could give accurate estimation for coefficient value.

3.4.2 Selection performance

In this part, we report simulation results for different cases under several (n,p)

combinations, signal strength and sparsity levels according to simulation setting at

[Narisetty and He(2014)].

We will refer the proposed method as mass-nonlocal for the specification of spike and slab

prior forms. Bayesian shrinking and diffusing prior setting in [Narisetty and He(2014)] is

referred as BASAD. Other methods under comparison are piMOM with nonlocal prior of

[Johnson and Rossell(2012)], SpikeSlab of [Ishwaran and Rao (2005)], and three penalization

methods LASSO, elastic net(EN), and SCAD tuned by BIC, denote as LASSO.BIC, EN.BIC,

SCAD.BIC respectively.

Case 1: We use sample size n = 100, and candidate dimension P = n = 100. The co-

variates are generated from multivariate normal distributions with zero mean and unit vari-

ance. The compound symmetric covariance with pairwise covariance ρ = 0.25 is used to

represent correlation between covariates. Five covariates are taken active with coefficients

β = (0.6, 1.2, 1.8, 2.4, 3.0). Under this setting, covariats have moderate correlation and signal

of coefficients are relatively strong.

Case 2: Consider scenario with (n, P ) = (100, 500), keep other parameters same as case 1.

43



Table 3.2: Case1: Performance of MASS-nonlocal for n = P . The other columns of the
table are as follows: pp0 and pp1(when applicable) are the average posterior probabilities of
inactive and active variables respectively; Z = t is the proportion that the exact models is
selected. Z ⊃ t is the proportion that the selected model contains all the active covariates;
FDR is the false discovery rate, and MSPE is the mean squared prediction error of the
selected models.

pp0 pp1 Z=t Z ⊃ t FDR MSPE

(n,p)=(100,100), |t| =5
mass-nonlocal 0.003 0.985 0.960 0.972 0.001 1.099

BASAD 0.016 0.985 0.866 0.954 0.015 1.092
piMOM 0.012 0.991 0.836 0.982 0.030 1.083
SpikeSlab 0.005 0.216 0.502 1.660
LASSO.BIC 0.01 0.992 0.430 1.195
EN.BIC 0.398 0.982 0.154 1.134
SCAD.BIC 0.356 0.990 0.160 1.157

(n,p)=(200,200), |t| =5
mass-nonlocal 0.001 1.000 0.996 1.000 0.001 1.028
BASAD 0.002 1.000 0.944 1.000 0.009 1.087
piMOM 0.003 1.000 0.900 1.000 0.018 1.038
SpikeSlab 0.008 0.236 0.501 1.530
LASSO.BIC 0.014 1.000 0.422 1.101
EN.BIC 0.492 1.000 0.113 1.056
SCAD.BIC 0.844 1.000 0.029 1.040

Table 3.3: Case2: Performance of MASS-nonlocal for high-dimensional.

pp0 pp1 Z=t Z ⊃ t FDR MSPE

(n,p)=(100,500), |t| =5
mass-nonlocal 0.007 0.967 0.682 0.876 0.054 1.152
BASAD 0.001 0.948 0.730 0.775 0.011 1.130
SpikeSlab 0.000 0.040 0.626 3.351
LASSO.BIC 0.005 0.845 0.4661 1.280
EN.BIC 0.135 0.835 0.283 1.223
SCAD.BIC 0.045 0.980 0.328 1.260
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Table 3.4: Case3: Performance of MASS-nonlocal for low signal.

pp0 pp1 Z=t Z ⊃ t FDR MSPE

(n,p)=(100,500), |t| =5
mass-nonlocal 0.014 0.975 0.572 0.956 0.010 1.143
BASAD 0.002 0.622 0.185 0.195 0.066 2.319
SpikeSlab 0.000 0.000 0.857 2.466
LASSO.BIC 0.000 0.520 0.561 1.555
EN.BIC 0.040 0.345 0.478 1.552
SCAD.BIC 0.045 0.340 0.464 1.561

Case 3: Keep design matrix covariance matrix and |t| = 5, with low signals

βt = (0.6, 0.6, 0.6, 0.6, 0.6).

MSPE stands for mean squared prediction error based on n (which equals 100 in case 2, case

3 and top part of case 1, 200 in bottom part of case 1) new observations as testing data.

Simulation results are summarized in table 3.2, table 3.3 and table 3.4. Measurement index,

include pp0, pp1, Z = t, Z ⊃ t, FDR and MSPE are defined in caption of table 3.2.

3.4.3 Observation from simulation

Table 3.2 shows result for case 1. We can see that three Bayesian methods mass-nonlocal,

BASAD and piMOM perform better than other methods. Still mass-nonlocal prior is out-

performing in the sense of Z = t, Z ⊃ t, FDR and MSPE. Result for case 2 can is at table

3.3, mass-nonlocal method still outperform among these methods in most of the index.

When signal is low, for example in case 3, the performance of mass-nonlocal is even impres-

sive. Table 3.4 reveals simulation performance for case 3. All the other 5 methods have

difficulty to identify the true model, the proportion of selecting the exact model for BASAD

is 18.5%, while for the other four penalization method less than 5%.
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Mass-nonlocal method is superior with 57.2%, which is more than three times reliable than

BASAD. Also, mass-nolocal provides smallest FDR and MSPE.

3.4.4 Real data application

In this section, we apply the proposed variable selection method to a real data set to examine

how it woks in practice. We consider the data from an experiment to study the genetics of

two inbred mouse populations. The data include expression levels of 22,575 genes of 31 female

and 29 male mice resulting in a total of 60 arrays. The numbers of phosphoenopyruvate car-

boxykinase(PEPCK) is measured by quantitative real-time PCR. The gene expression data

and the phenotypic data are available at GEO(http://www.ncbi.nlm.nih.gov/geo;accession

number GSE3330). [Narisetty and He(2014)] used this data for illustrating their method.

Following [Narisetty and He(2014)], we first performed simple screenings of the genes based

on magnitude of marginal correlations with the response. [Fan and Lv(2008)] explained the

power of marginal screening. After screening, the data set consist of P = 118 predictors

(including the intercept and gender). We performed variable selection with mass-nonlocal

along with BASAD. Following [Narisetty and He(2014)], the samples are randomly split into

a training set of 55 observations and a test set with the remaining five observations. The

fitted model using the training set were used to predict the response in the test set. This

process was repeated 100 times to estimate the prediction power.

In Figure 3.2, we plot the average mean square prediction error(MSPE) for models of various

size chosen by BASAD and mass-nonlocal. We can observe that MSPE of mass-nonlocal is

mostly smaller than BASAD. About half the genes chosen by mass-nonlocal are overlapped

with chosen result by BASAD.
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Figure 3.2: Mean squared prediction error versus model size for analyzing PEPCK.

3.5 Discussion

In this chapter, we proposed a mass-nonlocal form of spike and slab prior setting for vari-

able selection in high dimensional data. This mass-nonlocal prior put point mass at 0 for

spike prior, while employs nonlocal prior which avoid 0 point for slab prior, this property

guaranteed superior performance on variable selection, also gives more accurate estimation

compared with most other variable selection methods, which can be seen from simulation

result.

However, variable selection performance is sensitive with respect to tuning parameter τ . We

recommend tuning parameter value based on practical experiment. A rigorous method for

proposing valid tuning parameter value could be further investigate in a future study. For

example a variation of empirical Bayes can be developed.

In addition, from simulation results, we can see the superior performance of mass-nonlocal
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prior in the sense of prediction since it yields much smaller mean prediction squared error.

This could be explained by precise estimation of parameter value. In this chapter, we checked

variable selection consistency property. We strongly believe that more strict property like

oracle property should hold.

3.6 Proof of theorem

In this part, proof for theorem 2 will be provided. List of notations will be used in proof:

β̂Med
j is defined in (3.8);

Fj,n as cumulative function of exp


(
βj−

(
1−Bj,n

)
|β̂j |LS

)2

σ2
n

(
1−Bj,n

)
 β2

jDj ;

Qj,n is defined in (3.7);

F−1
j,n is inverse function of Fj,n;

lj,n defined in (3.6);

Prove:

For j such that |βj | = 0, since
√
nβ̂LSj = Op(1), and from assumption n

(
τj,nσ

2
1j,n

)
→ ∞,

we have lj,n → 1 as n→∞. The probability of correctly classifying this factor is

P
(
|β̂Med
j | = 0

)
= P (Qj,n ≤ 0)

→ 1 (3.10)

as n → ∞, lj,n → 1, so Qj,n → F−1
j (0), which is negative with probability 1. Then (3.10)

holds.

For j such that |βj | 6= 0, since β̂LSj →p β0
j and assumption log

(
τj,nσ

2
1j,n

)
/n→ 0, we have
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lj,n →p 0 as n→∞. The probability of correctly identifying this factor is

P
(
|β̂Med
j | 6= 0

)
= P (Qj,n > 0) (3.11)

needs to show

Qj,n = F−1
j,n

(
max(0,

0.5− lj,n
1− lj,n

)

)
> 0 (3.12)

With lj,n → 0, we have max

(
0,

0.5−lj,n
1−lj,n

)
=

0.5−lj,n
1−lj,n

, and limn→∞
0.5−lj,n
1−lj,n

= 1
2 , which

implies limn→∞F−1
j,n

(
max(0,

0.5−lj,n
1−lj,n

)

)
= F−1

j

(
1
2

)
, (3.12) is satisfied if we can show t =

F−1
j

(
1
2

)
> 0, which can be derived from

Dj

∫ 0

−∞
exp


(
βj −

(
1−Bj,n

)
|βj |LS

)2

2σ2
n

(
1−Bj,n

)
 β2

j dβj <
1

2
(3.13)

where Dj = 1((1−Bj,n
)
|βj |LS

)2
+
σ2
(

1−Bj,n
)

n


√

2σ2
(

1−Bj,n
)

n π

from expression in (3.5).
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Next, we show how (3.13) holds. Denote Hj,n =
(

1−Bj,n
)
|βj |LS

∫ 0

−∞
exp


(
βj −Hj,n

)2

2σ2
n

(
1−Bj,n

)
 β2

j dβj

=

∫ 0

−∞
exp


(
βj −Hj,n

)2

2σ2
n

(
1−Bj,n

)
(βj −Hj,n +Hj,n

)2
dβj

=

∫ 0

−∞
exp


(
βj −Hj,n

)2

2σ2
n

(
1−Bj,n

)
(βj −Hj,n)2

dβj

+ 2
(
Hj,n

)∫ 0

−∞
exp


(
βj −Hj,n

)2

2σ2
n

(
1−Bj,n

)
(βj −Hj,n) dβj

+
(
Hj,n

)2
∫ 0

−∞
exp


(
βj −Hj,n

)2

2σ2
n

(
1−Bj,n

)
 dβj

=

∫ −Hj,n
−∞

exp

 u2

2σ2
n

(
1−Bj,n

)
 (u)2 du

+ 2
(
Hj,n

)∫ −Hj,n
−∞

exp

 u2

2σ2
n

(
1−Bj,n

)
 (u) du

+
(
Hj,n

)2
∫ −Hj,n
−∞

exp

 u2

2σ2
n

(
1−Bj,n

)
 du
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=− σ2

n

(
1−Bj,n

)
exp

 u2

2σ2
n

(
1−Bj,n

)
u

∣∣∣−Hj,n
−∞

+
σ2

n

(
1−Bj,n

)∫ −Hj,n
−∞

exp

 u2

2σ2
n

(
1−Bj,n

)
 du

− 2
(
Hj,n

) σ2

n

(
1−Bj,n

)
exp

 u2

2σ2
n

(
1−Bj,n

)
∣∣∣−Hj,n
−∞

+
(
Hj,n

)2
∫ −Hj,n
−∞

exp

 u2

2σ2
n

(
1−Bj,n

)
 du

=− σ2

n

(
1−Bj,n

)
exp


(
−Hj,n

)2

2σ2
n

(
1−Bj,n

)
(−Hj,n)

+
σ2

n

(
1−Bj,n

)√2σ2

n

(
1−Bj,n

)
π ∗ Φ

(−Hj,n)
√√√√ 1

σ2
n

(
1−Bj,n

)


− 2
(
Hj,n

) σ2

n

(
1−Bj,n

)
exp


(
−Hj,n

)2

2σ2
n

(
1−Bj,n

)


+
(
Hj,n

)2
√

2σ2

n

(
1−Bj,n

)
π ∗ Φ

(−Hj,n)
√√√√ 1

σ2
n

(
1−Bj,n

)


=− σ2

n

(
1−Bj,n

)(
Hj,n

)
exp


(
Hj,n

)2

2σ2
n

(
1−Bj,n

)


+

(
σ2

n

(
1−Bj,n

)
+
(
Hj,n

)2
)√

2σ2

n

(
1−Bj,n

)
π

∗ Φ

(−Hj,n)
√√√√ 1

σ2
n

(
1−Bj,n

)

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Also,

D

∫ 0

−∞
exp


(
βj −Hj,n

)2

2σ2
n

(
1−Bj,n

)
 β2

j dβj

=

(
1−Bj,n

)(
Hj,n

)
(Hj,n)2

+
σ2
(

1−Bj,n
)

n

√2σ2
(

1−Bj,n
)

n π

(
−σ

2

n

)
exp


(
Hj,n

)2

2σ2
n

(
1−Bj,n

)


+ Φ

(−Hj,n)
√√√√ 1

σ2
n

(
1−Bj,n

)


Since
(
−Hj,n

)√
1

σ2
n

(
1−Bj,n

) < 0 , so Φ

(−Hj,n)√ 1
σ2
n

(
1−Bj,n

)
 < Φ (0) = 1

2 , the first

term is negative, which implies D
∫ 0
−∞ exp

 (
βj−Hj,n

)2

2σ2
n

(
1−Bj,n

)
 β2

j dβj always less than 1
2 , so

(3.13) holds, then (3.12) holds as a result of (3.13). This proves theorem 2.
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3.7 Additional: calculation of Gibbs samplers

3.7.1 Gibbs sampler for βk

slab βj |rest ∝ exp

− 1

2τjσ
2
1j

β2
j

 β2
j × exp

− 1

2σ2

n∑
i=1

Yi −∑
p

Xipβp

2


= exp

− 1

2τjσ
2
1j

β2
j −

1

2σ2

n∑
i=1

Yi −∑
p

Xipβp

2
 β2

j

= exp

−
1

2τjσ
2
1j

β2
j −

1

2σ2

n∑
i=1

Yi −∑
p 6=j

Xipβj −Xikβj


2
 β2

j

= exp
{
− 1

2τjσ
2
1j

β2
j −

1

2σ2

( n∑
i=1

Yi −∑
p 6=j

Xipβp


2

+
n∑
i=1

(
X2
ij

)
β2
j

− 2
n∑
i=1

Xij

Yi −∑
p 6=j

Xipβp

 βj

)}
β2
j

= exp
{
−

 1

2τjσ
2
1j

+
1

2σ2

n∑
i=1

X2
ij

 β2
j + 2

∑n
i=1Xij

(
Yi −

∑
p6=j Xipβp

)
2σ2

βj

− 1

2σ2

n∑
i=1

Yi −∑
p 6=j

Xipβp


2 }

β2
j

Denote A =

(
1

2τjσ
2
1j

+ 1
2σ2

∑n
i=1X

2
ij

)
, B =

∑n
i=1Xij

(
Yi−

∑
p 6=j Xipβp

)
2σ2 , C =

1
2σ2

∑n
i=1

(
Yi −

∑
p 6=j Xipβp

)2

slab βj |rest ∝ exp
{
−Aβ2

j + 2Bβj − C
}
β2
j

= exp

{
−A

(
βj −

B

A

)2
}
× β2

j × exp

{
B2

A
− C

}
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Denote slab βj |rest as DENj ,so

βj |rest ∼ pjδ(βj) + (1− pj)DENj

3.7.2 Gibbs sampler for pj

pj = P (Zj = 0) =
p0

p0 + (1− p0)× T

T =
C

exp

{
− 1

2σ2

∑n
i=1

(
Yi −

∑
p 6=j Xipβp

)2
} ∫ exp

− 1

2σ2

n∑
i=1

Yi −∑
p

Xipβp

2


exp

− 1

2τjσ
2
1j

β2
j

 β2
j

= M

∫
exp

−
1

2σ2

n∑
i=1

Yi −∑
p 6=j

Xipβp −Xijβj


2
 exp

− 1

2τjσ
2
1j

β2
j

 β2
j dβj

= C

∫
exp

− 1

2σ2


 n∑
i=1

X2
ij

 β2
j − 2

(
Rj

)
βj


 exp

− 1

2τjσ
2
1j

β2
j

 β2
j dβj

= C

∫
exp

− 1

2σ2


 n∑
i=1

X2
ij

 β2
j − 2

(
Rj

)
βj

− 1

2τjσ
2
1j

β2
j

 β2
j dβj

where Rj =
∑n
i=1Xij

(
Yi −

∑
p 6=j Xipβp

)
.
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Denote Nj =
∑n
i=1X

2
ij + σ2

τjσ
2
1j

, M =

∑n
i=1Xij

(
Yi−

∑
p6=j Xipβp

)
Nj

, then

T = C

∫
exp

{
− 1

2σ2

(
Nj

) [
β2
j − 2Mβj

]}
β2
j dβj

= C

∫
exp

{
− 1

2σ2

(
Nj

)[(
βj −M

)2
−M2

]}
β2
j dβj

= Cexp

{
1

2σ2

(
Nj

)
M2
}∫

exp

{
− 1

2σ2

(
Nj

)(
βj −M

)2
}
β2
j dβj

Now denote K = Cexp

{
1

2σ2

(
Nj

)
M2

}
,

T = K

∫
exp

{
− 1

2σ2

(
Nj

)(
βj −M

)2
}(

βj −M +M
)2
dβj

= K

∫
exp

{
− 1

2σ2

(
Nj

)(
βj −M

)2
}[(

βj −M
)2

+ 2Mβj −M2
]
dβj

= K ∗ (part1 + part2 + part3)

part1 =

∫
exp

{
− 1

2σ2

(
Nj

)(
βj −M

)2
}[(

βj −M
)2
]
dβj

= (2π)
1
2

(
σ2 1

Nj

)3
2

(3.14)
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Equation in (3.14) is obtained by integrating density of nonlocal MOM prior.

part2 =

∫
exp

{
− 1

2σ2

(
Nj

)(
βj −M

)2
}[

2Mβj

]
dβj

= 2M

√
2πσ2

Nj
× 1√

2πσ2
Nj

×
∫
exp

{
− 1

2σ2

(
Nj

)(
βj −M

)2
}(

βj

)
dβj

= 2M2

√
2πσ2

Nj

part3 =

∫
exp

{
− 1

2σ2

(
Nj

)(
βj −M

)2
}[
−M2

]
dβj

= −M2
∫
exp

{
− 1

2σ2

(
Nj

)(
βj −M

)2
}
dβj

= −M2

√
2πσ2

Nj
× 1√

2πσ2
Nj

×
∫
exp

{
− 1

2σ2

(
Nj

)(
βj −M

)2
}
dβj

= −M2

√
2πσ2

Nj
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Then,

T = K × (part1 + part2 + part3)

= K ×

(2π)
1
2

(
σ2 1

Nj

)3
2

+ 2M2

√
2πσ2

Nj
−M2

√
2πσ2

Nj


= K ×

(2π)
1
2

(
σ2 1

Nj

)3
2

+M2

√
2πσ2

Nj


= K (2π)

1
2

(
σ2

Nj

)1
2
( σ2

Nj

)
+M2



57



Chapter 4

Model selection for generalized linear

model using nonlocal priors

4.1 Introduction

In modern statistical practice, variable selection is one of the most commonly used technique,

especially in clinical and genetic research, due to complex and high dimensional nature of

data. A good amount of work has been done recently based on both frequentist and Bayesian

perspective. This chapter concentrates on Bayesian model selection for generalized linear

models, in particular the logistic regression based on a nonlocal prior distribution.

In classical statistics, many approaches have been proposed to deal with model selection prob-

lems. Some popular methods include F tests, Akaike information criterion ([Akaike (1973)]),

Bayes information criterion ([Schwarz (1978)]), Mallows Cp, exhaustive search, stepwise,

backward and forward selection procedures. Also, many frequentist methods based on pe-

nalization have been developed with good properties. Among these, least absolute shrinkage

and selection operator (LASSO) method ([Tibshirani(1996)]) based on L1 norm penalty is

one of the most popular and proven to be effective model selection procedures. Elastic

net ([Zou and Hastie (2005)]) is derived from the linear combination of L1 and L2 norm

penalties. Smoothly clipped absolute deviation (SCAD) ([Fan and Li (2001)]) uses noncon-

cave penalty, which leads oracle property. Adaptive LASSO ([Zou (2006)]) using adaptive
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weights for penalizing different coefficients in L1 norm shows consistency under some con-

ditions. Dantzig selector ([Candes and Tao (2007)]) is a solution to a L1 regularization

problem which also shows efficient convergence.

In generalized linear regression, calculation can be tedious because of the associated like-

lihood function is complicated. Earlier literature on variable selection in logistic regres-

sion used criterion based methods such as AIC or BIC. However, with some approxi-

mation technique, penalized methods can also be applied in generalized linear regression

([Van de Geer (2008)], [Huang et al. (2008)]). With the popularity of LASSO, fitting the

generalized linear model with LASSO or elastic-net regularization path is proposed by

[Friedman, Hastie and Tibshirani (2010)].

Classical statistical methods have some limitations, for example, lack of explanation, con-

sistency or uncertainty estimation, which motivated the employment of Bayesian meth-

ods. Bayes factors and posterior probabilities are easy to understand, and Bayesian

model selection is consistent if one of the entertained model is actually the true model

and if enough data are observed. Also, Bayesian approach can account for model un-

certainty. The solution for Bayesian methods can be equivalent to frequentist penalized

approach under appropriate priors. All these advantages make Bayesian methods popu-

lar, which also benefit from the development of efficient computational algorithms. Many

Bayesian methods have been proposed, like Bayesian LASSO ([Park and Casella (2008)])

using Laplacian shrinkage, Bayesian model average technique ([George (1999)]), spike and

slab prior ([Ishwaran and Rao (2005)]) by introducing a latent variable, Gibbs variable selec-

tion ([Dellaportas et al. (1997)]) with a mixture prior assumed for each variable, stochastic

search variable selection ([George and McCulloch (1993)]; [George and McCulloch (1997)])

with spike prior centered around zero and small variance.
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When it comes to a generalized linear model, the computation problem arises again be-

cause of the intrinsically complicated likelihood function. The computation requirement

remains with the Bayesian methods due to no-conjugacy. With the development of mod-

ern computational platforms and efficient algorithms, fully Bayes approach can be applied.

For example, informative prior is proposed by [Chen, Ibrahim and Yiannoutsos (1999)].

[Nott and Leonte (2012)] discussed an efficient sampling algorithm. [Jiang (2006)] consid-

ered the logistic regression in which prior under some conditions leads to consistent conver-

gence toward the true model. Then, the theory was extended for generalized linear models

in [Jiang (2007)]. [Sha et al.(2004)] applied probit regression to classify binary responses

based on microarray data. [Zhou, Liu and Wong(2004)] used Bayesian variable selection for

logistic regression to achieve excellent cross-validated classification errors. On the other

hand, Bayesian subset modeling is proposed by [Liang, Song and Yu (2013)]. Most of these

Bayesian methods put a great mass on the density of a null parameter value to reach the

result of shrinkage and go to variable selection results which is referred as model selection

based on local prior densities by [Johnson and Rossell(2012)].

In this chapter we are interested in nonlocal prior ([Johnson and Rossell(2010)]). Nonlocal

prior density is a density function that is identically zero whenever a model parameter is

equal to its null value, typically 0 in model selection settings. Most current Bayesian model

selection procedures employ local prior density, which is positive at null parameter values.

Since nonlocal prior density would be zero if any component of parameter is zero, this

property could bring a parsimonious model selection.

Bayesian model selection procedures for linear regression model by imposing a nonlocal

prior density is proposed by [Johnson and Rossell(2012)]. They further summarized the

comparison with popular local prior densities as well as with frequentist approaches. In
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this chapter, we extend their approach to a generalized linear model, specifically logistic

regression model. Main contribution of our work is employing nonlocal prior density for a

logistic regression model and studying its validity. We prove the posterior convergence in

high-dimensional setting along the line of [Jiang (2007)]. We specifically find the convergence

rate for a logistic regression model with nonlocal prior density. The numerical results are

promising.

The rest of the chapter is organized as follows: The section 4.2 discusses the proposed

methodology. The section 4.3 discusses the algorithm for implementation and the section

4.4 provides the numerical results along with a real data example. The proofs are given in

section 4.6.

4.2 Methodology

4.2.1 Bayesian logistic regression

Let µ be the success probability for a binary random variable Y , then the logistic regression

is defined as logit(µ) = Xβ, where X is the design matrix with dimension n × pn, β is the

pn × 1 regression coefficient vector. The function logit(z) = log
(

z
1−z

)
for z ∈ (0, 1). With

n data points {(Xi, yi)} for i = 1, · · · , n, the likelihood function is

p(y|β) =
n∏
i=1

(
1

1 + e−
∑
s Xisβs

)yi ( 1

1 + e
∑
s Xisβs

)1−yi
.

In Bayesian settings, we suppose β has a prior density p(β), then the joint density of the

data and β is p(y, β) = p(y|β)p(β), and the marginal density of the data y is p(y) =∫
p(y|β)p(β)dβ. Since this is independent of β, we can denote the marginal density as Z.
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The Bayesian inference is made from the posterior distribution of β which is given by

p(β|y) =
1

p(y)
p(y|β)p(β) =

1

Z
p(y|β)p(β).

Denote F (β) = −logp(y, β) = −log(p(y|β)p(β)). Then the posterior of β can be written as

p(β|y) =
1

Z
e−F (β).

Assume there exists a posterior mode β∗. Expanding F (β) around β∗ gives

F (β) ≈ F (β∗) + (β − β∗)T g(β∗) +
1

2
(β − β∗)TH(β∗)(β − β∗), (4.1)

where g(β) =
∂F (β)
∂β and H(β) =

∂2F (β)

∂β∂βT
. Both g and H are evaluated at the posterior mode

β∗. Here β∗ maximizes −F (β), so the gradient g(β∗) equals 0 and Hessian matrix H(β∗)

will be positive definite. Now we have

p(β|y) ≈ 1

Z
e−F (β∗)exp

{
−1

2
(β − β∗)TH(β − β∗)

}

so that the posterior of β is approximated by a normal distribution, N(β∗, H−1). This could

be a general scheme for Bayesian analysis in logistic regression model to avoid complicated

computational schemes such as Metropolis-Hastings algorithm ([Hoff (2009)]). Since we

obtained the posterior density of regression vector β in conjugate family, we can simply

perform Gibbs sampler for its evaluation. Newton-Raphson algorithm may be used to find

β∗ and H. To achieve dimension reduction, we use prior density with some characteristic to

shrink each coefficient.
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4.2.2 Model selection via nonlocal prior

We consider the nonlocal prior ([Johnson and Rossell(2012)]) as the prior specification. In

particular, product moment density (pMOM) proposed by [Johnson and Rossell(2012)]:

p(β|τ, σ2, r) = dp(2π)−p/2(τσ2)−rp−p/2|Mp|1/2exp

[
− 1

2τσ2
β′Mpβ

] p∏
i=1

β2r
i . (4.2)

Here, σ2 is a dispersion parameter. In the case of no over-dispersion logistic regression,

we set σ2 = 1. Positive value τ is a scale parameter that determines dispersion of the

prior density on β around 0. Mp is a p × p nonsingular scale matrix. In the case of no

subjective information regarding the prior correlation between regression coefficients, we can

set Mp = Ip. r takes value from positive integers and it is called the order of density. We

set r = 1 for simplicity. dp is the normalizing constant.

In logistic regression with the pMOM prior, we continue using the notations as introduced

before. Then the expression of F (β) is

F (β) = −logp(y, β) =
∑

yilog(1 + e−Xiβ) +
∑

(1− yi)log(1 + eXiβ) (4.3)

− log(dp) +
p

2
log(2π) +

(
p

2
+ rp

)
log(τσ2)− 1

2
log|Mp|

+
1

2τσ2
β′Mpβ − 2r

∑
log(βi).

With numerical optimization method, we can get the maximizer of logp(y, β), equivalently,

a minimizer of F (β), which is β∗. Then the value of joint density evaluated at β∗ is easy to

calculate. Also, we can get the Hessian matrix of F (β) in the closed form expression: The
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(i, j)th element of the Hessian matrix for i 6= j is expressed by

∂F

∂βi∂βj
=
∑
m

ymXmiXmj
e
∑
s Xmsβs

(1 + e
∑
s Xmsβs)2

+
∑
m

(1− ym)XmiXmj
e−
∑
s Xmsβs

(1 + e−
∑
s Xmsβs)2

,

while the ith diagonal element equals to

∂F

∂2βi
=
∑
m

ymX
2
mi

e
∑
s Xmsβs

(1 + e
∑
s Xmsβs)2

+
∑
m

(1− ym)X2
mi

e−
∑
s Xmsβs

(1 + e−
∑
s Xmsβs)2

+
1

τ
+

2

β2
i

.

With these expressions, we can easily obtain the determinant of the Hessian matrix evaluated

at β∗. Then the marginal density of y can be approximated by Laplace approximation. This

gives us the marginal density of the data, p(y), in a closed form:

Z = p(y) =

∫
p(y, β)dβ =

∫
e−F (β)dβ

≈ det

F ′′(β∗)
2π

−1
2

e−F (β∗)

= e−F (β∗)(2π)k/2|H|−1/2. (4.4)

Now for any model k, we can assign a prior probability p(k), where k can be any subset

of the full model. A reasonable and simple prior density can be a uniform prior, that is,

p(k) is same for all k. Another model prior can be a binomial prior. In this case, each

covariate has probability π to be included in the model. For example we can set π = 0.5.

Another candidate prior is a beta-binomial prior. In this prior, each covariate is included in

the model with probability π and π follows a beta density with parameters a and b, that is,

p(π|a, b) ∼ πa−1(1−π)b−1

B(a,b)
, where B(a, b) is the beta function.

If we choose a certain model prior p(k), combined with marginal density of the data, p(y),
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posterior probability for any model k can be expressed by p(k|y) =
p(k)pk(y)∑
t p(t)pt(y)

. When

the number of covariates is large, it is impossible to list all candidate models which makes

challenge in calculating the denominator of p(k|y). But we can compare the posterior of any

two models k1 and k2, since p(k1|y) and p(k2|y) share the same denominator so that we only

need to compare the numerators, p(k1)pk1
(y) and p(k2)pk2

(y), and calculation of these two

terms is not difficult. Expression (4.4) is used to approximate p(y) and p(k) is from the prior

specification. Since comparison of posterior probabilities of models can be done, Metropolis-

Hasting algorithm can be employed to obtain a sequence of sampled models. With sampled

models, we can identify the maximum a posteriori (MAP) model and estimate the posterior

probabilities of the MAP and other high-probability models.

4.2.3 Extension to GLM

We have explained logistic regression model selection in the previous section. In this part,

we extend the whole theory to a generalized linear model(GLM). Suppose that the data can

be modeled by GLM with the density function given by

p(y|θ) = exp{a(θ)y + b(θ) + c(y)}, (4.5)

where a(θ) and b(θ) are continuously differentiable functions of θ, c(y) is a constant function

of y, a(θ) has nonzero derivative, and θ is called the natural parameter that relates y to the

predictors through a linear function

θ = β1x1 + · · ·+ βpxp, (4.6)
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where β1, . . . , βp are regression coefficients. The mean function is µ = E(y|x1, . . . , xp) =

− b
′(θ)
a′(θ) ≡ ψ(θ).

In the following, we will show the sketch of GLM model selection procedure. Joint density

is p(y, β) = p(y|β)p(β) = exp{
∑n
i=1

(
a(θi)yi + b(θi) + c(yi)

)
} · p(β), where (4.2) is used for

p(β). With the specific GLM definition, we can get corresponding function of a(θ), b(θ) and

c(θ). Then we can write down the log likelihood function F (β) in a similar way as in (4.3):

F (β) =− logp(y, β) (4.7)

=
∑

(a(θi(β))yi + b(θi(β)) + c(yi))

− log(dp) +
p

2
log(2π) +

(
p

2
+ rp

)
log(τσ2)− 1

2
log|Mp|

+
1

2τσ2
β′Mpβ − 2r

∑
log(βi).

In this expression, θi(β) is used to emphasize a linear relationship between θ and β. With

specific forms of a(θ), b(θ) and c(y), calculation of a minimum point β∗ for F (β) will be

feasible and computing the Hessian matrix is doable, even though the procedure can be

tedious and complicated depending on the form of a(θ) and b(θ). The (i, j)th element of

the Hessian matrix is expressed by
∑
m(a′′(θm)ym+ b′′(θm))XmiXmj while the ith diagonal

element equals to
∑
m(a′′(θm)ym + b′′(θm))X2

mi + 1
τ + 2

β2
i

.

After obtaining minimum point β∗ of F (β) and Hessian matrix H(β∗), marginal density

p(y) ≈ e−F (β∗)(2π)k/2|H(β∗)|−1/2 can be easily computed. With a certain model prior p(k)

and marginal density pk(y), for any two models k1 and k2, we can compare the posterior

probabilities p(k1|y) and p(k2|y). So a sequence of candidate models can be generated by the

Metropolis-Hastings algorithm. The MAP model and posterior probability of highly-likely

candidate models can be derived from the sequence of sampled models.
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4.2.4 Theoretical properties

We would like to have model t obtained from the maximum posterior probability converge

to the true model t∗ as sample size n is increasing. Define f∗ as the true density under the

model t∗ and f as the proposed density under the model t. To investigate the convergence

rate, we follow the results of [Jiang (2007)]. We assume the nonlocal prior specification

is used and limn→∞
∑pn

1 |β
∗
j | < ∞, where pn is the number of covariates that allows to

increase with sample size n. γ is a subset of covariate indices for which |βj | > 0 and |γ|

is the cardinality of γ. Also, let ch1(M) be the largest eigenvalue of a matrix M . For two

positive sequences an and bn, an ≺ bn means limn→∞an/bn = 0.

For the nonlocal prior with density (2), we consider a diagonal matrix Mp. That is, no prior

correlation between regression coefficients is assumed, since the prior normalization constant

dp can be difficult to evaluate when Mp is not a diagonal matrix. However, following theory

holds for any matrix Mp that satisfies certain assumptions. When Mp is a diagonal matrix,

it is proportional to a covariance matrix Aγ . In the following, we put some assumptions on

Mγ .

We first introduce some notations. rn is prior expectation of the model size. 4(rn) =

infγ:|γ|=rn
∑
j:j 6∈γ |β∗j |, B(rn) = supγ:|γ|=rnch1(Mγ), B̄(rn) = supγ:|γ|=rnch1(M−1

γ ), B̃n =

supγch1(M−1
γ ), D(R) = 1 +R · sup|h|≤R|a′(h)| · sup|h|≤R|ψ(h)|. Without loss of generality,

we assume B(rn), B̄(rn) and B̃n are bounded. Let εn ∈ (0, 1] for each n, nε2n � 1 and assume

the following conditions hold:
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Assumption 1

(C 1) pn · log(1/ε2n) ≺ nε2n,

(C 2) pn · log(pn) ≺ nε2n,

(C 3) pn · log

(
D

(
2pn

√
nε2nB̃n

))
≺ nε2n,

(C 4) rn ≺ pn,

(C 5) rn log B̄(rn) ≺ nε2n and 4(rn) ≺ ε2n,

(C 6) log
(
rn
pn

)
≤ −4nε2n

pn
.

Then we prove the following theorem to show models selection consistency and also derive

the convergence rate.

Theorem 3 Suppose that the prior given in (4.2) is employed and the conditions in As-

sumption 1 hold. Let P{·} denote the probability measure for the data Dn. Then, we have

(a) for some c0 > 0, limn→∞ P{π[d(f, f∗) ≤ εn|Dn] ≥ 1− e−c0nε2n} = 1, where d(f, f∗) =√∫ ∫
(
√
f −
√
f∗)2νy(dy)νx(dx) is the Hellinger distance between f and f∗.

(b) for some c1 > 0, and for all sufficiently large n, P{π[d(f, f∗) > εn|Dn] ≥ e−0.5c1nε
2
n} ≤

e−0.5c1nε
2
n.

The proof is given in section 4.6.

4.3 Algorithm

When the number of covariates p is increasing with the sample size, the number of candidate

models is exponentially increasing with 2p. So it is nearly impossible to calculate the posterior

probability for each individual candidate model. Following [Johnson and Rossell(2012)], a

Methropolis-Hastings algorithm is employed to generate MCMC samples from the model

space, which is described below.
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Step 1: Choose an initial model kcurr.

Step 2: For i = 1, 2, . . . , p,

(a) Define a model kcand by excluding or including βi from the model kcurr, according to

whether βi is currently included or excluded from kcurr. Specifically, if model kcurr includes

βi, then deleting βi from kcurr gives model kcand. Conversely, if model kcurr does not include

βi, adding βi into kcurr gives model kcand.

(b) Compute

α =
p
kcand

(y)p(kcand)

p
kcand

(y)p(kcand) + pkcurr(y)p(kcurr)
, (4.8)

where pkcurr(y) and p
kcand

(y) are calculated from the equation (4.4). Note that p(kcurr)

and p(kcand) depend on our prior assumption.

(c) Draw u ∼ U(0, 1). If α > u, update kcurr = kcand.

Step 3: Repeat step 2 until a sufficiently long chain is acquired. After the sequence of sampled

models is obtained, we can use this sampler chain to identify the maximum a posteriori(MAP)

model, the posterior probability of the MAP and other high-probability models. Also, the

marginal information including probability for each covariate can be computed based on

sampled models.

4.4 Simulation and real data application

In this section, we evaluate the performance of the proposed nonlocal prior in high-

dimensional logistic regression models. We call this approach nonlocal prior method. We

compare the nonlocal prior method with LASSO ([Friedman, Hastie and Tibshirani (2010)])

and Empirical Bayesian LASSO in generalized linear models, denoted as gLASSO and

EBLASSO, respectively, where empirical Bayesian LASSO proposed an efficient algorithm
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to solve Bayesian LASSO models ([Huang, Xu and Cai(2013)]).

In the simulation study, we adopt the null model (k = 0) as an initial model kcurr to avoid

bias. For the prior density of a model p(k), we use a beta-binomial model on the model

space. Suppose ρ is a value between 0 and 1, which represent inclusion probability for each

covariate. This prior is obtained by assuming that prior probability assigned to a model k

is specified as

p(k|ρ) = ρ|k|(1− ρ)(p−|k|), ρ ∼ Beta(a, b).

We further assume that a = 1 and b = 1/
√
n so that the prior expectation of the model size

satisfies conditions in Assumption 1. For the prior on regression coefficients, we use first order

pMOM density. A hyper-parameter τ need to be settled and we follow the recommendation

of [Johnson and Rossell(2012)], that is, τ = 0.384.

4.4.1 Simulation study

We first investigate how our nonlocal prior method perform in some basic settings. In this

part, we generate a design matrix from a multivariate normal distribution, with moderate

correlation with correlation coefficient 0.3.

In the first simulation setting, we generate 100 observations with various dimensions for

covariates (p = 60, 120, 200, respectively). So for the design matrix X, 100 samples are

drawn from a multivariate normal distribution with mean 0 and the covariance matrix whose

ijth element is δ|i−j| with δ = 0.3. First, we consider the true regression parameter β

contains only 2 nonzero values, and 0 for the rest of them. We set different values for this

2 nonzero regression coefficients (e.g. (2,−2),(1.5,−1.5),(1,−1)). The response variable

is generated from the binomial distribution with success probability eXβ

1+eXβ
. Summary of

variable selection results are given in Table 4.1.
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Table 4.1: Summary of variable selection for different parameter values. In each panel,
results of gLASSO and EBLASSO are based on the tuning parameter chosen as the average
of 20 cross-validation values. All results are averaged among 100 replications.

Nonlocal Prior gLASSO EBLASSO
dim True select False select True select False select True select False select
60 2 0.88 2 10.8 2 6.04
120 2 0.2 2 12.91 2 8.74
200 1.99 0.2 1.99 15.22 1.99 10.5

(a) Variable selection result for the parameter value (2,-2)

Nonlocal Prior gLASSO EBLASSO
dim True select False select True select False select True select False select
60 1.97 1.86 1.98 9.32 1.99 6.25
120 1.98 0.35 1.97 11.48 1.98 8.18
200 1.96 0.26 1.9 12.28 1.99 9.08

(b) Variable selection result for the parameter value (1.5,-1.5)

Nonlocal Prior gLASSO EBLASSO
dim True select False select True select False select True select False select
60 2 0.88 1.83 6.94 1.85 5.27
120 1.71 0.66 1.59 8.58 1.73 7.49
200 1.72 0.54 1.49 7.52 1.76 8.26

(c) Variable selection result for the parameter value (1,-1)

71



We use true selection and false selection as criterion. Our definition for true selection is

the number of selected true nonzero coefficients. False selection is defined as the number of

falsely selected coefficients, that is coefficients selected in model with actually zero value. A

method with good performance on variable selection should have true selection close to 2

and false selection close to 0.

When the true parameter value is (2,−2) or (1.5,−1.5), which is moderately strong signal,

nonlocal prior method recognizes the true model even for relatively high dimensional cases

(e.g. p = 200 and n = 100).
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Table 4.2: Summary of variable selection for parameter value (2,-2,2,-2). Results of gLASSO
and EBLASSO are based on tuning parameter chosen as the average of 20 cross-validation
value. All results are averaged among 100 replications.

Nonlocal Prior gLASSO EBLASSO
dim True select False select True select False select True select False select
60 4 1.13 4 14.92 4 6.4
120 3.89 0.18 3.97 19.32 3.97 10.84
200 3.88 0.24 3.9 20.62 3.81 11.77

However, gLASSO selects largest models. EBLASSO selects larger model than nonlocal

prior method, but smaller model compared with gLASSO. When coefficient value is large,

it is easier to identify the significant variable for most methods. When coefficient value

is relatively small (Part (c) in the Table 4.1), i.e. coefficient signal is relatively weak, all

methods select some noise covariates. However, the model size under gLASSO is much higher

than proposed method, while model size under EBLASSO is intermediate among these three.

Now we extend the model with regression coefficients β contains 4 nonzero components. We

set these 4 nonzero values as (2,−2, 2,−2), and 0 for the rest. Summary results are shown

in Table 4.2. Targeted value for true selection is 4 and false selection is 0. From the result

in Table 4.2, nonlocal prior method works well with 4 nonzero coefficients while gLASSO

includes some extra covariates again. For EBLASSO, falsely selected covariates number is

higher than the proposed nonlocal method, but lower than gLASSO.

We also tested variable selection performance on models with 6 nonzero coefficients. 6

nonzero values are set as (2,−2, 2,−2, 2,−2) and 0 for the rest. Model selection results are

displayed in Table 4.3. The nonlocal prior method tends to include some noise coefficients or

omit some important covariates. This may be caused by some potential correlation between

these 6 covariates which may weaken the effect of important variables and make some noise

variables. On the other hand, gLASSO contains more noise covariates.
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Table 4.3: Summary of variable selection for parameter value (2,-2,2,-2,2,-2). Results of
gLASSO and EBLASSO are based on tuning parameter chosen as the average of 20 cross-
validation value. All results are based on 100 replications.

Nonlocal Prior gLASSO EBLASSO
dim True select False select True select False select True select False select
60 5.82 1.05 5.99 16.94 5.95 7.58
120 5.19 0.48 5.73 20.81 5.71 9.83
200 4.26 0.62 5.31 22.13 5.27 11.26

4.4.2 SNPs study

This simulation study mimics case-control genetic association study. Response variable y

represents disease status of a subject. It takes value 1 for the case and 0 for the control. Ex-

planatory variables are generated as SNPs in human genome. So xij is genotype of SNP j of

the subject i which takes value 0, 1 or 2. xi represents for all genotype expression for subject

i. Following [Chen and Chen (2012)], the data were generated by following procedure.

Let n1 and n2 denote the numbers of cases and controls, respectively. Let s = {1, 2, . . . , k}

denote the causal SNPs for the disease. Here xi(s) stands for the causal genotype set

{xi1, xi2, . . . , xik}. Thus, there are 3k possible genotype profiles for the k SNPs. For the

SNPs belonging to s, the disease risk model is given by

logitP (yi = 1|xi(s)) =
k∑
j=1

βjxij

for the prespecified values of β1, . . . , βk. For the noncausal SNPs xk+1, . . . , xp, each xij is

generated from a binomial distribution with parameters (2, pj), where pj represents the

frequency of one allele and is generated from Beta(2, 2). This example consists of 10

simulated datasets. Each was generated with n1 = n2 = 500, p = 10, 000, k = 8, and

(β1, . . . , β8) = (0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2.1.3).
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Table 4.4: Comparison of Nonlocal prior with gLASSO and BSR. Results are averaged among
10 replications.

Methods Nonlocal prior gLASSO BSR
size 5.75 44.9 8.2

fsr(%) 0 81.8 3.66
nsr(%) 28.13 0 12.22

This setting is the same as Bayesian subset regression (BSR) method in

[Liang, Song and Yu (2013)]. The numerical results are summarized in Table 4.4.

To measure the performance of each method, we calculate the false selection rate (fsr) and

negative selection rate (nsr) among 10 replications. Let s∗i denote the set of selected features

in the dataset i. Then,

fsr =

∑10
i=1 |s∗i \s|∑10
i=1 |s∗i |

, nsr =

∑10
i=1 |s\s∗i |∑10
i=1 |s|

.

Variable selection method with low fsr and nsr implies good performance. Nonlocal prior

has the smallest fsr and highest nsr. Also nonlocal prior chooses the smallest model size

among three methods, which implies that nonlocal prior tends to choose a simpler model.

By choosing the model as simple as possible, nonlocal prior may omit some causal variables,

which results in high nsr in Table 4.4. This indicates the proposed method is definitely

effective in regression setting, but should be carefully adopted if there are causal variables.

4.4.3 Real data application

In this part, we test nonlocal prior Bayesian variable selection method on colon gene ex-

pression data ([Alon et al. (1999)]) and compare our result with gLASSO. Colon data set

studies on 62 samples, which are composed of 40 colon tumor samples and 22 normal colon
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tissue samples, analyzed with 2000 human genes. The response variable has two level: 0 for

normal colon tissue and 1 for colon tumor. To see which genes are closely correlated with

colon tumor, we use a logistic regression model and select variables with our nonlocal prior.

To evaluate our method, we divide data into two groups, use 52 samples as a training data

set, and 10 samples as a test data set. To reduce potential bias in sample observations, 20

repetitions are considered, in which 10 samples are randomly selected as a test set for each

time. In each replication, with 52 samples, we first apply nonlocal prior Bayesian variable

selection method and use the maximum likelihood estimator for the estimation of regression

coefficients for the selected covariates. Then we apply this fitted logistic regression model to

test classification using a data set with 10 samples for checking performance of this method

in terms of prediction. Since gLASSO is a renowned method for variable selection, we

compare nonlocal prior prediction result with gLASSO. To make this comparison consistent,

we keep the same training data set for gLASSO and nonlocal prior for each replication. The

summarized prediction results are listed in Table 4.5. All results in Table 4.5 are averaged

among 20 replications.

We consider True positive and False positive for the performance measures. True positive

(TP) represents those samples observed as colon tumor is predicted as colon tumor (response

value 1). False positive (FP) is samples predicted as colon tumor while observed as colon

normal tissue (response value 0). True negative (TN) is for those predicted as colon normal

tissue but observed as colon normal tissue. False negative (FN) means samples predicted as

colon normal tissue while observed as colon tumor. True positive rate (TPR), also called

as sensitivity, measures the test’s ability to correctly identify patients who do have the

condition.
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Table 4.5: Compare on prediction results based on Nonlocal prior and gLASSO. Result from
gLASSO is based on tuning parameter chosen as the average of 20 cross-validation value.
All results are averaged among 20 replications.

Sensitivity FNR Specificity FPR
Nonlocal prior 86.96% 13.04% 65.85% 34.15%

gLASSO 86.96% 13.04% 70.73% 29.27%

(a) Prediction accuracy result summary

Average model size TR FR
Nonlocal prior 1.25 79.09% 20.91%

gLASSO 12.82 80.91% 19.09%

(b) Overall prediction performance comparison. TR represents for total
correct prediction rate, FR represents for total incorrect prediction rate.
Detailed definition explained in chapter.

Deviance
Nonlocal prior -23.97

gLASSO -21.15

(c) Average deviance by Nonlocal
prior and gLASSO.

It is defined as

TPR(sensitivity) =
TP

TP + FN
,

and false negative rate (FNR)=1-sensitivity. True negative rate (TNR), also called specificity

is related to the test’s ability to correctly delete patients without the condition. Definition

is expressed as

TNR(specificity) =
TN

TN + FP
,

and false positive rate (FPR)=1-specificity. To measure prediction power of the model,

higher sensitivity and specificity means better prediction power. In Table 4.5 (b), true rate

(TR) is the percentage for all correct prediction, expressed by TR = TP+TN
TP+FP+TN+FN and

false rate(FR)=1-TR. Again, we would expect high TR for the model with good prediction

performance.
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From the prediction result in Table 4.5, we can see that nonlocal prior and gLASSO has

the same sensitivity, so they have the same performance in predicting the positive result.

And gLASSO shows more accurate result when predicting negative result since gLASSO has

higher specificity. When comparing overall prediction performance in Table 4.5 (b), gLASSO

has higher correct prediction rate than nonlocal prior (in terms of TR in the table), with 2%

difference. In most cases, nonlocal prior recommends a simpler model. The averaged model

size for nonlocal prior is 1.25 and gLASSO contains 12.82 covariates on average. Nonlocal

prior is only slightly underperformed than gLASSO but with a much simpler model.

We also compare the goodness of fit in model fitting, measured by deviance. Here, deviance

is defined as −2(logLike − logLike sat), where logLike is the log-likelihood for the fitted

model and logLike sat is the log-likelihood for the saturated model. Result is listed in Table

4.5 (c). Similarly as before, numbers are averaged among 20 replications. Nonlocal prior

shows smaller deviance, which means better fitting.

We now apply our model with full data set, the recommended model would contain two genes,

gene 493 and gene 1884. gLASSO with tuning parameter λ given by cross-validation agrees

with model size 8. Compared with gLASSO, nonlocal prior Bayesian method recommends

a simpler model.

4.5 Conclusion

The unique characteristic of nonlocal prior provides us with a new model selection method

in generalized linear model, which could efficiently eliminate unnecessary covaraites and lead

to a parsimonious model. Convergence rate is derived under some attainable assumptions.

Laplace approximation is applied to overcome calculation difficulty.
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Based on application and simulation result, our proposed nonlocal prior method leads to a

simpler interpretation of the model and coefficients without added issue of over selection.

Based on application result, our method is comparable with gLASSO in terms of prediction

rate, but results in a simpler model. Simulation result shows our proposed method could

identify the true model with less non significant covariates included in the model, compared

with gLASSO and empirical Bayesian LASSO. Also, our method shows better goodness of

fit in model fitting.

The proposed method is well defined in theory along with a clear algorithm. However, one

limitation for the method is intensive computing time. In application, the proposed method

is much slower than gLASSO especially when candidate dimension is large. In future study,

an efficient algorithm needs to be developed to improve this intensive computing issue.

4.6 Proof of theorem 3

[Jiang (2007)] provide general conditions for the prior to give a convergence rate of the

probability regarding the Hellinger distance between the posterior model and the true model.

We check the conditions are satisfied in our setting. In particular, it is enough to show

conditions (O) and (N) of [Jiang (2007)] are satisfied. Condition (O) limits the tail densities

of prior and Condition (N) defines the prior density on an approximation neighborhood.

In the following description of Condition (O), Kn is the same as the candidate dimension

pn. To be consistent with the notation with [Jiang (2007)], we use Kn to denote pn.
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4.6.1 Condition (O)

Let D(R) = 1 + R · sup|h|≤R|a′(h)| · sup|h|≤R|ψ(h)| for any R > 0. Define r̄n as maximal

model size, which satisfy 1 ≤ r̄n < Kn. There exist some Cn > 0 such that

r̄n log(1/ε2n) ≺ nε2n (4.9)

r̄n logKn ≺ nε2n (4.10)

r̄n logD(r̄nCn) ≺ nε2n (4.11)

Furthermore, for all large enough n, the following two equations hold:

π(|γ| > r̄n) ≤ e−4nε2n (4.12)

and for all γ such that |γ| ≤ r̄n, for all j ∈ γ,

π(|βj | > Cn|γ) ≤ e−4nε2n (4.13)

4.6.2 Condition (N)

Assume that a sequence of models γn exists such that, as n increases,

∑
j 6∈γn

|β∗j | ≺ ε2n (4.14)

and for any sufficiently small η > 0, there exists Nη such that, for all n > Nη, we have

π(γ = γn) ≥ e−nε
2
n/8 (4.15)
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and

π
(
βγ ∈M (γn, η) |γ = γn

)
≥ e−nε

2
n/8 (4.16)

where M (γn, η) =
(
β∗j ± ηε

2
n/|γn|

)
j∈γn

.

4.6.3 Verification of Conditions (O) and (N) for nonlocal prior

We first check condition (O).

(4.9) and (4.10) are satisfied automatically by (C 1) and (C 2) in Assumption 1. Recall

Kn = pn. By setting r̄n = pn − 1, 1 ≤ r̄n < Kn. rn is the prior expectation of model size.

π(|γ| > r̄n) = π(|γ| = pn) =

(
rn
Kn

)Kn
, (4.17)

logπ(|γ| = pn) = Knlog

(
rn
Kn

)
≤ −4nε2n (4.18)

by (C 6) in Assumption 1 so that (4.12) holds.

Next we need to show π(|βj | > Cn|γ) ≤ e−4nε2n holds.

π(|βj | > c|γ) ≤M

∫ ∞
c

β2exp

{
− β2

2B̃n

}
dβ (4.19)

=
(
MB̃n

)(−β) exp

{
− β2

2B̃n

}∣∣∣∞
c

+

∫ ∞
c

exp

{
− β2

2B̃n

}
dβ


< M ′

c exp

{
− c2

2B̃n

}
+

1

c
exp

{
− c2

2B̃n

} (4.20)

= M ′
(
c+

1

c

)
exp

{
− c2

2B̃n

}
.
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In (4.19), M is the normalization constant when taking marginal distribution from the joint

distribution. M ′ in (4.20) is MB̃n. If c = Cn = 2
√
B̃nnε2n and nε2n � 1 with B̃n bounded,

M ′
(
c+

1

c

)
exp

{
− c2

2B̃n

}
≤ exp

{
−nε2n

}
.

Take ε′n = εn/2, we can get

π(|βj | > Cn|γ) ≤ e−4nε′2n (4.21)

so that (4.13) is satisfied. Also condition (4.11) is satisfied with Cn = 2
√
B̃nnε2n by assump-

tion (C 3). Thus, Condition (O) is checked.

Now, we verify Condition (N) for nonlocal prior.

Take the sequence of models γn such that, for each n, γ = γn reaches its infimum in

4(rn) = infγ:|γ|=rn
∑
j:j 6∈γ |β∗j |. Then

∑
j 6∈γn |β

∗
j | = 4(rn) ≺ ε2n. For the condition on

prior π[β ∈ (β∗j ± ηε
2
n/rn)j∈γn |γn]:

(a) if for any j ∈ γn, 0 is not covered by interval (β∗j ± ηε
2
n/rn),

π[β ∈ (β∗j ± ηε
2
n/rn)j∈γn |γn] ≥ |2πM−1

γn |
−1

2 e−0.5·1τ β̄
TMγnβ̄(ηε2n/rn)rn

∏
i

β̄2
i

= T1 ·
∏
i

β̄2
i .

Here β̄ is some intermediate value making the density achieving its minimum over (β∗j ±

ηε2n/rn)j∈γn . Also, we denote |2πM−1
γn |
−1

2 e−0.5·1τ β̄
T Aγnβ̄(ηε2n/rn)rn as T1. Define c1, c2,

c3 as positive constants, and c2 > c1. We need to show T1
∏
i β̄

2
i � e−c2nε

2
n . Since
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[Jiang (2007)] showed T1 � e−c1nε
2
n with (C 5) holds, it is sufficient to show

e−c1nε
2
n
∏
i

β̄2
i � e−c2nε

2
n

which implies
∏
i β̄

2
i � e−(c2−c1)nε2n . Consequently, we need to show

∏
i β̄

2
i � e−c3nε

2
n .

Without loss of generality, suppose βi is positive then the minimum of βi is β∗i − η
ε2n
rn

, so∏
i β̄

2
i >

∏
i(β
∗
i − η

ε2n
rn

)2. Now our question is to show
∏
i(β
∗
i − η

ε2n
rn

)2 � e−cnε
2
n . For this, it

is enough to show the order for

(
η
ε2n
rn

)2

since β∗i is constant. That is, we want to show

∏(
η
ε2n
rn

)2

=

(
η
ε2n
rn

)2rn

� e−cnε
2
n (4.22)

Since rn log 1
ε2n
≤ pn log 1

ε2n
≺ nε2n and rn log rn ≤ pn log pn ≺ nε2n holds by (C 1) and (C

2), we can derive −2rn log

(
η
ε2n
rn

)
≺ cnε2n, which implies e

2rn log

(
η
ε2n
rn

)
� e−cnε

2
n . This is

equivalent to (4.22).

(b) if there is at least one j, such that 0 is covered by interval (β∗j ± ηε
2
n/rn) where j ∈ γn.

We can separate the index set into two groups, the first group corresponding with intervals

not cover 0, denote as I1, all other index belongs to group I2. Consider ε close to 0, denote

ε = (ε, ε, . . . , )|γn| such that
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π[βj ∈ (β∗j ± ηε
2
n/rn)j∈γn |γn]

≥π[∩j∈I1
(
βj ∈ (β∗j ± ηε

2
n/rn)

)
∩(

∩j∈I2

(
βj ∈ (β∗j − ηε

2
n/rn,−ε) ∪

(
ε, β∗j + ηε2n/rn

)))
|γn] (4.23)

≥|2πM−1
γn |
−1/2e−0.5εTMγnε

(
η
ε2n
rn
− 2ε

)rn
ε2rn (4.24)

The inequality in (4.24) holds, since density function of β goes to 0 as β is close to 0, so f(ε)

can be very small when ε is very small. With the constraint limn→∞
∑pn
j=1 |β

∗
j | < ∞, we

know that βj is bounded for any j. In this case, we can always find very small ε such that

f(ε) is smaller than any f(β) in the stated interval.

εTMγnε ≤ rnε
2B(rn), so e−0.5εTMγnε ≥ e−0.5rnε

2B(rn), with bounded B(rn) and ε → 0,

this term can be bounded away from below. For ε2rn , need to show ε2rn is not smaller than

e−cnε
2
n , that is

ε2rn � e−cnε
2
n ,

ε � e
−cnε

2
n

2rn .

Also, we need ε is smaller than
ε2n
rn

in order, since
ε2n
rn

is the interval width. Following is how
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to show this may hold. By (C 1) and (C 2), we have

rnlog
rn
ε2n
≺ nε2n

log
rn
ε2n
≺ nε2n

rn
(4.25)

e
−nε

2
n

rn ≺ ε2n
rn

(4.26)

(4.26) can be derived from (4.25) since we have
nε2n
rn
→∞ from (C 2) in Assumption 1. The

logic here is, if A
B → 0 and B →∞, then (B − A)→∞ and eA−B → 0, which is eA ≺ eB .

Since
nε2n
rn
→∞, we can find some small ε such that ε ≥ e

−cnε
2
n

2rn . Also, we consider such ε is

small enough so that ε ≤ ε2n
rn

.

(4.26) also implies

(
ε2n
rn

)rn
� e−cnε

2
n . Also, ε ≤ ε2n

rn
implies at least 2ε is an order of

ε2n
rn

so that

(
η
ε2n
rn
− 2ε

)
= O

(
ε2n
rn

)
, then

(
η
ε2n
rn
− 2ε

)rn
� e−cnε

2
n holds as a result of(

ε2n
rn

)rn
� e−cnε

2
n . Thus, condition π(βγ ∈M(γn, η)|γ = γn) ≥ e−nε

2
n in (4.16) is checked.

Next check inequality π(γ = γn) ≥ e−nε
2
n/8 in (4.15). Notice that γn is chosen such that

|γn| = rn, so π(γ = γn) = ( rnKn
)rn(1 − rn

Kn
)Kn−rn , since rn

Kn
≺ 1 by (C 4), we have

logπ(γ = γn) ∼ rnlog rn
Kn
≥ −rnlogKn since rnlogrn is positive, and rnlogKn ≺ nε2n by (C

4) and (C 2), so π(γ = γn) ≥ e−nε̃
2
n/8 by taking ε̃n = εn/

√
8.

If we take ε′n = εn/
√

8, the inequality in (4.21) still holds. So we can apply εn replaced by

ε′n in Theorem 1, so that the Hellinger neighborhood will take a radius
√

8ε′n. Condition

(N) is checked.
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4.6.4 Proof of theorem 1

By checking conditions at Verification of Conditions (O) and (N) for nonlocal prior,

Theorem 1 holds as a result of Theorem 4 from [Jiang (2007)].
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