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ABSTRACT 
 

TOWARDS UNDERSTANDING CROP YIELD SYSTEMIC RISK AND ITS IMPLICATION 
FOR CROP INSURANCE CHOICES  

 
By 

 
Xuche Gong 

 
Area based insurance contracts have long been offered to crop producers as an option for risk 

management. However, the take-up rate for such programs remains low. In this paper, utilizing 

RMA unit-level corn yield data and NASS county-level corn yield data, we investigate roles of 

systemic risk and premiums subsidies in producers’ choices between area and individual 

insurance contracts. We find that, on average, systemic risk explains slightly more than one third 

of total unit yield variability. Systemic risk is high in the Southern and Western Corn Belts and 

its geographic distribution matches well the geographic distribution of county yield variance. 

Systemic risk increases with both beneficial and stressful heat accumulations, frequency of 

drought, and land quality. We also study the lower bound on subsidy rate for area insurance 

when normalized by that for individual insurance such that the expected net returns to area yield 

insurance equals the expected net return of individual yield insurance. We find that this lower 

bound is negatively correlated with systemic risk. Producers in high systemic risk counties will 

require fewer subsidies to possibly choose area insurance over individual insurance. Moreover, 

we find that were transfer maximization a producer’s only concern then the current area subsidy 

rate might be a major deterrent for producers to choose low coverage level area insurance. 

Raising the area insurance subsidy rate might be a feasible option to induce more area insurance 

demand because the transfer-equalizing area insurance subsidy rate exceeds 100% for only a 

small fraction of producers.  
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CHAPTER 1. INTRODUCTION 
 

 
Since its inception in the 1930s, the Federal Crop Insurance Program (FCIP) has continuously 

supplied agricultural producers in the United States with insurance products to manage 

production risks. The program has undergone especially rapid expansion since the enactment of 

the Federal Crop Insurance Reform Act of 1994, which substantially increased premium subsidy 

levels. In 2018, crop insurance covered about 85.6% of planted acres for the ten major crops and 

the ratios were even higher for corn, soybeans and wheat1, providing agricultural producers with 

a solid safety net. However, the high participation rate comes at a cost. According to the Risk 

Management Agency (RMA), FCIP has accounted for about $7.3 billion per annum direct costs 

over the period of 2009 through 2018, making it the most expensive agricultural commodity 

program in the U.S.2 In addition, studies have found that these significant subsidy levels have 

led to some moral hazard problems, such as changes in farmers’ input use, crop choice, and 

acreage decision (Quiggin et al. 1993; Smith and Goodwin 1996; Babcock and Hennessy 1996; 

Goodwin et al. 2004; Goodwin and Smith 2013; Yu et al 2017), and have caused substantial 

deadweight loss imposed on taxpayers (Lusk 2016). As a result, the federal government has long 

sought to reduce insurance program costs. A widely proposed option is for government to 

subsidizes only the systemic risk part, leaving the rest to the market (Miranda 1991; Miranda and 

Glauber 1997; Coble and Barnett 2008; Dismukes et al. 2010; Goodwin and Smith 2013; 

Congressional Budget Office 2017). 

 
1 The ten major crops are: corn, cotton extra-long staple, cotton upland, oats, rice, sorghum, soybeans, sugar beets, 
sugarcane, and wheat. Planted acres data are from USDA’s 2008 Acreage Survey and failed acres are also included. 
Insurance data are from RMA’s 2018 Summary of Business. 
2 Direct cost equals total premiums paid by farmers minus underwriting gains paid to Approved Insurance Providers 
and total indemnities paid to farmers. Data are from RMA “Direct Costs of Federal Crop Insurance Program” at 
https://www.rma.usda.gov/-/media/RMAweb/AboutRMA/Program-Budget/18cygovcost.ashx?la=en. 

https://www.rma.usda.gov/-/media/RMAweb/AboutRMA/Program-Budget/18cygovcost.ashx?la=en
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Systemic risk in crop insurance markets refers to strong correlation between individual 

losses and stems from the fact that yield losses are generally driven by natural disasters that 

affect a wide range of farms within a given region (Miranda and Glauber 1997). The existence of 

systemic risk justifies a government’s subsidies in crop insurance market to the extent that this 

risk form undermines an insurers’ ability to diversify risk across individuals, forces insurers to 

set premiums at prohibitively high levels, and eventually leads the insurance market to 

breakdown (Duncan and Myers 2000). However, some studies have also found that if 

government sufficiently refunds loss caused by systemic risk via some form of area based 

reinsurance contracts or commodity programs, then private insurers might be capable of dealing 

with the remaining idiosyncratic risks even in the presence of asymmetric information problems, 

as occurs in other property insurance markets (Miranda and Glauber 1997; Duncan and Myers 

2000; Coble and Barnett 2008). The Congressional Budget Office (2017) has also proposed to 

subsidize only area-based insurance products as one option to reduce the budgetary costs of crop 

insurance programs. The potential for efficiently separating systemic risk from idiosyncratic risk 

depends on our ability to characterize and measure systemic risk.  

Systemic risk is also closely related to demand for area-based insurance. Unlike individual-

based insurance, area-based insurance makes indemnity payments based on easily observed area 

yield or revenue loss, which are generally not influenced by the insured. Thus, costs caused by 

information asymmetry and high administration costs can be substantially reduced (Halcrow 

1949; Miranda 1991; Smith et al. 1994; Skees et al. 1997; Mahul 1999; Vercammen 2000; 

Barnett et al 2005; Shen and Odening 2013). As a result, the USDA introduced the first area 

yield insurance program and area revenue program in 1990s, and the 2014 Farm Bill further 

introduced several county-level revenue-based insurance plans (Goodwin and Hungerford 
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2014). However, demand for area-based insurance remains low. As shown by Figure 1, the share 

of area insurance insured acres in total insured acres was less than 5% in most years and was 

less than 20% even at its peak year, 2006. Experiences from area-based insurance programs and 

weather index programs in other countries suggest that the existence of basis risk might be an 

important deterrent to participating in area-based insurance programs (Elabed et al. 2013; Shen 

and Odening 2013; Clarke 2016; Hill et al. 2016; Jensen et al. 2018). Basis risk exists when 

individual yield is poor but area average yield is good. Basis risk decreases when the correlation 

between individual loss and area loss increases, i.e., when systemic risk increases. Thus, precise 

estimates of systemic risk should also help to identify whether basis risk is the major deterrence 

to the demand for area-based insurance in the United States. 

However, given the importance of estimating systemic risk in controlling crop insurance 

costs, comparatively few studies have investigated it. Applying a large size farm-level yield 

data, Barnett et al. (2005) estimated correlations between farm and county corn yields to range 

between 0.36 (in Michigan) and 0.82 (in Illinois). Using simulated data, Dismukes et al. (2010) 

reported average nationwide farm-state revenue correlations to be 0.55 for corn, 0.54 for 

soybeans, and 0.39 for cotton. Claassen and Just (2011) found that systemic variation explains 

about 48% of farm yield variation for corn in Illinois and 40% for wheat in Dakotas. However, 

these studies only investigated the correlation between individual yield and area yield. From the 

perspective of risk management, a more relevant issue is the correlation between individual loss 

and area loss. As the only exception, Zulauf et al. (2013) examined farm-level yield and revenue 

loss that is systemic with yield and revenue loss at the county, state, and nation levels. They 

found farm loss systemic with area loss to be large, and to decline as the geographical aggregate 

level increased. However, Zulauf et al. (2013) just simply calculated the ratio of the yield and 
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revenue loss at high geographical aggregate levels over the yield and revenue loss at farm level, 

and did not model the relationship between farm loss and area loss. 

In this article, we apply Miranda’s (1991) single-factor capital market model to develop a 

novel theoretically grounded approach to measuring and decomposing systemic risk. We also 

decompose this systemic component into three components. In his innovative study, Miranda 

(1991) decomposed farm-level yield variability into a systemic component that is correlated 

with area yield and an idiosyncratic component that is uncorrelated with area yield. Miranda 

(1991) measured systemic risk by the beta, which measures the sensitivity of unit yield 

deviations from expected value to area yield deviations from expected value. This has become a 

workhorse procedure for crop insurance analysis, and also farm-level policy studies more 

generally because farm-level data are generally unavailable and the single factor stochastic 

structure is very useful when simulating farm-level data from county-level data (Mahul 1999; 

Barnett et al. 2005; Coble and Dismukes 2008; Carriquiry et al. 2008; Cooper et al. 2012).  

However, although the beta captures well the co-movement between farm yield and county 

yield, it does not convey the relative importance of systemic risk with respective to idiosyncratic 

risk, which is particularly important when determining risk structure in the crop insurance 

market. In this article, we characterize systemic risk as the proportion of unit yield variation that 

can be explained by county yield related variation. This measurement, the R2 statistic, is always 

bounded between 0 and 1. As we will show, the statistic is determined not only by i) the beta, 

but also ii) county yield variance and iii) a farm’s idiosyncratic yield variance.  

Using a large-scale unit-level dataset, we estimate county-level systemic risk for 589 

counties across the Midwest. We find that, on average, systemic risk explains about one-third of 

unit yield variation and is larger in U.S. Southern and Western Corn Belt counties. Moreover, 
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we find that the geographic distribution of systemic risk well matches the geographic 

distribution of county yield variance. This finding is consistent with a strand of literature that 

finds yield correlations to be higher in extreme weather years (Okhrin et al. 2013; Goodwin and 

Hungerford 2014; Tack and Holt 2016; Du et al. 2017), as counties with higher yield variance 

generally experience more adverse weather shocks.   

In addition to measurement and decomposition, we extend our analysis framework to 

investigate how systemic risk is determined by county growing conditions. Du et al. (2017) 

proposed and empirically tested a model linking county-level yield-yield dependence with 

growing conditions. They found a substitution effect between soil and benign water availability 

levels, but a complementarity effect between soil and beneficial heat variables. Our work 

extends theirs by investigating how farm-county yield-yield correlation varies with county 

weather conditions and soil quality. We find that systemic risk is significantly increasing in 

county heat accumulations (both beneficial and stressful) and drought appearance. Land quality 

also has a significantly positive effect on systemic risk. Our study also investigates how 

growing condition variables affect systemic risk through each of the three systemic risk 

components and how these mediation effects reinforce or counteract each other. 

A policy issue that cannot be separated from the character of systemic risk is how to set cost-

effective subsidies for area-based programs when subsidized individual yield insurance contracts 

are also available. As shown in Figure 1, a substantial decline in the share of area insured acres 

occurred in 2009. This decline coincided with a reduction in area insurance premium subsidy 

rates and increase in enterprise unit insurance premium subsidy rates in compliance with the 

2008 Farm Bill. The above observation provides anecdotal evidence on the importance of 

premium subsidies rates on area-based insurance demand. However, though many studies have 

found that crop insurance demand is sensitive to subsidy levels, most of these have focused on 
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individual-based insurance (Coble et al., 1996; Goodwin et al. 2004; Shaik et al., 2008; 

O’Donoghue, 2014; Du et al., 2016).  

Among the few exceptions, Deng et al. (2007) found that after considering the large 

premium wedge between individual yield insurance and premium subsidies, area yield 

insurance was preferred to individual yield insurance by cotton producers but not by soybeans 

producers. In a theoretical mean-variance preference model, Bulut et al. (2012) found that 

whenever premium rates for area insurance and individual insurance are both actuarially fair 

then producers should demand full individual insurance and no area insurance. If area insurance 

is fully subsidized, then area insurance might replace a portion of individual insurance. 

Although these studies have documented the importance of subsidies in determining area 

insurance demand, questions remains open as to whether current area insurance subsidy rates 

provide producers with sufficiently high compensation for their risk exposure under area-based 

insurance and whether raising area insurance subsidy rates is a viable option for increasing area 

insurance demand.  

Moreover, no study has explored the relationship between systemic risk and the effective 

area insurance subsidy rate that will induce producers to possibly choose area insurance over 

individual insurance. Areas with a high systemic risk and low effective area insurance subsidy 

rate are ideal places to grow area insurance demand because area insurance provides growers in 

these regions with comparatively good risk protection and they require lower subsidy levels to 

participate in the program.   

Recognizing that individual insurance provides better risk coverage in comparison with 

area insurance, in this paper the task we set ourselves is to calibrate the threshold relative area 

subsidy rate (TRASR) at which individual insurance and area insurance provide the same 

expected level of transfer the grower. Thus, below TRASR even risk-neutral growers will not 
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choose area insurance over individual insurance. TRASR thus provides the lower bound on the 

ratio of area insurance subsidy rate over individual insurance subsidy rate needed to possibly 

induce producers to choose area insurance over individual insurance. We then compare TRASR 

to the ratio of the current area insurance subsidy rate over the current individual insurance 

subsidy rate to ascertain whether the current subsidy rate structures deter producers from 

choosing area insurance. We also check whether an area insurance subsidy rate no less than 

100%, i.e., providing free area insurance or better, is a necessary condition for most producers 

to choose area insurance over individual insurance. Finally, we relate TRASR to systemic risk in 

order to establish whether there exists a good match between the risk protection function of area 

insurance and the effective area insurance subsidy rate.  

We find that while the current insurance subsidy rate structure does deter most producers 

from choosing low coverage level area yield insurance contracts, this is not true for high 

coverage level area yield insurance contracts. For most producers, the minimum required area 

insurance subsidy rate to possibly choose area insurance over individual insurance is less than 

100%, suggesting that when transfer maximization is the grower’s only concern then raising 

area insurance subsidy rates to levels lower than 100% might be a feasible option to induce 

more area insurance demand. We also find a negative correlation between systemic risk and 

TRASR, which supports our belief that high systemic risk counties are indeed ideal areas to 

implement area insurance.  
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CHAPTER 2. CONCEPTUAL FRAMEWORK 
 
 
In this section, we present the conceptual framework about how we model systemic risk and how 

we calibrate the TRASR. Some important propositions are also derived.  

2..1 Modeling Systemic Risk 

Our focus is on yield risk and so we assume throughout that price is non-random. In order to 

avoid unnecessary notation, we set output price equal to 1 and ignore it henceforth. Following 

Miranda’s (1991) one factor capital market model, we apply the following model to characterize 

the relationship between unit yield and county yield,  

(1) 𝑦𝑦�𝑖𝑖 = 𝜇𝜇𝑖𝑖 + 𝛽𝛽𝑖𝑖(𝑦𝑦�𝑐𝑐 − 𝜇𝜇𝑐𝑐) + 𝜃𝜃𝑖𝑖𝜀𝜀𝑖𝑖.  
Here, 𝑦𝑦�𝑖𝑖 and 𝑦𝑦�𝑐𝑐 are individual yield and county yield variables, respectively, while 𝜇𝜇𝑖𝑖 =

E(𝑦𝑦�𝑖𝑖), 𝜇𝜇𝑐𝑐 = E(𝑦𝑦�𝑐𝑐), E(𝜀𝜀𝑖𝑖) = 0, Var(𝜀𝜀𝑖𝑖) = 𝜎𝜎𝜀𝜀2 = 1, and Cov(𝑦𝑦�𝑐𝑐, 𝜀𝜀𝑖𝑖) = 0.  

By way of equation (1), we decompose the unit yield deviation from expectation into a 

systemic component, 𝛽𝛽𝑖𝑖(𝑦𝑦�𝑐𝑐 − 𝜇𝜇𝑐𝑐), which is correlated with county yield, and an idiosyncratic 

part, 𝜃𝜃𝑖𝑖𝜀𝜀𝑖𝑖, which is uncorrelated with county yield. The coefficient 𝛽𝛽𝑖𝑖 measures the sensitivity 

of unit yield deviations from expectation to county yield deviations from expectation. Since 

𝛽𝛽𝑖𝑖 ≤ 0 is uncommon for crop production, we assume that 𝛽𝛽𝑖𝑖 > 0 throughout the article. Also, 

since E(𝜀𝜀𝑖𝑖) = 0 and 𝜎𝜎𝜀𝜀2 = 1, we can set 𝜃𝜃𝑖𝑖 ≥ 0 without loss of generality. Now 𝜃𝜃𝑖𝑖2 =

Var(𝜃𝜃𝑖𝑖𝜀𝜀𝑖𝑖) measures the idiosyncratic part of unit yield variance while 𝜎𝜎𝑖𝑖2 = Var(𝑦𝑦�𝑖𝑖 − 𝜇𝜇𝑖𝑖) =

𝛽𝛽𝑖𝑖2Var(𝑦𝑦�𝑐𝑐 − 𝜇𝜇𝑐𝑐) + 𝜃𝜃𝑖𝑖2Var(𝜀𝜀𝑖𝑖) = 𝛽𝛽𝑖𝑖2𝜎𝜎𝑐𝑐2 + 𝜃𝜃𝑖𝑖2, where 𝜎𝜎𝑖𝑖2 = Var(𝑦𝑦�𝑖𝑖) and 𝜎𝜎𝑐𝑐2 = Var(𝑦𝑦�𝑐𝑐). Thus, by 

assuming no correlation between county yield and a unit’s idiosyncratic yield, unit yield variance 

can also be decomposed into two uncorrelated parts: the product of the square of unit yield’s 

sensitivity to county yield and county yield variance; and unit’s idiosyncratic yield variance. If 
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𝜃𝜃𝑖𝑖 = 0, then there is no idiosyncratic risk and unit yield is completely determined by county 

yield in all moments.  

Systemic risk, labelled as 𝑅𝑅𝑖𝑖2, is then modeled as the fraction of unit yield variation that can 

be explained by county yield related variation, 

(2) 𝑅𝑅𝑖𝑖2 =
Var[𝛽𝛽𝑖𝑖(𝑦𝑦�𝑐𝑐 − 𝜇𝜇𝑐𝑐)]

Var(𝑦𝑦�𝑖𝑖 − 𝜇𝜇𝑖𝑖)
=
𝛽𝛽𝑖𝑖2Var(𝑦𝑦�𝑐𝑐)

Var(𝑦𝑦�𝑖𝑖)
=

𝛽𝛽𝑖𝑖2𝜎𝜎𝑐𝑐2

𝛽𝛽𝑖𝑖2𝜎𝜎𝑐𝑐2 + 𝜃𝜃𝑖𝑖2 
=

1
1 + 𝜃𝜃𝑖𝑖2/𝛽𝛽𝑖𝑖2𝜎𝜎𝑐𝑐2

.  

Unlike 𝛽𝛽𝑖𝑖, which is widely used as measure of farm-level systemic risk in crop insurance and 

farm-level policy studies (Miranda 1991; Mahul 1999; Coble et al. 2000; Barnett et al. 2005; 

Coble and Dismukes 2008; Carriquiry et al. 2008; Cooper et al. 2012), 𝑅𝑅𝑖𝑖2 is bounded between 

0 and 1, and provides a straightforward measure of how important systemic risk relative to 

idiosyncratic risk. Values 𝑅𝑅𝑖𝑖2 > 0.5 suggest that systemic risk is the major risk source faced by 

the producer so that area insurance might have the potential to reduce more than half of total 

risks.  

Equation (2) also shows that systemic risk can be decomposed into three more fundamental 

components: i) idiosyncratic yield variance, 𝜃𝜃𝑖𝑖2; ii) county yield variance, 𝜎𝜎𝑐𝑐2; and iii) the square 

of unit yield’s sensitivity to county yield, 𝛽𝛽𝑖𝑖2. For a given insurance unit, the magnitude of 

systemic risk is jointly determined by these three components, where Proposition 1 provides 

simple inferences that can be extracted from the equation. 

Proposition 1. Ceteris paribus, systemic risk is i) increasing in county yield variance, 𝜎𝜎𝑐𝑐2, 

and also in the square of unit yield’s sensitivity to county yield, 𝛽𝛽𝑖𝑖2, ii) decreasing in a unit’s 

idiosyncratic yield variance, 𝜃𝜃𝑖𝑖2. 2F

3  

 
3 Equation (2) also conveys that systemic risk equals 0 when the unit yield is uncorrelated with county yield or 
when county yield has no variability. It equals 1 whenever no idiosyncratic risk occurs. As these these extreme cases 
are unlikely to happen in real life, they are omitted in our discussion.  
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Proposition 1 provides some indicators for which counties and insurance units are likely to 

have high systemic risk. The most discernible clue is that, ceteris paribus, systemic risk will be 

higher in counties with larger county yield variance. Since county yield data can be easily 

accessed from National Agricultural Statistical Service (NASS), we can readily identify these 

counties. Meanwhile, although idiosyncratic yield variance data are generally not available, we 

might expect that units in regions where heterogeneous approaches to production are taken are 

more likely to display large idiosyncratic yield variance and so low systemic risk. In particular, 

there is reason to believe that producers who adopt innovative production practices will have a 

lower systemic risk so that subsidized area-based insurance will discourage technology adoption. 

2.2. Systemic Risk and County Growing Conditions 

A strand of literature has found that yield correlations are higher in extreme weather years 

(Okhrin et al. 2013; Goodwin and Hungerford 2014; Tack and Holt 2016; Du et al. 2017). Du et 

al (2017) has also found that yield on better-quality land is more resilient to bad weather. In this 

subsection we check whether systemic risk also vary with county growing conditions.  

Rather than directly model systemic risk as a function of county growing condition 

variables, labelled as 𝑍𝑍𝑐𝑐, we allow each of the three components of systemic risk to be a 

function of 𝑍𝑍𝑐𝑐. The aggregate effect of growing conditions on systemic risk can be obtained as 

follows. Letting 𝜏𝜏𝑖𝑖2 = 𝜃𝜃𝑖𝑖2/𝛽𝛽𝑖𝑖2𝜎𝜎𝑐𝑐2, then 𝑅𝑅𝑖𝑖2 = 1/(1 + 𝜏𝜏𝑖𝑖2) and 𝑅𝑅𝑖𝑖2/(1 − 𝑅𝑅𝑖𝑖2) = 1/𝜏𝜏𝑖𝑖2. Taking the 

natural log of both sides yields  

(3) ln�
𝑅𝑅𝑖𝑖2

1 − 𝑅𝑅𝑖𝑖2
� = ln�

1
𝜏𝜏𝑖𝑖2
� = − ln(𝜏𝜏𝑖𝑖2) = − ln�

𝜃𝜃𝑖𝑖2(𝑍𝑍𝑐𝑐)
𝛽𝛽𝑖𝑖2(𝑍𝑍𝑐𝑐)𝜎𝜎𝑐𝑐2(𝑍𝑍𝑐𝑐)� 

= 2ln[𝜎𝜎𝑐𝑐(𝑍𝑍𝑐𝑐)] + 2ln[𝛽𝛽𝑖𝑖(𝑍𝑍𝑐𝑐)] − 2ln[𝜃𝜃𝑖𝑖(𝑍𝑍𝑐𝑐)], 
 



 
 

11 
 

which shows that the logistic transformation of 𝑅𝑅𝑖𝑖2 can be taken to be the sum of three functions 

of 𝑍𝑍𝑐𝑐. Since the logistic transformation is monotonic, then the effect of 𝑍𝑍𝑐𝑐 on 𝑅𝑅𝑖𝑖2 shares its 

sign with the effect of 𝑍𝑍𝑐𝑐 on ln[𝑅𝑅𝑖𝑖2/(1 − 𝑅𝑅𝑖𝑖2)].  

Equation (3) also shows that effects of county growing conditions on systemic risk pass 

through 𝜎𝜎𝑐𝑐,  𝛽𝛽𝑖𝑖, and 𝜃𝜃𝑖𝑖. Thus, for a given county growing condition variable, if it has the same 

effect on 𝜎𝜎𝑐𝑐 and 𝛽𝛽𝑖𝑖, then these two effects are concordant with each other. However, were a 

growing condition to have the same effects on 𝜃𝜃𝑖𝑖 and either one or other of 𝜎𝜎𝑐𝑐 and 𝛽𝛽𝑖𝑖 then 

these two effects would offset. 

2.3. A Brief Introduction of Individual Insurance Contract and Area Insurance Contract 

Before introducing our definition of TRASR, we first outline how individual-based insurance 

and area-based insurance work. For simplification, we only study TRASR for yield-based 

insurance programs. Multiple Peril Crop Insurance (MPCI) is picked to represent the individual 

yield based insurance while Area Yield Protection (AYP) is picked to represent the area yield 

based insurance because they are the major individual yield insurance program and area yield 

insurance programs currently implemented in the United States. A similar analysis can be 

conducted for revenue-based insurance programs, but empirics would be more demanding 

because a stochastic price variable correlated with both farm and area average yields would 

need to be accounted for. All premium, subsidy and indemnity variables are measured in bushels 

per acre (bu./ac). 

Producer 𝑖𝑖 in county 𝑐𝑐 with random yield 𝑦𝑦�𝑖𝑖 who chooses to purchase MPCI will 

receive indemnity payments in the form  

(4) 𝑛𝑛�𝑖𝑖 = max(𝜙𝜙𝑖𝑖𝑦𝑦�𝑖𝑖 − 𝑦𝑦�𝑖𝑖, 0),  
where 𝑛𝑛�𝑖𝑖 is the realized MPCI indemnity payments, 𝑦𝑦�𝑖𝑖 is an insurer’s reference ‘expected’ 

unit yield, or the guaranteed unit yield, as established by the RMA, and 𝜙𝜙𝑖𝑖 is the MPCI 
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coverage level chosen by the producer with 𝜙𝜙𝑖𝑖 ∊ {0.5, … , 0.85} where evaluations are in 5% 

increments. Thus, MPCI would pay producers indemnities when realized individual yield is 

lower than the policy protection amount, 𝜙𝜙𝑖𝑖𝑦𝑦�𝑖𝑖. The lower the realized individual yield, the 

higher the indemnity amount.  

Similarly, AYP pays indemnities when county average yield is lower than policy protected 

county yield level, but its indemnity function takes a more complicated form,  

(5) 𝑛𝑛�𝑐𝑐 = 𝜌𝜌max �min �
𝑦𝑦�𝑐𝑐𝜙𝜙𝑐𝑐 − 𝑦𝑦�𝑐𝑐
𝜙𝜙𝑐𝑐 − 𝑙𝑙

,𝑦𝑦�𝑐𝑐� , 0�,  

where 𝑛𝑛�𝑐𝑐 is the realized AYP indemnity payment, 𝑦𝑦�𝑐𝑐 is the guaranteed county average yield, 

𝑦𝑦�𝑐𝑐 is the realized county average yield, 𝜙𝜙𝑐𝑐 is the AYP coverage level with 𝜙𝜙𝑐𝑐 ∊ {0.7, … , 0.9} 

where again evaluations are in 5% increments. A protection factor, 𝜌𝜌, with 𝜌𝜌 ∊ [0.8, 1.2], is 

introduced to allow the producer to adjust the amount of AYP indemnities. This is important 

because county yield losses do not perfectly match individual yield losses, see 𝛽𝛽𝑖𝑖 in equation 

(1), and the protection factor allows a grower’s choice of AYP indemnities to better match 

expected individual losses. A loss limit factor, l, with fixed value 0.18, is also introduced to 

scale up AYP payments where the min (∙,∙) function ensures that no additional indemnity is 

paid whenever the realized county yield is below 18% of the expected county yield. Overall, 

empirical data show that AYP generally pays more indemnities than MPCI under the same 

guaranteed yields, coverage choices, and realized yields. This is so because the indemnity 

amount is scaled up by 𝜌𝜌/(𝜙𝜙𝑐𝑐 − 𝑙𝑙) , but it also charges higher initial premiums as a result 

(Sherrick and Schnitkey 2016). 

2.4. Calibrating Threshold Relative Area Subsidy Rate 

In this subsection we illustrate the importance of premium subsidy in inducing producers to 

choose AYP over MPCI. We will also derive our model for TRASR. 



 
 

13 
 

Since MPCI provides better risk protection than AYP, under the actuarially fair premium 

assumption, risk averse growers will always choose MPCI over AYP whenever no premium 

subsidy is provided. To see this, let 𝜋𝜋𝑖𝑖 and 𝜋𝜋𝑐𝑐 denote, respectively, MPCI and AYP premium 

rates, while letting 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑐𝑐 denote respective MPCI and AYP subsidy rates. Under the 

actuarial fairness assumption, i.e., 𝜋𝜋𝑖𝑖 = E(𝑛𝑛�𝑖𝑖) and 𝜋𝜋𝑐𝑐 = E(𝑛𝑛�𝑐𝑐), the expected net returns from 

purchasing MPCI and AYP are  

(6) E(𝑦𝑦�𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛) = E[𝑦𝑦�𝑖𝑖 + 𝑛𝑛�𝑖𝑖 − (1 − 𝑠𝑠𝑖𝑖)𝜋𝜋𝑖𝑖] = E(𝑦𝑦�𝑖𝑖) + 𝑠𝑠𝑖𝑖E(𝑛𝑛�𝑖𝑖),  
and  

(7) E(𝑦𝑦�𝑖𝑖𝑛𝑛𝑒𝑒𝑡𝑡) = E[𝑦𝑦�𝑖𝑖 + 𝑛𝑛�𝑐𝑐 − (1 − 𝑠𝑠𝑐𝑐)𝜋𝜋𝑐𝑐] = E(𝑦𝑦�𝑖𝑖) + 𝑠𝑠𝑐𝑐E(𝑛𝑛�𝑐𝑐),  
respectively. Thus, when no premium subsidy is offered, i.e., when 𝑠𝑠𝑖𝑖 = 𝑠𝑠𝑐𝑐 = 0, then the 

expected net returns from purchasing MPCI and AYP are the same and equal E(𝑦𝑦�𝑖𝑖). Risk averse 

growers then will never choose AYP over MPCI as MPCI provides better risk protection. 

Only when premium subsidies are introduced and the condition 𝑠𝑠𝑐𝑐E(𝑛𝑛�𝑐𝑐) > 𝑠𝑠𝑖𝑖E(𝑛𝑛�𝑖𝑖) is 

satisfied, might there be a positive probability that risk averse growers will choose AYP over 

MPCI. The relative subsidy rate  

(8) 𝑠̂𝑠 = 𝑠𝑠𝑐𝑐/𝑠𝑠𝑖𝑖 = E(𝑛𝑛�𝑖𝑖)/E(𝑛𝑛�𝑐𝑐) 
provides the lower bound of the relative subsidy rate that is required to make a risk-neutral 

producer indifferent between choosing AYP and MPCI. We call 𝑠̂𝑠 the threshold relative area 

subsidy rate (TRASR), below which even risk-neutral growers will always choose MPCI over 

AYP. A risk-neutral producer with TRASR exceeding 1 would require the AYP subsidy rate to 

surpass the MPCI subsidy rate in order to be indifferent between these two insurance contracts. 

By substituting in MPCI and AYP indemnity functions, we can develop an explicit form for 

TRASR. First note that by assuming the yield expectations established by RMA perfectly 

matches the actual unit yield expectation and county yield expectation, i.e., 𝑦𝑦�𝑖𝑖 = 𝜇𝜇𝑖𝑖 and 𝑦𝑦�𝑐𝑐 =

𝜇𝜇𝑐𝑐, equations (1) and (4) then jointly imply 𝑛𝑛�𝑖𝑖 = max[𝛽𝛽𝑖𝑖(𝜇𝜇𝑐𝑐 − 𝑦𝑦�𝑐𝑐) − 𝜇𝜇𝑖𝑖(1 −𝜙𝜙𝑖𝑖) − 𝜃𝜃𝑖𝑖𝜀𝜀𝑖𝑖, 0], 
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which presents MPCI indemnities as a function of county yield and idiosyncratic yield. Now the 

MPCI indemnity function can be rewritten as  

(9) 𝑛𝑛�𝑖𝑖 = �𝛽𝛽𝑖𝑖(𝜇𝜇𝑐𝑐 − 𝑦𝑦�𝑐𝑐) − 𝜇𝜇𝑖𝑖(1 − 𝜙𝜙𝑖𝑖) − 𝜃𝜃𝑖𝑖𝜀𝜀𝑖𝑖,   whenever   𝑦𝑦�𝑐𝑐 < M𝑖𝑖(𝜀𝜀𝑖𝑖);
0,                                                            whenever   𝑦𝑦�𝑐𝑐 ≥ M𝑖𝑖(𝜀𝜀𝑖𝑖),  

where we use M𝑖𝑖(𝜀𝜀𝑖𝑖) = 𝜇𝜇𝑐𝑐 − [𝜇𝜇𝑖𝑖(1 − 𝜙𝜙𝑖𝑖) + 𝜃𝜃𝑖𝑖𝜀𝜀𝑖𝑖]/𝛽𝛽𝑖𝑖 to denote the trigger value of 𝑦𝑦�𝑐𝑐 below 

which MPCI pays strictly positive indemnities. Here, 𝛽𝛽𝑖𝑖 can be roughly treated as the scaling 

factor for the MPCI indemnity function as it scales the difference between county yield 

expectation and the realized county yield.  

 Similarly, AYP indemnity function can be rewritten as  

(10) 𝑛𝑛�𝑐𝑐 = �
𝜇𝜇𝑐𝑐𝜌𝜌,                       whenever   𝑦𝑦�𝑐𝑐 ≤ M𝑐𝑐

𝑙𝑙 ;            
𝛼𝛼𝑐𝑐(𝜇𝜇𝑐𝑐𝜙𝜙𝑐𝑐 − 𝑦𝑦�𝑐𝑐),      whenever   M𝑐𝑐

𝑙𝑙 < 𝑦𝑦�𝑐𝑐 < M𝑐𝑐;    
0,                           whenever   𝑦𝑦�𝑐𝑐 ≥ M𝑐𝑐,            

  

where we use M𝑐𝑐 = 𝜇𝜇𝑐𝑐𝜙𝜙𝑐𝑐 to denote the trigger value for 𝑦𝑦�𝑐𝑐 below which AYP pay strictly 

positive indemnities and we use M𝑐𝑐
𝑙𝑙 = 𝜇𝜇𝑐𝑐𝑙𝑙 to denote the lower bound on 𝑦𝑦�𝑐𝑐 below which AYP 

pays its maximum indemnity level. We further use 𝛼𝛼𝑐𝑐 = 𝜌𝜌/(𝜙𝜙𝑐𝑐 − 𝑙𝑙) to denote the inverse of the 

slope of the second segment of AYP indemnity function, which can also be treated as the scaling 

factor for AYP indemnity payments. Since 0.8 ≤ 𝜌𝜌 ≤ 1.2, 0.7 ≤ 𝜙𝜙𝑐𝑐 ≤ 0.9 and 𝑙𝑙 = 0.18 it 

follows that 𝛼𝛼𝑐𝑐 ≥ 0.8/0.72 and so 𝛼𝛼𝑐𝑐 > 1 always hold. 

With some simple transformations, the expected indemnities for MPCI and AYP can be 

expressed as 

(11)     E(𝑛𝑛�𝑖𝑖) = 𝛽𝛽𝑖𝑖� 𝐹𝐹(𝑦𝑦�𝑐𝑐)𝑑𝑑𝑦𝑦�𝑐𝑐
M𝑖𝑖(𝜀𝜀𝑖𝑖)

0
𝑑𝑑𝑑𝑑(𝜀𝜀𝑖𝑖),  

and  

(12) E(𝑛𝑛�𝑐𝑐) = 𝛼𝛼𝑐𝑐 � 𝐹𝐹(𝑦𝑦�𝑐𝑐)𝑑𝑑𝑦𝑦�𝑐𝑐
M𝑐𝑐

M𝑐𝑐
𝑙𝑙

,  

respectively, where 𝐹𝐹(∙) is the cumulative density function of 𝑦𝑦�𝑐𝑐 and 𝐺𝐺(∙) is the cumulative 

density function of 𝜀𝜀𝑖𝑖. Thus, TRASR can be rewritten as 
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(13) 𝑠̂𝑠 =
E(𝑛𝑛�𝑖𝑖)
E(𝑛𝑛�𝑐𝑐) =

𝛽𝛽𝑖𝑖 ∫ ∫ 𝐹𝐹(𝑦𝑦�𝑐𝑐)𝑑𝑑𝑦𝑦�𝑐𝑐
M𝑖𝑖(𝜀𝜀𝑖𝑖)
0 𝑑𝑑𝑑𝑑(𝜀𝜀𝑖𝑖)

𝛼𝛼𝑐𝑐 ∫ 𝐹𝐹(𝑦𝑦�𝑐𝑐)𝑑𝑑𝑦𝑦�𝑐𝑐
M𝑐𝑐
M𝑐𝑐
𝑙𝑙

,  

which presents TRASR as a function of two random variables, 𝑦𝑦�𝑐𝑐 and 𝜀𝜀𝑖𝑖, and a set of 

parameters. We will study this relationship by both formal analysis and numerical simulation in 

the sections that follow. In particular, we seek to understand how TRASR is affected by systemic 

risk. A natural log version of equation (13) is adopted to simplify the analysis, i.e., 

(14) 
ln(𝑠̂𝑠) = ln(𝛽𝛽𝑖𝑖) + ln ��� 𝐹𝐹(𝑦𝑦�𝑐𝑐)𝑑𝑑𝑦𝑦�𝑐𝑐

M𝑖𝑖(𝜀𝜀𝑖𝑖)

0
𝑑𝑑𝑑𝑑(𝜀𝜀𝑖𝑖)� − ln(𝛼𝛼𝑐𝑐)

− ln �� 𝐹𝐹(𝑦𝑦�𝑐𝑐)𝑑𝑑𝑦𝑦�𝑐𝑐
M𝑐𝑐

M𝑐𝑐
𝑙𝑙

�. 
 

Thus, TRASR can be roughly decomposed into four parts: MPCI’s indemnity scaling factor, 

unscaled MPCI’s expected indemnity payment, AYP’s indemnity scaling factor, and unscaled 

AYP’s expected payments. 

2.5. TRASR and Systemic Risk 

A comparison of (14) and (3) is in order because terms can be matched in an informative way. 

Although TRASR is not a direct function of systemic risk, it is a function of unit yield’s 

sensitivity to county yield, 𝛽𝛽𝑖𝑖, unit idiosyncratic yield standard deviation, 𝜃𝜃𝑖𝑖, and metrics 

related to county yield variance.4 Differentiating ln(𝑠̂𝑠) with respect to 𝜃𝜃𝑖𝑖 yields 

(15) 
𝑑𝑑ln(𝑠̂𝑠)
𝑑𝑑𝜃𝜃𝑖𝑖

= −
∫ 𝐹𝐹�M𝑖𝑖(𝜀𝜀𝑖𝑖)�𝜀𝜀𝑖𝑖𝑑𝑑𝑑𝑑(𝜀𝜀𝑖𝑖)

∫∫ 𝐹𝐹(𝑦𝑦�𝑐𝑐)𝑑𝑑𝑦𝑦�𝑐𝑐
M𝑖𝑖(𝜀𝜀𝑖𝑖)
0 𝑑𝑑𝑑𝑑(𝜀𝜀𝑖𝑖)

> 0.  

In order to demonstrate the inequality note that 𝐹𝐹(M𝑖𝑖(𝜀𝜀𝑖𝑖)) is a decreasing function of 𝜀𝜀𝑖𝑖 so 

that 𝐹𝐹(M𝑖𝑖)𝜀𝜀𝑖𝑖 puts larger weights on negative values of 𝜀𝜀𝑖𝑖 and smaller weights on positive 

 
4 Both ∫∫ 𝐹𝐹(𝑦𝑦�𝑐𝑐)𝑑𝑑𝑦𝑦�𝑐𝑐

M𝑖𝑖(𝜀𝜀𝑖𝑖)
0 𝑑𝑑𝑑𝑑(𝜀𝜀𝑖𝑖) and ∫ 𝐹𝐹(𝑦𝑦�𝑐𝑐)𝑑𝑑𝑦𝑦�𝑐𝑐

M𝑐𝑐
M𝑐𝑐
𝑙𝑙  can be seen as integrations of cumulative distribution functions and so 

can be seen as a generalized measure of a variable’s variance where an increase represents a mean-preserving 
spread. In that light, the first expression can be taken to represent the variability of unit yield and the second can be 
taken to represent the variability of county yield. 
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values of 𝜀𝜀𝑖𝑖. By 𝐸𝐸(𝜀𝜀𝑖𝑖) = 0 and the covariance inequality we then have 

∫ 𝐹𝐹�M𝑖𝑖(𝜀𝜀𝑖𝑖)�𝜀𝜀𝑖𝑖𝑑𝑑𝑑𝑑(𝜀𝜀𝑖𝑖) < 0 and 𝑑𝑑ln(𝑠̂𝑠)/𝑑𝑑𝜃𝜃𝑖𝑖 > 0. 

 Inequality (15) asserts that TRASR is increasing in a unit’s idiosyncratic yield standard 

deviation. This is because in deriving inequality (15) we have held 𝐺𝐺(𝜀𝜀𝑖𝑖) fixed. Thus, by 

equation (1), ceteris paribus, increase in 𝜃𝜃𝑖𝑖 only increases the absolute value of 𝑦𝑦�𝑖𝑖 − 𝜇𝜇𝑖𝑖, or the 

absolute values of losses (when 𝑦𝑦�𝑖𝑖 − 𝜇𝜇𝑖𝑖 < 0) and gains (when 𝑦𝑦�𝑖𝑖 − 𝜇𝜇𝑖𝑖 > 0) incurred by the 

producer, but has no effect on the probability of incurring losses and gains. Since larger losses 

lead to more indemnity payments while larger gains have no effect on indemnity payments, then 

the expected MPCI indemnity payment will increase. Moreover, since a change in a unit’s 

idiosyncratic yield standard deviation has no effect on the expected AYP indemnity payment, 

TRASR will then increase.  

    Inequality (15) also reveals the fact that area-based insurance might be costly to implement 

in areas where unit yield does not match well with county yield. Producers in these areas are 

still exposing to risks under the area-based insurance program and thus would require a high 

subsidy rate to compensate the risk exposure.  

Similarly, differentiating ln(𝑠̂𝑠) with respect to 𝛽𝛽𝑖𝑖 yields 

(16) 
𝑑𝑑ln(𝑠̂𝑠)
𝑑𝑑𝛽𝛽𝑖𝑖

=
1
𝛽𝛽𝑖𝑖

+
𝜇𝜇𝑖𝑖(1 −𝜙𝜙𝑖𝑖)∫ 𝐹𝐹�M𝑖𝑖(𝜀𝜀𝑖𝑖)�𝑑𝑑𝑑𝑑(𝜀𝜀𝑖𝑖)

𝛽𝛽𝑖𝑖2 ∫ ∫ 𝐹𝐹(𝑦𝑦�𝑐𝑐)𝑑𝑑𝑦𝑦�𝑐𝑐
M𝑖𝑖(𝜀𝜀𝑖𝑖)
0 𝑑𝑑𝑑𝑑(𝜀𝜀𝑖𝑖)

+
𝜃𝜃𝑖𝑖∫ 𝐹𝐹�M𝑖𝑖(𝜀𝜀𝑖𝑖)�𝜀𝜀𝑖𝑖𝑑𝑑𝑑𝑑(𝜀𝜀𝑖𝑖)

𝛽𝛽𝑖𝑖2 ∫ ∫ 𝐹𝐹(𝑦𝑦�𝑐𝑐)𝑑𝑑𝑦𝑦�𝑐𝑐
M𝑖𝑖(𝜀𝜀𝑖𝑖)
0 𝑑𝑑𝑑𝑑(𝜀𝜀𝑖𝑖)

.  

The sign of equation (16) is undetermined because the first two terms on the right-hand side 

are positive but the third is negative as ∫ 𝐹𝐹�M𝑖𝑖(𝜀𝜀𝑖𝑖)�𝜀𝜀𝑖𝑖𝑑𝑑𝑑𝑑(𝜀𝜀𝑖𝑖) < 0. An increase in 𝛽𝛽𝑖𝑖 increases 

MPCI’s indemnity scaling factor but has ambiguous effect on unscaled MPCI indemnity 

payment. By equation (9), on the one hand, changes in 𝛽𝛽𝑖𝑖 might change the indemnity amount 

received by the producer where the sign of this change depends on the sign of 𝜇𝜇𝑐𝑐 − 𝑦𝑦�𝑐𝑐. On the 

other hand, changes in 𝛽𝛽𝑖𝑖 might also change the trigger value, M𝑖𝑖(𝜀𝜀𝑖𝑖), thus changing the 
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probability of receiving indemnities. Overall, the sign of equation (16) depends on both the 

distribution of county yield and the distribution of a unit’s idiosyncratic yield. But when 𝜃𝜃𝑖𝑖 =

0, then 𝑑𝑑ln(𝑠̂𝑠)/𝑑𝑑𝛽𝛽𝑖𝑖 > 0, i.e., when there is no idiosyncratic risk, then TRASR is increasing in 

unit yield sensitivity to county yield.  

Equation (14) conveys limited information on how TRASR depends on county yield 

standard deviation as 𝜎𝜎𝑐𝑐 does not enter the 𝑠̂𝑠 function, directly at least. This is because in 

presenting the function of 𝑠̂𝑠, we have fixed the county yield distribution, 𝐹𝐹(𝑦𝑦�𝑐𝑐), where the 

distribution captures the variable’s moments. Thus, it is difficult to study the relationship 

between TRASR and county yield standard deviation in this framework. But a simple example 

can help illustrate how TRASR changes with county yield standard deviation that are caused by 

changes in the scale of losses but not by changes in the probability of incurring losses or gains.  

Ceteris paribus, by equation (9) and (10), one-unit reduction in 𝑦𝑦�𝑐𝑐 will increase MPCI 

indemnity payments by 𝛽𝛽𝑖𝑖 and increase AYP indemnity payments by 𝛼𝛼𝑐𝑐. As loss probabilities 

do not change, then when 𝛼𝛼𝑐𝑐 > 𝛽𝛽𝑖𝑖, E(𝑛𝑛�𝑐𝑐) will increase by more than E(𝑛𝑛�𝑖𝑖) and TRASR will 

decrease. Thus, when holding loss probabilities fixed, the effect of changes in county yield 

standard deviation on TRASR depends on the relative size of AYP’s indemnity scaling factor 

and MPCI’s indemnity scaling factor. Given that previous studies estimated a clustering of 𝛽𝛽𝑖𝑖 

around 1 and AYP participants generally pick 𝜌𝜌 = 1.2, for most producers 𝛼𝛼𝑐𝑐 > 𝛽𝛽𝑖𝑖 is more 

reasonable than 𝛼𝛼𝑐𝑐 ≤ 𝛽𝛽𝑖𝑖. Thus, for most producers, TRASR is likely to decrease with an 

increase in county yield variance when holding county yield loss probability fixed.  

Proposition 2. Ceteris paribus, TRASR is increasing in unit’s idiosyncratic yield standard 

deviation. While the effect of a unit yield’s sensitivity to TRASR depends on both the 

distribution of county yield and the distribution of a unit’s idiosyncratic yield, when no 
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idiosyncratic risk occurs then TRASR is strictly increasing in unit yield’ sensitivity to county 

yield. The effect of county yield standard deviation on TRASR depends on the relative size of 

AYP’s indemnity scaling factor and MPCI’s indemnity scaling factor. When AYP’s indemnity 

scaling factor is larger than MPCI’s indemnity scaling factor then TRSAR is decreasing in 

county yield standard deviation.  

Proposition 2 establishes that the relationship between TRASR and systemic risk depends 

on a large set of parameters, including the distributions of county yield and unit’s idiosyncratic 

yield. But it asserts that TRASR is higher for producers with a large idiosyncratic risk and for 

producers in counties with lower county yield variance. Since systemic risk is decreasing in a 

unit’s idiosyncratic yield variance and increasing in county yield variance, there might exist a 

negative correlation between TRASR and systemic risk. This relationship has an important 

policy implication. That is, AYP has the potential to simultaneously provide good risk protection 

and save subsidy costs in counties where systemic risk is high. By calibrating with appropriate 

data, we can easily target these counties.  

2.6. TRASR and Yield Expectations  

We now turn to analyze how yield expectations affect TRASR. Differentiating 𝑠̂𝑠 with respect 

to 𝜇𝜇𝑖𝑖 provides 

(17) 
𝑑𝑑ln(𝑠̂𝑠)
𝑑𝑑𝜇𝜇𝑖𝑖

= −
(1 − 𝜙𝜙𝑖𝑖)∫𝐹𝐹�M𝑖𝑖(𝜀𝜀𝑖𝑖)�𝑑𝑑𝑑𝑑(𝜀𝜀𝑖𝑖)

𝛽𝛽𝑖𝑖 ∫ ∫ 𝐹𝐹(𝑦𝑦�𝑐𝑐)𝑑𝑑𝑦𝑦�𝑐𝑐
M𝑖𝑖(𝜀𝜀𝑖𝑖)
0 𝑑𝑑𝑑𝑑(𝜀𝜀𝑖𝑖)

< 0,  

i.e., TRASR is decreasing in individual yield expectation. Please note the revealing presence of 

(1 − 𝜙𝜙𝑖𝑖) in the expression. Relationship (17) may appear at first to be counterintuitive because 

for a given distribution of unit yield, an increase in mean unit yield should increase both the 

probability of receiving MPCI indemnities and the amount of MPCI indemnities received, while 
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have no effect on AYP indemnities. Thus, expected MPCI indemnity payments should increase 

and TRASR should increase as well, not decrease. 

The conflict arises because expected yield in our model is not exogenously given but is 

determined by yield distributions. To see this, by equation (1), when holding county yield, 

county expected yield, and a unit’s idiosyncratic yield constant, an one unit increase in unit 

expected yield will also increase realized unit yield by one unit. Now, the MPCI indemnities 

will decrease by 1 − 𝜙𝜙𝑖𝑖 (or 0), and the probability of receiving MPCI indemnities will also 

decrease because the unit yield distribution has shifted to the right by one unit while the 

indemnity trigger value only shifted to the right by 𝜙𝜙𝑖𝑖 < 1 units. Thus, an increase in the unit 

yield expectation will decrease the expected MPCI indemnity payment while having no effect 

on AYP indemnity payments. As a result, TRASR will decrease with an increase in unit 

expected yield. 

The above analysis also reveals a bias induced by proportional coverage in the current crop 

insurance system. Since crop insurance pays indemnities based on shortfalls from the 

guaranteed yield which is proportional to expected yield, producers with higher expected yield 

might need to experience a large yield loss, which generally has a smaller probability of 

occurrence on better land, in order to receive indemnities, especially when they choose a low 

coverage level. Thus, productive producers who have high yield expectations would prefer to 

either not insure or insure at high coverage levels, i.e., to plunge (Tobin 1958). This analysis 

might help explain the observation that producers in Central Corn Belt where yields are high 

generally choose high coverage levels. Insurance incentives would be very different where 

absolute yield shortfalls insured. 
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Remark. Plunging behavior is more likely for choices on better quality land than on worse 

quality land. 

Similarly, taking the first derivative of ln(𝑠̂𝑠) with respect to 𝜇𝜇𝑐𝑐, we get 

(18) 
𝑑𝑑ln(𝑠̂𝑠)
𝑑𝑑𝜇𝜇𝑐𝑐

=
∫𝐹𝐹�M𝑖𝑖(𝜀𝜀𝑖𝑖)�𝑑𝑑𝑑𝑑(𝜀𝜀𝑖𝑖) 

∫∫ 𝐹𝐹(𝑦𝑦�𝑐𝑐)𝑑𝑑𝑦𝑦�𝑐𝑐
M𝑖𝑖(𝜀𝜀𝑖𝑖)
0 𝑑𝑑𝑑𝑑(𝜀𝜀𝑖𝑖)

+
𝑙𝑙𝑙𝑙(M𝑐𝑐

𝑙𝑙 )

∫ 𝐹𝐹(𝑦𝑦�𝑐𝑐)𝑑𝑑𝑦𝑦�𝑐𝑐
M𝑐𝑐
M𝑐𝑐
𝑙𝑙

−
𝜙𝜙𝑐𝑐𝐹𝐹(M𝑐𝑐)

∫ 𝐹𝐹(𝑦𝑦�𝑐𝑐)𝑑𝑑𝑦𝑦�𝑐𝑐
M𝑐𝑐
M𝑐𝑐
𝑙𝑙

.  

The sign of equation (18) is undetermined because the first two right-hand terms are 

positive while the third is negative. This is because, similar to the effect of changes in unit yield 

expectation, changes in county expected yield also change the distribution of county yield and 

thus have multiple effects on the expected AYP indemnity payments. By equation (1), holding 

unit yield, unit expected yield, and unit idiosyncratic yield fixed, a one unit increase in 𝜇𝜇𝑐𝑐 

increases 𝑦𝑦�𝑐𝑐 by one unit. By equation (10), then the maximum indemnity level 𝜇𝜇𝑐𝑐𝜌𝜌 increases 

and the range, 𝑦𝑦�𝑐𝑐  ≤ 𝜇𝜇𝑐𝑐𝜌𝜌, within which the producer receives the maximum AYP indemnity 

level, is also enlarged. The increase in 𝜇𝜇𝑐𝑐 also widens the range 𝜇𝜇𝑐𝑐𝑙𝑙 < 𝑦𝑦�𝑐𝑐 < 𝜇𝜇𝑐𝑐𝜙𝜙𝑐𝑐 within 

which AYP pays positive indemnities, but the indemnity level now decreases by 𝛼𝛼𝑐𝑐(1 − 𝜙𝜙𝑐𝑐). 

Thus, an increase in county expected yield expectation has multiple effects on expected AYP 

indemnity payments that might offset each other in signs and its effect on TRASR is 

undetermined.  

Proposition 3. Ceteris paribus, TRASR is decreasing in individual unit expected yield 

because an increase in individual unit expected yield decreases both the probability of receiving 

MPCI indemnity payments and the amount of MPCI indemnities received given that a payment 

is made. The effect of an increase in county yield expectation on TRASR is ambiguous.  

Proposition 3 asserts that TRASR is lower for producers with higher expected yield, i.e., for 

producers with higher historical yields as yield expectation is largely determined by yield 

history. Thus, productive producers may choose AYP over MPCI at a reasonable subsidy rate. 
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2.7. TRASR and Coverage Levels and Protection Factor 

Under the actuarially fair premium assumption, it is obvious that an increase in MPCI coverage 

level will increase TRASR because it increases expected MPCI indemnity payment and has no 

effect on expected AYP indemnity payments. But the relationship between AYP coverage level 

and TRASR is not so clear.  

Taking the first-order derivative of ln(𝑠̂𝑠) with respect to 𝜙𝜙𝑐𝑐, we get 

(19) 
𝑑𝑑ln(𝑠̂𝑠)
𝑑𝑑𝜙𝜙𝑐𝑐

= −
𝐹𝐹(M𝑐𝑐)𝜇𝜇𝑐𝑐

∫ 𝐹𝐹(𝑦𝑦�𝑐𝑐)𝑑𝑑𝑦𝑦�𝑐𝑐
M𝑐𝑐
M𝑐𝑐
𝑙𝑙

+
𝜌𝜌

𝛼𝛼𝑐𝑐(𝜙𝜙𝑐𝑐 − 𝑙𝑙)2
.  

The first right-hand term in equation (19) is negative while the second is positive. Thus, the 

sign of equation (19) is undetermined. This is because, by equation (14), an increase in 𝜙𝜙𝑐𝑐 has a 

positive effect on the AYP’s indemnity scaling factor related part but has a negative effect on the 

unscaled AYP indemnity payments part. The overall effect is then determined by the relative size 

of these two effects.  

Finally, an increase in protection factor will decrease TRASR because it increases AYP 

indemnity scaling factor and then increases expected AYP indemnity payments.  

Proposition 4. Ceteris Paribus, TRASR is increasing in MPCI coverage level and is 

decreasing in AYP protection factor. The relationship between TRASR and AYP coverage level is 

unclear. 

Proposition 4 asserts that TRASR is higher for producers who are willing to choose higher 

MPCI coverage levels because now MPCI provides more indemnity payments. Given the fact 

that average coverage levels have increased over the past decade (Schnitkey and Sherrick 2014), 

AYP might need to set a high subsidy rate in order to attract producers to choose AYP over 

MPCI. The negative relationship between TRASR and the AYP protection factor suggests that 

allowing producers to choose a protection factor larger than the current maximum level might 
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induce more producers to choose AYP over MPCI. However, as Miranda (1991) has discussed, 

setting the protection level too high would be politically infeasible and would raise the level and 

variability of total indemnity outlays. 
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CHAPTER 3. DATA AND VARIABLES 
 
 
Unit corn yield data have been obtained from the 2008 unit-level RMA records. These data are 

four-to-ten-year yield historical yield data used to establish Actual Production History (APH) 

that is used to set up unit-level yield expectations. The historical yields are continuous unless 

the crop being insured is not planted in a certain year (Edwards 2011). If at least four successive 

yield records are not available, a transition yield proportional to the ten-year average county 

yield is substituted in for each missing year. In our study, we only keep units with ten actual 

yield records within the period 1998 through 2007 because i) including units with transition 

yield records will introduce artificial correlation between county yield and unit yield and thus 

bias our estimate of systemic risk, ii) including years before 1998 will result in a year sample 

that is only comprised of units that did not plant in some years between 1998 and 2007 and will 

also result in few unit observations in some years that might not well capture the temporal 

systemic risk in some counties.5 We also drop units that adopt the irrigation practice and units 

in counties where the irrigation rate6 exceeds 20%7 because systematic difference might exist 

between irrigated land and non-irrigated land, and also between counties where irrigation rate is 

high and where irrigation rate is low. Table 11 in Appendix B summarizes observation losses 

after each data screening step and after merging with county yield data, weather data, and land 

quality data.  

County average corn yield data are from National Agricultural Statistical Service (NASS). 

Only counties in twelve traditional major corn production states in the Midwest and Great 

 
5 Only keep yield records in the most recent ten previous years are also the common practice in studies adopting 
RMA unit-level data, see Deng et al. (2007) and Claassen and Just (2011). 
6 Using RMA unit-level data, county irrigation rate is defined as the ratio of the number of units that adopt irrigation 
practice over the total number of insurance units in that county.   
7 Dropping counties whose irrigation rate exceeds 30% yields similar results.  
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Plains are kept in this study: Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, 

Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin. These states accounted for more 

than 88% of total corn production in the United States in 2018.8 For the purpose of getting 

enough observations to estimate county yield trend, we drop counties without 50 successive 

yearly yield records over 1958-2007. To make our study county representative, we further drop 

counties with less than 30 insurance units.  

We construct two sets of weather variables to reflect county-level weather conditions. The 

first set contains growing degree days (GDD) and stressful degree days (SDD), which are 

widely used in the literature to measure heat conditions (Schlenker et al. 2006; Schlenker and 

Roberts 2009; Du et al. 2015). Heat data are from National Oceanic and Atmospheric 

Administration (NOAA) and are recorded at station level. To construct GDD and SDD, we first 

define i) the daily maximum temperature (in degrees Celsius), 𝑇𝑇𝑐𝑐,𝑑𝑑,𝑡𝑡
𝑀𝑀𝑀𝑀𝑀𝑀, for county c as the mean 

of the highest temperatures recorded by all weather stations within that county in day 𝑑𝑑 in year 

𝑡𝑡, and ii) the daily minimum temperature, 𝑇𝑇𝑐𝑐,𝑑𝑑,𝑡𝑡
𝑀𝑀𝑀𝑀𝑀𝑀, for county 𝑐𝑐 as the mean of the lowest 

temperatures recorded by all weather stations. For each county, GDD, labeled as 𝐺𝐺𝑐𝑐, is defined 

as the ten-year average of total beneficial degrees in the range [10 ℃, 30 ℃] over the growing 

season (Neild and Newman 1990) while SDD, labeled as 𝑆𝑆𝑐𝑐, is defined as the ten-year average 

of the sum of excess degrees that are greater than 32.22 ℃ over the growing season (Schlenker 

and Roberts, 2009). Specifically, 

(20) 
𝐺𝐺𝑐𝑐 =

1
10

� � �0.5 �min�max�𝑇𝑇𝑐𝑐,𝑑𝑑,𝑡𝑡
𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑙𝑙�,𝑇𝑇ℎ� + min ��max�𝑇𝑇𝑐𝑐,𝑑𝑑,𝑡𝑡

𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑙𝑙�,𝑇𝑇ℎ��
𝑑𝑑∈𝑀𝑀𝑡𝑡𝑡𝑡∈𝑌𝑌𝑡𝑡

− 𝑇𝑇𝑙𝑙�� , 
 

 
8 Production data are from Crop Production 2018 Summary, USDA, 2019. 
https://www.nass.usda.gov/Publications/Todays_Reports/reports/cropan19.pdf 

https://www.nass.usda.gov/Publications/Todays_Reports/reports/cropan19.pdf
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and 

(21) 𝑆𝑆𝑐𝑐 =
1

10
� � �0.5 �max(𝑇𝑇𝑐𝑐,𝑑𝑑,𝑡𝑡

𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑘𝑘) + max�𝑇𝑇𝑐𝑐,𝑑𝑑,𝑡𝑡
𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑘𝑘�� − 𝑇𝑇𝑘𝑘�

𝑑𝑑∈𝑀𝑀𝑡𝑡𝑡𝑡∈𝑌𝑌𝑡𝑡

,  

where 𝑇𝑇𝑙𝑙 = 10,𝑇𝑇ℎ = 30,𝑇𝑇𝑘𝑘 = 32.2, 𝑐𝑐 denotes county, 𝑀𝑀𝑡𝑡 denotes the set of days in the 

growing season (𝑀𝑀𝑡𝑡 = {𝑀𝑀𝑀𝑀𝑀𝑀, 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽, 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴}) in year 𝑡𝑡, and 𝑌𝑌𝑡𝑡 denotes the set of our 

sample weather data years (𝑌𝑌𝑡𝑡 = {1998,1979, … ,2007}).  

The second weather variable set measures the relative moisture in a county. We use the 

Palmer’s Z (PZ) index from NOAA to measure drought and excess moisture (Xu et al. 2013). 

PZ index measures the departure of monthly weather from the average moisture condition in a 

climate division level. PZ index within the range [-2, 2.5] is viewed as normal while below 

indicates severe drought and above 2.5 indicates severe wetness (Karl 1986; NOAA 2014). 

Since different parts of a county might be covered by different climate divisions, to transfer the 

climate division data into county level, we first calculate the ratio of county acres covered by 

each intersect climate division to get a weight metrics. We then time the monthly climate 

division PZ index with the associated weight and sum the products across all intersect climate 

divisions to get the monthly county-level PZ index, 𝑃𝑃𝑐𝑐,𝑚𝑚,𝑡𝑡. We define a drought variable,  

(22) 𝐷𝐷𝑐𝑐 = � � 𝐼𝐼𝑡𝑡�𝑃𝑃𝑐𝑐,𝑚𝑚,𝑡𝑡 < −2�
𝑚𝑚∈𝑀𝑀𝑡𝑡𝑡𝑡∈𝑌𝑌𝑡𝑡

,  

and a wetness variable, 

(23) 𝑊𝑊𝑐𝑐 = � � 𝐼𝐼𝑡𝑡�𝑃𝑃𝑐𝑐,𝑚𝑚,𝑡𝑡 > 2.5�
𝑚𝑚∈𝑀𝑀𝑡𝑡𝑡𝑡∈𝑌𝑌𝑡𝑡

,  

where 𝑚𝑚 denotes month and 𝐼𝐼𝑡𝑡 = 1 whenever the condition in the parentheses is satisfied and 

𝐼𝐼𝑡𝑡 = 0 otherwise. Thus, 𝐷𝐷𝑐𝑐 measures the frequency of severe short-term drought occurred in 

county c over 1998-2007, and 𝑊𝑊𝑐𝑐 measures the frequency of severe short-term wetness 

occurred in county c in the same time period.  
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Land quality data are from National Resource Conservation Service (NRCS). County land 

quality, labeled as 𝐿𝐿𝑐𝑐 , is defined as the fraction of all land that is in land capability classes 

(LCC) I or II in that county. There are eight LCCs in total, where classes I and II are most 

favorable for cultivation while classes higher than II at least have plural severe limitations for 

cultivation.9 Since there is little variation in land capability across years, we use the 2010 land 

capability as our measure of land quality for all sample years.  

Table 1 presents the descriptive statistics for our variables. The mean of yearly unit yield is 

149 bushels per acre and the standard deviation is 39.4 bushels per acre. Mean yearly county 

average yield is lower than mean yearly unit yield, suggesting that our unit sample might have 

over-weighted the number of high productivity farms. County yield also has a smaller standard 

deviation, as expected. The mean of GDD and SDD are 1,290 and 14.8, respectively, suggesting 

that on average, the accumulation of beneficial degrees is plentiful for corn growth and the 

appearance of excessive heat is rare. The mean of monthly severe drought occurrence is 4.72 

and the mean of monthly severe wetness occurrence is 5.53. Thus, severe drought and severe 

wetness do not occur often in our sample counties over the sample period. The large mean for 

severe wetness also suggests that there was an oversupply of moisture through 1998 to 2007. 

Mean fraction of county land in LCC I or LCC II is 47.3%, reflecting the fact that a large 

fraction of our sample counties’ land is favorable for cultivation. 

In addition to the descriptive statistics, in Figure 2 we also map the geographic distribution 

of weather variables and the land quality variable. Panels A and B show that GDD and SDD 

generally increase as one moves south. This trend is consistent with the fact that temperature 

increases as one moves south. SDD also increases as one moves west. Panel C shows that 

 
9 The classification scheme follows USDA’s description at 
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/technical/nra/?cid=nrcs143_014040 

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/technical/nra/?cid=nrcs143_014040
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counties in Western and Eastern Corn Belt generally experienced more severe drought than 

other counties while panel D shows that counties in the north part of Corn Belt generally 

experienced more severe wetness than counties in the south part of Corn Belt. Counties with a 

large fraction of good land, as shown by Panel E, are mainly located in the Northwestern and 

Southeastern Corn Belt states, especially in Iowa, Illinois, Indiana, and Western Ohio.  
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CHAPTER 4. EMPIRICAL RESULTS 
 
 

4.1. Measuring Systemic Risk 

Following equation (1), we establish the following empirical model to estimate systemic risk,  

(24) 𝑦𝑦�𝑖𝑖,𝑡𝑡 − 𝜇𝜇𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖(𝑦𝑦�𝑐𝑐,𝑡𝑡 − 𝜇𝜇𝑐𝑐,𝑡𝑡) + 𝜃𝜃𝑖𝑖𝜀𝜀𝑖𝑖,𝑡𝑡,  
where a constant term 𝛼𝛼𝑖𝑖 is introduced to ensure that the error term has zero expectation. Unit-

level systemic risk is estimated by the R-squared of OLS estimation, i.e., 𝑅𝑅𝑖𝑖2 =

𝛽𝛽𝑐𝑐2Var(𝑦𝑦�𝑐𝑐,𝑡𝑡 − 𝜇𝜇𝑐𝑐,𝑡𝑡) Var(𝑦𝑦�𝑖𝑖,𝑡𝑡 − 𝜇𝜇𝑖𝑖,𝑡𝑡)⁄ . However, since each insurance unit has only ten-year yield 

observations, OLS estimation with such a short time period would be highly imprecise. We 

instead estimate the county-level systemic risk by pooling together all units within a given 

county. The empirical model is now given by  

(25) 𝑦𝑦�𝑖𝑖,𝑡𝑡 − 𝜇𝜇𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑐𝑐 + 𝛽𝛽𝑐𝑐(𝑦𝑦�𝑐𝑐,𝑡𝑡 − 𝜇𝜇𝑐𝑐,𝑡𝑡) + 𝜃𝜃𝑖𝑖𝜀𝜀𝑖𝑖,𝑡𝑡,  
where 𝛼𝛼𝑐𝑐 and 𝛽𝛽𝑐𝑐 denote the county-level constant term and county-level unit yield’s 

sensitivity to county yield, respectively. County-level systemic risk, labelled as 𝑅𝑅𝑐𝑐2, is then 

measured by the R-squared of the OLS estimation for equation (25), i.e. 𝑅𝑅𝑐𝑐2 =

𝛽𝛽𝑐𝑐2Var(𝑦𝑦�𝑐𝑐,𝑡𝑡 − 𝜇𝜇𝑐𝑐,𝑡𝑡) Var(𝑦𝑦�𝑖𝑖,𝑡𝑡 − 𝜇𝜇𝑖𝑖,𝑡𝑡)⁄ .  

 To estimate equation (25), however, we need to first estimate the yearly unit yield 

expectation, 𝜇𝜇𝑖𝑖,𝑡𝑡, and the yearly county yield expectation, 𝜇𝜇𝑐𝑐,𝑡𝑡. It is commonly assumed that 

crop yield follows some time trend that establishes yield expectation. Following Deng et al. 

(2007), we employ the following log-linear model to estimate county yield trend for each county,  

(26) log(𝑦𝑦�𝑐𝑐,𝑡𝑡) = 𝜆𝜆𝑐𝑐,0 + 𝜆𝜆𝑐𝑐,1(2008 − 𝑡𝑡) + 𝑣𝑣𝑐𝑐,𝑡𝑡,  
where 𝜆𝜆𝑐𝑐,1 captures the inverse trend in percent yield change starting from 2008, or the 

difference in log yield expectation between year t and year 2008. NASS county yield data from 

1958 to 2007 are used to estimate equation (26) and county yield expectation for county c in year 

t is then calculated as 𝜇𝜇𝑐𝑐,𝑡𝑡 = 𝑦𝑦�𝑐𝑐,𝑡𝑡 = exp[𝜆̂𝜆𝑐𝑐,0 + 𝜆̂𝜆𝑐𝑐,1(2008 − 𝑡𝑡)].  



 
 

29 
 

For each insured unit, RMA sets up its yearly reference yield expectation by use of the unit’s 

APH yields, which equals the average of the last ten years’ actual yields. However, in our data, 

only 2008 APH yields are available. We proceed by assuming that unit yield expectation shares 

the same time trend with county yield expectation. Thus, the APHs for 1998 to 2007 are then 

calculated as 

(27) 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡 = 𝐴𝐴𝐴𝐴𝐻𝐻𝑖𝑖,2008 ∗ exp�𝜆̂𝜆𝑐𝑐,1(2008 − 𝑡𝑡)�,  
where 𝑡𝑡 ∈ {1998, 1999, … , 2007}.  

A concern with using APH yield as unit yield expectation is that the APH yield lags the true 

expected yield due to improved crop genetics and cultural practices (Edwards, 2012). To correct 

for this downward bias, RMA introduced the trend-adjusted APH yield in 2012. Basically, a 

trend adjustment factor is estimated for each crop and each county, which is equal to the 

estimated annual increase in NASS county yield. The trend adjusted factor is then used to scale 

up past actual yield records. Following this practice, we also calculate the trend-adjusted APH. 

Specially, the yearly county specific trend-adjustment factor, 𝑇𝑇𝐴𝐴𝑐𝑐,𝑡𝑡, is estimated as 

(28) 𝑇𝑇𝐴𝐴𝑐𝑐,𝑡𝑡 = (𝑦𝑦�𝑐𝑐,𝑡𝑡 − 𝑦𝑦�𝑐𝑐,1958)/(𝑡𝑡 − 1958),  
where 𝑦𝑦�𝑐𝑐,𝑡𝑡 is the yield prediction for county 𝑐𝑐 in year 𝑡𝑡 estimated by equation (26), and 

𝑦𝑦�𝑐𝑐,1958 is the 1958 actual yield for county 𝑐𝑐. After obtaining 𝑇𝑇𝐴𝐴𝑐𝑐,𝑡𝑡, the yield adjustment for the 

year 𝑡𝑡′ that is ahead of year 𝑡𝑡 then equals (𝑡𝑡 − 𝑡𝑡′ ) × 𝑇𝑇𝐴𝐴𝑐𝑐,𝑡𝑡. To illustrate, suppose we want to 

adjust the 2007 APH for unit 𝑖𝑖 in county 𝑐𝑐 and the trend adjustment factor for county 𝑐𝑐 in 

year 2007 is 𝑇𝑇𝐴𝐴𝑐𝑐,2007 = 2. Then the 2006, 2005, …, and 1997 actual yield of unit 𝑖𝑖 will be 

adjusted up by 2, 4, …, and 20 bushels per acre, respectively. The 2007 APH would be adjusted 

up by (2 + 4 + ⋯+ 20)/10 = 11 bushels per acre. The formula of APH with trend-adjusted 

can be summarized as 
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(29) 𝑇𝑇𝑇𝑇_𝐴𝐴𝐴𝐴𝐻𝐻𝑖𝑖,𝑡𝑡 =  𝐴𝐴𝐴𝐴𝐻𝐻𝑖𝑖,𝑡𝑡 +
1

10
�𝑗𝑗 × 𝑇𝑇𝑇𝑇𝑐𝑐,𝑡𝑡

10

𝑗𝑗=1

,  

and the trend-adjusted APH is then used as the expected unit yield in eqn. (4) before, i.e., 𝜇𝜇𝑖𝑖,𝑡𝑡 =

𝑇𝑇𝑇𝑇_𝐴𝐴𝐴𝐴𝐻𝐻𝑖𝑖,𝑡𝑡. 

We estimated model (25) and decomposed the resulting systemic risk measure according to 

(3). Table 2 presents the descriptive statistics for county systemic risk and its three components. 

Mean county systemic risk is 0.37, suggesting that in general, systemic risk explains slightly 

more than one-third of total unit-level yield variability. But the magnitude of systemic risk 

varies considerably across counties as it ranges from 0.02 to 0.78. The mean of county-level 

unit yield’s sensitivity to county yield is 1.05 and it ranges from 0.19 to 2.05. This fact violates 

Miranda’s (1991) assertion that acre-weighted average 𝛽𝛽𝑖𝑖 within a given county should equal 

to 1. At least two reasons may contribute to this violation. First, our county yield data are from 

NASS whereas unit yield data are from RMA. NASS county yield generally does not equal the 

mean of acre-weighted RMA unit yield (Zulauf et al. 2017), perhaps because of differences in 

survey methodologies used or because not all land is insured. Second, we have dropped many 

units in our data screening process thus losing the connection between county yield and unit 

yield. The means of unit idiosyncratic yield standard deviation and county yield variance 

standard deviation are 23.4 and 19.4, respectively, suggesting that while idiosyncratic risk and 

systemic risk both contribute a significant amount of variability to unit yield, idiosyncratic risk 

contributions are the more important. 

Figure 3 maps the geographic distributions of county systemic risk and its three 

components. Panel A shows that the systemic risk is generally high at the Corn Belt’s southern 

and western fringes. It also shows that systemic risk is low in Indiana but is high in some 

counties in Southern Minnesota. This distribution generally lines up well with the distribution of 
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county yield standard deviations (Panel B), suggesting that county yield variance may be the 

most important component determining systemic risk. This finding has important implications 

for policy implementation because county yield variance data are easily accessible. Program 

designers can easily select out counties where AYP has the potential to effectively reduce yield 

risk by finding out counties with large yield variance.  

Panel C of Figure 3 shows that counties at the Corn Belt periphery have relatively large 

idiosyncratic yield standard deviations, especially counties in Southern Wisconsin and the 

Eastern Dakotas. On the contrary, counties in Iowa and Illinois generally have low unit’s 

idiosyncratic yield standard deviation.10 Panel D presents evidence that Corn Belt fringe 

counties have relatively large unit yield’s sensitivity to county yield, but the pattern is not as 

evident because some counties in the central part also have large unit yield’s sensitivity to county 

yield while counties in the southern fringe have low unit yield’s sensitivity to county yield. The 

Moran’s I statistic11 of panel D is only 0.017, though statistically significant, while the Moran’s 

I statistics for panels A through C generally exceed 0.03. Thus, the distribution of unit yield’s 

sensitivity to county yield is more likely to be spatially independent when compared with the 

distribution of systemic risk itself and the distributions of the other two systemic risk 

components.  

 
10 With high mean yields and low yield variability in the Central Corn Belt, Remark 1 suggests that farmers there 
contemplating either individual insurance or area insurance should either not insure or take out high coverage. 
11 The Moran’s I is a frequently used correlation coefficient that measures overall spatial autocorrelation in a given 
dataset. Its value lies within the range [-1, 1]. A zero-value statistic indicates the related variable is perfectly 
randomly distributed in space. When a positive (negative) value is observed, then there is a positive (negative) 
spatial autocorrelation across the regions. We use the spatgsa command in Stata, developed by Pisati (2001), to 
calculate the Moran’s I statistics for all investigating variables.  
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4.2. Systemic Risk and County Growing Conditions  

To study how systemic risk is determined by county growing conditions, we now regress the 

three components of systemic risk on county weather and land quality variables. The following 

log-linear model is estimated by OLS method, 

(30) ln(𝑋𝑋𝑐𝑐) = 𝛿𝛿0 + 𝛿𝛿1𝐺𝐺𝑐𝑐 + 𝛿𝛿2𝑆𝑆𝑐𝑐 + 𝛿𝛿3𝐷𝐷𝑐𝑐 + 𝛿𝛿4𝑊𝑊𝑐𝑐 + 𝛿𝛿5𝐿𝐿𝑐𝑐 + 𝑣𝑣𝑐𝑐,  
where 𝑋𝑋𝑐𝑐 ∈ {𝛽𝛽𝑐𝑐2,𝜃𝜃𝑐𝑐2,𝜎𝜎𝑐𝑐2}, 𝛿𝛿0 is the constant term and 𝑣𝑣𝑐𝑐 is the error term.  

Regression results for equation (30) appear in Table 3. Column (1) shows that GDD has a 

significantly negative effect on unit yield’s sensitivity to county yield while SDD has a 

significantly positive effect. Thus, more accumulation of excessive heat increases unit yield’s 

sensitivity to county yield while more accumulation of beneficial heat reduces the sensitivity. 

This result also explains why counties in the Southern Corn Belt, where GDD and SDD are both 

high, are less likely to have high unit yield sensitivity to county yield than do counties in the 

Western Corn Belt where SDD only is high. Severe wetness also has a significant negative 

effect on unit yield’s sensitivity to county yield.  

Column (2) shows that unit’s idiosyncratic yield variance is significantly decreasing in 

GDD and land quality. Thus, greater accumulation of beneficial degrees and better land may 

provide a higher benchmark yield shared by all units in the county and making idiosyncratic 

production practice less important in determining unit yield. The negative effect of land quality 

on unit’s idiosyncratic yield variance also explains the low idiosyncratic yield variance in Iowa 

and Illinois where land quality is high.   

Column (3) shows that GDD and SDD both have a significantly positive effect on county 

yield variance. This is consistent with the observation that counties in the southern and western 

parts of the Corn Belt where GDD and SDD are high generally have higher county yield 

variance. Severe drought also has a significantly positive effect on county yield variance while 
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severe wetness tends to reduce county yield variance. Land quality has a marginally 

significantly negative effect on county yield variance.  

To find the overall effect of county growing conditions on systemic risk, and consistent 

with (3), we first regress ln[𝑅𝑅𝑐𝑐2/(1 − 𝑅𝑅𝑐𝑐2) ] on 2 ln(𝜃𝜃𝑖𝑖), 2ln(𝛽𝛽𝑐𝑐) and 2ln(𝜎𝜎𝑐𝑐). As shown by 

column (4) of Table 3, consistent with Proposition 1, systemic risk is increasing in unit yield’s 

sensitivity to county yield and county yield variance and is decreasing in unit’s idiosyncratic 

yield variance12. The overall effect of GDD on systemic risk, for example, is calculated as 

(−0.068 × 1.048) + (−0.050 × −0.625) + (0.126 × 1.004) = 0.086. Standard errors are 

calculated by the delta method.  

Column (5) of Table 3 reports the aggregate effects of county growing conditions on 

systemic risk. GDD and land quality both have a significantly positive effect on systemic risk by 

ensuring a high benchmark yield for all units. The highly significantly positive effects of SDD 

and severe drought suggest that, consistent with previous findings, yields are more closely 

correlated in extreme weather years and systemic risk is higher in counties where extreme 

weather occurred more often. The negative effect of wetness constitutes a counterexample to the 

previous statement, which may possibly be because severe wetness brings excessive water 

supply for some farms but plentiful water supply in the soil for other farms.  

 In addition to the sign and significance of county growing conditions on systemic risk, it 

might also be important to check which growing condition variable plays the most important 

role in determining systemic risk. Following Huettner and Sunder (2012), we use the Shapley 

 
12 Equation (3) predicts that the coefficient of 2ln(𝜃𝜃𝑖𝑖), 2 ln(𝛽𝛽𝑐𝑐) and 2 ln(𝜎𝜎𝑐𝑐) on ln[𝑅𝑅𝑐𝑐2/(1 − 𝑅𝑅𝑐𝑐2) ] should be 
exactly -1, 1, and 1. The difference between the prediction and our estimation result comes from the fact that 
𝛽𝛽𝑐𝑐2Var(𝑦𝑦�𝑐𝑐,𝑡𝑡 − 𝜇𝜇𝑐𝑐,𝑡𝑡) Var(𝑦𝑦�𝑖𝑖,𝑡𝑡 − 𝜇𝜇𝑖𝑖,𝑡𝑡)⁄ ≠ 𝛽𝛽𝑐𝑐2Var(𝑦𝑦�𝑐𝑐,𝑡𝑡) Var�𝑦𝑦�𝑖𝑖,𝑡𝑡� =⁄ 𝛽𝛽𝑐𝑐2𝜎𝜎𝑐𝑐2 𝜎𝜎𝑖𝑖2⁄ . This is because in real data 𝜇𝜇𝑐𝑐,𝑡𝑡 and 𝜇𝜇𝑖𝑖,𝑡𝑡 
are not constant but vary by year and are correlated with 𝑦𝑦�𝑐𝑐,𝑡𝑡 and 𝑦𝑦�𝑖𝑖,𝑡𝑡. If we regress ln[𝑅𝑅𝑐𝑐2/(1 − 𝑅𝑅𝑐𝑐2) ] on 2ln(𝜃𝜃𝑖𝑖), 
2ln(𝛽𝛽𝑐𝑐) and 2 ln�Var(𝑦𝑦�𝑐𝑐,𝑡𝑡 − 𝜇𝜇𝑐𝑐,𝑡𝑡)� we will obtain coefficients equal -1, 1, and 1.  
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value to measure the power of growing condition variables in explaining the explainable part of 

systemic risk. Their idea is to remove each explanatory variable from all possible combinations 

of other explanatory variables and so observe the variable’s average contribution to R2. Column 

(1) of Table 4 shows that, consistent with the finding that the geographic distribution of 

systemic risk generally lines up with the geographic distribution of county yield variance, 

county yield variance explains about 65% of systemic risk. Unit yield sensitivity to county yield 

explains about 28% while unit idiosyncratic yield variance explains the remaining 6%.  

 For unit yield’s sensitivity to county yield, column (2) in Table 4 shows that GDD explains 

about 47% of the variability that can be explained by county growing conditions. SDD explains 

about 10% and wetness explains about 35%. Column (3) shows that land quality is the most 

important determinant of unit’s idiosyncratic yield variance as it solely explains about 86% of 

explained variability unit’s idiosyncratic yield variance. For county yield variance, column (4) 

shows that GDD explains the largest part of its growing-condition-explainable variability while 

SDD explains the second largest part. wetness variable also explains more than 16% of the 

explainable part of county yield variability. Overall, Column (5) shows that GDD is the most 

important growing condition variable in explaining systemic risk variability. SDD also explains 

a significant part of systemic risk’s variability. This result is consistent with the fact that 

systemic risk is high in the southern and western parts of the Corn Belt, where both GDD and 

SDD are high. Thus, county heat conditions can be viewed as the most important factors 

affecting systemic risk. High heat accumulation counties are more likely to have higher 

systemic risk, especially for those that are less likely to experience severe wetness. 
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4.3. Systemic Risk Estimate and Inadequate Investigating Time Horizon  

Our estimation of systemic risk is based entirely on Miranda’s one factor capital market model, 

which implicitly assumes that the correlation between county yield and unit yield is constant 

within the sample period. However, empirical evidences have demonstrated that the spatial 

correlation of crop yields tends to be higher in extreme weather years than in a typical year 

(Goodwin 2001; Okhrin et al. 2013). Thus, our model might overrestimate a county’s systemic 

risk in years that a county experiences exceptionally good weather and underestimate its 

systemic risk in years that the county experiences exceptionally bad weather. To see which 

county might suffer more from such bias, we first investigate whether unit yield’s sensitivity to 

county yield is higher when county yield is below its expectation than when county yield is 

above its expectation, and then check how this pattern correlates with systemic risk. 

By introducing an interaction term into equation (25), we get,  

(31) 𝑦𝑦�𝑖𝑖,𝑡𝑡 − 𝜇𝜇𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑐𝑐 + 𝛽𝛽𝑐𝑐�𝑦𝑦�𝑐𝑐,𝑡𝑡 − 𝜇𝜇𝑐𝑐,𝑡𝑡� + 𝜂𝜂𝑐𝑐𝐼𝐼𝑐𝑐,𝑡𝑡�𝑦𝑦�𝑐𝑐,𝑡𝑡 − 𝜇𝜇𝑐𝑐,𝑡𝑡� + 𝜃𝜃𝑖𝑖𝜀𝜀𝑖𝑖,𝑡𝑡,  
where 𝐼𝐼𝑐𝑐,𝑡𝑡 = 1 whenever  𝑦𝑦�𝑐𝑐,𝑡𝑡 < 𝜇𝜇𝑐𝑐,𝑡𝑡 and 𝐼𝐼𝑐𝑐,𝑡𝑡 = 0 whenever 𝑦𝑦�𝑐𝑐,𝑡𝑡 ≥ 𝜇𝜇𝑐𝑐,𝑡𝑡. Now, there are 

three mutually exclusive groups that complete the value set of 𝑦𝑦�𝑐𝑐,𝑡𝑡 − 𝜇𝜇𝑐𝑐,𝑡𝑡, i.e., i) 𝑦𝑦�𝑐𝑐,𝑡𝑡 = 𝜇𝜇𝑐𝑐,𝑡𝑡, ii) 

𝑦𝑦�𝑐𝑐,𝑡𝑡 > 𝜇𝜇𝑐𝑐,𝑡𝑡, and iii) 𝑦𝑦�𝑐𝑐,𝑡𝑡 < 𝜇𝜇𝑐𝑐,𝑡𝑡. Parameter 𝛼𝛼𝑐𝑐 measures the mean value of 𝑦𝑦�𝑖𝑖,𝑡𝑡 − 𝜇𝜇𝑖𝑖,𝑡𝑡 when 

𝑦𝑦�𝑐𝑐,𝑡𝑡 = 𝜇𝜇𝑐𝑐,𝑡𝑡, 𝛽𝛽𝑐𝑐 measures unit yield’ sensitivity to county yield whenever 𝑦𝑦�𝑐𝑐,𝑡𝑡 > 𝜇𝜇𝑐𝑐,𝑡𝑡, 𝛽𝛽𝑐𝑐 + 𝜂𝜂𝑐𝑐 

measures unit yield’s sensitivity to county yield whenever 𝑦𝑦�𝑐𝑐,𝑡𝑡 < 𝜇𝜇𝑐𝑐,𝑡𝑡, and 𝜂𝜂𝑐𝑐 captures the 

difference. A positive value of 𝜂𝜂𝑐𝑐 indicates that unit yield’s sensitivity to county yield is higher 

when county yield is below its expectation than when it is above its expectation. 

Table 5 lists the sign and significance of 𝜂𝜂𝑐𝑐. Among the 579 sample counties, 48.7% have a 

significantly positive 𝜂𝜂𝑐𝑐 and only 24.7% have a significantly negative 𝜂𝜂𝑐𝑐. Moreover, about 

13.6% counties have insignificantly positive 𝜂𝜂𝑐𝑐 and about 13% have insignificantly negative 

𝜂𝜂𝑐𝑐. Thus, for most sample counties, unit yield is more sensitive to county yield when county 
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yield is below its expectation than when county yield is above its expectation. Since systemic 

risk is increasing in unit yield’s sensitivity to county yield, this finding confirms the conjecture 

that we might underestimate a county’s systemic risk if its county yields were exceptionally bad 

over the sample period and overestimate the systemic risk if the county yields were 

exceptionally good.  

 We then plot the geographic distributions of 𝜂𝜂𝑐𝑐 to ascertain which area’s systemic risk 

estimate is more likely to suffer from potential bias caused by misspecification. Panel A in Figure 

4 plots the geographic distribution of 𝜂𝜂𝑐𝑐’s value and panel B plots the geographic distribution of 

𝜂𝜂𝑐𝑐’s sign and significance. There does not exist a clear pattern in 𝜂𝜂𝑐𝑐’s geographic distributions 

and the Moran’s I statistics of Panel A is 0.009 and that of Panel B is -0.001, asserting that 𝜂𝜂𝑐𝑐 

can be treated as independently distributed among sample counties. The Pearson’s correlation 

test coefficient between 𝜂𝜂𝑐𝑐 and 𝑅𝑅𝑐𝑐2 is -0.0115 and is statistically insignificant. Given the short 

time interval at hand, our view is that we have insufficient information available to establish 

whether systemic risk estimate and the bias resulting from the short time period. Thus, there is no 

clue about whether counties with high systemic risk or low systemic risk are more likely to suffer 

from the bias. To obtain more accurate estimate of typical systemic risk, a longer unit yield time 

series is required.  

4.4. Calibrating TRASR 

We now turn to calibrating TRASR and investigating the relationship between TRASR and 

systemic risk.  

When calibrating TRASR from equation (13) we need to know the distributions of both 

county yield and the unit’s idiosyncratic yield. Studies investigating crop yield distributions 

mainly adopt two distinct methodologies, parametric and nonparametric. Parametric methods 
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often assume that crop yield follows a specific distribution, such as the normal, gamma or beta 

distribution (Botts and Boles 1958; Gallagher 1987; Nelson 1990; Sherrick et al. 2004; Harri et 

al. 2011). Nonparametric methods, on the other hand, do not assume that crop yield follows a 

specific distribution and thus offer flexibility in capturing local idiosyncrasies in yield 

distribution that may not be captured by parametric methods (Goodwin and Ker 1998). Since 

our study contains many counties and units while appropriate corn yield distribution 

specifications might differ by location, flexibility considerations lead us to employ 

nonparametric kernel density estimation.  

Since kernel density estimation requires a stationary data series, before estimating a 

distribution, we need to first retrend county yield data. The retrending model follows the 

detrending model and retrended yield for county c in year t is given by 

(32) 𝑦𝑦�𝑐𝑐,𝑡𝑡 = �
𝑣𝑣�𝑐𝑐,𝑡𝑡

𝑦𝑦�𝑐𝑐,𝑡𝑡
� × 𝑦𝑦�𝑐𝑐,2008 + 𝑦𝑦�𝑐𝑐,2008,  

where 𝑦𝑦�𝑐𝑐,2008 and 𝑦𝑦�𝑐𝑐,𝑡𝑡 (𝑡𝑡 ∈ {1958,1959, … ,2007}) are county yield predictions from 

equation (26), and the 𝑣𝑣�𝑐𝑐,𝑡𝑡s are prediction errors.  

The kernel density function for county c is given by 

(33) 𝑓𝑓(𝑥𝑥𝑐𝑐) =
1

∑ 𝑤𝑤𝑐𝑐,𝑡𝑡
2007
𝑡𝑡=1950

�
𝑤𝑤𝑐𝑐,𝑡𝑡

ℎ𝑐𝑐

2007

𝑡𝑡=1950

𝐾𝐾 �
𝑥𝑥𝑐𝑐 − 𝑦𝑦�𝑐𝑐,𝑡𝑡

ℎ𝑐𝑐
�,  

where 𝑥𝑥𝑐𝑐 is a specific point whose density is to be evaluated, 𝑦𝑦�𝑐𝑐,𝑡𝑡s are retrended county yields 

located within a pre-selected bandwidth centering at 𝑥𝑥𝑐𝑐, ℎ𝑐𝑐 is the bandwidth parameter, 𝐾𝐾(∙) 

is the kernel function, and 𝑤𝑤𝑐𝑐,𝑡𝑡’s are the associated sample weights.  

There is general consensus among researchers in the area that the kernel function choice is 

less importance than the bandwidth choice in kernel estimation (Parzen 1962; Tapia and 

Thompson 1978; Newton 1988). Thus, we choose the Epanechnikov kernel function because it 

is most efficient in minimizing the mean integrated squared error (MISE), which is the most 
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common optimality criterion used to select bandwidth. As for bandwidth choice, we follow 

Goodwin and Ker (1998) to adopt Silverman’s modified rule-of-thumb method to select the 

bandwidth parameters. The bandwidth parameter’s formula is given by 

(34) ℎ𝑐𝑐 =
0.9 × min �𝜎𝜎𝑦𝑦,

𝐼𝐼𝐼𝐼𝑅𝑅𝑦𝑦
1.349�

𝑛𝑛0.2  
,  

where 𝜎𝜎𝑦𝑦 is the standard deviation of 𝑦𝑦�𝑐𝑐,𝑡𝑡 and 𝐼𝐼𝐼𝐼𝑅𝑅𝑦𝑦 is the interquartile range of possible 

realization of 𝑦𝑦�𝑐𝑐,𝑡𝑡. 

Since we only have fifty-year observations for each county, kernel estimation of such a 

short time period might be imprecise. To extend the data pool, following Goodwin and Ker 

(1998), we use yield information from adjacent counties. To be qualified for the calibration, the 

central county and its adjacent counties must have a total number of 200 yearly yield records, 

i.e., the central county must have at least three adjacent counties that have no missing yield 

records over 1958-2007. This requirement leaves us a sample comprised of 208,549 units in 540 

counties. Each yield record in adjacent counties is assigned with weight 1/[(2𝑁𝑁 + 1) × 50] 

while each yield record in the central county is assigned with weight (𝑁𝑁 + 1)/[(2𝑁𝑁 +

1) × 50], where 𝑁𝑁 is the number of adjacent counties.  

After getting the density estimate for each point we want to evaluate, 𝑓𝑓(𝑥𝑥), the cumulative 

density at each point, 𝐹𝐹�(𝑥𝑥), is calculated by the Trapezoid rule in the form  

(35) 𝐹𝐹�(𝑥𝑥) = �𝑓𝑓(𝑦𝑦�𝑐𝑐)𝑑𝑑𝑦𝑦�𝑐𝑐

𝑥𝑥

0

≈ �
𝑓𝑓�𝑦𝑦�𝑐𝑐,𝑘𝑘−1� + 𝑓𝑓�𝑦𝑦�𝑐𝑐,𝑘𝑘�

2

𝑁𝑁

𝑘𝑘=1

∆𝑦𝑦�𝑐𝑐,𝑘𝑘,  

where ∆𝑦𝑦�𝑐𝑐,𝑘𝑘 = 𝑦𝑦�𝑐𝑐,𝑘𝑘 − 𝑦𝑦�𝑐𝑐,𝑘𝑘−1 and 𝑁𝑁 is the total number of density-evaluation points below 𝑥𝑥. 

The two integrals, ∫ 𝐹𝐹(𝑦𝑦𝑐̃𝑐)𝑑𝑑𝑦𝑦𝑐̃𝑐
M𝑖𝑖(𝜀𝜀𝑖𝑖)

0
 and ∫ 𝐹𝐹(𝑦𝑦𝑐̃𝑐)𝑑𝑑𝑦𝑦𝑐̃𝑐

M𝑐𝑐

M𝑐𝑐
𝑙𝑙 , are also calculated by the Trapezoid 

rule in a similar way.  
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As for the estimation of each unit’s idiosyncratic yield distribution, 𝐺𝐺(𝜀𝜀𝑖𝑖), since we only 

have ten estimates of idiosyncratic yield for each unit and are unable to access unit adjacency 

information, we are unable to perform unit-level nonparametric kernel estimation. Rather, 

within each county we pool units with similar 2008 APH values together and then perform 

nonparametric kernel estimation on the APH group level. By doing so, we are assuming that 

units with similar 2008 APH values also have similar idiosyncratic yield distribution. Since 

APH is determined by historical yield, which is in turn determined by land quality, it is 

reasonable to expect that units with similar APH values should have similar idiosyncratic yield 

distributions.  

Empirically, within each county, the 2008 APH values are grouped in tens. That is, units 

with the smallest to the tenth smallest 2008 APH values are assigned to group 1, units with the 

eleventh to twentieth smallest 2008 APH values are assigned to group 2, and so on. Whenever 

the last group contains fewer than ten APH values, these units are merged with the second last 

group. This grouping method yields 2,393 unique APH groups in total. As shown by Table 6, 37 

counties have only one APH group and 54 counties have only two AHP groups. Units in these 

counties are more likely to be assigned into APH groups where the idiosyncratic yield 

distributions of some units differ considerably from the idiosyncratic yield distributions from 

other units. However, as Figure 5 shows, counties with fewer APH groups also have smaller 

APH ranges. Moreover, since counties at the southern and western fringes of the Corn Belt, 

where systemic risk is high and which are counties we care most about, generally have four or 

more APH groups, bias caused by pooling units with different idiosyncratic yield distributions 

into the same APH group should be minor. Among the 2,393 APH groups, only 7.5% have less 
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than 200 unit-year observations. Thus, the nonparametric kernel density estimation for most 

APH groups is free from imprecision concerns. 

As with county yield kernel density estimation, we also choose the Epanechnikov kernel 

function and adopt Silverman’s modified rule-of-thumb method to select the bandwidth 

parameters. After obtaining the density function, the cumulative density function, 𝐺𝐺(𝜀𝜀𝑖𝑖), and 

the integral ∫∫ 𝐹𝐹 (𝑦𝑦𝑐̃𝑐)𝑑𝑑𝑦𝑦𝑐̃𝑐
M𝑖𝑖(𝜀𝜀𝑖𝑖)

0
𝑑𝑑𝑑𝑑(𝜀𝜀𝑖𝑖), are again evaluated by the Trapezoid rule.  

Table 7 presents descriptive statistics for coverage-level conditional unit-level TRASR. We 

set the protection factor, 𝜌𝜌, to equal to 1.2 as it is the protection factor level that brings the 

highest expected AYP indemnity payments. Since 𝜙𝜙𝑖𝑖 increases in 0.05 increments from 0.5 to 

0.85 and 𝜙𝜙𝑐𝑐 increases in 0.05 increments from 0.70 to 0.9 we have 8 × 5 = 40 possible 

coverage level combinations. Consistent with Proposition 4, the mean and median of TRASR 

both increase with MPCI coverage level. Although Proposition 4 makes no predictions about the 

effect of AYP coverage level on TRASR, results in Table 7 show that TRASR decreases with 

increase in 𝜙𝜙𝑐𝑐. This finding suggests that the negative effect of 𝜙𝜙𝑐𝑐 on unscaled AYP indemnity 

payments dominates the positive effect of 𝜙𝜙𝑐𝑐  on the AYP scaling factor. 

We focus on TRASRs where MPCI coverage level is no less than 75% because 75% is the 

minimum coverage level chosen by most producers in the Corn Belt (Schnitkey and Sherrick 

2014). Since some units have extremely large TRASR13, we thus focus on medians other than 

 
13 Extremely large TRASR values occur whenever unit’s M𝑖𝑖(𝜀𝜀𝑖𝑖)s are very large or M𝑐𝑐 is in the low density area of 
𝐹𝐹(𝑦𝑦�𝑐𝑐), or both apply. The first case occurs when a unit’s idiosyncratic yield is negative and large in magnitude 
because M𝑖𝑖(𝜀𝜀𝑖𝑖) is decreasing in 𝜀𝜀𝑖𝑖. The second case occurs when the AYP coverage level is low. In the first case, 
∫ 𝐹𝐹(𝑦𝑦�𝑐𝑐)𝑑𝑑𝑦𝑦�𝑐𝑐
M𝑖𝑖(𝜀𝜀𝑖𝑖)
0  is large and in the second case, ∫ 𝐹𝐹(𝑦𝑦�𝑐𝑐)𝑑𝑑𝑦𝑦�𝑐𝑐

M𝑐𝑐
M𝑐𝑐
𝑙𝑙  is small. Table 5 also shows that some units have a zero-

value TRASR. This is because kernel density estimation will assign zero probabilities to M𝑖𝑖(𝜀𝜀𝑖𝑖)s whose values that 
are too far away from observed county retrended yields. Thus, zero values of TRASR occur when a unit’s M𝑖𝑖(𝜀𝜀𝑖𝑖) is 
either too large or too small.  
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means as medians are less affected by extreme values than means. Results in Table 5 show that 

the medians of TRASR are generally higher than 60% when AYP coverage level is no greater 

than than 80%. The medians of TRASR are even higher than 100% for groups 𝜙𝜙𝑖𝑖 = 80%,𝜙𝜙𝑐𝑐 =

70%, 𝜙𝜙𝑖𝑖 = 85%,𝜙𝜙𝑐𝑐 = 70% and 𝜙𝜙𝑖𝑖 = 85%,𝜙𝜙𝑐𝑐 = 75%. Thus, generally, a necessary 

condition to induce most producers to choose a low coverage level AYP contract over a high 

coverage level MPCI contract is to set the related AYP subsidy rate higher than the related 

MPCI subsidy rate. The medians of TRASR are generally smaller than 50% when AYP 

coverage level is higher than 80%.  

 We then check whether the current AYP subsidy rate discourages producers from choosing 

AYP over MPCI. Here we define a new concept, threshold area subsidy rate, or TASR, which is 

the product of TRASR and MPCI subsidy rate. By equation (8), TASR thus constitutes the 

lower bound on the AYP subsidy rate below which the expected AYP indemnities would be 

strictly less than the expected MPCI indemnities and risk averse growers would never choose 

AYP over MPCI. Since MPCI offers contracts at different unit levels and subsidy rates differ by 

unit levels, we choose the enterprise unit level subsidy rate to derive our TASR because 

enterprise unit level MPCI contract is the most similar to AYP and in recent years it has covered 

the largest share of insured corn acres (Coble 2017). Subsidy rate information for AYP and 

different unit-level MPCI contracts are listed in Table 8. Enterprise unit level subsidy rates are 

higher than AYP subsidy rates at all available coverage levels except for the level 85%, but the 

coverage-level conditional subsidy rate gap between the two insurance contracts decrease with 

increase in coverage level.  

Panel A of Table 9 reports sample means of the coverage-level conditional percent of units 

whose TASR is higher than the current AYP subsidy rate. To save space, we only report results 
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corresponding to a MPCI coverage level no less than 75%. The complete results are listed in 

Table 12 in Appendix B.  

Consistent with results in Table 7, the percent of units whose TASR is higher than the 

current AYP subsidy rate is increasing in MPCI coverage level and is generally decreasing in 

AYP coverage level. When AYP coverage level is less than 80%, generally more than half of 

producers will find their TASR higher than the current AYP subsidy rate. This result suggests 

that the low coverage level AYP contracts which are currently available do not provide the 

minimum required subsidy rate to compete with the subsidized MPCI contracts as subsidy 

transfer instruments. Raising the related subsidy rate is a necessary condition if more low 

coverage level AYP demand is to be induced. When AYP coverage level is no less than 80%, 

generally only less than 30% of producers will find their TASR higher than the current AYP 

subsidy rate. Thus, for most producers, the currently available high coverage level AYP 

contracts have met the minimum subsidy rate requirement to compete with MPCI contracts 

whenever producers are risk-neutral. This finding suggests that the current AYP subsidy rate 

might not be a major deterrence for producers to choose high coverage level AYP contracts over 

MPCI contracts and raising AYP subsidy rate might not be able to induce more high coverage 

level AYP demand. However, since risk aversion will increase the minimum required AYP 

subsidy rate, the percent of risk aversion producers whose TASR is higher than the current AYP 

subsidy rate will surely exceed the percent listed in Table 7. Raising subsidy rate might still be a 

viable option to induce more demand even for high coverage level AYP contracts.  

Besides comparing with the current AYP subsidy rate, we also compare TASR to the 100% 

level to see whether some producers will not choose AYP over MPCI even when AYP is offered 

for free. Panel B of Table 9 presents the results. As expected, because the MPCI subsidy rate is 
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smaller than 100%, the percent of units with TASR below 100% is much smaller than the percent 

with TASR below the current AYP subsidy rate. For all coverage level combinations, at most 

41% of producers will find their TASR higher than 100%, so only a small proportion of 

producers will find that freely offered AYP contracts are not value for money when MPCI 

contracts are available. Thus, raising AYP subsidy rate to a level no greater than 100% might be a 

feasible option to induce greater AYP demand. High coverage level AYP contracts, at 80% or 

higher, might benefit more from this option because less than 10% producers will find their 

TASR higher than 100%. 

4.5. TRASR, Systemic Risk, and Area Insurance Demand 

We now turn to study the correlation between TRASR and systemic risk and its implication for 

area insurance demand. Our conceptual framework suggests that TRASR should be negatively 

correlated with systemic risk. To test whether this conjecture holds in data, we then conduct a 

series of correlation tests between county systemic risk and the two county-level TRASR 

variables: county-level percent of units whose TASR is higher than the current AYP subsidy rate 

and county-level percent of units whose TASR is higher than 100%.  

Table 10 reports the Pearson’s correlation coefficients between systemic risk and the two 

county-level TRASR variables. Panel A shows that generally, systemic risk is significantly 

positively correlated with the percent of units whose TASR is higher than the current AYP 

subsidy rate at low AYP coverage levels and is significantly negatively correlated with it at high 

AYP coverage levels. Thus, for low coverage level AYP contracts, producers in high systemic 

risk counties are more likely to find their TASR to exceed the current AYP subsidy rate than 

producers in low systemic risk counties, while for high coverage level AYP contracts, producers 

in high systemic risk counties are less likely to find their TASR higher than the AYP subsidy 
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rate than producers in low systemic risk counties. This finding indicates that the current AYP 

subsidy rate is more likely to be a major deterrence for producers in high systemic risk counties 

to choose low coverage level AYP contracts while it is more likely to be a major deterrence for 

producers in low systemic risk counties to choose high coverage level AYP contracts. 

Panel B of Table 10 show that systemic risk is significantly negatively correlated with the 

percent of units whose TASR is higher than 100% at most coverage level combinations, 

suggesting that producers in high systemic risk counties are less likely to have TASR  

exceeding  100% than are producers in low systemic risk counties. Thus, high systemic risk 

counties generally have larger room to raise AYP subsidy rate to induce more AYP demand.  

 Since the correlation test coefficients only capture the overall relationships between 

systemic risk and TRASR variables among all sample counties and we care more about whether 

high systemic risk counties are truly associated with lower TASR, we then plot the geographic 

distributions for county-level TRASR variables.  

 Figures 6 through 8 plot the geographic distributions for county-level percent of units 

whose TASR exceeds the current AYP subsidy rate. These figures again show that the percent of 

units whose TASR is higher than the current AYP subsidy rate is increasing in MPCI coverage 

level and is decreasing in AYP coverage level. For all coverage level combinations, counties at 

the Corn Belt’s northeastern fringe, where systemic risk is low, generally have the highest 

percent of units whose TASR surpasses the current AYP subsidy rate. Counties in Central Corn 

Belt generally have the lowest percent of units with TASR higher than the current AYP subsidy 

rate. Western and Southern Corn Belt counties, where systemic risk is high, also have relative 

low percent of units whose TASR is higher than the current AYP subsidy rate, especially when 

AYP coverage level is no less than 80%. The geographic distribution patterns remain for the 
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percent of units whose TASR is higher than 100% and Western and Southern Corn Belt counties 

also have low percent of units whose TASR is higher than 100%, as plotted by figures 9 through 

11. These results assert that producers in Western and Southern Corn Belt counties not only 

enjoy better risk protection from AYP, but also require less subsidies to possibly choose AYP 

over MPCI than counties in other areas. Subsidy rates also have larger room to increase to 

induce more AYP demand in these counties.  

Although our evidence suggests that counties in the Corn Belt’s southern and western 

fringes have the best potential to grow area insurance demand, this conjecture does not match 

the reality of area insurance demand. Working with data from RMA Summary of Business 

reports we draw the geographic distribution for share of acres insured by area insurance in 

Figure 12. Clearly, although the overall demand for area insurance is low except in year 2006, 

counties with larger share of acres insured by area insurance are mainly located in the eastern 

and northeastern parts of the Corn Belt, where systemic risk is low while TRASR is high. This 

fact suggests that area insurance demand might not be mainly driven by producers’ risk attitude 

and the contract designs, but by some factors unobserved in our data, such as the marketing 

strategy of insurance companies (Skees et al. 1997).  
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CHAPTER 5. CONCLUSION AND DISCUSSION 
 
 
The Federal Crop Insurance Program has long been afflicted by high operation costs where 

asymmetric information and systemic risk play major roles. Area-based insurance programs have 

been widely proposed as viable options to deal with these problems. However, program take-up 

rates remain low and knowledge of determinants of the low demand is lacking in literature.  

In this paper, we investigated two factors that determine the demand of area insurance 

programs. First, we directly measured systemic risk in corn production across the Midwest. The 

magnitude of systemic risk determines the effectiveness of risk protection for area insurance 

programs. The greater the systemic risk, the more workable is area-based insurance (Skees et al. 

1997). We find that, in general, systemic risk explains slightly more than one-third of total unit 

yield variability. It is highest in Southern and Western Corn Belt counties but low in the Central 

and Northern Corn Belt. Further investigations show that the geographic distribution of systemic 

risk is most likely to be driven by the geographic distribution of county yield variance where 

systemic risk significantly increases with county heat conditions and the appearance of severe 

drought. 

In addition to systemic risk, we also investigate the role of premium subsidy in producer’s 

choice between area and individual insurance contracts. By calibrating TRASR, the relative 

subsidy rate at which AYP expected indemnity payments equals those from MPCI indemnity 

payments, we find that most producers would require the AYP subsidy rate to be higher than the 

enterprise unit level MPCI subsidy rate to possibly choose AYP over MPCI. The percent of 

producers holding this requirement is increasing in MPCI coverage level and is decreasing in 

AYP coverage level. We also find that the current AYP subsidy rate might be the major 

deterrence for producers to not choose AYP at low coverage levels, but not the major deterrence 
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for them to not choose AYP at high coverage levels. Since only a small fraction of producers 

would require the subsidy rate of high coverage level AYP contracts to be higher than 100% to 

possibly choose these AYP contracts over MPCI, raising the subsidy rate of high coverage level 

AYP contracts might be a feasible option to induce more demand for AYP contracts.  

We also find a negative correlation between systemic risk and TRASR and unit’s 

idiosyncratic yield variance seems to be the best predictor of TRASR. Producers in Southern and 

Western Corn Belt counties, where systemic risk is high, generally have low TRASR. These 

counties are ideal areas to implement area insurance contracts as producers there would enjoy 

better risk protection and require lower subsidies to compensate for their risk exposure. 

However, this conjecture is at variance with the fact that counties with relatively high area 

insurance take-up rate are mainly located in the eastern and northeastern portions of the Corn 

Belt. Thus, some unobserved factors, such as insurance companies’ marketing strategy, might 

play more important role than producers’ risk attitude and area insurance’s contract design in 

determining producers’ demand of area insurance. 

Our study largely extends current literature studying demand of area insurance contract by 

providing some basic facts about systemic risk and pecuniary motivations for potential area 

insurance buyers. The correlation between these two factors are also explored. Our study also 

reveals that only AYP contracts at high coverage levels has the potential to induce producers to 

choose it over MPCI contracts by raising its subsidy rate to a still reasonable level. But we also 

find that the current AYP subsidy rate might not be the major deterrence for producers to not 

choose high coverage level AYP contracts.  

 Our study does not explicitly include the risk attitude of producers. This helps us free from 

choosing among various utility function forms and risk aversion parameters, but it also leads us 
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to underestimate the lower bound of the relative subsidy rate that is required by risk averse 

producers to choose AYP over MPCI. Our study also does not explore the case for revenue crop 

insurances, which has a much larger market share than yield insurance nowadays. Exploring the 

effects of these aspects asks for more work, and our study provides an analysis framework for 

future studies to work on. 
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Table 1. Descriptive statistics for yield variables and county growing condition variables 
Variable N Mean St. Dev Min Max 
Unit yield (bu./ac) 2,133,320 149 39.4 0 374 
County yield (bu./ac) 5,790 137 28.9 27 204 
𝐺𝐺𝑐𝑐 579 1,290 152 360 1,612 
𝑆𝑆𝑐𝑐 579 14.8 14.1 0.49 92.4 
𝐷𝐷𝑐𝑐 579 4.72 1.89 1 13 
𝑊𝑊𝑐𝑐 579 5.53 2.04 0 13 
𝐿𝐿𝑐𝑐 579 47.3 22.5 2.20 93.5 

 
Notes: Mean unit yield is the average of all unit-year yields over the 213,332 units and over the 
period 1998-2007. Mean county yield is the average of all county-year yields over the 579 
counties and over 1998-2007. 
 

 

Table 2. Descriptive statistics for county systemic risk and its components 
Variable N Mean St. Dev Min Max 
Systemic risk, 𝑅𝑅𝑐𝑐2 579 0.37 0.15 0.02 0.78 
County-level unit yield sensitivity, 𝛽𝛽𝑐𝑐 579 1.05 0.20 0.19 2.05 

Unit idiosyncratic yield standard deviation, 𝜃𝜃𝑖𝑖 579 23.4 4.66 9.32 43.0 

County yield standard deviation, 𝜎𝜎𝑐𝑐 579 19.4 5.90 7.51 43.5 
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Table 3. Regression results for equation (30) 
      (1)   (2)   (3)   (4)   (5) 
    2ln(𝛽𝛽𝑐𝑐)   2ln(𝜃𝜃𝑖𝑖)  2ln(𝜎𝜎𝑐𝑐)   2ln(𝜏𝜏𝑐𝑐) 2ln(𝜏𝜏𝑐𝑐) 

𝐺𝐺𝑐𝑐/100  -0.068*** -0.050*** 0.126***  0.086** 
  (0.017) (0.015) (0.022)  (0.026) 
𝑆𝑆𝑐𝑐/10 0.040** 0.002 0.081***  0.121*** 
  (0.019) (0.015) (0.023)  (0.032) 
𝐷𝐷𝑐𝑐  0.008 0.006 0.044***  0.048*** 
 (0.010) (0.008) (0.012)  (0.016) 
𝑊𝑊𝑐𝑐 -0.032*** -0.008 -0.039***  -0.068*** 
 (0.011) (0.009) (0.012)  (0.015) 
𝐿𝐿𝑐𝑐 (10 %) -0.005 -0.083*** -0.020*  0.027** 
  (0.008) (0.006) (0.010)  (0.014) 
2ln(𝛽𝛽𝑐𝑐)    1.048***  
    (0.071)  
2ln(𝜃𝜃𝑖𝑖)    -0.625***  
    (0.043)  
2ln(𝜎𝜎𝑐𝑐)    1.004***  
     (0.028)  
constant 1.047*** 7.324*** 4.203*** -2.636***  
  (0.193) (0.206) (0.299) (0.356)  
Obs. 579 579 579 579  
R-squared  0.057 0.255 0.308 0.831  

 
Notes: Robust standard errors are in paretheses; *, **, and *** denote p<0.1, p<0.05, p<0.01, 
respectively. 
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Table 4. Shapley values for each growing condition variables on systemic risk, % 
 (1) (2) (3) (4) (5) 
 2ln(𝜏𝜏𝑐𝑐) 2ln(𝛽𝛽𝑐𝑐) 2ln(𝜃𝜃𝑖𝑖) 2ln(𝜎𝜎𝑐𝑐) 2ln(𝜏𝜏𝑐𝑐) 

2ln(𝛽𝛽𝑐𝑐) 28.35     
2ln(𝜃𝜃𝑖𝑖) 6.27     
2ln(𝜎𝜎𝑐𝑐) 65.38     
𝐺𝐺𝑐𝑐   46.92 9.50 42.97 41.99 
𝑆𝑆𝑐𝑐   10.29 2.28 36.00 26.59 
𝐷𝐷𝑐𝑐  5.53 1.95 6.42 5.89 
𝑊𝑊𝑐𝑐  35.53 0.30 9.60 16.37 
𝐿𝐿𝑐𝑐   1.74 85.98 5.01 9.16 
Total 100 100 100 100 100 

 

Table 5. Sign and significance of 𝜼𝜼𝒄𝒄 among 579 Corn Belt counties 
Sign and P-value of 𝜂𝜂𝑐𝑐  N Percent 
𝜂𝜂𝑐𝑐 > 0 & P-value≤0.1 282 48.7 
𝜂𝜂𝑐𝑐 > 0 & P-value>0.1 79 13.6 
𝜂𝜂𝑐𝑐 ≤ 0 & P-value≤0.1 143 24.7 
𝜂𝜂𝑐𝑐 ≤ 0 & P-value>0.1 75 13.0 

 

Table 6. Number of counties with different number of APH groups 
Number of APH 

groups 
Number of 

counties 
Percent of counties with associated APH 

groups 
1 37 6.9 
2 54 10.0 
3 60 11.1 
4 87 16.0 
5 137 25.4 
6 123 22.8 
7 40 7.4 
8 1 0.2 
9 1 0.2 
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Table 7. Descriptive statistics for unit-level TRASR, conditional on MPCI coverage level 
and AYP coverage level 

   N Mean St.Dev Min Median Max 
𝜙𝜙𝑖𝑖 = 50%,𝜙𝜙𝑐𝑐 = 70% 208,549 28.3 70.5 0.00 12.4 3,421 
𝜙𝜙𝑖𝑖 = 50%,𝜙𝜙𝑐𝑐 = 75% 208,549 19.0 37.5 0.00 9.2 1,084 
𝜙𝜙𝑖𝑖 = 50%,𝜙𝜙𝑐𝑐 = 80% 208,549 13.6 23.3 0.00 6.9 482 
𝜙𝜙𝑖𝑖 = 50%,𝜙𝜙𝑐𝑐 = 85% 208,549 10.0 15.8 0.00 5.1 280 
𝜙𝜙𝑖𝑖 = 50%,𝜙𝜙𝑐𝑐 = 90% 208,549 7.5 11.3 0.00 3.8 179 
𝜙𝜙𝑖𝑖 = 55%,𝜙𝜙𝑐𝑐 = 70% 208,549 38.1 84.5 0.00 19.4 4,022 
𝜙𝜙𝑖𝑖 = 55%,𝜙𝜙𝑐𝑐 = 75% 208,549 25.7 44.7 0.00 14.2 1,275 
𝜙𝜙𝑖𝑖 = 55%,𝜙𝜙𝑐𝑐 = 80% 208,549 18.3 27.6 0.00 10.6 566 
𝜙𝜙𝑖𝑖 = 55%,𝜙𝜙𝑐𝑐 = 85% 208,549 13.5 18.6 0.00 8.0 328 
𝜙𝜙𝑖𝑖 = 55%,𝜙𝜙𝑐𝑐 = 90% 208,549 10.1 13.3 0.00 5.9 199 
𝜙𝜙𝑖𝑖 = 60%,𝜙𝜙𝑐𝑐 = 70% 208,549 51.4 101.0 0.01 29.0 4,711 
𝜙𝜙𝑖𝑖 = 60%,𝜙𝜙𝑐𝑐 = 75% 208,549 34.5 53.1 0.00 21.3 1,493 
𝜙𝜙𝑖𝑖 = 60%,𝜙𝜙𝑐𝑐 = 80% 208,549 24.6 32.6 0.00 15.9 659 
𝜙𝜙𝑖𝑖 = 60%,𝜙𝜙𝑐𝑐 = 85% 208,549 18.1 21.9 0.00 11.9 382 
𝜙𝜙𝑖𝑖 = 60%,𝜙𝜙𝑐𝑐 = 90% 208,549 13.5 15.6 0.00 8.9 232 
𝜙𝜙𝑖𝑖 = 65%,𝜙𝜙𝑐𝑐 = 70% 208,549 69.2 120.8 0.05 42.1 5,500 
𝜙𝜙𝑖𝑖 = 65%,𝜙𝜙𝑐𝑐 = 75% 208,549 46.4 62.9 0.04 30.9 1,743 
𝜙𝜙𝑖𝑖 = 65%,𝜙𝜙𝑐𝑐 = 80% 208,549 33.0 38.3 0.03 23.0 761 
𝜙𝜙𝑖𝑖 = 65%,𝜙𝜙𝑐𝑐 = 85% 208,549 24.2 25.5 0.02 17.3 442 
𝜙𝜙𝑖𝑖 = 65%,𝜙𝜙𝑐𝑐 = 90% 208,549 18.0 18.1 0.02 12.9 268 
𝜙𝜙𝑖𝑖 = 70%,𝜙𝜙𝑐𝑐 = 70% 208,549 93.0 144.4 0.26 60.1 6,397 
𝜙𝜙𝑖𝑖 = 70%,𝜙𝜙𝑐𝑐 = 75% 208,549 62.2 74.4 0.19 43.9 2,028 
𝜙𝜙𝑖𝑖 = 70%,𝜙𝜙𝑐𝑐 = 80% 208,549 44.1 44.9 0.15 32.7 873 
𝜙𝜙𝑖𝑖 = 70%,𝜙𝜙𝑐𝑐 = 85% 208,549 32.2 29.6 0.11 24.5 507 
𝜙𝜙𝑖𝑖 = 70%,𝜙𝜙𝑐𝑐 = 90% 208,549 23.9 20.8 0.09 18.3 307 
𝜙𝜙𝑖𝑖 = 75%,𝜙𝜙𝑐𝑐 = 70% 208,549 125.1 173.1 1.07 85.1 7,408 
𝜙𝜙𝑖𝑖 = 75%,𝜙𝜙𝑐𝑐 = 75% 208,549 83.3 88.0 0.80 61.7 2,348 
𝜙𝜙𝑖𝑖 = 75%,𝜙𝜙𝑐𝑐 = 80% 208,549 58.9 52.4 0.60 45.7 996 
𝜙𝜙𝑖𝑖 = 75%,𝜙𝜙𝑐𝑐 = 85% 208,549 42.8 34.1 0.47 34.2 578 
𝜙𝜙𝑖𝑖 = 75%,𝜙𝜙𝑐𝑐 = 90% 208,549 31.8 23.8 0.37 25.6 351 
𝜙𝜙𝑖𝑖 = 80%,𝜙𝜙𝑐𝑐 = 70% 208,549 168.2 208.5 3.62 119.6 8,538 
𝜙𝜙𝑖𝑖 = 80%,𝜙𝜙𝑐𝑐 = 75% 208,549 111.5 104.2 2.69 86.3 2,706 
𝜙𝜙𝑖𝑖 = 80%,𝜙𝜙𝑐𝑐 = 80% 208,549 78.6 61.0 2.03 63.6 1,129 
𝜙𝜙𝑖𝑖 = 80%,𝜙𝜙𝑐𝑐 = 85% 208,549 57.0 39.1 1.60 47.4 655 
𝜙𝜙𝑖𝑖 = 80%,𝜙𝜙𝑐𝑐 = 90% 208,549 42.1 26.9 1.25 35.5 397 
𝜙𝜙𝑖𝑖 = 85%,𝜙𝜙𝑐𝑐 = 70% 208,549 226.1 252.8 9.68 165.5 9,791 
𝜙𝜙𝑖𝑖 = 85%,𝜙𝜙𝑐𝑐 = 75% 208,549 149.4 123.9 7.19 120.1 3,103 
𝜙𝜙𝑖𝑖 = 85%,𝜙𝜙𝑐𝑐 = 80% 208,549 104.9 71.1 5.44 88.1 1,273 
𝜙𝜙𝑖𝑖 = 85%,𝜙𝜙𝑐𝑐 = 85% 208,549 75.8 44.6 4.28 65.3 739 
𝜙𝜙𝑖𝑖 = 85%,𝜙𝜙𝑐𝑐 = 85% 208,549 55.8 30.1 3.34 48.8 448 
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Table 8. Premium subsidy rates for individual and area insurance contracts, conditional on 
coverage level 

Insurance Plan 
Coverage Level (%) 

CAT 50 55 60 65 70 75 80 85 90 
Basic and Optional Units 100 67 64 64 59 59 55 48 38 n/a 
Enterprise Units n/a 80 80 80 80 80 77 68 53 n/a 
Area Yield Plans n/a n/a n/a n/a n/a 59 59 55 55 51 
Whole Farm Units n/a 80 80 80 80 80 80 71 56 n/a 

 
Notes: Source: Shields, D. 2015. “Federal Crop Insurance: Background.” CRS Report for 
Congress, Congressional Research Service, 7-5700, R40532. Washington, DC.  
 
Table 9. Coverage-level conditional percent of units whose TASR is higher than the current 
AYP subsidy rate and percent of units whose TASR is higher than 100% 

MPCI coverage level AYP coverage level 
70% 75% 80% 85% 90% 

 Panel A: Percent of units whose TASR>current AYP subsidy rate 
75% 57.2 35.1 21.4 10.9 6.7 
80% 71.8 49.5 30.8 14.2 8.2 
85% 76.6 56.4 34.9 14.1 7.2 

 Panel B: Percent of units whose TASR>100% 
75% 25.5 11.8 5.8 2.6 1.0 
80% 36.3 16.7 7.1 3.1 1.1 
85% 40.9 18.4 6.9 2.8 0.8 

 
Table 10. Coveragel-level conditional Pearson’s correlation test coefficients between county 
systemic risk and county-level TRASR variables 

MPCI coverage level 
AYP coverage level 

70% 75% 80% 85% 90% 
 Panel A: Pearson’s correlation test coefficients between systemic risk 

and percent of units whose TASR>current AYP subsidy rate 
75% 0.1397* 0.0483 -0.0367 -0.1118* -0.1112* 
80% 0.1417* 0.0785* -0.0041 -0.1106* -0.1302* 
85% 0.0541 -0.0031 -0.0568 -0.1716* -0.1908* 

 Panel B: Pearson’s correlation test coefficients between systemic risk 
and percent of units whose TASR>100% 

75% -0.0973* -0.1741* -0.2111* -0.2110* -0.1684* 
80% -0.0885* -0.1624* -0.2184* -0.2230* -0.1767* 
85% -0.1343* -0.1812* -0.2244* -0.2162* -0.1804* 

 
Note: * denotes p<0.1. 
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Figure 1. Share of acres insured by area insurance contracts for all crops, 1993-2018 

Notes: Source: Summary of Business, 1993-2018, Risk Management Agency (RMA). 
This figure plots acres insured by area insurance contracts and acres insured by any kind of crop 
insurance for all crops over 1993-2018 (left y-axis), and plots the share of all insured acres that 
are insured by area insurance contracts for all crops over 1993-2018 (right y-axis). Area 
insurance before year 2014 are Group Risk Plan (GRP), Group Risk Income Protection (GRIP), 
Group Risk Income Protection with Harvest Revenue Option (GRIP-HRO). Area insurance 
starting in 2014 are under Area Yield Protection (AYP), Area Revenue Protection (ARP), and 
Area Revenue Protection with Harvest Price Exclusion (ARP-HPE). 
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Figure 2. Geographic distributions of county growing conditions 
 
Notes: This figure plots geographic distributions of county GDD, county SDD, frequency of 
severe drought, frequency of severe wetness, and the proportion of county land that is in land 
capability classes I or II. Numbers in legends are quartile ranges. 
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Figure 3. Geographic distributions of county systemic risk and its components 
 
Note: This figure plots geographic distributions of county systemic risk, county yield standard 
deviation, unit’s idiosyncratic yield standard deviation, and unit yield’s sensitivity to county 
yield. Numbers in legends are quartile ranges.  
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Figure 4. Geographic distributions of 𝜼𝜼𝒄𝒄’s value, and sign/significance category.  
 
Note: This figure plots geographic distributions of 𝜂𝜂𝑐𝑐. Panel A plots the geographic distribution 
of 𝜂𝜂𝑐𝑐’ values and numbers in the legend are quartile ranges. Panel B plots the geographic 
distribution of 𝜂𝜂𝑐𝑐’s sign and significance. Counties labeled 4 are significantly positive 𝜂𝜂𝑐𝑐, 
counties labeled 3 are insignificantly positive 𝜂𝜂𝑐𝑐, counties labeled 2 are significantly negative 
𝜂𝜂𝑐𝑐 and counties labeled 1 are insignificantly negative 𝜂𝜂𝑐𝑐. 

 

 
Figure 5. Geographic distributions of 2008 APH range and number of APH groups  
 
Notes: The 2008 APH range equals the maximum 2008 county APH value minus the minimum 
2008 county APH value. Numbers in the legend of Panel A are quintile ranges.   
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Figure 6. Geographic distributions of county-level percent of units whose TASR is higher 
than the current AYP subsidy rate, conditional on MPCI coverage level = 75% 

  
Figure 7. Geographic distributions of county-level percent of units whose TASR exceeds the 
current AYP subsidy rate, conditional on MPCI coverage level = 80%   
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Figure 8. Geographic distributions of county-level percent of units whose TASR exceeds the 
current AYP subsidy rate, conditional on MPCI coverage level = 85% 

 
Figure 9. Geographic distributions of county-level percent of units whose TASR exceeds 
100%, conditional on MPCI coverage level = 75%  
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Figure 10. Geographic distributions of county-level percent of units whose TASR exceeds 
100%, conditional on MPCI coverage level = 80%  

 
Figure 11. Geographic distributions of county-level percent of units whose TASR exceeds 
100%, conditional on MPCI coverage level = 85%  
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Figure 12. Geographic distribution of share of corn acres insured by area insurance 
contracts 
 
Notes: Data Source: Summary of Business, 2000, 2006, 2012, and 2018, RMA. This figure plots 
geographic distributions of share of corn acres insured by area insurance contracts for year 2000, 
2006, 2012, and 2018. For each county, the share is calculated as the rate of all corn acres 
insured by area insurance contracts over all corn acres insured by any kind of insurance contract.  
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Table 11. Observation loss after each data screening and merging step 
 Number of counties left Number of units left 
Initial observations 1,031 14,700,150 
Drop units with any non-actual historical 
yield types 

1,003 5,455,480 

Drop units with historical year before 1998 980 2,669,560 
Drop irrigated units and counties with 
irrigation rate higher than 20% 

847 2,267,540 

Drop counties with less than 50-year data 
records between 1958 and 2007 

712 2,234,220 

Drop counties with less than 30 units 618 2,220,260 
Merge with weather and land quality data 579 2,133,320 

 
 
 
 
Table 12. Coverage-level conditional percent of units whose TASR is higher than the 
current AYP subsidy rate and percent of units whose TASR is higher than 100% 

MPCI coverage level 
AYP coverage level 

70% 75% 80% 85% 90% 
 Panel A: Percent of units whose TASR>current AYP subsidy rate 

50% 7.1 4.3 2.7 1.3 0.7 
55% 10.0 6.0 3.9 2.0 1.1 
60% 14.6 8.6 5.7 3.1 1.8 
65% 23.2 13.1 8.5 4.7 2.9 
70% 38.0 21.5 13.4 7.3 4.6 
75% 57.2 35.1 21.4 10.9 6.7 
80% 71.8 49.5 30.8 14.2 8.2 
85% 76.6 56.4 34.9 14.1 7.2 

 Panel B: Percent of units whose TASR>100% 
50% 3.4 1.7 0.8 0.3 0.0 
55% 4.7 2.5 1.2 0.5 0.1 
60% 6.6 3.6 1.7 0.7 0.2 
65% 9.8 5.3 2.6 1.1 0.4 
70% 15.8 7.9 4.0 1.8 0.7 
75% 25.5 11.8 5.8 2.6 1.0 
80% 36.3 16.7 7.1 3.1 1.1 
85% 40.9 18.4 6.9 2.8 0.8 
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Table 13. Coveragel-level conditional Pearson’s correlation test coefficients between county 
systemic risk and county-level TRASR variables 

MPCI coverage level 
AYP coverage level 

70% 75% 80% 85% 90% 
 Panel A: Pearson’s correlation test coefficients between systemic risk 

and percent of units whose TASR>current AYP subsidy rate 
50% -0.1360* -0.1543* -0.1504* -0.1391* -0.1080* 
55% -0.1238* -0.1515* -0.1514* -0.1467* -0.1201* 
60% -0.1024* -0.1291* -0.1407* -0.1495* -0.1256* 
65% -0.0273 -0.1026* -0.1194* -0.1391* -0.1360* 
70% 0.0665 -0.0382 -0.0897* -0.1292* -0.1167* 
75% 0.1397* 0.0483 -0.0367 -0.1118* -0.1112* 
80% 0.1417* 0.0785* -0.0041 -0.1106* -0.1302* 
85% 0.0541 -0.0031 -0.0568 -0.1716* -0.1908* 

 Panel B: Pearson’s correlation test coefficients between systemic risk 
and percent of units whose TASR>100% 

50% -0.1866* -0.1841* -0.1549* -0.0939* -0.0380 
55% -0.1846* -0.1915* -0.1715* -0.1209* -0.0770* 
60% -0.1803* -0.1962* -0.1871* -0.1527* -0.0935* 
65% -0.1701* -0.1971* -0.2060* -0.1720* -0.1137* 
70% -0.1387* -0.1855* -0.2039* -0.1963* -0.1453* 
75% -0.0973* -0.1741* -0.2111* -0.2110* -0.1684* 
80% -0.0885* -0.1624* -0.2184* -0.2230* -0.1767* 
85% -0.1343* -0.1812* -0.2244* -0.2162* -0.1804* 

 
Note: * denotes p<0.1  
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