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ABSTRACT

GROUNDED LANGUAGE PROCESSING FOR ACTION UNDERSTANDING
AND JUSTIFICATION

By

Shaohua Yang

Recent years have witnessed an increasing interest on cognitive robots entering into our life. In

order to reason, collaborate and communicate with human in the shared physical world, the agents

need to understand the meaning of human language, especially the actions, and connect them to

the physical world. Furthermore, to make the communication more transparent and trustworthy,

the agents should have human-like action justification ability to explain their decision-making

behaviors. The goal of this dissertation is to develop approaches that learns to understand actions

in the perceived world through language communication. Towards this goal, we study three related

problems1.

Semantic role labeling captures semantic roles (or participants) such as agent, patient and theme

associated with verbs from text. While it provides important intermediate semantic representations

for many traditional NLP tasks, it does not capture grounded semantics with which an artificial

agent can reason, learn, and perform the actions. We utilize semantic role labeling to connect the

visual semantics with linguistic semantics. On one hand, this structured semantic representation

can help extend the traditional visual scene understanding instead of simply object recognition and

relation detection, which is important for achieving human robot collaboration tasks. On the other

hand, due to the shared common ground, not every language instruction is fully specified explicitly.

We proposed to not only ground explicit semantic roles, but also implicit roles which is hidden

1This dissertation was supported by IIS-1617682 from the National Science Foundation and the DARPA XAI
program under a subcontract from UCLA (N66001-17-2-4029)



during the communication. Our empirical results have shown that by incorporate the semantic

information, we achieve better grounding performance, and also a better semantic representation

of the visual world.

Another challenge for an agent is to explain to human why it recognizes what’s going on as a

certain action. With the recent advance of deep learning, A lot of works have shown to be very

effective on action recognition. But most of them function like black-box models and have no

interpretations of the decisions which are given. To enable collaboration and communication be-

tween humans and agents, we developed a generative conditional variational autoencoder (CVAE)

approach which allows the agent to learn to acquire commonsense evidence for action justifica-

tion. Our empirical results have shown that, compared to a typical attention-based model, CVAE

has a significantly higher explanation ability in terms of identifying correct commonsense evi-

dence to justify perceived actions. The experiment on communication grounding further shows

that the commonsense evidence identified by CVAE can be communicated to humans to achieve a

significantly higher common ground between humans and agents.

The third problem combines the action grounding with action justification in the context of

visual commonsense reasoning. Humans have tremendous visual commonsense knowledge to an-

swer the question and justify the rationale, but the agent does not. On one hand, this process

requires the agent to jointly ground both the answers and rationales to the images. On the other

hand, it also requires the agent to learn the relation between the answer and the rationale. We

propose a deep factorized model to have a better understanding of the relations between the image,

question, answer and rationale. Our empirical results have shown that the proposed model out-

performs strong baselines in the overall performance. By explicitly modeling factors of language

grounding and commonsense reasoning, the proposed model provides a better understanding of

effects of these factors on grounded action justification.
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Chapter 1

Introduction

1.1 Background

It has been a long dream to have intelligent agents which can help and collaborate with humans in

everyday life such as house keeping, medical assistance and so on. Imagine such a scene: you can

instruct a robot to finish some cooking task in the kitchen in natural language. When you say “take

out the vegetable”, the agent can quickly move to the location where the vegetable is and bring it

back to you. In order for the agent to successfully complete this task, it needs to have advanced

perception and reasoning abilities.

Compared with traditional robots which are hard-coded to finish specific tasks, this new gen-

eration of robots need to adapt to dynamic tasks and environments. That is to say, we cannot

fixed the programmed procedures. It’s impossible for us to enumerate all the possible tasks and

environments to write programs for them. Instead we need to develop robots which can learn and

generalize to a new environment and new tasks through language communications.

To achieve this goal, we need to develop intelligent agents which can connect natural language

and the robot’s perception. During this process, recognizing and understanding actions are of

significant importance as verbs constitute a core part of natural language instructions. Although

there has been a lot of research on object recognition and referential grounding, less work has

been done to bridge the structured linguistic semantics and visual perception, which is essential
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for human robot interaction.

Machine learning approaches, especially deep learning approaches have achieved exciting per-

formances on various tasks. However, they often function as a black box and are hard to interpret

models’ behaviors. To address this problem, recent years have witnessed an increasing interesting

on explainable artificial intelligence (XAI). The goal is to make the black-box machine learning

models more transparent and trustworthy. For example, in the medical diagnosis field, it’s helpful

for the agents to provide some evidence or justifications to the doctors regarding any predictions or

recommendations made by the agent. Some recent work also tries to do post-hoc analysis to under-

stand the behaviors of neural networks through feature visualization, attention visualization and so

on. Different from post-hoc explanations, we propose to jointly model the the prediction and justi-

fication process as they are often coupled in the human cognitive process. In this way, the agent not

only provides the predictions, but also their reasoning justifications. Such justification will allow

human users to better interpret machines’ behaviors and enable more mutual understanding and

common ground.

In the following sections of this chapter, we first identify what are the research challenges. Then

we describe our contributions towards the goal of grounded action understanding and justification.

1.2 Challenges

As discussed in the background section, it is important for robots not only to automatically connect

the visual world to natural language, but also to infer justifications behind decision making. To

address this issue, the following questions need to be addressed:

1. Natural language is represented as discrete and symbolic word sequences, but the robots’

surrounding worlds are commonly continuous in nature such as image and videos. There
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exists a big gap between representations of natural language and the visual world. How to

connect the discrete language representation and the continuous visual representation so that

AI agents can understand the meanings of language with respect to the physical world?

2. During human human conversation, some information is not be explicitly mentioned as it is

commonly known and shared by each other. However, for the robot which is lack of com-

monsense knowledge, it’s important to infer the implicit information to get a comprehensive

understanding of human language. Is it possible to acquire the implicit knowledge and how

to acquire it still remain open problems.

3. To allow agents to reason and justify recognized actions, the first key step is to understand

how humans make justifications and what strategies humans apply to justify a perceived

action. Exploring an effective action justification representation is of significant importance

to further problem formulation.

4. The relations between the justifications and predictions are complex. On one hand, the

justifications (or evidence) provide strong supports for the predicted action; on the other

hand, the action prediction gives more contexts on what justifications to select. The physical

world contains multiple actions where different actions may have different justifications,

so jointly modeling the action prediction and justification is really important to tackle the

diversities between the actions and justifications. Furthermore, the annotation process of

action justifications is really time consuming and expensive, whether we can build models

to alleviate human efforts to learn to predict and justify efficiently?

5. Finally, instead of understanding action prediction and justification purely based on textual

relations, it’s more meaningful to connect action prediction and action justification with

the visual world. The agent not only needs to ground the target action, but also the action
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justifications. How can we model the relations between the visual world, actions and action

justifications to allow agents to get a comprehensive understanding of actions?

1.3 Contributions

Towards the goal of building agents that can ground action semantics and action justifications, the

contributions of this dissertation are listed as follows:

1. To understand natural language, a variety of semantic representations are proposed and stud-

ied by linguists. One of the semantic representations is distributed semantics which rep-

resents each word as a continuous vector in a high dimension space, but it is limited in

learning structured relations between different words or entities in the sentence. To explic-

itly model the relations, the frame-based verb semantics defines a frame of thematic roles

(also referred to as semantic roles or verb arguments) for each verb to capture the semantics

for different verbs [52]. For example, a verb can be characterized by agent (i.e., the anima-

tor of the action) and patient (i.e., the object on which the action is acted upon), and other

roles such as instrument, source, destination, etc. Given a verb frame, the goal of Seman-

tic Role Labeling is to identify linguistic entities from the text that serve different thematic

roles [14, 28, 67, 111]. For instance, given the sentence the woman takes out a cucumber

from the refrigerator., takes out is the main verb (also called predicate); the noun phrase

the woman is the agent of this action; a cucumber is the patient; and the refrigerator is the

source. The frame-based verb semantics capture the verb meaning explicitly by connecting

with other words/entities, which is easier for humans to interpret and has a more fine-grained

structure. The linguists have developed several large frame-based knowledge bases includ-

ing VerbNet [85], FrameNet [3], and Propbank [45] et al. However, based on pure symbolic

4



representations, It’s difficult for the robot to connect texts to the situated world. For ex-

ample, in the previous example, the robot needs to understand what the cucumber means,

where is it, and what’s the relation between the object cucumber and action takes out. To

overcome this limitation, We developed an approach to jointly understand language and vi-

sion by incorporating linguistic semantic role information. To be specific, we propose a

probabilistic graphical model to ground each semantic role to the possible trackings in the

perceived world. In this way, we connect the low-level image pixels to high-level linguistic

structure.

2. During human human conversation, it’s not always the case that all content is explicitly

stated as some experience or information is assumed known by each other. As in the previous

example, the semantic role destination is not explicitly mentioned in the human instruction,

but it is important to allow the agent to execute the action. Motivated by this phenomenon, we

simultaneously grounds both explicit and implicit semantic roles. Although the destination

is missing, its grounding closely depends on other roles’ groundings including the action

and patient and so on. Filling all the semantic slots of the physical actions is especially

important for the robot to build the semantic map and conduct planing to connect with low-

level actions.

3. Our empirical results on grounded semantic role labeling demonstrate a significant perfor-

mance improvement compared with previous benchmark without modeling semantic context

information and implicit semantic roles. Besides, we collect an additional layer of annota-

tion on top of part of the TACOS dataset which captures the structure of actions informed by

semantic roles from the video. The annotated data is publicly available for download 1. It

1https://github.com/yangshao/gsrl
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will provide a benchmark for future work on the grounded semantic role labeling task.

4. Before diving into the action justification problem, we need to first identify key structures of

human justifications for action recognition. We conducted a human study to collect real hu-

man justifications. After some careful manual analysis, we identify several key dimensions

of commonsense knowledge, from a human’s perspective, to justify concrete actions in the

physical environment. These dimensions provide an important basis to justify explanations

that are aligned with human’s commonsense knowledge about actions. More importantly, we

can make use of these key dimensions to derive useful structured representations for action

justification modeling.

5. We proposed an unsupervised conditional variational autoencoder (CVAE) based method to

jointly learn to predict actions and select commonsense evidence as action justification. The

CVAE model naturally models the generation process of both action prediction and com-

monsense evidence selection. Inferring commonsense evidence is equivalent to the posterior

inference of the CVAE model: what are the possible support given the predicted action,

which is flexible and powerful to incorporate actions as context. Inferring actions can be

seen as the forward process by first selecting evidence, then using the evidence to do predic-

tion. These two processes are jointly learned in our proposed framework. Furthermore we

extend the unsupervised setting to the semi-supervised setting which adds supervisions to

the latent commonsense evidence to verify whether it can improve both the action prediction

and action justification performance. Our empirical experimental results show better perfor-

mance on both the action prediction and justification. To test the communication grounding

efficiency, we design human studies to show that our method can achieve higher communi-

cation grounding compared with strong baselines. The dataset will be made available to the
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community, which will serve as a baseline for the future work on this topic.

6. Despite the success of the joint modeling of action prediction and justification, our previous

work is limited in simple scenarios which only contain limited actions which do not have

complex justifications. In addition, our previous work made a strong assumption that all

justifications are pre-extracted from the image, which is not realistic. To overcome these

limitations, we propose a joint factorized model by extending the traditional visual question

answering task with extra justification inference. In this new setting, the question is designed

for complex actions which may not limited to only one verb, but may contain multiple ac-

tions with different arguments. At the same time, the correct justification not only needs to

explain the answer well, but also be grounded to the visual world. This requires the agent

to understand the joint relation between the image, question, answer and justification. Com-

pared with previous works based on a two step inference process, we factorize the complex

interaction into small local interactions, our empirical experimental results demonstrate the

effectiveness of the proposed factorized modeling. In addition, we carefully analyzed how

different factors influence the final performance through detailed ablation studies.

1.4 Organization of Dissertation

The rest of chapters are organized as follows. Related works are introduced in Chapter 2. Then

in Chapter 3, we detail how to formulate the grounded semantic role labeling problem as well as

how we collect the dataset for this problem. Then we formally introduced the graphical model

used to solve this problem. A series of experiments are conducted to demonstrate the effective of

the proposed method. Chapter 4 introduces the joint action recognition and justification problem,

as well as how different variants of methods can be used to alleviate the data annotation effort.
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Detailed experimental results are shown to prove the effectiveness of the proposed method. In

Chapter 5, we show how to use deep factorized model to solve the grounded action justification

problem, Detailed ablation study results are shown to demonstrate how different factors help for

the final joint grounded action recognition and justification problem. Finally we discuss some

possible future directions in Chapter 6.
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Chapter 2

Related Work

Learning to understand grounded action meanings is related to multiple research areas, from tra-

ditional linguistic studies on verb semantics, to grounded language learning, explainable artificial

intelligence and commonsense reasoning. In this chapter, we discuss some related works in these

areas.

2.1 Verb Semantics

How to represent the meaning of words, sentences or even documents has been a long studied

problem in natural language processing [3, 45, 52, 72]. Actions, especially verbs, usually indicate

some happening events in the physical world. Verbs are one of the most important components as

they act as key parts to connect with other different components including nouns, adverbs and so

on. According to the linguistic theory of verbs [35], the action verbs are mainly divided into two

sub-categories: manner verbs and result verbs. The manner verbs are defined as “verbs specify as

part of their meaning a manner of carrying out an action”, and the result verbs are “verbs specify

the coming about of a result state”. Example manner verbs include nibble, rub, laugh and so on.

Example result verbs contain clean, fill, chop and so on. Different kinds of verbs show different

properties. For example, compared with the manner verbs, the result verbs have more obvious state

of changes to indicate the possible action justifications. While for manner verbs, sub-actions are

important indicators for the commonsense evidence.
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In our work, we are interested in how to represent and understand action meanings.

2.1.1 Distributed Semantics

One of the established semantic categories is distributed semantics: The words/verbs are repre-

sented as continuous vectors in a high dimension space. The core idea behind the distributed

semantics is that the word meaning is closely related with words occurring in similar linguistic

contexts.

One of the earliest distributed representations is the bag-of-words representation. For a fixed

vocabulary V which contains n unique words. Each word w ∈ V can be represented as a vector v

of which vi = 1 and all other values are 0. i is the corresponding word index of w in the vocabulary

V. The problem with the bag-of-words representation is that it’s difficult to reflect the similarity

between similar words.

To alleviate this limitation, some works [64] try to represent the words using lower dimension

continuous vectors thus making similar words are close in the space. Some Other works use

matrix factorization based methods for the distributed representation [33, 50]. Topic Model [6] is

a specific generative bayesian method to model the relations between the words and documents

based on latent topics.

With the recent advances of deep learning in natural language processing, many new algo-

rithms are proposed to learn effective word representations. Word2vec [62] and Glove [69] are two

of the most popular methods to utilize the large unlabeled text to learn distributed representations

of words based on the distributed assumption. However, both of them are context independent

meaning representations whose meanings do not depend on the specific context. Even more re-

cently, ELMO [70] and Bert [18] are proposed to extend the context independent representations

to context depended representations: For the same word, if they appears in different contexts, they
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may have different meanings. Nowadays, the distributed pre-trained word embeddings have been

widely used for most natural language processing tasks. One of the main reasons is that the pre-

trained word embeddings carry a lot of commonsense knowledge which can be beneficial to the

target task which is beneficial to alleviate the large dataset requirement of deep learning.

2.1.2 Semantic Role Labeling

Although the distributed semantics is a good choice for exploring word similarities, it’s hard to

explore fine grained relations between words or entities.

To understand the semantics of actions/verbs, a more structured way is to identify the semantic

relations between entities and the events they participate in. To be concrete, our goal is to identify

who did what to whom when and where given the natural sentence. The linguists proposed frame-

based verb semantic representation for this purpose: for each verb sense(one verb may contain

more than one sense), a frame including different slots is defined as a template whose values

are instantiated for a specific sentence describing the situation where the verb is happening. For

example, the slots of the verb cut contains agent, patient, source, instrument and so on.

To facilitate the study of semantic role labeling, the researchers have developed semantic gram-

mars and manually annotated linguistic resources including several large scale frame-based knowl-

edge bases including VerbNet [85], FrameNet [3] and PropBank [45] and so on. These linguis-

tic resources greatly accelerate a variety of statistical approaches towards semantic role labeling

tasks [14,67,71,111]. For example, the sentence: “the man is cutting the vegetable with the knife”

contains the predicate cutting, the patient vegetable, and the tool knife. The semantic role labeling

has been widely used on a lot of natural language processing applications including information

extraction [22], question answering [86], summarization [42] et al.
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2.2 Grounded Language Learning

Traditional semantic role labeling plays a very important role in many applications in natural lan-

guage processing. However, it doesn’t ground to the physical world, which makes the agents hardly

understand the situation and then to perform the specified action.

Recent years have witnessed an increasing amount of works on muti-modal learning integrating

language and vision including image annotation [40, 73], image/video caption generation [19, 21,

48, 66, 96], video sentence alignment [59, 65], scene generation [8], and multi-modal embedding

incorporating language and vision [7, 51].

One of the fundamental tasks in grounded language learning is to associate words with per-

ceptual input. Words are discrete symbols and perceptions are usually represented by contin-

uous sensory data. Therefore a common way of connecting them is to discretize the sensory

feature space into categories that are associated with linguistic words such as grounding color

names [27, 36, 61, 76] and grounding spatial terms [29, 75, 87].

What is more relevant to our work is recent progress on grounded language understanding,

which involves learning meanings of words through connections to machine perception [82] and

grounding language expressions to the shared visual world. For example, to visual objects [55,56],

to physical landmarks [90, 91], and to perceived actions or activities [2, 91].

Different approaches and emphases have also been explored for grounded language learning.

For example, linear programming has been applied to mediate perceptual differences between hu-

mans and robots for referential grounding [55]. Approaches to semantic parsing have been applied

to ground language to internal world representations [2, 9]. Logical Semantics with Perception

(LSP) [47] was applied to ground natural language queries to visual referents through jointly pars-

ing natural language (combinatory categorical grammar (CCG)) and visual attribute classification.

12



Graphical models have been applied to word grounding. For example, a generative model was

applied to integrate And-Or-Graph representations of language and vision for joint parsing [93].

A Factorial Hidden Markov Model (FHMM) was applied to learn the meaning of nouns, verbs,

prepositions, adjectives and adverbs from short video clips paired with sentences [104]. Discrim-

inative models have also been applied to ground human commands or instructions to perceived

visual entities, mostly for robotic applications [90, 91]. More recently, deep learning has been

applied to ground phrases to image regions [39].

2.3 Explainable Artificial Intelligence

Advanced machine learning - especially deep learning approaches have proven the effectiveness in

many applications such as image classification and machine translation. However, they do not pro-

vide meaningful and human interpretable explanations of model behaviors. This makes it difficult

for artificial agents to collaborate with humans as it’s crucial for humans to understand the agent’s

capabilities and limitations. To address this problem, there is a growing interest in Explainable ar-

tificial intelligence recently. For example, approaches are proposed to generate high precision rules

to explain classifiers’ decisions [79, 80]. Specifically for Convolutional Neural Networks (CNNs),

recent work addresses its interpretability by mining semantic meanings of filters [108, 109] or by

generating language explanations [32,68]. Interpreting the neural models also helps to analyze the

linguistic characteristics of the Alzheimer disease patients [38]. An increasing amount of works

on the Visual Question Answering (VQA) task [1, 58] have also looked into more interpretable

approaches by utilizing attention-based models [24] or reasoning based on explicit evidence [99].

Another trend is to understand physical actions by modeling physical attributes (including

causal attributes) [23, 25, 26, 106]. Physical attributes and the related commonsense knowledge
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are important sources for explanation generation. Previous works try to acquire commonsense

knowledge from image annotations [103] or learn commonsense knowledge from visual abstrac-

tion [95]. Recently related work also focus on commonsense knowledge related with human’s

mental states [74]. Different from above works, our work here focuses on learning to acquire

commonsense evidence for action justification.

2.4 Visual Commonsense Reasoning

Deep learning based methods have achieved great performance on many vision tasks and applica-

tions, for some tasks it even surpasses the human-level performance. However, most of of these

applications still capture superficial semantics such as recognizing the objects in an image, iden-

tify basic properties including colors, locations and so on. Humans have much stronger reasoning

abilities for the situated visual situation. Most of this knowledge for the visual world are visual

commonsense knowledge, from low-level spatial understanding to high level causal inference. In

order to develop agents who behave like a human, the agents must have the ability to acquire

such kind of visual commonsense and also can infer more complex scenarios based on the visual

commonsense knowledge.

Some work [103] starts from extracting visual commonsense directly from image annotations.

Specifically they are trying to mine object-object relations and further extend to entailment rela-

tions based on statistics from an annotated image corpus. However, this method requires a large

scale of dense annotations of the images.

Other works try to extend the traditional recognition-based visual task to reasoning based

tasks [1]. One of the most popular tasks is visual question answering(VQA): given an image

and a question, the model needs to learn how to answer the visual question. However, the main
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limitation of the VQA task is that most of questions are not related with the visual commonsense,

and are still related recognition-level semantics in most of current open source datasets.

Recently the Recognition to Cognition(R2C) work [105] collect a new large dataset focusing

on the visual commonsense phenomenon in the movie domain. Their setting is similar to the VQA

setting. The difference is that their questions require in-depth understanding of the visual semantics

to answer, which they call the cognition semantics. For each sample, they also provide explanation

choices to enable the model learns which explanation can be used to justify the answer. Compared

with other explanation generation based tasks, making it a multiple choices problem can make

the evaluation easier and more robust. And the R2C task can be seen as a combination of Visual

Question Answering task and Visual Commonsense Reasoning task.
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Chapter 3

Grounded Semantic Role Labeling

In the previous chapters, we briefly review the background of grounded language learning and

some related works. This chapter 1 is organized as follows: first we introduce some backgrounds

and motivate the new grounded semantic role labeling task. Then we show how we formulate the

problem into the graphical model framework. Third we investigate a subset of the TACOS corpus

and analyze the dataset statistics. Finally we conduct a set of experiments and discuss the results.

Last we conclude the current work.

3.1 Introduction

Linguistic studies capture semantics of verbs by their frames of thematic roles (also referred to as

semantic roles or verb arguments) [52]. For example, a verb can be characterized by agent (i.e.,

the animator of the action) and patient (i.e., the object on which the action is acted upon), and

other roles such as instrument, source, destination, etc. Given a verb frame, the goal of Semantic

Role Labeling (SRL) is to identify linguistic entities from the text that serve different thematic

roles [14, 28, 67, 111]. For example, given the sentence the woman takes out a cucumber from the

refrigerator., takes out is the main verb (also called predicate); the noun phrase the woman is the

agent of this action; a cucumber is the patient; and the refrigerator is the source.

1Grounded Semantic Role Labeling. Shaohua Yang, Qiaozi Gao, Changsong Liu, Caiming Xiong, Song-Chun
Zhu, Joyce Y. Chai. Proceedings of the 15th Annual Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (NAACL-HLT), San Diego, CA, June 12-17, 2016.
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The	woman	takes	out	a	cucumber	from	the	
refrigerator.	

	Predicate:	“takes	out”:	track	1	
	Agent:	‘’The	woman’’	:	track	2	
	Pa.ent:	‘’a	cucumber’’	:	track	3	
	Source:	‘’from	the	refrigerator’’	:	
track	4	
	Des.na.on:	‘’	‘’	:	track	5	
	

Figure 3.1: An example of grounded semantic role labeling for the sentence the woman takes out
a cucumber from the refrigerator. The left hand side shows three frames of a video clip with the
corresponding language description. The objects in the bounding boxes are tracked and each track
has a unique identifier. The right hand side shows the grounding results where each role including
the implicit role (destination) is grounded to a track id.

SRL captures important semantic representations for actions associated with verbs, which have

shown beneficial for a variety of applications such as information extraction [22] and question

answering [86]. However, the traditional SRL is not targeted to represent verb semantics that are

grounded to the physical world so that artificial agents can truly understand the ongoing activities

and (learn to) perform the specified actions. To address this issue, we propose a new task on

grounded semantic role labeling.

Figure 3.1 shows an example of grounded SRL. The sentence the woman takes out a cucumber

from the refrigerator describes an activity in a visual scene. The semantic role representation from

linguistic processing (including implicit roles such as destination) is first extracted and then

grounded to tracks of visual entities as shown in the video. For example, the verb phrase take out is

grounded to a trajectory of the right hand. The role agent is grounded to the person who actually

does the take-out action in the visual scene (track 1) ; the patient is grounded to the cucumber

taken out (track 3); and the source is grounded to the refrigerator (track 4). The implicit role of

destination (which is not explicitly mentioned in the language description) is grounded to the

cutting board (track 5).
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To tackle this problem, we have developed an approach to jointly process language and vision

by incorporating semantic role information. In particular, we use a benchmark dataset (TACOS)

which consists of parallel video and language descriptions in a complex cooking domain [77] in

our investigation. We have further annotated several layers of information for developing and

evaluating grounded semantic role labeling algorithms. Compared to previous works on language

grounding [47,90,104], our work presents several contributions. First, beyond arguments explicitly

mentioned in language descriptions, our work simultaneously grounds explicit and implicit roles

with an attempt to better connect verb semantics with actions from the underlying physical world.

By incorporating semantic role information, our approach has led to better grounding performance.

Second, most previous works only focused on a small number of verbs with limited activities. We

base our investigation on a wider range of verbs and in a much more complex domain where object

recognition and tracking are notably more difficult. Third, our work results in additional layers of

annotation to part of the TACOS dataset. This annotation captures the structure of actions informed

by semantic roles from the video. The annotated data is available for download 2. It will provide a

benchmark for future work on grounded SRL.

3.2 Grounded Semantic Role Labeling

3.2.1 Problem Formulation

Given a sentence S and its corresponding video clip V , our goal is to ground explicit/implicit roles

associated with a verb in S to video tracks in V. In this paper, we focus on the following set of

semantic roles: {predicate, patient, location, source, destination, tool}. In the cooking domain, as

actions always involve hands, the predicate is grounded to the hand pose represented by a trajectory

2https://github.com/yangshao/gsrl
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of relevant hand(s). Normally agent would be grounded to the person who does the action. As there

is only one person in the scene, we thus ignore the grounding of the agent in this work.

Video tracks capture tracks of objects (including hands) and locations. For example, in Figure

3.1, there are 5 tracks: human, hand, cucumber, refrigerator and cutting board. Regarding the

representation of locations, instead of discretization of a whole image to many small regions(large

search space), we create locations corresponding to five spatial relations (center, up, down, left,

right) with respect to each object track, which means we have 5 times the number of locations

compared with the number of objects. For instance, in Figure 3.1, the source is grounded to

the center of the bounding boxes of the refrigerator track; and the destination is grounded to the

center of the cutting board track. We use Conditional Random Field(CRF) to model this problem.

An example CRF factor graph is shown in Figure 3.2. The CRF structure is created based on

information extracted from language. More specifically, s1, ...,s6 refers to the observed text and

its semantic role. Notice that s6 is an implicit role as there is no text from the sentence describing

destination. Also note that the whole prepositional phrase “from the drawer" is identified as the

s2	 s1	 s6	 s3	 s4	 s5	

φ5	

The	person	
[Agent]	

Takes	out	
[Predicate]	

The	drawer	
[Source]	

From	
[Source]	

A	cuAng	board	
[PaCent]	

[DesCnaCon]	

φ4	φ3	φ6	φ1	φ2	

v2	

v1	

v6	

v3	 v4	

v5	

Figure 3.2: The CRF structure of sentence “the person takes out a cutting board from the drawer”.
The text in the square bracket indicates the corresponding semantic role.
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source rather than “the drawer" alone. This is because the prepositions play an important role in

specifying location information. For example, “near the cutting boarding" is describing a location

that is near to, but not exactly at the location of the cutting board. Here v1, ...,v6 are grounding

random variables which take values from object tracks and locations in the video clip, and φ1, ...,φ6

are binary random variables which take values {0,1}. When φi equals to 1, it means vi is the

correct grounding of corresponding linguistic semantic role, otherwise it is not. The introduction

of random variables φi follows previous work from Tellex and colleagues [90], which makes CRF

learning more tractable.

3.3 CRF-based Learning and Inference

3.3.1 Conditional Random Field

Conditional Random Field is a kind of discriminative graphical model which models the condi-

tional probability distribution p(Y |X) in which X is the structured input and Y is structured output.

The output space Y composes of an markov random field. Of all the CRF model variants, the

linear chain CRF is the most commonly used which is first proposed for segmentating and labeling

Figure 3.3: The linear conditional random field structure.

20



sequence data [49]. The conditional probability is represented as:

p(Y = y|X) =
1

Z(X)∏
i

Φi(X ,y)

in which Φi(X ,y) are the factors’ potential functions and Z(X) is the normalization constant. An

example CRF for linear sequence tagging is shown in Figure 3.3.

3.3.2 CRF for Grounded Semantic Role Labeling

Different from the most common sequence labeling problem, grounded semantic role labeling is a

more complex structure prediction task.

In the GSRL CRF model, we do not directly model the objective function as:

p(v1, ...,vk|S,V )

where S refers to the sentence, V refers to the corresponding video clip and vi refers to the ground-

ing variable. Because the gradient based learning method needs the expectation of v1, ...,vk, which

is infeasible, we instead use the following objective function:

P(φ |s1,s2, . . . ,sk,v1,v2, . . . ,vk,V )

where φ is a binary random vector [φ1, ...,φk], indicating whether the grounding is correct. The
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objective function is factorized as follows:

P(φ |s1,s2, . . . ,sk,v1,v2, . . . ,vk,V )

=
1
Z ∏

i
ψ(φi,si,vi,V )

= ∏
i

1
Zi

exp{w>F(φi,si,vi,V )}

= ∏
i

P(φi|si,vi,V )

where ψ is the potential function, w refers to parameters, F(φi,si,vi,V ) denotes a factor feature

vector. Z and Zi are normalization constant:

Z = ∑
φ

∏
i

ψ(φi,si,vi,V )

Zi = ∑
φi

ψ(φi,si,vi,V )

We can see Z can be decomposed as the product of Zis because each factor only relates to one

φi. In this way, the objective function factorizes according to the structure of language with local

normalization at each factor.

Gradient ascent with L2 regularization was used for parameter learning to maximize the objec-

tive function:

L = logP(P(Φ|λ1,λ2, . . . ,λn,γ1,γ2, . . . ,γN ,V )

Taking derivative of L we can get

∂L
∂w

= ∑
i

F(φi,si,vi,V )−∑
i

EP(φi|si,vi,V )F(φi,si,vi,V )
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where F refers to the feature function. During the training, we also use random grounding as

negative samples for discriminative training. And the updating rule is

wt+1 = wt +η
∂L
∂w

,

where η is the step size. We can see the learning in tractable as φ is a binary random variable and

calculate it’s expectation is not that hard.

For the inference, The linear chain CRF have polynomial extract algorithm for decoding. But

for the general graph structure, there is no efficient exact algorithm. The search space can be

very large when the number of objects in the world increases. To address this problem we apply

beam search to do the approximate inference. Specifically we select an easy to head inference

order: we first ground roles including patient, tool, and then other roles including location, source,

destination and predicate. We empirical try different beam search orders and find that this order

achieves the best performance.

3.4 Dataset for Grounded Semantic Role Labeling

In this section, we first detail the statistics of the collected data for GSRL. Then introduce the

approaches to process language and vision automatically.

Figure 3.4: The TACOS dataset.
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3.4.1 Dataset Collection

We conducted our investigation based on a subset of the TACOS corpus [77]. This dataset contains

a set of video clips paired with natural language descriptions related to several cooking tasks. The

natural language descriptions were collected through crowd-sourcing on top of the “MPII Cooking

Composite Activities” video corpus [81]. The overview of the TACOS is shown in Figure 3.4.

The middle part is the video clip corresponding to one specific task in the kitchen domain. On the

left side, there show different manual low-level annotations with time segment, verbs and related

objects. The right side shows the human language descriptions for specific time periods.

In this paper, we selected two tasks “cutting cucumber” and “cutting bread” as our experimental

data. Each task has 5 videos showing how different people perform the same task. Each video is

segmented to a sequence of video clips where each video clip comes with one or more language

descriptions.

Figure 3.5: The VATIC Annotation Interface for the TACOS dataset.

2For some verbs (e.g., get), there is a slight discrepancy between the sum of implicit/explicit roles across different
categories. This is partly due to the fact that some verb occurrences take more than one objects as grounding to a role.
It is also possibly due to missed/duplicated annotation for some categories.
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The original TACOS dataset does not contain annotation for grounded semantic roles. To

support our investigation and evaluation, we had made significant efforts adding the following

annotations. For each video clip, we annotated the objects’ bounding boxes, their tracks, and their

labels (cucumber, cutting_board, etc.) using VATIC [97]. On average, each video clip is annotated

with 15 tracks of objects. The annotation interface is shown in Figure 3.5.

For each sentence, we annotated the ground truth parsing structure and the semantic frame for

each verb. The ground truth parsing structure is the representation of dependency parsing results.

The semantic frame of a verb includes slots, fillers, and their groundings. For each semantic role

(including both explicit roles and implicit roles) of a given verb, we also annotated the ground truth

grounding in terms of the object tracks and locations. In total, our annotated dataset includes 976

pairs of video clips and corresponding sentences, 1094 verbs occurrences, and 3593 groundings of

semantic roles. To check annotation agreement, 10% of the data was annotated by two annotators.

The kappa statistics is 0.83 [13].

Table 3.1: Statistics for a set of verbs and their semantic roles in our annotated dataset. The
entry indicates the number of explicit/implicit roles for each category. “–” denotes no such role is
observed in the data.

Verb Patient Source Destn Location Tool
take 251 / 0 102 / 149 2 / 248 – –
put 94 / 0 – 75 / 19 – –
get 247 / 0 62 / 190 0 / 239 – –
cut 134 / 1 64 / 64 – 3 / 131 5 / 130

open 23 / 0 – – 0 / 23 2 / 21
wash 93 / 0 – – 26 / 58 2 / 82
slice 69 / 1 – – 2 / 68 2 / 66
rinse 76 / 0 0 / 74 – 8 / 64 –
place 104 / 1 – 105 / 7 – –
peel 29 / 0 – – 1 / 27 2 / 27

remove 40 / 0 34 / 6 – – –
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From this dataset, we selected 11 most frequent verbs (i.e., get, take, wash, cut, rinse, slice,

place, peel, put, remove, open) in our current investigation for the following reasons. First, they

are used more frequently so that we can have sufficient samples of each verb to learn the model.

Second, they cover different types of actions: some are more related to the change of the state such

as take, and some are more related to the process such as wash. As it turns out, these verbs also

have different semantic role patterns as shown in Table 3.1. The patient roles of all these verbs

are explicitly specified. This is not surprising as all these verbs are transitive verbs. There is a

large variation for other roles. For example, for the verb take, the destination is rarely specified by

linguistic expressions (i.e., only 2 instances), however it can be inferred from the video. For the

verb cut, the location and the tool are also rarely specified by linguistic expressions. Nevertheless,

these implicit roles contribute to the overall understanding of actions and should also be grounded

too.

3.4.2 Automated Processing

To build the structure of the CRF as shown in Figure 3.2 and extract features for learning and

inference, we have applied the following approaches to process language and vision.

Language Processing. Language processing consists of three steps to build a structure containing

syntactic and semantic information. First, the Stanford Parser [60] is applied to create a depen-

dency parsing tree for each sentence. Second, Senna [14] is applied to identify semantic role labels

for the key verb in the sentence. The linguistic entities with semantic roles are matched against

the dependency nodes in the tree and the corresponding semantic role labels are added to the tree.

Third, for each verb, the PropBank [67] entries are searched to extract all relevant semantic roles.

The implicit roles (i.e., not specified linguistically) are added as direct children of verb nodes in

the tree. Through these three steps, the resulting tree from language processing has both explicit
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and implicit semantic roles. These trees are further transformed to the CRF structures based on a

set of rules.

Vision Processing. A set of visual detectors are first trained for each type of objects. Here a

random forest classifier is adopted. More specifically, we use 100 trees with HoG features [15]

and color descriptors [94]. Both HoG and Color descriptors are used, because some objects are

more structural such as knives and humans; While some are more textured such as towels. With

the learned object detectors, given a candidate video clip, we run the detectors at each 10th frame

(less than 0.5 seconds), and find the candidate windows for which the detector score corresponding

to the object is larger than a threshold (set as 0.5). Then using the detected window as a starting

point, we adopt tracking-by-detection [16] to go forward and backward to track this object and

obtain the candidate track with this object label.

Feature Extraction. Features in the CRF model can be divided into the following three categories:

1. Linguistic features include word occurrence and semantic role information. They are ex-

tracted by language processing.

2. Track label features are the label information for tracks in the video. The labels come from

human annotation or automated visual processing depending on different experimental set-

tings (described in Section 3.5.1).

3. Visual features are a set of features involving geometric relations between tracks in the video.

One important feature is the histogram comparison score. It measures the similarity be-

tween distance histograms. Specifically, histograms of distance values between the tracks of

the predicate and other roles for each verb are first extracted from the training video clips.

For an incoming distance histogram, we calculate its Chi-Square distances [107] from the
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pre-extracted training histograms with the same verb and the same role. Its histogram com-

parison score is set to be the average of top 5 smallest Chi-Square distances. Other visual

features include geometric information for single tracks and geometric relations between

two tracks. For example, size, average speed, and moving direction are extracted for a single

track. Average distance, size-ratio, and relative direction are extracted between two tracks.

For features that are continuous, we discretized them into uniform bins.

To ground language into tracks from the video, instead of using track label features or visual

features alone, we use a Cartesian product of these features with linguistic features. To learn

the behavior of different semantic roles of different verbs, visual features are combined with the

presence of both verbs and semantic roles through Cartesian product. To learn the correspondence

between track labels and words, track label features are combined with the presence of words also

through Cartesian product.

To train the model, we randomly selected 75% of annotated 976 pairs of video clips and corre-

sponding sentences as training set. The remaining 25% were used as the testing set.

3.5 Evaluation of Grounded Semantic Role Labeling

3.5.1 Experimental Setup

Comparison. To evaluate the performance of our approach, we compare it with two approaches.

• Baseline: To identify the grounding for each semantic role, the first baseline chooses the

most possible track based on the object type conditional distribution given the verb and

semantic role. If an object type corresponds to multiple tracks in the video, e.g., multiple

drawers or knives, we then randomly select one of the tracks as grounding. We ran this
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baseline method five times and reported the average performance.

• Tellex (2011): The second approach we compared with is based on an implementation [90].

The difference is that they don’t explicitly model fine-grained semantic role information. For

a better comparison, we map the grounding results from this approach to different explicit

semantic roles according to the SRL annotation of the sentence. Note that this approach is

not able to ground implicit roles.

More specifically, we compare these two approaches with two variations of our system:

• GSRLwo_V: The CRF model using linguistic features and track label features (described in

Section 3.4.2).

• GSRL: The full CRF model using linguistic features, track label features, and visual fea-

tures(described in Section 3.4.2).

Configurations. Both automated language processing and vision processing are error-prone. To

further understand the limitations of grounded SRL, we compare performance under different con-

figurations along the two dimensions: (1) the CRF structure is built upon annotated ground-truth

language parsing versus automated language parsing; (2) object tracking and labeling is based on

annotation versus automated processing. These lead to four different experimental configurations.

Evaluation Metrics. For experiments that are based on annotated object tracks, we can simply use

the traditional accuracy that directly measures the percentage of grounded tracks that are correct.

However, for experiments using automated tracking, evaluation can be difficult as tracking itself

poses significant challenges. The grounding results (to tracks) cannot be directly compared with

the annotated ground-truth tracks. To address this problem, we have defined a new metric called

approximate accuracy. This metric is motivated by previous computer vision work that evaluates
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Table 3.2: Evaluation results based on annotated language parsing.

Accuracy On the Gold Recognition/Tracking Setting

Methods Predicate Patient Source Destination Location Tool
Explicit

All
Implicit

All All

explicit implicit explicit implicit explicit implicit explicit implicit explicit implicit
Baseline 0.856 0.372 NA 0.225 0.314 0.311 0.569 NA 0.910 NA 0.853 0.556 0.620 0.583

Tellex(2011) 0.865 0.745 – 0.306 – 0.763 – NA – NA – 0.722 – –
GSRLwo_V 0.854 0.794∗+ NA 0.375∗ 0.392∗+ 0.658∗ 0.615∗+ NA 0.920+ NA 0.793+ 0.768∗+ 0.648∗+ 0.717∗

GSRL 0.878∗+ 0.839∗+ NA 0.556∗+ 0.684∗+ 0.789∗ 0.641∗+ NA 0.930+ NA 0.897∗+ 0.825∗+ 0.768∗+ 0.8∗
Approximated Accuracy On the Automated Recognition/Tracking Setting

Methods Predicate Patient Source Destination Location Tool
Explicit

All
Implicit

All All

explicit implicit explicit implicit explicit implicit explicit implicit explicit implicit
Baseline 0.529 0.206 NA 0.169 0.119 0.236 0.566 NA 0.476 NA 0.6 0.352 0.393 0.369

Tellex(2011) 0.607 0.233 – 0.154 – 0.333 – NA – NA – 0.359 – –
GSRLwo_V 0.582∗ 0.244∗ NA 0.262∗+ 0.126+ 0.485∗+ 0.613∗+ NA 0.467+ NA 0.714∗+ 0.410∗+ 0.425∗+ 0.417∗

GSRL 0.548 0.263∗ NA 0.262∗+ 0.086+ 0.394∗ 0.514+ NA 0.456+ NA 0.688∗+ 0.399∗+ 0.381+ 0.391∗

Upper_Bound 0.920 0.309 NA 0.277 0.252 0.636 0.829 NA 0.511 NA 0.818 0.577 0.573 0.575

Table 3.3: Evaluation results based on automated language parsing.

Accuracy On the Gold Recognition/Tracking Setting

Methods Predicate Patient Source Destination Location Tool
Explicit

All
Implicit

All All

explicit implicit explicit implicit explicit implicit explicit implicit explicit implicit
Baseline 0.881 0.318 NA 0.203 0.316 0.235 0.607 NA 0.877 NA 0.895 0.539 0.595 0.563

Tellex(2011) 0.903 0.746 – 0.156 – 0.353 – NA – NA – 0.680 – –
GSRLwo_V 0.873 0.813∗+ NA 0.328∗+ 0.360+ 0.412∗ 0.648∗+ NA 0.877+ NA 0.818+ 0.769∗+ 0.611+ 0.7∗

GSRL 0.873 0.875∗+ NA 0.453∗+ 0.667∗+ 0.412∗ 0.667∗+ NA 0.891+ NA 0.891+ 0.823∗+ 0.741∗+ 0.787∗
Approximated Accuracy On the Automated Recognition/Tracking Setting

Methods Predicate Patient Source Destination Location Tool
Explicit

All
Implicit

All All

explicit implicit explicit implicit explicit implicit explicit implicit explicit implicit
Baseline 0.543 0.174 NA 0.121 0.113 0.093 0.594 NA 0.612 NA 0.567 0.327 0.405 0.362

Tellex(2011) 0.598 0.218 – 0.086 – 0.00 – NA – NA – 0.322 – –
GSRLwo_V 0.618∗ 0.243∗ NA 0.190∗+ 0.120+ 0.133+ 0.641∗+ NA 0.585+ NA 0.723∗+ 0.401∗+ 0.434∗+ 0.415∗

GSRL 0.493 0.243∗ NA 0.190∗+ 0.063+ 0.133+ 0.612+ NA 0.554+ NA 0.617+ 0.367∗+ 0.386+ 0.375
Upper_Bound 0.908 0.277 NA 0.259 0.254 0.4 0.854 NA 0.631 NA 0.830 0.543 0.585 0.561

tracking performance [4]. Suppose the ground truth grounding for a role is track gt and the pre-

dicted grounding is track pt. The two tracks gt and pt are often not the same (although may have

some overlaps). Suppose the number of frames in the video clip is k. For each frame, we calcu-

late the distance between the centroids of these two tracks. If their distance is below a predefined

threshold, we consider the two tracks overlapping in this frame. We consider the grounding is

correct if the ratio of the overlapping frames between gt and pt exceeds 50%. As can be seen, this

is a lenient and an approximate measure of accuracy.
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3.5.2 Results

The results based on the ground-truth language parsing are shown in Table 3.2, and the results

based on automated language parsing are shown in Table 3.3. For results based on annotated ob-

ject tracking, the performance is reported in accuracy and for results based on automated object

tracking, the performance is reported in approximate accuracy. When the number of testing sam-

ples is less than 15, we do not show the result as it tends to be unreliable (shown as NA). Tellex

(2011) does not address implicit roles (shown as “–"). The best performance score is shown in

bold. We also conducted a two-tailed bootstrap significance testing [20]. The score with a “*” in-

dicates it is statistically significant (p < 0.05) compared to the baseline approach. The score with

a “+” indicates it is statistically significant (p < 0.05) compared to the approach [90].

For experiments based on automated object tracking, we also calculated an upper_bound to

assess the best possible performance which can be achieved by a perfect grounding algorithm given

the current vision processing results. This upper_bound is calculated based on grounding each

role to the track which is closest to the ground-truth annotated track. For the experiments based on

annotated tracking, the upper_bound would be 100%. This measure provides some understandings

about how good the grounding approach is given the limitation of vision processing. Notice that

the grounding results in the gold/automatic language processing setting are not directly comparable

as the automatic SRL can misidentify frame elements.

3.5.3 Discussion

As shown in Table 3.2 and Table 3.3, our approach consistently outperforms the baseline (for both

explicit and implicit roles) and the Tellex (2011) approach. Under the configuration of gold recog-

nition/tracking, the incorporation of visual features further improves the performance. However,
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Figure 3.6: The relation between the accuracy and the entropy of each verb’s patient from the gold
language, gold visual recognition/tracking setting. The entropy for the patient role of each verb is
shown below the verb.

this performance gain is not observed when automated object tracking and labeling is used. One

possible explanation is that as we only had limited data, we did not use separate data to train mod-

els for object recognition/tracking. So the GSRL model was trained with gold recognition/tracking

data and tested with automated recognition/tracking data.

By comparing our method with Tellex (2011), we can see that by incorporating fine grained

semantic role information, our approach achieves better performance on almost all the explicit

roles (except for the patient role under the automated tracking condition).

The results have also shown that some roles are easier to ground than others in this domain. For

example, the predicate role is grounded to the hand tracks (either left hand or right hand), there are

not many variations such that the simple baseline can achieve pretty high performance, especially

when annotated tracking is used. The same situation happens to the location role as most of the

locations happen near the sink when the verb is wash, and near the cutting board for verbs like cut,

etc. However, for the patient role, there is a large difference between our approach and baseline
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approaches as there is a larger variation of different types of objects that can participate in the role

for a given verb.

For experiments with automated tracking, the upper_bound for each role also varies. Some

roles (e.g., patient) have a pretty low upper bound. The accuracy from our full GSRL model is

already quite close to the upper bound. For other roles such as predicate and destination, there

is a larger gap between the current performance and the upper bound. This difference reflects the

model’s capability in grounding different roles.

Figure 3.6 shows a close-up look at the grounding performance to the patient role for each

verb under the gold parsing and gold tracking configuration. The reason we only show the results

of patient role here is every verb has this role to be grounded. For each verb, we also calculated

its entropy based on the distribution of different types of objects that can serve as the patient role

in the training data. The entropy is shown at the bottom of the Figure. For verbs such as take

and put, our full GSRL model leads to much better performance compared to the baseline. As the

baseline approach relies on the entropy of the potential grounding for a role, we further measured

the improvement of the performance and calculated the correlation between the improvement and

the entropy of each verb. The result shows that Pearson coefficient between the entropy and the

improvement of GSRL over the baseline is 0.614. This indicates the improvement from GSRL is

positively correlated with the entropy value associated with a role, implying the GSRL model can

deal with more uncertain situations. For the verb cut, The GSRL model performs slightly worse

than the baseline. One explanation is that the possible objects that can participate as a patient for

cut are relatively constrained where simple features might be sufficient. A large number of features

may introduce noise, and thus jeopardizing the performance.

We further compare the performance of our full GRSL model with Tellex (2011) (also shown

in Figure 3) on the patient role of different verbs. Our approach outperforms Tellex (2011) on most
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of the verbs, especially put and open. A close look at the results have shown that in those cases,

the patient roles are often specified by pronouns. Therefore, the track label features and linguistic

features are not very helpful, and the correct grounding mainly depends on visual features. Our

full GSRL model can better capture the geometry relations between different semantic roles by

incorporating fine-grained role information.

3.6 Conclusion

This chapter investigates a new problem on grounded semantic role labeling. Besides seman-

tic roles explicitly mentioned in language descriptions, our approach also grounds implicit roles

which are not explicitly specified. As implicit roles also capture important participants related to

an action (e.g., tools used in the action), our approach provides a more complete representation

of action semantics which can be used by artificial agents for further reasoning and planning to-

wards the physical world. Our empirical results on a complex cooking domain have shown that,

by incorporating semantic role information with visual features, our approach can achieve better

performance compared to baseline approaches. Our results have also shown that grounded seman-

tic role labeling is a challenging problem which often depends on the quality of automated visual

processing (e.g., object tracking and recognition).

There are several directions for future improvement. First, the current alignment between a

video clip and a sentence is generated by some heuristics which are error-prone. One way to

address this is to treat alignment and grounding as a joint problem. Second, our current visual

features have not shown effective especially when they are extracted based on automatic visual

processing. This is partly due to the complexity of the scene from the TACOS dataset and the lack

of depth information. Recent advances in object tracking algorithms [63, 101] together with 3D
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sensing can be explored in the future to improve visual processing. Moreover, linguistic studies

have shown that action verbs such as cut and slice often denote some change of state as a result of

the action [34, 35]. The change of state can be perceived from the physical world. Thus another

direction is to systematically study causality of verbs. Causality models for verbs can potentially

provide top-down information to guide intermediate representations for visual processing and im-

prove grounded language understanding.

The capability of grounding semantic roles to the physical world has many important impli-

cations. It will support the development of intelligent agents which can reason and act upon the

shared physical world. For example, unlike traditional action recognition in computer vision [98],

grounded SRL will provide deeper understanding of the activities which involve participants in the

actions guided by linguistic knowledge. For agents that can act upon the physical world such as

robots, grounded SRL will allow the agents to acquire the grounded structure of human commands

and thus perform the requested actions through planning (e.g., to follow the command “put the cup

on the table”). Grounded SRL will also contribute to robot action learning where humans can teach

the robot new actions (e.g., simple cooking tasks) through both task demonstration and language

instruction.
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Chapter 4

Commonsense Action Explanation in

Human-Agent Communication

In the previous chapter, we conduct a comprehensive study on the grounded semantic role labeling

task in order to understand the verb semantics in the physical situated world. In this chapter 1, we

start looking into a more interesting problem: the grounded semantic role labeling task targets to

answer questions like “what’s the relation between the action and the object/location in the physical

world?”. But for the commonsense reasoning and human interpretation, we are more interested in

asking the question: why do you think this action happens, which is a more challenging task

compared with grounded semantic role labeling.

In this chapter, we will first conduct a study on human justifications. Then give a formal for-

mulation for commonsense action justification. We also detail the process of data crowd sourcing

. Empirical experiments are conducted to prove the effectiveness of the proposed method. Finally

we propose a novel human study to verify the communication grounding efficiency compared with

a variety of different methods.

1Commonsense Justification for Action Explanation. Shaohua Yang, Qiaozi Gao, Sari Saba-Sadiya, Joyce Y.
Chai. Conference on Empirical Methods in Natural Language Processing (EMNLP), Brussels, Belgium, November
1-4, 2018.
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4.1 Introduction

When collaborating with artificial agents, it’s important for humans to understand agents’ abilities

and limitations (e.g., understand why a decision is made by the agent) so that humans can be more

cooperative in joint tasks (e.g., decide when to trust the agent’s prediction). To address this issue,

recent years have seen an increasing effort on Explainable AI (XAI) which attempts to develop

explainable models that can explain the agent’s decision making while maintaining a high-level of

performance.

There are two types of explanation: introspective explanation which addresses decision making

process and justification explanation which gathers evidence to support a certain decision [5, 68].

In this paper we focus on justification explanation - identifying commonsense evidence particularly

for action justification. Although one of the end goals of this investigation is to support perception,

our current focus is on higher level commonsense reasoning for action explanation. Therefore this

work is based on a symbolic representation of the world without concerning vision processing.

Specifically our task is framed as: given many symbolic descriptions of the physical world (e.g.,

object relations and attributes as a result of vision or other processing), how to identify a small set

of descriptions which can justify an action in line with humans’ commonsense knowledge? The

lack of commonsense knowledge is a major bottleneck in artificial agents which jeopardizes the

common ground between humans and agents for successful communication. If artificial agents

ever become partners with humans in joint tasks, the ability to learn and acquire commonsense

evidence for action justification is fundamental. This paper intends to address this important yet

less studied problem.

As a first step in our investigation, we initiated a human study to identify key dimensions of

commonsense reasoning, from the human’s point of view, that justify an action. We then devel-
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oped an explainable model based on the generative conditional variational autoencoder (CVAE)

that models perceived attributes/relations as latent variables to learn the association between com-

monsense evidence and actions. Our empirical results on a subset of the Visual Genome data [46]

show that, compared to a typical attention-based model, CVAE has a significantly higher explana-

tion ability in terms of identifying correct commonsense evidence to justify the recognized action.

When adding the supervision of commonsense evidence during training, both the explainability

and the performance (i.e., action prediction) are further improved. In addition, we evaluated the

role of commonsense evidence in communication grounding between humans and agents. Our ex-

perimental results show that the commonsense evidence generated by CVAE leads to a significantly

higher common ground of actions.

The contributions of this chapter are three folds. First we identified several key dimensions of

commonsense knowledge, from a human’s perspective, to justify concrete actions in the physical

environment. These dimensions provide a basis to justification explanation that is aligned with

human’s commonsense knowledge about the action. Second we proposed a method using CVAE

to jointly learn to predict actions and select commonsense evidence as action justification. CVAE

naturally models the generation process of both actions and commonsense evidence. Inferring

commonsense evidence is equivalent to the posterior inference of the CVAE model, which is flexi-

ble and powerful to incorporate actions as context. Our experimental results have shown a higher

explainability of CVAE in action justification without sacrificing performance. Finally our dataset

of commonsense evidence for action explanation, together with our proposed methods, will be

made available to the community. It will serve as a baseline for the future work on this topic.
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4.2 A Study On Justification Explanation

While there is a rich literature on explanations in Psychology, Philosophy, and Linguistics [17, 57,

92], the kind of concrete physical actions we are interested in are rarely studied by previous work.

To address this issue, our work began with a small human study that would enable us to identify

a low level and quantitatively useful taxonomy of commonsense in explaining actions that can be

perceived from the physical world.

We created a set of 12 short video clips (each about 14 seconds) from the Microsoft Research

Video to Text dataset [100]. For each video clip, we asked human subjects to explain why they

think a certain action is happening in the video. A total of about 170 responses from 67 participants

were collected 2 After a careful examination, we came up with the following dimensions which

capture commonsense explanation for actions.

• Transitive-relations: This kind of explanation does not directly focus on the structural re-

lations between an action and its participants, but rather transits to the relation between the

participant and something else (potentially related). For example, use a woman wears an

apron to justify the cook action. In the collected responses, 64% of them used transitive

relations. (Most subject responses contain multiple categories of explanation.)

• Sub-actions: Almost 75% of the responses used the existence of sub-actions as evidence

(for example, the action is cook because there are sub-actions of cutting and heating meat).

• Spatial-relations: Around 15% of the responses used spatial relations involving the partic-

ipants of the action, for example, the knife is on the cutting board, and the water is in the

bottle, etc.

• Effect-state: Over 28% of the responses cited a change in the state of an object, in other

2The full survey along with other collected data will be released.
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words the effect state, as evidence, such as cucumber in small pieces as the evidence for

chop.

• Associated-attributes: Other attributes associated with the participants of the action, but

not the effect state of the participants (20%). While these attributes are not directly related

to the action, they are linked to the action by association. For example, banana is sliced is

used as evidence to justify blend.

• Other: Participants have also cited other commonsense such as the “definition" of the action

(5%), or the manner associated with different sub actions(12%).

Except for the category Other which cannot be perceived from an image, the other five cat-

egories can be potentially perceived and used as commonsense evidence to justify a perceived

action. These five categories of commonsense explanations are used in our computational models

described next.

4.3 Method

We formulate our task as the following: given a set of relations R and a set of attributes E, the goal

is to jointly select evidence z and predict target action a ∈ A where A is the vocabulary of actions.

R is represented as {r1,r2, ...,rm} where each ri is a tuple (rp
i ,r

s
i ,r

o
i ) corresponding to predicate,

subject and object. E refers to {e1,e2, ...,en} where each ei is a tuple (eo
i ,e

p
i ) corresponding to

the object and attribute. We introduce z as a discrete vector (z1,z2, ...,zm+n) where zi ∈ {0,1}

represents the hidden explainable variable. z is interpreted as an evidence selector: zi = 1 means

the corresponding relation/attribute justifying the target action a. Given all these definitions, our

target is to learn the probability p(a,z|R,E).
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Figure 4.1: Grphaical Model representation of the Conditional Variational Auto-encoder.

4.3.1 Conditional Variational Autoencoder

The varational autoencoder( VAE) [44] is proposed as a generative model to combine the power

of both directed continuous or discrete graphical model and neural network with latent variables.

The VAE models the generative process of random variable x as following: first the latent variable

z is generated from a prior probability distribution p(z), then a data sample x is generated from a

conditional probability distribution p(x|z). The CVAE [110] is a natural extension of VAE: Both

the prior distribution and conditional distribution now are conditioned on an additional context c:

p(z|c) and p(z|x,c).

For our task, we decompose the inference problem p(a,z|R,E) into two smaller problems.

The first sub-problem is to infer p(a|R,E), which we call performer. The second problem is to

infer p(z|a,R,E) which we call explainer. These two problems are closely coupled, hence we will

model them jointly. The probability distribution p(a|R,E) can be written as :

p(a|R,E) = ∑
z

pθ (a|z,R,E)p(z|R,E)

The corresponding graphical representation is shown in Figure 4.1

Directly optimizing this conditional probability is not feasible. Usually the Evidence Lower
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Bound (ELBO) [88] is optimized, which can be derived as following:

ELBO(a,R,E;θ ,φ)

=−KL(qφ (z|a,R,E)||pθ (z|R,E))

+Eqφ (z|a,R,E)[log pθ (a|z,R,E)]

≤ logp(a|R,E)

(4.1)

For the first KL divergence term, we are minimizing the distance between the posterior distribution

and the prior distribution. For the second term, we are maximizing the expectation of the target

action based on the posterior latent distribution.

In most previous work using VAE, there is no explicit meaning for the hidden representation z,

thus it’s hard for humans to interpret. For example, z is simply assumed as a Gaussian distribution

or a categorical distribution. In order to have a more explicit representation for the purpose of

explanation, our latent discrete variable z is used to indicate whether the corresponding relation or

attribute can be used for explanation. In the above ELBO equation, p(a|R,E) is the performer and

qφ (z|a,R,E) is the explainer. Thus we can learn the performer and explainer jointly.

r1:  (on,  knife,  cutting-board)

                ……

rm: (hold, hand,   knife)

Image

GRU

a1: (banana yellow)

          ……

an: (banana, sliced)

GRU

Relation Embedding Attribute Embedding

chop

Action Embedding

…

…

Prior Embedding

Posterior Embedding

KL(q||p)

Gumble 
Softmax

Weighted Sum 
+Relu

chop: 0.6
drink: 0.1
……
pull: 0.1
feed: 0.1

softmax

Glove

pθ(z|R,E)

qφ(z|a,R,E)

Figure 4.2: System Architecture for the CVAE model.

The whole system architecture is shown in Figure 4.2. From an image, we first extract candidate

42



relation set R and attribute set E from human image descriptions or trained visual detectors. Every

relation r and attribute e are embedded using a Gated Recurrent Neural Network [11].

remb = GRU([rp,rs,ro])

eemb = GRU([eo,ep])

The action a is represented by a Glove embedding [69], followed by another non-linear layer:

aemb = ReLU(Wiaglove +bi)

where aglove ∈ Rk is the pre-trained glove embedding. Then the latent variable z can be calculated

as:

qφ (z|a,R,E) = softmax(Wz[U;aemb]+bz)

where U = [remb
1 , ...,remb

m ,eemb
1 , ...,eemb

n ] and [U,aemb] means the concatenation of U and aemb. and

Wz ∈ R2×2k as we assume each zi belongs to one of the two classes {0,1}. The prior distribution

can be calculated as:

pθ (z|R,E) = softmax(W
′
zU+b

′
z)

The main idea is that in order to sample one discrete zd from the softmax distribution, it’s

equivalent to get the sample from

z = one_hot(argmax
i

(log(πi)+gi))

where πi is the i-th logit for the softmax distribution p(z) and gi is a sample drawn from Gum-
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bel(0,1). The argmax is further approximated as a continuous, differentiable function:

zi =
exp(((log(πi)+gi)/τ)

∑
2
j=1 exp(((log(π j)+g j)/τ)

τ is the temperature to control the accuracy of this approximate, the smaller the τ , the closer

between the approximated distribution with the true distribution. We denote

ẑ = gumble_softmax(z)

as the discrete approximate of z. Here ẑ ∈ Rm+n,1

The KL divergence between the prior random variable zprior from pθ (z|R,E) and the posterior

random variable zposterior from qφ (z|a,R,E) is:

KL(zprior,zposterior) =−pi log
pi

p′i
− (1− pi) log

1− pi

1− p′i

here zprior ∼ Bern(pi), zposterior ∼ Bern
(

p
′
i

)
.

Another challenge is that z is a discrete variable which blocks the gradient and makes the end-

to-end training infeasible. Gumbel-Softmax [37] is a re-parameterization trick to deal with the

discrete variables in the neural network. We use this trick to sample discrete z. Then we do a

weighted sum pooling between discretized z and U:

hz = ReLU(∑
i

zi ∗Ui)

h = ReLU(Whhz +bh)

pθ (a|z,R,E) = softmax(Wh+b)
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During training, we also add a sparsity regularization on the latent variable z besides the ELBO. So

our final training objective is

LCVAE =−ELBO(a,R,E;θ ,φ)

+β KL(qφ (z|a,R,E)||Bern(0))
(4.2)

During testing, we have two objectives. First we want to infer the target action a, which can be

computed through sampling:

p(a|R,E) = ∑
z

pθ (z|R,E)pθ (a|z,R,E)

≈ 1
S

S

∑
s=1

pθ (a|zs,R,E)
(4.3)

where zs ∼ p(z|R,E) and S is the number of samples. After obtaining the predicted action â, the

posterior explanation is inferred as qφ (z|â,R,E).

4.3.2 Conditional Variational Autoencoder with Supervision (CVAE+SV)

In this setting, we assume we have the supervision for the discrete latent variable z. which is more

like a multi-task setting. We optimize both the action prediction loss and the evidence selection

loss. The final loss function is defined as:

LSV = λLCVAE +(1−λ )Levidence

where

Levidence =−∑
k
(zk logp(ẑk)+(1− zk) log(1−p(ẑk)))

in which zk ∈ {0,1} is the ground truth label, ẑk is the predicted label and λ is a hyper-parameter.
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(hold, hand, bottle) 

(near, bottle, mouth) 

(in, water, bottle)

(hold, woman, racket)

(racket, orange)

(shirt, white)

Drink Chop

(carve, knife, meat) 

(use, man, knife) 

(on, fork, meat)

(under, stove, pan)

(meat, sliced) 

(fork, long)

Feed

(eat, bird, fruit) 

(on, fruit, hand) 

(on, bird, hand) 

(on, neck, bird)

(apple, green)

(beak, orange)

Figure 4.3: Example Crowdsourcing Annotations in which bold relations/attributes are annotated
as gold.

4.4 Data Collection

To evaluate our method, we created a dataset based on the Visual Genome (VG) data [46]. Each

image in the VG dataset is annotated with bounding boxes, relations and attributes describing the

bounding boxes. The available annotations provided an ideal setup which allowed us to focus on

studying commonsense explanation.

Table 4.1: Statistics for the average relations/attributes Mean and Std for each verb in the dataset.

feed pull ride drink chop brush fry bake blend eat

Ave_Rel
15.49
± 7.55

14.62
± 9.36

12.42
± 7.18

15.16
± 9.89

12.00
± 7.22

15.40
± 8.93

14.02
± 7.02

13.31
± 7.27

14.37
± 6.37

15.08
± 6.87

Ave_Gold_Rel
2.79
± 1.28

1.86
± 0.84

1.69
± 0.83

2.41
± 1.14

2.41
± 1.66

2.26
± 1.08

2.72
± 2.06

2.25
± 1.69

2.56
± 1.84

2.52
± 1.08

Ave_Att
12.48
± 7.11

13.60
± 7.52

12.20
± 7.13

10.86
± 6.52

15.09
± 6.82

12.31
± 8.91

15.31
± 7.16

13.44
± 6.84

15.22
± 7.18

11.98
± 6.50

Ave_Gold_Att
0.26
± 0.48

0.20
± 0.45

0.13
± 0.40

0.30
± 0.56

1.60
± 1.33

0.22
± 0.49

0.91
± 1.26

0.93
± 1.06

0.15
± 0.40

0.41
± 0.70
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More specifically, we selected ten frequently occurred actions: feed, pull, ride, drink, chop,

brush, fry, bake, blend, eat and manually identified a set of images depicting these actions. This

leads to a dataset of 853 images, where each image comes with a ground-truth action and annotated

bounding boxes as well as corresponding relations and attributes. We then showed each image

to the crowd (through Amazon Mechanical Turk) and instructed the turkers to choose justifying

relations and attributes from a list. Each image was annotated by three turkers. The relations or

attributes that were selected by two or more turkers are considered gold that can be used to explain

or justify the perceived action.

Table 4.1 shows some basic statistics for each action. The number of average relations and

attributes in each image for different actions varies slightly. However, only a small percentage of

them are considered gold. What’s interesting is that the percentage of attributes considered gold

is significantly less than the percentage of the relations. The sparsity of gold relations/attributes

shows that it’s a challenging task to learn an explainer for a target action. Some example image

annotations are shown in Figure 4.3. For each image, we show a subset of relations/attributes and

gold commonsense features are marked bold. We further categorize gold relations and attributes

into different commonsense categories as discussed in Section 4.2. As shown in Table 4.2, the

ratios of transitive relations are similar across different actions. The ratios of spatial relations and

sub_actions vary for different verbs. For instance, ride, bake, blend tend to be explained by spatial

relations more often than sub-actions. In terms of attributes, feed, pull, ride cannot be explained

by effect states while chop is mainly explained by the effect state of its direct object.
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Table 4.2: Statistics for the categories of annotated relations/attributes for each verb.

feed pull ride drink chop brush fry bake blend eat
Rel_Transitive 0.10 0.14 0.15 0.11 0.11 0.13 0.12 0.18 0.15 0.09

Rel_Sub_Action 0.45 0.46 0.13 0.32 0.29 0.39 0.17 0.11 0.09 0.43
Rel_Spatial 0.45 0.40 0.72 0.57 0.60 0.48 0.71 0.71 0.76 0.48
Att_Effect 0.0 0.0 0.0 0.14 0.82 0.05 0.53 0.34 0.22 0.27

Att_Associated 1.0 1.0 1.0 0.86 0.18 0.95 0.47 0.66 0.78 0.73

Image GRU

a1: (banana yellow)

          ……

an: (banana, sliced)

GRU

Relation Embedding

Attribute Embedding

r1: (hold, hand,   knife)

                ……

rm: (on,  knife,  cutting-board)

Weighted Sum+Relu

chop: 0.6
……

feed: 0.1

softmax

Context Vector v

Attention Score α

Figure 4.4: The system architecture for attention-based method.

4.5 Evaluation on Action Explanation

In this section, we first evaluate the performance of action prediction and explainer. We then

compare two naive incremental learning strategies to show how they will influence the final model’s

performance. We also show that when we have limited data annotation, a semi-supervised method

can help to improve the performance.

To evaluate our model, we randomly split our dataset (853 images) into 60% for training, 20%

for validation, and 20% for test. For all the models we use the Adam optimizer with a starting

learning rate 1e-4. All other hyperparameters are tuned on the validation set.
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Table 4.3: Action Prediction Accuracy and Evidence Selection MAP.

Action Accuracy Evidence MAP
Random 0.1 0.251
Attention 0.789 0.442

CVAE 0.835 0.572
CVAE+SV 0.871 0.690

Upper Bound 0.918 1.0

4.5.1 Action Prediction and Explanation

For all experiments in this paper, we use the annotated relations/attributes from the original Visual

Genome data. As the state-of-the-art recall@50 on the relation detection with a limited vocabulary

is only around 20% [53], using annotated relations and attributes allows us to focus on the study

of commonsense evidence and its role in justification and communication grounding.

We use Mean Average Precision (MAP) metric for evidence evaluation as we want to rank

good evidence higher than others.

Methods for Comparison

We compare the following methods:

(1) CVAE. The conditional variational autoencoder model presented in Section 4.3.1.

(2) CVAE+SV. The CVAE model with supervision as presented in Section 4.3.2.

(3) Upper Bound. We also calculate the upper bound of the CVAE model using the human

annotated gold evidence.

(4) Attention. We use an attention-based model as one of the baseline methods. It is similar

with the model presented by [102]. The architecture is shown in Figure 4.4. The attention is

calculated as:

αi =
exp(uT

i v)
∑ j exp(uT

i v)

where v is the context parameter, and ui is the GRU embedding of the corresponding relation/attribute.
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Table 4.4: Results from the human study on communication grounding.

Easy Hard
Attenton CVAE CVAE+SV Gold Attention CVAE CVAE+SV Gold

M+H+ 0.665 0.776 0.818 0.888 0.576 0.718 0.788 0.841
M+H- 0.124 0.059 0.047 0.024 0.212 0.118 0.076 0.071
M-H+ 0.165 0.129 0.129 0.064 0.135 0.076 0.076 0.041
M-H- 0.046 0.035 0.006 0.024 0.077 0.088 0.059 0.047

(5) Random. A baseline method that randomly ranks all actions and evidence.

Evaluation Results

The results are shown in Table 4.3. Since the Upper Bound method directly uses the human

annotated gold evidence, its MAP for selecting evidence is always 1.0.

The CVAEmodel outperforms the attention-based model in both action prediction and evidence

selection tasks. This indicates that the CVAE model can incorporate a better guidance for evidence

selection during the training process. Furthermore, after adding the evidence supervision, the

CVAE+SV model gives even better performance in both action prediction and evident selection.

We notice that for the CVAE+SV model, its action prediction accuracy is approaching the upper

bound 91.8%, however the evidence selection MAP is still far from the upper bound even with

supervision.

4.5.2 Incremental Study

Human learn new knowledge through interactions incrementally. But it’s very challenging for

machine to learn in an incremental way. In this section, we are interested to explore how the CVAE

and CVAE+SV models work under a simulated incremental setting. Specifically, we assume the

training data are received in a sequential order instead of all at once.

We evaluate two simple incremental strategies. The naive incremental strategy is to retrain

the model using all available training data when new pieces of data come. The local incremental
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Figure 4.5: Action prediction accuracy in the incremental study.
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Figure 4.6: Evidence selection MAP in the incremental study.
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strategy is to finetune the model only using the newly arrived data, with parameters initialized as

the previous best model. Usually the local incremental strategy has shorter training time compared

with the naive incremental strategy, since the local strategy has less training samples at each time.

We use the same training/validation/test split as in Section 4.5.1.

Figure 4.5 and Figure 4.6 show the results of the incremental study. Overall, the naive incre-

mental strategy outperforms the local incremental strategy.

The local incremental strategy performs worse than the naive incremental strategy with the

increase of the ratio of training data. When adding the supervision, the local CVAE with supervison

model performs better, But still worse than the naive incremental strategy.

4.5.3 Semi-Supervised Learning

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
The Ratio Of The Labeled Training Data
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Naive CVAE+SV

Figure 4.7: Evidence selection MAP for semi-supervised learning.

Although we have shown that it improves the model performance when we add supervision on

the latent variable z, collecting this label information through human annotation is usually time
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consuming and expensive. In this section, we explore how semi-supervised learning can help to

alleviate this difficulty.

As a generative model, VAE has shown its advantage on semi-supervised learning [43]. In fact

our task is simpler as our latent variable z is also the target label y. Following the method in [43],

our semi-supervised learning loss function is defined as:

L = ∑
(a,R,E,z)∼pl

LSV + ∑
(a,R,E)∼pu

LCVAE

where LSV is defined in section 4.3.2 and LCVAE is detailed in section 4.3.1. In other words, the

data sample with evidence label is fed to LSV , otherwise is fed to LCVAE .

The results are shown in Figure 4.7 where the x-axis shows the ratio of labeled examples. The

incremental Naive CVAE+SV model only uses the labeled evidence examples while the Semi

CVAE model also uses unlabeled evidence examples. The Figure shows that the Semi CVAE

model outperforms the Naive CVAE+SV model. This indicates that the semi-supervised method

can improve the evidence selection by making use of unlabeled examples.

4.5.4 Visual Simulator

In the previous experiment, we assume no visual preprocessing and directly use textual input pro-

vided by visual genome.

Detecting relations from image is a very hard problem: even the close state-of-the-art re-

call@50 is only around 20% with a small and limited objects and relation predicate vocabulary,

which is far from practical usage for our case. First Our data contains a very large vocabulary(more

than 1000 objects and predicates in total) and the common way to select most frequrent occuring

vocabulary can hardly cover the human annotated gold evidence due to the sparsity. Second The
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Figure 4.8: Action Accuracy For the Visual Simulator

label set also contains overlapping labels which are very similar. Third the visual genome data

has the problem of missing annotations: an image contains a lot of relations while the textual

annotation only covers a small ratio of them.

So We use faster rcnn [78] to detect the object bounding boxes and object classes. Then we use

the structural ranking based method [54] to classify relation predicates and object attributes.

We use all data to build the visual model. Then for our task, we blurred all image with kernel

size 5, and using the top predicted relations/attributes as noise mixed with human annotated gold

evidence as input. We define the Noisy Ratio as the ratio between noisy evidence and gold evi-

dence to estimate the robustness of the model. The reason behind doing so is that we find even we

train and test on the same dataset, the recall for the gold evidence is not high due to the existence

of a lot of ordinary relatios and attributes such as “in”, “on”, “color” and so on.

In Figure 4.8 and Figure 4.9, we compared different methods’ performance under different

noisy ratio conditions. Each value is computed by taking the average of 3 runs. The CVAE model’s

performance is slighly better the attention based model. But the gap is not large. Through man-
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Figure 4.9: Evidence MAP For the Visual Simulator

nually checking the predicted noisy evidence, we find they have a different distribution compared

with the noisy evidence extracted from image descriptions and not human-like due to the limitation

of 2D image spatial bias(most top relation predicates include “in” and “on”.). How to improve the

performance of the visual simulator to generate human-like evidence candidates is still an open

problem we will explore in the future work.

Ground-Truth	Ac,on	A	

CVAE	
Model	

Predicted		
Ac,on	Am	

Commonsense	
Evidence	

Guessed	
Ac,on	Ah	

Am��Ah	=	A	?		

communicated	

Figure 4.10: The experimental setup for the human subject study examining the role of common-
sense justification towards common ground.
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4.6 Commonsense Justification towards Common Ground

Attention CVAE CVAE+SV Gold

Gold Action: Bake
Am: Eat 

Ah: Bake
Am: Bake 
Ah: Bake

Am: Bake 
Ah: Bake

Am: Bake 
Ah: Bake

• The bread is next to the bread.

• The bread is on the rack.

• The bread is on the pan.

• The man has keys.

• The man has the band.

• The bread is on the rack.

• The bread is on the pan.

• The bread is on the tray.

• The bread is next to the 

bread.

• The bread is baked.

• The bread is baked.

• The bread is next to the bread.

• The person is pushing the tray.

• The bread is on the pan.

• The bread is on the rack.

• The bread is on the tray.

• The person is pushing the 

tray.

• The bread is baked.

Gold Action: Brush
Am: Brush 
Ah: Skin

Am: Brush 
Ah: Brush

Am: Brush 
Ah: Brush

Am: Brush 
Ah: Brush

• The baby has a mouth.

• The baby has a hand.

• The baby has eyeballs.

• The baby has fingers.

• The baby has a nose.

• The hand holds the 
toothbrush.


• The toothbrush is in the 
mouth.


• The baby has a mouth.

• The baby has fingers.

• The baby has a nose.

• The hand holds the toothbrush.

• The toothbrush is in the mouth.

• The baby has eyeballs.

• The baby has a mouth.

• The baby has a hand.

• The toothbrush is in the 
mouth.


• The hand holds the 
toothbrush.


Figure 4.11: Examples of the communication grounding study based on different models.

n human-agent communication, the success of communication is largely dependent on com-

mon ground which captures shared knowledge, beliefs, or past experience [12]. As common-

sense evidence what humans use to justify actions, To validate this hypothesis, we conducted a

human-subject experiment to examine the role of commonsense justification in facilitating com-

mon ground.

4.6.1 Experiment Setup

Figure 4.10 shows the setup of our experiment. The agent is provided with an image and applies

various models (e.g., CVAE) to jointly predict the action and identify commonsense evidence.

The human is provided with a list of six action choices and does not have access to the image.

The agent communicates to the human only the identified commonsense evidence and the human

makes a guess on the action from the candidate list purely based on the communicated evidence.

The idea is that, if the human and the agent share the same beliefs about evidence to justify an

action, then the action guessed by the human should be the same as the action predicted by the
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agent.

Generating Distracting Verbs. For each image, the human is provided with a list of six ac-

tion/verb candidates. To generate this list, we mix four distracting verbs with the ground-truth

action verb plus a default Other. Most of the distracting verbs come from the concrete action

verbs made available by [26]. We first manually filtered out the verbs which have the same mean-

ing with the ground-truth verb. We then selected two groups of distracting verbs: an easy group

(where the distracting verbs have larger distance from the ground-truth verb in the embedding

space, with an average similarity of 0.284) and a hard group (more close to the ground-truth verbs

with an average similarity of 0.479). The temperature based softmax distribution [10] was used

to sample the easy and the hard distracting verbs based on the pre-trained GloVe [69] embedding

cosine similarity. The selected confusion verbs are list in table 4.5.

Process. A total of 170 images were used in this experiment, and 24 workers from AMT partic-

ipated in our study. For each image, we applied three different models: Attention baseline,

CVAE, and CVAE+SV to generate the commonsense evidence. An upper bound based on gold

commonsense evidence was also measured. Note that, the agent has no knowledge of the human’s

action choices when generating the commonsense evidence. Theory of mind is an important aspect

in human-agent communication. Incorporating human’s action choices in justifying action is an

interesting however a different problem which requires different solutions. In this paper, we only

focus on the situation where the mind of the human is opaque to the agent.

For each model and each image under the easy or hard configurations, the top five predicted

commonsense evidence (associated with the predicted action) were shown to a worker. The the

worker was requested to select the most probable action from the distracting list only based on

these five pieces of evidence. We randomly assigned three workers to each image. The majority of

three selections was considered as the final answer. If all three selections disagreed, one worker’s
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Table 4.5: Target Actions and Simple/Hard Confusion Actions.

Target Action Easy Confusion Actions Hard Confusion Actions
Bake Grate, Knot, Burn, Frame, Other Batter, Boil, Fry, Fold, Other
Blend Bolt, Seperate, Bind, Wrap, Other Weave, Chop, Twist, Squash, Other
Brush Split, Block, Catch, Roll, Other Frame, Stain, Skin, Scrape, Other
Chop Crack, Wipe, Kick, Tear, Other Grate, Burn, Bake, Scrape, Other
Drink Nail, Smoke, Crush, Shoot, Other Eat, Ride, Smoke, Bake, Other
Eat Crush, Catch, Light, Ride, Other Drink, Feed, Bite, Get, Other

Feed Squash, Loose, Kick, Build, Other Eat, Get, Assemble, Skin, Other
Fry Scrape, Insert, Knock, Frame, Other Boil, Bake, Batter, Scrape, Other
Pull Twist, Feed, Drink, Coil, Other Put, Drop, Lift, Pack, Other
Ride Park, Pack, Crack, Label, Other Get, Open, Throw, Sail, Other

Table 4.6: Results from the human subject study on common ground.

Attenton CVAE CVAE+SV Gold
Easy 0.665 0.776 0.818 0.888
Hard 0.576 0.718 0.788 0.841

choice was randomly selected as the final answer.

Metrics for Common Ground. We use the agreement between the action guessed by the human

and the action predicted by the agent to measure how well the selected commonsense evidence

serves to bring the human and the agent to a common ground of perceived actions. More formally,

as shown in Figure 4.10, given an image, suppose its ground-truth action is A, the action predicted

by the agent/machine is Am, and the action guessed by the human is Ah, the Common Ground is

defined as: Am = Ah = A. Here we also enforce that the predicted action should be the same as the

ground-truth action. The percentage of trials based on different models that have led to a common

ground is measured and compared.

4.6.2 Experimental Results

Table 4.6 shows the comparison results among various models and the upper bound where the gold

commonsense evidence provided to the human. It’s not surprising that performance on common
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ground is worse in the hard configuration as the distracting verbs are more similar to the target

action. The CVAE-based method is better than the attention-based method in facilitating common

ground.

Figure 4.11 shows two examples of the top five predicted evidence under different models. For

each model, it also shows the agent predicted action (Am) and the human guessed action (Ah). In

both examples, all models were able to establish a common ground except for the attention-based

model. The evidence selected by the CVAE+SV model is clearly more accurate than the CVAE

model and is more close to the ground-truth evidence. The second example shows that although

the attention-based model predicts a correct target action, it fails to convey correct commonsense

evidence to establish a common ground with the human.

4.7 Conclusion

This chapter describes an approach to action justification using commonsense evidence. As demon-

strated in our experiments, commonsense evidence is selected to align with humans’ justification

of an action and is therefore critical in establishing a common ground between humans and agents.

As a first step in our investigation, this work is based on annotated symbolic descriptions from per-

ception. This assumption allows us to focus on higher level commonsense reasoning and supports

a better understanding of the role of commonsense evidence in explanation and communication

grounding. Our future work will extend the model and findings from this work to vision pro-

cessing that will not only identify commonsense evidence but also explain where and how in the

perceived environment the evidence is gathered.

59



Chapter 5

Grounded Action Justification

In the previous chapter, we conduct some pilot studies on relations between physical actions and

the latent structured commonsense justifications. However, previous experiments are based on pure

textual inputs (we assume the relations and attributes of the image are given), which is not realistic

in the real world. Furthermore, the empirical results are conducted on a limited action vocabu-

lary, how to efficiently deal with diverse actions in the real world is still an open and challenging

problem. In this chapter, we try to addresses the problem of learning to justify perceived actions

through natural language rationales. We propose a deep factorized network which jointly models

the relations between the shared environment, perceived actions, and action justifications. Our

empirical results have shown that the proposed model outperforms strong baselines in the overall

performance. By explicitly modeling factors of language grounding and commonsense reasoning,

the proposed model provides a better understanding of effects of these factors on grounded action

justification.

5.1 Introduction

To boost the research of multi-modal visual understanding, researchers propose different language

and vision tasks as test beds for different methods. One of the most popular tasks is visual ques-

tion answering: given an query and image, how to select the correct answer from a list of candidate

answers? However, for commonly used visual question answering datasets, most questions are tar-
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geted for objects or properties, which do not consider higher level cognitive reasoning ability.

Motivated by this, the Recognition to Cognition [105]) dataset is collected and a new visual com-

monsense reasoning (VCR) task is proposed: given an image and a question, the goal is to select

the correct answer and the corresponding rationale from a list of candidates.

The VCR task is closely related with our previous work, but they are different on following

perspectives:

• Our previous work assumes that the given inputs are textual representations, and we directly

model the linguistic texts without grounding action justifications.

• Our previous work performs experiments on a limited action vocabulary, while the VCR

dataset are collected from complex movie scenes which contains complex and diverse ac-

tions. Besides, our previous work represent actions as single verbs instead action phrases or

sentences. But in the VCR dataset, the gold answers could be long sentence descriptions.

The VCR task is more challenging compared to our previous task in Chapter 4.

• Our previous work assumes structured but simplified justifications containing independent

relations and attributes, while in the VCR task, the rationales are complex sentences includ-

ing multiple verbs, objects, attributes and their interactions.

Mathematically, the visual commonsense task is defined as:

A,R = argmax
A,R

p(A,R|Q, I)

where I is the given image, Q is the question, A is one of the answer choices and R is one of the
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rationale choices. In the previous work [105], this joint process is modeled as a two-step process

p(A,R|Q, I) ∝ p(A|Q, I)p(R|Q, I,A)

where the first step is to select the best answer choice based on the question and image, and the

second step is to select the most probable rationale according to the image, question and inferred

answer. However, it’s counter-intuitive for humans to solve a similar question using two-step

process. When humans answer visual questions, the answering process and the rationale reasoning

process interacts and often happens simultaneously. So we propose a joint learning and inference

method to solve the problem p(A,R|Q, I).

Specifically, to learn to justify perceived actions through natural language rationales, we for-

mulate the problem as: given an image (I) and a question (Q) about the activity from the image

(e.g., “what is person 1 doing?”), the goal is to identify an answer (A) from a list of potential an-

swers (e.g., “person 1 is drinking water”) and a rationale R that supports the answer from a set of

rationale candidates (e.g., “person 1 is holding a cup”) at the same time. Our solution to the prob-

lem is to jointly infer (A,R) that maximizes P(A,R|Q, I) as rationales and predictions often support

each other in the decision making process. We do not consider rationales as post-hoc justifications

as in the the original VCR task. This is a key difference between our setup and the VCR setup.

Because of this difference, the original VCR dataset (i.e., R2C dataset) cannot be directly applied

here. Actually, we augment a portion of the origial R2C dataset for our investigation of the joint

problem(details described in Section 5.2).

As there are intrinsic relations between the image, question, answers, and rationales, we de-

velop a factorized deep neural network which explicitly models these relations to capture the fol-

lowing intuitions: (A,Q,I): a good answer has to be grounded to the image content given the
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question.

(R,Q,I): a good rationale has to be grounded to the image content given the question.

(A,R): a good rationale to an answer should follow general commonsense knowledge.

The first two factors (i.e., (A,Q,I) and (R,Q,I)) concern about the ability to ground language

to perception (i.e., together they are referred to as the language grounding factor) and the third

factor addresses the ability of reasoning based on commonsense knowledge that may hold between

answers and rationales (i.e., the commonsense reasoning factor).

The contributions of this work are that, instead of treating rationales as post-hoc justifications,

we propose a model that jointly infers actions and rationales. By decomposing complex relations

between images, questions, action answers, and action rationales, the proposed model not only

outperforms strong baselines, but more importantly promotes a better understanding of the role of

language grounding and commonsense reasoning on grounded action justification.

5.2 R2C Dataset Augmentation

The original R2C dataset was collected through amazon mechanical turk. Each turker is given an

image with detections and contextual descriptions, and is requested to generate 1 to 3 questions

with answers and rationales. The images are extracted from movie clips. To generate the negative

candidates for the answers and rationales. The authors proposed a so-called adversarial matching

method in two steps.

• For the first step, The candidate negative answers are selected from all the candidate answers

which are the top most similar answers compared with the query.

• For the second step, the candidate rationales are selected from all the candidate rationales

which are the top most similar rationales with the query and the ground truth answer.
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After these two steps, one sample is composed of one query, one image, four candidate answer

choices which contain the ground truth answer and four candidate rationale choices which contain

the ground truth rationales. From the previous two step descriptions of dataset generation process,

a problem when we jointly infer the answer and rationale is the answer bias problem. As currently

all four rationale candidates are related with the correct answer, which leads to the leaking of

answer information.

To fix the answer bias, one possible solution is to introduce negative rationales not only similar

to the correct answer, but also similar to the negative answers. Fortunately, in the original R2C

dataset, To avoid the linguistic bias, each answer candidate(including the wrong answer) has at

least one time acting as the correct answer appearing in other samples. We can borrow rationale

candidates for each negative answer from where it appears as the correct answer, which means that

now each sample is composed of 16 rationale candidates(of which 12 are augmented rationales).

In this way, we can eliminate the answer bias by enforcing the model not only learn to reason about

the textual relations between the answer and the rationale, but also ground the justifications.

The last problem remaining with this kind of dataset augmentation is that how to fill in the

object tagging for new augmented rationales. In the original collected dataset, the turkers directly

use bounding box tagging numbers instead of the objects’ names in the rationales. For example,

one possible rationale could be “[2] is a professional musician in an orchestra.” Here [2] is the

tagging number for one of the bounding boxes in the image. When we augment new rationales,

we need to re-map the old tagging numbers to the new tagging numbers. We use a heuristic based

method to do the re-mapping.

• As the same answer appears in two samples in which sample si is the correct one and sample

s j is the wrong one, we build object tagging mappings between these two samples for objects

appearing in the same answer. Following this mapping, we map the sample s j’s taggings to
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sample s j’s taggings for all sample s j’s borrowed rationales.

• For tagging numbers not appearing in the first step’s mapping, we first try to match with

tagging numbers in sample si which have the same tagging labels as in the original sample

s j. If there exist multiple tagging numbers for the same label, we randomly assign one of the

tagging numbers to build the mapping.

After these steps, we build an unbiased augmented dataset for the joint VCR task. Here we

show an concrete example to illustrate the augmented sample in Figure 5.1. The upper left corner

shows the image with auto-detected bounding boxes. The upper right corner shows the question

and four answer choices. The red colored answer is the ground truth answer. Below the images we

show all the candidate rationales. Each answer corresponds to 4 candidate rationales(for simplicity,

here we only show one specific rationale). The rationales for answer 1 come from the original r2c

dataset, and all the other rationales come from the data augmentation process, which are colored

green.

5.3 Deep Factorized Joint Modeling for Grounded Question

Answering and Explanation.

In this section, we will detailed our proposed method. First we will briefly review and discuss the

behind model intuitions. Then we will mathematically detailed the model architecture and learning

process.
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Ques%on:	What	is	person0	doing?	

Answer	Choices:	
0:	She	wants	to	go	to	sleep	.	
1:	She	is	planning	to	get	on	train5	.	
2:	person0	is	looking	to	punch		
					person1	in	her	arm	.	
3:	She	is	going	to	play	a	game	with	the		
					other	children	.	

0:	If	the	light	has	not	already	woken	her	up	,	it	means	that	she	is	
asleep	deeply	,		she	won	'	t	wake	up	soon	.	
……	
4:	She	is	facing	away	from	the	train	and	towards	people	in	front	of	
it	.	
……	
8:	person0	has	an	angry	look	on	her	face	.	person0	leaning	forward	
towards	person1	.	person0	has	a	drink	in	her	hand	.	
……
12:	She	is	angled	toward	the	basket	and	it	looks	like	a	ball	is	in	her	
hand	.	
……	

Answer	0	

Answer	1	

Answer	2	

Answer	3	

Figure 5.1: An example augmented R2C sample.

5.3.1 Motivation

Humans tend to answer the visual questions and generate explanations for the answer within a

joint process instead of the post-hoc two step process. Motivated by this intuition, we propose a

joint algorithm to predict the answer and the rationale simultaneously. The benefits from this joint

process are: first it is more consistent with the human thinking process, humans do not separate

the visual question answering process and the explanation process into two processes. Second the

joint modeling process can better incorporate interactions between the language and vision, which

helps alleviate the error propagation problem in the two step process.
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5.3.2 Deep Factorized Modeling

According to the theory of un-directed graphical model, we can write the probability distribution

p(A,R|Q, I) as:

p(A,R|Q, I) =
1
Z

exp(Φ(A,R,Q, I))

where Φ(A,R,Q, I) is the potential function of the factor and Z is the normalization constant which

is

Z = ∑
A,R

exp(Φ(A,R,Q, I)

The meaning of the random variables A,R,Q, I are consistent with previous definitions.

Then the key problem turns out to be how do we factorize the whole big factor Φ(A,R,Q, I).

Before answering this question, let’s first think: what are the good answers and rationales. Good

principles include:

• A good answer must be grounded to the image well given the question.

• A good rationale must be grounded to the image well given the question.

• A good answer and a good rationale must match well.

Based on these three assumptions, we factorize the big factor into 3 smaller factors, shown in

Figure 5.2 Formally, the factor model can be written as

Φ(A,R,Q, I) = Φ(A,Q, I)+Φ(R,Q, I)+Φ(A,R))

The factor Φ(A,Q, I) is kind of similar with the VQA task which captures the grounded semantics

of the answer given the image and the question. The factor Φ(R,Q, I) captures the grounded

semantics of the rationale given the image and the question. The last factor Φ(A,R) captures
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Commonsense Matching:
Whether the rationale  can 
explain the answer?

Image Question

Answer Rationale

Figure 5.2: A Graphical model representation of the joint VCR task.

the correlations between the answer and the rationale. By jointly optimizing these three factors,

we hope to infer the answers and rationales which are both grounded in the image and also have

matching causal semantics well.

For each factor, we use an neural network to approximate the potential function. In the follow-

ing parts, which is shown in Figure 5.3. We will detail each factor’s neural architecture.

5.3.2.1 Visual Question Answering

In this subsection, we build an neural network to predict the factor potential Φ(A,Q, I). The whole

architecture is shown in the left part of Figure 5.3.

Input Representation: In this paper, we use Bert [18] for both the question, answer and

rationale representation. Let’s denote the question Q as q1,q2, ...,qlq where each qi is the word

and lq is the length of the question. Similarly we let the answer A as a1,a2, ...,ala where each ai

is the word and la is the length of the answer. so using Bert, we can transform the question as a

matrix QI ∈ Rlq×768, and the answer as a matrix AI ∈ Rla×768. For the image I, we use a pre-trained

resnet [31] to extract visual features Ih ∈ Rc×w×h, and we reshape this 3 dimensional tensor as 2d
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<latexit sha1_base64="TIwmk8u21VOUoY7U7p41qYBa1Ac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZrNfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8frGuM2Q==</latexit>

Q̂
<latexit sha1_base64="mqjUq2+GzvsUyMRw+fzWhvd0vZc=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2A9oQ9lsN+3SzSbsToQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNM7ud+54lrI2L1iNOE+xEdKREKRtFKnf6YYtacDcoVt+ouQNaJl5MK5GgMyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOyMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8NbPhEpS5IotF4WpJBiT+e9kKDRnKKeWUKaFvZWwMdWUoU2oZEPwVl9eJ+1a1buq1prXlfpdHkcRzuAcLsGDG6jDAzSgBQwm8Ayv8OYkzovz7nwsWwtOPnMKf+B8/gB2R4+m</latexit>

hQ
<latexit sha1_base64="+F8om/V3h6PR1eRnQu9aP/rH0CI=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48tmLbQhrLZTtulm03Y3Qgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJS8epYuizWMSqE1KNgkv0DTcCO4lCGoUC2+Hkfu63n1BpHstHM00wiOhI8iFn1FjJH/ez5qxfrrhVdwGyTrycVCBHo1/+6g1ilkYoDRNU667nJibIqDKcCZyVeqnGhLIJHWHXUkkj1EG2OHZGLqwyIMNY2ZKGLNTfExmNtJ5Goe2MqBnrVW8u/ud1UzO8DTIuk9SgZMtFw1QQE5P552TAFTIjppZQpri9lbAxVZQZm0/JhuCtvrxOWrWqd1WtNa8r9bs8jiKcwTlcggc3UIcHaIAPDDg8wyu8OdJ5cd6dj2VrwclnTuEPnM8f6bSOwA==</latexit>

htext
<latexit sha1_base64="t209wzDQxY88h9o3fkGpK9lQ+08=">AAAB73icbVBNS8NAEN34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM120i7dbOLuRCyhf8KLB0W8+ne8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk41hwaPZazbATMghYIGCpTQTjSwKJDQCkY3U7/1CNqIWN3jOAE/YgMlQsEZWqk97GUITzjplcpuxZ2BLhMvJ2WSo94rfXX7MU8jUMglM6bjuQn6GdMouIRJsZsaSBgfsQF0LFUsAuNns3sn9NQqfRrG2pZCOlN/T2QsMmYcBbYzYjg0i95U/M/rpBhe+ZlQSYqg+HxRmEqKMZ0+T/tCA0c5toRxLeytlA+ZZhxtREUbgrf48jJpViveeaV6d1GuXedxFMgxOSFnxCOXpEZuSZ00CCeSPJNX8uY8OC/Ou/Mxb11x8pkj8gfO5w+UU5BS</latexit>

hvisual
<latexit sha1_base64="TfZtMcMryJ1e0XSJJ4cJVY7zDSw=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/cA2lMl20y7dbMLuplBC/4UXD4p49d9489+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVlDVoLGLVDlAzwSVrGG4EayeKYRQI1gpGdzO/NWZK81g+mknC/AgHkoecorHS07CXjblOUUx7pbJbcecgq8TLSRly1Hulr24/pmnEpKECte54bmL8DJXhVLBpsZtqliAd4YB1LJUYMe1n84un5NwqfRLGypY0ZK7+nsgw0noSBbYzQjPUy95M/M/rpCa88TMuk9QwSReLwlQQE5PZ+6TPFaNGTCxBqri9ldAhKqTGhlS0IXjLL6+SZrXiXVaqD1fl2m0eRwFO4QwuwINrqME91KEBFCQ8wyu8Odp5cd6dj0XrmpPPnMAfOJ8/H16RNQ==</latexit>
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Afinal
<latexit sha1_base64="nCz4PUvuyeMX7pG6t+Cj+lKDOPg=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHqxWME85BkCbOT2WTIPJaZWSEs+QovHhTx6ud482+cJHvQxIKGoqqb7q4o4cxY3//2VlbX1jc2C1vF7Z3dvf3SwWHTqFQT2iCKK92OsKGcSdqwzHLaTjTFIuK0FY1up37riWrDlHyw44SGAg8kixnB1kmP170sZhLzSa9U9iv+DGiZBDkpQ456r/TV7SuSCiot4diYTuAnNsywtoxwOil2U0MTTEZ4QDuOSiyoCbPZwRN06pQ+ipV2JS2aqb8nMiyMGYvIdQpsh2bRm4r/eZ3UxldhxmSSWirJfFGccmQVmn6P+kxTYvnYEUw0c7ciMsQaE+syKroQgsWXl0mzWgnOK9X7i3LtJo+jAMdwAmcQwCXU4A7q0AACAp7hFd487b14797HvHXFy2eO4A+8zx/ofpB6</latexit>

Â
<latexit sha1_base64="BiHYnxyas0O1+1zLiZTa+8dCjSE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeqF48V7Ae0oWy2m3bpZhN2J0IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GdzO//cS1EbF6xEnC/YgOlQgFo2ildm9EMbuZ9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOyVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NrPhEpS5IotFoWpJBiT2e9kIDRnKCeWUKaFvZWwEdWUoU2oZEPwll9eJa1a1buo1h4uK/XbPI4inMApnIMHV1CHe2hAExiM4Rle4c1JnBfn3flYtBacfOYY/sD5/AFd94+W</latexit>

hA
<latexit sha1_base64="FeVeg3nll7LL2sXkJFmr+o3yutI=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeqF48VTFtoQ9lsp+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoqeNUMfRZLGLVDqlGwSX6hhuB7UQhjUKBrXB8N/NbT6g0j+WjmSQYRHQo+YAzaqzkj3rZzbRXrrhVdw6ySrycVCBHo1f+6vZjlkYoDRNU647nJibIqDKcCZyWuqnGhLIxHWLHUkkj1EE2P3ZKzqzSJ4NY2ZKGzNXfExmNtJ5Eoe2MqBnpZW8m/ud1UjO4DjIuk9SgZItFg1QQE5PZ56TPFTIjJpZQpri9lbARVZQZm0/JhuAtv7xKmrWqd1GtPVxW6rd5HEU4gVM4Bw+uoA730AAfGHB4hld4c6Tz4rw7H4vWgpPPHMMfOJ8/0WSOsA==</latexit>

htext
<latexit sha1_base64="t209wzDQxY88h9o3fkGpK9lQ+08=">AAAB73icbVBNS8NAEN34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM120i7dbOLuRCyhf8KLB0W8+ne8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk41hwaPZazbATMghYIGCpTQTjSwKJDQCkY3U7/1CNqIWN3jOAE/YgMlQsEZWqk97GUITzjplcpuxZ2BLhMvJ2WSo94rfXX7MU8jUMglM6bjuQn6GdMouIRJsZsaSBgfsQF0LFUsAuNns3sn9NQqfRrG2pZCOlN/T2QsMmYcBbYzYjg0i95U/M/rpBhe+ZlQSYqg+HxRmEqKMZ0+T/tCA0c5toRxLeytlA+ZZhxtREUbgrf48jJpViveeaV6d1GuXedxFMgxOSFnxCOXpEZuSZ00CCeSPJNX8uY8OC/Ou/Mxb11x8pkj8gfO5w+UU5BS</latexit>

R
<latexit sha1_base64="cVRUNBy/RTcU6LUbsjbBwonoaeo=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx7ByCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJYPZpygH9GB5CFn1Fipft8rltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AK3vjNo=</latexit>

R̂
<latexit sha1_base64="kRJ8QdvVH1Krq0qCNM+gI/o2n6U=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF49V7Ae0oWy2m3bpZhN2J0IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ildm9EMXuY9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOyVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NrPhEpS5IotFoWpJBiT2e9kIDRnKCeWUKaFvZWwEdWUoU2oZEPwll9eJa1a1buo1u4vK/WbPI4inMApnIMHV1CHO2hAExiM4Rle4c1JnBfn3flYtBacfOYY/sD5/AF3zI+n</latexit>

Rfinal
<latexit sha1_base64="0YFA51U1X6Zqeff/7YER3VyA//w=">AAAB8HicbVBNSwMxEJ34WetX1aOXYBE8ld0q6LHoxWMV+yHtUrJptg1NskuSFcrSX+HFgyJe/Tne/Dem7R609cHA470ZZuaFieDGet43WlldW9/YLGwVt3d29/ZLB4dNE6easgaNRazbITFMcMUallvB2olmRIaCtcLRzdRvPTFteKwe7DhhgSQDxSNOiXXS430vi7giYtIrlb2KNwNeJn5OypCj3it9dfsxTSVTlgpiTMf3EhtkRFtOBZsUu6lhCaEjMmAdRxWRzATZ7OAJPnVKH0exdqUsnqm/JzIijRnL0HVKYodm0ZuK/3md1EZXQcZVklqm6HxRlApsYzz9Hve5ZtSKsSOEau5uxXRINKHWZVR0IfiLLy+TZrXin1eqdxfl2nUeRwGO4QTOwIdLqMEt1KEBFCQ8wyu8IY1e0Dv6mLeuoHzmCP4Aff4AAtmQiw==</latexit>

hR
<latexit sha1_base64="KIpKdc9sDrtjjYxdhoI+2O3lJ/o=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF49VTFtoQ9lst+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNHGqGfdZLGPdDqnhUijuo0DJ24nmNAolb4Xj25nfeuLaiFg94iThQUSHSgwEo2glf9TLHqa9csWtunOQVeLlpAI5Gr3yV7cfszTiCpmkxnQ8N8EgoxoFk3xa6qaGJ5SN6ZB3LFU04ibI5sdOyZlV+mQQa1sKyVz9PZHRyJhJFNrOiOLILHsz8T+vk+LgOsiESlLkii0WDVJJMCazz0lfaM5QTiyhTAt7K2EjqilDm0/JhuAtv7xKmrWqd1Gt3V9W6jd5HEU4gVM4Bw+uoA530AAfGAh4hld4c5Tz4rw7H4vWgpPPHMMfOJ8/6zmOwQ==</latexit>

A
<latexit sha1_base64="Lihtv2jYSe0RaYbwwPdS8141boc=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI+oF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipftMrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1dssjjycwCmcgwdXUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AJQrjMk=</latexit>

R
<latexit sha1_base64="cVRUNBy/RTcU6LUbsjbBwonoaeo=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx7ByCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJYPZpygH9GB5CFn1Fipft8rltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AK3vjNo=</latexit>

R̂
<latexit sha1_base64="kRJ8QdvVH1Krq0qCNM+gI/o2n6U=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF49V7Ae0oWy2m3bpZhN2J0IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ildm9EMXuY9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOyVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NrPhEpS5IotFoWpJBiT2e9kIDRnKCeWUKaFvZWwEdWUoU2oZEPwll9eJa1a1buo1u4vK/WbPI4inMApnIMHV1CHO2hAExiM4Rle4c1JnBfn3flYtBacfOYY/sD5/AF3zI+n</latexit>

Rfinal
<latexit sha1_base64="0YFA51U1X6Zqeff/7YER3VyA//w=">AAAB8HicbVBNSwMxEJ34WetX1aOXYBE8ld0q6LHoxWMV+yHtUrJptg1NskuSFcrSX+HFgyJe/Tne/Dem7R609cHA470ZZuaFieDGet43WlldW9/YLGwVt3d29/ZLB4dNE6easgaNRazbITFMcMUallvB2olmRIaCtcLRzdRvPTFteKwe7DhhgSQDxSNOiXXS430vi7giYtIrlb2KNwNeJn5OypCj3it9dfsxTSVTlgpiTMf3EhtkRFtOBZsUu6lhCaEjMmAdRxWRzATZ7OAJPnVKH0exdqUsnqm/JzIijRnL0HVKYodm0ZuK/3md1EZXQcZVklqm6HxRlApsYzz9Hve5ZtSKsSOEau5uxXRINKHWZVR0IfiLLy+TZrXin1eqdxfl2nUeRwGO4QTOwIdLqMEt1KEBFCQ8wyu8IY1e0Dv6mLeuoHzmCP4Aff4AAtmQiw==</latexit>

hR
<latexit sha1_base64="KIpKdc9sDrtjjYxdhoI+2O3lJ/o=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF49VTFtoQ9lst+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNHGqGfdZLGPdDqnhUijuo0DJ24nmNAolb4Xj25nfeuLaiFg94iThQUSHSgwEo2glf9TLHqa9csWtunOQVeLlpAI5Gr3yV7cfszTiCpmkxnQ8N8EgoxoFk3xa6qaGJ5SN6ZB3LFU04ibI5sdOyZlV+mQQa1sKyVz9PZHRyJhJFNrOiOLILHsz8T+vk+LgOsiESlLkii0WDVJJMCazz0lfaM5QTiyhTAt7K2EjqilDm0/JhuAtv7xKmrWqd1Gt3V9W6jd5HEU4gVM4Bw+uoA530AAfGAh4hld4c5Tz4rw7H4vWgpPPHMMfOJ8/6zmOwQ==</latexit>

�(A, Q, I)
<latexit sha1_base64="OiTNiahpLGQFhEtmwHxaJn3/ZPE=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBahQilJFfRY9aK3FuwHpKFstpt26WYTdidCCf0ZXjwo4tVf481/47bNQVsfDDzem2Fmnh8LrsG2v63c2vrG5lZ+u7Czu7d/UDw8ausoUZS1aCQi1fWJZoJL1gIOgnVjxUjoC9bxx3czv/PElOaRfIRJzLyQDCUPOCVgJLfXGPHyTaVZeTjvF0t21Z4DrxInIyWUodEvfvUGEU1CJoEKorXr2DF4KVHAqWDTQi/RLCZ0TIbMNVSSkGkvnZ88xWdGGeAgUqYk4Ln6eyIlodaT0DedIYGRXvZm4n+em0Bw7aVcxgkwSReLgkRgiPDsfzzgilEQE0MIVdzciumIKELBpFQwITjLL6+Sdq3qXFRrzctS/TaLI49O0CkqIwddoTq6Rw3UQhRF6Bm9ojcLrBfr3fpYtOasbOYY/YH1+QNBx4/t</latexit>

�(R, Q, I)
<latexit sha1_base64="TQlf4yokDzZr5DvaEcDHchGJal0=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBahQilJFfRY9KK3VuwHpKFstpt26WYTdjdCCf0ZXjwo4tVf481/47bNQVsfDDzem2Fmnh9zprRtf1u5tfWNza38dmFnd2//oHh41FZRIgltkYhHsutjRTkTtKWZ5rQbS4pDn9OOP76d+Z0nKhWLxKOexNQL8VCwgBGsjeT2GiNWfqg0K/fn/WLJrtpzoFXiZKQEGRr94ldvEJEkpEITjpVyHTvWXoqlZoTTaaGXKBpjMsZD6hoqcEiVl85PnqIzowxQEElTQqO5+nsixaFSk9A3nSHWI7XszcT/PDfRwbWXMhEnmgqyWBQkHOkIzf5HAyYp0XxiCCaSmVsRGWGJiTYpFUwIzvLLq6RdqzoX1VrzslS/yeLIwwmcQhkcuII63EEDWkAggmd4hTdLWy/Wu/WxaM1Z2cwx/IH1+QNb4I/+</latexit>

�(A, R)
<latexit sha1_base64="8wtAn701i1kYPRv7dp7wsAfyPbg=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJUkLJbBT1WvXisYj+kXUo2zbahSXZJskJZ+iu8eFDEqz/Hm//GtN2Dtj4YeLw3w8y8IOZMG9f9dpaWV1bX1nMb+c2t7Z3dwt5+Q0eJIrROIh6pVoA15UzSumGG01asKBYBp81geDPxm09UaRbJBzOKqS9wX7KQEWys9NipDVjp6vT+pFsoumV3CrRIvIwUIUOtW/jq9CKSCCoN4VjrtufGxk+xMoxwOs53Ek1jTIa4T9uWSiyo9tPpwWN0bJUeCiNlSxo0VX9PpFhoPRKB7RTYDPS8NxH/89qJCS/9lMk4MVSS2aIw4chEaPI96jFFieEjSzBRzN6KyAArTIzNKG9D8OZfXiSNStk7K1fuzovV6yyOHBzCEZTAgwuowi3UoA4EBDzDK7w5ynlx3p2PWeuSk80cwB84nz9CmI9l</latexit>

↵
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Figure 5.3: The neural network architecture for deep factorized network.

matrix Ih ∈ Rw∗h,c.

Word-Level Grounding: The first step is to get word level grounding. the goal is to enrich

each word with a corresponding visual representation. For example, for some objects or nouns

presented in Figure 5.1, we hope the model can automatically learn where should be focused

on. To achieve this, we apply a bi-linear attention mechanism between the sentence’s words Bert

representation and the image visual representation

si j = Qi
IM1I j

h

69



ai j =
si j

∑ j si j

where Qi
I is the Bert representation of the ith word in the question, and I j

h is the approximate jth

regional representation of the image. The attention vector a is gotten by the softmax of the scores

si j. The final grounded visual representations for words is calculated as:

vi = ∑
j

ai jI
j

h

In our augmented R2C dataset, some words are represented by bounding box tagging number as

we denoted before. We directly using the corresponding bounding box visual feature extract from

Mask-RCNN [30]. For words without bounding box tagging, we use attended visual representa-

tion. we directly concatenate the visual representation vi with the original Bert representation Qi
I

to form a new sentence representation for the question and the answer:

Q̂I = [Q1
I ,v1; ...,Qlq

I ,vlq]

ÂI = [A1
I ,v
∗
1; ...,Ala

I ,v
∗
la]

where v∗i is the corresponding visual representations for words in the answer.

Contextualized word representation: To get a better meaning representation of words, we

use co-attention to get contextualized representations for the question and answers. Following the

previous step, we get grounded question representation Q̂I ∈ Rlq×d and grounded answer represen-

tation ÂI ∈ Rla×d . First we calculate a correlation score matrix:

S = Q̂IM2ÂI
T
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The scores for each row represent how each word in the question attends the words in the an-

swer. The scores for each column represent how each word in the answer attends the words in the

question. Following the previous attention mechanism, we get answer-guided question represen-

tation Q̂∗I ∈ Rlq×d and question-guided answer representation Â∗I ∈ Rla×d . The final contextualized

question and answer representation are Q = [Q̂I, Q̂∗I ] and A = [ÂI, Â∗I ].

To get a summary of textual information for both the question and answer, we run bi-directional

LSTM on both the question and answer.

hq
f = LST M f orward(Q)

hq
b = LST Mbackward(Q)

hq = [hq
f ,h

q
b]

ha
f = LST M f orward(A)

ha
b = LST Mbackward(A)

ha = [ha
f ,h

a
b]

we concatenate hq and ha to get the final textual representation

h = [hq,ha]

Sentence-Level Grounding: We use the textual summary vector to re-attend the visual repre-

sentation to get a better visual representation. Specifically, we use the summary vector h to attend

the visual representation Ih. By similarly using the attention mechanism for word level grounding,
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we get a visual representation hvisual .

To get the final factor potential prediction, we first concatenate h and hvisual to get h f inal . Then

apply an fully connected linear layer:

f =Wh f inal +b

5.3.2.2 Visual Question Rationale(VQR)

The goal of the module is to get the grounding score of the rationales given the image and the

question, So we use a similar architecture with the module VQA. The detailed architecture is shown

in the Figure 5.3. The difference is to replace the answers in the VQA module with rationales.

Actually these two modules also share all the parameters used in the architecture, which helps to

decrease the risk of overfitting.

5.3.2.3 Causal Matching Between the Answer and the Rationale

The last module for our work is the answer rationale matching. The essence of this module is

trying to learn the causal relation between sentences. In the right part of the Figure 5.3, we show

how we do the causal match between the answer and the rationale. The procedure follows a

simplified process of VQA/VQR without visual information. The first step is to use Bert to embed

both the answer and rationale, then we build contextualized answer representation and rationale

representation using co-attention mechanism. We use a shared Long-Short Term Memory Unit to

encode these two sequential representations. Finally we concatenate these two embeddings and

use a final linear layer to get the causal factor potential.
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5.3.3 Training and Inference

During the training, we use maximum likelihood as the training criteria.

L = logP(A,R|Q, I)

= log
exp(Φ(A,R,Q, I))

∑A,R exp(Φ(A,R,Q, I))

= Φ(A,Q, I)+Φ(R,Q, I)+Φ(A,R)− log ∑
A,R

exp(Φ(A,R,Q, I))

(5.1)

All the parameters are optimized end-to-end jointly.

During the inference, we are trying to seek the answer A and rationale R where

A,R = argmax
A,R

(Φ(A,Q, I)+Φ(R,Q, I)+Φ(A,R))

Adaptive Factor Weighting(AFW): In previous loss function, we assume all the 3 factors are

equally important, however, it’s more intuitive that we use adaptive weights for different factors

based on the whole context. So we instead decompose the large factor as:

Φ(A,R,Q, I) = α1Φ(A,Q, I)+α2Φ(R,Q, I)+α3Φ(A,R)

where the vector α is learned as model parameters:

sα = g(A,R,Q, I)

α = so f tmax(sα)

The function g is a multi-layer network to be learned based on the concatenation of the represen-
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tation of A, R, Q and I. Correspondingly during the inference, the best answer and rationale is

inferred by

A,R = argmax
A,R

(α1Φ(A,Q, I)+α2Φ(R,Q, I)+α3Φ(A,R))

5.4 Experiments and Results

In this section, we first will show some basic statistics about the augmented statistics. Then we will

show some experimental results compared with different methods. Third we will explore different

ablations studies to better understand how important different modules play. Finally we will show

some qualitative analysis on the attention mechanism we used in different modules.

5.4.1 Dataset Statistics

In this section, we will show some basic statistics for the training and testing.

As we stated before, After augmented the original R2C dataset, for each sample, we have 1

image, 1 visual question, 4 answer choices and 16 rationale choices. The full dataset is divided

into 10 folds, where different folds contain unique image set. and we randomly choose 8 folds as

training, 1 fold as validation and the left fold as testing. As the original dataset contains all kinds

of question including activity, explanation, temporal and so on. In this work, we are focusing

on actions, so we use a simple rule to filter the action related samples in the original dataset.

Specifically we extract samples whose question conains one of these following keywords: doing,

looking, event, playing, preparing.

In table 5.1, we show the basic statistics of of the train/validation/test dataset including the

number of samples, the number of total tokens, and the number of unique images.

In Figure 5.4, Figure 5.5 and Figure 5.6, we show the histogram distribution of questions,
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Table 5.1: Basic statistics for the augmented R2C dataset.

Train Validation Test
No. of Samples 33687 4811 4816
No. of Tokens 10.8m 1.55m 1.57m
No. of Images 27193 3878 3869

Table 5.2: Validation and Test Accuracy for all the models.

Method\Accuracy Validation Test
R2C 0.348 0.344

R2C_beam 0.364 0.364
VAE 0.248 0.245
MLP 0.327 0.342

Factorized Model(Our Work) 0.385 0.391

answers and rationales on the train/validation/testing dataset. From these 3 Figures, we can see that

the question/answer/rationale has a similar distribtuion across the train, validation and test dataset.

When comparing the histrogram in the same dataset, we can clearly see that the rationales’ average

length is longer than the answers’ average length.

Figure 5.4: The length distribution of the sentences in the training dataset.

5.4.2 Results

To evaluate the effectiveness of methods, we compare our joint model with following baseslines:

75



val	

Figure 5.5: The length distribution of the sentences in the validation dataset.

test	

Figure 5.6: The length distribution of the sentences in the testing dataset.

• R2C: the original methods proposed by the work [105], which utilize a two step strategy:

first predict the action, then predict the rationale.

• R2C_beam: an extension of the R2C method. when inferring the rationale, using the beam

search to search the best combination of the prediction of the answer and rationale.

• VAE: We also extend the previous VAE based method to incorporate the question and visual

information.

• MLP: As an important common baseline for the VQA task, Here we also build an MLP

baseline for the joint R2C ask.
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Figure 5.7: The Histogram of action frequency in the training dataset.

As we use Bert as linguistic representation, the first step in our training process is to finetune

the Bert model on our dataset. Specifically we generate positive and negative pairs of question

answer, answer rationale and question rationale pairs. Then we treat the Bert finetune as a two-

way binary classification problem. Following the setup of the original R2C work, we use adam

optimzer with learning rate 2×10−5.

For all models’ training process, we use adam optimizer with a learning rate of 2× 10−4 and

weight decay of 10−4. The gradients are clipped to have L2 norm of at most 1.0. We set the hidden

layer dimension as 512.

The table 5.2 shows different methods’ performance on the validation and test dataset. First

we can see that our factorized model performs best compared with other methods. Second we can

see that the best model besides our work is the R2C_beam method although as a two-step method.

Third we notice that although both the VAE and MLP are also joint model, they do not perform
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well compared with the R2C method. This shows that carefully modelling the interaction between

different parts or modules are also very important. For VAE based method, we can see that it

performs much worse than other methods. One Possible reason is that, to make the whole VAE

system end-to-end differentiable, the effective approximate gumbeling sampling process for the

rationale given the answer is more challenging. By comparing the R2C method and R2C_beam,

we can see beam search can effectively mitigate the propagated errors during the independent

inference process of R2C.

5.4.3 Ablation Study

To have a better understanding of how different factors performs in our model, we conducted some

ablation studies how important different factors are both quantitatively and qualitatively.

First we want to test how important for each factors we designed for the Joint R2C problem.

We are interested in the following settings for the Factorized Model(FM):

• FM-AFW: the factorized model without adaptive factor weighting. The goal of this study is

to test how important the adaptive factor weighting plays in the system.

• FM-QA: the factorized model without the visual question answer factor. The goal is to test

how important the VQA factor plays.

• FM-QR: the factorized model without the visual question rationale factor. The goal is to test

how important the VQA factor plays.

• FM-AR: the factorized model without the answer rationale causal matching factor. The goal

is to test how important the AR factor plays.

• FM-IM: The factorized model without the visual information. In this setting, we mask all
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Table 5.3: Ablation Study Results.

Method\Accuracy Validation Test
FM 0.385 0.391

FM-AFW 0.371 0.382
FM-QA 0.333 0.346
FM-QR 0.309 0.312
FM-AR 0.194 0.209
FM-IM 0.265 0.271

the visual context, and try to test how the pure textual based system performs in the joint

R2C task.

The results for the ablation studies are shown in table 5.3. From this table, we can see that

different factors have different influence on the model’s performance. We can see that when add

the adaptive factor weighting, we actually improves the model’s performance both on validation

and test. Besides, among the three factors QA, QR and AR, the factor AR plays the most important

role, as we can see that the performance dropped the most when removing the factor AR. Besides,

the rank of these 3 factors are AR, QR and QA with decreasing importance. Besides, we can also

see that even if we completely remove the visual image, the validation and testing performance

decreased, but is even higher than the setting removing the factor AR.

Next we do some qualitative analysis to understand what exactly does model learn. Because we

are mainly interested in the actions in this work. The first step we do is to show some distribution of

the actions in our training dataset. To extract the actions in the ground truth answers in the training

samples, we conduct dependency parsing on the ground truth answer, then select the possible

combinations of verb or verb+noun pattern. The histogram of the action frequency is shown in

Figure 5.7. The x-axis shows the frequency of actions, while the y-axis shows the histogram count.

We can see a severe long train distribution where most of the action frequency are within 5. This

also verifies that why introducing Bert helps a lot to improve the final performance in the R2C

79



Table 5.4: Effect of factors on different actions.

No. DFN -AR -IM
Look 516 0.389 0.219 0.264
Get 180 0.461 0.267 0.3
Watch 152 0.428 0.184 0.316
Talk 137 0.365 0.182 0.248
Dance 107 0.411 0.299 0.215
Wait 89 0.404 0.146 0.213
Drink 89 0.337 0.269 0.213
Eat 89 0.472 0.213 0.326

work [105] as the Bert is pre-trained on a large dataset using language modelling, thus the learned

Bert representation can lead to better generalization performance.

To have a more detailed understanding of how different factors influence different actions. We

show the accuracy for specific actions under different ablation study setting. Specifically, For each

one of the top eight frequent actions, we calculate its accuracy under different ablation studies. The

results are shown in table 5.4. Different factors may have different influence for different actions.

For the majority of actions except for the actions dance and drink, the reasoning factor plays a more

important role compared to the language grounding factor. A possible explanation is that language

grounding is an extremely challenging task and the learned model for language grounding is still

quite limited. On the other hand, the reasoning model does a better job in capturing commonsense

relations between an answer and a rationale. We think the use of Bert contributes to this advantage

as Bert has shown superb performance on many commonsense reasoning tasks [41, 83, 84, 89].

Visual Attention Analysis. Here we will show some visualizations of the visual attention

learned in the VQA and VQR factor. Some example visualizations are shown in Figure 5.8. Here

we show the sentence-level answer attention on the image. We can see that in the first Figure,

the model’s attention mainly focus on the surroundings of the object stuff in the answer. In the

second Figure, The main attention is on the man’s hand and the sheep, but there are also some

80



noisy attentions on other peoples. In the last Figure, The answer’s visual attention is correctly put

on the tower which the people are looking at. From these examples, we can see that the model

actually learns to where to focus and extract useful visual feature representation to learn to answer

the visual question. In Figure 5.9, Similarly given a pair of question and rationale, we show the

corresponding attention map the model learns. For example, in the third example, the attention is

mainly put on the map and arm to indicate this is a hold action.

Causal Attention Analysis. We also visualize the attention mapping between the answer

and the rationale. This kind of correlation actually indicates what we called causal relation. In

our model, we model this kind of relations as un-directed relation. Here we visualize the attention

from an answer to a rationale, which means we normalize the correlation matrix learned along the

direction of rationals. Thus we can see what are import words used for each word in the answer.

The example visualizations are shown in Figure 5.10. In the first example, the word performing

mainly correlates with words higher pedestal and words playing music. In the second example,

almost all words in the answer correlate with words someone and hear. Two characteristics we

observe here are: first we notice that the correspondence of the same people’s names are not

necessarily aligned in this process, second the answer words tend to attend much fewer words

in the rationale sentence. One possible explanation is that the fine-tuned Bert representation is a

contextualized representation, so even for same words, when they are in different context, their

vector representation may not be very similar.

5.4.4 Error Analysis

From the previous results, we can see that there still exists a big gap between our results and human

level performance. To have a better understanding of where the errors come from, we analyze the

prediction errors from following two aspects. First we categorize errors in different ways:
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Ques*on:	What	is	person7	doing?	
Answer:			Person7	is	trying	to	sell	stuff.	

Ques*on:	What	is	person3	doing?	
Answer:			Person3	is	watching	what	person4	is	doing.		

Ques*on:	What	is	person2	and	person4	doing?	
Answer:			They	are	looking	at	the	tower.	

Figure 5.8: Attention visualization for the VQA factor.

• A-R+: the predicted answer is wrong, but the predicted rationale is correct.

• A+R-: the predicted answer is correct, but the predicted rationale is wrong.

• A-R-: Both the predicted answer and the predicted rationale are wrong, and they also doesn’t
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Ques*on:	Is	person	3	playing	outside	in	the	snow?	
Ra*onale:			Dogs	have	thick	fur	and	are	used	to	cold	temperatures.	

Ques*on:	What	is	person0	doing?	
Ra*onale:			Person0’s	pose	to	be	that	of	discuss	a	plan	affirmed		

	by	The	expression	provided	by	person1.			

Ques*on:	What	is	person0	and	person1	doing?	
Ra*onale:	They	are	holding	a	map	in	their	hands	and	they	are	looking	at	it.	

Figure 5.9: Attention visualization for the VQR factor.

Question: What is Casey doing? Question: What is Casey doing?

Figure 5.10: Attention visualization for the AR factor.
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match. Noted that we augment each original answer with 4 rationales of which one of them

is the correct rationale for the original answer in another sample.

• A-R-*: Both the predicted answer and the predicted rationale are wrong, but they are matched.

The ratios of different error types are shown in Figure 5.11. We can see that the most frequent error

is R-A+, which means the answer prediction is correct, while the rationale prediction is wrong.

The least occurred error is A-R+, which means the answer prediction is wrong and rationale is

correct. Combining these information we learned that inferring answers seems easier than inferring

rationales.

We also analyze the error from the factors perspective. For each sample, the gold answer

rationale pair is (a, r), the predicted answer rationale pair is (ap, rp). For each pair we have 3

scores svqa, svqr, sar. Ideally the scores for the gold pair should be larger than the predicted pair.

For each score, we calculate whether the score ordering is within our anticipation or not. We

estimate them as these 3 ratios:

• AR_MM: the order of the AR factor scores is mis-matched.

• QR_MM: the order of the QR factor scores is mis-matched.

• QA_MM: the order of the QA factor scores is mis-matched.

The ratios of these 3 types of mis-matches are shown in Figure 5.12. We can see that the most

frequent mis-match types is AR_MM, which means the most challenging part of this task is how

to learn the commonsense matching factor for the answer and the rationale. This Figures also

shows that the least amount of mis-match is for the factor QA, which coincides with the previous

error types analysis: the error for the answer is lower than the error for the rationale.

84



Table 5.5: Error rates among samples with different lengths of ground truth rationales.

Length [0,10) [10,20) [20,30) [30,40) [40, +∞)
Error rate 0.758 0.631 0.530 0.470 0.455

A quick error analysis has shown that the model performance seems to correlate with the length

of the ground truth rationales (as shown in Table 5.5). Although the ground truth length distribution

is nearly uniform in the training dataset, our results show that the shorter the length of a rationale is,

the less likely the model would pick it up. This shows that providing more contextual information

in the rationales may help improve model performance.

Figure 5.11: The ratio of different error types.

5.5 Conclusion

In this work, we propose a joint learning task setting for the visual question answer and rationale

task. Compared with the previous R2C framework, we argue it’s better to learn these two things

jointly instead following a two step process. To adapt to the joint learning task setting, we augment

85



Figure 5.12: The inverse ratio of different factors.

the original R2C dataset with more negative rationales to eliminate the dataset answer bias. Based

on the new dataset, we propose a pairwise deep factorization model to model the joint probability

of the answer and the rationale given the image and the question. In essence, this joint task is trying

to jointly solve visual question answering and natural language causal inference together. Finally

we conduct comprehensive experiments and ablations to verify the effectiveness of our proposed

method. However, the current best performance is still far from human performance. We showed

the extreme action sparsity in the dataset analysis. In the future work, how to effective mitigate

this kind of sparsity and introduce more external knowledge to the learning process will be an

interesting direction worth exploring.
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Chapter 6

Conclusion and Future Work

6.1 Conclusions

The process of human learning to understand the world is not isolated by using only linguistic

descriptions or visual signals. Actually we learn through a combination of different sources of

signals from our surrounding world, which is also called multi-modal learning. Imagine when

you are young, how do you learn the action of “pick up”? It often comes with a combination of

the visual demonstration and language instructions. Humans have strong abilities to synthesize

information and learn from different sources including text, vision and speech et al. In order to

build agents which can really understand human utterances, execute instructions and even generate

explanations or rationales, the agents need to understand grounded meanings of text by connecting

to the physical world to get a comprehensive understanding.

To achieve this goal, we investigate the problem of grounded language learning of physical

actions through connecting low level visual semantics with high level linguistic semantics. At the

same time, we also explore how to connect grounded rationales with action predictions.

• In Chapter 3, we propose a new task: grounded semantic role labeling to bridge the gap

between the high level linguistic structured semantic information and the low level visual

information including object trackings and attributes et al. From the linguistics perspec-

tive, the semantics of actions/verbs are represented as frames with slots and values which
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characterize key properties describing the action. These properties are called semantic roles

including patient, location tool and so on. For each semantic role, we ground it to visual

elements in the physical world: the objects in the video clips for our study. Besides explicit

semantic roles mentioned in the linguistic descriptions, we also ground the implicit semantic

roles which happens in the world but are not explicitly mentioned in the description because

they are also very important for the agent to learn to understand and interpret the action.

As shown in our experiments, the agent can have a better grounded understanding of the

environment with the incorporation of the semantic information.

• Chapter 4 discusses an approach that attempts to infer commonsense justifications for phys-

ical actions in human-agent communication. To understand the action meaning, not only

recognizing what is happening is important, but also providing commonsense evidence to

support the decision the agent made. On one hand, it helps improves the trust between the

human and the agent. On the other hand, it also helps improve the communication ground-

ing during communication. We propose a generative modeling framework to jointly infer

the action and the corresponding commonsense justification. We decompose explanations

into relations and attributes, then model the evidence selection problem as a latent variable

inference problem. Our empirical evaluations show that this joint inference model achieves

better performance compared to previous competitive methods. Furthermore, as our latent

variables are interpretable, we add the supervision to the latent variable and show that it ac-

tually improves both the evidence selection and action prediction performance. Lastly, we

design a human study to verify that our propose joint model helps improve communication

grounding between humans and agents.

• In Chapter 5, we focus on the problem of grounded action justification. We propose to solve
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the joint visual commonsense reasoning task: given an image and a question, the goal is to

select the answer and provide the corresponding rationale. A new factorized neural model is

developed to better understand relations between the image, question, answer and rationales.

Specifically, we decompose the problem into three small factors including Image-Question-

Answer factor, Image-Question-Rationale factor and Image-Answer-Rationale factor. Ex-

perimental results show that the factorized model achieves better accuracy. Besides, the

comprehensive ablation study results show that different factors are essential for the final

performance, and the Image-Answer-Rationale factor plays the most significant role for the

final performance.

6.2 Future Directions

This dissertation explores different approaches for grounded action understanding and justification

through language communication. To extend these approaches to a variety of real world applica-

tions, possible future works are described as follows:

• Data efficient Learning for grounded semantic role labeling. Currently the supervised

graphical model based method for grounded semantic role labeling requires a lot of labeled

data which are time-consuming and expensive. One important future research direction is to

explore semi-supervised methods to alleviate the burden of data labeling. For example, how

to effectively incorporate the unlabeled data to improve the generalization ability.

• Deep Learning for grounded semantic role labeling. Recently the deep learning based

methods show great potentials on solving multi-modal related problems for several reasons:

first they can learn better visual representations and contextual depended word representa-

tions. Second the deep architecture can better captures the interaction of information flows
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across different modals. One possible research direction to further improve grounded seman-

tic role labeling by modeling both the visual context and linguistic semantic roles as graphs

and use graph based neural network to predict target groundings.

• Incorporating commonsense knowledge for grounded action justification. Our current

system’s performance is still far from human performance on commonsense justification.

We find that incorporating pre-trained word embeddings such as Bert is greatly helpful for

improving the accuracy. The pre-trained Bert embeddings capture commonsense knowledge

from large scale external datasets. Then one natural follow up question would be: whether

we can effectively incorporate some action knowledge base into our model to improve the

model performance. For example, how to inject ConceptNet or VerbNet knowledge to the

deep neural network?

• Grounded Justification Generation. Currently we mainly frame the grounded action jus-

tification problem as a ranking or classification task. Compared with language generation

tasks, this choice makes the evaluation easier and reasonable. But language generation is

a more realistic setting as it doesn’t need us to provide specific candidates. So a possible

extended new task could be: given an image, a question and several answer candidates,

how can we select the correct answer and generate natural language rationales justifying our

prediction?

As more and more multi-media applications start to enter our daily lives such as movies with

captions, image with descriptions, it will be more and more important to build intelligent agents

to understand the world through multi-modal learning. Despite the efforts we have made in this

dissertation, a lot of important and interesting problems still remain open. We believe that future

research on this topic is of great values to make fundamental advances in AI.
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