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ABSTRACT

ADVANCED CLASSIFICATION METHODS FOR LARGE SPATIAL-TEMPORAL DATA:

APPLICATIONS TO NEUROIMAGING

By

Rejaul Karim

Spatial data are characterized by dependency between the data indexed by a fixed point

in space and its ”neighbors”. Exploiting such dependencies leads to improvement in estima-

tion and inference. Due to large abundance of such data in nature,previous methodologies

are being extended to incorporate such proximal information.For example in a latent model

for generating data is spatially dependent,one would like to investigate how such depen-

dencies affect the variable selection performances. This work is centerd around a penalized

estimating equation approach to model of an expanding dimension(pn) of predictor variables

where responses are generated from Poisson model driven by latent Gaussian model (Log

Gaussian Cox process). In the past this approach has been extensively studied in longitudi-

nal data analysis. Gaussian random fields that exhibit Conditional autoregressive structure

(CAR) we provide some theoretical results of the estimator obtained from the penalized

estimating equation. The oracle properties of the estimator as described by Fan & Li (2001)

are provided.

Pattern detection in imaging data has lead to a rise of classification methods that are

effective in separating objects and structures in an image. This provides a major impetus

in the context of medical imaging. Magnetic resonance images (MRI) collected in four

dimensions (3D space and time), maybe used to predict different disease phases of a particular

patient. Linear discriminant analysis(LDA) is a classical tool used for dimension reduction

as well as classification. However, in the context of high-dimensional data where feature



volume is significantly larger than sample size, the within-class covariance of the LDA tool

is singular, yielding the classification rule unsuitable. Sparse discriminant methods have

therefore been proposed to implement LDA in a high dimensional setup. These methods

do not incorporate dependencies in the feature covariance structure when data acquired is

spatially and temporally correlated. This article proposes a regularized high dimensional

LDA resolution for spatio-temporal imaging data. Theoretically we ensure that the method

proposed can achieve consistent parameter estimation, feature selection, at an asymptotically

optimal misclassification rate. Extensive simulation study shows a significant improvement

in classification performance under spatial-temporal dependence. This method is applied to

longitudinal structural MRI data obtained from the ADNI initiative.

LDA classification rule are restrictive since this paradigm is based on strong assump-

tion that binary class data generating process is Normally distributed with same covariance

function. In contrast, support vector machine is considered much more robust classifier due

to its distribution free approach. The tensor counterpart of SVM also known as support

tensor machine is widely popular in analysis of MRI image which is a tensor in its original

format. This tensor structure preserves the neighboring spatial information which is lost

after vectorization. In this work, we apply memory efficient random projection to tensor as

a dimension reduction method which preserves distance with high probability. Near optimal

classification consistency is shown along with few simulation study.
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6. µ̈ denotes the double derivative of the function µ, similarly
...
µ denotes the third derivative

and so on.

7. := signifies assignment or is referred to as “denoted by”.

8. TrA denotes the trace of a matrix A.

9. LHS stands for Left Hand Side of an equation.

10. ∼ denotes neighbors. i.e. u ∼ v implies u and v are adjacent voxels.

11. 〈·, ·〉 signifies inner product of two vectors.
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ficients.
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17. OSE stands for One step Estimation
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Chapter 1

Analysis of Spatial Count Data:

Penalized Estimating Equation

Approach

1.1 Introduction

Geographical factors play a significant role in epidemiology. Poisson regression is popularly

used for the analysis of disease rates, plant growth etc which assumes that the rates in

nearby regions are independent and the variance of response is equal to the mean.Yasui &

Lele (1997) Hierarchical models have been proposed to utilize spatial locations and neighbors

as analysis of disease rates. Using hierarchal model, marginal likelihood becomes intractable,

so this issue can be solved using estimating equation.

1.2 Literature review

Mardia and Marshall(stationary setup CAR low dimensional estimation) have produced con-

sistent estimators in Gaussian CAR model using likelihood method.However since likelihood

1



is not tractable for Poisson log Normal Distribution. Mean field method cannot be used

here it assumes the distribution of latent variable to independent. Following Yasui & Lele

(1997) method, we need to find exact form of function Y ∗ which is unbiased estimator for

log Y to prove theoretical result. In order to achieve one way is to solve the first order

Fredholm equation. However this equation is not solvable since log Y do not have finite

expectation when Y ∼ Poisson(λ) Liang and Zeger (1986) used the idea of estimating equa-

tion for longitudinal data.Wang L(2011) extended this for diverging number of covariates.

Wang L, Zhou J, Qu A.(2011) used penalized estimating equation for high dimensional in-

ference. ClS type estimates and MM estimates and estimating equation approach is used.

The central limit theorem for this statistics can be achieved by result using Peligard of rho

mixing . Correlation upper bound is obtained for banded precision matrix. For general

CAR model, problem remains open. Some progress can be made using partitioned matrix

inverse Σ−1
ii = (Σii)

−1−Σ−i,i(Σ−(i,i))
−1Σi,−i LIN and CLAYTON (2005) extended the use

estimating equation for spatial binary data referencing to the work of Zeger(1988) for time

series of count data. These works shows that estimating equation approach can be used for

spatially dependent data under appropriate mixing conditions. These paper estimated the

regression parameter from quasi likelihood score function. Asymptotic covariance of such

estimator depends on unknown nuisance parameter like scale and correlation parameters

(σ2, γ) .Lele(1991),used Jacknifing tools for reduced bias estimators of nuisance parame-

ters. HEAGERTY and LUMLEY (2000) proposed non parametric estimation of Covariance

matrix using sub sampling windows for time series in general lattice data. Prentice(1988)

provided a consistent estimate of scale and correlation parameter using second quasi likeli-

hood score function. Here the precision matrix in quasi score requires knowledge of third and

fourth moments which replaced by ”working” precision matrix. This paper generalizes the

2



idea of joint optimal estimation Godambe and Thompson (1989) (βn, σ
2, γ) in independent

when skewness and kurtosis of distribution is known from before.

1.3 Model

For county i ∈ {1, 2, .., n} Yi= Observed disease cases of county i. Ei= Expected disease

cases of county i.Ei s are known. Ψi= Logarithm of ratio of disease rates to some reference

rates county i .

Yi|Ψi
ind∼ Poisson(eΨiEi)

ψn×1 ∼N
(
Xn×pnβpn×1,σ

2V n(γ)
)

V n(γ) = (I− γMnWn)−1Mn

γ ∈ (−1, 1) ; σ2 ∈ (0,∞)

Define W n×n as adjacency matrix

Wij =


1 if i and j are neighbours

0 otherwise

∑
j∈N (i)Wij = Wi+. Let Mn×n = Diag ( 1

Wi+
)ii

3



Here matrix W n can be interpreted as the adjacency matrix of graph with vertex set as indices

of random variable namely={1,2,...n}. W r i,j
n represents the number of paths of length r from vertex

i to j. W n is irreducible if it is adjacency matrix of connected graph.Mathematically, W r i,j
n > 0

for some r and all i, j ∈ {1, 2, .., n}. Suppose W n is reducible then W n can be represented into

block diagonal matrix of irreducible matrix. The block diagonal structure of W n represents the

isolated connected components of corresponding graph. Suppose

W =



1W 0
2W

. . .

0 c−1W

cW



here matrix jW is irreducible adjacency matrix of graph with vertex set indexed by j

So the corresponding V 1,n = (I − γMnWn)−1Mn is also block diagonal matrix. Without loss

of generality we prove all results assuming W n is irreducible since these results can be extended to

block diagonal W n similarly.

1.4 Estimation

The objective is to estimate β,σ2 and γ using observations {Y }i. Most straightforward method

would me Maximum Likelihood Method (MLE) method but MLE is untractable so Yasui & Lele

(1997) have used transformation and then MLE.

4



1.4.1 Transformation approach by Yasui & Lele (1997)

Define

Y ∗ = f1(Y ) such that EY ∗|Ψ = Ψ + b∗(ψ)

Y ∗∗ = f2(Y ) such that EY ∗∗|Ψ = Ψ2 + b∗∗(ψ)

With b∗(y) and b∗∗(y) satisfying some regularizing condition. q(λn) is SCAD penalty function with

parameter λn , the following sets of MLE equation are solved for estimation

Un
(
βn
)

=
1

n
Xᵀ
[
σ2V3,n(γ)

]−1
(Y ∗ − Xβ)︸ ︷︷ ︸

Sn

−q(λn)(βn)

F1,n(γ) = (Y ∗ − Xβ)ᵀMnW n(I− γMnW n)(Y ∗ − Xβ) = 0

F2,n(σ2) = (Y ∗ − Xβ)ᵀ(M−1
n − γW n)(Y ∗ − Xβ)− nσ2 = 0

1.4.1.1 High dimensional curse

These equations are derived assuming asymptotic unbiasedness of Y ∗ for large value of Ψ and

plugin method of moment estimates i.e Y ∗ in place of Ψ in the estimating equations.BuT when pn

is more than n, the above method breaks down due to accumulation of bias of order pn/n. Shown

in appendix.

5



1.5 In search for transformation function

Here we considered two approaches to obtain a function which can serve as unbiased estimate of

Xβ. Using these two method we could only approximate the target function. But high dimension

such approximation fail miserably.

1.5.1 Integral equation approach

We want to solve for function Y ∗ = f(Y ) such that EY ∗|Ψ = Ψ or equivalently

∞∑
i=0

e−λ
λi

i!
f(i) = log λ

for all λ ∈ (0,∞) This kind of equation is classified as Fredholm Integral equation of first kind with

form

Kf = g

where K is integral or expectation operator of random variable Poisson λ with kernel K(λ, i) = λi

i!

. g is known (data function) here g(λ) = log λ and f (solution function) is to be solved for.

A natural heuristic is to think K as matrix with rows, dependent on λ and columns dependent

upon i ∈ {0, 1, ..,∞} where f is an unknown vector and g is constant depending on λ

Assuming all regularity conditions for Poisson kernel. Suppose it has SVD(singular value

decomposition) the equation can be solved. But the data function g(λ) = log(λ) /∈ L1(L =

Lebesgue,R,B). Hence log(λ) is not complete with respect to orthonormal basis. Therefore it does

not have a series expansion with respect to any orthonormal basis.

6



1.5.1.1 Charlier Polynomial

Charlier polynomials {Cm}∞m=0 are a family of orthogonal polynomials with respect to Poisson

weights.

∞∑
i=0

λi

i!
Cm (λ, i)Cn (λ, i) = λ−neλn!δmn λ > 0

Suppose

log(λ) =

∞∑
n=0

anλ
−nn! for some constants an

Then function f(y) could be analytically approximated. However log(λ) does not have Taylor series

expansion on (0,+∞). The solution f cannot be found using Charlier Polynomial.

However many numerical approximations are possible using techniques like quadratures etc.

1.5.2 Properties of marginal model

Finally we came across the work of which gives basic ideas about marginal distribution of this

hierarchal model also known as log poisson Model. We derive first few moments needed in order

to solve for this estimating equation.

The induced model is PΛd=1(Xβ,σ2V 1,n(γ)) multivariate Poisson-log normal distribution with

moments provided in the appendix

7



1.6 Penalized quasi likelihood on Induced model

Basawa have discussed the likelihood estimation of int erst parameter under mixture model where

the nuisance parameter has prior. He showed that under exponential family set up the conditional

likelihood estimation is asymptotically efficient as the mixture distribution set up. However our

problem does not fit this paradigm since the prior is on the random variable has prior on it.

Extending the idea of conditional least squares,it can be shown that there are two cases for estima-

tion.In case 1 we can estimate all parameters jointly β,γ,σ2 by either by differentiating same pseudo

likelihood with respect to different parameters. hi =
(
Y i−E(Y i|F−i)

)2
then multiply appropriate

weights for optimality.Here F−i = (S)(Y 1, ...,Y i−1,Y i+1, ...Y n) is Sigma field of all samples from

1 to n but Y i In case 2 we can use two different pseudo likelihoods i.e hi =
(
Y i−E(Y i|F−i)

)2
and

h′i =

((
Y i − E(Y i|F−i)

)2 − V ar(Yi|F−i))2

then multiply appropriate weights for optimality. In

our setup the expression of conditional expectation E(Y i|F−i) is intractable

We work for simplified case: estimate all parameters through hi = (Y i−µi(βn,σ2,γ)2 the multiply

appropriate weights for optimality.

1.7 GEE

Since we have few moments of marginal distribution we can formulate the estimating equation

Let X =



Xᵀ1

Xᵀ2

· · ·

Xᵀn


be the coefficient matrix for β Hence XT

i is the ith row of X

µi(βn,σ2,γ) = E(Y i) = exp (−Xᵀiβn + σ2V 1,n(γ)ii/2) = θn,iRii
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Vn(σ2,γ,βn) = Diag(µi) + Diag(µi)[R
�2(σ2,γ)− Jn]Diag(µi)

exp (−Xᵀiβn) = θn,i

exp(σ2V 1,n(γ)ii/2) = Rii

(
R�2(σ2,γ)− Jn

)
i,j

= exp(σ2V 1,n i,j)− 1

R�2 denotes Hadamard product of matrix R�R and Jn = 1n1
ᵀ
n

The equation are derived from stationarity of KKT conditions. The following score functions arise

when we treat β,γ,σ2 as mean parameters under the constraints

• sparse solution inducing penalty on β

• σ2 ≥ 0

• |γ| ≤ 1

1

Un
(
βn σ

2,γ
)

=
1

n

∂µ

∂β

ᵀ[
Vn(σ2,γ,βn)

]−1
(
Y − µ(βn,σ

2,γ)

)
︸ ︷︷ ︸

Sn

+q(λn)(|βn|)� sgn(βn)

= − 1

n

(
X1µ1, . . . ,Xnµn

)[
Vn(σ2,γ,βn)

]−1
(
Y − µ(βn,σ

2,γ)

)
︸ ︷︷ ︸

Sn

+q(λn)(|βn|)� sgn(βn)

= − 1

n
XT Diag

(
µi
)[

Vn(σ2,γ,βn)
]−1
(
Y − µ(βn,σ

2,γ)

)
︸ ︷︷ ︸

Sn

+q(λn)(|βn|)� sgn(βn)

= 0

under λn ≥ 0

q(λn) is derivative of SCAD penalty function wrt β with penalty parameter λn

9



2

F′3,n(γ,βn,σ
2) =

1

n

∂µ

∂γ

ᵀ[
Vn(σ2,γ,βn)

]−1
(
Y − µ(βn,σ

2,γ)

)
︸ ︷︷ ︸

F3,n

+ v sgn(γ)

=
σ2

2n
µᵀ Diag(V −11,nW nV

−1
1,n(γ))

[
Vn(σ2,γ,βn)

]−1
(
Y − µ(βn,σ

2,γ)

)
+ v sgn(γ)

= 0

under v ≥ 0

3

F′2,n(σ2,γ,βn) =
1

n

∂µ

∂σ2

ᵀ[
Vn(σ2,γ,βn)

]−1
(
Y − µ(βn,σ

2,γ)

)
︸ ︷︷ ︸

F2,n

−u

=
1

2n
µᵀ Diag(V 1,n(γ))

[
Vn(σ2,γ,βn)

]−1
(
Y − µ(βn,σ

2,γ)

)
− u

= 0

under u ≥ 0

1.7.0.1 Short range dependence

We need short range dependence property which gurantees variable selection consistency σ2,γ,βn)

i.e variance covariance matrix of Y defined above has finite row (or colomn) sum bounded from

above and below. Here V 1,n i,j = f(V n i,j) where f : R→ R is hadamard matrix function

Lemma 1.7.1. ‖Vn‖∞ ≥ sup
i

(µi + µ2
iσ

2 1
wi+(1+|γ|) )

Lemma 1.7.2. ‖Vn‖∞ ≤ sup
i

µi+µ2
i

(
exp(σ2V 1,n i,i)−1

)
σ2V 1,n i,i

1
wi+(1−|γ|)

Since ‖Vn‖∞ < ∞ for all n it implies
∑∞

j=1COV (Yi, Yj) < ∞ which represents short range

dependence.

10



1.8 Penalty

To proof consistency penalized score function needs Taylor expansion. So unbiased penalty function

is desired by Heyde constrained equation

1.8.1 Smooth Clipped Absolute Deviation Penalty

Non concave penalty with oracle properties by Fan and Li (2001)

q
′
λ(|θ|) = λ[I(|θ| < λ) +

(aλ− |θ|)+

(a− 1)λ
I(|θ| ≥ λ)]

a > 2 for computation a = 3.7

Alternative penalty can be MCP.

q
′
λ(|θ|) = λ(1− |θ|

aλ
)+

a > 0 value for a are found using cross validation

Here Sn(β̂n) is non penalized score version . Then we add penalty term and prove asymptotic up

crossing ie Un = op(an) where an → 0 is sufficient since Un may be discontinuous due to penalty.
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1.9 Assumptions

1. Ei = 1 for all i

2. True parameter βᵀn(1×sn)
= (βᵀn(1×pn)

,0(1×sn−pn))

3. True parameter σ2 is bounded and |γ|leq1

4. True parameter βn lies in interior of comapact subset B ∈ Rpn

5. X is bounded element wise.

6. 0 < λmin
(

1
n

∑n
i=1 X

ᵀ
iXi
)
≤ λmax

(
1
n

∑n
i=1 X

ᵀ
iXi
)
<∞

7. min1≤j≤sn βn0j/λn →∞ If pn = o(nα) then λn = O(n−η) where 0 < α < 4
3 and 0 < η < (2−α)

8. maxiwi+,n = k <∞

9.
∑sn

i=1 |βi,n| <∞

10. min
1≤i≤pn

βn,0(i)/λ→∞

11. p3n
n = o(1)

12. λn → 0

13. p2
nlogn

4 = o(nλ2
n)
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1.10 Consistency

Theorem 1.10.1. There exist approximate GEE solution of nth step be β̂
ᵀ
n,n = (β̂

ᵀ
n1,n, β̂

ᵀ
n2,n)

P(|Unjβ̂)| = 0, j = 1, 2, .....pn)→ 1

P(|Unjβ̂)| ≤ λn
logn

, j = pn + 1, pn + 2, .....sn)→ 1

P(β̂n2 = 0)→ 1

Remark 1. The approximation of the solution is conveyed through second item which says that

the value of elements from pn + 1 to sn of score equation at β̂n,n are not exactly 0 but less than

λn/logn so by choosing λn carefully we can attain good approximation

1.11 CLT

Define Ξn =
∂µᵀ
∂βn

V −1
n

∂µ
∂βn

Define sandwich variance estimator by

Ĥn = Ξ̂
−1
(
∂µᵀ
∂βn

V̂ −1
n (Y − µ̂(βn)(Y − µ̂(βn)ᵀV̂ −1

n

∂µ

∂βn

)
Ξ̂
−1

∀αn ∈ Rpn‖αn‖ = 1

αn Ĥn(βn,0)−
1
2
∂µᵀ
∂βn

V̂ −1
n (Y − µ̂(βn,0)(β̂n − βn,0) −→ N(0, 1)
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1.12 Simulation results

We simulate using X = I and maximal number of neighbors k = 10 . We record their std error and

set p = n1.5 and s = n0.8 and σ2=1

σ2 n = 400, sn = 30pn=500
γ = 0.05 γ = 0.75 γ = 0.9

0.1 (0.28,0.81,0.85) (0.27 ,0.73,0.76) (0.38,0.85,.60)
10 (0.24, 0.74,0.84) (0.21,0.73,0.85) (0.35,0.82, 0.72)
100 (0.21,0.70,0.87) (0.22,0.68, 0.86) (0.32,0.83,0.85)

σ
2

n = 1000, sn = 30pn = 2000
γ = 0.05 γ = 0.75 γ = 0.9

0.1 (0.22,0.49,0.91) (0.25,0.57, 0.89) (0.31,0.61,0.83)
10 (0.21,0.27,0.91) (0.23,0.59, 0.91) (0.23,0.61,0.84)
100 (0.21,0.28,0.93) (34.90 ,0.91) (0.30,0.58,0.84)

Table 1.1: Bias of absolute value,Sample Standard Deviation,Empirical Coverage
probability of β
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APPENDIX

Variance Components

V 3,n(βn,σ
2
n,γn) = V(Y ∗)

= VΨEY |Ψ(Y ∗)︸ ︷︷ ︸
V 1,n

+EΨV Y |Ψ(Y ∗)︸ ︷︷ ︸
V 2,n

V 1,n = σ2(I− γMnWn)−1Mn

V 2,n = Diag

[(
1

Ei
exp (−Xiβ + V 1,n(γ)ii/2)

)
+ EΨ

(
b
′2
∗ (Ψi)exp(Ψi) + b2∗(Ψi)

)]

(CRLB is attained for exponential family)

V Y |Ψ(Y ∗) =

(
∂(Ψ + bias(Ψ))

∂(exp(EΨ))

)2

/I
(
exp(ψ)

)
= exp(−Ψ/E)[1 + b∗(Ψ)]2

Moment Generating function of Normal Distribution

EΨ(exp(−Ψi/Ei)) = exp (−Xᵀiβ + σ2V 1,n(γ)ii/2)/Ei

Assuming negligible bias and derivative of bias of order ( 1
n)

(V 2,n)ii = EΨV Y |Ψ(Y ∗i ) + EΨ
(
Ψ−EY |Ψ(Y ∗i )

)ᵀ(
Ψ−EY |Ψ(Y ∗i )

)
= EΨV Y |Ψ(Y ∗i ) + b2∗(Ψi)
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We will approximate to get

V 2,n = Diag

(
1

Ei
exp (−Xiβ + σ2V 1,n(γ)ii/2)

)

Inequalities using function Y ∗

Proof. We assume eΨ = λ onwards Since log(x+ 0.5) is a concave function. By Jensen’s inequality

E log(x + 0.5) ≤ log(Ex + 0.5) = log(λ + 0.5) and using Y |λ ind∼ Poisson(λ) so it follows Stein

Chen identity Stein Chen identity, E(Y g(Y )) = λE(g(Y +1) when E|Y g(Y )| and E|g(Y +1)| exists.

Hence Taylor approximation is valid and central moments can be derived using Stirling’s number.

From Log Sovolev inequality in Poisson Measure for any function f : R→ (0,∞)

Eλ
[
f(Y )log

(
f(Y )

)
− E[f(Y )] log

(
E[f(Y )]

) ]
≤ λE

((
f(Y + 1)− f(Y )

)2
f(Y )

)

Here E denotes Eλ Using f(Y ) = Y + 1
2 we obtain using Log sovolev inequality

E
[

(Y +
1

2
) log

(
Y +

1

2

)
− (λ+

1

2
) log

(
λ+

1

2

) ]

≤ λE
(

1

Y + 1
2

)
λE
[
log
(
Y +

1

2
+ 1
)
− log

(
λ+

1

2

) ]
+

1

2
E
[
log
(
Y +

1

2

)
− log

(
λ+

1

2

) ]

≤ λE
(

1

Y + 1
2

)
λE
[
log
(
Y +

1

2

)
+

(
1

Y + 1
2

)
−, 1

2

(
1

Y + 1
2 + b

)2

− log
(
λ+

1

2

) ]

+
1

2
E
[
log
(
Y +

1

2

)
− log

(
λ+

1

2

) ]
≤ λE

(
1

Y + 1
2

)

�
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Moments of Log Normal Poisson

E(Y i) = exp (Xᵀiβ + σ2V 1,n(γ)ii/2) = µi

V ar(Y i) = µi + µ2
i

(
exp(σ2V 1,n(γ)ii)− 1

)
Cov(Y i,Y j) = µiµj

(
exp(σ2V 1,n(γ)ij)− 1

)
Corr(Yi, Yj) =

exp(σ2V 1,n(γ)ij − 1

[exp(σ2V 1,n(γ)ii)− 1 + µi]
1
2 [exp(σ2V 1,n(γ)jj)− 1 + µj ]

1
2

E
(
Y i − µi(β)

)3

= exp(3Xᵀiβ + 9σ2V 1,n(γ)ii/2)− 3 exp(3Xᵀiβ + 5σ2V 1,n(γ)ii/2)

+2 exp(3Xᵀiβ + 3σ2V 1,n(γ)ii/2)− 3 exp(2Xᵀiβ + 4σ2V 1,n(γ)ii/2)

−3 exp(2Xᵀiβ + 2σ2V 1,n(γ)ii/2) + exp(1Xᵀiβ + 1σ2V 1,n(γ)ii/2)

E(Y i − E(Y i))
4 = exp(4Xᵀiβ + 16σ2V 1,n(γ)ii/2)− 4 exp(4Xᵀiβ + 10σ2V 1,n(γ)ii/2)

+6 exp(4Xᵀiβ + 6σ2V 1,n(γ)ii/2)− 3 exp(4Xᵀiβ + 4σ2V 1,n(γ)ii/2)

+6 exp(3Xᵀiβ + 9σ2V 1,n(γ)ii/2)− 12 exp(3Xᵀiβ + 5σ2V 1,n(γ)ii/2)

+6 exp(3Xᵀiβ + 3σ2V 1,n(γ)ii/2) + 7 exp(2Xᵀiβ + 4σ2V 1,n(γ)ii/2)

−4 exp(2Xᵀiβ + 2σ2V 1,n(γ)ii/2) + exp(1Xᵀiβ + 1σ2V 1,n(γ)ii/2)

Lemma 1.12.1.

Corr(Yi, Yj) ≤ Corr(Ψi,Ψj)

Proof. Standardize ( Ψi
σ2V 1,n(γ)ii

,
Ψj

σ2V 1,n(γ)jj
) Let resulting marginal model be (Zi , Zj)
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Standardize ( Yi
V ar(Yi)

,
Yj

V ar(Yj)
)

Use the inequality Corr(Yi, Yj) = ea−1(
ea−1+b

)0.5 (
ea−1+c

)0.5 < a = Corr(Zi, Zj) for |a| < 1 and

b > 0 , c > 0 �

Lemma 1.12.2. Log normal distribution is dependent on first two moments of the latent model

Proof.

E(eit
ᵀY ) = EΨEY |Ψ(eit

ᵀY ) = EΨ
( n∏
j=1

EY j |Ψj (e
itᵀjY )

)
= EΨ

n∏
j=1

eΨj(e
itj−1)

EΨ e
∑n
j=1 Ψj (eitj−1) = exp

(
(eit − 1) ᵀXβ +

σ2 ˜(eit − 1)
ᵀ
V 1,n(γ) ˜(eit − 1)

2

)
here ˜(eit − 1) denotes vector ˜(eit − 1)j = (eitj − 1) �

Relationship between induced and latent Model co variance

(V 2,n)ii =

(
1

Ei
exp (−Xiβ + σ2V 1,n(γ)ii/2)

)
≤
(

1

Ei
exp (−Xiβ + σ2 1

2(1− |γ|)wi+
)

)
≥
(

1

Ei
exp (−Xiβ + σ2 1

2wi+
)

)

Range of γ

For the matrix V 1,n(γ) to be positive definite matrix , it is sufficient for γ ∈ (−1, 1) Since

V −1
1,n(γ) = M−1

n − γWn

iff |γ| ≤ 1
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Define strictly diagonal dominant matrix

∆(A)i = |aii| −
∑
i 6=j
|aij | ≥ 0for all i

Proof. Symmetric strictly diagonal dominant matrix with positive diagonal elements is positive

definite from Varah (1975) .

V −1
1,n(γ) = M−1

n − γWn

satisfies this condition for all n iff |γ| ≤ 1

�

Useful bounds about V 1,n

Define spectral norm ‖A‖∗ = max
i
|λi(A)| Form the theory of diagonal dominant matrices we

conclude following bounds. When γ > 0 V −1
1,n is M Matrix. We can exploit various results on M

Matrix and extend them to the case γ < 0 as ∆ and ‖‖∞ operator operates on absolute value of

matrix entries.

1

1

(1− |γ|) max
i
wi+

≤ ‖
(
I− γ MnW n

)−1

Mn‖∗ ≤
1

(1− |γ|) min
i
wi+

2

1

wi+
≤ V 1,n(γ)ii ≤

1

(1− |γ|)wi+

3

|V 1,n(γ)ij | ≤ |γ||V 1,n(γ)ii|
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V 1,n(γ)ii ≥
1

V −1
1,n(γ)ii

Structure of V 1,n V 1,n =

(
I − γ MnW n

)−1

Mn can be expanded by
∑∞

m=0 γ
m (MnW n)mMn

since

‖(MnWn)‖∗ < 1 where ‖‖∗ represents spectral norm or maximum of absolute eigenvalue.

Lemma 1.12.3. It can be proved by induction that (MnWn)r n i,j ≤ maxi
1
wi+

for all ≥ 1 and all

n

Proof. Note that (MnWn)i,m =
wi,m
wi+

where wi,m = wm,i is 0 or 1
∑

j∈N (i)wij = wi+. LetMn×n =

Diag ( 1
Wi+

)ii

(MnWn)1
n i,m =

wi,m
wi+

≤ maxi
1

wi+

(MnWn)rn i,m =
n∑
j=1

(MnWn)1
i,j (MnWn)r−1

n j,m ≤
n∑
j=0

(MnWn)i,jmaxi
1

wi+
≤

n∑
j=0

wi,j
wi+

1 ≤ maxi
1

wi+

�

Lemma 1.12.4. ‖V −1
n ‖∞ ≥ inf

i
µi + inf

i
µ2
i

σ2

wi+(1−γ)

Proof. Case γ > 0:

Here all entries of matrix (M−1
n − γWn)−1 = V 1,n are positive. The row sum can be written as

V −1
1,n



1

1

· · ·

1


= (1− γ)



w1+

w2+

· · ·

wi+

· · ·

wn+



≤ max
i
wi+



1

1

· · ·

1
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{
exp(σ2V 1,n i,j)− 1

}


1

1

· · ·

1


≥ σ2V 1,n



1

1

· · ·

1


≥ σ2

max
i

wi+(1− γ)



1

1

· · ·

1



‖Vn‖∞ ≥ inf
i
µi + inf

i
µ2
i

σ2

wi+(1− γ)

�

Lemma 1.12.5. If 1− γ − γ2

1−γ2 (1− 2 1
k ) > 0 is strictly diagonally dominant matrix

Proof. Since (MnW n) is non negative irreducible matrix by Perron Frobenius therom: for all k

(MnW n)k



1

1

· · ·

1


= 1



1

1

· · ·

1



. using this result geometric expansion of V 1,n =
∑∞

m=0 γ
m (MnW n)mMn we can arrive at

necessary and sufficient condition 1− γ + min
i

∑∞
m=2 γ

m

(
2(MnW n)mi,i − 1

)
> 0 for strict diag-

onal dominance of V 1,n Consider wort scenario where (MnW n)2k+1
i,i = 0 then above condition is

equivalent to 1− γ − γ2

1−γ2 (1− 2 1
k ) > 0 which is cubic in gamma. �
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Lemma 1.12.6. If V 1,n is strictly diagonally dominant matrix then matrix (Vn)i,j = f(V 1,n)i,j is

strictly diagonally dominant matrix or equivalently if

|V1,n i,i| ≥
∑
j 6=i
|V1,n i,j |

then

|f(V1,n i,i)| ≥
∑
j 6=i
|f(V1,n i,j)|

where f(x) = exp(σ2 x)− 1

Proof. We need to show that if from the results 1.12 it is known that CW,γ > Vn i,i > 0 and

Vn i,i > |γ||Vn i,j | for all i 6= j. Using expansion

exp((x)− 1 =
∞∑
i=0

xk

K!

We prove that for all n and each k by induction

V k
n,i,i = V k−1

n,i,i Vn,i,i ≥ V
k−1
n,i,i

∑
j 6=i
|V1,n i,j |

≥ max
j 6=i
|V k−1
n,i,j |

∑
j 6=i
|V1,n i,j | ≥

∑
j 6=i
|V k

1,n i,j |

�

The above result can hold large class smooth function f : R → R with domain being variance

matrix elements.

Lemma 1.12.7. ‖V −1
n ‖∗ ≥ inf

i

wi+(1+|γ|)
wi+(1+|γ|)µi+µ2

iσ2
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Proof.

‖Vn‖∗ ≤ ‖Vn‖∞

min
i
λi(V

−1
n ) ≥ 1

‖Vn‖∞

�

Lemma 1.12.8. If A,B,C,A−B be symmetric positive semidefinite matrix then

min
i
λ(i)(A+ C) ≥ min

i
λ(i)(B + C)

Proof. Using results in Hiai & Lin (2017) take k = n to obtain

min
i
λ(i)(AC−1) ≥ min

i
λ(i)(BC−1)

min
i
λ(i)(AC−1 + I) ≥ min

i
λ(i)(BC−1 + I) Since all matrices commute with I

min
i
λ(i)

(
(AC−1 + I)C

)
≥ min

i
λ(i)

(
(BC−1 + I)C

)
min
i
λ(i)(A+ C) ≥ min

i
λ(i)(B + C)

�

Lemma 1.12.9.

‖V −1
n ‖∗ ≤

1

exp[min
i
λ(i)(V1,n)]− 1

≤ 1

exp[ 1
(1−γ) min

i
w+i

]− 1

Proof. Since

Vn = exp((V1,n)− 1 =

∞∑
i=0

V ◦k1,n

K!

24



where ◦ represents hadamard power We can obtain trivial inequality

λi(Vn) ≥ λi(V1,n)

But we can obtain bounds dependent upon function form f

We use results

min
i
λ(i)(A ◦B) ≥ min

i
λ(i)(A) min

i
λ(i)(B)

and using induction and 1.12.8 we conclude that

min
i
λ(i)[exp(V1,n)− 1] ≥ exp[min

i
λ(i)(V1,n)]− 1

�

Lemma 1.12.10. ‖Vn‖∞ ≥ sup
i

(µi + µ2
iσ

2 1
wi+(1+|γ|) )

Proof.

Vn(σ2,γ,βn) = Diag(µi) + Diag(µi)[R
�2(σ2,γ)− Jn]Diag(µi)

(
R�2(σ2,γ)− Jn

)
i,j

= exp(σ2V 1,n i,j)− 1

Using the expansion to obtain σ2

max
i,j
V 1,n i,j

= σ̃2

exp(σ̃2x)− 1− σ2x = σ2

(
x2/2! + x3/3! + ...+ x2n/2n! + x2n+1/(2n+ 1)!

)
≥ 0

exp(σ̃2x)− 1 ≥ σ̃2x
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for all x ∈ [−1, 1] Therefore

‖Vn‖∞ ≥ sup
i

(µi + µ2
i ‖V1,n‖∞) ≥ sup

i
(µi +

µ2
iσ

2

wi+(1 + |γ|)
)

�

Lemma 1.12.11. ‖Vn‖∞ ≤ sup
i

µi+µ2
i

(
exp(σ2V 1,n i,i)−1

)
σ2V 1,n i,i

1
wi+(1−|γ|)

Proof. We use the previous result Corr(Yi, Yj) ≤ Corr(Ψi,Ψj) for all i, j hence

‖Diag
(
var−1(Yi)

)
VnDiag

(
var−1(Yi)

)
‖∞ ≤ ‖Diag

(
var−1(Ψi)

)
V1,nDiag

(
var−1(Ψi)

)
‖∞

‖Vn‖∞ ≤ sup
i

µi+µ2
i

(
exp(σ2V 1,n i,i)−1

)
V 1,n i,i

1
wi+(1−|γ|) �

Derivation of estimating equations

1 derivation of Un is straightforward.

2

∂µ

∂γ
=

∂ exp (−Xᵀβn + σ2 Diag(V 1,n(γ))n×1/2)

∂γ
=

σ2/2


µ1

. . .

µn

Diag(
∂V 1,n(γ)

∂γ
) =

σ2/2


µ1(V −1

1,nW nV
−1
1,n)1,1

. . .

µn(V −1
1,nW nV

−1
1,n)n,n

 =

26



σ2/2 Diag(V −11,nW nV
−1
1,n) µ

3 Derivation of F′2,n is also similar

Stationary Case Joint estimate of parameters may be difficult to compute. We solve for simplest

case first where

(Wn)i,j = f(|i− j|)I(|i− j| ≤ k)

for some fixed k. Therefore yielding matrix V 1,n(γ) = (M−1
n − γWn)−1 stationary co variance

matrix. It can be seen by Cramer’s rule (V 1,n)i,j =
det[(V −1

1,n)−(i,j)]

det[(V 1,n)−1]

Re parametrization

µi(βn,σ2,γ) = exp (−Xᵀiβn + σ2V 1,n(γ)ii/2)

= exp(−[Xᵀi , 1]

 βn

σ2 V0
2

) = exp(−[Xᵀi , 1]

βn
σ̃2

)

= exp(−X̃ᵀi β̃) = µi(β̃n)

since

V 1,n(γ)ii = V0 1×1 is same for all i due to stationarity

Vn(σ2,γ,βn) = Diag(µi) + Diag(µi)
ᵀ[R�2(σ̃2,γ)− Jn]Diag(µi)(

R�2(σ̃2,γ)− Jn
)
i,j

= exp

(
σ̃2V 1,n i,j

V0

)
− 1
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Here V 1,n(γ)ii = V0 1×1 is same for all i due to stationarity

GEE in stationary setup

1 Score equation for mean

Un
(
β̃n
)

(pn+1)×1
=

1

n

∂µ

∂β̃

ᵀ[
Vn(σ̃2,γ, β̃n)

]−1
(
Y − µ(β̃n)

)
︸ ︷︷ ︸

S̃n

+

q(λn)(|β̃n ,−n|)� sgn(β̃n ,−n)

0



under λn ≥ 0 and β̃n ,−n pn×1 denote sub vector such that

β̃n ,−n
β̃n ,n

 = β̃n

q(λn) is derivative of SCAD penalty function wrt β with penalty parameter λn

2 Method of Moment

exp

(
σ̃2 Vt(γ)

V0(γ)

)
− 1 = E

[∑n
i=t+1

(
Y i − µi(β̃n)

)(
Y i+t − µi+t(β̃n)

)
∑n

i=t+1µi(β̃n)µi+t(β̃n)

]

2.1 Score for scale parameter

ˆexp(σ̃2) =

∑n
i=1

(
Y i − µ̂i(β̃n)

)2

− µ̂i(β̃n)∑n
i=1 µ̂i(β̃n)2

+ 1

ˆ̃σ2 = log

[∑n
i=1

(
Y i − µ̂i(β̃n)

)2

− µ̂i(β̃n)∑n
i=1 µ̂i(β̃n)2

+ 1

]
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ˆ̃σ2 can be negative by using this method.

2.2 Score for correlation parameter

V̂t(γ)

V̂0(γ)
= log

[∑n
i=t+1

(
Y i − µ̂i(β̃n)

)(
Y i+t − ˆµi+t(β̃n)

)
∑n

i=t+1 µ̂i(β̃n) ˆµi+t(β̃n)
+ 1

]
/ˆ̃σ2

γ̂ can be outside (-1,1)

Vt(γ) = V|i−j|=t(γ) due to stationarity time series of counts.

3 Cressie variogram estimate

E
[∑n

i=t+1(Yi − EYi)(Yi − EYi+t)
n− t

]
= V AR(Yi) + V AR(Yi+t)− 2COV (Yi, Yi+t)

Thus we obtain E
[∑n

i=t+1

(
Y i

µi(
˜βn)

− Y i+t

µi+t(
˜βn)

)2

− µ̂i(
˜βn)
−1
2 −− µ̂i+t(

˜βn)
−1
2

2(n−t)

]
=

exp(σ̃2)− exp(σ̃2 Vt(γ))

We take t = 1 find γ̂ form V̂1(γ) when V1(γ) is known function of γ.

Cressie showed that when dimension of β is fixed given σ2 |γ̂ − γ| = Op(
1√
n

)

Matrix Inverse approximation V 1,n is diagonal matrix

(V 3,n)−1

= (V 1,n + σ2 V 2,n)−1

= (V 2,n)−1 − ( σ2 V 2,n)−1

(
(V 1,n)−1 + ( σ2 V 2,n)−1

)−1

( σ2 V 2,n)−1

= ( σ2 V 2,n)−1 − ( σ2 V 2,n)−1

(
M−1

n + ( σ2 V 2,n)−1 − γW n

)−1

( σ2 V 2,n)−1

σ2 V 2,n)−1 − ( σ2 V 2,n)−1( σ2 V 2,n +M−1
n )

−1
2(

I− γ( σ2 V 2,n +M−1
n )

−1
2 W n σ

2 V 2,n +M−1
n )

−1
2

)−1
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( σ2 V 2,n +M−1
n )

−1
2 ( σ2 V 2,n)−1

Lemma 1.12.12. The spectral norm of

( σ2 V 2,n +M−1
n )

−1
2 W n( σ2 V 2,n +M−1

n )
−1
2

is same as spectral norm ( σ2 V 2,n +M−1
n )−1Wn which is less than max row sum of

( σ2 V 2,n +M−1
n )−1Wn

Hence the spectral norm of ( σ2 V 2,n +M−1
n )

−1
2 W n( σ2 V 2,n +M−1

n )
−1
2 ≤ 1(

I− γ( σ2 V 2,n +M−1
n )

−1
2 W n( σ2 V 2,n +M−1

n )
−1
2

)
can be approximated by

n∑
m=0

γm
(
( σ2 V 2,n +M−1

n )
−1
2 W n( σ2 V 2,n +M−1

n )
−1
2
)m

+ O(γn)

Remark 2. Hence forward Y ∗ will be denoted as Y

Bound on Frobenius norm of score

Further

E
∥∥∥Xᵀ[V3,n(γ)

]−1
(Y − Xβ)

∥∥∥2

2
≤ E

∥∥XᵀDn(γ)−1(Z − Xβ)
∥∥2

2

where is Dn is diagonal positive definite matrix.So Z have mutually independent random elements.

Using

Since (V 2,n)−1

(
(V 1,n)−1 + (V 2,n)−1

)−1

(V 2,n)−1is Postive definite Matrix

E
∥∥∥Xᵀ[V3,n(γ)

]−1
(Y − Xβ)

∥∥∥2

2

= TR(XᵀV −1
3,nX)
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≤ λmax(V −1
3,n)tr(XᵀX)

≤ λmax(V −1
2,n)tr(XᵀX)

≤ E
∥∥∥Xᵀ[Dn(γ)

]−1
(Z − Xβ)

∥∥∥2

2

where Dn = 1
min
i
Ei
exp (−Xᵀiβ)− σ2

2
1

max
i
wi+

Since λmax(V −1
2,n) ≤

(
1

min
i
Ei
exp (−Xᵀiβ)− σ2 1

2 max
i
wi+

)

Convergence of scale and correlation parameters

|σ̂2
n − σ2| = Op(‖β̂n,n − βn‖2)

|(γ̂n − γ)| = Op(‖β̂n,n − βn‖2)

Convergence of variance parameter In Yasui and Lele [2012] estimation of σ2 are done using

both hierarchical and marginal methods of conditional least squares

Hierarchical method

σ̂2
n =

1

n
(Y ∗ − Xβ̂n,n)ᵀ(M−1

n − γ̂nW n)(Y ∗ − Xβ̂n,n)− 1

n
(Y ∗∗ − Y ∗)ᵀM−1

n (Y ∗∗ − Y ∗)

Marginal method

σ̂2
n =

1

n
(Y ∗−Xβ̂n,n)ᵀ(M−1

n − γ̂nW n)(Y ∗−Xβ̂n,n)− 1

n
TR
(

ˆV 2,n−1(β̂n,n, σ̂
2
n−1, γ̂n)M−1

n

)
(1.1)

For both of these methods, it can be shown that rates are same

31



Proof.

σ̂2
n − σ2

=
1

n
(Y ∗ − Xβ̂n,n)ᵀ(M−1

n − γ̂nW n)(Y ∗

− Xβ̂n,n)− 1

n
(Y ∗ − Xβn)ᵀ(M−1

n − γnW n)(Y ∗ − Xβn)

− 1

n
TR
(

ˆV 2,n−1(β̂n,n, σ̂
2
n−1, γ̂n)M−1

n )

)
+

1

n
TR
(
V 2,n(βn,σ

2,γ)M−1
n )

)

=
1

n
(Y ∗ − Xβ̂n,n)ᵀ

(
(γ̂n − γ)W n

)
(Y ∗ − Xβ̂n,n)

+
1

n
2 (Y ∗ᵀ − Xβn)(M−1

n − γW n)X(β̂n,n − βn) +
1

n
(β̂n,n

− βn)ᵀXᵀ(M−1
n − γW n)X(β̂n,n − βn)

+
1

n
TR
((

ˆV 2,n−1(β̂n,n, σ̂
2
n−1, γ̂n)− V 2,n(βn,σ

2,γ)
)
M−1

n

)

E
(
‖(Y ∗ − Xβ̂n,n)ᵀ

(
(γ̂n − γ)W n

)
(Y ∗ − Xβ̂n,n)‖2

)
≤ E‖(γ̂n − γ)‖2 E‖(Y ∗ − Xβ̂n,n)ᵀ

(
W n

)
(Y ∗ − Xβ̂n,n)‖2

= ‖(γ̂n − γ)‖2TR( (Y ∗ − Xβ̂n,n)ᵀ
(
W n

)
(Y ∗ − Xβ̂n,n))

≤ n ‖(γ̂n − γ)‖2 λmax(V 3,nW n)

≤ n ‖(γ̂n − γ)‖2 max
i

(V 3,n)iiλmax(W n)

‖ (Y ∗ᵀ − Xβn)(M−1
n − γW n)X(β̂n,n − βn)‖2

≤ ‖ (Y ∗ᵀ − Xβn)(M−1
n − γW n)X‖2 ‖(β̂n,n − βn)‖2

≤ maxi λi

(
(M−1

n − γW n)V 3(M−1
n − γW n)

) √
TR(XᵀX) ‖(β̂n,n − βn)‖2
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= ‖(β̂n,n − βn)‖22 maxi λi

(
(M−1

n − γW n)V 3(M−1
n − γW n)

) √
TR(XXᵀ)

= Op

√
(
pn
n

) O
√

(n pn)

= Op(pn)

(β̂n,n − βn)ᵀXᵀ(M−1
n − γW n)X(β̂n,n − βn)

≤ ‖(β̂n,n − βn)‖22 maxiλi (Xᵀ(M−1
n − γW n) X)

≤ Op n (
pn
n

)

= Op (pn)

By recursion when n is large σ̂2
n−1 − σ2 is same order of σ̂2

n − σ2

V 2,n(βn,σ
2,γ)

= Diag

(
1

Ei
exp (−Xiβ +

σ2

2
V 1,n(γ)ii)

)
TR
(

ˆV 2,n−1(β̂n,n, σ̂
2
n−1, γ̂n)M−1

n

− V 2,n(βn,σ
2,γ) M−1

n

)
≤ TR

(
ˆV 2,n−1(β̂n,n, σ̂

2
n−1, γ̂n)

− V 2,n(βn,σ
2,γ)

)
‖λmax‖

(
M−1

n

)
=

n∑
i=1

(
1

Ei
exp (−Xiβ +

σ2

2
V 1,n(γ)ii/2)

)

≤ n Op

(
sup
i
|Xi| ‖β̂n,n − βn‖2

+ |σ̂2
n − σ2| sup

i
V 1,n(γ)ii + σ2 sup

i
|V 1,n(γ)ii − V̂ 1,n(γ̂n)ii|

)
= n Op

(
sup
i
|Xi| ‖β̂n,n − βn‖2

)
= Op n

√
(
pn
n

)
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Observing that order of last term dominates hence ‖ σ̂2
n−σ2 ‖2 = Op

√
(pnn ) contrary to Op (pnn )

due to contribution from last term. �

the marginal method do not have the last term contributed through bias correction. Therfore

the convergence rate for σ2
n follows classical rate of Op (pnn )

Convergence of γn

γ =
(Y ∗ − Xβn)ᵀMnW n(Y ∗ − Xβn)

(Y ∗ − Xβn)ᵀMnW nMnW n(Y ∗ − Xβn) + (Y ∗ − Y ∗∗)ᵀMnW nMnW n(Y ∗ − Y ∗∗)

=
f1(βn)

f2(βn) + Cn

γ̂n =
(Y ∗ − Xβ̂n,n)ᵀMnW n(Y ∗ − Xβ̂n,n)

(Y ∗ − Xβ̂n,n)ᵀMnW nMnW n(Y ∗ − Xβ̂n,n) + (Y ∗ − Y ∗∗)ᵀMnW nMnW n(Y ∗ − Y ∗∗)

=
f1(β̂n,n)

f2(β̂n,n) + Cn

=
f1(βn) + 2(β̂n,n − βn)ᵀXᵀAn(Y ∗ − Xβn) + (β̂n,n − βn)ᵀXᵀAnX(β̂n,n − βn)

f2(βn) + 2(β̂n,n − βn)ᵀXᵀAnA
ᵀ
n(Y ∗ − Xβn) + (β̂n,n − βn)ᵀXᵀAnA

ᵀ
nX(β̂n,n − βn) + Cn

=
f1(βn) + g1(βn, β̂n,n)

f2(βn) + g2(βn, β̂n,n) + Cn

Therefore (γ̂n − γ) can be written as

f1(βn) + g1(βn, β̂n,n)

f2(βn) + g2(βn, β̂n,n) + Cn
− f1(βn)

f2(βn) + Cn
=

f2g1 + Cng1 − f1g2

(f2 + Cn)(f2 + g2 + Cn)

=
g1

f2 + g2 + Cn
− g2

f2 + g2 + Cn

f1

f2 + Cn

It is proven that

g1(βn, β̂n,n) ≤ Op(pn)
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g2(βn, β̂n,n) ≥ Op(pn)

f1(βn) = Op(n)

f2(βn) = Op(n)

Cn = Op(n)

‖(γ̂n − γ)‖2 =
Op(pn)
Op(n) = Op(

pn
n ) By Slutsky’s theoreom

Convergence of precision matrix

Lemma 1.12.13. Let A and An be sequences of invertible matrices of same order belong to Ba-

nach space over
(
Rn×n , ‖ ‖2

)
such that

‖An −A‖2 = Op(rn) then ‖A−1
n −A−1‖2 = Op(rn) for large n

Proof. ‖A−1
n −A−1‖2 = ‖A−1

n (An−A) A−1‖2 ‖A‖2 =
√∑

i λ
2
i where λi is ith singular value

of A

‖A−1‖2 =
√∑

i
1

λ2
i

λi 6= 0 for any i due to non singularity of A �

Using above lemma on A = σ2 An = σ̂2
n

The Frobenius norm inequality ‖A‖2 ≤
√
n ‖A‖∗ here A is n × n matrix and ‖A‖∗ denotes

spectral norm of A

‖σ̂−2
n V̂

−1
1,n − σ−2V −1

1,n‖2 ≤ σ̂−2
n ||(γ̂n − γ)||2 ‖W n‖2 + ‖σ̂−2

n − σ−2‖2 ‖(Mn − γW n)‖2

≤ Op(
pn
n

) O(
√
n) + Op

√
(
pn
n

) O(
√
n) (1− γ) max

i
wi+

≤ Op (
√
pn)
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Hence ‖V̂ 1,n−V 1,n‖2 = Op (
√
pn) implying that ‖ (V̂ 1,n)i,i −(V 1,n)i,i ‖2 = Op (

√
pn
n ) provided

all diagonal elements V̂ 1,n and V 1,n are of same order.

Now all diagonal elements of V̂
−1
1,n and V −1

1,n are of same order as well as off- diagonal elements

due to assumption 8 on wi,js . This property of same order for inverse matrices can be verified

using law

(V −1)i,i =
det(V {i,i}c )

det(V )

V {i,i}c represents sub matrix of A obtained by deleting ith row and ith colomn from A

V 2,n = Diag

[
1

Ei
exp (−Xiβ + σ2V 1,n(γ)ii/2)

]

By Mean Value Theorem (multivariate)

‖ V̂ 2,n − V 2,n‖2

≤ n max
i

1

Ei
exp (−Xiβ∗ + σ2V 1,n(γ)ii/2) max

i
‖Xi‖2‖(β̂n,n − βn)‖2

+ n max
i

1

Ei
exp (−Xiβ∗ + σ2

∗V 1,n(γ)ii/2) max
i

(V 1,n(γ)ii/2) |σ̂2
n − σ2|2

+ n max
i

1

Ei
exp (−Xiβ∗ + σ2

∗V 1,n(γ)ii/2) ‖σ2
∗ F (Mn,W n,γ∗) ii/2‖2 ‖(γ̂n − γ)‖2

≤ Op (
√
pn)

‖ ˆV 3,n − V 3,n‖2 ≤ ‖ σ̂2
n − σ2 ‖2 ‖V 2,n‖2 + ‖σ̂2

n‖2 ‖V̂ 2,n − V 2,n‖2

+ ‖ V̂ 1,n − V 1,n‖2

Using lemma 1.12.13 finally it is established that ‖ ˆV 3,n
−1 − V −1

3,n‖2 = Op (
√
pn)
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derivative wrt γ

∂V 1,n(γ)

∂γ

= −V −1
1,n

∂V −1
1,n(γ)

∂γ
V −1

1,n

= V −1
1,n W n V

−1
1,n

= M−1
n W nM

−1
n − γ M−1

n W
2
n − γ W 2

nM
−1
n + γ2 W 3

n

Since gradient is a linear operator

∂
(
V 1,n

)
i,i

(γ)

∂γ
=

(
∂V 1,n(γ)

∂γ

)
i,i

(V 3,n) = ( σ2 V 1,n + V 2,n)

Joint Convexity of Quasilikelihood To estabilish convexity of quasilikelihood, we need to show

the directional derivative for every direction

t ∈ R2 < t,∇(γ ,σ2)Sn ≥ 0

It can be established that the derivative of score function is monotonic

∂Sn
∂γ

= Xᵀ
∂
[
V −13,n(γ)

]
∂γ

(Y − Xβ)

= Xᵀ
∂
[
σ2 V 1,n + V 2,n

]−1

∂γ
(Y − Xβ)
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Derivative computation

∂V −13,n

∂γ

= −V −1
3,n

∂V 3,n

∂γ
V −1

3,n

= −σ2 V −1
3,n

∂V 1,n

∂γ
V −1

3,n − V
−1
3,n

∂V 2,n

∂γ
V −1

3,n

= −σ2 V −1
3,n

∂V 1,n

∂γ
V −1

3,n

− σ2 V −1
3,n Diag

( (V 2,n

)
i,i

2

∂
(
V 1,n

)
i,i

∂γ

)
V −1

3,n

= −σ2 V −1
3,n[

Diag

(
exp

(
σ2 V 1,n i,i

2

(
V −1

1,nWV
−1
1,n

)
i,i

)
+ V −1

1,nWV
−1
1,n

]
V −1

3,n

≤ −σ2 V −1
3,n[

Diag

(
exp

(
σ2

2(V −1
1,n)i,i

(
V −1

1,nWV
−1
1,n

)
i,i

)
+ V −1

1,nWV
−1
1,n

]
V −1

3,n

≤ −σ2 V −1
3,nL(W,γ)V −1

3,n

Remark 3. The Quasi Likelihood
∫ Y
β Sn(β)dβ depends on convexity of matrix L(W,γ). However

function of γ since adjacency matrix W is not positive semi definite because by Perron Frobeius

theorem it has at least one positive eigenvalue and some eigenvalues are negative since trace(Wn) =

0

Joint convexity

Lemma 1.12.14. The unpenalized quasi likelihood function to be jointly convex function of

Xβ σ2 γ. The sufficient condition that score function is monotonic function of Xβ, σ2, γ

Proof. Results that will be used in this proof are:

• If V is non negative definite matrix then the function f : V → V is monotone
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• The composition of two convex function is convex i.e f, g are both monotone implies f(g) is

convex

• If f, g are both monotone and f(x) is semi definite for all x f � 0 and g � 0 the productfg

is monotone.

V −1
1,n(γ) = (M−1

n −γW n) is monotonic function of γ. So V 1,n is monotonic function of γ by result 1

σ2V 1,n is jointly convex function of and σ result 3. V 2,n = Diag

(
1
Ei
exp (−Xiβ+σ2V 1,n(γ)ii/2)

)
is jointly convex function of Xβ ,γ and σ by result 2 and 3. V 1,n +V 2,n is jointly convex function

of Xβ ,γ andσ. V −1
3,n = (V 1,n + σ2 V 2,n)−1 is jointly convex function of Xβ ,γ and σ .

1

n
Xᵀ
[
σ2V3,n(γ)

]−1
(Y − Xβ)︸ ︷︷ ︸

Sn

is jointly convex function of Xβ ,γ and σ �

Central Limit Theorem

1 We have link function such that

E(Y i) = exp (Xᵀiβ + σ2V 1,n(γ)ii/2) = µi = h−1(Xᵀiβ)

The ∂h−1

∂β
<∞ and ∂2h−1

∂β2 <∞ for all β in parameter space

These conditions are satisfied since we assume ‖Xᵀiβ‖,∞ , max
i,j

(Xi,j) is bounded ?? and

h−1(Xᵀiβ) = exp(σ2V 1,n(γ)ii/2)exp(Xᵀiβ)

2 there exists smooth variance function V V AR(Yi|X) = V (h−1(Xᵀiβ)) This condition is sat-

isfied since here Vi(r) = r + r2(eσ
2V 1,n(γ)ii − 1)

3 Each element of vector of
∂µ
∂
˜β

ᵀ[
Vn(σ̃2,γ, β̃n)

]−1
is finite

i.e ‖XᵀDiag(µi)V AR
−1(Y )‖∞ = O(1) this is proved by following lemma.

Lemma 1.12.15. ‖XᵀDiag(µi)V AR
−1(Y )‖∞ <∞
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Proof. Using assumptions which gives bounds on elements of X and parameters. Write D as

diagonal matrix with Di = V ar(Yi)

Vn(σ2,γ,βn) = D′CORR(Y )D

using Woodbury matrix identity (A+A′BA)−1 = A−1−(B−1+A)−1 and taking A = Diag(µi) with

diagonal entries 0 > µi >∞ it is sufficient to prove that max of row sum of inverse of correlation

matrix ‖CORR(Y )−1‖1,∞ < C bounded by some constant using lemma below ‖CORR(Y )‖1,∞ <

1 �

Peligrad’s result on CLT Define (Y ′i ) =

(
Yi − µi(β)

)
. Fm1 = Sigma field(Y ′i : 1 ≤ i ≤ m)

Let Tn =
∑n

i=1 Y
′
i and ν2

n = E(Tn)2

ρ(n) = sup
m≥0

X∈L2(Fm1 )
Y ∈L2(F∞m+n)

|CORR(X,Y )| α(n) = sup
m≥0
A∈Fm1
B∈F∞m+n

|P (A ∩B)− P (A)P (B)|

Peligard showed that for non stationary sequences {Y ′i }∞i=1 CLT is obtainable provided some suf-

ficient conditions and and lim
n→∞

ρ(n) < 1 and lim
n→∞

α(n) = 0 Using the methods we can show CLT

holds under these weak sufficient condition.

1 E(Yi) = 0 E(Y 2
i ) <∞

2 max1≤i≤n E|Y ′i |2+δ <∞ Lyapunov condition which suffices for Linderberg Conditions

3 ν2
n = O

(
nh(n)

)
h(n) is slow varying function i.e lim

n→∞
h(an)
n = 1 for all a > 0

1.1 In our setup sup
i
V −1

1,n i,i+n = 0 implies under Gaussian setup α(n) → 0 thus making Ψi and

Ψi+n ae independent hence Yi and Yi+n are independent as as n tends to infinity. hence

α(n)→ 0 when under probability space corresponds to process Yi
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1.2 Corr(Yi, Yj) ≤ Corr(Ψi,Ψj) =
V1,n i,j√

V1,n i,i V1,n j,j
≤ |γ| for all i, j so lim

n→∞
ρ(n) < 1

2 δ = 1 is satisfied here

3 sup
i

(µi + µ2
iσ

2 1
wi+(1+|γ|) ) ≤ h(n) ≤ sup

i

µi+µ2
i

(
exp(σ2V 1,n i,i)−1

)
σ2V 1,n i,i

1
wi+(1−|γ|)

h(n) is independent of n thus regular varying function of n.

Implication of CLT The unpenalized score equation Sn(βn,σ2,γ) converges to Normal distribution

when parameters assume values of true model. Thus if can show that solution of score equation i.e

Sn(β̂n,σ2,γ) = 0 is consistent to βn,0 then (β̂n − βn,0) converges weakly to Normal distribution.

Further when conditions are satisfied Liang and Zeger the solutions of Sn(β̂∗n, σ̂2, γ̂) = 0Liang &

Zeger (1986) follows CLT i.e (β̂n − βn,0) −→ N

Exact structure Of V If the process is stationary the exact form of V −1 is known through paper

Toeplitz and Circulant Matrices: A review . When not stationary can we know analytical structure?

For example let Vn(γ) = (M−1
n − γWn)−1 where number of ’1’s in row of matrix Wn is less than k

We can perform update Vn(γt+1) = Vn(γt) + (γt+1 − γt)
∂V 1,n(γ)

∂γ
|γt

∂V 1,n(γ)

∂γ

= −V −1
1,n

∂V −1
1,n(γ)

∂γ
V −1

1,n

= V −1
1,n W n V

−1
1,n

= M−1
n W nM

−1
n − γ M−1

n W
2
n − γ W 2

nM
−1
n + γ2 W 3

n

Therefore diagonal elements are diag(M−1
n W nM

−1
n − γ M−1

n W
2
n − γ W 2

nM
−1
n + γ2 W 3

n)i =

0− 2γw2
+i + γ2W 3

i,i ≤ −2γk2
+i + γ2k(k − 1)/2
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Chapter 2

High Dimensional Sparse-LDA for

spatio-temporal Data

Introduction

2.1 Introduction

The mathematical clarity and simplicity of Fisher’s linear discriminant analysis (LDA) has lead to

extensive applications in multimedia information retrieval such as speech and pattern recognition

as explained by Yu & Yang (2001). Used both for classification Cox & Savoy (2003) Gutman et al.

(2013) and dimension reduction Mourao-Miranda et al. (2005) Rathi & Palani (2012) , in the context

of image analysis and feature extraction, LDA has often encountered difficulty pertaining to such

high-dimensional problems. Technolgical advancements in medical images specifically magnetic

resonance images (MRIs) have now lead to a rise in high-resolution images with dimensions as high

as 256x256x198 ≈ 12M volumetric pixels or voxels. As the number of subjects obtained to study

such images cannot feasibly exceed these dimensions, it leads to singularity in the construction of the

covariate matrix. An initial proposition of a simple two-step algorithm such as PCA-LDA used yet

another dimension reductionality step by reducing the initial dimension using principal component

analysis (PCA) Wang et al. (2010) Ghosh (2001). Although this technique leads to construction
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of orthogonal features of lower dimensions, the components from LDA and PCA algorithms maybe

incompatible with each other, thus resulting in the loss of important information.

The review provided by (Fan & Lv, 2010, Section 4.2) provides insight into issues that classical

LDA encounters when a high-dimensional problem arises. They show that dimension reduction

significantly is important for reducing the misclassification rate. Certain propositions considered

remedies such as imposing independence assumptions on the covariance structure thus significantly

lowering the number of estimating parameters to circumvent the singularity Bickel et al. (2004),Tib-

shirani et al. (2002) and Fan & Fan (2008). As an application to genetics these techniques did not

necessitate the selection of features to facilitate the classification. Fan & Fan (2008) produced the

method named Features Annealed Independence Rule (FAIR). This was an improvement over near-

est shrunken centroid rule Tibshirani et al. (2003) essentially equivalent to two-sample t-tests, as

it sets a relative importance order for features that would result in a more optimal selection. This

procedure keeps in check the noise accumulation previously unaccounted for, so as to not subvert

faint features. However in an attempt to incorporate and account for significant correlation among

the genes, Fan et al. (2012) proposed the regularized optimal affine discriminant (ROAD) and a

few variations in nthe assumptions made. For the same microarray dataset J. Shao et al. (2011)

propose a sparse LDA (SLDA) using thresholding obtain a sparse estimate of the covariance matrix.

Another important contribution with regard to LDA classification in genetics was made by Witten

& Tibshirani (2011). The authors here penalized the discriminant vectors in Fisher’s discriminant

problem. This results in constraining the within subject covariance while penalizing the between

subject covariances. Instead of separately estimating or penalizing the covariance estimates or

mean estimates, Cai & Liu (2011) propose sparse estimates of the product of the difference in class

means and the covariance, an important portion of the classification rule using l1 minimization.

In other work, Mai et al. (2012) propose penalized least squares estimate using a lasso penalty to

solve the high dimensional LDA problem.
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For longitudinal neuroimaging studies data has naturally structured dependencies in higher

dimensions that may significantly inform the classification rule. This article explores statistical

methodology that may assist in the simultaneous selection of regions and classification of diseases

status using structural brain magnetic resonance images (MRIs). The objective would be able to

assist researchers in locating brain regions or ROI (Region of Interest) based analysis that identifies

specific voxels playing a key role in investigating regions of susceptibility to Alzheimer’s disease. The

authors of Yingjie & Maiti (2019) explored penalized LDA imposing a parametric spatial covariance

on the within subject images. We extend this work to investigate methods using a spatio-temporal

covariance for longitudinal studies and explore estimation under a variety of situations such as

space-time separability and non-separability in section 2.4 and covariance tapering in section 2.8.1.

All of the methodology in this article has been explored under the smoothly clipped absolute

deviation (SCAD) penalty Fan & Li (2001). The algorithm use to obtain the penalized parameters

was introduced by Zou & Li (2008) as the one-step sparse estimates. The consistency and selection

properties have been studied under this one-step setup. We produce a series of simulation results

under a variety of setups in section A dataset from the Alzheimer’s disease neuroimaging initiative

(ADNI Petersen et al. (2010)) is used to demonstrate the method and results in areas of the

hippocampus that may play a vital role in the classification of healthy brains and patients diagnosed

with AD.

2.2 Review of classical Linear discriminant Analysis

(LDA)

Consider a pT -dimensional discriminant problem between two classes C1 and C2. Let Yk1, .., Yknk

be from classes Ck, where k ∈ {1, 2} and Ykj ∈ RpT , We further assume that Ykj ∼ NpT (µk,Σ(θ))

are independent and identically distributed for j = {1, 2, .., nk}. The mean vectors µk vary between
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the classes but they have a common variance Σ(θ) with parameter θ. The estimation is based

on samples of replicates of size n1 and n2 for each class respectively and the total sample size is

n = n1 +n2. The membership of a new test sample X into class C1 is then determined by the LDA

classifier given by δ̂(X) such that,

δ̂(X) =

(
X − 1

2
(µ̂1 + µ̂2)

)
Σ̂−1(µ̂1 − µ̂2) > 0 (2.1)

Alternatively this classifier can be expressed in terms of the difference in mean ∆ = µ1 − µ2

that provides insight into the discriminant vector.

δ̂(X) =

(
X − 1

2
(µ̂1 + µ̂2)Σ̂−1∆̂

)
> 0 (2.2)

where µ̂k and Σ̂ denote the estimated mean and covariance. The maximum likelihood estimates

(MLE) that results in sample means and covariances can be obtained by maximizing the log-

likelihood function for µk and θ is given by,

(µ̂k, θ̂) = arg max
µk,θ

L(θ, µ1, µ2;Y ) = −
∑T

t=1 pT × n
2

log(2π)− n

2
log|Σ(θ)|

− 1

2

2∑
k=1

nk∑
i=1

(Yk,i − µk)TΣ−1(θ)(Yk,i − µk) (2.3)

All the estimates obtained in the setup have consistent properties under the setup where pT < n.

This Bayes’ classifier rule is established within the parameter space where l1 and l2 are positive

constants such that,

Γ = {(∆,Σ(θ)) : ∆TΣ−1(θ)∆ > CpT , l1 ≤ λmin(Σ(θ)) ≤ λmax(Σ(θ)) ≤ l2} (2.4)
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If the new observation X belongs to C1, then the conditional misclassification rate for unknown

parameters Θ = (µ1, µ2, θ) of δ̂(X) is given by,

W1(δ̂,Θ) = P (δ̂(X)) ≤ 0|X ∈ C1) = 1− Φ(ψ1) (2.5)

where,

ψ1 =
1
2(µ̂1 − µ̂2)T Σ̂∆̂√
∆̂T Σ̂−1ΣΣ̂−1∆̂

(2.6)

Similarly the expression for X belonging to C2 results in W2(∆̂,Θ) = 1 − Φ(ψ2). Therefore the

overall misclassification rate is given by,

W(δ̂) = max
Θ∈Γ

1

2
(W1(∆̂,Θ) + W2(∆̂,Θ)) (2.7)

Under the assumption that X is normally distributed, the worst case conditional classification error

rate where Φ(·) denotes the standard Gaussian distribution function is given by,

W(δ) = max
Θ∈Γ

[1− Φ(

√
∆TΣ−1∆

2
)] = 1− Φ(

√
CpT
2

) (2.8)

In the neuroimaging setup with longitudinal structural MRIs, as discussed in section 2.1, we

encounter a high dimensional sceniario where pT >> n rendering singularity of covariance matrix

estimates ˆΣ(θ). In what follows, we impose a spatio-temporal dependence between registered images

of each subject.
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2.3 Spatio-temporal LDA

For the purposes of classification, the voxels present in MRI images of a particular subject is mod-

eled as Gaussian Random Field (GRFs). These random fields exhibit decaying spatial covariance

dependences in MRIs for each particular time point for a subject. Hence, longitudinal MRIs of a

specific subject can be considered to posses spatio-temporal dependence. To begin with, we con-

sider a separable covariance structure where both spatial covariance on each image and the time

covariance across images within the same subject are assumed to be second order stationary and

isotropic and identical across subjects.

Let us consider a p · T dimensional discriminant problem of a spatio-temporal process between

two classes C1 and C2. Let {Yki(s, t) : (s, t) ∈ D × T}, for i = 1, .., nk in each class k = {1, 2} of

size n1 and n2 respectively such that n1 + n2 = n, denote a spatio-temporal process in the domain

D×T ∈ Rd× [0,∞] where d denotes the spatial dimensionality. Also assume, n1
n → π for 0 < π < 1

an n→∞. Let us express the process Ykj as,

Yki(s, t) = µk(s, t) + εki(s, t) (2.9)

where µk is the mean effect corresponding to each class k = {1, 2} and the error term {εki(s, t) :

(s, t) ∈ D× T} is a Gaussian process with mean 0 and covariance Σ(θ)(s,t),(s′,t′) = γ[(s, t), (s′, t′); θ]

such that,

γ[(s, t), (s′, t′); θ] = cov[ε(s, t), ε(s′, t′) = γ[ ‖(s− s′)‖2, |t− t′|; θ] (2.10)

We additionally constrain the the spatio-temporal voxels to be non-random, and for any pair of

spatio-temporal sites the distance is bounded below by fixed number such that ‖(s, t)− (s′, t′)‖ ≥

η > 0. Hence all of the statistical methodology described will be investigated under the increasing

47



domain framework.

Alternatively, the vectorized form of the model can be expressed as,

Yk,i,j,l = µk,j,l + εk,i,j,l (2.11)

where, j = 1, 2, ...p represents the sthj spatial site, l = 1, 2, ...T represents the tthl time point. Specifi-

cally, (Yk,i)pT×1 = (Yk,i,1,1, ...., Yk,i,p,T )′ , (µk)pT×1 = (µk,1,1, ...., µk,p,T )′ and εk,i = (εk,i,1,1, ...., εk,i,p,T )′

has a multivariate Gaussian distribution. Thus, Yk,i ∼ NpT (µk,Σ(θ)) where Σ(θ) is pT × pT co-

variance matrix.

2.4 Spatio-temporal LDA

For the purposes of classification, the voxels present in MRI images of a particular subject is mod-

eled as Gaussian Random Field (GRFs). These random fields exhibit decaying spatial covariance

dependences in MRIs for each particular time point for a subject. Hence, longitudinal MRIs of a

specific subject can be considered to posses spatio-temporal dependence. To begin with, we con-

sider a separable covariance structure where both spatial covariance on each image and the time

covariance across images within the same subject are assumed to be second order stationary and

isotropic and identical across subjects.

Let us consider a p · T dimensional discriminant problem of a spatio-temporal process between

two classes C1 and C2. Let {Yki(s, t) : (s, t) ∈ D × T}, for i = 1, .., nk in each class k = {1, 2} of

size n1 and n2 respectively such that n1 + n2 = n, denote a spatio-temporal process in the domain

D×T ∈ Rd× [0,∞] where d denotes the spatial dimensionality. Also assume, n1
n → π for 0 < π < 1

an n→∞. Let us express the process Ykj as,

Yki(s, t) = µk(s, t) + εki(s, t) (2.12)
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where µk is the mean effect corresponding to each class k = {1, 2} and the error term {εki(s, t) :

(s, t) ∈ D× T} is a Gaussian process with mean 0 and covariance Σ(θ)(s,t),(s′,t′) = γ[(s, t), (s′, t′); θ]

such that,

γ[(s, t), (s′, t′); θ] = cov[ε(s, t), ε(s′, t′) = γ[ ‖(s− s′)‖2, |t− t′|; θ] (2.13)

We additionally constrain the the spatio-temporal voxels to be non-random, and for any pair of

spatio-temporal sites the distance is bounded below by fixed number such that ‖(s, t)− (s′, t′)‖ ≥

η > 0. Hence all of the statistical methodology described will be investigated under the increasing

domain framework.

Alternatively, the vectorized form of the model can be expressed as,

Yk,i,j,l = µk,j,l + εk,i,j,l (2.14)

where, j = 1, 2, ...p represents the sthj spatial site, l = 1, 2, ...T represents the tthl time point. Specifi-

cally, (Yk,i)pT×1 = (Yk,i,1,1, ...., Yk,i,p,T )′ , (µk)pT×1 = (µk,1,1, ...., µk,p,T )′ and εk,i = (εk,i,1,1, ...., εk,i,p,T )′

has a multivariate Gaussian distribution. Thus, Yk,i ∼ NpT (µk,Σ(θ)) where Σ(θ) is pT × pT co-

variance matrix.

2.4.1 Spatio-temporal covariance

In this section, we begin by reviewing the property that any covariance matrix may retain a

irreducible block structure. Let ΣPT×PT be a covariance matrix which is formed by unfolding the

covariance tensor Σ in the following ordered way,

ΣP×T×P×T (a, a′, c, c′) = ΣPT×PT (Pa+ c, Pa′ + c′)
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Let q = (P − 1)a+ c and q′ = (P − 1)a′+ c′ then, Σ(q, q′) = Cov(Y (sc, ta), Y (sc′ , ta′)). Therefore a

fully separable model would produce, Σ(q, q′)PT×PT = γ1(sc−s′c; θ)γ2(ta−t′a; θ) and a non-separable

model would result in Σ(q, q′) = γ(
√

(sc − s′c)2 + (ta − t′a)2; θ).

All covariance models used in this article is assumed to be up to second order stationary.

Cressie & Huang (1999) describe in detail classes of spatio-temporal stationary covariance functions.

Assume γ(·, ·) is continuous and its spectral distribution posses a spectral density f(ω, τ) ≥ 0, that

is by Bochner’s theorem,

γ(s, t) =

∫
Rd

∫
R
eiω
′s+iτ ′tf(ω, τ)dωdτ (2.15)

Additionally if γ(·, ·) is also integrable, we get

f(ω, τ) =
1

2πd+1

∫ ∫
e−is

′ω−itτγ(s; t)dsdt =
1

2π

∫
e−isτh(ω; t)dt (2.16)

where h(ω; t) := 1
2πd

∫
e−is

′ωγ(s; t)dsdt =
∫
eitτf(ω, τ)dτ . A valid positive definite covariance can

be achieved by modeling h(ω;u) = ρ(ω;u)k(ω) where the following is satisfied,

(C1) For each ω ∈ Rd, ρ(ω; ·) is a continuous autocorrelation function,
∫
ρ(ω;u)du < ∞ and

k(ω) > 0.

(C2)
∫
k(ω)dω <∞.

Matérn (1960) defines a class of space time interacting model through the spectral density

f(ω, τ) = η(α2β2 + β2‖ω‖2 + α2τ2 + ε‖ω‖2τ2)−(ν+ d+1
2

) (2.17)

for all η, β, α, ν ≥ 0 and belonging to compact subspace and ε ∈ [0, 1] which represents the extent

of separability between the time and space domain. α−1, β−1 represents the spatial and temporal

decay of the correlation respectively. η is the scale parameter and ν is the smoothness parameter.
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Additionally it can be shown that this Matern class of covariances satisfy the regularity conditions.

2.4.2 Irregular lattice points in space and time

Cressie & Lahiri (1996) gives general conditions for uniform convergence REML estimates for lattice

as well irregular spaced points. Theses conditions are satisfied for large class of covariance structure

including Matern class.However we assume that our brain is embedded in irregular spatial lattice

and time points are at irregular lag.

Let us define the indexing set of time point {0, 1, 2, ..n} and n → ∞ . For each time point

t ∈ Tn = {0, t1, ..tn} we have a spatial domain St. Similarly we can define subset consisting of odd

indices T1n = {0, t1, ..t2k+1 : 0 ≤ k ≤ bn/2c} Here d=3 each pi,t for i ∈ 1, 2, ..d representing the

number of points in each direction.Here the cardinality |St| = p1,tp2,tp3,t = Pt. We assume that the

difference between spatial lattice is fixed which denoted byH = (h1, h2, h3) independent of n. Define

the index set containing origin and neighbors at unit distance to be L = {(l1, l2, ..ld) :
∑d

i |li| ≤ 1}.

Define Z by the set of all positive and negative integers including 0. Z2 = {2i; i ∈ Z} the set of all

even integers. Let the generator of indexing set Zn,t = {(i1, ..ij , ..id) : 0 ≤ ij ≤ pi and 1 ≤ j ≤ d}

Z1n,t = {(k1, ..jj , ..kd) : kj = 2xj+1 0 ≤ xj ≤ 2b(pi − 1)/2c−1 and 1 ≤ j ≤ d} be odd integer subset

of Zn . Therefore regular spatial lattice is generated by St = L ◦ Zn,t ◦H and S1t = L ◦ Z1n,t ◦H

2.4.3 Well separateness in space and time domain

However stationarity,isotropy and non increasing as function of distance is satisfied by Matern

covariance functions,this properties allows to validate our results when space does not have lattice

structure. Henceforth, we assume our spatial points in irregular domain Stfor all t ∈ {0, t1, ..tTn}

only with the restriction a ≤ inf
s′∈St

‖s′ − s‖2 ≤ A for some constants a,A > 0 independent of time.
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Similarly,for irregular time domain for all Tn have b ≤ inf
t∈Tn
‖t′ − t‖ ≤ B for some constants

b, B > 0. Therefore we have an increasing domain setup.

2.5 Regularity Conditions

Denote
∑T

t=1 Pt = P̃T and
∑T

t=1 st = s̃T Σ(θ) is assumed to be second order stationary, isotropic

and twice differential over all dimensions of space and time for θ ∈ Ξ over all (s, t) ∈ D × T where

Ξ is the parametric space of θ.

Define projection covariance matrix Π̃(θ) = Σ̃−1(θ)− Σ̃−1(θ)X̃1(X̃T
1 Σ̃−1(θ)X̃1)−X̃T

1 Σ̃−1(θ)

In general, let us consider any covariance matrix Σ(θ) for θ ∈ Ξ constructed by a covariance

function γ(θ) where the true parameter θ is given by θ0. Also note that the derivative of Σ(θ) w.r.t

θm is denoted by Σm(θ) = ∂
∂θm

Σ(θ) and second derivative is denoted by Σmm′(θ) = ∂2Σ(θ)
∂θm∂θm′

where

θ = (θ1, ..θm, ..θr)
′. Then we require the following assumptions,

(A1) n1
n → π

(A2)
∑T

t=1 st = o(n)

(A3) Let V = denote a r × r matrix so that trace(Π̃(θ)∂Σ̃(θ)
∂θm

Π̃(θ)∂Σ̃(θ)
∂θm′

) = vm,m′ are the elements

of V, then limp∧T→∞
vm,m′√

vmm
√
vm′m′

exists and V is non-singular.

(A4) For any compact subset K ⊂ Θ have,any θ ∈ K and finte non zero constant ζ1,K and ζ2,k

and for all m,m′ ∈ {1, 2, ..r} we have,

(A4).1 limp∧T→∞ λmax(Σ(θ)) = O(1)

(A4).2 limp∧T→∞λmaxΣm(θ0) <∞ = O(1) where Σm(θ0) = ∂Σ(θ)
∂(θm) |θ=θ0 .

(A4).3 limp∧T→∞λmaxΣmm′(θ∗) <∞ = O(1) where Σmm′(θ∗) = Σ(θ)
∂(θm)∂(θ′m) |θ=θ∗ .

(A4).4 ‖Σm(θ∗)‖2F = O((
∑T

t=1 Pt)
1
2

+δ) where δ > 0.
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(A4).5 limp∧T→∞ λmin(Σ(θ)) > ζ2,K > 0

(A4).6 For some subsequence un and δ > 0 such that lim sup
n

un
n ≥ 1− δ lim inf

n→∞
λrnΣm(θ) >

ζ2,K > 0 for all m where λ1 ≥ λ2 ≥ ..λP̃T .
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2.5.1 Asymptotic optimal misclassification rate

Below under the usual setup for classical LDA, we show the behavior of the misclassification error

rate. First lemma 2.5.4 provides the asymptotic matrix property below.

Theorem 2.5.1. Let θ̂n be Restricted Expected Maximum Likelihood(REML) estimate of θ0 then

‖θ̂n − θ0‖2 = Op(
√

1∑T
t=1 Pt n

)

Proof. Assuming conditions A(1)-A(4) hold, Cressie & Lahiri (1996) theorem 3.2 shows that

V
−1
2 (θ̂REML − θ0)⇒ N(0, I)

Since Vi,j = trace(Π̃(θ)∂Σ̃(θ)
∂θm

Π̃(θ)∂Σ̃(θ)
∂θm′

) ≥ O(
∑T

t=1 Pt n) inf
i
λi(Π̃(θ)∂Σ̃(θ)

∂θm
Π̃(θ)∂Σ̃(θ)

∂θm′
) We infer that‖θ̂n−

θ0‖2 = Op(
√

1∑T
t=1 Pt n

) Later we show that above assumptions holds for Materrn class covariance

even in irregular space time domain �

Lemma 2.5.2.

( ∆̂TΣ−1∆̂

2
√

∆̂T Σ̂−1ΣΣ̂−1∆̂
−
√

∆TΣ−1∆/2
)

=
OP (PTn )(

√
∆TΣ−1∆)√

∆TΣ−1∆)(
√

∆TΣ−1∆) +OP (PTn )

Proof. From assumptions A(4), we get Σ̂ = Σ + εE where ε = Op(
√

1
PTn)

and ‖E‖2 <∞

So by geometric series expansion is valid for large n .

Thus we have Σ̂−1 = Σ−1 +Op(ε)Σ
−1EΣ−1 + op(ε)for large n

Using the fact that ‖Σ−1‖2 <∞ and ∆ ∼ NPT (∆,Σ( 1
n1

+ 1
n2

)) �

Theorem 2.5.3. Using assumptions A(1) to A(4) ,
∑T

t=1 Pt = P̃T = o(n) and CP̃T → C∞ we show

that W (δ̂MLE)→ 1− Φ(
√
C∞
2 )
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Proof. By Taylor Series expansion

Φ(
∆̂TΣ−1∆̂

2
√

∆̂T Σ̂−1ΣΣ̂−1∆̂
)

= Φ(
√

∆TΣ−1∆/2) +
( ∆̂TΣ−1∆̂

2
√

∆̂T Σ̂−1ΣΣ̂−1∆̂
−
√

∆TΣ−1∆/2
)
φ(
√

∆TΣ−1∆/2)+

1

2
(

∆̂TΣ−1∆̂

2
√

∆̂T Σ̂−1ΣΣ̂−1∆̂
−
√

∆TΣ−1∆/2)2 (
√

∆TΣ−1∆/2) φ(
√

∆T∗Σ−1∗∆∗/2)
)

for some quantity ∆T∗Σ−1∗∆∗ ∈ [ ∆̂TΣ−1∆̂

2
√

∆̂T Σ̂−1ΣΣ̂−1∆̂
,
√

∆TΣ−1∆/2]

Now using lemma 2.5.2 and boundedness of 0 < φ(.) ≤1

Φ(
∆̂TΣ−1∆̂

2
√

∆̂T Σ̂−1ΣΣ̂−1∆̂
) = Φ(lim

n

√
∆TΣ−1∆/2) + op(1)

�

Lemma 2.5.4.

( ∆̂TΣ−1∆̂

2
√

∆̂T Σ̂−1ΣΣ̂−1∆̂
−
√

∆TΣ−1∆/2
)

=
OP (pTn )(

√
∆TΣ−1∆)√

∆TΣ−1∆)(
√

∆TΣ−1∆) +OP (pTn )

Proof. From lemma 2.5.4, we get Σ̂ = Σ+εE where ε = Op(
√

1
pTn) and ‖E‖2 <∞ So by geometric

series expansion is valid for large n .Thus we have Σ̂−1 = Σ−1 + Op(ε)Σ
−1EΣ−1 + op(ε) for large

n. Using the fact that ‖Σ−1‖2 <∞ and ∆ ∼ NpT (∆, ( 1
n1

+ 1
n2

)Σ) �
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Theorem 2.5.5. Under assumption A(3) if pT = o(n) and CpT → C∞ as n→∞, then W(δ̂MLE)→

1− Φ(
√
C∞
2 )

Proof.

Φ(
∆̂TΣ−1∆̂

2
√

∆̂T Σ̂−1ΣΣ̂−1∆̂
)

= Φ(
√

∆TΣ−1∆/2) +
( ∆̂TΣ−1∆̂

2
√

∆̂T Σ̂−1ΣΣ̂−1∆̂

−
√

∆TΣ−1∆/2
)
φ(
√

∆TΣ−1∆/2)+

1

2
(

∆̂TΣ−1∆̂

2
√

∆̂T Σ̂−1ΣΣ̂−1∆̂

−
√

∆TΣ−1∆/2)2 (
√

∆TΣ−1∆/2) φ(
√

∆T∗Σ−1∗∆∗/2)
)

For some quantity ∆T∗Σ−1∗∆∗ ∈ [ ∆̂TΣ−1∆̂

2
√

∆̂T Σ̂−1ΣΣ̂−1∆̂
,
√

∆TΣ−1∆/2]

Now using lemma 2.5.4 and boundedness of 0 < φ(.) ≤1

Φ(
∆̂TΣ−1∆̂

2
√

∆̂T Σ̂−1ΣΣ̂−1∆̂
) = Φ( lim

n→∞

√
∆TΣ−1∆/2) + op(1)

Results follow from Lemma 2.5.4. �

With the application to neuroimaging, below we investigate the properties of the misclassi-

fication error rate whenever pT >> n. If we further assume a known covariance matrix Σ, with

unknown mean estimates of the LDA classifier obtained using MLE, the following theorem provides

the necessary motivation to modify the current method.

Theorem 2.5.6. Under the known true covariance Σ, let us define the LDA classifier,

δ̂µ(X) = (X − µ̂)′Σ−1(µ̂1 − µ̂2) (2.18)
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where µ̂1,µ̂2 are the MLE estimates and µ̂ = µ̂1+µ̂2
2 . Let us assume the high dimensional setup

pT/n→∞ and let CpT → C∞ where 0 < C∞ <∞ then,

(1) For n1 6= n2 but nk > n/4 for k ∈ {1, 2}

(i) If

√
CpT

pT/n → c for c > 0, we get W(δ̂µ)→ 0 but
W(δ̂µ)

1−Φ(

√
CpT
2

)
→∞

(ii) If

√
CpT

pT/n → 0, we get W(δ̂µ)→ 1
2

(2) For n1 = n2,

(i) If

√
CpT

pT/n →∞, we get W(δ̂µ)→ 0 but
W(δ̂µ)

1−Φ(

√
CpT
2

)
→∞

(ii) If

√
CpT

pT/n → c for c > 0, we get W(δ̂µ)→ 1− Φ( c4), which is a constant in (0, 1
2)

(iii) If

√
CpT

pT/n → 0, we get W(δ̂µ)→ 1
2

Proof. We will prove that

Φ(
∆̂TΣ−1∆̂

2
) = Φ(

∆TΣ−1∆)(1 +Op(
1√
npT

) + pT
n (n1 − n2)(1 +Op(

1√
npT

))

2
√

∆TΣ−1∆)(1 +Op(
1√
npT

) + pT
n (n1 + n2)(1 +Op(

1√
npT

))

The key step here is, (µ1 − µ)T Σ̂−1∆̂ = ∆TΣ−1∆(1 +Op(
1√
npT

)) + p
n1n2

(n1 − n2)(1 +Op(
1√
npT

)).

(µ1−µ)T Σ̂−1∆̂ =
1

2
[(∆Σ̂−1∆)+(µ̂1−µ1)T Σ̂−1(µ̂1−µ1)−(µ̂2−µ2)T Σ̂−1(µ̂2−µ2)−2∆T Σ̂−1(µ̂2−µ2)]

from the previous results we have, Σ̂−1 = Σ−1(1 +Op(
1√
npT

))

�

In section 2.1, we have established that a variety of approaches have been investigated to

overcome this singularity. Fan & Lv (2010) furthered emphasized on how the sparsity assumption

and estimation may lead to optimal misclassification rates. Similar to the spatial approach adopted
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by Yingjie & Maiti (2019), we expand methods to the spatio-temporal setup and incorporate non-

separability into the following theoretical results.

2.6 Penalized Linear Discriminant Analysis (pLDA)

In most imaging studies with relatively higher resolution information, the number of spatial points

(pixels and/or voxels) is almost exponentially higher than number of individual subjects for clas-

sification. Thus pT > n is a rather unrealistic scenario. The LDA classifier under investigation

too renders itself unsuitable in situations where acquisition of data results in pT >> n, as Σ̂

is singular. As for the misclassification rate, we can also establish that under the setup where

pT/n → ∞ that the misclassification rate would be equivalent to random chance even when the

true covariance is known due to the inconsistent accumulation of variance of the estimates of µ̂k

for k ∈ {1, 2}. Therefore there is a need to develop methods that can better accommodate a much

more likely scenario of pT > n. Although, based on setup we are able to reduce the number of

estimates to s + 2 << n dimensions where a solution maybe obtained using MLE, the nature of

these estimates are unstable. Therefore we proceed by proposing a penalized LDA. To describe the

method, we add to the notation used in section 2.4 as follows. Let ∆ = µ1 − µ2 = (∆1, ...,∆pT )′

be a pT × 1 dimensional vector which is the difference of the mean effect between classes C1 and

C2. We define the signal set S = {ν : ∆ν 6= 0}, denoting the true non-zero differences between

classes. Further, let s denote the cardinality of S i.e. s = |S| and we assume that s < n << pT . To

formalize vector and matrix representation of the model in order to easily incorporate the penalty

term, for Yk,i ∼ NpT (µk,Σ(θ)), we define Zi = Y1,i − Ȳ for i = 1, 2, ..., n1 and Zi = Y2,i − Ȳ for

i = n1 + 1, n1 + 2, ..., n − 1 where Ȳ =
∑

k=1,2

∑nk
i=1 Yk,i/2n and n = n1 + n2. Let τ1 = n1

n and
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τ2 = n2
n . Thus,

Zi ∼


NpT (−τ2 ∆, n−1

n Σ(θ)), for i = 1, 2, .., n1

NpT (τ1 ∆, n−1
n Σ(θ)), for i = n1 + 1, 2, .., n− 1

and Cov(Zi, Zj) = 1
nΣ(θ)) for i 6= j. Alternatively,



Z1

Z2

...

Zn−1


∼ N

(−τ21n1

τ11n2−1

⊗ IpT

︸ ︷︷ ︸
X̃

∆︸︷︷︸
β

, (In−1 −
1

n
Jn−1)⊗ Σ(θ)

)
︸ ︷︷ ︸

Σ̃(θ)

(2.19)

where Ib signifies a b × b identity matrix and Jb signifies a b × b matrix of 1s while 1b denotes a

b × 1 dimensional vector. We also have, Σ̃−1(θ) = (In−1 + Jn−1) ⊗ Σ−1(θ) and X =

−τ21n1

τ11n2−1


such that X̃ = X⊗ IpT .

We now express the joint log-likelihood of Z as,

L(β, θ; Z) = −npT
2
log(2π)− 1

2
(Z− X̃β)T Σ̃−1(Z− X̃β) − 1

2
log|det(Σ̃)| (2.20)

It is clear that we seek to obtain a solution for a sparse true β0 = (β′1,0, β0,2)′ = (β′1,0, 0)′ where

β1,0 is an s dimensional vector, β2,0 is a p − s dimensional vector and β0 is pT × 1. In this high-

dimensional setup, we get solutions for estimating θ and β by solving the penalized log-likelihood

given by,

Q(β, θ; Z) = L(β, θ; Z)− n
T∑
t=1

p∑
u=1

pλt,n(|βu|) (2.21)

Here pλt,n denotes the penalty function p with its corresponding tuning parameter λt,n depend-
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ing on n. To obtain, well defined properties of the sparse estimator we consider the smoothly

clipped absolute deviation (SCAD, Fan & Li (2001)) penalty function given by,

pλn(β) ∼


λt,n|β|, if |β| < λt,n

−β2−2αλt,nβ+λt,n
2

2(α−1) , if λt,n < |β| < αλt,n

(α+1)λt,n
2

2 , if |β| > αλt,n

2.6.1 Across sample independence

Notice that samples are not uncorrelated due to covariance matrix (In−1 −
1

n
Jn−1)︸ ︷︷ ︸

HHT

⊗Σ(θ) but we

can make a linear transformation to data Z′n = (H ⊗ IPT )Zn which ensures no correlation across

sample in Z thus independence in Gaussian case. Take Hn = (In−1 − 1√
n+1

J(n−1)) and resulting

design matrix would be X ′ = HnX = (In−1 − 1√
n+1

J(n−1)

−τ21n1

τ11n2−1

 =

(−τ2 − τ1√
n+1

)1n1

(τ1 − τ1√
n+1

)1n2−1


Note that X̃T Σ̃−1X̃ = X̃ ′

T
Σ̃′
−1
X̃ ′

Henceforth we refer to transformed likelihood equation as our original equation and with the

abuse of notation, we assign the notation of original variable to transformed variable. We now

express the joint log-likelihood of Z as,

L(β, θ; Z) = −npT
2
log(2π)− 1

2
(Z− X̃β)T Σ̃−1(Z− X̃β) − 1

2
log|det(Σ̃)| (2.22)

It is clear that since we seek to obtain a solution for a sparse true β0 = (β′1,0, 0)′ where β1,0

is an s dimensional vector and β0 is pT × 1 in this high-dimensional setup, we get solutions for

estimating θ and β by solving the penalized log-likelihood given by,

Q(β, θ; Z) = L(β, θ; Z)− n
T∑
t=1

p∑
u=1

pλt(|βu|) (2.23)
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Here pλ denotes the penalty function p with its corresponding tuning parameter λn depending

on n. To obtain, well defined properties of the sparse estimator we consider the smoothly clipped

absolute deviation (SCAD, Fan & Li (2001)) penalty function given by,

pλn(β) ∼


λn|β|, if |β| < λn

− |β|
2−2αλn|β|+λn2

2(α−1) , if λn < |β| < αλn

(α+1)λn
2

2 , if |β| > αλn

2.6.2 REML estimation

Without loss of generality we can expand

β0PT×1 = (β0 1,P1×1, β0 2,P2×1, .β0 t,Pt×1, ..β0T,PT×1)T

For each t we can further expand βT0 t,Pt×1 = (β0 1,t,st×1,0PT−st×1)T

Notice thatX⊗IPTβ = X⊗⊕Tt=1

Ist 0

0 0

 (β0 1,1,st×1,0Pt−st×1 ..β0 1,t,st×1,0Pt−st×1..β0 1,T,sT×1,0PT−sT×1)T

= X ⊗⊕Tt=1

Ist 0

0 0


︸ ︷︷ ︸

QPT×PT

β

In the context of this result let us redefine X̃ = X ⊗Q Clearly rank of X̃ = nPT −
∑T

t=1 st

Suppose, we obtain a orthogonal matrix Bn such that

BT
nBn = ⊕Tt=1diag

In(Pt−st) 0

0 0

 and BT
nBn = I− X̃(X̃T X̃)−X̃T

REML estimates are defined by

θ̂n,REML = arg min
θ
− log det(Σ̃(θ))− log det(X̃T Σ̃(θ)−1X̃)− 1

2
ZTΠ(θ)Z
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Let us define oracle estimator β̂
orc

t when it is set of zeros in βt,0 is already known. Under that

setup, β̂
orc

t |θ̂ = (X̃T
1,tΣ̃

−1(θ̂)X̃1,t)
−X̃T

1,tΣ̃
−1(θ̂)Zn where X̃1,t = Ist This leads to equation

trace

(
Π(θ̂n,REML)

∂Σ̃(θ̂n,REML)

∂θ

)
+ ZT

∂Π(θ̂n,REML)

∂θ
Z = 0 (2.24)

where Π̃(θ) = Σ̃−1(θ)− Σ̃−1(θ)X̃1(X̃T
1 Σ̃−1(θ)X̃1)−X̃T

1 Σ̃−1(θ)

The attractive features of REML are that equation 5.4 is unbiased and the covariance estimate

θ̂REML and mean estimate β̂ are asymptotically independent.

Theorem 2.6.1. Oracle REML Cressie & Lahiri (1996)

‖θ̂n,REML − θ0‖2 = Op(
√

1∑T
t=1 Pt (n)

)

Proof. From the result, Pr(β̂t|θ̂ = β̂orct |θ̂) → 1 and from the assumption that {j : β̂orct,j = 0} =

{j : βt,j = 0}, we know the indices or position where β0 is zero. therefore we are able to identify

with probability one about linear subspace of design matrix generated by X̃1,t needed to construct

projected covariance matrix Π̃ .So, with probability converging to 1, we get result as stated in

Cressie & Lahiri (1996) �

2.6.3 Validation of REML assumptions

From Cressie & Lahiri (1996) ,we observe that assumption A1-A4 are sufficient to guarantee con-

vergence of covariance parameter θ̂. In this section we prove those assumption hold for Matern

covariance class under suitable chosen parameter space.

Lemma 2.6.2. For every isotropic , stationary function γ(h, t) the matrix Σ is positive definite

with entries Σi,j = γ(si − sj , ti − tj) for some fixed P spatial points si, sj ∈ S and T time points

ti, tj ∈ T
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Proof. For any vector a
∼

; a
∼
TΣa
∼

= V ar(aTX
∼

) here covar(Xi, Xj) = γ(si − sj , ti − tj) �

conditions C4-C6 is sufficient for assumptions A4 which guarantees convergence of REML esti-

mators even in irregular time domain. Since we assume our covariance follows Matern class which

is isotropic and second order stationary we can establish following lemma:

Lemma 2.6.3. Conditions A4.1-3 , A4.5 and A4.6 are satisfied if the item 1 , item 2 and item 3-4

holds for any isotropic and second order stationary process.

For any θ ∈ K compact subset

• lim
n

lim sup
s∈St,t≤Tn

∑
s′∈St,t′≤Tn |γ(.)(s−s′, t− t′; θ)| < ζ1,K here γ(.) = γ0, γiγi,j denoting covariance,

first and second derivative of covariance respectively

• lim
n

lim sup
s∈St,t≤Tn

∑
s′ 6=s∈St,t6=t≤Tn |γ0(s− s′, t− t′; θ)| < ζ2,Kγ0(0, 0; θ)

• for all i lim
n

lim sup
s∈St,t≤Tn

∑
s′∈St,t≤Tn γ

2
i (s− s′, t− t′; θ) > ζ2,K

• for all i and N(s) = {s′ : s+ s′ ∈ St} and N(t) = {t′ : t+ t′ ∈ St}

lim
n

∑
s∈St,t≤Tn

|γi(s, t; θ)|
∑

s′ 6=s∈S1t,t′ 6=t∈T1n

|γi(s− s′, t− t′; θ)|

< ζ2,K lim
n

∑
s′∈N(s),t′∈N(t)

γ2
i (s′, t′; θ) for each fixed s ∈ S1,t, t ≤ T1,n

Proof. Since closed form of γ(.) is not available for all values for separability parameter ε , we

use the argument that eigenvalues of Σ and ∂Σ
∂θi

are continuous in ε due to continuity of f()

and ∂f
∂θi

as function of ε. Our strategy is to prove all the results for ε = 0, 1 for which closed

form are available. Also notice that spectral density f() is continuously differentiable in ε.

γ0(‖s‖, t) =


ηπ

d
2 Γ(ν+ d

2
)(α‖s‖)νKν(α‖s‖)

2ν−1α2ν

π
1
2 Γ(ν+ 1

2
)(β|t|)νKν(β|t|)

2ν−1β2ν ε = 1

ηπ
d+1
2 Γ(ν+ d+1

2
)(
√
α2‖s‖2+β2t2)νKν(

√
α2‖s‖2+β‖2t2)

2ν−1(α2+β2)ν
ε = 0
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Let k ≥ 0 be an integer define the set Ek = s′ : ‖s′ − s‖ ≤ k + 1/s′ : ‖s′ − s‖ ≤ k and Nk =

|Ek| number of points in Ek. To each point s′ ∈ Ek we associate a disjoint ‖‖2 ball of volume

2
π
d
2 (a

2
)d

Γ(1+ d
2

)
, so total space occupied is Nk2

π
d
2 (a

2
)d

Γ(1+ d
2

)
, also volume of Ek = 2

π
d
2

(
(k+1)d−kd

)
Γ(1+ d

2
)

≤

2
π
d
2

(
d(k+1)d−1

)
Γ(1+ d

2
)

therefore we obtain Nk ≤ d(k+1)d−12d

ad
and since non decreasing behavior as a

function of distance between arguments. sup
s′∈Ek

γ0(s− s′, t− t′) ≤ γ0(k, t− t′)

lim
n

lim sup
s∈St,t≤Tn

∑
s′∈St,t′≤Tn

|γ0(s− s′, t− t′; θ)| = lim
n

lim sup
s∈St,t≤Tn

∑
s′∈St,t′≤Tn

γ0(s− s′, t− t′; θ)

≤
∑

k∈Z+,k2∈Z+

d(k + 1)d−12d

ad
γ0(k, bk2; θ) =

1

b

∫
R+

∫
R+

d(s+ 1)d−12d

ad
γ0(s, t)dsdt

≤ CK
1

b

∫
R+

∫
R+

d(s+ 1)d−12d

ad
(s, t)dsdt = O(1)

due to finite moment of modified Bessel function of second kind

•• From the property of uniform integrability ,

�

2.6.3.1 Tapered REML

Suppose we taper each spatial matrix with fixed tapered range rt = Kt√
Pt

such that constant Kt is

to be determined by cross validation.

We solve modified REML equation

trace

(
Π(θ̂n,REML,tapered))tap

∂Σ̃(θ̂n,REML)

∂θ

)
+ ZT

∂Π(θ̂n,REML,tapered)tap
∂θ

Z = 0 (2.25)

Here Πtap = ˜Σ ◦KTap
−1 − ˜Σ ◦KTap

−1
X̃1(X̃T

1
˜Σ ◦KTap

−1
X̃1)−X̃T

1
˜Σ ◦KTap

−1

In order to show the convergence of tapered REML estimater i.e. ‖θ̂n,REML,tapered − θ0‖2 =

Op(
√

1∑T
t=1 Pt (n)

) we ensure that even after tapering all conditions as mentioned in Cressie & Lahiri
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(1996) remains intact. Hence we need to prove the following lemma which assures that tapered in

not ”far” from original covarinace matrix

Lemma 2.6.4. Assuming general condition 13 holds, we have the results that for each t,

• ‖Σt − Σt,Taper‖1 = Op(
1√
Pt

)

• ‖Σk,t − Σk,t,Taper‖1 = Op(
1√
Pt

)

• ‖Σk,j,t − Σk,j,t,Taper‖1 = Op(
1√
Pt

)

Proof.

‖Σt − Σt,Taper‖1 =
T∑
t=1

pt∑
1

|γtaper(s, t : θ)|

= max
i

∑
hij≤wpt

|γtaper(s, t : θ)|+ max
i

∑
hij≥wpt

|γtaper(s, t : θ)|

≤ Ktρ
∑

m=cw(pt)
δ
b

∑
j∈Bim

≤ 3
Ktρ

w(pt)

∫ ∞
wp

xd|γ(x : θ)|dx

�

Therefore based on equation 2.23 in order to estimate β̂ and θ̂, we obtain the solutions of deriva-

tive of the penalized likelihoods with respect to each of the unknown parameters and iteratively

solve until convergence is obtained.

2.6.4 Regularity conditions for penalty

In order to demonstrate properties of the subject level images over time, we introduce βt,0,j that

is the unknown true parameters of dimension p × 1 for each fixed time point t = {1, 2, .., T}.

Analogously under the sparsity assumption, we denote st to determine the number of non-zero

components within a specific time point. Therefore,
∑T

t=1 st = s. The methods below without loss
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of generality, as voxelwise analysis that involves a subject wise registration on a single template

space are performed, that each image contains the same number spatial sites p. We further assume

that for every subject the multiple images were acquired over time with a total number of T

time points. Clearly, for separable cases this provides the ease of the Kronecker product. Σ(θ) is

assumed to be second order stationary, isotropic and twice differential over all dimensions of space

and time for θ ∈ Ξ over all (s, t) ∈ D × T where Ξ is the parametric space of θ. In general, let

us consider any covariance matrix Σ(θ) for θ ∈ Ξ constructed by a covariance function γ(θ) where

the true parameter θ is given by θ0. Also note that the derivative of Σ(θ) w.r.t θm is denoted by

Σm(θ) = ∂
∂θm

Σ(θ) and second derivative is denoted by Σmm′(θ) = ∂2Σ(θ)
∂θm∂θm′

where θ = (θ1, ..θm, ..θr)
′.

Listed below are conditions under which consistent estimates of the pLDA are obtained.

(A3) at,n = max
1≤j≤p

{p′λt,n(|βt,0,j |), β0,j 6= 0} = O(
√
n)

(A4) bt,n = max
1≤j≤p

{p′′λt,n(|βt,0,j |), β0,j 6= 0} = o(1)

(A5)
√
nλt,n√
s
→∞

(A6) λt,n = o(1) as n→∞.

(A7) s4

n → 0 as n→∞.

(A8) min
1≤i≤s

|βt,0,i|
λt,n

→ 0 as n→∞.

(A9) lim
n→∞

lim inf
θ→0+

p′λt,n(|θ|) > 0 as n→∞.

(A10)
∑T

1 st
∑T

1 dpt
nCpT

→ 0 where dp = maxi≤st
∑pt

k=st+1 σ
2
k,t

We can rearrange β0 and re-express it as,

β0 pT×1 = (β0 1,p×1, β0 2,p×1, ..., βt,0,p×1, ..βT,0,p×1)T

66



For all of the methods shown below the only constraint for identifiability is that
∑T

t=1 st = o(n).

Considering λt,n = λn is equal for each time group, below are results under these special cases.

Lemma 2.6.5. Assuming ‖θ̂ − θ‖2 = Op(
√

1
PTn) , we want to prove that for each t = 1, 2..., T

‖β̂t−βt,0‖2 = Op(
√

st
n ) and β̂t 2 = 0P×1 with probability close to 1 where β̂t|θ̂ = arg max

βt

Q(β, θ̂;Z)

Proof. For each fixed t the proof consists of two steps

In first part we show that ‖β̂t−βt,0‖2 = Op(
√

st
n ) . In the next part we show that β̂t 2 = 0P×1 with

probability close to 1 . Thus the proof is in two parts :

Without loss of generality, β0,t = (β0,t,1,0)T and lets assume that an oracle has already informed

us about the positions of zero, thus we can construct a oracle estimator which already have zeros

in the positions of

β̂orct |θ̂ = arg max
βt,1|βct,1=0

L(β, θ̂;Z)

By this construction we are only searching for β̂orct in the space of real vectors whose non zero

element corresponds to non zero part of true βt,0.

In the second part we show that for any maximizer of penalized likelihood β̂t|θ̂ = arg max
β

Q(β, θ̂;Z)

Pr(β̂t|θ̂ = β̂orct |θ̂)→ 1

Furthermore if Likelihood is concave like in our Gaussian case , the maximizer β̂t is unique. To

prove second part we use the stationary condition of KKT conditions refereed in Kwon & Kim

(2012)

The proof of first part

Theorem 2.6.6. Assuming ‖θ̂ − θ‖2 = Op(
√

1
PTn) , we want to prove that for each t = 1, 2..., T

‖β̂orct |θ̂ − βt,0‖2 = Op(
√

st
n )
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Denote vector ut ∈ Rpn with entries 1 corresponding to index j such that βt,j 6= 0 and 0

elsewhere, but without loss of generality , we denote ut as u.Similarly, X̃t denotes the colomns of

design matrix X̃ corresponding to βt,j 6= 0. Hence we get identity that X̃tut = X̃


0 0 0

0 Ist×st 0

0 0 0

u

It is sufficient to show that for any ε > 0 ,
∑T

t=1 st = s, ξn,t = Op(
√

st
n ) , ξn = Op(

√
s
n) and for

some C > 0 under the condition that for r ∈ {1, 2, ....T} − {t} we have ‖β̂r − βr‖2 = Op(
√

sr
n )

Pr
(

sup
‖u‖2=C

L(βt,0 + uξn,t, θ̂)− L(βt,0, θ̂)
)
> 1− ε

or equivalently we can prove that

Pr
(

sup
‖u‖2=C

L(β0,t + uξn, θ̂)− L(β0,t, θ̂)
)
> 1− ε

For term (1) we get using eigenvalue inequality result that ψi is i th eigenvalue

Proof.

1

2
uTt X̃

T
t Σ̃(θ̂)−1X̃tutξn︸ ︷︷ ︸

1

=
1

2
uT X̃T Σ̃(θ0)−1X̃tutξn︸ ︷︷ ︸

1a

+
1

2
uTt X̃

T
t

q∑
r=1

uT X̃T ˙̃Σ(θ∗)r(θ̂r − θ0,r)u
T X̃T ξn︸ ︷︷ ︸

1b

1(a) ≤ O(‖u‖2X̃t
T
X̃t min

i
ψi(Σ̃(θ̂)−1))ξ2

n

= O(min
i
ψi(

˜̃XT
t (In−1 + Jn−1))X̃t) min

i
ψi(Σ̃(θ̂)−1))ξ2

n

= O(nξ2
n,t)by eigenvalue inequality

Similarly using CS inequality1(b) = O(nξ2
n,tηn)

�
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For term (2) we use Taylor expansion of Σ̃(θ̂)−1 around θ0 such that

θ̂ − θ0 = vηn

Proof. −(Z − X̃β)T Σ̃(θ̂)−1X̃tut

= −(Z − X̃β)T Σ̃(θ0)−1X̃uξn︸ ︷︷ ︸
2a

−
q∑
r=1

(Zt − X̃βt)T ˙̃Σ(θ∗)r(θ̂r − θ0,r)X̃uξn︸ ︷︷ ︸
2b

term (2a) using Markov inequality that for any r.v

Z = Op
√
E(Z2)

−(Z − X̃β)T Σ̃(θ0)−1X̃tutξn = Op(

√
min
i
ψi(Σ̃(θ0)−1) trace( ˜̃XT ˜̃X)‖u‖2ξn)

= Op(

√√√√√√√min
i
ψi(Σ(θ0)−1) trace(X̃T

t X̃t)

−τ21n1

τ11n2−1


T

(In−1 + Jn−1)

−τ21n1

τ11n2−1

‖u‖2ξn)

= Op(
√

n1n2
n st‖u‖ξn) = Op(

√
nst‖u‖ξn) �

Similarly term (2b)∑q
r=1(Z − X̃β)T Σ̃(θ∗)rX̃uξn

= Op(
√

min
i
ψi(Σ̃(θ∗)rΣ̃(θ0)Σ̃(θ∗)r)traceX̃T X̃)‖u‖2‖v‖2ξnηn)

= Op(
√
nst‖u‖ξnηn) = op(

√
nst‖u‖ξn) �

Here we observe that term 1 dominates all other term hence for appropriate constant C the value

above is negative, hence proved.

Lemma 2.6.7. Pr(min
j≤qn
|β̂t,j |θ̂| > aλn)→ 1

Proof.

min
j≤qn
|β̂t,j |θ̂ | ≤ min

j≤qn
|β0,t,j | −max

j≤qn
|β̂t,j |θ̂ − β0,t,j |

Using result ‖β̂t,j |θ̂ − β0,t,j‖2 = Op(
√

st
n ) and assumption A6 we establish the above result. �
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Lemma 2.6.8. Pr( max
qn+1≤j≤pn

|∂L(β̂orct,j |θ̂,θ̂)
∂β | < nλn|θ=θ̂ for allt)→ 1

Proof. Eβ,θ ∂L(β0,θ=θ̂)
∂β = 0 due to conditional expectation.Using lemma 9.1, we can prove that

∂L(β̂orct,j |θ̂,θ̂)
∂β = −(Z − X̃β̂orct,j |θ̂)

T Σ̃−1(θ̂)X̃1,t

= −(Z− X̃β0)T Σ̃−1(θ̂)X̃1,t + −(β̂orct,j |θ̂−β0)T X̃T By Gaussian concentraion inequality each of this

quantity is PTO(e−λ
2
n,t) Hence proved. �

Lemma 2.6.9. ‖β̂ − β0‖ = Op(
√∑T st

n ) then ‖θ̂ − θ0‖ = Op(
√

1∑T
1 Ptn

)

Proof. We will show that for arbitrary ε > 0

Pr
(

sup
‖v‖2=C

Q(β̂, θ0 + vηn)−Q(β̂, θ0)
)
> 1− ε here η = Op(

√
1∑T

1 Ptn
)

Q(β̂, θ0 + vηn)−Q(β̂, θ0) = Q(β0, θ0 + vηn)−Q(β0, θ0)︸ ︷︷ ︸
1

+ Q(β̂, θ0 + vηn)−Q(β0, θ0 + vηn) −
(

Q(β̂, θ0)−Q(β0, θ0)

)
︸ ︷︷ ︸

2

Expanding term (1) by Taylor series we obtain

ηn

q∑
r=1

∂Q(β0, θ0)

∂θr
vr︸ ︷︷ ︸

11

+ η2
n

q,q∑
r,r′=1

vr′ [−t̃r,r′(θ0)]vr︸ ︷︷ ︸
12

+ η2
n

q,q∑
r,r′=1

vr′

[
∂2Q(β0, θ

∗)

∂θ′rθr
+ t̃r,r′(θ0)

]
vr︸ ︷︷ ︸

13
∂Q(β0,θ0)

∂θr
= −(Z − X̃β0)T Σ̃r(θ0)−1(Z − X̃β0) + trace(Σ̃(θ0)Σ̃r(θ0)−1) Using Markov inequality

= Op

(√
trace Σ̃(θ0)Σ̃r(θ0)−1Σ̃(θ0)Σ̃r(θ0)−1

)
= Op(‖Σ̃(θ0)Σ̃r(θ0)−1‖F )

≤ Op(
√
nPT )λmax(Σ(θ0))λmax(Σr(θ0)−1) = Op(

√
nPT )

(11) = Op(1)‖ν‖ Let t̃i,j(θ) = trace
(
In ⊗ Σ−1(θ0)Σi(θ0)Σ−1(θ0)Σj(θ0)︸ ︷︷ ︸

ti,j(θ0)

)
= n ti,j(θ0) = n t

1
2
i,i

(
ti,j√
ti,itj,j

)
t
1
2
j,j

= n t
1
2
i,iai,jt

1
2
j,j

By assumption, lim
n
A exists with lim

n
λmax(A) = Op(1) and ti,i(θ0)

≥ PTλ2
min(Σ−1(θ0))λ2

min(Σi(θ0))
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Hence for some constant Kn

(12) ≤ −nPTη2
n‖v‖22 lim

n
λmax(A)λ2

min(Σ−1(θ0)) max
i≤q

λ2
min(Σi(θ0)) = −nPTη2

n‖ν‖22Kn

∂2Q(β0, θ
∗)

∂θ′rθr
= trace(Σ̃(θ∗)Σ̃r,r′(θ∗)−1) − (Z − X̃β)T Σ̃r,r′(θ∗)−1(Z − X̃β)︸ ︷︷ ︸

131

+ trace(Σ̃r(θ
∗)Σ̃r′(θ∗)−1)

Similar to expression (11)

(131) = Op(‖Σ̃(θ∗)Σ̃r,r′(θ∗)−1‖F ) + traceΣ̃r,r′(θ∗)−1

(
Σ̃(θ∗)− Σ̃(θ0)

)
≤ Op(

√
nPT )λmax(Σr,r′(θ∗)−1)λmax(Σ(θ0))

+ nλmax[(Σr,r′(θ∗)−1) trace(Σ(θ0)− Σ(θ∗) )]

= Op(
√
nPT ) + nOp(1)PT max

i≤PT
〈 ∂γi∂θ

∣∣
θ∗∗
, θ0 − θ∗〉

≤ Op(
√
nPT ) + nOp(1)PT max

i≤PT
‖∂γi∂θ

∣∣
θ∗∗
‖∞‖θ0 − θ∗‖2 = Op(

√
nPT )

Using identity Σ̃r(θ)Σ̃
r′(θ)−1 = −Σ̃r(θ)Σ̃

−1(θ)Σ̃r′(θ)Σ̃
−1(θ) we obtain that

trace(Σ̃r(θ0)Σ̃r′(θ0)−1)− trace(Σ̃r(θ
∗)Σ̃r′(θ∗)−1)

= trace(Σ̃r(θ0)(Σ̃r′(θ0)−1 − Σ̃r′(θ∗)−1 ) + trace(Σ̃r′(θ∗)−1(Σ̃r(θ0)− Σ̃r(θ
∗) )

≤ nλmax(Σr(θ0))trace(Σr′(θ0)−1 − Σr′(θ
∗)−1 )

+ nλmax(Σr′(θ
∗)−1) trace(Σr(θ0)− Σr(θ∗) )

= nOp(1)PT max
i≤PT

〈 ∂γ
(r)
i
∂θ

∣∣∣∣
θ∗∗
, θ0 − θ∗〉+ nOp(1)PT max

i≤PT
〈 ∂γ(r′,−1) i

∂θ

∣∣∣∣
θ∗∗
, θ0 − θ∗〉

(13) = Op(
√
nPT )η2

n‖ν‖22 = Op(
1√
nPT

)‖2‖22 Similarly as expression second part of (131). Thus

term (1) is dominated by (12)

As for expression (2) it is easy to check that penalty term vanishes and we are left with

(β̂−β0)T X̃T [Σ̃−1(θ0 +νηn)−Σ̃−1(θ0)](Z−X̃β0) + (β̂−β0)T X̃T [Σ̃−1(θ0 +νηn)−Σ̃−1(θ0)]X̃(β̂−β0)

= ηn(β̂ − β0)T X̃T
∑q

r=1 Σ̃r(θ
∗)νr(Z − X̃β) + (β̂ − β0)T X̃T

∑q
r=1 Σ̃r(θ

∗)νrX̃(β̂ − β0)
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= Op(‖(β̂ − β0)‖2‖(θ̂ − θ0)‖2)
√
n trace(Σ−1(θ0)Σr(θ0)−1) +

Op(n‖(β̂ − β0)‖22‖(θ̂ − θ0)‖2λmaxΣr(θ∗)−1 Hence (11) dominates all of the rest of the terms, thus

appropriate large value on ‖ν‖ we prove the statement. �

Theorem 2.6.10. min
1≤j≤qn

β̂orcj |θ̂ = O(n2c)

Proof. Follows min
1≤j≤qn

β̂orcj |θ̂ ≤ min
1≤j≤qn

β|θ +Op(‖β̂orcj |θ̂ − β|θ‖2). By assumption and the result that

Op(‖β̂orcj |θ̂ − β|θ‖2) = oP (n2c) �

2.7 Algorithm and methodology to obtain optimal

solutions

Based on the objective function (2.23), in order to estimate β̂ and θ̂, we obtain the solutions

of derivative of the penalized likelihoods with respect to each of the unknown parameters and

iteratively solve until convergence is obtained. Similar to estimating solutions in Zou & Li (2008),

as a first step initialization we replace Σ(θ̂) with an identity matrix IpT and obtain the solution

for β denoted by β̂(ini). Given β̂(ini), we obtain a solution for θ̂(0), which is then used to obtain

the solution ˆβ(0), which then used to obtain a solution for ˆθ(1). Finally we obtain ˆβ(1) given the

estimates θ̂(1). Similar to already established MLE based methods under the SCAD penalty it

has been show with these one-step estimates consistency can be achieved. There is no apparent

need to continue to with further iterations and attain convergence in the estimates. Along similar

lines theoretical properties of consistency are established for estimates under the assumption that

remainder of the parameters are considered to be fixed at any given iteration, based on the solution

obtained from the previous step.

Step (1): Let Σ = IpT and solve β̂t
(ini)

= arg maxβt L(βt,Σ = IpT ;Z)

Step (2): Let βt = β̂t
(ini)

, Solve ˆθ(0) = arg maxθ L(β̂t
(ini)

, θ;Z)

72



Step (3): Solve β̂t
(0)

= arg max
βt

L(β, θ = θ̂(0);Z)

Step (4): Solve θ̂(1) = arg maxθ L(βt = β̂t
(0)
, θ;Z)

Step (5): Solve β̂t
(1)

= arg max
βt

L(β, θ = θ̂(1);Z)

The final estimates are therefore given by θ̂(1) and β̂t
(1)

for the spatio-temporal covariance abd

difference in mean parameters respectively.

2.7.1 Asymptotic properties of one-step estimates

In order to show properties of consistency for all estimators, we show that consistency is obtained

under the assumption that previous estimates of the fixed parameter used to solve the next iteration

are also consistent. Based on these notions, consider the following theorem.

Theorem 2.7.1. Assuming conditions A1-A10 hold, then for each fixed t = {1, .., T},

(i) (Consistency) there exists an estimate β̂t = (β̂1,t, β̂2,t)
T such that, ‖β̂t − β0,t‖ = Op(

√
st
n )

(ii) (Sparsity)further, if (i) holds then, Q((β̂1, 0)′, θ; Z) > argmax‖β̂2‖2=c
√

s
n
Q((β̂1, β̂2)′, θ; Z)

Proof.Check appendix.

In a similar way, we are able to establish existence and consistency results for θ̂ as well. That

is,

Theorem 2.7.2. Assuming 2.5to (A10) hold, ‖θ̂ − θ0‖ = Op(
√

1
pTn) as p, T, n→∞.

Since for every time component we are able to show asymptotic properties, these results can be

neatly combined to obtain the following result.

Theorem 2.7.3. Using the above theorem one can easily check that for

β0,pT×1 = (β0,1,p×1, β0,2,p×1, ...β0,t,p×1, ..β0,T,p×1)T and

β̂0,pT×1 = (β̂0,1,p×1, β̂0,2,p×1, ...β̂0,t,p×1, ..β̂0,T,p×1)T
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(i) (Consistency) there exists an estimate β̂ such that ‖β̂ − β0‖ = Op(
√

s
n) as n→∞.

(ii) (Sparsity) P (β̂t,2 = 0 ∀t)→ 1 as n→∞.

All the proofs of theorems 2.7.1, 2.7.2 and 2.7.3 are provided in the Appendix ??. The covariance

function is assumed to be stationary and the results included are based on the SCAD penalty

resulting in unbiased estimators.

2.8 Computational Complexity

Thus far, we have described a penalized LDA technique, that can simultaneously estimate pa-

rameters of an underlying spatio-temporal covariance model and selection and estimation of the

differences between the means. However, whenever the vector Z is constructed the corresponding

matrix Σ̃(θ) which is of dimension (n− 1)pT × (n− 1)pT . Assuming the subjects are independent

we will require to calculate the inverse of a pT ×pT matrix, which could have a computational cost

of O(pT 3). In order to ease this burden, we begin by studying tapering techniques.

2.8.1 Covariance Tapering

In spatial statistics Kaufman et al. (2008) introduced covariance tapering to approximate the like-

lihood by replacing the spatial covariance with a positive-definite tapered version of the covariance

matrix and established the computational gain while maintaining the the underlying theoretical

properties. For very large datasets, Furrer et al. (2006) delineate the use of tapered covariance ma-

trices. As the density of sites in a image is exponentially larger than the number of time-points in

our longitudinal imaging study we taper only the spatial covariance of a separable spatio-temporal

covariance matrix.

Suppose we use tapering function KTap(h,w) only for spatial domain with the spectral density of
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tapered function

fK(ω) = (2π)−d
∫
Rd

exp(−iwT x )KTap(x , ω)dx

with the restriction, fK(ω) ≤ Mψ

(1+
‖ω‖2
α2

)ν+d/2+ψ
where ψ > (1 − ν, d/4). This tapering function also

included Wedland taper function of degree k satisfies the above condition 2.8.1 for k > max{1/2, ν+

(d − 2)/4 + δ} for some δ > 0. However, we consider the Wedland taper function for each time

fixed covariance matrix Σt for KTap(h, rt) = [(1− h
rt

)+]2 have k = 2, d = 3 here

2.8.2 One way Tapering vs Two way Tapering

One way tapering yields biased score function:

l1(θ) = −nPT
2 log(2π)− (Z − X̃β)T (Σ̃ ◦K−1

Tap)(Z − X̃β) − log(det(Σ̃ ◦KTap))

−
∑T

t=1

∑P
j=1 pλt,n(|β0 t,j |)

Two way tapering yields unbiased score function:

l2(θ) = −nPT
2 log(2π)− (Z − X̃β)T [(Σ̃ ◦K−1

Tap) ◦KTap](Z − X̃β) − log(det(Σ̃ ◦KTap))

−
∑T

t=1

∑P
j=1 pλt,n(|β0 t,j |)

It is established that both methods give asymptotically close estimates ‖θ̂1,taper − θ̂2,taper‖2 =

op(
√

1∑T
t=1 Ptn

) under certain assumptions.

2.8.3 Tapering range

We have established that, choosing tapering range guarantees estimation consistency of θ0 as n→∞

under increasing domain setup. In the work of Furrer et al. (2016) and Chu et al. (2011), authors

have established estimation consistency under some sufficient conditions;which are satisfied for

our Matern class of covariance. Mainly due to the fact that for appropriate true parameters

γ(s, t; θ) < A
1+‖s‖3+α1+|t|1+α2 and its derivative ∂γ(s,t;θ)

∂θ
A

1+‖s‖3+α1+|t|1+α2 for some α1 > 0 and α2 > 0.
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Similar results hold for non separable covariances as well. Additionally,
∫∞

0 sd+1t2γ(s, t)dsdt <∞

as spectral density is differentiable indefinitely.Thus we show that tapering range rt = O(
√
Pt)

sup
θ0∈Θ

|Lθ0−Lθtap | =
1

n
log(|Σ̃(θ0)(Σ̃(θ0)◦Ktaper)

−1)|)+ 1

n
(Z−Xβ0)T (Σ̃−1(θ0)−Σ̃(θ0)◦Ktaper)

−1)(Z−Xβ0) = op(1)

2.9 Misclassification Optimality

This theorem shows that after penalized maximum likelihood estimation under tapering, the plug

in classifier is optimal or universal.

Theorem 2.9.1. Suppose st
nCp
→ 0 the worst classification error rate of

W (δ̂)→ 1− Φ(
√
C0
2 )

Proof. Refer to appendix 2.11.4.1 �

2.10 MRI Data Preprocessing

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) database (adni.loni.usc.edu). For up-to-date information, see www.adni-

info.org. To demonstrate the methodology we consider MRI images obtained from a two year

study using a 3T scanner. A total of 51 subjects (31 Controls, 18 AD ) are collected. On average

each of these subjects have 4 visits. The preprocessing protocol from ADNI allows us to down-

load N3 (nonparametric nonuniformity normalization) bias-corrected NIFTi images. For visualizing

these images, we use the freely available toolkit ITKsnap developed by Yushkevich et al. (2016).

An affine registration with the skull on was performed on every subject to its separate visits using

ANTs Avants et al. (2011) registration implemented in R using the AntsR and extrantsr packages

Muschelli et al. (2018). i.e. visit two, three and four were affine registered to visit one.
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After the first set of registrations on this longitudinal dataset, for each of the subjects using just the

first visit, skull-stripping was performed by extracting only the brain tissue using the tool MASS

developed by Doshi et al. (2013). This was run in parallel as it is known to be computationally

heavy. If this is hard to implement one may consider the simpler FSL Bet tool developed by

Popescu et al. (2012).

The brain mask obtained after skull stripping the first visit corresponding to each subject, is then

applied to all other visits of the respective subject. To perform voxel-wise analyses, a deformable

registration is performed using a template. For the purposes of the 3D 3T MRI scans we chose the

SRI24 atlas Rohlfing et al. (2008). This deformable registration was once again performed using

ANTs registration. These transformations were calculated using the first visit of each subject to

the template. A forward transformation consists of .mat file (for initial affine registration) and a

forward warp image .nii.gz file. The transformations then may be applied to the corresponding

time points. A quality control check may then be done using the ITKsnap tool to ensure that all

images have been registered to the same space.

In order to obtain ROI labels one can visit (www.nitrc.org/projects/sri24) to obtain the segmenta-

tion of the ROIs and the corresponding label text file. The hippocampus for AD studies is labeled

as 37 (left) and 38(right).

2.11 Simulation Studies

In the following simulation study, we investigate a variety of conditions under which the pro-

posed methods are employed. On a lattice grid of p × p ∈ R2 multinomial gaussian observa-

tions where p = {10, 15, 20} are produced over t = {1, .., 4} time points. The mean of this

multinomial gaussian distribution is characterized in two ways. The first condition assumes that

there is a strong signal indicating a significant difference between the two classes C1 and C2 i.e.
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∆ = {1, ..., 1, 2....2, 0..., 0}T where s = 20 is the number of non-zero entities and the first 10 are

1 while the following 10 are 2. Similarly a smaller difference between the two classes was as-

sumed with ∆small = {0.75, ..., 0.75, 0.5....0.5, 0..., 0}T . Under space and time separable assumption

multiple spatial covariance functions are assumed such as:

• Exponential covariance: The spatial dependence of the error terms are γ(d) = σ2(1 −

c) exp(−d/r) where γ(d) = σ2 when d = 0 and d denotes the euclidean distance between two

spatial points. r = {3, 10}, c = {0.2, 0.5} and σ = 1.

• Polynomial correlation: The covariance function is γ(d) = ρd where ρ = 0.9.

• Matern covariance: The covariance function is given by,

γ(d) = σ2 21−ν

Γ(ν)

(√
2ν dρ

)νKν(√2ν dρ
)

where Kν(·) is the modified Bessel function of the second

kind, ρ, ν > 0 and Γ is the gamma function. In this study, ν = 2 and ρ = 5.

The covariance assumed for the four time points was exponential where γ(dt) = exp(−dt/rt) where

dt denotes the euclidean distance between pairs of time points and rt = {0.5, 0.7, 1}.

For the non-separable case we use the following covariance function,

• Gneiting covariance: This non-separable space time covariance is,

γ(d, dt) = e

(
−dν

(1+dλt )
0.5γµ

)
1+dλt

, where ν, λ ∈ [0, 2] and γ ∈ (0, 1). If γ = 0 then the model is

separable. In the simulation study the values considered were ν = 0.8, λ = 1 and γ = 0.6.

For all of the simulation studies we have 100, 225 and 400 locations on 4 time points. Therefore

the total number of observations per subject is 400, 900 and 1600 observations respectively. The

total number of non-zero components in the mean vector s = 20. So best case scenario for selection

is when true positives (TP) is 20 and false positives (FP) is 0. A total of 100 subjects per study is

generated with a 50% training and validation split.
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2.11.1 Exponential Space Time Covariance (weak correlations)

2.11.1.1 With ∆

p× p r=3 c=0.2 σ = 1 rt = 1
100 3.009 (0.0979339536) 0.231 (0.0228625958) 1 (4.234e-07) 0.992 (0.0103475934)
225 2.996 (0.0736011373) 0.234 (0.0175467671) 1 (5.015e-07) 0.995 (0.0069044814)
400 3.002 (0.0516560637) 0.233 (0.0125129651) 1 (2.954e-07) 0.996 (0.0048776816)

Table 2.1: Exponential separable space and time covariance estimation when ∆ is the mean
vector

p× p TP FP MSE Train1 Train2 Test1 Test2
100 20.00 47.14 0.00202 1.00 1.00 1.00 1.00
225 20.00 111.02 0.00124 1.00 1.00 1.00 1.00
400 19.99 189.68 0.00097 1.00 1.00 1.00 1.00

Table 2.2: Estimation and selection of ∆ using the estimated covariance

p× p TP FP MSE Train1 Train2 Test1 Test2
100 19.87 45.38 0.00851 1.00 1.00 1.00 1.00
225 19.83 64.56 0.00467 1.00 1.00 1.00 1.00
400 19.70 78.59 0.00310 1.00 1.00 1.00 1.00

Table 2.3: Estimation and selection of ∆ under independence

p× p r=3 c=0.2 σ = 1 rt = 1
100 2.992 (0.0940290558) 0.234 (0.0215993179) 1 (5e-07) 0.993 (0.0109421777)
225 3.005 (0.0735975377) 0.232 (0.0166009694) 1 (4.172e-07) 0.993 (0.0080306034)
400 3 (0.0567520396) 0.233 (0.0131230581) 1 (4.156e-07) 0.995 (0.0060978283)

Table 2.4: Exponential separable space and time covariance estimation when ∆small is the
mean vector
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p× p TP FP MSE Train1 Train2 Test1 Test2
100 17.66 119.99 0.00839 0.79 0.79 0.79 0.79
225 16.13 231.17 0.00506 0.73 0.73 0.73 0.73
400 12.99 311.30 0.00385 0.67 0.67 0.67 0.66

Table 2.5: Estimation and selection of ∆small using the estimated covariance

p× p TP FP MSE Train1 Train2 Test1 Test2
100 15.70 45.50 0.01081 0.75 0.75 0.75 0.75
225 14.41 55.40 0.00561 1.00 1.00 0.71 0.72
400 12.68 54.21 0.00345 0.69 0.69 0.69 1.00

Table 2.6: Estimation and selection of ∆small under independence

2.11.2 Exponential Space Time Covariance (strong correlations)

2.11.2.1 With ∆

p× p r=10 c=0.5 σ = 1 rt=0.5
100 10.024 (0.6592026826) 0.519 (0.0310983865) 1 (3.3601e-06) 0.47 (0.1196661211)
225 9.918 (0.4420207073) 0.523 (0.021304777) 1 (2.4351e-06) 0.466 (0.1284748148)
400 9.952 (0.3472843583) 0.522 (0.0165295756) 1 (3.5861e-06) 0.475 (0.1094737503)

Table 2.7: Exponential separable space and time covariance estimation when ∆ is the mean
vector

p× p TP FP MSE Train1 Train2 Test1 Test2
100 20.00 0.79 0.00029 1.00 1.00 0.79 1.00
225 16.13 231.17 0.00506 0.73 0.73 0.73 0.73
400 12.99 311.30 0.00385 0.67 0.67 0.67 0.66

Table 2.8: Estimation and selection of ∆ using the estimated covariance

p× p TP FP MSE Train1 Train2 Test1 Test2
10x10 19.98 47.08 0.00487 1.00 1.00 1.00 1.00
15x15 19.98 61.14 0.00229 1.00 1.00 1.00 1.00
20x20 19.99 78.91 0.00154 1.00 1.00 1.00 1.00

Table 2.9: Estimation and selection of ∆ under independence
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p× p r= 10 c=0.5 σ = 1 rt=0.5
100 10.056 (0.5445091578) 0.517 (0.0251724131) 1 (2.5151e-06) 0.466 (0.1292439526)
225 10.021 (0.415936012) 0.519 (0.0190434918) 1 (5.481e-07) 0.46 (0.136410963)
400 9.952 (0.3829308584) 0.522 (0.0185292498) 1 (2.2068e-06) 0.475 (0.1505265743)

Table 2.10: Exponential separable space and time covariance estimation when ∆small is
the mean vector

p× p TP FP MSE Train1 Train2 Test1 Test2
100 20.00 29.41 0.00036 1.00 1.00 1.00 1.00
225 19.99 231.17 0.00021 1.00 1.00 1.00 1.00
400 19.99 102.89 0.00015 1.00 1.00 1.00 1.00

Table 2.11: Estimation and selection of ∆small using the estimated covariance

p× p TP FP MSE Train1 Train2 Test1 Test2
100 19.98 62.76 0.00630 1.00 1.00 1.00 0.99
225 19.98 61.14 0.00375 0.97 0.97 0.97 0.98
400 19.99 78.91 0.00225 0.98 0.98 0.98 0.98

Table 2.12: Estimation and selection of ∆small under independence

2.11.3 Matern Space Covariance and exponential time

(separable)

2.11.3.1 With ∆

p× p ν = 2 rt=0.7 φ = 5
100 1.998 (0.0143793046) 0.698 (0.0175455886) 4.795 (0.1068378951)
225 2.001 (0.0091730859) 0.701 (0.0108351911) 4.808 (0.06846612)
400 2 (0.0070390667) 0.7 (0.0074068311) 4.799 (0.0494941786)

Table 2.13: Matern covariance with separable exponential time when ∆ is the mean vector

p× p TP FP MSE Train1 Train2 Test1 Test2
100 15.18 86.51 0.03 0.97 0.97 0.97 0.98
225 14.11 155.46 0.01 0.97 0.97 0.97 0.97
400 12.73 214.40 0.01 0.97 0.97 1.00 0.97

Table 2.14: Estimation and selection of ∆ using the estimated covariance
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p× p TP FP MSE Train1 Train2 Test1 Test2
100 14.49 62.76 0.06 0.93 0.93 0.93 0.93
225 17.32 61.14 0.00 0.97 0.97 0.97 0.98
400 10.19 51.06 0.02 0.83 0.83 0.98 0.84

Table 2.15: Estimation and selection of ∆ under independence

2.11.4 Non separable space and time Gneiting covariance

(separable)

2.11.4.1 With ∆

p× p ν = 0.8 λ = 1 γ = 0.6
100 0.831 (0.0147602785) 1.059 (0.0263549226) 0.982 (0.0063041298)
225 0.832 (0.0108536628) 1.057 (0.0162489845) 0.983 (0.0039539343)
400 0.831 (0.0078036784) 1.057 (0.0130021963) 0.983 (0.0031399539)

Table 2.16: Gneiting covariance with non-separable when ∆ is the mean vector

p× p TP FP MSE Train1 Train2 Test1 Test2
100 19.08 111.03 0.03 0.97 0.97 0.97 0.96
225 17.22 178.08 0.01 0.96 0.96 0.96 0.96
400 14.40 178.88 0.01 0.95 0.95 0.95 0.95

Table 2.17: Estimation and Selection of ∆ using the estimated covariance
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APPENDIX

Useful lemmas

Lemma 2.11.1. If X ∼ N(0, 1) then, X = Op(1)

Proof. Using Gaussian concentration inequality P (|X| >
√
−log(ε/2)

2 ) ≤ ε for every ε > 0 there

exists a δ =

√
−log(ε/2)

2 . �

Lemma 2.11.2. If X ∼ χ2(K) then, X = Op(K)

Proof. Using the sub-exponential concentration inequality X−K is subexponential with parameters

(4K, 2). Similarly for every ε > 0 there exist a δ which implies P ( |X−K|4K > δε) < ε for some constant

K > 0. �

Theorem 2.11.3 (2.7.2). Assuming ‖θ̂ − θ‖2 = Op(
√

1
PTn) , we want to prove that for each

t = 1, 2..., T ‖β̂t − βt,0‖2 = Op(
√

st
n ) and β̂t 2 = 0P×1 with probability close to 1 where β̂ =

arg maxβ L(β, θ̂;Z)

Proof. For each fixed t the proof consists of two steps

In first part we show that ‖β̂t−βt,0‖2 = Op(
√

st
n ) . In the next part we show that β̂t 2 = 0P×1 with

probability close to 1 . To prove this second part we need an additional lemma 2.11.4 from the paper

The proof of first part

Denote vector ut ∈ Rpn with entries 1 corresponding to index j such that βt,j 6= 0 and 0 elsewhere,

but without loss of generality , we denote ut as u.Similarly, Xt denotes the colomns of design matrix

X corresponding to βt,j 6= 0. Hence we get identity that Xtut = X

Ist×st 0

0 0

u It is sufficient to

show that for any ε > 0 ,
∑T

t=1 st = s, ξn,t = Op(
√

st
n ) , ξn = Op(

√
s
n) and for some C > 0 under

the condition that for r ∈ {1, 2, ....T} − {t} we have ‖β̂r − βr‖2 = Op(
√

sr
n )
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Pr
(

sup
‖u‖2=C

Q(βt,0 + uξn,t, θ̂)−Q(βt,0, θ̂)
)
> 1− ε

or equivalently we can prove that

Pr
(

sup
‖u‖2=C

Q(β0,t + uξn, θ̂)−Q(β0,t, θ̂)
)
> 1− ε

Q(β0,t + uξn, θ̂)−Q(β0,t, θ̂)

= L(β0,t + uξn, θ̂)− L(β0,t, θ̂)− n
Pt∑
j=1

(pλn,t(|βt,0,j + uξn|)− pλn,t(|βt,0,j |))

= L(β0,t + uξn, θ̂)− L(β0,t, θ̂)− n
st∑
j=1

(pλn,t(|βt,0,j + uξn|)− pλn,t(|βt,0,j |))

− n
pt∑

j=st+1

(pλn,t(|βt,0,j + uξn|)− pλn,t(|βt,0,j |))

≤ L(β0,t + uξn, θ̂)− L(β0,t, θ̂)− n
st∑
j=1

(pλn,t(|βt,0,j + uξn|)− pλn,t(|βt,0,j |))

forj = st + 1, ., pt

pλn,t(|βt,0,j | = 0) = 0

pλn,t(|βt,0,j − uξn| > 0) = 0

=
1

2
uTt X

T
t Σ̃(θ̂)−1Xtutξn −T Σ̃(θ̂)−1Xtut

− n
st∑
j=1

(pλn,t(|βt,0,j + uξn|)− pλn(|βt,0,j |))

=
1

2
uTt X

T
t Σ̃(θ̂)−1Xtutξn − (Z −Xβ)T Σ̃(θ̂)−1Xtut

− n
st∑
j=1

(pλn(|βt,0,j + uξn|)− pλn(|βt,0,j |))

=
1

2
uTt X

T
t Σ̃(θ̂)−1Xtutξ

2
n,t︸ ︷︷ ︸

1

− (Z −Xβ)T Σ̃(θ̂)−1Xtutξn,t︸ ︷︷ ︸
2
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−n
st∑
j=1

(
p′λn,t(|β0, j|)sgn(β0, j)utξn,t︸ ︷︷ ︸

3a

+ p′′λn,t(|β0,j |)u2
t ξ

2
n,t(1 + op(1)

)︸ ︷︷ ︸
3b

For term (1) we get using eigenvalue inequality result that ψi is i th eigenvalue

Proof.
1

2
uTt X

T
t Σ̃(θ̂)−1Xtutξn︸ ︷︷ ︸

1

=
1

2
uTXT Σ̃(θ0)−1Xtutξn︸ ︷︷ ︸

1a

+
1

2
uTt X

T
t

q∑
r=1

uTXT ˙̃Σ(θ∗)r(θ̂r − θ0,r)u
TXT ξn︸ ︷︷ ︸

1b

1(a) ≤ O(‖u‖2XTX min
i
ψi(Σ̃(θ̂)−1))ξ2

n = O(min
i
ψi(X̃

T (In−1 + Jn−1))X̃) min
i
ψi(Σ̃(θ̂)−1))ξ2

n

= O(nξ2
n,t)by eigenvalue inequality

Similarly using CS inequality1(b) = O(nξ2
n,tηn) �
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For term (2) we use Taylor expansion of Σ̃(θ̂)−1 around θ0 such that θ̂ − θ0 = vηn

Proof. −(Z −Xβ)T Σ̃(θ̂)−1Xtut = −(Z −Xβ)T Σ̃(θ0)−1Xuξn︸ ︷︷ ︸
2a

−
q∑
r=1

(Zt −Xβt)T ˙̃Σ(θ∗)r(θ̂r − θ0,r)Xuξn︸ ︷︷ ︸
2b

term (2a) using Markov inequality that for any r.v

Z = Op
√
E(Z2) −(Z −Xβ)T Σ̃(θ0)−1Xtutξn = Op(

√
min
i
ψi(Σ̃(θ0)−1) trace(X̃T X̃)‖u‖2ξn)

= Op(

√√√√√√√min
i
ψi(Σ(θ0)−1) trace(XT

t Xt)

−τ21n1

τ11n2−1


T

(In−1 + Jn−1)

−τ21n1

τ11n2−1

‖u‖2ξn)

= Op(
√

n1n2
n st‖u‖ξn) = Op(

√
nst‖u‖ξn) �

Similarly term (2b)
∑q

r=1(Z −Xβ)T Σ̃(θ∗)rXuξn

= Op(
√

min
i
ψi(Σ̃(θ∗)r) min

i
(X̃T X̃)‖u‖2‖v‖2ξnηn) = Op(q

√
n1n2n)

For term (3a) using CS inequality and using assumption

−n
∑s

j=1(p′λn(|β0, j|)sgn(β0, j)uξn ≤ n
√
s max

j
p′λn(|β0, j|)‖u‖22ξn = O(n

√
sξn an) = Op(

√
snξn)

Term (3b)using CS inequality and using assumption p′′λn(|β0,j |)u2ξ2
n ≤ n

√
(s)ξ2

nbn = Op(nξ
2
n) �

Here we observe that term 1 dominates all other term hence for appropriate constant C the

value above is negative, hence proved.

Lemma 2.11.4. This lemma proves sparsity of the estimator.SCAD penalized estimator demon-

strates this oracle property which means as if number of zeros in parameter in known initially.Now,

let β̂t = (β̂1
t , β̂

2
t )T .For any given β̂t satisfying ‖β̂1

t − β1
t,0‖2 = Op(

√
st
n ) and assumptions A(1) to

A(12) then with high probability

Q

β̂1
t

0

 = max
‖β̂2
t ‖≤C

√
st
n

Q

β̂1
t

β̂2
t
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Proof. It is sufficient to prove that for j = st, st + 1, ....pt

∂Q(βt)

∂βt,j
< 0 for 0 < βt,j < C

√
st
n

and

∂Q(βt)

∂βt,j
> 0 for 0 > βt,j > −C

√
st
n

∂Q(βt; θ̂)

∂βt,j
= −(Z −Xβ)T Σ̃(θ̂)−1Xj − nP ′λ(|βt,j |)sgn(βt,j)

−(Z −Xβ)T Σ̃(θ̂)−1Xj = −(Z −Xβ)T Σ̃(θ)−1Xj −
Q∑
k=1

(Z −Xβ)T Σ̃k(θ∗)−1ukηn

−(Z −Xβ)T Σ̃(θ)−1Xj = Op(

√
XjΣ̃−1Xj) = Op(

√
n) by concentration inequality

similarly,

Q∑
k=1

(Z −Xβ)T Σ̃k(θ∗)−1ukηn = Op(
√
nηn)

Collecting all terms we achieve that

∂Q(βt; θ̂)

∂βt,j
= nλn,t

(
Op(

√
st√
n
λn,t) +

p′λn,t(|βj |)
λn,t

sgn(βj)
)

Since
√
st√
n
λn,t → 0 sgn(βj) dominates , hence proved �

Lemma 2.11.5. ‖β̂ − β0‖ = Op(
√∑T st

n ) then ‖θ̂ − θ0‖ = Op(
√

1∑T
1 Ptn

)

Proof. We will show that for arbitrary ε > 0

Pr
(

sup
‖v‖2=C

Q(β̂, θ0 + vηn)−Q(β̂, θ0)
)
> 1− ε here η = Op(

√
1∑T

1 Ptn
)

By Taylor Series expansion around θ̂
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Q(β̂, θ0 + vηn)−Q(β̂, θ0) =

q∑
r=1

(Z −Xβ̂)T ˙̃Σ(θ0)r(Z −Xβ̂)vη2︸ ︷︷ ︸
1

+

q∑
r,r′=1

vT (Z −Xβ̂)T [ ¨̃Σ(θ∗)r,r
′ −D](Z −Xβ̂)vη2

n︸ ︷︷ ︸
2

+

vT (Z −Xβ̂)TD(Z −Xβ̂)vη2
n︸ ︷︷ ︸

3

�

Lemma 2.11.6. limp∧T→∞λmaxΣ(θ∗) = O(1)

Proof.

limP,T→∞,∞λmaxΣ(θ∗)

≤ max
i

PT∑
j=1

|Σi,j |

≤
∞∑
j=1

|Σi,j |

≤
∫ ∞
s=0

∫ ∞
t=0
|γ(s, t; θ)|

≤
∫ ∞
ω=0

∫ ∞
τ=0
|
∫
Rd

∫
R
exp(ω′s+ τ ′t)f(ω, τ)|

≤ 2

∫ ∞
‖ω‖=0

∫ ∞
τ=0

η(α2β2 + β2‖ω‖2 + α2τ2 + ε‖ω‖2τ2)−(ν+ d+1
2

)dωdτ

= O(1) for d > 2 ν > 0

�

Lemma 2.11.7. limP,T→∞,∞λmaxΣ(θ∗) ◦KTaper = O(1) and limP,T→∞,∞λminΣ(θ∗) ◦KTaper

Proof. We use the result that

minKTaper i,iλminΣ(θ∗) ≤ λmaxΣ(θ∗) ◦KTaper ≤ maxKTaper i,iλmaxΣ(θ∗)

�
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Proof. By Taylor series expansion, Φ(X) = Φ(y) + (X − y)φ(y) + op(X − y) holds for almost surely

a random variable X

Now taking X = ∆̂TΣ−1∆̂

2
√

∆̂T Σ̂−1ΣΣ̂−1∆̂
and y =

√
∆TΣ−1∆

2 .

Notice that ∆̂TΣ−1∆̂ ∼ F (P̃T , n− 2) with non central parameter since ∆̂ and Σ̂ are independent

�

If we use weighted mixture of Matern Covariance function,we can show that all of the above

conditions hold for covariance matrix ΣPT×PT (θ)

Lemma 2.11.8. The expression of derivative of covariance function with respect to parameter θ

is given below

Proof. By Fubini’s theorem, we know that the differentiation and integral can be exchanged.

∂γ(s, t; θ)

∂θ

= K(θ)

=

∫
Rd

∫
R
exp(ω′s+ τ ′t)

∂f(ω, τ ; θ)

∂θ
dωdτ

= −(ν +
d+ 1

2
)

∫
Rd

∫
R
exp(ω′s+ τ ′t)g(ω, τ)−(1+ν+ d+1

2
)

2αη(β2 + τ2)

2βη(α2 + τ2)

η(‖ω‖2τ2)

(α2β2 + β2‖ω‖2 + α2τ2 + ε‖ω‖2τ2)

log(α2β2+β2‖ω‖2+α2τ2+ε‖ω‖2τ2)

ν+ d+1
2


dωdτ

We can verify that each of the element of K(θ) has finite integral multiplied with a continuous

function of θ. Since Θ is compact space in Rq, K(θ) is bounded . �

Lemma 2.11.9. The maximum eigenvalue of matrix ∂Σ
∂θ is bounded from above
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Proof. We will show that ‖∂Σ
∂θ ‖2 ≤ ‖

∂Σ
∂θ ‖1 =

∫
Rd
∫
R
∂γ(s,t;θ)

∂θ <∞ �

Lemma 2.11.10. The maximum eigenvalue of matrix ∂2Σ
∂θ2

is bounded from above

Proof. Similar to proof above either we can differentiate again and apply Fubini Theorem �

Lemma 2.11.11. ‖Σ‖2F = OpPT >> Op(PT )
1
2

Proof. Since covarince function is isotropic and stationary ‖Σ‖2F =
∑

i,j γ
2(hij ; θ)

PT
∑

i min
j
γ2(hij ; θ ≤

∑
i,j γ

2(hij ; θ) ≤ PT
∑

i max
j
γ2(hij ; θ)

Using the fact that
∑

i max
j
γ2(hij ; θ) ≤

∫∞
0 γ2(x; θ)dx <∞ �

Lemma 2.11.12. If λ1 ≥ λ2... ≥ λn be eigenvalues of positive semi definite matrix the con-

dition number kn = λmax
λmin

can be have upper bound 1 +
2v(A)
√

(n−1)

m(A)−v(A)
√

(n−1)
and lower bound 1 +

2v(A)/
√

(n−1)

m(A)−v(A)/
√

(n−1)

where m(A) = tr(A)/n and v(A) = tr(A2)/n−m2

Proof. From lemma in Wolkowicz & Styan (1980) �

Lemma 2.11.13. Assuming general condition 13 holds, we have the results

• ‖Σt − Σt,Taper‖1 = Op(
1√
Pt

)

• ‖Σk,t − Σk,t,Taper‖1 = Op(
1√
Pt

)

• ‖Σk,j,t − Σk,j,t,Taper‖1 = Op(
1√
Pt

)

Proof. ‖Σt − Σt,Taper‖1 ≤ 2Ktρwp
∫∞
wp
xd|γ(x : θ)|dx �

Similar result holds for derivative and double derivative of Σ(θ)

proof for theorem 7.2

Proof. By using Lemma 8.1, 8.3 ,7.1 we have established all regularity conditions for tapered matrix

Σ̃Tapered W (β̂PMLE) = 1− Φ(
∆TΣ−1∆)(1+Op( 1√

nP̃T

)+
P̃T
n

(n1−n2)(1+Op( 1√
nP̃T

))

2

√
∆TΣ−1∆)(1+Op( 1√

nP̃T

)+
P̃T
n

(n1+n2)(1+Op( 1√
nP̃T

))

�
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Chapter 3

Random Projection for Tensor data

3.1 Introduction

Given a vector x ∈ Rp×1, we can project it to lower dimensional space through linear map f :

Rp×1 → Rd×1 defined by

f(x) =
1
√
d
k
Ã(K)x

where Ãp×d is random matrix formed with element sampled independently from special classes of

distributions.

ãi,j
iid∼D a

This linear projection also preserves pairwise distances with high probability. This phenomenon is

due to JL lemma for some ε > 0) and constant C independent of dimension.For k = 1

P(1− ε ≤ ‖f(x)− f(x′)‖22
‖x− x′‖22

≤ 1− ε) ≤ 2 exp(− d
8

(ε2/2− ε3/3))
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Lemma 3.1.1.

P(< f(x), f(y) > − < x, y >≥ ε < x, y >) ≤ 2 sup
x∈Rp

P(‖f(x)‖2 − ‖x‖2 ≥ ε‖x‖2)

Proof. Sun et al. (2018) lemma A.1 �

Suppose there are n points in Rp×1 corresponding to data matrix X = [X1..Xi..Xn]1≤i≤n. We

can chose d ≥ 2 log(n)ε−2 such that all pairwise distances belonging to each of n(n−1)
2 pairs are

preserved with high probability.

There an be various choices of distributions for random variable a. For example, a ∼ N(0, 1)

or in sparse RP s = 3 and very sparse RP s =
√
d respectively

ai,j =


+1 with probability 1

2

−1 with probability 1
2

P. Li et al. (2006) ai,j =



+
√
s with probability 1

2s

0 with probability 1− 1
s

+
√
s with probability 1

2s

3.2 Kronecker factors

Supposedly Ã(K)p×d could be decomposed as Kronecker product of k matrices

Ã(K) = A(1) ⊗ ..A(l)..⊗A(k)
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where matrix A(l) is of order dl × pl for each l ∈ {1, 2, .., k}.Trivially p =
∏k
l=1 pl and dk. The

elements of product matrix are given by

ãi,j = a
(1)
i1,j1

a
(2)
i2,j2

....a
(l)
il,jl

..a
(k)
ik,jk

where j = 1 +
∑k

l=1(jl − 1)
∏k
r=l+1 pr and i = 1 +

∑k
l=1(il − 1)dk−l−1

For l = k the expressions
∏k
r=l+1 pr and

∏k
r=l+1 dr assumed to be 1.

If we take each elements of the matrices {Al}1≤l≤k to be independently and identically dis-

tributed of each other, the resulting elements of product matrices Ãi,j are no longer mutually

independent but product of independent random variables, thus weekly dependent in the sense

it is ρ mixing, and martingale with respect to filtration In this work, we show that even under

this dependence structure we can achieve JL kind of for finite p and d. We further assume that

E(a
(l)
il,jl

) = 0 and E[(a
(l)
il,jl

)]2 = 1 for all l ∈ [k], j ∈ [pl], i ∈ [dl].

3.2.1 Literature reviews

Concentration inequalities for quadratic forms like ours is known as Hansen Wright inequality.For

dependent variables these type of inequality are discussed in Adamczak et al. (2015) which certain

concentration property for 1 Lipschitz function which is hard to verify in our cases.Samson et al.

(2000) discussed the concentration property for 1 Lipschitz function for strong mixing sequence and

Markov chain.However strong mixing conditions like φ mixing is also difficult to verify Another ap-

proach would be use Herbst argument applicable to Log Sobolev measure as mentioned in Ledoux

(1999).But proving such inequality is much more tedious in our case
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Define a random variable Yi(x) =< ÃK
i , x > ,our reader may notice that for fixed i, Yi =∑(p1,p2,...pK)

j1=1,j2=1,...jK=1 a
(1)
i1,j1

a
(2)
i2,j2

....a
(l)
il,jl

..a
(k)
ik,jk

xj

given j = 1 +
∑k

l=1(jl − 1)
∏k
r=l+1 pr form a martingale w.r.t filtration Fl and 1 ≤ l ≤ K. But

concentration inequalities for martingale differences provides very poor bounds.

Readers may also notice stationarity a random variables Yi although actual distribution is in-

tractable. Yi is popularly known as Polynomial Gaussian Chaos in probability literatures. Statis-

ticians recognize this expression as general U statistics. Its moments and tail bounds are widely

studied in Adamczak et al. (2015) and Lata la et al. (2006). But in above literatures,moment bound

involve supreme of empirical processes which are hard to estimate. Also, exponential bounds given

in these literature is depended upon various semi norms of vector x based partition of subset of

{1, 2, ...K}. But it is desirable to derive inequalities in terms of L2 norm of x only.

Taking all the above bottleneck into consideration, we follow approach by Schudy & Sviridenko

(2012) where moment bounds are calculated through brute force combinatorial argument. To our

aid we have result known as hyper- contractivity which provides bound of ‖Y ‖r through (‖Y ‖2)r

in Janson et al. (1997) theorem 5.10 and theorem 6.7. Below is the result stated

3.3 Weak dependence

By convention, for a random variable X ∈ (R,BR,P), ‖X‖p = (E(|X|)). Define filtration sigma

filed FK = σ(A
(l)
il,jl

: d ≤ il ≤ 1, pl ≤ jl ≤ 1;K ≤ l ≤ 1)

Suppose there is a sequence of random variables (ãi)
n
i=1 and ãn ∈ (R,BR,P),define sigma field

Gk1 = σ(ãi : 1 ≤ i ≤ h) rho ρ(n) = sup
k≥1
ã∈Gh1
b̃∈G∞h+n

|Cov(ã, b̃)|/‖ã‖2‖b̃‖2 a sequence is ρ mixing if

lim
n→∞

ρ(n)→ 0
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In our case, ρ(|i− i′|) =


0 for a ∼ N(0, 1)

0 for a ∼ very sparse with s =
√
d

for i 6= i′

Proof. Define Yi(x) =< ÃK
i , x >. for i 6= i′ but sometimes j = j′

E(Yi, Y
′
i ) = E(

∑
j

∑
j′

ãi,j′ ãi′,jxjxj′)

Now, for i 6= i′ with il = i′l but ik = i′k without loss of generality and j = j′ E(ãi,j ãi′,j′)

= E(a
(1)
i1,j1

a
(2)
i2,j2

....a
(l)
il,jl

..a
(k)
ik,jk

a
(1)
i′1,j1

a
(2)
i′2,j2

....a
(l)
i′l,jl

..a
(k)
i′k,jk

)

= E(a
2 (1)
i1,j1

a
2 (2)
i2,j2

....a
2 (l)
il,jl

..a
(k)
ik,jk

a
(k)
i′k,jk

) = 1E(a
(k)
ik,jk

)E(a
(k)
i′k,jk

) = 0

Due to independence. Hence whole expression has expectation 0. Therefore covariance is 0. �

3.4 Concentration Inequality

For random variables following Gaussian distribution and very sparse distribution P. Li et al. (2006),

we are able to prove this bound. We require some concentration bound for expression

P(| 1

dk
xT Ã(K),T Ã(K)x

‖x‖22
− 1| > t)

to decay at exponential else we would not attain the efficiency like JL lemma meaning the lower

projected dimension will be much more than standard result for k=1,i.e we want d = O(log n).

Theorem 3.4.1. JL lemma for Gaussian or Raedmacher For some constant m = m(K) depending

on K

P(| 1

dk
Sdk

‖x‖22
− 1| > t) <

e
− d
m(K)

t
2
K

m(K)
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Proof. Since ‖ S
dk

‖x‖2dk
‖2r2r = O(‖N1

d
N2
d ..

Nk
d ‖

2r
2r) whereNq

iid∼ N(0, 1) . Then it follows that E(e
t

S
dk

‖x‖2 dk ) <

CE(et
N1
d
N2
d
..
Nk
d ) And using the result stated in Achlioptas (2003), we complete the proof. Also note

that this inequality is consistent with Lata la et al. (2006). �

3.4.1 Choice of d

We choose d > m(K)logn

t2/K
using union bound so that distance between n points are preserved.

3.4.2 Memory efficiency

Under Kronecker decomposition, we need to store
∑k

l=1 pld elements as compared to original matrix∏k
l=1 pld

k, this is huge reduction even after considering trade-off in the probabilistic bound.

3.4.2.1 Tensor type data

Another application can be for tensor data x ∈ Rp1×p2×..pk we can also obtain lower dimensional

embedding which preserves distance with high probability.

yd1×d2×..dk =
1√∏k
l=1 dl

(A(1) ⊗ ..A(l)..⊗A(k))T xp1×p2×..pk

V ec(y)d×1 =
1√
d

(A(1) ⊗ ..A(l)..⊗A(k))T V ec(x)p×1

3.4.3 Variance reduction through averaging

Since all random projection are non adaptive methods. In most of the literature, iit is recommended

that we generate several independent RPs and take their average. This ensemble technique also

provide reduction in variance.

Let {Ãh}1≤h≤H be H independent copies of RP big Kronecker matrices. WE can define new
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ensemble RP as

f∗,H(x) =
1√
H

H∑
h=1

Ãhx

3.5 Simulation result

Our first experiment evaluates the quality of the isometry for maps We generate n = 10 independent

vectors x1; ..;xn of sizes d = 2500; 10000; 40000 .We consider the following three RPs: 1. Gaussian

RP; 2. Sparse RP ; 3. Very Sparse RP . For each, we compare the performance of RP, KRP

with order 4 and d1 = d2=d3=d4. We evaluate the methods by repeatedly generating a RP and

computing the reduced vector, and plot the ratio of the pairwise distance 1.

Method Gaussian Sparse Very Sparse
RP 0.1409 (0.0015) 0.1407 (0.0013) 0.1412 (00.0014)
KRP(4) 0.1431 (0.0016) 0.1431 (0.0015) 0.1520 (0.0033)

Table 3.1: Average of total deviation of ratios of pairwise distance between projected and
actual data from 1 . (Variability)

3.6 Future scope

We believe that such bounds can be achieved for wider class of random variables following identity

‖Y ‖rr ≤ (r)M‖Y ‖r−1
r−1 for all r as shown in Schudy & Sviridenko (2012).

3.7 Introduction to Tensors

With the advancement of information and engineering technology, modern days data science prob-

lems often come with gigantic size and increased complexity. On popular technique of storing
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these data is use of multi-dimensional arrays, which preserves the data anatomy and contain multi-

dimensional spatial and spatio-temporal correlations.

A tensor is a multi-dimensional or d-way array, which is a generalization of data matrix in a

higher dimensional situation. More formally, according to Kolda & Bader (2009) and Hackbusch

(2012), a d-way tensor is an element of the tensor space generated by the tensor products of d

vector spaces. Similar to the traditional vector based machine learning literature, the learning of

tensor can also be divided into supervised learning and unsupervised learning. Unsupervised tensor

learning generally involves the tensor decomposition and feature selection. Some theoretical results

and applications about unsupervised tensor learning can be found in Kolda & Bader (2009), X. He

et al. (2006), Chi & Kolda (2012), De Lathauwer et al. (2000), and Lu et al. (2008). The framework

of supervised tensor learning has been proposed by Tao et al. (2005), in which one can learn a tensor

based rule from training data for classification and regression. The tensor regression problem has

been widely studied. Such examples include Zhou et al. (2013), Wimalawarne et al. (2016), L. Li &

Zhang (2017), Lock (2018), and Raskutti et al. (2019). As an indispensable part of the supervised

tensor learning problem, however, the tensor type data classification is under developed. Research

on tensor classification includes Zhou et al. (2013), Pan et al. (2018), Signoretto et al. (2011), L. He

et al. (2014), Q. Li & Schonfeld (2014), and Tan et al. (2012).

3.7.1 Limitation for Gaussian assumptions

There are several major deficiencies under the current development. Firstly, the assumption about

data distribution. The Gaussian assumption for tensor type of data, e.g., Pan et al. (2018) may not

be adequate in many applications. Since the probability theory for tensor data has not been well

established, probabilistic discriminant such as LDA and Bayes classifier may have limitations from

theoretical foundation perspective. Secondly, the distance based methods, e.g., Lu et al. (2008) and

Q. Li & Schonfeld (2014). These methods train classifier based on tensor Frobenius norm, which is
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not suitable for high dimensional tensor data. It is known that the high dimensional data has issues

with L2 norm and Frobenius norm. For example Domingos (2012) wrote “ If we approximate a

hypersphere by inscribing it in a hypercube, in high dimensions almost all the volume of the

hypercube is outside the hypersphere”. Beyer et al. (1999) showed that the difference between the

maximum and minimum distances to a given query point does not increase as fast as the nearest

distance to any point in high dimensional space. As data dimension increases, these distance based

method may fail. Signoretto et al. (2011) and L. He et al. (2014) performed classification with

kernels however, there is no theoretical results about classification error established.

3.8 Preliminaries

3.8.1 Mathematical Background for Tensor

We first introduce standard tensor notation and operations (e.g. Kolda & Bader (2009)) that are

used in this paper. Numbers and scalars are denoted by lowercase letters such as x, y. Vectors

are denoted by boldface lowercase letters, e.g. a. Matrices are denoted by boldface capital letters,

e.g. A,B. A higher-dimensional tensor is a generalization of vector and matrix representation for

higher order data, which are denoted by boldface Euler script letters such as X,Y. Notations for

vector and tensor spaces will be sepcified when necessary.

The order of a tensor is the number of dimensions, also known as ways or modes. For example,

a scalar can be regarded as a order zero tensor, a vector can be a order one tensor, and a matrix

can be a order two tensor. In general, a tensor can have d modes as long as d is an integer.

The way of indicating entries of tensors is same as we do for vectors and matrices. The i-th

entry of a vector x is xi, the (i, j)-th element of a matrix X is xi,j , and the (i1, ..., id)-th element of

a d-way tensor X is xi1,...,id . The indices of a tensor i1, ..., id range from 1 to their captial version,

e.g. ik = 1, ...., Ik for every mode k = 1, ...d.
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Sub-arrays of a tensor are formed when a subset of the indices are fixed. Similar to matrices that

have rows and columns, high-dimensional tensors have various types of sub-arrays. For example,

by fixing every index but one in a d-way tensor, we can get one of its fibers, which are analogue of

matrix rows and columns. Another type of frequently used tensor sub-arrays is slice, which is a two

dimensional section of a tensor. A slice of a tensor can be defined by fixing all but two indices. We

will use x:i2...id to denote one fiber of a d-way tensor, and use X::i3...id to denote one of its slices.

3.9 Kernelized Support Tensor Machine

3.9.1 Framework of the Classification Problem

The classification problem for tensor data is a problem of learning a tensor from the training data.

Let T = {(X1, y1), ...., (Xn, yn)} be the training set, where Xi ∈ RI1×I2...×Id are d-mode tensors, yi

are labels. If we assume the training risk of a classifier f ∈ X ∗ is R̂n(f) = 1
n

n∑
i=1

I(f(Xi) 6= yi), the

problem will be looking for a f̂

f̂ = {f : R̂n(f) = min R̂n(f), f ∈ H∗} (3.1)

To solve this problem, we need to search all functions in the functional tensor space, which is

challenging. However, the problem will be simplified if the function is an universal reproducing

kernel. This will let us find the solution only on the Hilbert space embedded by continuous functions.

We shall prove this claim by presenting a represent theorem for kernelized support tensor machine.

Further, we would be able to prove the consistency of our classifier.
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3.9.2 Support Tensor Machine

Generalizing the support vector machine to tensor version is quite straightforward. The kernelized

support tensor machine classifier is

sign(f(X)) (3.2)

The function f is the optimal of the following objective function

min
f

λ||f ||∗ +
1

n

n∑
i=1

L(yi, f(Xi)) (3.3)

where ||f ||∗ is the norm of the functional tensor space H∗, and L is a measurable loss function

defined on (X ∗ × Y ). X ∗ is an algebraic tensor space. The optimal function is a measureable

function f : X ∗ → R, where X ∗ = RI1 ⊗ RI2 ...⊗ RId .

The representer theorem in support vector machine says the solution of support vector machine

can be written as a linear combination of kernel functions. As a result, one only needs to learn the

coefficients in the linear combination instead of learning the whole function. Similarly, we can also

propose a representer theorem for this tensor learning problem.

Theorem 3.9.1. (Tensor Representer Theorem)

Let K(·, ·) be a fixed kernel coming from the K(X ∗×X ∗,R), H∗ be the corresponding Reproducing

Kernel Hilbert Space. Let L be an arbitrary loss function. If the optimization function (3.3) has

optimal solutions, then all the solutions can be written in the following way:

f̂(X) =

n∑
i=1

β̂iK(Xi,X)
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The proof of this theorem is attached in our appendix. As a direct benefit of this result, one

just needs to estimate those parameters β̂i in order to get a optimal solution.

3.9.3 STM with random projection

We can choose K(j) = A(j) where A(j) is random projection matrix thus

K = (
r∑

k,l=1

d∏
j=1

A(j)(x
(j)
k,1,x

(j)
l ), ...,

r∑
k,l=1

d∏
j=1

A(j)(x
(j)
k,n,x

(j)
l ))T

. r is the CP rank of the algebraic tensor space, x
(j)
ik

3.9.4 Solving the STM

Now we start discussing the way of estimating our Support tensor machine from a group of training

tensor and their corresponding labels. We are going to consider only the cumulant-based tensor

kernel functions introduced in the previous section in this part. The situation of naive tensor

kernels are straightforward, and one can use traditional SVM method to estimate with only a slight

modification. According to the representer theorem and the definition of cumulant-based kernel

function, we assume that the solution of support tensor machine has the following explicit form.

f̂(X) =

n∑
i=1

βi

r∑
k,l=1

d∏
j=1

K(j)(x
(j)
k,i ,x

(j)
l )

= KTβ

(3.4)

where β = (β1, ..., βn)T and K = (
r∑

k,l=1

∏d
j=1K

(j)(x
(j)
k,1,x

(j)
l ), ...,

r∑
k,l=1

∏d
j=1K

(j)(x
(j)
k,n,x

(j)
l ))T . r is

the CP rank of the algebraic tensor space, x
(j)
ik and x

(j)
k are components of tensor CP decomposition

of the corresponding training and testing tensors. If the data do not come in CP form, we may need

to perform a CP decomposition at first. Plugging the soluction (3.4) into the objection function
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(3.3), we can get

min
β

λβTKβ +
1

n

n∑
i=1

L(yi,K
T (:, i)β) (3.5)

where K(:, i) is the ith column of matrix K = [K1, ...,Kn].

This problem can be solved directly with gradient descent. All values except the primal vector

can be easily evaluated from the training set. The derivative of β is

2λKβ +
1

n

n∑
i=1

∂L

∂β
(3.6)

Let equation (3.6) equals to zero and solve for our problem. In our application, we took squared hing

loss which L(y,X) = [max(0, 1− yf(X))]2. The algorithm of training and prediction are described

below denoted as algorithm ?? and algorithm ?? respectively: In algorithm ??, the complexity

of the training process is O(n2r2
d∑
j=1

Ij), which is will be much smaller than the complexity of

any vectorized method, O(n2
∏d
j=1 Ij), with low rank assumption. In addition, we suggest to save

the decomposed list of the training data when handling high dimensional data in algorithm ??.

This is because the decomposed list is much smaller than the original data, which saves memory

for computers. Having decomposed list instead of the original data can also make the prediction

faster, since one does not need to repeat the decomposition again.

3.9.5 Estimation with Complete Tensor Data

As we mentioned above, a CP decomposition is required when getting data ready for our algorithm.

We can estimate components of a rank r tensor from this procedure, and can feed this estimation

to our model. The estimated tensor decomposition will be an unique approximation for the original

data under most situation. Due to this uniqueness, we take the proposition from Kolda & Bader

(2009):
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Proposition 1. Let X be a d-way tensor with rank r. If it can be expressed as X =
r∑

k=1

x
(1)
k ⊗

x
(2)
k ...⊗ x

(d)
k = [X(1),X(2), ...,X(d)], where the columns of each Xj ∈ RIj×r, j = 1, ..., d are X

(j)
k k =

1, ..., r; j = 1, .., d from the expression. The CP decomposition of this tensor is unique if

d∑
k=1

R(X(j)) > 2r + d− 1 (3.7)

where R(X(j)) are the corresponding column ranks of matrices X(j). As a result, the probability of

miss-classification is identical, i.e.

P(ŷ 6= y|X) = P(ŷ 6= y|X̂) (3.8)

where X̂ is the tensor with estimated CP decomposition

For more details of the uniqueness of the decomposition, we refer Kolda & Bader (2009) and

Sidiropoulos & Bro (2000). During our application, we use the Alternating Least Square (ALS) to

estimate the decomposition.

The second issue about our model is the rank assumption. We assume all tensor data are

ideally from the same tensor space with rank r. Under most situations, we do not know the rank r

apriori. We prescribe the ranke r when we pre-process the data for training by finding one which

can provide the best approximation for tensor decomposition.

3.10 Statistical Property of STM

In the last part of our theoretical results, we want to highlight the performance and the general-

ization ability of our classifier for tensors. In the general evaluation of a decision rule, one will

be interested in exploring the bound for its classification risk. For example, assume our data for

classification are {(x, y) ∈ X ∗ × Y}. Let f be a decision rule for data generated from X ∗ × Y, the
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classification risk of this rule is defined as:

R(f) =

∫
X×Y

Pr(f(x) 6= y|x)µ(dx)µ(dy) (3.9)

where µ are measures defined on X and Y. The lower bound of this risk is the Bayes risk, which

we denote with R∗. For simplicity, we consider the binary classification case where Y = {−1, 1}.

In addition, we assume there is no noise in the problem such that ∀X ∈ X ∗,

Pr(f(X = 1)|X) 6= Pr(f(X = −1)|X) (3.10)

In other words, we will not consider the situation where posterior distribution does not provide a

decision and one can only guess randomly.

However, a classification rule learned directly from a given training set usually will not be

able to reach the Bayes risk. In fact, we can only estimate the empirical risk for a rule when an

observation with length n is given, which is

R̂(f) =
1

n

n∑
i=1

I{f(xi) 6= yi} (3.11)

{(xi, yi), i = 1, ..., n} is our training set. We always try to minimize this empirical risk with some

methods, and find out the optimal classifier f̂ for this risk. This is what we called Empirical Risk

Minimization(ERM) in general statistical learning problems. The evaluation of the method we

followed to find f̂ depends on the bound

δn = |R∗ −R(f̂)| (3.12)

If this quantity δ converges to zero as the sample size increase, then the classifier is consistent and
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the method we follow is statistically sound. This quantity can be bounded by

δn 6 |R∗ −R∗(f)|+ |R∗(f)−R(f̂)| (3.13)

where R∗(f) = inff∈HR(f) is the minimal risk of a collection of classifiers H. According to the

result from Steinwart & Christmann (2008), we have the following theorem:

Theorem 3.10.1. If K is a universal kernel on a compact subset of tensor space X ∗. The loss

function L is Lipschitz continuous. Then R∗ = R∗(f).

One can see Steinwart & Christmann (2008) for the proof of this theorem. The intuition of

this theorem is pretty simple since we have shown the universal approximation property of tensor

based kernel functions. This result will always hold in the classification problems since the loss

functions such as hinge loss are always Lipschitz continuous. The consistency problem turns out

to be finding bounds for |R∗(f)−R(f̂)|. Our next result shows the convergence of this part.

Theorem 3.10.2. Let V be a compact subspace of the algebraic tensor space X ∗. Let K be a

cumulant-based kernel function for tensor that is universal on the V, and |K|∞ 6 1. If we assume

the tensor space has dimension p = I1 × I2 × ... × Id < ∞. Then for all Borel probaility measure

Pr on (X ∗ × Y) satisfying Pr(f(X = 1)|X) 6= Pr(f(X = −1)|X), we have

R(f̂n)→ R∗(f) n→∞ (3.14)

in probability.
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APPENDIX

Main lemmas

Lemma 3.10.3. E(< ÃK
i , x >) = 0 for any row i

Lemma 3.10.4. ‖(< ÃK
i , x >)‖2 = ‖x‖2 for any row i

Proof. Define a
(1)
i1,j1

a
(2)
i2,j2

....a
(l)
il,jl

..a
(k)
ik,jk

= ãi,j ‖(< ÃK
i , x >)‖22 = E

∑P
j=1 x

2
j (ãi,j)

2

+
∑P

j′=1
j 6=j′

∑P
j=1 xjx

′
j ãi,j ãi,j′

Second term is zero due to conditional expectation property. �

First we try to estimate the r th moment of S2
d(x) = xT Ã(K),T Ã(K)x

dK
=

∑d
i=1 ‖Ã

(K)
i x‖22

dK
in terms

Y 2
1 = (Ã

(K)
1 x)2, since {Yi}d

k

i=1 are exchangeable, stationary, weak ρ mixing sequence. Unfortunately,

Lemma 3.10.5. Rosenthal Inequality for rho mixing sequences

For distribution following sparse distribution P. Li et al. (2006) Assume E(Y ) = 0 and ‖Y ‖2r2r <

∞ then there exists a positive constant C = Cr,ρ such that

E max
1≤i≤dk

(|Sdk |)2r ≤ C(dr‖x‖2r2 + d(2r − 1)rK‖x‖2r2 )

Proof. Q.-M. Shao (1995) theorem 1, using ρ = 0 and ‖Y1‖22 = ‖x‖22 and exchangeability of Yi now

using result that ‖Y1‖2r2r ≤ (2r − 1)rK‖Y1‖2r2 ‖ �

Lemma 3.10.6. Hypercontractivity for Gaussian distribution

Suppose Y is k degree Gaussian polynomial chaos in some Gaussian Hilbert space, then ‖Sd‖2r2r ≤

(2r − 1)Kr‖Sd‖2r2 = (r − 1)K/2d‖Y ‖22 = ‖x‖22

Proof. Janson et al. (1997) theorem 5.10 and theorem 6.7 �
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Lemma 3.10.7. Hypercontractivity for Gaussian distribution

Suppose Y is k degree Gaussian polynomial chaos in some Gaussian Hilbert space, then

‖Sdk‖2r2r ≤ (2r − 1)Kr‖Sdk‖2r2 = (r − 1)K/2d‖Y ‖22 = ‖x‖22

Proof. Janson et al. (1997) theorem 5.10 and theorem 6.7 �

Lemma 3.10.8. Hypercontractivity for very sparse distribution ‖Sdk‖r ≤ Cr,K‖Sdk‖2

Proof. Janson et al. (1997) lemma 5.2 proves hypercontractivity for Raedmacher variable Z. Ob-

serve that for any constant H , same will hold for Z ′ = HZ. Define a new random variable V

independent of Z ′such that Pr(V = d1/4) = 1√
d

and Pr(V = 0) = 1− 1√
d

, a ∼ V Z ′ any two point

distribution is hyper contractive as well Janson et al. (1997) lemma 5.2. So, due to independence

their product V Z ′ is hyper contractive �
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