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ABSTRACT

INVESTIGATION OF THE THERMAL TRANSPORT IN SUPERCONDUCTING NIOBIUM
AND TANTALUM

By

Peng Xu

Superconducting radio frequency (SRF) cavities fabricated from bulk high purity niobium (Nb)

are increasingly used for particle accelerators to achieve continuous operation. Even in the su-

perconducting regime, residual resistance and small imperfections on the RF surface can dissipate

energy and cause local heating that leads to cavity quench. Large values of thermal conductivity

can mitigate local temperature excursions and prevent cavity quench, thus improving cavity per-

formance. Understanding thermal transport in bulk and thin film superconducting Nb may guide

thermal design of current and next generation SRF cavities.

The thermal conductivity of metals is composed of electronic and lattice (phonon) components.

In normal conductors, the electronic component dominates, and in superconducting metals, as

the temperature drops below the critical temperature, phonons become increasingly important

carriers of thermal energy. A widely used model of thermal conductivity in superconductors

omits explicit accounting of the effect of dislocations, which result from deformation. Here, this

model is extended by accounting for the effects of phonons scattered by dislocations independent

from boundary scattering. This extended model agrees better with measurements of thermal

conductivity in deformed Nb samples, especially at temperatures T less than 3 K. An apparent

threshold of dislocation density Nd is found to be Nd = O(1012) m-2 for Nb and when applied

to tantalum (Ta), it is Nd = O(1011) m-2. There is little contribution to the thermal conductivity

when the dislocation density is less than this threshold. This model can also be used to estimate

the dislocation density by fitting measured values of thermal conductivity.

Examination of thermal conductivity data for superconducting Nb shows that there is often a

local maximum, a so-called phonon peak, kpp. The temperature at which this kpp occurs Tpp is

between 1.72 K and 2.35 K and shifts for samples after deformation. It is well known that the



magnitude of kpp decreases as the material is deformed, and hence with increasing Nd . Less cited is

that Tpp increases with increasing Nd . This may affect the operating temperature of an SRF cavity.

At a certain level deformation (i.e., 4.7% deformation for a residual resistivity ratio RRR=185), the

phonon peak disappears. More deformation is needed for higher RRR, (i.e., greater purity).

The models discussed above require estimating several parameters from thermal conductivity

measurements and may be best suited to explaining the relative importance of the several scattering

mechanisms. For predicting thermal conductivity from basic material variables, the Boltzmann

transport equation (BTE) is solved by two methods to predict the lattice component of thermal

conductivity. One method uses a substitution of variables from frequency to wavevector in the

Callawaymodel to include the nonlinear phonon dispersion relationship for the longitudinal acoustic

(LA) and transverse acoustic (TA) phonon polarizations. This model incorporates a relaxation time

approximation using Matthiessen’s rule to consider phonon scattering by electrons, boundaries,

and dislocations. Another method to predict the lattice thermal conductivity uses an energy-based,

variance-reduced Monte Carlo (MC) solution to the BTE for phonons. The MC solution allows

more general consideration of the individual scattering mechanisms. It may also be generalized for

more complex geometries. TheMC solution technique was first verified by comparing the predicted

thermal conductivity in bulk Si and Si nanowires with experimental results. Both solutions of the

BTE for the lattice thermal conductivity of undeformed and deformed superconducting Nb agreed

well with experimental values. The MC model was also used to demonstrate that interstitial

impurities must be near saturation to change the lattice thermal conductivity of Nb. The MC

solution was also effective in predicting the lattice thermal conductivity of superconducting Ta,

with the appropriate change in dispersion relation and other material parameters.
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CHAPTER 1

INTRODUCTION

Particle accelerators are increasingly used in a variety of applications for scientific research,

medicine, and industrial processing. They accelerate beams of charged particles to high speeds

(e.g., high energy physics applications require particle beams to be accelerated to near the speed of

light.) [17]. Radio frequency (RF) alternating current on the order of GHz provides energy to each

charged particle for acceleration. Copper (Cu) was originally used for normally conducting cavities

because of its easy formability and good electrical conductivity at room temperature. However,

these cavities have high RF losses due to the finite electrical resistivity of normally conducting Cu,

leading to loss of performance. Even with water cooling, Cu cavities cannot provide continuous

operation because of the temperature excursions due to energy loss.

Alternatively, niobium (Nb) has been widely used to construct superconducting radio frequency

(SRF) cavities in particle accelerators because it has the highest superconducting critical tempera-

ture (Tc = 9.25 K) and the highest thermodynamic critical field (Hth = 1.6 × 105 A m−1) of any

element [18]. As a superconductor, it has no electrical DC resistance and little RF resistance [5].

Manufacturing SRF cavities from large-grain Nb may reduce cost and improve the quality factor

as compared with using polycrystalline Nb (i.e., small-grain, typical grain size of about 50 µm)

[13], presumably because fewer grain boundaries exist in large-grain Nb. The resistance caused by

grain boundary scattering may reduce the heat transfer and increase the surface resistance thus to

decrease the performance of cavities. Even in the superconducting regime, residual resistance to

RF energy and small imperfections at the RF surface dissipate energy and cause local heating that

leads to cavity quench [19]. Large values of thermal conductivity can mitigate local temperature

excursions by improving heat transfer to the liquid He bath, thus preventing cavity quench and im-

proving cavity performance [20]. Processing Nb to obtain the largest thermal conductivity possible

is an important strategy for improving performance.

Particle accelerators require the superconducting nature of Nb on the inner surface of a cavity
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Figure 1.1: A typical example of the thermal conductivity of single crystal superconducting Nb
sample from 0.3 K to 5 K with different levels of uniaxial strain, replotted from [4]. Undeformed
state refers to Cauchy strain of 0%, and 1%, 2.4%, 4.7%, and 8.8% refer to the corresponding
amounts of Cauchy strain. The thermal conductivity at temperature lower than 3 K decreases with
the increase of strain. The phonon peak appears at 0%, 1%, and 2.4% deformation and disappears
after 4.7% deformation. The thermal conductivity at the phonon peak decreases the most after
deformation compared with the thermal conductivity at other temperatures.

to a depth of up to only the London penetration depth, which is about 30 nm for Nb [21]. This

suggests that the superconducting properties of the cavity are only needed by a small fraction of

the wall thickness (typically about 3 mm), which makes thin film superconducting composites an

opportunity for the next generation of the cavities. The next generation of SRF accelerators may be

developed using Nb clad Cu. This composite structure may take advantage of improved magnetic

performance of thin filmNb along with the large values of thermal conductivity at low temperatures

(e.g., thermal conductivity of copper is on the order of magnitude of 103 Wm−1K−1 at 2 K [22]).
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The thermal conductivity of Nb at temperatures lower than Tc is significantly influenced by

the processing history of Nb. A typical figure of thermal conductivity of Nb as a function of

temperature is replotted from [4], shown in Fig. 1.1, at different levels of deformation. Purity and

deformation have been demonstrated to change the thermal conductivity in both polycrystalline

(small grain) and large grain Nb [7, 8]. Deformation is well known to reduce the local maximum

thermal conductivity (also called the phonon peak kpp), but it is less known that it also increases the

temperature at which the phonon peak occurs (Tpp). Several studies have shown that while plastic

deformation may destroy the phonon peak, heat treatment may also restore it [8, 23]. The phonon

peak of a single crystal Nb sample after 2.4% deformation has been measured to decrease by about

69% compared with its undeformed state [4]. The phonon peak temperature of the same specimen

increased from 1.85 K at the undeformed state to 2.18 K after 2.4% deformation. Although the

increase in temperature of the phonon peak is only 0.33 K, energy savings on this temperature

difference could be significant for the working temperature of SRF cavity. This suggests that there

is an optimization problem of balancing better performance of the cavities and more energy savings

in the liquid He bath. Studying the mechanisms of both the thermal conductivity of bulk Nb and

thin film Nb will provide guidance for the thermal design of current and next generation of SRF

cavities.

This thesis examines the model of thermal conductivity of superconducting Nb buy including

the effect of phonon-dislocation scattering. The relationship between kpp and Tpp is found by

examining different sets of measured data of the thermal conductivity of Nb. Fitting the data with

the enhanced model leads to more accurate results than neglecting phonon dislocation scattering,

especially at low temperatures(T < 3 K) and after deformation. The energy-based variance reduced

Monte Carlo simulation technique is used to model and predict the lattice thermal conductivity of

Nb before and after deformation using the relaxation time approximation. The simulation results

match well with the fitting results using the enhanced model by considering the phonon-boundary

scattering, phonon-electron scattering and phonon-dislocation scattering for both undeformed and

deformed Nb samples.
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CHAPTER 2

REVIEW OF THERMAL CONDUCTIVITY OF NB

Nbhas great similarity to tantalum (Ta) in its physical and chemical properties, making themdifficult

to distinguish. As a refractory metal [24], Nb has a high melting point of 2477 ◦C which makes

it resistant to wear, corrosion, and deformation. Nb has also been widely used as the material for

superconducting cavities in particle accelerators because it has the highest superconducting critical

temperature (Tc = 9.25 K), the greatest thermodynamic critical field, and the greatest magnetic

penetration depth [25] of any element. The superconductive properties, and especially the thermal

conductivity are strongly dependent on the purity of Nb metal [26]. Very pure Nb may have

high thermal conductivity at cryogenic temperatures, however, the high purity makes Nb metal

comparatively soft and ductile [27], making it difficult to maintain dimensional stavility of SRF

cavities. An example of a 9-cell SRF cavity developed at TESLA [5] is shown in Fig. 2.1.

The first measurements of the thermal conductivity of superconducting Nb focused on un-

derstanding the mechanisms of heat conduction in superconductors [28, 29]1. They compared

the conductivity in the superconducting and normal conducting states at the same temperature by

imposing a magnetic field to suppress the superconductivity of Nb below its critical temperature.

Understanding the thermal conductivity of Nb took on a practical purpose as Nb became the mate-

rial of choice for SRF particle accelerators starting in the 1970s [30]. SRF accelerators are typically

comprised of thin-walled channels that are evacuated on the inside and submerged in liquid helium

Figure 2.1: An example of the sketch of a 9-cell TESLA accelerating structure [5]. The outside
surface of the cavity is immersed into liquid He to keep Nb in superconducting temperature.
Charged particles move inside the cavity to be accelerated by the magnetic filed.

1Niobium was originally named columbium (Cb) and some earlier studies used that term.
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Figure 2.2: Picture of the delamination crack. The crack is located approximately in the middle of
the Nb sheet, spiting the sheet into two parts.

Figure 2.3: Microscopic image of the delamination crack. The crack propagates around 25 mm
along the circumference, the thickness of the Nb sheet is around 2 mm, the crack splits the Nb sheet
by half.

to operate in the temperature range of 1.8 K < T < 4.5 K. Oscillating electric fields accelerate

charged particles along the axis of the evacuated channel to speeds that are a substantial fraction of

the speed of light.

As a superconductor, Nb has no electrical resistance to direct current fields and small resistance

to RF fields [5]. The resistance when subject to RF fields, as happens in a particle accelerator, leads

to heat generation that must be dissipated to the helium bath surrounding the accelerator. This

heat generation can lead to temperature excursions that may diminished accelerator performance

to breakdown the magnetic field [20] and large values of thermal conductivity k at accelerator

operating temperatures are essential for mitigating potential hot spots that would cause quenching

of an accelerator cavity and degraded performance [5, 31, 32]. Thermal breakdown of an SRF cavity

occurs when the RF surface temperature reaches its critical temperature [7]. Recent progresses in

Nb cavities for particle accelerators has resulted in significant increase in thermal breakdown field

up to 180∼200 mT, which is close to the thermodynamic critical field (200 mT) [5, 32]. However,

imperfections such as defects or dislocations can cause to a sharp decrease of thermal breakdown

field [33]. Delamination cracks might also be a factor to decrease the field because of its resistance
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to heat conduction between the RF surface and liquid He bath. Recent studies at FRIB of MSU

[34] shows that after EB spot welding, a crack in the 2 mm Nb sheet of the outer conductor was

discovered. The crack is approximately in the middle of the sheet, splitting the sheet in two parts

and propagating around 25 mm along the circumference, the depth of crack cannot be determined.

Fig.2.2 and Fig. 2.3 show macro the picture and microscopic images of the delamination crack,

respectively.

Padamsee correlated the peak magnetic field with the purity of Nb as characterized by its

electrical resistivity ratio (RRR) [35].

RRR =
ρ295K
ρ4.2K

(2.1)

where ρ295K and ρ4.2K are the electrical resistivity at 295 K and 4.2 K, respectively.

The thermal conductivity at 4.2 K of superconducting Nb can also be correlated to RRR [36]

as in Eq. 2.2. This illustrates the importance of having a large value of thermal conductivity.

RRR = 4k4.2K (2.2)

where k4.2K is the thermal conductivity at the temperature of 4.2 K.

Heat conduction in metals occurs by conduction of normal conducting electrons and lattice

vibrations (i.e., phonons) [37]. These two components are additive [38] such that

k = ke + kg (2.3)

where ke represents heat conduction by electrons and kg represents the heat conduction by phonons.

In normal conducting metals, the electron component dominates and the phonon part is usually

negligible. In the superconducting regime, however, the condensation of normal conducting

electrons into Cooper pairs leads to a reduction in the electron contribution to energy transport, as

well as an increase in the phonon contribution due to reduced scattering of phonons by electrons [39].

Therefore, the phonon component of heat conduction increases in significance in superconducting

materials.
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Figure 2.4: The contributions of the normal electron thermal conductivity ke and the lattice thermal
conductivity kg to the overall thermal conductivity k = ke + kg. At temperature lower than 2 K, kg
dominates the total thermal conductivity and ke dominates the thermal conductivity for temperature
higher than 3 K. For this Nb with relatively few dislocations, there is a significant phonon peak.

Representative contributions of ke and kg for superconducting Nb are shown in Figure 2.4. The

Nb used for illustration has relatively few dislocations, such as a material that has been relatively

undeformed after a proper heat treatment. For T & 3 K, ke > kg and the contribution of kg

decreases with increasing T as phonons are increasingly scattered by normal conducting electrons.

For T . 2 K, ke is negligible as essentially all of the electrons have formed Cooper pairs [39].

As a result of the reduced scattering of phonons, a phonon peak in the thermal conductivity kpp

is evident at T ≈ 2 K. As the Nb cools below 2 K, kg decreases due to boundary scattering until

vanishing at 0 K.

Experimental illustration of the electrical and lattice contributions to k is given in Fig. 2.5,
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which compares six tests on three specimens from three studies [4, 6, 7]. Others have shown

similar responses using other measurements (e.g., [40]). The red circles are for a Nb specimen

with RRR = 1200 [4]. The open circles are for Nb that is undeformed following annealing and

the closed symbols are for the same sample having undergone a uniaxial Cauchy strain of ε = 8%.

While the conductivity for T > 3 K is the same before and after deformation of ε = 8.5%, the kpp

at T ≈ 2 K disappears after deformation, likely due to the increase in dislocation density. It is worth

noting that k ≈ 175 W m-1 K-1at T = 4.2 K in this specimen, instead of the expected k = 300 W

m-1 K-1, which does not agree with Eq. 2.2. The solid black squares are for Nb with RRR = 390

in its “as-received” condition (i.e., with unknown deformation) [7]. The thermal conductivity for

T > 3 K behaves as expected, and there is no kpp. The open squares are for the same specimen

after it had been annealed, although inadvertently without a titanium getter. Without a getter, the

impurity concentration increased, as exemplified by the RRR decreasing to 68. This suggests that

although the RRR decreased, the dislocation density had also decreased with the result of increasing

k for T ≤ 3 K. The triangles in Fig. 2.5 are for a Nb specimen with RRR = 255 before deformation

and RRR = 237 after deformation, a small change as exemplified by k for T > 3 K [6]. The open

triangles are for the undeformed specimen and filled symbols are for the Nb after deformation to

ε = 8.5%. The undeformed specimen has a phonon peak at about 2 K. After the specimen was

strained to a Cauchy strain of ε = 8%, there is no kpp.

Given the practical and fundamental importance of k in superconducting Nb, it has been subject

to numerous studies. Normal conducting electrons largely determine k for Tc/3 . T . Tc, even

as they condense into Cooper pairs. At these temperatures, the impurity concentration largely

determines k. As the temperature decreases further, the paired electrons no longer conduct thermal

energy and no longer scatter phonons. The lack of electron scattering, can lead to a local maximum

in k, that is kpp. But other mechanisms scatter the phonons, including material boundaries,

dislocations, and grain boundaries. Other effects can greatly alter the thermal response of Nb.

Magnetic fields, for example, can suppress the superconductivity in type II superconductors, and

leave the normal conducting electrons as the dominant mode of energy transport. The following
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sections review the studies that have measured thermal conductivity in superconducting Nb subject

to many external effects.

2.1 Experiments on thermal conductivity of Nb

To put the measurements into context, it is instructive to examine a model for k that is based on

Bardeen-Cooper-Schrieffer (BCS) theory [39]. Koechlin and Bonin [41] developed an expression

for k of superconducting Nb by parameterizing the Bardeen-Rickayzen-Tewordt (BRT) [42] model

for k based on BCS theory [39]. Xu et al. [43] added a term to the Koechlin and Bonin model to

account explicitly for phonons scattered by dislocations in the lattice thermal conductivity. This

augmented model can be written as

k = R(y)
[ ρ

LT
+ AT2

]−1
+

[
1

D exp(y)T2 +
1

BΛT3 +
KNd

T2

]−1
(2.4)

where the two terms in the first brackets account for electrons scattered by impurities and electrons

scattered by phonons, respectively, and the three terms in the second brackets account for phonons

scattered by electrons, phonons scattered by boundaries, and phonons scattered by dislocations,

respectively. The term R(y) quantifies the condensation of normal conducting electrons into Cooper

pairs, ρ is the residual electrical resistivity (ρ = ρ295K/RRR), RRR is the residual resistivity ratio,

ρ295K is the electrical resistivity at 295 K, L ≈ 2.45 × 10−8 WK-2 is the Lorentz number, A is the

coefficient ofmomentumexchange of electronswith the lattice, D scales phonon-electron scattering,

B scales phonon-boundary scattering,Λ is the phonon mean free path, Nd is the dislocation density

and K is a parameter describing phonon-dislocation scattering. The term R(y) may be calculated

as

R(y) =
kes
ken
= f (0)−1

[
f (−y) + y ln(1 + exp(−y)) +

y2

(2(1 + exp(y)))

]
(2.5)

where kes and ken are the electronic thermal conductivity of superconducting state and normal

conducting state, respectively. The ratio of the superconducting energy gap (∆(T)) to thermal

fluctuations of kBT may be written as

y =
∆(T)
kBT

=
∆(T)
kBTc

Tc
T

(2.6)
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and f (−y) as

f (−y) =
∫ ∞

0

zdz
1 + exp(z + y)

(2.7)

For T/Tc < 0.6, y can be approximated as y = αTc/T with α ≈ 1.76 from BCS theory. The

parameters ρ, a, B, D, Nd , and α are typically estimated from measurements of conductivity. The

parameter K is expressed following Klemens [44] for randomly distributed dislocations as

K =
0.038(v̄h2)b2γ2

kB
3 (2.8)

where γ is the Grüneisen constant (γ=1.4 for Nb), b is the Burgers vector, v̄ is the average group

velocity ofNb, and h is the Planck constant. Using values forNb, an expression forK = 3.05×10−15

m3K3 W-1.

The expression by Koechlin and Bonin [41] has been used successfully to model the thermal

conductivity of superconducting Nb in many circumstances. The extended expression of Eq.

2.4 shows promise for improving modeling of k for superconducting Nb and Ta with substantial

dislocations, especially at T/Tc ≈ 0.22 [43].

To our best understanding, the first measurement on the thermal conductivity of Nb is conducted

by Mendelssohn and Olsen at 1950 [28]. They measured the thermal conductivity of Nb rod

from superconducting temperature to normal conducting temperature and found that the thermal

conductivity curve behaved differently than other superconductors (Ta and Pb-Sn alloys) as k

at superconducting state exceeds the values at normal conducting state for temperatures below

4 K. They explained this feature to be the reason of appearance of circulation heat flow at low

temperatures because of the applied magnetic flux. Two years later, Mendelssohn and Rosenberg

[29] measured the thermal conductivity of 99.99% pure Nb at temperatures from 2 K to 40 K. They

showed similar behavior with reference [28] as the thermal conductivity curve at superconducting

and normal conducting state (because of the applied magnetic flux) crossed over with each other

for the magnetic field of 2300 & 3300 Gauss field at T < 6 K and T < 3 K, respectively. The reason

is that the decrease of lattice k because of the scattering of phonons by extra electrons produced by

the magnetic field was not fully compensated by the increase of electronic k.
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Mendelssohn [45] investigated the thermal conductivity of several superconductors experimen-

tally below 1 K. He obtained the thermal conductivity of poly-crystal Nb to be proportional to

T3 between 0.4 K and 0.75 K, which agrees with Casimir model [46] for boundary scattering of

dielectric materials. He thus concluded that the thermal conductivity of superconductive metal

near absolute zero behaves like that of a dielectric crystal. The Casimir model [46] for the lattice

thermal conductivity due to crystal boundary scattering was expressed as

kb = 2.31 × 103RPA2/3T3 (2.9)

where R is the radius for a circular cylindrical specimen, A = Cv/T3 with Cv being the specific

heat per unit volume, P is expressed as

P =
2(vl/vt)

2 + 1
[2(vl/vt)3 + 1]2/3

(2.10)

where vl and vt are the longitudinal and transverse velocities of sound in the material, respectively.

In 1958, Mendelssohn [47] was the first to quantify the phonon conduction in superconductors

to the number of dislocations by measuring the thermal conductivity of superconducting lead and

niobium. Van Bueren’s formula [48] was used to calculate the dislocation density for face centered

cubic (FCC) lattices, (i.e., lead). For body centered cubic (BCC) materials, (i.e., Nb), Klemens

model [44] was used to estimate the dislocation density. Mendelssohn [47] also mentioned that

the superconductive metal can be rendered normal by applying a low magnetic field, and the

strain only affects the thermal conductivity of the superconducting state, not the normal state.

Another observation in this paper is that the zone refined Nb sample showed a maximum in thermal

conductivity in the superconducting state that exceeded that of the normal state at 2 K. After zone

refining process, the thermal conductivitywasmeasured to be 180Wm−1K−1 at 2K,whereas before

zone refined process kpp ≈ 75 Wm−1K−1 at 2.4 K, which was less than the thermal conductivity

in the normal state.

Montgomery [49] measured the thermal conductivity of lead between 1 K and 4 K and noted

that below about 1.4 K, the thermal current is carried entirely by lattice waves, but not conduction
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electrons, which is consistent with [45]. He also found that grain boundaries are responsible only

for a part of the phonon scattering, with sub-grain structure and dislocation networks being of

comparable importance. He suggested that thermal conductivity of superconductors at supercon-

ducting state becomes size dependent at low temperatures. Chaudhuri et al. [50] measured the

thermal conductivity of Nb and V at superconducting temperatures and investigated the effect of

radiation on the thermal conductivity. The effect of neutron irradiation on the thermal conductivity

of superconducting Nb behaves similarly as dislocation scattering to have the thermal resistance W

being proportional to T−2. The explanation is that neutron irradiation introduces interstitials in the

sample, where the condensation of interstitials increases the dislocations. In 1961, Mendelssohn

[51] examined different aspects of the thermal conductivity of metals at low temperatures, i.e.,

impurity, strain, and irradiation. Electrons are mainly scattered by impurities [44], therefore they

affect the thermal conductivity in both normal and superconducting state. Phonons are scattered by

dislocations, often formed by plastic deformation, and contribute to the lattice thermal conductiv-

ity. Therefore, strain only affects the thermal conductivity in the superconducting state. The effect

of neutron irradiation on the thermal conductivity of superconducting Nb behaves like phonon-

dislocation scattering. However, in the normal state thermal conductivity can also be reduced by

neutron irradiation, because vacancies were produced by irradiation [50].

Calverley et al. [52] systematically investigated the thermal and magnetic properties of Ta, Nb,

andVat liquidHe temperatures. For the effect of strain on thermal conductivity ofNb, they observed

reduced thermal conductivity following deformation. Their figures of thermal conductivity show

that the phonon peak temperature gradually increased with deformation until the peak disappeared

because of increased dislocation density. Connolly and Mendelssohn [53] measured the thermal

conductivity ofNb between 0.2K and 4.2K. They found a localmaximumat about 0.2Tc (T=1.85K)

and analyzed the electron and lattice components of k. They concluded that contribution of phonon

conduction needs to be considered for T < 0.5Tc. Kuhn [54] measured the thermal conductivity

of Nb and investigated the effect of irradiation, phonons scattered by dislocations, and phonons

scattered by electrons using the BRT [42] model. Thermal conductivity in the superconducting
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state can exceed that of the normal conducting state for Nb after recrystalization. Wasim and

Zebouni [55] measured the thermal conductivity of Nb of intermediate purity (l/ξ0 ≈ 1, where l is

the electronic mean free path, and ξ0 is the coherence length) in the mixed states. The clean and

dirty limits of superconductors are defined as the comparison between l and ξ0. If l << ξ0, it is

referred as dirty superconductors [56], otherwise, it is referred as clean superconductors. For dirty

superconductors, the impurities are usually high that can scatter with electrons to reduce the thermal

conductivity of superconductors. They found that at the local minimum of thermal conductivity,

both phonon and electron thermal conductivities decrease just above the lower critical field (Hc1).

As a type-II superconductor, Nb has two critical magnetic fields, namely Hc1 and Hc2 [5].

When the applied magnetic DC magnetic field exceeds Hc1, the normal conducting magnetic

flux vortices penetrate the Nb surface. However, the Nb material around these vortices is still

in superconducting state. When the applied magnetic DC magnetic field is greater than Hc2, the

magnetic flux vortices penetrate the Nb surface completely and transform the superconductor into

normal conductor. When the applied magnetic field lies between Hc1 and Hc2, this is the mixed

state. For Nb at 0 K, Hc1 = 1.08 × 104 A/m, Hc2 = 1.91 × 104 A/m [5].

Mittag [57] measured the Kapitza resistance and thermal conductivity of Nb from 1.3 K to 2.1

K, the Kapitza resistance is higher for a sample after annealing and chemical polishing than for a

sample that was only machined. Carlson and Satterthwaite [58] measured the thermal conductivity

of Nb between 0.3 K and 5 K. They found an anomalously high thermal conductivity (a factor

of 5 higher than BCS) between 0.3 K and 0.6 K and proposed it was due to a small second

energy gap. However, Anderson et al., [59] measured the thermal conductivity of single-crystal

Nb from 0.04 K to 4 K and found no evidence of a second energy gap. From another measurement

of four single-crystal Nb samples, Anderson and Smith [23] proposed a resonant like scattering

of thermal phonons lying near 5 × 1010 Hz, which is independent of stain and impurity. They

explained this feature to be a dynamic phonon-dislocation interaction. In 1974, Anderson and

O’Hara [60] studied the lattice thermal conductivity of Nb as limited by the interaction of phonons

with electrons. They indicated that the relationship between the mean free path of transverse and
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longitudinal acoustic phonons and temperature are similar, both are about 4 × 10−5T−1. Kes et al.

[61] measured the thermal conductivity of Nb considering crystal defect structures like dislocations,

grain boundaries, and dislocation loops due to neutron irradiation. They studied different scattering

mechanisms with relaxation time approximation, including grain boundary scattering, point defect

scattering, dislocation scattering, and phonon electron scattering, based on BRT theory [42] and

Klemens model [44]. They found that dislocation loops introduced by neutron irradiation behave

like clusters of point defects, and irradiation can enhance the original dislocation term. The

relaxation times used in this paper are expressed as the following.

Grain boundary scattering:

τ−1
GB = 0.03γ2α2vsNg (2.11)

where the Grüneisen constant has been defined in Eq. 2.8, α is the angle of tilt of the grain

boundary (α < π/4), vs is the sound velocity, and Ng is the number of grain boundaries crossing a

line of unit length.

Strain field scattering:

τ−1
D = 0.033γ2b2Ndω (2.12)

where ω is the phonon frequency.

Point defect scattering:

τ−1
p =

3a3S2ω4

Gπv3
s

(2.13)

where a3 is the volume per atom, G is the number of items per crystal, and S is the scattering

amplitude of the point defects. For the difference in mass of the impurities S2
1 = (∆M/M)2/12, for

the lattice distortion by the impurities, S2
2 = 3γ2(∆R/R)2, where R is the lattice spacing.

Phonons scattered by electrons:

τ−1
pe = g(x,T)E xT (2.14)
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where x = ~ωkBT , with ~ being the reduced Planck constant, kB being the Boltzmann constant. The

term g(x,T) is a monotonically decreasing function of x, and E is a fitting parameter.

Moore and Satterthwaite [62] measured the thermal conductivity of pure Nb in magnetic field

near upper critical field Hc2. Measurement results confirmed the theory that the mixed state

thermal conductivity varied with field at the magnetic field near Hc2, which was also verified by

Kes et al. [63] by measuring the thermal conductivity of Nb in the mixed state at different field

orientations. Mamyia et al. [64] measured the thermal conductivity of Nb with different RRR of

6300, 2500, and 195. Niobium, as an intermediate coupling superconductor, behaves differently

to the electronic thermal conductivity due to electrons scattered by phonons from strong coupling

superconductors (e.g. Lead) and weak coupling superconductors (e.g. Tin). They characterized the

slope of the phonon scattering term of reduced thermal conductivity against reduced temperature

for intermediate coupling superconductor Nb to be 2.8, as compared with 1.5 for weak coupling

superconductors. Here the reduced thermal conductivity is defined as kS/kN where kS is the thermal

conductivity at superconducting state and kN is the thermal conductivity at normal conducting

state. And the reduced temperature is defined as T/Tc. Gladun et al. [65] measured the thermal

conductivity of single-crystal Nb of high purity (RRR=33000 2) at the temperature range from 0.05

K to 23 K. They found the thermal conductivity values in the range of six orders of magnitude

(k = 2 × 10−3W m-1 K-1at 0.05 K to k = 2.2 × 103W m-1 K-1at 9 K). The surface roughness

of the sandblasted sample was characterized and they concluded that the difference in thermal

conductivity of the sandblasted sample below 2 K may be due to the annealing of dislocations in

the surface layer or within the crystal due to sandblasting. Reiche and Pompe [66] investigated the

thermal conductivity and electrical conductivity of bulk niobium and niobium films in the normal

state from 9 to 50 K, based on the deviations from the Matthiessen rule. They showed a slight

dependence of the electron-phonon scattering coefficient on the impurity content of the sample.

An additional resistance term proportional to T5.5 was proposed in the temperature range from 20

to 50 K.
2RRR=33000 is the theoretical limit for Nb
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Figure 2.6: A typical example of the thermal conductivity of single crystal superconducting Nb
sample with screw dislocations from 0.3 K to 5 K with different levels of uniaxial strain, replotted
from [4]. Undeformed state refers to 0 Cauchy strain, and 3%, 7.3%, and 14.7% deformation
correspond to the same amount of Cauchy strain. The thermal conductivity at temperature lower
than 3 K decreases with the increase of strain. The phonon peak appears at 0% deformation and
3% at about 1.8 K and 2 K separately. There is nearly no phonon peak after 7.3% deformation and
14.7% deformation. The thermal conductivity data at temperatures higher than 3.5 K are the same
for different amount of deformations.
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Wasserbäch systematically measured the thermal conductivity of single-crystal Nb and Ta in

the temperature range 0.3 ≤ T ≤ 20 K . He considered the effects of interstitial and substitutional

impurities [67], plastic deformation [4], phonons scattered by electrons [68], deformation at in-

termediate temperatures [3], and heterogeneity of the dislocation distribution [69] on the lattice

thermal conductivity of Nb. The thermal conductivity of Nb below 1 Kwas found proportion toT3,

but its magnitude decreased with increasing impurity content [67]. In 1978, Wasserbäch measured

the effect of the temperature at which deformation occurs on the thermal conductivity of Nb spec-

imens with different RRR values. He characterized the deformation as weak (ε . 2%), medium

(2% . ε . 6%) and strong (ε & 7%), although these varied somewhat. Figure 2.6, similar to Fig.

1.1, shows the typical response of thermal conductivity of Nb to temperature and deformation. For

weak and medium deformation at 77 K and 195 K, the thermal resistance of phonons scattered by

dislocations was proportional to T−3. These dislocations were measured by transmission electron

micrographs (TEM) to be predominantly screw dislocations. Strong deformation at 195 K and

medium to strong deformation at 295 K and 470 K gave rise to thermal resistance proportional

to T−2. Deformation at 295 K and 470 K led to predominantly edge dislocations. Experimen-

tal investigation of phonons scattered by electrons [68] indicated that both the longitudinal and

transverse acoustic phonons were scattered strongly by electrons for Nb, while only longitudinal

acoustic phonons are scattered by electrons in Pippard’s theory [70]. Wasserbäch’s results agree

with the phonon mean free path investigation by Anderson et al. [60]. Single crystal Nb or Ta

plastically deformed atT = 355, 370, or 420 K demonstrated thermal resistance proportional toT−2

[69], which is consistent with [4] and with Klemens’s model [44] of phonon scattering by a static

distortion field of dislocations.

Williams et al. [71] measured the thermal conductivity and electrical conductivity of Nb and

Nb-based alloys in the temperature range 80-400 K. They analyzed the data by considering phonon-

phonon and phonon-electron scattering in limiting the phonon thermal conductivity and compared

the phonon-electron thermal resistancewith first-principles calculationwith good agreement. Krafft

[72] measured the surface resistance, thermal conductivity and Kapitza resistance between Nb and

18



liquid He and showed that the above three parameters must be established to make predictions about

the role of thermal transport in determining the performance of SRF cavity. He also mentioned

that high thermal conductivity did stablize the cavity surface against local heating due to defects.

Padamsee [35] studied the influence of thermal conductivity on the breakdown field of Nb cavities

by varying the RRR values in 40 different tests. He found that the breakdown field of Nb cavity is

proportional to the square root of the RRR. A new purification technique [73] was used to improve

the thermal conductivity of Nb by removing the dominant interstitial impurity (oxygen) in Nb.

Hörmann [74] described the manufacturing process for superconducting niobium. He mentioned

that electron beam melting and hot and cold working may increase the commercial Nb RRR from

20-40 to 160-300, and the thermal conductivity from 8-10 W m-1 K-1to around 70 W m-1 K-1.

Kneisel et al. [75, 76] investigated the SRF performance of high field cavities by comparingmaterial

properties such as thermal conductivity, residual resistivity, and tensile behavior. Koechlin et al.

[77] measured the thermal conductivity of Nb from 1.5 to 20 K. They concluded that high purity

contributes to good thermal conductivity by electrons when T > 2.5 − 3K , however, low thermal

conductivity in the temperature range of 1.8-2.0 K is due to small grain dimensions. Moderate

temperature annealing (800 ◦C< T < 1200 ◦C) can increase the grain size from 50-70 µm to 400-

500 µm and the thermal conductivity at around 2 K. Boucheffa et al. [78] measured the Kapitza

resistance and thermal conductivity of Nb. They showed that thermal conductivity at T > 3 K

increases with RRR, however for T < 3 K, the thermal conductivity behavior becomes dependent

on other factors, particularly the grain size. Also, the Kapitza resistance of RRR≈ 200 is strongly

dependent on its surface treatment. Ikebe [79] measured the thermal conductivity of Nb based

alloys and fitted the data with the Tewordt andWölkhausen (TWmodel) [80] with good agreement.

Amrit [81] measured the thermal conductivity of poly-crystal Nb and investigated the effect

of phonon-grain boundary scattering on the thermal conductivity. He showed that the thermal

conductivity decreases strongly as the number of grains increase up to a limit of 10. When the

number of grains exceeds 10, the anisotropy of thermal conductivity disappears. Singer et al. [13]

investigated the SRF performance of large grain cavities using both the basic material properties
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and material availability, production, and preparation aspects. They obtained a gradient up to 41

MV/m at the quality factor Q0 = 1.4 × 1010.

Gurevich [32] studied the effect of nonlinear surface resistance on the SRF thermal breakdown

and proposed a model of non-uniform thermal breakdown by macroscopic hotspots on the cavity

surface. Aizaz et al. [7] measured the thermal conductivity and Kapitaza conductance of Nb and

studied the effect of plastic deformation on phonon transmission and Kapitza resistance. They

found the absence of phonon peak and the reduced Kapitza conductance are due to the applied

strain. Low temperature annealing (around 750 ◦C) did not restore the phonon peak. Kneisel

et al. [82] tested six single cell Nb cavities at TESLA. After appropriate surface treatments by

buffered chemical polishing and eletropolishing, they are able to reach the accelerating gradients

between 38 MV/m and 45 MV/m. Singer et al. [31] measured the RRR of Nb using DC and

AC methods and analyzed the advantages and disadvantages of these two methods. Basically, the

DC method has higher accuracy but is a destructive method only good for quality control of Nb

before start of cavity fabrication. The AC method preformed directly on the cavity surface and

makes it possible to estimate the RRR value, however, the accuracy is less than that of DC method.

Aizaz et al. [83] studied the thermal designs in SRF Nb cavities by considering the phonon peak

and Kapitza conductance. Strain can reduce the thermal conductivity at its phonon transmission

regime by 80%. Although low temperature annealing did not restore the phonon peak [7], moderate

temperature (around 1300 ◦C) annealing during titanification process can restore the phonon peak

in the thermal conductivity curve.

Chandrasekaran et al. [8, 84, 85] measured the thermal conductivity of bi-crystal Nb with

different RRR values and considered the influence of grain size and grain orientation, impurity, de-

formation, and heat treatment on the thermal conductivity of Nb. They proposed a novel parameter

estimation method [86] based on temperature and heat flux measurements. The phonon peak was

found at close to 1.8 K [8] for nearly of all the undeformed samples. While plastic deformation

has the ability to destroy the phonon peak [8], heat treatment with appropriate temperature and

duration may restore it. Dhakal et al. [12] measured the thermal conductivity of single crystal
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Nb and analyzed the parameters by fitting with the model proposed by Koechlin and Bonin [41].

Chandra et al. [87] investigated the magnetic field dependence of the thermal conductivity of Nb.

They found that the quasi-particle scattering from vortices dominates in the low field, however,

the intervortex quasi-particle tunneling dominated in high fields. Mondal et al. [88] measured the

thermal conductivity of large grain niobium and investigated its dependence on trapped vortices in

a parallel magnetic field. They found that the phonon peak at around 2 K disappeared due to the

presence of trapped vortices because of strong scattering of phonons by vortex cores.

To the best of our knowledge, the details of researchers’ contributions to experiments on thermal

conductivity of Nb are listed in Table 2.1.

Table 2.1: Chronology of measurements of the thermal conductivity of superconducting Nb. RRR

values marked with asterisks (*) are estimated using measured k(4.2 K) × 4

.

Year RRR T (K) Contributions Ref.

1950 99.99% 2-22 w/ & w/o magnetic field [28]

1952 99.99% 2-22 w/ & w/o magnetic field [29]

1955 99.99% 0.4-0.75 k ∝ T3 with magnetic shielding [45]

1958 36* 1-4.2 Dislocation, ε = 0, 5%, 13.4%, 19.5% [47]

1960 48-54* 1-4.2 Fast neutron irradiation [50]

1961 52* 0.4-9 Dislocation, irradiation, RRR, and boundary [51]

1960 400* 1-4.2 Plastic deformation & dislocation density [89]

1961 56-40* 1-4.2 Measurements in single- and poly-crystal sample [52]

1962 60.5-120 0.2-4.2 Electronic and lattice contribution [53]

1966 NA 0-9.25 Measurements in normal and superconducting metals [54]

1969 29 1.95-9.0 k at mixed state of intermediate purity [55]

1970 196 0.3-6 Anomalous k for T ≤ 0.6, possible 2nd energy gap [58]

1971 99.9% 1.3-2.1 hKapitza, annealed and chemically polished [57]

Table 2.1 (cont’d)
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Table 2.1(cont’d)

Year RRR T (K) Contributions Ref.

1971 26 & 2000 0.04-4.2 No evidence of 2nd energy gap [59]

1972 NA 1.79-2.0 Magnetic fields near HC2, electron mean free path [62]

1973 261-961 0.03-4 Dislocation, resonant phonon scattering [90]

1973 NA 0-14 Neutron scattering measurement of phonon line width [91]

1974 26-1800 0.5-4 kg, longitudinal and transverse phonons [60]

1974 100 0.1-4.2 Hydrogen impurity [92]

1974 15.6-24.3 1-10 Dislocation, irradiation, and grain boundary [61]

1974 195 1-15 Phonon scattering of inter. coupling superconductors [64]

1975 15.6-24.3 2.13-6.04 Magnetic field orientation, mixed state [63]

1977 8000* 0.05-23 Surface roughness, phonon scattering [65]

1977 300 0.3-20 Interstitial and substitutional impurity [67]

1978 185-1200 0.3-20 Phonon-dislocation scattering [4]

1979 11.4-4910 9-50 Bulk Nb and Nb thin films [66]

1983 NA 80-400 kg at intermediate T [71]

1983 500 1.5-4 Thermal transport of metal Kapitza resistance [72]

1985 25-2000 1-9 k on thermal breakdown field [35]

1985 65-300 4-9 New purification technique to improve k [73]

1985 185-1200 0.3-20 Electron-phonon scattering [68]

1985 185 0.3-20 Deformation at intermediate temperatures [3]

1987 185-1200 0.3-20 Heterogeneity of dislocation distribution [69]

1988 25-350 2-10 Electron beam melting, hot and cold working [74]

1991 40-250 1.5-20 Anneal, grain size, RRR [77]

1994 38-270 1.4-2.15 hKapitiza and k [78]

1996 N.A. 1.2-4.2 Lattice k of Nb-Ta alloys [79]

Table 2.1 (cont’d)
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Table 2.1(cont’d)

Year RRR T (K) Contributions Ref.

2002 2840-10500 0.03-3 Internal friction [93]

2006 673 1.6-2.1 Number of grains, grain boundary hKapitiza [81]

2007 200-500 0-Tc Large grain Nb performance [6]

2007 230-300 1.6-4.2 Plastic deform., low T heat treatment, hKapitiza [7]

2008 280,470 0-Tc Single crystal Nb, SRF performance [82]

2010 230-300 1.6-4.2 Phonon peak, hKapitiza [83]

2011 104-196 1.5-4.5 Heat treatment, phonon scattering [85]

2012 224±8 1.5-Tc BCP, heat treatment, surface resistance [12]

2012 280 2-12 Magnetic field, impurity [87]

2012 61-158 1.8-5 Trapped vortice, large grain Nb [88]

2013 104-196 1.5-4.5 Grain size, orientation, impurity, ε , H.T., kpp [8]

2017 N.A. 0.1-0.6 Thin wires, k at low T deviates from BCS [94]

2.2 Models on thermal conductivity of Nb

Heat is carried by both the conduction electrons and the lattice vibrations in metals [37]. The

thermal conductivity of Nb can be modeled as consisting of electron transport of energy and

phonon transport of energy. These two components are additive and can be expressed as Eq. 2.3.

In normally conducting metals, the phonon part is usually negligible due to scattering of normal

electrons. However, in the superconducting regime, the formation of free electrons into Cooper

pairs leads to a reduction in the electron contribution to energy transport as well as a reduction in

scattering of phonons by electrons [39]. Therefore, the phonon contribution to thermal conduction

increases in significance in superconducting materials.

Callaway [95] developed a phenomenological model for the lattice thermal conductivity at

low temperature by considering the different scattering mechanisms of phonons, such as boundary
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scattering, the normal three phonon process, impurity scattering, and Umklapp process, based on

the Boltzmann transport equation (BTE). At very low temperatures, the boundary scattering is

dominant, the normal process is small and can be neglected. The total lattice thermal conductivity

can be expressed as

k =
k3

B

~3
kB

2π2vg
T3

∫ ΘD/T

0

τ exp(x)x4

(exp(x) − 1)2
dx (2.15)

where x = ~ω
kBT is the non-dimensional frequency, vg is the group velocity, here taken as a

constant with the value of sound velocity (no dispersion considered), τ is the overall relaxation

time of different scatterings, including phonon-phonon scattering, phonon-electron scattering,

phonon-impurity scattering, phonon-boundary scattering (phonon-grain boundary scattering), and

phonon-dislocation scattering, and ΘD is the Debye, here taken as ΘD=275 K for Nb.

The Callaway model assumes that all phonon modes are scattered independently of one another

and uses the Debye approximation. The Debye approximation assumes that there is no phonon

dispersion, in other words, the longitudinal and transverse acoustic polarizations behave identically.

Holland [96] extended Callaway’s model by treating transverse and longitudinal acoustic phonons

differently to estimate the lattice thermal conductivity. This model agrees well with the Callaway

model in the impurity scattering and boundary scattering regions. The Holland model improves

the accuracy of estimating the lattice thermal conductivity by considering the linear dispersion.

However, this model still considers the overall relaxation time. Moreover, as the model is under the

assumption of linear dispersion, it would be difficult to estimate the lattice thermal conductivity of

materials with non-linear dispersion.

Klemens [44] did systematic research on the expressions of scattering relaxation times which

contribute to the lattice thermal conductivity, including phonon-phonon scattering, phonon-impurity

scattering [44], phonon-point defect scattering [97], and phonon-dislocation scattering [44]. Re-

garding to the lattice thermal conductivity of superconductors, Klemens and Tewordt [44] studied

the reduction of lattice thermal conductivity due to point defects.

The relaxation time is related to the phonon mean free path Λp as
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τ =
Λp

vg
(2.16)

where vg is the phonon group velocity. In the case of phonon-electron scattering, the relaxation

time can be calculated as the phonon mean free path, which is the inverse of attenuation coefficient

β according to Pippard’s theory [70].

τ =
Λp

vg
=

1
vgβ

(2.17)

At liquid He temperatures (T < 4 K), the lattice thermal conductivity kg is limited by phonon-

electron scattering and phonon-boundary scattering in defect free single crystals [44, 45]. According

to Klemens [98], the electronic thermal conductivity is limited by electron-phonon scattering and

electron-impurity scattering.

BCS theory [39] is the first microscopic theory of superconductivity which describes super-

conductivity as a microscopic effect caused by the condensation of Cooper pairs [99], for which

they won the 1972 Nobel Prize. BRT [42] extended this theory to the thermal conductivity of

superconductors by treating the excited states as quasi-particles to apply to the BTE. Tewordt

[100] investigated the intrinsic electronic thermal conductivity of superconductors by introducing a

nonequilibrium part of the distribution function into the corresponding BTE. He found the ratio of

thermal conductivity in the superconducting state to that in the normal conducting state increases

monotonically with T/Tc with a limiting slope close to 1.62 at Tc. Tewordt and Wölkhausen [80]

established the theory of lattice thermal conductivity of high Tc superconductors by considering

phonon-boundary scattering, phonon-point defect scattering, phonon-strain field scattering , and

phonon-electron scattering, based on the BCS theory. The expression is shown in the following.

kg(t) = A1t3
∫ ∞

0
dx

x4ex

(ex − 1)2
× [1 + A2t4x4 + A3t4x2 + A4t x + A5t xg(x, y)]−1 (2.18)

where t = T/Tc is the reduced temperature, x = ~ω
kBT is the reduced frequency, A1 accounts for

the scattering of phonons by boundary, A2 is for the scattering of phonons by point defect, A3
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represents the scattering of phonons by strain field of sheetlike faults, A4 is for the scattering of

phonons by strain field of dislocations, and A5 accounts for the scattering of phonons by electrons.

Connolly andMendelssohn [53] measured the thermal conductivity of Nb and Ta below 1 K and

analyzed their data into its electronic and lattice components. Their analysis agrees well with BCS

theory. Anderson et al. [23] analyzed their thermal conductivity data of Nb by using Kinetic theory

and separating the phonon mean free path into phonon boundary scattering and phonon dislocation

scattering before and after deformation. Anderson and O’Hara [101] investigated the interaction

of phonons by electrons to contribute to the thermal conductivity of Nb, they concluded that the

mean free paths of transverse and longitudinal phonons are similar, which is close to 4 × 10−5T−1

(cm K), in the normal state. Amrit [81] developed a model to investigate the effect of average

grain size, Kapitza resistance at grain boundaries and number of grains on the thermal conductivity

of poly-crystal Nb. The model predicted a strong spatial anisotropy in determining the thermal

conductivity for more than 10 grains.

Koechlin and Bonin [41] modeled the thermal conductivity of superconducting Nb by pa-

rameterizing the BRT [42] expression according to Bardeen-Cooper-Schrieffer (BCS) theory [39]

as

k = ke + kg = R(y)
[ ρ

LT
+ AT2

]−1
+

[
1

D exp(y)T2 +
1

BΛT3

]−1
(2.19)

where the two terms in ke are due to electron-impurity scattering and electron-phonon scattering,

respectively, and the two terms in kg are due to phonon-electron scattering and phonon-boundary

scattering, respectively. The term R(y) quantifies the condensation of normal conducting electrons

into Cooper pairs [42].

Chandrasekaran et al. [84] improved this model by estimating directly from the temperature and

heat flux measurements instead of estimating from the intermediate thermal conductivity results.

This new estimating method groups coefficient of Tn in the model as different βs in the following

β1 =
ρ295K
LRRR

, β2 = a, β3 =
1
D
, β4 =

1
BΛ

, β5 =
∆(T)
kBTc

(2.20)

Equation 2.19 can be redefined as
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k = R(y)
[
β1
T
+ β2T2

]−1
+

[
β3

exp(y)T2 +
β4
T3

]−1
(2.21)

with

y = β5
Tc
T

(2.22)

Xu et al. [43] further improved this model by including the phonon dislocation scattering

separately from boundary scattering in examining the lattice thermal conductivity. The model can

be expressed as

k = R(y)
[ ρ

LT
+ AT2

]−1
+

[
1

D exp(y)T2 +
1

BΛT3 +Wd

]−1
(2.23)

where Wd = KNd/T2 is the thermal resistance of phonon dislocation scattering expressed in

Eq. 2.4. Based on the properties of Nb, Klemens expressed Wd [44] for randomly distributed

dislocations as
WdT2

Nd
= 3.05 × 10−15 m3K3/W (2.24)

According to Wasserbäch [4], Bross analyzed Wd in Cu for edge and screw dislocations. Bross

obtained results to be 1.67 and 1.26 greater for edge and screw dislocations, respectively, than

the values evaluated by Klemens of Eq. 2.8 [44]. Then the following equations are assumed for

modeling the effect of dislocations to Nb.(
WdT2

Nd

)edge

= 5.08 × 10−15 m3K3/W (2.25)

(
WdT2

Nd

)screw

= 3.85 × 10−15 m3K3/W (2.26)

Comparisons of data from [4] with fitting of the model are shown in Fig. 3.6 for a sample

with RRR=250 after uniaxial straining of 14.7%. Fitting including the dislocation term improves

comparison qualitatively and quantitatively with the experimental results [4], especially for samples

after deformation and at low temperature. This improved agreement suggests that the observation

by Koechlin and Bonin of a deviation in the fitting of their low temperature data using Eq. 2.19
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Figure 2.7: Comparison between fitting with or without the dislocation term for deformed sample
[4]. The estimated value of dislocation density is Nd = 3.83 × 1014 m−2.

[41] may have been due to the lack of a phonon-dislocation scattering term. It also supports the

idea that phonon-dislocation scattering contributes significantly to the thermal conductivity of Nb

at low temperatures.

In Pippard’s theory of free electrons in an isotropic metal, the longitudinal waves interact with

the conduction electrons due to the density variation of the lattice contributing to the electric field

of the space charge [102]. The transverse waves cause no density variation, therefore, no space

charge. The attenuation coefficients for longitudinal and transverse waves can be written as

β j =
NmvF

Dmv jΛeFj(z)
(2.27)

where N is the number of conduction electrons per unit volume, m is the electronic mass, vF

is the Fermi velocity, Dm is the mass density, Λe is the electron mean free path, and Fj(z) is a
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Table 2.2: Numerical integration results for I1(z) and I2(z) [1]

TΛe (cm K) I1(z) I2(z)
10−8 2471 1493
10−7 247.3 150.9

7 × 10−7 37.34 30.99
9 × 10−7 29.92 28.41

10−6 27.36 27.77
1.2 × 10−6 23.58 27.25
1.5 × 10−6 19.89 27.59
2 × 10−6 16.30 29.57
3 × 10−6 12.90 35.58

4.5 × 10−6 10.78 46.20
6 × 10−6 9.786 57.44

10−5 8.666 88.23
10−4 7.336 79.38

function of phonon wave vector q and Λe (z = qΛe), j denotes the longitudinal (l) or transverse (t)

phonon branch.

For the longitudinal branch

Fl(z) =
z2 arctan(z)

3(z − arctan(z))
(2.28)

For the transverse branch

Ft(z) = 1 −
3

2z2 ((y
2 + 1)

arctan(z)
z

− 1) (2.29)

With these attenuation coefficients, the lattice thermal conductivity of metals considering

phonon scattering with electrons only is obtained from Eq. 6.1

kpe =
Dmk3

BT2

(π3NmvF~2) ∗ I j(z)
(2.30)

where

I j(z) =
π

6

∫ ∞
0

zFj(z)x3 exp(x)
(exp(x) − 1)2

dx (2.31)

where x = ~ω
kBT is the reduced frequency. The integrals I j(z) have been tabulated by Lindenfeld

and Pennebaker [103] in Table 2.2.

The number of free electrons decrease exponentially with temperature when it comes into

superconducting state, because of the condensation of electrons into Cooper pairs. Assuming the
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number of free electrons at the normal conducting state is N0, the expression for the number of free

electrons at superconducting state is

N = N0 exp(−y) (2.32)

Equation 2.30 becomes

kpe =
Dmk3

B

(π3N0mvF~2) × I j(z)
exp(y)T2 (2.33)

The front part of the above equation
Dmk3

B
(π3N0mvF~2)×I j (z)

corresponds to the parameter D in

Koechlin and Bonin’s model [41] for phonon-electron scattering. The value of this parameter is

calculated to be from 6.85×10−3 to 7.55×10−3 WK3m−1 in the superconducting temperature range.

This value is within 10% of the value D obtained from fitting with experimental data. It should be

mentioned that there is no adjustable parameters in this model.

Table 2.3: Research progress on modeling k of superconducting Nb .

Year Principle Investigator Contributions

1954 Wilson [37] Theory of thermal conductivity of metals

1955 Klemens [44] Phonon-impurity and phonon-dislocation scattering

1957 BCS [39] Superconducting theory

1958 Klemens [38] Scattering relaxation time in dielectrics

1959 Callaway [95] Model of conduction in dielectrics

1959 BRT [42] Theory of Superconductivity

1960 Klemens [97] Phonon-point defect scattering

1962 Connolly [53] Electronic and lattice contribution

1963 Holland [96] Consider linear dispersion

1963 Tewordt [100] Theory of electronic thermal conductivity

1964 Klemens and Tewordt [98] Phonon-defect scattering for superconductors

Cont’d on next page
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Table 2.3 – Cont’d from previous page

Year Principle Investigator Contributions

1974 Anderson [23] Mean free path of scatterings

1974 Anderson [101] Longitudinal and Transverse phonons

1974 Kes [61] Details of scattering relaxation time of Nb

1978 Wasserbach [4] Phonon-dislocation scattering

1985 Wasserbach [3] Phonon-electron scattering

1989 Tewordt [80] Thermal conductivity of high Tc superconductors

1993 Goodson [104] Theory of k of High Tc superconductor

1996 Koechlin and Bonin [41] Parameter estimation of thermal conductivity of Nb

2006 Amrit et al.[81] Grains, Grain boundaries, Kapitza resistance

2010 Chandrasekaran et al.[84] Estimation from heat flux and temperature

2017 Xu et al. [43] Phonon-dislocation scattering explicitly

2.3 Conclusion

The thermal conductivities of superconducting Nb have been measured and modeled since

the 1950s. Even so, there are some important omissions in our understanding of the relation-

ships between k and other material properties including the effect of dislocations, impurities,

and boundaries. This thesis is to explicitly examine these effects on the thermal conductivity of

superconducting Nb and Ta.
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CHAPTER 3

EFFECT OF DEFORMATION ON THE THERMAL CONDUCTIVITY AND PHONON
PEAK TEMPERATURE OF NB

3.1 Introduction

Manufacturing SRF cavities fromNb sheets requires large deformation that increases dislocation

density [105], which has been shown to reduce the thermal conductivity of superconducting large

grain Nb [3, 4, 8, 23, 57, 61]. Mendelssohn et al.[47] were the first researchers to attempt to

quantify the phonon conduction in superconductors using the dislocation density Nd by measuring

the thermal conductivity of superconducting Pb and Nb. A model from Van Bueren [48] was used

to calculate the dislocation density for face-centered cubic (FCC) lattices (e.g., Pb), and the model

of Klemens [44] was used to account for the temperature dependent thermal conductivity due to

dislocations for body-centered cubic (BCC)materials (e.g., Nb). He found a localmaximum thermal

conductivity at 2.4 K for an unstrained Nb sample and the peak disappeared after 5% deformation.

Wasserbäch measured the thermal conductivity of Nb after uniaxial straining of up to 22.2% [4].

An example of these data for a single specimen for which its conductivity was measured after

each increment of deformation as replotted in Fig. 2.6. The thermal conductivity for temperatures

colder than 3 K decreases with increasing deformation. Of particular note is the phonon peak in

conductivity kpp at approximately 2 K that decreases with increasing deformation. Wasserbäch

examined the effect of deformation on conduction [3] by using a relaxation time approximation

according to the Callaway model [95] with the relaxation time expression from Klemens [44].

Scattering of phonons by electrons, which is a significant factor at the working temperature of SRF

cavities, was not included in the analysis. Chandrasekaran [8] measured the effect of deformation

on k and quantified the role of subsequent heat treatment on the recovery of phonon peak and

the decrease in dislocation density. A phonon peak that has disappeared after deformation can be

partially restored with heat treatment of appropriate temperature and duration [85]. In analyzing
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Figure 3.1: Measured phonon peak temperatures Tpp for undeformed, deformed, and annealed
specimens as a function of the ratio of the thermal conductivity at the phonon peak kpp to the local
minimum thermal conductivity klm.

the effect of deformation on conductivity, Chandrasekaran used only kpp to estimate the dislocation

density. Koechlin and Bonin [41] used a simplified equation based on the BRT model [42] (see Eq.

2.19) to fit the experimental results. This equation was reparameterized by Chandrasekaran [84]

for analysis and to reduce uncertainties in estimating the thermal conductivity of Nb. However,

neither of these equations considered the scattering of phonons by dislocations, which might be the

reason that Koechlin and Bonin noted discrepancies in fitting of k at temperatures lower than 2 K

[41].

Figure 3.1 shows reported values of 1.72 ≤ Tpp ≤ 2.35 K for a number of studies of supercon-

ducting Nb [4, 7, 8, 12, 23, 61, 64, 78, 92] as a function of kpp/klm, where klm is defined as the

thermal conductivity at the local minimum, it typically appears at about T=3 K for Nb. Previous

studies have indicated that kpp is a function of dislocation density. This new observation suggests
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that both kpp and Tpp are functions of the dislocation density, and thus the deformation of Nb. This

further suggests that the scattering of phonons by dislocations should be accounted for explicitly

in the models of thermal conductivity. Figure 3.1 also shows the little discussed observation that

the temperatures at which kpp occurs increases as kpp decreases. Typically, the temperature of the

phonon peak Tpp of superconducting Nb is cited as occurring in the range 1.8 ≤ Tpp ≤ 2 K, but

studies do not note a systematic variation. This addition of the dislocation term, and some of its

implications, is considered here.

3.2 Analysis

The results in Fig. 3.1 represent measurements from several studies for as received, deformed,

and annealed specimens. The temperature Tpp is plotted as a function of the ratio kpp/klm.

Chandrasekaran [8] showed that kpp/k3, where k3 is the thermal conductivity of 3 K, correlates

inversely with dislocation density for a given specimen having undergone deformation or heat

treatment. Although there is scatter in the data in Fig. 3.1, resulting from various sample processing

histories and experimental techniques, there is a clear trend of Tpp decreasing with increasing value

of kpp/klm, and thus with decreasing dislocation density. Samples tested before deformation or

after heat treatment have larger values of kpp/klm. For T > 3 K, the effect of dislocation density

can be neglected because the electron contribution dominates the thermal conductivity at this

temperature range.

Figure 3.1 further shows that undeformed samples typically have colder Tpp, but greater kpp.

For deformation typically less than ε =3% strain, kpp decreases and Tpp increases. For uniaxial

straining greater than 3%, the phonon peak disappears in most samples because of the increase

of thermal resistance due to the scattering of phonons by dislocation. High purity samples,

however, maintain a phonon peak after greater deformation (e.g., the sample shownwith RRR=1200

maintains a phonon peak after 4% uniaxial straining [4]). Deformation not only affects the value of

thermal conductivity, but also has an apparent effect on Tpp. Heat treatment that causes dislocation

annihilation (recovery) can reduce dislocation content [12] to partially or fully restore the phonon
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peak, depending on the annealed temperature and duration. Chandrasekaran [8] showed that 1000
◦C for 4 hours is enough to nearly recover the phonon peak to that of the undeformed state.

As mentioned above, the scattering of phonons by dislocations should be included in the model,

especially for Nb following deformation. Inspired by Klemens [44], a dislocation term may be

added to Eq. 2.19 to account for the effect of dislocation as in Eq. 2.4.

3.2.1 Scaled sensitivity coefficient

To examine the effects of different scattering mechanisms, the scaled sensitivity coefficients of

phonons scattered by boundaries, normal electrons, and dislocations are plotted with temperature.

3.2.1.1 Scaled sensitivity coefficient of boundary scattering

The scaled sensitivity coefficients are calculated as the product of the scattering parameters with

the partial derivative of thermal conductivity over the parameters. Therefore, the scaled sensitivity

coefficient has the same unit as the the thermal conductivity.

χB = B
∂k
∂B
=

1
BΛT3

[
1

D exp(y)T2 +
1

BΛT3 +
KNd

T2

]−2
(3.1)

where χB is the scaled sensitivity coefficient due to phonons scattered by boundaries.

3.2.1.2 Scaled sensitivity coefficient of normal electron scattering

Similarly, the scaled sensitivity coefficient of phonons scattered by electrons is shown as the

following

χD = D
∂k
∂D
=

1
D exp(y)T2

[
1

D exp(y)T2 +
1

BΛT3 +
KNd

T2

]−2
(3.2)

where χD is the scaled sensitivity coefficient due to phonons scattered by electrons.
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Figure 3.2: The scaled sensitivity coefficients of phonons scattered by boundary (parameter B) as
a function of temperature. The B values vary from 2 × 103 Wm−2K−4 to 10 × 103 Wm−2K−4.

3.2.1.3 Scaled sensitivity coefficient of dislocation scattering

The scaled sensitivity coefficient of phonons scattered by dislocations is shown as

χN = Nd
∂k
∂Dd

= Wd

[
1

D exp(y)T2 +
1

BΛT3 +
KNd

T2

]−2
(3.3)

where χN is the scaled sensitivity coefficient due to phonons scattered by dislocations.

The scaled sensitivity coefficient of phonons scattered by boundaries is plot in Fig. 3.2. The

values of D and Nd are kept the same and the B values vary from 2 × 103 Wm−2K−4 to 10 × 103

Wm−2K−4 to investigate the effect of phonons scattered by the physical boundaries. Similarly,

for phonons scattered by normal electrons, the values of B and Nd are kept the same and the D

values vary from 2 × 10−3 WK3m−1 to 10 × 10−3 WK3m−1. The scaled sensitivity coefficient

of phonons scattered by boundaries is plot in Fig. 3.3. For phonons scattered by dislocations, the
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Figure 3.3: The scaled sensitivity coefficients of phonons scattered by normal electrons (parameter
D) as a function of temperature. The D values vary from 2×10−3 WK3m−1 to 10×10−3 WK3m−1.

values of B and D are kept the same and the Nd values vary from 2 × 1012 m−2 to 10 × 1012 m−2.

Taking the example of screw dislocations, the scaled sensitivity coefficient of phonons scattered by

dislocations is plotted in Fig. 3.4.

Comparing Fig. 3.2 and Fig. 3.3 shows that χB and χD nearly have the same shape and

magnitude, but of the maximums occurs at different temperatures. Figure 3.4 shows χN is of

different magnitude and sign. The different sign is because the lattice k decreases with Nd , while

the lattice k increases with parameter B (i.e., specularity) and D (i.e., free electrons). It can be also

seen from the figures of scaled sensitivity coefficients that the maximum occurs at about T=1.5 K

for parameter B, higher than 2 K for parameter D, andT ≈ 1.8K for parameter Nd . This observation

confirms that boundary scattering dominates the lattice k at the lowest temperature, dislocation

scattering affects the lattice k at about the phonon peak temperatures (i.e. 1.6 K < T < 2.2 K), and
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Figure 3.4: The scaled sensitivity coefficients of phonons scattered by dislocations (parameter Nd)
as a function of temperature. The Nd values vary from 2 × 1012 m−2 to 10 × 1012 m−2.

the phonons scattered by normal electrons start to affect the lattice k at T > 2 K.

3.3 Results and Discussion

Comparisons of data from [4] with fitting of Eq. 2.4 are shown in Fig. 3.5 for an undeformed

sample with RRR=250 and Fig. 3.6 for the same sample after uniaxial straining of 14.7%. The

differences in thermal conductivity betweenmeasurement data and the fitting results are also plotted

for samples before and after deformation, to examine the accuracy of the model, as shown in Fig.

3.7 and Fig. 3.8. The residuals are similar in magnitude for the undeformed specimen in Fig. 3.7,

because the thermal resistance due to phonons scattered by dislocations is negligible compared to

that for phonons scattered by boundaries for samples before deformation. However, the residuals are

significant in Fig. 3.8, but the fit that includes the dislocation term has residuals close to 0. The fit
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Figure 3.5: Comparison between fit with or without dislocation term for an undeformed sample
from [4]. The estimated value of dislocation density is Nd = 4.67× 1012 m−2. Both the fitted lines
for temperatures lower than 1 K and higher than 2.5 K agree well with the experimental data. At
1.5 K < T < 2 K, fitting with the dislocation term has k values lower than the experimental results,
while fitting without dislocation term has k values higher than the experimental results. The fit
with or without the dislocation term provides similar accuracy for undeformed samples.

with the dislocation term included improves qualitatively and quantitatively with the experimental

results [4], especially for samples after deformation and at low temperature. This improved

agreement suggests that the observation by Koechlin and Bonin of a deviation in the fitting of their

low temperature data [41] may have been due to the lack of a phonon-dislocation scattering term in

their model. It also supports the idea that phonon-dislocation scattering contributes significantly

to the thermal conductivity of Nb at low temperatures.

Several other sets of data from Wasserbäch [4] were fitted using the above method to examine

the role of dislocation density and its effect on the thermal conductivity of Nb. These fits are shown
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Figure 3.6: Comparison between fitting with or without dislocation term for deformed sample
[4]. The estimated value of dislocation density is Nd = 3.83 × 1014 m−2. Both the fitted lines
for temperatures lower than 1 K and higher than 2.5 K agree well with the experimental data.
At 1 K < T < 2.5 K, fitting with dislocation term matches well with the experimental results,
while fitting without the dislocation term deviates from the experimental results. The fit with the
dislocation term improves the accuracy for samples after deformations.

in Fig. 3.9 for screw dislocations and Fig. 4.8 for edge dislocations. Wasserbäch [4] calculated

the dislocation density for sample K6 to be on the order of magnitude of 1014 m−2 after the

last deformation (14.7%), without including phonon-electron scattering. The dislocation density

extracted from the fit for the 14.7% deformation case is 3.83 × 1014 m−2. The dislocation density

reaches 1014 m−2 after 10% deformation 1.57×1014 m−2. These are in reasonable agreement with

values given by Wasserbäch [4], where he mentioned that the mean value of the dislocation density

after transmission electron microscopy (TEM) measurement is in the range of 0.8 to 1 ×1014 m−2.

Using the enhanced model of Eq. 2.4, the effect of the magnitude of dislocation density on the
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Figure 3.7: Differences between measurement data and the fit results of thermal conductivity with
or without the dislocation term for an undeformed sample [4]. Here the differences, which are also
called the residuals, are calculated as km − k f , where km is the measured thermal conductivity and
k f is the fitted data.

thermal conductivity is studied. It is found that the phonons scattered by dislocations only affects

the thermal conductivity when the dislocation density reaches a certain magnitude, e.g., 1012 m−2,

shown in Fig. 3.11 by fitting the experimental results from [8] and varing the dislocation density in

the model. The best fit is at Nd < 1012 m−2. However, the plots in Fig. 3.11 almost overlap with

each other for Nd < 1012 m−2, indicating the scattering of phonons by dislocations is not important

at these low values of dislocation density. The reason appears to be that phonon-boundary scattering

dominates the heat conduction at low temperatures [46], and that the thermal resistance of phonons

scattered by dislocations for Nd < 1012 m−2 is much smaller than that of boundary scattering, as

shown in Fig. 3.12. A threshold of dislocation density for contributing the thermal conductivity of
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Figure 3.8: Differences between measurement data and the fit results of thermal conductivity with
or without the dislocation term for a sample after 14.7% deformation [4]. Here the differences,
which are also called the residuals, are calculated as km − k f , where km is the measured thermal
conductivity and k f is the fitted data.

Nb is established here to be Nd = 1012 m−2 using the proposed model.

The ratio of dislocation density after deformation Nd to that before deformation Nd0 is plotted as

a function of deformation (i.e., uniaxial straining), shown in Fig. 3.13 for samples of varying RRR

from [4]. This ratio increaseswith increasing deformation, the slope for sampleswith predominantly

edge dislocations is larger than that for those with predominantly screw dislocations, implying

that edge dislocations have greater influence on thermal conductivity. Note that the undeformed

dislocation density is different for each sample, perhaps due to different RRR. For example, the best

fit of the undeformed dislocation density for sample H2 (RRR=1200) is 6.11× 1010 m−2, however,

the values for the other three samples are approximately 1012 m−2 with similar RRR values for

42



0 1 2 3 4 5
0

20

40

60

80

100

Temperature (K)

T
he

rm
al

 c
on

du
ct

iv
ity

 (
W

m−
1 K

−
1 )

 

 

Undeformed N
d
=0.467×1013 /m2

3% deformation N
d
=1.47×1013 /m2

7.3% deformation N
d
=6.46×1013 /m2

10.3% deformation N
d
=15.7×1013 /m2

14.7% deformation N
d
=38.3×1013 /m2

Figure 3.9: Thermal conductivity of a sample from [4] (an example of predominantly screw
dislocation) using curve fitting including the effect of dislocation. Here the dislocation density is
estimated from Eq. 2.4 for the Cauchy strain ε =0%, 3%, 7.3%, 10.3%, and 14.7%, respectively.
Wasserbäch [4] provided a mean value of the dislocation density to be 0.8 − 1 × 1014 m−2, and the
dislocation density measured at 14.7% is on the order of magnitude of 1014 m−2.

185, 250, and 350.

3.4 Conclusion

For high performance of SRF applications, large values of thermal conductivity are desired for

improved thermal stability. However, higher working temperature might yield significant savings

in the total energy required for SRF cavity operations. Therefore, optimization of the phonon peak

temperature and the value of thermal conductivity at that temperature becomes necessary for the

thermal design of SRF cavities.
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Figure 3.10: Thermal conductivity of a sample from [4] (an example of predominantly edge
dislocation) using curve fitting including the effect of dislocation. Here the dislocation density is
estimated from Eq. 2.4 for the Cauchy strain ε =0%, 4%, and 8% respectively. Wasserbäch [4]
provided a mean value of the dislocation density to be 1−2×1014 m−2, and the dislocation density
measured at 8% is on the order of magnitude of 1014 m−2.

Analysis of the thermal conductivity of superconducting Nb shows that in addition to kpp

decreasing after deformation, there is an increase in Tpp. The proposed model adds a phonon–

dislocation scattering term that improves the accuracy of fits to experimental results, especially for

samples after deformation. The proposed model can also be used to infer the dislocation density

frommeasurements of k, as shown in Fig. 3.13. Results show that a threshold of dislocation density

exists below which there is no significant effect on the thermal conductivity. A dislocation density

smaller than 1012 m−2 has little contribution to the thermal conductivity of superconducting Nb,

buy boundary scattering dominates at low temperatures, as shown in Fig. 3.11.
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Figure 3.11: The effect of dislocation density on thermal conductivity of Nb at temperature between
1.5K and 4.5K. Equation 2.4 is used to fit the experimental results from [8]. The results are obtained
by using the fitted parameters (e.g., B, D, a) and changing Nd .
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Nd .

46



0 5 10 15 20 25
10

0

10
1

10
2

10
3

10
4

Deformation (%)

N
d / 

N
d0

 

 

Sample H1   RRR=350
Sample K6   RRR=250
Sample H2   RRR=1200
Sample K10 RRR=185
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CHAPTER 4

MONTE CARLOMODEL OF THE LATTICE THERMAL CONDUCTIVITY OF NB

4.1 Introduction

The BTE has been successfully used to model phonon transport in both macro- and micro-

scale heat conduction [95, 96, 106–108]. Solutions of the BTE are either through deterministic

approaches [109–112] or stochastic methods (i.e., Monte Carlo method) [9, 113, 114]. However,

in the deterministic methods, the dispersion relationship has been omitted and the transverse and

longitudinal polarization of the acoustic phonons has been replaced by a single effective polarization

branch. The dispersion relation is important for modeling thermal transport because it provides

details of the distribution of the properties of each phonon (i.e., frequency, wave vector, and

group velocity). In addition, in the deterministic methods, complex geometries result in high

computational costs and the computational time increases exponentially with increasing dimension

(i.e., from 2D to 3D).Moreover, nonlinear scattering events are also difficult to incorporatewithout a

relaxation time approximation because the individual scattering events cannot be treated in isolation,

where the relaxation time is defined as a time constant during which the distribution function relaxes

to its equilibrium state. The stochastic Monte Carlo method is robust for modeling the dispersion

of phonon transport from micro-scale to macro-scale. It is well suited for complex structures and

multi-dimensions, and compared with molecular dynamics, it can reduce computational cost with

large model size [115].

The Monte Carlo method has been widely used for phonon and electron transport [9, 113, 114,

116–128]. This method was first used to solve the BTE in modeling hot electrons in metal films

[129]. Since then, it has been widely used in studying drift velocity and diffusion coefficients

of charge transport in semiconductors [130], electron-electron interactions in GaAs [131], and

thermal conductivity of thin films [114, 124], nanowires [118, 122], and nanotubes [116]. The

Monte Carlo method has been successfully used to study ballistic phonon transport based on the
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Debye model by assuming the same propagating speed and average lifetime interactions among

phonons [113]. The temperature profile as a function of time evolution was predicted using these

assumptions. Mazumder and Majumdar [114] presented a comprehensive solution of the BTE

by considering phonon dispersion and polarization. Their simulation results agree well with the

experimental results for Si at temperatures between 20 K and 300 K. Mittal and Mazumder [124]

extended this model by including optical phonons, resulting in better matching with experimental

observations for the thermal conductivity of Si thin-films. McGaughey and Jain [123] predicted

the thermal conductivity of nanoscale Si thin films with arbitrary geometries. Lacroix et al. [9]

developed a distribution function by considering the collision processes with respect to energy

conservation during phonon scattering events in thin films. Their results provided good agreement

with experimental results for phonon transport in both the ballistic and diffusion regimes. Chen

et al. [118] modeled the phonon transport in single crystal Si nanowires by using a genetic algo-

rithm including energy and momentum conservation in modeling the phonon-phonon normal and

Umklapp scattering processes. Jeng et al. [120] modeled the thermal conductivity in nanoparticle

composites of Si-Ge. They reproduced the earlier reported BTE results to validate their Monte

Carlo model and then used the validated simulation method to study nanoparticle composites and

showed that the thermal conductivity of nanoparticles can be smaller than that of the bulk value.

Péraud et al. [126] proposed an energy-based variance-reduced Monte Carlo method. This method

only needs to model the deviation in the energy of a particle population from its nearby equilibrium,

with the equilibrium described analytically. This technique saves significant computational cost as

compared with standard Monte Carlo methods.

4.2 Boltzmann Transport Equation

The general form of BTE for phonon can be written as [114]

∂ f
∂t
+ vg · ∆ f =

[
∂ f
∂t

]
scat

(4.1)

where f (r, q, t) is the distribution function of an ensemble of phonons, which is related with

position r , time t, and wave vector q, and vg is the phonon group velocity. The left hand side of

49



this equation represents the change of the distribution function due to motion or drift, and the right

hand side represents the change due to collision or scattering. However, due to the nonlinear nature

of scattering events, the relaxation time approximation is often used to simplify the scattering term

by writing [
∂ f
∂t

]
scat
=

f − f0
τ

(4.2)

where τ is the overall relaxation time due to various scattering mechanisms, such as phonon-

phonon scattering, phonon-impurity scattering, phonon-boundary scattering, and phonon-electron

scattering, and f0 is the phonon distribution function at equilibrium. Here phonon-impurity

scattering refers to phonons scattered by impurities, phonon-boundary scattering refers to phonons

scattered by physical boundaries, and phonon-electron scattering refers to phonons scattered by

normal electrons.

4.3 Monte Carlo Solution Technique

TheMonte Carlo method is used to solve the BTE under stochastic simulation and the relaxation

time approximation. The energy-based variance-reduced technique [126] is used tomodel the lattice

thermal conductivity of superconducting Nb by considering the phonon dispersion relation and the

scattering of phonons by boundaries, normal electrons, and dislocations. The major steps forMonte

Carlo simulation are outlined below.

4.3.1 Initialization

As the geometry of the studied material does not matter in the Monte Carlo simulation [9], a simple

cubic cell stacks is chosen. The first step in the simulation, once medium, geometry, and mesh

haven been chosen, is to initialize the state of an ensemble of phonons within each cell describing

the material.
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4.3.1.1 Number of particles

Using an integrated distribution function, the total vibrational energy of the crystal may be obtained

as [9]

E =
∑

p=L A,T A

∑
q

(
〈nq,p〉 +

1
2

)
~ω (4.3)

where ~ is the reduced Planck constant,ω is the phonon frequency, 〈nq,p〉 is the local thermodynamic

phonon population with polarization p and wave vector q. The longitudinal and transverse acoustic

branches are represented by LA and TA, respectively. The phonon population is assumed to follow

the Bose-Einstein distribution function, that is

〈nq,p〉 =
1

exp( ~ωkBT ) − 1
(4.4)

Introducing a density of state function of phonons, Dp,

Dp(ω)dω =
Vq2dq

2π2 (4.5)

where V is the volume of the three-dimensional crystal. The group velocity of the phonons is

defined based on the dispersion relation as

vg =
dω
dq

(4.6)

Then the total number of phonons in a given volume may be expressed as

N = V
∑

p=L A,T A

Nbin∑
b=1
[

1

exp(
~ωb,p
kBT ) − 1

]
q2

b,p

2π2vgb,p
gp∆ω (4.7)

where gp is the degeneracy of either the LA (gp = 1) or TA (gp = 2), Nbin is the number of

spectral bins (chosen here to be 1000) in the range from 0 to ωmax
L A , as in reference [114], and

∆ω = ωmax
L A /1000.

Even for a small sample of material (e.g., 10 nm silicon cube) at 300 K, there are approximately

5 × 105 phonons [114]. Simulation can be reasonably accomplished only when the temperature

is cold and the dimension size is small. Therefore, a weighting factor W is often used to save
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computational cost by considering a bundle of phonons having the same properties. Then, the

number of particles in the statistical computation N∗ can be expressed as the actual number N

divided by this weighting factor N∗ = N/W . Péraud and Hadjiconstantinou [126] developed

an efficient simulation method to model the deviation energy from the equilibrium by setting a

hypothetical equilibrium temperature as the reference temperature and calculating the differences

between the particle energy and corresponding equilibrium energy, making the computation time

about 15 times faster to reach steady state. They also considered the energy-based method to

provide a convenient and rigorous way to conserve energy automatically. In this method, each

computational particle has the same amount of energy. The number of particles is defined as

N = V
∑

p=L A,T A

Nbin∑
i=1
~ω


1

exp( ~ωkBT ) − 1
−

1
exp( ~ωkBTeq

) − 1


q2

2π2vg
gps(i)∆ω (4.8)

where Teq is the chosen reference temperature, s(i) is the sign of the particle, which is positive if

T > Teq and negative if T < Teq to ensure that N is positive. Then, the energy is conserved by

conserving the number of simulated particles.

During the initialization process, the first cell is set to the hot temperature Th and the last cell

to the cold temperature Tc, while all the other cells are also initially set to the cold temperature.

The energy associated with each cell equals the number of particles in each cell as calculated by

Eq. 4.8 and should match the calculated energy such that

N =
Ncell∑
c=1

N∗∑
i=1

W ∗ s(i) (4.9)

4.3.1.2 Frequency

The number of particles in the ith spectral bin per unit volume is defined as

Ni(T) = 〈n(ω0,i, L A)〈D(ω0,i, L A)∆ω + 2〈n(ω0,i,T A)〈D(ω0,i,T A)∆ω (4.10)

where the equilibrium distribution is evaluated at the central frequency of the spectral bin.

Once the number of particles is initialized, a frequency is assigned to each particle by a

normalized number density function FD. According to Mazumder and Majumdar [114], this
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function is written using the cumulative summation of the number of particles Ni(T) from Eq. 4.10,

that is

FDi(T) =

∑i
j=1 Nj(T)∑Nbin
j=1 Nj(T)

(4.11)

Then, a random number R1 is selected from 0 to 1 and compared with the value of FDi(T) in each

bin. A bisection algorithm [114] is used to choose the ith bin to satisfy FDi−1 6 R1 6 FDi. The

actual frequency of the phonon is randomly chosen from another random number R2 (0 < R2 < 1)

so that the frequency is linearly distributed between ω0 − ∆ω/2 and ω0 + ∆ω/2, that is

ωi = ω0i + (2R2 − 1)
∆ω

2
(4.12)

where ω0i is the central frequency of the ith spectral bin.

4.3.1.3 Polarization

The polarization (either LA or TA) is found from the ratio of the number of LA particles to the

number of TA particles using Eq. 4.8 and the dispersion relation. The associated probability is

expressed as

PL A(ωi) =
NL A(ωi)

NL A(ωi) + NT A(ωi)
(4.13)

where N(ωi) is the number of particles in the branch of LA or TA with respect to the frequency.

Then, a third random number R3 is selected from 0 to 1. If R3 < PL A(ωi), the phonon is on the

LA branch, otherwise, it belongs to the TA branch.

4.3.1.4 Direction

Again, using the dispersion relation, the phonon group velocity can be determined. Assuming

directional isotropy, the spherical coordinates, including the two angles θ and φ, can be chosen so

that the corresponding directions are uniformly distributed in the 4π full-space solid angle. The
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direction Ω can be determined using two random numbers R4 and R5 from 0 to 1, such that

Ω =



sin θ cos φ

sin θ sin φ

cos θ

(4.14)

where cos θ = 2R4 − 1, and φ = 2πR5

4.3.1.5 Location

The last part of the initialization is to set a random location of each particle in each cell. Using the

same method as before, the location of the nth particle in cell u is expressed as

rn,u = ru + Ldx R6i + LdyR7 j + LdzR8k (4.15)

where ru are the coordinates of the cell u, i, j, k are coordinate directions, R6, R7, R8 are random

numbers, and Ldi is the size of the cube at each coordinate.

4.3.2 Drift process

After initialization comes the drift process, during which each particle will move according to its

group velocity vg and timestep ∆t, such that rnew = rold +vg∆t. The timestep here is chosen so that

∆t < Lcx/v
max
g to consider all scattering events, and to avoid ballistic jumps over the cells, vmax

g is

the maximum group velocity. The first and last cells are kept at constant hot and cold temperatures,

and each particle coming into these two cells will be absorbed and re-sampled in order to keep the

boundary cell acting as black-bodies. The rest of the medium is divided into several cells in the

x-direction with the boundaries in the y- and z-directions being assumed to be adiabatic. When a

particle reaches one of these adiabatic boundaries, it will be reflected either specularly (i.e., angle

of incidence equal to angle of reflection) or diffusively (i.e., a random angle of reflection) according

to the degree of surface specularities p (0 6 p 6 1, p = 0 purely specular, p = 1 purely diffuse).

Thus, a random number R9 is drawn, when R9 < p, a new particle drift direction is assigned using
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Eq. 4.14, otherwise, the particle reflects specularly. After the drift process, the energy at each

cell is calculated by the summation of the number of particles, and the temperature of each cell is

computed by numerical inversion of Eq. 4.8.

4.3.3 Scattering

Phonons move inside a crystal structure with group velocity vg and engage with scattering due

to boundary, lattice structure, impurities, electrons, and defects. In the Monte Carlo simulation,

the phonon boundary scattering process is carried out during the drift process, and the other

scattering processes are treated independently from the drift. As phonons are mainly scattered by

boundaries, electrons, and dislocations in Nb at superconducting temperatures [43], the phonon-

phonon scattering and impurity scattering are neglected in this paper [95].

4.3.3.1 Phonon-electron scattering

Phonon-electron scattering is modeled according to Kes [61] by considering the condensation

of electrons into Cooper pairs. Thus, the relaxation time for the phonon-electron scattering is

computed as

τ−1
pe = g(x,T)E xT (4.16)

where g(x, t) quantifies the ratio of the normal-conducting relaxation time to superconducting

relaxation time and is a monotonically decreasing function of the non-dimensional frequency x

(x = ~w/(kBT)), T is the temperature and E is a fitting parameter found to be in the range of

1.4 − 3 × 109 K−1s−1.

Assuming g(x,T) = g(0,T)(1 − x/(8xm)), where g(0,T) = 2(exp(y) − 1)−1 [61], xm is the

value of x when x4 exp(x)(exp(x) − 1)2 has a maximum. Here xm is calculated as 3.83. Then, the

relaxation rate of phonon-electron scattering is expressed as

τ−1
pe = 2(exp(y) − 1)−1

(
1 −

x
8 × 3.83

)
E xT (4.17)
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The probability of phonon scattered by electrons is

Ppe = 1 − exp
(
−
∆t
τpe

)
(4.18)

where ∆t is the time step of Monte Carlo simulation.

A random number R10 is sampled to compare with the scattering probability Ppe. If R10 < Ppe,

the phonon will be scattered by electrons. As the phonon-electron scattering is considered to be

inelastic scattering, the phonon will be re-sampled after scattering, thus the frequency, wave vector,

and velocity will be reassigned based on the dispersion relation and the number density function.

4.3.3.2 Phonon-dislocation scattering

Phonon-dislocation scattering plays an important role in contributing to the thermal conductivity of

superconducting Nb, especially after deformation [43]. The expression of the phonon-dislocation

scattering relaxation rate is

τ−1
pd = A0γ

2b2Ndw (4.19)

where γ is the Grüneison constant (γ = 1.4 for Nb [61]), b is the Burgers vector, and A0 is a constant.

By applying the relaxation time of phonon-dislocation scattering into the Callaway model [95] and

comparing the expression of the resistance in the Klemens model [44], A0 is evaluated to be

1.1398 for edge dislocations and 0.8639 for screw dislocations. Screw dislocations usually appear

after deformation at temperatures lower than room temparure, whereas edge dislocations appear

following high temperature deformation [4].

The probability of phonons scattered by dislocations is

Ppd = 1 − exp(−
dt
τpd
) (4.20)

Similar to phonon-electron scattering, a random number R11 is assigned to compare with the

probability Ppe. If R11 < Ppd , the phonon will be scattered by dislocations. Here, the phonon-

dislocation scattering is considered to be elastic scattering, so that energy will be conserved after
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scattering. Therefore, only the direction of velocity will be randomly assigned, with the frequency,

wave vector, and magnitude of velocity remaining unchanged.

4.3.4 Calculate the thermal conductivity of Nb

In the present study, the thermal conductivity is calculated knowing the heat flux of phonons through

the medium for a given temperature gradient by directly applying Fourier’s law. The temperature

difference is preset so as to determine average thermal conductivity. The phonon heat flux is

calculated along the temperature gradient as

q
′′
=

N∑
i=1

Ws(i)vgx (4.21)

where vgx is the group velocity in x coordinate.

4.4 Results and Discussion

4.4.1 Temperature profile at the diffusion limit

Comparison of the temperature profile at the diffusion limit was performed in a one-dimensional

Si thin film with the boundary temperatures set as Th = 310 K and Tl = 290 K. The equilibrium

temperature was chosen to be the mean of Th and Tl as Teq = 300 K to reduce the computational

cost. The medium was divided into 20 cells, with each cell being 5 × 10−7 m by 5 × 10−7 m by

5×10−8 m, so the total length in the heat flux direction is 20×5×10−8 = 1×10−6 m = 1 µm. The

time step was chosen to be ∆t = 1 ps and there were 1000 spectral bins for sampling the frequency.

The weighting factor was taken as W = 0.5 × 10−16. First, the diffusion limit (Λ << Lc) was

calculated at steady state. At the diffusion limit, phonon transport follows Fourier’s law and the

temperature profile is linear at steady state, as shown in Fig. 4.1. It shows that the simulation

method successfully models the diffusion limit. One may notice that the simulated temperature is

slightly lower than the diffusion temperature at T < 300 K and slightly greater than the diffusion

temperature at T > 300 K. This is the result of the thermal conductivity of Si being temperature
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Figure 4.1: Comparison of the temperature profile obtained using the Monte Carlo model with
the usual Fourier conduction results in the diffusion limit. Six Monte Carlo simulations have been
carried out to demonstrate the repeatability of the model, and the scatter in the results are shown.

dependent, it changes slightly fromTl = 290 K toTh = 310 K. This is unaccounted for in the simple

diffusion model.

4.4.2 Temperature profile at the ballistic limit

Comparison at the ballistic limit was also performed for the one-dimensional Si thin film. To

enable a simulation using the same geometry of the material, the boundary cell temperatures

were set to be Th = 20 K and Tl = 10 K, because at lower temperatures, the phonon mean free

path of Si increases and becomes too long for the physical geometry of the model. Keeping

the size of the film unchanged, at low enough temperatures, the phonon mean free path will be

comparable to the thickness of the film, causing the temperature distribution to reach the ballistic
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Figure 4.2: Comparison of the temperature profile by Monte Carlo method with Stefen-Boltzmann
equation in the ballistic limit. Six simulations have been carried out to demonstrate the repeatability
of the Monte Carlo model.

limit. The temperature at the ballistic limit was calculated using Stephen-Boltzmann equation as

T = ((T4
h +T4

l )/2)
0.25 = ((204 + 104)/2)0.25 = 17.1 K . Figure 4.2 shows good agreement between

the Stephen-Boltzmann equation and the Monte Carlo method. The maximum error between the

two solutions is approximately 2 percent. At low temperatures, the equilibrium distribution of

phonons is nonlinear [132]. The small error in the Monte Carlo solution is caused by the non-linear

distribution being approximated by a linear function of Nbin = 1000 segments.

4.4.3 Thermal conductivity in bulk Si

Comparison of the thermal conductivity in bulk Si was conducted using a 2 µm length Si rectangle

with the other two sides chosen as 500 nm × 500 nm. Simulation results of the thermal conductivity
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Figure 4.3: Comparison of the thermal conductivity of bulk Si between different methods. The
solid line is Eq. 4.22, the circles come from Monte Carlo simulation by Lacroix et al. [9], and the
stars are the current simulation results.

of Si, as shown in Fig. 4.3, are compared with the Monte Carlo simulation results of Lacroix et al.

[9] and the analytic equation for bulk Si [9] as

kSi =
exp(12.570)

T1.326 (200K 6 T 6 600K) (4.22)

4.4.4 Size effect on thermal conductivity of Si nanowires

Comparison of the thermal conductivity of Si nanowires is carried out for different diameters of

the nanowires (37 nm, 56 nm, and 115 nm). Monte Carlo simulation results are compared with the

experimental data from Li et al. [10], as shown in Fig. 4.4. There is good agreement at the size

of 37 nm and 56 nm. However, there are some discrepancies at d=115 nm for temperatures higher

than 100 K, due to the fact that the same weighting factor was used for different sizes.
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Figure 4.4: Comparison of the thermal conductivity of Si nanowire between current simulations
(solid lines) and the data (triangles) from Li et al. [10]. Six simulations have been carried out and
the error bars were plotted for the Monte Carlo simulation results.

Table 4.1: Parameters for the samples used in the simulation

Sample Size RRR Dislocation Deformation T Heat Treatment
LS 1 3.9mm 350 Screw 195 K NA
LS 2 3.2mm 1200 Edge 295 K NA
LS 3 2mm 224 NA NA 3hr@800◦C &@140◦C

4.4.5 Simulation of the thermal conductivity of Nb

As the ability to characterize the thermal conductivity has been successfully demonstrated, it is

next applied to model the lattice thermal conductivity of superconducting Nb. Samples used in the

model are listed in Table. 4.1

To model the thermal transport of Nb at low temperatures, where phonons dominate the thermal

conductivity, the phonon dispersion relation of Nb is replotted from Jani et al. [11] in Fig. 4.5 for
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Figure 4.5: Phonon dispersion relation of Nb in the [1 0 0] direction, replotted from reference [11],
where a is the lattice parameter, which refers to the physical dimension of unit cell in a crystal
lattice, for Nb, a = 3.3 × 10−10 m.

their experimental work. The phonon dispersion characterizes the relationship between frequency

ω, wavevector q, and group velocity vg. It is the key to accurately model phonon transport and

needs to be considered especially for this non-linear phonon dispersion.

4.4.5.1 Simulation of the lattice thermal conductivity of undeformed Nb

According to BCS theory [39], lattice thermal conductivity of superconductors consists of phonon-

boundary scattering and phonon-electron scattering, where the phonon-defect scattering (i.e.,

phonon-dislocation scattering) is included in the phonon-boundary scattering as the form of

Wd ≈ T−3 [41]. Considering phonon-dislocation scattering as the form of Wd ≈ T−2 [98] in

an extra term [43] demonstrated better fitting with the experimental results. Thus the phonon-

62



1 1.5 2 2.5 3 3.5
Temperature (K)

0

10

20

30

40

50

60

70

L
at

tic
e 

k 
(W

m
-1

K
-1

)
Simulation LS 1
Data Fitting LS 1
Simulation LS 2
Data Fitting LS 2
Simulation LS 3
Data Fitting LS 3

Figure 4.6: Simulation results of lattice k of undeformed Nb or Nb after heat treatment. Data used
from undeformed samples from reference [4] and the sample after heat treatment of reference [12].

dislocation scattering is included in the simulation to model the lattice thermal conductivity of Nb.

Dislocation density is introduced by deformation and it increases with the amount of deformation

[51]. For undeformed Nb, phonon-dislocation scattering can be neglected because of the low dis-

location density. The overall relaxation time in undeformed Nb τscat consists of phonon-boundary

scattering and phonon-electron scattering.

τ−1
scat = τ

−1
pb + τ

−1
pe (4.23)

Simulation results of the lattice thermal conductivity of undeformed Nb sample and heat-treated

sample are shown in Fig. 4.6 and compared with the fitting results using Eq. 2.4 of the phonon

contributions. Heat treatment helps restore the phonon peak and increase the thermal conductivity

because of the recovery (annihilation) of dislocations during heat treatment [8], where the phonon

peak is the point at the local maximum thermal conductivity, which usually appears at around
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2 K for Nb [85]. Therefore, the phonon-dislocation scattering can be neglected for the samples

after appropriate heat treatment [12]. Simulation results agree well with the fitting results over the

temperature range of SRF cavities when including phonon-boundary scattering, phonon-electron

scattering, but neglecting phonon-dislocation scattering.

4.4.5.2 Simulation of the lattice thermal conductivity of deformed Nb

For as-received Nb samples or deformed samples, the dislocation density is typically large thus the

phonon-dislocation scattering cannot be neglected because it contributes significantly to phonon

scattering in superconducting Nb [43]. In general, there are two basic types of dislocations, the

edge dislocations and the screw dislocations. The difference between edge and screw dislocation

is that the edge dislocation occurs when an extra half-plane of atoms exists in the middle of the

crystal lattice whereas the screw dislocation occurs when the planes of atoms in the crystal lattice

trace a helical path around the dislocation line [132]. According to reference [4], edge dislocations

affect the thermal conductivity approximately 1.5 times more than screw dislocations because of

their scattering mechanisms with phonons (there is a well-defined geometrical energy minimum

due to the disturbed lattice positions, and the dislocation can easily wiggle along the line length;

screw dislocation distort the lattice to a smaller extent). The overall relaxation time is expressed

as the sum of phonon-boundary scattering, phonon-electron scattering, and phonon-dislocation

scattering.

τ−1
scat = τ

−1
pb + τ

−1
pe + τ

−1
pd (4.24)

where τpd is the phonon-dislocation scattering relaxation time either predominantly by edge dislo-

cations or by screw dislocations.

Simulation results of the lattice thermal conductivity of Nb LS 1, an example of screw dis-

locations, have been compared with the fitting results for a sample before deformation, after 3%

deformation, 7.3% deformation, and 10.3% deformation. The parameters are extracted from fitting

and are included in the relaxation times of the simulation to consider different scattering mecha-
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Figure 4.7: Simulation results of lattice thermal conductivity of Nb LS 1 from [4], an example of
screw dislocations, for several strains.

nisms separately. The simulation results match well with the fitting results, as shown in Fig. 4.7.

The phonon peak occurs at around 1.8 K in the simulation for sample LS 1 before deformation

and it shifts to about 1.9 K after 3% deformation. After 7.3% deformation, the peak is diffuse and

moves to 2.2 K. There is nearly no phonon peak after 10.3% deformation for this sample. Lattice

thermal conductivity at temperatures lower than the phonon peak temperature is dominated by

phonon-boundary scattering and follows the T3 relation. At temperature higher than the phonon

peak, phonon-dislocation scattering is starting taking over for sample after large amount of defor-

mation. Phonon-electron scattering contributes to the lattice thermal conductivity above 2 K and

is dominant above 3 K.

Simulation results of the lattice thermal conductivity of Nb LS 2, an example of edge dislo-

cations, have been compared with the fitting results for a sample before deformation, after 4%
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Figure 4.8: Simulation results of lattice thermal conductivity of Nb LS 2, from [4] an example of
edge dislocations, for several strains.

deformation, and 8% deformation, as shown in Fig. 4.8 The simulation results match well with the

fitting results of both undeformed and deformed Nb samples by including the effects of phonon-

dislocation scattering. Similar to sample LS 1, the steep phonon peak of the simulation results of

sample LS 2 occurs at about 1.7 K. It moves to be around 2.2 K after 4% deformation with smooth

peak. The phonon peak is much more diffuse after 8% deformation.

4.5 Conclusion

Monte Carlo solutions of the BTE have been successfully performed tomodel the lattice thermal

conductivity of superconducting Nb given the phonon dispersion relationship of Nb. The validity

of the simulation code was first demonstrated at the diffusion and ballistic limits. It was further

demonstrated by comparing the simulation results of the thermal conductivity of bulk and nanowire
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Si with analytical and experimental results [9, 10]. Then, the simulation method, incorporating the

Nb dispersion relation and phonon-boundary, phonon-electron, and phonon-dislocation scattering,

was used to calculate the lattice thermal conductivity of Nb for samples before deformation, after

deformation to several strains, and after appropriate heat treatment. The simulation results agree

well with the results extracted from experiments [4, 12]. The results show that boundary scattering

dominates for temperatures below 2K, where the phononmean free path is comparable to the size of

the sample, and phonon-electron scattering is important above 2 K and dominates the conductivity

above 3 K. The phonon peak appears at temperatures of approximately 1.8 K in undeformed

samples and shifts to a higher temperature after a small amount of deformation. Phonon-dislocation

scattering decreases the lattice thermal conductivity and a large amount of deformation destroys the

phonon peak. Appropriate heat treatment may restore the phonon peak by reducing the dislocation

density. This simulation method may be extended to predict the thermal conductivity of Nb thin

films in the application of Nb cladding on Cu to provide guidance for designing future generations

of SRF cavities. In addition, with appropriate dispersion relations, this modeling technique may

be used to model the lattice thermal conductivity of other superconductors, such as Ta and Nb3Sn,

where conductivity is determined by considering the phonon scattering mechanisms.
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CHAPTER 5

EFFECT OF IMPURITIES ON THE LATTICE THERMAL CONDUCTIVITY OF NB

Thermal conductivity due to the contribution of electrons in metals consists of two forms of

resistances to its flow. The first is from the interaction of electrons with interstitial and substitutional

impurities in the metal (Wei), and the second is from the momentum exchange of the electrons with

the lattice (Wep). These resistances act in series and the total resistance is shown as

We = Wei +Wep (5.1)

The Wiedeman-Franz law relates the impurity limited electronic thermal conductivity kei and

the electrical conductivity σ of the metal to the temperature as

kei
σ
= LT (5.2)

where L is the Lorenz constant and the electric resistivity ρ = σ−1

5.1 Residual resistance ratio (RRR)

Large values of thermal conductivity are required for good performance of SRF cavities to

transfer the dissipated RF power to the liquid helium bath and prevent hot spots [31]. For bulk

Nb cavities, this demands high purity. Because the thermal conductivity is usually related to the

residual resistance ratio, which is an empirical indicator of the impurity concentration [36], at 4.2

K as

k4.2K =
RRR

4
(5.3)

where the RRR is defined as

RRR =
ρ295K
ρ4.2K

(5.4)

where ρ295K and ρ4.2K are the resistivity of Nb at room and liquid helium saturation temperature

at standard atmospheric pressure, respectively [31].
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Table 5.1: Contributions of different impurities to ∂ρi
∂Ci

[1]

Impurity N O C H Hf Ti Zr W Ta Mo
∂ρi
∂Ci
× 1010 5.2 4.5 4.3 0.8 1.4 1.4 0.6-1.4 0.4-1.1 0.25 0.21

It is generally recognized that the resistivity of metals at low temperature is described as

ρ(T) = ρres + ρph(T) + ρm (5.5)

where ρres = ρimp + ρde f is the residual resistivity at T≈ 0 K, which consists of electron-

impurity scattering and the scattering by lattice defects; ρph(T) represents the temperature depen-

dent electron-phonon scattering, and ρm is the resistivity term in amagnetic field. For recrystallized

niobium, the ρde f contribution is small. In the absence of a magnetic field, the resistivity at low

temperature is simplified as:

ρ(T) = ρimp + ρph(T) (5.6)

where ρph(T) is also usually referred as the temperature dependent ideal resistivity. The resistivity

due to the impurity contribution is expressed as

ρ(imp) =
∑ ∂ρi

∂Ci
Ci (5.7)

where Ci is the impurity concentration in atomic ppm and ∂ρi
∂Ci

has units of ohm-cm/at.-ppm.

Therefore, Eq. 5.4 is updated to the following equation as

RRR =
ρ295K

ρph(4.2K) + ∂ρi
∂Ci

Ci
(5.8)

The impurity content is typically consists of interstitial impurity atoms (e.g. H, N, O, and C)

and substitutional impurity atoms (also called metallic impurities in Nb), including Ta, Mo, Zr, W,

Ti, and Hf. The contributions of different impurities to ∂ρi
∂Ci

are listed in Table 5.1.

The interstitial impurities affect the RRR more significantly than the substitutional impurities.

Therefore, attention should be paid to the chemical processing of the cavities. For example, the

etching process will bringH impurities to the surface and theN baking process will addN impurities

to the cavity. Typical RRR values for various types of Nb are listed in Table 5.2.
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Table 5.2: Typical RRR values of Nb in relation to processings [2], where Cavities and Samples
refer to post purified Nb origins, Other refers to other preparations.

Origin Commercial RF Application Cavities Samples Other Theoretical
RRR 30-50 200-300 600-800 ≤ 1800 5-6000 ≈ 33000
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Figure 5.1: Typical thermal conductivity data [4, 7, 13] related with RRR and strain, thermal
conductivity increases with RRR at 4.2 K, while at 2 K, there is no relation between RRR and
thermal conductivity. The phonon peak usually exists for appropriately heat treated sample while
strain may destroy the phonon peak. (This figure is a repeat of Fig. 2.5), included here for the
reader’s convenience.

The predominant impurities in Nb from commercial cavities and post-purified cavities are

interstitial impurities (including H, N, O, and C) [2]. The substitutional impurities contribute to

higher RRR cavities from post-purified cavities below the theoretical limit, when there is 100%

pure Nb.

Below the superconducting transition temperatures, the number of free electrons decreases
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exponentially because of the formation of Cooper pairs [39]. Therefore, the phonon contribu-

tion will dominate the thermal conductivity at low temperatures (T < 0.2Tc) and the electronic

contribution is not important so that the effect of impurities can be neglected. Typical values of

thermal conductivity with different RRR, strain, and heat treatment are plotted in Fig. 5.1. Thermal

conductivity at 4.2 K increases with the increase of RRR values because the impurity atoms able

to scatter with the free electrons decreases with the increase of RRR and the relation RRR = 4k4.2

is descriptive. However, at temperatures lower than 3 K, especially at 2 K where the phonon peak

usually appears, there is no relation between the thermal conductivity and RRR. The reason is that

at this temperature, the phonon dominated thermal conductivity consists of the resistances due to

phonon-boundary scattering, phonon-electron scattering, and phonon-dislocation scattering [43].

Phonons usually do not scatter with impurities at the lowest temperature because the sizes of the

impurities are much smaller than the phononmean free path of Nb at superconducting temperatures.

Fabrication of SRF cavities require surface processing, which includes buffered chemical pol-

ishing (BCP) and electropolishing (EP), and plastic deformation. These treatments increase the

interstitial impurity content including O, H, and N and also form oxides, hydrides, and nitrides.

These impurities affect the surface resistance of the SRF cavity to decrease the SRF performance

[5]. Appropriate heat treatment might help decrease the near-surface concentration of impurities

by dilution and also decrease the dislocation density. The effect of different types of impurities is

discussed in the following.

5.2 Effect of oxygen diffusion

During low temperature baking (100 ◦C to 200 ◦C) of Nb SRF cavities, the oxygen diffuses

from the surface oxide or an oxygen-rich interface layer just below the oxide into Nb, causing a

decrease in the BCS surface resistance [5]. The average diffusion length of oxygen in Nb (xd) is

expressed as

xd =
√

2DO exp(−E/RT)t (5.9)
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where DO = 0.015 cm2s−1 is the diffusion coefficient for oxygen in Nb [133], E=112890 Jmol−1 is

the activation energy, R=8.31 Jmol−1K−1 is the universal gas constant, and t is the diffusion time.

After baking at 145 ◦C for 45 hours with a surface atomic oxygen concentration as 0.33%,

which is close to the solubility of oxygen in Nb at 145 ◦C [5], the diffusion depth of oxygen

spreads over 150 nm and drops by a factor of two within 50 nm. This thickness is comparable to

the magnetic penetration depth of Nb, which is around 30 nm.

5.3 Effect of hydrogen diffusion

During fabrication process of SRF cavities, the BCP or EP processes are regularly used to etch

the inner surface of the cavity to make the surface smooth and remove surface irregularities [5].

Niobium-hydride precipitates typically form at 100-150 K when the amount of hydrogen dissolved

in niobium is significant, e.g., the acid gets hot (T > 20 ◦C) during etching or too much H arrives

at the cavity surface during EP process. This Nb-H effect is often called as the H-related Q-disease

[134].

Chandrasekaran measured the thermal conductivity of superconducting Nb infused with satu-

rated hydrogen (41.2%atomic concentration) [8]. He found a 25% reduction in thermal conductivity

at the phonon peak for the a Nb bi-crystal exposed to 300 ◦C for 1 h in a 75% hydrogen, 25%

nitrogen atmosphere at 0.5 atm., and a 15% reduction at the phonon peak for the bi-crystal specimen

under uncooled BCP etch condition [8]. Several niobium-hydrogen phases have been identified

depending on the concentration of hydrogen in Nb and the temperature of the specimen based on

the Nb-H phase diagram [135]. The the Nb-H system is in the α′ phase after the hydrogen infusion

at 300 ◦C. It transformed from α′ to α′ + β′ during cooling at about 115 ◦C, and to α + β at

around 85 ◦C. In the α and α′ phases, the hydrogen atoms are disordered and behaves like a gas

[136]. However, in the β phase, hydrogen is ordered with well defined spacing [136] and behaves

like a solid. Therefore, the mobility of the hydrogen atoms in the β phase is about two orders

of magnitude lower than that in the α′ phase [137, 138]. After an 800 ◦C heat treatment for 2h

the phonon peak was restored for one of the samples (heat treated at 800 ◦C for 2 hours before
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hydrogen infusion) because of degassing the hydrogen [139].

5.4 Effect of nitrogen diffusion

To reduce the cryogenic operating cost accelerators while providing reliable operation, it is

critical to improve the SRFperformance of cavities, and thus improve the quality factor [5]. Nitrogen

doping is an efficient way to improve this quality factor. Grassellino et al. [140] investigated the

effect of nitrogen and argon doping of niobium on SRF performance. They found that 800 ◦C

and 1000 ◦C nitrogen doping leads to low values of the microwave surface resistance (about

1.5 nΩ), and an improvement in the efficiency of the accelerating structures up to a factor of 3.

The reason for this enhancement of SRF performance is the formation of niobium nitride phases

leading to a higher critical temperature than Nb. Dhakal et al. [141] also investigated the effect

of low temperature (120-140 ◦C) nitrogen baking on the SRF performance of cavities and found

an improvement in the quality factor after annealing at 800 ◦C for 3 hours followed by baking at

120–140 ◦C in a low partial pressure of nitrogen. However, the temperature has to be controlled

carefully because a larger reduction (about 35%) of the quench field was observed when the baking

temperature was 160 ◦C.

The interaction of impurities with the lattice typically appears in semiconductors or dielectric

materials. Klemens [44] did a systematic investigation of impurity scattering by the lattice and it is

discussed briefly in this chapter.

5.5 Substitutional atoms of different mass

In the case of an isolated impurity, the relaxation time of phonons scattered by an impurity is

expressed as

τ−1 =
a3

G
(
∆M
M
)2

ω4

4πv3 (5.10)

where a is the lattice parameter, G is the number of atoms in the crystal, ∆M is the differences of

mass between impurity and the lattice, M is the mass of lattice, and v is the group velocity based

on the phonon dispersion.

73



5.6 Point defects in the MC Model

In the case of point imperfection, the relaxation time is expressed as

τ−1
pi =

3a3

G
S2 ω

4

πv3 (5.11)

where S2 = S2
1 + S2

2 + S2
3 .

S2
1 =
∆M
M

1
2
√

3
S2

2 =
δv2

v2
1
√

6
S2

3 = −Qγ
∆R
R

√
2
3

(5.12)

where Q is a constant, R is the atomic radius, and γ is the Grüneisen constant.

Mazumder and Majumdar [114] simplified this relaxation time as the following:

τ−1
pi = ασρ|Vg | (5.13)

where α is constant with the order of unity, ρ is the impurity concentration of point defect, and σ

is the scattering cross-section expressed as

σ = πR2(
χ4

χ4 + 1
) (5.14)

where χ = R|q |.

The effect of impurity concentration on the temperature profile of Si thin film is shown in Fig.

5.2 by the Monte Carlo simulation [114]. The specularity is set to be unity so that the boundary

scattering is neglected in the simulation. It is shown from the figure that with increasing defect

density, the temperature drop across the film increases.

5.7 Monte Carlo simulation considering impurity scattering

The effect of interstitial impurities (H and N) on the lattice thermal conductivity of supercon-

ducting Nb is investigated using the Monte Carlo simulation.

Simulation of the lattice thermal conductivity of Nb is shown in Fig. 5.3 for different levels

of H concentration and in Fig. 5.4 for different levels of N concentration. The fitting results

were conducted using data from reference [4] using the enhanced model [43] without considering
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Figure 5.2: Temperature profile of Si for different levels of impurities from 1023 m−3 to 1028 m−3.
The temperature profile changes gradually from the ballistic limit for the lowest defect density 1023

m−3 to diffusion limit at the highest defect density 1028 m−3.

impurity scattering. The simulation results with no impurity atoms are close to the fitting results.

There are no significant differences between the simulated lattice thermal conductivity fromphonon-

impurity scattering until the concentration reaches a certain amount. To significantly affect the

lattice thermal conductivity of Nb, the concentration has to reach 1028 m−3 and 1027 m−3 for H

and N impurity atoms, respectively. In these cases, Nb is saturated with H or N, and the atomic

ratio of the impurity to Nb lattice is close to 1.

Although k is correlated with RRR for T & 0.3Tc (specifically k(4.2 K) = RRR/4), a few

measurements [4, 8] suggest that kpp may be correlated with RRR. See, for example, Fig. 2.5. This

result is unexpected based on the BRT model of k of superconductors [42] and the theory of metals

[37]. The extended model (Eq. 2.4) offers an explanation based on the results of Wasserbäch [4]
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Figure 5.3: Simulation of the lattice thermal conductivity of Nbwith different levels of H impurities
compared with fitting results without H impurities. The lattice thermal conductivity values are
similar for low concentrations of H impurities (i.e. No impurity, 1026 m−3, and 1028 m−3), but at
the impurity concentration of 1029 m−3, the lattice thermal conductivity decreased by 20% at the
phonon peak.

and Chandrasekaran [8]. The coefficient of the phonon-boundary scattering term varies with RRR.

In samples with large kpp, the dislocations have little effect and the value of the kpp is a result of

the balance of the phonon-boundary and phonon-electron scattering.

Simulations of the lattice thermal conductivity of Nb were also conducted for two different

samples from reference [8]. The first sample was heat treated at 800 ◦C for 2 hours first, then it

was infused with hydrogen in a 75% H2, 25% N2 environment of 0.5 atm pressure at 300 ◦C for

1 hour, and then heated again at 800 ◦C for 2 hours. The simulated lattice thermal conductivity

without considering impurity atoms matches with the fitting results with no impurities, as shown
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Figure 5.4: Simulation of the lattice thermal conductivity of Nbwith different levels of N impurities
compared with fitting results without N impurities. The lattice thermal conductivity values are
similar for low concentrations of N impurities (i.e. No impurity, 1026 m−3, and 1027 m−3), but at
the impurity concentration of 1028 m−3, the lattice thermal conductivity decreased by 15% at the
phonon peak.

in Fig. 5.5. After H infusion, the concentration of H is estimated to be around 3.854 × 1028m−3.

The simulated lattice thermal conductivity agrees well with the data extracted from the experiment

results, however, the H impurity concentration has to reach 2.2 × 1029m−3 in the simulation, which

is 6 times greater than the estimated concentration, to match with the data, shown in Fig. 5.5. The

data extraction process is to obtain the lattice thermal conductivity of Nb considering impurity

scattering from the difference between the total measured thermal conductivity and the electronic

thermal conductivity, as shown in Eq. 5.15. Since the electronic thermal conductivity, which

dominates at T > 3K, does not change with impurity content for the first sample above 3 K, the

main influence of H impurity will be on the lattice thermal conductivity.
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Figure 5.5: Lattice thermal conductivity of Nb by considering the effect of phonon impurity
scattering. This sample was heat treated at 800 ◦C for 2 hours first, then it was infused with
hydrogen in a 75% H2, 25% N2 environment of 0.5 atm pressure at 300 ◦Cfor 1 hour, at last it was
heat treated again at 800 ◦C for 2 hours. The last heat treatment to degas the H impurity recovers
the thermal conductivity at phonon peak.

kp = k − ke (5.15)

5.8 Phonon-impurity scattering

Imperfections typically affect the lattice thermal conductivity, however this phenomenon changes

at the lowest temperatures [22]. The reason can be explained as follows. When the temperature

decreases, the wavelength of the lattice increases to be much greater than the atomic spacing, e.g.,

the dominant wavelengths reach around 100 times the atomic radius at 1 K. These long wavelengths
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Figure 5.6: Lattice thermal conductivity of Nb by considering the effect of phonon impurity
scattering. This sample was heat treated at 140 ◦C for 48 hours and 1100 ◦C for 4 hours first, then
it was infused with hydrogen in a 75% H2, 25% N2 environment of 0.5 atm pressure at 300 ◦C for
1 hour, at last it was heat treated again at 800 ◦C for 2 hours. The last heat treatment has no effect
to degas the H impurity and does not recover the thermal conductivity at phonon peak.

are nearly unaffected by the imperfections on the order of the atomic scale, but are affected by the

physical boundary of a crystal. However, the wavelengths of electrons depend little on the tem-

perature and are on the same order as the atomic scale. Therefore, the imperfections will be the

dominant scatter for electrons at low temperatures.

Moreover, at unrealistic high concentration of impurities, the phonons will be scattered by the

imperfections and affect the lattice thermal conductivity. The expression of the relaxation time of

phonon-impurity scattering τpi is defined as
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τpi
−1 = A1ω

4 (5.16)

where A1 is constant expressed as

A1 =
VΓ

4πv3
s

(5.17)

where Γ =
∑

i fi(
∆M
M )

2, fi is the atomic fraction of the impurity, M is the mass of the host atom

and ∆M is the mass differences between host atom and impurity, and V is the volume.

The second sample was heat treated at 1100 ◦C for 4 hours first, then it was infused with

hydrogen in a 75% H2, 25% N2 environment of 0.5 atm pressure at 300 ◦C for 1 hour, at last it

was heat treated again at 800 ◦C for 2 hours. The simulated lattice thermal conductivity without

considering impurities matches well with the fitting results of no impurities, as shown in Fig. 5.6.

After H infusion, the concentration of H impurity is estimated to be around 3.9 × 1028m−3. The

simulated lattice thermal conductivity agrees well with the data extracted from the experiment

results, and also with the fitting results of considering phonon-impurity scattering. In this sample,

the H impurity concentration needs to reach 8 × 1028 m−3 in the simulation, which is about two

times greater than the estimated concentration, to match with the data extraction and fitting results,

as shown in Fig. 5.6.

5.9 Effect of Grain Boundary scattering on the lattice thermal conductivity
of superconducting Nb

A grain boundary is defined as the interface between two grains, or crystallites, in a polycrys-

talline material. Grain boundaries are considered as 2D defects in the crystal structure, and tend to

decrease the electrical and thermal conductivity of the material [98].

5.9.1 Models

Nan and Birringer investigated the influence of grain size and grain–boundary thermal resistance

(Kapitza resistance RK ) on the effective thermal conductivity kE of poly-crystals. They obtained
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the normalized thermal conductivity (kE/k0) in terms of the Kapitza length LK and the grain size

d. For an isotropic poly-crystalline solid composed of spherical crystals of equal size, they showed

kE
k0
=

(
1 +

φLK
d

)−1
(5.18)

where k0 is the bulk thermal conductivity of a single crystal, φ is a constant depending on

the aspect ratio of the crystallite (φ ≈ 2). This equation is powerful in that it states that the

normalized thermal conductivity (kE/k0) must scale as a function of (LK/d). It also implies

that the different microscopic scattering mechanisms take place in poly-crystals, that is, phonon

scattering at grain–grain interfaces (via RK ) and the phonon–phonon, phonon–boundary, and

phonon–defect scattering.

Yang et al.[5] developed a simple heat transfer model to analyze their measurements of the

thermal conductivity of nano-crystalline yttria-stabilized zirconia (YSZ). They investigated exper-

imentally grain sizes ranging from 10 to 100 nm using the 3ω method at 300 K. In their model,

they first considered the case when λ < Λm f p < d where λ and Λm f p are the phonon wavelength

and mean free path, respectively. If ∆T0 is the temperature jump over the bulk single crystal, then

the heat flux is simply given by q
′′
= k0T0/d. In reality, the single crystal has an effective thermal

conductivity k due to grain boundary scattering, which gives rise to a grain– grain boundary thermal

(Kapitza) resistance. This latter is related to the heat flux by the equation q
′′
= ∆Tgb/RK , where

∆Tgb is the temperature jump at a grain–grain boundary. The following expression is obtained

kE
k0
= (1 +

LK
d
+ µ)−1 (5.19)

where µ = ∆B/∆T0 is an artificially introduced parameter which accounts for the situation where

λ > d, ∆T0 is the temperature jump across a single crystal and ∆B is a temperature correction to

∆T0.

This expression is similar to Eq. 5.18 except for the aspect ratio γ and the artificially introduced

parameter µ. The latter accounts for the situation when λ ≥ d. Yang et al.[5] fitted their data with
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the above expression, using a unique value of RK in the entire d range. The excellent agreement

testifies that the reduction in the conductivity is due to decreasing grain sizes.

Amrit [81] modified Eq. 5.18 and Eq. 5.19 by considering an arrangement of single crystals to

account for the spatial anisotropy of poly-crystals:

kE
k0
= (1 +

ni − 1
ni

LK
d
)−1 (5.20)

where ni is the number of grains in the direction i, and ni adjacent grains have ni − 1 interfaces.

In this equation, the thermal conductivity not only depends on the Kapitza length (LK ) and grain

size, but also is a function of the number of grains. He concluded that the thermal conductivity

decreased strongly with the increase of the number of grains up to 10. He referred to this change

of thermal conductivity as anisotropy [81]. When the number of grains exceed 10, the effect of the

anisotropy of thermal conductivity disappeared.

5.10 Conclusion

Fabrication of SRF cavities requires surface processing (i.e., BCP, EP, and plastic deformation)

which increases the interstitial impurity content. These impurities affect the surface resistance of the

SRF cavity to decrease the SRF performance [5]. RRR values are a function of different interstitial

impurities and substantial impurities, and RRR is an indicator of the thermal conductivity at 4.2 K

based on RRR = 4× k4.2K . Because the impurity atoms typically scatter electrons for metals rather

than phonons, it affects the electronic thermal conductivity, but not the lattice thermal conductivity,

except for special conditions (i.e. the impurities are saturated in the Nb sample). Monte Carlo

simulations of the effect of H impurity and N impurity atoms on the lattice thermal conductivity

show that only at the highest concentrations of impurity (i.e., 1028m−3 for H and 1027m−3 for N), the

lattice thermal conductivity will decrease with increasing impurity concentration. This is similar to

the definition of the threshold of dislocation density. Here the threshold of impurity concentration

is calculated as 1028m−3 and 1027m−3 for H and N impurities, separately. Simulations of the

lattice thermal conductivity of H atomic concentration at 41.2% match the the fitting results
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with experimental data considering the effect of phonon-impurity scattering. However, there are

still some discrepancy on the impurity concentration. The reason might be that the measured

thermal conductivity above 3 K remained the same after saturation of H atoms, which does not

agree with the BRT theory in the electronic dominated temperature range, where electrons are

mainly scattered with impurities and the thermal conductivity will decrease with the increase of

impurity concentration. Therefore the data extraction overestimate the effect of impurities on the

lattice thermal conductivity. Various scattering relaxation time expressions for phonon-impurity

scattering have been listed for point defect, substantial impurity at different mass, separately. The

effect of grain boundary scattering is also studied and it will affect the lattice thermal conductivity

for poly-crystal Nb samples because of the increasing number of grains than single crystal samples.
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CHAPTER 6

CALCULATION OF THE LATTICE THERMAL CONDUCTIVITY OF NB
CONSIDERING PHONON DISPERSION

6.1 Introduction

Lattice thermal conductivity of superconducting Nb consists of phonon-boundary scattering

and phonon-electron scattering for samples before deformation, without the effect of dislocations.

A term considering phonon-dislocation scattering has been added in the model from Koechlin and

Bonin [41] to account for the effect of deformation [43] on the lattice thermal conductivity of

superconductors. This effect was studied in Chapter 3. Numerical simulation using Monte Carlo

simulation of the lattice thermal conductivity of superconducting Nb is robust and takes account of

individual scattering mechanisms as well as including the phonon dispersion. It is also convenient

for complex structures. This model was studied in Chapter 4. However, this method is not a

closed form solution to the BTE so will have some statistic errors. Investigation of the closed form

solution of the BTE is critical to understand the mechanism in contributing to the lattice thermal

conductivity of superconductors.

6.2 Model

The Callaway model [95] has been widely used to model the thermal conductivity of dielectric

materials and semiconductors with the relaxation time approximation. The TW model [80] which

considers the condensation of electrons into Cooper pairs is often used for highTc superconductors.

These two models are similar, and the general form is expressed as

kg =
k3

B

~3
kB

2π2vg
T3

∫ ΘD/T

0

τ exp(x)x4

(exp(x) − 1)2
dx (6.1)

where x = ~ωkBT is the non-dimensional frequency, vg is the group velocity, here taken as a constant

with the value of sound velocity (no dispersion considered), τ is the overall relaxation time of
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Figure 6.1: Phonon dispersion of Nb at [1 0 0] direction, replotted from the experimental data of
[14]

different scattering mechanisms, including phonon-phonon scattering, phonon-electron scattering,

phonon-impurity scattering, phonon-boundary scattering (phonon-grain boundary scattering), and

phonon-dislocation scattering, and ΘD is the Debye temperature, here taken as ΘD=275 K for Nb.

The model in Eq. 6.1 does not include phonon dispersion and assumes isotropy in the longitudi-

nal and transverse acoustic directions. The following model includes phonon dispersion and treats

the phonon ensemble separately to calculate the lattice thermal conductivity of superconducting

Nb and is expressed as the following

kg =
1

2π2kBT2

∫ qmax

0
(~ω)2ω2

τ exp
(
~ω

kBT

)
[
exp( ~ωkBT ) − 1

]2 dq (6.2)

where ω is the phonon frequency, q is the wave vector.
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6.2.1 Phonon dispersion of Nb

To account for the effect of phonon dispersion, two polarization branches have been included in

the integration, namely longitudinal acoustic (LA) branch and transverse acoustic (TA) branch,

where LA branch has one direction and TA branch has two directions. The experimental phonon

dispersion of Nb is replotted from reference [14], as shown in Fig. 6.1. The optical direction is

neglected in the expression because of its low group velocity to contribute to the lattice thermal

conductivity [114]. For each wave vector q, the group velocity vg is related to ω following the

relation of dω/dq = vg. This allows consideration of variable phonon group velocities.

The relaxation times of different scattering mechanisms are expressed as the following to be

inserted into the extended Callaway model of Eq. 6.2.

6.2.2 Phonon-boundary scattering

The phonon-boundary scattering accounts for the traveling of phonon particles when they hit the

physical boundary of the specimen. This scattering is considered as elastic scattering, therefore

the energy is conserved by the scattering event. The properties (frequency, wave vector, and

the magnitude of group velocity) of the scattered phonons will remain the same. The phonons

will reflect back either specularly or diffusively depending on the specularity of the surface. The

relaxation time τpb is expressed as

τ−1
pb =

v(1 + p)
l(1 − p)

(6.3)

where p is the specularity of the surface which relates the scattering directionality to the surface

roughness. If p = 0, it means purely diffusive reflection, p = 1 refers to purely specular reflection.

6.2.3 Phonon-electron scattering

Phonon-electron scattering occurs when the traveling phonons collide with the normal electrons

(note that electrons which form in Cooper pairs do not scatter phonons). This scattering is

considered as unharmonic collision process, which is also called the inelastic scattering. Therefore,
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the energy is not conserved after the scattering, so the properties (frequency, wave vector, and group

velocity) of the scattered phonons will be changed. In the Monte Carlo simulation, this process is

carried out during the re-sampling process of the phonons using random numbers. A new phonon

will be drawn in the corresponding temperature range to replace the old phononwith new properties.

The expression of the relaxation time of phonon-electron scattering (τpe) is

τ−1
pe = g(x,T)E xT = 2(exp(y) − 1)−1(1 −

x
8 × 3.83

)E xT (6.4)

where g(x, t) quantifies the ratio of the normal-conducting relaxation time to superconducting

relaxation time and is a monotonically decreasing function of the non-dimensional frequency x

(x = ~w/(kBT)), E is a fitting parameter that is found to be in the range of 1.4 − 3 × 109 K−1s−1

[61]. The constant 8 in the expression is obtained by comparing the integrated thermal conductivity

due to phonon-electron scattering only with the thermal conductivity from the model of reference

[41].

6.2.4 Phonon-dislocation scattering

The phonon-dislocation scattering happenswhen the traveling phonons collidewith the dislocations,

either screw dislocations or edge dislocations. This scattering process is also considered as elastic

scattering, therefore the energy is conserved by the scattering event. The properties (frequency,

wave vector, and the magnitude of group velocity) of the scattered phonons will remain the same,

while the direction of the group velocity is resampled using random numbers in the Monte Carlo

simulation. The expression for the phonon-dislocation scattering relaxation time τpd is

τ−1
pd = A0γ

2b2Ndw (6.5)

where γ is the Grüneison constant (γ = 1.4 for Nb [61]), b is the Burgers vector, and A0 is

a constant related to the dislocation mechanisms (i.e., edge dislocations or screw dislocations).

By applying the relaxation time of phonon-dislocation scattering to the Callaway model [95] and

comparing the expression of the resistance in the Klemens model [44], A0 is calculated to be
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1.1398 for edge dislocations and 0.8639 for screw dislocations. Screw dislocations usually appear

after deformation at temperatures lower than room temperature, whereas edge dislocations appear

following high temperature deformation [4].

6.2.5 Total relaxation time

The total relaxation time of different scattering mechanisms studied above is obtained by using the

Matthiessen’s rule as

τ−1 = τ−1
pb + τ

−1
pe + τ

−1
pd (6.6)

This total relaxation time in Eq. 6.6 is inserted in the extendedCallaway of Eq. 6.2 by considering

the phonon dispersion. The lattice thermal conductivity kg is calculated by integrating over the

wave vector from 0 to the maximum values. However, this model is limited by the requirement that

all of the relaxation times being considered to be of the same form as shown in Eq. 6.6.

6.3 Results and Discussions

Calculation of lattice thermal conductivity of superconducting Nb was performed for both

undeformed and deformed samples to account for the different scattering mechanisms.

Calculation results agreed well with the data fitting results of measurement for an example

sample of screw dislocations [4] before deformation and after 8% deformation, as shown in Fig. 6.2.

Here the parameters in the relaxation times, including specularity p in phonon-boundary scattering,

E in phonon-electron scattering and dislocation density Nd in phonon-dislocation scattering, are

extracted from fitting the experimental data using Eq. 2.4. This data extraction process in Eq. 2.4

is to obtain the lattice thermal conductivity from the total thermal conductivity to compare with

the calculation results, and it is shown in Chapter 3 of the extended model by explicitly including

the phonon-dislocation scattering. Phonon peak thermal conductivity kpp decreases by about 50%

and the phonon peak temperature Tpp moves from 1.8 K before deformation to about 2 K after 8%

deformation.
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Figure 6.2: Comparision between the calculation results and the data fitting results for an example
sample of screw dislocations [4]for undeformed state and 8% tensile deformation. The group
velocity is taken as vg = dω/dq, the dislocation density is calculated based on the fitting using Eq.
2.4.

This calculation was performed for another example of predominantly screw dislocations [4].

The calculation results agreed well with the data fitting results of measurement for different levels of

deformation, including undeformed, 3% deformation, 7.3% deformation, and 10.3% deformation,

as shown in Fig. 6.3. Here, the parameters in the relaxation times, including specularity p in

phonon-boundary scattering, E in phonon-electron scattering and dislocation density Nd in phonon-

dislocation scattering, are extracted from fitting the experimental data using Eq. 2.4. A phonon

peak appears at about 1.8 K for the undeformed state, and it shifts to 1.9 K after 3% deformation,

2 K after 7.3% deformation, and 2.2 K after 10.3% deformation. In addition, kpp is about 60 W

m-1 K-1before deformation, it decreases to about 40 W m-1 K-1after 3% deformation, it further

decreases to about 17 W m-1 K-1after 7.3% deformation and about 8 W m-1 K-1after 10.3%
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Figure 6.3: Comparision between the calculation results and the data fitting results for another
example sample of screw dislocations [4]for undeformed state and several levels of deformation.
The group velocity is taken as vg = dω/dq, the dislocation density is calculated based on the fitting
using Eq. 2.4.

deformation.

Calculations of the lattice thermal conductivity of materials with of predominantly edge dislo-

cations were performed for the two samples from reference [4], separately. The calculation results

agreed well with the data fitting results of measurement at different levels of deformation, including

undeformed and 4% deformation for sample H2 and undeformed, 1% deformation, 2.4% deforma-

tion for sample K10, as shown in Fig. 6.4 and Fig. 6.5. Here, the parameters in the relaxation times

are also extracted from fitting the experimental data using Eq. 2.4 to obtain the lattice thermal

conductivity. The phonon peak is at about 1.8 K for undeformed state, and it shifts to 1.9 K after

4% deformation for sample H2 or after 1% deformation for sample K10. The Tpp moves to about
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Figure 6.4: Comparision between the calculation results and the data fitting results for an example
sample of edge dislocations (sample H2) [4]for the undeformed state and 4% tensile deformation.
The group velocity is taken as vg = dω/dq, the dislocation density was calculated based on the
fitting using Eq. 2.4.

2.4 K after 2.4% deformation for sample K10. In addition, kpp is about 85 W m-1 K-1for sample

H2 before deformation, and it decreases to about 22 W m-1 K-1after 4% deformation. For sample

K10, the lattice thermal conductivity for sample K10 before deformation is around 57 W m-1 K-1,

it decreases to be about 33 W m-1 K-1after 1% deformation, and it further decreases to about 10 W

m-1 K-1after 2.4% deformation.

6.4 Conclusion

Lattice thermal conductivity dominates the total thermal conductivity at low temperatures

(T < 2 K) for superconducting Nb. An enhanced closed formmodel based on Callaway is proposed

to include the phonon dispersion relation of Nb and also consider different scattering mechanisms,
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Figure 6.5: Comparision between the calculation results and the data fitting results for another
example sample of screw dislocations (sample K10) [4]for the undeformed state and 1% and 2.4%
tensile deformation. The group velocity is taken as vg = dω/dq, the dislocation density was
calculated based on the fitting using Eq. 2.4.

including phonon-boundary scattering, phonon-electron scattering, and phonon-dislocation scat-

tering. Calculation of the lattice thermal conductivity of superconducting Nb match well with the

fitting results using Eq. 2.4 for undeformed samples and deformed samples, separately. For the

comparison of deformed samples, both edge dislocations and screw dislocations are considered. A

phonon peak appears at around 1.8 K for undeformed samples and shifts to warmer temperature

with the increase of deformation, while the lattice thermal conductivity kpp decreases with the

increase of deformation. Edge dislocations seem to decrease the lattice thermal conductivity more

than the screw dislocations.
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CHAPTER 7

THERMAL CONDUCTIVITY OF SUPERCONDUCTING TANTALUM

7.1 Introduction

Tantalum (Ta) is a part of the refractory metals group and also a superconducting metal, similar

to Nb. Because Nb and Ta are found together, there is always Ta present in SRF cavities, so

this provides some intrinsic interest and motivation for understanding the thermal conductivity

of Ta. Ta and Nb behave like twins in nature and they have very similar physical and chemical

properties. For example, both of them are body-center cubic materials and have similar thermal

conductivity at room temperature. However, the transition temperature (Tc) from normal conductor

to superconductor of Ta is 4.48 K, which is about one half of that of Nb (Tc = 9.25 K) [67].

Thermal conductivity of Ta also consists of the phonon and electronic contributions. A typical

figure of these contributions to the total thermal conductivity of superconducting Ta is shown in Fig.

7.1. It shows that the electron contribution to the thermal conductivity of Ta is negligible below 1

K. Therefore, phonon dominated thermal conductivity (lattice thermal conductivity) can represent

the total thermal conductivity in this temperature range. A number of factors, including sample

size, specularity, free electrons, impurity concentration, and dislocation density Nd , determine

kg. Plastic deformation, which occurs in many manufacturing processes, increases Nd , while heat

treatments can reduce Nd [8].

7.2 Monte Carlo simulation

Lattice thermal conductivity of superconducting Nb before and after deformation have been

simulated in the previous chapter using the Monte Carlo method. It is used here model the

lattice thermal conductivity of Ta. Similarly, the phonon dispersion relationship is needed for the

simulation.

To model the thermal transport of Ta at low temperatures, where phonons dominate the thermal
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Figure 7.1: The thermal conductivity of Ta is the sum of the contributions of electrons and phonons
[3]. Below 1 K, the electronic contribution is negligible. The contribution of phonons dominates
in this temperature range because of the condensation of free electrons into Cooper pairs.

Table 7.1: Parameters for the Ta samples used in the simulation [3], where the size refers to the
diameter of the cylinder. All of the three Ta samples were deformed at temperature higher or

equal to 295 K, therefore they are likely to have edge dislocations.

Sample Size RRR Deformation T Dislocation type
Ta 1 3.8 mm 185 420 K Edge dislocations
Ta 2 3.3 mm 111 355 K Edge dislocations
Ta 3 3.9 mm 60 295 K Edge dislocations
Nb 1 3.2 mm 350 77 K Screw dislocations
Nb 2 3.2 mm 1200 295 K Edge dislocations
Nb 3 3.9 mm 250 195 K Screw dislocations

conductivity, the phonon dispersion relation of Ta is plotted in Fig. 7.2 [15]. The samples used

for comparing with the simulation results are listed in Table 7.1, where the conditions before

deformation and after several levels of deformation are described for samples Ta 1, Ta 2, and Ta 3.

The relaxation times used in the simulation are similar to those of Nb. That is, for undeformed
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Figure 7.2: Phonon dispersion relation of Ta in the [1 0 0] direction, replotted from [15], ε = aq/π,
where q is the wave vector, ε is the reduced wave vector, a is the lattice parameter, which refers to
the physical dimension of a unit cell in a crystal lattice. For Ta, a ≈ 3.3 × 10−10 m, the same as
Nb, LA refers to longitudinal acoustic phonons, and TA refers to transverse acoustic phonons.

sample, the phonon-boundary scattering and phonon-electron scattering are considered, but the

phonon-dislocation scattering is neglected. For samples after deformation, all of the three scattering

mechanisms, including phonon-boundary, phonon-electron, and phonon-dislocation scattering, are

considered in the simulation.

Simulation results of the lattice thermal conductivity of undeformed Ta and samples after several

levels of deformation are compared using measurements in Figs. 7.3-7.5, separately. Measurements

were fitted using Eq. 2.19 for undeformed samples and Eq. 2.4 for samples after deformation, and

the phonon contributions are shown for the lattice thermal conductivity of Ta. The phonon peak

thermal conductivity for Ta typically appears at around 1 K [4], which is approximately half that of
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Figure 7.3: Comparison between the Monte Carlo simulation results of lattice thermal conductivity
of Ta 1 with the fitting results using Eq. 2.4 from [3], from undeformed to 2%, 3.1%, and 7.3%
deformation.

Nb. The simulation results agree well with the fitted data for undeformed samples Ta 1, Ta 2, and Ta

3 when including phonon-boundary scattering, phonon-electron scattering, but neglecting phonon-

dislocation scattering. For samples after deformation, i.e., 2% deformation and 3.1% deformation

for sample Ta 1, 0.5%, 1.2%, 2.4%, 3.9%, and 6.2% deformation for Ta 2, and 1% deformation for

sample Ta 3, the simulation results also match well with the fitted data. The phonon peak occurs at

around 0.9K in the simulation for all of the three samples Ta 1, Ta 2, and Ta 3 before deformation and

it shifts to about 1 K after 2% deformation for Ta 1, 0.5% deformation for Ta 2, and 1% deformation

for Ta 3. After 3.1% deformation for sample Ta 1 and 1.2% deformation for Ta 2, the peaks move

to around 1.1 K. The phonon peak is broad and low after 7.3% deformation for Ta 1 and after

2.4% deformation for Ta 2. The reason for the existence of a phonon peak after large deformation
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Figure 7.4: Comparison between the Monte Carlo simulation results of lattice thermal conductivity
of Ta 2 with the fitting results using Eq. 2.4 from [3], from undeformed to 0.5%, 1.2%, 2.4%, 3.9%,
and 6.2% deformation.

is because of the phonon contributions only, the total thermal conductivity will lose the phonon

peak after large deformation (e.g., 7.3% deformation for Ta 1). Lattice thermal conductivity at

temperatures lower than the phonon peak temperature is dominated by phonon-boundary scattering

and follows the T3 relation. At temperatures above the phonon peak, phonon-dislocation scattering

is taking over with larger amounts of deformation. Phonon-electron scattering is contributing to

the lattice thermal conductivity after 1 K and will dominate the conductivity after 1.5 K. These

results are similar to that of Nb for the contributions from different scattering mechanisms.
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Figure 7.5: Comparison between the Monte Carlo simulation results of lattice thermal conductivity
of Ta 3 with the fitting results using Eq. 2.4 from [3], from undeformed to 1% deformation.

7.3 Comparison of total k between Nb and Ta

It has been demonstrated that the model of Eq. 2.4 matches better with the experimental data

than Eq. 2.19 of K&B model [41], it is used to model the thermal conductivity of both Nb and Ta

in the following.

Comparison of data from [4, 16] with fitting of the model (Eq. 2.4) are shown in Fig. 7.6 for

superconducting Nb and superconducting Ta, both before and after deformation. The figures show

that after deformation, thermal conductivity of both Nb and Ta decrease because of the increase of

dislocation density, where the temperatures at the phonon peak (Tpp) increase with deformation for

both Nb and Ta. The phonon peak disappears after a certain amount of deformation. For example,

the phonon peak disappears after 7.3% deformation for these Nb and Ta samples. After 10.3%

98



0 0.1 0.2 0.3 0.4
T/T

c

0

10

20

30

40

50
T

he
rm

al
 c

on
du

ct
iv

ity
 (

W
m-1

K
-1

)
=0 Data

=0 N
d
=5.1×1012

=3% Data

=3% N
d
=8.6×1012

=7.3% Data

=7.3% N
d
=4.8×1013

=10.3% Data

=10.3% N
d
=1.6×1014

Nb

T=3.70 K
0 0.1 0.2 0.3 0.4

T/T
c

0

5

10

15

T
he

rm
al

 c
on

du
ct

iv
ity

 (
W

m-1
K

-1
) =0 Data

=0 N
d
=2.2×1010

=2% Data

=2% N
d
=1.2×1013

=3.1% Data

=3.1% N
d
=2.4×1013

=7.3% Data

=7.3% N
d
=9.4×1013

Ta

T=1.79 K

Figure 7.6: Comparison between fitting with the experimental data of the thermal conductivity
of undeformed and deformed superconducting Nb [4] and Ta [16]. The dislocation density is
calculated during the fitting processes.

deformation for this Nb sample, the thermal conductivity increases proportionally with temperature.

This temperature relation is not withT3 because both boundary scattering and dislocation scattering

are important to contribute to the lattice thermal conductivity, and boundary scattering contributes

to kg as T3 while dislocation scattering contributes to kg as T2. Another interesting similarity

between Nb and Ta is that kpp occurs at T/Tc ≈0.2 and klm (local minimum) occurs at T/Tc ≈0.3

for both Nb and Ta. However, at T/Tc ≈0.4, the thermal conductivity of Ta is greater than the value

at the phonon peak, while the thermal conductivity of Nb is smaller than the value at its phonon

peak.

7.3.1 Comparison of simulated lattice k between undeformed Nb and Ta

SRF cavities can be formed using large grain Nb sheet. These Nb sheets are deformed and then

welded tomake the cavities and then heat treated to get rid of the impurities and also the dislocations.

Before deformation, the dislocation density is usually low and the deformation will increase the

dislocation density.

Monte Carlo simulation results of the lattice thermal conductivity of superconducting Nb

and Ta samples before deformation are shown in Fig. 7.7 by comparing with the model of Eq.

2.4. The simulation results match well with the fitted model by including the effect of phonon-
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Figure 7.7: Comparison between Monte Carlo simulation of the lattice thermal conductivity with
the fitting results using Eq. 2.4 for undeformed Nb [4] and undeformed Ta [16]. The parameters,
including size, RRR, deformation temperature, and the calculated dislocation density, of the Nb
and Ta samples are listed in Table 4.1.

boundary scattering, phonon-electron scattering, and phonon-dislocation scattering. Here the

phonon-dislocation scattering is less important for undeformed sampleswith the other two scattering

mechanisms because of the low dislocation density before deformation. The phonon peak appears

at about 1.8 K for Nb and 0.9 K for Ta for all of the three samples. The temperature at the phonon

peak is close to 0.2Tc. Therefore the phonon peak at the undeformedNb and Ta has small variations.

7.3.2 Comparison of simulated lattice k between deformed Nb and Ta

At undeformed states, the dislocation density is usually low so that it will not affect the lattice thermal

conductivity effectively compared with the other scattering mechanisms, i.e.phonon-boundary

scattering and phonon-dislocation scattering. However, the dislocation density will increase with

deformation and becomes more and more important in its effect on the lattice thermal conductivity.

Simulation results of the lattice thermal conductivity of superconducting Nb and Ta samples

after deformation are shown in Fig. 7.8 by comparing with the model of Eq. 2.4. The simulation

results also match well with the fitting model by including the effect of phonon-boundary scatter-

ing, phonon-electron scattering and phonon-dislocation scattering. Here the phonon-dislocation

scattering is more important for deformed samples than the other two scattering mechanisms, due
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Figure 7.8: Comparison between Monte Carlo simulation of the lattice thermal conductivity with
the fitting results using Eq. 2.4 of undeformed and deformed Nb [4] and Ta [16]. The parameters,
including size, RRR, deformation temperature, and the calculated dislocation density, of the Nb
and Ta samples are listed in Table 4.1.

to the increase of dislocation density after deformation. Wasserbäch observed that sample Nb1

has predominantly screw dislocations while Nb2 has predominantly edge dislocations. He also

found low T (T<295 K) deformation leads to predominant screw dislocations and intermediate

temperature (T>295 K) results in predominant edge dislocations [4]. As the Ta samples were

deformed at T>295 K, which falls into the intermediate temperature range, they are likely to have

edge dislocations [16]. It is shown from the figure that kpp decreases with deformation and will

eventually disappear after large deformation, while Tpp increases with deformation for both Nb

and Ta. These results can account for the effect of dislocations. It can be also seen that the lattice

thermal conductivity of Nb has a greater value than Ta in similar conditions. Also, for a given

deformation, the ratio of the thermal conductivity to the undeformed state (k/kε=0) for Ta is smaller

than that in Nb.

7.4 Conclusion

Monte Carlo solutions of the BTE have been successfully performed tomodel the lattice thermal

conductivity of superconducting Ta before and after deformation given the phonon dispersion

relationship of Ta. Different scattering mechanisms, including phonon-boundary, phonon-electron,

and phonon-dislocation scattering, which contribute to the lattice thermal conductivity of Ta,
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were used in the simulation to calculate the lattice thermal conductivity of Ta for samples before

and after several deformations. The simulation results agree well with the results extracted from

experiments [3] for different samples both before and after deformation. The results show that

boundary scattering dominates for temperatures smaller than 0.5 K, where the phonon mean free

path is comparable to the size of the sample, and that phonon-electron scattering is important when

the temperature is greater than 1 K and dominates the conductivity for temperatures greater than

1.3 K. Phonon-dislocation scattering affects the lattice thermal conductivity around the phonon

peak temperatures (between 0.7 K and 1.1 K) and large amount of deformation leads to a lower and

broader peak in this temperature range. The phonon peak appears at temperatures of approximately

0.9 K in undeformed samples and shifts to higher temperature after small amount of deformation.

Phonon-dislocation scattering decreases the lattice thermal conductivity and a large amount of

deformation destroys the phonon peak.
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CHAPTER 8

CONCLUSIONS

An extended model based on that of the Koechlin and Bonin model [41] has demonstrated that

dislocation density Nd needs to be considered explicitly, especially in deformed Nb (a type II

superconductor) and Ta (a type I superconductor). This model is based on BCS [39] (and BRT

[42]) theory, and the dislocation term is based on the work of Klemens [44]. Examining the thermal

conductivity of Nb and Ta using this extended model suggests that normal electrons determine k

for T & 0.3Tc, while from 0.1Tc . T . 0.25Tc, phonons scattered by dislocation dominate k, and

phonons scattered by boundaries dominate k for T . 0.1Tc. The extended model also shows that

there are threshold dislocation densities for Nb and Ta. Below these thresholds, the contributions

from dislocation scattering of phonons can be neglected in the calculation of lattice k even in the

range of 0.1Tc . T . 0.25Tc. Furthermore, k demonstrates a local maximum, often called the

phonon peak kpp at a temperature Tpp. The magnitude of kpp decreases with increasing Nd while

Tpp increases with increasing Nd , until kpp disappears.

Although k is correlated with RRR for T & 0.3Tc (specifically k(4.2 K) = RRR/4), a few

measurements [4, 8] have suggested that kpp may be correlated with RRR. See, for example, Fig.

2.5. This result is unexpected based on the BRT model of k of superconductors [42] and the theory

of metals [37]. The extended model offers an explanation based on the results of Wasserbäch [4]

and Chandrasekaran [8]. The coefficient of the phonon-boundary scattering term varies with RRR.

In samples with large kpp, the dislocations have little effect and the value of the kpp is a result of

the balance between phonon-boundary and phonon-electron scattering.

The Callaway model [95] for the lattice thermal conductivity has been extended to include

a phonon dispersion relation. This allows consideration of variable phonon group velocities.

However, this model is limited by the requirement that all of the relaxation times being considered

to be of the same form. The Callaway model is also most suited to simple regular geometries, e.g.,

rectangular, spherical, or cylindrical geometries. Hence, an energy-based, variance-reduced Monte
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Carlo solution [126] of the BTE for phonons has been developed, incorporating a relaxation time

approximation and the phonon dispersion relation. The Monte Carlo simulation has the advantage

of being able tomodel the scatteringmechanisms individually, aswell as the possibility to be applied

tomore complex geometries. Simulations of lattice k of undeformed and deformedNb and Tamatch

well with the results of the extended Koechlin and Bonin model [41] (Eq. 2.4) when including the

relaxation times for phonon-boundary, phonon-electron, and phonon-dislocation scattering. The

Monte Carlo simulation has also be used to investigate the effect on the lattice k of saturating Nb

with hydrogen. The simulation results match well with measured results for Nb saturated with H,

bolstering the argument that H impurity affect the lattice k at near saturation.

Future work includes measuring the dislocation density of predominant screw and edge dis-

locations to verify using the extended K& B model (Eq. 2.4) to estimate the dislocation density

for various levels of deformation. It will be also important to apple the developed Monte Carlo

simulation method to superconducting thin film Nb and other superconductors with higher critical

temperature, e.g.. Nb3Sn and NbN. After this, measuring the thermal conductivity of Nb with

different levels of deformation and also Nb thin films will greatly help verify the extended model

and the Monte Carlo simulation.
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APPENDIX
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A.1 Main program

1 clc; %% Clear

2 tic; %% Calculate computing time

3 %%%%%%%%%%%% Parameters

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq Et; %% Global values

5 l=9.75*10^(-5); a=5*10^(-6); b=5*10^(-6); % dimension of the cell ...

unit: m

6 V=l*a*b; % Volume, consider a rectangle

7 A=a*b; % Surface area of the first and last wall (consider isothermal)

8 h=6.63*10^(-34); % Planck constant

9 hbar=h/(2*pi); % Reduced Planck constant

10 kb=1.38*10^(-23); % Boltzmann constant

11 vs=[909 384.6]*2*pi; % sound velocity in LA and TA phonons

12 c=[-3.04*10^(-8) -5.52*10^(-10)]*2*pi; % constant to calculate velocity

13 W=0.3*10^(-17); % scaling factor

14 qmax=1.9*10^10; % Maximum Wavenumber

15 wmax=[6.795*10^12; 7.1075*10^12]*2*pi; % Maximum Frequency

16 qh=0.5*qmax; % Half maximum Frequency

17 wth=vs(2)*qh+c(2)*qh^2; % w1/2=w(1/2*qmax) for TA phonons

18 dw=wmax(2)/1000; % Frequency intervel

19 g=[1 2]; % Degenarations, LA or TA

20 Th=2.05; % Hot side Temperature

21 Tc=1.95; % Cold side Temperature

22 Teq=2.0; % Reference Temperature

23 for i=1:956

24 w1(i)=i*dw; % Discreate frequency LA 1000 intervels (1-956)

25 end

26 for i=957:1:1000

27 w1(i)=wmax(1)-(i-956)*dw; % intervels (957-1000)

28 end
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29 for i=1:1000

30 w2(i)=i*dw; % Discreate frequency TA 1000 intervels

31 end

32 dt=1*10^(-8); % time step

33 for i=1:40

34 Td(i)=-(Th-Tc)/39*i+Th+(Th-Tc)/39; % Diffusion limit of T profile

35 Tb(i)=((Th^4+Tc^4)/2)^0.25; % Ballistic limit of T profile

36 end

37 %%%%%%%%%% end of parameters

38 %%%%%%%%%%%%% Initialization

39 for i=1:1:956

40 q1(i)=(-vs(1)+sqrt(vs(1)^2+4*c(1)*w1(i)))/(2*c(1)); % Wavenumber ...

distribution 1-956

41 v1(i)=vs(1)+2*c(1)*q1(i); % Group Velocity distribution 1-956

42 end

43 for i=957:1:1000

44 q1(i)=(-vs(1)-sqrt(vs(1)^2+4*c(1)*w1(i)))/(2*c(1)); % Wavenumber ...

distribution 957-1000

45 v1(i)=abs(vs(1)+2*c(1)*q1(i)); % Wavenumber distribution 957-1000

46 end

47 for i=1:1000

48 q2(i)=(-vs(2)+sqrt(vs(2)^2+4*c(2)*w2(i)))/(2*c(2)); % Wavenumber ...

distribution 1-1000

49 v2(i)=vs(2)+2*c(2)*q2(i); % Velocity distribution 1-1000

50 end

51 %%%%%%%%%%%%% hot side initialization

52 for i=1:1000

53 nlh(i)=hbar*w1(i)*(1/W)*V*(1/(exp((hbar*w1(i)/(kb*Th)))-1)-

54 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i)^2)/(2*pi^2*v1(i)))*dw; ...

% LA number for hot side, positive energy

55 nth(i)=hbar*w2(i)*(1/W)*V*(1/(exp((hbar*w1(i)/(kb*Th)))-1)-

56 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q2(i)^2)/(2*pi^2*v2(i)))*dw*2; ...

% TA number for hot side, positive energy
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57 nh(i)=nlh(i)+nth(i); % Total number for hot side

58 Ph(i)=nlh(i)/nh(i); % probability of LA for hot side

59 end

60 Nhh=sum(nh);

61 Nh=floor(sum(nh)); % number of phonons for hot side

62 Mh(1)=nh(1);

63 Fh(1)=0;

64 for i=2:1:1000

65 Mh(i)=Mh(i-1)+nh(i); % summation of ith phonon numbers

66 Fh(i)=Mh(i)/Nhh; % determine which intervel

67 end

68 %%%%%%%%%%% Hot side only has one cell

69 for j=1:Nh

70 R=rand; % random number

71 a1=1; % frequeny invervel No. 1

72 b1=1000; % frequeny invervel No. 1000

73 while((R-Fh(a1))*(Fh(a1+1)-R)<0) % bisection method to ...

determine which interval

74 mm=round((a1+b1)/2); % get integer

75 if (abs(R-Fh(a1))<abs(R-Fh(b1)))

76 if (R>Fh(mm))

77 a1=mm;

78 else

79 b1=mm;

80 end

81 else

82 if (R<Fh(mm))

83 b1=mm;

84 else

85 a1=mm;

86 end

87 end

88 end
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89 R1=rand; %random number

90 R2=rand; %random number

91 f(j)=w1(a1)+(2*R2-1)*dw/2; % bisection method to determine ...

which interval

92 if (R1<Ph(a1)) % Polarization (LA)

93 ml(j)=(-vs(1)+sqrt(vs(1)^2+4*c(1)*f(j)))/(2*c(1)); % LA ...

wavevector (assume isotropy)

94 mt(j)=0; % TA wavevector=0

95 vl(j)=vs(1)+2*c(1)*ml(j); % LA magnitude group velocity

96 vt(j)=0; % TA velocity=0

97 else % Polarization (TA)

98 mt(j)=(-vs(2)+sqrt(vs(2)^2+4*c(2)*f(j)))/(2*c(2)); % TA ...

wavevector (assume isotropy)

99 ml(j)=0; % LA wavevector=0

100 vt(j)=vs(2)+2*c(2)*mt(j); % TA magnitude group velocity

101 vl(j)=0; % LA velocity=0

102 end

103 v(j)=(vt(j)+vl(j)); % total velocity

104 m(j)=mt(j)+ml(j); % total wave number

105 R1=rand; % random number

106 R2=rand; % random number

107 R3=rand; % random number

108 R4=rand; % random number

109 R5=rand; % random number

110 K2=2*pi*R4; % angle 1 psi

111 K1=2*R5-1; % angle 2 cos(theta)

112 vg(j,2)=v(j)*sqrt(1-K1^2)*cos(K2); % direction of velocity ...

sin(theta)*cos(psi)

113 vg(j,3)=v(j)*sqrt(1-K1^2)*sin(K2); % direction of velocity ...

sin(theta)*sin(psi)

114 vg(j,1)=v(j)*K1; % direction of velocity cos(theta)

115 x1(j)=(R1)*l; % location of particles in cell 1

116 x2(j)=(R2)*a; % location of particles in cell 1
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117 x3(j)=(R3)*b; % location of particles in cell 1

118 s(j)=1; % Sign of particles 1(T>Teq), -1(T<Teq)

119 end

120 %%%%%%%%%%%%% end of hot side initialization

121 %%%%%%%%%%%% cold side initialization, cold side has 19 cells

122 for i=1:1000

123 nlc(i)=-hbar*w1(i)*1/W*V*(1/(exp((hbar*w1(i)/(kb*Tc)))-1)-

124 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i)^2)/(2*pi^2*v1(i)))*dw; ...

% LA number for hot side

125 ntc(i)=-hbar*w2(i)*1/W*V*(1/(exp((hbar*w1(i)/(kb*Tc)))-1)-

126 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q2(i)^2)/(2*pi^2*v2(i)))*dw*2; ...

% TA number for hot side

127 nc(i)=nlc(i)+ntc(i); % Total number for hot side

128 Pc(i)=nlc(i)/nc(i); % probability of LA for hot side

129 end

130 Ncc=sum(nc);

131 Nc=floor(sum(nc)); % number of phonons for hot side

132 Mc(1)=nc(1);

133 Fc(1)=0;

134 for i=2:1:1000

135 Mc(i)=Mc(i-1)+nc(i); % summation of ith phonon numbers

136 Fc(i)=Mc(i)/Ncc; % to determine phonon belong to which intervel

137 end

138 N=Nh+Nc*39; % Total number of phonons

139 %%%%%%%%%%% cold side has 39 cells

140 for i=2:1:40

141 for j=1:1:Nc

142 R=rand; %random number

143 a1=1; % frequeny invervel No. 1

144 b1=1000; % frequeny invervel No. 1000

145 while((R-Fc(a1))*(Fc(a1+1)-R)<0)

146 mm=round((a1+b1)/2);
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147 if (abs(R-Fc(a1))<abs(R-Fc(b1))) % bisection method to ...

determine which interval

148 if (R>Fc(mm))

149 a1=mm;

150 else

151 b1=mm;

152 end

153 else

154 if (R<Fc(mm))

155 b1=mm;

156 else

157 a1=mm;

158 end

159 end

160 end

161 R1=rand;

162 R2=rand;

163 f(Nh+(i-2)*Nc+j)=w1(a1)+(2*R2-1)*dw/2;

164 if (R1<Pc(a1)) % Polarization (LA)

165 ml(Nh+(i-2)*Nc+j)=(-vs(1)+sqrt(vs(1)^2+4*c(1)*f(Nh+(i-2)*Nc+j)))/(2*c(1)); ...

% LA wavevector (assume isotropy)

166 mt(Nh+(i-2)*Nc+j)=0;% TA wavevector=0

167 vl(Nh+(i-2)*Nc+j)=vs(1)+2*c(1)*ml(Nh+(i-2)*Nc+j); % LA ...

magnitude group velocity

168 vt(Nh+(i-2)*Nc+j)=0; % TA velocity=0

169 else

170 mt(Nh+(i-2)*Nc+j)=(-vs(2)+sqrt(vs(2)^2+4*c(2)*f(Nh+(i-2)*Nc+j)))/(2*c(2)); ...

% TA wavevector (assume isotropy)

171 ml(Nh+(i-2)*Nc+j)=0; % LA wavevector=0

172 vt(Nh+(i-2)*Nc+j)=vs(2)+2*c(2)*mt(Nh+(i-2)*Nc+j); % TA ...

magnitude group velocity

173 vl(Nh+(i-2)*Nc+j)=0; % LA velocity=0

174 end
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175 v(Nh+(i-2)*Nc+j)=vt(Nh+(i-2)*Nc+j)+vl(Nh+(i-2)*Nc+j); % total ...

velocity

176 m(Nh+(i-2)*Nc+j)=mt(Nh+(i-2)*Nc+j)+ml(Nh+(i-2)*Nc+j); % total ...

wave number

177 R1=rand; % random number

178 R2=rand; % random number

179 R3=rand; % random number

180 R4=rand; % random number

181 R5=rand; % random number

182 K2=2*pi*R4; % angle 1 psi

183 K1=2*R5-1; % angle 2 cos(theta)

184 vg(Nh+(i-2)*Nc+j,2)=v(Nh+(i-2)*Nc+j)*sqrt(1-K1^2)*cos(K2); % ...

direction of velocity sin(theta)*cos(psi)

185 vg(Nh+(i-2)*Nc+j,3)=v(Nh+(i-2)*Nc+j)*sqrt(1-K1^2)*sin(K2); % ...

direction of velocity sin(theta)*sin(psi)

186 vg(Nh+(i-2)*Nc+j,1)=v(Nh+(i-2)*Nc+j)*K1; % direction of ...

velocity cos(theta)

187 x1(Nh+(i-2)*Nc+j)=(i-1+R1)*l; % location of particles in cell 2-40

188 x2(Nh+(i-2)*Nc+j)=(R2)*a; % location of particles in cell 2-40

189 x3(Nh+(i-2)*Nc+j)=(R3)*b; % location of particles in cell 2-40

190 s(Nh+(i-2)*Nc+j)=-1; % Sign of particles 1(T>Teq), -1(T<Teq)

191 end

192 end

193 %%%%%%%%%%% end of cold side initialization

194 %%%%%%% Drift process

195 u1=0; % iteration times

196 d=0.996; % specularity

197 Ttol=1500*dt; % Total time

198 for t=dt:dt:Ttol

199 for i=1:40

200 Et(i)=0; % Total energy=0

201 NNN(i)=0; % Number of particles in each cell before drifting

202 end
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203 Nd1=0; % number of particles to be deleted in cell 1

204 Nd40=0; % number of particles to be deleted in cell 40

205 for j=1:1:N % drift process

206 x1(j)=x1(j)+vg(j,1)*dt; % update coordinate 1

207 x2(j)=x2(j)+vg(j,2)*dt; % update coordinate 2

208 x3(j)=x3(j)+vg(j,3)*dt; % update coordinate 3

209 if (x2(j)≤0) % reach bottom boundary

210 R=rand; % random number

211 if (R<d) % specular reflection

212 x2(j)=-x2(j); % update coordinate 2

213 vg(j,2)=-vg(j,2); % particles bounce back

214 else % diffusive reflection

215 R1=rand; % random number

216 R2=rand; % random number

217 K1=2*R1-1; % angle 1

218 K2=2*pi*R2; % angle 2

219 ddt=abs((x2(j))/(vg(j,2))); % time for reflection

220 x1(j)=x1(j)-ddt*vg(j,1); % update coordinate 1

221 x3(j)=x3(j)-ddt*vg(j,3); % update coordinate 2

222 x2(j)=x2(j)-ddt*vg(j,2); % update coordinate 3

223 vg(j,1)=v(j)*K1;% velocity random direction

224 vg(j,2)=abs(v(j)*sqrt(1-K1^2)*sin(K2)); % velocity ...

random direction

225 vg(j,3)=v(j)*sqrt(1-K1^2)*cos(K2); % velocity random ...

direction

226 x1(j)=x1(j) + ddt*vg(j,1); % update coordinate 1

227 x3(j)=x3(j) + ddt*vg(j,3); % update coordinate 1

228 x2(j)=x2(j) + ddt*vg(j,2); % update coordinate 1

229 end

230

231 elseif (x2(j)≥a) % reach top boundary

232 R=rand; % random number

233 if (R<d) % specular reflection
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234 x2(j)=2*a-x2(j); % update coordinate 2

235 vg(j,2)=-vg(j,2); % particles bounce back

236 else % diffusive reflection

237 R1=rand; % random number

238 R2=rand; % random number

239 K1=2*R1-1; % angle 1

240 K2=2*pi*R2; % angle 2

241 ddt=abs((a-x2(j))/(vg(j,2))); % time for reflection

242 x1(j)=x1(j)-ddt*vg(j,1); % update coordinate 1

243 x3(j)=x3(j)-ddt*vg(j,3); % update coordinate 2

244 x2(j)=x2(j)-ddt*vg(j,2); % update coordinate 3

245 vg(j,1)=v(j)*K1; % velocity random direction

246 vg(j,2)=-abs(v(j)*sqrt(1-K1^2)*sin(K2)); % velocity ...

random direction

247 vg(j,3)=v(j)*sqrt(1-K1^2)*cos(K2); % velocity random ...

direction

248 x1(j)=x1(j) + ddt*vg(j,1); % update coordinate 1

249 x3(j)=x3(j) + ddt*vg(j,3); % update coordinate 1

250 x2(j)=x2(j) + ddt*vg(j,2); % update coordinate 1

251 end

252 end

253

254 if (x3(j)≤0) % reach left boundary

255 R=rand; % random number

256 if (R<d) % specular reflection

257 x3(j)=-x3(j); % update coordinate 3

258 vg(j,3)=-vg(j,3); % particles bounce back

259 else % diffusive reflection

260 R1=rand; % random number

261 R2=rand; % random number

262 K1=2*R1-1; % angle 1

263 K2=2*pi*R2; % angle 2

264 ddt=abs(x3(j)/(vg(j,3))); % time for reflection
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265 x1(j)=x1(j)-ddt*vg(j,1); % update coordinate 1

266 x3(j)=x3(j)-ddt*vg(j,3); % update coordinate 2

267 x2(j)=x2(j)-ddt*vg(j,2); % update coordinate 3

268 vg(j,1)=v(j)*K1; % velocity random direction

269 vg(j,2)=v(j)*sqrt(1-K1^2)*sin(K2); % velocity random ...

direction

270 vg(j,3)=abs(v(j)*sqrt(1-K1^2)*cos(K2)); % velocity ...

random direction

271 x1(j)=x1(j) + ddt*vg(j,1); % update coordinate 1

272 x3(j)=x3(j) + ddt*vg(j,3); % update coordinate 1

273 x2(j)=x2(j) + ddt*vg(j,2); % update coordinate 1

274 end

275

276 elseif (x3(j)≥b) % reach right boundary

277 R=rand; % random number

278 if (R<d) % specular reflection

279 x3(j)=2*b-x3(j); % update coordinate 3

280 vg(j,3)=-vg(j,3); % particles bounce back

281 else % diffusive reflection

282 R1=rand; % random number

283 R2=rand; % random number

284 K1=2*R1-1; % angle 1

285 K2=2*pi*R2; % angle 2

286 ddt=abs((b-x3(j))/(vg(j,3))); % time for reflection

287 x1(j)=x1(j)-ddt*vg(j,1); % update coordinate 1

288 x3(j)=x3(j)-ddt*vg(j,3); % update coordinate 2

289 x2(j)=x2(j)-ddt*vg(j,2); % update coordinate 3

290 vg(j,1)=v(j)*K1; % velocity random direction

291 vg(j,2)=v(j)*sqrt(1-K1^2)*sin(K2); % velocity random ...

direction

292 vg(j,3)=-abs(v(j)*sqrt(1-K1^2)*cos(K2)); % velocity ...

random direction

293 x1(j)=x1(j) + ddt*vg(j,1); % update coordinate 1
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294 x3(j)=x3(j) + ddt*vg(j,3); % update coordinate 1

295 x2(j)=x2(j) + ddt*vg(j,2); % update coordinate 1

296 end

297 end

298

299 if (x1(j)<l) % reach left (delete this phonon)

300 Nd1=Nd1+1; % put the deleted particle in cell 1

301 elseif (x1(j)>39*l) % reach right (delete this phonon)

302 Nd40=Nd40+1; % put the deleted particle in cell 40

303 end

304 Ndd=Nd1+Nd40; % total particle to be deleted

305 end

306 %%%%%%%%%%%%%%%%%%% end of drift process

307 %%%%% reinitialization

308 %%%%%%%%%%%%%%%%%%% Determine the properties of hot cell

309 for j=1:Nh

310 R=rand; % random number

311 a1=1; % frequeny invervel No. 1

312 b1=1000; % frequeny invervel No. 1000

313 while((R-Fh(a1))*(Fh(a1+1)-R)<0)

314 mm=round((a1+b1)/2); % get integer

315 if (abs(R-Fh(a1))<abs(R-Fh(b1))) % bisection method to ...

determine which interval

316 if (R>Fh(mm))

317 a1=mm;

318 else

319 b1=mm;

320 end

321 else

322 if (R<Fh(mm))

323 b1=mm;

324 else

325 a1=mm;
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326 end

327 end

328 end

329 R1=rand; %random number

330 R2=rand; %random number

331 f(N+j)=w1(a1)+(2*R2-1)*dw/2; % assign the frequency

332 if (R1<Ph(a1)) % Polarization (LA)

333 ml(N+j)=(-vs(1)+sqrt(vs(1)^2+4*c(1)*f(N+j)))/(2*c(1)); % LA ...

wavevector (assume isotropy)

334 mt(N+j)=0; % TA wavevector=0

335 vl(N+j)=vs(1)+2*c(1)*ml(N+j); % LA magnitude group velocity

336 vt(N+j)=0; % TA velocity=0

337 else % Polarization (TA)

338 mt(N+j)=(-vs(2)+sqrt(vs(2)^2+4*c(2)*f(N+j)))/(2*c(2)); % TA ...

wavevector (assume isotropy)

339 ml(N+j)=0; % LA wavevector=0

340 vt(N+j)=vs(2)+2*c(2)*mt(N+j); % TA magnitude group velocity

341 vl(N+j)=0; % LA velocity=0

342 end

343 v(N+j)=vt(N+j)+vl(N+j); % total velocity

344 m(N+j)=mt(N+j)+ml(N+j); % total wave number

345 R1=rand; % random number

346 R2=rand; % random number

347 R3=rand; % random number

348 R4=rand; % random number

349 R5=rand; % random number

350 K2=2*pi*R4; % angle 1 psi

351 K1=2*R5-1; % angle 2 cos(theta)

352 vg(N+j,2)=v(N+j)*sqrt(1-K1^2)*cos(K2); % direction of velocity ...

sin(theta)*cos(psi)

353 vg(N+j,3)=v(N+j)*sqrt(1-K1^2)*sin(K2); % direction of velocity ...

sin(theta)*sin(psi)

354 vg(N+j,1)=v(N+j)*K1; % direction of velocity cos(theta)
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355 x1(N+j)=R1*l; % location of particles in cell 1

356 x2(N+j)=R2*a; % location of particles in cell 1

357 x3(N+j)=R3*b; % location of particles in cell 1

358 s(N+j)=1; % Sign of particles 1(T>Teq), -1(T<Teq)

359 end

360 %%%%%%%%%% Determine the properties of cold wall

361 for j=1:Nc

362 R=rand; % random number

363 a1=1; % frequeny invervel No. 1

364 b1=1000; % frequeny invervel No. 1000

365 while((R-Fc(a1))*(Fc(a1+1)-R)<0) % bisection method to ...

determine which interval

366 mm=round((a1+b1)/2); % get integer

367 if (abs(R-Fc(a1))<abs(R-Fc(b1))) % bisection method

368 if (R>Fc(mm))

369 a1=mm;

370 else

371 b1=mm;

372 end

373 else

374 if (R<Fc(mm))

375 b1=mm;

376 else

377 a1=mm;

378 end

379 end

380 end

381 R1=rand; %random number

382 R2=rand; %random number

383 f(N+Nh+j)=w1(a1)+(2*R2-1)*dw/2; % assign the frequency

384 if (R1<Pc(a1)) % Polarization (LA)

385 ml(N+Nh+j)=(-vs(1)+sqrt(vs(1)^2+4*c(1)*f(N+Nh+j)))/(2*c(1)); ...

% LA wavevector (assume isotropy)

118



386 mt(N+Nh+j)=0; % TA wavevector=0

387 vl(N+Nh+j)=vs(1)+2*c(1)*ml(N+Nh+j); % LA magnitude group ...

velocity

388 vt(N+Nh+j)=0; % TA velocity=0

389 else % Polarization (TA)

390 mt(N+Nh+j)=(-vs(2)+sqrt(vs(2)^2+4*c(2)*f(N+Nh+j)))/(2*c(2)); ...

% TA wavevector (assume isotropy)

391 ml(N+Nh+j)=0; % LA wavevector=0

392 vt(N+Nh+j)=vs(2)+2*c(2)*mt(N+Nh+j); % TA magnitude group ...

velocity

393 vl(N+Nh+j)=0; % LA velocity=0

394 end

395 v(N+Nh+j)=(vt(N+Nh+j)+vl(N+Nh+j)); % total velocity

396 m(N+Nh+j)=mt(N+Nh+j)+ml(N+Nh+j); % total wave number

397 R1=rand; % random number

398 R2=rand; % random number

399 R3=rand; % random number

400 R4=rand; % random number

401 R5=rand; % random number

402 K2=2*pi*R4; % angle 1 psi

403 K1=2*R5-1; % angle 2 cos(theta)

404 vg(N+Nh+j,2)=v(N+Nh+j)*sqrt(1-K1^2)*cos(K2); % direction of ...

velocity sin(theta)*cos(psi)

405 vg(N+Nh+j,3)=v(N+Nh+j)*sqrt(1-K1^2)*sin(K2); % direction of ...

velocity sin(theta)*sin(psi)

406 vg(N+Nh+j,1)=v(N+Nh+j)*K1; % direction of velocity cos(theta)

407 x1(N+Nh+j)=(39+R1)*l; % location of particles in cell 40

408 x2(N+Nh+j)=(R2)*a; % location of particles in cell 40

409 x3(N+Nh+j)=(R3)*b; % location of particles in cell 40

410 s(N+Nh+j)=-1; % Sign of particles 1(T>Teq), -1(T<Teq)

411 end

412 %%%%%%%%%%%%%% begin reassignment of the phonons

413 Nmax=N+Nh+Nc; % maximum number of particles
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414 N=Nmax-Ndd; % real number of particles

415 i=0; % indication of which particle to be reassigned

416 if (Ndd≤(Nh+Nc)) % If deleted particles ≤ reassigned particles

417 for j=1:N

418 if (x1(j)<l || x1(j)>39*l) % if phonons are out of boundary ...

cell, reassign the reinitialized phonons to them

419 x1(j)=x1(Nmax-i); % update location

420 x2(j)=x2(Nmax-i); % update location

421 x3(j)=x3(Nmax-i); % update location

422 vg(j,1)=vg(Nmax-i,1); % update velocity 1

423 vg(j,2)=vg(Nmax-i,2); % update velocity 2

424 vg(j,3)=vg(Nmax-i,3); % update velocity 3

425 f(j)=f(Nmax-i); % update frequency

426 ml(j)=ml(Nmax-i); % update wave numeber LA

427 mt(j)=mt(Nmax-i); % update wave numeber TA

428 vl(j)=vl(Nmax-i); % update velocity LA

429 vt(j)=vt(Nmax-i); % update velocity TA

430 s(j)=s(Nmax-i); % update sign of particles

431 m(j)=ml(j)+mt(j); % update total wave number (either LA ...

or TA)

432 v(j)=vl(j)+vt(j); % update total velocity (either LA or TA)

433 i=i+1;

434 end

435 end

436 else % If deleted particles > reassigned particles

437 k=1;

438 for j=1:N

439 if (x1(j)<l || x1(j)>39*l) % if phonons are out of boundary ...

cell, reassign the reinitialized phonons to them

440 if (i≤(Nh+Nc)) % If the reassigned particles ≤ Nh+Nc

441 x1(j)=x1(Nmax-i); % update location

442 x2(j)=x2(Nmax-i); % update location

443 x3(j)=x3(Nmax-i); % update location

120



444 vg(j,1)=vg(Nmax-i,1); % update velocity 1

445 vg(j,2)=vg(Nmax-i,2); % update velocity 2

446 vg(j,3)=vg(Nmax-i,3); % update velocity 3

447 f(j)=f(Nmax-i); % update frequency

448 ml(j)=ml(Nmax-i); % update wave numeber LA

449 mt(j)=mt(Nmax-i); % update wave numeber TA

450 vl(j)=vl(Nmax-i); % update velocity LA

451 vt(j)=vt(Nmax-i); % update velocity TA

452 s(j)=s(Nmax-i); % update sign of particles

453 m(j)=ml(j)+mt(j); % update total wave number ...

(either LA or TA)

454 v(j)=vl(j)+vt(j); % update total velocity (either ...

LA or TA)

455 i=i+1;

456 else % If the reassigned particles > Nh+Nc

457 while(x1(N+k)<l || x1(N+k)>39*l) % if the rest ...

phonons are out of boundary cell, reassign the ...

reinitialized phonons to them

458 k=k+1;

459 end

460 x1(j)=x1(N+k); % update location

461 x2(j)=x2(N+k); % update location

462 x3(j)=x3(N+k); % update location

463 vg(j,1)=vg(N+k,1); % update velocity 1

464 vg(j,2)=vg(N+k,2); % update velocity 2

465 vg(j,3)=vg(N+k,3); % update velocity 3

466 f(j)=f(N+k); % update frequency

467 ml(j)=ml(N+k); % update wave numeber LA

468 mt(j)=mt(N+k); % update wave numeber TA

469 vl(j)=vl(N+k); % update velocity LA

470 vt(j)=vt(N+k); % update velocity TA

471 s(j)=s(N+k); % update sign of particles
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472 m(j)=ml(j)+mt(j); % update total wave number ...

(either LA or TA)

473 v(j)=vl(j)+vt(j); % update total velocity (either ...

LA or TA)

474 k=k+1;

475 i=i+1;

476 end

477 end

478 end

479 end

480 %%%%%%%%% Calculate number of energy in each cell

481 for j=1:N

482 for i=1:40

483 if (x1(j)>(i-1)*l && x1(j)<(i)*l)

484 NNN(i)=NNN(i)+s(j); % number of particles (energy) in ...

each cell

485 end

486 end

487 end

488 %%%%%%%%% Calculate target energy for each cell

489 for i=1:40

490 Et(i)=NNN(i)*W; % target energy of each cell

491 end

492 %%%%%%%% end of reassignment of the phonons

493 %%%%%%%%%%%%%%%%%%%%%% Calculating the temperature (Newton-Raphson method)

494 T1(1)=100; % initial temperature (T0) of cell 1 iteration 1

495 T1(2)=T1(1)-z1(T1(1))/(z1dot(T1(1))); % T0 of cell 1 iteration 2

496 j=1;

497 while (abs(T1(j+1)-T1(j))>0.01) % Iteration process

498 j=j+1;

499 T1(j+1)=T1(j)-z1(T1(j))/(z1dot(T1(j)));

500 end

501 T(1)=T1(j+1); % converge, solve T
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502

503 %%%%%%%% Process is similar to get the following temperatures

504 T2(1)=100;

505 T2(2)=T2(1)-z2(T2(1))/(z2dot(T2(1)));

506 j=1;

507 while (abs(T2(j+1)-T2(j))>0.01)

508 j=j+1;

509 T2(j+1)=T2(j)-z2(T2(j))/(z2dot(T2(j)));

510 end

511 T(2)=T2(j+1);

512

513 T3(1)=100;

514 T3(2)=T3(1)-z3(T3(1))/(z3dot(T3(1)));

515 j=1;

516 while (abs(T3(j+1)-T3(j))>0.01)

517 j=j+1;

518 T3(j+1)=T3(j)-z3(T3(j))/(z3dot(T3(j)));

519 end

520 T(3)=T3(j+1);

521

522 T4(1)=100;

523 T4(2)=T4(1)-z4(T4(1))/(z4dot(T4(1)));

524 j=1;

525 while (abs(T4(j+1)-T4(j))>0.01)

526 j=j+1;

527 T4(j+1)=T4(j)-z4(T4(j))/(z4dot(T4(j)));

528 end

529 T(4)=T4(j+1);

530

531 T5(1)=100;

532 T5(2)=T5(1)-z5(T5(1))/(z5dot(T5(1)));

533 j=1;

534 while (abs(T5(j+1)-T5(j))>0.01)
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535 j=j+1;

536 T5(j+1)=T5(j)-z5(T5(j))/(z5dot(T5(j)));

537 end

538 T(5)=T5(j+1);

539

540 T6(1)=100;

541 T6(2)=T6(1)-z6(T6(1))/(z6dot(T6(1)));

542 j=1;

543 while (abs(T6(j+1)-T6(j))>0.01)

544 j=j+1;

545 T6(j+1)=T6(j)-z6(T6(j))/(z6dot(T6(j)));

546 end

547 T(6)=T6(j+1);

548

549 T7(1)=100;

550 T7(2)=T7(1)-z7(T7(1))/(z7dot(T7(1)));

551 j=1;

552 while (abs(T7(j+1)-T7(j))>0.01)

553 j=j+1;

554 T7(j+1)=T7(j)-z7(T7(j))/(z7dot(T7(j)));

555 end

556 T(7)=T7(j+1);

557

558 T8(1)=100;

559 T8(2)=T8(1)-z8(T8(1))/(z8dot(T8(1)));

560 j=1;

561 while (abs(T8(j+1)-T8(j))>0.01)

562 j=j+1;

563 T8(j+1)=T8(j)-z8(T8(j))/(z8dot(T8(j)));

564 end

565 T(8)=T8(j+1);

566

567 T9(1)=100;
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568 T9(2)=T9(1)-z9(T9(1))/(z9dot(T9(1)));

569 j=1;

570 while (abs(T9(j+1)-T9(j))>0.01)

571 j=j+1;

572 T9(j+1)=T9(j)-z9(T9(j))/(z9dot(T9(j)));

573 end

574 T(9)=T9(j+1);

575

576 T10(1)=100;

577 T10(2)=T10(1)-z10(T10(1))/(z10dot(T10(1)));

578 j=1;

579 while (abs(T10(j+1)-T10(j))>0.01)

580 j=j+1;

581 T10(j+1)=T10(j)-z10(T10(j))/(z10dot(T10(j)));

582 end

583 T(10)=T10(j+1);

584

585 T11(1)=100;

586 T11(2)=T11(1)-z11(T11(1))/(z11dot(T11(1)));

587 j=1;

588 while (abs(T11(j+1)-T11(j))>0.01)

589 j=j+1;

590 T11(j+1)=T11(j)-z11(T11(j))/(z11dot(T11(j)));

591 end

592 T(11)=T11(j+1);

593

594 T12(1)=100;

595 T12(2)=T12(1)-z12(T12(1))/(z12dot(T12(1)));

596 j=1;

597 while (abs(T12(j+1)-T12(j))>0.01)

598 j=j+1;

599 T12(j+1)=T12(j)-z12(T12(j))/(z12dot(T12(j)));

600 end
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601 T(12)=T12(j+1);

602

603 T13(1)=100;

604 T13(2)=T13(1)-z13(T13(1))/(z13dot(T13(1)));

605 j=1;

606 while (abs(T13(j+1)-T13(j))>0.01)

607 j=j+1;

608 T13(j+1)=T13(j)-z13(T13(j))/(z13dot(T13(j)));

609 end

610 T(13)=T13(j+1);

611

612 T14(1)=100;

613 T14(2)=T14(1)-z14(T14(1))/(z14dot(T14(1)));

614 j=1;

615 while (abs(T14(j+1)-T14(j))>0.01)

616 j=j+1;

617 T14(j+1)=T14(j)-z14(T14(j))/(z14dot(T14(j)));

618 end

619 T(14)=T14(j+1);

620

621 T15(1)=100;

622 T15(2)=T15(1)-z15(T15(1))/(z15dot(T15(1)));

623 j=1;

624 while (abs(T15(j+1)-T15(j))>0.01)

625 j=j+1;

626 T15(j+1)=T15(j)-z15(T15(j))/(z15dot(T15(j)));

627 end

628 T(15)=T15(j+1);

629

630 T16(1)=100;

631 T16(2)=T16(1)-z16(T16(1))/(z16dot(T16(1)));

632 j=1;

633 while (abs(T16(j+1)-T16(j))>0.01)
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634 j=j+1;

635 T16(j+1)=T16(j)-z16(T16(j))/(z16dot(T16(j)));

636 end

637 T(16)=T16(j+1);

638

639 T17(1)=100;

640 T17(2)=T17(1)-z17(T17(1))/(z17dot(T17(1)));

641 j=1;

642 while (abs(T17(j+1)-T17(j))>0.01)

643 j=j+1;

644 T17(j+1)=T17(j)-z17(T17(j))/(z17dot(T17(j)));

645 end

646 T(17)=T17(j+1);

647

648 T18(1)=100;

649 T18(2)=T18(1)-z18(T18(1))/(z18dot(T18(1)));

650 j=1;

651 while (abs(T18(j+1)-T18(j))>0.01)

652 j=j+1;

653 T18(j+1)=T18(j)-z18(T18(j))/(z18dot(T18(j)));

654 end

655 T(18)=T18(j+1);

656

657 T19(1)=100;

658 T19(2)=T19(1)-z19(T19(1))/(z19dot(T19(1)));

659 j=1;

660 while (abs(T19(j+1)-T19(j))>0.01)

661 j=j+1;

662 T19(j+1)=T19(j)-z19(T19(j))/(z19dot(T19(j)));

663 end

664 T(19)=T19(j+1);

665

666 T20(1)=100;
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667 T20(2)=T20(1)-z20(T20(1))/(z20dot(T20(1)));

668 j=1;

669 while (abs(T20(j+1)-T20(j))>0.01)

670 j=j+1;

671 T20(j+1)=T20(j)-z20(T20(j))/(z20dot(T20(j)));

672 end

673 T(20)=T20(j+1);

674

675 T21(1)=100;

676 T21(2)=T21(1)-z21(T21(1))/(z21dot(T21(1)));

677 j=1;

678 while (abs(T21(j+1)-T21(j))>0.01)

679 j=j+1;

680 T21(j+1)=T21(j)-z21(T21(j))/(z21dot(T21(j)));

681 end

682 T(21)=T21(j+1);

683

684 T22(1)=100;

685 T22(2)=T22(1)-z22(T22(1))/(z22dot(T22(1)));

686 j=1;

687 while (abs(T22(j+1)-T22(j))>0.01)

688 j=j+1;

689 T22(j+1)=T22(j)-z22(T22(j))/(z22dot(T22(j)));

690 end

691 T(22)=T22(j+1);

692

693 T23(1)=100;

694 T23(2)=T23(1)-z23(T23(1))/(z23dot(T23(1)));

695 j=1;

696 while (abs(T23(j+1)-T23(j))>0.01)

697 j=j+1;

698 T23(j+1)=T23(j)-z23(T23(j))/(z23dot(T23(j)));

699 end

128



700 T(23)=T23(j+1);

701

702 T24(1)=100;

703 T24(2)=T24(1)-z24(T24(1))/(z24dot(T24(1)));

704 j=1;

705 while (abs(T24(j+1)-T24(j))>0.01)

706 j=j+1;

707 T24(j+1)=T24(j)-z24(T24(j))/(z24dot(T24(j)));

708 end

709 T(24)=T24(j+1);

710

711 T25(1)=100;

712 T25(2)=T25(1)-z25(T25(1))/(z25dot(T25(1)));

713 j=1;

714 while (abs(T25(j+1)-T25(j))>0.01)

715 j=j+1;

716 T25(j+1)=T25(j)-z25(T25(j))/(z25dot(T25(j)));

717 end

718 T(25)=T25(j+1);

719

720 T26(1)=100;

721 T26(2)=T26(1)-z26(T26(1))/(z26dot(T26(1)));

722 j=1;

723 while (abs(T26(j+1)-T26(j))>0.01)

724 j=j+1;

725 T26(j+1)=T26(j)-z26(T26(j))/(z26dot(T26(j)));

726 end

727 T(26)=T26(j+1);

728

729 T27(1)=100;

730 T27(2)=T27(1)-z27(T27(1))/(z27dot(T27(1)));

731 j=1;

732 while (abs(T27(j+1)-T27(j))>0.01)
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733 j=j+1;

734 T27(j+1)=T27(j)-z27(T27(j))/(z27dot(T27(j)));

735 end

736 T(27)=T27(j+1);

737

738 T28(1)=100;

739 T28(2)=T28(1)-z28(T28(1))/(z28dot(T28(1)));

740 j=1;

741 while (abs(T28(j+1)-T28(j))>0.01)

742 j=j+1;

743 T28(j+1)=T28(j)-z28(T28(j))/(z28dot(T28(j)));

744 end

745 T(28)=T28(j+1);

746

747 T29(1)=100;

748 T29(2)=T29(1)-z29(T29(1))/(z29dot(T29(1)));

749 j=1;

750 while (abs(T29(j+1)-T29(j))>0.01)

751 j=j+1;

752 T29(j+1)=T29(j)-z29(T29(j))/(z29dot(T29(j)));

753 end

754 T(29)=T29(j+1);

755

756 T30(1)=100;

757 T30(2)=T30(1)-z30(T30(1))/(z30dot(T30(1)));

758 j=1;

759 while (abs(T30(j+1)-T30(j))>0.01)

760 j=j+1;

761 T30(j+1)=T30(j)-z30(T30(j))/(z30dot(T30(j)));

762 end

763 T(30)=T30(j+1);

764

765 T31(1)=100;
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766 T31(2)=T31(1)-z31(T31(1))/(z31dot(T31(1)));

767 j=1;

768 while (abs(T31(j+1)-T31(j))>0.01)

769 j=j+1;

770 T31(j+1)=T31(j)-z31(T31(j))/(z31dot(T31(j)));

771 end

772 T(31)=T31(j+1);

773

774 T32(1)=100;

775 T32(2)=T32(1)-z32(T32(1))/(z32dot(T32(1)));

776 j=1;

777 while (abs(T32(j+1)-T32(j))>0.01)

778 j=j+1;

779 T32(j+1)=T32(j)-z32(T32(j))/(z32dot(T32(j)));

780 end

781 T(32)=T32(j+1);

782

783 T33(1)=100;

784 T33(2)=T33(1)-z33(T33(1))/(z33dot(T33(1)));

785 j=1;

786 while (abs(T33(j+1)-T33(j))>0.01)

787 j=j+1;

788 T33(j+1)=T33(j)-z33(T33(j))/(z33dot(T33(j)));

789 end

790 T(33)=T33(j+1);

791

792 T34(1)=100;

793 T34(2)=T34(1)-z34(T34(1))/(z34dot(T34(1)));

794 j=1;

795 while (abs(T34(j+1)-T34(j))>0.01)

796 j=j+1;

797 T34(j+1)=T34(j)-z34(T34(j))/(z34dot(T34(j)));

798 end
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799 T(34)=T34(j+1);

800

801 T35(1)=100;

802 T35(2)=T35(1)-z35(T35(1))/(z35dot(T35(1)));

803 j=1;

804 while (abs(T35(j+1)-T35(j))>0.01)

805 j=j+1;

806 T35(j+1)=T35(j)-z35(T35(j))/(z35dot(T35(j)));

807 end

808 T(35)=T35(j+1);

809

810 T36(1)=100;

811 T36(2)=T36(1)-z36(T36(1))/(z36dot(T36(1)));

812 j=1;

813 while (abs(T36(j+1)-T36(j))>0.01)

814 j=j+1;

815 T36(j+1)=T36(j)-z36(T36(j))/(z36dot(T36(j)));

816 end

817 T(36)=T36(j+1);

818

819 T37(1)=100;

820 T37(2)=T37(1)-z37(T37(1))/(z37dot(T37(1)));

821 j=1;

822 while (abs(T37(j+1)-T37(j))>0.01)

823 j=j+1;

824 T37(j+1)=T37(j)-z37(T37(j))/(z37dot(T37(j)));

825 end

826 T(37)=T37(j+1);

827

828 T38(1)=100;

829 T38(2)=T38(1)-z38(T38(1))/(z38dot(T38(1)));

830 j=1;

831 while (abs(T38(j+1)-T38(j))>0.01)
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832 j=j+1;

833 T38(j+1)=T38(j)-z38(T38(j))/(z38dot(T38(j)));

834 end

835 T(38)=T38(j+1);

836

837 T39(1)=100;

838 T39(2)=T39(1)-z39(T39(1))/(z39dot(T39(1)));

839 j=1;

840 while (abs(T39(j+1)-T39(j))>0.01)

841 j=j+1;

842 T39(j+1)=T39(j)-z39(T39(j))/(z39dot(T39(j)));

843 end

844 T(39)=T39(j+1);

845

846 T40(1)=100;

847 T40(2)=T40(1)-z40(T40(1))/(z40dot(T40(1)));

848 j=1;

849 while (abs(T40(j+1)-T40(j))>0.01)

850 j=j+1;

851 T40(j+1)=T40(j)-z40(T40(j))/(z40dot(T40(j)));

852 end

853 T(40)=T40(j+1);

854 %%%%%%%%%%%%%%%%%% End of calculating the temperature

855 %%%%%%% Number density function for updated T

856 for i=1:1:40

857 for j=1:1:1000

858 if (T(i)≥Teq)

859 nl(i,j)=hbar*w1(j)*1/W*V*(1/(exp((hbar*w1(j)/(kb*T(i))))-1)-

860 1/(exp((hbar*w1(j)/(kb*Teq)))-1))*((q1(j)^2)/(2*pi^2*v1(j)))*dw; ...

% LA number for hot side

861 nt(i,j)=hbar*w2(j)*1/W*V*(1/(exp((hbar*w2(j)/(kb*T(i))))-1)-

862 1/(exp((hbar*w2(j)/(kb*Teq)))-1))*((q2(j)^2)/(2*pi^2*v2(j)))*dw*2; ...

% TA number for hot side
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863 else

864 nl(i,j)=-hbar*w1(j)*1/W*V*(1/(exp((hbar*w1(j)/(kb*T(i))))-1)-

865 1/(exp((hbar*w1(j)/(kb*Teq)))-1))*((q1(j)^2)/(2*pi^2*v1(j)))*dw; ...

% LA number for hot side

866 nt(i,j)=-hbar*w2(j)*1/W*V*(1/(exp((hbar*w2(j)/(kb*T(i))))-1)-

867 1/(exp((hbar*w2(j)/(kb*Teq)))-1))*((q2(j)^2)/(2*pi^2*v2(j)))*dw*2; ...

% TA number for hot side

868 end

869 n(i,j)=nl(i,j)+nt(i,j); % LA+TA

870 P(i,j)=nl(i,j)/n(i,j); % Polarization

871 end

872 NN(i)=floor(sum(n(i,:)));

873 M(i,1)=n(i,1);

874 F(i,1)=0;

875 for j=2:1:1000

876 M(i,j)=M(i,(j-1))+n(i,j); % summation of ith phonon numbers

877 F(i,j)=M(i,j)/NN(i);% determine which frequency intervel

878 end

879 end

880 %%%%%%%%%%%% Phonon-electron scattering process

881 u1=u1+1 % iteration

882 dd(u1)=0; % number of particles under phonon-electron scattering

883 for j=1:N

884 for i=1:40

885 if (x1(j)>(i-1)*l && x1(j)<(i)*l)

886 yy(j)=1.76*9.25/T(i);

887 E0=3.71e8; % constant

888 xm(j)=3.83; % coefficient for reduced frequency

889 if (mt(j)==0) % LA phonon

890 xf(j)=hbar*f(j)/(kb*T(i));

891 taol(j)=(2*E0*xf(j)*T(i)*exp(-yy(j))*(1-xf(j)/(8*xm(j)))).^(-1);

892 taot(j)=0;

893 else % TA phonon
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894 xf(j)=hbar*f(j)/(kb*T(i));

895 taot(j)=(2*E0*xf(j)*T(i)*exp(-yy(j))*(1-xf(j)/(8*xm(j)))).^(-1);

896 taol(j)=0;

897 end

898 tao(j)=taol(j)+taot(j); % Relaxation time

899 Ppe(j)=1-exp(-dt/tao(j)); % scattering probability

900 R=rand; % Random number

901 if (R<Ppe(j))

902 dd(u1)=dd(u1)+1; % particle is scattered, reassignment

903 R1=rand; % random number

904 a1=1; % frequeny invervel No. 1

905 b1=1000; % frequeny invervel No. 1000

906 while((R1-F(i,a1))*(F(i,a1+1)-R1)<0)

907 mm=round((a1+b1)/2); % get integer

908 if (abs(R1-F(i,a1))<abs(R1-F(i,b1))) % ...

bisection method to determine which interval

909 if (R1>F(i,mm))

910 a1=mm;

911 else

912 b1=mm;

913 end

914 else

915 if (R1<F(i,mm))

916 b1=mm;

917 else

918 a1=mm;

919 end

920 end

921 end

922 R2=rand; %random number

923 R3=rand; %random number

924 f(j)=w1(a1)+(2*R2-1)*dw/2; % reset the frequency

925 if (R3<P(i,a1)) % Polarization (LA)
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926 ml(j)=(-vs(1)+sqrt(vs(1)^2+4*c(1)*f(j)))/(2*c(1)); ...

% LA wavevector

927 mt(j)=0; % TA wavevector=0

928 vl(j)=vs(1)+2*c(1)*ml(j); % LA magnitude group ...

velocity

929 vt(j)=0; % TA velocity=0

930 else % Polarization (TA)

931 mt(j)=(-vs(2)+sqrt(vs(2)^2+4*c(2)*f(j)))/(2*c(2)); ...

% TA wavevector (assume isotropy)

932 ml(j)=0; % LA wavevector=0

933 vt(j)=vs(2)+2*c(2)*mt(j); % TA magnitude group ...

velocity

934 vl(j)=0; % LA velocity=0

935 end

936 v(j)=(vt(j)+vl(j)); % total velocity

937 m(j)=mt(j)+ml(j); % total wave number

938 R1=rand; % random number

939 R2=rand; % random number

940 K1=2*R1-1; % angle 1 psi

941 K2=2*pi*R2; % angle 2 cos(theta)

942 vg(j,2)=v(j)*sqrt(1-K1^2)*cos(K2); % direction of ...

velocity sin(theta)*cos(psi)

943 vg(j,3)=v(j)*sqrt(1-K1^2)*sin(K2); % direction of ...

velocity sin(theta)*sin(psi)

944 vg(j,1)=v(j)*K1; % direction of velocity cos(theta)

945 end

946 end

947 end

948 end

949 pe(u1)=dd(u1)/N; % ratio of scattered particles

950 %%%%% phonon dislocation scattering

951 A0=0.8639; % constant for screw dislocations

952 Nd=4.76e13; % dislocation density
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953 gama=1.4; % Gruneissen constant

954 b0=2.85e-10; % Burger's vector

955 md(u1)=0; % number of particles under phonon-dislocation scattering

956 for j=1:N

957 for i=1:40

958 if (x1(j)>(i-1)*l && x1(j)<(i)*l)

959 tau_d(j)=(A0*gama^2*b0^2*Nd*f(j))^(-1); % relacation time

960 Pd(j)=1-exp(-dt/tau_d(j)); % scattering probability

961 R=rand; % random number

962 if (R<Pd(j))

963 md(u1)=md(u1)+1; % particle is scattered, only ...

change velocity direction

964 R1=rand; % random number

965 R2=rand; % random number

966 K1=2*R1-1; % angle 2

967 K2=2*pi*R2; % angle 1

968 vg(j,2)=v(j)*sqrt(1-K1^2)*cos(K2); % direction of ...

velocity sin?*cos?

969 vg(j,3)=v(j)*sqrt(1-K1^2)*sin(K2); % direction of ...

velocity sin?*sin?

970 vg(j,1)=v(j)*K1; % direction of velocity sin?

971 end

972 end

973 end

974 end

975 %%%%%% initialized sign of particles

976 for i=1:40

977 Np(i,u1)=0;

978 Nn(i,u1)=0;

979 end

980 for j=1:N

981 for i=1:40

982 if (x1(j)>(i-1)*l && x1(j)<i*l)
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983 if s(j)==1

984 Np(i,u1)=Np(i,u1)+1; % number of positive particles

985 else

986 Nn(i,u1)=Nn(i,u1)+1; % number of positive particles

987 end

988 end

989 end

990 end

991 %%%%%%%%%%% calculate the heat flux in each cell at each time step

992 for i=1:40

993 qqq(i,u1)=0;

994 end

995 for j=1:N

996 for i=2:39

997 if (x1(j)>(i-1)*l && x1(j)<i*l)

998 qqq(i,u1)=qqq(i,u1)+vg(j,1)*(s(j)*W)/V; % total heat flux

999 end

1000 end

1001 end

1002 qq(u1)=sum(qqq(:,u1))/38; % average heat flux

1003 kk(u1)=qq(u1)*37*l/(T(2)-T(39)); % k at each timestep

1004 for i=1:40

1005 Tm1(u1,i)=T(i); % temperature of each cell at each timestep

1006 Em1(u1,i)=Et(i); % energy of each cell at each timestep

1007 Nm(u1,i)=NNN(i); % number of particles (energy) in each cell

1008 end

1009 Ett(u1)=sum(Et); % total energy at each timestep

1010 end

1011

1012 %%% Calculate Standard Deviation

1013 STD=0;

1014 for i=1:40

1015 STD=STD+(T(i)-yy(i))^2;
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1016 end

1017 STD=sqrt(STD/40);

1018 kkk=0;

1019 for j=(u1-100):1:u1

1020 kkk=kkk+kk(j); % summation of k for the last 100 timesteps

1021 end

1022 kkk=kkk/101 % display average k

1023 Teq % display temperature

1024 plot(T) % plot temperature profle at the last step

1025 tim = toc;

1026 fprintf('operation time %15.5f.\n',tim); % calculate the operation time

1027 %%%%% Plat transient temperature profile

1028 i=1:40;

1029 plot(i,Tm1(1,i),'r',i,Tm1(100,i),'g',i,Tm1(500,i),'b',i,Tm1(1000,i),'m',i,Tm1(2000,i),'k')

1030 xlabel('Cell Number','FontSize',12,'FontName','Times New Roman');

1031 ylabel('Temperature/K','FontSize',12,'FontName','Times New Roman');

1032 legend('1*dt','100*dt','1000*dt','2000*dt','3000*dt')

1033 title('Energy-Based Variance-Reduced Method 50 nm/cell with Hao ...

scattering')

A.1.1 Child functions

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z1=ff(T) %%%Function of z1

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;
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10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z1=ztol-Et(1); %%%Function of z1 is related to Et.1

20 end

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z2=ff(T) %%%Function of z2

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z2=ztol-Et(2); %%%Function of z2 is related to Et.2
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20 end

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z3=ff(T) %%%Function of z3

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z3=ztol-Et(3); %%%Function of z3 is related to Et.3

20 end

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z4=ff(T) %%%Function of z4

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000
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8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z4=ztol-Et(4); %%%Function of z4 is related to Et.4

20 end

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z5=ff(T) %%%Function of z5

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

142



18

19 z5=ztol-Et(5); %%%Function of z5 is related to Et.5

20 end

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z6=ff(T) %%%Function of z6

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z6=ztol-Et(6); %%%Function of z6 is related to Et.6

20 end

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z7=ff(T) %%%Function of z7

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy
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6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z7=ztol-Et(7); %%%Function of z7 is related to Et.7

20 end

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z8=ff(T) %%%Function of z8

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;
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16 %%%% Energy of TA polarization

17 end

18

19 z8=ztol-Et(8); %%%Function of z8 is related to Et.8

20 end

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z9=ff(T) %%%Function of z9

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z9=ztol-Et(9); %%%Function of z9 is related to Et.9

20 end

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z10=ff(T) %%%Function of z10
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4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z10=ztol-Et(10); %%%Function of z1 is related to Et.10

20 end

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z11=ff(T) %%%Function of z11

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000
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14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z11=ztol-Et(11); %%%Function of z11 is related to Et.11

20 end

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z12=ff(T) %%%Function of z12

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z12=ztol-Et(12); %%%Function of z12 is related to Et.12

20 end

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

147



2

3 function z13=ff(T) %%%Function of z13

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z13=ztol-Et(13); %%%Function of z13 is related to Et.13

20 end

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z14=ff(T) %%%Function of z14

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end
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12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z14=ztol-Et(14); %%%Function of z14 is related to Et.14

20 end

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z15=ff(T) %%%Function of z15

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z15=ztol-Et(15); %%%Function of z15 is related to Et.15

20 end
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1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z16=ff(T) %%%Function of z16

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z16=ztol-Et(16); %%%Function of z16 is related to Et.16

20 end

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z17=ff(T) %%%Function of z17

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization
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11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z17=ztol-Et(17); %%%Function of z17 is related to Et.17

20 end

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z18=ff(T) %%%Function of z18

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z18=ztol-Et(18); %%%Function of z18 is related to Et.18

20 end
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1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z19=ff(T) %%%Function of z19

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z19=ztol-Et(19); %%%Function of z19 is related to Et.19

20 end

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z20=ff(T) %%%Function of z20

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization
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11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z20=ztol-Et(20); %%%Function of z20 is related to Et.20

20 end

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z21=ff(T) %%%Function of z21

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z21=ztol-Et(21); %%%Function of z1 is related to Et.21

20 end
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1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z22=ff(T) %%%Function of z22

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z22=ztol-Et(22); %%%Function of z22 is related to Et.22

20 end

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z3=ff(T) %%%Function of z23

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization
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11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z23=ztol-Et(23); %%%Function of z23 is related to Eq.23

20 end

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z24=ff(T) %%%Function of z24

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z24=ztol-Et(24); %%%Function of z24 is related to Eq.24

20 end
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1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z25=ff(T) %%%Function of z25

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z25=ztol-Et(25); %%%Function of z25 is related to Eq.25

20 end

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z26=ff(T) %%%Function of z26

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization
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11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z26=ztol-Et(26); %%%Function of z26 is related to Eq.26

20 end

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z27=ff(T) %%%Function of z27

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z27=ztol-Et(27); %%%Function of z1 is related to Eq.27

20 end
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1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z28=ff(T) %%%Function of z28

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z28=ztol-Et(28); %%%Function of z28 is related to Eq.28

20 end

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z29=ff(T) %%%Function of z29

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization
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11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z29=ztol-Et(29); %%%Function of z29 is related to Eq.29

20 end

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z30=ff(T) %%%Function of z1

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z30=ztol-Et(30); %%%Function of z30 is related to Eq.30

20 end
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1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z31=ff(T) %%%Function of z31

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z31=ztol-Et(31); %%%Function of z31 is related to Eq.31

20 end

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z32=ff(T) %%%Function of z32

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization
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11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z32=ztol-Et(32); %%%Function of z32 is related to Eq.32

20 end

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z33=ff(T) %%%Function of z33

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z33=ztol-Et(33); %%%Function of z33 is related to Eq.33

20 end
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1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z34=ff(T) %%%Function of z34

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z34=ztol-Et(34); %%%Function of z34 is related to Eq.34

20 end

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z35=ff(T) %%%Function of z35

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization
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11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z35=ztol-Et(35); %%%Function of z35 is related to Eq.35

20 end

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z36=ff(T) %%%Function of z36

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z36=ztol-Et(36); %%%Function of z1 is related to Eq.36

20 end
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1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z37=ff(T) %%%Function of z37

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z37=ztol-Et(37); %%%Function of z1 is related to Eq.37

20 end

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z38=ff(T) %%%Function of z38

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization
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11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z38=ztol-Et(38); %%%Function of z1 is related to Eq.38

20 end

1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z39=ff(T) %%%Function of z39

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z39=ztol-Et(39); %%%Function of z1 is related to Eq.39

20 end
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1 %%%%%% Child functions to calculate T using Newton-Raphson methos

2

3 function z40=ff(T) %%%Function of z40

4 global V hbar kb dw w1 w2 q1 q2 v1 v2 g Teq; %%%%% Global variables

5 global Et; %%%% Global variable of total energy

6 ztol=0; %%%% Initial enengy is set to 0

7 for i=1:1000

8 ztol=ztol+g(1)*hbar*w1(i)*V*(1/(exp((hbar*w1(i)/(kb*T)))-1)-

9 1/(exp((hbar*w1(i)/(kb*Teq)))-1))*((q1(i).^2)/(2*pi^2*v1(i)))*dw;

10 %%%% Energy of LA polarization

11 end

12

13 for i=1:1000

14 ztol=ztol+g(2)*hbar*w2(i)*V*(1/(exp((hbar*w2(i)/(kb*T)))-1)-

15 1/(exp((hbar*w2(i)/(kb*Teq)))-1))*((q2(i).^2)/(2*pi^2*v2(i)))*dw;

16 %%%% Energy of TA polarization

17 end

18

19 z40=ztol-Et(40); %%%Function of z1 is related to Eq.40

20 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z1dot=ff(T) %%%Function of z1dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

166



11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z1dot=ztoldot; %%%Function of z1dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z2dot=ff(T) %%%Function of z2dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z2dot=ztoldot; %%%Function of z2dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z3dot=ff(T) %%%Function of z3dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0
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5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z3dot=ztoldot; %%%Function of z3dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z4dot=ff(T) %%%Function of z4dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z4dot=ztoldot; %%%Function of z4dot is related to the derivative

17 end
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1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z5dot=ff(T) %%%Function of z5dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z5dot=ztoldot; %%%Function of z5dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z6dot=ff(T) %%%Function of z6dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);
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14 %%%% TA polarization

15 end

16 z6dot=ztoldot; %%%Function of z6dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z7dot=ff(T) %%%Function of z7dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z7dot=ztoldot; %%%Function of z7dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z8dot=ff(T) %%%Function of z8dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);
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8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z8dot=ztoldot; %%%Function of z8dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z9dot=ff(T) %%%Function of z9dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z9dot=ztoldot; %%%Function of z9dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos
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2 function z10dot=ff(T) %%%Function of z10dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z10dot=ztoldot; %%%Function of z10dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z11dot=ff(T) %%%Function of z1dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization
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15 end

16 z11dot=ztoldot; %%%Function of z11dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z12dot=ff(T) %%%Function of z12dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z12dot=ztoldot; %%%Function of z12dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z13dot=ff(T) %%%Function of z13dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization
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9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z13dot=ztoldot; %%%Function of z13dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z14dot=ff(T) %%%Function of z14dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z14dot=ztoldot; %%%Function of z14dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z15dot=ff(T) %%%Function of z15dot
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3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z15dot=ztoldot; %%%Function of z15dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z16dot=ff(T) %%%Function of z16dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end
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16 z16dot=ztoldot; %%%Function of z16dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z17dot=ff(T) %%%Function of z17dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z17dot=ztoldot; %%%Function of z17dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z18dot=ff(T) %%%Function of z18dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end
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10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z18dot=ztoldot; %%%Function of z18dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z19dot=ff(T) %%%Function of z19dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z19dot=ztoldot; %%%Function of z19dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z20dot=ff(T) %%%Function of z20dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables
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4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z20dot=ztoldot; %%%Function of z20dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z21dot=ff(T) %%%Function of z21dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z21dot=ztoldot; %%%Function of z21dot is related to the derivative
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17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z22dot=ff(T) %%%Function of z22dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z22dot=ztoldot; %%%Function of z22dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z23dot=ff(T) %%%Function of z23dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10
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11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z23dot=ztoldot; %%%Function of z23dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z24dot=ff(T) %%%Function of z24dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z24dot=ztoldot; %%%Function of z24dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z25dot=ff(T) %%%Function of z25dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0
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5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z25dot=ztoldot; %%%Function of z25dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z26dot=ff(T) %%%Function of z26dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z26dot=ztoldot; %%%Function of z26dot is related to the derivative

17 end
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1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z27dot=ff(T) %%%Function of z27dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z27dot=ztoldot; %%%Function of z27dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z28dot=ff(T) %%%Function of z28dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);
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14 %%%% TA polarization

15 end

16 z28dot=ztoldot; %%%Function of z28dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z29dot=ff(T) %%%Function of z29dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z29dot=ztoldot; %%%Function of z29dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z30dot=ff(T) %%%Function of z30dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);
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8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z30dot=ztoldot; %%%Function of z30dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z31dot=ff(T) %%%Function of z31dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z31dot=ztoldot; %%%Function of z31dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos
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2 function z32dot=ff(T) %%%Function of z32dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z32dot=ztoldot; %%%Function of z32dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z33dot=ff(T) %%%Function of z33dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization
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15 end

16 z33dot=ztoldot; %%%Function of z33dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z34dot=ff(T) %%%Function of z34dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z34dot=ztoldot; %%%Function of z34dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z35dot=ff(T) %%%Function of z35dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

186



9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z35dot=ztoldot; %%%Function of z35dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z36dot=ff(T) %%%Function of z36dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z36dot=ztoldot; %%%Function of z36dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z37dot=ff(T) %%%Function of z37dot
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3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z37dot=ztoldot; %%%Function of z37dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z38dot=ff(T) %%%Function of z38dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end
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16 z38dot=ztoldot; %%%Function of z38dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z39dot=ff(T) %%%Function of z39dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end

10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z39dot=ztoldot; %%%Function of z39dot is related to the derivative

17 end

1 %%%%%% Child dot functions to calculate T using Newton-Raphson methos

2 function z40dot=ff(T) %%%Function of z40dot

3 global V hbar kb dw w1 w2 q1 q2 v1 v2 g; %%%%% Global variables

4 ztoldot=0; %%%% Initial zdot is set to 0

5 for i=1:1000

6 ztoldot=ztoldot+g(1)*V*hbar/(2*pi^2)*dw*(w1(i)*q1(i)^2/v1(i))*(1/(exp

7 (hbar*w1(i)/(kb*T))-1))^2*exp(hbar*w1(i)/(kb*T))*hbar*w1(i)/(kb*T.^2);

8 %%%% LA polarization

9 end
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10

11 for i=1:1000

12 ztoldot=ztoldot+g(2)*V*hbar/(2*pi^2)*dw*(w2(i)*q2(i)^2/v2(i))*(1/(exp

13 (hbar*w2(i)/(kb*T))-1))^2*exp(hbar*w2(i)/(kb*T))*hbar*w2(i)/(kb*T.^2);

14 %%%% TA polarization

15 end

16 z40dot=ztoldot; %%%Function of z40dot is related to the derivative

17 end
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