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ABSTRACT 

 

ENERGY DISSIPATION FROM ELASTIC INSTABILITIES OF COSINE-CURVED DOMES 

FOR SEISMIC PROTECTION IN REINFORCED CONCRETE STRUCTURES 

 

By 

 

Mansour Turki M Alturki 

 

 Conventional seismic design is based on designing structures to resist the imposed seismic 

loads within their inelastic range of response. This requires the structures to undergo large 

permanent deformations. Although this design strategy usually satisfies safety requirements, the 

economic aspects are not usually met due to extensive irreparable damage to the structures in case 

of strong ground motion. Therefore, research trends are now focused on satisfying safety 

requirements as well as making structures operational immediately after an earthquake. This has 

led to the development of new and innovative systems of seismic structural protection that aim to 

minimize seismic energy input and to localize demands in replaceable or elastic elements. Several 

supplemental passive energy dissipation devices have been developed to achieve this goal. 

However, they possess some performance shortcomings such as the requirement of repair or 

replacement and the significant increase in the initial stiffness of the host structural system. 

  In this research, a new self-centering energy dissipation system that relies on elastic 

instabilities is proposed as a damping mechanism in structures resisting seismic actions. The 

system is composed of serially connected multistable cosine-curved domes (CCD) featuring snap-

through instability. The system exhibits a hysteretic response via the generation of multiple 

consecutive snap-through buckling events. Numerical studies and experimental tests were 

conducted on the geometric and material properties of individual CCD units and on a system of 

units proposed to examine the force-displacement and energy dissipation characteristics. Finite 

element analyses (FEA) were performed to: (1) study the controlling geometric and material 



 

properties of the CCD to characterize the snap-through response, and (2) simulate the hysteretic 

response of the system to develop a multilinear analytical model, which was used to study the 

energy dissipation characteristics of the system. Experimental tests were conducted on 3D printed 

CCD units and system specimens to: (1) validate the FEA model of the units, and (2) to analyze 

the system and validate the analytical model. Good agreement was observed using the developed 

relations for the CCD response and the analytical model with the results from FEA and 

experimental tests. Results show that the energy dissipation of the system mainly depends on the 

number and the apex height-to-thickness ratio of the CCD units. 

 The damping characteristics of the proposed system were investigated to facilitate the 

direct displacement-based seismic design of structures incorporating such systems as the main 

damping mechanism to dissipate seismic energy. Time-history analyses of linear and nonlinear 

single degree of freedom systems were performed to compare spectral displacements and the 

equivalent viscous damping (EVD) ratios of the hysteretic response of the system to their substitute 

linear systems in terms of maximum displacements. A set of 62 ground motion records were 

considered for the analysis. A statistical study was conducted on the resulting displacements and 

the EVD ratios to develop expressions for EVD ratios of the hysteretic response. Results show that 

using proposed EVD ratios for the substitute linear systems yield good approximation for the peak 

spectral displacements compared to the original nonlinear systems. Finally, the seismic 

performance of typical reinforced concrete structures incorporating the proposed system in various 

configurations was evaluated. Direct displacement-based design and nonlinear time-history 

analyses of example structures subjected to two historic ground motion records were conducted. 

The modified structures using the proposed system showed an enhanced seismic response 

compared to the original structures by increasing damping and eliminating damage.  
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1 

CHAPTER ONE 

1 Introduction 

1.1 Motivation and Vision 

 Earthquakes can impose serious and devastating damage to structures that imply several 

safety and economic issues. Even though the seismic design of building, bridges, and other 

structures has been highly improved in the past decades, there are still concerning problems not 

only affecting economic aspects but also life safety and life sustaining serviceability [1–3]. In the 

last few decades, engineers and researchers were able to develop design methods and improve the 

seismic performance of structures by allowing the design and the construction of structures to resist 

induced seismic loads by localizing damage in designed-specified locations, called plastic hinges, 

that allow a structure to inelastically dissipate the energy induced by earthquakes and prevent 

structural collapse [4,5]. To practically achieve this, plastic hinges should be carefully detailed to 

accept large inelastic deformations without significant strength degradation, while ensuring other 

parts of the structure remain elastic – or undamaged. 

 Conventional seismic design is based on designing structures to a load level that is typically 

2 to 8 times lower than that required to resist the imposed seismic loads within their elastic 

response regime [6]. This requires that the structure to undergo large inelastic deformations [4,5]. 

Although this design strategy usually satisfies safety requirements, the economic aspects are not 

usually met. The reason is that relying on the inherited ductility of a structure to dissipate seismic 

induced energy means accepting extensive irreparable damage to the structure in case of strong 

earthquake motion. Therefore, research trends are now focused on satisfying safety requirements 

as well as making structures operational immediately after an earthquake [7]. This is achieved by 
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avoiding damage or limiting and localizing inelastic deformations in replaceable supplementary 

elements. This design philosophy is called Damage Avoidance Design [8]. 

 Relying on inelastic deformations to resist seismic demands has led to the development of 

new and innovative systems of seismic structural protection that aim to achieve one or more of the 

following objectives: (1) minimize seismic energy input, (2) localize demands in replaceable or 

elastic elements, and (3) increase damping to minimize or avoid damage. Several passive energy 

dissipation devices have been developed to achieve these objectives, which can be classified into 

two categories: (a) viscous damping devices [7], and (b) hysteresis devices [9]. 

 Most of the hysteresis energy dissipation devices currently used or proposed in the 

literature rely on metallic yielding or sliding friction as mechanisms for energy dissipation. A 

common problem with metallic devices is the requirement of repair or replacement of the device 

after a strong seismic action due to damage. A problem with friction-based devices is that they 

significantly increase the initial stiffness and strength of the host structure, which in turn increases 

force demands on other members of the structure that should remain elastic. In addition, neither 

type of the noted hysteresis devices offers self-centering capability. On the other hand, viscus 

damping devices are rate-dependent and require high excitation frequency to be effective. 

 Increased attention has been recently given to systems that utilize elastic instabilities for 

energy dissipation and shock absorption. The reason is that the mechanical deformations of such 

systems are fully reversible since the total response is within the elastic regime of the constituent 

base material [10–12]. Usually, these systems consist of parallel chains of multistable elements or 

unit cells that are connected in series and respond to a common load in a progressive manner. 

When these elements are loaded under displacement control they show a negative stiffness region 

due to geometric nonlinearity [13]. The consecutive snap-through events of the repeating units 
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enable attaining a hysteretic force-deformation response. These systems can thus be used to 

elastically absorb and dissipate energy.  

 

Figure 1.1 Example applications of the MCCD system incorporated in typical structural systems: 

(a) frame with chevron braces, (b) pier-wall, (c) single-column, and (d) double-column MCCD 

systems 

 Recent developments in innovative discrete systems with energy dissipation from elastic 

instabilities has facilitated the potential of using such systems for energy dissipation and shock 

absorption applications [11,12]. One potential application of discrete systems is the damping 

mechanism in structures resisting seismic actions as shown in Figure 1.1. The figure shows 

example structural systems equipped with supplementary energy dissipation devices comprised of 

chains of multistable elements. The possibility of using such elements for seismic protection 

enables avoiding the previously noted shortcomings of commonly used passive hysteresis energy 

dissipation devices and also offers self-centering capability.  
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 However, a reliable multistable element that is able to withstand seismic induced loads and 

maintains its design behavior under loading is not yet available. Therefore, proving this idea 

requires developing and characterizing a reliable elastic multistable element and an elastic energy 

dissipation system, and then incorporating the developed mechanism into typical structural 

systems under seismic loading. In this research, a new shallow dome-shaped multistable element 

with cosine-curved profile [Figure 1.2(a)], called cosine-curved dome (CCD), and a new energy 

dissipation system comprised of multiple cosine-curved domes (MCCD) connected in series 

[Figure 1.2(c)] are developed and characterized. The damping characteristics of the proposed 

system were also investigated in support of the displacement-based seismic design philosophy. 

Finally, the seismic performance of structures incorporating the proposed system was evaluated. 

  

Figure 1.2 The MCCD system: (a) cross-section of a single CCD unit, (b) schematic force-

displacement response of a single CCD, (c) MCCD composed of multiple CCDs, and (d) 

schematic hysteretic response of an MCCD system. Note that δ is the local CCD displacement 

while Δ is the global system displacement. 
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1.2 Background 

1.2.1 Stability states of snap-through response 

In civil structures, elastic instabilities have been usually regarded as a failure mode to be 

avoided. However, recent research directions have shown that elastic instabilities of various types 

of structural elements can be considered as a useful phenomenon for diverse applications because 

they offer reversible deformations and their response can be tailored, which allows controlling the 

magnitude and the recoverability state of the deformations. 

 Snap-through response is a form of elastic instability that occurs when a transversely 

loaded element of a geometric shape that primarily develops membrane stresses reaches a limit 

point in its response that causes the element to change its shape before experiencing buckling by 

developing local bending stresses [13].  

 The potential energy, Up, of a conservative system (ideally constrained elastic body under 

external work), such as the CCDs considered in this work, consists of the applied work, W, on the 

system and the elastic strain energy, U, as follows [14]: 

 Up = U + W  (1.1) 

The stability state along the equilibrium path of the system is governed by the second variation of 

the potential energy with respect to the displacement, δ, (the Lagrange variational equation) as 

follows: 

1. The equilibrium is stable if 𝜕2𝑈𝑝 𝜕𝛿2⁄  > 0.  

2. The equilibrium is unstable if 𝜕2𝑈𝑝 𝜕𝛿2⁄  ≤ 0. 

The first condition represents the equilibrium path between the origin point and the point on the 

force-displacement (F-δ) curve at δc, and from point δn and on as shown in Figure 1.3(d-f). The 

unstable path between the points on the curve δc and δn in Figure 1.3(d-f) satisfies the second 
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condition. This can be inferred by knowing that mathematical sign of the slope of a tangent line 

(current stiffness) along the F-δ curve, or 

 𝜕2𝑈𝑝 𝜕𝛿2⁄ =  𝜕𝐹 𝜕𝛿⁄              (1.2) 

 The post-snap-through response of a multistable element can be classified into three 

categories as shown in Figure 1.3 [15]. Each type of response depends mainly on the shape of the 

strain energy-displacement (U-δ) curve, which is related to the force-displacement curve (F-δ). 

Knowing the geometric and material limits allow controlling the type of response (stability state) 

of the element.  

Figure 1.3(a) and (d) show a bistable response, where the U-δ curve has a local maximum 

strain energy point, Umax, and a local minimum strain energy point, Umin, at non-zero displacements 

before the energy (U) continues to increase with increasing displacement (δ). In this type of 

response, the element snaps into a new configuration and cannot restore its original configuration 

upon unloading without the application of an external restoring force (i.e., not self-recoverable). 

In this case, some of the induced energy is trapped in the system and hence the F-δ curve has a 

negative force part (in opposite direction to the deformation being generated).  

A monostable response [Figure 1.3(b) and (e)] is defined when the E-δ curve is monotonic 

and the F-δ curve has no negative force part. In this type of response, the element snaps back to 

its original configuration upon unloading, without application of an external restoring force, as 

long as material damage does not occur.  

In a pseudo-bistable response [Figure 1.3 (c) and (f)] the E-δ curve has a flat segment (i.e., 

Umax = Umin) before the energy continues to increase with increasing δ, and the F-δ curve has a 

zero force value at a non-zero displacement. This response represents a transition state between 

bistable and monostable responses where the element snaps and restores its original configuration 
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after unloading, and without the application of an external restoring force, but with a time delay 

depending on the viscoelastic properties of the material [16]. 

 

Figure 1.3 Typical strain energy-displacement and force-displacement of an element with snap-

through behavior 
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1.2.2 Energy dissipation from elastic instabilities 

 When a system of several multistable elements connected in series is mechanically loaded 

the units consecutively snap-through to a new stability state within their elastic range. Upon 

unloading the system, the units consecutively snap-back to their original configuration, either by 

a restoring external force for bistable elements or by self-recoverability (preferred) for monostable 

elements. If a sufficient number of connected units in series is used the system follows distinct 

loading and unloading paths resulting in a hysteretic response, as shown in the system response in 

Figure 1.2(d). The area enclosed by the loading and unloading curves represents the elastically 

dissipated energy.  

 Several systems comprised of straight and curved elements developed and proposed in the 

literature [11,12] have been shown to display the noted hysteretic response. The amount of 

dissipated energy from these systems depends on: (1) the number of linked elements in series, and 

(2) the difference between local energy maxima and minima (Figure 1.3) of the individual 

element’s response. The higher the values of these two factors the larger the area enclosed by the 

hysteretic response will be. 

 The energy dissipation in such elastic systems is due to the transformation of some of the 

induced mechanical energy of the applied work into elastic vibrations that are damped by the base 

material of the repeating units and converted to irreversible thermal energy (heat) with each snap-

through event [10]. These elastic vibrations occur when the deforming system has at least 3 or 

more elements connected in series to allow the relative movement of the units at a given system 

displacement of a snapping event. Increasing the number of linked elements in series has two 

effects on the response of the system as can be inferred from Figure 1.4: (a) it increases the number 

of vibrating elements in the system, and (b) it increases the number of events of system disturbance 
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that causes vibrations. Thus, it can be concluded that the relation between dissipated energy and 

number of units is nonlinear. This is discussed in detail in Chapter 4. 

 

Figure 1.4 Effect of increasing the number of serially connected elements on the dissipated 

energy 

 Studies [17,18] on the dynamic behavior of discrete chains with multistable elements 

indicate that loading rate (in addition to other factors) has dynamic effects on the response of such 

systems. In fact, even at quasi-static loading conditions, discrete systems exhibit high frequency 

vibrations from the snap-through events [18]. These damped vibrations are the main contributor 

to the dissipated energy from the discrete system even at very low loading rates. Thus, the 

hysteretic response of these multi-element systems can be seen as independent from loading rate. 

Furthermore, it could be said that increasing the loading rates has a positive effect on the amount 

of dissipated energy since it was shown in [19] that increasing the loading rate results in a wider 

hysteresis response envelope. 
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1.3 Research Hypothesis and Significance 

1.3.1 Hypothesis 

 Elastic energy dissipation through hysteretic response of the consecutive snap-through 

instabilities of multiple multistable cosine-curved domes can be effectively used as the main 

damping and energy dissipation source to resist seismic induced loads in reinforced concrete (RC) 

structures. 

1.3.2 Significance 

 Utilizing the hysteretic response and energy dissipation resulting from the consecutive 

snap-through instabilities of multiple multistable elements in structural systems to resist seismic 

demands is an underexplored topic. This work introduces a new concept for energy dissipation 

from elastic instabilities as a damping mechanism to reduce seismic induced structural demands, 

eliminate or limit permanent deformation, and offer self-centering capabilities.  

1.4 Research Objectives 

 The objective of this work is to develop and characterize the response of a reliable 

multistable element and an elastic energy dissipation system to withstand seismic induced loads 

as the main damping mechanism in RC building and bridge structures, and to evaluate the seismic 

performance of these structures under ground motion records. The objective was achieved through 

the following tasks: 

Task 1 Development of a multistable element: 

Task 1.1 Development of cosine-curved domes (CCD). To develop a self-confined 

multistable elastic element capable of achieving snap-through instability with controllable 

response over a wide range of geometric parameters.  
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Task 1.2 Response characterization. To investigate the response and the stability 

characteristics of the proposed CCDs by studying the controlling geometric and material 

properties numerically and experimentally.  

Task 1.3 Design expressions. To develop design expressions for the limit that governs the 

transitional stability state and to construct a simplified multilinear response of the element.  

Task 2 Elastic energy dissipation system: 

Task 2.1 Response characterization. To investigate numerically and experimentally the 

response and the energy dissipation characteristics of the MCCD system by studying the 

number of units and the controlling geometric properties.  

Task 2.2 Hysteresis Model To develop an analytical model that describes the hysteretic 

response of the MCCD system including the intermediate unloading and reloading paths 

based on numerical results and validated by experimental tests.  

Task 3: Equivalent viscous damping: 

Task 3.1 Response idealization. To idealize the hysteretic response of the MCCD system 

for the nonlinear time-history analysis of structures incorporating the MCCD system by 

maintaining the energy balance between the actual and the idealized responses. 

Task 3.2 Equivalent damping. To investigate the equivalent viscous damping for the 

hysteretic response of the MCCD system by performing a parametric study for a set of 

ground motion records. 

Task 4: Evaluation of the seismic performance: 

Task 4.1 Incorporation of the MCCD system in structures. To conduct the seismic design 

RC structures incorporating the MCCD system using the direct displacement-based design 

method. 
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Task 4.1 Performance evaluation. To evaluate the seismic performance of the designed RC 

structures incorporating the MCCD system under real ground motion records through 

nonlinear time-history analyses.  

1.5 Outline 

 This dissertation is divided into seven chapters. A brief description of the contents of each 

of the subsequent chapters is presented as follows. Chapter 2 reviews elements and systems with 

elastic instabilities in terms of their geometric design and response characteristics. The chapter 

also presents a review on passive hysteresis energy dissipation devices for seismic protection. 

Chapter 3 presents the development and the response characterization of CCDs, including 

numerical modeling, experimental testing, and a parametric study to develop design expressions 

for the CCDs. Chapter 4 presents the development of the MCCD system and studies its response 

and energy dissipation characteristics through the development of an analytical model and 

experimental testing. Chapter 5 introduces the hysteretic response of the MCCD system to seismic 

design by investigating the equivalent viscous damping and considering the unique characteristics 

of the systems’ response. Chapter 6 evaluates the seismic performance of the MCCD system 

incorporated in different configurations in typical reinforced concrete structures as the main 

damping mechanism for seismic protection. Chapter 7 summaries the conducted work and 

provides the conclusions and recommendations for future research work.  



13 

CHAPTER TWO 

2 Literature Review 

2.1 Overview 

 This chapter is divided into two parts. The first part presents a review on elements and 

systems with elastic instabilities for energy dissipation applications. The review highlights the 

basic types of elastic instability associated with the presented elements and the response 

characteristics of systems composed of them. The second part reviews published literature on 

passive hysteresis energy dissipation devices for seismic protection of structures. The review 

presents the hysteretic and mechanical behavior of the devices and their advantages and 

disadvantages.  

2.2 Elements and Systems with Elastic Instabilities 

 Several elements with elastic instabilities have been investigated in the literature. These 

elements can be categorized based on their geometric shape and loading direction into four 

categories: (1) transversally loaded inclined elements, (2) transversally loaded curved elements, 

(3) transversally loaded surfaces of revolution, and (4) axially loaded elements. Discussion and 

examples for each type are presented in the following. 

2.2.1 Transversally loaded inclined elements 

 Transversally loaded inclined elements are direct applications of the classical case of a von 

Mises truss [13]. Under a transverse load, the members of such a system snap-through from their 

original configuration to an inverted configuration. The truss exhibits a nonlinear limit-point F-δ 

response as shown in Figure 1.3. This response is ensured as long as axial forces (due to the 
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transverse load) in the inclined members does not cause buckling before snapping. This mainly 

depends on the inclination angle and the axial stiffness of the members. The members here can be 

straight beams, rods, or plates. Example applications of this case are those developed in [20–27] 

as shown in Figure 2.1. 

 

Figure 2.1 Examples for multistable inclined elements and unit cells: (a) identical tilted beams 

[20], (b) shallow geodesic lattice domes [25], and (c) shallow reticulated truss [26] 

 Many researchers have used inclined elements as the building units in many structures 

utilized to elastically absorb and dissipate energy. Haghpanah et al. [21] proposed 2D and 3D 

shape-reconfigurable lattice materials that allow independent multi-axial deformation and exhibit 

hysteretic response. The unit cells are connected in series and each unit cell comprises several 

inclined beams as shown in Figure 2.2(a). Ha et al. [23] also proposed an energy absorption lattice 

of serially connected unit cells comprised of four inclined beams confined by rectangular plates as 

shown in Figure 2.2(b). Liu et al. [27] proposed an innovative controllable energy dissipation 

system consists of arrays of inclined beams that are serially connected as shown in Figure 2.2(c). 

The inclination of the beams is alternated from on array to the other to allow shear loading in two 

opposite directions [see Figure 2.2(c)]. 
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Figure 2.2 Examples for energy dissipation systems with inclined elements: (a) shape-

reconfigurable materials [21], (b) multiple tetra-beam-plate lattice [23], and (c) periodic arrays of 

inclined beams [27] 

2.2.2 Transversally loaded curved elements 

 Transversally loaded curved elements also capable of showing snap-through behavior. 

Similar to that of inclined elements, and curved elements are also affected by the same factors in 

addition to the curvature profile of the element. Example applications of this case are those 

developed in [28–40] as shown in Figure 2.3. 

 

Figure 2.3 Examples for multistable curved elements and unit cells: (a) curved double beams 

under tension [36], (b) T-shaped double curved beams [37], and (c) bistable arches [39] 
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 Double curved beams and rods are widely investigated and used as building units in energy 

dissipation systems. The reason is that they can be easily arranged in various configurations in a 

periodic structure. Correa et al. [29] developed an energy dissipation system with a honeycomb 

configuration. The system comprised of multiple curved double beams. The lateral expansion of 

the unit cells is restricted by central tie-beams as shown in Figure 2.4(a). Findeisen et al. [34] 

proposed a 3D periodic structure that consists of multiple unit cells. The cells are comprised of 3 

rods of a sinusoidal shape confined by hexagonal base structure as shown in Figure 2.4(b). 

Kidambi et al. [37] investigated the characteristics of modular mechanical structure experimentally 

and numerically. The structure consists of serially connected bistable double-curved beams as 

shown in Figure 2.4(c). 

 

Figure 2.4 Examples for energy dissipation systems with curved elements: (a) Negative stiffness 

honeycombs [29], (b) 3D hexagonal micro-lattices [34], and (c) multistable modular structures 

[37] 
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2.2.3 Elements with surface of revolution 

 The stability, buckling capacity, post-buckling behavior, and deformation symmetry of 

spherical domes and shells under a concentrated load at the apex have been the subject of several 

studies. Mescall [41] performed a numerical study by solving the nonlinear equations governing 

the axisymmetric deformations of spherical shells, for unrestrained and clamped edges, to examine 

the effects of geometric parameters and boundary conditions on their response. Penning [42] 

conducted an experimental investigation to study buckling deformations of clamped spherical 

shells under a concentrated load. Fitch [43], and Brodland and Cohen [44] conducted an analytical 

study to investigate the deflection, snap-through buckling, and the occurrence of asymmetric 

bifurcation points before axisymmetric snap-buckling, by examining a single material-geometry 

parameter (λ) that governs this phenomenon for clamped and unrestrained shallow spherical 

domes. This parameter depends on the geometric and material properties of the domes and is given 

by Equation (2.1), where a and b are the spherical and base radii, respectively, t is the uniform 

thickness (see Figure 2.5), and ν is the Poisson ratio. It was concluded that asymmetric bifurcation 

occurs when a spherical dome becomes deeper and thinner (i.e., higher values of λ).  

 λ = [12(1 – ν2)]1/4 b / (a t)1/2  (2.1) 

 

Figure 2.5 Geometry of a clamped spherical dome 



18 

 Brinkmeyer et al. [16] and Madhukar et al. [15] also performed combined experimental 

and numerical studies using finite element analyses (FEA) to examine the effects of geometric and 

material properties on the stability state of unrestrained spherical domes. Brinkmeyer et al. [16] 

found that pseudo-bistability occurs for domes when 5.31 ≤ λ ≤ 5.35. Madhukar et al. [15] 

proposed an expression for pseudo-bistability that depends on the geometric parameters of a dome. 

The study conducted by Mescall [41] showed that spherical domes with unrestrained and 

clamped edges could display snap-through instability. Unrestrained domes required λ > 3.75 to 

display snap-through, while clamped domes required λ ≥ 9. However, the study by Fitch [43] 

showed that spherical domes with clamped edges and λ ≥ 9.2 would have a bifurcation point and 

asymmetric deformations at a load below the critical load for axisymmetric snapping instability. 

These two findings impose a very narrow range of λ (i.e., 9 to 9.2) for spherical domes with 

clamped edges to display axisymmetric snap-through response. Therefore, it seems that clamped 

spherical domes cannot practically have reversible axisymmetric snap-through instability even 

when the previous two limits are met. Therefore, it can be noticed that spherical domes are not 

used in periodic structures for energy dissipation. 

2.2.4 Elements with buckling instabilities 

 Many other structures have been investigated to obtain multiple elastic instabilities for a 

multistable response. The simplest is an elastic compressed column with continuous bilateral 

constraints [45,46]. In such a system, compressive axial load is applied to the column causing it to 

buckle multiple times in an elastic post-buckling regime before reaching material damage. Another 

example are tailored cylindrical shells under axial compressive loading [47,48], where geometric 

imperfections are seeded into specific regions to control the elastic post-buckling response. The 

common phenomenon among these structures is that they undergo elastic post-buckling response 



19 

after reaching a critical point. However, they differ in their post-buckling behavior and their 

relative deformability. 

2.3 Structural Systems with Passive Energy Dissipation Devices 

 As mentioned earlier, the trends of seismic protection in building and bridge structures are 

moving towards directing seismic demands to specific parts of the structural system where 

supplementary energy dissipation devices accept these demands. This methodology allows 

concentrating damage in replaceable or elastic parts which in turn make structures operational after 

short periods of time or even immediately after strong ground motion. Several investigations in 

the literature applied this concept using various types of energy dissipation devices on various 

structural configurations [9] and showed excellent performance under loading.  

 Seismic protection devices and systems can be classified into three categories [7]: (1) 

seismic isolation systems, (2) passive energy dissipation systems, and (3) active control systems. 

An overview of metallic yielding and sliding friction based passive hysteretic energy dissipation 

devices is presented here. 

2.3.1 Metallic energy dissipation devices 

 Metallic dampers are one of the oldest and widely used devices for seismic protection [49]. 

They rely on inelastic deformations through axial, flexural, or shear actions to dissipate induced 

seismic energy. This reliance is the main drawback of such devices since these deformations are 

not recoverable, and hence they require replacement or extensive repairs after strong earthquakes 

[9]. Nonetheless they offer reliable, stable, and well-defined hysteresis response. These devises 

show wide hysteresis loops and therefore dissipate a large amount of energy. Classical examples 

of these devices are the added damping and stiffness [50] and the buckling-restrained brace [51] 
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dampers. In recent years, many researchers have proposed several new and improved metallic 

devices aiming to: (a) increase the amount of dissipated energy per unit of deformation, (b) using 

different loading mechanisms, and (c) facilitate repairs of a device’s elements after damage. 

Examples of these devices include a bar-fuse damper [52], seesaw slit dampers [53], a combined 

shear-and-flexure yielding damper [54], a piston metallic damper [55,56], a yielding shear panel 

device [57], a saw type energy dissipater [58], and an accordion metallic damper [59]. Figure 2.6 

shows example metallic dampers with their force-deformation responses. 

 

Figure 2.6 Examples for metallic energy dissipation devices: (a) bar-fuse damper [52], (b) 

seesaw slit damper [53], and (c) accordion metallic damper [59] 

2.3.2 Sliding friction energy dissipation devices 

 Sliding friction devices are also capable of dissipating a large amount of energy comparable 

to that of metallic devices. They utilize surface friction between two solid bodies moving relative 

to each other that turn the mechanical motion into heat. A disadvantage of this mechanism is that 

friction surfaces are susceptible to damage over time and they require a self-centering mechanism 
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to recover deformations. Their response is characterized by high initial stiffness and large 

hysteresis; however, their relative energy dissipation capacity is reduced when they are combined 

with a self-centering mechanism. An early example of using friction as energy dissipation 

mechanism is the friction joints in precast concrete structures developed by Pall et al. [60]. 

Recently, several sliding friction devices combined with self-centering mechanisms were 

developed, such as friction disc dampers [61], high-capacity self-centering energy-dissipative 

dampers [62], spring-based piston bracing [63], ring spring dampers [64,65], and self-centering 

friction damping braces [66,67]. Figure 2.7 shows example friction dampers with their force-

deformation responses. 

 

Figure 2.7 Examples for friction energy dissipation devices: (a) friction discs damper [61], (b) 

ring spring damper [65], and (c) self-centering friction braces [66] 
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CHAPTER THREE 

3 Characterization of Cosine-Curved Domes 

3.1 Overview 

 In this chapter, numerical and experimental studies were carried out to study the effects of 

the geometric and material properties on the behavior of the multistable cosine-curved domes 

(CCD) under a concentrated transverse load, and to characterize the resulting force-deformation 

response. This is accomplished by conducting a parametric study using experimentally validated 

finite element analyses (FEA) on the properties governing the response of the CCD. The limit that 

governs the transitional state between bistable and monostable states is identified, and a simple 

expression is proposed to facilitate the design of CCDs with a desired stability state. Empirical 

design expressions were developed for the controlling parameters to construct a simplified 

multilinear response that could be used to calculate the response for a system of multiple CCDs, 

which can attain controllable energy dissipation characteristics. The study presented in this chapter 

was published in the journal Thin-walled Structures [68]. 

3.2 Background 

 A new shallow dome-shaped structural element that exhibits multistable elastic behavior 

is presented in this chapter. The element offers reliable and reversible large elastic deformation 

that could be used as a building unit for devices subjected to relatively high forces [69] for energy 

dissipation and repeated use. Such devices usually have a hysteretic response that is based on 

consecutive snap-through instabilities of a sufficient number of units that are connected in series 

[70].  
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 The interest in studying shallow domes originates from the fact that they can be fabricated 

in curved revolved profiles (i.e., aside from spherical shapes) that allow them to have a tunable 

multistable response. These domes can snap-through to a new configuration within their elastic 

range of response and snap-back with or without a restoring external force without damage. This 

deformability enables these domes to absorb and/or trap strain energy and release all or a part of 

it to restore their original configuration [13]. 

 Several multistable elements with the ability to exhibit snap-through instability with large 

elastic (reversible) deformations have been investigated and reported as discussed in Chapter 2. 

Such elements can be used as the building units in many structures utilized to elastically absorb 

and dissipate energy. Although these structures show the ability to absorb shocks and dissipate 

energy, they possess some design disadvantages when considering large-scale applications where 

high force levels are expected, such as applications for seismic protection in buildings and bridges. 

These disadvantages include high stress concentrations at the elements’ constraining edges, low 

relative threshold forces, and the requirement of constraining other buckling modes to attain a 

symmetric deformation response. 

 A possible multistable element to overcome these disadvantages are spherical domes under 

a concentrated load at the apex, which have been the subject of several studies [41–44]. However, 

the study by Fitch [43] showed that spherical domes with clamped edges require high apex height-

to-thickness ratio to display snap-through instability. However, this high ratio also makes spherical 

domes with clamped edges highly vulnerable to bifurcation and asymmetric deformations at a load 

below the critical load for axisymmetric snapping instability. These two findings impose a very 

narrow range for spherical domes with clamped edges to display axisymmetric snap-through 

response. Therefore, it seems that clamped spherical domes cannot practically have reversible 
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axisymmetric snap-through instability even when the previous two limits are met nor have 

controllable response. In contrast, this investigation shows that the shallow cosine-curved domes 

(CCD) proposed here have a wide range of geometric ratios for which symmetric snap-through is 

achievable. 

 The interest in domes with clamped edges originates from that fact that they can be used 

in many structural applications as an integrated part of systems, compared to domes with 

unrestrained edges. For example, the shock absorbers proposed in [19,20,29,36] consist of 

multistable elements as unit cells where each unit is attached to the adjacent units via rigid 

segments that provide system integrity to resist a common load, as well as the required constraints 

for individual units to respond in the desired way. 

3.3 Methods 

3.3.1 Research aim and scope 

 The cross-sectional profile shape of the proposed CCD is based on the cosine function 

given in Equation (3.1) [71], where w(x) is the vertical distance from the horizontal chord line to 

the dome’s profile shape at a distance x from the circumference as shown in Figure 3.1. The dome’s 

base along its circumference is connected to a rigid ring that constrains rotations and edge sliding 

of the dome under loading. 

 w(x) = h/2[1 – cos(2πx/l)]  (3.1) 

 This equation represents the shape of the first buckling mode of a fixed-fixed straight beam 

under axial compressive loading. The benefit of using the cosine-curved shape over a spherical 

one is that it enables the dome to have a symmetric snap-through to a monostable or a bistable 

state. This profile was inspired by the shape of curved double beams loaded laterally [72]. 
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However, unlike the curved double beams, a CCD doesn’t require restricting other buckling modes 

to have a symmetric reversible snap-through response. They also have lower stress concentrations 

at the supporting edge compared to systems composed of curved double beams or inclined beams. 

 

Figure 3.1 Geometric parameters of a typical CCD: (a) a cross-section at the apex, and (b) the 

idealized system 

The scope of this study is thus on the response of shallow CCDs that, upon being 

transversely loaded at their apex, display an elastic response and limit-point critical instability with 

a snap-through geometrical transition. When a shallow CCD is loaded beyond its limit-point it 

snaps-through to a new configuration. The force-deformation response is nonlinear before and 

after the limit-point snap-through instability (initial loading path and unstable path), with a fairly 

linear response upon continued loading in the new configuration (Figure 1.3). While the unstable 

response path (negative tangent stiffness) cannot be obtained under force-controlled loading, it can 

be attained in a stable manner under displacement-controlled loading. Snap-through instability, 

also called limit-point instability or snap instability, does not involve any bifurcation of the 

equilibrium path [13].  
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3.3.2 Modeling and analysis 

 The CCD element studied was idealized as shown in Figure 3.1(b). The dome’s horizontal 

orientation is along the shown x-axis and the vertical direction is perpendicular to it. The dome is 

modeled with clamped boundary conditions along its base circumference. Loading is assumed to 

be applied by a vertical concentrated load (F) at the dome’s apex, and directed downwards. The 

applied load causes a vertical (transverse) displacement δ. The key geometric parameters on the 

CCD’s response are the uniform thickness, t, the base diameter or span length, l, the apex height, 

h, and the diameter of the loading area, d, as shown in Figure 3.1 (a). The CCDs examined here 

are considered shallow and thin shells with a height-to-span ratio of less than 1/5 and a thickness-

to-radius of curvature ratio of less than 1/20 [69]. 

 Nonlinear geometric finite element analyses (FEA) were used to examine the force-

deformation responses of CCDs using the program ABAQUS [73]. The CCD was modeled as a 

3D deformable revolved shell object with linear elastic isotropic material properties and four-node 

shell elements (S4) for the mesh. The mesh size was selected based on a mesh refinement study. 

Displacement control was used to apply a static incremental displacement at the dome’s apex, and 

large deformations were accounted for by considering geometric non-linearity in the analyses. 

Eigenvalue analyses were conducted to verify predicted snap-through instability by confirming 

that the bifurcation loads were higher than the limit-point load. For cases where the analyzed CCD 

was deep and thin (i.e., high h/t), the automatic stabilization option in ABAQUS’s solver was used 

to facilitate a converged solution. 

3.3.3 Experimental validation 

 Experimental tests were conducted on 3D printed CCDs to examine the three stability states 

presented in Figure 1.3, and to compare the experimentally obtained F-δ response to those 
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generated from the FEA. The CCDs were fabricated using a 3D polymer-based printer (MakerBot 

Replicator 2) with polylactic acid (PLA) filament. Due to imperfections from the manufacturing 

process the “as printed” dimensions varied slightly (about 10%) from the nominal design values. 

The design and the “as-printed” dimensions for the test specimens are given in Table 3.1. This is 

important since small changes in t or h significantly change the dome’s response and the desired 

stability state. Thus, the FEA simulations were based on the ‘as-printed’ dimensions. The PLA 

material has a reported Poisson’s ratio, ν, of 0.33 and an average modulus of elasticity, E, of 1,582 

MPa [29].  

Table 3.1 Design and ‘as-printed’ dimensions of experimentally tested CCDs 

Specimen 
Design dimensions ‘As-printed’ dimensions 

t (mm) h (mm) l (mm) t (mm) h (mm) l (mm) 

1M 1.5 5.00 120.0 1.82 4.58 119.3 

2M 1.5 5.00 120.0 1.74 4.46 119.2 

3B 1.00 6.00 100.0 1.26 5.66 98.4 

4B 1.00 6.00 100.0 1.17 5.67 98.7 

5M 0.84 3.20 102.0 1.13 2.78 100.4 

6M 1.00 3.20 102.0 1.18 2.91 101.7 

8P 1.20 5.00 100.0 1.39 4.41 101.5 

8P 1.20 5.00 128.8 1.45 4.29 126.9 

9B 0.60 3.50 60.0 0.70 3.40 59.9 

10B 0.60 3.50 60.0 0.87 2.91 59.8 

11P 0.60 2.00 50.0 0.72 1.97 49.9 

12B 0.60 2.60 60.0 0.74 2.62 59.9 

13M 0.65 2.50 65.0 0.86 2.50 64.9 

14M 0.60 1.80 50.0 0.73 1.76 50.9 

Note: M: monostable, B: bistable, P: pseudo-bistable 

 

 Tests were performed using a universal testing machine with custom fixtures (indenter) to 

apply a concentrated vertical load at the CCD apex, as shown in Figure 3.2. Loading was done 

under displacement control, applying an incremental displacement at a constant rate of 0.1 mm/s. 

For CCD specimens with bistable response (Fn < 0), the loading indenter was mechanically 

attached to the apex of the CCD and the specimen was also clamped to the platen. Figure 3.3 shows 
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the loading stages for a monostable and a bistable CCDs. The figure illustrates the shape 

recoverability of the monostable compared to the bistable CCDs. 

   

Figure 3.2 Test setup for CCD under axial compression 

 

Figure 3.3 Loading stages for: (a) monostable CCD, and (b) bistable CCD 
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 Figure 3.4 shows  experimental F-δ responses for CCD specimens with ‘as-printed’ 

dimensions as given in Table 3.1. The actual modulus of elasticity of a 3D printed part is highly 

sensitive to the orientation of the printed layers and to the direction of loading [74,75]. For 

example, the investigation conducted by Perkowski [76] on the mechanical properties of 3D 

printed PLA parts showed that the modulus of elasticity ranged from about 550 to 3,100 MPa in 

tension and from 570 to 1,650 MPa in compression. Therefore, the FEA F- response in Figure 

3.4(a) was scaled for E so that Fb was equal to that of the experimentally measured data. The 

scaling factor was determined by conducting a FEA for a CCD with ‘as-printed’ dimensions and 

an elastic modulus value of unity and then dividing the value of Fc (or any other value) on the 

experimental F-δ curve by its counterpart of the same displacement on the FEA curve. The scaling 

factor was 851 MPa, which represents the most representative value of E for the specimen. This 

procedure is valid as long as most parts of the two curves coincide; however, an exact agreement 

cannot be obtained because of the presence of imperfections and the non-uniformity of the ‘as-

printed’ dimensions. Moreover, this procedure is only valid for elastic responses as discussed in 

Section 3.4.5. 

 Figure 3.4(a) shows a comparison between the experimental and numerical (FEA) F-δ 

responses for CCD specimen 5M with ‘as-printed’ dimensions (given in Table 3.1). Figure 3.4(a) 

shows two F-δ responses from FEA based on (1) the scaling factor and (2) an average value for E 

of 817 MPa. This value of E was determined from a series of tests on 3D printed ASTM D695 

specimens, for which the print layers were oriented perpendicularly to the longitudinal axis to 

closely represent the loading conditions of the tested CCDs. 
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Figure 3.4 (a) F-δ curves for specimen 5M from experiment compared to FEA, and (b) 

experimental F-δ curves for specimens 11P, 12B, and 6M 

3.4 Parametric Study 

 A parametric study was carried out on the geometric parameters t, l, h, and d, (see Figure 

3.1) and the material properties E and ν, to study their effects on the response of CCDs. The study 

was conducted using FEA by systemically varying one of the parameters, while keeping the others 
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unchanged. The investigated response quantities [see Figure 1.3(d)] were the critical limit load, 

Fc, the critical displacement, δb, the negative or minimum force, Fn, and the non-zero displacement 

at the minimum force, δn. The study also evaluated the resulting shape of the F-δ curve since it 

characterizes the post-buckling behavior. Moreover, normalizing ratios such as δ/h and h/t were 

used to study the curve shapes. The study was conducted for CCDs with 1.5 ≤ h/t ≤ 7.5 and h/l ≤ 

1/16 [69]. The FEA were performed by varying l and fixing t and h and then repeating the same 

process for different values of t and h. The material constants were kept unchanged at E = 1500 

MPa and ν = 0.33. 

 As discussed in Chapter 1, the F-δ curve is related to the U-δ curve (Figure 1.3). The 

difference between the maximum and minimum strain energies, ΔU, (i.e., ΔU = Umax - Umin) is 

directly related to the value and the mathematical sign of Fn, and hence the stability state of a CCD. 

When ΔU is greater than zero Fn is negative and the response is bistable. When ΔU equals to zero 

Fn also equals zero and the response is pseudo-bistable. Local maxima and minima do not exist 

when the U-δ curve is monotonic, hence Fn is greater than zero and the response is monostable. 

Therefore, this study focuses on the F-δ curve rather than the U-δ curve to examine the stability 

states since dealing with a single quantity (Fn) is easier than dealing with two quantities (Umax and 

Umin).  

3.4.1 Effect of length (l) 

 The effect of varying l on the F-δ response curve is shown in Figure 3.5(a). The values of 

Fc and │Fn│ decrease with an increase in l, while δc and δn, are not affected by the change in l. To 

further examine the effect of varying l on the shape of the F-δ curves it is necessary to normalize 

them to a factor in terms of l. A least square regression analysis [77] was used to determine the 

value of a power “α” for a factor lα to be multiplied by F for constant values of t and h. Since the 
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curves may have different post-buckling responses, regression analyses were performed on the 

values of Fc, which resulted in α = 2. It was found that normalizing the F-δ curves by the factor l2 

results in exact agreement among them over the entire response range (pre- and post-buckling) as 

shown in Figure 3.5(b).  

    

Figure 3.5 Actual and normalized F-δ curves of CCDs with constant t and h, and varying l 
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 This shows that l has no effect on the type of response of the CCD. Thus, for example, if 

the F-δ response has a bistable shape, then this response type will not change to a monostable or 

pseudo-bistable by changing l. The reason is that since the examined CCDs are shallow where the 

span-length l is much larger than the thickness t and the apex height h, the variation in length has 

an insignificant effect on the ratios h/l and t/l. 

3.4.2 Effect of thickness (t) 

 A similar procedure was followed by analyzing CCDs with varying t while fixing other 

parameters. Analysis results show that t has a dominant effect on the shape of the F-δ response 

curve, as shown in Figure 3.6(a), where the values of Fc and Fn can be seen to increase with an 

increase in t. In addition, by increasing t the response changed from bistable to monostable. This 

means that Fn increases relative to Fc and that the ratio h/t is decreasing.  

 The force values in the curves of Figure 3.6(a) need to be normalized in terms of t to 

compare them and assess the effect of t. A least squares regression analysis [77] was used to 

determine the value of “β” for the factor 1/t β for constant values of h. For this case the value of l 

has no effect on β, and hence it was not included in the analysis. Since the curves have different 

post-buckling responses, the regression analysis was performed only on the values of Fb to find β. 

A constant value of β = 2.412 was found. The same value of β would be determined if the 

regression analysis was performed on the F-δ curve data up to Fc. 

 The normalized curves are shown in Figure 3.6(b). Comparing Figure 3.6(a) and Figure 

3.6 (b) shows that δc and δc/h are roughly the same for all cases and thus they are only slightly 

affected by the change in t or h/t. On the other hand, δn and δn/h decrease with increasing t or 

decreasing h/t. From Figure 3.6(b), the normalized values of Fc are approximately the same for 
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varying t, while they are different for the case of Fn because of the change in post-buckling 

behavior. 

   

Figure 3.6 Actual and normalized F-δ curves of CCDs with constant h and l, and varying t 
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3.4.3 Effect of height (h) 

 Analysis results showed that CCD height (h) has a complex effect on the shape of the F-δ 

curves, as shown in Figure 3.7(a). This effect can be grouped into three features: (1) Fc increases 

with h, similar to the effect of t; (2) Fn decreases with h, opposite to the effect of t; and (3) h 

increase shifts the F- curve with increased values for the critical displacements c and n. It can 

be construed that the ratio h/t mainly controls the shape of the F-δ curve and hence the stability 

state. Figure 3.7(a) also shows that δc and δn, increase with an increase in h or h/t.  

 The force values in Figure 3.7(a) were normalized with the factor 1/hγ in order to examine 

the shape of the F-δ curves. The normalized curves are shown in Figure 3.7(b). The value of “” 

was determined to be equal to 1.582 through a least squares regression analysis on the values of 

Fc. The normalized curves in Figure 3.7(b) show that δc/h is approximately the same for all cases 

and thus they are only slightly affected by the change in h. On the other hand, δn and δn/h increase 

with increasing h. The normalized values of Fc are roughly the same with varying h while they are 

different for the case of Fn because of the change in post-buckling behavior. 
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Figure 3.7 Actual and normalized F-δ curves of CCDs with constant t and l, and varying h 

3.4.4 Effect of loading area  

 Another important parameter that affects the shape and the values of the F-δ curves is the 

loading area, that is, the circular region around the apex point where the dome is loaded, see Figure 

3.8. Since in most applications a theoretical point load cannot be practically applied, there is a 
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finite area over which the load is distributed. In this study the area is assumed to be circular and 

perpendicular to the axis of rotation of a CCD. It was found that the size of this area has a 

significant effect on the shape of the F-δ curve, but a minimal effect on the stability state a CCD. 

Figure 3.8(a) shows the effect of increasing the diameter of the loading area (d) on the F-δ curves 

for monostable and bistable CCDs. It is shown that the values of Fc increase with an increase in d; 

while the values of Fn slightly increase for monostable responses and slightly decrease for bistable 

responses with an increase in d. In addition, the effect of d on the F-δ curve is more pronounced 

for deeper CCDs (i.e., CCDs with higher h/t). Increasing d also shifts the F-δ curve by decreasing 

the values of δc and δn. 

 If the loading area around the axis of rotation increases the original CCD area, as shown in 

Figure 3.8(c), the loading area has a negligible effect on the response and hence the CCD should 

be treated as if d = 0 with original length l. In other words, the loading area has no effect on the 

response as long as the loading region doesn’t occupy an area of the original CCD’s shape. The 

total span length (base diameter) is, however, increased by d (i.e., total span length is l + d). 

Nonetheless, this increase in length should not be considered in the analysis of the dome. 
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Figure 3.8 (a) F-δ curves of CCDs with constant h and l, and varying h/t and d/l; (b) original 

profile shape of the CCD; and (c) modified shape of CCD with added loading area 

3.4.5 Effect of modulus of elasticity (E) 

 Since the concern here is the response of the CCD within the elastic range and for linear 

elastic material, the F-δ curve has a linear relationship with E and hence can be normalized by 1/E. 

To show that, several CCDs were analyzed for varying E, with all other parameters fixed and the 
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resulting F- responses are shown in Figure 3.9(a). It can be seen that Fc and │Fn│ increase with 

an increase in E. Figure 3.9(a) also shows that δc and δn are the same for all cases, and thus 

unaffected by E.  

 

Figure 3.9 Actual and normalized F-δ curves of CCDs with constant t, h and l, and varying E 
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 As expected, the F-δ curves for varying E collapse into each other when normalized by 

1/E, see Figure 3.9(b). Therefore, E has no effect on the shape of the F-δ curves and the stability 

state of CCD if the material is linear elastic. The F- curves can thus be scaled for different E 

values. 

3.4.6 Effect of Poisson’s ratio (ν) 

 Figure 3.10 shows that Fc increases and Fn decreases with an increase in ν. It can also be 

observed that δc and δn do not change for all cases, and thus they are not affected by ν. The shape 

of the F-δ curves is slightly affected by ν. As ν increases the response changes from monostable 

to bistable (and vice versa). Further, can be noted that Fn can become negative with increasing ν 

as shown in Figure 3.10. 

 
Figure 3.10 F-δ curves of CCD with constant t, h, and l, and varying ν 
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3.5 Design Expressions for CCDs 

The F-δ response in Figure 3.11(a) is the result of a dynamic FEA for 12 monostable CCDs 

connected in series. Loading on the system was applied by displacement-controlled incremental 

deformation with geometric non-linearity considered in the analysis. The CCDs in the system were 

linked in series by connecting them at their confining rings and at the apex tips as shown in Figure 

3.11(b). The enclosed area between the loading and unloading curves represents the dissipated 

energy by the system. Studies by Benichou and Givli [78], and Restrepo et al. [33] showed that 

the response of a system of multistable units [e.g., Figure 3.11(a)] can be accurately calculated 

based on the simplified multilinear response of a single unit, as that shown in Figure 3.12. The 

approach greatly simplifies the analysis procedure and it is particularly convenient for design 

purposes. It is thus of interest to develop a simplified multilinear F- response curve for the CCD 

units. 

Previous sections presented the studies of the effects of geometric and material properties 

on the F- response of CCDs, and a normalizing factor was determined for each parameter. These 

factors are now used to develop expressions for the key features of a CCD’s F-δ response to 

facilitate the construction of a multilinear response as shown in Figure 3.12. It is recommended to 

use these expressions for CCDs with 1.5 ≤ h/t ≤ 4.5 and h/l ≤ 1/20 for more accurate results. The 

objective is to use this simplified response to obtain the response for a system of multiple CCDs 

as shown in Figure 3.11(a). 

The multilinear response of a CCD (Figure 3.12) is divided into three regions [33]: the 

initial stable equilibrium path in region I before the snap-through limit-point with an effective 

stiffness kI, the unstable equilibrium, or snap-through, path in region II with negative stiffness kII, 

and the post snap-through (or post-critical) stable path in region III with stiffness kIII. Defining the 
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linear segments requires estimating the buckling load and displacement (Fb and δb), the minimum 

force and displacement (Fn and δn), and the post snap-through buckling stiffness (kIII). 

 

 

Figure 3.11 Twelve monostable CCD units connected in series (a) hysteretic response from FEA, 

and (b) stacking configuration and idealized system 
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 In addition, it is of interest to know what type of stability would occur, that is, whether the 

CCD remains buckled (bistable) or restores to its original configuration (monostable) upon load 

removal. This can be achieved by knowing the conditions at which the pseudo-bistable response 

occurs. Thus, a study was also conducted to determine the governing factors of this stability state.  

 

Figure 3.12 Actual and multilinear F-δ responses of a CCD 

3.5.1 Critical limit-point (snap-through) load (Fc) 

 The value of Fc can be estimated by multiplying the inverses of the normalizing factors 

determined earlier by each other, in addition to a calibration factor, Cc, as given by Equation (3.2). 

 Fc = Cc tβ hγ E / lα  (3.2) 

 The factor Cc is in terms of h/t and ν and can be calculated from the FEA results by 

normalizing Fc by lα/ tβ hγ E. Figure 3.13 shows the calculated Cc values for h/t and ν. Each solid-

line curve in Figure 3.13 was approximated by a second-degree polynomial in terms of h/t and ν, 

as given in Equation (3.3) with an absolute maximum error of about 2 %. 

 Cc = (-0.466 ν – 0.251)(h/t)2 + (3.304 ν0.27)(h/t) + (19.56 ν0.35)  (3.3) 
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 The value of Cc ranges from about 15 to 19 and can be simplified to a constant value of 17 

with an 11.7 % maximum absolute error. 

 

Figure 3.13 Cc curves with h/t for different values of ν 

 As can be seen in Figure 3.8(a), d has a significant effect on the F-δ response of CCDs, 

which in turn depends on h/t. To account for this effect, Fc and Fn values from FEA for CCDs with 

d > 0 were normalized by the values of Fc and Fn with d = 0. A relation was then established to 

determine a force modification factor, D, that is related to d/l and h/t as given in Equation (3.4). 

Therefore, for CCDs with d > 0 [as shown in Figure 3.8(b) only], the buckling force Fc using 

Equation (3.2) should be multiplied by D given in Equation (3.4). This factor ranges from 1 to 1.43 

and the expression is valid for d/l ≤ 0.1. 

 D = 10.6 (h/t)(d/l)2 – 0.225 (d/l) + 1 ≥ 1  (3.4) 
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3.5.2 Minimum Load (Fn) 

 An expression similar to Equation (3.2) was used to estimate Fn with Cc replaced by Cn as 

given in Equation (3.5). The factor Cn was also calculated by normalizing Fn from the FEA results 

by lα/ tβ hγ E. Figure 3.14 shows the calculated Cn values with h/t and ν. As can be seen, Cn changes 

sign from positive to negative with increasing h/t. Thus, this quantity controls the stability state at 

which the response of a CCD would be monostable or bistable. Figure 3.14 also shows how the 

FEA results (solid-line curves) can be approximated by a second-degree polynomial in terms of 

h/t and ν, as given in Equation (3.6). The value of Fn should also be modified by the force 

correction factor D given in Equation (3.4) for CCDs with d > 0. 

 Fn = Cn tβ hγ E / lα  (3.5) 

 Cn = (0.336 ν + 0.889)(h/t)2 – (13.06 ν + 10.82)(h/t) + (51.38 ν0.295) ≥ -12 (3.6) 

3.5.3 Critical limit-point displacement (δc) 

 The value of δc is related to h and is affected by h/t. Thus, it is best expressed as a ratio of 

h and in terms of h/t. Figure 3.15 shows the calculated δc/h against h/t from FEA results for several 

CCDs. The data points show that the relation between δc/h and h/t is nonlinear and it was 

approximated by a second-degree polynomial. The following expression was developed for δc/h: 

 δc/h = 0.061 (h/t)2 – 0.4 (h/t) + 1.35  (3.7) 

For h/t > 4.5, Equation (3.7) should be evaluated based on h/t = 4.5. Results from FEA compared 

to estimated values of δc/h using Equation (3.7) have average absolute error of less than 3 %. 

 For CCDs with d > 0 [as shown in Figure 3.8(b) only], the calculated displacement δc using 

Equation (3.7) should be multiplied by a displacement correction factor, Gc, that depends on d/l 

and h/t as given by Equation (3.8). This factor should range from 0.42 to 1.  

 Gc = [-1.67 (h/t) + 1.1](d/l) + 1 ≤ 1  (3.8) 
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Figure 3.14 (a) Cn curves with h/t for different values of ν, and (b) zoom-in at Cn = 0 

3.5.4 Displacement at Fn (δn) 

 As for δc, δn was normalized by h and expressed in terms of h/t, and the data can be 

approximated by Equation (3.10), see also Figure 3.15. However, the relation of δn with respect to 

h/t seems simpler than that of δc/h, as shown in Figure 3.15. For h/t > 4.5, δn/h should be calculated 
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based on h/t = 4.5. The values of δn/h using Equation (3.9) have an average absolute error of less 

than 2% with FEA results. 

 δn/h = -0.081 (h/t)2 + 0.575 (h/t) + 0.641  (3.9) 

  

Figure 3.15 Data and fit curves for δc/h and δn/h with h/t 

 For CCDs with d > 0, the displacement δn using Equation (3.9) should be multiplied by a 

correction factor, Gn, that depends on d/l and h/t as given by Equation (3.10). This factor should 

range from 0.89 to 1.  

 Gn = [0.24 (h/t) – 1.43](d/l) + 1 ≤ 1  (3.10) 

3.5.5 Post snap-through stiffness (kIII) 

 At least two F-δ points are required to determine the stiffness kIII. The first point is the 

minimum force Fn at displacement δn. The second point is the limit-point force Fc at displacement 

δm, as shown in Figure 3.12. The displacement δm at Fc level was determined from FEA for various 

geometric and material properties. It was found that kIII can be expressed as a ratio of kI. This ratio 
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(kIII / kI) is mainly affected by h/t and it ranges from 0 at about h/t = 1.45 to 2.78 for h/t ≥ 4.5. As 

a result, Equation (3.11) can be used to estimate kIII / kI: 

 kIII / kI = 0.9137 (h/t) – 1.108 ≤ 2.78  (3.11) 

3.5.6 Limiting h/t for pseudo-bistable state 

 In Section 3.4 it was shown that only t, h, and ν affect the stability state of a CCD, and 

hence the shape of the F-δ curve; while l and E only affect the amplitude of the F-δ curve without 

changing its shape, and hence the post-buckling response. Therefore, the type of response (i.e., 

shape of the F- curve) is governed by a relation involving t, h, and ν based on the values of Fn. 

Thus, the aim here is to determine a critical height-to-thickness ratio, (h/t)cr, at which the value of 

Cn equals zero. This was achieved by examining the effect of ν on Cn (or Fn), see Figure 3.14. 

 From Figure 3.14(b) it can be seen that (h/t)cr decreases with an increase in ν. By 

determining the values of h/t at which Cn = 0 for several values of ν, a relation between (h/t)cr and 

ν was obtained as shown in Figure 3.16(a). An expression to estimate (h/t)cr was developed in 

terms of ν and is given in Equation (3.12). 

 (h/t)cr = 2.879 / ν 0.052  (3.12) 

 The value of (h/t)cr can be used to design a CCD with a specific stability state. A CCD 

would have a monostable response if h/t is less than (h/t)cr and a bistable response if h/t is greater 

than (h/t)cr. Figure 3.16(b) shows the stability state for the experimentally tested 3D printed 

specimens with ν = 0.33 and (h/r)cr = 3.05 as calculated by Equation (3.12). The specimens showed 

a consistent behavior with the determined limit of (h/r)cr. The CCDs below the critical line in 

Figure 3.16(b) had monostable behavior while CCD above the line had bistable behavior. Pseudo-

bistable CCDs had h/t close to (h/r)cr and recovered their original configuration after a delay, which 
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indicates viscoelastic material behavior. It should be noted that CCDs with h/t less than 1.5 will 

exhibit a monotonic F-δ response and will not have snap-through buckling behavior.  

  

Figure 3.16 (a) Critical height-to-thickness ratio (h/t)cr vs. ν; (b) stability state for 3D printed 

specimens with ν = 0.33 and (h/t)cr = 3.05 
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3.5.7 Example: Approximate analysis of single and multiple CCDs 

 As discussed at the start of Section 3.5, the multilinear response of a single CCD is useful 

to obtain the response of a system of multiple CCDs connected in series. The following is an 

example that illustrates this procedure and compares it to experimental results. It should be noted 

that a detailed presentation and discussion on the response of multiple CCD is beyond the scope 

of this work and it is the subject of on-going studies. However, the brief overview provided herein 

illustrates both the use of CCDs as well as the value of the developed design expressions. 

 Four CCDs were designed and 3D printed with equal nominal dimensions of t = 0.6 mm, 

h = 1.8 mm, and l = 50 mm. Due to manufacturing imperfections, the ‘as printed’ dimensions are 

t = 0.75 ± 0.03 mm, h = 1.76 ± 0.02 mm, and l = 50 ± 1 mm. The material properties are taken as 

E = 817 MPa and ν = 0.33. Figure 3.17(a) shows the experimental and the FEA F-δ response of a 

single CCD. The simplified multilinear response of the CCD specimens, also shown in Figure 

3.17(a), was constructed using the developed expressions in Equations (3.2) through (3.11) based 

on the average dimensions of the printed units. The constructed response slightly underestimates 

δn and Fn; however, it is in general agreement with the test result. The fabricated specimens 

recovered their original configuration immediately upon unloading and hence showed a 

monostable behavior with h/t = 2.35, which is smaller than (h/t)cr determined as follows: 

 (h/r)cr = 2.879 / ν 0.052 = 3.05 

Four CCDs units with equal nominal dimensions as the single CCD described above were 

connected in series and the system was tested under displacement control loading as shown in 

Figure 3.18. The resulting F-δ response is shown in Figure 3.17(b). The multilinear F-δ response 

shown in Figure 3.17(a) for a single CCD was used to calculate the F-δ response for the four-unit 

system, as shown in Figure 3.17(b). The system response was determined using the model by 
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Benichou and Givli [78]. While the experimental and analytical responses are in relative 

agreement, the displacement, Δc1, at the first snap-through event of the experimental response is 

smaller than that of the multilinear response. This is primarily attributed to dimension variations 

among the printed CCD units, which leads to early snap instability of the CCD with the lowest Fc 

in the system before the calculated average snap-through displacement Δc1 = 4δc. In other words, 

the effective stiffness of the tested system is higher than that based on the calculated average 

response (Fc / 4δc). Therefore, during loading, the CCD in the system with lowest Fc reaches its 

limit-point instability (δc , Fc) while other CCDs in the system are below their limit.  

Although the snap-through limit variation among CCD units complicates calculating an 

accurate response for the system, it is an essential feature to obtain a response with progressive 

snapping instabilities, and hence elastic energy dissipation. The area enclosed between the 

experimental loading and unloading curves represent the elastic strain energy dissipated by the 

system. This area depends on the number of connected units and h/t.  
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Figure 3.17 Experimental, FEA, and approximate multilinear F-δ responses of (a) a single CCD, 

and (b) system of 4 CCDs connected in series 
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Figure 3.18 Test setup for the four CCDs connected in series 

3.6 Conclusions 

 The presented study showed that cosine-curved domes (CCDs) with constrained edges 

loaded under a concentrated apex transverse load can attain snap-through instability with 

symmetric deformations, even with some imperfections. This was validated through finite element 

simulations and testing of 3D printed specimens for CCDs within the geometrical range of 1.5 ≤ 

h/t ≤ 7.5 and h/l ≤ 1/16. However, CCDs with higher h/t and h/l ratios are more susceptible to 

bifurcation and asymmetric deformations. In addition, CCDs within the noted geometry range do 

not require the restriction of other buckling modes to have a symmetric reversible snapping, 

offering a multistable element that could be used as a building unit for devices subjected to 

relatively high forces for energy dissipation and repeated use.  
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 Three types of snap-through instability responses were recognized for the studied CCDs: 

monostable, pseudo-bistable, and bistable responses. The main factor affecting the response is the 

height-to-thickness ratio (h/t). Increase of h/t changes the response from monostable to bistable. 

Increasing value of the material’s Poisson’s ratio (ν) decreases the value of the minimum force 

(Fn), which could change the instability type from monostable to bistable. The study also showed 

that the base diameter (l) affects the values of the force-deformation curve but it has no effect on 

its shape. It was found that CCDs have a critical height-to-thickness ratio (h/t)cr at which the 

response is pseudo-bistable (Fn = 0). This allows designing CCDs with a targeted snap-through 

instability type. The ratio is independent of the geometric and material properties except for ν. 

However, the effect of ν on (h/t)cr is small for common materials. (h/t)cr may be taken as a constant 

value of 3.045. Expressions to estimate key parameters in the force-deformation response were 

developed to construct a multilinear force-deformation response, and shown to facilitate the 

response analysis for a system of multiple CCDs.  

 The multistable elastic behavior possessed by CCDs originates from the cosine curved 

profile that allows them to have a tunable multistable response. The proposed CCDs offer 

controllable elastic snap-through behavior that could be used as a building block for elastic energy 

dissipation mechanisms subjected to relatively high forces. Future studies on the response of CCDs 

should include the influence of manufacturing imperfections and loading direction.  
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CHAPTER FOUR 

4 Multiple Cosine-Curved Dome System 

4.1 Overview 

 In this chapter the behavior of the MCCD systems was studied numerically and 

experimentally. Finite element analyses (FEA) were performed for MCCD systems to study the 

effects of geometric properties and the number of the dome units (CCDs) on system behavior under 

displacement-controlled loading. A multilinear analytical model that describes the system’s force-

displacement (F-Δ) response is proposed. The energy dissipation characteristics of the MCCD 

system are also studied. Finally, experimental tests on 3D printed specimens were conducted to 

analyze the system and validate the analytical model. The study presented in this chapter was 

published in the journal of Applied Mechanics [79]. 

4.2 Background 

 A new energy dissipation system comprised of multiple cosine-curved domes (MCCD) 

connected in series is presented herein. The building units of the MCCD system are dome-shaped 

shell elements called cosine-curved domes (CCD) studied in Chapter 3 [68]. The noted former 

study introduced the multistable element (CCD), showed how it can attain a controllable snap-

through instability, and presented its response characteristics; with the motivation of using it in a 

system for elastic energy dissipation.  

 When an MCCD system [see Figure 1.2(c)] is mechanically loaded, the CCD units in the 

system consecutively snap-through to a new stability state within their elastic range. When the 

system is unloaded, the units consecutively snap-back to their original configuration, either by a 
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restoring external force for bistable CCDs or by self-recoverability (preferred) for monostable 

CCD units. If a sufficient number of connected units in series is used, the MCCD system follows 

distinct loading and unloading paths resulting in a hysteretic response, as shown in Figure 1.2(d). 

The area enclosed by the loading and unloading curves represents the elastically dissipated energy. 

This energy dissipation is due to the transformation of some of the induced mechanical energy of 

the applied work to elastic vibrations that are damped by the base material of the repeating units 

and converted to irreversible thermal energy (heat) with each snap-through buckling event 

[12,27,34,35]. 

 The proposed MCCD system avoids a few design disadvantages that limit the practicality 

of other systems presented in the literature. For example, when multiple units in the MCCD are 

stacked in parallel (see Section 4.3.2), no design modification is required on the system general 

configuration nor to the size of the constraining edges (rings) compared to systems comprised of 

curved beams [29,33,36]. The reason is that in a loaded MCCD system with CCD units stacked in 

parallel, each ring is resisting the same horizontal forces while the units in the system are 

collectively resisting a much larger vertical force than that can be developed by a single unit. 

Conversely, systems comprised of curved-beams [29,33,36] require increasing the size of the 

constraining edges and hence the horizontal tie to resist the additional forces (see Figure 4.1) due 

to (1) the increased height of the constraining edge, and (2) the additional horizontal forces due to 

each parallelly stacked beam.  

 Evaluation of curved beams with multiple beams in parallel showed that when the number 

of beams is increased, the stability state of the whole unit may change from bistable to monostable 

(for example) due to increased outward lateral deflection of the supporting edges. In addition, the 

value of the cumulative vertical force is reduced compared to the expected force by the parallel 
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units due to the lateral expansion. Thus, a modification to the size of the reaction edges must be 

made to preserve the required response. A similar evaluation on the MCCD system showed that 

the units are independent, in terms of the required constraining for the individual unit, from the 

overall cumulative vertical force resisted by the system. Thus, there is no need for design 

adjustments.  

 

Figure 4.1 Boundary conditions for: (a) curved-beams system, and (b) MCCD system 
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 Even though it may be argued that this issue can be avoided if a system of curved-beams 

system consisted of many elements in a single layer (horizontal direction), it would still cause a 

similar effect to that discussed above since the horizontal forces will accumulate causing the 

system to expand in the horizontal direction in an effect analogous to that of Poisson's ratio on a 

compressed short strut. Thus, the MCCD system avoids this design limitation by having a self-

confining feature that makes it a suitable and practical design for the design of civil structural 

applications where high forces on such systems are expected. 

 Numerical studies and experimental tests were conducted on the geometric properties of 

the individual CCD units and their number in the system to examine the force-displacement and 

energy dissipation characteristics. Finite element analysis (FEA) was performed to simulate the 

response of the system to develop multilinear analytical model for the hysteretic response that 

considers the nonlinear behavior of the system. The model was used to study energy dissipation 

characteristics of the system. Experimental tests on 3D printed specimens were conducted to 

analyze the system and validate numerical results. 

 Multilinear models have been presented in the literature to predict the hysteric force-

displacement (F-Δ) response of systems with multiple multistable elements [33,78]. These models 

are more suited for systems comprised of units that exhibit a fairly linear force-displacement (F-

δ) response. This is because such models don’t consider the nonlinear effects on the F-Δ response 

of the system. For the MCCD system, these nonlinear effects on the F-Δ response are relatively 

large and this work takes them into account by introducing an effective stiffness concept. 
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4.3 Multiple Cosine-Curved Dome (MCCD) System 

4.3.1 Response of a single CCD unit 

 The F-δ response of a single CCD incorporates a negative stiffness part that originates from 

the dome’s geometric shape. The cross-sectional profile of the CCD follows the cosine function 

given in Equation (4.1) [71].  

 w(x) = h/2[1 – cos(2πx/l)] (4.1) 

where w(x) is the vertical distance at a distance x from the circumference along a horizontal line 

at the dome’s base passing through the center, as shown in Figure 4.2. The effective geometric 

parameters on the response of a CCD are the uniform thickness, t, the base diameter or the span 

length, l, and the apex height, h, as shown in Figure 4.2(a). The parameter d is the diameter of the 

loading area, which has flat circular shape at the apex region of a CCD. The study in [68] showed 

that d has a negligible effect on the response of a CCD if d/l ≤ 0.1. The circumference edge of a 

CCD is connected to a rigid ring that constrains edge sliding and rotations under loading, and 

hence provides fixed boundary conditions for the dome. 

 

Figure 4.2 Geometric parameters of a typical CCD: (a) cross-section at the apex, and (b) 

idealized system 
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 The shape of the CCD leads to a highly nonlinear response and a snap-through buckling 

behavior under a concentrated transverse vertical load at the apex as shown in Figure 4.2(b). 

Beyond the buckling point, a CCD deforms to a new configuration, yet the exerted deformations 

on the CCD are recoverable. For a bistable CCD, an external restoring force is required to recover 

the original shape, while a monostable CCD is self-recoverable. Figure 4.3(a) shows the typical F-

δ responses for monostable and bistable CCDs normalized by their respective buckling load, Fb, 

and buckling displacement, δb. Note that δ denotes the local CCD vertical displacement. It can be 

seen in Figure 4.3(a) that the bistable CCD has a negative minimum force, Fn, at displacement δn. 

In this case, some of the induced energy is trapped in the system and hence the F-δ curve here has 

a negative force part [20]. 

 The response of a CCD can be divided into three regions [33]: the initial response region 

(I) with an effective stiffness, kI, the snap-through buckling region (II) with the negative effective 

stiffness, kII, and the post snap-through buckling region (III) with stiffness, kIII. For given 

geometric and material properties, the multilinear response of a CCD, as shown in Figure 4.3(b), 

can be constructed using the expressions provided in Chapter 3 [68] for Fb, δb, Fn, δn, and kIII. The 

maximum displacement, δm, is the displacement at a force level equal to Fb in region III, see Figure 

4.3(b); and it can be calculated as δm = δn + (Fb – Fn) / kIII. Based on these values, the stiffness in 

each region can be determined. Hence, the linear F-δ relations in regions I and III are given as 

follows: 

 FI = kI δI,   δI ≤ δb           (4.2) 

 FIII = Fn + kIII (δIII – δn) δIII ≥ δn          (4.3) 
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Figure 4.3 (a) Normalized F-δ response for monostable and bistable CCDs; (b) multilinear 

approximation of the F-δ response of a CCD 

 Due to the high nonlinearity of the F-δ response of the CCD units, especially in region I, 

using the above relations (as will be illustrated in Section 4.4) would underestimate and slightly 

overestimate FI and FIII, respectively, as shown in Figure 4.3(b). Therefore, the Michaelis-Menten 

model [80] was used to develop a nonlinear F-δ relation for region I. This relation is in terms of 
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h/t, δb, and Fb, and is given in Equation (4.4). This model was selected because of its simplicity to 

determine δI for a given force level FI and because it closely represents the nonlinear path of the 

F-δ response in region I. 

 FI = 
𝐹𝑏 𝐴 (𝛿𝐼 𝛿𝑏⁄ )

𝐵 + (𝛿𝐼 𝛿𝑏⁄ )
  (4.4) 

In Equation (4.4) A and B are constants in terms of h/t and can be determined as follows: 

 A = 0.0368 (h/t)3 - 0.3488 (h/t)2 + 0.9559 (h/t) + 0.6574  

 B = 0.0368 (h/t)3 - 0.3488 (h/t)2 + 0.9559 (h/t) - 0.3426 

 Similarly, an exponential function was used to develop a relation for the F-δ response in 

region III. The expression is in terms of h/t, δn, δm, Fn, and Fb as given below [77]: 

 FIII = Fn+ Fb C [
𝛿𝐼𝐼𝐼

𝛿𝑚−𝛿𝑛
]
𝐷

 (4.5) 

where C and D are constants in terms of h/t and can be determined by: 

 C = – 0.0648 (h/t)2 + 0.9261 (h/t) – 1.2407  

 D = 0.0993 (h/t)2 – 0.8157 (h/t) + 3.2967 

4.3.2 Stacking configuration of CCD systems 

 To have a better understanding on the effect of stacking multiple CCDs on the behavior of 

the CCD units, a discussion is presented here to analyze the change in F- response for different 

configurations of CCD systems. Note that Δ denotes the global vertical displacement of the MCCD 

system. There are two basic configurations for stacking CCDs in the vertical direction: parallel 

and series stacking as shown in Figure 4.4, or a combination of the two arrangements. The parallel 

stacking shown in Figure 4.4(a) is similar to the case of connected springs in parallel, where the 

applied load is resisted based on the individual stiffness of each spring but with equal displacement 

on each one. Denoting the number of stacked CCDs in parallel as np, the response of np CCDs 
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stacked in parallel [see Figure 4.5(a)] consists of one buckling event with buckling force npFb at 

displacement Δb = δb, and minimum force npFn at displacement Δn = δn. Here the force is directly 

scaled by the number of connected CCDs (np), assuming that they are identical, while the 

displacements do not change.  

 

Figure 4.4 Possible configurations of CCD units in the vertical direction: (a) parallel stacking (np 

= 2), and (b) series stacking (ns = 2) 

 The case of series stacking is similar to the case of connected springs in series, where the 

load is resisted equally by all springs but with different deformations for each. In this 

configuration, it is assumed that each CCD is connected to the adjacent CCD by a rigid strut that 

provides the required height to allow buckling of the unit as shown in Figure 4.4(b). The rigid 

rings at the base of each CCD also provide the required height to allow unit buckling. 
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Figure 4.5 F-Δ curves for CCDs in (a) parallel configuration, and (b) series configuration 

 The response of multiple CCDs stacked in series, where ns denotes the number of units, is 

shown in Figure 4.5(b). The response consists of multiple buckling events with buckling forces of 

Fb at displacement Δb = nsδb for the first buckling event. The subsequent minimum force Fn (and 
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its displacement Δn), and the next buckling displacement depend on the number of CCDs in the 

system, which is discussed in Section 4.4. 

4.3.3 Finite element modeling 

 Finite element analysis (FEA) was used to examine the F-Δ response of the MCCD system. 

The analyses were performed using the program ABAQUS [73]. The CCD units in the system 

were modeled as 3D deformable revolved shell objects with four-node shell elements (S4). The 

material was assumed to have linear elastic isotropic properties. Displacement control was used to 

apply a dynamic incremental deformation to the system. Large deformations were accounted for 

by considering the geometric non-linearity in the analysis. The MCCD system was idealized for 

the analysis as shown in Figure 4.6. The system was analyzed with small variations in the 

thicknesses of the CCDs to allow a response with consecutive snap-through buckling events. 

  

Figure 4.6 The idealized MCCD system 
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 Figure 4.7 shows the F-Δ response from FEA for two MCCD systems, both with ns = 12. 

A monostable system [Figure 4.7(a)] had CCD units with h = 3 mm, l = 140 mm, and t = 1.2; while 

a bistable system [Figure 4.7(b)] had t = 0.8 mm. The modulus of elasticity, E, was 1500 MPa, and 

the Poisson’s ratio, ν, was 0.33.  

 The type of response (i.e., monostable or bistable) of a CCD unit can be determined by 

comparing h/t to the critical height-to-thickness ratio, (h/t)cr, calculated as proposed in [68]: 

 (h/t)cr = 2.879 ν -0.052 = 3.05  (4.6) 

Thus, the monostable system has CCD units with h/t = 2.5, which is smaller than (h/r)cr; while the 

bistable system has CCD units with h/t = 3.75, greater than (h/r)cr. 

 A few observations can be made from the F-Δ curve in Figure 4.7. The force drops after 

each snap-through and snap-back buckling increase in magnitude with every buckling event in the 

loading and unloading paths. The smallest force drop occurs after the first buckling events while 

the largest occurs at the last event. This is also true for the unloading path. The trace of the force-

deformation curve between the buckling events have linear and nonlinear segments during the 

unloading and loading paths, respectively. This is because under loading most of the CCDs in the 

system are in region I [see Figure 4.3 (b)], which is highly nonlinear, while during unloading most 

of the CCDs in the system are in region III, which is fairly linear. This also depends on the ratio 

of kIII to kI, where a higher kIII/kI ratio increases the magnitude of the force drops in the last buckling 

events during loading and unloading, and vice versa. 
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Figure 4.7 Force-deformation curves from FEA for MCCD systems: (a) monostable, and (b) 

bistable 

4.4 Analytical Model for MCCD System 

 This section presents a multilinear model that describes the hysteretic response of the 

MCCD system. It is assumed that the system consists of similar CCDs stacked in series as shown 

in Figure 4.6. Due to small manufacturing imperfections, each CCD in a MCCD system has a 



68 

slightly different buckling limit (Fb). This means that each CCD buckles at a different time, which 

results in a progressive buckling response of the system under displacement control loading. The 

CCD with lowest buckling force (Fb) buckles first, followed by the one with an immediately higher 

Fb limit and so forth until buckling of the CCD with the highest Fb in the system is reached. A 

similar process occurs during unloading, where the unit with highest minimum force (Fn) snaps-

back first, followed by the one with a lower Fn and so forth until snap-back of the CCD with the 

lowest Fn in the system. 

4.4.1 Loading stages 

 Consider a MCCD system that consists of ns similar CCD units connected in series, each 

with an F-δ response as shown in Figure 4.3(b). Since the system buckles progressively, at any 

given time a unit is in one of the regions I, II, and III. Thus, if nI, nII, and nIII denotes the number 

of CCD units in regions I, II, and III [33], respectively, then  

 ns = nI + nII + nIII (4.7) 

 To explain the behavior of an MCCD, consider a system composed of four CCDs (ns = 4). 

Upon applying the force F to the system the four CCDs resist the same load and their response is 

within region I (nI = 4). After the first buckling event, three units are still in region I while one 

CCD is in region II (nI = 3 and nII = 1). Since the force drops due to the buckling event, the system 

relaxes and redistributes the local displacements (δ) of each unit when the buckled CCD reaches 

region III (nI = 3, nIII = 1). The same process is repeated until all units are in region III (nIII = 4). 

Figure 4.8 shows the number of CCDs in each region at each loading stage, n, for a system with 

ns = 4. From Figure 4.8, it can be noted that nII equals to 0 or 1, which means that only one CCD 

at a time undergoes buckling.  
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Figure 4.8 Number of CCDs in regions I, II, and III during loading stages for a system of ns = 4 

 The total number of loading stages, nt, is related to the number of CCDs connected in series 

(ns), as given in Equation (4.8) and shown in Figure 4.8. The relations between nI, nII, and nIII with 

n are given in Equations (4.9) to (4.11). Note that a cosine function is used for nII, which yields 0 

for odd n values and 1 for even values.  

 nt = 2 ns + 1 (4.8) 

 nII = │cos(n π / 2)│  (4.9) 

 nI = 0.5 [2 ns – n – nII + 1]  (4.10) 

 nIII = ns – nI - nII  (4.11) 

4.4.2 Model development 

To develop a multilinear F-Δ response for the MCCD, the hysteretic response was divided 

into its loading and unloading paths. Each path consists of two groups of points that lie on the 

actual system F-Δ curve connected by line segments, as shown in Figure 4.9(a). The first group of 
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points in each path (blue circles) includes the points at the force level Fb with displacement spacing 

sb for the loading path, and the points with a force level of Fn and displacement spacing sn in the 

unloading path. The second group of points in each path (red squares) includes the buckling drop 

forces Fbd (from Fb) at counterpart displacements for the loading path; and the minimum drop force 

Fnd (from Fn) at counterpart displacements for the unloading path. Figure 4.9(a) shows a schematic 

F-Δ response for the MCCD system with the quantities used to develop the multilinear model. The 

figure also shows the actual and the multilinear F-Δ curves during loading and unloading. 

4.4.2.1 Loading path 

The unknowns in the first group of points (at Fb level) are the system displacements at each 

of the snap-through bucking events, Δbi. The displacement at the first buckling event (Δb0), for i = 

0, is determined based on the well-known equivalent spring concept [81] for ns springs connected 

in series with similar stiffness kI and resisting the same force Fb. The equivalent stiffens of such a 

system is kI / ns, and hence Δb0 = Fb / (kI / ns) = ns δb. 

FEA results, as those in Figure 4.7, show that the spacing between the snap-through 

buckling events is constant. After the system experiences a local CCD snap-through it reloads 

(when the buckled CCD reaches region III) and it encounters another local snap-through event 

when the load reaches Fb. The spacing sb is constant and a property of the individual CCD unit F-

δ responses. As shown in Figure 4.9(b), this constant spacing (sb) is the distance between δb and 

δm and hence sb = δm – δb. Thus, sb represents the required displacement for the MCCD system to 

reload and reach Fb after snap-through buckling of a CCD unit. Thus, the points defining the local 

CCD buckling events in the system loading path, i.e., the system displacements (Δbi) and the 

corresponding system buckling forces (Fbi), can be determined as follows: 

 Δbi = ns δb + i sb  (4.12) 
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 Fbi = Fb  (4.13) 

where i is the buckling event [see Figure 4.9(a)] and i = 0, 1, 2, …, (ns-1). 

 

Figure 4.9 (a) Schematic F-Δ response of the MCCD system with quantities used to develop the 

multilinear model; (b) Actual and multilinear F-δ responses of a CCD unit 

 When the system approaches Fb during loading, CCDs in regions I and III approach δb and 

δm, respectively. When the system reaches Fb, a given CCD snaps-through and the force level 
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drops until the buckled CCD in region II reaches δn. Deformations for the CCDs are then 

redistributed at the system displacement Δbi, leading to CCDs in regions I and III to a reduced force 

level Fbdi. This means that during the load drop the response of one CCD unit transitions from 

region I to III. Otherwise, if the buckled CCD were to remain at δn the value of Fbdi would equal 

Fn, which is not the case. Consequently, the local displacements δI and δIII shown in Figure 4.9(b) 

for a CCD in regions I and III decrease below δb and δm, respectively. Mathematically this is 

expressed as: 

 δI < δb (4.14) 

 δIII = δn + δIII’ < δm (4.15) 

where δIII’ is the local displacement component in region III. 

 Since the system is connected in series, all CCDs are experiencing the same force Fbdi. 

Thus, by determining either δI or δIII’ the force Fbdi can be calculated using Equations (4.2) or (4.3), 

respectively. Based on the concept of connected springs in series, the contribution of CCDs in 

regions I and III towards the system response Δbi is given by: 

 (ns – i – 1) δI + (i + 1) δIII = Δbi (4.16) 

 A linear relation between δI and δIII’ using the stiffnesses kI and kIII, respectively, can be 

established based on the concept of two springs connected in series and resisting an equal load. 

This relation is given by δI kI = δIII kIII and hence: 

 δIII’ = δI kI / kIII  (4.17) 

 By substituting Equations (4.15) and (4.17) into (4.16), the local displacement for CCDs 

in region I during the force drop, δIbdi, and hence Fbdi can be calculated as follows: 

 δIbdi = 
𝛥𝑏𝑖  –  (𝑖  +  1)  𝛿𝑛

(𝑛𝑠 –  𝑖  –  1) +  (𝑖 + 1) 
𝑘𝐼

𝑘𝐼𝐼𝐼

  (4.18) 

 Fbdi = δIbdi kI (4.19) 
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 Due to the nonlinear response of the CCD units during the loading branch, the approach 

followed to develop Equation (4.17), i.e., assuming that the two springs are linear, underestimates 

Fbdi. This can be corrected by replacing kI in Equation (4.18) by the effective stiffness for the CCD 

units in region I, keI, which mainly depends on ns. The value of keI can be calculated at the last 

point in the loading curve, namely point f, as shown in Figure 4.9(a). This point was chosen to 

determine keI because it reduces the unknowns in Equation (4.16) to one. The displacement at this 

point (Δbf) with i = ns – 1 is slightly greater than that determined by Equation (4.12) since it is 

associated with the last buckling event of the system. The additional distance r [see Figure 4.9(a)] 

and hence Δbf can be determined with: 

 r = (δn – δb) / ns (4.20) 

 Δbf = ns δb + (ns – 1) sb + r (4.21) 

 Thus, at i = ns – 1, Equation (4.16) reduces to ns δIII = Δbf and hence δIII can be determined. 

The local displacement for CCDs in region III at point f (i.e., δIIIf) and the drop force (Fbdf) are 

determined as:  

 δIIIf = Δbf / ns  (4.22) 

 Fbdf = Fn + (δIIIf – δn) kIII  (4.23) 

 Now the equivalent local displacement δIf for CCDs in region I for a force equal to Fbdf can 

be determined by: 

 δIf = Fbdf / kI  (4.24) 

 By using Equation (4.17) for i = ns – 1 and δIbdi = δIf, keI can be calculated as follows: 

 keI = 
(𝛥𝑏𝑓 –  𝑛𝑠 𝛿𝑛) 𝑘𝐼𝐼𝐼

𝑛𝑠 𝛿𝐼𝑓
 (4.25) 
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The modified expression for δIbdi with kI replaced by keI in Equation (4.18) is given in 

Equation (4.26). The force drop for the loading path can now be determined as given earlier in 

Equation (4.19) 

 δIbdi = 
𝛥𝑏𝑖  –  (𝑖  +  1)  𝛿𝑛

(𝑛𝑠 –  𝑖  –  1) +  (𝑖 + 1) 
𝑘𝑒𝐼
𝑘𝐼𝐼𝐼

   (4.26) 

 Figure 4.10(a) shows the F-Δ response of a MCCD system with 8 monostable CCDs as 

obtained from FEA and the analytical model relations just presented above. Visual comparison of 

the responses shows that the analytical Fbdi values are almost equal to each other and generally 

smaller (larger force drops) than those from the FEA, which is a consequence of using linear 

equations to determine keI and Fbdi.  

 As can be seen in Figure 4.9(b) for points a and b, Equation (4.19) will underestimate Fbdi 

because of the nonlinearity of the CCD units’ F-δ response. Therefore, the simulated response can 

be improved by using the nonlinear expression for FI in Equation (4.4) to determine keI and Fbdi 

for the loading path, which is shown in Figure 4.10(b).  

4.4.2.2 Unloading path 

 Similar to the approach followed for the loading path, the unknowns in the first group of 

points (at Fn level) are the system displacements at each snap-back event, Δni. The displacement at 

the first snap-back event (at i = ns – 1) is determined in analogous form to the way in which Δb0 

was determined for the loading path but with point g as the origin [see Figure 4.9(a)]. The 

displacement at point g can be determined using Equation (4.12) for Δbi with i = ns. Before the first 

snap-back event all CCDs are in region III with kIII. Consequently, the equivalent system stiffness 

is kIII /ns and the displacement from point g is ns (δm – δn), as shown in Figure 4.9(a).  
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Figure 4.10 F-Δ curves from FEA and analytical model using (a) linear equations, and (b) 

nonlinear equations to calculate keI, keIII, Fbdi and Fndi  

The spacing sn in the unloading path was also found to be constant and a property of the F-

δ response of each CCD unit. The spacing sn is the distance required to reach the snap-back critical 

point, which is the distance between δn and δr, or sn = δn – δr as shown in Figure 4.9(b). It should 

be noted that determining δr linearly with stiffness kI [i.e., using Equation (4.2)] results in some 
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error that underestimates sn. Thus, δr can be determined from Equation (4.4) by equating FI to Fn 

and solving for δI. Points c and d in Figure 4.9(b) show the effect of using linear and nonlinear 

relations for region I to determine δr.  

The system displacements during unloading (Δni) and the corresponding snap-back forces, 

Fni, can be determined as follows: 

 Δni = ns δr + (i + 1) sn  (4.27) 

 Fni = Fn  (4.28) 

 A similar procedure to that followed to determine Fbdi for the loading path is followed to 

determine the force drops for the unloading path, Fndi. The contribution of CCDs in regions I and 

III towards the system response Δni at each snap-back event is given by: 

 (ns – i) δI + i δIII = Δni  (4.29) 

 Thus, the local displacement component (δIII’ndi) for CDDs in region III at the force drop 

can be determined by Equation (4.30), where keIII is the effective stiffness for units in region III. 

Hence, the force Fndi can be calculated using Equation (4.3) or (4.5). 

 δIII’bdi = 
𝛥𝑛𝑖  – 𝑖 𝛿𝑛

(𝑛𝑠– 𝑖) 
𝑘𝑒𝐼𝐼𝐼

𝑘𝐼
 + 𝑖

   (4.30) 

The stiffness keIII can be calculated at the last point in the unloading curve (j) see Figure 4.9(a). 

The displacement at point j (Δnj) is ns δr + sn. At point j, with i = 0, Equation (4.29) reduces to ns 

δI = Δnj. Thus. the local displacement at point j (δIj) for CCDs in region I is given by:  

 δIj = Δnj / ns  (4.31) 

 By using δIj in Equation (4.2), or in Equation (4.4) for more accurate results, Fndj can be 

calculated. This is followed by calculating the local displacement component at point j (δIII’j) for 

CCDs in region III using Equation (4.3) or (4.5) for FIII = Fndj. By using Equation (4.30) with i = 

0 and δIII’j, keIII can be found as follows: 
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 keIII = 
𝛥𝑛𝑗  𝑘𝐼

𝑛𝑠 𝛿𝐼𝐼𝐼′𝑗
    (4.32) 

 Figure 4.10 shows the simulated unloading path using linear [Figure 4.10(a)] and nonlinear 

[Figure 4.10(b)] equations to determine keIII and Fndi, plotted along FEA results. It can be seen that 

using linear relations underestimates sn and Fndi values. 

4.4.2.3 Intermediate loading and unloading paths 

 The intermediate unloading and reloading paths depend on number of the snapped units (i) 

in the system. When the system is unloaded after snapping event i and before event i+1, the 

intermediate unloading path follows back the loading path until reaches the drop force at event i 

and then crosses to the drop force of the unloading path at event i and completes with the unloading 

path. The reloading paths follow the same analogy but in the opposite direction. The dotted arrows 

in Figure 4.9(a) represent the intermediate unloading and reloading paths. 

4.5 Experimental Validation 

4.5.1 Test setup 

 The MCCD specimen shown in Figure 4.11 was fabricated using a 3D polymer-based 

printer (Stratasys Fortus 250 mc) with acrylonitrile butadiene styrene (ABS) filament. The ABS 

material had a Poisson’s ratio of 0.35; and the compressive modulus of elasticity of the 3D printed 

CCDs, determined according to ASTM D695, had an average value of 853 MPa. 

 The printed MCCD system consisted of 10 CCDs with average ‘as-printed’ dimensions of 

t = 0.75 ± 0.03 mm, h = 1.76 ± 0.03 mm, l = 50 ± 1 mm, and d = 4.5 mm. The units in the system 

were designed to ensure that the maximum resisted vertical force (Fb) by a CCD unit at the critical 

section, which is the loading region at the apex, to be much lower than the force that would cause 

a punching shear failure. This can be typically achieved by increasing t or d (with d/l ≤ 0.1). The 
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specimens were 3D printed monolithically with oversized confining rings. The thickness of the 

rings was 4.5 mm. Generally, for a CCD specimen, a ring thickness that ranges from 4 to 8 times 

t was found to be sufficient to eliminate the influence of rotational stiffness and lateral expansion 

on the behavior of the element. Visual examination of the edges did not show signs of rotation 

along the edge during load application, or after load removal (damage). 

 The test was performed using a universal testing machine with a custom fixture (indenter) 

to apply a vertical load on the rigid ring of the top CCD as shown in Figure 4.11. Testing was 

conducted under displacement control, applying an incremental displacement at a rate of 0.1 mm/s.  

  

Figure 4.11 Test set up for an MCCD system with ten CCDs (ns = 10) 
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 To stabilize the MCCD system against side sway that may occur during testing, the CCD 

units were designed and 3D printed with two collars on each side as shown in Figure 4.11. This 

allowed the CCDs to slide in the vertical direction between two rods that were inserted into the 

collars. The two rods were fixed to a loading base (see Figure 4.11), and the distance between them 

could be adjusted via slots in the loading base. The rods were fixed to the base using nuts and 

washers on each side. During testing the guiding rods were coated with a lubricant to minimize 

friction between them and the collars in the CCD units. This issue can be avoided in MCCD 

systems that are composed of more than one chain (i.e., one column) of CCD units. 

4.5.2 Model validation 

 Figure 4.12 shows the experimental F-Δ response of the MCCD specimen compared to the 

simulated response using the model presented in Section 4.4. The experimental response shows 

that the buckling force at each buckling event gradually increased. This because the dimensions of 

the printed CCD units slightly vary and hence F-δ response of each CCD is different. This does 

not only vary the buckling force levels but also the corresponding displacements at the buckling 

events.  

 Since the F-δ response for each CCD varies, each unit has a different kI. Thus, the initial 

effective stiffness of the manufactured MCCD system is higher than that of the simulated response 

based on the average dimensions. This effect triggers the first buckling event on the weakest CCD 

in the system earlier than the calculated average buckling displacement Δb0 = ns δb. This is because 

the effective stiffness of the MCCD system is greater than the calculated average stiffness based 

on average dimensions (Fb / ns δb). Therefore, during loading, the CCD in the system with lowest 

Fb reaches its buckling point (δb, Fb), while other CCDs in the system are below their buckling 

limit. Although the buckling limit variation among CCD units complicates calculating an accurate 
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response for the system, it is an essential feature to obtain a progressive buckling response and 

hence elastic energy dissipation. 

 In spite of the complications noted above, it can be noted in Figure 4.12 that the simulated 

F-Δ curve agrees fairly well with the experimental response. This is largely due to the fact that the 

displacements of the CCD units in the system are minimally affected by dimension variations.  

 

Figure 4.12 F-Δ curves for the MCCD system from experimental tests and (a) the analytical 

model and (b) modified model 
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4.5.3 Model modification for strength variation 

 The force and displacement points of the model can be modified to account for the variation 

in strength among CCD units by knowing the experimental maximum and the minimum values of 

Fb and Fn in the system. These values can be calculated from the dimensions of the CCD with 

highest h and t and lowest l for maximum values, and the CCD with lowest h and t and highest l 

for minimum values. The equations below can be used to modify force values at Fb and Fn levels, 

respectively, by linearly scaling each value at each buckling event. 

 RFbi =  (
1−𝑅𝐹𝑏

𝑛𝑠 − 1
) (i) + 𝑅𝐹𝑏  (4.33) 

 RFb =  
𝐹𝑏,𝑚𝑖𝑛

𝐹𝑏
  (4.34) 

 RFni =  (
1−𝑅𝐹𝑛

𝑛𝑠 − 1
) (i) + 1  (4.35) 

 RFn =  
𝐹𝑛

𝐹𝑛,𝑚𝑎𝑥
  (4.36) 

Where RFb and RFbi are the force and the force response modification factors in the loading curve 

(Fb level), RFn and RFni are the force and the force response modification factors in the unloading 

curve (Fn level), Fb,min is the minimum Fb force in the system based on the ‘as-printed’ dimensions, 

and Fn,max is the maximum Fn force in the system based on the ‘as-printed’ dimensions. 

 The displacements can also be modified by the equations below at each buckling event 

along the loading and unloading paths, respectively. These equations linearly shift each drop force 

line to account for the early buckling of CCD units with lower strengths. Figure 4.12(b) show the 

modified model compared to experimental results. 

 RΔbi =  (
1−𝑅𝛥𝑏

𝑛𝑠 − 1
) (i) + 𝑅𝛥𝑏  (4.37) 

 RΔb =  
𝐹𝑏,𝑚𝑖𝑛  (𝐴−1)

𝐹𝑏,𝑚𝑎𝑥 𝐴 − 𝐹𝑏,𝑚𝑖𝑛
  (4.38) 
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 RΔni =  (
1−𝑅𝛥𝑛

𝑛𝑠 − 1
) (i) + 1  (4.39) 

 RΔn =  
𝐹𝑏 − 𝐹𝑛

𝐹𝑏 − 𝐹𝑛,𝑚𝑖𝑛
  (4.40) 

Where RΔb and RΔbi are the displacement and the displacement response modification factors in 

the loading curve (Fb level), RΔn and RΔni are the displacement and the displacement response 

modification factors in the unloading curve (Fn level), Fb,max is the maximum Fb force in the system 

based on the ‘as-printed’ dimensions, and Fn,min is the minimum Fn force in the system based on 

the ‘as-printed’ dimensions. 

4.5.4 Loading rate 

 To study the effect of loading rate (LR) on the response of the MCCD system, the test was 

repeated for loading rates of 1, 3, 9, and 15 mm/s. The resulting F-Δ curves are shown in Figure 

4.13. The figure shows that loading rate had a minimal effect on the response of the system over 

the examined range of 0.1 to 15 mm/s. However, it can be noted that with increased loading rate, 

the force drops in the loading and unloading paths decrease slightly. The locations of snap-through 

and snap-back events also slightly change due to the loading rate. Studies [17,18] on the dynamic 

behavior of discrete chains with multistable elements indicate that loading rate (in addition to other 

factors) has dynamic effects on the response of such systems. In fact, even at quasi-static loading 

conditions, discrete systems exhibit high frequency vibrations upon snap-through events [18]. 

These damped vibrations are the main contributor to the dissipated energy by discrete systems 

even at very low loading rates. 
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Figure 4.13 Experimental F-Δ curves for an MCCD system at varying loading rates: 1, 3, 9, and 

15 mm/s 

4.6 Energy Dissipation Characteristics 

 The dissipated energy by the MCCD system can be quantified by a general measure of 

damping called the loss factor, η [64]. This factor is defined as the ratio of the dissipated energy, 

Ud, to the total applied work to deform the system, W, in one loading/unloading cycle as given in 

Equation (4.41). W is the area under the F-Δ curve from zero displacement to the maximum 

displacement at point f in Figure 4.9(a), while Ud is the enclosed area by the F-Δ curve. 

 η = Ud / (2 π W)  (4.41) 

 The main parameters of the MCCD system that affect η are h/t and ns. The effect of h/t can 

be studied by knowing the maximum value of η. The theoretical maximum value of η for an MCCD 

system with ns CCDs of a specific h/t occurs when ns → ∞. The F-Δ response of such as system is 

similar to the F-δ response of a single CCD under force control conditions. Figure 4.14(a) shows 

the F-δ response of a monostable CCD with h/t = 2.75 under force and displacement control 
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conditions, where the area enclosed by the force control curve represents the specific maximum 

dissipated energy. This condition was used to construct a relation between η and h/t, which was 

found to be linear, as shown in Figure 4.14(b). 

  

Figure 4.14 (a) Normalized F-δ curve for a CCD with h/t = 2.75 under force and displacement 

control conditions, and (b) loss factor with h/t for different ns values 
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 The other main parameter of the MCCD system that affects η is ns. The analytical 

multilinear model presented in Section 4.4 was used to calculate η by varying ns for a range of h/t 

values. Figure 4.15(a) shows the F-Δ response of two MCCD systems with t = 2 mm, h = 5 mm, l 

= 200 mm, and ns = 8 and 14. The curves show that increasing ns highly decreases the magnitude 

of the force drops from Fb and Fn with each snap-through and snap-back event, thus increasing the 

dissipated energy.  

 To examine the relation between η and ns the developed model was used to determine η for 

ns = 1 to 1000 and for h/t values ranging from 1.5 to 3 as shown in Figure 4.15(b). The study in 

[68] showed that a CCD requires h/t of about 1.5 to exhibit a snap-through instability and h/t of 

about 3 to change the stability state from monostable to bistable, where self-recoverability 

(preferred) does not occur. From Figure 4.15(b) it can be noted that for ns ≤ 2, η = 0, which means 

that the loading and unloading paths coincide. For an MCCD system with 2 < ns ≤ 12, η increases 

sharply with ns over this range, indicating hysteretic responses. For ns > 12, a plateau is reached 

and further increase in ns results in very small increases (< 10 %) in η. The same finding can be 

deduced from the curves in Figure 4.14(b). The ns-η relation in Figure 4.15(b) shows that 90 % of 

the maximum value of η is reached with ns = 12. 
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Figure 4.15 (a) F-Δ curves for MCCDs with h/t = 2.5 and ns = 8 and 14, and (b) loss factor with 

ns for different h/t ratios 

4.7 Conclusions 

 A new system able to dissipate energy through elastic instabilities was presented. The 

MCCD system proposed in this paper is comprised of multiple cosine-curved domes that exhibit 

elastic snap-through buckling behavior, which permit the system to display hysteretic force-



87 

deformation response and thus capable of elastically dissipating energy. Numerical studies and 

experimental tests were conducted to determine the most effective parameters of system response 

and energy dissipation characteristics. An analytical multilinear model that describes the hysteretic 

force-displacement response was proposed. The model takes into account the nonlinear effects of 

the building units of the MCCD system and was shown to yield accurate simulations. The 

following findings about the MCCD system were drawn: 

1. The proposed MCCD system can dissipate strain energy by the creation of a hysteretic 

response through the successive elastic snap-through and snap-back responses of cosine-

curved domes connected in series. The hysteretic response is elastic, thus featuring fully 

recoverable deformations, and has low rate dependence.  

2. The amount of dissipated energy mainly depends on the number (ns) and the height-to-

thickness ratio (h/t) of the building units (CCDs). The relation between η and h/t is linear 

while the relation between η and ns is nonlinear. Nonetheless, the higher ns and h/t are the 

higher the amount of the dissipated energy. 

3.  The proposed MCCD system showed a maximum loss factor (η) value of about 0.14 for a 

monostable (self-recoverable) system and even higher for a bistable system. 

4. The loss factor reaches about 90 % of its theoretical maximum value for MCCD systems 

with about 12 CCDs (ns = 12). Further increase in ns yields a very small increase in the 

value of η. 

5. Although increasing ns increases the amount of dissipated energy, it also decreases the 

initial stiffness of the MCCD system. This can be compensated by increasing the number 

of CCDs linked in parallel and/or using more chains of CCDs. 
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CHAPTER FIVE 

5 Equivalent Viscous Damping  

5.1 Overview 

 This chapter presents a study to investigate the equivalent viscous damping (EVD) for the 

hysteretic response of the multiple cosine-curved dome (MCCD) system. The study aims to 

facilitate the direct displacement-based design of structures incorporating such systems as the main 

damping mechanism to dissipate seismic energy. Time-history analyses of linear and nonlinear 

single degree of freedom systems were performed to compare spectral displacements and EVD 

ratios of the hysteretic response of MCCD systems to their substitute linear systems in terms of 

maximum displacements. A set of 62 ground motion records were considered for the analysis. A 

statistical study was conducted on the resulting displacements and the EVD ratios to develop 

expressions for EVD ratios of the hysteretic response. The study presented in this chapter was 

submitted to the journal Engineering Structures [82]. 

5.2 Background 

 The work presented here introduces the use of hysteretic response of the MCCD system 

[79] to seismic loading and design by investigating the EVD and considering the unique 

characteristics of the response of the system compared to commonly used inelastic hysteresis 

models. The uniqueness of multistable element systems originates from the fact that their response 

cannot be directly described by the displacement ductility or the apparent displacement ductility 

that is commonly used measure for energy dissipation. Instead, the response is characterized by 

the number of units in a system and their response, which control the amount of dissipated energy. 
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Understanding this fundamental difference is the key to properly designing such systems as the 

main damping mechanism in structures. The work herein is based on this conceptual difference. 

 Accurate estimation for the EVD ratios is an essential step to the direct displacement-based 

design, as this quantity relates the hysteretic response of a structure to its corresponding spectral 

displacement for a given ground motion record. Methods used to investigate the EVD involve 

conducting dynamic analyses on linear and nonlinear systems. In this study, time-history analyses 

(THA) were performed on the hysteretic response of MCCD systems and their substitute linear 

systems in terms of maximum displacements to study the ratio of nonlinear to linear displacements. 

This was followed by an iterative THA procedure to determine EVD ratios for the equivalent 

substitute linear systems. A statistical study was then conducted on the results to develop 

expressions for EVD ratios of the hysteretic response.  

5.2.1 Direct displacement-based design 

 An ideal method to design structures with energy dissipation devices is the direct 

displacement-based design (DDBD) method [5,83] since it based on the deformation of the 

structure rather than its strength. Therefore, this method relies on displacement demands and 

modified linear elastic displacement spectra for the design. To understand the work presented here, 

it is important to first to recall the main steps of the DDBD method, which is given below with 

reference to Figure 5.1: 

1. Determine the design (ultimate) displacement, Δu. Usually, this displacement is based on 

maximum allowable drift limits or on sectional/element deformation limits [Figure 5.1(a)]. 

2. Determine the yield (ideal) displacement, Δy. This displacement is usually based on the 

target displacement ductility level, μΔ, serviceability drift limits, or on sectional/element 

deformation limits [Figure 5.1(a)]. 
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3. Based on the displacement ductility, determine the EVD ratio, ξ, for the proper model of 

the hysteretic response [Figure 5.1(b)]. Several expressions to estimate ξ for various 

hysteresis models are available in the literature [84–88]. These expressions are usually in 

terms of μΔ, the structural period, T, and other parameters of the hysteresis model.  

4. Using ξ and the design displacement, determine the effective structural period, Teff, from 

the modified displacement response spectrum [Figure 5.1(c)]. 

5. Calculate the effective stiffness, keff, and hence the design force, Fu, at the ultimate 

displacement. 

 The key step from the DDBD procedure that this study focuses on is the third step, since it 

links the response of the hysteretic model and the ductility level of the element under consideration 

to the EVD. The value of ξ is then used to modify the design linear elastic displacement response 

spectrum. This eliminates the need to conduct nonlinear THA to obtain nonlinear displacement 

response spectra for the design process. Therefore, the DDBD method requires an accurate 

estimation of the ξ for a substitute linear single degree of freedom (SDF) system that represent, in 

terms of maximum spectral displacement, the response of the actual nonlinear system for design 

purpose as shown in Figure 5.1. Consequently, eliminating the need to perform THA for the 

system.  
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Figure 5.1 Concept of equivalent viscous damping in DDBD method: (a) hysteretic response, (b) 

relation between ξ and μΔ, and (c) displacement response spectra for different values of ξ 

5.2.2 Approaches to estimate equivalent viscous damping  

 The equivalent viscous damping ratio (ξ) can be divided into two parts: (a) the initial or 

elastic viscous damping, ξe, and (b) the hysteresis damping, ξh, as given in Equation (5.1). The 

elastic viscous damping is the damping inherited by the materials of the structure and proportional 

to the loading rate (velocity). This type of damping usually ranges between 2 to 7 % for common 

structural materials and elements [89]. The hysteresis damping is the resulting damping due to 

energy dissipation by the hysteretic response of the system. This damping is significantly higher 

than the elastic damping. 

 ξ = ξe + ξh  (5.1) 

 Unfortunately, there is no direct procedure to estimate ξ for a given hysteresis model since 

the available direct approaches to determine this quantity, such as Jacobsen’s approach [90], are 

affected by many factors such as the forcing function on the SDF system and structural period 

shift. Thus, such a method can not be directly applied for nonlinear systems excited by ground 

motion records with nonuniform frequency content. Proper estimations for ξ are therefore usually 
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achieved by analyzing nonlinear SDFs and their linear equivalents under a wide range of ground 

motion records. Studies in [84–88] showed that the resulting equivalent damping for SDFs under 

ground motion records is lower than that determined using on Jacobsen’s approach. 

 There are two main approaches followed to approximately estimate the maximum 

displacement of a nonlinear hysteretic system from its substitute linear system [91]. In the first 

approach, the maximum displacement is taken as the product of the displacement of an equivalent 

linear elastic system with same initial damping ratio (ξe) and initial lateral stiffness as the nonlinear 

system multiplied by a displacement modification factor. In the second approach, the maximum 

displacement is determined from a linear elastic system with a period shift (lower stiffness and 

higher structural period) and higher damping ratio than that the nonlinear system. In this study, the 

second approach was followed to determine ξ to estimate the maximum displacements. Evaluation 

of different methods and procedure to determine the EVD for various hysteresis models can be 

found in [91,92]. 

 The concept of EVD for a structure was first presented by Jacobsen [90] to determine 

approximate solutions for nonlinear SDF systems with a damping force that is proportional to the 

nth power of the velocity. It is assumed that the two systems are under sinusoidal excitation, having 

the same stiffness and dissipating the same amount of energy each cycle. Jennings [93,94] 

modified Jacobsen’s concept by changing the initial stiffness of the linear SDF system to a secant 

stiffness. The modified concept was further investigated and extended by several researchers 

[92,95]. 

 The modified Jacobsen’s equivalent viscous damping ratio, ξJ, for a nonlinear system with 

a hysteresis response compared to a substitute linear system with secant stiffness can be estimated 

by equating the hysteresis area under a full cycle of loading, 2Ah, to the triangular area under a 
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straight line from origin to the maximum displacement as shown in Figure 5.2. Thus, ξJ is 

calculated as follows: 

 ξJ = 
𝐴ℎ

𝜋 𝐹𝑢𝛥𝑢
  (5.2) 

It should be mentioned that this equation ignores the conditions required for the two systems in 

the original Jacobsen’s approach, which are as follows: (1) they are excited by sinusoidal loading, 

(2) they are at resonance conditions, and (3) they have the same stiffness.  

 

Figure 5.2 Full cycle hysteretic response of the MCCD system with parameters for the modified 

Jacobsen’ approach 

5.3 Methods 

5.3.1 Idealized hysteretic response of the MCCD system 

 To facilitate the nonlinear time-history analysis of structures incorporating the MCCD 

system, it is desired to idealize the hysteretic response. The reason is that the sawtooth-shape of 
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the force-displacement, F-Δ, curve (Figure 5.2) imposes computational difficulties, and hence 

commonly used seismic structural analysis programs don't offer modeling tools to represent such 

a response. Thus, the response of the MCCD system was idealized to a flag-shaped (parallelogram) 

response by maintaining the energy balance between the actual and the idealized responses. This 

approach is a similar approach to those widely used approaches in seismic design of structural 

elements to determine the ideal yield displacement (curvature, or rotation) [4,5]. 

 The sawtooth-shape response of the MCCD system shown in Figure 5.3(a) can be 

calculated using the analytical model presented in [79]. The study in [79] investigated the response 

characteristics of the MCCD system and its energy dissipation capability. As shown in Figure 

5.3(a), the response consists of multiple snap-through (and snap-back) events that equal to the 

number of units in the system (ns). The snap-through and snap-back events are at the same level 

as the buckling force, Fb, and the minimum force, Fn, respectively. The drop forces from each 

snap-through, Fbd, and snap-back, Fnd, events vary depending on h/t and ns. The effective initial 

stiffness of the system, kb, is taken as the slope of a straight line from the origin to the displacement 

at the first buckling event, Δb, of the system as given below: 

 kb = Fb / Δb  (5.3) 

where Δb = ns δb, and δb is the critical (instability) displacement of an individual CCD unit as 

shown in Figure 5.3(b). The response characteristics of a single CCD unit and its force and 

displacement values can be calculated using the expressions developed in [68]. The maximum 

displacement of the system, Δm, is given as follows: 

 Δm = ns δb + (ns – 1) sb  (5.4) 

where sb = δb - δm, and δm is the displacement at a force level equal to Fb in Region III, see Figure 

5.3(b). 
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Figure 5.3 (a) F-Δ response of the MCCD system, and (b) F-δ responses of a CCD unit with key 

response quantities 

 A two-step procedure was developed to idealize the hysteretic response of the MCCD 

system. In the first step, an ideal initial stiffness was determined in terms of h/t. This stiffness is 
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needed to correct the initial stiffness (kb) in order to construct a flag-shaped response that maintains 

the equal energy condition between the actual and idealized responses for a theoretical system with 

ns = ∞ (Figure 5.4). In the second step, an ideal buckling force, Fb’, and a minimum force, Fn’, 

were determined based on the characteristics of the hysteretic response of the MCCD system. It 

should be noted that in practical systems with ns << ∞, Fb’ and Fn’ are smaller and greater than Fb 

and Fn, respectively. The values of Fb’ and Fn’ approach Fb and Fn, respectively, when ns 

approaches ∞.  

5.3.1.1 Ideal stiffness 

 Figure 5.4 shows the F-Δ response of an MCCD system with ns = ∞. The F-Δ response of 

such as system is similar to the response of a single CCD under force control conditions. Note that 

in this case Fb’ = Fb and Fn = Fn’. Figure 5.4 also shows an idealized response based on the initial 

stiffness of the system (kb). This idealization clearly shows that the energy balance between the 

enclosed areas of the two curves is not maintained. Therefore, the initial stiffness of an idealized 

response, kz, must be determined in a way that satisfies the energy balance condition. This can be 

done by solving the following equation for kz: 

 Ah = (Fb – Fn) (Δm – Fb / kz)   (5.5) 

Equation (5.5) represents the area of the flag-shaped response and the ratio Fb / kz represents the 

ideal displacement at first buckling event, Δb’, see Figure 5.4.  
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Figure 5.4 The actual and the idealized F-Δ curves for an MCCD system with ns = ∞  

 Figure 5.4 shows the ideal initial stiffness and the resulting hysteretic response of the 

system. The same process was conducted for h/t ranging from 1.5 to 3 in order to construct a 

relation between h/t and kz/kb. This relation was found to be linear as shown in Figure 5.5(a). Thus, 

kz/kb can be calculated using the following expression: 

 kz/kb = 0.674 h/t  (5.6) 

 The equivalent viscous damping ratios based on the modified Jacobsen’s approach (ξJ) 

were calculated for h/t ranging from 1.5 to 3 using Equation (5.2). The results show an 

approximately linear relationship between ξJ and h/t. Another important quantity that describes the 

idealized hysteretic response are the displacement ductility (μΔ) and the force ratio of the difference 

between Fb’ and Fn’, βF as given in Equations (5.7) and (5.8), respectively. The equations were 

used to construct a relation for μΔ and βF with respect to h/t as shown in Figure 5.5(b). Both 

quantities exhibit a generally linear relation with h/t.  
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 μΔ = Δm / Δb’  (5.7) 

 βF = (Fb’ - Fn’) / Fb’  (5.8) 

 

Figure 5.5 (a) EVD ratios based on modified Jacobsen’s approach (ξJ) and the ideal stiffness 

ratio (kz/kb) with h/t, and (b) displacement ductility (μΔ) and force difference ratio (βF) with h/t 
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5.3.1.2 Ideal maximum and minimum forces 

 For an MCCD system with a finite number of units (ns << ∞), the ideal buckling (Fb’) and 

minimum (Fn’) forces are lower and higher than Fb and Fn, respectively. Thus, the aim here is to 

determine the values of Fb' and Fn' in conjunction with the ideal initial stiffness (kz), determined 

in the first step, while maintaining the energy balance between the two responses as shown in 

Figure 5.6. Since the known parameters of the idealized response in Figure 5.6 are only kz and Δm, 

it is required to establish a relation between Fb’ and Fn’ in terms of the average buckling, Fbavg, 

and minimum, Fnavg, forces to solve the enclosed area equation Ah = (Fb’ – Fn’) (Δm – Fb’ / kz) for 

Fb’. In this relation it was assumed that the difference between Fb’ and Fbavg equals to the difference 

between Fn’ and Fnavg, i.e., Fb’ – Fbavg = Fn’ – Fnavg. This assumption ensures that idealized forces 

are relative to the average forces, and the reduction from Fb and the increase from Fn are equivalent 

to each other. The average forces Fbavg and Fnavg can be calculated based on the average difference 

between Fb and Fbd, and between Fn and Fnd, see Figure 5.3(a). The following steps summarize 

this idealization procedure: 

1. Calculate the sawtooth-shaped response of the MCCD system and the energy area Ah 

2. Determine the average forces Fbavg and Fnavg 

3. Solve the second-degree Equation (5.9) of the enclosed energy area Ah and determine Fb’:  

 C1 Fb’ 2 + C2 Fb’ – C3 = 0 (5.9)  

where C1, C2, and C3 are as follows: 

 C1 = – 2 / kz,  

 C2 = 2 Δm + (Fbavg + Fnavg) / kz, and  

 C3 = Δm (Fbavg + Fnavg) + Ah 

4. Calculate Fn’ = Fnavg – (Fb’ – Fbavg) 
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5. Calculate Δb’, Δd’, and Δn’ based on the value of Fb’, Fn’, and kz as shown in Figure 5.6. 

  

Figure 5.6 The actual and the idealized F-Δ curves for an MCCD system with ns << ∞ 

 The procedure above was repeated for h/t ranging from 1.5 to 3 and for ns ranging from 1 

to 1000 to examine the relation of μΔ with ns and h/t as shown in Figure 5.7. It can be seen that in 

general the increase in μΔ with ns is minimal especially for higher values of ns. The reason is that 

both Δm and Δb’ are in terms of ns. Nonetheless, μΔ increases at higher rate between ns of 3 and 6, 

and this effect is more pronounced for systems with higher h/t. However, as will be shown latter, 

the dissipated energy (Ah) within that range is low.  
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Figure 5.7 The relation between displacement ductility (μΔ) with ns for a range of h/t values 

 To study the relation between ξJ and ns Equation (5.2) was used to determine ξJ for ns = 1 

to 1000 and for h/t values ranging from 1.5 to 3. This relation is shown in Figure 5.8(a). It should 

be noted that an MCCD system requires a h/t of about 1.5 to exhibit a snap-through instability and 

h/t of about 3 or less to maintain self-recoverability [79]. Figure 5.8(a) shows that for ns ≤ 2, ξJ = 

0 since the loading and unloading curves coincide, while for 2 < ns ≤ 18, ξJ increases sharply. For 

about ns > 18, a further increase in ns results in a slight increase (< 10 %) in ξJ. In a similar fashion, 

the force ratio βF was plotted against h/t and ns and it showed comparable trends to ξJ as shown in 

Figure 5.8(b) 
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Figure 5.8 (a) The relation between ξJ with ns for different h/t ratios, and (b) βF with h/t for 

different ns values 

5.3.2 Considered cases for the study 

 Two cases of the hysteresis model were considered for the study: (1) the response of the 

MCCD system, and (2) the response of the MCCD system coupled with a linear elastic response. 
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In the first case, it is assumed that the MCCD is the only force resisting system and damping 

mechanism with a response as shown in Figure 5.9(a). Note that the tangent stiffness, kt, is zero in 

this case. In the second case, the response in the first case (i.e., the response of the MCCD system) 

was coupled in parallel with a non-yielding linear (NYL) system. The resulting response in the 

second case is as shown in Figure 5.9(b). The coupled NYL system has a stiffness, kc, that is less 

than or equal to the secant stiffness of the MCCD system, ke, as shown Figure 5.9(b). The ultimate 

force of the NYL system, Fc, can be linked to Fb’ by the force ratio factor, γF, as given below. γF 

= 1 and 2 for Fc = 0 and Fc = Fb’, respectively. It is should be noted that keff in the first case [Figure 

5.9(a)] does not equal to keff in the second case [Figure 5.9(b)]. The relations governing the 

parameters of hysteretic responses are as follows: 

 γF = (Fb’ + Fc) / Fb’  (5.10) 

 Fu = keff Δu (5.11) 

 Fy = Fu 
𝜇𝛥 + 𝛾𝐹  − 1

𝛾𝐹  𝜇𝛥
 (5.12) 

 ki = Fy μΔ / Δu (5.13) 

 αF = 
𝛾𝐹  − 1

𝜇𝛥+ 𝛾𝐹  −1
 (5.14) 

 kt = αF ki (5.15) 

 ξJ = 
𝛽𝐹 (𝜇𝛥 – 1)

𝛾𝐹  𝜋 𝜇𝛥
 (5.16)  
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Figure 5.9 Hysteresis models considered: (a) Case 1-response of an MCCD system, and (b) Case 

2-response of an MCCD system coupled with a non-yielding linear system 

5.3.3 Ground motion records 

 A set of 62 ground motion records was used to conduct the study. The records are from 7 

different earthquakes with properties as presented in Table 5.1. The earthquakes had  magnitudes 

(Ms) ranging from 5.8 to 7.1 [96]. The records were recorded on sites corresponding to site class 

B as per [97]. Figure 5.10 shows the displacement response spectra for the 62 ground motion 

records with 5 % damping along with the average response spectrum. The curves in Figure 5.10 

were normalized based on maximum spectral displacement after the spectral analysis for 

illustration purposes. 
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Table 5.1 Recorded earthquake used in this study 

Date Earthquake name Magnitude (Ms) 

02/09/1971 San Fernando 6.5 

04/24/1984 Morgan Hill 6.1 

07/08/1986 Palm Springs 6.0 

10/01/1987 Whittier 6.1 

10/17/1989 Loma Prieta 7.1 

06/28/1991 Sierra Madre 5.8 

01/17/1994 Northridge 6.8 

 

  

Figure 5.10 Scaled displacement response spectra of the motion records at 5 % damping and 

their average response 

5.3.4 Analysis procedure  

 The procedure followed to determine the ξ starts with the modified Jacobsen’s viscous 

damping ratio (ξJ) defined by Equation (5.2) in addition to the elastic viscous damping (ξe) of 2% 

as an initial estimate for the linear THA of the substitute systems. These ratios are then changed 

in an iterative process until the resulting ξ for the equivalent substitute linear SDF systems have 

the same maximum spectral displacements as the original nonlinear systems. For the nonlinear 
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THA, a value of 2% Rayleigh damping [98–100] proportional to the current tangent stiffness was 

considered.   

 The study was conducted for the two cases noted in Section 5.3.2 with 0.05 s ≤ Teff ≤ 4 s at 

0.05 s increments and h/t ranging from 1.5 to 3 at 0.25 increments. The corresponding values of 

μΔ and βF as a function of h/t are shown in Figure 5.5(b) and can be calculated using Equations 

(5.7) and (5.8), respectively. 

 The THA of the linear and nonlinear systems were performed using the program OpenSees 

[101]. The iterative process to determine ξ for the linear SDF systems were performed using the 

program Matlab. The process to determine the EVD ratios is as follows: 

1. Set an h/t and calculate the corresponding values of μΔ and βF. 

2. Select a ground motion record. 

3. Set an effective structural period Teff. 

4. Calculate ξJ from Equation (5.2) and set the initial EVD ratio, ξi, as ξi = ξe + ξJ 

5. Calculate keff = 4 π2 m / Teff
2 where m is the mass and it was kept constant at unity. 

6. Perform linear THA on the SDF system with properties as given above and determine the 

maximum absolute linear displacement, ΔL. 

7. Based on the value of ΔL from step 6, and μΔ and βF form step 1, calculate the parameters 

of the hysteretic response of the nonlinear system: Fu, Fy, ki, and kt using the relations 

presented in Section 5.3.2. 

8. Perform nonlinear THA on the SDF system with properties as given above and determine 

the maximum absolute nonlinear displacement, ΔNL. 
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9. Compare the maximum displacements ΔL and ΔNL from steps 6 and 8, respectively, and 

report the ratio ΔNL/ΔL. If the error between ΔL and ΔNL is less than 1.5%, then the EVD 

ratio ξ equals ξi and proceed to step 11, otherwise proceed to step 10. 

10. For the linear system with properties as given in steps 2 to 5, iteratively change ξ until the 

resulting new ΔL equals to ΔNL from step 8 within an absolute error of 1.5%, and report the 

results. 

11. Repeat the procedure from step 3 to 10 by selecting different values of Teff. This step will 

result in linear and nonlinear displacement response spectra. 

12. Repeat the procedure from step 2 to 11 by selecting another ground motion record. 

13. Repeat the procedure from step 1 to 12 by selecting a different value of h/t and the 

corresponding values of μΔ and βF. 

5.4 Results and Discussion 

5.4.1 Ratio of nonlinear to linear spectral displacements 

 The linear and nonlinear spectral displacements (analysis results from step 11) for the 

considered ground motion records were averaged and grouped based on the h/t values and the two 

considered cases in Section 5.3.2. The calculated ratios of nonlinear to linear spectral 

displacements (ΔNL/ΔL) were averaged for the 62 records over the range of Teff. A statistical study 

was conducted on the resulting data to determine the upper and lower bounds using the 

interquartile range [102] and then eliminating suspected outliers. Figure 5.11(a) and (c) show the 

averaged ratios of ΔNL/ΔL for Case 1 and 2, respectively. It can be noted that for approximately Teff 

> 0.75 s, the ratio is generally greater than 1. This means that the used ξi based on the modified 

Jacobsen’s approach (step 4) overestimates the ξ. An opposite conclusion can be made on the 
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ΔNL/ΔL values for Teff < 0.75 s. The coefficient of variation (COV) for Teff < 0.75 s, shown in Figure 

5.11(b) and (d), ranges between 10% and 40% for Case 1, and between 8% and 28% for Case 2. 

   

Figure 5.11 Average ratios of linear to nonlinear spectral displacements and coefficient of 

variation for Case 1 [(a) and (b)], and for Case 2 [(c) and (d)] 

5.4.2 Equivalent viscous damping ratios 

 A similar statistical study to that performed for the ΔNL/ΔL ratios was repeated for the 

equivalent viscous damping ratio (ξ) obtained from the iterative process in step 10. Figure 5.12(a) 

and (b) show the average ξ for the 62 records over the range of Teff and grouped based on the values 

of h/t and the two considered cases. Figure 5.12(c) and (d) show the relation between h/t and ξ for 

selected values of Teff along with the calculated EVD based on the modified Jacobsen’s approach 
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(MJ). The figures show that the curves are generally lower than the MJ curve except for shorter 

periods Teff of 0.5 and 1 s.   

 

Figure 5.12 Average equivalent viscous damping ratio (ξ) with Teff and h/t for Case 1 [(a) and 

(c)], and Case 2 [(b) and (d)] 

5.4.3 Developed expressions for equivalent viscous damping 

 The resulting equivalent viscous damping ratios from the analysis procedure (Figure 5.12) 

were used to develop empirical expressions for the EVD ratios (ξh) of the idealized hysteretic 

responses of the MCCD system [see Equation (5.1)]. The data are mainly influenced by height-to-

thickness ratio (h/t), the effective structural period (Teff), and the force factor of the coupled NYL 

system (γF). A piecewise linear function was used to develop an expression for ξh as by Equations 
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(5.17) to (5.19). The function consists of constant and linear parts that meet at a deviation point, 

Ts, along the range of structural period. This point was found to be a function of γF. The ideal 

height-to-thickness ratio, (h/t)n, can be calculated using Equation (5.20) based on the values of μΔ 

and βF of the considered system. For systems with ns = ∞, (h/t)n = h/t, while for systems with ns 

<< ∞, (h/t)n < h/t. 

 ξh = D [1 + E (Ts – Teff) for Teff < Ts      (5.17a) 

 ξh = D     for Teff < Ts      (5.17b) 

 Ts = -0.5 γF + 2.5 (5.18) 

 D = (-0.0188 γF + 0.0922)(h/t)n + 0.0215 γ - 0.1188 (5.19) 

 E = 3.817 (h/t)n -1.422 (5.20) 

 (h/t)n = 0.183 μΔ + 0.768 βF + 1.151  (5.21) 

 The developed expression in Equation (5.17) was compared to the expressions proposed in 

[5,86] for ring-spring response models. Since the ratio h/t does not apply to the expressions in 

[5,86], the corresponding μΔ values to the h/t ratios were set as the basis for the comparison. Figure 

5.13 shows the relation between ξh and μΔ for γ of 1 and 2. The figure illustrates the conceptual 

difference in dealing with the MCCD system compared to conventional inelastic systems. It can 

be seen that at higher values of the μΔ the ξh based on the expressions in [5,86] reach a plateau, 

while the ξh of the MCCD system using the developed expression in Equation (5.17) keeps 

increasing. This agrees with the trends shown in Figure 5.12(c) and (d). The reason is that 

increasing μΔ results in increasing h/t which in turn increases the force difference factor (βF) and 

hence the area of the dissipated energy. This is shown in Figure 5.5 and Figure 5.8. 
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Figure 5.13 Developed expression for EVD compared with other expressions  

 The linear substitute systems were reanalyzed with damping ratios estimated by the 

developed expressions. The linear and nonlinear spectral displacements for the considered ground 

motion records were averaged and grouped based on the values of h/t and the two considered cases. 

Results are shown in Figure 5.14, from which can be seen that the spectral displacements are in 

good agreement. 
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Figure 5.14 Averaged ratio of linear to nonlinear spectral displacements using the developed 

expression for Case 1 (a) and (b) Case 2, 

5.5 Conclusions 

 The hysteretic response of an MCCD system that relies on consecutive snap-through 

buckling events to dissipate energy was investigated for its equivalent viscous damping. The 

sawtooth-shape response of the MCCD system was idealized to facilitate dynamic analysis. The 
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idealization process was based on maintaining energy balance between the original and idealized 

responses.  

 The modified Jacobsen's approach was used to initiate the process of determining 

equivalent viscous damping ratios for the examined hysteretic model. The approach is based on 

substituting the nonlinear system by a linear system with a secant stiffness at maximum 

displacement, which agrees with the basic assumptions of the direct displacement-based design 

method.  

 Linear and nonlinear time-history analyses were performed on single degree of freedom 

systems with hysteretic response and linear equivalents, and a systematic analysis procedure was 

followed to determine corrected equivalent viscous damping ratios for the examined responses. A 

statistical study was conducted to develop empirical expressions for the idealized hysteretic 

response of the MCCD system. The following findings of the study were drawn: 

1. Ratios of nonlinear to linear spectral displacement show that the equivalent viscous 

damping ratios based on the modified Jacobsen's approach are overestimated. This 

behavior is more pronounced in intermediate and long period ranges (Teff > 0.75 s). The 

opposite behavior was observed in the short period range (Teff < 0.75 s). 

2. The general coefficients of variation of nonlinear to linear spectral displacements were 

23% and 11 % for Cases 1 and 2, respectively. 

3. An expression to estimate the hysteretic equivalent viscous damping ratio was developed. 

The calculated spectral displacements for the linear substitute systems using the developed 

expression are in good agreement with the displacements from the analyses of nonlinear 

systems. 
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 An experimental investigation is being carried out to determine the EVD ratio of the 

MCCD system for a range of h/t values. Preliminary results show good agreement with the 

numerical results of this work.  
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CHAPTER SIX 

6 Seismic Performance Evaluation 

6.1 Introduction 

 This chapter investigates the seismic performance of typical reinforced concrete (RC) 

structures incorporating the MCCD system in various configurations as the main damping 

mechanism for seismic protection. Direct displacement-based design and dynamic analysis of 

three example structures subjected to two historic ground motion records are presented. For each 

example, nonlinear time-history analyses for the original structure and the modified structure with 

the MCCD system were performed. The considered systems are (1) a bridge pier-wall, (2) a 

building frame, and (3) two coupled prestressed rocking walls. 

6.2 Seismic Hazards 

 Two ground motion records were used to evaluate the seismic performance of the example 

structures. The used records are the El Centro 1940 N00E and the Chile 1985 N10E components, 

shown in Figure 6.1 with properties as presented in Table 6.1. For each example structure the 

design was based on the El Centro record. The structure was then subjected to the El Centro and 

the Chile earthquake records to evaluate its seismic performance. The two records can be roughly 

considered as a design basis and a maximum considered events [6], respectively.  

Table 6.1 Ground motion records used in this study 

Date Record Magnitude (Ms) 
Peak ground 

acceleration  

05/19/1940 El Centro N00E  6.7 0.32 g 

03/03/1985 Chile 1985 N10E 7.8 0.71 g 
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Figure 6.1 Ground acceleration time histories for the earthquake used in the study: (a) 1940 El 

Centro N00E, and (b) 1985 Chile 1985 N10E 

6.3 Bridge Pier-Wall 

 An RC bridge pier-wall with a height, hw, of 7000 mm, a length, lw, of 3000 mm, and a 

thickness, tw, of 300 mm is considered herein as shown in Figure 6.2(a). The pier-wall is to carry 

an axial compressive load, P, of 1200 kN, with ratio, γP = 0.056, and an effective seismic mass, 

me, of 214068 kg. The pier-wall was first conventionally designed as a ductile member and then 

modified with the MCCD [79] and redesigned. Non-linear time-history analyses (NLTHA) were 

conducted for the two systems to compare the seismic performance under the two ground motion 

records. Since the nonstructural components are not of concern in this case, the lateral drift, θΔV, 

of the of bridge pier-wall can be as high as 0.04 [5]. Therefore, comparison between the original 
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and the modified systems is in terms of limiting structural damage. In other words, the aim here is 

to modify the pier-wall with the MCCD system to avoid permanent inelastic deformations. 

Nonetheless, the maximum drift should not exceed the code limit ratio of 0.03 [5]. It should be 

noted that the design and analysis were only carried out about the strong axis of the wall (the 

transverse direction of the bridge). 

 The capacity design and detailing requirements of the systems are as per AASHTO LRFD 

Bridge Design Specifications [103] and AASHTO Guide Specifications for LRFD Seismic Bridge 

Design [104]. 

  

Figure 6.2 Example structure 1: (a) original pier-wall, and (b) modified pier-wall  

6.3.1 Modified system 

 The pier-wall is modified by removing the two edge parts at the bottom of the pier-wall 

and replacing them with the MCCD system as shown in Figure 6.2(b). The remaining middle part 
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at the bottom the wall, called inner column, is capable of carrying gravity loads, base shear, and 

uplifting forces (tension). Depending on sectional detailing, the column could have very low lateral 

stiffness providing the necessary flexibility under seismic demands to deform without yielding. 

The column could also be detailed as a hinge support.  

 When the system is loaded laterally, it will rotate in roughly as a rigid body (further 

discussed below). This rotation causes the MCCD system to be compressed at one side and 

tensioned at the other side. Thus, the column and the MCCD systems contribute to the lateral 

stiffness of the modified pier-wall. Upon load removal, the MCCD system will restore its original 

unreformed shape helping the wall to self-center. 

 The design objective of the modified system is to prevent permanent deformations and to 

restore the original configuration upon lateral load removal. To meet this design objective, the 

system is designed to a maximum displacement that is governed by yield displacement of the 

column or the maximum allowable drift, whichever is smaller. 

6.3.2 Material properties 

 Table 6.2 presents the material properties of the concrete and the reinforcing steel used for 

the pier-wall and the modified system. 

Table 6.2 Properties of concrete and reinforcing steel used for the pier-wall 

Property  Value  

Specified compressive strength of the concrete fc’ = 35 MPa 

Specified yield strength of the reinforcing steel bars fsy = 420 MPa 

Elastic modulus of the reinforcing steel bars Es = 200 GPa 

Yield strain of the reinforcing steel bars εy = 0.0021 

Diameter of longitudinal reinforcing steel bars dsl = 15.9 mm  

Diameter of transverse reinforcing steel bars dst = 12.7 mm 

Concrete cover to the center of first layer of reinforcements dc = 50 mm 
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6.3.3 Conventional design of the pier-wall 

6.3.3.1 Idealized system 

 The pier-wall was idealized as a cantilever member with the effective seismic mass lumped 

at its height hw as shown in Figure 6.3(a). The plastic deformation, Δvp, is considered to be 

concentrated in the plastic hinge region at bottom end of the pier-wall. Additional details about the 

bridge configuration, pier-wall connection to superstructure, and the idealized system can be found 

in [105]. 

  

Figure 6.3 System idealization for analysis: (a) original pier-wall, and (b) modified pier-wall 

6.3.3.2 Design  

 The direct displacement-based design (DDBD) method was used estimate seismic 

demands. First the ideal yield curvature, φy, and displacement, Δy, were estimated as follow [5]: 

 φy = 2 εy / lw = 1.4 1/km 

 Δy = φy hw2 / 3 = 22.87 mm 
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A demand displacement ductility, μD, value of 3.5 was determined based on the proposed pre-

specified displacement values in [105] for a wall with aspect ratio, AR = lw / tw, of 10 and 

slenderness ratio, SR = hw / lw, of 2.34. The design displacement, ΔD, was thus calculated as: 

 ΔD = μD Δy = 80.1 mm 

The equivalent viscus damping ratio, ξ, which consists of the elastic, ξe, and the hysteresis, ξh, 

parts, was estimated as follows [5]: 

 ξ = ξe + ξh = 0.05 + 0.444 (
𝜇𝐷−1

 𝜇𝐷𝜋
) = 0.05 + 0.101 = 0.151 

The effective structural period, Te, was determined by performing linear displacement spectral 

analysis with damping ratio as estimated above. The displacement response spectrum is shown in 

Figure 6.4. Te was found to be 1.617 s. The base shear, Ve, and bending moment, Me, were 

calculated as follows: 

 Ve = 4 ΔD π2 me / Te = 258.7 kN 

 Me = Ve hw = 1810.8 kN.m 

 

Figure 6.4 Displacement response spectrum of the 1940 El Centro ground motion record used for 

the design 
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 Based on the moment Me and the capacity design requirements as per the AASHTO LRFD 

specifications [103,104] the pier-wall was designed for flexure and shear with sectional properties 

as shown in Figure 6.5(a). Figure 6.6(a) shows the force-displacement curves for the designed pier-

wall with the specified material properties calculated following plastic hinge analysis procedure 

detailed in the Appendix [105]. The figure also shows shear strength capacity curves based on the 

model proposed by Priestley and Paulay [4] for web crushing. 

 

Figure 6.5 Cross-sectional details: (a) original pier-wall, and (b) modified pier-wall 
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Figure 6.6 Force-displacement responses: (a) original pier-wall, and (b) modified pier-wall 

6.3.4 Design of the modified pier-wall 

6.3.4.1 Idealized system 

 Figure 6.3(b) shows the idealized system for the modified pier-wall with the MCCD 

system. In this idealization, the MCCD system at each side of the pier-wall are represented by 
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axial spring elements with flag-shaped response that are located at a horizontal lever arm distance, 

lb, from the mid-length of the pier-wall as given in Equation (6.1). The location of the MCCD 

system are moved further from the edges of the pier-wall by a distance, ab, of 700 mm (see Figure 

6.2). This increases lb, which in turn increases axial displacement demands on the MCCD system 

and results in a higher lateral shear force, Vb, carried by the MCCD system for a given axial force, 

Fb, as given in the equilibrium Equation (6.2) below. This leads to a reduction in the demand forces 

on the MCCD system (Fb).  

 lb = lw /2 + ab (6.1) 

 Vb = Fb lb / hw (6.2) 

Equation (6.2) is, however, not accurate since the modified system does not deform in a 

rigid body rotation and hence the actual relation between Vb and Fb is based on the deformations 

of the inner column. With reference to Figure 6.3(b) the relation between the top lateral 

displacement, ΔV, and the axial vertical displacement, Δ, on the MCCD systems due to a lateral 

shear force, V, can be established based on the expression for transverse flexure deformations in a 

cantilever member as given in Equation (6.3) [106]: 

 ΔV(x) =V (3 hw x2 – x3 ) / (6 E I) (6.3) 

where x is a distance along the height of pier-wall from the bottom. The term V/(E I) can be 

determined from the sectional curvature, φ, and top displacement, ΔV, of the inner column as 

follows: 

 ΔV = V hw3 / (3 E I) = φ hw2 / 3  (6.4) 

 V hw / (E I) = φ / hw (6.5) 

Thus, Equation (6.3) can be rewritten as follows: 

 ΔV(x) = φ (3 x2 – x3 / hw) / 6 (6.6) 
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By taking the first derivative of ΔV(x) with respect to x, the slope of the tangent line, mt, at x = hb, 

where hb is height of the MCCD system [see Figure 6.3(b)], is determined as follows: 

 mt = Δv’(x) = φ (6 x – 3 x2 / hw) / 6  (6.7) 

The slope of the perpendicular line, mp, is determined as -1/mt. Thus, this slope is used to calculate 

the displacement on the MCCD system (Δ) at a distance lb from mid-length of the pier-wall (lw/2) 

at a lateral displacement (ΔV) for values of curvature φ from 0 to the ideal yield curvature of the 

column, φy. The relation between the ratio θF = Δ / ΔV and φ was found to be constant for a given 

lb and hb lengths with value of 0.3018 for lb = 2200 mm, and hb = 2800 mm, as shown in Figure 

6.7. The figure shows θF for a range of lb and hb values. The ratio of θF can thus be used to calculate 

the force demands of the MCCD system as follows: 

  Vb = θF Fb  (6.8) 

 

Figure 6.7 Relation between the lateral (ΔV) and axial (Δ) displacements with lengths hb and lb 
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6.3.4.2 Design of the inner column  

 The first step in the design of the modified system is to design the inner column to have 

adequate elastic displacement under maximum lateral loading. Therefore, it must have high 

flexibility and thus lower lateral capacity compared to the conventional pier-wall. The design of 

this element is similar to the design of any reinforced concrete column to seismic loading in 

addition to satisfying elastic displacement demands. To facilitate the design, a few assumptions 

were followed for the sizing and the reinforcing of the column as follows: 

1. The cross-section dimensions of the inner column are determined based on that the axial 

load ratio (γP), expressed in Equation (6.9), is not greater than the code specified vale of 

0.2 [104]. 

 γ = P / (f’c tc lc) ≤ 0.2 (6.9) 

2. The ability to carry gravity loads, base shear, and uplifting forces (tension). 

 A square section with side length, tc, of 500 mm and reinforcement ratio, ρ, of 2.85% were 

used for the column section as shown in Figure 6.5(b). The column was designed for shear as per 

capacity design requirements in [103]. The force-displacement response of the column was 

calculated following plastic hinge analysis procedure presented in [105] is shown in Figure 6.6(b). 

It should be mentioned that shear design of the inner column was based on the shear force 

determined based on capacity design principles plus the additional shear forces developed due to 

the MCCD system [Column + MCCD in Figure 6.6(b)]. The ideal yield curvature and 

displacement, nominal bending moment, and the capacity shear force were calculated from the 

section properties of the column as follows, respectively: 

 φy = 12.5 1/km 

 Δy = 211 mm 
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 Mn = 747.7 kN.m 

 Vn = 1017 kN 

6.3.4.3 Design of the MCCD system  

 The yield displacement of the column (Δy) represents the ultimate design displacement (ΔD) 

for the modified system. Assuming an MCCD system with properties determined according to the 

study in Chapter 5 [82] and Table 6.3, the equivalent viscus damping (ξ) can be determined by the 

proposed expression in Equation (5.17) [82] assuming Teff > Ts as follows:  

 ξ = ξe + ξh = (-0.0188γ+0.0922)(h/t)n + 0.0215γ-0.1188 = 0.05 + 0.0557 = 0.1057 

Table 6.3 Properties of the MCCD system for the modified pier-wall 

Property  Value  

Height-to-thickness ratio of the CCD in the system h/t = 2.5 

Number of connected CCDs in series ns = 12 

Force ratio of the difference βF = 0.5586 

Displacement ductility of the MCCD system μΔ = 4.6676 

Force ratio factor  γF = 1.649 

Ideal height-to-thickness ratio of the CCD in the system (h/t)n = 2.4341 

 

 The effective structural period for the system (Teff) was determined from the displacement 

spectrum shown in Figure 6.4. Te was found to be 2.57 s resulting in a base shear Ve = 271 kN. The 

shear force carried by the MCCD systems (Vb) was calculated as follows: 

 Vb = Ve – Mn / hw = 164 kN 

 The axial force acting on one of the MCCD systems due to Vb can be determined using the 

ratio θF. With reference to the idealized system shown in Figure 6.3(b), the axial force demand Fb 

on one MCCD system was determined as follows: 

 Fb = Vb / (2 θF) = 272 kN  

 To carry this load (Fb), an MCCD system with units made of carbon fiber composites with 

an elastic modulus of 300 GPa was used. The CCD units have thickness, t, of 1.2 mm, height, h, 
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of 3 mm, and length, l, of 100 mm with ideal buckling force, Fb’ of 3.8 kN. The MCCD system 

consists of 3 by 6 vertical chains of CCDs with total number of chains, nc, of 18 in each side of the 

wall. Each chain has 12 serially connected units (ns = 12) of 4 parallel units (np = 4), as shown in 

Figure 6.8(a). The system results in an axial force capacity of 273.6 kN as determined below. The 

actual and idealized force-displacement response of the MCCD system as per Chapter 4 [79] and 

Chapter 5 [82] is shown in Figure 6.8(b). Note that the system in Figure 6.8(a) is capable of 

carrying global compressive and tensile forces that cause the CCD units in the system to compress 

in the both cases. The response of the modified pier-wall system is shown in Figure 6.6(b). 

Although the Fb’ value of 3.8 kN may seem large, it has a moderate value when compared with 

other structural units. To put this in perspective, the value of 3.8 kN is smaller than that developed 

by a steel rod with 3.4 mm diameter. 

 Fb = Fb’ np nc = 273.6 kN 
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Figure 6.8 (a) Loading mechanism for one chain of the CCD units, and (b) force-displacement 

response of the MCCD system 

6.3.5 Time-history analysis 

 Non-linear time-history analyses (NLTHA) were performed for the two designed systems 

using OpenSees [107] under two ground motion records of El Centro 1940 and Chile 1985 

earthquakes. The MCCD system was modeled using the self-centering flag-shaped material object. 
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Figure 6.9 shows the lateral displacement time-history response for the original and modified pier-

wall systems. Although, the modified system showed higher maximum displacement in both cases 

with 113 mm and 156 mm than the original pier-wall with 91 mm and 105 mm, respectively, it is 

still less than the design displacement (Δy) of 211 mm. It should be mentioned that the reference 

wall was designed for a much lower design displacement of 81 mm. Therefore, the modified pier-

wall with the MCCD system satisfied the design demands and did not exceed the yield point of 

the inner column (156 < 211 mm), which means that no damage occurred. Figure 6.10 shows the 

resulting hysteretic shear force-lateral displacement responses of both systems for the two ground 

motion records. It can be seen that the dissipated energy by the inelastic action from the response 

of the pier wall in Figure 6.10(a) and (c) is larger than that by the modified system in Figure 6.10(b) 

and (d). However, in the latter case no permanent damage is observed; while for the conventional 

pier-wall permanent displacements of 10 mm and 24 mm were predicted for the El Centro and 

Chile records, respectively. 
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Figure 6.9 Lateral displacement time-history of the bridge pier-walls: (a) 1940 El Centro, and (b) 

1985 Chile earthquakes 
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Figure 6.10 Hysteretic shear force-lateral displacement responses for the original pier-wall (a, c), 

and the modified pier-wall (b, d) 

6.4 Building Frame 

 The second example structure is a one-story one-bay RC frame shown in Figure 6.11(a). 

The frame has two rectangular columns with height, hc, of 4000 mm and cross-sectional length, lc, 

and thickness, tc, of 400 mm and 250 mm, respectively. The two columns are connected by a beam 

with length, lg, of 6400 mm, cross-sectional height, hg, 400 mm, and thickness, tg, of 250 mm. The 

frame was designed for an effective mass me = 18838 kg determined from a tributary area of 5000 

mm width. The axial force and ratio on the columns are P = 93 kN and γP = 0.264. The frame was 

first conventionally designed as a ductile member and then modified with the MCCD system and 
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redesigned. Similar to the pier-wall, the aim was to limit the columns’ deformation to the elastic 

range of response. The design and analysis were only carried out in the in-plane direction of the 

frame.  

  

Figure 6.11 Example structure 2: (a) original frame, and (b) modified frame with chevron brace 
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6.4.1 Modified system 

 The frame was modified by adding a rigid chevron brace that is connected to the beam by 

an MCCD system as shown in Figure 6.11(b). Since the frame is supporting the floor at the frame 

height level, it is assumed that the beam is axially rigid. When the system is loaded laterally the 

beam will displace and activate the MCCD system. The design objective is to prevent permanent 

deformations and restore the original configuration upon lateral load removal. Therefore, the 

system design displacement is governed by yield displacement of the columns or the maximum 

allowable drift, whichever is smaller. The material properties of concrete and reinforcing steel are 

the same to those presented in Table 6.2 for the pier-wall. 

6.4.2 Conventional design of the frame 

6.4.2.1 Idealized system 

 The columns were assumed to be fixed at the bottom and rigidly connected to the beam at 

the top. The effective seismic mass was assumed to lumped at beam level. It was also assumed 

that the plastic deformations are concentrated in plastic hinges at the ends of the columns the beam 

as shown in Figure 6.12(a). To determine the lateral stiffness of the system, kΔ, the stiffness method 

was used to construct the stiffness matrix of the system as discussed in the Appendix. An equation 

to determine kΔ in terms of the beam-to-column stiffness ratio, ρF is given below [89].   

 kΔ = 12 Ec Ic (6 ρF +1) / (3 ρF +2) (6.10) 

 ρF = (Eg Ig / lg) / (Ec Ic / hc) (6.11) 

where Eg and Ec are the elastic moduli of the beam and the column, respectively, Ig and Ic are the 

second moments of area of the beam and the columns, respectively. The values of EgIg and EcIc 

can be determined based on the ideal yield curvatures and moments of the beam, Mg/φgy and the 

column, Mc/φcy, respectively. 
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 The frame can also be idealized as single degree of freedom (SDF) system, as shown in 

Figure 6.12(a), by modifying the height of the cantilever using kΔ as given in Equation (6.12). This 

idealization can only be used to design the frame using the DDBD method and to calculate the 

lateral response of the frame. 

 hc’ = √
3

𝑘𝛥
 hc (6.12) 

  

Figure 6.12 System idealization for analysis: (a) original frame, and (b) modified frame 

6.4.2.2 Design 

 The DDBD method was used estimate seismic demands. First the ideal yield curvature, φy, 

and displacement, Δy, were estimated as follow [5]: 

 φy = 2.3 εy / lw = 1.15 1/km 

 Δy = φy hw2 / kΔ = 27.8 mm 
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A demand displacement ductility (μD) value of 5 was determined based on the proposed pre-

specified displacement values in [105] for a column with AR = 1.6 and SR = 10.5. The design 

displacement (ΔD), is thus determined as follows: 

 ΔD = μD Δy = 139 mm 

Since this displacement results in a lateral drift (θΔV) that is greater than 3%, the ΔD was determined 

based on θΔV = 3%: 

 ΔD = θΔV hc = 126 mm 

The demand μD was recalculated based on the used ΔD as follows: 

 μD = ΔD / Δy = 4.532 

The equivalent viscus damping (ξ) using the proposed expression for RC frames in [5] leads to: 

 ξ = ξe + ξh = 0.05 + 0.565 (
𝜇𝐷−1

 𝜇𝐷𝜋
) = 0.05 + 0.1401 = 0.1901 

The effective structural period (Te) was determined from the linear displacement response 

spectrum for the damping ratio as estimated above. The displacement spectrum is shown in Figure 

6.4. Te was found to be 2.19 s. The base shear (Ve) was calculated as follows: 

 Ve = 4 ΔD π2 me / Te = 19.6 kN 

The bending moment demands at the column bases and at the beam ends were determined using 

the constructed stiffness matrix and the fixed-end moments (see the Appendix). The resulting 

moment due to the effective design force in the columns and the beam were 24.8 kN.m and 10 

kN.m, respectively. Based on these moments and the capacity design requirements as per ACI 

318-11 [108] the columns and the beam were designed with sectional properties as shown in Figure 

6.11(a). Figure 6.13(a) shows the frame’s force-displacement response curve for the specified 

material properties calculated following the plastic hinge analysis procedure presented in [105]. 
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Figure 6.13 Force-displacement responses: (a) original frame, and (b) modified frame 

6.4.3 Design of the modified frame 

6.4.3.1 Idealized system 

 Figure 6.12(b) shows the idealized system for the modified frame with the chevron brace. 

In this idealization, the MCCD system is represented by two axial spring elements with flag-shaped 
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response that are parallelly connected to the beam. The location of the MCCD system in this case 

is the most efficient since the MCCD system is directly resisting induced lateral loads transmitted 

through the beam. This eliminates the reduction in the lateral forces produced by the MCCD 

system due to the lever arm effect. It also eliminates the reduction in the imposed demand 

displacements to efficiently activate the MCCD system 

6.4.3.2 Design of the MCCD system  

 The yield displacement Δy = 26.2 mm of the frame determined from the plastic hinge 

analysis as shown in Figure 6.13(a) was considered as the ultimate design displacement (ΔD) for 

the modified system. Assuming an MCCD system with properties determined as presented in 

Chapter 5 [82] and Table 6.4, the equivalent viscus damping (ξ) was determined in an iterative 

process using the proposed expression in Equation (5.17) [82] assuming Teff < Ts as given below.  

 D = (-0.0188γ+0.0922)(h/t)n + 0.0215γ-0.1188 = 0.06054 

 E = 3.817 (h/t)n-1.422 = 1.0507 

 ξh = D [1 + E (Ts – Teff)] = 0.1306 

 Ts = =-0.5 γF +2.5 = 1.521 

 ξ = ξe + ξh = 0.05 + 0.1306 = 0.1806 

Table 6.4 Properties of the MCCD system for the modified frame 

Property  Value  

Height-to-thickness ratio of the CCD in the system h/t = 2.545 

Number of connected CCDs in series ns = 10 

Force ratio of the difference βF = 0.5814 

Displacement ductility of the MCCD system μΔ = 4.807 

Force ratio factor γF = 1.956 

Ideal height-to-thickness ratio of the CCD in the system (h/t)n = 2.477 

 

 The effective structural period for the system (Teff) was determined from the displacement 

spectrum shown in Figure 6.4. Te was found to be 0.42 s resulting in a base shear Ve = 111 kN. The 
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shear force carried by the MCCD systems was calculated by subtracting the force carried by the 

frame at yield Vn = 84 kN as follows: 

 Vb = Ve – Vn = 27 kN 

Since Vb is much lower than Vn, the MCCD system was designed for a higher force to ensure 

effective energy dissipation. This is because if a smaller value was used the energy dissipation 

capacity of the combined system will not be significant. Therefore, the MCCD system was 

designed for Vb = Vn. 

 In the case of chevron brace, Vb = Fb because the lateral force is directly transmitted to the 

MCCD system. To carry this load (Fb), an MCCD system with units made of carbon fiber 

composites with elastic modulus of 300 GPa was used. The CCD units have t = 1.1 mm, h = 2.8 

mm, and l = 100 mm with ideal buckling force, Fb’ of 2.732 kN. The MCCD system consists of 2 

by 4 horizontal chains of CCDs with nc = 8 chains. Each chain has 10 serially connected units (ns 

= 10) of 4 parallel units (np = 4), as shown in Figure 6.11(b). The system results in an axial force 

capacity of 87.4 kN as determined below. The actual and idealized force-displacement response 

of the MCCD system as per [82] is shown in Figure 6.14. The response of the modified frame 

system is shown in Figure 6.13(b).  

 Fb = Fb’ np nc = 87.4 kN 
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Figure 6.14 Force-displacement response of the MCCD system 

6.4.4 Time-history analysis 

 NLTHA were performed for the two designed systems under the 1940 El Centro and 1985 

Chile ground motion records. Figure 6.15 shows the lateral displacement time-history responses 

for the original and the modified frame systems. The maximum displacement of the modified 

system for the El Centro record is 15 mm, which is smaller than the one for the original frame of 

40 mm and the yield displacement of 26.2 mm. For the Chile record, the modified system has a 

maximum displacement of 35 mm that exceeds the yield displacement of the frame as shown in 

Figure 6.15(b) and resulted in a residual displacement of 8.8 mm, as shown in Figure 6.16(d). It 

should be noted that the Chile record was considered as a maximum considered event. The original 

frame had a maximum displacement of 62 mm and a permanent displacement of 36 mm. This 

displacement is about 4 times larger than that predicted for the modified system. Figure 6.16 shows 

the resulted hysteretic shear force-lateral displacement responses of both systems for the two 

ground motion records. 
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Figure 6.15 Lateral displacement time-history of the RC frame: (a) 1940 El Centro, and (b) 1985 

Chile earthquakes 
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Figure 6.16 Hysteretic shear force-lateral displacement responses for the original frame (a, c), 

and the modified frame (b, d) 

6.5 Coupled Rocking Walls 

 Two precast post-tensioned coupled rocking walls with unbonded tendons are considered 

in this example. The two walls are similar, with hw = 3300 mm, lw = 1200 mm, tw = 120 mm, and 

one 3600 mm long post-tensioning tendon at its mid-length as shown in Figure 6.17(a). The two 

walls are connected by hinged links that transfer shear between them, see Figure 6.17(a). The 

coupled walls are to be designed for an effective seismic mass me = 18000 kg. The axial force on 

each wall is P = 83 kN. The walls were first designed as rocking member and then modified with 

the MCCD system and redesigned. The aim here is to limit the lateral drift of the walls and 
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maintain the response within the elastic range of the prestressing tendons. The design and analysis 

are only carried out in the in-plane direction of the coupled walls.  

 

Figure 6.17 Example 3: (a) original coupled walls, and (b) modified coupled walls 
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6.5.1 Modified system 

 Rocking wall systems have gained increased attention in the past two decades due to their 

performance in resisting lateral loads compared to conventional structural walls. The main 

advantage of rocking wall systems over conventional ones is damage avoidance and self-centering 

capability. The response of such system is nonlinear elastic with large drift capacity; nonetheless, 

they are prone to lose of stability due to lack of significant energy dissipation. Therefore, it is 

common to couple such systems with supplementary energy dissipation devices to control their 

drift [109,110].  

 The coupled walls in this example are modified by replacing the hinged connections 

between the walls with the MCCD system as shown in Figure 6.17(b). Under lateral loading, the 

two inner edges of the walls displace relative to each other. This relative displacement is used to 

activate the MCCD system in tension or in compression as will be shown later. The design 

objective is to limit the lateral drift of the walls and maintain their response within the elastic range 

of the prestressing tendons. Therefore, the system design displacement is governed by the 

displacement corresponding to yielding of the prestressing tendons or the maximum allowable 

drift, whichever is smaller. The concrete material properties were taken as those presented in Table 

6.2 for the pier-wall. 

6.5.2 Conventional design of the coupled walls 

6.5.2.1 Idealized system 

 The walls were assumed to be rigid elements supported by a hinge support and connected 

to a rotational spring. The two rigid elements are linked via hinged connections throughout their 

height as shown Figure 6.18(a). The effective seismic mass was assumed to lumped at the top level 

of the walls. The system was designed and analyzed using the proposed analysis method in [111] 
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and discussed in the Appendix. The walls were idealized as a single-degree-of-freedom (SDOF) 

system, as shown in Figure 6.18(a), by linking their responses in parallel.  

  

Figure 6.18 System idealization for analysis: (a) original coupled walls, and (b) modified 

coupled walls 

6.5.2.2 Design 

 The DDBD method was used estimate seismic demands. The criteria to design rocking 

walls is to limit their response to the yield onset of the tendons or by a lateral drift limit. A yield 

displacement Δy = 86 mm was estimated in an iterative process using the proposed analysis method 

in [111]. This value is less than a 3% drift-based value of 99 mm. Since the total response of the 

walls is within the elastic range and through rocking of a rigid body motion, researchers [109,112] 

suggest a low equivalent viscus damping (ξ) ratio ranging from 1% to 3%. An equivalent viscous 

damping ξ = 3 % was used here for the design. An effective structural period Te = 0.8 s was 

determined from the linear displacement response spectrum in Figure 6.4 for the damping ratio as 

discussed above. The base shear (Ve) was thus calculated as follows: 
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 Ve = 4 ΔD π2 me / Te = 95.6 kN 

The walls were designed in an iterative process to develop the required lateral capacity Vn to the 

estimated base shear force Ve. Table 6.5 presents the design properties of the unbonded post-

tensioning tendon. A nominal lateral capacity Vn = 97.9 kN was calculated for the system. Figure 

6.19(a) shows the force-displacement curves for coupled walls calculated following the analysis 

procedure presented in [111] and discussed in the Appendix with the specified material properties. 

Table 6.5 Properties of the unboned post-tensioning tendon used for the coupled walls 

Property  Value  

Specified yield strength of the strands fpy = 1500 MPa 

Specified ultimate strength strands fpu = 1700 MPa 

Elastic modulus of the strands Es = 200 GPa 

Yield strain of the strands εy = 0.0075 

Total length of the tendon hp = 3900 mm 

Diameter of the tendon dsl = 15.2 mm  

Initial prestressing fpo = 850 MPa 
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Figure 6.19 Force-displacement responses: (a) original coupled wall, and (b) modified coupled 

walls 
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6.5.3 Design of the modified coupled walls 

6.5.3.1 Idealized system 

 Figure 6.18(b) shows the idealized system for the modified coupled walls. In this 

idealization, the MCCD system is represented by axial spring elements with flag-shaped response 

that replace the hinged connections. Each element is vertically oriented and connected to one wall 

at one end and to the other wall at the other end, see Figure 6.20(a). 

6.5.3.2 Design of the MCCD system  

 The yield displacement of the tendons, Δy = 86 mm as shown in Figure 6.19, was considered 

as the ultimate design displacement (ΔD) for the modified system. Assuming an MCCD system 

with properties determined as presented in [82] and Table 6.6, the equivalent viscus damping (ξ) 

was determined in an iterative process using the proposed expression in Equation (5.17) [82] 

assuming Teff < Ts as given below.  

 D = (-0.0188γ+0.0922)(h/t)n + 0.0215γ-0.1188 = 0.0685 

 E = 3.817 (h/t)n-1.422 = 0.9575 

 Ts = =-0.5 γF +2.5 = 1.5377 

 ξh = D [1 + E (Ts – Teff)] = 0.0664 

 ξ = ξe + ξh = 0.02 + 0.0664 = 0.0864 

Table 6.6 Properties of the MCCD system for the modified coupled walls 

Property  Value  

Height-to-thickness ratio of the CCD in the system h/t = 2.7273 

Number of connected CCD in series ns = 10 

Force ratio of the difference βF = 0.6685 

Displacement ductility of the MCCD system μΔ = 5.3549 

Force ratio factor γF = 1.92448 

Ideal height-to-thickness ratio of the CCD in the system (h/t)n = 2.6443 
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 The effective structural period for the system (Teff) was determined from the displacement 

spectrum shown in Figure 6.4. Te was found to be 1.53 s resulting in a base shear Ve = 26 kN. The 

estimated shear demands are lower than that for original coupled walls since the shear force is 

estimated for the same displacement (Δy = 86 mm) and a higher damping ratio. Therefore, this 

force can be carried by the coupled walls without the added MCCD system provided that 3% or 

more damping ratio is available. However, in the case when the seismic excitation exceeds the 

design level, as will be shown later, the MCCD system is essential to control the response of the 

system. Thus, the MCCD system was designed for Vb = Vn, which results in γF = 2.  

 Similar to the case of the pier-wall, the MCCD system is not directly resisting the lateral 

force and thus it depends on its location and the relative displacement between the inner edges of 

the walls. Since the walls displace in a rigid body rotation the relation between the shear force 

demand carried by the MCCD system: 

 Vb = 2 Fb (lw/2) / hw = Fb lw / hw (6.13) 

The developed force by the MCCD system is as follows: 

 Fb = Vb hw / lw = 269.2 kN 

The factor of two (2) in Equation (6.13) is due to using two walls where the reaction of the MCCD 

system from one wall is carried by the other wall. To carry this load (Fb), six MCCD systems of 

four chains each with a total number of nc = 24 chains were used as shown in Figure 6.17(b). The 

units were assumed to be made of carbon fiber composites with an elastic modulus of 300 GPa. 

The CCD units have t = 1.1 mm, h = 3 mm, and l = 100 mm with an ideal buckling force, Fb’ of 

3.033 kN. Each chain has ten serially connected units (ns = 10) of four parallel units (np = 4), as 

shown in Figure 6.20(a). The system results in an axial force capacity of 291.2 kN as determined 
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below. The actual and idealized force-displacement response of the MCCD system as per [82] is 

shown in Figure 6.20(b). The response of the modified frame system is shown in Figure 6.19(b).  

 Fb = Fb’ np nc = 291.2 kN 

 

Figure 6.20 (a) Loading mechanism of the MCCD system, and (b) force-displacement response 

of the MCCD system 
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6.5.4 Time-history analysis 

 NLTHA were performed for the two designed systems under scaled records of the 1940 El 

Centro and 1985 Chile ground motion records as presented in Table 6.7. Figure 6.21 shows the 

lateral displacement time-history responses for the original and modified frame systems. The 

maximum displacement of the modified system for the El Centro record with scale factors of 1 

and 1.25 were 1.9 mm and 12 mm, which are lower than displacement corresponding to yielding 

of the tendon (Δy). However, for all other scale factors presented in Table 6.7, the maximum 

displacements were larger than 390 mm, which indicates that the system is unstable. On the other 

hand, the modified system had lower maximum displacements than Δy, except for the case of 1.5 

scaled Chile record, for which the maximum displacement was higher than Δy resulting in a 

permanent displacement of 52 mm. This case, however, is very extreme. Figure 6.22 shows the 

resulted hysteretic shear force-lateral displacement responses of both systems for selected cases 

from Table 6.7. 

Table 6.7 Scale factors used for the NLTHA for the coupled walls example 

Ground 

motion record 
Scale factor 

Peak ground 

acceleration 

Maximum 

displacement (mm) 

Permanent 

displacement 

(mm) 

1940 El Centro 

1 0.32 g 1.7 0 

1.25 0.4 g 18 0 

1.5 0.48 g 19 0 

2 0.64 43 0 

1985 Chile 
1 0.71 76 0 

1.5 1.065 138 52 
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Figure 6.21 Lateral displacement response time-histories: (a-d) 1940 El Centro, and (e-f) 1985 

Chile earthquakes 
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Figure 6.22 Hysteretic shear force-lateral displacement responses for the original coupled walls 

(a), and the modified coupled walls (b-d) 

6.6 Design Recommendations 

 The positioning considerations of the MCCD system within a structure is generally similar 

to those for typical hysteretic energy dissipation devices used for seismic protection. However, it 

should be noted that the MCCD system requires relatively higher displacement demands to be 

activated (apparent yield displacement Δb'). Thus, it is more efficient in terms of demand 

displacement and capacity force to position the MCCD system to directly resist the induced 

seismic load. For example, in the pier-wall example, the demand displacement on the system is 

lower than the lateral displacement by 1/θF (or Δ = θF ΔV), and the shear force capacity provided 



153 

by the system is also lower by 1/θF (or Vb = θF Fb). In contrast, in building frame example, the 

MCCD system is directly the induced seismic load and hence no reduction in displacement demand 

or shear force capacity. 

 The design of the MCCD system for given displacement and force demands is affected by 

many factors as follows: 

1. The force ratio factor γF: The higher the factor γF, the lower the contribution of the MCCD 

system in resisting the induced seismic load (γF = 1 means that the MCCD system is totally 

carrying the load). Thus, it is recommended to use γF ≤ 2 even if the force demand on the 

MCCD system is low (high γF). This will ensure effective damping and avoids inelastic 

deformation in case the seismic demands exceed the design level.  

2. Thickness of CCDs: The thickness, t, is an important parameter that may govern the design 

of the MCCD system. It is the most effective parameter when high capacity force is 

required since as can be seen in Equation (3.2) it has the highest power of 2.412. However, 

increasing t, while keeping h constant, increases δb (and hence Δb') and decreases h/t (and 

hence ξ). It should be noted that increasing h also increases δb. Thus, a balance between 

the values of t and h should be reached to keep Δb' low and satisfy force demands.  

3. Number of the CCDs ns: As discussed in Chapter 4 and Chapter 5, higher ns results in 

higher ξ; however, this also leads to higher Δb'. Therefore, ns should be high enough to 

result in sufficient damping and low enough to keep Δb' low. The study presented in 

Chapter 4 shows that ns =12 results in about 90% of the theoretical maximum of the amount 

of energy dissipation. Thus, the value of ns shall range from 8 to 12 depending on the 

displacement requirements. 



154 

6.7 Conclusions 

 The seismic performance of typical reinforced concrete structures incorporating the MCCD 

system in different configurations was evaluated. The structures were designed using the direct 

displacement-based design with and without the MCCD system. Nonlinear time-history analyses 

were conducted for the original and modified structural systems under the 1940 El Centro and 

1985 Chile ground motion records to compare their seismic performance. The following findings 

were drawn from the study: 

1. Displacement-based design methods are the most suitable for structures modified with the 

MCCD system, or supplementary energy dissipation devices. The reason is that for such 

system the main aim is to prevent damage which can only be quantified using deformation-

based methods. 

2. Positioning of the MCCD system highly affects the force and the displacement demands 

on the system. Positioning the system to directly resist the induced seismic loads, such as 

the case of the chevron braced frame, is the most efficient. 

3. The design of the MCCD system to a given force and displacement demands is highly 

dependent on the thickness (t) of the CCDs in the system. Thus, a balance between the 

values of t, h, and other parameters (l, d, and E) of the CCD response should be reached to 

satisfy force and displacement demands. 

4. The structural systems modified with the MCCD system showed enhanced seismic 

performance compared to the original structures. In all cases, no inelastic deformations 

were observed in the main structural elements under the design basis loads. 
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CHAPTER SEVEN 

7 Conclusions 

7.1 Research Contributions 

 This research developed a new research avenue on the use of elastic energy dissipation 

from multistable element systems for seismic protection in building and bridge structures. 

Preliminary results show that using such systems improves the seismic performance of RC 

structures by reducing lateral drifts and avoiding damage.  

 This research develops and proposes a displacement-based design procedure that considers 

the unique characteristics of the hysteretic response of multistable element systems compared to 

hysteresis energy dissipation devices. The uniqueness of multistable element systems originates 

from the fact that their response cannot be described by the commonly used measure of energy 

dissipation, which is the displacement ductility or apparent displacement ductility. Instead, the 

response is characterized by their geometry (i.e., height-to-thickness ratio), which controls the 

amount of dissipated energy. Understanding this issue is the key to properly designing these 

systems as a main damping mechanism in structures, and this research provides an explanation of 

this conceptual issue.  

 A review of the published literature further shows that systems comprised of surface 

revolution elements don't exist since a multistable element with such shape and a reliable response 

is not available. This research addresses this knowledge gap by proposing and characterizing a 

dome-shaped shaped element with controllable snap-through behavior used in constructing a 

system capable of exhibiting a desirable hysteretic response.  
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7.2 Conclusions 

 The following provides a summary of the contributions and the conclusions from the 

presented research: 

1. A new shallow dome-shaped structural element with cosine-curved profile (CCD) that 

exhibits a tunable multistable elastic behavior was developed. The element offers reliable 

and reversible large elastic deformation that can be used as a building unit for devices 

subjected to relatively high forces for energy dissipation and repeated use. The main factor 

affecting their response is their height-to-thickness ratio (h/t). Increase of h/t changes their 

response from monostable to bistable. It was found that CCDs have a critical height-to-

thickness ratio (h/t)cr at which the response is pseudo-bistable allowing designing CCDs 

with a targeted snap-through instability type. Expressions to estimate key parameters in the 

force-deformation response were developed to construct a multilinear force-deformation 

response, and shown to facilitate the response analysis for a system of multiple CCDs. 

2. A new self-centering energy dissipation system comprised of multiple cosine-curved 

domes (MCCD) connected in series was developed and characterized. The building units 

of the MCCD system are dome-shaped shell elements with cosine-curved profile. The 

MCCD system shows a consecutive snap-through and snap-back response resulting in a 

hysteresis. The proposed MCCD system avoids some design disadvantages of other 

multistable elastic systems that limit the practicality of using such systems when multiple 

units in a system are stacked in parallel. A new analytical multilinear model that describes 

the hysteretic force-displacement response and takes into account the nonlinear effects of 

the CCD units was proposed. The model was shown to yield accurate simulations. The 

amount of dissipated energy mainly depends on the number (ns) and the height-to-thickness 
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ratio (h/t) of the CCD units. The higher ns and h/t are the higher the amount of the dissipated 

energy. The system showed a maximum loss factor (η) value of about 0.14 for a monostable 

(self-recoverable) response. The loss factor reaches about 90 % of its theoretical maximum 

value for systems with about 12 CCDs. Increasing ns increases the amount of dissipated 

energy, but it also decreases the initial stiffness of the MCCD system. 

3. The hysteretic response of the MCCD system was investigated for its equivalent viscous 

damping. The sawtooth-shape response of the MCCD system was idealized, based on 

maintaining energy balance between the original and idealized responses, to facilitate 

dynamic analysis. Linear and nonlinear time-history analyses were performed on single 

degree of freedom systems with hysteretic response and linear equivalents. A statistical 

study was conducted to develop empirical expressions for the idealized hysteretic response 

of the MCCD system. An expression to estimate the hysteretic equivalent viscous damping 

ratio was developed. The calculated spectral displacements for the linear substitute using 

the developed expression are in good agreement with the displacements from the analyses 

of nonlinear systems. 

4. The seismic performance of typical reinforced concrete (RC) structures incorporating the 

MCCD system is in various configurations in as a damping mechanism was evaluated. 

Nonlinear time-history analyses for the original structure and the modified structure with 

the MCCD system were performed. The structural systems modified with the MCCD 

system showed an enhanced seismic performance compared to the original structures. In 

all cases, no inelastic deformations were observed in the main structures under the design 

basis loads. 
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7.3 Future Research 

 The work presented in this dissertation introduces the use of elastic instabilities for seismic 

protection of structures. The capabilities of and the expected demands on the proposed MCCD 

system were explored. It was shown that the MCCD system in particular and systems with elastic 

instabilities in general have great potential for applications in energy dissipation and shock 

absorption. Nonetheless, there are still areas and issues that require investigation and development 

to produce a reliable and practical product that meets the ultimate objective of this research. These 

aspects are as follows: 

1. Experimental and numerical investigations should be conducted to develop an optimal 

design for the CCD for use in seismic protection. The design shall be capable of 

withstanding large forces with lower snapping displacements, as discussed in Chapter 6, 

while ensuring that the CCD can be tailored in practical manner. Consideration shall be 

given to the way the load is transferred from one serially connected CCD to another. In 

addition, the effect of a hole at the apex for the loading shaft shall also be comprehensively 

investigated, since this could alter the response of the CCD by shifting the response curve 

and reducing the displacements.  

2. The material selection of the CCD units must also be investigated. In general, materials 

with high stiffness and high elastic strength are the best suited for such a design. Possible 

example materials are carbon and glass fiber reinforced composites and spring steel. In 

addition, the complex geometric shape and the fabrication process of the CCD units are 

important factors to be considered in the material selection. 

3. Investigation of the dynamic behavior of the MCCD system should be performed. 

Although seismic loads on structures are applied at low loading rates, the response of a 
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structure incorporating the MCCD system is elastic and hence dynamic effects may be 

more pronounced in comparison to yielding devices.  

4. Shaking table tests are the most representative of actual ground motions on a structure. 

Therefore, tests should be conducted on structures provided with the MCCD system as a 

supplementary energy dissipation device, such as those presented in Chapter 6, to evaluate 

their seismic performance.  
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Appendix: Analysis and Design Calculations 

 This appendix presents sample calculations for the design and analysis results presented 

for the example structures in Chapter 6.  

A.1 Bridge Pier-Wall  

 The design procedure of the pier-wall for flexural is based on the method proposed by 

Alturki and Burgueño [105]. The shear design and detailing of the pier-wall are based on the 

AASHTO Guide Specifications for LRFD Seismic Bridge Design [104]. In addition, some 

information and design details were obtained from the AASHTO LRFD Bridge Design 

Specifications [103]. 

A.1.1 Flexure design  

A.1.1.1 Estimation of seismic demands 

 Displacement ductility demand: 

  µD = 3.5 

 Displacement demand: 

  ΔD = 80 mm  

 Ideal yield displacement: 

  Δy = ΔD / µD = 23 mm 

 Ideal yield curvature: 

  φy = 3 Δy / hw2 = 1.4 1/km 

A.1.1.2 Determination of sectional properties 

 Influence factor of the longitudinal reinforcement yield strength:  

  ks = 1.15 – 0.00036 fy = 1.000 
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 Influence factor of the concrete compressive strength:  

  kc = 1.14 (f’c)-0.1 = 0.98 

 Influence factor of the longitudinal reinforcement:  

  kρ = φy lw / (ks kc εy) = 2 

 Required longitudinal reinforcement and axial load ratios: 

  For ρl ≤ 0.0125 

  kρ = (30 + 385 γ – 1615 γ2) ρl + (26.8 γ – 5.75) γ + 1.85 

  ρl = 0.0083 < 0.0125  OK 

  use ρl = 0.01 

 Provided longitudinal reinforcement: 

  46 φ 15.9 bars:  Asp = 9131 mm2 

 Bar diameter of the longitudinal reinforcement: 

  db = 15.9 mm 

 Nominal moment capacity: 

  Mn = 6335 kN.m 

 Overstrength factor: 

  λo = 1.4  

 Overstrength moment: 

  Mno = λo Mn = 8869 kN.m 

A.1.2 Shear design  

 Overstrength shear force: 

  Vo = Mo / hw = 1267 kN 

 Effective shear area:  
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  Ae = 0.8Ag = 720000 mm2 

 Shear reinforcement ratio (found by iteration): 

  ρw = 0.0169 > 0.004 

 Shear reinforcement strength factor: 

  fw = 2.41 MPa 

 Concrete shear stress adjustment factor: 

  α’ = fw / 0.15 + 3.67 - µD = 17.2 

 Shear stress carried by concrete: 

  vc = 0.032 α’ [1 + P / (2 Ag)] √𝑓𝑐′  = 6.8 > 1.82 > 1.71 MPa 

  vc =1.71 MPa 

 Shear force carried by concrete: 

  Vc = vc Ae = 1230 kN 

 Spacing of transverse reinforcement: 

  s = 100 mm < 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 {
𝑡𝑤 2⁄ = 150 𝑚𝑚 
6 𝑑𝑏 = 100 𝑚𝑚

150 𝑚𝑚

  

 Provided shear reinforcement: 

  Av = tw s ρw =506 mm2: 4 legs φ 12.7 mm bars @ 100 mm c/c 

 Bar diameter of the transverse reinforcement: 

  dt = 12.7 mm 

 Effective shear depth: 

  dv = 0.72 lw = 2160 mm  

 Shear force carried by shear reinforcement: 

  Vs = Av fyt dv / s = 4596 > 3496 kN (controls) 
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 Nominal shear capacity: 

  Vn = Vc + Vs = 4727 kN 

 Shear resistance factor: 

  φs = 0.9 

 Factored nominal shear capacity: 

  φs Vn = 4254 kN > Vo 

 The designed section with reinforcement details is shown in Figure A.1. 

 

Figure A.1 Pier-wall cross-section and reinforcements details 

A.1.3 Plastic analysis 

 A moment-curvature analysis and plastic hinge analysis were performed for the designed 

pier-wall. The result of these analyses is the shear force-lateral displacement curve. Shear capacity 

curve for web-crushing strength was also constructed.  
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A.1.3.1 Moment-curvature analysis: 

 The moment-curvature analysis for the pier-wall section was performed using the Section 

Designer tool of the program SAP2000 [113]. The concrete stress-strain model used for the 

moment-curvature analyses was that proposed by Mander et al. [114] for confined and unconfined 

concrete. A simple stress-strain model was used for the reinforcing steel, featuring a plastic 

plateau, and parabolic strain-hardening response. The limiting tensile strains and strengths defined 

in the AASHTO Guide Specifications [104] for ASTM A615 were used to define each of the model 

regions. The key moments and curvature values are: 

 First yield moment: 

  My = 4123 kN.m 

 First yield curvature: 

  φ’y = 1.042 1/km 

 Nominal moment: 

  Mn = 5603 kN.m 

 Ideal yield curvature: 

  φy = φ’y Mn / My = 1.42 1/km 

 Ultimate curvature based on flexural response (not necessarily achieved by the pier-wall 

before shear failure occurs): 

  φu = 35.4 1/km 

A.1.3.2 Plastic hinge analysis: 

 In plastic hinge analysis, a region within the pier-wall’s height undergoes inelastic 

deformations whereas other locations remain elastic. The approach allows determining the 

element’s lateral response, in terms of shear forces and displacements, based on the section’s 
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moment-curvature behavior. The curvatures along the region where inelastic deformations 

concentrate are assumed to be constant. The inelastic rotation, θp, is determined by multiplying the 

inelastic sectional curvature, φp, by the plastic hinge length, Lp. The plastic hinge length model 

adopted is that proposed by Priestley et al. [5] for RC walls. 

 Strain penetration length: 

  Lsp = 0.022 fy db = 147 mm 

 Plastic hinge length: 

  Lp = 0.08 hw + Lsp + 0.1 lw = 1007 mm 

 First yield shear force: 

  Vy = 589 kN 

 First yield displacement: 

  Δ’y = φ’y hw2 / 3 = 17 mm 

 Nominal shear force: 

  Vn = 800 kN 

 Ideal yield displacement: 

  Δy = Δ’y Vn / Vy = 23 mm 

 Ultimate displacement based on flexural response (not necessarily achieved by the pier-

wall before shear failure occurs): 

  Δu = Δy + (φu – φy) Lp hw = 267 mm 

 The shear force-lateral displacement curve can be obtained from the sectional analysis 

results by dividing the moment-curvature response into two parts: (1) before first yield with 

moments, M’, and curvatures, φ’, and (2) after first yield with moments, M, and curvatures, φ. The 
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shear force-lateral displacement curve is shown in in Figure A.2. The figure also shows the 

overstrength and shear strength curves. 

 Shear force: 

  V = M / hw  

 Overstrength shear force: 

  Vo = λ M / hw  

 Displacements up to first yield: 

  Δ = φ’ hw2 / 3  

 Displacements after first yield: 

  Δ = Δ’y M / My + (φ - φ’y M / My) Lp hw 

A.1.3.3 Web-crushing capacity 

 Web-crushing capacity can be considered as upper limit at which increasing shear 

reinforcement would not increase the shear strength of the RC member [4].  

 Web-crushing stress: 

  vWC = [0.22 λo / (Δ / Δy) + 0.03] f’c < 0.16 f’c ≤ 6 MPa 

 Shear force based on web-crushing: 

  VWC = vWC Ae  
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Figure A.2 Shear force-lateral displacement response of the designed pier-wall based on plastic 

analysis  

A.2 Building Frame 

 Three degrees of freedom were considered in the formulation of the stiffness matrix as 

shown in Figure A.3. The stiffness matrix is given as follows: 

  

[
 
 
 
 
4𝐸𝑐𝐼𝑐

ℎ𝑐
+

4𝐸𝑔𝐼𝑔
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3 (3𝜌𝐹+2)

12 𝐸𝑐𝐼𝑐 (6𝜌𝐹+1)
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Figure A.3 Stiffness matrix formulation for the building frame 

 The resulted bending moment and shear force diagrams are shown in Figure A.4. The 

moments MA and MB are as follows: 

   𝑀𝐴 =
𝑉 ℎ𝑐 [1− (3𝜌𝐹+2)]

2 (6𝜌𝐹+1)
  

   𝑀𝐵 =
𝑉 ℎ𝑐 [1− 2 (3𝜌𝐹+2)]

2 (6𝜌𝐹+1)
− 

𝑉 ℎ𝑐 

(𝜌𝐹+1)
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Figure A.4 Bending moment diagram (BMD) and shear force diagram (SFD) for the building 

frame 

A.3 Coupled Rocking Walls 

 There are key limit states in the response of an unbounded post-tensioned precast 

concrete wall as follows (see Figure A.5) [111]: (1) decompression of the wall base (DC), (2) 

softening the concrete in compression (SO), (3) yielding of the prestressing tendons (TY), and 
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(4) crushing of the concrete (CC). Figure A.5(b) shows the limit states in the shear force-

displacement (V-Δ) response of the precast wall.  

 

Figure A.5 (a) An unbounded post-tensioned precast concrete wall, and (b) shear force-

displacement curve with response limit states 
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 Figure A.6 shows the free body diagram at the base of the precast wall for the four limit 

states. The resistance moments, base shear forces, and top displacements are calculated for each 

limit state with reference to Figure A.6 in the following sections. 

 

Figure A.6 Free body diagram for each limit state of the precast wall: (a) decompression, (b) 

softening, and (c) tendons yielding (TY) and concrete crushing (CC) 
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A.3.1 Decompression (DC) 

 Moment about point A in Figure A.6(a): 

  Md = C lw / 6 = 41.2 kN.m 

  C = P + T = 206 kN 

  T = Ap fpo = 118 kN 

 Shear force: 

  Vd = Md / hw = 12.5 kN 

 Displacement: 

  Δd = Vd hw3 / (3 Ec Ic) = 0.32 mm 

   Ec = 4700 √𝑓𝑐′ = 27800 MPa 

  Ic = tw lw3 / 12 = 0.01728 m4 

A.3.2 Softening (SO) 

 Moment about point A in Figure A.6(b): 

  Ms = C (lw/2 – c β1/2) = 118 kN.m 

  C = P + T = c β1 0.85 fc’ tw = 206 kN 

  T = Ap fpo = 118 kN 

 The value of β1 can be determined according to Whitney rectangular stress distribution 

adopted in the ACI 318 code [108]. 

 Shear force: 

  Vs = Ms / hw = 35.7 kN 

 Displacement: 

  Δs = Vs hw3 / (3 Ec Ic) = 0.93 mm 
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A.3.3 Tendons yielding (TY) 

 Moment about point A in Figure A.6(c): 

  My = C (lw/2 – c β2/2) = 161 kN.m 

  C = P + T = c β2 α2 fcc’ tw = 296 kN 

  T = Ap fpy = 208 kN  

 The values of β2 and α2 can be determined according to the procedure presented [111]. 

 Shear force: 

  Vy = My / hw = 48.9 kN 

 Displacement: 

  θy = (εpy – εpo) hp / (lw/2 – c) = 0.026 

  Δy = θy hw = 86.2 mm 

A.3.4 Concrete crushing (CC) 

 Moment about point A in Figure A.6(c): 

  Mc = C (lw/2 – c β2/2) = 163 kN.m 

  C = P + T = c β2 α2 fcc’ tw = 299 kN 

  T = Ap fp = 211 kN  

  fp = fpy + (εp – εpy) Ept = 1506 MPa  

  εp = εpo+ θc (lw/2 – c) / hp = 0.0093 

 The ultimate response of the wall was limited by the maximum drift ratio before the 

crushing of the concrete: 

   θc = 0.004 

 Shear force: 

  Vc = Mc / hw = 49.3 kN 
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 Displacement: 

  Δc = θc hw = 132.4 mm 
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