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ABSTRACT

ENERGY DISSIPATION FROM ELASTIC INSTABILITIES OF COSINE-CURVED DOMES
FOR SEISMIC PROTECTION IN REINFORCED CONCRETE STRUCTURES

By
Mansour Turki M Alturki

Conventional seismic design is based on designing structures to resist the imposed seismic
loads within their inelastic range of response. This requires the structures to undergo large
permanent deformations. Although this design strategy usually satisfies safety requirements, the
economic aspects are not usually met due to extensive irreparable damage to the structures in case
of strong ground motion. Therefore, research trends are now focused on satisfying safety
requirements as well as making structures operational immediately after an earthquake. This has
led to the development of new and innovative systems of seismic structural protection that aim to
minimize seismic energy input and to localize demands in replaceable or elastic elements. Several
supplemental passive energy dissipation devices have been developed to achieve this goal.
However, they possess some performance shortcomings such as the requirement of repair or
replacement and the significant increase in the initial stiffness of the host structural system.

In this research, a new self-centering energy dissipation system that relies on elastic
instabilities is proposed as a damping mechanism in structures resisting seismic actions. The
system is composed of serially connected multistable cosine-curved domes (CCD) featuring snap-
through instability. The system exhibits a hysteretic response via the generation of multiple
consecutive snap-through buckling events. Numerical studies and experimental tests were
conducted on the geometric and material properties of individual CCD units and on a system of
units proposed to examine the force-displacement and energy dissipation characteristics. Finite

element analyses (FEA) were performed to: (1) study the controlling geometric and material



properties of the CCD to characterize the snap-through response, and (2) simulate the hysteretic
response of the system to develop a multilinear analytical model, which was used to study the
energy dissipation characteristics of the system. Experimental tests were conducted on 3D printed
CCD units and system specimens to: (1) validate the FEA model of the units, and (2) to analyze
the system and validate the analytical model. Good agreement was observed using the developed
relations for the CCD response and the analytical model with the results from FEA and
experimental tests. Results show that the energy dissipation of the system mainly depends on the
number and the apex height-to-thickness ratio of the CCD units.

The damping characteristics of the proposed system were investigated to facilitate the
direct displacement-based seismic design of structures incorporating such systems as the main
damping mechanism to dissipate seismic energy. Time-history analyses of linear and nonlinear
single degree of freedom systems were performed to compare spectral displacements and the
equivalent viscous damping (EVD) ratios of the hysteretic response of the system to their substitute
linear systems in terms of maximum displacements. A set of 62 ground motion records were
considered for the analysis. A statistical study was conducted on the resulting displacements and
the EVD ratios to develop expressions for EVD ratios of the hysteretic response. Results show that
using proposed EVD ratios for the substitute linear systems yield good approximation for the peak
spectral displacements compared to the original nonlinear systems. Finally, the seismic
performance of typical reinforced concrete structures incorporating the proposed system in various
configurations was evaluated. Direct displacement-based design and nonlinear time-history
analyses of example structures subjected to two historic ground motion records were conducted.
The modified structures using the proposed system showed an enhanced seismic response

compared to the original structures by increasing damping and eliminating damage.
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CHAPTER ONE

1 Introduction

1.1 Motivation and Vision

Earthquakes can impose serious and devastating damage to structures that imply several
safety and economic issues. Even though the seismic design of building, bridges, and other
structures has been highly improved in the past decades, there are still concerning problems not
only affecting economic aspects but also life safety and life sustaining serviceability [1-3]. In the
last few decades, engineers and researchers were able to develop design methods and improve the
seismic performance of structures by allowing the design and the construction of structures to resist
induced seismic loads by localizing damage in designed-specified locations, called plastic hinges,
that allow a structure to inelastically dissipate the energy induced by earthquakes and prevent
structural collapse [4,5]. To practically achieve this, plastic hinges should be carefully detailed to
accept large inelastic deformations without significant strength degradation, while ensuring other
parts of the structure remain elastic — or undamaged.

Conventional seismic design is based on designing structures to a load level that is typically
2 to 8 times lower than that required to resist the imposed seismic loads within their elastic
response regime [6]. This requires that the structure to undergo large inelastic deformations [4,5].
Although this design strategy usually satisfies safety requirements, the economic aspects are not
usually met. The reason is that relying on the inherited ductility of a structure to dissipate seismic
induced energy means accepting extensive irreparable damage to the structure in case of strong
earthquake motion. Therefore, research trends are now focused on satisfying safety requirements

as well as making structures operational immediately after an earthquake [7]. This is achieved by



avoiding damage or limiting and localizing inelastic deformations in replaceable supplementary
elements. This design philosophy is called Damage Avoidance Design [8].

Relying on inelastic deformations to resist seismic demands has led to the development of
new and innovative systems of seismic structural protection that aim to achieve one or more of the
following objectives: (1) minimize seismic energy input, (2) localize demands in replaceable or
elastic elements, and (3) increase damping to minimize or avoid damage. Several passive energy
dissipation devices have been developed to achieve these objectives, which can be classified into
two categories: (a) viscous damping devices [7], and (b) hysteresis devices [9].

Most of the hysteresis energy dissipation devices currently used or proposed in the
literature rely on metallic yielding or sliding friction as mechanisms for energy dissipation. A
common problem with metallic devices is the requirement of repair or replacement of the device
after a strong seismic action due to damage. A problem with friction-based devices is that they
significantly increase the initial stiffness and strength of the host structure, which in turn increases
force demands on other members of the structure that should remain elastic. In addition, neither
type of the noted hysteresis devices offers self-centering capability. On the other hand, viscus
damping devices are rate-dependent and require high excitation frequency to be effective.

Increased attention has been recently given to systems that utilize elastic instabilities for
energy dissipation and shock absorption. The reason is that the mechanical deformations of such
systems are fully reversible since the total response is within the elastic regime of the constituent
base material [10-12]. Usually, these systems consist of parallel chains of multistable elements or
unit cells that are connected in series and respond to a common load in a progressive manner.
When these elements are loaded under displacement control they show a negative stiffness region

due to geometric nonlinearity [13]. The consecutive snap-through events of the repeating units



enable attaining a hysteretic force-deformation response. These systems can thus be used to

elastically absorb and dissipate energy.
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Figure 1.1 Example applications of the MCCD system incorporated in typical structural systems:
(a) frame with chevron braces, (b) pier-wall, (c) single-column, and (d) double-column MCCD
systems

Recent developments in innovative discrete systems with energy dissipation from elastic
instabilities has facilitated the potential of using such systems for energy dissipation and shock
absorption applications [11,12]. One potential application of discrete systems is the damping
mechanism in structures resisting seismic actions as shown in Figure 1.1. The figure shows
example structural systems equipped with supplementary energy dissipation devices comprised of
chains of multistable elements. The possibility of using such elements for seismic protection
enables avoiding the previously noted shortcomings of commonly used passive hysteresis energy

dissipation devices and also offers self-centering capability.



However, a reliable multistable element that is able to withstand seismic induced loads and
maintains its design behavior under loading is not yet available. Therefore, proving this idea
requires developing and characterizing a reliable elastic multistable element and an elastic energy
dissipation system, and then incorporating the developed mechanism into typical structural
systems under seismic loading. In this research, a new shallow dome-shaped multistable element
with cosine-curved profile [Figure 1.2(a)], called cosine-curved dome (CCD), and a new energy
dissipation system comprised of multiple cosine-curved domes (MCCD) connected in series
[Figure 1.2(c)] are developed and characterized. The damping characteristics of the proposed
system were also investigated in support of the displacement-based seismic design philosophy.

Finally, the seismic performance of structures incorporating the proposed system was evaluated.
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Figure 1.2 The MCCD system: (a) cross-section of a single CCD unit, (b) schematic force-
displacement response of a single CCD, (c) MCCD composed of multiple CCDs, and (d)
schematic hysteretic response of an MCCD system. Note that ¢ is the local CCD displacement
while 4 is the global system displacement.



1.2 Background

1.2.1 Stability states of snap-through response

In civil structures, elastic instabilities have been usually regarded as a failure mode to be
avoided. However, recent research directions have shown that elastic instabilities of various types
of structural elements can be considered as a useful phenomenon for diverse applications because
they offer reversible deformations and their response can be tailored, which allows controlling the
magnitude and the recoverability state of the deformations.

Snap-through response is a form of elastic instability that occurs when a transversely
loaded element of a geometric shape that primarily develops membrane stresses reaches a limit
point in its response that causes the element to change its shape before experiencing buckling by
developing local bending stresses [13].

The potential energy, Up, of a conservative system (ideally constrained elastic body under
external work), such as the CCDs considered in this work, consists of the applied work, W, on the
system and the elastic strain energy, U, as follows [14]:

U=U+W (1.1)
The stability state along the equilibrium path of the system is governed by the second variation of
the potential energy with respect to the displacement, ¢, (the Lagrange variational equation) as
follows:

1. The equilibrium is stable if 92U, /252 > 0.
2. The equilibrium is unstable if 02U, /6% < 0.

The first condition represents the equilibrium path between the origin point and the point on the
force-displacement (F-o) curve at ¢, and from point J, and on as shown in Figure 1.3(d-f). The

unstable path between the points on the curve 6. and Jn in Figure 1.3(d-f) satisfies the second



condition. This can be inferred by knowing that mathematical sign of the slope of a tangent line
(current stiffness) along the F-o curve, or

0%U,/06% = 0F /06 (1.2)

The post-snap-through response of a multistable element can be classified into three
categories as shown in Figure 1.3 [15]. Each type of response depends mainly on the shape of the
strain energy-displacement (U-o) curve, which is related to the force-displacement curve (F-9).
Knowing the geometric and material limits allow controlling the type of response (stability state)
of the element.

Figure 1.3(a) and (d) show a bistable response, where the U-6 curve has a local maximum
strain energy point, Umax, and a local minimum strain energy point, Umin, at non-zero displacements
before the energy (U) continues to increase with increasing displacement (d). In this type of
response, the element snaps into a new configuration and cannot restore its original configuration
upon unloading without the application of an external restoring force (i.e., not self-recoverable).
In this case, some of the induced energy is trapped in the system and hence the F-J curve has a
negative force part (in opposite direction to the deformation being generated).

A monostable response [Figure 1.3(b) and (e)] is defined when the E-J curve is monotonic
and the F-o curve has no negative force part. In this type of response, the element snaps back to
its original configuration upon unloading, without application of an external restoring force, as
long as material damage does not occur.

In a pseudo-bistable response [Figure 1.3 (c) and (f)] the E-o curve has a flat segment (i.e.,
Umax = Umin) before the energy continues to increase with increasing J, and the F-0 curve has a
zero force value at a non-zero displacement. This response represents a transition state between

bistable and monostable responses where the element snaps and restores its original configuration



after unloading, and without the application of an external restoring force, but with a time delay

depending on the viscoelastic properties of the material [16].
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Figure 1.3 Typical strain energy-displacement and force-displacement of an element with snap-
through behavior



1.2.2 Energy dissipation from elastic instabilities

When a system of several multistable elements connected in series is mechanically loaded
the units consecutively snap-through to a new stability state within their elastic range. Upon
unloading the system, the units consecutively snap-back to their original configuration, either by
a restoring external force for bistable elements or by self-recoverability (preferred) for monostable
elements. If a sufficient number of connected units in series is used the system follows distinct
loading and unloading paths resulting in a hysteretic response, as shown in the system response in
Figure 1.2(d). The area enclosed by the loading and unloading curves represents the elastically
dissipated energy.

Several systems comprised of straight and curved elements developed and proposed in the
literature [11,12] have been shown to display the noted hysteretic response. The amount of
dissipated energy from these systems depends on: (1) the number of linked elements in series, and
(2) the difference between local energy maxima and minima (Figure 1.3) of the individual
element’s response. The higher the values of these two factors the larger the area enclosed by the
hysteretic response will be.

The energy dissipation in such elastic systems is due to the transformation of some of the
induced mechanical energy of the applied work into elastic vibrations that are damped by the base
material of the repeating units and converted to irreversible thermal energy (heat) with each snap-
through event [10]. These elastic vibrations occur when the deforming system has at least 3 or
more elements connected in series to allow the relative movement of the units at a given system
displacement of a snapping event. Increasing the number of linked elements in series has two
effects on the response of the system as can be inferred from Figure 1.4: (a) it increases the number

of vibrating elements in the system, and (b) it increases the number of events of system disturbance



that causes vibrations. Thus, it can be concluded that the relation between dissipated energy and

number of units is nonlinear. This is discussed in detail in Chapter 4.
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Figure 1.4 Effect of increasing the number of serially connected elements on the dissipated
energy

Studies [17,18] on the dynamic behavior of discrete chains with multistable elements
indicate that loading rate (in addition to other factors) has dynamic effects on the response of such
systems. In fact, even at quasi-static loading conditions, discrete systems exhibit high frequency
vibrations from the snap-through events [18]. These damped vibrations are the main contributor
to the dissipated energy from the discrete system even at very low loading rates. Thus, the
hysteretic response of these multi-element systems can be seen as independent from loading rate.
Furthermore, it could be said that increasing the loading rates has a positive effect on the amount
of dissipated energy since it was shown in [19] that increasing the loading rate results in a wider

hysteresis response envelope.



1.3 Research Hypothesis and Significance

1.3.1 Hypothesis

Elastic energy dissipation through hysteretic response of the consecutive snap-through
instabilities of multiple multistable cosine-curved domes can be effectively used as the main
damping and energy dissipation source to resist seismic induced loads in reinforced concrete (RC)

structures.

1.3.2 Significance

Utilizing the hysteretic response and energy dissipation resulting from the consecutive
snap-through instabilities of multiple multistable elements in structural systems to resist seismic
demands is an underexplored topic. This work introduces a new concept for energy dissipation
from elastic instabilities as a damping mechanism to reduce seismic induced structural demands,

eliminate or limit permanent deformation, and offer self-centering capabilities.

1.4 Research Objectives

The objective of this work is to develop and characterize the response of a reliable
multistable element and an elastic energy dissipation system to withstand seismic induced loads
as the main damping mechanism in RC building and bridge structures, and to evaluate the seismic
performance of these structures under ground motion records. The objective was achieved through
the following tasks:

Task 1 Development of a multistable element:

Task 1.1 Development of cosine-curved domes (CCD). To develop a self-confined

multistable elastic element capable of achieving snap-through instability with controllable

response over a wide range of geometric parameters.
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Task 1.2 Response characterization. To investigate the response and the stability

characteristics of the proposed CCDs by studying the controlling geometric and material
properties numerically and experimentally.

Task 1.3 Design expressions. To develop design expressions for the limit that governs the

transitional stability state and to construct a simplified multilinear response of the element.
Task 2 Elastic energy dissipation system:

Task 2.1 Response characterization. To investigate numerically and experimentally the

response and the energy dissipation characteristics of the MCCD system by studying the
number of units and the controlling geometric properties.

Task 2.2 Hysteresis Model To develop an analytical model that describes the hysteretic

response of the MCCD system including the intermediate unloading and reloading paths
based on numerical results and validated by experimental tests.
Task 3: Equivalent viscous damping:

Task 3.1 Response idealization. To idealize the hysteretic response of the MCCD system

for the nonlinear time-history analysis of structures incorporating the MCCD system by
maintaining the energy balance between the actual and the idealized responses.

Task 3.2 Equivalent damping. To investigate the equivalent viscous damping for the

hysteretic response of the MCCD system by performing a parametric study for a set of
ground motion records.
Task 4: Evaluation of the seismic performance:

Task 4.1 Incorporation of the MCCD system in structures. To conduct the seismic design

RC structures incorporating the MCCD system using the direct displacement-based design

method.
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Task 4.1 Performance evaluation. To evaluate the seismic performance of the designed RC

structures incorporating the MCCD system under real ground motion records through

nonlinear time-history analyses.

1.5 Outline

This dissertation is divided into seven chapters. A brief description of the contents of each
of the subsequent chapters is presented as follows. Chapter 2 reviews elements and systems with
elastic instabilities in terms of their geometric design and response characteristics. The chapter
also presents a review on passive hysteresis energy dissipation devices for seismic protection.
Chapter 3 presents the development and the response characterization of CCDs, including
numerical modeling, experimental testing, and a parametric study to develop design expressions
for the CCDs. Chapter 4 presents the development of the MCCD system and studies its response
and energy dissipation characteristics through the development of an analytical model and
experimental testing. Chapter 5 introduces the hysteretic response of the MCCD system to seismic
design by investigating the equivalent viscous damping and considering the unique characteristics
of the systems’ response. Chapter 6 evaluates the seismic performance of the MCCD system
incorporated in different configurations in typical reinforced concrete structures as the main
damping mechanism for seismic protection. Chapter 7 summaries the conducted work and

provides the conclusions and recommendations for future research work.
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CHAPTER TWO

2 Literature Review

2.1 Overview

This chapter is divided into two parts. The first part presents a review on elements and
systems with elastic instabilities for energy dissipation applications. The review highlights the
basic types of elastic instability associated with the presented elements and the response
characteristics of systems composed of them. The second part reviews published literature on
passive hysteresis energy dissipation devices for seismic protection of structures. The review
presents the hysteretic and mechanical behavior of the devices and their advantages and

disadvantages.

2.2 Elements and Systems with Elastic Instabilities

Several elements with elastic instabilities have been investigated in the literature. These
elements can be categorized based on their geometric shape and loading direction into four
categories: (1) transversally loaded inclined elements, (2) transversally loaded curved elements,
(3) transversally loaded surfaces of revolution, and (4) axially loaded elements. Discussion and

examples for each type are presented in the following.

2.2.1 Transversally loaded inclined elements

Transversally loaded inclined elements are direct applications of the classical case of a von
Mises truss [13]. Under a transverse load, the members of such a system snap-through from their
original configuration to an inverted configuration. The truss exhibits a nonlinear limit-point F-6

response as shown in Figure 1.3. This response is ensured as long as axial forces (due to the
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transverse load) in the inclined members does not cause buckling before snapping. This mainly
depends on the inclination angle and the axial stiffness of the members. The members here can be
straight beams, rods, or plates. Example applications of this case are those developed in [20-27]
as shown in Figure 2.1.

(b)

8 =60

Figure 2.1 Examples for multistable inclined elements and unit cells: (a) identical tilted beams
[20], (b) shallow geodesic lattice domes [25], and (c) shallow reticulated truss [26]

Many researchers have used inclined elements as the building units in many structures
utilized to elastically absorb and dissipate energy. Haghpanah et al. [21] proposed 2D and 3D
shape-reconfigurable lattice materials that allow independent multi-axial deformation and exhibit
hysteretic response. The unit cells are connected in series and each unit cell comprises several
inclined beams as shown in Figure 2.2(a). Ha et al. [23] also proposed an energy absorption lattice
of serially connected unit cells comprised of four inclined beams confined by rectangular plates as
shown in Figure 2.2(b). Liu et al. [27] proposed an innovative controllable energy dissipation
system consists of arrays of inclined beams that are serially connected as shown in Figure 2.2(c).
The inclination of the beams is alternated from on array to the other to allow shear loading in two

opposite directions [see Figure 2.2(c)].
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Figure 2.2 Examples for energy dissipation systems with inclined elements: (a) shape-
reconfigurable materials [21], (b) multiple tetra-beam-plate lattice [23], and (c) periodic arrays of
inclined beams [27]

2.2.2 Transversally loaded curved elements

Transversally loaded curved elements also capable of showing snap-through behavior.
Similar to that of inclined elements, and curved elements are also affected by the same factors in
addition to the curvature profile of the element. Example applications of this case are those
developed in [28-40] as shown in Figure 2.3.

@ ®)

! =10 mm

Figure 2.3 Examples for multistable curved elements and unit cells: (a) curved double beams
under tension [36], (b) T-shaped double curved beams [37], and (c) bistable arches [39]
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Double curved beams and rods are widely investigated and used as building units in energy
dissipation systems. The reason is that they can be easily arranged in various configurations in a
periodic structure. Correa et al. [29] developed an energy dissipation system with a honeycomb
configuration. The system comprised of multiple curved double beams. The lateral expansion of
the unit cells is restricted by central tie-beams as shown in Figure 2.4(a). Findeisen et al. [34]
proposed a 3D periodic structure that consists of multiple unit cells. The cells are comprised of 3
rods of a sinusoidal shape confined by hexagonal base structure as shown in Figure 2.4(b).
Kidambi et al. [37] investigated the characteristics of modular mechanical structure experimentally
and numerically. The structure consists of serially connected bistable double-curved beams as
shown in Figure 2.4(c).
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Figure 2.4 Examples for energy dissipation systems with curved elements: (a) Negative stiffness
honeycombs [29], (b) 3D hexagonal micro-lattices [34], and (c) multistable modular structures
[37]
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2.2.3 Elements with surface of revolution

The stability, buckling capacity, post-buckling behavior, and deformation symmetry of
spherical domes and shells under a concentrated load at the apex have been the subject of several
studies. Mescall [41] performed a numerical study by solving the nonlinear equations governing
the axisymmetric deformations of spherical shells, for unrestrained and clamped edges, to examine
the effects of geometric parameters and boundary conditions on their response. Penning [42]
conducted an experimental investigation to study buckling deformations of clamped spherical
shells under a concentrated load. Fitch [43], and Brodland and Cohen [44] conducted an analytical
study to investigate the deflection, snap-through buckling, and the occurrence of asymmetric
bifurcation points before axisymmetric snap-buckling, by examining a single material-geometry
parameter (1) that governs this phenomenon for clamped and unrestrained shallow spherical
domes. This parameter depends on the geometric and material properties of the domes and is given
by Equation (2.1), where a and b are the spherical and base radii, respectively, t is the uniform
thickness (see Figure 2.5), and v is the Poisson ratio. It was concluded that asymmetric bifurcation
occurs when a spherical dome becomes deeper and thinner (i.e., higher values of 1).

A=[12(1-v)]"* b/ (at)? (2.1)

Figure 2.5 Geometry of a clamped spherical dome
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Brinkmeyer et al. [16] and Madhukar et al. [15] also performed combined experimental
and numerical studies using finite element analyses (FEA) to examine the effects of geometric and
material properties on the stability state of unrestrained spherical domes. Brinkmeyer et al. [16]
found that pseudo-bistability occurs for domes when 5.31 < A < 5.35. Madhukar et al. [15]
proposed an expression for pseudo-bistability that depends on the geometric parameters of a dome.

The study conducted by Mescall [41] showed that spherical domes with unrestrained and
clamped edges could display snap-through instability. Unrestrained domes required 2 > 3.75 to
display snap-through, while clamped domes required 1 > 9. However, the study by Fitch [43]
showed that spherical domes with clamped edges and 4 > 9.2 would have a bifurcation point and
asymmetric deformations at a load below the critical load for axisymmetric snapping instability.
These two findings impose a very narrow range of 1 (i.e., 9 to 9.2) for spherical domes with
clamped edges to display axisymmetric snap-through response. Therefore, it seems that clamped
spherical domes cannot practically have reversible axisymmetric snap-through instability even
when the previous two limits are met. Therefore, it can be noticed that spherical domes are not

used in periodic structures for energy dissipation.

2.2.4 Elements with buckling instabilities

Many other structures have been investigated to obtain multiple elastic instabilities for a
multistable response. The simplest is an elastic compressed column with continuous bilateral
constraints [45,46]. In such a system, compressive axial load is applied to the column causing it to
buckle multiple times in an elastic post-buckling regime before reaching material damage. Another
example are tailored cylindrical shells under axial compressive loading [47,48], where geometric
imperfections are seeded into specific regions to control the elastic post-buckling response. The

common phenomenon among these structures is that they undergo elastic post-buckling response
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after reaching a critical point. However, they differ in their post-buckling behavior and their

relative deformability.

2.3 Structural Systems with Passive Energy Dissipation Devices

As mentioned earlier, the trends of seismic protection in building and bridge structures are
moving towards directing seismic demands to specific parts of the structural system where
supplementary energy dissipation devices accept these demands. This methodology allows
concentrating damage in replaceable or elastic parts which in turn make structures operational after
short periods of time or even immediately after strong ground motion. Several investigations in
the literature applied this concept using various types of energy dissipation devices on various
structural configurations [9] and showed excellent performance under loading.

Seismic protection devices and systems can be classified into three categories [7]: (1)
seismic isolation systems, (2) passive energy dissipation systems, and (3) active control systems.
An overview of metallic yielding and sliding friction based passive hysteretic energy dissipation

devices is presented here.

2.3.1 Metallic energy dissipation devices

Metallic dampers are one of the oldest and widely used devices for seismic protection [49].
They rely on inelastic deformations through axial, flexural, or shear actions to dissipate induced
seismic energy. This reliance is the main drawback of such devices since these deformations are
not recoverable, and hence they require replacement or extensive repairs after strong earthquakes
[9]. Nonetheless they offer reliable, stable, and well-defined hysteresis response. These devises
show wide hysteresis loops and therefore dissipate a large amount of energy. Classical examples

of these devices are the added damping and stiffness [50] and the buckling-restrained brace [51]
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dampers. In recent years, many researchers have proposed several new and improved metallic
devices aiming to: (a) increase the amount of dissipated energy per unit of deformation, (b) using
different loading mechanisms, and (c) facilitate repairs of a device’s elements after damage.
Examples of these devices include a bar-fuse damper [52], seesaw slit dampers [53], a combined
shear-and-flexure yielding damper [54], a piston metallic damper [55,56], a yielding shear panel
device [57], a saw type energy dissipater [58], and an accordion metallic damper [59]. Figure 2.6

shows example metallic dampers with their force-deformation responses.
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Figure 2.6 Examples for metallic energy dissipation devices: (a) bar-fuse damper [52], (b)
seesaw slit damper [53], and (c) accordion metallic damper [59]

2.3.2 Sliding friction energy dissipation devices

Sliding friction devices are also capable of dissipating a large amount of energy comparable
to that of metallic devices. They utilize surface friction between two solid bodies moving relative
to each other that turn the mechanical motion into heat. A disadvantage of this mechanism is that

friction surfaces are susceptible to damage over time and they require a self-centering mechanism
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to recover deformations. Their response is characterized by high initial stiffness and large
hysteresis; however, their relative energy dissipation capacity is reduced when they are combined
with a self-centering mechanism. An early example of using friction as energy dissipation
mechanism is the friction joints in precast concrete structures developed by Pall et al. [60].
Recently, several sliding friction devices combined with self-centering mechanisms were
developed, such as friction disc dampers [61], high-capacity self-centering energy-dissipative
dampers [62], spring-based piston bracing [63], ring spring dampers [64,65], and self-centering
friction damping braces [66,67]. Figure 2.7 shows example friction dampers with their force-
deformation responses.
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Figure 2.7 Examples for friction energy dissipation devices: (a) friction discs damper [61], (b)
ring spring damper [65], and (c) self-centering friction braces [66]
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CHAPTER THREE

3 Characterization of Cosine-Curved Domes

3.1 Overview

In this chapter, numerical and experimental studies were carried out to study the effects of
the geometric and material properties on the behavior of the multistable cosine-curved domes
(CCD) under a concentrated transverse load, and to characterize the resulting force-deformation
response. This is accomplished by conducting a parametric study using experimentally validated
finite element analyses (FEA) on the properties governing the response of the CCD. The limit that
governs the transitional state between bistable and monostable states is identified, and a simple
expression is proposed to facilitate the design of CCDs with a desired stability state. Empirical
design expressions were developed for the controlling parameters to construct a simplified
multilinear response that could be used to calculate the response for a system of multiple CCDs,
which can attain controllable energy dissipation characteristics. The study presented in this chapter

was published in the journal Thin-walled Structures [68].

3.2 Background

A new shallow dome-shaped structural element that exhibits multistable elastic behavior
is presented in this chapter. The element offers reliable and reversible large elastic deformation
that could be used as a building unit for devices subjected to relatively high forces [69] for energy
dissipation and repeated use. Such devices usually have a hysteretic response that is based on
consecutive snap-through instabilities of a sufficient number of units that are connected in series

[70].
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The interest in studying shallow domes originates from the fact that they can be fabricated
in curved revolved profiles (i.e., aside from spherical shapes) that allow them to have a tunable
multistable response. These domes can snap-through to a new configuration within their elastic
range of response and snap-back with or without a restoring external force without damage. This
deformability enables these domes to absorb and/or trap strain energy and release all or a part of
it to restore their original configuration [13].

Several multistable elements with the ability to exhibit snap-through instability with large
elastic (reversible) deformations have been investigated and reported as discussed in Chapter 2.
Such elements can be used as the building units in many structures utilized to elastically absorb
and dissipate energy. Although these structures show the ability to absorb shocks and dissipate
energy, they possess some design disadvantages when considering large-scale applications where
high force levels are expected, such as applications for seismic protection in buildings and bridges.
These disadvantages include high stress concentrations at the elements’ constraining edges, low
relative threshold forces, and the requirement of constraining other buckling modes to attain a
symmetric deformation response.

A possible multistable element to overcome these disadvantages are spherical domes under
a concentrated load at the apex, which have been the subject of several studies [41-44]. However,
the study by Fitch [43] showed that spherical domes with clamped edges require high apex height-
to-thickness ratio to display snap-through instability. However, this high ratio also makes spherical
domes with clamped edges highly vulnerable to bifurcation and asymmetric deformations at a load
below the critical load for axisymmetric snapping instability. These two findings impose a very
narrow range for spherical domes with clamped edges to display axisymmetric snap-through

response. Therefore, it seems that clamped spherical domes cannot practically have reversible
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axisymmetric snap-through instability even when the previous two limits are met nor have
controllable response. In contrast, this investigation shows that the shallow cosine-curved domes
(CCD) proposed here have a wide range of geometric ratios for which symmetric snap-through is
achievable.

The interest in domes with clamped edges originates from that fact that they can be used
in many structural applications as an integrated part of systems, compared to domes with
unrestrained edges. For example, the shock absorbers proposed in [19,20,29,36] consist of
multistable elements as unit cells where each unit is attached to the adjacent units via rigid
segments that provide system integrity to resist a common load, as well as the required constraints

for individual units to respond in the desired way.

3.3 Methods

3.3.1 Research aim and scope

The cross-sectional profile shape of the proposed CCD is based on the cosine function
given in Equation (3.1) [71], where w(X) is the vertical distance from the horizontal chord line to
the dome’s profile shape at a distance X from the circumference as shown in Figure 3.1. The dome’s
base along its circumference is connected to a rigid ring that constrains rotations and edge sliding
of the dome under loading.

w(x) = h/2[1 - cos(Znx/])] (3.2)

This equation represents the shape of the first buckling mode of a fixed-fixed straight beam
under axial compressive loading. The benefit of using the cosine-curved shape over a spherical
one is that it enables the dome to have a symmetric snap-through to a monostable or a bistable

state. This profile was inspired by the shape of curved double beams loaded laterally [72].
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However, unlike the curved double beams, a CCD doesn’t require restricting other buckling modes
to have a symmetric reversible snap-through response. They also have lower stress concentrations

at the supporting edge compared to systems composed of curved double beams or inclined beams.

(a) ~ diﬁ

Figure 3.1 Geometric parameters of a typical CCD: (a) a cross-section at the apex, and (b) the
idealized system

The scope of this study is thus on the response of shallow CCDs that, upon being
transversely loaded at their apex, display an elastic response and limit-point critical instability with
a snap-through geometrical transition. When a shallow CCD is loaded beyond its limit-point it
snaps-through to a new configuration. The force-deformation response is nonlinear before and
after the limit-point snap-through instability (initial loading path and unstable path), with a fairly
linear response upon continued loading in the new configuration (Figure 1.3). While the unstable
response path (negative tangent stiffness) cannot be obtained under force-controlled loading, it can
be attained in a stable manner under displacement-controlled loading. Snap-through instability,
also called limit-point instability or snap instability, does not involve any bifurcation of the

equilibrium path [13].
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3.3.2 Modeling and analysis

The CCD element studied was idealized as shown in Figure 3.1(b). The dome’s horizontal
orientation is along the shown x-axis and the vertical direction is perpendicular to it. The dome is
modeled with clamped boundary conditions along its base circumference. Loading is assumed to
be applied by a vertical concentrated load (F) at the dome’s apex, and directed downwards. The
applied load causes a vertical (transverse) displacement J. The key geometric parameters on the
CCD’s response are the uniform thickness, t, the base diameter or span length, |, the apex height,
h, and the diameter of the loading area, d, as shown in Figure 3.1 (a). The CCDs examined here
are considered shallow and thin shells with a height-to-span ratio of less than 1/5 and a thickness-
to-radius of curvature ratio of less than 1/20 [69].

Nonlinear geometric finite element analyses (FEA) were used to examine the force-
deformation responses of CCDs using the program ABAQUS [73]. The CCD was modeled as a
3D deformable revolved shell object with linear elastic isotropic material properties and four-node
shell elements (S4) for the mesh. The mesh size was selected based on a mesh refinement study.
Displacement control was used to apply a static incremental displacement at the dome’s apex, and
large deformations were accounted for by considering geometric non-linearity in the analyses.
Eigenvalue analyses were conducted to verify predicted snap-through instability by confirming
that the bifurcation loads were higher than the limit-point load. For cases where the analyzed CCD
was deep and thin (i.e., high h/t), the automatic stabilization option in ABAQUS’s solver was used

to facilitate a converged solution.

3.3.3 Experimental validation
Experimental tests were conducted on 3D printed CCDs to examine the three stability states

presented in Figure 1.3, and to compare the experimentally obtained F-o response to those
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generated from the FEA. The CCDs were fabricated using a 3D polymer-based printer (MakerBot
Replicator 2) with polylactic acid (PLA) filament. Due to imperfections from the manufacturing
process the “as printed” dimensions varied slightly (about 10%) from the nominal design values.
The design and the “as-printed” dimensions for the test specimens are given in Table 3.1. This is
important since small changes in t or h significantly change the dome’s response and the desired
stability state. Thus, the FEA simulations were based on the ‘as-printed’ dimensions. The PLA
material has a reported Poisson’s ratio, v, of 0.33 and an average modulus of elasticity, E, of 1,582
MPa [29].

Table 3.1 Design and ‘as-printed’ dimensions of experimentally tested CCDs

Specimen Design dimensions ‘As-printed’ dimensions
t(mm) | h(mm) | I (mm) | t(mm) | h (mm) | | (mm)
M 15 5.00 120.0 1.82 4.58 119.3
2M 1.5 5.00 120.0 1.74 4.46 119.2
3B 1.00 6.00 100.0 1.26 5.66 98.4
4B 1.00 6.00 100.0 1.17 5.67 98.7
5M 0.84 3.20 102.0 1.13 2.78 100.4
6M 1.00 3.20 102.0 1.18 2.91 101.7
8P 1.20 5.00 100.0 1.39 4.41 101.5
8P 1.20 5.00 128.8 1.45 4.29 126.9
9B 0.60 3.50 60.0 0.70 3.40 59.9
10B 0.60 3.50 60.0 0.87 2.91 59.8
11P 0.60 2.00 50.0 0.72 1.97 49.9
12B 0.60 2.60 60.0 0.74 2.62 59.9
13M 0.65 2.50 65.0 0.86 2.50 64.9
14M 0.60 1.80 50.0 0.73 1.76 50.9
Note: M: monostable, B: bistable, P: pseudo-bistable

Tests were performed using a universal testing machine with custom fixtures (indenter) to
apply a concentrated vertical load at the CCD apex, as shown in Figure 3.2. Loading was done
under displacement control, applying an incremental displacement at a constant rate of 0.1 mm/s.
For CCD specimens with bistable response (Fn < 0), the loading indenter was mechanically

attached to the apex of the CCD and the specimen was also clamped to the platen. Figure 3.3 shows
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the loading stages for a monostable and a bistable CCDs. The figure illustrates the shape

recoverability of the monostable compared to the bistable CCDs.

Load cell

Loading
direction
Indenter

Specimen

| Platen

Z
SIS IS
? /////////////////
177777

Figure 3.2 Test setup for CCD under axial compression

(b)

. -

= 3
I |

Figure 3.3 Loading stages for: (a) monostable CCD, and (b) bistable CCD
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Figure 3.4 shows experimental F-o responses for CCD specimens with ‘as-printed’
dimensions as given in Table 3.1. The actual modulus of elasticity of a 3D printed part is highly
sensitive to the orientation of the printed layers and to the direction of loading [74,75]. For
example, the investigation conducted by Perkowski [76] on the mechanical properties of 3D
printed PLA parts showed that the modulus of elasticity ranged from about 550 to 3,100 MPa in
tension and from 570 to 1,650 MPa in compression. Therefore, the FEA F-6 response in Figure
3.4(a) was scaled for E so that F, was equal to that of the experimentally measured data. The
scaling factor was determined by conducting a FEA for a CCD with ‘as-printed’ dimensions and
an elastic modulus value of unity and then dividing the value of F¢ (or any other value) on the
experimental F-o curve by its counterpart of the same displacement on the FEA curve. The scaling
factor was 851 MPa, which represents the most representative value of E for the specimen. This
procedure is valid as long as most parts of the two curves coincide; however, an exact agreement
cannot be obtained because of the presence of imperfections and the non-uniformity of the ‘as-
printed’ dimensions. Moreover, this procedure is only valid for elastic responses as discussed in
Section 3.4.5.

Figure 3.4(a) shows a comparison between the experimental and numerical (FEA) F-6
responses for CCD specimen 5SM with ‘as-printed’ dimensions (given in Table 3.1). Figure 3.4(a)
shows two F-o responses from FEA based on (1) the scaling factor and (2) an average value for E
of 817 MPa. This value of E was determined from a series of tests on 3D printed ASTM D695
specimens, for which the print layers were oriented perpendicularly to the longitudinal axis to

closely represent the loading conditions of the tested CCDs.
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Figure 3.4 (a) F-o curves for specimen 5M from experiment compared to FEA, and (b)
experimental F-¢ curves for specimens 11P, 12B, and 6M

3.4 Parametric Study

A parametric study was carried out on the geometric parameters t, I, h, and d, (see Figure
3.1) and the material properties E and v, to study their effects on the response of CCDs. The study

was conducted using FEA by systemically varying one of the parameters, while keeping the others
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unchanged. The investigated response quantities [see Figure 1.3(d)] were the critical limit load,
Fe, the critical displacement, Jy, the negative or minimum force, Fn, and the non-zero displacement
at the minimum force, on. The study also evaluated the resulting shape of the F-¢ curve since it
characterizes the post-buckling behavior. Moreover, normalizing ratios such as ¢/ and h/t were
used to study the curve shapes. The study was conducted for CCDs with 1.5 < h/t <7.5 and h/l <
1/16 [69]. The FEA were performed by varying | and fixing t and h and then repeating the same
process for different values of t and h. The material constants were kept unchanged at E = 1500
MPa and v = 0.33.

As discussed in Chapter 1, the F-¢ curve is related to the U-o curve (Figure 1.3). The
difference between the maximum and minimum strain energies, AU, (i.e., AU = Umax - Unmin) IS
directly related to the value and the mathematical sign of F,, and hence the stability state of a CCD.
When AU is greater than zero F is negative and the response is bistable. When AU equals to zero
Fn also equals zero and the response is pseudo-bistable. Local maxima and minima do not exist
when the U-6 curve is monotonic, hence Fn is greater than zero and the response is monostable.
Therefore, this study focuses on the F-o curve rather than the U-J curve to examine the stability
states since dealing with a single quantity (Fy) is easier than dealing with two quantities (Umax and

Umin)-

3.4.1 Effect of length (1)

The effect of varying | on the F-¢ response curve is shown in Figure 3.5(a). The values of
Fcand | Fu| decrease with an increase in I, while d; and Jy, are not affected by the change in I. To
further examine the effect of varying | on the shape of the F-¢ curves it is necessary to normalize
them to a factor in terms of I. A least square regression analysis [77] was used to determine the

value of a power “a” for a factor 1* to be multiplied by F for constant values of t and h. Since the
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curves may have different post-buckling responses, regression analyses were performed on the
values of Fc, which resulted in a = 2. It was found that normalizing the F-¢ curves by the factor 12
results in exact agreement among them over the entire response range (pre- and post-buckling) as

shown in Figure 3.5(b).
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Figure 3.5 Actual and normalized F-¢ curves of CCDs with constant t and h, and varying |
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This shows that | has no effect on the type of response of the CCD. Thus, for example, if
the F-o response has a bistable shape, then this response type will not change to a monostable or
pseudo-bistable by changing I. The reason is that since the examined CCDs are shallow where the
span-length | is much larger than the thickness t and the apex height h, the variation in length has

an insignificant effect on the ratios h/l and t/I.

3.4.2 Effect of thickness (t)

A similar procedure was followed by analyzing CCDs with varying t while fixing other
parameters. Analysis results show that t has a dominant effect on the shape of the F-¢ response
curve, as shown in Figure 3.6(a), where the values of Fc and F, can be seen to increase with an
increase in t. In addition, by increasing t the response changed from bistable to monostable. This
means that Fn increases relative to F¢ and that the ratio h/t is decreasing.

The force values in the curves of Figure 3.6(a) need to be normalized in terms of t to
compare them and assess the effect of t. A least squares regression analysis [77] was used to
determine the value of “8” for the factor 1/t # for constant values of h. For this case the value of |
has no effect on S, and hence it was not included in the analysis. Since the curves have different
post-buckling responses, the regression analysis was performed only on the values of Fy, to find f.
A constant value of g = 2.412 was found. The same value of S would be determined if the
regression analysis was performed on the F-¢ curve data up to Fe.

The normalized curves are shown in Figure 3.6(b). Comparing Figure 3.6(a) and Figure
3.6 (b) shows that Jc and Jc/h are roughly the same for all cases and thus they are only slightly
affected by the change in t or h/t. On the other hand, d» and on/h decrease with increasing t or

decreasing h/t. From Figure 3.6(b), the normalized values of F. are approximately the same for
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varying t, while they are different for the case

behavior.
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3.4.3 Effect of height (h)

Analysis results showed that CCD height (h) has a complex effect on the shape of the F-o
curves, as shown in Figure 3.7(a). This effect can be grouped into three features: (1) Fc increases
with h, similar to the effect of t; (2) Fn decreases with h, opposite to the effect of t; and (3) h
increase shifts the F-6 curve with increased values for the critical displacements & and on. It can
be construed that the ratio h/t mainly controls the shape of the F-o curve and hence the stability
state. Figure 3.7(a) also shows that d. and Jn, increase with an increase in h or hft.

The force values in Figure 3.7(a) were normalized with the factor 1/h” in order to examine
the shape of the F-o curves. The normalized curves are shown in Figure 3.7(b). The value of “y”
was determined to be equal to 1.582 through a least squares regression analysis on the values of
Fc. The normalized curves in Figure 3.7(b) show that dc/h is approximately the same for all cases
and thus they are only slightly affected by the change in h. On the other hand, J» and Jn/h increase
with increasing h. The normalized values of F are roughly the same with varying h while they are

different for the case of Fn because of the change in post-buckling behavior.
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Figure 3.7 Actual and normalized F-6 curves of CCDs with constant t and |, and varying h

3.4.4 Effect of loading area
Another important parameter that affects the shape and the values of the F-6 curves is the
loading area, that is, the circular region around the apex point where the dome is loaded, see Figure

3.8. Since in most applications a theoretical point load cannot be practically applied, there is a
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finite area over which the load is distributed. In this study the area is assumed to be circular and
perpendicular to the axis of rotation of a CCD. It was found that the size of this area has a
significant effect on the shape of the F-o curve, but a minimal effect on the stability state a CCD.
Figure 3.8(a) shows the effect of increasing the diameter of the loading area (d) on the F-o curves
for monostable and bistable CCDs. It is shown that the values of F¢ increase with an increase in d;
while the values of F, slightly increase for monostable responses and slightly decrease for bistable
responses with an increase in d. In addition, the effect of d on the F-o curve is more pronounced
for deeper CCDs (i.e., CCDs with higher h/t). Increasing d also shifts the F-J curve by decreasing
the values of dc and on.

If the loading area around the axis of rotation increases the original CCD area, as shown in
Figure 3.8(c), the loading area has a negligible effect on the response and hence the CCD should
be treated as if d = 0 with original length I. In other words, the loading area has no effect on the
response as long as the loading region doesn’t occupy an area of the original CCD’s shape. The
total span length (base diameter) is, however, increased by d (i.e., total span length is | + d).

Nonetheless, this increase in length should not be considered in the analysis of the dome.
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3.4.5 Effect of modulus of elasticity (E)
Since the concern here is the response of the CCD within the elastic range and for linear
elastic material, the F-o curve has a linear relationship with E and hence can be normalized by 1/E.

To show that, several CCDs were analyzed for varying E, with all other parameters fixed and the
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resulting F-o responses are shown in Figure 3.9(a). It can be seen that F; and |Fn| increase with
an increase in E. Figure 3.9(a) also shows that J. and on are the same for all cases, and thus

unaffected by E.
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Figure 3.9 Actual and normalized F-o curves of CCDs with constant t, h and |, and varying E
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As expected, the F-6 curves for varying E collapse into each other when normalized by
1/E, see Figure 3.9(b). Therefore, E has no effect on the shape of the F-o curves and the stability
state of CCD if the material is linear elastic. The F-o6 curves can thus be scaled for different E

values.

3.4.6 Effect of Poisson’s ratio (v)

Figure 3.10 shows that F¢ increases and F, decreases with an increase in v. It can also be
observed that Jc and J» do not change for all cases, and thus they are not affected by v. The shape
of the F-o curves is slightly affected by v. As v increases the response changes from monostable
to bistable (and vice versa). Further, can be noted that F, can become negative with increasing v

as shown in Figure 3.10.
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Figure 3.10 F-¢ curves of CCD with constant t, h, and |, and varying v
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3.5 Design Expressions for CCDs

The F-o response in Figure 3.11(a) is the result of a dynamic FEA for 12 monostable CCDs
connected in series. Loading on the system was applied by displacement-controlled incremental
deformation with geometric non-linearity considered in the analysis. The CCDs in the system were
linked in series by connecting them at their confining rings and at the apex tips as shown in Figure
3.11(b). The enclosed area between the loading and unloading curves represents the dissipated
energy by the system. Studies by Benichou and Givli [78], and Restrepo et al. [33] showed that
the response of a system of multistable units [e.g., Figure 3.11(a)] can be accurately calculated
based on the simplified multilinear response of a single unit, as that shown in Figure 3.12. The
approach greatly simplifies the analysis procedure and it is particularly convenient for design
purposes. It is thus of interest to develop a simplified multilinear F-o6 response curve for the CCD
units.

Previous sections presented the studies of the effects of geometric and material properties
on the F-dresponse of CCDs, and a normalizing factor was determined for each parameter. These
factors are now used to develop expressions for the key features of a CCD’s F-9 response to
facilitate the construction of a multilinear response as shown in Figure 3.12. It is recommended to
use these expressions for CCDs with 1.5 < h/t <4.5 and h/l < 1/20 for more accurate results. The
objective is to use this simplified response to obtain the response for a system of multiple CCDs
as shown in Figure 3.11(a).

The multilinear response of a CCD (Figure 3.12) is divided into three regions [33]: the
initial stable equilibrium path in region | before the snap-through limit-point with an effective
stiffness ki, the unstable equilibrium, or snap-through, path in region Il with negative stiffness ki,

and the post snap-through (or post-critical) stable path in region I11 with stiffness k. Defining the
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linear segments requires estimating the buckling load and displacement (F» and db), the minimum

force and displacement (F, and on), and the post snap-through buckling stiffness (kin).
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Figure 3.11 Twelve monostable CCD units connected in series (a) hysteretic response from FEA,
and (b) stacking configuration and idealized system
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In addition, it is of interest to know what type of stability would occur, that is, whether the
CCD remains buckled (bistable) or restores to its original configuration (monostable) upon load
removal. This can be achieved by knowing the conditions at which the pseudo-bistable response

occurs. Thus, a study was also conducted to determine the governing factors of this stability state.

FA
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Figure 3.12 Actual and multilinear F-o responses of a CCD

3.5.1 Critical limit-point (snap-through) load (F¢)
The value of F¢ can be estimated by multiplying the inverses of the normalizing factors
determined earlier by each other, in addition to a calibration factor, C¢, as given by Equation (3.2).
Fo=C.PHE/In (3.2)
The factor Cc is in terms of h/t and v and can be calculated from the FEA results by
normalizing F¢ by 14 ¥/ " E. Figure 3.13 shows the calculated C values for h/t and v. Each solid-
line curve in Figure 3.13 was approximated by a second-degree polynomial in terms of h/t and v,
as given in Equation (3.3) with an absolute maximum error of about 2 %.

Co = (-0.466 v - 0.251)(h/t)? + (3.304 V°27)(h/t) + (19.56 10-35) (3.3)
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The value of C. ranges from about 15 to 19 and can be simplified to a constant value of 17

with an 11.7 % maximum absolute error.

Figure 3.13 C. curves with h/t for different values of v

As can be seen in Figure 3.8(a), d has a significant effect on the F-¢ response of CCDs,
which in turn depends on h/t. To account for this effect, Fc and F, values from FEA for CCDs with
d > 0 were normalized by the values of Fc and F, with d = 0. A relation was then established to
determine a force modification factor, D, that is related to d/I and h/t as given in Equation (3.4).
Therefore, for CCDs with d > 0 [as shown in Figure 3.8(b) only], the buckling force F¢ using
Equation (3.2) should be multiplied by D given in Equation (3.4). This factor ranges from 1 to 1.43
and the expression is valid for d/ <0.1.

D =106 (h/)@@/])? - 0.225 (d/]) + 1> 1 (3.4)
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3.5.2  Minimum Load (Fn)

An expression similar to Equation (3.2) was used to estimate F, with C. replaced by Ci as
given in Equation (3.5). The factor C, was also calculated by normalizing F, from the FEA results
by I/ ¥ h E. Figure 3.14 shows the calculated C, values with h/t and v. As can be seen, C, changes
sign from positive to negative with increasing h/t. Thus, this quantity controls the stability state at
which the response of a CCD would be monostable or bistable. Figure 3.14 also shows how the
FEA results (solid-line curves) can be approximated by a second-degree polynomial in terms of
h/t and v, as given in Equation (3.6). The value of F, should also be modified by the force
correction factor D given in Equation (3.4) for CCDs with d > 0.

Fo=Ci P HWE /I (3.5)

Co = (0.336 v + 0.889)(h/t)? - (13.06 v + 10.82)(h/t) + (51.380295) >-12  (3.6)

3.5.3 Critical limit-point displacement ()

The value of ¢ is related to h and is affected by h/t. Thus, it is best expressed as a ratio of
h and in terms of h/t. Figure 3.15 shows the calculated Jc/h against h/t from FEA results for several
CCDs. The data points show that the relation between dc./h and h/t is nonlinear and it was
approximated by a second-degree polynomial. The following expression was developed for dc/h:

8./h = 0.061 (h/t)? - 0.4 (h/8) + 1.35 (3.7)
For h/t > 4.5, Equation (3.7) should be evaluated based on h/t = 4.5. Results from FEA compared
to estimated values of d./h using Equation (3.7) have average absolute error of less than 3 %.

For CCDs with d > 0 [as shown in Figure 3.8(b) only], the calculated displacement d. using
Equation (3.7) should be multiplied by a displacement correction factor, G, that depends on d/I
and h/t as given by Equation (3.8). This factor should range from 0.42 to 1.

Go=[-1.67 (h/t) + 1.1]([@d/D) +1 < 1 (3.8)
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Figure 3.14 (a) C curves with h/t for different values of v, and (b) zoom-in at C, =0

3.5.4 Displacement at Fn (8n)
As for ¢, on was normalized by h and expressed in terms of h/t, and the data can be
approximated by Equation (3.10), see also Figure 3.15. However, the relation of J, with respect to

h/t seems simpler than that of dc/h, as shown in Figure 3.15. For h/t > 4.5, dn/h should be calculated

46



based on h/t = 4.5. The values of dn/h using Equation (3.9) have an average absolute error of less

than 2% with FEA results.

On/h =-0.081 (h/t)? + 0.575 (h/t) + 0.641 (3.9
1'8 I | I | 1 | 1
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Figure 3.15 Data and fit curves for d./h and dn/h with h/t

For CCDs with d > 0, the displacement d, using Equation (3.9) should be multiplied by a
correction factor, Gy, that depends on d/l and h/t as given by Equation (3.10). This factor should
range from 0.89 to 1.

Gn=[0.24 (h/t) - 1.43](d/]) + 1 < 1 (3.10)

3.5.5 Post snap-through stiffness (kin)

At least two F-o points are required to determine the stiffness ki. The first point is the
minimum force F, at displacement d,. The second point is the limit-point force F at displacement
om, as shown in Figure 3.12. The displacement o at F. level was determined from FEA for various

geometric and material properties. It was found that ki;; can be expressed as a ratio of k;. This ratio
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(kin / ki) 1s mainly affected by h/t and it ranges from 0 at about h/t = 1.45 to 2.78 for h/t > 4.5. As
a result, Equation (3.11) can be used to estimate ki / ki:

kur ki =0.9137 (h/t) - 1.108 < 2.78 (3.11)

3.5.6 Limiting h/t for pseudo-bistable state

In Section 3.4 it was shown that only t, h, and v affect the stability state of a CCD, and
hence the shape of the F-6 curve; while | and E only affect the amplitude of the F-6 curve without
changing its shape, and hence the post-buckling response. Therefore, the type of response (i.e.,
shape of the F-o curve) is governed by a relation involving t, h, and v based on the values of F.
Thus, the aim here is to determine a critical height-to-thickness ratio, (h/t)cr, at which the value of
Cn equals zero. This was achieved by examining the effect of v on C, (or Fy), see Figure 3.14.

From Figure 3.14(b) it can be seen that (h/t)er decreases with an increase in v. By
determining the values of h/t at which C, = 0 for several values of v, a relation between (h/t)cr and
v was obtained as shown in Figure 3.16(a). An expression to estimate (h/t)cr was developed in
terms of v and is given in Equation (3.12).

(B/Oer = 2.879 ) v 0.052 (3.12)

The value of (h/t)cr can be used to design a CCD with a specific stability state. A CCD
would have a monostable response if h/t is less than (h/t)cr and a bistable response if h/t is greater
than (h/t)er. Figure 3.16(b) shows the stability state for the experimentally tested 3D printed
specimens with v =0.33 and (h/r)cr = 3.05 as calculated by Equation (3.12). The specimens showed
a consistent behavior with the determined limit of (h/r)cr. The CCDs below the critical line in
Figure 3.16(b) had monostable behavior while CCD above the line had bistable behavior. Pseudo-

bistable CCDs had h/t close to (h/r)cr and recovered their original configuration after a delay, which
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indicates viscoelastic material behavior. It should be noted that CCDs with h/t less than 1.5 will

exhibit a monotonic F-o response and will not have snap-through buckling behavior.
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Figure 3.16 (a) Critical height-to-thickness ratio (h/t)cr vs. v; (b) stability state for 3D printed
specimens with v = 0.33 and (h/t)cr = 3.05
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3.5.7 Example: Approximate analysis of single and multiple CCDs

As discussed at the start of Section 3.5, the multilinear response of a single CCD is useful
to obtain the response of a system of multiple CCDs connected in series. The following is an
example that illustrates this procedure and compares it to experimental results. It should be noted
that a detailed presentation and discussion on the response of multiple CCD is beyond the scope
of this work and it is the subject of on-going studies. However, the brief overview provided herein
illustrates both the use of CCDs as well as the value of the developed design expressions.

Four CCDs were designed and 3D printed with equal nominal dimensions of t = 0.6 mm,
h =1.8 mm, and | = 50 mm. Due to manufacturing imperfections, the ‘as printed’ dimensions are
t=0.75+0.03 mm, h=1.76 £ 0.02 mm, and | = 50 + 1 mm. The material properties are taken as
E =817 MPa and v = 0.33. Figure 3.17(a) shows the experimental and the FEA F-¢ response of a
single CCD. The simplified multilinear response of the CCD specimens, also shown in Figure
3.17(a), was constructed using the developed expressions in Equations (3.2) through (3.11) based
on the average dimensions of the printed units. The constructed response slightly underestimates
on and Fn; however, it is in general agreement with the test result. The fabricated specimens
recovered their original configuration immediately upon unloading and hence showed a
monostable behavior with h/t = 2.35, which is smaller than (h/t)cr determined as follows:

(h/r)er =2.879 /v 0052 = 3,05

Four CCDs units with equal nominal dimensions as the single CCD described above were
connected in series and the system was tested under displacement control loading as shown in
Figure 3.18. The resulting F-o response is shown in Figure 3.17(b). The multilinear F-J response
shown in Figure 3.17(a) for a single CCD was used to calculate the F-¢ response for the four-unit

system, as shown in Figure 3.17(b). The system response was determined using the model by
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Benichou and Givli [78]. While the experimental and analytical responses are in relative
agreement, the displacement, Ac1, at the first snap-through event of the experimental response is
smaller than that of the multilinear response. This is primarily attributed to dimension variations
among the printed CCD units, which leads to early snap instability of the CCD with the lowest F¢
in the system before the calculated average snap-through displacement 4c1 = 46.. In other words,
the effective stiffness of the tested system is higher than that based on the calculated average
response (Fc / 40¢). Therefore, during loading, the CCD in the system with lowest F. reaches its
limit-point instability (Jc , Fc) while other CCDs in the system are below their limit.

Although the snap-through limit variation among CCD units complicates calculating an
accurate response for the system, it is an essential feature to obtain a response with progressive
snapping instabilities, and hence elastic energy dissipation. The area enclosed between the
experimental loading and unloading curves represent the elastic strain energy dissipated by the

system. This area depends on the number of connected units and h/t.
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Figure 3.18 Test setup for the four CCDs connected in series

3.6 Conclusions

The presented study showed that cosine-curved domes (CCDs) with constrained edges

loaded under a concentrated apex transverse load can attain snap-through instability with
symmetric deformations, even with some imperfections. This was validated through finite element
simulations and testing of 3D printed specimens for CCDs within the geometrical range of 1.5 <
h/t < 7.5 and h/l < 1/16. However, CCDs with higher h/t and h/l ratios are more susceptible to
bifurcation and asymmetric deformations. In addition, CCDs within the noted geometry range do
not require the restriction of other buckling modes to have a symmetric reversible snapping,

offering a multistable element that could be used as a building unit for devices subjected to

relatively high forces for energy dissipation and repeated use.
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Three types of snap-through instability responses were recognized for the studied CCDs:
monostable, pseudo-bistable, and bistable responses. The main factor affecting the response is the
height-to-thickness ratio (h/t). Increase of h/t changes the response from monostable to bistable.
Increasing value of the material’s Poisson’s ratio (v) decreases the value of the minimum force
(Fn), which could change the instability type from monostable to bistable. The study also showed
that the base diameter (l) affects the values of the force-deformation curve but it has no effect on
its shape. It was found that CCDs have a critical height-to-thickness ratio (h/t)cr at which the
response is pseudo-bistable (F, = 0). This allows designing CCDs with a targeted snap-through
instability type. The ratio is independent of the geometric and material properties except for v.
However, the effect of v on (h/t)cr is small for common materials. (h/t)cr may be taken as a constant
value of 3.045. Expressions to estimate key parameters in the force-deformation response were
developed to construct a multilinear force-deformation response, and shown to facilitate the
response analysis for a system of multiple CCDs.

The multistable elastic behavior possessed by CCDs originates from the cosine curved
profile that allows them to have a tunable multistable response. The proposed CCDs offer
controllable elastic snap-through behavior that could be used as a building block for elastic energy
dissipation mechanisms subjected to relatively high forces. Future studies on the response of CCDs

should include the influence of manufacturing imperfections and loading direction.
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CHAPTER FOUR

4 Multiple Cosine-Curved Dome System

4.1 Overview

In this chapter the behavior of the MCCD systems was studied numerically and
experimentally. Finite element analyses (FEA) were performed for MCCD systems to study the
effects of geometric properties and the number of the dome units (CCDs) on system behavior under
displacement-controlled loading. A multilinear analytical model that describes the system’s force-
displacement (F-A4) response is proposed. The energy dissipation characteristics of the MCCD
system are also studied. Finally, experimental tests on 3D printed specimens were conducted to
analyze the system and validate the analytical model. The study presented in this chapter was

published in the journal of Applied Mechanics [79].

4.2 Background

A new energy dissipation system comprised of multiple cosine-curved domes (MCCD)
connected in series is presented herein. The building units of the MCCD system are dome-shaped
shell elements called cosine-curved domes (CCD) studied in Chapter 3 [68]. The noted former
study introduced the multistable element (CCD), showed how it can attain a controllable snap-
through instability, and presented its response characteristics; with the motivation of using it in a
system for elastic energy dissipation.

When an MCCD system [see Figure 1.2(c)] is mechanically loaded, the CCD units in the
system consecutively snap-through to a new stability state within their elastic range. When the

system is unloaded, the units consecutively snap-back to their original configuration, either by a
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restoring external force for bistable CCDs or by self-recoverability (preferred) for monostable
CCD units. If a sufficient number of connected units in series is used, the MCCD system follows
distinct loading and unloading paths resulting in a hysteretic response, as shown in Figure 1.2(d).
The area enclosed by the loading and unloading curves represents the elastically dissipated energy.
This energy dissipation is due to the transformation of some of the induced mechanical energy of
the applied work to elastic vibrations that are damped by the base material of the repeating units
and converted to irreversible thermal energy (heat) with each snap-through buckling event
[12,27,34,35].

The proposed MCCD system avoids a few design disadvantages that limit the practicality
of other systems presented in the literature. For example, when multiple units in the MCCD are
stacked in parallel (see Section 4.3.2), no design modification is required on the system general
configuration nor to the size of the constraining edges (rings) compared to systems comprised of
curved beams [29,33,36]. The reason is that in a loaded MCCD system with CCD units stacked in
parallel, each ring is resisting the same horizontal forces while the units in the system are
collectively resisting a much larger vertical force than that can be developed by a single unit.
Conversely, systems comprised of curved-beams [29,33,36] require increasing the size of the
constraining edges and hence the horizontal tie to resist the additional forces (see Figure 4.1) due
to (1) the increased height of the constraining edge, and (2) the additional horizontal forces due to
each parallelly stacked beam.

Evaluation of curved beams with multiple beams in parallel showed that when the number
of beams is increased, the stability state of the whole unit may change from bistable to monostable
(for example) due to increased outward lateral deflection of the supporting edges. In addition, the

value of the cumulative vertical force is reduced compared to the expected force by the parallel

56



units due to the lateral expansion. Thus, a modification to the size of the reaction edges must be
made to preserve the required response. A similar evaluation on the MCCD system showed that
the units are independent, in terms of the required constraining for the individual unit, from the
overall cumulative vertical force resisted by the system. Thus, there is no need for design

adjustments.

(a) 29y

—— ——] 4.

3Fcp

Curved-beams system

FCCD

MCCD system

Figure 4.1 Boundary conditions for: (a) curved-beams system, and (b) MCCD system

S7



Even though it may be argued that this issue can be avoided if a system of curved-beams
system consisted of many elements in a single layer (horizontal direction), it would still cause a
similar effect to that discussed above since the horizontal forces will accumulate causing the
system to expand in the horizontal direction in an effect analogous to that of Poisson's ratio on a
compressed short strut. Thus, the MCCD system avoids this design limitation by having a self-
confining feature that makes it a suitable and practical design for the design of civil structural
applications where high forces on such systems are expected.

Numerical studies and experimental tests were conducted on the geometric properties of
the individual CCD units and their number in the system to examine the force-displacement and
energy dissipation characteristics. Finite element analysis (FEA) was performed to simulate the
response of the system to develop multilinear analytical model for the hysteretic response that
considers the nonlinear behavior of the system. The model was used to study energy dissipation
characteristics of the system. Experimental tests on 3D printed specimens were conducted to
analyze the system and validate numerical results.

Multilinear models have been presented in the literature to predict the hysteric force-
displacement (F-4) response of systems with multiple multistable elements [33,78]. These models
are more suited for systems comprised of units that exhibit a fairly linear force-displacement (F-
0) response. This is because such models don’t consider the nonlinear effects on the F-4 response
of the system. For the MCCD system, these nonlinear effects on the F-4 response are relatively

large and this work takes them into account by introducing an effective stiffness concept.
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4.3 Multiple Cosine-Curved Dome (MCCD) System

4.3.1 Response of a single CCD unit

The F-o response of a single CCD incorporates a negative stiffness part that originates from
the dome’s geometric shape. The cross-sectional profile of the CCD follows the cosine function
given in Equation (4.1) [71].

w(x) =h/2[1 - cos(2nx/1)] (4.1)
where w(x) is the vertical distance at a distance x from the circumference along a horizontal line
at the dome’s base passing through the center, as shown in Figure 4.2. The effective geometric
parameters on the response of a CCD are the uniform thickness, t, the base diameter or the span
length, I, and the apex height, h, as shown in Figure 4.2(a). The parameter d is the diameter of the
loading area, which has flat circular shape at the apex region of a CCD. The study in [68] showed
that d has a negligible effect on the response of a CCD if d/I < 0.1. The circumference edge of a
CCD is connected to a rigid ring that constrains edge sliding and rotations under loading, and

hence provides fixed boundary conditions for the dome.

()

12 ~dr 12

(b)

Figure 4.2 Geometric parameters of a typical CCD: (a) cross-section at the apex, and (b)
idealized system
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The shape of the CCD leads to a highly nonlinear response and a snap-through buckling
behavior under a concentrated transverse vertical load at the apex as shown in Figure 4.2(b).
Beyond the buckling point, a CCD deforms to a new configuration, yet the exerted deformations
on the CCD are recoverable. For a bistable CCD, an external restoring force is required to recover
the original shape, while a monostable CCD is self-recoverable. Figure 4.3(a) shows the typical F-
o responses for monostable and bistable CCDs normalized by their respective buckling load, Fo,
and buckling displacement, J». Note that ¢ denotes the local CCD vertical displacement. It can be
seen in Figure 4.3(a) that the bistable CCD has a negative minimum force, Fy, at displacement 6.
In this case, some of the induced energy is trapped in the system and hence the F-J curve here has
a negative force part [20].

The response of a CCD can be divided into three regions [33]: the initial response region
(I) with an effective stiffness, ki, the snap-through buckling region (1) with the negative effective
stiffness, ki, and the post snap-through buckling region (I1l) with stiffness, k. For given
geometric and material properties, the multilinear response of a CCD, as shown in Figure 4.3(b),
can be constructed using the expressions provided in Chapter 3 [68] for Fb, db, Fn, dn, and k. The
maximum displacement, Jm, is the displacement at a force level equal to Fy in region 111, see Figure
4.3(b); and it can be calculated as om = on + (Fo — Fn) / kin. Based on these values, the stiffness in
each region can be determined. Hence, the linear F-¢ relations in regions | and Il are given as
follows:

Fi=ké, 8 < 6 (4.2)

Fur = Fn + kur (6ur = 6n) Ot = On (4.3)
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Figure 4.3 (a) Normalized F-o response for monostable and bistable CCDs; (b) multilinear
approximation of the F-o response of a CCD

Due to the high nonlinearity of the F-¢ response of the CCD units, especially in region I,
using the above relations (as will be illustrated in Section 4.4) would underestimate and slightly
overestimate F, and Fy, respectively, as shown in Figure 4.3(b). Therefore, the Michaelis-Menten

model [80] was used to develop a nonlinear F-¢ relation for region I. This relation is in terms of
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h/t, ob, and Fy, and is given in Equation (4.4). This model was selected because of its simplicity to
determine ¢, for a given force level F, and because it closely represents the nonlinear path of the
F-o response in region I.

Fy A (81/8p)
Fy =FpA401/%) 4.4
"= B+ (51/8p) (4.4)

In Equation (4.4) A and B are constants in terms of h/t and can be determined as follows:
A =0.0368 (h/t)? - 0.3488 (h/t)? + 0.9559 (h/t) + 0.6574
B =0.0368 (h/t)? - 0.3488 (h/t)? + 0.9559 (h/t) - 0.3426
Similarly, an exponential function was used to develop a relation for the F-o response in

region I11. The expression is in terms of h/t, on, dm, Fn, and Fy as given below [77]:

s 1P
Fur = Fot Fy €[22 (4.5)

where C and D are constants in terms of h/t and can be determined by:
C=-0.0648 (h/t)? + 0.9261 (h/t) - 1.2407

D =0.0993 (h/t)? - 0.8157 (h/t) + 3.2967

4.3.2 Stacking configuration of CCD systems

To have a better understanding on the effect of stacking multiple CCDs on the behavior of
the CCD units, a discussion is presented here to analyze the change in F-A response for different
configurations of CCD systems. Note that 4 denotes the global vertical displacement of the MCCD
system. There are two basic configurations for stacking CCDs in the vertical direction: parallel
and series stacking as shown in Figure 4.4, or a combination of the two arrangements. The parallel
stacking shown in Figure 4.4(a) is similar to the case of connected springs in parallel, where the
applied load is resisted based on the individual stiffness of each spring but with equal displacement

on each one. Denoting the number of stacked CCDs in parallel as np, the response of n, CCDs
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stacked in parallel [see Figure 4.5(a)] consists of one buckling event with buckling force npFy at
displacement 4y = d», and minimum force nyFn at displacement 4, = Jn. Here the force is directly
scaled by the number of connected CCDs (np), assuming that they are identical, while the

displacements do not change.

(a)
— L

(b)

Figure 4.4 Possible configurations of CCD units in the vertical direction: (a) parallel stacking (np
= 2), and (b) series stacking (ns = 2)

The case of series stacking is similar to the case of connected springs in series, where the
load is resisted equally by all springs but with different deformations for each. In this
configuration, it is assumed that each CCD is connected to the adjacent CCD by a rigid strut that
provides the required height to allow buckling of the unit as shown in Figure 4.4(b). The rigid

rings at the base of each CCD also provide the required height to allow unit buckling.
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Figure 4.5 F-4 curves for CCDs in (a) parallel configuration, and (b) series configuration

The response of multiple CCDs stacked in series, where ns denotes the number of units, is
shown in Figure 4.5(b). The response consists of multiple buckling events with buckling forces of

Fp at displacement 4, = nsop for the first buckling event. The subsequent minimum force F, (and
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its displacement 4,), and the next buckling displacement depend on the number of CCDs in the

system, which is discussed in Section 4.4.

4.3.3 Finite element modeling

Finite element analysis (FEA) was used to examine the F-4 response of the MCCD system.
The analyses were performed using the program ABAQUS [73]. The CCD units in the system
were modeled as 3D deformable revolved shell objects with four-node shell elements (S4). The
material was assumed to have linear elastic isotropic properties. Displacement control was used to
apply a dynamic incremental deformation to the system. Large deformations were accounted for
by considering the geometric non-linearity in the analysis. The MCCD system was idealized for
the analysis as shown in Figure 4.6. The system was analyzed with small variations in the

thicknesses of the CCDs to allow a response with consecutive snap-through buckling events.

F/?t l) F/(‘n' l)

Figure 4.6 The idealized MCCD system
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Figure 4.7 shows the F-4 response from FEA for two MCCD systems, both with ns = 12.
A monostable system [Figure 4.7(a)] had CCD units with h =3 mm, | = 140 mm, and t = 1.2; while
a bistable system [Figure 4.7(b)] had t = 0.8 mm. The modulus of elasticity, E, was 1500 MPa, and
the Poisson’s ratio, v, was 0.33.

The type of response (i.e., monostable or bistable) of a CCD unit can be determined by
comparing h/t to the critical height-to-thickness ratio, (h/t)cr, calculated as proposed in [68]:

(h/O)er = 2.879 v-0052 = 3.05 (4.6)
Thus, the monostable system has CCD units with h/t = 2.5, which is smaller than (h/r)cr; while the
bistable system has CCD units with h/t = 3.75, greater than (h/r)cr.

A few observations can be made from the F-4 curve in Figure 4.7. The force drops after
each snap-through and snap-back buckling increase in magnitude with every buckling event in the
loading and unloading paths. The smallest force drop occurs after the first buckling events while
the largest occurs at the last event. This is also true for the unloading path. The trace of the force-
deformation curve between the buckling events have linear and nonlinear segments during the
unloading and loading paths, respectively. This is because under loading most of the CCDs in the
system are in region | [see Figure 4.3 (b)], which is highly nonlinear, while during unloading most
of the CCDs in the system are in region Ill, which is fairly linear. This also depends on the ratio
of ki to ki, where a higher kii/ki ratio increases the magnitude of the force drops in the last buckling

events during loading and unloading, and vice versa.

66



12 1 ] 1 ] 1 ] 1 1 1 1 1
8 '
2 - ‘J -
- A L
~ 6 A R oy /
h B : ! : _.I : ,’ LSrn I’I ! o 1‘| /! -
Vi ! 't: B v A i JI: ’l! A
4 a :, 1 :I N ”’ vl |,’ 1’ v L
| v Vol o sy (M i
2 — Loading L
1 --- Unloading 1
O T T T T T T T T T T T T T
0 10 20 30 40 50 60 70
A (mm)
6 I 1 I 1 I I I 1 1 I
2 3 — Loading T
N— B , -
) --- Unloading /
. , ‘ ’ I F
T l’: " l: l‘l n P r‘ B
] a 1 ': o n " ‘I s ' ' |
l’ : :’ 1 ." ! i, ! l’I ' Jl' ‘ 1" ': 1 IJ
. I 'J ' : ; : I "f : Il ’:: i ’l| _,’I i L
i [ Coy L i i P A
0 1 [ -L——l—f——:—{-——l—}-——l T-I-J-4-,--l-4- B RLEFEUEREEEEE =
I‘f '1’ :‘i I,‘ I’J’ '] . ,-' : N | ’r ’ :I, 1 I.r
T :, ;t " I i :,' v v s v o B
'1 'l T T T T T T T T T T T T

Figure 4.7 Force-deformation curves from FEA for MCCD systems: (a) monostable, and (b)
bistable

4.4 Analytical Model for MCCD System

This section presents a multilinear model that describes the hysteretic response of the
MCCD system. It is assumed that the system consists of similar CCDs stacked in series as shown

in Figure 4.6. Due to small manufacturing imperfections, each CCD in a MCCD system has a
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slightly different buckling limit (Fy). This means that each CCD buckles at a different time, which
results in a progressive buckling response of the system under displacement control loading. The
CCD with lowest buckling force (Fy) buckles first, followed by the one with an immediately higher
Fp limit and so forth until buckling of the CCD with the highest Fy in the system is reached. A
similar process occurs during unloading, where the unit with highest minimum force (Fn) snaps-
back first, followed by the one with a lower F, and so forth until snap-back of the CCD with the

lowest Fy in the system.

4.4.1 Loading stages

Consider a MCCD system that consists of ns similar CCD units connected in series, each
with an F-6 response as shown in Figure 4.3(b). Since the system buckles progressively, at any
given time a unit is in one of the regions I, II, and I1l. Thus, if n;, ny, and ny denotes the number
of CCD units in regions I, I, and I11 [33], respectively, then

Ns =174+ Ny + Ny 4.7

To explain the behavior of an MCCD, consider a system composed of four CCDs (ns = 4).
Upon applying the force F to the system the four CCDs resist the same load and their response is
within region | (n; = 4). After the first buckling event, three units are still in region | while one
CCDis inregion Il (n; =3 and nj; = 1). Since the force drops due to the buckling event, the system
relaxes and redistributes the local displacements (o) of each unit when the buckled CCD reaches
region I (n; = 3, nin = 1). The same process is repeated until all units are in region I (niy = 4).
Figure 4.8 shows the number of CCDs in each region at each loading stage, n, for a system with
ns = 4. From Figure 4.8, it can be noted that nj equals to 0 or 1, which means that only one CCD

at a time undergoes buckling.
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Figure 4.8 Number of CCDs in regions I, I1, and Il during loading stages for a system of ns = 4

The total number of loading stages, n, is related to the number of CCDs connected in series
(ns), as given in Equation (4.8) and shown in Figure 4.8. The relations between n;, ny, and nyy with
n are given in Equations (4.9) to (4.11). Note that a cosine function is used for ny;, which yields 0

for odd n values and 1 for even values.

ne=2ns+1 (4.8)
ny= /cos(n 7r/2)/ (4.9)
n=05[2ns-n-ny+ 1] (4.10)
Ny = Ns —ny - Ny (4.11)

4.4.2 Model development
To develop a multilinear F-4 response for the MCCD, the hysteretic response was divided
into its loading and unloading paths. Each path consists of two groups of points that lie on the

actual system F-4 curve connected by line segments, as shown in Figure 4.9(a). The first group of
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points in each path (blue circles) includes the points at the force level F, with displacement spacing
sp for the loading path, and the points with a force level of F, and displacement spacing sn in the
unloading path. The second group of points in each path (red squares) includes the buckling drop
forces Fng (from Fp) at counterpart displacements for the loading path; and the minimum drop force
Fna (from Fy) at counterpart displacements for the unloading path. Figure 4.9(a) shows a schematic
F-4 response for the MCCD system with the quantities used to develop the multilinear model. The
figure also shows the actual and the multilinear F-4 curves during loading and unloading.

4.4.2.1 Loading path

The unknowns in the first group of points (at Fy level) are the system displacements at each
of the snap-through bucking events, Ayi. The displacement at the first buckling event (4u0), for i =
0, is determined based on the well-known equivalent spring concept [81] for ns springs connected
in series with similar stiffness k; and resisting the same force Fy. The equivalent stiffens of such a
system is ki / ns, and hence Awo = Fu / (Ki/ ns) = Ns Ob.

FEA results, as those in Figure 4.7, show that the spacing between the snap-through
buckling events is constant. After the system experiences a local CCD snap-through it reloads
(when the buckled CCD reaches region Il1) and it encounters another local snap-through event
when the load reaches Fy. The spacing sy is constant and a property of the individual CCD unit F-
o responses. As shown in Figure 4.9(b), this constant spacing (sp) is the distance between dy and
om and hence sp = dm — db. Thus, Sy represents the required displacement for the MCCD system to
reload and reach Fy after snap-through buckling of a CCD unit. Thus, the points defining the local
CCD buckling events in the system loading path, i.e., the system displacements (4bi) and the
corresponding system buckling forces (Fui), can be determined as follows:

Api = Ns Op + 1 Sp (4.12)
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Fri=Fp (4.13)

where i is the buckling event [see Figure 4.9(a)] and i = 0, 1, 2, ..., (ns-1).
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Figure 4.9 (a) Schematic F-4 response of the MCCD system with quantities used to develop the
multilinear model; (b) Actual and multilinear F-¢ responses of a CCD unit

When the system approaches Fy during loading, CCDs in regions | and 111 approach ¢y and

om, respectively. When the system reaches Fy, a given CCD snaps-through and the force level
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drops until the buckled CCD in region Il reaches o,. Deformations for the CCDs are then
redistributed at the system displacement 4y, leading to CCDs in regions | and I11 to a reduced force
level Fnai. This means that during the load drop the response of one CCD unit transitions from
region | to I11. Otherwise, if the buckled CCD were to remain at J» the value of Fysi would equal
Fn, which is not the case. Consequently, the local displacements 6, and din shown in Figure 4.9(b)
for a CCD in regions | and Il decrease below J, and Jm, respectively. Mathematically this is
expressed as:

81 < 8 (4.14)

Our = On + O’ < Om (4.15)
where o1 is the local displacement component in region I11.

Since the system is connected in series, all CCDs are experiencing the same force Fpi.
Thus, by determining either J; or oui” the force Fygi can be calculated using Equations (4.2) or (4.3),
respectively. Based on the concept of connected springs in series, the contribution of CCDs in
regions | and 111 towards the system response Api is given by:

(ns-i-1) 8+ (i+ 1) S = A (4.16)

A linear relation between ¢ and oin” using the stiffnesses ki and ki, respectively, can be
established based on the concept of two springs connected in series and resisting an equal load.
This relation is given by ¢) ki = o kin and hence:

Sur’ = S ki / kur (4.17)

By substituting Equations (4.15) and (4.17) into (4.16), the local displacement for CCDs

in region | during the force drop, dindi, and hence Fngi can be calculated as follows:

Api - (i + 1) 6n

. . Ky
ng-1t-1)+ ((+1)—
(ns )+ i+ 1)L

Sivdi = (4.18)

Fbdi = Ompai Ki (4.19)
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Due to the nonlinear response of the CCD units during the loading branch, the approach
followed to develop Equation (4.17), i.e., assuming that the two springs are linear, underestimates
Fuai. This can be corrected by replacing ki in Equation (4.18) by the effective stiffness for the CCD
units in region |, ke;, which mainly depends on ns. The value of ke can be calculated at the last
point in the loading curve, namely point f, as shown in Figure 4.9(a). This point was chosen to
determine ker because it reduces the unknowns in Equation (4.16) to one. The displacement at this
point (dbf) with i = ns — 1 is slightly greater than that determined by Equation (4.12) since it is
associated with the last buckling event of the system. The additional distance r [see Figure 4.9(a)]
and hence Ay can be determined with:

r=(6n-0)/ns (4.20)

Apr=nsOp + (ns-1) Sp +r (4.21)

Thus, ati = ns—1, Equation (4.16) reduces to ns din = A and hence oy can be determined.
The local displacement for CCDs in region Il at point f (i.e., duir) and the drop force (Fugr) are
determined as:

Ouir = Apr / Ns (4.22)

Foar = Fu + (O11ir = On) ki (4.23)

Now the equivalent local displacement dis for CCDs in region | for a force equal to Fugt can
be determined by:

Oir = Fpar / ki (4.24)

By using Equation (4.17) for i = ns — 1 and dindi = Jir, kel can be calculated as follows:

(4.25)
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The modified expression for dinai With ki replaced by ke in Equation (4.18) is given in
Equation (4.26). The force drop for the loading path can now be determined as given earlier in

Equation (4.19)

Sppa =—2pi= L+ D) On (4.26)

(- i- D+ (i+ D7

Figure 4.10(a) shows the F-4 response of a MCCD system with 8 monostable CCDs as
obtained from FEA and the analytical model relations just presented above. Visual comparison of
the responses shows that the analytical Fngi values are almost equal to each other and generally
smaller (larger force drops) than those from the FEA, which is a consequence of using linear
equations to determine ke and Fpgi.

As can be seen in Figure 4.9(b) for points a and b, Equation (4.19) will underestimate Fuygi
because of the nonlinearity of the CCD units’ F-¢ response. Therefore, the simulated response can
be improved by using the nonlinear expression for F; in Equation (4.4) to determine ke; and Fui
for the loading path, which is shown in Figure 4.10(b).

4.4.2.2 Unloading path

Similar to the approach followed for the loading path, the unknowns in the first group of
points (at Fn level) are the system displacements at each snap-back event, Ani. The displacement at
the first snap-back event (at i = ns — 1) is determined in analogous form to the way in which Ay
was determined for the loading path but with point g as the origin [see Figure 4.9(a)]. The
displacement at point g can be determined using Equation (4.12) for 4ui with i = ns. Before the first
snap-back event all CCDs are in region 111 with ki. Consequently, the equivalent system stiffness

is kin /ns and the displacement from point g is ns (dm — dn), as shown in Figure 4.9(a).
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nonlinear equations to calculate ke, Keii, Fogi and Fngi

The spacing s» in the unloading path was also found to be constant and a property of the F-
o response of each CCD unit. The spacing sn is the distance required to reach the snap-back critical
point, which is the distance between d, and Jr, or s» = on — dr as shown in Figure 4.9(b). It should

be noted that determining or linearly with stiffness k; [i.e., using Equation (4.2)] results in some
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error that underestimates sn. Thus, ér can be determined from Equation (4.4) by equating F; to Fn
and solving for ¢i. Points ¢ and d in Figure 4.9(b) show the effect of using linear and nonlinear
relations for region | to determine or.

The system displacements during unloading (4ni) and the corresponding snap-back forces,
Fni, can be determined as follows:

Ani=ns8r + (i + 1) sn (4.27)

Foi = Fy (4.28)

A similar procedure to that followed to determine Fyqi for the loading path is followed to
determine the force drops for the unloading path, Fnai. The contribution of CCDs in regions | and
I11 towards the system response ,; at each snap-back event is given by:

(ns - 1) 81 + 1 i1 = Ani (4.29)

Thus, the local displacement component (d.74;) for CDDs in region 11 at the force drop
can be determined by Equation (4.30), where ke is the effective stiffness for units in region I1l.

Hence, the force Fngi can be calculated using Equation (4.3) or (4.5).

Api-idn

Ourvdi = (4.30)

(ng- i) el 4 §
The stiffness kein can be calculated at the last point in the unloading curve (j) see Figure 4.9(a).
The displacement at point j (4nj) IS ns or + Sn. At point j, with i = 0, Equation (4.29) reduces to ns
01 = 4nj. Thus. the local displacement at point j (0);) for CCDs in region | is given by:

8y = A / s (4.31)

By using ¢j; in Equation (4.2), or in Equation (4.4) for more accurate results, Fngj can be
calculated. This is followed by calculating the local displacement component at point j (o) for
CCDs in region 111 using Equation (4.3) or (4.5) for Fii = Fngj. By using Equation (4.30) with i =

0 and dzrj, ke can be found as follows:
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Anj ky

(4.32)

Keir =
Ns Sq1prj

Figure 4.10 shows the simulated unloading path using linear [Figure 4.10(a)] and nonlinear
[Figure 4.10(b)] equations to determine kein and Frai, plotted along FEA results. It can be seen that
using linear relations underestimates s, and Fnai values.

4.4.2.3 Intermediate loading and unloading paths

The intermediate unloading and reloading paths depend on number of the snapped units (i)
in the system. When the system is unloaded after snapping event i and before event i+1, the
intermediate unloading path follows back the loading path until reaches the drop force at event i
and then crosses to the drop force of the unloading path at event i and completes with the unloading
path. The reloading paths follow the same analogy but in the opposite direction. The dotted arrows

in Figure 4.9(a) represent the intermediate unloading and reloading paths.

4.5 Experimental Validation

451 Testsetup

The MCCD specimen shown in Figure 4.11 was fabricated using a 3D polymer-based
printer (Stratasys Fortus 250 mc) with acrylonitrile butadiene styrene (ABS) filament. The ABS
material had a Poisson’s ratio of 0.35; and the compressive modulus of elasticity of the 3D printed
CCDs, determined according to ASTM D695, had an average value of 853 MPa.

The printed MCCD system consisted of 10 CCDs with average ‘as-printed’ dimensions of
t=0.75£0.03 mm, h=1.76 £0.03 mm, | =50 + 1 mm, and d = 4.5 mm. The units in the system
were designed to ensure that the maximum resisted vertical force (Fp) by a CCD unit at the critical
section, which is the loading region at the apex, to be much lower than the force that would cause

a punching shear failure. This can be typically achieved by increasing t or d (with d/l <0.1). The
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specimens were 3D printed monolithically with oversized confining rings. The thickness of the
rings was 4.5 mm. Generally, for a CCD specimen, a ring thickness that ranges from 4 to 8 times
t was found to be sufficient to eliminate the influence of rotational stiffness and lateral expansion
on the behavior of the element. Visual examination of the edges did not show signs of rotation
along the edge during load application, or after load removal (damage).

The test was performed using a universal testing machine with a custom fixture (indenter)
to apply a vertical load on the rigid ring of the top CCD as shown in Figure 4.11. Testing was

conducted under displacement control, applying an incremental displacement at a rate of 0.1 mm/s.

Stabilizing  Loading
rods direction

Loading
fixtures

Loading
base

Platen

&

(a) Undeformed ®) r—
System System

Figure 4.11 Test set up for an MCCD system with ten CCDs (ns = 10)

78



To stabilize the MCCD system against side sway that may occur during testing, the CCD
units were designed and 3D printed with two collars on each side as shown in Figure 4.11. This
allowed the CCDs to slide in the vertical direction between two rods that were inserted into the
collars. The two rods were fixed to a loading base (see Figure 4.11), and the distance between them
could be adjusted via slots in the loading base. The rods were fixed to the base using nuts and
washers on each side. During testing the guiding rods were coated with a lubricant to minimize
friction between them and the collars in the CCD units. This issue can be avoided in MCCD

systems that are composed of more than one chain (i.e., one column) of CCD units.

4.5.2 Model validation

Figure 4.12 shows the experimental F-A4 response of the MCCD specimen compared to the
simulated response using the model presented in Section 4.4. The experimental response shows
that the buckling force at each buckling event gradually increased. This because the dimensions of
the printed CCD units slightly vary and hence F-o response of each CCD is different. This does
not only vary the buckling force levels but also the corresponding displacements at the buckling
events.

Since the F-¢ response for each CCD varies, each unit has a different ki. Thus, the initial
effective stiffness of the manufactured MCCD system is higher than that of the simulated response
based on the average dimensions. This effect triggers the first buckling event on the weakest CCD
in the system earlier than the calculated average buckling displacement Ano = ns dp. This is because
the effective stiffness of the MCCD system is greater than the calculated average stiffness based
on average dimensions (Fy / nsdp). Therefore, during loading, the CCD in the system with lowest
Fp reaches its buckling point (db, Fn), while other CCDs in the system are below their buckling

limit. Although the buckling limit variation among CCD units complicates calculating an accurate
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response for the system, it is an essential feature to obtain a progressive buckling response and
hence elastic energy dissipation.

In spite of the complications noted above, it can be noted in Figure 4.12 that the simulated
F-4 curve agrees fairly well with the experimental response. This is largely due to the fact that the

displacements of the CCD units in the system are minimally affected by dimension variations.
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Figure 4.12 F-4 curves for the MCCD system from experimental tests and (a) the analytical
model and (b) modified model
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4.5.3 Model modification for strength variation

The force and displacement points of the model can be modified to account for the variation
in strength among CCD units by knowing the experimental maximum and the minimum values of
Fp and Fy in the system. These values can be calculated from the dimensions of the CCD with
highest h and t and lowest | for maximum values, and the CCD with lowest h and t and highest |
for minimum values. The equations below can be used to modify force values at Fy and Fy levels,

respectively, by linearly scaling each value at each buckling event.

1—RF,
RFyi = ( ”) (i) +RF, (4.33)
ng—1
RF, = “bmin (4.34)
Fp
—RF,
RFpi = ( ;‘) ) +1 (4.35)
S_
RE, = —n (4.36)
nmax

Where RF, and RFpi are the force and the force response modification factors in the loading curve
(Fb level), RF, and RFy; are the force and the force response modification factors in the unloading
curve (Fn level), Fpmin is the minimum Fy, force in the system based on the ‘as-printed” dimensions,
and Fnmax is the maximum F, force in the system based on the ‘as-printed’ dimensions.

The displacements can also be modified by the equations below at each buckling event
along the loading and unloading paths, respectively. These equations linearly shift each drop force
line to account for the early buckling of CCD units with lower strengths. Figure 4.12(b) show the

modified model compared to experimental results.

Ray = (3222) (i) + R4, (4.37)
RAb — Fb,min (A_l) (4.38)

Fb,max A-—- Fb,min

81



Ray = (22) (i) +1 (4.39)
RA, = _Fp=Fn (440)
Fp— Fn,min

Where R4, and R4 are the displacement and the displacement response modification factors in
the loading curve (Fy level), R4, and RAni are the displacement and the displacement response
modification factors in the unloading curve (Fn level), Fpmax is the maximum Fy, force in the system
based on the ‘as-printed’ dimensions, and Fnmin iS the minimum F, force in the system based on

the ‘as-printed’ dimensions.

4.5.4 Loading rate

To study the effect of loading rate (LR) on the response of the MCCD system, the test was
repeated for loading rates of 1, 3, 9, and 15 mm/s. The resulting F-4 curves are shown in Figure
4.13. The figure shows that loading rate had a minimal effect on the response of the system over
the examined range of 0.1 to 15 mm/s. However, it can be noted that with increased loading rate,
the force drops in the loading and unloading paths decrease slightly. The locations of snap-through
and snap-back events also slightly change due to the loading rate. Studies [17,18] on the dynamic
behavior of discrete chains with multistable elements indicate that loading rate (in addition to other
factors) has dynamic effects on the response of such systems. In fact, even at quasi-static loading
conditions, discrete systems exhibit high frequency vibrations upon snap-through events [18].
These damped vibrations are the main contributor to the dissipated energy by discrete systems

even at very low loading rates.
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Figure 4.13 Experimental F-4 curves for an MCCD system at varying loading rates: 1, 3, 9, and
15 mm/s

4.6 Energy Dissipation Characteristics

The dissipated energy by the MCCD system can be quantified by a general measure of
damping called the loss factor, # [64]. This factor is defined as the ratio of the dissipated energy,
Ug, to the total applied work to deform the system, W, in one loading/unloading cycle as given in
Equation (4.41). W is the area under the F-4 curve from zero displacement to the maximum
displacement at point f in Figure 4.9(a), while Uq is the enclosed area by the F-4 curve.

n=Us/(2mW) (4.41)

The main parameters of the MCCD system that affect # are h/t and ns. The effect of h/t can
be studied by knowing the maximum value of #. The theoretical maximum value of  foran MCCD
system with ns CCDs of a specific h/t occurs when ns — oo. The F-A4 response of such as system is
similar to the F-o response of a single CCD under force control conditions. Figure 4.14(a) shows

the F-o response of a monostable CCD with h/t = 2.75 under force and displacement control
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conditions, where the area enclosed by the force control curve represents the specific maximum
dissipated energy. This condition was used to construct a relation between # and h/t, which was

found to be linear, as shown in Figure 4.14(b).

] — Force control Y
--- Disp. control .
0.2 - P

Figure 4.14 (a) Normalized F-o curve for a CCD with h/t = 2.75 under force and displacement
control conditions, and (b) loss factor with h/t for different ns values
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The other main parameter of the MCCD system that affects # is ns. The analytical
multilinear model presented in Section 4.4 was used to calculate » by varying ns for a range of h/t
values. Figure 4.15(a) shows the F-4 response of two MCCD systems with t =2 mm, h =5 mm, |
= 200 mm, and ns = 8 and 14. The curves show that increasing ns highly decreases the magnitude
of the force drops from Fy, and F, with each snap-through and snap-back event, thus increasing the
dissipated energy.

To examine the relation between » and ns the developed model was used to determine # for
ns = 1 to 1000 and for h/t values ranging from 1.5 to 3 as shown in Figure 4.15(b). The study in
[68] showed that a CCD requires h/t of about 1.5 to exhibit a snap-through instability and h/t of
about 3 to change the stability state from monostable to bistable, where self-recoverability
(preferred) does not occur. From Figure 4.15(b) it can be noted that for ns <2, = 0, which means
that the loading and unloading paths coincide. For an MCCD system with 2 < ns < 12, # increases
sharply with ns over this range, indicating hysteretic responses. For ns > 12, a plateau is reached
and further increase in ns results in very small increases (< 10 %) in . The same finding can be
deduced from the curves in Figure 4.14(b). The ns-x relation in Figure 4.15(b) shows that 90 % of

the maximum value of # is reached with ns = 12.
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Figure 4.15 (a) F-4 curves for MCCDs with h/t =2.5 and ns = 8 and 14, and (b) loss factor with
ns for different h/t ratios

4.7 Conclusions

A new system able to dissipate energy through elastic instabilities was presented. The
MCCD system proposed in this paper is comprised of multiple cosine-curved domes that exhibit

elastic snap-through buckling behavior, which permit the system to display hysteretic force-
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deformation response and thus capable of elastically dissipating energy. Numerical studies and
experimental tests were conducted to determine the most effective parameters of system response
and energy dissipation characteristics. An analytical multilinear model that describes the hysteretic
force-displacement response was proposed. The model takes into account the nonlinear effects of
the building units of the MCCD system and was shown to yield accurate simulations. The
following findings about the MCCD system were drawn:

1. The proposed MCCD system can dissipate strain energy by the creation of a hysteretic
response through the successive elastic snap-through and snap-back responses of cosine-
curved domes connected in series. The hysteretic response is elastic, thus featuring fully
recoverable deformations, and has low rate dependence.

2. The amount of dissipated energy mainly depends on the number (ns) and the height-to-
thickness ratio (h/t) of the building units (CCDs). The relation between 7 and h/t is linear
while the relation between 7 and ns is nonlinear. Nonetheless, the higher ns and h/t are the
higher the amount of the dissipated energy.

3. The proposed MCCD system showed a maximum loss factor (») value of about 0.14 for a
monostable (self-recoverable) system and even higher for a bistable system.

4. The loss factor reaches about 90 % of its theoretical maximum value for MCCD systems
with about 12 CCDs (ns = 12). Further increase in ns yields a very small increase in the
value of 7.

5. Although increasing ns increases the amount of dissipated energy, it also decreases the
initial stiffness of the MCCD system. This can be compensated by increasing the number

of CCDs linked in parallel and/or using more chains of CCDs.
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CHAPTER FIVE

5 Equivalent Viscous Damping

5.1 Overview

This chapter presents a study to investigate the equivalent viscous damping (EVD) for the
hysteretic response of the multiple cosine-curved dome (MCCD) system. The study aims to
facilitate the direct displacement-based design of structures incorporating such systems as the main
damping mechanism to dissipate seismic energy. Time-history analyses of linear and nonlinear
single degree of freedom systems were performed to compare spectral displacements and EVD
ratios of the hysteretic response of MCCD systems to their substitute linear systems in terms of
maximum displacements. A set of 62 ground motion records were considered for the analysis. A
statistical study was conducted on the resulting displacements and the EVD ratios to develop
expressions for EVD ratios of the hysteretic response. The study presented in this chapter was

submitted to the journal Engineering Structures [82].

5.2 Background

The work presented here introduces the use of hysteretic response of the MCCD system
[79] to seismic loading and design by investigating the EVD and considering the unique
characteristics of the response of the system compared to commonly used inelastic hysteresis
models. The uniqueness of multistable element systems originates from the fact that their response
cannot be directly described by the displacement ductility or the apparent displacement ductility
that is commonly used measure for energy dissipation. Instead, the response is characterized by

the number of units in a system and their response, which control the amount of dissipated energy.
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Understanding this fundamental difference is the key to properly designing such systems as the
main damping mechanism in structures. The work herein is based on this conceptual difference.
Accurate estimation for the EVD ratios is an essential step to the direct displacement-based
design, as this quantity relates the hysteretic response of a structure to its corresponding spectral
displacement for a given ground motion record. Methods used to investigate the EVD involve
conducting dynamic analyses on linear and nonlinear systems. In this study, time-history analyses
(THA) were performed on the hysteretic response of MCCD systems and their substitute linear
systems in terms of maximum displacements to study the ratio of nonlinear to linear displacements.
This was followed by an iterative THA procedure to determine EVD ratios for the equivalent
substitute linear systems. A statistical study was then conducted on the results to develop

expressions for EVD ratios of the hysteretic response.

5.2.1 Direct displacement-based design
An ideal method to design structures with energy dissipation devices is the direct
displacement-based design (DDBD) method [5,83] since it based on the deformation of the
structure rather than its strength. Therefore, this method relies on displacement demands and
modified linear elastic displacement spectra for the design. To understand the work presented here,
it is important to first to recall the main steps of the DDBD method, which is given below with
reference to Figure 5.1:
1. Determine the design (ultimate) displacement, 4y. Usually, this displacement is based on
maximum allowable drift limits or on sectional/element deformation limits [Figure 5.1(a)].
2. Determine the yield (ideal) displacement, Ay. This displacement is usually based on the
target displacement ductility level, w4, serviceability drift limits, or on sectional/element

deformation limits [Figure 5.1(a)].
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3. Based on the displacement ductility, determine the EVD ratio, &, for the proper model of
the hysteretic response [Figure 5.1(b)]. Several expressions to estimate & for various
hysteresis models are available in the literature [84-88]. These expressions are usually in
terms of w4, the structural period, T, and other parameters of the hysteresis model.

4. Using ¢ and the design displacement, determine the effective structural period, Tefr, from
the modified displacement response spectrum [Figure 5.1(c)].

5. Calculate the effective stiffness, ke, and hence the design force, F,, at the ultimate
displacement.

The key step from the DDBD procedure that this study focuses on is the third step, since it
links the response of the hysteretic model and the ductility level of the element under consideration
to the EVD. The value of &is then used to modify the design linear elastic displacement response
spectrum. This eliminates the need to conduct nonlinear THA to obtain nonlinear displacement
response spectra for the design process. Therefore, the DDBD method requires an accurate
estimation of the ¢ for a substitute linear single degree of freedom (SDF) system that represent, in
terms of maximum spectral displacement, the response of the actual nonlinear system for design
purpose as shown in Figure 5.1. Consequently, eliminating the need to perform THA for the

system.
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Figure 5.1 Concept of equivalent viscous damping in DDBD method: (a) hysteretic response, (b)
relation between & and w4, and (c) displacement response spectra for different values of &

5.2.2 Approaches to estimate equivalent viscous damping

The equivalent viscous damping ratio (&) can be divided into two parts: (a) the initial or
elastic viscous damping, &, and (b) the hysteresis damping, &, as given in Equation (5.1). The
elastic viscous damping is the damping inherited by the materials of the structure and proportional
to the loading rate (velocity). This type of damping usually ranges between 2 to 7 % for common
structural materials and elements [89]. The hysteresis damping is the resulting damping due to
energy dissipation by the hysteretic response of the system. This damping is significantly higher
than the elastic damping.

§=detén (5.1)

Unfortunately, there is no direct procedure to estimate & for a given hysteresis model since
the available direct approaches to determine this quantity, such as Jacobsen’s approach [90], are
affected by many factors such as the forcing function on the SDF system and structural period
shift. Thus, such a method can not be directly applied for nonlinear systems excited by ground

motion records with nonuniform frequency content. Proper estimations for £ are therefore usually
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achieved by analyzing nonlinear SDFs and their linear equivalents under a wide range of ground
motion records. Studies in [84-88] showed that the resulting equivalent damping for SDFs under
ground motion records is lower than that determined using on Jacobsen’s approach.

There are two main approaches followed to approximately estimate the maximum
displacement of a nonlinear hysteretic system from its substitute linear system [91]. In the first
approach, the maximum displacement is taken as the product of the displacement of an equivalent
linear elastic system with same initial damping ratio (&) and initial lateral stiffness as the nonlinear
system multiplied by a displacement modification factor. In the second approach, the maximum
displacement is determined from a linear elastic system with a period shift (lower stiffness and
higher structural period) and higher damping ratio than that the nonlinear system. In this study, the
second approach was followed to determine £ to estimate the maximum displacements. Evaluation
of different methods and procedure to determine the EVD for various hysteresis models can be
found in [91,92].

The concept of EVD for a structure was first presented by Jacobsen [90] to determine
approximate solutions for nonlinear SDF systems with a damping force that is proportional to the
nth power of the velocity. It is assumed that the two systems are under sinusoidal excitation, having
the same stiffness and dissipating the same amount of energy each cycle. Jennings [93,94]
modified Jacobsen’s concept by changing the initial stiffness of the linear SDF system to a secant
stiffness. The modified concept was further investigated and extended by several researchers
[92,95].

The modified Jacobsen’s equivalent viscous damping ratio, &3, for a nonlinear system with
a hysteresis response compared to a substitute linear system with secant stiffness can be estimated

by equating the hysteresis area under a full cycle of loading, 2An, to the triangular area under a
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straight line from origin to the maximum displacement as shown in Figure 5.2. Thus, & is

calculated as follows:

A (5.2)

T Fydy
It should be mentioned that this equation ignores the conditions required for the two systems in
the original Jacobsen’s approach, which are as follows: (1) they are excited by sinusoidal loading,

(2) they are at resonance conditions, and (3) they have the same stiffness.

F 3

k‘r

Figure 5.2 Full cycle hysteretic response of the MCCD system with parameters for the modified
Jacobsen’ approach

5.3 Methods

5.3.1 Idealized hysteretic response of the MCCD system
To facilitate the nonlinear time-history analysis of structures incorporating the MCCD

system, it is desired to idealize the hysteretic response. The reason is that the sawtooth-shape of
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the force-displacement, F-4, curve (Figure 5.2) imposes computational difficulties, and hence
commonly used seismic structural analysis programs don't offer modeling tools to represent such
aresponse. Thus, the response of the MCCD system was idealized to a flag-shaped (parallelogram)
response by maintaining the energy balance between the actual and the idealized responses. This
approach is a similar approach to those widely used approaches in seismic design of structural
elements to determine the ideal yield displacement (curvature, or rotation) [4,5].

The sawtooth-shape response of the MCCD system shown in Figure 5.3(a) can be
calculated using the analytical model presented in [79]. The study in [79] investigated the response
characteristics of the MCCD system and its energy dissipation capability. As shown in Figure
5.3(a), the response consists of multiple snap-through (and snap-back) events that equal to the
number of units in the system (ns). The snap-through and snap-back events are at the same level
as the buckling force, Fy, and the minimum force, Fn, respectively. The drop forces from each
snap-through, Fug, and snap-back, Fnq, events vary depending on h/t and ns. The effective initial
stiffness of the system, kb, is taken as the slope of a straight line from the origin to the displacement
at the first buckling event, 4, of the system as given below:

kb =Fp /Ap (5.3)
where 4, = ns db, and dy is the critical (instability) displacement of an individual CCD unit as
shown in Figure 5.3(b). The response characteristics of a single CCD unit and its force and
displacement values can be calculated using the expressions developed in [68]. The maximum
displacement of the system, Am, is given as follows:

An =ns6p + (ns- 1) Sp (5.4)
where sp = dp - om, and Jm is the displacement at a force level equal to Fy in Region 11, see Figure

5.3(h).
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Figure 5.3 (a) F-4 response of the MCCD system, and (b) F-6 responses of a CCD unit with key
response quantities

A two-step procedure was developed to idealize the hysteretic response of the MCCD

system. In the first step, an ideal initial stiffness was determined in terms of h/t. This stiffness is
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needed to correct the initial stiffness (ko) in order to construct a flag-shaped response that maintains
the equal energy condition between the actual and idealized responses for a theoretical system with
ns = oo (Figure 5.4). In the second step, an ideal buckling force, Fy’, and a minimum force, Fy’,
were determined based on the characteristics of the hysteretic response of the MCCD system. It
should be noted that in practical systems with ns << oo, F,” and F’ are smaller and greater than Fy
and Fn, respectively. The values of F,” and F,’ approach Fy and Fn, respectively, when ns
approaches .
5.3.1.1 Ideal stiffness

Figure 5.4 shows the F-4 response of an MCCD system with ns = co. The F-4 response of
such as system is similar to the response of a single CCD under force control conditions. Note that
in this case Fy’ = Fp and Fn = F, . Figure 5.4 also shows an idealized response based on the initial
stiffness of the system (ko). This idealization clearly shows that the energy balance between the
enclosed areas of the two curves is not maintained. Therefore, the initial stiffness of an idealized
response, k;, must be determined in a way that satisfies the energy balance condition. This can be
done by solving the following equation for k;:

An=(Fp - Fn) (Am - F» / kz) (5.5)
Equation (5.5) represents the area of the flag-shaped response and the ratio Fy / k; represents the

ideal displacement at first buckling event, 4y’, see Figure 5.4.
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Figure 5.4 The actual and the idealized F-A4 curves for an MCCD system with ns = oo

Figure 5.4 shows the ideal initial stiffness and the resulting hysteretic response of the
system. The same process was conducted for h/t ranging from 1.5 to 3 in order to construct a
relation between h/t and k./ks. This relation was found to be linear as shown in Figure 5.5(a). Thus,
kz/kp can be calculated using the following expression:

ky/ko = 0.674 h/t (5.6)

The equivalent viscous damping ratios based on the modified Jacobsen’s approach (&)
were calculated for h/t ranging from 1.5 to 3 using Equation (5.2). The results show an
approximately linear relationship between &; and h/t. Another important quantity that describes the
idealized hysteretic response are the displacement ductility (:.s) and the force ratio of the difference
between Fy’ and Fn’, Br as given in Equations (5.7) and (5.8), respectively. The equations were
used to construct a relation for u,s and pr with respect to h/t as shown in Figure 5.5(b). Both

quantities exhibit a generally linear relation with hit.
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Br=(Fp'-Fn) / Fp’ (5.8)
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Figure 5.5 (a) EVD ratios based on modified Jacobsen’s approach (&;) and the ideal stiffness
ratio (ki/kn) with h/t, and (b) displacement ductility («) and force difference ratio (8r) with h/t
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5.3.1.2 Ideal maximum and minimum forces

For an MCCD system with a finite number of units (ns << «), the ideal buckling (Fp ") and
minimum (Fy’) forces are lower and higher than F, and Fn, respectively. Thus, the aim here is to
determine the values of F,' and Fy' in conjunction with the ideal initial stiffness (k;), determined
in the first step, while maintaining the energy balance between the two responses as shown in
Figure 5.6. Since the known parameters of the idealized response in Figure 5.6 are only k; and Am,
it is required to establish a relation between Fy’ and F,’ in terms of the average buckling, Foavg,
and minimum, Fnavg, forces to solve the enclosed area equation An = (Fv’— Fn’) (4m —Fb’ / k) for
Fp’. Inthis relation it was assumed that the difference between Fy’and Fravg equals to the difference
between Fn’ and Fnavg, i.€., Fo’ — Fravg = Fn” — Fnayg. This assumption ensures that idealized forces
are relative to the average forces, and the reduction from Fy and the increase from F, are equivalent
to each other. The average forces Frayg and Fnavg can be calculated based on the average difference
between F, and Fng, and between F, and Fnq, see Figure 5.3(a). The following steps summarize
this idealization procedure:

1. Calculate the sawtooth-shaped response of the MCCD system and the energy area An
2. Determine the average forces Fpavg and Fnavg
3. Solve the second-degree Equation (5.9) of the enclosed energy area A, and determine Fy "

CiFy'? +CoFy'-C3=0 (5.9)

where C1, Cy, and Cs3 are as follows:

Ci=-2/k,

C2 =2 Am + (Foavg + Fnavg) / k2, and

C3 = Am (Fpavg + Fnavg) + An

4. Calculate F]]l:Fnan - (Fb,_ Fban)

99



5. Calculate 4y, 44°, and 4, based on the value of Fy’, Fn’, and k; as shown in Figure 5.6.
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Figure 5.6 The actual and the idealized F-4 curves for an MCCD system with ns << oo

The procedure above was repeated for h/t ranging from 1.5 to 3 and for ns ranging from 1
to 1000 to examine the relation of x4 with ns and h/t as shown in Figure 5.7. It can be seen that in
general the increase in us with ns is minimal especially for higher values of ns. The reason is that
both 4m and 4y’ are in terms of ns. Nonetheless, w4 increases at higher rate between ns of 3 and 6,
and this effect is more pronounced for systems with higher h/t. However, as will be shown latter,

the dissipated energy (An) within that range is low.
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Figure 5.7 The relation between displacement ductility () with ns for a range of h/t values

To study the relation between & and ns Equation (5.2) was used to determine & for ns = 1
to 1000 and for h/t values ranging from 1.5 to 3. This relation is shown in Figure 5.8(a). It should
be noted that an MCCD system requires a h/t of about 1.5 to exhibit a snap-through instability and
h/t of about 3 or less to maintain self-recoverability [79]. Figure 5.8(a) shows that for ns <2, & =
0 since the loading and unloading curves coincide, while for 2 < ns < 18, &; increases sharply. For
about ns > 18, a further increase in ns results in a slight increase (< 10 %) in &. In a similar fashion,
the force ratio Sr was plotted against h/t and ns and it showed comparable trends to & as shown in

Figure 5.8(b)
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Figure 5.8 (a) The relation between & with ns for different h/t ratios, and (b) gr with h/t for
different ns values

5.3.2 Considered cases for the study
Two cases of the hysteresis model were considered for the study: (1) the response of the

MCCD system, and (2) the response of the MCCD system coupled with a linear elastic response.

102



In the first case, it is assumed that the MCCD is the only force resisting system and damping
mechanism with a response as shown in Figure 5.9(a). Note that the tangent stiffness, ki, is zero in
this case. In the second case, the response in the first case (i.e., the response of the MCCD system)
was coupled in parallel with a non-yielding linear (NYL) system. The resulting response in the
second case is as shown in Figure 5.9(b). The coupled NYL system has a stiffness, ke, that is less
than or equal to the secant stiffness of the MCCD system, ke, as shown Figure 5.9(b). The ultimate
force of the NYL system, F¢, can be linked to Fy’ by the force ratio factor, yr, as given below. yr
=1and 2 for Fc =0and Fc = Fy’, respectively. It is should be noted that ket in the first case [Figure
5.9(a)] does not equal to ket in the second case [Figure 5.9(b)]. The relations governing the

parameters of hysteretic responses are as follows:

ve=(E'+F) /Fp’ (5.10)
Fu=ker Ay (511)
@:ﬂ@%%; (5.12)
ki =Fypa / du (5.13)
_ _Yr—1
" Hatyr -1 (5.14)
ke=ark; (5.15)
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Figure 5.9 Hysteresis models considered: (a) Case 1-response of an MCCD system, and (b) Case
2-response of an MCCD system coupled with a non-yielding linear system

5.3.3 Ground motion records

A set of 62 ground motion records was used to conduct the study. The records are from 7
different earthquakes with properties as presented in Table 5.1. The earthquakes had magnitudes
(Ms) ranging from 5.8 to 7.1 [96]. The records were recorded on sites corresponding to site class
B as per [97]. Figure 5.10 shows the displacement response spectra for the 62 ground motion
records with 5 % damping along with the average response spectrum. The curves in Figure 5.10
were normalized based on maximum spectral displacement after the spectral analysis for

illustration purposes.
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Table 5.1 Recorded earthquake used in this study

Date Earthquake name Magnitude (Ms)
02/09/1971 San Fernando 6.5
04/24/1984 Morgan Hill 6.1
07/08/1986 Palm Springs 6.0
10/01/1987 Whittier 6.1
10/17/1989 Loma Prieta 7.1
06/28/1991 Sierra Madre 5.8
01/17/1994 Northridge 6.8
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Figure 5.10 Scaled displacement response spectra of the motion records at 5 % damping and

5.3.4 Analysis procedure

The procedure followed to determine the & starts with the modified Jacobsen’s viscous
damping ratio (&) defined by Equation (5.2) in addition to the elastic viscous damping (&) of 2%
as an initial estimate for the linear THA of the substitute systems. These ratios are then changed
in an iterative process until the resulting & for the equivalent substitute linear SDF systems have

the same maximum spectral displacements as the original nonlinear systems. For the nonlinear

their average response
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THA, a value of 2% Rayleigh damping [98-100] proportional to the current tangent stiffness was

considered.

The study was conducted for the two cases noted in Section 5.3.2 with 0.05 s < Teff <4 s at

0.05 s increments and h/t ranging from 1.5 to 3 at 0.25 increments. The corresponding values of

s and pr as a function of h/t are shown in Figure 5.5(b) and can be calculated using Equations

(5.7) and (5.8), respectively.

The THA of the linear and nonlinear systems were performed using the program OpenSees

[101]. The iterative process to determine ¢& for the linear SDF systems were performed using the

program Matlab. The process to determine the EVD ratios is as follows:

1.

2.

Set an h/t and calculate the corresponding values of s and Sr.

Select a ground motion record.

Set an effective structural period Te.

Calculate & from Equation (5.2) and set the initial EVD ratio, &, as & =& + &

Calculate kett = 4 72 m / Ter® where m is the mass and it was kept constant at unity.
Perform linear THA on the SDF system with properties as given above and determine the
maximum absolute linear displacement, 4.

Based on the value of 4. from step 6, and w4 and S form step 1, calculate the parameters
of the hysteretic response of the nonlinear system: Fy, Fy, ki, and k¢ using the relations
presented in Section 5.3.2.

Perform nonlinear THA on the SDF system with properties as given above and determine

the maximum absolute nonlinear displacement, AnL.
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9. Compare the maximum displacements 4. and 4An. from steps 6 and 8, respectively, and
report the ratio Anv/Ac. If the error between A, and Anc is less than 1.5%, then the EVD
ratio & equals & and proceed to step 11, otherwise proceed to step 10.

10. For the linear system with properties as given in steps 2 to 5, iteratively change & until the
resulting new 4. equals to 4. from step 8 within an absolute error of 1.5%, and report the
results.

11. Repeat the procedure from step 3 to 10 by selecting different values of Tes. This step will
result in linear and nonlinear displacement response spectra.

12. Repeat the procedure from step 2 to 11 by selecting another ground motion record.

13. Repeat the procedure from step 1 to 12 by selecting a different value of h/t and the

corresponding values of w4 and Sr.

5.4 Results and Discussion

5.4.1 Ratio of nonlinear to linear spectral displacements

The linear and nonlinear spectral displacements (analysis results from step 11) for the
considered ground motion records were averaged and grouped based on the h/t values and the two
considered cases in Section 5.3.2. The calculated ratios of nonlinear to linear spectral
displacements (4n/4L) were averaged for the 62 records over the range of Ter. A statistical study
was conducted on the resulting data to determine the upper and lower bounds using the
interquartile range [102] and then eliminating suspected outliers. Figure 5.11(a) and (c) show the
averaged ratios of An/A for Case 1 and 2, respectively. It can be noted that for approximately Test
> 0.75 s, the ratio is generally greater than 1. This means that the used & based on the modified

Jacobsen’s approach (step 4) overestimates the & An opposite conclusion can be made on the

107



An/Ap values for Tess < 0.75 s. The coefficient of variation (COV) for Ter < 0.75 s, shown in Figure

5.11(b) and (d), ranges between 10% and 40% for Case 1, and between 8% and 28% for Case 2.
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Figure 5.11 Average ratios of linear to nonlinear spectral displacements and coefficient of
variation for Case 1 [(a) and (b)], and for Case 2 [(c) and (d)]

5.4.2 Equivalent viscous damping ratios

A similar statistical study to that performed for the Anu/AL ratios was repeated for the
equivalent viscous damping ratio () obtained from the iterative process in step 10. Figure 5.12(a)
and (b) show the average ¢ for the 62 records over the range of Tets and grouped based on the values
of h/t and the two considered cases. Figure 5.12(c) and (d) show the relation between h/t and & for

selected values of Ter along with the calculated EVD based on the modified Jacobsen’s approach
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(MJ). The figures show that the curves are generally lower than the MJ curve except for shorter

periods Terf of 0.5and 1 s.
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Figure 5.12 Average equivalent viscous damping ratio (&) with Terr and h/t for Case 1 [(a) and
(c)], and Case 2 [(b) and (d)]

5.4.3 Developed expressions for equivalent viscous damping

The resulting equivalent viscous damping ratios from the analysis procedure (Figure 5.12)
were used to develop empirical expressions for the EVD ratios (&) of the idealized hysteretic
responses of the MCCD system [see Equation (5.1)]. The data are mainly influenced by height-to-
thickness ratio (h/t), the effective structural period (Tes), and the force factor of the coupled NYL

system (ye). A piecewise linear function was used to develop an expression for ¢ as by Equations
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(5.17) to (5.19). The function consists of constant and linear parts that meet at a deviation point,
Ts, along the range of structural period. This point was found to be a function of yr. The ideal
height-to-thickness ratio, (h/t),, can be calculated using Equation (5.20) based on the values of x4
and fr of the considered system. For systems with ns = oo, (h/t)s = h/t, while for systems with ns

<< o0, (h/t)a < hit.

G=D[1+E(Ts-Tor)  for Teg<Ts (5.17a)
&=D for T < T (5.17b)
Ty =-0.5yr+2.5 (5.18)
D = (-0.0188 yr + 0.0922)(h/t)» + 0.0215 y - 0.1188 (5.19)
E=3817 (h/t)a1422 (5.20)
(h/O)n = 0.183 s + 0.768 Br + 1.151 (5.21)

The developed expression in Equation (5.17) was compared to the expressions proposed in
[5,86] for ring-spring response models. Since the ratio h/t does not apply to the expressions in
[5,86], the corresponding w1 values to the h/t ratios were set as the basis for the comparison. Figure
5.13 shows the relation between & and w4 for y of 1 and 2. The figure illustrates the conceptual
difference in dealing with the MCCD system compared to conventional inelastic systems. It can
be seen that at higher values of the x4 the & based on the expressions in [5,86] reach a plateau,
while the & of the MCCD system using the developed expression in Equation (5.17) keeps
increasing. This agrees with the trends shown in Figure 5.12(c) and (d). The reason is that
increasing u results in increasing h/t which in turn increases the force difference factor (5r) and

hence the area of the dissipated energy. This is shown in Figure 5.5 and Figure 5.8.
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Figure 5.13 Developed expression for EVD compared with other expressions

The linear substitute systems were reanalyzed with damping ratios estimated by the
developed expressions. The linear and nonlinear spectral displacements for the considered ground
motion records were averaged and grouped based on the values of h/t and the two considered cases.
Results are shown in Figure 5.14, from which can be seen that the spectral displacements are in

good agreement.
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Figure 5.14 Averaged ratio of linear to nonlinear spectral displacements using the developed
expression for Case 1 (a) and (b) Case 2,

5.5 Conclusions

The hysteretic response of an MCCD system that relies on consecutive snhap-through
buckling events to dissipate energy was investigated for its equivalent viscous damping. The

sawtooth-shape response of the MCCD system was idealized to facilitate dynamic analysis. The
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idealization process was based on maintaining energy balance between the original and idealized
responses.

The modified Jacobsen's approach was used to initiate the process of determining
equivalent viscous damping ratios for the examined hysteretic model. The approach is based on
substituting the nonlinear system by a linear system with a secant stiffness at maximum
displacement, which agrees with the basic assumptions of the direct displacement-based design
method.

Linear and nonlinear time-history analyses were performed on single degree of freedom
systems with hysteretic response and linear equivalents, and a systematic analysis procedure was
followed to determine corrected equivalent viscous damping ratios for the examined responses. A
statistical study was conducted to develop empirical expressions for the idealized hysteretic
response of the MCCD system. The following findings of the study were drawn:

1. Ratios of nonlinear to linear spectral displacement show that the equivalent viscous
damping ratios based on the modified Jacobsen's approach are overestimated. This
behavior is more pronounced in intermediate and long period ranges (Tert > 0.75 s). The
opposite behavior was observed in the short period range (Tet < 0.75 ).

2. The general coefficients of variation of nonlinear to linear spectral displacements were
23% and 11 % for Cases 1 and 2, respectively.

3. An expression to estimate the hysteretic equivalent viscous damping ratio was developed.
The calculated spectral displacements for the linear substitute systems using the developed
expression are in good agreement with the displacements from the analyses of nonlinear

systems.
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An experimental investigation is being carried out to determine the EVD ratio of the
MCCD system for a range of h/t values. Preliminary results show good agreement with the

numerical results of this work.
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CHAPTER SIX

6 Seismic Performance Evaluation

6.1 Introduction

This chapter investigates the seismic performance of typical reinforced concrete (RC)
structures incorporating the MCCD system in various configurations as the main damping
mechanism for seismic protection. Direct displacement-based design and dynamic analysis of
three example structures subjected to two historic ground motion records are presented. For each
example, nonlinear time-history analyses for the original structure and the modified structure with
the MCCD system were performed. The considered systems are (1) a bridge pier-wall, (2) a

building frame, and (3) two coupled prestressed rocking walls.

6.2 Seismic Hazards

Two ground motion records were used to evaluate the seismic performance of the example
structures. The used records are the EI Centro 1940 NOOE and the Chile 1985 N10E components,
shown in Figure 6.1 with properties as presented in Table 6.1. For each example structure the
design was based on the EI Centro record. The structure was then subjected to the El Centro and
the Chile earthquake records to evaluate its seismic performance. The two records can be roughly
considered as a design basis and a maximum considered events [6], respectively.

Table 6.1 Ground motion records used in this study

Date Record Magnitude (Ms) Peak grm_md
acceleration
05/19/1940 El Centro NOOE 6.7 0.32 ¢
03/03/1985 Chile 1985 N10E 7.8 0.71¢
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Figure 6.1 Ground acceleration time histories for the earthquake used in the study: (a) 1940 El
Centro NOOE, and (b) 1985 Chile 1985 N10E

6.3 Bridge Pier-Wall

An RC bridge pier-wall with a height, hw, of 7000 mm, a length, I, of 3000 mm, and a
thickness, tw, of 300 mm is considered herein as shown in Figure 6.2(a). The pier-wall is to carry
an axial compressive load, P, of 1200 kN, with ratio, y» = 0.056, and an effective seismic mass,
me, of 214068 kg. The pier-wall was first conventionally designed as a ductile member and then
modified with the MCCD [79] and redesigned. Non-linear time-history analyses (NLTHA) were
conducted for the two systems to compare the seismic performance under the two ground motion
records. Since the nonstructural components are not of concern in this case, the lateral drift, 6,4y,

of the of bridge pier-wall can be as high as 0.04 [5]. Therefore, comparison between the original
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and the modified systems is in terms of limiting structural damage. In other words, the aim here is
to modify the pier-wall with the MCCD system to avoid permanent inelastic deformations.
Nonetheless, the maximum drift should not exceed the code limit ratio of 0.03 [5]. It should be
noted that the design and analysis were only carried out about the strong axis of the wall (the
transverse direction of the bridge).

The capacity design and detailing requirements of the systems are as per AASHTO LRFD
Bridge Design Specifications [103] and AASHTO Guide Specifications for LRFD Seismic Bridge

Design [104].

(@) (b)

A T A /]

Original Pier-wall Modified Pier-wall
Figure 6.2 Example structure 1: (a) original pier-wall, and (b) modified pier-wall

6.3.1 Modified system
The pier-wall is modified by removing the two edge parts at the bottom of the pier-wall

and replacing them with the MCCD system as shown in Figure 6.2(b). The remaining middle part
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at the bottom the wall, called inner column, is capable of carrying gravity loads, base shear, and
uplifting forces (tension). Depending on sectional detailing, the column could have very low lateral
stiffness providing the necessary flexibility under seismic demands to deform without yielding.
The column could also be detailed as a hinge support.

When the system is loaded laterally, it will rotate in roughly as a rigid body (further
discussed below). This rotation causes the MCCD system to be compressed at one side and
tensioned at the other side. Thus, the column and the MCCD systems contribute to the lateral
stiffness of the modified pier-wall. Upon load removal, the MCCD system will restore its original
unreformed shape helping the wall to self-center.

The design objective of the modified system is to prevent permanent deformations and to
restore the original configuration upon lateral load removal. To meet this design objective, the
system is designed to a maximum displacement that is governed by yield displacement of the

column or the maximum allowable drift, whichever is smaller.

6.3.2 Material properties
Table 6.2 presents the material properties of the concrete and the reinforcing steel used for
the pier-wall and the modified system.

Table 6.2 Properties of concrete and reinforcing steel used for the pier-wall

Property Value

Specified compressive strength of the concrete fo’ =35 MPa
Specified yield strength of the reinforcing steel bars fsy = 420 MPa
Elastic modulus of the reinforcing steel bars Es = 200 GPa

Yield strain of the reinforcing steel bars gy = 0.0021
Diameter of longitudinal reinforcing steel bars ds = 15.9 mm
Diameter of transverse reinforcing steel bars dst = 12.7 mm

Concrete cover to the center of first layer of reinforcements dc =50 mm
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6.3.3 Conventional design of the pier-wall

6.3.3.1 Idealized system

The pier-wall was idealized as a cantilever member with the effective seismic mass lumped
at its height hy as shown in Figure 6.3(a). The plastic deformation, Avp, is considered to be
concentrated in the plastic hinge region at bottom end of the pier-wall. Additional details about the

bridge configuration, pier-wall connection to superstructure, and the idealized system can be found

in [105].
(a) Ay, Ay, (b) Ay
hlt" i h“;
| [ MCCD
; Plastic ﬂ*‘ 1
: ) AL ==X .
i hinge Z 4
. / " %
KR v K s oz vt G e
Undeformed Deformed Undeformed Deformed

shape shape shape shape
Figure 6.3 System idealization for analysis: (a) original pier-wall, and (b) modified pier-wall

6.3.3.2 Design
The direct displacement-based design (DDBD) method was used estimate seismic
demands. First the ideal yield curvature, ¢y, and displacement, 4y, were estimated as follow [5]:
py=2¢&/lw=141/kmn

Ay - ¢th2/3 :22.8717111]
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A demand displacement ductility, up, value of 3.5 was determined based on the proposed pre-
specified displacement values in [105] for a wall with aspect ratio, AR = |l / tw, of 10 and
slenderness ratio, SR = hw / lw, of 2.34. The design displacement, 4p, was thus calculated as:

Ap =up 4y, = 80.1 mm
The equivalent viscus damping ratio, & which consists of the elastic, &, and the hysteresis, &,

parts, was estimated as follows [5]:

=&+ & =005+ 0.444 (“;—‘:) =0.05+0.101 = 0.151
D

The effective structural period, Te, was determined by performing linear displacement spectral
analysis with damping ratio as estimated above. The displacement response spectrum is shown in
Figure 6.4. Te was found to be 1.617 s. The base shear, Ve, and bending moment, M., were
calculated as follows:

Ve=4A4dpm me/Te =258.7 kN

e = Ve hyw =1810.8 kN.m
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Figure 6.4 Displacement response spectrum of the 1940 EIl Centro ground motion record used for
the design
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Based on the moment M. and the capacity design requirements as per the AASHTO LRFD
specifications [103,104] the pier-wall was designed for flexure and shear with sectional properties
as shown in Figure 6.5(a). Figure 6.6(a) shows the force-displacement curves for the designed pier-
wall with the specified material properties calculated following plastic hinge analysis procedure
detailed in the Appendix [105]. The figure also shows shear strength capacity curves based on the

model proposed by Priestley and Paulay [4] for web crushing.

(a) T ~4 @ 15.9 mm (b)
¥ [ — 10¢ 15.9 mm
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[ 100 mm cfe Y leeleabdeted’ /0p/59mm

b
300 mm
4
¥ S| 4159 mm

300 mm

Figure 6.5 Cross-sectional details: (a) original pier-wall, and (b) modified pier-wall
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Figure 6.6 Force-displacement responses: (a) original pier-wall, and (b) modified pier-wall

6.3.4 Design of the modified pier-wall

6.3.4.1 Idealized system

Figure 6.3(b) shows the idealized system for the modified pier-wall with the MCCD

system. In this idealization, the MCCD system at each side of the pier-wall are represented by
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axial spring elements with flag-shaped response that are located at a horizontal lever arm distance,
lb, from the mid-length of the pier-wall as given in Equation (6.1). The location of the MCCD
system are moved further from the edges of the pier-wall by a distance, a,, of 700 mm (see Figure
6.2). This increases Ip, which in turn increases axial displacement demands on the MCCD system
and results in a higher lateral shear force, Vb, carried by the MCCD system for a given axial force,
Fb, as given in the equilibrium Equation (6.2) below. This leads to a reduction in the demand forces
on the MCCD system (Fb).

Ib=1v/2+ap (6.1)

Vo = FpIp / hw (6.2)

Equation (6.2) is, however, not accurate since the modified system does not deform in a
rigid body rotation and hence the actual relation between Vy, and Fy is based on the deformations
of the inner column. With reference to Figure 6.3(b) the relation between the top lateral
displacement, 4v, and the axial vertical displacement, 4, on the MCCD systems due to a lateral
shear force, V, can be established based on the expression for transverse flexure deformations in a
cantilever member as given in Equation (6.3) [106]:

Av(x) =V (3hwx2-x3) /(6 EI) (6.3)
where x is a distance along the height of pier-wall from the bottom. The term V/(E 1) can be
determined from the sectional curvature, ¢, and top displacement, Ay, of the inner column as
follows:

Adv=Vh?/(BED=pht/3 (6.4)

Vhw/(ED =/ by (6.5)
Thus, Equation (6.3) can be rewritten as follows:

M(x) =@ (3x2-x/h) /6 (6.6)
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By taking the first derivative of Av(x) with respect to x, the slope of the tangent line, m;, at x = hy,
where hy is height of the MCCD system [see Figure 6.3(b)], is determined as follows:
m=4,(x) =@ (6x-3x°/hw) /6 (6.7)
The slope of the perpendicular line, my, is determined as -1/m¢. Thus, this slope is used to calculate
the displacement on the MCCD system (4) at a distance |, from mid-length of the pier-wall (1./2)
at a lateral displacement (4v) for values of curvature ¢ from 0 to the ideal yield curvature of the
column, ¢y. The relation between the ratio 6= = 4 / Av and ¢ was found to be constant for a given
I, and hy lengths with value of 0.3018 for I, = 2200 mm, and h, = 2800 mm, as shown in Figure
6.7. The figure shows & for arange of I, and hy values. The ratio of 6 can thus be used to calculate

the force demands of the MCCD system as follows:

Vs = O Fy (6.8)
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Figure 6.7 Relation between the lateral (4v) and axial (4) displacements with lengths hy and Iy
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6.3.4.2 Design of the inner column

The first step in the design of the modified system is to design the inner column to have
adequate elastic displacement under maximum lateral loading. Therefore, it must have high
flexibility and thus lower lateral capacity compared to the conventional pier-wall. The design of
this element is similar to the design of any reinforced concrete column to seismic loading in
addition to satisfying elastic displacement demands. To facilitate the design, a few assumptions
were followed for the sizing and the reinforcing of the column as follows:

1. The cross-section dimensions of the inner column are determined based on that the axial
load ratio (yp), expressed in Equation (6.9), is not greater than the code specified vale of

0.2 [104].

y=P/(fct:l)<0.2 (6.9)

2. The ability to carry gravity loads, base shear, and uplifting forces (tension).

A square section with side length, tc, of 500 mm and reinforcement ratio, p, of 2.85% were
used for the column section as shown in Figure 6.5(b). The column was designed for shear as per
capacity design requirements in [103]. The force-displacement response of the column was
calculated following plastic hinge analysis procedure presented in [105] is shown in Figure 6.6(b).
It should be mentioned that shear design of the inner column was based on the shear force
determined based on capacity design principles plus the additional shear forces developed due to
the MCCD system [Column + MCCD in Figure 6.6(b)]. The ideal yield curvature and
displacement, nominal bending moment, and the capacity shear force were calculated from the
section properties of the column as follows, respectively:

@y =12.51/km

4y, =211 mm
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My, =747.7 kN.m
Va=1017 kN

6.3.4.3 Design of the MCCD system

The yield displacement of the column (4y) represents the ultimate design displacement (4p)
for the modified system. Assuming an MCCD system with properties determined according to the
study in Chapter 5 [82] and Table 6.3, the equivalent viscus damping (¢) can be determined by the
proposed expression in Equation (5.17) [82] assuming Test > Ts as follows:

E=& + & = (-0.0188y+0.0922)(h/t)n + 0.0215y-0.1188 = 0.05 + 0.0557 = 0.1057

Table 6.3 Properties of the MCCD system for the modified pier-wall

Property Value
Height-to-thickness ratio of the CCD in the system h/it=2.5
Number of connected CCDs in series ns = 12
Force ratio of the difference Sr = 0.5586
Displacement ductility of the MCCD system s = 4.6676
Force ratio factor v = 1.649
Ideal height-to-thickness ratio of the CCD in the system (h/t)h = 2.4341

The effective structural period for the system (Tes) was determined from the displacement
spectrum shown in Figure 6.4. T, was found to be 2.57 s resulting in a base shear Ve =271 kN. The
shear force carried by the MCCD systems (Vb) was calculated as follows:

Vo = Vo — My / hw = 164 kN

The axial force acting on one of the MCCD systems due to Vi can be determined using the
ratio . With reference to the idealized system shown in Figure 6.3(b), the axial force demand Fp,
on one MCCD system was determined as follows:

Fo=Vo/(26F) =272 kN

To carry this load (Fb), an MCCD system with units made of carbon fiber composites with

an elastic modulus of 300 GPa was used. The CCD units have thickness, t, of 1.2 mm, height, h,
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of 3 mm, and length, I, of 100 mm with ideal buckling force, Fy” of 3.8 KN. The MCCD system
consists of 3 by 6 vertical chains of CCDs with total number of chains, nc, of 18 in each side of the
wall. Each chain has 12 serially connected units (ns = 12) of 4 parallel units (n, = 4), as shown in
Figure 6.8(a). The system results in an axial force capacity of 273.6 kN as determined below. The
actual and idealized force-displacement response of the MCCD system as per Chapter 4 [79] and
Chapter 5 [82] is shown in Figure 6.8(b). Note that the system in Figure 6.8(a) is capable of
carrying global compressive and tensile forces that cause the CCD units in the system to compress
in the both cases. The response of the modified pier-wall system is shown in Figure 6.6(b).
Although the Fy’ value of 3.8 kN may seem large, it has a moderate value when compared with
other structural units. To put this in perspective, the value of 3.8 kN is smaller than that developed
by a steel rod with 3.4 mm diameter.

Fy=Fy'npn.=273.6 kN
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Figure 6.8 (a) Loading mechanism for one chain of the CCD units, and (b) force-displacement
response of the MCCD system

6.3.5 Time-history analysis
Non-linear time-history analyses (NLTHA) were performed for the two designed systems
using OpenSees [107] under two ground motion records of EI Centro 1940 and Chile 1985

earthquakes. The MCCD system was modeled using the self-centering flag-shaped material object.
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Figure 6.9 shows the lateral displacement time-history response for the original and modified pier-
wall systems. Although, the modified system showed higher maximum displacement in both cases
with 113 mm and 156 mm than the original pier-wall with 91 mm and 105 mm, respectively, it is
still less than the design displacement (4y) of 211 mm. It should be mentioned that the reference
wall was designed for a much lower design displacement of 81 mm. Therefore, the modified pier-
wall with the MCCD system satisfied the design demands and did not exceed the yield point of
the inner column (156 < 211 mm), which means that no damage occurred. Figure 6.10 shows the
resulting hysteretic shear force-lateral displacement responses of both systems for the two ground
motion records. It can be seen that the dissipated energy by the inelastic action from the response
of the pier wall in Figure 6.10(a) and (c) is larger than that by the modified system in Figure 6.10(b)
and (d). However, in the latter case no permanent damage is observed; while for the conventional
pier-wall permanent displacements of 10 mm and 24 mm were predicted for the EI Centro and

Chile records, respectively.
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6.4 Building Frame

The second example structure is a one-story one-bay RC frame shown in Figure 6.11(a).
The frame has two rectangular columns with height, he, of 4000 mm and cross-sectional length, I,
and thickness, t¢, of 400 mm and 250 mm, respectively. The two columns are connected by a beam
with length, lg, of 6400 mm, cross-sectional height, hg, 400 mm, and thickness, tg, of 250 mm. The
frame was designed for an effective mass me. = 18838 kg determined from a tributary area of 5000
mm width. The axial force and ratio on the columns are P = 93 kN and yr = 0.264. The frame was

first conventionally designed as a ductile member and then modified with the MCCD system and
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redesigned. Similar to the pier-wall, the aim was to limit the columns’ deformation to the elastic
range of response. The design and analysis were only carried out in the in-plane direction of the

frame.
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Figure 6.11 Example structure 2: (a) original frame, and (b) modified frame with chevron brace
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6.4.1 Modified system

The frame was modified by adding a rigid chevron brace that is connected to the beam by
an MCCD system as shown in Figure 6.11(b). Since the frame is supporting the floor at the frame
height level, it is assumed that the beam is axially rigid. When the system is loaded laterally the
beam will displace and activate the MCCD system. The design objective is to prevent permanent
deformations and restore the original configuration upon lateral load removal. Therefore, the
system design displacement is governed by yield displacement of the columns or the maximum
allowable drift, whichever is smaller. The material properties of concrete and reinforcing steel are

the same to those presented in Table 6.2 for the pier-wall.

6.4.2 Conventional design of the frame

6.4.2.1 Ildealized system

The columns were assumed to be fixed at the bottom and rigidly connected to the beam at
the top. The effective seismic mass was assumed to lumped at beam level. It was also assumed
that the plastic deformations are concentrated in plastic hinges at the ends of the columns the beam
as shown in Figure 6.12(a). To determine the lateral stiffness of the system, k4, the stiffness method
was used to construct the stiffness matrix of the system as discussed in the Appendix. An equation
to determine k4 in terms of the beam-to-column stiffness ratio, pe is given below [89].

ka=12E: I (6 pr+1) /(3 pr+2) (6.10)

pr=(Egly/1g) / (Ecle / hc) (6.11)
where Eg and E. are the elastic moduli of the beam and the column, respectively, Iy and I. are the
second moments of area of the beam and the columns, respectively. The values of Eglg and Ecl¢
can be determined based on the ideal yield curvatures and moments of the beam, Mg/pgy and the

column, Mc/gcy, respectively.
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The frame can also be idealized as single degree of freedom (SDF) system, as shown in

Figure 6.12(a), by modifying the height of the cantilever using ks as given in Equation (6.12). This

idealization can only be used to design the frame using the DDBD method and to calculate the

lateral response of the frame.
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Figure 6.12 System idealization for analysis: (a) original frame, and (b) modified frame
6.4.2.2 Design

The DDBD method was used estimate seismic demands. First the ideal yield curvature, ¢y,

and displacement, 4y, were estimated as follow [5]:

py=23&/lw=1151/km
Ay =@y hw2 ks =27.8 mm
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A demand displacement ductility (up) value of 5 was determined based on the proposed pre-
specified displacement values in [105] for a column with AR = 1.6 and SR = 10.5. The design
displacement (4p), is thus determined as follows:

Ap =up 4y = 139 mm
Since this displacement results in a lateral drift (6.4y) that is greater than 3%, the 4p was determined
based on 64y = 3%:

Ap = 6avh. = 126 mm
The demand up was recalculated based on the used 4p as follows:

up=Ap /Ay, = 4.532

The equivalent viscus damping (&) using the proposed expression for RC frames in [5] leads to:
F=& + &= 0.05+ 0.565 (%) =0.05 + 0.1401 = 0.1901
D

The effective structural period (Te) was determined from the linear displacement response
spectrum for the damping ratio as estimated above. The displacement spectrum is shown in Figure
6.4. Te was found to be 2.19 s. The base shear (Ve) was calculated as follows:
Ve=4dpm2me,/Te=19.6 kN

The bending moment demands at the column bases and at the beam ends were determined using
the constructed stiffness matrix and the fixed-end moments (see the Appendix). The resulting
moment due to the effective design force in the columns and the beam were 24.8 KN.m and 10
kN.m, respectively. Based on these moments and the capacity design requirements as per ACI
318-11 [108] the columns and the beam were designed with sectional properties as shown in Figure
6.11(a). Figure 6.13(a) shows the frame’s force-displacement response curve for the specified

material properties calculated following the plastic hinge analysis procedure presented in [105].
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Figure 6.13 Force-displacement responses: (a) original frame, and (b) modified frame

6.4.3 Design of the modified frame

6.4.3.1 Idealized system

Figure 6.12(b) shows the idealized system for the modified frame with the chevron brace.

In this idealization, the MCCD system is represented by two axial spring elements with flag-shaped
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response that are parallelly connected to the beam. The location of the MCCD system in this case
is the most efficient since the MCCD system is directly resisting induced lateral loads transmitted
through the beam. This eliminates the reduction in the lateral forces produced by the MCCD
system due to the lever arm effect. It also eliminates the reduction in the imposed demand
displacements to efficiently activate the MCCD system

6.4.3.2 Design of the MCCD system

The yield displacement 4y = 26.2 mm of the frame determined from the plastic hinge
analysis as shown in Figure 6.13(a) was considered as the ultimate design displacement (4p) for
the modified system. Assuming an MCCD system with properties determined as presented in
Chapter 5 [82] and Table 6.4, the equivalent viscus damping (&) was determined in an iterative
process using the proposed expression in Equation (5.17) [82] assuming Tefr < Ts as given below.

D = (-0.0188y+0.0922)(h/t)n + 0.0215y-0.1188 = 0.06054

E=23817 (h/t),s1#2 = 1.0507

&G=D[1+E(Ts-Tew)] = 0.1306

Ts==-05yr+2.5=1521

E=& +& =005+ 0.1306 = 0.1806

Table 6.4 Properties of the MCCD system for the modified frame

Property Value
Height-to-thickness ratio of the CCD in the system h/t = 2.545
Number of connected CCDs in series ns =10
Force ratio of the difference Pr = 0.5814
Displacement ductility of the MCCD system s = 4.807
Force ratio factor v = 1.956
Ideal height-to-thickness ratio of the CCD in the system (h/t)n = 2.477

The effective structural period for the system (Tes) was determined from the displacement

spectrum shown in Figure 6.4. T. was found to be 0.42 s resulting in a base shear Ve = 111 kN. The
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shear force carried by the MCCD systems was calculated by subtracting the force carried by the
frame at yield Vi, = 84 kN as follows:

Vo =Ve-Va=27kN
Since Vy is much lower than Vi, the MCCD system was designed for a higher force to ensure
effective energy dissipation. This is because if a smaller value was used the energy dissipation
capacity of the combined system will not be significant. Therefore, the MCCD system was
designed for Vi = Vh.

In the case of chevron brace, Vy = Fy because the lateral force is directly transmitted to the
MCCD system. To carry this load (Fp), an MCCD system with units made of carbon fiber
composites with elastic modulus of 300 GPa was used. The CCD units havet = 1.1 mm, h = 2.8
mm, and | = 100 mm with ideal buckling force, Fp’ of 2.732 kN. The MCCD system consists of 2
by 4 horizontal chains of CCDs with nc = 8 chains. Each chain has 10 serially connected units (ns
= 10) of 4 parallel units (np = 4), as shown in Figure 6.11(b). The system results in an axial force
capacity of 87.4 kN as determined below. The actual and idealized force-displacement response
of the MCCD system as per [82] is shown in Figure 6.14. The response of the modified frame
system is shown in Figure 6.13(b).

Fo=Fy'npnc=87.4 kN
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Figure 6.14 Force-displacement response of the MCCD system

6.4.4 Time-history analysis

NLTHA were performed for the two designed systems under the 1940 EI Centro and 1985
Chile ground motion records. Figure 6.15 shows the lateral displacement time-history responses
for the original and the modified frame systems. The maximum displacement of the modified
system for the El Centro record is 15 mm, which is smaller than the one for the original frame of
40 mm and the yield displacement of 26.2 mm. For the Chile record, the modified system has a
maximum displacement of 35 mm that exceeds the yield displacement of the frame as shown in
Figure 6.15(b) and resulted in a residual displacement of 8.8 mm, as shown in Figure 6.16(d). It
should be noted that the Chile record was considered as a maximum considered event. The original
frame had a maximum displacement of 62 mm and a permanent displacement of 36 mm. This
displacement is about 4 times larger than that predicted for the modified system. Figure 6.16 shows
the resulted hysteretic shear force-lateral displacement responses of both systems for the two

ground motion records.
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6.5 Coupled Rocking Walls

Two precast post-tensioned coupled rocking walls with unbonded tendons are considered
in this example. The two walls are similar, with hy = 3300 mm, |, = 1200 mm, tw = 120 mm, and
one 3600 mm long post-tensioning tendon at its mid-length as shown in Figure 6.17(a). The two
walls are connected by hinged links that transfer shear between them, see Figure 6.17(a). The
coupled walls are to be designed for an effective seismic mass me = 18000 kg. The axial force on
each wall is P = 83 kN. The walls were first designed as rocking member and then modified with

the MCCD system and redesigned. The aim here is to limit the lateral drift of the walls and
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maintain the response within the elastic range of the prestressing tendons. The design and analysis

are only carried out in the in-plane direction of the coupled walls.
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Figure 6.17 Example 3: (a) original coupled walls, and (b) modified coupled walls
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6.5.1 Modified system

Rocking wall systems have gained increased attention in the past two decades due to their
performance in resisting lateral loads compared to conventional structural walls. The main
advantage of rocking wall systems over conventional ones is damage avoidance and self-centering
capability. The response of such system is nonlinear elastic with large drift capacity; nonetheless,
they are prone to lose of stability due to lack of significant energy dissipation. Therefore, it is
common to couple such systems with supplementary energy dissipation devices to control their
drift [109,110].

The coupled walls in this example are modified by replacing the hinged connections
between the walls with the MCCD system as shown in Figure 6.17(b). Under lateral loading, the
two inner edges of the walls displace relative to each other. This relative displacement is used to
activate the MCCD system in tension or in compression as will be shown later. The design
objective is to limit the lateral drift of the walls and maintain their response within the elastic range
of the prestressing tendons. Therefore, the system design displacement is governed by the
displacement corresponding to yielding of the prestressing tendons or the maximum allowable
drift, whichever is smaller. The concrete material properties were taken as those presented in Table

6.2 for the pier-wall.

6.5.2 Conventional design of the coupled walls

6.5.2.1 Idealized system

The walls were assumed to be rigid elements supported by a hinge support and connected
to a rotational spring. The two rigid elements are linked via hinged connections throughout their
height as shown Figure 6.18(a). The effective seismic mass was assumed to lumped at the top level

of the walls. The system was designed and analyzed using the proposed analysis method in [111]
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and discussed in the Appendix. The walls were idealized as a single-degree-of-freedom (SDOF)

system, as shown in Figure 6.18(a), by linking their responses in parallel.
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Figure 6.18 System idealization for analysis: (a) original coupled walls, and (b) modified
coupled walls

6.5.2.2 Design

The DDBD method was used estimate seismic demands. The criteria to design rocking
walls is to limit their response to the yield onset of the tendons or by a lateral drift limit. A yield
displacement 4y = 86 mm was estimated in an iterative process using the proposed analysis method
in [111]. This value is less than a 3% drift-based value of 99 mm. Since the total response of the
walls is within the elastic range and through rocking of a rigid body motion, researchers [109,112]
suggest a low equivalent viscus damping (&) ratio ranging from 1% to 3%. An equivalent viscous
damping & = 3 % was used here for the design. An effective structural period Te = 0.8 s was

determined from the linear displacement response spectrum in Figure 6.4 for the damping ratio as

discussed above. The base shear (Ve) was thus calculated as follows:
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Ve=44pm?me./ T. = 95.6 kN
The walls were designed in an iterative process to develop the required lateral capacity Vn to the
estimated base shear force V.. Table 6.5 presents the design properties of the unbonded post-
tensioning tendon. A nominal lateral capacity V, = 97.9 kN was calculated for the system. Figure
6.19(a) shows the force-displacement curves for coupled walls calculated following the analysis
procedure presented in [111] and discussed in the Appendix with the specified material properties.

Table 6.5 Properties of the unboned post-tensioning tendon used for the coupled walls

Property Value
Specified yield strength of the strands foy = 1500 MPa
Specified ultimate strength strands fou = 1700 MPa
Elastic modulus of the strands Es = 200 GPa
Yield strain of the strands ey = 0.0075
Total length of the tendon hp = 3900 mm
Diameter of the tendon ds = 15.2 mm
Initial prestressing foo = 850 MPa
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6.5.3 Design of the modified coupled walls

6.5.3.1 Idealized system

Figure 6.18(b) shows the idealized system for the modified coupled walls. In this
idealization, the MCCD system is represented by axial spring elements with flag-shaped response
that replace the hinged connections. Each element is vertically oriented and connected to one wall
at one end and to the other wall at the other end, see Figure 6.20(a).

6.5.3.2 Design of the MCCD system

The yield displacement of the tendons, 4y = 86 mm as shown in Figure 6.19, was considered
as the ultimate design displacement (4p) for the modified system. Assuming an MCCD system
with properties determined as presented in [82] and Table 6.6, the equivalent viscus damping (&)
was determined in an iterative process using the proposed expression in Equation (5.17) [82]
assuming Test < Ts as given below.

D = (-0.0188y+0.0922)(h/t)n + 0.0215y-0.1188 = 0.0685

E=3817 (h/t),142 = 0.9575

Te==-05yr+25=15377

& =D[1+E(Ts- Ter)] = 0.0664

E=& +& =002 + 0.0664 = 0.0864

Table 6.6 Properties of the MCCD system for the modified coupled walls

Property Value
Height-to-thickness ratio of the CCD in the system hit =2.7273
Number of connected CCD in series ns =10
Force ratio of the difference PSr = 0.6685
Displacement ductility of the MCCD system s = 5.3549
Force ratio factor v = 1.92448
Ideal height-to-thickness ratio of the CCD in the system (h/t)n = 2.6443

147



The effective structural period for the system (Ter) was determined from the displacement
spectrum shown in Figure 6.4. Te was found to be 1.53 s resulting in a base shear Ve = 26 kN. The
estimated shear demands are lower than that for original coupled walls since the shear force is
estimated for the same displacement (4, = 86 mm) and a higher damping ratio. Therefore, this
force can be carried by the coupled walls without the added MCCD system provided that 3% or
more damping ratio is available. However, in the case when the seismic excitation exceeds the
design level, as will be shown later, the MCCD system is essential to control the response of the
system. Thus, the MCCD system was designed for Vi, = Vi, which results in yr = 2.

Similar to the case of the pier-wall, the MCCD system is not directly resisting the lateral
force and thus it depends on its location and the relative displacement between the inner edges of
the walls. Since the walls displace in a rigid body rotation the relation between the shear force
demand carried by the MCCD system:

Vo =2 Fy (lw/2) / hw = Fy lw / hw (6.13)
The developed force by the MCCD system is as follows:

Fy = Vi hw /1w = 269.2 kN
The factor of two (2) in Equation (6.13) is due to using two walls where the reaction of the MCCD
system from one wall is carried by the other wall. To carry this load (Fp), six MCCD systems of
four chains each with a total number of nc = 24 chains were used as shown in Figure 6.17(b). The
units were assumed to be made of carbon fiber composites with an elastic modulus of 300 GPa.
The CCD units have t = 1.1 mm, h = 3 mm, and | = 100 mm with an ideal buckling force, F,’ of
3.033 kN. Each chain has ten serially connected units (ns = 10) of four parallel units (n, = 4), as

shown in Figure 6.20(a). The system results in an axial force capacity of 291.2 kN as determined

148



below. The actual and idealized force-displacement response of the MCCD system as per [82] is
shown in Figure 6.20(b). The response of the modified frame system is shown in Figure 6.19(b).

Fy=Fynpn.=291.2 kN

— —
global global
tension COMPression

50 4/ — Actual B
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Figure 6.20 (a) Loading mechanism of the MCCD system, and (b) force-displacement response
of the MCCD system
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6.5.4 Time-history analysis

NLTHA were performed for the two designed systems under scaled records of the 1940 El
Centro and 1985 Chile ground motion records as presented in Table 6.7. Figure 6.21 shows the
lateral displacement time-history responses for the original and modified frame systems. The
maximum displacement of the modified system for the El Centro record with scale factors of 1
and 1.25 were 1.9 mm and 12 mm, which are lower than displacement corresponding to yielding
of the tendon (4y). However, for all other scale factors presented in Table 6.7, the maximum
displacements were larger than 390 mm, which indicates that the system is unstable. On the other
hand, the modified system had lower maximum displacements than 4y, except for the case of 1.5
scaled Chile record, for which the maximum displacement was higher than 4y resulting in a
permanent displacement of 52 mm. This case, however, is very extreme. Figure 6.22 shows the
resulted hysteretic shear force-lateral displacement responses of both systems for selected cases
from Table 6.7.

Table 6.7 Scale factors used for the NLTHA for the coupled walls example

. Permanent
Ground Peak ground Maximum .
- Scale factor . . displacement

motion record acceleration | displacement (mm) (mm)
1 0.32¢g 1.7 0
1.25 049 18 0
1940 EIl Centro 15 0.48 g 19 0
2 0.64 43 0
. 1 0.71 76 0
1985 Chile 1.5 1.065 138 52
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Figure 6.21 Lateral displacement response time-histories: (a-d) 1940 El Centro, and (e-f) 1985

Chile earthquakes
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Figure 6.22 Hysteretic shear force-lateral displacement responses for the original coupled walls
(a), and the modified coupled walls (b-d)

6.6 Design Recommendations

The positioning considerations of the MCCD system within a structure is generally similar
to those for typical hysteretic energy dissipation devices used for seismic protection. However, it
should be noted that the MCCD system requires relatively higher displacement demands to be
activated (apparent yield displacement 4y"). Thus, it is more efficient in terms of demand
displacement and capacity force to position the MCCD system to directly resist the induced
seismic load. For example, in the pier-wall example, the demand displacement on the system is

lower than the lateral displacement by 1/6r (or 4 = 0k Av), and the shear force capacity provided
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by the system is also lower by 1/0r (or Vb = 6 Fp). In contrast, in building frame example, the
MCCD system is directly the induced seismic load and hence no reduction in displacement demand
or shear force capacity.

The design of the MCCD system for given displacement and force demands is affected by
many factors as follows:

1. The force ratio factor yr: The higher the factor yr, the lower the contribution of the MCCD
system in resisting the induced seismic load (yr = 1 means that the MCCD system is totally
carrying the load). Thus, it is recommended to use yr < 2 even if the force demand on the
MCCD system is low (high yF). This will ensure effective damping and avoids inelastic
deformation in case the seismic demands exceed the design level.

2. Thickness of CCDs: The thickness, t, is an important parameter that may govern the design
of the MCCD system. It is the most effective parameter when high capacity force is
required since as can be seen in Equation (3.2) it has the highest power of 2.412. However,
increasing t, while keeping h constant, increases o» (and hence 4y") and decreases h/t (and
hence ¢&). It should be noted that increasing h also increases dp. Thus, a balance between
the values of t and h should be reached to keep 4v' low and satisfy force demands.

3. Number of the CCDs ns: As discussed in Chapter 4 and Chapter 5, higher ns results in
higher & however, this also leads to higher 4y'. Therefore, ns should be high enough to
result in sufficient damping and low enough to keep A" low. The study presented in
Chapter 4 shows that ns =12 results in about 90% of the theoretical maximum of the amount
of energy dissipation. Thus, the value of ns shall range from 8 to 12 depending on the

displacement requirements.
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6.7 Conclusions

The seismic performance of typical reinforced concrete structures incorporating the MCCD
system in different configurations was evaluated. The structures were designed using the direct
displacement-based design with and without the MCCD system. Nonlinear time-history analyses
were conducted for the original and modified structural systems under the 1940 El Centro and
1985 Chile ground motion records to compare their seismic performance. The following findings
were drawn from the study:

1. Displacement-based design methods are the most suitable for structures modified with the
MCCD system, or supplementary energy dissipation devices. The reason is that for such
system the main aim is to prevent damage which can only be quantified using deformation-
based methods.

2. Positioning of the MCCD system highly affects the force and the displacement demands
on the system. Positioning the system to directly resist the induced seismic loads, such as
the case of the chevron braced frame, is the most efficient.

3. The design of the MCCD system to a given force and displacement demands is highly
dependent on the thickness (t) of the CCDs in the system. Thus, a balance between the
values of t, h, and other parameters (I, d, and E) of the CCD response should be reached to
satisfy force and displacement demands.

4. The structural systems modified with the MCCD system showed enhanced seismic
performance compared to the original structures. In all cases, no inelastic deformations

were observed in the main structural elements under the design basis loads.
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CHAPTER SEVEN

7 Conclusions

7.1 Research Contributions

This research developed a new research avenue on the use of elastic energy dissipation
from multistable element systems for seismic protection in building and bridge structures.
Preliminary results show that using such systems improves the seismic performance of RC
structures by reducing lateral drifts and avoiding damage.

This research develops and proposes a displacement-based design procedure that considers
the unique characteristics of the hysteretic response of multistable element systems compared to
hysteresis energy dissipation devices. The uniqueness of multistable element systems originates
from the fact that their response cannot be described by the commonly used measure of energy
dissipation, which is the displacement ductility or apparent displacement ductility. Instead, the
response is characterized by their geometry (i.e., height-to-thickness ratio), which controls the
amount of dissipated energy. Understanding this issue is the key to properly designing these
systems as a main damping mechanism in structures, and this research provides an explanation of
this conceptual issue.

A review of the published literature further shows that systems comprised of surface
revolution elements don't exist since a multistable element with such shape and a reliable response
is not available. This research addresses this knowledge gap by proposing and characterizing a
dome-shaped shaped element with controllable snap-through behavior used in constructing a

system capable of exhibiting a desirable hysteretic response.
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7.2 Conclusions

The following provides a summary of the contributions and the conclusions from the
presented research:

1. A new shallow dome-shaped structural element with cosine-curved profile (CCD) that
exhibits a tunable multistable elastic behavior was developed. The element offers reliable
and reversible large elastic deformation that can be used as a building unit for devices
subjected to relatively high forces for energy dissipation and repeated use. The main factor
affecting their response is their height-to-thickness ratio (h/t). Increase of h/t changes their
response from monostable to bistable. It was found that CCDs have a critical height-to-
thickness ratio (h/t)cr at which the response is pseudo-bistable allowing designing CCDs
with a targeted snap-through instability type. Expressions to estimate key parameters in the
force-deformation response were developed to construct a multilinear force-deformation
response, and shown to facilitate the response analysis for a system of multiple CCDs.

2. A new self-centering energy dissipation system comprised of multiple cosine-curved
domes (MCCD) connected in series was developed and characterized. The building units
of the MCCD system are dome-shaped shell elements with cosine-curved profile. The
MCCD system shows a consecutive snap-through and snap-back response resulting in a
hysteresis. The proposed MCCD system avoids some design disadvantages of other
multistable elastic systems that limit the practicality of using such systems when multiple
units in a system are stacked in parallel. A new analytical multilinear model that describes
the hysteretic force-displacement response and takes into account the nonlinear effects of
the CCD units was proposed. The model was shown to yield accurate simulations. The

amount of dissipated energy mainly depends on the number (ns) and the height-to-thickness

156



ratio (h/t) of the CCD units. The higher ns and h/t are the higher the amount of the dissipated
energy. The system showed a maximum loss factor (1) value of about 0.14 for a monostable
(self-recoverable) response. The loss factor reaches about 90 % of its theoretical maximum
value for systems with about 12 CCDs. Increasing ns increases the amount of dissipated
energy, but it also decreases the initial stiffness of the MCCD system.

. The hysteretic response of the MCCD system was investigated for its equivalent viscous
damping. The sawtooth-shape response of the MCCD system was idealized, based on
maintaining energy balance between the original and idealized responses, to facilitate
dynamic analysis. Linear and nonlinear time-history analyses were performed on single
degree of freedom systems with hysteretic response and linear equivalents. A statistical
study was conducted to develop empirical expressions for the idealized hysteretic response
of the MCCD system. An expression to estimate the hysteretic equivalent viscous damping
ratio was developed. The calculated spectral displacements for the linear substitute using
the developed expression are in good agreement with the displacements from the analyses
of nonlinear systems.

. The seismic performance of typical reinforced concrete (RC) structures incorporating the
MCCD system is in various configurations in as a damping mechanism was evaluated.
Nonlinear time-history analyses for the original structure and the modified structure with
the MCCD system were performed. The structural systems modified with the MCCD
system showed an enhanced seismic performance compared to the original structures. In
all cases, no inelastic deformations were observed in the main structures under the design

basis loads.
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7.3 Future Research

The work presented in this dissertation introduces the use of elastic instabilities for seismic
protection of structures. The capabilities of and the expected demands on the proposed MCCD
system were explored. It was shown that the MCCD system in particular and systems with elastic
instabilities in general have great potential for applications in energy dissipation and shock
absorption. Nonetheless, there are still areas and issues that require investigation and development
to produce a reliable and practical product that meets the ultimate objective of this research. These
aspects are as follows:

1. Experimental and numerical investigations should be conducted to develop an optimal
design for the CCD for use in seismic protection. The design shall be capable of
withstanding large forces with lower snapping displacements, as discussed in Chapter 6,
while ensuring that the CCD can be tailored in practical manner. Consideration shall be
given to the way the load is transferred from one serially connected CCD to another. In
addition, the effect of a hole at the apex for the loading shaft shall also be comprehensively
investigated, since this could alter the response of the CCD by shifting the response curve
and reducing the displacements.

2. The material selection of the CCD units must also be investigated. In general, materials
with high stiffness and high elastic strength are the best suited for such a design. Possible
example materials are carbon and glass fiber reinforced composites and spring steel. In
addition, the complex geometric shape and the fabrication process of the CCD units are
important factors to be considered in the material selection.

3. Investigation of the dynamic behavior of the MCCD system should be performed.

Although seismic loads on structures are applied at low loading rates, the response of a
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structure incorporating the MCCD system is elastic and hence dynamic effects may be
more pronounced in comparison to yielding devices.

Shaking table tests are the most representative of actual ground motions on a structure.
Therefore, tests should be conducted on structures provided with the MCCD system as a
supplementary energy dissipation device, such as those presented in Chapter 6, to evaluate

their seismic performance.
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Appendix: Analysis and Design Calculations

This appendix presents sample calculations for the design and analysis results presented

for the example structures in Chapter 6.

A.1 Bridge Pier-Wall

The design procedure of the pier-wall for flexural is based on the method proposed by
Alturki and Burguefio [105]. The shear design and detailing of the pier-wall are based on the
AASHTO Guide Specifications for LRFD Seismic Bridge Design [104]. In addition, some
information and design details were obtained from the AASHTO LRFD Bridge Design

Specifications [103].

A.1.1 Flexure design

A.1.1.1 Estimation of seismic demands

Displacement ductility demand:
Up =35
Displacement demand:
Ap =80 mm
Ideal yield displacement:
Ay =A4p /pup =23 mm
Ideal yield curvature:
py =34, /h? =14 1/km

A.1.1.2 Determination of sectional properties

Influence factor of the longitudinal reinforcement yield strength:

ks =1.15-0.00036 £, =1.000
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Influence factor of the concrete compressive strength:
ke=114(f;)%1=0.98
Influence factor of the longitudinal reinforcement:
Ko =@y lw /) (Ks ke &) = 2
Required longitudinal reinforcement and axial load ratios:
For p;<0.0125
k, =(30+385y-1615)?) p; + (26.8y - 5.75) y + 1.85
p1=0.0083 < 0.0125 OK
use p; = 0.01
Provided longitudinal reinforcement:
46 @ 15.9 bars: Asp = 9131 mm?
Bar diameter of the longitudinal reinforcement:
dp =159 mm
Nominal moment capacity:
My, = 6335 kN.m
Overstrength factor:
Ao =14
Overstrength moment:

Mno :/’io Mn = 8869 kN.m

A.1.2 Shear design
Overstrength shear force:

Effective shear area:
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Ae = 0.84, = 720000 mm?

Shear reinforcement ratio (found by iteration):
pw=0.0169 > 0.004

Shear reinforcement strength factor:
fw =241 MPa

Concrete shear stress adjustment factor:
a’'=£,/015+3.67-up=172

Shear stress carried by concrete:
ve=0032a’[1+P/2A)]\Jf. =68>182>171MPa
Ve=1.71 MPa

Shear force carried by concrete:
Ve=veAe = 1230 kN

Spacing of transverse reinforcement:

tw/2 =150 mm

s =100 mm <minimum § 6 d, = 100 mm
150 mm

Provided shear reinforcement:
Ay = tw S pw =506 mmZ: 4 legs @ 12.7 mm bars @ 100 mm c/c
Bar diameter of the transverse reinforcement:
di=12.7 mm
Effective shear depth:
dy=0721lw=2160mm
Shear force carried by shear reinforcement:

Vi =Avtiedv /s =4596 > 3496 kN (controls)
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Nominal shear capacity:
Vo=Ve+ Ve =4727 kN

Shear resistance factor:
@s =09

Factored nominal shear capacity:
Qs Vo =4254 kN >V,

The designed section with reinforcement details is shown in Figure A.1.

! F"“E 4 ¢ 159 mm

= 7

s % 2by 19

s

S : > 0 15.9 mm

Y |

e 12.6 mm @,
e 100 mm c/c

v Lol 4¢15.9mm

300 mm

Figure A.1 Pier-wall cross-section and reinforcements details

A.1.3 Plastic analysis
A moment-curvature analysis and plastic hinge analysis were performed for the designed
pier-wall. The result of these analyses is the shear force-lateral displacement curve. Shear capacity

curve for web-crushing strength was also constructed.
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A.1.3.1 Moment-curvature analysis:

The moment-curvature analysis for the pier-wall section was performed using the Section
Designer tool of the program SAP2000 [113]. The concrete stress-strain model used for the
moment-curvature analyses was that proposed by Mander et al. [114] for confined and unconfined
concrete. A simple stress-strain model was used for the reinforcing steel, featuring a plastic
plateau, and parabolic strain-hardening response. The limiting tensile strains and strengths defined
in the AASHTO Guide Specifications [104] for ASTM A615 were used to define each of the model
regions. The key moments and curvature values are:

First yield moment:

M, = 4123 kN.m
First yield curvature:
@y=1042 1/km
Nominal moment:
My, =5603 kN.m
Ideal yield curvature:
Yy=@yMn,/My=1421/km

Ultimate curvature based on flexural response (not necessarily achieved by the pier-wall
before shear failure occurs):

Qu =354 1/km

A.1.3.2 Plastic hinge analysis:

In plastic hinge analysis, a region within the pier-wall’s height undergoes inelastic
deformations whereas other locations remain elastic. The approach allows determining the

element’s lateral response, in terms of shear forces and displacements, based on the section’s
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moment-curvature behavior. The curvatures along the region where inelastic deformations
concentrate are assumed to be constant. The inelastic rotation, &, is determined by multiplying the
inelastic sectional curvature, ¢p, by the plastic hinge length, L,. The plastic hinge length model
adopted is that proposed by Priestley et al. [5] for RC walls.
Strain penetration length:
Ly = 0.022 £, dp = 147 mm
Plastic hinge length:
Ly =0.08 hw + Lsp + 0.1 I, = 1007 mm
First yield shear force:
V, = 589 kN
First yield displacement:
A4y =@y hh/? /3 =17 mm
Nominal shear force:
Vo =800 kN
Ideal yield displacement:
Ay =A% Vo / Vy =23 mm
Ultimate displacement based on flexural response (not necessarily achieved by the pier-
wall before shear failure occurs):
Ay =4y + (Qu - @y) Lp hw = 267 mm
The shear force-lateral displacement curve can be obtained from the sectional analysis
results by dividing the moment-curvature response into two parts: (1) before first yield with

moments, M, and curvatures, ¢, and (2) after first yield with moments, M, and curvatures, ¢. The
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shear force-lateral displacement curve is shown in in Figure A.2. The figure also shows the
overstrength and shear strength curves.
Shear force:
V=M/hw
Overstrength shear force:
Vo =AM/ hw
Displacements up to first yield:
A=’ hWv? /3
Displacements after first yield:
A=A4YM/ My + (@ -y M/ My) Lp hw

A.1.3.3 Web-crushing capacity

Web-crushing capacity can be considered as upper limit at which increasing shear
reinforcement would not increase the shear strength of the RC member [4].
Web-crushing stress:
vive = [0.22 . / (4 / 4y) + 0.03] - < 0.16 f- < 6 MPa
Shear force based on web-crushing:

Vwe = vwe Ae
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Figure A.2 Shear force-lateral displacement response of the designed pier-wall based on plastic
analysis

A.2 Building Frame

Three degrees of freedom were considered in the formulation of the stiffness matrix as

shown in Figure A.3. The stiffness matrix is given as follows:

[4Eclc + 4Eglg 6Eclc 2Eglg ]
he lg h? lg | fvs 0
6E.I, 24E I, 6E.I,
Sele v, | =
nZ n n? 2 ==V
v 0
2Egly 6Eclc  4Ecle | *Eglg 3
lg h? he lg
[4Eclc 6EcI; 2Eglg
Te Ate) S 57
¢ ¢ g 51 0
6E.I, 24E.I; 6E.I, | =
nZ n nZ 2=V
U3 0
2E,l 6Ecl.  4EcI
9’9 clc clc (1 +p )
- —z F
lg h?2 he
V h2
Ul = U3

" 4Ecl; (6pp+1)

_ ~VhE@Bprt2)

v =
2 T 12 E I (6pp+1)
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Figure A.3 Stiffness matrix formulation for the building frame

The resulted bending moment and shear force diagrams are shown in Figure A.4. The

moments Ma and Mg are as follows:
_ Vhe[1- (3pp+2)]

M
A 2 (6pp+1)
V he

M. = Vhe(122Gppt2)] _
B~ 2 (6pp+1) (pr+1)
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Figure A.4 Bending moment diagram (BMD) and shear force diagram (SFD) for the building
frame

A.3 Coupled Rocking Walls

There are key limit states in the response of an unbounded post-tensioned precast
concrete wall as follows (see Figure A.5) [111]: (1) decompression of the wall base (DC), (2)

softening the concrete in compression (SO), (3) yielding of the prestressing tendons (TY), and
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(4) crushing of the concrete (CC). Figure A.5(b) shows the limit states in the shear force-

displacement (V-4) response of the precast wall.

(@) 2

Fy
A 4

Vo ¥
A ||
|
I
|
I
|
I
| . .
¥ Post-tensioning
h | ! tendon
w ! | /

(b)

-A

A A, A, 4,

Figure A.5 (a) An unbounded post-tensioned precast concrete wall, and (b) shear force-
displacement curve with response limit states
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Figure A.6 shows the free body diagram at the base of the precast wall for the four limit
states. The resistance moments, base shear forces, and top displacements are calculated for each

limit state with reference to Figure A.6 in the following sections.

(a)

il
T 1 A
Stress
\I\ distribution
(b) ¢
il
_____________ r lA ’ fie,
4 085
cl
[T———— Strain

c\l distribution

CCh___ Pl

TY “*—--:::_:'_‘_‘?1:1_\__ < bz C_

CC A t lo /e
Ty\ cl

—~—— Strain
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Figure A.6 Free body diagram for each limit state of the precast wall: (a) decompression, (b)
softening, and (c) tendons yielding (TY) and concrete crushing (CC)
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A.3.1 Decompression (DC)

Moment about point A in Figure A.6(a):
My=Cly/6=412kNm
C=P+T=206kN
T=Ayfo =118 kN

Shear force:

Vi=Ma/hyw=12.5kN

Displacement:

Aa=Vihy? /(3 E: 1) =0.32 mm
E.-=4700,/f! =27800 MPa

L=tw1’ /12 =0.01728 m*

A.3.2 Softening (SO)
Moment about point A in Figure A.6(b):
Ms=C (lw/2-cf1/2) =118 kN.m
C=P+T=cf:10.85 tw =206 kN
T=Apfo =118 kN
The value of 1 can be determined according to Whitney rectangular stress distribution
adopted in the ACI 318 code [108].
Shear force:
Vs =Ms / hw = 35.7 kN
Displacement:

As - [/5 W3/(3Eclc) :0.93127127
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A.3.3 Tendons yielding (TY)
Moment about point A in Figure A.6(c):
My =C (ln/2 - cB2/2) = 161 kN.m
C=P+T=cBeazfo tw=296 kN
T =Ap fry =208 kN
The values of > and a2 can be determined according to the procedure presented [111].
Shear force:
Vy =My / hw =489 kN
Displacement:
60, = (€ - £90) By / (Iu/2 - ¢) = 0.026

4y =6y hy=86.2 mm

A.3.4 Concrete crushing (CC)
Moment about point A in Figure A.6(c):
My =C (l/2 -cf/2) = 163 kN.m
C=P+T=cpzazt:’tw =299 kN
T=A,6=211 kN
fp =ty + (&p — Epy) Epe = 1506 MPa
& = &pot Oc (lw/2 - c) / hp = 0.0093
The ultimate response of the wall was limited by the maximum drift ratio before the
crushing of the concrete:
e =0.004
Shear force:
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Displacement:

AC = thW: ]32.4 mm
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