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ABSTRACT

VARIABLE SELECTION IN HIGH-DIMENSIONAL SETUP: A DETAILED
ILLUSTRATION THROUGH MARKETING AND MRI DATA

By

Atreyee Majumder

In the times of big data and ever growing information, variable selection is an integral

part of statistical analysis. With the advancement of technology, we are able to store and

access large volumes of data, only part of which is required for inference. Variable selection is

a statistical technique that helps us retain valuable information while discarding everything

that is non-significant.

To understand variable selection, we perform a comparative study of various popular

frequentist variable selection techniques. This study analyses the difference of performance

of models based on Ridge, LASSO and Elastic Net methods of penalized regression. The

comparison of these methods is done for both continuous and binary outcome. We further

emphasize the importance of tuning parameter selection in penalized regression models. This

is done by comparing 6 different methods of tuning parameter selection for each penalized

approach. The best performing method is then chosen to build statistical models for market

research data of 4 varied countries. This exercise is an application of variable selection.

Here, we showcase the applicability of such models in handling large information efficiently,

for managerial decisions. We show how managers can leverage this technique for better

resource allocation in their business decisions.

Next, we build a model for variable selection in a Bayesian setup. This is motivated by the

fact that the frequentist approaches have unstable inference. Here, we analyze Alzheimer’s

Disease Neuroimaging Initiative (ADNI) with a Bayesian model. This is done by building a



Bayesian hierarchical model with multivariate Laplace priors in spike and slab prior style.

This model is able to select a group of related variables. The frequentist counterpart of

this estimator, group lasso, is also discussed. We build a classification model that is able

to select the significant brain regions in Alzheimer’s disease with 80% accuracy. Instead

of using standard MAP thresholding, we use posterior median thresholding for variable

selection. Furthermore, the consistency of this estimator is also proved.

Lastly, we build a Bayesian structured model for variable selection based on magnetic

resonance imaging (MRI) data. This model is an extension of the second method but takes

into account bi-level selection and spatio-temporal correlation. Voxels in brain regions have

spatial correlation and repeated measurements for each voxel which brings in temporal cor-

relation. This model is applied on a simulated functional MRI (fMRI) type data and real

data. The real data detects blood oxygenation level dependent (BOLD) activation. The data

is large on the account of numerous voxels present in the brain. Our method, successfully,

detects the activated brain regions in the presence of a stimuli.

Thus, this thesis delves into various scenarios of variable selection with three different

real data application studies. The focus is mainly on Bayesian variable selection and the

use of hierarchical modeling with iterative sampling from posterior distribution in the group

lasso setup. Our application of using group lasso structure to identify brain regions and

voxels is an innovative approach in the context of present literature review. All of these

methods have practical implication that can be used to solve relevant real world problems.
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Chapter 1

Introduction

1.1 Variable Selection

Variable selection is an extremely relevant area of statistical modeling, especially in modern

times. Development of high performance computing machines have paved a way for storage

of large volumes of data. Today, most fields of research are able to store data on a variety of

aspects. For example, a financial firm or a medical researcher may include information about

subjects that may not be relevant from an apparent view but might deem to be important if

explored with statistical analysis. Researchers do not want to miss out on useful information,

so a lot of data is stored only to selectively use them at a later stage.

Although, the availability of large volumes of data is welcome, statisticians have to be

careful to use a subset of it for valid statistical inference. In the real world, most data

that is captured contains very little information for a specific outcome. In genetic data,

for example, information on thousands of SNPs are available, but, only a few are able to

completely characterize a disease. When building a statistical model, we want to develop

a relationship that is able to explain an association between an outcome and some features

with a very small error rate. In doing so, we do not wish to sacrifice the optimality of the

model. One might think that inclusion of more information will reduce the error rate but,

we also need to consider the complexity of this model.
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Thus, building a model and selecting an optimal model have become interchangeable

terms these days. Variable selection is not a new concept in statistical model building so,

many procedures have existed for long. An ordinary regression equation is as follows:

yi = α + β1x1 + · · ·+ βpxp, i = 1, . . . , n (1.1)

Here, there are p independent variables which are used to build a model for predicting y.

Note that, p < n and all the p covariates may not be statistically significant for predicting

y. We use stepwise selection procedures for selecting the significant covariates. In these

procedures, we start with all variables (backward selection) or no variable at all (forward

selection) and eliminate or add covariates based on their corresponding p-value. This is con-

tinued until no more covariates are eliminated or added in the model. From the description,

it is evident that these methods are time cumbersome as we need to validate the significance

of variables at each step until it converges. The step by step procedure may miss the optimal

model and using p-values to add/drop variables may not be appropriate in cases, such as,

when multicollinearity is present. Subset selection is another approach of variable selection

where various candidate models are validated for optimality using a choice of metric. The

problem here is that, with the increase in number of covariates, the number of candidate

models increase exponentially. So, computationally this becomes a complicated problem.

In the past few years, newer approaches use penalization of the likelihood (objective)

function to obtain a sparse solution. The penalty is put on the parameter space so that the

parameter estimates are encouraged to move to zero if they are not statistically significant.

These methods are better understood in a high-dimensional setup where p > n. In such a

case, it is clear that ordinary regression breaks down due to issues of invertibility of the low
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rank design matrix. Penalization approaches deal with this issue as well as perform variable

selection, making these methods the most sought after for variable selection in this era.

1.1.1 High-Dimensional Data

High dimensional feature space arises when we have more number of feature variables than

the number of observations. This scenario is commonplace in various fields of studies like

social sciences, marketing research, genetic sequencing, machine learning, brain image anal-

ysis etc. For instance, in brain image data, we have tens of thousands of voxel level data and

only a few responses. In genomics, hundreds of thousands of SNPs are potential covariates

for a particular phenotype. In market research or social science data, we have more data on

feature variables that are obtained from questionnaires, than the number of individuals who

can be interviewed. All of these cases show that high-dimensional data occurs frequently.

The problems that arise with high-dimensional setup should be tackled appropriately since

its occurrence is unavoidable in many practical domains of research.

In the scenario of p > n, we can no longer pursue ordinary regression due to the non-

invertibility of XTX. In such a case, it is helpful to assume that our regression function

lies in a low dimensional space (Fan and Lv, 2010). This can be applied by introducing

the concept of sparsity. If we assume that many covariates have zero estimates then we can

reduce our dimension of interest to a much smaller space.

Assuming sparsity means we believe that many of the covariates do not have significant

impact on the outcome. This assumption is practical in almost all the research areas that

are affected by the curse of dimensionality. In genetic studies, there is information on

numerous genes but only a few are actually associated with the occurrence of a disease. The

assumption of sparsity is thus valid for simpler statistical analysis and also for researchers
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who would be able to make more sense from a subset of associated genes scientifically.

In brain magnetic resonance imaging, the scanner collects information of the entire brain

region (containing thousands of voxels), but only a few of these voxels are activated on

the presence of a stimuli. Thus, including information that is not activated will mislead

biologists. Therefore, assumption of sparsity makes ground for better model building as well

as improved interpretation of the analysis.

Variable selection in high-dimensional setup is an important area of research. It is highly

sensitive because it has real world applications. A proper statistical model based on appro-

priate information and consequently, its precise implications can answer a lot of questions

in the medical, genetic, financial, economic, machine learning and social sciences domains.

This research problem has a greater contribution to the betterment of everyday issues at

large.

1.1.2 Penalized Regression Approaches

Consider the vector of response Y and the matrix of covariates X. Also, let ω be the vector

of parameters and ε be the random error associated with the model. Assume, ε ∼ N(0, σ2
ε ).

Let n be the sample size and p be the number of parameters in the model, then the classical

regression model is:

Y = Xω + ε

The ordinary least squares method approach of estimating the parameters gives

ω̂ols = (XTX)−1XTY . We know that ω̂ols is non- estimable when p > n or in the presence of

collinearity. To overcome this issue we introduce the following penalized regression methods

which minimizes the sum of squares of errors subject to some constraints. We assume that
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the underlying feature (design) matrix is sparse with only a few predictive features. To

elaborate this idea we look at the following three models that places a constraint on the

parameters to induce sparsity.

Ridge regression (Hoerl and Kennard, 1970) shrinks the estimates of the coefficients

towards zero. In this approach we minimize

n∑
i=1

(Yi −Xiω)2 + λ

p∑
j=1

ω2
j

λ is the tuning parameter which controls the trade-off between bias and variance of the

estimates.

The LASSO (Tibshirani, 1996) puts an L1−penalty on the parameters. In this approach

we minimize
n∑
i=1

(Yi −Xiω)2 + λ

p∑
j=1

|ωj |

where λ is the tuning parameter. This penalized approach forces many ω to take 0 values and

works consistently when p > n. The LASSO is an attractive tool due to simultaneous esti-

mation and variable selection. But, it does not perform satisfactorily when multicollinearity

occurs.

To improve on these methods, Zou and Hastie (2005) proposed the elastic net which

includes feature of both the Ridge and the LASSO estimators. Here, we put a convex com-

bination of the ridge and LASSO penalties on the parameters. Thus, elastic net minimizes

n∑
i=1

(Yi −Xiω)2 + λPα(ω)

where λ is the tuning parameter and Pα(ω) =
∑p
j=1

[
1
2(1− α)ω2

j + α|ωj |
]
. (Zou and Hastie
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(2005) called this penalty as the naive elastic net penalty and called a rescaled version elastic

net penalty, but we drop this distinction here).

Figure 1.1 (Source: http://scikit-learn.sourceforge.net/0.7/modules/sgd.html) shows that

the edges of LASSO and elastic net creates more opportunities for some estimates to be zero.

This feature guarantees sparsity of estimates. The convex edges of ridge and elastic net en-

courages grouping effect. Thus, ridge penalty is good when there is multicollinearity. It does

not generate a sparse model, although, it does shrink the estimates towards 0. The LASSO

on the other hand generates a sparse model but fails to do grouped selection. It generally

selects one variable from a group and drops the others. Since, elastic net is a convex combi-

nation of the ridge and LASSO penalty it reflects properties of both. The vertices guarantee

sparsity and the convexity encourages grouping effect.

Figure 1.1: Geometry of the ridge, LASSO and elastic net (α = 0.5)

Other penalized approaches include SCAD, adaptive LASSO, group lasso etc. All of these

methods use some penalty parameter, also known as tuning parameter, to induce sparsity

in the model. Regularization in group lasso is introduced on a group of related variables

(dummy variables or basis splines).
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1.1.3 Bayesian Penalized Regression

Both frequentist and Bayesian approaches have been explored extensively for variable se-

lection. Although, frequentist variable selection approaches are popular and useful, they

provide unstable standard errors of the estimates. This makes it imperative for us to look

for alternatives that are more statistically reliable. Bayesian approaches for variable selection

are based on the assumption that there is a priori probability associated with each subset

model and we select the model that has the highest posterior probability.

The key notion in variable selection is shrinkage of parameter estimates towards zero.

Bayesian methods offer natural shrinkage with a proper choice of prior. Shrinkage in Bayesian

literature is in terms of the estimates being shrunk towards prior belief. A careful choice of

prior on the regression parameters will encourage sparsity in the model. Tibshirani (1996)

noted that the posterior mode of Laplace priors on parameters will give identical estimates

as that of the lasso. This has motivated (e.g., Figueiredo 2003; Bae and Mallick 2004; Yuan

and Lin 2005) to use i.i.d. Laplace priors on coefficients, β’s, to develop Bayesian lasso-like

estimates. A normal prior is equivalent to Bayesian ridge regression where the estimates

are obtained by maximizing the posterior. A spike and slab prior puts some weight on a

flat density and the remaining on a spiked density thus making it a weighted mixture of

two densities. The spike part encourages shrinkage and is especially helpful when number

of predictors is larger than number of observations. A mixture of a point mass density

and a normal density is special case of spike and slab; we will call this version spike and

slab prior throughout this thesis. Figure 1.2 (de los Campos et. al., 2013) shows how the

prior information in Bayesian analysis naturally encourages the posterior estimates to shrink

towards prior belief.
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Figure 1.2: Shrinkage in four different priors

Park and Casella (2008) developed a fully Bayesian lasso by using conditional Laplace

priors on β with a non-informative prior on the variance parameter to ensure unimodality. A

good mixing property of normal densities with exponential density results in a Laplace prior.

This property is used to formulate a hierarchical Gibb’s model so we get full conditionals of

all the parameters involved.

The solution path of this Bayesian posterior estimate is similar to that of the lasso esti-

mate. In most high-dimensional setup, rarely does a model occur with very high frequency,

so instead of looking at the maximum posterior probability, it is often feasible to use poste-

rior means as the estimates of β. Posterior means do not directly give zero estimates, so we

use posterior median thresholding since median is a natural thresholding estimator.
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1.1.4 Frequentist Group Lasso

Variable selection is a technique of selecting an optimal model in predictive modeling. In

many regression problems, we are interested in selecting feature variables that are important

in predicting the response variable. The feature variables can be individual numeric variables,

various levels of a categorical variable or a number of basis functions of the original measured

variables. Recently proposed methods like the LASSO, SCAD etc. can efficiently perform

variable selection by selecting individual feature variables. In case of an ANOVA type model

where there are multiple levels of a feature variable or for an additive model where each

component is a linear combination of a number of basis functions, selecting the important

variable amounts to selecting all levels of the variable.

A very simple linear regression equation is of the form:

Yn×1 = Xn×pβp×1 + εn×1 (1.2)

Here, X is the design matrix whose columns are the feature variables, β is the vector of

coefficients, ε is the error vector where each εi has a normal distribution with mean 0 and

variance σ2 and Y is the vector of observations.

Each feature variable in equation (1.2) can be either categorical or continuous. ANOVA

is a special case where all the input variables are categorical whereas an additive model is

a special case of all continuous input variables. However, the input variables could be a

mixture of both numeric and categorical variables in a regression problem given by equation

(1.2).

When we want to work with factor variables with G factors (groups) then we can modify

our notations in equation (1.2) as follows:
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Yn×1 =
G∑
g=1

Xgβg + ε (1.3)

where εn×1 ∼ Nn(0, σ2In), βg is a coefficient vector of length mg, and Xg is an n×mg

covariate (feature) matrix corresponding to the factor βg, g = 1, 2 . . . G. Let p be the total

number of predictors, so p =
∑G
g=1mg. To eliminate the intercept from equation (1.3), we

center response variables and each input variable so that the observed mean is 0.

The goal is to select important feature variables for accurate prediction. This amounts

to selecting as well as estimating the parameter coefficients. Tibshirani (1996) proposed

the LASSO method which is an attractive tool due to simultaneous estimation and variable

selection. When the need for selecting a group of levels of a categorical variable or group

of basis functions representing a numeric variable arise, these methods fail because they are

designed to select individual feature variables and fail to select whole factors. Yuan and Lin

(2006) proposed group lasso as an alternative to LASSO in terms of factor selection and also

exhibit superior model selection performance.

The group lasso penalty is a hybrid of the l1 and l2− penalties and encourages selection

at a group level. The group lasso estimate, for linear regression, minimizes

||Y −
G∑
g=1

Xgβg||22 + λ
G∑
g=1

||βg||2 (1.4)

where λ is the tuning parameter. Note that, in (1.4), when all groups have size 1 i.e.

m1 = m2 = · · · = mG = 1, we have lasso.
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1.1.5 Bayesian Group lasso

The limiting distribution of the group lasso estimator is complicated (Knight and Fu, 2000;

Chatterjee and Lahiri, 2011). Thus, this estimator fails to give meaningful standard errors of

the estimates which affects the statistical significance of the covariates in the chosen model.

To deal with this drawback of frequentist lasso type estimators, Bayesian formulations have

been developed. The Bayesian MAP estimators provide reliable standard errors for the

estimates.

It is known that the lasso estimator for linear regression is equivalent to the posterior

mode with independent Laplace priors on each regression coefficient. Park and Casella (2008)

developed a fully hierarchical Bayesian setup for the lasso using a scale mixture prior on the

regression parameters. This mixture prior results in a Laplace marginal distribution for β.

This idea has been further extended to build similar fully Bayesian Hierarchical models for

group lasso, fused lasso (Tibshirani et. al., 2005) and the elastic net (Zou and Hastie, 2005)

by Kyung et. al. (2010). They employ a multivariate mg− dimensional Laplacian prior over

each group of regression coefficients.

π(βg) ∝ exp
{
− λ

σ
||βg||2

}
, (1.5)

The classical group lasso is recovered as the MAP solution in log-space with λ
σ having the

role of a fixed Lagrangian multiplier. For a full Bayesian treatment, however, we place

hyperpriors on λ and σ which lead to integrations that are analytically impossible to solve.

For finding closed form posterior distributions for all parameters we extend the hierar-

chical scale mixture model approach of lasso to grouped predictors. Thus, we express the

prior as a scale mixture of multivariate normals over βg with Gamma hyperpriors over the
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variance hyperparameter. Specifically, with

βg|τg2, σ2 ∼ind Nmg

(
0, τg

2σ2Img

)
,τg

2 ∼ind Gamma

(
mg + 1

2
,
λ2

2

)
(1.6)

the marginal distribution of βg is of the form (1.5). This Bayesian formulation encourages

shrinkage at the group level and provides comparable prediction performance with the group

lasso. However, estimation of βg by its posterior mean or median does not produce exact 0

estimates; we need to bring in the concept of sparsity here. Thus, to introduce sparsity at

group level, Xu and Ghosh (2015) assumed a multivariate zero inflated mixture prior or a

spike and slab prior for each βg.

For variable selection, we want the estimates to produce exact zeroes such that they are

dropped from the model. Zero inflated mixture priors are such that the slab part draws

values from a known distribution and the spike part is degenerate distribution selecting zero.

Xu and Ghosh (2015), further showed that median thresholding is better than using posterior

mean. The spike and slab prior keeps the scale mixture prior of normals and gamma intact

thus providing full conditionals. This approach is thus computationally easy and gives exact

zero estimates. Narisetty and He (2014) used shrinking and diffusing priors for variable

selection in a hierarchical Bayesian setup. Zero inflated mixture priors, in recent years, have

been extensively utilized in Bayesian variable selection setups. George and McCulloch (1997)

used zero inflated normal mixture priors in the hierarchical formulation for variable selection

in a linear regression model. Chen and Dunson (2003) used a spike and slab type prior

for the random effects variances in a linear setup allowing probabilistic selection of random

effects.
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1.1.6 Bayesian Group Lasso with Logistic Regression

So far we have talked about group lasso in a linear regression setup i.e. when the response

variable has a Gaussian error. In many practical problems, we come across response values

that cannot be fit into a linear model. For example, when the outcome is a binary categorical

variable, count data or multi-level categorical variable then the Gaussian error assumption

does not hold. In such cases we have to use generalized linear models (GLM) with various

link functions. In many financial, insurance and medical data the outcome has two values

thus making it a binary response variable. Since, the occurrence of binary outcome is very

common in the real world we will focus on GLM with a logit link.

Since, the outcome is binary we cannot model this data with (1.1) having normal errors.

Meier et. al. (2008) developed the logistic group lasso in a frequentist setup. Before delv-

ing into its Bayesian counterpart, let us summarize the frequentist group lasso in logistic

regression setup.

Assume that we have independent and identically distributed observations (xi, yi), i =

1, . . . , n, of a p−dimensional vector xi ∈ Rp of G predictors and a binary response variable

yi ∈ {0, 1}. Each group has mg levels. We can write xi = (xTi1, . . . , x
T
iG)T . Linear logistic

regression models the conditional probability pβ(xi) = Pβ(Y = 1|xi) by

log
{ pβ(xi)

1− pβ(xi)

}
= ηβ(xi)

also known as the logit link with the link function ηβ(xi) =
∑G
g=1 x

T
igβg. The logistic group
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lasso estimator, βGL, is given by the minimizer of the convex function

Sλ(β) = −l(β) + λ

G∑
g=1

||β||2

where l(.) is the log-likelihood function i.e.

l(β) =
n∑
i=1

(
yiηβ(xi)− log[1 + exp{ηβ(xi)}]

)
.

The tuning parameter λ ≥ 0 controls the amount of penalization.

Motivated by Xu and Ghosh’s (2015) work, here we construct a Bayesian formulation for

the logistic regression case. Here, our likelihood is Bernoulli probability mass function with

a logit link. We abide by using a multivariate zero inflated mixture prior with point mass at

zero and the continuous part as double exponential distribution. Since a double exponential

prior on βg can be expressed as a scale mixture of normal and Gamma priors (as in (1.6)),

we use priors very similar to the linear setup.

1.2 Applications of Variable Selection

With the main focus of variable selection in our mind, we have developed some Bayesian

hierarchical models for model selection by employing an efficient Gibbs’ sampler. There are

numerous areas in which our models can be applied; we have chosen brain imaging data to

illustrate the usability of our methods. Brain imaging techniques are widely used to capture

brain activity that can be used to detect various diseases related to brain deformity. We use

two types of brain image data to build Bayesian hierarchical models. Although, brain image

data analysis is the primary focus of this thesis, we start our illustrations with a comparative
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study based on market research data.

We use market research questionnaire data to illustrate how there different variable se-

lection methods differ in the frequentist approach. This exercise also emphasizes the need of

meticulous selection of the tuning parameter and its effect on model building. We show how

penalized approaches can be used to build predictive models that are relevant in a variety

of areas.

1.2.1 Market Research Data: A Comparative Study

International market segmentation inevitably stands out as fundamental and crucial in global

marketing strategy matching the increase in international trade. Successful targeting of

customers and positioning firms’ products requires insights of customer heterogeneity across

borders, namely international segmentation. Moreover, international segmentation provides

a strategic perspective on the balance between standardization and adaptation (Verhage,

Dahringer, and Cundiff, 1989), where standardization has the economic advantages, and

adaption enables firms to better satisfy specific customer needs.

In general, international market segmentation addresses heterogeneity at three levels -

countries, regions, and consumers. The former two are usually defined by geography, while

the last one has no aggregation level. Although geographic aggregation for international

segmentation is widely accepted, it generally overlooks consumer-level heterogeneity within

segments and, more importantly, ”it is neither theoretically motivated nor is the managerial

relevance of the segmentation variables established” (Nachum, 1994; Steenkamp and Ter

Hofstede 2002). Due to effective logistic capability, mass customization, and the death of

distance due to advances in consumer communications, company offerings and consumers’

preferences are rarely constrained by geographic aggregation. Hence, disaggregate interna-
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tional consumer segmentation offers a more effective way to examine and consider consumers’

needs.

Variable inclusion in the international market segmentation domain requires a bifocal

view of data employed, regardless the type of segmentation. In this study, we focus on

model selection for lifestyle segmentation across countries. Additionally, we look at the

very realistic situation where significant disparity exists between sample size and number of

variables, often referred to as the high dimensionality problem. Variable selection is done by

obtaining the maximum information required with optimal utilization of resources. Variable

selection, when the number of predictors exceeds number of observations, has largely been

overlooked in marketing research. In many situations, survey questions exceed the number

of people interviewed. This leaves us with the problem of variable selection in a high-

dimensional setup. Conventional statistical methods fail in this case. We illustrate three

statistical methods that is custom designed for such scenarios. Variable selection reduces

dimensionality of the wide data and selects variables most significant for segmentation.

In the problem of assessing the relation of covariates with a response variable we often

face challenges such as multicollinearity and high dimensionality. Often, they occur simul-

taneously. The ordinary least squares method for regression fails to estimate the coefficients

of a regression model in these cases due to the non-invertibility of the XTX matrix where

X is the design matrix. Typical examples of such scenarios arise in social networking sites,

product reviews and market portfolio data. Penalized regression methods are getting pop-

ularity for these scenarios, see Hastie et al. (2009) and Fan and Lv (2010) for overviews

among a large amount of recent literature. Some of the penalized methods used to overcome

these challenges are ridge (Hoerl and Kennard, 1970), LASSO (Tibshirani, 1996), elastic net

(Zou and Hastie, 2005), adaptive LASSO (Zou, 2006), SCAD penalty (Fan and Li, 2001) etc.
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These methods can be used when the data has multicollinearity or high-dimensionality but

they differ in terms of their variable selection efficiency or predictive power. For instance,

the ridge penalty shrinks the coefficients toward zero but fails to perform variable selection.

The LASSO, although helpful in variable selection, shrinks the coefficients to zero and may

provide larger prediction errors. The elastic net, SCAD and adaptive LASSO address a few

of these inconsistencies but none of these procedures are proved to be a generic best proce-

dure. Although these methods are effective in dealing with the non-invertibility issue of the

OLS but their performance is highly dependent on the selection of the tuning parameter.

The tuning parameter puts a penalty on the parameters of the model, affecting model

selection. Performance of a model is highly sensitive on the selection of tuning parameter

and one should practice cautiously while dealing with penalized procedures. We compare 6

different types of tuning parameter selection and conclude that the best way of selection is

based on information criterion. Both, regularization and tuning parameter selection tech-

niques are illustrated through simulation and real data analysis. We look at 4 countries and

build separate models for each of them to address the problem of heterogeneity of geographi-

cal distances. This comparative study is useful for making managerial decisions as managers

will be able to optimize their resources in terms of advertisement and consumer targeting.

1.2.2 Alzheimer’s Disease Neuroimaging Initiative (ADNI) Data:

Bayesian Group Lasso in Logistic Regression

Alzheimer’s disease (AD) is the sixth leading cause of death in the United States. It is a

form of dementia in which patients suffer loss of memory where they fail to identify people

or objects, have difficulty with speech and, in later stages, are unable to perform daily life
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activities like getting up from the bed or brushing their teeth. Although, it is mainly a

disease of old age affecting people who are 65 or older, early onset of the disease can occur

in 40 or 50 year olds in upto 5 percent of cases. AD is the most common case of dementia

amounting to 60 to 80 percent of all cases. It is a progressive disease where symptoms worsen

over time. AD affected patients live an average of 4 to 20 years after the symptoms become

noticeable. Medical scientists are yet to find a cure for Alzheimer’s but it is possible to

slow down the worsening of dementia and improve lifestyles of both the affected people and

their caregivers. Extensive studies are being conducted to find a treatment for AD, delay its

onset or curb its advancement. More information and facts about Alzheimer’s disease can

be found at www.alz.org. According to recent studies (Leifer, 2003), early detection of AD

is extremely helpful as it can be treated with novel drugs to delay AD progression.

Numerous methods have been developed for the analysis of ADNI data to identify the

brain subregions that are disease related. These methods usually single out a region of in-

terest (ROI) and perform a univariate analysis based on the chosen ROI (Luo and Nichols

(2003), Grimmer et. al. (2009)). Univariate analysis of ROI’s neglect the effect of other sig-

nificant ROI’s. These methods aim at analyzing each hypothesized significant ROI and then

looking at multiple hypothesis where careful adjustment of multiple comparisons have to be

looked at. To include all the ROI’s for analysis simultaneously a regression framework seems

plausible such that the model itself selects the most significant regions. However, due to high

number of candidate ROI’s the standard regression analysis is not possible. The good thing

is, there is a medical belief that only a few ROI’s are informative for characterizing AD. Thus,

a dimension reduction technique such as penalized regression can be developed. The ADNI

MRI database has volume, area and thickness measurements of various brain regions. Since

these measurements are a direct manifestation of brain region atrophies we should consider
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them as a single variable with multiple levels. Thus the number of regression parameters

(brain subregions with all levels) may exceed the number of patients being studied. There

are number of competitive penalized regression techniques have been developed in recent

years. LASSO, perhaps the most popular technique among all (Tibshirani, 1997). However

the direct use of LASSO is not appropriate in presence of multiple levels of a covariate in

feature selection models. We employ, instead, a group lasso technique to build a model since

it places group penalty on the parameters of a variable (feature) which makes easy selection

of the whole set of volumetric measurements for an ROI. We treat different measurements of

the same subregion as different levels of a covariate in this regression setup. Thus, it is easy

to visualize structured correlation in the matrix of covariates (subregions) establishing the

motivation of using a group lasso like method. The acuteness of Alzheimer’s disease makes

its early detection imperative which is why classification of a subject into healthy individuals

or AD patients is of immense importance. We develop logistic regression in Bayesian setup

for detection of Alzheimer’s disease for getting more reliable standard error estimates.

We have obtained structural magnetic resonance imaging (MRI) data from ADNI. The

structural data is the volume, surface area and thickness measurements of various brain

regions like entorhinal cortex, putamen etc. on the left and right hemispheres. Since, each

region has a group of measurements, we know that there is an inherent correlation among

these covariates. We group these variables and the selection of a region amounts to the

selection of all the corresponding measurement attributes. Thus, we can model this using a

group lasso setup.

We analyze baseline data where the outcome is that a subject is a healthy control or

has AD. A hierarchical Bayesian group lasso model with binary outcome is a novel method.

The Bayesian group lasso formulation is motivated by Xu and Ghosh (2015). We place
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independent multivariate Laplace priors on the β’s and use the mixing property of normal

and gamma densities to get full conditionals of all parameters involved. To ensure sufficient

sparsity, we have used a spike and slab prior on β where the slab part is the normal mixing

density of the multivariate Laplace prior. Instead of using maximum posterior probability

technique, we employ a posterior median thresholding approach to simultaneously select and

estimate the parameters. Our model is chosen by the posterior median estimates. Johnstone

and Silverman (2004) showed that posterior median is a thresholding estimator under fairly

general conditions and their results are generalized for multivariate spike and slab by Xu

and Ghosh (2015). For the binary outcome, a logistic link is used. We have shown that the

posterior median thresholding estimate is consistent. Our method gives an 80% accuracy

in classifying AD from healthy controls. It has an AUC (area under curve) of 0.867 for

classifying true from false. The proposed approach has also been validated with simulation

studies which compares the frequentist group lasso with our Bayesian version. It is seen that

the false positive rate is higher for frequentist group lasso, indicating the superiority of our

method.

1.2.3 Functional Magnetic Resonance Imaging (fMRI) Data:

Bayesian Spatiotemporal Inference

fMRI data is extensively used nowadays to detect and understand brain activities. Under-

standing of brain activity helps in understanding how the brain regions are associated with

a particular disease or activity. This can reveal important insights, thus, helping medical

practitioners and scientists to develop cures for diseases or explain nervous aberrations. The

fMRI scans reveal various degrees of brain activity when a person is exposed to some stimuli.
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Brain activity is measured by detecting changes in neural activity associated with blood flow

also known as blood oxygenation level dependent activation (BOLD). This is measured by

contrasting deoxygenated hemoglobin (paramagnetic substance) to oxygenated hemoglobin

(diamagnetic substance) in brain regions.

The brain regions where these measurements are obtained are spatial brain volumes,

known as voxels. An fMRI scan is really a picture in 3-dimension. The scans provide

images of brain voxels slice-by-slice and each voxel is uniquely identified by a 3-D coordinate

identifier in the 3-D space. Brain activation does not occur in all the voxels but in certain

regions of the brain, affecting a few voxels only. Thus, we want to identify the voxels that are

activated by some external stimuli. The fMRI scans are collected over a duration of time at

certain intervals. Thus, a single scan will contain voxel level information of a subject collected

at T timepoints. There are more than hundred thousand voxels in the brain and these are

collected for T timepoints. So, our dataset contains number of voxel × T observation for a

single subject. this is a huge dataset and our challenge is to develop a model that is able to

detect the truly activated regions. This is, thus, a variable selection problem where detection

of the voxels amounts to selecting variables from a large number of candidate voxels.

fMRI scan produces a highly resolved brain imaging dataset. Software like Analysis of

Functional NeuroImages (AFNI) can be used to view the datasets as images. It is obvious

that there exists spatial correlation among the voxels and the repeated measurements at T

timepoints induce a temporal correlation as well. It is a challenge to handle all of this data

at once, so wee need to come up with some modeling techniques that will be able to easily

model the data. Smith et. al. (2003), were the first to use spatial Bayesian variable selection

for fMRI data. Smith and Fahrmeir (2007) developed a method that incorporated spatial

dependence by the use of Ising prior. They have considered a full-brain approach as well as
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slice-by-slice analysis. This approach does not take into account the temporal dependence.

Musgrove, Hughes and Eberly (2016) have developed a fully spatiotemporal Bayesian model

for fMRI data. Instead of dealing with all the voxels, they have introduced a divide and rule

approach. In their method, they partition the brain into several smaller parts and perform

variable selection of activated voxels. This method is useful but the partitioning of the brain

seems arbitrary and it is not known if a different partitioning should lead to a different result.

In a more recent work, Castruccio et. al. (2016) have used a multi layer approach for

variable selection after considering spatio-temporal correlations. Their method is useful in

handling data of the size 22 million. However, they have used region of interest information

in their model to build the multi layer approach. Our data consists of voxel level data only

and we introduce a novel spatio-temporal Bayesian variable selection technique by extending

our group lasso idea into a bi-level selection type solution. To handle data of size 28 million,

we have used a two step approach. In the first step, we perform a simple analysis without

considering spatial correlation and select the ”significant” voxels based on p-values. We use

our Bayesian bi-level selection technique on this reduced dataset.

This work is a collaboration between the Department of Statistics and Probability and

the Department of Radiology. We have obtained BOLD signal data of 64×64×36 voxels

over 192 timepoints. The data was obtained at the Department of Radiology on a single

subject. The subject was shown two stimuli, an object and a scenery, and their BOLD signal

was measured using a scanner. There is a baseline trend in the measurements but the data

that we use here has been rescaled to eliminate baseline trend. The stimuli onset times are

convolved with the double-gamma density.

The structure of our model is such that N voxels given a stimuli is a group. We have two

groups of covariates and the covariates in each group share some correlation. So selecting a
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stimuli means selecting the entire group (all voxels). However, all voxels are not activated

for a given stimuli; only a few exhibit activation. So, we need to select the activated voxels

within the selected stimuli. Thus, we need a second stage of covariate selection where our

model should select individual voxels from the group of voxels of the selected stimuli. Our

model incorporates bi-level selection in group lasso following Xu and Ghosh (2015). We

place a temporal correlation on the error structure of the normal distribution of responses.

We do not introduce a spatial structure through the errors, but employ it later through

the prior of the voxel coefficients. Similar to the spike and slab prior on groups, we use a

spike and slab prior for selecting the relevant voxels. We use an adjacency matrix for spatial

dependence where we have 1 for a neighbor and 0 for non-neighbors. Note that, a 2-D space

will have 4 a maximum of neighbors while a 3-D space will have 26 neighbors. We use an

algorithm to build the adjacency matrix where absolute value 1 of at least one coordinates’

difference of two voxels mean neighbor and absolute value the coordinates difference of two

voxels greater than 1 means non-neighbor. If difference of all three coordinates is zero then

we are comparing a voxel with itself.

An R package called NeuroSim is used to simulate the 2-D fMRI data. To build a close

resemblance with actual fMRI data, it is important that we simulate data that is synthetic

fMRI data. Our simulation results give a very high accuracy rate of selection.

Our method is a very useful application of spatio-temporal data. It has practical rele-

vance in brain imaging data where the volume of data is large. Our Bayesian model can

effectively identify the truly activated brain regions from thousands of candidate voxels. This

application is extremely relevant in the field of biology and neuroimaging where BOLD sig-

nals can be used to detect brain activation, thus, leading to breakthrough revelations about

the association of neuronal activity and certain diseases/ disorders or human behavior.
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Chapter 2

Better Tools for Strategic Global

Decision Makers Gaining Consumer

Insights

2.1 Introduction

Marketing strategies are mostly based on consumer psychology and behavior. Since socio-

economic conditions and cultures vary significantly across international markets, use of cul-

ture based strategies to reach out to consumers seem to be an intriguing idea. By paying

attention to these cultural insights, marketers can get ahead of the curve and offer messages

that anticipate changing consumer attitudes rather than simply responding to the present

demands of the market. Research in markets across culture can help us better understand

behavioral affiliations of consumers and help marketers launch a better campaign for their

products. It is obvious that cultures vary in terms of mood of the nation, language, personal

values, religion, rituals, personal preferences, social behavior and infrastructural facilities

like technology and transportation. These variations can explain substantially the variation

in consumer choices for many categories across countries. It is thus important for firms to

develop marketing strategies that use local behavioral trends rather than a global message
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across cultures. Successfully targeting customers and positioning firms’ products requires

subtle and deep insights into customers’ cultures and tastes across borders. For instance,

Kumar and Pansari, (2016) examined the importance of cultural and economic aspects of a

country on customer lifetime value (CLV), where the economy of a target country directly

influences customer profitability, and national culture (individualism, uncertainty avoidance,

masculinity, etc.) influences customer profitability through purchase frequency and contribu-

tion margin. In this vein, national culture is significantly associated with customer behaviors

such as innovativeness (Steenkamp, Ter Hofstede, and Wedel, 1999), new product develop-

ment activity (Nakata and Sivakumar, 1996), word of mouth (Money, Gilly and Graham,

1998), and financial decision making (Petersen, Kushwaha, and Kumar, 2015). Customer

heterogeneity is a function of numerous factors.

2.1.1 Motivation

In general, international market segmentation must adapt and expand to understand cus-

tomer heterogeneity and address the issue at three levels -at the country-, region-, and

consumer-level. The segments defined by countries and regions are based mainly on geog-

raphy; accordingly, the culture corresponds to a specific geography. Although geographic

aggregation for international segmentation is widely accepted and predominates in busi-

ness practice, unfortunately it overlooks consumer-level heterogeneity within a geographic

segment. More importantly, the aggregated segmentation approach does not theoretically

motivate international marketing strategy decisions nor is it managerially relevant (Nachum,

1994; Steenkamp and Ter Hofstede, 2002). Because of the accelerating trend toward glob-

alization, consumers’ information, knowledge, and needs are no longer limited by location,

shared language, or presumed similar culture in this era of information explosion.
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Lifestyle segmentation system collects information about leisure activities, topics of in-

terests, media profiles, personal traits and values, and thus substantially enhances the ac-

cessibility and actionability of the segments via marketing mechanisms such as promotion

and advertising. A shortcut for firms can be to extract the discerning characteristics of

consumers in target markets from lifestyle segments, and design corresponding marketing

strategies. Thus, variable selection from a great number of indicators in lifestyle surveys

helps firms to identify target customers accurately and efficiently.

Despite the fact that variable selection from lifestyle segments significantly reduces the

amount of market research effort required to target customers, there are a number of chal-

lenges in making precise strategic inferences and decisions. First, lifestyle segmentation

surveys usually include information as extensive and granular as possible. Hence, some in-

formation is relevant and some might not be. This happens quite often because firms tend

to gather information exhaustively in the early stages of market entry. Second, although

a maximum input of information should be appreciated, it is almost always accompanied

by overlapping and redundant information. Thus, once consumer insights have been trans-

formed into data, high dimensionality and multicollinearity are present in further analyses.

A traditional approach is stepwise regression, with an automatic procedure to successively

include variables in the model based purely on a t-value. However, as Olusegun, Dikko, and

Gulumbe (2015) recognized, the drawback of stepwise regression for the selection of variables

usually comes from omitting a suppression effect. Stepwise regression for variable selection

may overlook a variable that is not correlated (or weakly correlated) with the dependent

variable, but which is significantly correlated with other predictor variables. Consequently,

the predictive power of the model is discounted; what is worse is that omitting such a variable

may present the risk of rejecting a true hypothesis as false (Pandey and Elliott, 2010).
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More computationally efficient, penalized likelihood approaches-Ridge, LASSO, and elas-

tic net are used widely in variable selection procedures. Nevertheless, the selected variables

and complexity of the model rely heavily on the choice of tuning, also called regularization,

parameter- λ. Typically, cross-validation and information criterion are used for selecting the

optimal tuning parameter. A topic of interest is to see which model selection criterion helps

achieve the optimal model. In an exercise of variable selection, the goal is to optimize model

selection by balancing minimization of the mean squared prediction error (MSPE) for Gaus-

sian models, or the negative log-likelihood (NLL) for non-Gaussian models and maintaining

the sparsity closest to the true model. In practice, this is usually managed by developing

models with sequential values of tuning parameters and selecting the one that achieves the

optimal criterion. Information criterion approach takes into account the model fit and com-

plexity to select the optimal tuning parameter. A potential concern of using the penalized

likelihood approach is that the choice of the tuning parameter can be arbitrary (Kim et al.

2012). Fan and Tang (2012) empirically demonstrated that neither the Akaike information

criterion (AIC) nor the Bayesian information criterion (BIC) is adequate to identify the true

model. The concept of criteria is to put a penalty on the degrees of freedom of the model.

This penalty is 2 for AIC and log(n) for BIC. One may argue that in a high-dimensional

setting the number of parameters grow with increasing sample size and that there is an ef-

fect of dimensionality p on the penalty of the information criterion. We use the generalized

information criterion (GIC) (Fan and Tang, 2012) with penalty log(log(n)) log(p) as a third

type of information criterion.
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2.2 The penalized regression models

Table 2.1 summarizes the 3 penalized likelihood methods we will compare for variable selec-

tion. It is a known fact that, ordinary regression fails in case of high-dimensionality and/or

multicollinearity. In market survey data, information is collected in excess which brings along

the risk of redundancy of information. Penalized or regularized likelihood methods penal-

ize the parameter space. The penalty encourages shrinkage of estimates of the coefficients.

These methods maximizes the likelihood but has a constraint attached to the function to be

maximized. There is no closed form solution for this approach. A popular method is the

gradient descent algorithm to find the estimates. Penalized regression simultaneously selects

and estimates coefficients of the regression model.

For a generalized linear model, our model setup is as follows:

g(µ) = Xω + s

Here, g(.) is a link function, which links the mean (µ) of the responses to a linear combination

of the covariates. The penalized likelihood method is very similar to the Gaussian case. In

this setup too, we are interested in maximizing the likelihood, but instead of minimizing

the sum of the square of errors we minimize the negative log-likelihood. Thus, for penalized

methods, we add the penalty term to the NLL, and our objective is to minimize this.

2.2.1 Tuning parameter selection

The penalized approach selects a model of reduced dimension with a few covariates. Number

of questions that are selected from the market survey questionnaire depends on the tuning
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Table 2.1: Penalized Regression Methods To Be Discussed

Method Minimize Function

Ridge Regression
∑n

i=1(Yi −Xiω)2 + λ
∑p

j=1 ω
2
j Shrinks estimates

(Hoerl and Kennard, 1970) of the coefficients
toward zero.

LASSO
∑n

i=1(Yi −Xiω)2 + λ
∑p

j=1 |ωj | This approach

(Tibshirani, 1996) forces many ω
to take 0 values.

Elastic Net
∑n

i=1(Yi −Xiω)2 + λPα(ω) Works in the presence
( Zou and Hastie, 2005) of multicollinearity,

unlike LASSO.

parameter that sets the penalty on the parameters. Since, the number of questions included

in the final model may play an enormous impact on a market survey financially, careful

selection of the tuning parameter is of great importance. The tuning parameter reduces the

degrees of freedom of the model. Thus, selecting an appropriate tuning parameter affects

model selection. This directly affects the predictive performance of the selected model. A

tuning parameter is generally denoted as λ; we will call it λ henceforth.

A small choice of λ selects a larger model and a large choice of λ selects a smaller

model. Choice of an optimal λ is important for selecting the optimal model. A popu-

lar method of λ selection is cross-validation. Here, the data is divided into approximately

equal k-sized parts. k − 1 parts are used as training sets and kth part is used as the test

dataset. A model with parameter λ is fit on the training set. The error in prediction

PEk(λ) =
∑
i ∈ kth part(yi − xiω̂−k) is computed using the test set based on ω̂−k. For a

generalized linear model, we work with the value of NLL. In the case of a binary outcome,
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our NLL is NLL(ω) =
∑n
i=1

[
yi log(1 + exp(−xTω)) + (1− yi) log(1 + exp(xTω))

]
. This is

repeated k times using every sub-dataset as the test and the remaining as training datasets

for the same lambda. The average cross-validation error is computed. This entire procedure

is repeated for every candidate value of λ and the model with the smallest average cross-

validation error is selected. We know that AIC and BIC are measures of goodness of fit of

a model in ordinary least squares; recently information criterion are used as a method of λ

selection. The information criterion penalizes the degrees of freedom in a model thus dealing

with a trade-off between goodness of fit and complexity of the model. More the number

of parameters in a model better is the fit but this often leads to overfitting. The penalty

term for AIC is 2 and BIC is log(n). Another kind of information criterion is the general-

ized information criterion (GIC) which has log(log(n)) log(p) as its penalty term. We often

notice that the number of parameter grow with an increasing sample size and thus it seems

reasonable to introduce the parameter size in penalty. The general formula for information

criterion is:

Information Criterion = -2 log-likelihood + penalty * degrees of freedom.

The log-likelihood term attributes the goodness of fit and the degrees of freedom times

penalty term attributes to the complexity of the model. A model that maximizes the like-

lihood is preferred but the second term brings a trade-off between model complexity. We

choose that model which minimizes the information criterion.

The motivation in this chapter is to find an optimal model for a market survey dataset

where the number of questions(and sub-questions) outnumber the number of consumer who

participated in the survey. The chosen model will minimize the prediction error. Selection
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of the model depends on λ selection. We want to find a method that consistently selects

a λ value for which an optimal model is achieved. In this paper, we compare 3 different

information criteria and 5, 10 and 50 fold cross-validation methods to see which one of these

chooses an optimal λ consistently.

Statistical model building is a commonly used technique in market research. In marketing

data, when we want to build a model where there are too many variables as opposed to too few

observations (e.g. data from a survey questionnaire), these variable selection methods can be

very useful. A stepwise regression type approach has its limitations (Harrell, 2013). We are

looking for a statistically valid variable selection methodology. Application of a penalized

regression method with careful choice of tuning parameter can be a powerful method in

market research model building. The above mentioned variable selection method are not just

valid for high-dimensional data. As we will see in the illustration, these methods are also

valid when p < n. When we are trying to predict consumer behavior or segmentation this can

be an efficient way of dealing with the problem. An optimal model able to predict consumer

behavior or segmentation by simultaneously selecting and estimating relevant variables has

multi-dimensional cost saving potential. A better model would mean better designing of

market strategies in terms of a cost effective strategy. A viable model does away with non-

informative variables thus saving on the cost of data collection. A good market strategy

impact returns from the market which shows that the initial step of building an accurate

model affects the long-term credibility of marketing strategies for a firm.
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2.3 Simulation

We test our proposed approach for tuning parameter selection of penalized methods by a

thorough simulation study. To demonstrate its performance and validity, we simulate data

that represents four scenarios - low vs high dimensionality, and with the presence/absence

of multicollinearity. These four scenarios are illustrated for both a linear case and a binary

response case. It is expected that the presence of non-informative variables in a model can

disturb the selection of true informative variables and skew parameter estimates. This sim-

ulation exercise compares 3 different variable selection penalized approaches and 6 different

tuning parameter selection methods.

We add non-informative variables in a sequentially increasing order to the set of infor-

mative variables. To illustrate, we use several different values of p for variable selection.

Consider a linear model Yi = Xiβ + εi, i = 1, . . . , N , where N indicates the number of

observations, Xi is the design matrix for each group i and εi is the Gaussian random error

with zero mean and variance of σ2
ε . The overall design matrix is generated from a multivari-

ate normal distribution with zero mean and covariance matrix Σ with pairwise correlation

Σkk′ = ρ|k−k
′|, ρ = 0.2. To simulate different scenarios when multicollinearity is present or

absent, we generate two different feature matrices - i) an X which does not have correlated

columns; and then ii) an X with a number of correlated columns. The number of parameters

p is set to vary in order to illustrate if the methods are able to reliably select true factors

and covariates. We examine each of the above scenarios with increasing p starting from 5

up to 1000. X is generated to have 500 rows and 1000 columns. Our parameter vector has

p entries, with the first 5 entries being 1, 2, 4, 3, 3, and the rest are all 0s. The first 360

rows of X are used as the training dataset, and the remaining 140 rows are used as the test
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dataset. We validate our model here since we are testing the optimality of our models using

a model metric. The error variance used to simulate Y is 0.25. The same design has been

used to generate Y using a logit link generalized regression structure. Here, X, β and p are

the same as the previous case - the only difference being that we used these to generate a

binary response using a logit link.

For the linear setup, we find the prediction error on the test dataset and for the binary

response, we obtain the NLL on the test dataset based on the estimates obtained from

the training dataset, using 6 different criteria (AIC, BIC, GIC, CV-5, CV-10, and CV-50)

for ridge, LASSO, and elastic net, respectively. Bootstrapping estimation is used with 100

draws, with various levels of p, the number of parameters, such that both low-dimensional

and high-dimensional settings are considered. Our true model size is 5 and we demonstrate

which methods are able to produce a model closest to the true model.

Tables 2.2 and 2.3 exhibit the estimation results when we use an X that does not have

correlated columns, namely the absence of multicollinearity. Table 2.2 displays the scenario

of low dimensionality, where the number of parameters is smaller than the number of obser-

vations (p = 50). Ridge selects all the covariates and gives the highest MSPE, compared to

LASSO and elastic net. This result reflects overfitting of ridge. The 3 cross-validations, CV-

5 CV-10, and CV-50, perform consistently by choosing a comparatively smaller λ. LASSO

and elastic net are both able to perform variable selection. BIC and GIC both resulted in

selecting a reasonable model, as the average model size is very close to the true model. AIC

and CVs put a small penalty on the parameters, resulting in the selection of larger models.

The standard errors of the model size are higher for AIC and CVs, indicating that they fail

to consistently select a model. BIC and GIC, on the other hand, have smaller standard errors

of model size. However, the MSPE is slightly smaller for AIC and CVs, mainly because AIC
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and CVs result in including more variables.

Thus, BIC and GIC outperform the other selection methods indicated by reasonable

MSPE and close to true model size. Given that the differences of MSPE are not significant,

it shows that the extra variables included by AIC and CVs do not significantly improve the

predictive power of the model. Table 2.3 exhibits the scenario of high dimensionality, where

the number of parameters is greater than the number of observations (p = 700). We drop

ridge since it fails to select an optimal model. A similar pattern is uncovered in that, AIC

and CVs select too many variables in the model. The MSPEs yielded by BIC and GIC are

slightly better, as the number of selected variables is smaller. However, the MSPE resulting

from BIC and GIC are quite comparable but GIC selects the model size that is closest to the

true model. It further reflects the fact that BIC and GIC compromise a trade-off between an

optimal model size and a lower MSPE. The AIC curve, for higher values of p, is a decreasing

function of λ; a minimum point is not achieved by the AIC curve. To maintain consistency

with other criteria, we have set a limit of λ values for AIC in this study. Thus, AIC is not

a good option for λ selection. Similarly, LASSO, with GIC as a tuning parameter selection,

outperforms in the scenario of high dimensionality that is free from multicollinearity.

Next, we apply our proposed approach to the simulated scenarios when the first three

columns of X are correlated, exhibiting multicollinearity. The first and third columns are

set up with a moderate correlation [0.6] and the second and third columns are set up with

a high correlation [0.9]. Similarly, we repeat the simulation for p = 5, 50, 100, 300, 500, 700,

and 1000. We report model results when p = 50 and 700 in Tables 2.4 and 2.5, respectively.

The active set in the tables indicates which of the true variables the model selects. In the

scenario of high dimensionality, LASSO is not able to select the true featuring variables that

are correlated in neither low nor high dimensional cases, failing to identify the true model. As
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expected, elastic net is able to include all true featuring variables. Therefore, in the presence

of multicollinearity, elastic net demonstrates a better penalized approach. The resulting

MSPE is reasonably small. Comparable to the non-multicollinearity case, BIC and GIC

give higher values of λ selection. In the context of high dimensionality, AIC is the weakest

selection criterion, indicated by the highest MSPE and wrongly big model size. CVs exhibit

smaller MSPE but, similar to AIC, select too many featuring variables. Correspondingly,

BIC and GIC yield better results regarding both model selection and reasonably low MSPE.

GIC is able to identify the model closest to the true model. To conclude, in the case of high

dimensionality with multicollinearity, elastic net, with GIC as a tuning parameter selection,

is considered the preferred penalized method.

Table 2.2: Mean squared prediction error and model size when p=50 (without multicollinear-
ity)

λ Model Size MSPE

Ridge AIC 0.001021388 (0.0000000001) 50 0.2893 (0.03679)
BIC 0.003562153 (0.0005126616) 50 0.2893 (0.03679)
GIC 0.004184590 (0.0004470174) 50 0.2893 (0.03679)
CV-5 0.507462118 (0.4643633689) 50 0.2897 (0.03682)
CV-10 0.415566287 (0.3319358473) 50 0.2894 (0.03684)
CV-50 0.380492323 (0.1616254741) 50 0.2894 (0.03683)

LASSO AIC 0.02781584 (0.008342591) 16.56 (6.92) 0.26235 (0.03299)
BIC 0.05170223 (0.008185595) 6.84 (1.47) 0.26776 (0.03358)
GIC 0.05460872 (0.008521452) 6.38 (1.23) 0.26902 (0.03344)
CV-5 0.03329435 (0.006880519) 14.83 (6.15) 0.26165 (0.03324)
CV-10 0.03121886 (0.006198419) 15.54 (5.84) 0.26165 (0.03324)
CV-50 0.03008664 (0.007338059) 15.59 (6.04) 0.26197 (0.03336)

Elastic Net AIC 0.04052913 (0.012860055) 22.76 (7.67) 0.26663 (0.03384)
BIC 0.09110559 (0.014255864) 8.45 (2.20) 0.27658 (0.03486)
GIC 0.09683863 (0.013107877) 7.70 (1.74) 0.27898 (0.03481)
CV-5 0.05252995 (0.008847460) 19.28 (5.90) 0.26555 (0.03335)
CV-10 0.04963789 (0.009817753) 20.23 (6.32) 0.26555 (0.03354)
CV-50 0.04773889 (0.011280188) 20.52 (6.76) 0.26586 (0.03346)
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Table 2.3: Mean squared prediction error and model size when p=700 (without multi-
collinearity)

λ Model Size MSPE

LASSO AIC 0.02338005 (0.007871480) 138.50 (37.02) 0.31144 (0.03719)
BIC 0.07734480 (0.006230073) 6.96 (1.66) 0.29031 (0.0347)
GIC 0.08481446 (0.007959283) 5.65 (0.83) 0.29667 (0.03585)
CV-5 0.05652823 (0.008080458) 26.09 (13.50) 0.28022 (0.03396)
CV-10 0.05387672 (0.009212344) 30.16 (16.78) 0.2800 (0.034)
CV-50 0.05205381 (0.010043022) 32.67 (18.58) 0.28058 (0.03434)

Elastic Net AIC 0.04130926 (0.01049730) 157.06 (28.78) 0.32671 (0.03858)
BIC 0.15116164 (0.01347818) 9.23 (2.81) 0.32075 (0.04022)
GIC 0.16840461 (0.01598920) 6.76 (1.42) 0.33463 (0.04147)
CV-5 0.09941351 (0.01619864) 41.63 (18.90) 0.29747 (0.03698)
CV-10 0.09406769 (0.01637588) 47.45 (21.04) 0.29666 (0.03747)
CV-50 0.08952375 (0.01987736) 53.99 (27.89) 0.29788 (0.03839)

Similarly, Tables 2.6-2.9 illustrate the comparison of LASSO and elastic net on binary

outcomes both with and without multicollinearity. The conclusion we draw from these

results is very similar to that of the linear case. Note that NLL is lower for AIC and all

cross-validation cases. Variable selection is evidently better for BIC and GIC, and more

importantly, GIC offers a model closest to the true model. For the binary outcome case,

BIC and GIC pay the price of getting a slightly high NLL compared to other methods. Given

that our main objective is variable selection, we consistently propose to use GIC over other

methods as being optimal for variable selection. One thing to note in this illustration is that

AIC performs better than the linear model setup.

To summarize, LASSO and elastic net are both applicable variable selection methods

for the scenario of high dimensionality that perform similarly in both a linear model and a

binary outcome model. When there is no threat of multicollinearity, LASSO is considered

the preferred choice as the penalized likelihood method because it selects a model closest to

the true model and results in low MSPE. However, high dimensionality is often accompanied
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Table 2.4: Mean squared prediction error and model size when p=50 (with multicollinearity)

λ Model Size Active Set MSPE

LASSO AIC 0.03181344 (0.009161650) 12.42 (6.12) 3.5 (0.50) 0.26497 (0.03133)
BIC 0.05726272 (0.009371818) 4.24 (1.26) 3.44 (0.50) 0.2668 (0.03175)
GIC 0.05964167 (0.009658534) 4.00 (1.11) 3.42 (0.50) 0.26749 (0.03193)
CV-5 0.03815249 (0.007085186) 10.48 (4.88) 3.53 (0.50) 0.26402 (0.03121)
CV-10 0.03643849 (0.007736441) 10.94 (5.45) 3.56 (0.50) 0.26429 (0.03138)
CV-50 0.03527344 (0.009265170) 11.18 (6.27) 3.58 (0.50) 0.26476 (0.03133)

Elastic Net AIC 0.05163878 (0.01170837) 16.99 (5.43) 5 (0) 0.26807 (0.03132)
BIC 0.10042863 (0.01673992) 7.14 (1.88) 5 (0) 0.27405 (0.03308)
GIC 0.10884811 (0.01832204) 6.38 (1.55) 5 (0) 0.27618 (0.03268)
CV-5 0.06252737 (0.01147031) 14.81 (4.92) 5 (0) 0.2681 (0.03082)
CV-10 0.05944682 (0.01124177) 15.60 (4.87) 5 (0) 0.26775 (0.03123)
CV-50 0.05569424 (0.01259223) 16.16 (5.55) 5 (0) 0.2678 (0.03113)

by multicollinearity in a variety of extents. Thus, elastic net is considered more generalizable,

since it is able to select all true featuring variables when there is potential multicollinearity.

With regard to selecting the tuning parameter, GIC is considered a better alternative when

the goal is to select informative variables precisely and efficiently. The simulation study

demonstrates that in an exercise of variable selection in high dimensionality that presents

multicollinearity, elastic net, together with GIC approach, should be employed. We present

a variable selection exercise with a global lifestyle segmentation in the next section.
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Table 2.5: Mean squared prediction error and model size when p=700 (with multicollinearity)

λ Model Size Active Set MSPE

LASSO AIC 0.02738359 0.02738359 117.55 (44.90) 3.53 (0.50) 0.29717 (0.03471)
BIC 0.07876276 (0.006756074) 4.61 (1.37) 3.49 (0.50) 0.27272 (0.03042)
GIC 0.08634825 (0.008313138) 3.62 (0.68) 3.44 (0.50) 0.27588 (0.03102)
CV-5 0.06229525 (0.010551477) 18.16 (13.65) 3.32 (0.47) 0.26981 (0.03085)
CV-10 0.05964375 (0.009620764) 19.6 (13.66) 3.32 (0.47) 0.26912 (0.03023)
CV-50 0.05632187 (0.010686199) 23.73 (16.49) 3.32 (0.47) 0.26958 (0.03121)

Elastic Net AIC 0.04487323 (0.01612084) 147.18 (42.90) 5 (0) 0.31471 (0.03655)
BIC 0.15466768 (0.01366089) 7.37 (1.84) 5 (0) 0.29291 (0.03168)
GIC 0.17007910 (0.01428129) 5.83 (1.01) 5 (0) 0.2999 (0.03405)
CV-5 0.11063973 (0.01643746) 28.80 (13.61) 5 (0) 0.28104 (0.03077)
CV-10 0.10529391 (0.01720958) 33.29 (16.64) 5 (0) 0.28127 (0.03036)
CV-50 0.10155184 (0.01918456) 36.55 (19.12) 5 (0) 0.28189 (0.03069)

Table 2.6: Negative log-likelihood and model size when p=50 (without multicollinearity) for
binary response

λ Model Size NLL

LASSO AIC 0.019 (0.001) 12.77 (2.52) 31.57 (2.70)
BIC 0.024 (0004) 7.5 (1.67) 33.53 (3.01)
GIC 0.025 (0.004) 6.96 (1.42) 33.05 (2.98)
CV-5 0.01 (0.002) 22.05 (4.03) 29.69 (3.68)
CV-10 0.009 (0.001) 23.21 (4.01) 29.59 (3.87)
CV-50 0.01 (0001) 23.27 (3.87) 29.57 (3.86)

Elastic Net AIC 0.02 (0.003) 23 (4.16 ) 33.73 (2.68)
BIC 0.043 (0.012) 9.99 (3.69) 39.59 (3.60)
GIC 0.049 (0.012) 8.34 (2.64) 40.08 (3.46)
CV-5 0.01 (0.002) 34.37 (4.00) 31.91 (3.72)
CV-10 0.01 (0.001) 35.02 (3.53) 31.81 (3.80)
CV-50 0.009 (0.001) 35.24 (3.49) 31.8 (3.79)
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Table 2.7: Negative log-likelihood and model size when p=700 (without multicollinearity)
for binary response

λ Model Size NLL

LASSO AIC 0.03 (0.003) 23.67 (3.12) 37.23 (2.43)
BIC 0.044 (0.004) 6.65 (1.51) 40.24 (2.67)
GIC 0.05 (0.006) 5.31 (0.81) 42.34 (2.93)
CV-5 0.015 (0.005) 68.86 (16.62) 32.64 (3.62)
CV-10 0.015 (0.005) 69.3 (17.57) 32.74 (3.67)
CV-50 0.015 (0.005) 68.81 (19.45) 32.82 (3.67)

Elastic Net AIC 0.07 (0.007) 21.66 (7.13) 47.17 (2.27)
BIC 0.099 (0.010) 7.66 (2.21) 53.02 (2.39)
GIC 0.113 (0.012) 5.55 (1.13) 55.74 (2.78)
CV-5 0.029 (0.009) 104.48 (25.92) 41.47 (3.01)
CV-10 0.026 (0.009) 113.19 (27.18) 41.49 (3.15)
CV-50 0.025 (0.010) 116.21 (31.64) 41.81 (3.43)

Table 2.8: Negative log-likelihood and model size when p=50 (with multicollinearity) for
binary response

λ Model Size Active Set NLL

LASSO AIC 0.019 (0.001) 16.47 (1.83) 3.45 (0.5) 18.45 (1.53)
BIC 0.022 (0.003) 4.88 (1.38) 3.31 (0.46) 19.44 (1.82)
GIC 0.023 (0.003) 4.53 (1.22) 3.28 (0.45) 19.83 (1.90)
CV-5 0.009 (0.001) 17.4 (2.72) 3.72 (0.45) 14.21 (2.12)
CV-10 0.009 (0.001) 17.41 (2.94) 3.71 (0.46) 14.19 (2.11)
CV-50 0.009 (0.001) 17.26 (3.01) 3.71 (0.46) 14.21 (2.14)

Elastic Net AIC 0.02 (0.002) 20.57 (3.08) 5 (0) 21.91 (1.72)
BIC 0.042 (0.010) 9.52 (2.83) 5 (0) 28.53 (3.16)
GIC 0.045 (0.009) 8.65 (2.16) 5 (0) 29.48 (2.81)
CV-5 0.009 (0.001) 32.46 (3.02) 5 (0) 17.67 (2.39)
CV-10 0.009 (0.001) 32.46 (3.06) 5 (0) 17.67 (2.39)
CV-50 0.009 (0.001) 32.5 (3.00) 5 (0) 17.66 (2.39)
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Table 2.9: Negative log-likelihood and model size when p=700 (with multicollinearity) for
binary response

λ Model Size Active Set NLL

LASSO AIC 0.024 (0.004) 14.95 (6.21) 3.29 (0.46) 21.26 (1.99)
BIC 0.035 (0.004) 4.55 (1.67) 3.14 (0.35) 25.04 (2.02)
GIC 0.04 (0.004) 3.46 (0.69) 3.11 (0.31) 26.39 (1.78)
CV-5 0.01 (0.002) 57.88 (9.60) 3.49 (0.50) 17.25 (2.57)
CV-10 0.01 (0.003) 56.95 (10.06) 3.49 (0.50) 17.28 (2.58)
CV-50 0.011 (0.003) 55.97 (10.09) 3.48 (0.50) 17.34 (2.57)

Elastic Net AIC 0.062 (0.007) 17.74 (6.28) 5 (0) 34.54 (1.87)
BIC 0.085 (0.009) 7.07 (1.91) 5 (0) 39.4 (2.03)
GIC 0.095 (0.009) 5.57 (0.77) 5 (0) 41.39 (2.06)
CV-5 0.017 (0.006) 117.89 (21.31) 5 (0) 26.81 (3.08)
CV-10 0.016 (0.006) 119.7 (20.85) 5 (0) 26.63 (3.05)
CV-50 0.015 (0.007) 121.25 (23.50 ) 5 (0) 26.7 (3.18)
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2.4 An Empirical Variable Selection Exercise

We perform our proposed penalized likelihood approach on a variable selection exercise

of global lifestyle segments. The objective is to select characterizing features that reflect

consumer heterogeneity, using data collected by an international marketing research firm

specializing in consumer insights. This report collects lifestyle measures of consumers world-

wide. The original response variable is defined by six global lifestyle segments: fun-seekers,

intimates, creatives, altruists, devouts, and strivers. Figure 2.1 shows the distributions of

the six lifestyle segments across four countries, the US, Canada, Brazil, and China. The four

selected countries are expected to vary in underlying constructs. In other words, individ-

ual items may share the same underlying structure but the membership of items regarding

each construct may be different across the four countries. We obtain 300 observations from

random draws for each country. As expected, these reveal that the distribution of lifestyle

segments is similar between the US and Canada, but this distribution differs strongly from

China and Brazil. In the US and Canada, many people are fun-seekers (28.7% US and

29.7% Canada), followed by intimates (18.00% US and 20.3% Canada), creatives (15.3%

US and 21.0% Canada), and strivers (15.3% US and 14.7% Canada). The US (18.0%) has

more devouts than Canada (9.3%) and altruists are rare in both the US (4.7%) and Canada

(5.0%). Contrarily, strivers account for more than half (58.3%) of the China sample, fol-

lowed by 13.3% of altruists, 7.7% of fun seekers, 7.0% of devouts and creatives, and 6.7%

of intimates. The Brazil sample exhibits a more balanced distribution and has relatively

the largest percentage of intimates (22.7%), followed by devouts (21.7%), altruists (19.7%),

creatives (14.7%), fun-seekers (12.0%), and strivers (9.3%).

The entire survey questionnaire includes 11 sections, each of which has a wide range in
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the number of questions. We eliminated the section about evaluation of popular brands and

brand involvement, because the specific brands are not available across the four countries.

Following this logic, we deleted a number of items that do not apply to all four countries,

but retained sections that are generalizable across countries, including mood of the nation,

personal values, leisure and frequent activities, influential exposure to society, opinions about

environmental issues, and demographics. We ended up having 416 explanatory variables,

with 300 observations for each country sample. Thus, the data setup explicitly presents high

dimensionality.

2.4.1 Characterizing Lifestyle Segments

The primary interest is to identify the featuring variables for each lifestyle segments across

the four countries. Thus, we first transform the original dependent variable into six binary

dependent variables, representing each type of lifestyle. According to out simulation study,

we employ elastic net as the penalized likelihood method and GIC as the criterion for tuning

parameter selection. The overall model size of each lifestyle segment varies from 12-15 for

the US, 9-15 for Canada, 5-14 for China, and 7-15 for Brazil. As expected, personal values

are the strongest indicators of lifestyle segments among the 416 explanatory variables.

The selected featuring variables characterizing lifestyle segments differ across the four

countries, yet there are still degrees of mutual patterns. First, across the four countries,

personal values such as pleasure are important to worldwide fun-seekers, while duty is not.

Other than pleasure, US fun-seekers are into looking good; Canadian fun-seekers are into

adventure and sex; Chinese fun-seekers are into romance; and Brazilian fun-seekers are

into leisure, having fun, and adventure. In addition to duty, Canadian fun-seekers are not

into spirituality, perseverance, and protecting the family; Chinese fun-seekers are not into
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wealth; and Brazilian fun-seekers are not into spirituality. Second, the featuring variables

characterizing intimates are more differential. Chinese and Brazilian intimates are fairly

concentrated by one personal value, where protecting the family is important to Chinese

intimates while sex is important to Brazilian intimates. It seems the concept of intimates is

reflected in romantic relationships in Brazil (sex) and more broadly in China (family). Except

for protecting the family, stable personal relationships are important to intimates in both the

US and Canada. Interestingly, romance is important to US intimates, while it is an indicator

for fun-seekers in China. US intimates don’t seem to care much about status or adventure,

and they would not be fine financially if they stopped working. Canadian intimates don’t

seem to care about status, beauty, or creativity. Third, the variables selected to characterize

creatives are most differential across the four countries. US creatives advocate values such as

open-mindedness, authenticity, creativity, self-reliance, and curiosity, whereas they consider

wealth, pleasure, sex, tradition, and respecting ancestors not important. Except for open-

mindedness and curiosity, Canadian creatives consider learning very important and status

and sex not important. In addition to personal values, Canadian creatives are likely to

own a stereo. Chinese creatives do not care about wealth and are more likely to purchase

travel insurance. Brazilian creatives are into creativity and freedom. Fourth, US altruists

appreciate perseverance and helpfulness, and are not likely to own a scanner. Canadian

altruists value duty, are relatively older, and don’t do fun things on a daily basis. Chinese

altruists seem to be strongly affected by social indicators such as social stability, social

responsibility, preserving the environment, and are more likely to make a sizable donation

to a local or national organization. Brazilian altruists are characterized by the biggest

number of personal values, including being in tune with nature, preserving the environment,

perseverance, justice, social responsibility, helpfulness, and equality. Fifth, US devouts value
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obedience, respecting ancestors, traditional gender roles, and faith, and they are interested

in topics about personal finance. Similarly, Canada’s devouts value tradition, obedience, and

traditional gender roles. Chinese devouts value tradition and modesty, but not power, and

are very interested in gardening. Brazilian devouts value spirituality and faith but do not

work just to earn a living. Finally, power, wealth, and status are strong values for strivers

worldwide, except that power does not seem important to Brazilian strivers. Besides, US

strivers spend more time with their spouses. Canadian strivers seem to be very self-centered,

since they do not care about honesty, freedom, protecting the family, equality, or friendship.

However, Canadian strivers are very interested in social issues. Chinese strivers seem to care

less about stable personal relationship, friendship, and respective ancestors. Tables 2.10-2.13

summarizes the selected variable and parameter estimates.
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Figure 2.1: Distributions and descriptions of the six psychographic segments
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Table 2.10: Results of Variable Selection - USA

Funseekers Intimates Creatives Altruists Devouts Strivers
Excitement Adventure Wealth Topics very interested in:

Electronic games
Topics very interested in:
Personal Finance

Weekly hrs-With spouse

Spirituality If stopped work-
ing wld be fine fi-
nancially

Status Financial ser-
vices/products own/use:
Hospital cash plans

Topics very interested in:
Wellness, Fitness, Exercise

Environment-Things
would like cos. to do:
Invest in research of tech-
nologies to help preserve
the envi

Honesty Power Open-mindedness Financial ser-
vices/products own/use:
Home equity loans

Excitement Tech Items owned: Video
camera/camcorder

Authenticity Honesty Authenticity Attitude toward new tech-
nology: It scares me

Friendship Tech Items owned: Digital
Home Projector

Pleasure Status Self- esteem Tech Items owned:
Portable Music Player
(such as Walkman, Disc-
man)

Having fun Activities on Internet past
30 days: Watch video,
broadcasts and events

Enjoying Life Open-
Mindedness

Creativity Own inkjet/laser printer
or scanner: Scanner

Sex Activities on Internet past
30 days: Download video
files

Having fun Beauty Self-reliance Respondent main income
earner

Tradition Power

Adventure Leisure Curiosity Leisure Obedience Wealth
Sex Protecting the

family
Knowledge Spirituality Respecting ancestors Status

Looking good Looking good Public image Preserving the environ-
ment

Traditional gender roles Honesty

Duty Stable personal
relationships

Pleasure Perseverance Faith Enduring love

Faith Romance Sex Personal support Modesty Friendship
Excitement Modesty Tradition Helpfulness Enjoying life
Spirituality Respecting ances-

tors
Equality

Honesty Wealth Having fun
Authenticity Topics very interested in:

Electronic games
Pleasure
Enjoying Life
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Table 2.11: Results of Variable Selection - Canada

Funseekers Intimates Creatives Altruists Devouts Strivers
Have fun now -
future care of it-
self

Three things
most concerned
about: Terrorism

Topics very inter-
ested in: Arts and
culture

Weekly hrs-Socializing Topics very interested in:
Religion

Topics very interested in:
Automobiles/Driving

Types of TV
programs watch:
Music video and
popular music

Weekly hrs-
Gardening or
yard work

Environment-
How feel re cos.
that make effort:
I don’t know
which compa-
nies address the
environment or
how

Weekly hrs-Doing fun
things

Tech Items owned: Cellu-
lar/Mobile phone

Topics very interested in:
Social Issues

Spirituality Items recom-
mended to other
people: Par-
enting/family
issues

Tech Items
owned: Stereo
(hi-fi)

Environment-Things
would like cos. to do:
Make and sell products
that do not harm the
environment

Tech Items owned:
Portable Music Player
(such as Walkman, Disc-
man)

Most import.: brand offers
good value for money

Honesty Status Wealth Have fun now - future care
of itself

Spirituality Tech Items owned: Film
camera

Authenticity Beauty Status Age of Respondent Traditional gender roles Power
Perseverance Creativity Open-mindedness Are you a parent? Duty Wealth
Protecting the
family

Protecting the
family

Authenticity Excitement Obedience Status

Pleasure Social responsi-
bility

Perseverance Preserving the environ-
ment

Traditional gender roles Honesty

Enjoying life Stable personal
relationships

Self-reliance Social tolerance Patriotism Freedom

Having fun Enduring love Curiosity Adventure Protecting the family
Live for today Adventure Knowledge Duty Equality
Adventure Duty Wisdom Respecting ancestors Romance
Sex Obedience Sex Friendship
Looking good Looking good Enjoying life
Duty Learning
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Table 2.12: Results of Variable Selection - China

Funseekers Intimates Creatives Altruists Devouts Strivers
Wealth Are you a parent? Activ. Freq.-

attend lectures-
not reg study

Weekly hrs-Learning new
things

Three things most con-
cerned about: Environ-
mental pollution

Activ. Freq.-exercise to
keep fit

Protecting the
family

Power Topics very inter-
ested in: Cultures
around the world

Political/societal activities
in past year: Made a siz-
able donation to a local or
national organization

Topics very interested in:
Gardening

Environment-Things
would like cos. to do:
Support recycling or
clean-up of polluted sites

Romance Creativity Financial ser-
vices/products
own/use: Life
insurance or
endowment prod-
ucts that provide
a lump sum

Percentage of pre-tax
monthly income save

Power Financial ser-
vices/products own/use:
Credit card(s)

Duty Protecting the
family

Financial ser-
vices/products
own/use: Travel
insurance

I spend a lot of time re-
searching brands

Wealth Types of TV programs
watch: Programs for chil-
dren

Learning Stable personal
relationships

Financial ser-
vices/products
own/use:
Auto/car loan

Wealth Tradition Power

Enduring love Financial ser-
vices/products
own/use: Home
equity loans

Status Modesty Wealth

Pleasure Financial ser-
vices/products
own/use: Over-
draft facility

Honesty Status

Enjoying life Financial ser-
vices/products
own/use: Mu-
tual Funds or
other investment
product

Preserving the environ-
ment

Ambition

Financial ser-
vices/products
own/use: Fi-
nancial plan-
ning/advisors

Protecting the family Honesty

M30-Activities
on Internet past
30 days: Get
information re-
lated to my
hobbies/interests

Social responsibility Justice

Wealth Social stability Stable personal relation-
ships

Material security Friendship
Social stability Respecting ancestors
Learning
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Table 2.13: Results of Variable Selection - Brazil

Funseekers Intimates Creatives Altruists Devouts Strivers
Weekly hrs-
Socializing

-Activ. Freq.-sit-
down meal in a
restaurant

Topics very inter-
ested in: Religion

Weekly hrs-g-Socializing Three things most con-
cerned about: AIDS

Three things most con-
cerned about: Money
enough to live right and
pay the bills

Activ. Freq.-take
pictures or photos

Ambition Business
overnight trips in
past 12 mos

Health and fitness Topics very interested in:
Environmental issues

Political/societal activities
in past year: Attended a
political rally, speech or
event

Activ. Freq.-play
indoor or parlor
games

Honesty . Need help mak-
ing financial deci-
sions

Being in tune with nature Items recommended to
other people: Music

Do not like to be in debt

Topics very inter-
ested in: Science

Authenticity Types of TV
programs
watch: Learn-
ing/Educational
programs for
adults/children

Preserving the environ-
ment

Items recommended to
other people: Restaurants
or places to eat

Buy whatever I want-
Importance

Topics very inter-
ested in: Music

Being in tune
with nature

Technology effect
on relationships:
Strengthens
my bonds with
people I care
about

Perseverance Work just to earn living Wealth

Excitement Creativity Activities on
Internet past 30
days: Get access
to news or other
up-to-the-minute
information

Justice Not person that takes risks Status

Leisure Knowledge Creativity Social responsibility Health and fitness Honesty
Spirituality Wisdom Self-reliance Helpfulness Spirituality
Authenticity Protecting the

family
Freedom Equality Perseverance

Protecting the
family

Romance Knowledge Social tolerance Self-reliance

Justice Friendship Personal support Friendship Friendship
Pleasure Sex Traditional gen-

der roles
Pleasure Having fun

Having fun Faith Looking good Tradition
Adventure Simplicity Duty Duty
Duty Faith



2.5 Discussion

2.5.1 Theoretical Implications

The primary aim of this study is to propose an approach for variable selections in settings of

high dimensionality with grouping variables. Despite the increasing phenomenon of big data,

excessive consumer information becomes challenging in extracting effective and efficient con-

sumer insights in order to properly implement market segmentation, target customers, and

position advantageously. Traditional approaches of variable selection in high dimensionality

may yield unstable coefficient estimation and inflated standard errors (Drolet and Morrison

2001). The family of penalized likelihood methods is advocated, but the choice of tuning

parameter is fairly sensitive, since it controls the trade-off between bias and variance in the

resulting parameter estimates (Hastie et al., 2009; Fan and Lv, 2010). Certain specifications

of the optimal tuning parameter are challenging to quantify in practice, because the result-

ing tuning parameters are valid only asymptotically, and rely heavily on unknown nuisance

parameters in the true model (Fan and Tang, 2013). The challenges are even amplified for

variable selection in a setting of high dimensionality and multicollinearity (strong grouping

effects). The proposed generalized information criterion (GIC) enables penalized likelihood

methods to be flexible in choosing desired models, and, more notably, it addresses both

consistent and efficient estimation. The simulation study demonstrates that our proposed

approach is able to offer the best penalized likelihood approaches and tuning parameter

selection in high-dimensional settings. Elastic net is considered a cutting-edge procedure

in market research studies dealing with excessive and overlapping information. With the

assistance of GIC, our proposed procedure is able to identify the true model in the presence

of multicollinearity.
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From a theoretical perspective, this study enables international market segmentation

with a procedure for selecting insightful factors and/or covariates from an enormous amount

of information. The study should also be able to assist uninvestigated empirical exploratory

studies, which ask for simultaneously testing the relevance and importance of a large set of

potential covariates and/or factors. Second, the proposed technique is flexible with multi-

collinearity and construct non-equivalence. In other words, our approach is able to address

heterogeneity both in consumer and latent structures. Although we practice a variable se-

lection exercise by sub-sampling among the four countries, this approach is also applicable

in testing interactions for contingent and contrasting effects.

2.5.2 Managerial Implications

One of the most conspicuous applications of the proposed variable selection approach is to

gain consumer insights into the presence of excessive and overlapping information, which

inevitably occurs to a firm that intends to expand to a new business territory. Thanks

to advanced technology, firms now are able to access extensive information and store a

large repository of data. Although rich information enables managers to gain sufficient

consumer insights, too many variables may camouflage the underlying structure and result

in misleading interpretations for managerial implications. Consequently, inaccurate variable

selection harms resource allocation and ultimately firms’ profitability in the long run. This

concern is particularly severe when the contexts are dynamic and diversified, e.g., among

different countries as in our empirical illustration, where the variables and their associated

impacts might be elementally different across contexts.

An example of contextual differentiation emerges from our findings. If a firm intends to

promote a romantic product, say a high-end perfume, the communication strategy should be
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quite different between the US and China markets. In the US market, the concept of romance

is acknowledged more by intimates, who appreciate family and stable personal relationships.

Young couples should be considered the target customers. Since they may be in a financially

precarious position, a zero-interest monthly payment might be an attractive marketing tool.

However, the concept of romance is more likely to be acknowledged by fun-seekers in China.

Catchy marketing strategies such as tailoring scents, where consumers can select fragrance

elements and combine them to customize their ”own scents” would be uniquely appealing

to the China market. Another interesting finding is that the perception of sex is recognized

differently between Canada and Brazil. Sex is identified as the strongest value to indicate

intimates in Brazil but is considered one of important values of fun-seekers in Canada.

The differential perceptions of sex or being sexy motivates different messages that a firm

wants to convey. Canadian fun-seekers appreciate the value of sex in a way that emphasizes

adventure, while Brazilian customers may blend the concept of sex with the context of

intimate relationships. The famous Victoria’s Secret show is regarded as more compelling

in the Canadian market than in the Brazilian market, because it is exciting and intriguing.

It might be more appealing for customers in Brazil to deliver a mingled image of being

sexy and intimate. Global lifestyle segments seem to be generalizable and comparable across

countries, yet collating holistic lifestyle indicators may not be the most efficient and profitable

way for marketing communications. Effective variable selection techniques help firms use the

best characteristics to identify customers. Broadly, variable selection in international market

entry almost always presents high dimensionality and multicollinearity. There is a compelling

need for managers to employ tools that retain relevant and indicative information. This

study provides an implementation-friendly model for selecting insightful global consumer-

level information.
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Chapter 3

A Bayesian Group Lasso Classification

For ADNI Volumetrics Data

3.1 Introduction

Dedicated research is conducted with neuroimaging techniques for early diagnosis of Alzheimer’s

Disease (AD). Alzheimer’s Disease Neuroimaging Initiative (ADNI) conducts multi-center

case-control study of elderly people that was designed to find more sensitive and accurate

methods to diagnose AD at earlier stages. AD is an older age disease in which patients de-

velop deformities in brain structure. It is identified by loss of memory, speech inconsistensies

or inability to perform daily tasks of survival. ADNI studies use brain-imaging techniques,

such as positron emission tomography (PET) and magnetic resonance imaging (MRI). ADNI

database has data from three phases (ADNI1, ADNI GO and ADNI 2).

Historically, studies have shown that AD causes abnormal change to brain region vol-

umes which causes shrinkage in the hippocampal volume or reduction in its thickness or

enlargement of internal ventricles. Smith et. al. (2012) studied structural brain alterations

before mild cognitive impairment (MCI). They had previously demonstrated that volume

loss in bilateral anteromedial temporal lobe is present at baseline in longitudinally followed

normal subjects who later developed MCI or AD. Arlt et. al. (2013) believed that fully au-
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tomated MRI-based volumetric measurements may serve as a biomarker for the diagnosis in

patients with MCI or dementia. They concluded that fully automated MRI-based volumetry

allows detection of regional grey matter volume loss that correlates with neuropsychological

performance in patients with amnestic MCI or mild AD. Our objective in this chapter is

to predict dementia in patients based on the volume measurements obtained from the MRI

ADNI data. There is evidence of brain atrophy with increasing age but the atrophies differ

significantly from normal aging to AD patients. We use the differences of brain region atro-

phies to distinguish subjects with or without AD. The volumetric data has brain parcellated

subregions of the entire brain for the left and right hemispheres. Volume, area and thickness

measurements of brain subregion is a simple way of detecting atrophied brain regions, thus

the motivation of combined use of these measurements. It is believed that all these regions

are not associated with dementia but only a few. Identification of a few brain regions from

the large number of regions makes appropriately a dimension reduction problem.

In this article, we develop Bayesian group lasso type technique with spike and slab prior

following Xu and Ghosh (2015) over other types of penalized regression because this ap-

proach presents many natural advantages. The biggest advantage is the Bayesian approach

provides reliable estimates of uncertainty which can be used for statistical inference beyond

feature selection. A thorough literature review has shown that the Bayesian group lasso with

logistic regression model is largely overlooked. This article develops this novel method moti-

vated by the ADNI data. Bayesian group lasso with spike and slab prior deals with feature

selection (dimension reduction) in a binary outcome scenario and produces reliable estimates

for regression coefficients. Unlike commonly used Bayesian variable selection methods, we

propose median thresholding to make insignificant coefficients are exactly zero. Another ma-

jor contribution of this paper is that we look at the brain image volumetric data at a minute
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level, considering all available brain subregions mapped by FreeSurfer to include effects of all

ROI’s rather than looking at individual ROI’s and identifying atrophied brain subregions by

selecting a group of volumetric measurements of the corresponding selected ROI’s. Zhang

et. al. (2011) performed classification with MRI data based on 93 manually labeled ROI’s.

We use data of 116 automatically labeled ROI’s (each having 4 different measurements) by

FreeSurfer and analyze them together to perform a dimension reduction analysis. Zhang

et. al. (2011) used a composite of 3 different modalities of biomarkers. Unlike Zhang et. al.

(2011), our method provides reliable parameter estimates which can be used to calculate the

log of odds or relative risk of AD based on the selected subregions instead of just classifying

subjects. Group lasso encourages selection of all levels of a significant subregion and spike

and slab prior on the parameter coefficients ensure that a large number of subregions which

have no impact on the disease are dropped from the model. So, the proposed method selects

affected brain subregions automatically from a large pool of brain subregions. Furthermore,

among the selected subregions only a few subregions serve as discriminative features in the

model assessed by their statistical significance. So, we are able to narrow down the regions

that should be studied by scientists to stop progress of the disease or improve the quality of

life of the affected individuals. Finally, we provided theoretical foundation to our proposed

methodology.

This chapter is organized into 7 sections. In the next section we have reviewed the

literature of group lasso and Bayesian group lasso and then in the following section we

have elaborated on Bayesian group lasso in logistic regression setup. Section 3.4 shows the

posterior consistency of our estimator, i.e. the model selected by the proposed method

converges to the true model for sufficiently large n. In Section 3.5 we have conducted a

simulation study to test the performance of the proposed method. Section 3.6 contains the
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analysis on the ADNI dataset where we detail out our findings and our concluding remarks

are in Section 3.7.

3.2 Group lasso

Oftentimes, we are interested in selecting a group of variables that are predictive in a model.

Popular high-dimensional penalized regression techniques used for variable selection are built

to select a group of related variables. For example, we may have a group of dummy variables

that represent a significant categorical variable. To select this variable, it is necessary that

we select all the corresponding dummy variables. LASSO fails to correctly perform this

selection since it can never select all the dummy variables of a categorical variable. Similar

scenarios are when we have a number of basis functions representing a function or an ANOVA

model with more than one level feature variable. Group lasso, proposed by Yuan and Lin

(2006), addresses this issue. It puts a hybrid l1 and l2− penalty on the parameter space,

thus, encouraging selection or dropping of variables in groups. Note that, this is feasible

since a multi-level variable’s parameter is represented as an mg- tuple vector, mg being the

number of levels for group g.

Our regression model is as follows:

Yn×1 =
G∑
g=1

Xgβg + ε (3.1)
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where for g = 1, 2 . . . G.

εn×1 ∼ Nn(0, σ2In)

β
mg×1
g vector of coefficients

X
n×mg
g design matrix

If p is the total number of predictors, then p =
∑G
g=1mg. We center both the response and

input variables to eliminate intercept from 1.2.

Our primary goal is to select important predictive features. The group lasso estimate,

for linear regression, minimizes

||Y −
G∑
g=1

Xgβg||22 + λ
G∑
g=1

||βg||2 (3.2)

where λ is the tuning parameter.

(3.2) is an evident extension of the LASSO penalty:

n∑
i=1

(Yi −Xiβ)2 + λ

p∑
j=1

|βj | (3.3)

where λ is the tuning parameter. Note that (3.3) is a special case of (3.2).

3.2.1 Bayesian Group lasso

A major issue with lasso-type estimates is that it is difficult to give satisfactory standard

errors since the limit distribution of the lasso estimator is very complicated (Knight and

Fu, 2000; Chatterjee and Lahiri, 2011) but the Bayesian version of lasso overcomes this by
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producing reliable standard errors. Tibshirani showed that the lasso estimator for linear

regression is equivalent to the posterior mode with independent Laplace priors on each

regression coefficient.

Park and Casella (2008) developed a fully hierarchical Bayesian model using a scale mix-

ture prior of normal distributions for lasso. This idea was further extended by Kyung et .al .

(2010) to develop a general Bayesian formulation for a number of lasso variations, including

the group lasso, the elastic net (Zou and Hastie, 2005) and the fused lasso (Tibshirani et .al .,

2005). Raman et .al . (2009) developed a fully Bayesian formulation of the group lasso to

tackle the problem of poor variance estimates of regression coefficients. From a probabilis-

tic perspective, the group lasso with Gaussian likelihood can be seen as a linear regression

model with normal errors and a product of multivariate Laplace priors over the regression

coefficients. Thus,

p(y|X, β, σ2) ∝ exp
{
− ||y −Xβ||2/(2σ2)

}
∝ (σ2)−p/2exp

{
− 1

2σ2
(β − β̂)tXtX(β − β̂)

}
.(σ2)−ν/2exp

{
− SSE

2σ2

}
(3.4)

where β̂ is the least squares solution, SSE = (y−Xβ̂)t(y−Xβ̂) is the sum of squared errors

and ν = n − p. The last equation results from ”completing the squares” which is standard

in Bayesian formulations. Assuming a generalized multivariate mg− dimensional Laplacian

prior over each group of regression coefficients

π(βg) ∝ exp
{
− λ

σ
||βg||2

}
, (3.5)
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the classical group lasso is recovered as the MAP solution in log-space with λ
σ having the role

of a fixed Lagrangian mutiplier. For a full Bayesian treatment, however, we place hyperpriors

on λ and σ which lead to integrations that are analytically impossible to solve. Following

the hierarchical scale mixture of lasso, we extend it to group lasso regression models. Lasso

employs scale mixture by using normal and Gamma densities; here we form a mixture prior

with multivariate normals and Gamma hyperprior.

βg|τg2, σ2 ∼ind Nmg

(
0, τg

2σ2Img

)
,

τg
2 ∼ind Gamma

(
mg + 1

2
,
λ2

2

)
(3.6)

the marginal distribution of βg is of the form 3.5. This Bayesian formulation encourages

shrinkage at the group laevel and provides comparable prediction performance with frequen-

tist group lasso. However, this approach based on estimating βg by its posterior mean or

median does not produce exact 0 estimates. Thus, to introduce sparsity at group level, we

assume a multivariate zero inflated mixture prior or a spike and slab prior for each βg.

Xu and Ghosh (2015), further showed the superiority of posterior median thresholding.

The spike and slab type zero inflated prior keeps the scale mixture prior of normals and

gamma so we get full conditionals making derivation of posterior distributions easier. This

approach gives exact zero estimates and is easier to compute. In recent years, many studies

have been conducted exploring the application of zero inflated mixture priors (see Yuan and

Lin (2012), Lykou and Ntzoufras (2013), Zhang et .al . (2014)). Heavy tailed distributions,

such as double exponential, are often used as the slab part. The slab part can be further

segmented to a scale mixture of normal and gamma distributions as is done by Xu and Ghosh

(2015). The following hierarchical Bayesian formulation with spike and slab prior for linear
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regression (3.1) comparable to a group lasso type estimator is proposed by Xu and Ghosh

(2015).

Y|X, β, σ2 ∼ Nn

(
Xβ, σ2In

)
,

βg|σ2, τ2
g ∼ind (1− π0)Nmg

(
0, τg

2σ2Img

)
+ π0δ0(βg), g = 1, 2, . . . , G,

τg
2 ∼ind Gamma

(
mg + 1

2
,
λ2

2

)
, g = 1, 2, . . . , G,

σ2 ∼ Inverse Gamma (α, γ), σ2 > 0,

π0 ∼ Beta (a, b).

λ(k) =

√√√√ p+G∑G
g=1 E

λ(k−1) [τ2
g |Y]

where δ0(βg) denotes a point mass as 0 ∈ Rmg , βg = (βg1 . . . βgmg)
T . The posterior expec-

tation of τ2
g will be replaced by the sample average of τ2

g generated in the Gibbs sampler

based on λ(k−1). The value of λ should be carefully tuned. A large value of λ will overshrink

the estimates while a small value will lead to overfitting. Xu and Ghosh (2015) suggested a

conjugate Gamma prior can be placed on λ2. Using an empirical Bayes approach, λ is esti-

mated from data using marginal maximum likelihood. Since marginal maximum likelihood

of λ does not have a closed form, a Monte Carlo EM algorithm (Casella, 2001; Park and

Casella, 2008) can be used to estimate λ. The kth EM update for λ is given in the above

setup.
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3.3 Bayesian Group Lasso with Logistic Regression

Meier et .al . (2008) developed the logistic group lasso in a frequentist setup. Most practical

situation have binary outcomes. In risk analysis we want to know if a person will default on

a loan or not, in detection of diseases we want to classify subjects with or without a disease,

etc. Thus, here we need to use a generalized linear model (GLM) to model our data. The

use of GLM is not limited to binary data. There are numerous cases where the outcome

is not binary but we need to use a GLM, such as, modelling income or count data. Since

occurrence of binary outcome is very common in real life, we focus this chapter on logistic

regression with a logit link.

The concept here is to maximize the likelihood function (objective function) subject to

a group lasso constraint on the parameters. Refer to Section 1.1.6 for a detailed overview of

frequentist group lasso in logistic regression.

Although group lasso for linear regression has been explored, a thorough literature review

reveals that no work has been done on group lasso on logistic regression. Motivated by Xu

and Ghosh’s (2015) work, here we construct a Bayesian formulation for the logistic regression

case. Our likelihood is Bernoulli probability mass function with a logit link. We abide by

using a multivariate zero inflated mixture prior with point mass at zero and the continuous

part as double exponential distribution. Since a double exponential prior on βg can be
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expressed as a scale mixture of normal and Gamma priors (as in (3.6)), we have.

yi|xi, β ∼ Bernoulli

 ex
T
i β

1 + e
xTi β

 , i = 1, . . . , n,

βg|τ2
g ∼ind (1− π0)Nmg

(
0, τg

2Img

)
+ π0δ0(βg), g = 1, 2, . . . , G,

τg
2 ∼ind Gamma

(
mg + 1

2
,
λ2

2

)
, g = 1, 2, . . . , G,

π0 ∼ Beta (a, b).

The full posterior conditional distributions are as follows:

p(β, τ2, π0|Y,X) ∝
n∏
i=1

[ ex
T
i β

1 + e
xTi β

yi ( 1

1 + e
xTi β

)1−yi ]

×
G∏
g=1

[
(1− π0)(2πτ2

g )−
mg
2 e
−
βTg βg

2τ2
g I[βg 6=0] + π0δ0(βg)

]

×
G∏
g=1

(λ2)
mg+1

2 (τ2
g )
mg+1

2 −1e−
λ2τ2

g
2

× π0
a−1(1− π0)b−1 (3.7)

We can simulate an efficient block Gibbs sampler to simulate from the posterior distribution

above. Details of the block Gibbs sampler is given in the appendix.

3.4 Posterior Consistency

Xu and Ghosh (2015) showed that the posterior median is an adaptive thresholding estimator

for a linear regression setup. Theorem 1 in their paper gives a proof of this idea. We will

extend this idea for logistic regression model numerically.
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To prepare the ground for posterior consistency, we will rewrite our model using different

notations just so it is alignment with the model setup of Jiang (2007). Our proof of consis-

tency is in line with Jiang’s (2007) paper so similar notations will ease understanding of the

proof.

Let Dn = {y;X1, . . . , XPn : y ∈ {0, 1}, Xi ∈ Rn, i = 1, 2, . . . , Pn} denote a dataset of n

observations each consisting of Pn predictors where Pn can increase with increasing n. We

want to model this data using logistic regression. Let ξn denote a chosen (subset) model, and

|ξn| denote the model size of ξn. Note that, here ξn is the sum of all dummy variables(factor

levels) of the groups that are chosen in the subset model. Let us call G∗, the number of

selected groups then G∗ ≤ ξn. A major difference of this and Jiang’s setup is multivariate

βg, g = 1 . . . G. An interesting thing to note is that, if we express our setup in terms of the

dummy variables then this layout is similar to what Jiang proposed. Thus, when the chosen

model is ξn, we are really considering our chosen group size to be G∗ and the model size as∑G∗
g=1mg = |ξn|. To make the proof here in line with Jiang’s (2007) paper, we express the

chosen model in terms of the dummy variables rather than the groups. Clearly, this is an

extension of Jiang’s model since we consider a grouped structure for β’s. Conditional on ξn,

the regression coefficients

βξn |τξn ∼ N(0, Vξn)

where Vξn is a |ξn|×|ξn| covariance matrix and a function of τξn . Here, βξn = (β∗T1 , . . . , β∗T
G∗)

and τξn = (τ∗1 , . . . , τ
∗
G∗) denote the vector of true regression coefficients and true variance

parameters respectively such that
∑G∗
g=1mg = |ξn|. Let {X∗1 , . . . , X

∗
|ξn|} ⊂ {X1, . . . , XPn}

denote the predictors chosen in model ξn.
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Note that, Vξn =



τ∗21 Im1 0 · · · 0

0 τ∗22 Im2 · · · 0

...
...

. . .
...

0 0 · · · τ∗2
G∗ImG∗


and τg

2 ∼ind Gamma
(
mg+1

2 , λ
2

2

)
, g = 1, 2, . . . , G. Let model ξn have the prior

Π(ξn|π0) = π
Pn−|ξn|
0 (1− π0)|ξn|

and

π0 ∼ Beta(a, b)

where a and b are pre- specified hyperparameters.Thus,

Π(ξn) =
Beta (a+ Pn − |ξn|, |ξn|+ b)

Beta (a, b)

Π(βξn) =

∫
Π(βξn , τ

2ξn) dτ2ξn

=
G∗∏
g=1

∫ ∞
0

Π(βξn |τ
2ξn)Π(τ2ξn) dτ2

g

=
G∗∏
g=1

∫ ∞
0

e
−
βTg βg

2τ2
g

(2πτ2
g )
mg
2

(λ2)
mg+1

2 (τ2
g )
mg+1

2 −1e−
λ2τ2

g
2 dτ2

g
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Substituting α2
g = 1

τ2
g

we have,

Π(βξn) =
G∗∏
g=1

(λ2)
mg
2
e
−λ
√
βTg βg

(2π)
mg−1

2

∫ ∞
0

(
λ2

2π(α2
g)

3

)1
2

e

−
λ2βTg βg

2λ2α2
g

α2
g− λ√

βTg βg

2

dα2
g

The term in the integral is an Inverse Gaussian density

i.e. α2
g ∼ Inverse Gaussian

(
λ√
βTg βg

, λ2

)
,

thus the integrals integrate to 1 for all g = 1, . . . , G∗. Therefore,

Π(βξn) =
G∗∏
g=1

(λ2)
mg
2
e
−λ
√
βTg βg

(2π)
mg−1

2

(3.8)

Let ξn be the model obtained from the median thresholding posterior probability and

ξ∗n be the true model. We want to show that the model ξn converges to the true model ξ∗n

as the sample size n becomes sufficiently large. Define f∗ as the true density under model

ξ∗n and f as the density proposed under model ξn. Hellinger distance between f and f∗ is

defined as

d(f, f∗) =

√∫ ∫ (√
f −

√
f∗
)
νy(dy)νx(dx).

To investigate posterior convergence, we formulate the following theorem based on Theorem

4 in Jiang’s (2007) paper. We consider logistic regression in this paper with a density of

the form p∗(y|x) = exp {a(h∗)y + b(h∗) + c(y)} ≡ f(y, h∗) where, h∗ = xTβ∗ is the linear

parameter, a(h) and b(h) are continuously differentiable, and a(h) has non-zero derivative.

The mean function µ∗ = E(y|x) = − b
′(h∗)
a′(h∗) ≡ ψ(xTβ∗) = eh

∗

1+eh
∗ . Thus ψ is the inverse of the

logistic link function. Assume that limn→∞
∑G

1

√
β∗Tg β∗g <∞. Let rn be the prior expecta-

tion of model size and for simplicity ξ be the corresponding subset model for which |β| > 0, |ξ|
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is the corresponding model size. Define, ∆(rn) = inf ξ:|ξ|=rn
∑
j:j /∈ξ |β∗j | < ∞, B(rn) =

sup ξ:|ξ|=rnch1(V −1
ξ )and B̄(rn) = sup ξ:|ξ|=rnch1(Vξ). Let, B̃n = sup ξ:|ξ|≤Knch1(Vξ)

where Kn is the maximal model size. Let, D(R) = 1+R× sup |h|≤R|a′(h)|. sup |h|≤R|ψ(h)|

for any R > 0. Here, ch1(Vξ) and ch1(V −1
ξ ) are the largest eigenvalues of Vξ and V −1

ξ re-

spectively.

Let εn ∈ (0, 1] for each n and nεn � 1 and assume the following conditions hold:

Assumption1 :

A1. Kn log

(
1
ε2n

)
≺ nε2n

A2. Kn log (Pn) ≺ nε2n

A3. Kn log

(
D

(
Kn

B̃nnε
2
n

λn

))
≺ nε2n

A4. rn ≺ Pn

A5. rn log B̄n(rn) ≺ nε2n and ∆(rn) ≺ nε2n

A6. log
(
rn
Pn

)
≤ −4nε2n

Pn

A7. mg is such that
∑G∗
g=1mg ≺ Pn, ∀g = 1 . . . G

We will replace λ by λn since λ and τ2
g , g = 1, . . . , G∗ are dependent on n. Also, λn is

inversely proportional to the sum of all τ2
g ’s.

Theorem 1. Assume the prior setting on 3.8 is used and the Assumption 1 hold. Let P{.}

denote the probability measure for the data Dn. Assume, G ≺ Pn, 1 ≤ λn ≤ B(rn), |xj | ≤ 1

for all j and limn→∞
∑G

1

√
β∗Tg β∗g < ∞ where Pn is a nondecreasing sequence in n. Also,

let Vξ be such that B̃n ≥ 4.

Let εn be a sequence such that εn ∈ (0, 1] for each n and nε2n � 1 and τ2
g < ∞, g =

1, . . . , G∗. Then, we have,

(i) For some co > 0,
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lim
n→∞

P
{
π
[
d(f, f∗) ≤ εn|Dn] ≥ 1− e−c0nε

2
n
}

= 1

(ii) For some C1 > 0 and for all sufficiently large n,

P
{
π
[
d(f, f∗) > εn|Dn] ≥ e−0.5c1nε

2
n
}
≤ e−0.5c1nε

2
n

Proof. The proof follows by checking conditions N and O of Theorem 4 from Jiang’s paper

(2007) since our prior falls under the category of general prior in their paper. If we can show

that our setup satisfies these two conditions under the given assumptions then by Theorem

4 in Jiang (2007) we have the posterior consistency of our spike and slab prior in this logistic

regression model.

Statement of Condition (O):

Let D(R) = 1 + R × sup |h|≤R|a′(h)|. sup |h|≤R|ψ(h)| for any R > 0. There exist some

Cn > 0 and some Kn satisfying 1 ≤ Kn ≤ Pn, such that

Kn ln

(
1

ε2n

)
≺ nε2n,

Kn lnPn ≺ nε2n,

Kn lnD(KnCn) ≺ nε2n.

Furthermore, for all large enough n, the following two equations hold:

π(|ξ| > Kn) ≤ e−4nε2n ,
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and for all ξ such that |ξ| ≤ Kn , for all j ∈ ξ,

π(|βgj | > Cn|ξ) ≤ e−4nε2n .

Checking Condition (O) :

We have, 1 ≤ Kn < Pn.

π(|ξ| > Kn) = π(|ξ| = Pn) =

(
rn
Pn

)Pn
log π(|ξ| = Pn) = Kn log

(
rn
Pn

)
≤ −4nε2n (3.9)

(3.9) holds from assumption (A6). Thus, π(|ξ| > Kn) ≤ e−4nε2n is checked. Now, we

need to show that π(|βgj | > Cn|ξ) ≤ e−4nε2n holds.

π(|βgj | > x|ξ) ∝
∫ ∞
x

e
−λn

√∑mg
j=1 β

2
gjdβgj

≤
∫ ∞
x

e
−λnβgjdβgj

= −e
−λnβgj

λn

∣∣∣∣∣
∞

x

=
e−λnx

λn

Choose, x = Cn =
B̃nnε

2
n

λn
and nε2n � 1. Then,
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e−λnx

λn
=
e−B̃nnε

2
n

λn

= e−B̃nnε
2
n , since λn ≥ 1,

≤ e−4nε2n

This implies, that Condition (O) is checked. Note that, all the other conditions are also

satisfied with the choice of Cn and assumptions of the theorem.

π(|βgj | > Cn|ξ) ≤ e−4nε2n

Statement of Condition (N):

Assume that a sequence of (nonempty) models ξn exists such that, as n increases,

∑
j:j /∈ξn

|β∗j | ≺ ε2n,

and for any sufficiently small η > 0, there exists Nη such that, for all n > Nη, we have

π(ξ = ξn) ≥ e−
nε2n

8 ,

and
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π

[
β ∈

(
β∗j ±

ηε2n
|ξn|

)
j∈ξn

∣∣ξn] ≥ e−
nε2n

8

Checking Condition (N) :

Take the sequence of models ξn, such that, for each n, ξ = ξn reached its infimum in

∆(rn) = infξ:|ξ|=rn
∑
j:j /∈ξ |β∗j |. Then,

∑
j /∈ξn |β

∗
j | = ∆(rn) ≺ nε2n.

For the condition on prior, π

[
β ∈

(
β∗j ±

ηε2n
rn

)
j∈ξn

∣∣ξn]:

π

[
β ∈

(
β∗j ±

ηε2n
rn

)
j∈ξn

∣∣ξn] ≥ G∗∏
g=1

[
(λ2
n)
mg
2

(2π)
mg−1

2

e−
√
βT β

(
ηε2n
rn

)]

for some intermediate value of β achieving the infimum of the density over

(
β∗j ±

ηε2n
rn

)
j∈ξn

.

Note that,

λn

G∗∑
g=1

√
βTβ ≤

G∗∑
g=1

||βg||B(rn)

=

∑
j∈ξn

√
βTj βj

B(rn)

≤ C1B(rn)

for some constant C1 > 0, since we have assumed that λn ≤ C1B(rn) for all large enough n

and
∑
j∈ξn

√
βTj βj ≤ limn→∞

∑G∗
g=1

√
βTg βg +

rnηε
2
n

rn
is bounded.

Also note that,
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G∗∏
g=1

(λ2
n)
mg
2

(2π)
mg−1

2

=
(λ2
n)
|ξn|

2

(2π)
|ξn
2 − G∗

2

≥ e−C2rn+C3rn ln B̄(rn)

for some constant C2 > 0 and C3 > 0. This is due to the fact 1
λn
≤ B̄(rn) for all large

enough n. Therefore,

π

[
β ∈

(
β∗j ±

ηε2n
rn

)
j∈ξn

∣∣ξn] ≥ exp

[
− C2rn − C3rn ln B̄(rn)− C1B(rn)− rn ln

(
rn
ηε2n

)]

This will be greater in order than any e−cnε
2
n(c > 0), satisfying a requirement of Condition

(N), since rn, rn ln B̄(rn) and B(rn) are all smaller than nε2n in order and so are

rn ln rn ≤ Kn lnPn

rn ln

(
1

ε2n

)
≤ Kn ln

(
1

ε2n

)

Now, consider the condition on π(ξn):

π(ξn) =
Beta (a+ Pn − |ξn|, |ξn|+ b)

Beta (a, b)

≈
(
|ξn|
Pn

)|ξn|
(3.10)

(3.10) is derived by choosing a = |ξn| and b = 1 and using approximations for factorial
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terms. The approximation also ignores O(1) terms.

Notice that ξn is chosen such that |ξn| = rn so,

log π(ξ = ξn) ∼ rn log

(
rn
Pn

)
≥ −rn logPn

and rn logPn � nε2n.

So, π(ξ = ξn) ≥ e−
nε2n

8 . Thus, Condition (N) is checked.

3.5 Simulation

Before applying the group level Bayesian selection method on the brain image data we run

a simulation study. The simulation study has the unknown parameters in control and tests

the method on controlled inputs. We work on two different scenario where the first case is

high-dimensional while the second case in large n small p scenario.

• Example 1:

The number of observations is 60 and there are 16 predictors each with 5 levels. Thus

the number of parameters here is really 80. So, we are essentially looking at a small n

large p problem here. The setup here is adapted from Example 2 of Xu and Ghosh’s (2015)

paper. We define the jth predictor as Xgj = zg + zgj , where zg and zgj are independent

standard normal variables and g = 1, . . . , 16, j = 1, . . . , 5. Thus, the predictors in a group

are correlated but the predictors in different groups are independent. Assign true parameter
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values as follows:

β = ((7, 6, 3, 4, 5),0, (4, 5, 6, 10, 7),0,0,0,0,0,0,0,0,0,0,0,0, (2, 3, 4, 5, 6))

where 0 is a 0 vector of length 5. Use the simulated X and β to generate 60 independent

Bernoulli random values using the logit link. Here, 40 observations are used to train the

model and the rest are used as a test dataset.

• Example 2:

The number of observations is 100 and there are 4 predictors each with 10 levels which

makes p = 40. The design matrix is generated exactly as in Example 1. Let

β = (0,2,0,2)

where 0 and 2 are vectors of length 10 with all elements 0 and 2 respectively. Use the

simulated X and β to generate 100 independent Bernoulli random values using the logit link.

60 randomly selected rows were used as train dataset and the remaining as test data.

Hyperparameters, for both cases, a and b were both set to 1.5. 20,000 Monte-Carlo

iterations were implemented. 28 bootstrapped samples were used to average out bias in

estimates.

Table 3.1 summarizes the true and false positive rates and the negative log-likelihood of

the two examples mentioned above. Both the methods are able to identify the true variables

although the frequentist group lasso has a high false positive rate. This indicates that the

group lasso tends to select more variables for an optimal tuning parameter. On the other

hand, the model selected by median thresholding gives excellent result in terms of variable

selection. It not only identifies the true positives correctly in all cases, it also estimates the
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Table 3.1: Mean (Standard Error) True/False Positive Rate and Negative Log-Likelihood in
28 Simulations

Bayesian Spike and Frequentist
Slab Group Lasso Group Lasso

Example 1
TPR 1.00 (0) 1.00 (0)
FPR 0.00 (0) 0.78 (0.50)

Neg log-likelihood 2.65 (0.53) 6.52 (0.57)

Example2
TPR 1.00 (0) 1.00 (0)
FPR 0.00 (0) 0.32 (0.24)

Neg log-likelihood -2.35 (2.31) 5.45 (1.59)

unimportant values to be 0. We see that the method proposed in this paper gives a smaller

negative log-likelihood indicating a better model fit. Thus, we see that in a simulated dataset,

the median thresholding method is able to classify variables very well as compared to the

conventional group lasso method when we have variables that have a structured correlation.

3.6 Classification of Alzheimer’s Disease using ADNI

MRI data

The MRI data used in this section of the paper was obtained from ADNI database. The main

objective of ADNI has been to test whether serial MRI, PET, other biological biomarkers,

and clinical and neuropsychological assessment can be used to detect dementia or measure

its progression. Both normal aging and AD patients have brain region atrophies but it is

essential to identify the abnormalities that lead to dementia. Some studies are done to

study the differences of brain atrophy in these two categories of subject (Double et .al .,

1996). Such studies have shown that there is a significant difference in the atrophies of

normal aging and AD patients so we use this idea to classify the subjects. In this paper we

delve into classification of Alzheimer’s disease (AD) patients from normally aging control
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(CN) subjects at the baseline and estimation of parameters of selected volumetrics. The

parameter estimates give us the log of odds of being AD at baseline for a subject with a

given set of volumetric measurements. Thus, baseline volumetric values for AD and normal

controls from ADNI dataset serve our purpose. ADNI data is collected from 2003 onwards

by NIA, NIBIB, FDA and a few pharmaceutical companies as a public-private partnership.

The ADNI project is a large project involving subjects across USA and Canada from more

than 50 sites. This initiative was launched to develop new treatments and follow subjects

through time to monitor the effectiveness of the treatments. For more information about

ADNI, visit www .adni − info.org .

The volumetric segmentation and cortical reconstruction of the brain is done with the

help of freely available software FreeSurfer (http://surfer.nmr.mgh.harvard.edu/). An early

version of the longitudinal image processing framework (Reuter et al., 2012) is used to pro-

cess the sequential scans. This process does motion correction and averaging of multiple

volumetric TI weighted images, removes non-brain segments, automates Talairach transfor-

mation, segments subcortical white matter (WM) and deep gray matter (GM) volumetric

structures. It also automates topology correction and surface deformation of the brain. MRI

data points from 1737 subjects with baseline diagnosed as Normal, MCI and AD were col-

lected. For all subjects at each visit, structural MRI scans were acquired from 1.5T scanners

for ADNI1 subjects and from 3T scanners for ADNIGO and ADNI2 subjects. MRI protocols

were performed across a variety of scanners such as GE, Siemens, or Philips to ensure com-

parability. MRI volumes were computed using FreeSurfer by UCSF/SF VA Medical Center.

ADNI1’s 1.5T data was run with FreeSurfer version 4.3 and ADNIGO and ADNI2’s 3T data

was run with FreeSurfer version 5.1. For a detailed guide please refer to the UCSF FreeSurfer

Methods documented by Hartig et .al .(2014 ).
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Many studies have been done to identify the ROI’s associated with AD but using the

entire brain segmentation to identify 4 different volumetric aspects of a region has not been

explored. This technique includes all available subregion data in the model and identifies

the subregions that are potentially associated with AD. Previous studies have isolated one

or a few brain regions and used their volume measurements as a predictor in the prediction

of AD or MCI from CN’s (Jack et .al ., 1999 and Jack et .al ., 1997). We want the model to

automatically select the atrophied regions rather than subsetting a brain region before start

of the analysis. Classification of AD from CN has been done using FDG-PET scan (Herholz

et .al ., 2002) using comparative statistical methods like t-statistics but researcher have yet

to explore variable selection techniques using the entire volumetric data. Wang et .al ., 2014

used Haar wavelets to identify ROI’s using voxel level data for dimension reduction. This

method identifies ROI’s successfully but does not narrow down the brain hemisphere of the

ROI’s. Since, our data is present for each region for the left and right hemispheres, we are

able to identify the exact part of the ROI that is more significantly associated with AD. For

the analysis, we use AD and CN patients to distinctively understand the difference of brain

regions that cause a subject to be cognitively normal or progress to AD.

We have used the longitudinal processing data for our analysis. Due to advancement

of technology in the computing area, quantitative assessment of brain volumes, obtained

through volumetric MRI, are being used extensively for studies involving Alzheimer’s disease.

Volumetric measurements are mainly based on brain segmentation done at reliable MR

centers.

The demographic characteristics of the 421 subjects are given in Table 3.2. The age and

sex distribution in our dataset shows that the data is not skewed with respect to these two

variables. Also, the maximum and minimum age for AD is 55.1 and 90.9 respectively and
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that of CN is 59.9 and 89.6 respectively. Thus, the effect of age in the outcome has been

controlled for in the ADNI dataset.

Table 3.2: Demographics of patients in ADNI data used for analyses

Category Sex (male) Age
Count (%) Mean (SD)

AD (n = 191) 100 (52.36%) 75.27 (7.46)

CN (n = 230) 120 (52.17%) 75.86 (5.01)

We have used baseline data of 421 subjects of whom 191 have Alzheimer’s disease (AD)

and 230 are cognitively normal subjects. There are 72 predictors (brain regions segmented

with FreeSurfer) with 4 levels each namely, volume, area, thickness average and thickness

standard deviation. 46 brain regions had volume data only. The regions marked ’Unknown’

and ’Undetermined’ were discarded beforehand because these regions were not identified in

the MR scans. We used all the remaining 116 brain regions (single and four-leveled) as

predictors for dementia. The analysis to identify the (few) significant regions from the entire

brain region is performed. The model identifies a unique set of brain regions significant for

the classification of a binary outcomes. Our objective is to be able to select an optimal

model that identifies the important brain regions for identifying the two kinds of brain

cognitive functionality. Early diagnosis of dementia is very important as it can help in

prompt treatment of subjects thus delaying progression of AD, oversee treatment efficiency

and reduce time and costs of clinical trials.

The brain regions are segmentation of both gray matter (GM) and white matter (WM).

Studies suggest that the gray matter is associated with cognitive disorders in elderly people.

We keep both GM and WM to test the efficacy of our model i.e. if the model is efficient

in selecting the correct brain regions. Variable selection selects the significant brain region
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from a large collection of brain regions and then the model successfully classifies the subjects

using the test dataset.

We have a logistic model for the two outcomes of the response variable. Around 70%

of the data is used to train the model. The prior placed on the coefficients is a spike and

slab type prior that encourages zero estimates for predictors which are not significant. The

model is selected using median thresholding method. We run 10,000 iterations of the MCMC

chain of which the first 5000 are used as burn-ins. The usual convergence diagnostics are

performed.

295 subjects were randomly selected from the 421 subjects to train the model. The

median thresholding model selects 29 out of the 116 brain subregions. These regions corre-

spond to ROIs, namely, right bankssts, right pallidum, pars oper cularis, left pars orbitals,

right precuneus, putamen, right anterior cingulate cortex, superior frontal, entorhinal cortex,

supramarginal gyrus, right transverse temporal, left hippocampus, left inferior lateral ven-

tricle, middle temporal gyrus, inferior temporal gyrus, left precentral gyrus, right fusiform

gyrus, left parahippocampal, paracentral, third ventricle (Feng et .al ., 2004) and right infe-

rior parietal. The estimates of all these regions are, however, not statistically significant.

Some regions have negligible amount of contribution in the model thus making the credible

interval of the feature exclude the corresponding subregion. We only keep the subregions in

our model which are statistically significant as given by the corresponding credible intervals.
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Figure 3.1: Some regions of interest selected by the Bayesian classification model
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Table 3.3: Mean (Standard Error) of Parameter Estimates of Selected ROIs

ROI Volume Surface Cortical Cortical
Area Thickness Thickness

Average Standard Deviation
Right Entorhinal Cortex 2.97 (0.03) 1.83 (0.02) 2.14 (0.01) 1.69 (0.03)
Right Pallidum -0.27 (0.12) ∗ ∗ ∗
Right Pars Orbitals - - -0.33 (0.16) -
Right Precuneus 0.39 (0.05) -0.42 (0.07) 1.0 (0.09) -
Right Putamen -0.21 (0.07) ∗ ∗ ∗
Left Anterior Cingulate -0.46 (0.12) -0.12 (0.04) 0.15 (0.05) 0.09 (0.04)
Right Trasnverse Temporal - - -0.54 (0.22) -
Left Entorhinal Cortex - 0.22 (0.07) 0.21 (0.07) -0.41 (0.13)
Left Precentral Gyrus 0.25 (0.08) 0.38 (0.12) 0.45 (0.15) 0.25 (0.09)
Left Parahippocampal Gyrus 1.97 (0.11) 1.90 (0.11) 2.0 (0.11) 2.07 (0.11)
Right Bankssts 0.06 (0.02) - - -
Left Middle Temporal Gyrus 1.93 (0.04) 1.57 (0.04) 1.91 (0.02) 1.63 (0.03)
Left Hippocampus 1.50 (0.02) ∗ ∗ ∗
∗ means these region measurements were not captured in data.
− means that these regions were not statistically significant although the region was

selected by median thresholding.



The statistically significant ROI’s are given in Table 3.3. Previous studies have estab-

lished the association of these regions in AD. Volumes of right entorhinal cortex are severely

diminished in AD patients. The other regions selected are also coherent with relevant liter-

ature (Juottonen et .al ., 1998 and Galton et .al ., 2001). The precentral gyrus controls motor

skills, middle temporal gyrus regulates semantic memory processing; hippocampus, parahip-

pocampal and entorhinal regulate memory and navigation. Putamen, pallidum, transverse

temporal and bankssts are all known to be affected by AD (Clerx et .al ., 2013). Recent

studies have separately analyzed all these regions and found atrophies in those areas. The

proposed method identifies a subset of all atrophied regions and then selects fewer regions

as discriminative features for classification. The functions of the selected regions also in-

tuitively implicate the precision of the model. Zhang et .al . (2011) classified AD and CN

using support vector machine (SVM) thus leading to non-interpretability of the associated

coefficients.

The method achieved fairly high accuracy of 80%. Cuingnate et .al . (2011) classified AD

and CN based on ROI’s but they restricted their analysis to a few selected ROI’s namely

the entorhinal thickness, supramarginal cortex thickness and hippocampal volume. Their

sensitivity ranged from 69% to 70% whereas our method gives a sensitivity of 76%. The

specificity in their study (90%) is, however, higher than ours (83%). These two studies are,

however, not directly comparable except that they are both classification studies because

the datasets used in these studies are different. The drawback of their method is that they

pre-select a few ROI’s and perform classification, unlike our method. On the other hand, the

proposed method is based on statistical foundations that account and measure uncertainties

due to randomness in the data set.

Our logistic model coded CN as 1 and AD as 0 so the parameter estimates should be
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interpreted accordingly. Table 3.3 gives the mean parameter estimate and standard error

(within parentheses) of the selected ROI’s. To diagnose the accuracy of our test we build an

ROC curve. An ROC (Receiver operating characteristic) curve is a plot of the sensitivity vs.

1-specificity. Figure 3.2 shows we have an area under the curve(AUC) of 0.867. This means

that if we randomly draw samples for classification then our classifier will accurately classify

86.7% of the time. This AUC tells us that our classifier is, indeed, a good one.

Figure 3.2: ROC curve for our classifier
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3.7 Discussion

In this chapter we propose a Bayesian approach of variable selection with spike and slab

prior to identify cognitively healthy controls from Alzheimer’s patients. This method uses

whole brain parcellation data to classify dementia as well as interpret the association of

each significant volumetric measure of a brain subregion. This technique captures the struc-

tured correlation in this type of data to retain all levels of the subregion that are disease

related. The Bayesian approach guarantees better standard error estimates. Also, the me-

dian thresholding method for posterior model selection together with the use of spike and

slab prior is a more efficient method than the frequentist group lasso method as shown in

the simulation study. Liang et .al . (2013) developed a Bayesian subset selection method for

generalized linear models which can select individual variables only. In their method, they

place a prior on the model to perform subset selection unlike our approach of using a spike

and slab prior which directly drops out variables in the many Monte Carlo iterations. Our

median thresholding, as opposed to their MAP posterior probability, is able to choose the

best model without comparing information criterion type quantities among several candidate

models. Thus, the spike and slab prior median thresholding Bayesian group lasso has attrac-

tive properties of high dimensional variable selection and performs efficiently with structured

correlated covariates. Most of the other dimension reduction techniques are unable to tackle

correlated variables in variable selection.

The significant regions selected by our model is identified from a large number of subre-

gions thus accounting for the effect of the whole brain while performing dimension reduction.

Wang et .al . (2014) in their paper have introduced a dimension reduction technique using

HAAR wavelet based on voxel level data with ADNI PET data. Their method builds on
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continuous outcomes and does not perform variable selection. Our approach builds the

model with the MRI brain parcellated volumetric data which are a direct indicator of de-

mentia. This Bayesian formulation not only tackles ANOVA type dummy variables but also

deals with the high dimension problem. The simulation results show that this method is

effective in both low and high dimension. AUC of 0.867 shows that our model is a good

classifier. Most authors have only reported the accuracy of their model but a look at AUC

helps us better understand the diagnostic ability of a classifier. The greatest advantage of

this method is that it considers all the subregions while building the model and efficiently

drops the ones that are not disease related and, can also easily interpret the risk of dementia

from the parameter estimates. This is a novel contribution to classification for Alzheimer’s

disease to the best of our knowledge.
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Chapter 4

Bayesian Spatiotemporal Model for

Detecting Voxel-level Activation in

fMRI Data

4.1 Introduction

With functional magnetic resonance imaging (fMRI), brain activation can be recorded. This

is done by measuring blood oxygenation level dependent (BOLD) activation through MRI

techniques. An external stimulus is administered to a subject and their BOLD MR signals

are recorded at each voxel as a time series. This is useful to understand the functioning of

human brain with respect to brain development, diseases related with brain functionality,

neuronal activity in alcoholism etc. A single subject is administered to an external stimuli,

like seeing an object or administering a physical stimuli like touching a hot surface and the

MR scanner captures 3D images at every 2 to 3 secs of the entire brain. These 3D images

are comprised of voxel level data on a lattice for multiple brain slices.

There are approximately 60×60 voxels in a 2D lattice with approximately 30 of such

brain slices. Thus, the number of voxels is of the order of 1 million. BOLD signal responses

of 1 million voxels are recorded at around 190 timepoints. Thus, we have data of the size of
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20 million for a single subject making the data structured highly complicated. The stimulus

is a so-called ”boxcar” design where there are alternative periods of activation and rest.

This stimulus is a 0-1 input and is transformed by a hemodynamic response function (HRF),

Gitelman et .al . (2003) (See Figure 4.1, Welvaert et .al . (2011)). This transformation is done

under the assumption that blood oxygenation is a delayed and proceeds continuously. Thus,

the 0-1 boxcar stimuli is convolved with an HRF density, like double-gamma density. The

transformed stimulus is the regressor in the model and the corresponding coefficient is called

the ”amplitude” of activation. Variable selection is equivalent to retaining the voxels when

the corresponding amplitude is non-zero.

Figure 4.1: Task stimuli based on three convolution functions

The time series nature of the images occur due to voxel level images being captured at

multiple timepoints. Since voxels in our brain are interconnected in an arbitrary fashion, the
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presence of spatial correlation cannot be ignored. Standard fMRI analysis ignores spatial de-

pendence and performs correlation analysis or parametric regression analysis voxelwise. The

objective of fMRI data analysis is to identify the activated voxels (brain regions) that respond

to the stimuli. This, clearly, is a variable selection problem where the covariates are brain

voxels. We build a Bayesian variable selection model that accounts for the spatiotemporal

correlation inherent in fMRI data.

Friston et .al . (1995) applied separate regression at each voxel to get t statistics for the

activation amplitude. This popular method, however, does not account for spatial depen-

dence. Recently, many Bayesian approaches have been developed using Gaussian MRF priors

(Gossl, Auer, and Fahrmeir, 2001 and Fahrmeir and Gossl,2002) where MCMC algorithm is

implemented to obtain posterior distributions. Penny, Trujillo-Barreto, and Friston (2005)

used Gaussian spatial priors on regression coefficients and autoregressive coefficients of the

noise process. Although, this procedure reduces computational time considerably, it replaces

the true posterior with an approximate posterior. Smith and Fahrmeir (2007) introduced

a spatial variable selection for fMRI data by placing an Ising prior on the activation am-

plitudes but they ignore the temporal correlations in the data. Recently, Musgrove et .al .

(2016) developed a Bayesian variable selection method by parcellating the brain into several

smaller units. Their method takes into account both spatial and temporal correlation. They

assume a sparse areal generalized linear model ((Hughes and Haran, 2013) with spatial ran-

dom effects. They use latent variables distributed as Bernoulli to indicate the presence or

absence of a voxel. They perform variable selection based on the posterior probability of

activation, thresholding the value at 0.8722. A major drawback of this method is that the

accuracy is not validated for random parcellation of the dataset.

We develop a Bayesian variable selection method by incorporating group lasso technique
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into a bilevel selection method. Our regressors are voxels that are task-based (depends on

stimuli). We are interested in knowing the stimuli that activates brain voxels as well as

the voxels that are activated. So, a stimuli as a regressor comprises of N voxels. In this

case, selecting a stimuli is equivalent to selecting a group of covariates; where the group of

covariate is the chosen stimulus at each voxel. Now, we can approach this as a group lasso

problem but we know that for a chosen stimulus, all voxels may not be activated. So, we

want a second level of selection where we can select the activated voxels. Thus, first we

select a stimulus such that the amplitudes are non-zero and then finally choose the voxels

when a second step of selection drops some amplitudes of activation indicating those voxels

are not activated.

Motivated by Xu and Ghosh’s (2015) bilevel variable selection, we extend their method

by including spatiotemporal correlation. The large size of data presents a host of issues in

data handling. We will discuss thoroughly how we have built a Gibb’s sampler for efficient

computation. To enable shrinkage both at group level and within a group, we use a spike

and slab prior like before. To ensure sparsity we reparametrize the parameters. Park and

Casella (2008) and Kyung et .al . (2010) have worked with two level hierarchical structure

with mixture priors that has shrinkage effects but fail to produce sparse solutions since

the posterior mean/ median is never exactly zero. Spike and slab ensures sparsity. Unlike

selecting variables whose posterior probability is above a threshold, we incorporate posterior

median thresholding for variable selection. The posterior median obtained from the posterior

median of our MCMC samples tell us which amplitudes are active.
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4.2 Bayesian Bi-level Variable Selection

Before we introduce the spatiotemporal model, let us have a look at the bilevel selection

method when we assume that there is independence of the responses. Since the BOLD

signals are normally distributed, we are concerned with linear models here. Bilevel selection

in frequentist approach was proposed by Simon et .al . (2012) where the objective function is

regularized using a combination of l − 1 and l − 2 penalty as follows:

minβ


∣∣∣∣∣∣
∣∣∣∣∣∣Y −

G∑
g=1

Xgβg

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

+ λ1||β||1 + λ2

G∑
g=1

∣∣∣∣βg∣∣∣∣2
 (4.1)

Thus, a MAP solution with prior of βg in (1.2)

π(βg) ∝ exp
{
− λ1

2σ2 ||βg||1 −
λ2
2σ2 ||βg||2

}
, g = 1, . . . , G is equivalent to (4.1). The coef-

ficients are reparametrized to introduce the two types of sparsity. Let, βg = A
1
2
g bg, where

A
1
2
g = diag{τg1, . . . , τgmg , g = 1, . . . , g; j = 1, . . . ,mg. Here, bg has a spike and slab prior:

bg
ind∼ (1− πo)NN (0, Img) + π0δ0(bg), g = 1, . . . , g.

Thus, A
1
2
g controls the magnitude of elements of βg. Evidently, a non-zero τgj keeps βgj in

model. So, we place a spike and slab prior on τgjs to ensure exact sparsity.

τjg
ind∼ (1− π1)N+

(
0, s2

)
+ π1δ0(τjg), g = 1, . . . , G; j = 1, . . . ,mg

where N+
(
0, s2

)
is a normal distribution truncated at 0. We place some non-informative

priors n other hyperparameters , thus, forming a hierarchical model.

σ2
e ∼ Inverse Gamma(α = 0.1, γ = 0.1)

π0 ∼ Beta(a1, a2), π1 ∼ Beta(c1, c2)

s2 ∼ Inverse Gamma(1, t).
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t is updated with EM algorithm as was done in chapter 3. Note that, this setup is a

modification of our algorithm in chapter 3 in a linear setup. We assume independence of our

responses in this case. In the next section, we extend this idea to handle datasets that have

spatiotemporal correlation.

4.3 Bayesian Spatiotemporal Model with Bi-level Se-

lection

4.3.1 Model Formulation

Consider the following model:

yvt = xt1βv1 + xt2βv2 + · · ·+ xtpβvp + εvt (4.2)

v = 1, . . . , N

t = 1, . . . , T

Here, yvt is the BOLD signal contrast at timepoint t and voxel v. xtj , j = 1, . . . , p are the

HRF transformed stimuli input and βvj are the activation amplitudes. We have N voxels
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and T timepoints. Let t = 1, then

y1 =

 y11
y21.
.
.

yN1

N×1

=


x11β11+x12β12+···+x1pβ1p
x11β21+x12β22+···+x1pβ2p.

.

.
x11βN1+x12βN2+···+x1pβNp

+

 ε11
ε21.
.
.

εN1



=

 x11
x11.
.
.

x11

⊗ β1 +

 x12
x12.
.
.

x12

⊗ β2 + · · ·+

 x1p
x1p.
.
.

x1p

⊗ βp +

 ε11
ε21.
.
.

εN1


(4.3)

where βg =


β1g
β2g.
.
.

βNg

, g = 1, . . . , p.

Thus, we can write equation (4.3) as:

y1 =

(
x11 0 ... 0

0 x11 ... 0
... ... ... ...
0 0 ... x11

)N×N
β11
β21.
.
.

βN1

+ · · ·+

 x1p 0 ... 0

0 x1p ... 0
... ... ... ...
0 0 ... x1p

N×N


β1p
β2p.
.
.

βNp

+

 ε11
ε21.
.
.

εN1


=

p∑
g=1

X1
gβg + ε1

where, X1
g =

 x1g 0 ... 0

0 x1g ... 0
... ... ... ...
0 0 ... x1g

N×N , g = 1, . . . , p

Thus, we have,

yt =
∑p
g=1X

t
gβg + εt , t = 1, . . . , T

Stacking all of this together we have,

y1 =
∑p
g=1X

1
gβg + ε1

y2 =
∑p
g=1X

2
gβg + ε2

. . .
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. . .

yT =
∑p
g=1X

T
g βg + εT

⇐⇒


y1
N×1

y2
N×1
.
.
.

yT
N×1

 =


∑p
g=1X

1
gβg∑p

g=1X
2
gβg

.

.

.∑p
g=1X

T
g βg

+

 ε1
ε2.
.
.
εT


TASK 1 TASK p

⇐⇒ Y NT×1 =



x11 0 ... 0
0 x11 ... 0
... ... ... ...
0 0 ... x11

N×N

β11
β21.
.
.

βN1

+···+

x1p 0 ... 0

0 x1p ... 0
... ... ... ...
0 0 ... x1p


N×N


β1p
β2p.
.
.

βNp


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xT1 0 ... 0

0 xT1 ... 0
... ... ... ...
0 0 ... xT1

N×N

β11
β21.
.
.

βN1

+···+

xTp 0 ... 0

0 xTp ... 0
... ... ... ...
0 0 ... xTp


N×N


β1p
β2p.
.
.

βNp




+

 ε11
ε21.
.
.

εN1



⇐⇒ Y =


X1

1β1

X2
1β1.
.
.

XT1 β1


NT×1

+ · · ·+


X1
pβp

X2
pβp.
.
.

XTp βp


NT×1

+

 ε11
ε21.
.
.

εN1


= X̃1β1 + X̃2β2 + · · ·+ X̃pβp + ε

=
∑p
g=1 X̃gβg + ε

Thus, we have

Y NT×1 =

p∑
g=1

X̃gβg + ε (4.4)

In this setup, we have p tasks and N voxels. Measurements from each voxel is taken at T

timepoints. We assume a first order auto-regressive correlation between the T timepoints

for each voxel.

Let, εN×1
t =

 ρ1 0 ... 0
0 ρ2 ... 0
.
.
.
0 0 ... ρN

εN×1
t−1 + et, t = 1, . . . , T.
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Here,

 e1
e2.
.
.
eT

 ∼ N


 0

0
.
.
.
0

,

σ2
e IN 0 ... 0

0 σ2
e IN ... 0

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .
0 0 ... σ2

e IN


.

Thus, E

 y1
y2.
.
.
yT

 =


∑p
g=1X

1
gβg∑p

g=1X
2
gβg

.

.

.∑p
g=1X

T
g βg

 and variance-covariance matrix of Y is V .

We want to find the structure of V. Assume that εt is a stationary process i.e. the

distribution of εt does not depend on t. Then,

εit = ρiεit−1 + eit,∀i = 1 . . . N, t = 1 . . . T ε0 = 0.

Now,

E(εit
2) = E(ρiεit−1 + eit)

2

= ρ2
iE(ε2it−1) + E(eit

2)

=⇒ E(εit
2) =

σ2
e

1−ρ2
i
,∀i = 1 . . . N

Similarly, εit = ρiεit−1 + eit

= ρ2
i εit−2 + ρieit−1 + eit

=⇒ E(εitεit−2) = E(ρ2
i ε

2
it−2 + ρiet−1εit−2 + εit−2eit) = ρ2

i
σ2
e

1−ρ2
i
,∀i = 1 . . . N

In general, E(εitεis) = ρ
|t−s|
i

σ2
e

1−ρ2
i
,∀i = 1 . . . N
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Var-Cov =

 y1
y2.
.
.
yT

 = Var-Cov



y11
y21.
.
.

yN1
y12
y22.
.
.

yN2.
.
.

y1T
y2T.
.
.

yNT


= V

=



V (y11) ... 0
.
.
0 ... V (yN1)

  cov(y11,y12) ... 0
.
.
0 ... cov(yN1,yN2)

 ...

 cov(y11,y1T ) ... 0
.
.
0 ... cov(yN1,yNT )


 cov(y12,y11) ... 0

.

.
0 ... cov(yN2,yN1)

 V (y12) ... 0
.
.
0 ... V (yN2)

 ...

 cov(y12,y1T ) ... 0
.
.
0 ... cov(yN2,yNT )


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cov(y1T ,y11) ... 0

.

.
0 ... cov(yNT ,yN1)

  cov(y1T ,y12) ... 0
.
.
0 ... cov(yNT ,yN2)

 ...

V (y1T ) ... 0
.
.
0 ... V (yNT )







=




σ2
e

1−ρ2
1

... 0

.

.

0 ...
σ2
e

1−ρ2
N




ρ1σ

2
e

1−ρ2
1

... 0

.

.

0 ...
ρNσ

2
e

1−ρ2
N

 ...


ρT−1
1 σ2

e

1−ρ2
1

... 0

.

.

0 ...
ρT−1
N σ2

e

1−ρ2
N



ρ1σ

2
e

1−ρ2
1

... 0

.

.

0 ...
ρNσ

2
e

1−ρ2
N




σ2
e

1−ρ2
1

... 0

.

.

0 ...
σ2
e

1−ρ2
N

 ...


ρT−2
1 σ2

e

1−ρ2
1

... 0

.

.

0 ...
ρT−2
N σ2

e

1−ρ2
N


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ρT−1
1 σ2

e

1−ρ2
1

... 0

.

.

0 ...
ρT−1
N σ2

e

1−ρ2
N




ρT−2
1 σ2

e

1−ρ2
1

... 0

.

.

0 ...
ρT−2
N σ2

e

1−ρ2
N

 ...


σ2
e

1−ρ2
1

... 0

.

.

0 ...
σ2
e

1−ρ2
N




= σ2

e Ṽ

We will need the inverse of the variance-covariance matrix. To find the inverse let us

redefine a few notations. Let Ej
′ = (ε1, . . . , εj) = (ε11, . . . , εN1, . . . , ε1j , . . . , εNj), j =

1, . . . , T and
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Aj = σ2
e




1

1−ρ2
1

... 0

.

.
0 ... 1

1−ρ2
N




ρ1
1−ρ2

1

... 0

.

.
0 ...

ρN
1−ρ2

N

 ...


ρ
j−1
1

1−ρ2
1

... 0

.

.

0 ...
ρ
j−1
N

1−ρ2
N




ρ1
1−ρ2

1

... 0

.

.
0 ...

ρN
1−ρ2

N




1
1−ρ2

1

... 0

.

.
0 ... 1

1−ρ2
N

 ...


ρ
j−2
1

1−ρ2
1

... 0

.

.

0 ...
ρ
j−2
N

1−ρ2
N


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ρ
j−1
1

1−ρ2
1

... 0

.

.

0 ...
ρ
j−1
N

1−ρ2
N




ρ
j−2
1

1−ρ2
1

... 0

.

.

0 ...
ρ
j−2
N

1−ρ2
N

 ...


1

1−ρ2
1

... 0

.

.
0 ... 1

1−ρ2
N




Write the first order auto-regressive equations as:

a0εit + aiεit−1 = eit. (4.5)

t = 1, . . . , T where, a0 = 1 and ai = −ρi. The distribution of ET :

dF (ET ) = (2π)−
NT

2 |AT |
−1

2 e
−1

2ET
′A−1
T ET dET (4.6)

And, the distribution of ε1, e2, . . . , eT :

dF (ε1, e2, . . . , eT ) = (2π)−
NT

2 |A1|−
1
2 e
−1

2

[
E1
′A−1

1 E1+ 1
σ2
e

∑T
t=2 et

′et
]
dε1de2 . . . deT

(4.7)
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Assume, T > 2. Considering (4.5) as a transformation from et to εt, t = 2, . . . , T

we have,

dF (ET ) = (2π)−
NT

2 |A1|−
1
2aNT−N0 e

−1
2

[
E1
′A−1

1 E1+ 1
σ2
e

∑T
t=2

∑N
i=1(a0εit+aiεit−1)2

]
dET

(4.8)

Comparing (4.6) and (4.8):

(2π)−
NT

2 |AT |
−1

2 e
−1

2ET
′A−1
T ET

= (2π)−
NT

2 |A1|−
1
2aNT−N0 e

−1
2

[
E1
′A−1

1 E1+ 1
σ2
e

∑T
t=2

∑N
i=1(a0εit+aiεit−1)2

]

Thus,

a2N
0 |A1| = a2NT

0 |AT | and

ET
′A−1
T ET = E1

′A−1
1 E1 + 1

σ2
e

∑T
t=2

∑N
i=1(a0εit + aiεit−1)2

Let, CT =
(
A−1

1 0

0 0

)
and ET

′BTET = 1
σ2
e

∑T
t=2

∑N
i=1(a0εit + aiεit−1)2

∴ A−1
T = CT +BT

So, ET
′BTET = 1

σ2
e

∑T
t=2

∑N
i=1(a2

0εit
2 + 2aia0εit−1

′εit + a2
i εit−1

2)

Now, BT is completely known. Thus, the inverse follows from the inversion of auto-

covariance matrix by Siddiqui, 1958. Let,

BNT×NTT =


B11 B12 ... B1T
B21 B22 ... B2T. . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . .
B(T−1)1 B(T−1)2 ... B(T−1)T
BT1 BT2 ... BTT


where Bij = N ×N matrix correspond to N voxels, i, j = 1, . . . , T . Assuming, j ≥ i,
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Bji = Bij =



0N×N , i ≤ T − 1, i+ 1 < j ≤ T

1
σ2
e

−ρ1 0 ... 0
0 −ρ2 ... 0

. . . . . . . . . . .

. . . . . . . . . . .
0 0 ... −ρN

, i ≤ T − 1, i ≤ j ≤ i+ 1

Bii =


1+ρ2

1 0 ... 0

0 1+ρ2
2 ... 0

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .
0 0 ... 1+ρ2

N

, ∀i 6= 1, T

B11 =


ρ2
1 0 ... 0

0 ρ2
2 ... 0

. . . . . . .

. . . . . . .
0 0 ... ρ2

N

, BTT = IN

If, A−1
T =


A11 A12 ... A1T
A21 A22 ... A2T. . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . .
A(T−1)1 A(T−1)2 ... A(T−1)T
AT1 AT2 ... ATT


where Aij = N × N submatrix, i, j = 1, . . . , T . We know all A′ijs except for i and j

which is less than or equal to 1, i.e. we do not know A11. Since, AT is persymmetric, A−1
T is

also persymmetric. Therefore, A11 = ATT . Also, A−1
T = CT +BT =

(
A−1

1 0

0 0

)
+BT Since,

a2N
0 |A1| = a2NT

0 |AT |, we have, |AT |−1 =

∏N
i=1(1−ρ2

i )

σ2N .

4.3.2 Bi-level Spatiotemporal Model for fMRI Data

(4.2) is the regression setup where we have a single brain data. The brain is divided into N

voxels. p tasks(stimuli) are administered to the subject and their reactions are recorded at T

time points. βg, g = 1, . . . , p are the magnitude of the response to the corresponding stimuli.
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We are interested in selecting a stimuli that significantly affects the response and also the

voxel that is significantly associated with the corresponding task. Thus our regression setup

has groups of N voxels for each stimuli. Response for this group of N voxels is present for T

time points for each stimuli. Thus, (4.4) is of the group lasso form (Xu and Ghosh, 2015).

Here, to select a stimuli and a voxel that are associated with the brain response accounts

for bi-level selection. The first level of selection selects groups of voxel corresponding to a

stimuli and then selects the voxels from among the selected stimuli. We can, thus, apply

Bayesian sparse group lasso with bi-level selection. Our response is normally distributed so

let us formulate the hierarchical Bayesian structure.

Y |X, β, σ2
e , ρ ∼ NNT (Xβ, V )

βN×1
g |τg, σ2

e ∼ N(0, σ2
eΣg), g = 1, . . . , p (4.9)

Let βg = A
1
2
g bg

bg
i.i.d.∼ (1− πo)NN (0, IN ) + π0δ0(bg), g = 1, . . . , p

Here, A
1
2
g =

 τ1g 0 ... 0

0 τ2g ... 0
... ... ... ...
... ... ... ...
0 0 ... τNg


Note that, τjg = 0 =⇒ βjg is dropped out of the model even when bjg 6= 0. This means

τg controls a within group level selection for a selected group βg.

In our problem, we know that there is some correlation among adjacent voxels. Consider

a spatial adjacency structure among the N spatial locations that can be represented through

a known spatial weight matrix W = ((wij)), i, j = 1, . . . , N.wij is the weight corresponding

to the presence or absence of adjacency between location i and j.

For the prior selection of within group, we assume a spatial cross-sectional dependence

is convoluted within the covariate structure of the model. To perform a group lasso variable
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selection in the above model, we need to consider a proper prior for βg, g = 1, . . . , p that

considers the spatial (voxel) relationships among the covariates. We assume a conditional

auto-regressive prior for τ as:

τjg|τig : i 6= j ∼ (1− π1)N+

(∑N
i=1,i 6=j

wij
wj+

τig,
s2
wj+

)
+ π1δ0(τjg), g = 1, . . . , p

wj+ =
∑N
i=1wij

N+ = folded normal towards positive side of the real line. Also,

σ2
e ∼ Inverse Gamma(α = 0.1, γ = 0.1)

π0 ∼ Beta(a1, a2)

π1 ∼ Beta(c1, c2)

s2 ∼ Inverse Gamma(1, t)

ρ ∼ 1√
1− ρ2

Uniform(−1, 1)

t(k) =
1

E
t(k)

(
1
s2
|Y
) (4.10)

We have an improper prior for ρ for the ease of posterior calculations. Thus, with the above

model specification the joint posterior of b, τ2, σ2
e , π0, π1, ρ conditional on observed data is:
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101

p(b, τ2, σ2
e , π0, π1, ρ|Y,X) =

P (Y, b, τ2, σ2
e , π0, π1, ρ|X)

P (Y |X)

∝ P (Y |b, τ2, σ2
e , π0, π1, ρ,X)P (b|π0, τ

2, σ2
e , X)P (σ2

e |π1, X)P (π0)P (π1)P (ρ)

=
|V |−

1
2

(2π)
NT

2

e
−1

2

(
Y−
∑p
g=1 X̃gA

1
2
g bg

)T
V−1

(
Y−
∑p
g=1 X̃gA

1
2
g bg

)

×
p∏
g=1

(1− π0)(2π)−
N
2 e−

1
2b
T
g bgI[bb 6=0] + π0δ0(bg)

×
p∏
g=1

N∏
j=1

(1− π1)2

(
2πs2

wj+

)−1
2
e
−
wj+
2s2

[
τjg−

∑N
i 6=j=1

wij
wi+

τig

]2
I[τjg>0] + π1δ1(τjg)


× (σ2)−α−1e

− γ
σ2

× πa1−1
0 (1− π0)a2−1

× πc1−1
1 (1− π1)c2−1

× t(s2)−2e
− t
s2

× 1

2

N∏
i=1

1√
1− ρ2

i

I[−1≤ρi≤1]



We can simulate an efficient block Gibbs sampler to simulate from the posterior distri-

bution above. Define the following notations:

β(g) = (βT1 , . . . , β
T
g−1, β

T
g+1, . . . , β

T
p ),

X(g) = (X̃1, . . . , X̃g−1, X̃g+1, . . . , X̃p),

β(jg) = (β11, β21, . . . , βN1, . . . , β1g, . . . , βj−1g, βj+1g, . . . βNg, . . . , β1p . . . , βNp),

X(jg) = (x̃11, . . . , x̃N1, . . . , x̃1g, . . . , x̃j−1g, x̃j+1g . . . , x̃Ng, . . . , x̃1p, . . . , x̃Np)

where Xg is the design matrix corresponding to βg.

Detailed computation of the posterior full conditional is given below.

(1) We want to find the posterior distribution of bg. Let

lg = P (bg = 0|rest) = P (bg = 0|Y,X, τ2
g , π0, π1, ρ, σ

2
e)

=
π0A

π0A+ (1− π0)B

where rem ≡ X, τ2
g , π0, π1, ρ, σ

2
e ,

A = |V |−
1
2 e
−1

2

(
Y−X(g)A

1
2
(g)

b(g)

)
V−1

(
Y−X(g)A

1
2
(g)

b(g)

)

and B = |V |−
1
2
∫
bg 6=0

e
−1

2b
T
g bge

−1
2

(
Y−
∑p
g=1 X̃gA

1
2
g bg

)T
V−1

(
Y−
∑p
g=1 X̃gA

1
2
g bg

)

(2π)
N
2

dbg

Thus we get, lg =
π0

π0+(1−π0)|Σg |
1
2 e

µTg µg
2

where, Σ−1
g = IN + A

1
2
g X̃

T
g V
−1X̃gA

1
2
g and µg = ΣgA

1
2
g X̃

T
g V
−1

(
Y −X(g)A

1
2
(g)
b(g)

)
From the posterior full conditionals we have, bg|rest ∼ lgδ0(bg) + (1− lg)NN (µg,Σg).
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(2)

P (τjg|rest) ∝ e
−1

2

(
Y−
∑p
g=1 X̃gA

1
2
g bg

)T
V−1

(
Y−
∑p
g=1 X̃gA

1
2
g bg

)

×
p∏
g=1

N∏
j=1

(1− π1)2

(
2πs2

wj+

)−1
2
e
−
wj+
2s2

[
τjg−

∑
i 6=j

wij
wi+

τig

]2
I[τjg>0] + π1δ1(τjg)



∝ e
−1

2

[
Y−
∑p
g=1 X̃gA

1
2
g bg

]T
V−1

[
Y−
∑p
g=1 X̃gA

1
2
g bg

]

× (1− π1)2

(
2πs2

wj+

)−1
2
e
−
wj+
2s2

[
τjg−

∑
i6=j

wij
wi+

τig

]2
I[τjg>0]

+ e
−1

2

[
Y−
∑p
g=1 X̃gA

1
2
g bg

]T
V−1

[
Y−
∑p
g=1 X̃gA

1
2
g bg

]
π1δ1(τjg)

Thus, we see that,

τjg|rest ∝ qjgδ1τjg + (1− qjg)N+(ujg, v
2
jg), g = 1, . . . p; j = 1, . . . N

where

qjg = P (τjg = 0|rest)

= P (τjg = 0|Y,X, b, π0, π1, ρ, σ
2
e)

=
P (Y |τjg = 0, rem1)P (τjg = 0|rem1)

P (Y |τjg = 0, rem1)P (τjg = 0|rem1) +
∫
τjg 6=) P (Y |τjg 6= 0, rem1)P (τjg 6= 0|rem1)

where rem1 = X, b, π0, π1, ρ, σ
2
e .

Now, P (τjg = 0|rem1) = π0
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P (Y |τjg = 0, rem1) = e
−1

2

[
Y−
∑p
g=1 X̃gA

1
2
g bg

]T
V−1

[
Y−
∑p
g=1 X̃gA

1
2
g bg

]
and

∫
τjg 6=)

P (Y |τjg 6= 0, rem1)P (τjg 6= 0|rem1)

=

∫
τjg 6=)

e−
1
2(Y−XA

1
2 b)T V−1(Y−XA

1
2 b)

× (1− π1)2

(
2πs2

wj+

)−1
2
e
−
wj+
2s2

[
τjg−

∑
i 6=j

wij
wi+

τig

]2
I[τjg>0]dτjg

After rigorous computation, we get,

qjg =
π1

π1 + 2(1− π1)

(
s2
wj+

)1
2
vjge

−
wj+
2s2

(∑
i 6=j

wij
wi+

τjg

)2
+
µ2
jg

2v2
jg Φ

(
µjg
vjg

)

and v2
jg =

(wj+
s2

+ b2jgx̃
T
jgV
−1x̃jg

)−1

µjg = v2
jg

[
wj+

s2

∑
i6=j

wij
wj+

τig −
(
Y −X(jg)β(jg)

)T
V −1xjgbjg

]
(3)

P (σ2
e |rest) ∝ |V |

1
2 e−

1
2(Y−Xβ)T V−1(Y−Xβ)(σ2

e)−α−1e
− γ

σ2
e

∝ (σ2
e)−

NT
2 −α−1e

− 1
2σ2
e

(Y−Xβ)T Ṽ−1(Y−Xβ)− γ

σ2
e

= (σ2
e)
−
(
NT

2 +α
)
−1
e
− 1
σ2
e

[
(Y−Xβ)T Ṽ−1(Y−Xβ)

2 +γ

]
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Therefore, σ2
e |rest ∼ IG

(
NT

2 + α,
(Y−Xβ)T Ṽ−1(Y−Xβ)

2 + γ

)
(4)

P (π0|rest) ∝ π
a1−1
0 (1− π0)a2−1

 p∏
g=1

(1− pi0)(2π)−
N
2 e−

1
2b
T
g bgI[bg 6=0] + π0δ0(bg)


∝ π

a1−1
0 (1− π0)a2−1(1− π0)[p−(#bg 6=0)]π

(#bg=0)
0

Therefore, π0|rest ∼ Beta(a1 + (#bg = 0), a2 + p− (#bg 6= 0)) (5)

P (π1|rest) ∝ π
c1−1
1 (1− π1)c2−1(1− π1)

(#τjg 6=0)]
π

(#τjg=0)

1

Therefore, π1|rest ∼ Beta(c1 + (#τjg = 0), c2 + (#τjg 6= 0))

(6)

P (s2|rest) ∝ (s2)−2e
− t
s2 (s2)

−1
2(#τjg 6=0)

e
−
∑p
g=1

∑N
j=1

wj+
2s2

(
τjg−

∑
i6=j

wij
wj+

τij

)2

= (s2)
−
(

1
2(#τjg 6=0)+1

)
−1
e
− 1
s2

[
t+
∑p
g=1

∑N
j=1

wj+
2

(
τjg−

∑
i6=j

wij
wj+

τij

)2
]

Therefore, s2|rest ∼ IG

(
1
2(#τjg 6= 0), t+

∑p
g=1

∑N
j=1

wj+
2

(
τjg −

∑
i 6=j

wij
wj+

τij

)2
)

(7)

We have,

(Y −Xβ) =



y11−
∑p
g=1 x1gβ1g

y21−
∑p
g=1 x1gβ2g
...

yN1−
∑p
g=1 x1gβNg

y12−
∑p
g=1 x2gβ1g
...

yN2−
∑p
g=1 x2gβNg
...

y1T−
∑p
g=1 xTgβ1g
...

yNT−
∑p
g=1 xTgβNg


=


c11
c21...
cN1
c12...
cN2...
c1T...
cNT


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Then P (ρ1, . . . , ρN |rest) ∝ (Y −Xβ)T Ṽ −1(Y −Xβ)

(∏N
i=1

1√
1−ρ2

i

I[−1≤ρi≤1]

)
= ( c11 ... cN1 c12 ... cN2 ... c1T ... cNT )

×



(
1 ... 0
. ... .
0 ... 1

) (
−ρ1 ... 0
. ... .
0 ... −ρN

)
0 . . . 0(

−ρ1 ... 0
. ... .
0 ... −ρN

) (
1+ρ2

1 ... 0
. . .
0 ... 1+ρ2

N

) (
−ρ1 ... 0
. ... .
0 ... −ρN

)
. . . 0

. . . . . . . . . . . . . . .

0 0 . . .

(
−ρ1 ... 0
. ... .
0 ... −ρN

) (
1 ... 0
. . .
0 ... 1

)



×


c11
c21...
cN1
c12...
cN2...
c1T...
cNT

×
(∏N

i=1
1√

1−ρ2
i

I[−1≤ρi≤1]

)

Collecting ρi, i = 1, . . . , N terms, we get,

−2ρi [ci1ci2 + ci3ci2 + ci4ci3 + · · ·+ ciT ciT−1] + ρ2
i

[
c2i2 + c2i3 + · · ·+ c2iT−1

]
∝
[
c2i2 + c2i3 + · · ·+ c2iT−1

]
×ρ2

i − 2ρi

[
ci1ci2+ci3ci2+ci4ci3+···+ciT ciT−1

]
[
c2i2+c2i3+···+c2iT−1

] +

[
ci1ci2+ci3ci2+ci4ci3+···+ciT ciT−1

]
[
c2i2+c2i3+···+c2iT−1

] 2


∴ ρi|rest ∝ 1
σ2
e
e

− 1
2σ2
e

[
c2i2+c2i3+···+c2iT−1

]ρi−
[
ci1ci2+ci3ci2+ci4ci3+···+ciT ciT−1

]
[
c2i2+c2i3+···+c2iT−1

] 2

ρi|rest ∼ N(µρi , v
2
ρi

) i = 1, . . . , N where

µρi =
ci1ci2+ci3ci2+ci4ci3+···+ciT ciT−1

c2i2+c2i3+···+c2iT−1

v2
ρi

=
σ2
e

c2i2+c2i3+···+c2iT−1
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4.4 Computational Algorithm

Voxel level brain data for a single subject has a very complicated structure since the size

of data is huge, We have to deal with a data size of more than 20 million. Our covariance

matrix is of the order of NT × NT . Obtaining posterior distribution requires inversion of

this matrix. It is almost impossible to deal with such large matrix inversions so we need

to come up with efficient algorithms that are able to handle this data size. Computational

efficiency in modern times is an inevitable step towards model building. Building a model is

not sufficient if we cannot find a way of proper implementation within humanly controlled

time periods.

Apart from the covariance matrix, adjacency matrix and Ag is also of high order (i.e.

N × N . Even storage of such matrices require a supercomputer. We have used inverse

algorithms and matrix multiplication tricks to bypass the use of too many memory resources.

Note that, the variance-covariance matrix in our setup is a block diagonal matrix for every

N ×N block. It has an autoregressive structure and as seen in the previous section, we do

not need to invert the matrix using matrix algebra since we already know the elements of

the inverted matrix. Thus, we build the variance-covariance matrix using the inversion of

autocovariance matrix by Siddiqui, 1958 and just place all the elements in their true location.

We have extensively used ”Matrix” package in R for the computation. This package saves

sparse matrices with ”sparseMatrix” function by allocating it to a much smaller memory

space. The inverse of variance-covariance matrix is sparse so we use this advantage while

writing our code.
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4.4.1 Creating the Adjacency Matrix

We require an adjacency matrix for specifying the adjacency of voxels in the brain. This is

used when we specify weights for spatial dependence through the variance of amplitudes. For

a 2D lattice, a voxel has four neighbors, sharing boundary with each of its face. For a 3D cube,

a voxel has 26 neighbors. Figure 4.2 (Source: http://www.math-only-math.com/common-

solid-figures.html) shows there are 8 vertices, 6 plane surfaces and 12 edges in a cube making

te maximum number of neighboring voxels 26.

Figure 4.2: Illustration of neighborhood of a cube

For 2D lattice, we have two coordinates a and y. If two x-values or y-values have absolute

difference of their x or y axis coordinate as 1 respectively then we call them neighbors. If

the absolute difference is larger in either x or y then they are not neighbors.

In 3 dimensional setup, we have 3 coordinates x, y and z. Here, we fix a coordinate and

check for the absolute difference of the other two to be 1. Then we assign weight 1 meaning

neighbors to the voxel with respect to the focal voxel. This algorithm is straightforward but

the adjacency matrix is huge for large voxel size. Note that, adjacency matrix is sparse as

most of the elements will be 0.
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4.4.2 Matrix Tricks

The largest order of matrix we need to invert in our model is N × N . Since this is a

variance-covariance matrix of the posterior of βg, it is positive definite. We use Cholesky

decomposition instead of traditional matrix inverse. For generating τg, g = 1, . . . , p we

carefully perform matrix multiplication so that it saves computation time. For example, we

need to evaluate
(
Y −X(jg)β(jg)

)T
V −1xjgbjg for the posterior distribution of τg. Eval-

uating
(
Y −X(jg)β(jg)

)T
means finding NT elements N times making the computation

time N2T , so we calculate (Y −Xβ)T once which uses NT computation time. Then for

N times we calculate X(jg)β(jg) and subtract from previously stored value of (Y −Xβ)T .

This modification uses NT +N computation time. Using such matrix algebra tricks we are

able to bring down the Gibb’s sampler run time considerably.

4.5 Simulation

To understand how our proposed Bayesian hierarchical, sparsity-inducing model works, we

need to perform a simulation study. In both the previous two simulation studies we have

simulated the datasets by assigning true parameter values and generating a model from the

concerned distribution. This works fine and was easy to build since our responses were

independent. Now we have dependent responses. There are ways of generating dependent

responses but what is unique in this chapter is that we want a simulated dataset that

represents an fMRI dataset. This is not an easy task since a fMRI dataset has very specific

patterns. Welvaert et .al .(2011 ) created an R package called ”neuRosim” that produces

fMRI data replicating real fMRI data. We have used this package to generate our data in

this section.
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4.5.1 Generating Simulated fMRI Data

We generate a stimuli with a totaltime of 390 seconds and repetition time of 2 seconds. Thus,

there are 195 time series points in the BOLD signals. The stimuli is a boxcar function which

is then convolved with a double-gamma density to make it continuous. Figure 4.3 plots the

simulated stimuli. The stimuli onset times are at 60, 120, 210, 270 and 330 seconds.

Figure 4.3: Stimuli convolved with double-gamma density (red) and the corresponding box-
car function (green)

We generate 4 regions of activation on a 2D lattice at coordinates (10,42), (25,35), (10,10)

and (40,31) with radii 3,4,3 and 3 respectively. A mixture noise is used with 0.4 and -0.25

as autocorrelation for simulating 2,500 voxels. A signal-to-noise ratio of 4.5 is used.
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4.5.2 Analysis Result of Simulation Study

Left-hand panel of Figure 4.4 shows us the activated regions in our simulated 2D lattice. Our

aim is to analyze the simulated dataset of 50 × 50 voxels on a 2D lattice for 195 timepoints.

Our Bayesian hierarchical bilevel selection method is able to detect the true activated regions

with a very high accuracy.

To assess the accuracy of our method we compare it to the results of Musgrove et .al .

(2016) for the case where they have analyzed the entire brain and parcellated brain in their

simulation study. The comparison is valid since we both the datasets simulated 2,500 voxels

on 2D lattice with 195 timepoints. The stimuli have for both the studies have total duration

and onset times to be same. Table 4.1 gives us the results. The median accuracy of our

method is 99.6% which is better for both the methods of Musgrove et .al . (2016). The false

positives are also better for our approach.

Table 4.1: Median accuracy (minimum and maximum) of correct classification and false
positives over 10 simulated datasets

Method Accuracy(%) False Positive

Bayesian hierarchical 99.6 0.006
bilevel selection (98.9,100) (0,0.008)

Musgrove et .al . (2016) 98.7 0.015
Full dataset (96.0, 99.3) (0.007, 0.044)

Musgrove et .al . (2016) 99.4 0.007
Parcellated dataset (98.9, 99.7) (0.003, 0.011)

Figure 4.4, right-hand side panel, shows us the selected voxels in white. Thus, it is

evident from the results that our proposed method is an improved variable selection method.

Musgrove et .al . (2016) have parcellated the brain to parallely run the analysis for significant

time reduction. In our real data analysis section, we use a two stage procedure thus reducing

our computation time significantly.
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Figure 4.4: True and estimated binary map

4.6 Single-Subject fMRI Data Analysis

4.6.1 Data Acquisition

A healthy college student from Michigan State University volunteered to participate in this

study and signed consent forms approved by the Michigan State University Institutional

Review Board. The experiment was conducted on a 3T GE Signa HDx MR scanner (GE

Healthcare, Waukesha, WI) with an 8-channel head coil.

An fMRI dataset was collected on a visual stimulation condition with a scene-object

fMRI paradigm. The parameters for the fMRI scan were: gradient-echo EPI, 36 contiguous

3-mm axial slices in an interleaved order, time of echo (TE) = 27.7 ms, time of repetition

(TR) = 2500 ms, flip angle = 80◦, field of view (FOV) = 22 cm, matrix size = 64 × 64, ramp

sampling, and with the first four data points discarded. Each volume of images were acquired

192 times (8 min) while a subject was presented with 12 blocks of visual stimulation after

an initial 10 s ”resting” period. In a predefined randomized order, scenery pictures were
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presented in 6 blocks and objects pictures were presented in other 6 blocks. All pictures

were unique. In each block, 10 pictures were presented continuously for 25 s (2.5 s for each

picture), followed with a 15 s baseline condition (a white screen with a black fixation cross

at the center). The subject needed to press his/her right index finger once when the screen

was switched from the baseline to picture condition. Stimuli were displayed in color in full

screen on a 1024×768 32-inch LCD monitor (Salvagione Design, Sausalito, CA) placed at the

back of the magnet room. The LCD subtended 10.2◦×13.1◦ of visual angle. After the above

functional data acquisition, high-resolution volumetric T1-weighted spoiled gradient-recalled

(SPGR) images with cerebrospinal fluid suppressed were obtained to cover the whole brain

with 120 1.5-mm sagittal slices, 8◦ flip angle and 24 cm FOV. These images were used to

identify anatomical locations.

4.6.2 fMRI Data Pre-processing and Analysis

All stimulus fMRI data pre-processing and analysis for each subject were conducted with

AFNI software (Cox, 1996) as described in Henderson et al. (Henderson, Zhu et al. 2011).

Essentially, slice-timing correction and rigid-body motion correction were carried. Spatial

blurring with a full width half maximum of 4 mm was applied to reduce random noise.

Multiple linear regressions (using the ”3dDeconvolve” routine in AFNI) were applied on a

voxel-wise basis to find the magnitude change when each picture condition was presented,

followed with general linear tests to find the statistical significances between stimulus con-

ditions.

We apply a two stage method- first we reduce the number of voxels based on p-value

analysis for each voxel, ignoring spatial correlation and then apply our method in the second

stage. The first step is a data processing step since many voxel data that are captured in the
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MRI scan are outside the brain and the pvalue based analysis can easily identify the non-

affected voxels. We have 64 × 64 voxels and 36 slices of the brain. Each of these voxels were

captured at 192 timepoints. This makes our data size of the order of 28 million. We have

applied voxel by voxel regression analysis and retained voxels that had a p-value < 5×10−4.

This reduces voxel size to 6118. Now we have data size in the order of 1 million.

In the second step, we apply our proposed Bayesian spike and slab bi-level selection to

the reduced data. the subject was shown two stimuli, a scenery and an object. From the

first step, we know that 6118 voxels represent the regions of interest in the brain that are

activated in some way due to visual stimulation. Thus, we expect that the both the stimuli

and the most activated voxels are selected by our model. Henderson et .al . (2007) conducted

a similar study with indoor and outdoor sceneries and faces as stimuli. They conclude that

there is activation in posterior parahippocampal cortex (pPHC), including parahippocampal

place area(PPA) for sceneries. The faces stimuli activates fusiform gyrus and amygdala.

Epstein et .al . (1999, 2003); Epstein and Kanwisher (1998) have shown that scenes activate

PPA over faces, single objects and object arrays.

Our results show the activation of PPA in the scene - object contrast. Figure 4.5 shows

the activated areas in orange. The figure illustrates that scene preferentially activates PPA

over object. This finding is in lines with Epstein et .al . (1999, 2003) and Henderson et .al .

(2007). Blue regions show activation by object stimuli indicating activation fusiform gyrus

and amygdala.

The scene and object activation of brain regions can be looked at separately too (as in

Figure 4.6). Figure 4.6 shows that both scene and object activate similar regions of interest

in the brain that are traditionally related to visual activation. The coronal view specifically

show that object preferentially activates the fusiform gyrus whereas scenes activate pPHC
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Figure 4.5: Scene minus object contrast activation

Figure 4.6: Scene and object activation
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more than objects. From our results, we see that the activation behavior of objects is very

similar to that of a faces stimuli (Henderson et .al . (2007)).

Our model is able to select both the stimuli that activate the regions of interest associated

with visual cortex. The model does a bi-level selection in selecting not just the stimuli

but the activated voxels. The selection keeps the spatial clustering of the voxels intact

by choosing clustered voxels in the visual cortex. Henderson et .al . (2007) performed their

analysis without considering any spatial correlation. Although, our results are aligned with

theirs, it is difficult to directly judge a better method since the stimuli used and objective

of the studies are different. Our method has an advantage because we consider spatial

information which they have completely ignored.

4.7 Discussion

In this chapter we have extended our model from chapter 3 to introduce bi-level selection

of covariates. The idea is to select a significant group and few significant levels within that

group. This has further been convoluted with a spatiotemporal structure where we introduce

temporal correlation in the likelihood and spatial correlation in the prior of β. This novel

method of Bayesian hierarchical modeling is applied to a single subject fMRI data. Our goal

here is to select the activated voxels in the presence of an external stimuli. Alongside the

proposed variable selection method, we introduce BOLD activation in fMRI tests. We want

to find how is the brain affected (activated) by a stimuli; this will lead medical professionals

in understanding the neuronal activity in human brains which can further help treat various

diseases or find root causes of certain human behavior.

A thorough simulation study compares our results with those of Musgrove et .al . (2016).
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Our method is able to give a lower false positive rate indicating that our method performs

better. Our simulation was conducted in a 2D setup. We extend our method to 3D real

data, acquired from Department of radiology, MSU. Our method correctly identifies the

activation of the visual cortex in the presence of scene and object stimuli. It shows that

scene preferentially selects PPA regions of interest while objects select the fusiform gyrus and

amygdala. These results align with those of Epstein et .al . (1999, 2003). Thus, we are able to

verify that our novel approach of variable selection has a very relevant application in fMRI

data. The relevance of understanding fMRI data is immense and handling of huge data sizes

is a challenge. We overcome this by introducing a two step procedure. the first step filters

the data voxel by voxel and then incorporates the proposed method for variable selection.

Castruccio et .al . (2016) have used a similar 3 step approach with region of interest(ROI)

information added to voxel level data. Our data does not include ROI information but does

a great job selecting the truly activated voxels. thus, we use a less complicated model than

Castruccio et .al . (2016) but a more statistically relevant model than Henderson et .al . (2007)

to identify BOLD activation in fMRI data.
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Chapter 5

Future Work

This dissertation presents three varied applications of statistical methodology in fields rang-

ing from marketing research to brain image data. Our proposed methods are state of the

art approaches for dealing with the analyzed data. Our main focus has been variable selec-

tion. When the number of parameters become larger than the number of observations then

ordinary regression method fails. This has led to the development of numerous regularized

modeling approaches.

In our marketing research data application, we have used frequentist style variable selec-

tion methods, namely, LASSO and elastic net. For real data analysis, we convert 6 categories

of the response in 6 different sets of binary variables - one vs others. Our comparative study

has been performed on linear and binary outcome. A very interesting future work will be

to build a model for the multi-category response variable. A multinomial logistic regression

with LASSO and/or elastic net regularization can be used.

Next, we have performed variable selection on binary response (Alzheimer’s disease or

normal control) in a Bayesian group lasso setup. We propose a median thresholding posterior

estimator of βs and use spike and slab type prior. A logit link used for this setup works well in

terms of the true and false positive rates of prediction. A high AUC under the ROC curve also

indicates that our method performs competitively. For further research, it will be interesting

to explore the impact of a probit link for this model setup. The logit link helps us calculate
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relative risks and odd ratios for the significant ROIs, however, for another interpretation of

βs, we can explore the use of a probit link in our model. There is a scope of comparing

models using two different link functions but essentially, the same model. Another potential

variation in the model can be approximation of intractable posterior of β by a numerical

method (e.g. Laplace approximation). This proposed method has a tremendous scope of

future work, given the numerous trajectories of research.

Our last application is based on a giant dataset of brain voxels in 3d image for hundreds

of timepoints. We have used a spatiotemporal modeling to perform variable selection by

extending our Bayesian group lasso approach to select a stimuli administered for monitoring

brain activity as well brain voxels. The biggest challenge with this data is its size. We perform

analysis by filtering the more active brain regions by a preliminary analysis to reduce data

size. In the second step, we apply our Bayesian variable selection method. Further research

should be continued to find out a method that is able to handle the entire dataset at once.

This finding will be a great step ahead in today’s challenge of handling big data. Our model

does a great job giving a low false positive rate and is shown to better than the method

of Musgrove et.al. (2016). This piece of work builds an associative model to find out the

most active voxels to further identify relation of neuronal dysfunction and a disease. We

can extend this model to a predictive model where one may want to predict the state of a

patient given the activity in the selected voxels. This requires building a model, inclusive of

variable selection phase, on a train dataset and validating it using a test dataset.

Our contribution through the novelty of application is tremendous and has carved a way

for intriguing future research work.

119



APPENDIX

120



Appendix

A. Gibbs Sampler

The full posterior conditional distributions are as follows:

p(β, τ2, π0|Y,X) ∝
n∏
i=1

[ ex
T
i β

1 + e
xTi β

yi ( 1

1 + e
xTi β

)1−yi ]

×
G∏
g=1

[
(1− π0)(2πτ2

g )−
mg
2 e
−
βTg βg

2τ2
g I[βg 6=0] + π0δ0(βg)

]

×
G∏
g=1

(λ2)
mg+1

2 (τ2
g )
mg+1

2 −1e−
λ2τ2

g
2

× π0
a−1(1− π0)b−1 (.1)

Let β(g) and X(g) be defined as follows:

β(g) = (βT1 , . . . , β
T
g−1, β

T
g+1, . . . , β

T
G),

X(g) = (X1, . . . ,Xg−1,Xg+1, . . . ,XG)

where Xg is the design matrix corresponding to βg. Detailed computation of the posterior

full conditional distributions is given below: (1) Note that, ex
T
i β = e

xTi1β1+···+xTiGβG .

If, βg = 0 then, ex
T
i β = e

xTi1β1+···+xTiG.0+···+xTiGβG = e
xT
i(g)

β(g) where xi(g) corresponds
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β(g).

p(βg = 0|rest) = p(βg = 0|Y,X, τ2
g , π0)

=
p(βg = 0,Y|X, τ2

g , π0)∫
βg
p(βg,Y|X, τ2

g , π0)dβg

=
Aπ0

Aπ0 +B(1− π0)

where

π0 = p(βg = 0|τ2
g , π0)

A = p(Y|βg = 0,X, τ2
g , π0) =

n∏
i=1

e
yix

T
i(g)

β(g)

1 + e
xT
i(g)

β(g)

B =

∫
βg 6=0

p(Y|βg 6= 0,X, τ2
g , π0)dβg

=

∫
βg 6=0

 n∏
i=1

e
yix

T
i(g)

β(g)

1 + e
xT
i(g)

β(g)

 (2πτ2
g )−

mg
2 e
−
βTg βg

2τ2
g dβg

The integral in term B is complicated so we approximate it with Monte- Carlo approxima-

tion for each i = 1, . . . , n. Thus, we approximate the function
∏n
i=1

e
yix

T
i(g)

β(g)

1+e
xT
i(g)

β(g)
by drawing

i .i .d samples of βg from a multivariate normal distribution with mean 0 and variance τ2
g Img .

Let lg = p(βg = 0|rest). From the posterior full conditionals, we have that

βg|rest ∼ (1− lg)F + lgδ0(βg) (.2)
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where F is some distribution whose form is unattainable. By collecting the terms of βg

from (.1) we do not get a closed form for the distribution of βg|rest. But, we get (.2) and

use the Metropolis algorithm to draw samples from βg|rest whenever βg 6= 0.

The Metropolis algorithm:

The Metropolis algorithm is a method of drawing samples from a posterior distribution

when the posterior distribution does not have a closed form. Suppose we have a working

collection of (θ(1), . . . , θ(s)) to which we would like to add a new value θ(s+1). Let us consider

adding a value θ∗ to the set that is in the vicinity of θ(s). Let,

r =
p(θ(∗)|y)

p(θ(s)|y)

Let

θs+1 =


θ∗,with probability min(r,1)

θs,with probability 1-min(r,1)

Here θ∗ is sampled from a symmetric distribution. Sample u ∼ Uniform (0, 1) and set

θs+1 = θ∗ if u < r, otherwise set θs+1 = θs.

We sample θ∗ from a normal distribution with a proposed mean and variance. Then the

Metropolis ratio is:

r =
p(θ∗|y)

p(θ(s)|y)

=
p(y|θ∗)p(θ∗)
p(y|θ(s))p(θ(s))

=

∏n
i=1 dbinom(yi, θ

∗)dnorm(θ∗, µ, τ)∏n
i=1 dbinom(yi, θ

(s))dnorm(θ(s), µ, τ)
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Thus for our problem,

log r =
n∑
i=1

[
log dbinom(yi, β

∗
g )− log dbinom(yi, β

(s)
g )
]

+

mg∑
i=1

[
log dnorm(β∗g )− log dnorm(β

(s)
g )
]

Using this algorithm we approximate F in (.2) where lg is also approximated by Monte-

Carlo method. Thus, (.2) generates βg|rest.

(2)

p(τ2
g |rest) ∝ (λ2)

mg+1
2 (τ2

g )
mg+1

2 −1e−
λ2τ2

g
2 ×

[
(1− π0)(2πτ2

g )−
mg
2 e
−
βTg βg

2τ2
g I[βg 6=0] + π0δ0(βg)

]

If βg = 0:

p(τ2
g |rest) ∝ (λ2)

mg+1
2 (τ2

g )
mg+1

2 −1e−
λ2τ2

g
2 π0δ0(βg)

∝ (τ2
g )
mg+1

2 −1e−
λ2τ2

g
2

Letting τ2
g = 1

α2
g

we have,

p(α2
g|rest) ∝ (α2

g)
−mg+1

2 −1e
− λ2

2α2
g
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If βg 6= 0:

p(τ2
g |rest) ∝ (λ2)

mg+1
2 (τ2

g )
mg+1

2 −1e−
λ2τ2

g
2 (1− π0)(2πτ2

g )−
mg
2 e
−
βTg βg

2τ2
g

∝ (τ2
g )

1
2 e
−1

2

(
βTg βg

τ2
g

+λ2τ2
g

)

Letting τ2
g = 1

α2
g

we have,

p(α2
g|rest) ∝ (α2

g)
−3

2 e

−
βTg βg

2α2
g

αg− λ√
βTg βg

2

Thus,

α2
g|rest ∼


Inverse Gamma

(
mg+1

2 , λ
2

2

)
if βg = 0

Inverse Gaussian
(

λ
||βg ||2

, λ2
)

if βg 6= 0

(3)

p(π0|rest) ∝
G∏
g=1

[
(1− π0)(2πτ2

g )−
mg
2 e
−
βTg βg

2τ2
g I[βg 6=0] + π0δ0(βg)

]
× πa−1

0 (1− π0)b−1

Let t be the number of non-zero βg’s . Define,

Zg =


0 if βg = 0

1 if βg 6= 0

then
∑G
g=1 Zg = t
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Thus,

p(π0|rest) ∝ (1− π0)t+b−1πG−t+a−1
0

π0|rest ∝ Beta

 G∑
g=1

Zg − t+ a,

G∑
g=1

Zg + b


(4) λ is the tuning parameter so a large value of λ will shrink the coefficients excessively

and a small value of λ will result in a diffuse distribution. Thus, the value of λ should be

carefully chosen. Aligning with Xu and Ghosh’s (2015) spirit,

λ(k) =

√√√√ p+G∑G
g=1Eλ(k−1) [τ2

g |Y]
,

Here, the posterior expectation of τ2
g is approximated with the sample average of τ2

g gener-

ated in the Gibbs sampler based on λ(k−1).
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