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ABSTRACT

ON SUPERCONVERGENT DISCONTINUOUS GALERKIN METHODS FOR
SCHRÖDINGER EQUATIONS AND SPARSE GRID CENTRAL DISCONTINUOUS

GALERKIN METHOD

By

Anqi Chen

In this thesis, we design and analyze a discontinuous Galerkin (DG) method for one-

dimensional Schrödinger equations under a general class of numerical fluxes, and another

efficient DG method for high-dimensional hyperbolic equations.

In the first DG method, we develop an ultra-weak discontinuous Galerkin (UWDG)

method to solve the one-dimensional nonlinear Schrödinger equation. Stability conditions

and error estimates are derived for the scheme with a general class of numerical fluxes. The

error estimates are based on detailed analysis of the projection operator associated with each

individual flux choice. Depending on the parameters, we find out that in some cases, the

projection can be defined element-wise, facilitating analysis. In most cases, the projection

is global, and its analysis depends on the resulting 2 × 2 block-circulant matrix structures.

For a large class of parameter choices, optimal a priori L2 error estimates can be obtained.

Numerical examples are provided verifying theoretical results.

In addition to the stability and error analysis, we analyze the superconvergence properties

of the UWDG method for one-dimensional linear Schrödinger equation with various choices

of flux parameters. Depending on the flux choices and if the polynomial degree k is even or

odd, we prove 2k or (2k− 1)-th order superconvergence rate for cell averages and numerical

flux of the function, as well as (2k−1) or (2k−2)-th order for numerical flux of the derivative.

In addition, we prove superconvergence of (k+ 2) or (k+ 3)-th order of the UWDG solution

towards a special projection. At a class of special points, the function values and the first and



second order derivatives of the UWDG solution are superconvergent with order k+2, k+1, k,

respectively. The proof relies on the correction function techniques initiated in [12], and

applied to [10] for direct DG (DDG) methods for diffusion problems. By negative norm

estimates, we apply the post-processing technique and show that the accuracy of our scheme

can be enhanced to order 2k. Theoretical results are verified by numerical experiments.

In the second DG method, we develop sparse grid central discontinuous Galerkin (CDG)

scheme for linear hyperbolic systems with variable coefficients in high dimensions. The

scheme combines the CDG framework with the sparse grid approach, with the aim of break-

ing the curse of dimensionality. A new hierarchical representation of piecewise polynomials

on the dual mesh is introduced and analyzed, resulting in a sparse finite element space that

can be used for non-periodic problems. Theoretical results, such as L2 stability and error

estimates are obtained for scalar problems. CFL conditions are studied numerically com-

paring discontinuous Galerkin (DG), CDG, sparse grid DG and sparse grid CDG methods.

Numerical results including scalar linear equations, acoustic and elastic waves are provided.
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Chapter 1

Introduction

1.1 Overview

The discontinuous Galerkin (DG) method is a class of finite element methods using com-

pletely discontinuous piecewise function space for test functions and numerical solution.

The first DG method was introduced by Reed and Hill in [59]. A major development

of DG method is the Runge-Kutta DG (RKDG) framework introduced for solving hyper-

bolic conservation laws containing only first order spatial derivatives in a series of papers

[25, 24, 22, 21, 26]. Because of the completely discontinuous basis, DG method has several

attractive properties. It can be used on many types of meshes, even those with hanging

nodes. The method has h-p adaptivity and very high parallel efficiency.

A particular type of DG methods that is related to this thesis is central DG (CDG)

scheme. The CDG schemes [48, 50, 51] are a class of DG schemes on overlapping cells that

combine the idea of the central schemes [56, 45, 49] with the DG weak formulation. Such

methods are intrinsically Riemann solver free, therefore no costly flux evaluations are needed

in the computation. It is well known that the CDG schemes allow larger CFL numbers

than the standard DG methods except for piecewise constant approximations [50, 60]. This

compensates the increased cost caused by duplicate representation of the solution on the

dual mesh.
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In this thesis, we will focus on the design of a new DG method for one-dimensional

Schrödinger equations and its error analysis, and superconvergence analysis, as well as a

new sparse-grid central DG method for high-dimensional hyperbolic equations to make the

simulation more efficient and accurate.

1.2 UWDG method for one-dimensional Schrödinger

equations

In this section, we introduce the one-dimensional time-dependent nonlinear Schrödinger

(NLS) equation and review the numerical methods designed to solve this equation.

The NLS equation is written as follows:

iut + uxx + f(|u|2)u = 0, (1.1)

where f(u) is a nonlinear real function and u is a complex function. The Schrödinger equation

is the fundamental equation in quantum mechanics, reaching out to many applications in fluid

dynamics, nonlinear optics and plasma physics. It is also called Schrödinger wave equation

as it can describe how the wave functions of a physical system evolve over time. Many

numerical methods have been applied to solve NLS equations [14, 28, 42, 43, 58, 71, 74]. In

[14, 74], several important finite difference schemes are implemented, analyzed and compared.

In [58], the author introduced a pseudo-spectral method for general NLS equations. Many

finite element methods have been tested, such as quadratic B-spline for NLS in [28, 71] and

space-time DG method for nonlinear (cubic) Schrödinger equation in [42, 43].

Various types of DG schemes has been applied to solve Schrödinger equations and they

2



have different discretization for the second order spatial derivative term. One group of such

methods is the so-called local DG (LDG) method invented in [25] for convection-diffusion

equations. The algorithm is based on introducing auxiliary variables and reformulating

the equation into its first order form. In [80], an LDG method using alternating fluxes is

developed with L2 stability and proved (k + 1
2)-th order of accuracy. Later in [81], Xu and

Shu proved optimal accuracy for both the solution and the auxiliary variables in the LDG

method for high order wave equations based on refined energy estimates. In [47], the authors

presented an LDG method with exponential time differencing Runge-Kutta scheme and

investigated the energy conservation performance of the scheme. Another group of method

involves treating the second order spatial derivative directly in the weak formulations, such

as IPDG method [77, 30] and NIPG method [62, 63]. Those schemes enforce a penalty jump

term in the weak formulation, and they have been extensively applied to acoustic and elastic

wave propagation [37, 3, 61]. As for Schrödinger equations, the direct DG (DDG) method

was applied to Schrödinger equation in [52] and achieved energy conservation and optimal

accuracy.

In Chapter 2, we choose to discretize the second order spatial derivative term directly

using UWDG method, which can be traced backed to [13], and refer to those DG methods

[72] that rely on repeatedly applying integration by parts so all the spatial derivatives are

shifted from the solution to test function in the weak formulation. In [18], Cheng and Shu

developed UWDG methods for general time dependent problems with higher order spatial

derivatives. In [6], Bona et. al. proposed an UWDG scheme for generalized KdV equation

and performed error estimates.

We investigate a most general form of the numerical flux functions that ensures stability

along with our ultra-weak formulation. To estimate the convergence rate of our scheme,

3



we introduce special projections associated different flux parameters, and proved detailed

estimates for the projections. With the results for the convergence rate of the projections, a

priori L2 error estimates are obtained. Numerical tests are provided to verify the theoretical

results for projection operators and solution convergence rates under various flux parameters.

1.3 Superconvergence analysis of DG methods

The study of superconvergence is of importance because a posteriori error estimates can be

derived guiding adaptive calculations. For superconvergence of DG methods, many results

exist in the literature. We refer the readers to [2, 1] for ordinary differential equation re-

sults. In [19], Cheng and Shu proved that the DG and LDG solutions are (k+ 3/2)-th order

superconvergent towards projections of exact solutions of hyperbolic conservation laws and

convection-diffusion equations using specially designed test functions when piecewise poly-

nomials of degree k are used. For linear hyperbolic problems, in [82], Yang and Shu proved

that, under suitable initial discretization, the DG solutions of linear hyperbolic systems are

convergent with optimal (k + 2)-th order at Radau points. More recently, in [12], Cao et al

proved the (2k + 1)-th superconvergence rate for cell average and DG numerical fluxes by

introducing a locally defined correction function. The correction function also helps simplify

the proof for point wise (k + 2)-th superconvergence rate at Radau points and prove the

derivative of DG solution has (k + 1)-th superconvergence rate at so-called “left Radau”

points. Then this technique has been extended to prove the superconvergence of DG so-

lutions for linear and nonlinear hyperbolic PDEs in [11, 9], DDG method for convection

diffusion equations [10] and LDG method for linear Schrödinger equations [84]. Overall, for

equations with higher order spatial derivatives, the same type of correction functions can
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be used for the LDG method which is based on a reformulation into a first order system of

equations. For DDG method, new correction functions are needed treating the second order

derivative directly [10].

Another type of superconvergence of DG methods is achieved by postprocessing the

solution by convolution with a kernel function, which is a linear combination of B-spline

functions. For linear hyperbolic systems, [23] provided a framework for constructing such

postprocessor and proving the superconvergence of the postprocessed DG solutions. Through

the analysis of negative norm estimates and divided difference estimates, they showed that

the postprocessed solution is superconvergent at a rate of 2k + 1. More recently, in [41, 54]

the analysis are extended to scalar nonlinear hyperbolic equations.

In Chapter 3, we study the superconvergence properties of the UWDG methods for linear

Schrödinger equation with scale invariant flux parameters. Such choice include all commonly

used fluxes, e.g. alternating, central, DDG and interior penalty DG (IPDG) fluxes. Using the

correction function idea and negative norm estiamtes, we are able to prove superconvergence

rate for solution and its derivatives at certain points, for cell averages and numerical fluxes,

for solution towards a special projection, and for the postprocessed solution.

1.4 Sparse-grid DG methods for high-dimensional

PDEs

It has been a challenging problem for numerical simulations in high dimensions due to the

so-called curse of dimensionality, which means the cost of computing and storing an approx-

imation with a prescribed accuracy increases exponentially on dimension d. Many discretiza-

tion techniques and computation techniques have been developed to alleviate the problem
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to some extent. Among them, the sparse grid method has been a successful tool. It was

originally developed to solve PDEs [83, 33] based on tensor product hierarchical basis rep-

resentation. The method can reduce the full grid discretization complexity from O(h−d) to

O(h−1| log2 h|d−1), where h is the uniform mesh size in each dimension, and only slightly

deteriorate the accuracy. In recent years, sparse grid techniques have been incorporated in

collocation methods for high-dimensional stochastic differential equations [79, 78, 57, 53],

finite element methods [83, 8, 66], finite difference methods [34, 36], finite volume methods

[40], and spectral methods [35, 32, 68, 69] for high-dimensional PDEs.

Recently, our research group initiated a line of research on the development of sparse

grid DG methods [76, 38, 39]. The sparse grid DG methods use the sparse finite element

space, which has multidimensional multiwavelet bases constructed by tensor products from

one-dimensional wavelet basis, in the DG framework to treat high-dimensional problems.

The methods has been proven to reduce the degrees of freedom of O(h−d) in the standard

full grid approximation space to O(h−1| log2 h|d−1) and remain a L2 convergence rate of

O(hk+1/2| log2 h|d) for transport equations and a convergence rate of O(hk| log2 h|d) in the

energy norm for elliptic equations.

In Chapter 4, we incorporate sparse grid DG method with central DG scheme to de-

velop a class of conservative numerical schemes with high computational efficiency for high-

dimensional hyperbolic equations. Our work consists of construction of the sparse finite

element space , L2 stability and error estimates, and numerical validation of the scheme.
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Chapter 2

An UWDG method for Schrödinger

equation in one dimension

In this chapter, we develop and analyze a new ultra-weak discontinuous Galerkin (UWDG)

method for solving one-dimensional nonlinear Schrödinger (NLS) equations (1.1). The

method solves the equation without introducing any auxiliary variables or rewriting the

equation into a larger system.

The focus of this chapter is on the investigation of a most general form of the numerical

flux functions that ensures stability along with our ultra-weak formulation. The fluxes

under consideration include the alternating fluxes, and also the fluxes considered in [52], and

therefore allows for flexibility for the design of the schemes. The analysis in this chapter

relies on a detailed analysis of a special projection associated with different flux parameters,

whose dependence on mesh size can be freely enforced. Under certain flux parameters, the

projection can be defined locally. For other flux parameters, the projection is global and the

projection analysis is based on a block-circulant matrix with 2×2 blocks. Our analysis reveals

that under a large class of parameter choices, the UWDG method is optimally convergent

in L2 norm, which is verified by extensive numerical tests for both the projection operators

and the numerical schemes for (1.1).

The remainder of this chapter is organized as follows. In Section 2.1, we introduce the
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UWDG method with general flux definitions for one-dimensional nonlinear Schrödinger equa-

tions and study its stability properties. We introduce a new projection operator and analyze

its properties in Section 2.2, which is later used in Section 2.3 to obtain the convergence

results of the schemes. The main body of this chapter, the error estimates, is contained

in Section 2.3. Numerical validations are provided in Section 2.4. Some technical details,

including proof of most lemmas are collected in Appendix.

The major contents of this chapter has been published in [16].

2.1 Numerical scheme and stability

In this subsection, we formulate and discuss stability results of a DG scheme for one-

dimensional NLS equation (1.1) on interval I = [a, b] with initial condition u(x, 0) = u0(x)

and periodic boundary conditions. Here f(u) is a given real function. Our method can be

defined for general boundary conditions, but the error analysis will require slightly different

tools, and therefore we only consider periodic boundary conditions in this chapter.

To facilitate the discussion, first we introduce some notations and definitions. For a 1-D

interval I = [a, b], the usual DG meshes are defined as:

a = x1
2
< x3

2
< · · · < x

N+1
2

= b,

Ij = (x
j−1

2
, x
j+1

2
), xj =

1

2
(x
j−1

2
+ x

j+1
2

),

and

hj = x
j+1

2
− x

j−1
2
, h = max

j
hj ,
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with mesh regularity requirement h
minhj

< σ, σ is fixed during mesh refinement.

Denote ZN = 1, 2, · · · , N . The approximation space is defined as:

V kh = {vh : vh|Ij ∈ P
k(Ij), ∀j ∈ ZN},

meaning vh is a piecewise polynomial of x with degree up to k on each cell Ij . For a function

vh ∈ V kh , we use (vh)−
j−1

2

and (vh)+

j−1
2

to refer to the value of vh at x
j−1

2
from the left cell

Ij−1 and the right cell Ij respectively. The jump and average are defined as [vh] = v+
h − v

−
h

and {vh} = 1
2(v+

h + v−h ) at cell interfaces.

Throughout this chapter, we use the standard Sobolev norm notations ‖ · ‖Ws,p(I)

and broken Sobolev space on mesh IN . We denote ‖v‖2
Hs(IN )

=
∑N
j=1 ‖v‖2Hs(Ij)

and

‖v‖Ws,∞(IN ) = maxj ‖v‖Ws,∞(Ij). In Section 3.4, we consider negative norms and the def-

inition is ‖v‖
H−l(I)

= supΦ∈C∞0 (I)

∫
I v(x)Φ(x)dx
‖Φ‖

Hl(I)
. Additionally, we denote by ‖v‖

L2(∂IN )
the

broken L2 norm on cell interfaces, i.e., ‖v‖2
L2(∂IN )

=
∑N
j=1 ‖v‖2L2(∂Ij)

, where‖v‖2
L2(∂Ij)

=

(v−x
j+1

2

)2 + (v+
x
j−1

2

)2. We also denote ‖ · ‖ = ‖ · ‖
L2(I)

= ‖ · ‖
L2(IN )

to shorten the notation.

Lastly, we recall inverse inequalities, ∀vh ∈ V kh ,

‖(vh)x‖L2(Ij)
≤ Ch−1

j ‖vh‖L2(Ij)
, ‖vh‖L2(∂Ij)

≤ Ch−
1
2‖vh‖L2(Ij)

,

‖vh‖L∞(Ij) ≤ Ch−
1
2‖vh‖L2(Ij)

,

(2.1)

and trace inequalities

‖v‖2
L2(∂Ij)

≤ Ch−1
j ‖v‖

2
L2(Ij)

, (2.2)

here and below C is a constant independent of the function u and the mesh size h.

In this chapter, we consider a DG scheme motivated by [18] and based on integration by

9



parts twice, or the so-called ultra-weak formulation. In particular, we look for the unique

function uh = uh(t) ∈ V kh , t ∈ (0, T ], such that

i

∫
Ij

(uh)tvhdx+

∫
Ij

uh(vh)xxdx− ûh(vh)−x |j+1
2

+ ûh(vh)+
x |j−1

2

+(̃uh)xv
−
h |j+1

2
− (̃uh)xv

+
h |j−1

2
+

∫
Ij

f(|uh|2)uhvhdx = 0 (2.3)

holds for all vh ∈ V kh and all j = 1, · · · , N . Here, we require k ≥ 1, because k = 0 yields an

inconsistent scheme. Notice that (2.3) can be written equivalently in a weak formulation by

performing another integration by parts back as:

i

∫
Ij

(uh)tvhdx−
∫
Ij

(uh)x(vh)xdx+ (u−h − ûh)(vh)−x |j+1
2

+ (ûh − u+
h )(vh)+

x |j−1
2

+(̃uh)xv
−
h |j+1

2
− (̃uh)xv

+
h |j−1

2
+

∫
Ij

f(|uh|2)uhvhdx = 0 (2.4)

The “hat” and“tilde” terms are the numerical fluxes we pick for u and ux at cell bound-

aries, which are single valued functions defined as:

(̃uh)x = {(uh)x}+ α1[(uh)x] + β1[uh], ûh = {uh}+ α2[uh] + β2[(uh)x], (2.5)

where α1, α2, β1, β2 are prescribed complex parameters. They may depend on the mesh

parameter h. Commonly used fluxes such as the central flux (by setting α1 = α2 = β1 =

β2 = 0) and alternating fluxes (by setting α1 = −α2 = ±1
2 , β1 = β2 = 0) belong to this

flux family. The direct DG scheme considered in [52] is a special case of our method when

α1 = −α2, β1 = c
h , β2 = 0, c > 0, α1 ∈ R. The IPDG method can also be casted in this

framework as α1 = α2 = β2 = 0, β1 = c
h , c > 0.
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We write the scheme (2.3) in following short-hand notation:

aj(uh, vh)− i
∫
Ij

f(|uh|2)uhvhdx = 0, ∀j ∈ ZN (2.6)

holds for all vh ∈ V kh , where

aj(uh, vh) =

∫
Ij

(uh)tvhdx− iAj(uh, vh),

with

Aj(uh, vh) =

∫
Ij

uh(vh)xxdx− ûh(vh)−x |j+1
2

+ ûh(vh)+
x |j−1

2
+ (̃uh)xv

−
h |j+1

2
− (̃uh)xv

+
h |j−1

2

as the UWDG spatial discretization for the second order derivative term.

Using periodic boundary condition, we sum up on j for (2.6) and get

a(uh, vh)− i
∫
I
f(|uh|2)uhvhdx = 0, (2.7)

where

a(uh, vh) =

∫
I
(uh)tvhdx− iA(uh, vh),

A(uh, vh) =
N∑
j=1

Aj(uh, vh) =

∫
I
uh(vh)xxdx+

N∑
j=1

(
ûh[(vh)x]− (̃uh)x[vh]

) ∣∣
j+1

2
.

The following theorem contains the results on semi-discrete L2 stability.

Theorem 2.1.1. (Stability) For u, v ∈ H2(IN ) satisfying periodic boundary condition, we

have A(u, v) = A(v, u).
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The solution of semi-discrete UWDG scheme (2.3) using numerical fluxes (2.5) satisfies

L2 stability condition

d

dt

∫
I
|uh|2dx ≤ 0,

if

Imβ2 ≥ 0, Imβ1 ≤ 0, |α1 + α2|2 ≤ −4Imβ1Imβ2. (2.8)

In particular, when all parameters α1, α2, β1, β2 are restricted to be real, this condition

amounts to

α1 + α2 = 0 (2.9)

without any requirement on β1, β2.

Proof. From integration by parts, we have

A(u, v) = −
∫
I
uxvxdx+

N∑
j=1

(û[vx]− [uvx]− ũx[v])
∣∣
j+1

2
.

Similarly, A(v, u) = −
∫
I uxvxdx +

∑N
j=1 (v̂[ux]− [vux]− ṽx[u])

∣∣
j+1

2
. Plugging in the defi-

nition of the numerical fluxes in (2.5), we have at x
j+1

2
,∀j ∈ ZN

û[vx]− [uvx]− ũx[v] =
(
{u} − α1[u] + β2[ux]

)
[vx]− ({u}[vx] + [u]{vx})

−
(
{ux}+ α1[ux] + β1[u]

)
[v]

= [ux]
(
{v} − α1[v] + β2[vx]

)
− [u]

(
{vx}+ α1[vx] + β1[v]

)
−
(
[ux]{v}+ {ux}[v]

)
= [ux]v̂ − [u]ṽx − [uxv],

12



then the proof for A(u, v) = A(v, u) is complete.

From integration by parts, we have, for ∀vh ∈ V kh

a(uh, vh) =

∫
I
(uh)tvhdx+ i

∫
I
(uh)x(vh)xdx+ i

N∑
j=1

([uh(vh)x]− ûh[(vh)x] + (̃uh)x[vh])|
j+1

2
.

A(uh, vh) = −
∫
I
(uh)x(vh)xdx+

N∑
j=1

(ûh[(vh)x]− [uh(vh)x]− (̃uh)x[vh])|
j+1

2
.

Taking vh = ūh in (2.7) and compute its conjugate as well, we get

0 = i

∫
I
f(|uh|2)|uh|2dx+ i

∫
I
f(|uh|2)|uh|2dx

= a(uh, ūh) + a(uh, ūh)

=
d

dt

∫
I
|uh|2dx− iA(uh, uh) + iA(uh, uh). (2.10)

−iA(uh, uh) + iA(uh, uh) = −2Im
N∑
j=1

([uh(ūh)x]− ûh[(ūh)x] + (̃uh)x[ūh])|
j+1

2

= −2Im
N∑
j=1

(
{uh}[(ūh)x] + [uh]{(ūh)x} −

(
{uh}+ α2[uh] + β2[(uh)x]

)
[(ūh)x]

+ ({(uh)x}+ α1[(uh)x] + β1[uh])[ūh]
)
|
j+1

2

= −2Im
N∑
j=1

(
− β2|[(uh)x]|2 + β1|[uh]|2 + α1[(uh)x][ūh]− α2[uh][(ūh)x]

)
|
j+1

2

= 2Im
N∑
j=1

(β2|[(uh)x]|2 − β1|[uh]|2 − (α1 + α2)[ūh][(uh)x])|
j+1

2

13



Plug it back into (2.10):

d

dt

∫
I
|uh|2dx+

N∑
j=1

2Imβ2|[(uh)x]|2 − 2Imβ1|[uh]|2 − 2Im{(α1 + α2)[ūh][(uh)x]}|
j+1

2
= 0.

(2.11)

If the stability condition (2.8) is satisfied, we have

d

dt

∫
I
|uh|2dx ≤ 0.

If all parameters are real and (2.9) is satisfied, then (2.11) further yields:

d

dt

∫
I
|uh|2dx = 0, (2.12)

which implies energy conservation.

For simplicity of the discussion, in the contents below, we will only consider real param-

eters, i.e. when α1, α2, β1, β2 are real and α1 + α2 = 0. This property of our scheme is

consistent with the energy conservation property of Schrödinger equations. It is essential to

have a symmetric A(uh, vh) for designing a finite element scheme which is energy-preserving

for Schrödinger equations.

Now the numerical fluxes are defined by three parameters as,

(̃uh)x = {(uh)x}+ α1[(uh)x] + β1[uh], ûh = {uh} − α1[uh] + β2[(uh)x], α1, β1, β2 ∈ R.

(2.13)
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Note we can rewrite the flux definition in a matrix form

 ûh

(̃uh)x

 = G

 u−h

(uh)−x

+H

 u+
h

(uh)+
x

 , G =

1
2 + α1 −β2

−β1
1
2 − α1

 , H =

1
2 − α1 β2

β1
1
2 + α1

 ,
(2.14)

where I2 denotes the 2 × 2 identity matrix. Note that G + H = I2, detG = detH =

−(α2
1 + β1β2 − 1

4) and GH = −(detG)I2.

2.2 Projection P ?
h

In this section, we perform detailed studies of a projection operator that is key to the analysis

of the UWDG scheme.

Definition 2.2.1. For the UWDG scheme with flux choice (2.13), we define the associated

projection operator P ?h for any periodic function u ∈ W 1,∞(I) to be the unique polynomial

P ?hu ∈ V
k
h (when k ≥ 1) satisfying

∫
Ij

P ?hu vhdx =

∫
Ij

u vhdx ∀vh ∈ P k−2(Ij), (2.15a)

P̂ ?hu = {P ?hu} − α1[P ?hu] + β2[(P ?hu)x] = u at x
j+1

2
, (2.15b)

˜(P ?hu)x = {(P ?hu)x}+ α1[(P ?hu)x] + β1[P ?hu] = ux at x
j+1

2
, (2.15c)

for all j. When k = 1, only conditions (2.15b)-(2.15c) are needed.

This definition is to ensure u− P̂ ?hu = 0 and ux − ˜(P ?hu)x = 0 at cell boundaries, which

will be used in error estimates for the scheme. In the following, we analyze the projection

when the parameter choice reduces it to a local projection in Section 2.2.1, and then we
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consider the more general global projection in Section 2.2.2.

We can write (2.15b)-(2.15c) in vector form as

 P̂ ?hu

˜(P ?hu)x


∣∣∣∣∣∣∣
x
j+1

2

= G

 P ?hu

(P ?hu)x


∣∣∣∣∣∣∣
−

x
j+1

2

+H

 P ?hu

(P ?hu)x


∣∣∣∣∣∣∣
+

x
j+1

2

=

 u
ux


∣∣∣∣∣∣∣
x
j+1

2

. (2.16)

2.2.1 Local projection condition

In general, the projection P ?h is globally defined, and its existence, uniqueness and ap-

proximation properties are quite complicated mathematically. However, with some special

parameter choices, P ?h can be reduced to a local projection, meaning that it can be solved

element-wise, and hence the analysis can be greatly simplified.

For example, with the alternating fluxes α1 = ±1
2 , β1 = β2 = 0, P ?h can be reduced to

P 1
h and P 2

h defined below. P ?h = P 1
h for parameter choice α1 = 1

2 , β1 = β2 = 0 is formulated

as: for each cell Ij , we find the unique polynomial of degree k, P 1
hu, satisfying

∫
Ij

P 1
hu vhdx =

∫
Ij

u vhdx ∀vh ∈ P k−2(Ij), (2.17a)

(P 1
hu)− = u atx

j+1
2
, (2.17b)

(P 1
hu)+

x = ux atx
j−1

2
. (2.17c)

When k = 1, only conditions (2.17b)-(2.17c) are needed.

Similarly, we can define P ?h = P 2
h for parameter choice α1 = −1

2 , β1 = β2 = 0 as: for
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each cell Ij , we find the unique polynomial of degree k, P 2
hu, satisfying

∫
Ij

P 2
hu vhdx =

∫
Ij

u vhdx ∀vh ∈ P k−2(Ij), (2.18a)

(P 2
hu)+ = u atx

j−1
2
, (2.18b)

(P 2
hu)−x = ux atx

j+1
2
. (2.18c)

When k = 1, only conditions (2.18b)-(2.18c) are needed.

Similar local projections have been introduced and considered in [18]. It is obvious that

P 1
hu, P

2
hu can be solved element-wise, and their existence, uniqueness are straightforward.

From a standard scaling argument by Bramble-Hilbert lemma in [20], P 1
h and P 2

h have the

following error estimates: let u ∈ W k+1,p(Ij)(p = 2,∞), then

‖u− P νhu‖Lp(Ij) ≤ Chk+1
j |u|

Wk+1,p(Ij)
, p = 2,∞, ν = 1, 2,

‖ux − P νhux‖Lp(Ij) ≤ Chkj |u|Wk+1,p(Ij)
, p = 2,∞, ν = 1, 2,

(2.19)

where here and below, C is a generic constant that is independent of the mesh size hj , the

parameters α1, β1, β2 and the function u, but may take different value in each occurrence.

Naturally, the immediate question is that if there are other parameter choices such that

P ?h can be reduced to a local projection. The following lemma addresses this issue.

Lemma 2.2.1 (The condition for reduction to a local projection). If α2
1 + β1β2 = 1

4 , P ?h is

17



a local projection. Moreover, (2.15b) and (2.15c) is equivalent to

G

 P ?hu

(P ?hu)x


∣∣∣∣∣∣∣
−

x
j+1

2

+H

 P ?hu

(P ?hu)x


∣∣∣∣∣∣∣
+

x
j−1

2

= G

 u
ux


∣∣∣∣∣∣∣
x
j+1

2

+H

 u
ux


∣∣∣∣∣∣∣
x
j−1

2

. (2.20)

Proof. The definition (2.15a) provides k − 1 linearly independent equations for solving P ?hu

on each cell. If (2.15b) and (2.15c) can be locally decoupled, P ?h is a local projection. By

assumption α2
1 + β1β2 = 1

4 , if β1 = β2 = 0, then α1 = ±1
2 and P ?hu = P 1

h or P 2
h , and (2.20)

holds. The rest of the cases are

• if β1 6= 0, left multiply (2.16) by a matrix, we have

β1
1
2 + α1

β1 −(1
2 − α1)


 u
ux


∣∣∣∣∣∣∣
x
j+1

2

=

 0 0

β1 −(1
2 − α1)


 P ?hu

(P ?hu)x


∣∣∣∣∣∣∣
−

x
j+1

2

+

β1
1
2 + α1

0 0


 P ?hu

(P ?hu)x


∣∣∣∣∣∣∣
+

x
j+1

2

,

which implies the following decoupled relations

(P ?hu)+ +
1
2 + α1

β1
(P ?hu)+

x = u+
1
2 + α1

β1
ux atx

j−1
2
,

(P ?hu)− −
1
2 − α1

β1
(P ?hu)−x = u−

1
2 − α1

β1
ux atx

j+1
2
.

(2.21)
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• if β2 6= 0, by similar linear transformation, we have

 1
2 − α1 β2

−(1
2 + α1) β2


 u
ux


∣∣∣∣∣∣∣
x
j+1

2

=

 0 0

−(1
2 + α1) β2


 P ?hu

(P ?hu)x


∣∣∣∣∣∣∣
−

x
j+1

2

+

1
2 − α1 β2

0 0


 P ?hu

(P ?hu)x


∣∣∣∣∣∣∣
+

x
j+1

2

,

which implies

(P ?hu)+
x +

1
2 − α1

β2
(P ?hu)+ = ux +

1
2 − α1

β2
u atx

j−1
2
,

(P ?hu)−x −
1
2 + α1

β2
(P ?hu)− = ux −

1
2 + α1

β2
u atx

j+1
2
.

(2.22)

(2.21), (2.22) are the desired decoupled conditions on each cell Ij , and it’s easy to verify that

(2.21), (2.22) are equivalent to (2.20). Therefore the proof is complete.

This lemma implies that for any parameter satisfying α2
1+β1β2 = 1

4 , P ?h is locally defined.

We remark that this condition turns out to be the same as the optimally convergent numerical

flux families in [17] for two-way wave equations, although they arise in different contexts.

Unfortunately, for the general definition of P ?h , unlike P 1
h and P 2

h , we cannot directly use the

Bramble-Hilbert lemma and the standard scaling argument to obtain optimal approximation

property, since the second and third relations in (2.21) and (2.22) may break the scaling.
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2.2.2 P ?
h properties

Before moving on to detailed discussion on P ?h , we introduce some notations to facilitate the

discussion. We define the Legendre expansion of a function u ∈ L2(I) on cell Ij as follows,

u|Ij =
∞∑
m=0

uj,mLj,m(x), (2.23)

where Lj,m(x) := Lm(ξ), ξ =
x−xj
hj/2

, and Lm(·) is the standard Legendre polynomial of

degree m on [−1, 1]. In what follows, we write Lj,m(x) as Lj,m, and Lm(ξ) as Lm for

notational convenience. We can compute uj,m using orthogonality of Legendre polynomials

and Rodrigues’ formula,

uj,m =
2m+ 1

hj

∫
Ij

u(x)Lj,mdx =
2m+ 1

2

∫ 1

−1
ûj(ξ)Lmdξ

=
2m+ 1

2

1

2mm!

∫ 1

−1
ûj(ξ)

d

dξm
(ξ2 − 1)mdξ

=
2m+ 1

2

(−1)l

2mm!

∫ 1

−1

d

dξl
ûj(ξ)

d

dξm−l
(ξ2 − 1)mdξ,

(2.24)

where ûj(ξ) = u(x(ξ)) is defined as the function u|Ij transformed to the reference domain

[−1, 1]. By Holder’s inequality, if u ∈ W l,p(I),

∣∣uj,m∣∣ ≤ Ch
l−1
p

j |u|
Wl,p(Ij)

, 0 ≤ l ≤ m. (2.25)

The L2 projection P 0
h is closely related to uj,m. By orthogonality of Legendre polynomi-

als, we have

P 0
hu =

k∑
m=0

uj,mLj,m.

We collect some frequently used notations in Table 2.1 for quick reference.
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Table 2.1: Notations for some frequently used quantities. Subscript j will be dropped for
uniform mesh.

Notation Definition Notation Definition

G

[1
2 + α1 −β2

−β1
1
2 − α1

]
H

[1
2 − α1 β2

β1
1
2 + α1

]
Γj β1 +

β2
h2
j
k2(k2 − 1)− 2k2

hj
(α2

1 + β1β2 + 1
4) Λj −2k

hj
(α2

1 + β1β2 − 1
4)

L−j,m

 Lj,m(x
j+1

2
)

2
hj

d
dxLj,m(x

j+1
2

)

 L+
j,m

 Lj,m(x
j−1

2
)

2
hj

d
dxLj,m(x

j−1
2

)


Aj G[L−j,k−1, L

−
j,k] Bj H[L+

j,k−1, L
+
j,k]

Q −A−1B rl Ql(I2 −QN )−1

Mj,m (Aj +Bj)
−1(GL−j,m +HL+

j,m)

Next, we will write the explicit formula of P ?h in order to get a clear view of the existence

and uniqueness condition, as well as the error estimates. Suppose

P ?hu =
k∑

m=0

új,mLj,m.

By the definition (2.15a), új,m = uj,m,m ≤ k − 2, i.e.,

P ?hu =
k−2∑
m=0

uj,mLj,m +
k∑

m=k−1

új,mLj,m.

In what follows, we analyze the existence and uniqueness of P ?h , i.e., the existence and

uniqueness of új,k−1, új,k based on the following assumptions on parameters:

• A0. (Local projection) α2
1 + β1β2 = 1

4 and Γj 6= 0.

• A1. (Global projection) uniform mesh (hj = h,∀j), α2
1 + β1β2 6= 1

4 and
∣∣∣ΓΛ ∣∣∣ > 1.

• A2. (Global projection) uniform mesh (hj = h,∀j), α2
1 + β1β2 6= 1

4 ,
∣∣∣ΓΛ ∣∣∣ = 1.(

(−1)k+1 Γ
Λ

)N 6= 1. If N is odd, and if k is odd, we require Γ = −Λ; if k is even,
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we require Γ = Λ.

• A3. (Global projection) uniform mesh (hj = h,∀j), α2
1 + β1β2 6= 1

4 ,
∣∣∣ΓΛ ∣∣∣ < 1,(

(−1)k+1 Γ
Λ +

√(
Γ
Λ

)2
− 1

)N
6= 1.

Lemma 2.2.2 (P ?h existence, uniqueness and formula). If any of the assumptions above is

satisfied, P ?h exists and is uniquely defined. Furthermore, if assumption A0 is satisfied, then

új,k−1

új,k

 =

uj,k−1

uj,k

+
∞∑

m=k+1

uj,mMj,m. (2.26)

If any of the assumptions A1/A2/A3 is satisfied, then

új,k−1

új,k

 =

uj,k−1

uj,k

+
∞∑

m=k+1

(
uj,mV1,m +

N−1∑
l=0

uj+l,mrlV2,m
)
, (2.27)

where V1,m = [L+
k−1, L

+
k ]−1L+

m, V2,m = [L−k−1, L
−
k ]−1L−m−[L+

k−1, L
+
k ]−1L+

m, uj+l = uj+l−N

when j + l ≥ N , and rl is defined in Table 2.1.

Proof. The proof of this lemma can be found in Appendix.

Lemma 2.2.3. Suppose any of the assumptions A0/A1/A2/A3 holds and u satisfies the

condition in Definition 2.2.1. For p = 2,∞, if assumption A0 is satisfied,

‖P ?hu− u‖Lp(I) ≤ Chk+1|u|
Wk+1,∞(I)

max

(
|β1|,

|12−α1|
h ,

|12+α1|
h ,

|β2|
h2

)
minj |Γj |

. (2.28)
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If assumption A1 is satisfied,

‖P ?hu− u‖Lp(I) ≤ Chk+1|u|
Wk+1,∞(I)

(1 +
‖Q1‖∞
|1− |λ1||

+
‖I2 −Q1‖∞
|1− |λ2||

), (2.29)

where λ1, λ2 are defined in (49), Q1 is defined in (56) and (57).

If assumption A2 is satisfied,

‖P ?hu− u‖Lp(I) ≤ Chk+1‖u‖
Wk+4,∞(I)

(1 +
‖Q2‖∞
|Γ|

), (2.30)

where Q2 is defined in (59).

If assumption A3 is satisfied, and assuming
∣∣∣1− λN1 ∣∣∣ = O(hδ

′
), |1− λ1| = O(hδ/2) with

0 ≤ δ ≤ 2,

‖P ?hu− u‖Lp(I) ≤ Chk+1‖u‖
Wk+3,∞(I)

(1 + h−δ
′−δ/2(‖Q1‖∞ + ‖I2 −Q1‖∞)). (2.31)

Proof. Proof is given in Appendix.

Above estimates provides error bound that can be computed once the parameters are

given, yet its dependence on the mesh size h is not fully revealed, particularly when the

parameters α1, β1, β2 also have h-dependence. To clarify such relations, next we will inter-

pret (2.29) when considering the following common choice of parameters, where α1 has no

dependence on h, β1 = β̃1h
p1 , β2 = β̃2h

p2 , β̃1, β̃2 are nonzero constants that do not depend

on h. If indeed β1 or β2 is zero, it is equivalent to let p1, p2 → +∞ in the discussions below.

We will discuss whether the parameter choice yields optimal (k + 1)-th order accuracy.

To distinguish different cases, we illustrate the choice of parameters p1, p2 in Figure 2.1.
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−3 −2 −1 0
p1         

−1
0

1
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 p

2

A1.1A1.2

A1.3 A1.4

A1.5

A1.6.1

A1.6.2

A1.7.1A1.7.2

Figure 2.1: A sketch to illustrate the different cases parametrized by the values of p1, p2.

For example, A1.1 means p1 > −1, p2 > 1, A1.5 means p1 = −1, p2 = 1 and A1.7.1 means

p1 > −1, p2 = 1. The main results are summarized in Table 2.2.

Table 2.2: Interpretation of error estimate (2.29).

1 If k = 1 and p2 < 1, then

2 P ?h is suboptimal and is (k + p2)-th order accurate,

3 else

4 if limh→0 |λ1, λ2| = 1 with |λ1, λ2| = 1 +O(hδ/2), then

5 P ?h is suboptimal and is (k + 1− δ)-th order accurate,

6 else

7 P ?h has optimal (k + 1)-th order error estimates.

8 end

9 end

The main reason of order reduction for k = 1, p2 < 1 in line 2 of Table 2.2 is that the

term such as 1
|λ1|−1

‖Q1‖∞ is of O(hp2−1) instead of O(1), and this will cause (1 − p2)-th

order reduction. The situation happens for A1.3, A1.4 and A1.6.2 when k = 1.
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The main reason of order reduction in line 5 is because of the terms such as 1
1−|λ1|

,
|1

1−|λ2|

in (2.29). The fractions 1
1−|λ1|

, 1
1−|λ2|

cannot be bounded by a constant if limh→0 |λ2| = 1.

By definition of λ1, λ2 in (49), we know that
∣∣∣ΓΛ ∣∣∣ → 1 ⇔ |λ1, λ2| → 1. More precisely, if∣∣∣ΓΛ ∣∣∣ = 1 + O(hδ), δ > 0, then |λ1, λ2| = 1 + O(hδ/2), then 1

1−|λ1|
, 1

1−|λ2|
= O(h−δ/2). The

relation Γ2 − Λ2 = (b1 − b2)(b1 + b2) + c22 also indicates that there is some cancellation of

leading terms in b1 − b2 or b1 + b2, making ‖Q1‖∞ ∼ O(h−δ/2), multiplying these factors

together will result in δ-th order reduction in the error estimation of P ?h . Note that b1, b2, c2

and Q1 are defined in (47), (48), (45) and (56).

Then we look at what parameter choices make
∣∣∣ΓΛ ∣∣∣→ 1. Since

Γ

Λ
=


k +

β1+
k2(k2−1)

h2 β2−
k2

h
Λ k > 1,

1 +
β1−

1
h

Λ k = 1,

we have

1. A1.1 (p1 > −1, p2 > 1) with k = 1, α1 = 0,
∣∣∣ΓΛ ∣∣∣→ ∣∣∣∣ 1

2+2α2
1

1
2−2α2

1

∣∣∣∣ = 1.

2. A1.6.1 (p1 = −1, p2 > 1) β̃1 =
k(k±1)

2 + 2α2
1k(k ∓ 1),

∣∣∣ΓΛ ∣∣∣→
∣∣∣∣∣k +

β1−
k2

h
Λ

∣∣∣∣∣→ 1.

3. A1.6.2 (p1 = −1, p2 < 1) with k > 1, β̃1 =
k(k±1)

2 ,
∣∣∣ΓΛ ∣∣∣→

∣∣∣∣∣∣∣k +

k2(k2−1)β2
h2
Λ

∣∣∣∣∣∣∣→ 1.

4. A1.7.1 (p1 > −1, p2 = 1) β̃2 = 1
2k(k∓1)

+
2α2

1
k(k±1)

,
∣∣∣ΓΛ ∣∣∣→

∣∣∣∣∣∣∣k +

k2(k2−1)β2
h2 −k

2

h
Λ

∣∣∣∣∣∣∣→ 1.

5. A1.7.2 (p1 < −1, p2 = 1) β̃2 = 1
2k(k±1)

,
∣∣∣ΓΛ ∣∣∣→ ∣∣∣k +

β1
Λ

∣∣∣→ 1.
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Remark 2.2.1. We only considered T given by (51) (when Q1 is given by (56)) in the

discussion above. By Appendix, we can conclude that under the parameter conditions in

assumption A1, (b1 + b2)(b1− b2) = 0 only can happen if p1 = −1, p2 = 1 with (29) or (30).

This is A1.5, for which we always have optimal error estimate.

Remark 2.2.2. Through numerical tests, we found that (2.29) is mostly sharp with two ex-

ceptions. When limh→0 |λ1, λ2| = 1, the estimates show that there will be order reduction for

error of P ?h , while in numerical experiments (see e.g. Tables 2.8, 2.9), such order reduction

is observed only when limh→0 λ1, λ2 = 1 but not −1. We believe when limh→0 λ1, λ2 = −1, a

refined estimate can be obtained similar to (2.30) under assumption A1. We have not carried

out this estimate in this thesis.

Another example we find for which (2.29) is not sharp is k = 2, p1 = −2 or −3, p2 = 1,

(α1, β̃1, β̃2) = (0.25,−1, 1
12), where parameters belong to A1.7.2, β̃2 = 1

2k(k+1)
and λ1, λ2 →

1+O(h−(1+p1)/2). The theoretical results predict accuracy order of (k+2+p1) but numerical

experiments in Table 2.10 show the order to be (k + 3 + p1). Our estimations can’t resolve

this one order difference. This special parameter may trigger a cancellation we didn’t capture

in analysis. We will improve this estimate in our future work.

Remark 2.2.3. In most cases, (2.30) yields optimal accuracy order, except when k = 1, α1 =

0, β1 = 0, β2 = O(hp2), p2 < 1, where the P ?h is only (k + p2)-th order accurate because

‖Q2‖∞
|Λ| =

|b1+b2|
|Λ| =

|−−4
h2 β2+ 1

2h
|

1
2h

∼ O(hp2−1) in (2.30). This is verified numerically in

Table 2.12.

Remark 2.2.4. If δ/2 > 1, we can show δ/2 = δ′+ 1. This is because |1−λ1| = |1− eiθ| =

2| sin(θ/2)|, and |1 − λN1 | = |1 − eiNθ| = 2| sin(Nθ/2)|. When δ/2 > 1, one can assert that

|1 − λ1| ∼ θ, |1 − λN1 | ∼ Nθ, i.e. δ/2 = δ′ + 1. With this condition, we notice that (2.31)

26



yields an reduction of δ-th order in convergence rate by checking the order of each term. This

order reduction is consistent with numerical experiments in Example 2.4.4.

Now we can summarize the estimation of P ?h for some frequently used flux parameters.

For IPDG scheme with α1 = β2 = 0, β1 = c/h, and DDG scheme discussed in [52] with

α1 = constant, β1 = c/h, β2 = 0, and the more general scale invariant parameter choice

α1 = constant, β1 = c/h, β2 = ch, P ?h always have optimal error estimates. For those

parameters, we can show that the eigenvalues λ1, λ2 are always constants independent of h,

therefore, by Lemma 2.2.3, we will have optimal convergence rate. Corresponding numerical

results are shown in Tables 2.4 and 2.7.

For a natural parameter choice where α1, β1, β2 are all real constants, if β2 6= 0, then P ?h

has first order convergence rate when k = 1 and optimal convergence rate when k > 1 by

Lemma 2.2.3. Corresponding numerical results are shown in Tables 2.3 and 2.12. Lastly, for

central flux α1 = α2 = β1 = β2 = 0, this parameter choice satisfies assumption A3 when

k = 1 and assumption A2 when k > 1, thus we can verify that P ?h has optimal convergence

rate. Corresponding numerical results are shown in Table 2.11.

2.3 Error estimates

In this section, we will derive error estimates of the DG scheme (2.3) for the model NLS

equation (1.1). We will focus on the impact of the choice of the parameters α1, β1, β2 on the

accuracy of the scheme. The error estimates rely on the projection error estimates to obtain

convergence result.

Theorem 2.3.1. Assume that the exact solution u and the nonlinear term f(|u|2) of (1.1)

are sufficiently smooth with bounded derivatives for any time t ∈ (0, Te] and that the nu-
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merical flux parameters in (2.13) satisfy the existence conditions of P ?h in Lemma 2.2.2.

Furthermore, assume εh = u − P ?hu has at least first order convergence rate in L2 and L∞

norm from the results in Lemma 2.2.3. With periodic boundary conditions solution space V kh

(k ≥ 1), the following error estimation holds for uh, which is the numerical solution of (2.3)

with flux (2.13):

‖u− uh‖L2(I)
≤ C? (‖(u− uh)|t=0‖+ ‖(εh)t‖+ ‖εh‖) , (2.32)

where C? depends on k, ‖f‖
W2,∞ , u as well as final time Te, but not on h.

Proof. When P ?h exists, we can decompose the error into two parts.

e = u− uh = u− P ?hu+ P ?hu− uh := εh + ζh.

By Galerkin orthogonality, ∀vh ∈ V kh ,

0 = a(e, vh)− i
∫
I
f(|u|2)uvhdx+ i

∫
I
f(|uh|2)uhvhdx

= a(εh, vh) + a(ζh, vh)− i
∫
I
f(|u|2)uvhdx+ i

∫
I
f(|uh|2)uhvhdx.

By letting vh = ζh and taking conjugate of above equation, we have

a(ζh, ζh) + a(ζh, ζh) (2.33)

=− a(εh, ζh)− a(εh, ζh)− 2

∫
I
f(|u|2)Im(uζh)dx+ 2

∫
I
f(|uh|2)Im(uhζh)dx.
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By Taylor expansion

f(|uh|2) = f(|u|2) + f ′(|u|2)E +
1

2
f̂ ′′E2,

where f̂ ′′ = f ′′(c), c is a value between |uh|2 and |u|2. E = |uh|2 − |u|2 = −2Re(eu) + |e|2.

Therefore, the nonlinear part becomes

∫
I
f(|u|2)Im(uζh)dx−

∫
I
f(|uh|2)Im(uhζh)dx

=

∫
I
f(|uh|2)Im

(
eζh
)

+
(
f(|u|2)− f(|uh|2)

)
Im(uζh)dx

=N1 +N2 +N3,

where

N1 =

∫
I
f(|u|2)Im

(
eζh
)
− f ′(|u|2)EIm(uζh)dx,

N2 =

∫
I
f ′(|u|2)EIm

(
eζh
)
− 1

2
f̂ ′′E2Im(uζh)dx,

N3 =

∫
I

1

2
f̂ ′′E2Im

(
eζh
)
dx,

will be estimated separately as follows.

• N1 and N2 terms.

Since eζh = εhζh + |ζh|2,
∣∣EIm(uζh)

∣∣ =
∣∣∣(−2Re(eu) + |e|2)Im(uζh)

∣∣∣ ≤ C(‖u‖2
L∞(I)

+
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‖u‖L∞(I)‖e‖L∞(I))(|εh|2 + |ζh|2), we have

|N1| ≤ C‖f‖
W1,∞

(
1 + ‖u‖2L∞(I) + ‖u‖L∞(I)‖e‖L∞(I)

)
(‖εh‖2 + ‖ζh‖2),

|N2| ≤ C‖f‖
W2,∞‖E‖L∞(I)

(
1 + ‖u‖2L∞(I) + ‖u‖L∞(I)‖e‖L∞(I)

)
(‖εh‖2 + ‖ζh‖2).

• N3 term.

|N3| ≤ C‖f ′′‖L∞‖E‖2L∞(I)(‖εh‖
2 + ‖ζh‖2).

To conduct a proper estimate for the nonlinear part, we would like to make an a priori

assumption that, for h small enough,

‖e‖ = ‖u− uh‖ ≤ h0.5. (2.34)

By our assumption on P ?h , ‖εh‖Lp(I) ≤ C1h, p = 2,∞, thus ‖ζh‖ ≤ C1h
0.5 and ‖ζh‖L∞(I) ≤

C1 by inverse inequality, then ‖e‖L∞(I) ≤ C1, ‖E‖L∞(I) ≤ C1. Here and below, C1 is a

generic constant that has no dependence on h, but may depend on u according to the lemma

used to estimate εh.

Therefore, we get the estimate:

|N1|+ |N2|+ |N3| ≤ C1(‖εh‖2 + ‖ζh‖2), (2.35)

where C1 depends on ‖f‖
W2,∞ and u.
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For linear part of the right hand side in (2.33), we have

a(εh, ζh) + a(εh, ζh) =

∫
I
(εh)tζh + (εh)tζhdx− i

∫
I
(εh)(ζh)xxdx

+ i

∫
I

(εh)(ζh)xxdx− i
N∑
j=1

(ε̂h[(ζh)x]− (̃εh)x[ζh])|
j+1

2

+ i

N∑
j=1

(ε̂h[(ζh)x]− (̃εh)x[ζh])|
j+1

2
,

= 2

∫
I

Re
(
(εh)tζh

)
dx.

The last equality holds because of the definition of P ?hu. For the left hand side of (2.33), by

similar computation in stability analysis we have

a(ζh, ζh) + a(ζh, ζh) =
d

dt

∫
I
|ζh|2dx. (2.36)

Combine these two equations with (2.35):

d

dt
‖ζh‖2 ≤ ‖(εh)t‖2 + ‖ζh‖2 + C1(‖εh‖2 + ‖ζh‖2).

Assuming ut, u have sufficient smoothness, then by Gronwall’s inequality, we can get:

‖ζh‖2 ≤ C1

(
‖ζh|t=0‖2L2(I)

+ ‖(εh)t‖2 + ‖(εh)‖2
)
,

and we obtain (2.32).

To complete the proof, we shall justify the a priori assumption. To be more precise, we

consider h0, s.t., ∀h < h0, C?h ≤ 1
2h

0.5, where C? is defined in (2.32), dependent on Te, but

not on h. Suppose ∃ t∗ = sup{t : ‖u(t∗)−uh(t∗)‖ ≤ h0.5}, we would have ‖u(t∗)−uh(t∗)‖ =
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h0.5 by continuity if t∗ is finite. By (2.32), we obtain ‖e‖ ≤ C?h ≤ 1
2h

0.5 if t∗ ≤ Te, which

contradicts the definition of t∗. Therefore, t∗ > Te and the a priori assumption is justified.

Remark 2.3.1. If f is a constant function, we can prove the same error estimates without

using the a prixori assumption. Therefore, the assumption that εh = u − P ?hu has at least

first order convergence rate in L2 and L∞ norm is no longer needed.

Moreover, the estimates for ‖εh‖ has been established in Lemma 2.2.3. In other words, the

error of the DG scheme (2.3) has the same accuracy as P ?hu, as long as P ?hu is well-defined

and the numerical initial condition is chosen sufficiently accurate.

2.4 Numerical results

In this subsection, we present numerical experiments to validate our theoretical results.

Particularly, in Section 2.4.1, we provide numerical validations of convergence rate for the

projection P ?h as discussed in Lemma 2.2.3 with focus on the dependence of the errors

on parameters α1, β1, β2 . Section 2.4.2 illustrates the energy conservation property and

validates theoretical convergence rate of DG scheme for NLS equation (1.1).

2.4.1 Numerical results of the projection operator P ?
h

Example 2.4.1. In this example, we focus on local projection where α2
1 + β1β2 = 1

4 , and

verify the conclusions in Lemma 2.2.1 by considering a smooth test function u = cos(x), x ∈

[0, 2π] on a nonuniform mesh and k = 1, 2, 3 for various sets of parameters (α1, β1, β2). The

nonuniform mesh is generated by perturbing the nodes of a uniform mesh of N cells by at

most 10%.
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We first consider two sets of parameters (α1, β1, β2) = (0.3, 0.4, 0.4) and (α1, β1, β2) =

(0.3, 0.4/h, 0.4h). The results with (α1, β1, β2) = (0.3, 0.4, 0.4) are listed in Table 2.3. By

plugging in the parameters into (2.28), we have that when k = 1, the projection has sub-

optimal first order convergence rate, while for k > 1, optimal (k + 1)-th order convergence

rate should be achieved. For k = 1, Γj = β1 − 1
h , which does not depend on β2 any more.

This technical difference cause the discrepancy of the convergence order between k = 1 and

k > 1 in Table 2.3. Results in Table 2.3 agree well with the theoretical prediction. On the

other hand, when we choose parameters (α1, β1, β2) = (0.3, 0.4/h, 0.4h), by Lemma 2.2.3, we

should observe optimal convergence rate for all k ≥ 1, and this is verified by the numerical

results in Table 2.4.

In [16], we also proved that P ?h is superclose to P 1
h when β2 = 0, α1 = ±1

2 and β2/Γj ∼

o(1). We choose the parameters as (α1, β1, β2) = (0.5, 1, 0) to verify this claim, i.e., the

difference between P ?h and P 1
h can have convergence rates higher than k+ 1. The results are

listed in Table 2.5. The difference of the two projections is indeed of (k+ 2)-th order for any

k ≥ 1 in all norms.

Table 2.3: Example 2.4.1. Error of local projection P ?hu − u on a nonuniform mesh. Flux
parameters: α1 = 0.3, β1 = 0.4, β2 = 0.4.

N L1 error order L2 error order L∞ error order

P 1

160 1.98E-02 - 1.56E-02 - 1.81E-02 -
320 9.98E-03 0.99 7.87E-03 0.99 9.20E-03 0.97
640 5.01E-03 0.99 3.95E-03 0.99 4.55E-03 1.02
1280 2.51E-03 1.00 1.98E-03 1.00 2.27E-03 1.00

P 2

160 2.18E-06 - 1.91E-06 - 3.73E-06 -
320 2.71E-07 3.01 2.39E-07 3.00 5.14E-07 2.86
640 3.37E-08 3.01 2.97E-08 3.01 6.71E-08 2.94
1280 4.19E-09 3.01 3.69E-09 3.01 7.99E-09 3.07

P 3

160 2.82E-09 - 2.45E-09 - 5.67E-09 -
320 1.76E-10 4.00 1.53E-10 4.00 3.76E-10 3.92
640 1.10E-11 4.00 9.50E-12 4.01 2.25E-11 4.06
1280 6.86E-13 4.00 5.93E-13 4.00 1.46E-12 3.95
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Table 2.4: Example 2.4.1. Error of local projection P ?hu − u on a nonuniform mesh. Flux
parameters: α1 = 0.3, β1 = 0.4/h, β2 = 0.4h.

N L1 error order L2 error order L∞ error order

P 1

160 3.42E-04 - 3.50E-04 - 8.62E-04 -
320 8.55E-05 2.00 8.75E-05 2.00 2.21E-04 1.96
640 2.14E-05 2.00 2.19E-05 2.00 5.45E-05 2.02
1280 5.34E-06 2.00 5.47E-06 2.00 1.36E-05 2.00

P 2

160 6.36E-06 - 6.06E-06 - 2.06E-05 -
320 8.17E-07 2.96 7.99E-07 2.92 3.09E-06 2.73
640 1.02E-07 3.00 1.00E-07 2.99 4.51E-07 2.78
1280 1.27E-08 3.01 1.24E-08 3.02 5.12E-08 3.14

P 3

160 3.32E-09 - 2.93E-09 - 7.58E-09 -
320 2.08E-10 4.00 1.83E-10 4.00 5.08E-10 3.90
640 1.30E-11 4.00 1.14E-11 4.01 3.04E-11 4.06
1280 8.09E-13 4.00 7.12E-13 4.00 1.99E-12 3.93

Table 2.5: Example 2.4.1. Difference of local projection P ?h with P 1
h : P ?hu − P 1

hu on a
nonuniform mesh. Flux parameters: α1 = 0.5, β1 = 1, β2 = 0.

N L1 error order L2 error order L∞ error order

P 1

160 2.09E-05 - 1.96E-05 - 4.66E-05 -
320 2.56E-06 3.03 2.40E-06 3.03 5.99E-06 2.96
640 3.17E-07 3.01 2.96E-07 3.02 7.17E-07 3.06
1280 3.94E-08 3.01 3.67E-08 3.01 9.11E-08 2.98

P 2

160 5.00E-09 - 5.05E-09 - 1.82E-08 -
320 3.14E-10 3.99 3.21E-10 3.98 1.28E-09 3.83
640 1.96E-11 4.00 2.00E-11 4.00 8.56E-11 3.90
1280 1.22E-12 4.01 1.24E-12 4.01 5.02E-12 4.09

P 3

160 2.91E-12 - 3.38E-12 - 1.40E-11 -
320 9.11E-14 5.00 1.06E-13 5.00 4.72E-13 4.89
640 2.84E-15 5.00 3.27E-15 5.01 1.40E-14 5.08
1280 8.84E-17 5.00 1.02E-16 5.00 4.63E-16 4.92

Example 2.4.2. In this example, we consider global projection when the parameter choices

satisfy assumption A1. We consider a smooth test function u = ecos(x) on [0, 2π] with a

uniform mesh of size h = 2π/N and k = 1, 2, 3 for various sets of parameters (α1, β1, β2).

We first test the situation when limh→0 |λ1, λ2| 6= 1 by setting the parameters (α1, β̃1, β̃2)

= (0.25, 1, 1), p1 = −0.5, p2 = 2. Another example is (α1, β1, β2) = (0, 1
2h , h), for which the

eigenvalues λ1, λ2 are constant dependent on k but not h. These two parameter choices

belong to A1.1 and A1.5, respectively. The numerical results shown in Tables 2.6 and 2.7
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verify the optimal (k + 1)-th order convergence rate predicted by (2.29).

Then we test the situation when limh→0 |λ1, λ2| = 1 by using two sets of parame-

ters (α1, β̃1, β̃2) = (0.25,
k(k−1)

2 +
k(k+1)

8 , 1), p1 = −1, p2 = 2, 3, and (α1, β̃1, β̃2) =

(0.25, 2
k(k−1)

, 1), p1 = −2,−3, p2 = 1. The first set of parameters belongs to A1.6.1 and

we can verify that limh→0 λ1, λ2 = (−1)k. (2.29) and Algorithm 2.2 imply (k + 2 − p2)-th

convergence order. The numerical results listed in Table 2.8 show that the expected order

reduction only happens when limh→0 λ1, λ2 = 1, but not for limh→0 λ1, λ2 = −1. The second

set of parameters belongs to A1.7.2 and we can verify that limh→0 λ1, λ2 = (−1)k+1. (2.29)

and Algorithm 2.2 imply (k + 2 + p1)-th convergence order. The numerical results listed in

Table 2.9 also show that order reduction is only observed when limh→0 λ1, λ2 = 1.

Lastly, we test (α1, β̃1, β̃2) = (0.25,−1, 1
12) with k = 2, p1 = −2,−3, p2 = 1, where our

theoretical results predict accuracy order of (k + 2 + p1), but numerical experiments show

the order to be (k + 3 + p1) in Table 2.10. This is one of the exceptions that (2.29) is not

sharp and has been commented in Remark 2.2.2.

Table 2.6: Example 2.4.2. Error of global projection P ?hu − u. Flux parameters: α1 =

0.25, β̃1 = 1, β̃2 = 1, p1 = −0.5, p2 = 2. (A1.1)

N L1 error order L2 error order L∞ error order

P 1

160 0.10E-03 - 0.69E-03 - 0.89E-03 -
320 0.26E-04 1.93 0.18E-03 1.93 0.23E-03 1.94
640 0.67E-05 1.98 0.46E-04 1.97 0.58E-04 1.98
1280 0.17E-05 1.99 0.12E-04 1.99 0.15E-04 2.00

P 2

160 0.63E-06 - 0.52E-05 - 0.87E-05 -
320 0.88E-07 2.85 0.71E-06 2.88 0.11E-05 2.95
640 0.11E-07 2.95 0.91E-07 2.97 0.14E-06 3.00
1280 0.14E-08 2.99 0.11E-07 2.99 0.17E-07 3.01

P 3

320 0.64E-10 - 0.49E-09 - 0.72E-09 -
640 0.45E-11 3.82 0.35E-10 3.80 0.52E-10 3.79
1280 0.29E-12 3.93 0.23E-11 3.91 0.34E-11 3.92
2560 0.19E-13 3.97 0.15E-12 3.96 0.22E-12 3.96

Example 2.4.3. In this example, we consider global projection when the parameter choices
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Table 2.7: Example 2.4.2. Error of global projection P ?hu−u. Flux parameters: α1 = 0, β1 =
1

2h , β2 = h. (A1.5)

N L1 error order L2 error order L∞ error order

P 1

320 0.11E-03 - 0.63E-03 - 0.38E-03 -
640 0.28E-04 2.00 0.16E-03 2.00 0.95E-04 2.00
1280 0.70E-05 2.00 0.39E-04 2.00 0.24E-04 2.00
2560 0.18E-05 2.00 0.98E-05 2.00 0.60E-05 2.00

P 2

320 0.11E-06 - 0.71E-06 - 0.62E-06 -
640 0.14E-07 3.00 0.89E-07 3.00 0.77E-07 3.00
1280 0.18E-08 3.00 0.11E-07 3.00 0.96E-08 3.00
2560 0.22E-09 3.00 0.14E-08 3.00 0.12E-08 3.00

P 3

320 0.38E-10 - 0.25E-09 - 0.22E-09 -
640 0.24E-11 4.00 0.16E-10 4.00 0.14E-10 4.00
1280 0.15E-12 4.00 0.99E-12 4.00 0.86E-12 4.00
2560 0.92E-14 4.00 0.62E-13 4.00 0.54E-13 3.99

Table 2.8: Example 2.4.2. Error of global projection P ?hu − u. Flux parameters: α1 =

0.25, β̃1 =
k(k−1)

2 +
k(k+1)

8 , β̃2 = 1.0, p1 = −1, p2 = 2, 3. Note here limh→0 λ1, λ2 = (−1)k.
(A1.6.1)

N L1 error order L2 error order L∞ error order

P 1

p2 = 2
β̃1 = 1

4

640 0.75E-05 - 0.52E-04 - 0.66E-04 -
1280 0.19E-05 1.97 0.13E-04 1.97 0.17E-04 1.97
2560 0.48E-06 1.99 0.34E-05 1.98 0.42E-05 1.99
5120 0.12E-06 1.99 0.84E-06 1.99 0.11E-05 1.99

P 2

p2 = 2
β̃1 = 7

4

640 0.15E-06 - 0.12E-05 0.23E-05 -
1280 0.39E-07 1.94 0.32E-06 1.93 0.61E-06 1.94
2560 0.98E-08 1.97 0.82E-07 1.97 0.16E-06 1.97
5120 0.25E-08 1.98 0.21E-07 1.98 0.39E-07 1.99

P 2

p2 = 3
β̃1 = 7

4

640 0.14E-04 - 0.12E-03 - 0.21E-03 -
1280 0.71E-05 1.00 0.58E-04 1.00 0.11E-03 1.00
2560 0.35E-05 1.00 0.29E-04 1.00 0.54E-04 1.00
5120 0.18E-05 1.00 0.15E-04 1.00 0.27E-04 1.00

P 3

p2 = 2
β̃1 = 9

2

320 0.12E-09 - 0.95E-09 - 0.20E-08 -
640 0.78E-11 3.99 0.60E-10 3.99 0.13E-09 3.99
1280 0.49E-12 3.99 0.38E-11 3.99 0.80E-11 3.99
2560 0.31E-13 4.00 0.24E-12 3.99 0.51E-12 3.97

are similar to central fluxes, and satisfy assumptions A1 and A2, for smooth function u =

ecos(x) on [0, 2π] with a uniform mesh of size h = 2π/N and k = 1, 2, 3.

For central flux (α1, β1, β2) = (0, 0, 0), Γ = −k
2

2h ,Λ = k
2h . If k > 1,

|Γ|
|Λ| = k > 1, flux

parameters satisfy to assumption A1, and if k = 1, Γ = −Λ and flux parameters satisfy
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Table 2.9: Example 2.4.2. Error of global projection P ?hu− u. Flux parameters: α1 = 0.25,

β̃1 = 1, β̃2 = 1
2k(k−1)

, p1 = −2,−3, p2 = 1. Note here limh→0 λ1, λ2 = (−1)k+1. (A1.7.2)

N L1 error order L2 error order L∞ error order

P 2

p1 = −3
β̃2 = 1

4

320 0.28E-07 - 0.21E-06 - 0.24E-06 -
640 0.35E-08 3.00 0.27E-07 3.00 0.31E-07 3.00
1280 0.44E-09 3.00 0.33E-08 3.00 0.38E-08 3.00
2560 0.55E-10 3.00 0.41E-09 3.00 0.48E-09 3.00

P 3

p1 = −2
β̃2 = 1

12

320 0.70E-08 - 0.57E-07 - 0.12E-06 -
640 0.94E-09 2.90 0.77E-08 2.90 0.16E-07 2.91
1280 0.12E-09 2.95 0.99E-09 2.95 0.20E-08 2.95
2560 0.15E-10 2.98 0.13E-09 2.98 0.26E-09 2.98

P 3

p1 = −3
β̃2 = 1

12

320 0.16E-06 - 0.13E-05 - 0.24E-05 -
640 0.40E-07 2.00 0.32E-06 2.00 0.61E-06 2.00
1280 0.10E-07 2.00 0.79E-07 2.00 0.15E-06 2.00
2560 0.25E-08 2.00 0.20E-07 2.00 0.38E-07 2.00

Table 2.10: Example 2.4.2. Error of global projection P ?hu − u. Flux parameters: α1 =

0.25, β̃1 = −1, β̃2 = 1
2k(k+1)

, p1 = −2,−3, p2 = 1. Note that limh→0 λ1, λ2 = 1. (A1.7.2)

N L1 error order L2 error order L∞ error order

P 2

p1 = −2
β̃2 = 1

12

320 0.72E-07 2.99 0.56E-06 2.98 0.94E-06 2.97
640 0.90E-08 2.99 0.71E-07 2.99 0.12E-06 2.99
1280 0.11E-08 3.00 0.89E-08 3.00 0.15E-07 2.99
2560 0.14E-09 3.00 0.11E-08 3.00 0.19E-08 3.00

P 2

p1 = −3
β̃2 = 1

12

320 0.80E-06 2.01 0.63E-05 2.01 0.12E-04 2.01
640 0.20E-06 2.00 0.16E-05 2.00 0.30E-05 2.00
1280 0.50E-07 2.00 0.39E-06 2.00 0.75E-06 2.00
2560 0.13E-07 2.00 0.98E-07 2.00 0.19E-06 2.00

to assumption A2. We conclude that P ?h exists and is unique for k = 1 when N is odd

and k > 1 for arbitrary N. P ?h has optimal error estimates as proved in Lemma 2.2.3. Our

numerical test in Table 2.11 demonstrates optimal convergence rate for all k.

A similar flux is (α1, β1, β2) = (0, 0, 1). When k = 1, this flux parameter set satisfies

assumption A2 and (2.30) yields first order convergence rate as discussed in Remark 2.2.3.

When k = 2, 3, similar to central flux, this parameter choice satisfies assumption A1, showing

optimal convergence rate. The numerical test in Table 2.12 verifies the theoretical results.

Example 2.4.4. In this example, we consider global projection when the parameter choices
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Table 2.11: Example 2.4.3. Error of global projection P ?hu− u. (Central flux) Flux param-
eters: α1 = 0, β1 = 0, β2 = 0.

N L1 error order L2 error order L∞ error order

P 1

93 0.12E-03 - 0.74E-03 - 0.55E-03 -
279 0.13E-04 2.00 0.82E-04 2.00 0.61E-04 2.00
837 0.15E-05 2.00 0.91E-05 2.00 0.68E-05 2.00
2511 0.17E-06 2.00 0.10E-05 2.00 0.76E-06 2.00

P 2

160 0.11E-05 - 0.85E-05 - 0.10E-04 -
320 0.14E-06 3.00 0.11E-05 3.00 0.13E-05 2.99
640 0.17E-07 3.00 0.13E-06 3.00 0.16E-06 3.00
1280 0.22E-08 3.00 0.17E-07 3.00 0.20E-07 3.00

P 3

160 0.11E-08 - 0.83E-08 - 0.11E-07 -
320 0.68E-10 4.00 0.52E-09 4.00 0.68E-09 4.00
640 0.42E-11 4.00 0.32E-10 4.00 0.42E-10 4.00
1280 0.27E-12 4.00 0.20E-11 4.00 0.26E-11 4.00

Table 2.12: Example 2.4.3. Error of global projection P ?hu − u. Flux parameters: α1 =
0, β1 = 0, β2 = 1.

N L1 error order L2 error order L∞ error order

P 1

93 0.21E-01 - 0.12E+00 - 0.68E-01 -
279 0.72E-02 1.00 0.40E-01 1.00 0.23E-01 1.00
837 0.24E-02 1.00 0.13E-01 1.00 0.75E-02 1.00
2511 0.80E-03 1.00 0.44E-02 1.00 0.25E-02 1.00

P 2

160 0.11E-05 - 0.86E-05 - 0.10E-04 -
320 0.14E-06 3.00 0.11E-05 3.00 0.13E-05 3.00
640 0.17E-07 3.00 0.13E-06 3.00 0.16E-06 3.00
1280 0.22E-08 3.00 0.17E-07 3.00 0.20E-07 3.00
2560 0.27E-09 3.00 0.21E-08 3.00 0.25E-08 3.00

P 3

160 0.27E-08 - 0.23E-07 - 0.36E-07 -
320 0.17E-09 4.00 0.14E-08 4.00 0.22E-08 4.00
640 0.11E-10 4.00 0.89E-10 4.00 0.14E-09 4.00
1280 0.66E-12 4.00 0.55E-11 4.00 0.87E-11 4.00

satisfy assumption A3 for the smooth function u = ecos(x) on [0, 2π] with uniform mesh size

h = 2π/N and k = 1, 2, 3.

An example of A3 is shown in Table 2.13, where the parameters are (α1, β̃1, β̃2) =

(0.25,−1, 1
2k(k−1)

), p1 = −2,−3, p2 = 1, similar to the parameters in Table 2.9. The

asymptotic behavior of λ1, λ2 when h approaches 0 is indeed similar to Table 2.9, that is,

|λ1, λ2| = 1 + O(h−(p1+1)/2) and limh→0 λ1, λ2 = (−1)k+1. Same as previous examples,
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order reductions are only observed when limh→0 λ1, λ2 = 1, that is for k = 3.

We performed more numerical results under assumption A3, and all are similar to those

of A1 as long as the eigenvalues λ1, λ2 are approaching 1 at the same rate. Hence, we will

not show more examples under assumption A3.

Table 2.13: Example 2.4.4. Error of global projection P ?hu − u. Flux parameters (A3, and

similar to A1.7.2 in Table 2.9): α1 = 0.25, β̃1 = −1, β̃2 = 1
2k(k−1)

, p1 = −2,−3, p2 = 1.

Note here limh→0 λ1, λ2 = (−1)k+1.

N L1 error order L2 error order L∞ error order

P 2

p1 = −3
β̃2 = 1

4

320 0.28E-07 - 0.21E-06 - 0.24E-06 -
640 0.35E-08 3.00 0.27E-07 3.00 0.31E-07 3.00
1280 0.44E-09 3.00 0.33E-08 3.00 0.38E-08 3.00
2560 0.55E-10 3.00 0.41E-09 3.00 0.48E-09 3.00

P 3

p1 = −2
β̃2 = 1

12

320 0.70E-08 - 0.57E-07 - 0.12E-06 -
640 0.94E-09 2.90 0.77E-08 2.90 0.16E-07 2.91
1280 0.12E-09 2.95 0.99E-09 2.95 0.20E-08 2.95
2560 0.15E-10 2.98 0.13E-09 2.98 0.26E-09 2.98

P 3

p1 = −3
β̃2 = 1

12

320 0.16E-06 - 0.13E-05 - 0.24E-05 -
640 0.40E-07 2.00 0.32E-06 2.00 0.61E-06 2.00
1280 0.10E-07 2.00 0.79E-07 2.00 0.15E-06 2.00
2560 0.25E-08 2.00 0.20E-07 2.00 0.38E-07 2.00

2.4.2 Numerical results of the DG scheme

In this subsection, we show the numerical results of the DG scheme applied to the NLS

equation. For the time discretization, we use third order IMEX Runge-Kutta method [5]

and fix ∆t = 1/10000, which is small enough to guarantee that the spatial errors dominate.

To be more precise, we treat the DG discretization of linear term uxx implicitly and nonlinear

term f(|u|2)u explicitly.

Example 2.4.5. In this example, we verify the energy conservation property of our scheme
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by considering the following linear equation

iut + uxx = 0,

with the progressive plane wave solution: u(x, t) = Aexp(i(x− t)), with A = 1.

We use L2 projection as the numerical initial condition. In the discussion of stabil-

ity condition, we derive that when Imβ2 ≥ 0, Imβ1 ≤ 0, |α1 + α2|2 ≤ −4Imβ1Imβ2, our

scheme for Schrödinger equation is stable. Furthermore, when α1 + α2 = 0, β1, β2 are real

numbers, the scheme is energy conservative. In this example, we compare two different

parameter choices to verify the energy conservation property. The parameter choices are

(α1, α2, β1, β2) = (0.25,−0.25, 1 − i, 1 + i), and (α1, α2, β1, β2) = (0.25,−0.25, 1, 1) when

k = 2, N = 40, ending time T = 100. Both are numerically stable flux parameters. For the

first set of parameters, we expect energy decay due to the contributions from the imaginary

part of β1, β2 as in (2.11). For the second set of parameter, energy should be conserved.

In Fig. 2.2, we verify that as t increases from 0 to 100, the flux with only real parameters

preserve ‖uh‖, while the flux with complex numbers have much larger errors. More precisely,

for real parameters, ‖uh(0, ·)‖−‖uh(100, ·)‖ = 7.9E-09, for complex parameters, ‖uh(0, ·)‖−

‖uh(100, ·)‖ = 5.7E-04.

Example 2.4.6. Accuracy test for NLS equation

iut + uxx + |u|2u+ |u|4u = 0, (2.37)

which admits a progressive plane wave solution: u(x, t) = Aexp(i(cx − ωt)), where ω =

c2 − |A|2 − |A|4 with c = 1, A = 1.
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Figure 2.2: Example 2.4.5. Absolute difference of ‖uh(t, ·)‖ with ‖uh(0, ·)‖ with two
sets of parameters (α1, α2, β1, β2) = (0.25,−0.25, 1 − i, 1 + i) (denoted by “imag”) and
(α1, α2, β1, β2) = (0.25,−0.25, 1, 1) (denoted by “real”) when k = 2, N = 40, ending time
Te = 100.

For numerical initial condition, P ?h is used when applicable, otherwise standard L2 pro-

jection is applied. On uniform mesh, we use four sets of parameters. The numerical errors

and orders are shown in Tables 2.14 - 2.19, where corresponding projection results are listed

in Tables 2.3, 2.4, 2.11, 2.12, 2.8 and 2.10 respectively. Our numerical experiments show

that the order of convergence for the scheme is the same as the order of error estimates for

the projection P ?h .

We would like to make some additional comments on Tables 2.16 and 2.17, whose pa-

rameter choices satisfy assumption A2 when k = 1. The existence of P ?h requires N to be

odd for this parameter assumption. However, this assumption is not needed for the optimal

convergence rate of the numerical scheme for (2.37) as shown in Tables 2.16 and 2.17. Similar

comments have been made in [6].
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Table 2.14: Example 2.4.6. Error in L1, L2 and L∞ norm for solving NLS equation (2.37)
on a nonuniform mesh using flux parameters (corresponding to Table 2.3) α1 = 0.3, β1 =
β2 = 0.4, ending time Te = 0.3.

N L1 error order L2 error order L∞ error order

P 1

40 2.86E-02 - 2.48E-02 - 3.92E-02 -
80 1.26E-02 1.18 1.02E-02 1.28 1.56E-02 1.33
160 6.34E-03 1.00 4.99E-03 1.03 6.77E-03 1.20
320 3.18E-03 1.00 2.56E-03 0.96 3.47E-03 0.96
640 1.58E-03 1.01 1.27E-03 1.01 1.85E-03 0.91

P 2

40 2.22E-04 - 2.13E-04 - 6.06E-04 -
80 1.99E-05 3.48 2.13E-05 3.33 7.28E-05 3.06
160 3.17E-06 2.65 3.03E-06 2.81 9.01E-06 3.02
320 3.49E-07 3.18 3.34E-07 3.18 1.23E-06 2.87

P 3

40 1.54E-06 - 1.35E-06 - 3.29E-06 -
80 4.96E-08 4.96 4.36E-08 4.95 1.29E-07 4.67
160 2.81E-09 4.14 2.60E-09 4.07 8.37E-09 3.95
320 1.61E-10 4.13 1.57E-10 4.05 7.68E-10 3.45

Table 2.15: Example 2.4.6. Error in L1, L2 and L∞ norm for solving NLS equation (2.37)
on a nonuniform mesh using flux parameters (corresponding to Table 2.4) α1 = 0.3, β1 =
0.4h, β2 = 0.4/hj , ending time Te = 1.

N L1 error order L2 error order L∞ error order

P 1

40 7.47E-03 - 6.50E-03 - 1.29E-02 -
80 2.10E-03 1.83 1.76E-03 1.89 4.22E-03 1.62
160 4.82E-04 2.12 4.18E-04 2.07 1.16E-03 1.86
320 1.21E-04 1.99 1.05E-04 1.99 2.87E-04 2.01
640 3.12E-05 1.96 2.71E-05 1.95 7.40E-05 1.96

P 2

40 5.14E-04 - 5.37E-04 - 1.74E-03 -
80 6.81E-05 2.92 7.00E-05 2.94 2.99E-04 2.54
160 8.04E-06 3.08 8.06E-06 3.12 3.58E-05 3.06
320 9.53E-07 3.08 9.75E-07 3.05 3.92E-06 3.19
640 1.68E-07 2.50 1.61E-07 2.60 4.90E-07 3.00

P 3

40 1.30E-06 - 1.25E-06 - 4.09E-06 -
80 5.74E-08 4.51 6.00E-08 4.38 2.60E-07 3.98
160 4.44E-09 3.69 4.12E-09 3.86 1.49E-08 4.13
320 2.25E-10 4.30 2.13E-10 4.28 9.65E-10 3.94

Example 2.4.7. A simulation for the NLS equation

iut + uxx + 2|u|2u = 0 (2.38)
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Table 2.16: Example 2.4.6. Error in L1, L2 and L∞ norm for solving NLS equation (2.37)
using central flux (corresponding to A2 in Table 2.11) α1 = β1 = β2 = 0, ending time Te = 1.

N L1 error order L2 error order L∞ error order

P 1

40 0.28E-02 - 0.22E-02 - 0.27E-02 -
80 0.71E-03 2.00 0.56E-03 2.00 0.67E-03 2.02
160 0.18E-03 2.00 0.14E-03 2.00 0.17E-03 2.01
320 0.45E-04 2.00 0.35E-04 2.00 0.41E-04 2.00
640 0.11E-04 2.00 0.88E-05 2.00 0.10E-04 2.00

P 2

40 0.13E-03 - 0.11E-03 - 0.16E-03 -
80 0.16E-04 2.99 0.14E-04 2.99 0.20E-04 3.00
160 0.21E-05 3.00 0.18E-05 3.00 0.25E-05 3.01
320 0.26E-06 3.00 0.22E-06 3.00 0.31E-06 3.00
640 0.32E-07 3.00 0.27E-07 3.00 0.39E-07 3.00

P 3

40 0.22E-06 - 0.18E-06 - 0.24E-06 -
80 0.16E-07 3.76 0.13E-07 3.80 0.13E-07 4.16
160 0.10E-08 4.00 0.79E-09 4.00 0.84E-09 4.00
320 0.62E-10 4.00 0.49E-10 4.00 0.52E-10 4.00
640 0.39E-11 3.99 0.31E-11 3.99 0.33E-11 3.96

Table 2.17: Example 2.4.6. Error in L1, L2 and L∞ norm for solving NLS equation (2.37)
using flux parameters (corresponding to A2 in Table 2.12): α1 = β1 = 0, β2 = 1, ending
time Te = 1.

N L1 error order L2 error order L∞ error order

P 1

40 0.17E+00 - 0.13E+00 - 0.14E+00 -
80 0.92E-01 0.90 0.72E-01 0.89 0.75E-01 0.87
160 0.48E-01 0.94 0.38E-01 0.94 0.38E-01 0.97
320 0.24E-01 0.97 0.19E-01 0.97 0.19E-01 0.98
640 0.12E-01 0.98 0.97E-02 0.98 0.98E-02 0.99

P 2

40 0.13E-03 - 0.11E-03 - 0.17E-03 -
80 0.16E-04 3.00 0.14E-04 3.00 0.20E-04 3.02
160 0.21E-05 3.00 0.18E-05 3.00 0.25E-05 3.01
320 0.26E-06 3.00 0.22E-06 3.00 0.31E-06 3.01
640 0.32E-07 3.00 0.27E-07 3.00 0.39E-07 3.00

P 3

40 0.68E-06 - 0.56E-06 - 0.83E-06 -
80 0.42E-07 4.00 0.35E-07 4.01 0.51E-07 4.01
160 0.26E-08 4.00 0.22E-08 4.00 0.32E-08 4.00
320 0.16E-09 4.00 0.14E-09 4.00 0.20E-09 4.00
640 0.10E-10 4.00 0.85E-11 4.00 0.13E-10 4.00

with double-soliton collision

u(x, t) = sech(x+ 10− 4t) exp(i(2(x+ 10)− 3t)) + sech(x− 10 + 4t) exp(i(−2(x− 10)− 3t)).

(2.39)
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Table 2.18: Example 2.4.6. Error in L1, L2 and L∞ norm for solving NLS equation (2.37)

using flux parameters (corresponding to A1.6.1 in Table 2.8): α1 = 0.25, β̃1 =
k(k−1)

2 +
k(k+1)

8 , β̃2 = 1.0, p1 = −1, p2 = 2, 3, ending time Te = 1.

N L1 error order L2 error order L∞ error order

P 1

p2 = 2
β̃1 = 1

4

40 0.41E-02 - 0.37E-02 - 0.72E-02 -
80 0.12E-02 1.77 0.10E-02 1.82 0.21E-02 1.80
160 0.31E-03 1.93 0.25E-03 2.05 0.39E-03 2.39
320 0.87E-04 1.86 0.69E-04 1.87 0.10E-03 1.94
640 0.23E-04 1.93 0.18E-04 1.94 0.26E-04 1.97

P 2

p2 = 2
β̃1 = 7

4

40 0.49E-04 - 0.49E-04 - 0.13E-03 -
80 0.83E-05 2.55 0.73E-05 2.74 0.14E-04 3.23
160 0.31E-05 1.44 0.29E-05 1.32 0.65E-05 1.12
320 0.95E-06 1.69 0.92E-06 1.69 0.20E-05 1.70
640 0.26E-06 1.85 0.25E-06 1.86 0.55E-06 1.87

P 2

p2 = 3
β̃1 = 7

4

40 0.36E-03 - 0.34E-03 - 0.74E-03 -
80 0.21E-03 0.78 0.20E-03 0.76 0.43E-03 0.77
160 0.11E-03 0.92 0.11E-03 0.92 0.23E-03 0.92
320 0.56E-04 1.00 0.53E-04 1.00 0.11E-03 0.99
640 0.28E-04 1.00 0.27E-04 1.00 0.58E-04 1.00

P 3

p2 = 2
β̃1 = 9

2

40 0.19E-05 - 0.19E-05 - 0.43E-05 -
80 0.43E-07 5.50 0.38E-07 5.65 0.84E-07 5.66
160 0.15E-08 4.88 0.15E-08 4.68 0.26E-08 5.00
320 0.91E-10 4.00 0.90E-10 4.02 0.17E-09 3.94
640 0.58E-11 3.96 0.57E-11 3.99 0.11E-10 3.98

Table 2.19: Example 2.4.6. Error in L1, L2 and L∞ norm for solving NLS equation (2.37)
using flux parameters (corresponding to A1.7.2 in Table 2.10): α1 = 0.25, β̃1 = −1, β̃2 =

1
2k(k+1)

, p1 = −2,−3, p2 = 1, ending time Te = 1.

N L1 error order L2 error order L∞ error order

P 2

p1 = −2
β̃1 = 1

12

40 0.60E-04 - 0.54E-04 - 0.95E-04 -
80 0.76E-05 2.99 0.68E-05 2.98 0.12E-04 2.96
160 0.96E-06 3.00 0.85E-06 3.00 0.15E-05 2.99
320 0.12E-06 3.00 0.11E-06 3.00 0.19E-06 2.99
640 0.15E-07 3.00 0.13E-07 3.00 0.24E-07 3.00

P 2

p1 = −3
β̃1 = 1

12

40 0.95E-04 - 0.85E-04 - 0.15E-03 -
80 0.21E-04 2.22 0.18E-04 2.20 0.33E-04 2.18
160 0.49E-05 2.08 0.44E-05 2.07 0.79E-05 2.06
320 0.12E-05 2.02 0.11E-05 2.02 0.20E-05 2.02
640 0.29E-06 2.02 0.27E-06 2.02 0.48E-06 2.02

We use periodic boundary condition and L2 projection initialization to run the simulation

for double-soliton collision solution. The two waves propagate in opposite directions and
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collide at t = 2.5, after that, the two waves separate. Such behaviors are accurately captured

by our numerical simulations, see Figure 2.3 for details.
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Figure 2.3: Example 2.4.7. Double soliton collision graphs at t = 0, 2.5, 5 and a x− t plot of
the numerical solution. N = 250, P 2 elements with periodic boundary conditions on [-25,25].
Central flux (α1 = β1 = β2 = 0) is used.
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Chapter 3

Superconvergence analysis of UWDG

method on linear Schrödinger

equation

In this chapter, we study the superconvergence properties of the UWDG method on solving

the following linear Schrödinger equation:

iut + uxx = 0, (x, t) ∈ I × (0, Te],

u(x, 0) = u0(x),

(3.1)

where I = [a, b] and periodic boundary condition. We consider solving the equation with scale

invariant flux parameters. Such choice include all commonly used fluxes, e.g. alternating,

central, DDG and interior penalty DG (IPDG) fluxes.

We study the superconvergence property in two types. One type is the superconvergence

of cell averages, numerical fluxes, solution at special points and superconvergence towards the

projection P ?h in Chapter 2. Depending on the flux choices and the evenness of oddness of the

polynomial degree k, we obtain 2k or (2k−1)-th order superconvergence rate for cell averages

and numerical flux of the function, as well as (2k−1) or (2k−2)-th order for numerical flux of

derivative. The proof relies on the correction function techniques for second order derivatives
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applied to [10] for DDG methods for diffusion problems. We also prove the UWDG solution

is superconvergent with a rate of k + 3 to the projection P ?h we introduced in Chapter 2

if k ≥ 3. At interior points whose locations are determined by roots of certain polynomials

associated with the flux parameters, we show that the function values and the first and

second order derivatives of the DG solution are superconvergent with order k + 2, k + 1, k,

respectively. Compared with [10] for solving diffusion problems, Schrödinger equation poses

unique challenges for superconvergence proof because of the lack of the dissipation mechanism

from the equation. One major highlight of our proof is that we introduce specially chosen

test functions in the error equation and show the superconvergence of the second derivative

and jump across the cell interfaces of the difference between numerical solution and projected

exact solution. This technique was originally proposed in [19] and is essential to elevate the

convergence order for our analysis.

Another type of superconvergence is by postprocessing the UWDG solution such that

the postprocessed solution is convergent faster than original solution. We introduce a dual

problem and prove (2k)-th order negative norm estimate. The order is one order less than

that in hyperbolic equations, due to the ultra-weak formulation which has boundary term of

the product of derivatives and function values. With the negative norm estimates and divided

difference estimates, we prove the (2k)-th order superconvergence rate for the postprocessed

solution.

The rest of this chapter is organized as follows. In Section 3.1, we recall the UWDG

scheme for linear Schrödinger equations and define some new notations. In Section 3.2, we

restate the projection results in Section 2.2 under scale invariant parameters and introduce

another related projection. Section 3.3 contains the superconvergence results of the UWDG

solution in various quantities. In Section 3.5, we provide numerical tests verifying theoretical
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results. Some technical proof is provided in the Appendix.

The major contents of this chapter has been published in [15].

3.1 Numerical scheme

In this chapter, the semi-discrete UWDG scheme for solving linear Schrödinger equation is

defined as follows: solve for the unique function uh = uh(t) ∈ V kh , k ≥ 1, t ∈ (0, Te], such

that

aj(uh, vh) = 0, ∀j ∈ ZN (3.2)

holds for all vh ∈ V kh , where aj is defined in (2.6) and the numerical fluxes are defined in

(2.14).

Some commonly used fluxes take the following choices of parameters.

• central flux, α1 = β1 = β2 = 0;

• alternating flux, α1 = ±1
2 , β1 = β2 = 0;

• IPDG like flux, α1 = β2 = 0, β1 = β̃1h
−1;

• DDG like flux, α1 = α̃1, β2 = 0, β1 = β̃1h
−1;

• more generally, any scale invariant flux, α1 = α̃1, β1 = β̃1h
−1, β2 = β̃2h;

where α̃1, β̃1, β̃2 are prescribed constants independent of mesh size. In this chapter, we will

only consider scale invariant flux choices.

Compared with discretization for diffusion equations, we don’t have any extra diffusion

term in (2.10) to help with the estimates. Therefore, superconvergence error estimates are

more challenging compared with [10].
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To facilitate the discussion, we introduce notations that will be used in this chapter.

Similar to [12], we define operator D−1 for any integrable function v on Ij by

D−1v(x) =
2

hj

∫ x

x
j−1

2

v(x)dx =

∫ ξ

−1
v̂(ξ)dξ, x ∈ Ij . (3.3)

Using the property of Legendre polynomials, we have

D−1Lj,k =
1

2k + 1

(
Lj,k+1 − Lj,k−1

)
, k ≥ 1. (3.4a)

D−2Lj,k =
1

2k + 1

(
1

2k + 3
(Lj,k+2 − Lj,k)− 1

2k − 1
(Lj,k − Lj,k−2)

)
, k ≥ 2, (3.4b)

where D−2 = D−1 ◦D−1.

3.2 Projections

Under scale invariant flux parameter assumption, we have more concise results for P ?h . To

facilitate the superconvergence proof at special points, we introduce another projection op-

erator P
†
h in this section.

To shorten the notation, from here on we use two notations Cm and Cm,n to denote

mesh independent constants. Cm may depend on |u|
Wk+1+m,∞(I)

for assumptions A0/A1,

and ‖u‖
Wk+3+m,∞(I)

for assumption A3, ‖u‖
Wk+4+m,∞(I)

for assumption A2. Cm,n may

depend on |u|
Wk+1+m+2n,∞(I)

for assumptions A0/A1, on ‖u‖
Wk+3+m+3n,∞(I)

for as-

sumption A3 and on ‖u‖
Wk+4+m+4n,∞(I)

for assumption A2.

The definition of P ?h is given in (2.15). When scale-invariant flux parameters are used,

we have the following Lemma.
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Lemma 3.2.1 (P ?h under scale invariant flux parameters). Suppose any of the assumptions

A0/A1/A2/A3 holds, u satisfies the condition in Definition 2.2.1, and scale-invariant flux

parameters are used. We have the following estimates

∣∣új,m − uj,m∣∣ ≤ C0h
k+1,m = k − 1, k, ‖u− P ?hu‖Lν(IN ) ≤ C0h

k+1, ν = 2,∞. (3.5)

In addition, if hj = hj+1,

∣∣új,m − uj,m − (új+1,m − uj+1,m)
∣∣ ≤ C1h

k+2, m = k − 1, k. (3.6)

Proof. When scale invariant parameters are used, when assumption A0 is satisfied, (3.5) is

a direct result of (2.29) in Lemma 2.2.3. On uniform mesh, under assumption A1/A2/A3,

the matrices Q1, Q2 and eigenvalues λ1, λ2 are constants independent of h. Thus, (3.5) is a

direct result of (2.30) and (2.31) in Lemma 2.2.3.

To prove the estimates for új,m − uj,m − (új+1,m − uj+1,m),m = k − 1, k, we denote

Uj =

új,k−1 − uj,k−1

új,k − uj,k

−
új+1,k−1 − uj+1,k−1

új+1,k − uj+1,k

 .

Plug (2.26), (2.27) in above formula. With the use of (33), Uj can be estimated in the same

way as Uj in the proof of Lemma 2.2.3, and then (3.6) is obtained. We omit the proof for

brevity.

With the optimal estimates of P ?hu, we proved the optimal L2 error estimate of the DG

scheme in Theorem 2.3.1, which is restated in a more concise version below.

Theorem 3.2.2 (Theorem 2.3.1 under scale-invariant flux parameters). Suppose any of the
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assumptions A0/A1/A2/A3 holds, let the exact solution u of (3.1) be sufficiently smooth,

satisfying periodic boundary condition and uh be the UWDG solution in (3.2), then

‖P ?hu− uh‖ ≤ C2h
k+1, ‖u− uh‖ ≤ C2h

k+1. (3.7)

Next, we introduce a local projection P
†
h as a variant of P ?h and study its approximation

properties, especially the superconvergence property at a special set of points. Such super-

convergence estimates will help us reveal the superconvergence of UWDG solution at special

points. Similar ideas have been employed in [9] for proving the superconvergence at the

so-called generalized Radau points when using upwind-biased flux for hyperbolic equations.

Definition 3.2.1. For DG scheme with flux choice (2.14), we define a local projection op-

erator P
†
h for any periodic function u ∈ W 1,∞(I) to be the unique polynomial P

†
hu ∈ V kh

(when k ≥ 1) satisfying

∫
Ij

P
†
hu vhdx =

∫
Ij

u vhdx, ∀vh ∈ P k−2
c (Ij), (3.8a)

G

 P
†
hu

(P
†
hu)x


∣∣∣∣∣∣∣
−

x
j+1

2

+H

 P
†
hu

(P
†
hu)x


∣∣∣∣∣∣∣
+

x
j−1

2

= G

 u
ux


∣∣∣∣∣∣∣
x
j+1

2

+H

 u
ux


∣∣∣∣∣∣∣
x
j−1

2

(3.8b)

for all j ∈ ZN . When k = 1, only condition (3.8b) is needed.

Projection P
†
h is always a local projection. Denote P

†
hu|Ij =

∑k
m=0 ùj,mLj,m, by (3.8a),

ùj,m = uj,m,m ≤ k − 2. The similarities in definition imply that P ?h and P
†
h are very close

to each other, as shown in the following lemma.
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Lemma 3.2.3. For periodic function u ∈ W 1,∞(I), if assumption A0 is satisfied, P ?hu =

P
†
hu. If any of the assumptions A1/A2/A3 is satisfied, P

†
h exists and is uniquely defined if

(−1)k+1 Γj
Λj
6= 1 for all j ∈ ZN . Then,

‖u− P †hu‖Lν(Ij) ≤ Chk+1|u|
Wk+1,ν(Ij)

, ν = 2,∞. (3.9)

If any of the assumptions A1/A2/A3 is satisfied, we have

‖P ?hu− P
†
hu‖Lν(IN ) ≤ C1h

k+2, ν = 2,∞. (3.10)

Proof. When assumption A0 is satisfied, due to (2.20), P ?h = P
†
h. The rest of the proof is

given in Appendix.

To analyze the superconvergence property at special points, we need to investigate the

expansion of the projection error of P
†
h on every cell Ij , if A0/A1/A2/A3,

(u− P †hu)|Ij = [Lj,k−1, Lj,k]

uj,k−1 − ùj,k−1

uj,k − ùj,k

+
∞∑

m=k+1

uj,mLj,m =
∞∑

m=k+1

uj,mRj,m,

(3.11)

where uj,m is defined in (2.24) and

Rj,m = Lj,m − [Lj,k−1, Lj,k]Mm. (3.12)
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We write out the explicit expression of the leading term in expansions

Rj,k+1 = Lj,k+1 + bLj,k + cLj,k−1, (3.13)

where

b =−
2α1

2k+1
hj

Γj + (−1)kΛj
,

c =−
β1 −

2(k+1)2

hj
(α2

1 + β1β2 + 1
4)− (−1)k+1 2(k+1)

hj
(α2

1 + β1β2 − 1
4)

Γj + (−1)kΛj

−

β2
hj

2k(k + 2)(k + 1)2

Γj + (−1)kΛj

to determine the location of superconvergent points.

For s = 0, 1, 2, denote Ds
j as the roots of ds

dxsRj,k+1, D
s =

⋃N
j=1D

s
j , then it follows from

(3.11) and (2.25) that, for x ∈ Ds
j ,

∂s(u− P †hu)(x) =
∞∑

m=k+2

uj,m
ds

dxs
Rj,m ≤ Chk+3

2−s|u|
Wk+2,s(Ij)

, (3.14)

indicating superconvergence at those points. We state such superconvergence results in

Theorem 3.3.6.

Since the expression of b, c depends on hj , on nonuniform mesh, Ds
j , s = 0, 1, 2 have

nodes with the different relative locations on each cell. For simplicity, below we discuss the

locations of D0
j , D

1
j , D

2
j for special flux choices on uniform mesh.

• Alternating fluxes: b = ±2k+1
k , c = − (k+1)2

k .

• Central flux: if k is even, then b = 0, c = − (k+1)(k+2)
k(k−1)

; if k is odd, then b = 0, c = −1.
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• IPDG fluxes: if k is even, then b = 0, c = − (k+1)(k+2)−2β̃1
k(k−1)−2β̃1

; if k is odd, then b = 0, c =

−1.

For central and IPDG fluxes, if k is odd, Rj,k+1 = Lj,k+1−Lj,k−1,
d
dxRj,k+1 = 4k+2

hj
Lj,k,

d2

dx2Rj,k+1 = 8k+4
h2
j
L′j,k, implying that D0

j , D
1
j , D

2
j are Lobatto points of order k + 1, Gauss

points of order k and Lobatto points of order k + 1 excluding end points, respectively, on

interval Ij . Therefore, card(D0
j ) = k + 1, card(D1

j ) = k, card(D2
j ) = k − 1.

Cao et al. proved there exists k + 1 superconvergence points (Radau points) when using

upwind flux for linear hyperbolic problem in [12], k + 1 superconvergence points (Lobatto

points) using special flux parameter in DDG method in [10] and k+1 or k superconvergence

points, depending on parameters, for using upwind-biased flux for linear hyperbolic problem

in [9]. Analyzing the number and location of superconvergent points for our scheme is more

challenging. We shall only provide lower bound estimates for the number of superconvergence

points. For general parameters choices, when k ≥ 2, Rj,k+1 ⊥ P k−2
c (Ij), by Theorem 3.3

and Corollary 3.4 in [67], we can easily show Rj,k+1 has at least k − 1 simple zeros, i.e.,

card(D0
j ) ≥ k− 1. By the same approach, we can show when k ≥ 3, card(D1

j ) ≥ k− 2, and

when k ≥ 4, card(D2
j ) ≥ k − 3. For small k values, D1

j , D
2
j can possibly be empty sets.

3.3 Superconvergence properties

In this section, we study superconvergence of the numerical solution. We investigate the

superconvergence of UWDG fluxes, cell averages, towards a particular projection and at

some special points. This analysis is done by decomposing the error into

e = u− uh = εh + ζh, εh = u− uI , ζh = uI − uh (3.15)
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for some uI ∈ V kh . For error analysis of DG schemes, uI is usually taken as a projection

of u. While for our purpose of superconvergence analysis, uI needs to be carefully designed

as illustrated in Section 3.3.2. Before that, we prove some intermediate superconvergence

results in Section 3.3.1 without specifying uI . Then, the choice of uI is made in Section

3.3.2 and the main results are obtained.

3.3.1 Some intermediate superconvergence results

This subsection will collect superconvergence results of ‖(ζh)xx‖L2(I)
, ( 1
N

∑N
j=1 |[ζh]|2

j+1
2

)
1
2 ,

( 1
N

∑N
j=1 |[(ζh)x]|2

j+1
2

)
1
2 without specifying uI . The main idea is to choose special test func-

tions in error equation, similar to the techniques used in [19] for hyperbolic problems. This

is an essential step to elevate the superconvergence order in Theorem 3.3.4 when k is even.

Lemma 3.3.1. For k ≥ 2, let u be the exact solution to (3.1) and uh be the DG solution

in (3.2). εh, ζh are defined in (3.15). We choose sh to be a function in V kh , such that∫
I shvhdx = a(εh, vh), ∀vh ∈ V kh . Then, when any of the assumptions A0/A1 is satisfied,

‖(ζh)xx‖ ≤ C‖sh + (ζh)t‖, (3.16)

(
1

N

N∑
j=1

|[ζh]|2
j+1

2
)

1
2 ≤ Ch2‖sh + (ζh)t‖, (3.17)

(
1

N

N∑
j=1

|[(ζh)x]|2
j+1

2
)

1
2 ≤ Ch‖sh + (ζh)t‖. (3.18)

Proof. The proof is given in Appendix.
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3.3.2 Correction functions and the main results

In this section, we shall present the main superconvergence results. The proof depends on

Lemma 3.3.1 and the correction function technique introduced by Cao et al. in [12, 10],

which is essential for superconvergence. We let uI = P ?hu when k = 2, and uI = P ?hu − w,

when k ≥ 3, where w ∈ V kh is a specially designed correction function defined below.

Similar to [10], we start the construction by defining wq, 1 ≤ q ≤ bk−1
2 c. For k ≥ 3, we

denote w0 = u− P ?hu and define a series of functions wq ∈ V kh , as follows

∫
Ij

wq(vh)xxdx = −i
∫
Ij

(wq−1)tvhdx, ∀vh ∈ P kc (Ij) \ P 1
c (Ij), (3.19a)

ŵq = 0, at x
j+1

2
, (3.19b)

(̃wq)x = 0, at x
j+1

2
, (3.19c)

for all j ∈ ZN . (3.19b) and (3.19c) is equivalent to

G

 wq

(wq)x


∣∣∣∣∣∣∣
−

x
j+1

2

+H

 wq

(wq)x


∣∣∣∣∣∣∣
+

x
j+1

2

= 0. (3.20)

wq exists and is unique when any of the assumptions A0/A1/A2/A3 is satisfied for the same

reason as the existence and uniqueness of P ?h .

With the construction of wq, we define

w(x, t) =

bk−1
2 c∑
q=1

wq(x, t), (3.21)
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then

aj(εh, vh) = aj(u− P ?hu, vh) +

bk−1
2 c∑
q=1

aj(wq, vh)

=

∫
Ij

(w0)tvhdx+

bk−1
2 c∑
q=1

(∫
Ij

(wq)tvhdx− i
∫
Ij

wq(vh)xxdx

)

=

∫
Ij

(w0)tvhdx+

bk−1
2 c∑
q=1

∫
Ij

(wq − wq−1)tvhdx

=

∫
Ij

(wbk−1
2 c

)tvhdx, ∀vh ∈ V kh (I).

(3.22)

The approximation property of wq and aj(εh, vh) are presented in the following Lemma.

Lemma 3.3.2. For k ≥ 3, suppose u satisfies the condition in Theorem 3.2.2. For wq, 1 ≤

q ≤ bk−1
2 c, q + r ≤ bk−1

2 c+ 1, we have

∂rtwq|Ij =
k∑

m=k−1−2q

∂rt c
q
j,mLj,m, ∂rt c

q
j,k−1−2q = Ch

2q
j ∂

q+r
t (uj,k−1 − új,k−1),

∣∣∣∂rt cqj,m∣∣∣ ≤ C2r,qh
k+1+2q,

(3.23)

and then

‖∂rtwq‖ ≤ C2r,qh
k+1+2q. (3.24)

For any vh ∈ V kh ,

|a(εh, vh)| ≤ C
2,bk−1

2 c
hk+1+2bk−1

2 c‖vh‖. (3.25)

Proof. The proof is given in Appendix.

Lemma 3.3.3. For k ≥ 2, suppose u satisfies the condition in Theorem 3.2.2. If the
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parameters satisfy any of the assumptions A0/A1 and uh|t=0 = uI |t=0, we have

‖(ζh)xx‖ ≤ C
4+2bk−1

2 c
hk+1+2bk−1

2 c. (3.26)

(
1

N

N∑
j=1

|[(ζh)]|2
j+1

2
)

1
2 ≤ C

4+2bk−1
2 c

hk+3+2bk−1
2 c. (3.27)

(
1

N

N∑
j=1

|[(ζh)x]|2
j+1

2
)

1
2 ≤ C

4+2bk−1
2 c

hk+2+2bk−1
2 c. (3.28)

Proof. This Lemma is a direct result of Lemma 3.3.1, once the estiamtes of ‖sh + (ζh)t‖ is

acquired. When k = 2, w = 0. a(εh, vh) =
∫
I(εh)tvhdx from the definition of P ?h . That is,

sh = (εh)t in the condition of Lemma 3.3.1. To bound ‖(ζh)t‖, we take the time derivative

of the error equation and obtain

a(et, vh) = a((εh)t, vh) + a((ζh)t, vh) = 0.

Let vh = (ζh)t, since a((ζh)t, (ζh)t) + a((ζh)t, (ζh)t) = d
dt‖(ζh)t‖2, by the property of

P ?hu, we have

d

dt
‖(ζh)t‖2 = −a((εh)t, (ζh)t)− a((εh)t, (ζh)t) ≤ 2‖(εh)tt‖‖(ζh)t‖,

which implies d
dt‖(ζh)t‖ ≤ ‖(εh)tt‖. To estimate ‖(ζh)t|t=0‖, we let t = 0 in the error

equation. Since ζh|t=0 = (uh − uI)|t=0 = 0, we have

a(εh, vh) +

∫
I
(ζh)t|t=0vhdx = 0.
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Let vh = (ζh)t|t=0, then

‖(ζh)t|t=0‖2 ≤ ‖(εh)t‖‖(ζh)t|t=0‖.

Therefore,

‖(ζh)t‖ ≤ ‖(εh)t‖+ t‖(εh)tt‖.

By Lemma 3.3.1, estimates in (3.5) and the inequality above, we can get (3.26)-(3.28).

For k ≥ 3, by (3.22), we have a(εh, vh) =
∫
I(wbk−1

2 c
)tvhdx, that is, sh = (wbk−1

2 c
)t in

the condition of Lemma 3.3.1. Then, following the same lines of proof as above, by replacing

εh with wbk−1
2 c

and using Lemma 3.3.2, we are done.

Now we are ready to state the following estimates of ‖ζh‖.

Theorem 3.3.4. For k ≥ 2, suppose u satisfies the condition in Theorem 3.2.2. Assume

uh|t=0 = uI |t=0, then ∀t ∈ (0, Te],

‖ζh‖ ≤



C
2, k−1

2
h2k if k is odd and A0/A1/A2/A3,

(Ck+2h
4k +

∑
Ij⊂INU

Ckh
4k−1)

1
2 if k is even and A0/A1,

C
2, k−2

2
h2k−1, if k is even and A2/A3,

(3.29)

where INU is the collection of cells in which the length of Ij is different with at least one of

its neighbors.
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Proof. From error equation, a(e, ζh) = a(εh, ζh) + a(ζh, ζh) = 0, which gives us

d

dt
‖ζh‖2 = −a(εh, ζh)− a(εh, ζh) ≤


2‖(εh)t‖‖ζh‖, k = 2,

2‖(wbk−1
2 c

)t‖‖ζh‖, k ≥ 3.

(3.30)

By (3.5), (3.24) and Gronwall’s inequality, we have

‖ζh‖ ≤ C
2,bk−1

2 c
thk+1+2bk−1

2 c, ∀t ∈ (0, Te].

Therefore, when k is odd, or k is even and parameters satisfy any of the assumptions A2/A3,

the proof is complete.

When k is even and parameters satisfy any of the assumptions A0/A1, we make use of

Lemma 3.3.3 to show the improved estimates. We let l = bk−1
2 c = k−2

2 , then

a(εh, ζh) =

∫
I
(wl)tζhdx =

N∑
j=1

k∑
m=1

∂tc
l
j,m

∫
Ij

Lj,mζhdx

=
N∑
j=1

∂tc
l
j,1

∫
Ij

Lj,1ζhdx+
N∑
j=1

k∑
m=2

∂tc
l
j,m

∫
Ij

Lj,mζhdx
.
= A1 +A2,

where we denote the first term in the summation by A1, and the other term in summation

as A2. Note that D−1Lj,m ⊥ P 0,m ≥ 1 in the inner product sense, thus D−2Lj,m(±1) =
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0,m ≥ 2. By integration by parts, we get

A2 =
N∑
j=1

k∑
m=2

h2
j

4
∂tc

l
j,m

∫
Ij

D−2Lj,m(ζh)xxdx

≤ Ch−1
N∑
j=1

|
h2
j

4
∂tc

l
j,m|

2 + h
N∑
j=1

k∑
m=2

(

∫
Ij

D−2Lj,m(ζh)xxdx)2 ≤ Ckh
4k + Ch2‖(ζh)xx‖2

≤ Ck+2h
4k

where we have used (3.23) in the first inequality, and (3.26) in the third inequality.

To estimate A1, we take the first and second antiderivative of Lj,1 = ξ as
hj
2 (ξ

2

2 −
1
6),

(
hj
2 )2 ξ3−ξ

6 and apply integration by parts twice,

A1 =
N∑
j=1

hj
2
∂tc

l
j,1

(
(
ξ2

2
− 1

6
)ζ̄h
∣∣xj+1

2
x
j−1

2

−
∫
Ij

(
ξ2

2
− 1

6
)(ζ̄h)xdx

)

=
N∑
j=1

hj
2
∂tc

l
j,1

(
1

3
(ζ̄h|−

j+1
2

− ζ̄h|+
j−1

2

) +
hj
2

∫
Ij

ξ3 − ξ
6

(ζ̄h)xxdx

)

=
N∑
j=1

hj
2
∂tc

l
j,1

(
−1

3
[ζ̄h]

j+1
2

+
hj
2

∫
Ij

ξ3 − ξ
6

(ζ̄h)xxdx

)

+
N∑
j=1

((hj
2

)
∂tc

l
j,1 −

(hj+1

2

)
∂tc

l
j+1,1

)
1

3
ζ̄h|+

j+1
2

,

where we have used the periodicity in the last equality. Therefore,

|A1| ≤
1

2
h
N∑
j=1

((hj
2

)
|∂tclj,1|

)2

+ h−1
N∑
j=1

1

9
|[ζ̄h]|2

j+1
2

+ Ch2
N∑
j=1

‖(ζh)xx‖2L2(Ij)

+
1

18
h−1

N∑
j=1

∣∣∣∣((hj2 )∂tclj,1 − (hj+1

2

)
∂tc

l
j+1,1

)∣∣∣∣2 + h
N∑
j=1

‖ζh‖2L2(∂Ij)

≤ Ck+2h
4k + C‖ζh‖2 + Ch−1

N∑
j=1

∣∣∣∣((hj2 )∂tclj,1 − (hj+1

2

)
∂tc

l
j+1,1

)∣∣∣∣2
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where we used (3.23), inverse inequality, (3.26) and (3.27) in the last inequality.

We estimate the last term in A1 by the estimation of the difference of uj,m in neighboring

cells, similar to that in Proposition 3.1 of [6]. If hj 6= hj+1, then

hj
2
∂tc

l
j,1 −

hj+1

2
∂tc

l
j+1,1 ≤ Ckh

2k.

If hj = hj+1, by (3.23) and (3.6),

hj
2
∂tc

l
j,1 −

hj+1

2
∂tc

l
j+1,1 = C

(hj
2

)2l+1
∂l+1
t (uj,k−1 − új,k−1 − (uj+1,k−1 − új+1,k−1))

≤ Ck+1h
2k+1.

Therefore, we have

|A1| ≤ Ck+2h
4k + C‖ζh‖2 +

∑
Ij⊂INU

Ckh
4k−1.

Combine with the estimates for A2, we have

d

dt
‖ζh‖2 ≤ Ck+2h

4k + C‖ζh‖2 +
∑

Ij⊂INU
Ckh

4k−1.

By Gronwall’s inequality and the numerical initial condition, we obtain

‖ζh‖ ≤ (Ck+2h
4k +

∑
Ij⊂INU

Ckh
4k−1)

1
2 .

The proof is now complete.

Above theorem states that for k ≥ 2, when k is odd or k is even and any of the as-
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sumptions A0/A1 is satisfied, ‖ζh‖ has the desired 2k-th order convergence rate. When k

is even and any of the assumptions A2/A3 is satisfied, we are unable to improve the order

because that a middle step, Lemma 3.3.3, is proved only under assumption A0/A1. However,

numerical result shows the superconvergence results of ‖ζh‖ and the quantities in following

two theorems still hold when k is even and any of the assumptions A2/A3 is satisfied. There

is room for improving the proof under such assumption.

Our main superconvergence results are listed in the following two theorems.

Theorem 3.3.5 (Superconvergence of numerical fluxes and cell averages). Let

Ef =
( 1

N

N∑
j=1

(u− ûh)|2
j+1

2

)1
2 , Efx =

( 1

N

N∑
j=1

(ux − (̃uh)x)|2
j+1

2

)1
2 ,

Ec =
( 1

N

N∑
j=1

∣∣∣ 1

hj

∫
Ij

u− uhdx
∣∣∣2)1

2

(3.31)

be the errors in the two numerical fluxes and the cell averages, respectively. For k ≥ 2,

suppose u satisfies the condition in Theorem 3.2.2. Assume uh|t=0 = uI |t=0, then ∀t ∈

(0, Te]

• if k is odd, parameters satisfy any of the assumptions A0/A1/A2/A3, we have

Ef ≤ C
2, k−1

2
h2k, Efx ≤ C

2, k−1
2
h2k−1, Ec ≤ C

2, k−1
2
h2k, (3.32)
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• if k is even, parameters satisfy any of the assumptions A0/A1, we have

Ef ≤ (Ck+2h
4k +

∑
Ij⊂INU

Ckh
4k−1)

1
2 , Efx ≤ (Ck+2h

4k +
∑

Ij⊂INU
Ckh

4k−1)
1
2h−1,

(3.33)

Ec ≤ (Ck+2h
4k +

∑
Ij⊂INU

Ckh
4k−1)

1
2 , (3.34)

where INU is the collection of cells in which the length of Ij is different with at least

one of its neighbors.

• if k is even and parameters satisfy assumption A2/A3, we have

Ef ≤ C
2, k−2

2
h2k−1, Efx ≤ C

2, k−2
2
h2k−2, Ec ≤ C

2, k−2
2
h2k−1. (3.35)

Proof. We first prove the estimates for Ef . By (3.19b) and the definition of P ?h , ε̂h(x
j+1

2
) =

û− uI(xj+1
2

) = 0, then

(u− ûh)|
j+1

2
= (ζ̂h)|

j+1
2

=
(
{ζh} − α1[ζh] + β2[(ζh)x]

)
|
j+1

2
.

Therefore, by inverse inequality and the fact β2 = β̃2h,

Ef ≤ C
( 1

N
‖ζh‖2L2(∂IN )

)1
2 ≤ C‖ζh‖,

and the desired estimates for Ef is obtained by (3.29). The estimates for Efx can be obtained

following same lines.
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Next, we prove the estimates for Ec. If k is odd, then
∫
Ij
wqdx = 0, 1 ≤ q ≤ k−3

2 , by

(3.23) and orthogonality of Legendre polynomials. Thus,

∫
Ij

u− uhdx =

∫
Ij

u− P ?hu+

bk−1
2 c∑
q=1

wq + ζhdx =

∫
Ij

wbk−1
2 c

dx+

∫
Ij

ζhdx.

Thus, ∣∣∣ 1

hj

∫
Ij

u− uhdx
∣∣∣2 ≤ 2

hj
(‖ζh‖2L2(Ij)

+ ‖wk−1
2
‖2
L2(Ij)

).

If k is even, then
∫
Ij
wqdx = 0, 1 ≤ q ≤ k−2

2 , by (3.23) and orthogonality of Legendre

polynomials. Thus, by similar step, we have

∫
Ij

u− uhdx =

∫
Ij

ζhdx,
∣∣∣ 1

hj

∫
Ij

u− uhdx
∣∣∣2 ≤ 2

hj
‖ζh‖2L2(Ij)

.

Therefore,

Ec ≤ C(‖ζh‖2 + ‖wk−1
2
‖2)1/2 if k is odd, Ec ≤ C‖ζh‖ if k is even,

and the desired estimate for Ec is obtained by (3.29) and (3.24).

Theorem 3.3.6 (Superconvergence towards projections and at special points). Suppose u

satisfies the condition in Theorem 3.2.2. Assume uh|t=0 = P ?hu0, then ∀t ∈ (0, Te],

‖uh − P ?hu‖ ≤


(C4h

4k +
∑
Ij⊂INU

C2h
4k−1)

1
2 k = 2, if A0 or A1

C2,1(1 + t)hk+3 k ≥ 3,

(3.36)

where INU is the collection of cells in which the length of Ij is different with at least one of
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its neighbors.

Assume Ds, s = 0, 1, 2 defined in (3.14) are not empty sets. Let

Eu =
( 1

|D0|
∑
x∈D0

|(u− uh)(x)|2
)1

2 , Eux =
( 1

|D1|
∑
x∈D1

|(u− uh)x(x)|2
)1

2 ,

Euxx =
( 1

|D2|
∑
x∈D2

|(u− uh)xx(x)|2
)1

2

(3.37)

be the average point value error for the numerical solution, the derivative of solution and the

second order derivative of solution at corresponding sets of points. Then

• if k = 2 and any of the assumptions A0/A1 is satisfied, we have

Eu ≤ (C4h
4k +

∑
Ij⊂INU

C2h
4k−1)

1
2 , Eux ≤ h−1(C4h

4k +
∑

Ij⊂INU
C2h

4k−1)
1
2 ,

Euxx ≤ h−2(C4h
4k +

∑
Ij⊂INU

C2h
4k−1)

1
2 .

(3.38)

• if k ≥ 3 and any of the assumptions A0/A1/A2/A3 is satisfied, we have

Eu ≤ C2,1h
k+2, Eux ≤ C2,1h

k+1, Euxx ≤ C2,1h
k. (3.39)

Proof. When k = 2, we have uh−P ?hu = −ζh. If any of the assumptions A0/A1 is satisfied,

by (3.29), we have

‖uh − P ?hu‖ ≤ (C4h
4k +

∑
Ij⊂INU

C2h
4k−1)

1
2 .

When k ≥ 3, to relax the regularity requirement, we follow the same steps in Lemma
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3.3.2, and change the definition of uI to uI = P ?hu − w1. Then εh = u − uI , ζh = uI − uh

and we obtain

|a(εh, vh)| ≤ C2,1h
k+3‖vh‖, ∀vh ∈ V kh .

By the estimates above, (3.24) and the error equation, we obtain

d

dt
‖ζh‖2 ≤ 2‖(w1)t‖‖ζh‖ ≤ C2,1h

k+3.

By Gronwall’s inequality,

‖ζh‖ ≤ C2,1th
k+3 + ‖(ζh)|t=0‖ = C2,1th

k+3 + ‖w1|t=0‖ ≤ C2,1(1 + t)hk+3, ∀t ∈ (0, Te],

where uh|t=0 = P ?hu0 is used in the first equality. Since uh − P ?hu = −ζh − w1, it follows

that ∀t ∈ (0, Te],

‖uh − P ?hu‖ ≤ 2(‖ζh‖+ ‖w1‖) ≤ C2,1(1 + t)hk+3.

Then the proof for (3.36) is complete.

If any of the assumptions A0/A1/A2/A3 is satisfied, then

Eu ≤
( 1

|D0|
∑
x∈D0

|(u− P †hu)(x)|2 + |(P ?hu− uh)(x)|2 + |(P ?hu− P
†
hu)(x)|2

)1
2

≤ Chk+2|u|
Wk+2,2(I)

+ C‖P ?hu− uh‖+ C‖P ?hu− P
†
hu‖,

where (3.14), inverse inequality, and (3.10) are used in the last inequality. Then the estimates

for Eu is proven by Lemma 3.2.3 and (3.36). The estimates for Eux and Euxx can be proven

following the same lines.

67



Remark 3.3.1. If the initial discretization is taken as uh|t=0 = uI |t=0, the theorem above

still holds. However, the regularity requirement will be higher.

3.4 Superconvergence of postprocessed solution

In this section, we analyze the superconvergence property of the postprocessed DG so-

lutions for linear Schrödinger equation (3.1) on uniform mesh by using negative Sobolev

norm estimates. The postprocessor was originally introduced in [7, 55] for finite difference

and finite element methods, and later applied to DG methods in [23]. The postprocessed

solution is computed by the convolution of numerical solution uh and a kernel function

K
ν,l
h (x) = 1

hd
Kν,l(xh), where d is the number of spatial dimensions, and l is the index of H−l

norm we’re trying to estimate later. The convolution kernel has three main properties. First,

it has compact support, making post processing computationally advantageous. Second, it

preserves polynomials of degree up to ν − 1 by convolution, thus the convergence rate is not

deteriorated. Third, the kernel Kν,l is a linear combination of B-splines, which allows us to

express the derivatives of kernel by difference quotients (see section 4.1 in [23]).

We give the formula for the convolution kernel when the DG scheme uses approximation

space V kh :

K2(k+1),k+1(x) =
k∑

γ=−k
k

2(k+1),k+1
γ ψ(k+1)(x− γ),

where ψ(k+1) are the B-spline bases and the computation of coefficients k
2(k+1),k+1
γ can be
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found in [65]. Then we can define the postprocessed DG solution as

u∗ =

∫ ∞
−∞

K
2(k+1),k+1
h (y − x)uh(y)dy. (3.40)

u∗ is an “averaged” version of uh such that it is closer as an approximation to the exact

solution u. Lastly, we define divided difference as

dhv(x) =
1

h
(v(x+

1

2
h)− v(x− 1

2
h)).

Now we are ready to state an approximation result showing the smoothness of u and

negative Sobolev norm of divided difference lead to a bound on u− u∗.

Theorem 3.4.1 (Bramble and Schatz [7]). Suppose u∗ is defined in (3.40) and K
2(k+1),k+1
h =

1
hK

2(k+1),k+1(xh), where K2(k+1),k+1 is a kernel function as defined above. Let u be the

exact solution of linear Schrödinger equation (3.1) satisfying periodic boundary condition,

u ∈ H2k+2(I). Then for arbitrary time t ∈ (0, Te], h sufficiently small, we have

‖u− u∗‖ ≤ Ch2k+2|u|
H2k+2(I)

+
∑

α≤k+1

‖dαh(u− uh)‖
H−(k+1)(IN )

, (3.41)

where C is independent of u and h.

The right hand side of (3.41) indicates that if ‖dαh(u − uh)‖
H−(k+1)(IN )

converges at

a rate higher than k + 1, then we have superconvergence property for the postprocessed

solution. In what follows, we estimate the negative-norm term following the steps in [23].

First, we introduce a dual problem: find a function v such that v(·, t) is periodic function
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with period equal to the length of I, i.e., b− a for all t ∈ (0, Te] and

ivt − vxx = 0, in R× (0, Te),

v(x, Te) = Φ(x), x ∈ R,
(3.42)

where Φ is an arbitrary function in C∞0 (I). We use the notation (φ, ψ) :=
∫
I φψdx in this

section. At final time Te,

(u(Te)− uh(Te),Φ) = (u, v)(Te)− (uh, v)(Te)

= (u, v)(0) +

∫ Te

0
{(u, vt) + (ut, v)}dt− (uh, v)(Te)

= (u, v)(0)− (uh, v)(0)−
∫ Te

0
{((uh)t, v) + (uh, vt)}dt

= (u− uh, v)(0)−
∫ Te

0
{((uh)t, v) + (uh, vt)}dt,

where the property uvt + utv = 0 is used to obtain the third equality.

The DG solution uh satisfies (3.2). Therefore, we have ∀vh ∈ V kh

((uh)t, v) = ((uh)t, v − vh) + ((uh)t, vh)

= ((uh)t, v − vh) + iA(uh, vh)

= ((uh)t, v − vh)− iA(uh, v − vh) + iA(uh, v).

Then we obtain

(u(Te)− uh(Te),Φ) = ΘM + ΘN + ΘC ,
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where

ΘM = (u− uh, v)(0),

ΘN = −
∫ Te

0
{((uh)t, v − vh)− iA(uh, v − vh)}dt, ∀vh ∈ V kh ,

ΘC = −
∫ Te

0
{(uh, vt) + iA(uh, v)}dt.

By choosing the initial numerical discretization uh(0) = P 0
hu0 and vh = P 0

hv, we have

ΘM = (u− uh, v)(0) = (u− uh, v − vh)(0) and

|ΘM | ≤ ‖(u− uh)(0)‖ · ‖(v − vh)(0)‖ ≤ Ch2k+2‖u‖
Hk+1(I)

‖v‖
Hk+1(I)

.

Since v is a smooth function, we have

ΘC = −
∫ Te

0
{(uh, vt) + i(uh, vxx)}dt = 0.

Choose vh = P 0
hv and from the symmetry of the operator A(·, ·), we get

|ΘN | =

∣∣∣∣∣
∫ Te

0
A(uh, v − vh)dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ Te

0
A(v − vh, uh)dt

∣∣∣∣∣
=

∣∣∣∣∣∣
∫ Te

0

N∑
j=1

(
v̂ − vh[(uh)x]− ˜(v − vh)x[uh]

)∣∣
j+1

2
dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ Te

0

N∑
j=1

(
v̂ − vh[ux − (uh)x]− ˜(v − vh)x[u− uh]

)∣∣
j+1

2
dt

∣∣∣∣∣∣
≤ CTe max

t∈(0,Te]

(
‖u− uh‖L2(∂IN )

‖ ˜(v − vh)x‖L2(∂IN )

+ ‖(u− uh)x‖L2(∂IN )
‖v̂ − vh‖L2(∂IN )

)
.
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By (3.7),

‖u− uh‖L2(∂IN )
= ‖u− P ?hu‖L2(∂IN )

+ ‖P ?hu− uh‖L2(∂IN )

≤ C0h
k+1

2 + Ch−
1
2‖P ?hu− uh‖ ≤ C2h

k+1
2 ,

where we have used Lemma 2.2.3 and Theorem 3.2.2. Similarly, we have ‖ux−(uh)x‖L2(∂IN )

≤ C2h
k−1

2 . By the property of L2 projection h
3
2‖vx − (vh)x‖L2(∂IN )

+ h‖vx − (vh)x‖ +

h
1
2‖v − vh‖L2(∂IN )

+ ‖v − vh‖ ≤ Chk+1‖v‖
Hk+1(I)

. Then it is straightforward that for

scale invariant fluxes,

‖v̂ − vh‖L2(∂IN )
≤ Chk+1

2‖v‖
Hk+1(I)

, ‖ ˜(v − vh)x‖L2(∂IN )
≤ Chk−

1
2‖v‖

Hk+1(I)
.

Therefore, we have

|ΘN | ≤ C2h
2k‖v‖

Hk+1(I)
. (3.43)

Combine the above three estimate and the fact ‖v‖
Hk+1(I)

= ‖Φ‖
Hk+1(I)

, we have

‖u(Te)− uh(Te)‖
H−(k+1)(I)

≤ C2h
2k.

Since we consider uh with optimal error estimates on uniform mesh with mesh size h, then

the divided difference dαhu satisfies the linear Schrödinger but with initial data dαhu0, α ≤ k+1

on shifted mesh. Similarly, dαhuh also satisfies the DG scheme (3.2) but with shifted mesh

and initial numerical discretization dαhuh = P 0
hd

α
hu0. Then by the same proof for u − uh

above,

‖dαh(u− uh)(Te)‖
H−(k+1)(I)

≤ C2+αh
2k, (3.44)
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where we used Taylor expansion to estimate dαhu to obtain the last inequality.

The following theorem is a result of (3.44) and Theorem 3.4.1.

Theorem 3.4.2. Let uh be the UWDG solution of (3.2), suppose the conditions in Theorem

3.4.1 and any of the assumptions A0/A1/A2/A3 is satisfied, then on a uniform mesh

‖u(Te)− u∗(Te)‖ ≤ Ck+3h
2k. (3.45)

3.5 Numerical results

In this section, we provide numerical tests demonstrating superconvergence properties. In

the proof, we see that the initial value of uh matters in estimating ‖uh − uI‖, thus will

impact the superconvergence estimation for Ef and Efx . Therefore, in our numerical tests,

we apply two types of initial discretization for uh. For computing the postprocessed solution

u∗, we use the standard L2 projection P 0
hu as numerical initialization to demonstrate the

convergence enhancement ability of postprocessor. For verifying other superconvergence

quantities, we apply the initial condition uh|t=0 = uI |t=0. In order not to deteriorate the

high order convergence rates, for temporal discretization, we use explicit Runge-Kutta fourth

order method with dt = c · h2.5, c = 0.05 when k = 2 and c = 0.01 when k = 3, 4.

Example 3.5.1. We compute (3.1) on [0, 2π] with exact solution u(x, t) = exp(i3(x − 3t))

using UWDG scheme (3.2). We verify the results with several flux parameters.

In the following tables, we show the convergence rate for quantities Ef , Efx , Ec, Eu, Eux ,

Euxx as defined in (3.31) and (3.37) as well as

E∗ = ‖u− u∗‖, EP = ‖uh − P ?hu‖, (3.46)
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which represent the error after postprocessing, and the error between numerical solution

and the projected exact solution P ?hu. In addition, we test the superconvergence of the

intermediate quantities ζh = P ?hu− w − uh as in Lemma 3.3.3, and introduce the following

notations:

E[ζh] = (
1

N

N∑
j=1

|[ζh]|2
j+1

2
)

1
2 , E[(ζh)x] = (

1

N

N∑
j=1

|[(ζh)x]|2
j+1

2
)

1
2 .

The numerical fluxes we tested include

1. Tables 3.1, 3.5: A0 parameters, alternating flux, α1 = 0.5, β1 = β2 = 0, with nonuni-

form mesh;

2. Tables 3.2, 3.6: A0 parameters, a scale invariant flux, α1 = 0.3, β1 = 0.4
h , β2 = 0.4h,

with nonuniform mesh;

3. Tables 3.3, 3.7: A1 parameters, central flux, α1 = β1 = β2 = 0, with uniform mesh;

4. Tables 3.4: A3 parameters, α1 = 0.25, β2 = 0, β1 = 2
h ,

5
h ,

9
h for k = 2, 3, 4, respectively,

with uniform mesh;

5. Table 3.8: all parameters mentioned above, with uniform mesh,

where the nonuniform mesh is generated by perturbing the location of the nodes of a uniform

mesh by 10% of mesh size.

We first verify the results in Theorems 3.3.5, 3.3.6 by examining Tables 3.1, 3.2, 3.3, 3.4,

where the parameters satisfy assumption A0, A0, A1, A3, respectively. We observe that

the scheme can achieve at least the theoretical order of convergence for the quantities in

these two theorems. To be more specific, EP shows (k+ min(3, k))-th order of convergence.
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Table 3.1: Example 3.5.1. Error table when using alternating flux on nonuniform mesh.
Ending time Te = 1, x ∈ [0, 2π].

N L2 error order EP order Euxx order Eux order

P 2

10 2.68E-01 - 2.53E-01 - 2.36E+00 - 8.92E-01 -
20 2.68E-02 3.32 2.47E-02 3.36 2.78E-01 3.09 7.43E-02 3.59
40 2.00E-03 3.75 1.42E-03 4.12 6.02E-02 2.21 5.29E-03 3.81
80 1.91E-04 3.39 9.22E-05 3.95 1.50E-02 2.00 3.83E-04 3.79
160 2.19E-05 3.12 5.83E-06 3.98 3.78E-03 1.99 3.24E-05 3.56

P 3

10 1.02E-02 - 7.51E-03 - 1.60E-01 - 2.50E-02 -
20 5.65E-04 4.18 1.24E-04 5.93 2.00E-02 3.00 8.23E-04 4.93
40 2.94E-05 4.26 2.13E-06 5.86 2.43E-03 3.04 3.83E-05 4.42
80 1.87E-06 3.98 3.02E-08 6.14 2.99E-04 3.02 2.29E-06 4.06
160 1.18E-07 3.98 4.57E-10 6.05 3.76E-05 2.99 1.45E-07 3.98

P 4

10 6.45E-04 - 8.76E-05 - 1.79E-02 - 8.67E-04 -
20 2.06E-05 4.97 6.12E-07 7.16 1.25E-03 3.84 3.06E-05 4.82
40 6.83E-07 4.91 2.52E-09 7.92 7.45E-05 4.06 9.00E-07 5.09
80 2.04E-08 5.07 1.55E-11 7.35 4.70E-06 3.99 2.78E-08 5.02
160 6.10E-10 5.06 1.02E-13 7.24 2.85E-07 4.04 8.34E-10 5.06

N Eu order Ef order Efx order Ec order

P 2

10 2.83E-01 - 2.79E-01 - 9.10E-01 - 5.00E-01 -
20 2.30E-02 3.62 2.31E-02 3.60 6.94E-02 3.71 4.48E-02 3.48
40 1.47E-03 3.97 1.46E-03 3.98 4.45E-03 3.96 2.91E-03 3.94
80 9.12E-05 4.01 9.11E-05 4.01 2.75E-04 4.02 1.82E-04 4.00
160 5.78E-06 3.98 5.77E-06 3.98 1.74E-05 3.98 1.15E-05 3.98

P 3

10 6.81E-03 - 6.78E-03 - 1.98E-02 - 1.16E-02 -
20 1.40E-04 5.61 1.36E-04 5.64 4.08E-04 5.60 2.64E-04 5.45
40 2.16E-06 6.01 2.02E-06 6.07 6.06E-06 6.07 4.03E-06 6.03
80 3.73E-08 5.86 3.05E-08 6.05 9.13E-08 6.05 6.11E-08 6.04
160 8.04E-10 5.53 4.59E-10 6.05 1.38E-09 6.05 9.25E-10 6.05

P 4

10 1.09E-04 - 9.69E-05 - 2.83E-04 - 1.62E-04 -
20 1.04E-06 6.72 5.02E-07 7.59 1.57E-06 7.49 9.69E-07 7.39
40 1.28E-08 6.34 1.76E-09 8.16 5.26E-09 8.22 3.50E-09 8.11
80 1.94E-10 6.04 6.99E-12 7.97 2.09E-11 7.97 1.40E-11 7.97
160 2.85E-12 6.09 2.79E-14 7.97 5.55E-13 5.23 5.07E-14 8.10

Eu, Eux , Euxx are shown to have (k + 2)-th, (k + 1)-th and k-th order of convergence ,

respectively. Note that when k = 2, in Tables 3.2 and 3.4, there are situations when no

superconvergence point exists. This finding shows an evidence to the assertion that Ds

defined in (3.14) could be empty sets. The order of convergence for Ef , (Ef )x, Ec in all

tables are 2k. In addition, Table 3.4 shows that when k is even and assumption A3 is

satisfied, the convergence order for all quantities are the same as when any of assumption
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A0/A1 is satisfied, which is one order higher than the estimates in Theorems 3.3.5, 3.3.6.

Table 3.2: Example 3.5.1. Error table when using flux parameters: α1 = 0.3, β1 = 0.4
h , β2 =

0.4h on nonuniform mesh. Ending time Te = 1, x ∈ [0, 2π].

N L2 error order EP order Euxx order Eux order

P 2

40 1.66E-02 - 1.28E-02 - 2.38E-01 - DNE -
80 1.50E-03 3.47 7.46E-04 4.10 2.52E-02 3.24 DNE -
160 1.70E-04 3.14 4.91E-05 3.92 4.51E-03 2.48 DNE -
320 2.16E-05 2.98 3.12E-06 3.98 8.89E-04 2.34 DNE -
640 2.64E-06 3.03 1.96E-07 3.99 2.00E-04 2.15 DNE -

P 3

10 2.08E-02 - 1.57E-02 - 2.00E-01 - 4.47E-02 -
20 1.14E-03 4.19 2.75E-04 5.84 2.23E-02 3.17 1.42E-03 4.98
40 5.91E-05 4.27 4.83E-06 5.83 2.72E-03 3.03 6.57E-05 4.43
80 3.75E-06 3.98 6.81E-08 6.15 3.36E-04 3.02 3.91E-06 4.07
160 2.39E-07 3.97 1.09E-09 5.96 4.23E-05 2.99 2.47E-07 3.98

P 4

10 9.72E-04 - 1.48E-04 - 1.93E-02 - 1.32E-03 -
20 3.17E-05 4.94 1.04E-06 7.16 1.37E-03 3.82 4.63E-05 4.83
40 1.05E-06 4.91 4.15E-09 7.97 8.18E-05 4.06 1.35E-06 5.10
80 3.14E-08 5.07 2.51E-11 7.37 5.16E-06 3.99 4.27E-08 4.99
160 9.39E-10 5.06 1.63E-13 7.27 3.13E-07 4.04 1.27E-09 5.07

N Eu order Ef order Efx order Ec order

P 2

40 1.26E-02 - 1.26E-02 - 3.83E-02 - 2.49E-02 -
80 7.43E-04 4.08 7.42E-04 4.08 2.28E-03 4.07 1.48E-03 4.07
160 4.82E-05 3.95 4.82E-05 3.95 1.47E-04 3.95 9.63E-05 3.94
320 3.09E-06 3.96 3.09E-06 3.96 9.39E-06 3.97 6.18E-06 3.96
640 1.94E-07 3.99 1.94E-07 3.99 5.86E-07 4.00 3.88E-07 3.99

P 3

10 1.44E-02 - 1.41E-02 - 4.38E-02 - 2.49E-02 -
20 3.08E-04 5.54 3.05E-04 5.53 9.17E-04 5.58 5.92E-04 5.39
40 4.70E-06 6.04 4.56E-06 6.06 1.37E-05 6.06 9.12E-06 6.02
80 7.56E-08 5.96 6.88E-08 6.05 2.06E-07 6.05 1.38E-07 6.04
160 1.03E-09 6.20 1.10E-09 5.97 3.29E-09 5.97 2.21E-09 5.97

P 4

10 1.77E-04 - 1.65E-04 - 4.69E-04 - 2.73E-04 -
20 1.56E-06 6.83 8.66E-07 7.57 2.52E-06 7.54 1.66E-06 7.36
40 1.83E-08 6.41 3.04E-09 8.15 8.85E-09 8.15 6.02E-09 8.11
80 2.82E-10 6.02 1.21E-11 7.98 3.76E-11 7.88 2.41E-11 7.97
160 4.12E-12 6.10 4.41E-14 8.10 1.30E-13 8.18 8.73E-14 8.11

In Tables 3.1 and 3.2, we used nonuniform mesh in numerical test. The quantities tested

have similar order of convergence compared to the order of convergence on uniform mesh.

Another interesting observation is the order of convergence of Efx . Our numerical tests show

that Efx converges at an order of 2k for all four sets of parameters, which is at least one

order higher than the estimates in Theorem 3.3.5.
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Table 3.3: Example 3.5.1. Error table when using central flux on uniform mesh. Ending
time Te = 1, x ∈ [0, 2π].

N L2 error order EP order Euxx order Eux order

P 2

40 4.20E-03 - 3.21E-03 - 4.86E-01 - 3.39E-02 -
80 4.31E-04 3.29 2.23E-04 3.85 1.33E-01 1.87 4.49E-03 2.92
160 4.92E-05 3.13 1.43E-05 3.96 3.41E-02 1.97 5.69E-04 2.98
320 5.99E-06 3.04 9.01E-07 3.99 8.57E-03 1.99 7.14E-05 2.99
640 7.44E-07 3.01 5.60E-08 4.01 2.15E-03 2.00 8.94E-06 3.00

P 3

20 3.18E-04 - 7.32E-05 - 4.31E-02 - 3.34E-03 -
40 1.71E-05 4.21 1.02E-06 6.16 5.49E-03 2.97 2.04E-04 4.03
80 1.03E-06 4.05 1.55E-08 6.04 6.89E-04 2.99 1.27E-05 4.01
160 6.41E-08 4.01 2.41E-10 6.01 8.62E-05 3.00 7.91E-07 4.00
320 4.00E-09 4.00 3.76E-12 6.00 1.08E-05 3.00 4.94E-08 4.00

P 4

10 5.04E-04 - 7.75E-05 - 1.14E-01 - 1.32E-02 -
20 2.10E-05 4.58 4.91E-07 7.30 1.11E-02 3.36 6.17E-04 4.42
40 7.32E-07 4.84 2.65E-09 7.53 8.01E-04 3.79 2.17E-05 4.83
80 2.36E-08 4.96 1.60E-11 7.37 5.21E-05 3.94 6.76E-07 5.01
160 7.42E-10 4.99 1.13E-13 7.15 3.29E-06 3.99 2.19E-08 4.95

N Eu order Ef order Efx order Ec order

P 2

40 3.24E-03 - 3.21E-03 - 9.58E-03 - 6.36E-03 -
80 2.25E-04 3.85 2.23E-04 3.85 6.86E-04 3.80 4.44E-04 3.84
160 1.45E-05 3.96 1.43E-05 3.96 3.90E-05 4.14 2.86E-05 3.96
320 9.10E-07 3.99 9.01E-07 3.99 3.00E-06 3.70 1.80E-06 3.99
640 5.66E-08 4.01 5.60E-08 4.01 1.51E-07 4.31 1.12E-07 4.01

P 3

20 1.88E-04 - 7.28E-05 - 2.16E-04 - 1.41E-04 -
40 5.17E-06 5.19 1.02E-06 6.16 3.07E-06 6.14 2.03E-06 6.12
80 1.63E-07 4.99 1.54E-08 6.04 4.63E-08 6.05 3.10E-08 6.03
160 5.04E-09 5.01 2.39E-10 6.01 7.18E-10 6.01 4.81E-10 6.01
320 1.57E-10 5.01 3.73E-12 6.00 1.12E-11 6.00 7.51E-12 6.00

P 4

10 2.21E-04 - 7.63E-05 - 2.15E-04 - 1.27E-04 -
20 5.70E-06 5.28 4.52E-07 7.40 1.26E-06 7.42 8.66E-07 7.20
40 1.05E-07 5.76 2.05E-09 7.78 6.17E-09 7.67 4.04E-09 7.74
80 1.72E-09 5.93 8.31E-12 7.94 2.57E-11 7.91 1.66E-11 7.93
160 2.72E-11 5.98 3.27E-14 7.99 9.96E-14 8.01 6.55E-14 7.98

Next, we test the order of convergence for quantities in Lemma 3.3.3. In Tables 3.5 and

3.6, we observe clean convergence order of 2k − 1, 2k + 1, 2k for ‖(ζh)xx‖, E[ζh], E[(ζh)x]

when k is even and 2k, 2k+ 2, 2k+ 1 for these three quantities when k is odd. In Table 3.7,

the order of convergence has some fluctuation, but the quantities are shown to have the same

order of convergence as those in Tables 3.5 and 3.6. These convergence rates are consistent

with the results in Lemma 3.3.3.
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Table 3.4: Example 3.5.1. Error table when using flux parameters: α1 = 0.25, β1 =
2
h ,

5
h ,

9
h , β2 = 0 on uniform mesh. Ending time Te = 1, x ∈ [0, 2π].

N L2 error order EP order Euxx order Eux order

P 2

80 1.41E-03 - 8.17E-05 - DNE - 1.15E-02 -
160 1.65E-04 3.09 4.74E-06 4.11 DNE - 1.34E-03 3.11
320 2.03E-05 3.02 2.92E-07 4.02 DNE - 1.65E-04 3.02
640 2.53E-06 3.01 1.80E-08 4.03 DNE - 2.05E-05 3.01
1280 3.16E-07 3.00 1.22E-09 3.88 DNE - 2.55E-06 3.01

P 3

20 8.27E-04 - 4.58E-05 - 2.98E-01 - 6.63E-03 -
40 3.92E-05 4.40 5.20E-07 6.46 3.11E-02 3.26 3.60E-04 4.20
80 2.29E-06 4.10 7.54E-09 6.11 3.72E-03 3.06 2.18E-05 4.05
160 1.40E-07 4.03 1.16E-10 6.03 4.60E-04 3.02 1.35E-06 4.01
320 8.74E-09 4.01 1.80E-12 6.01 5.74E-05 3.00 8.43E-08 4.00

P 4

20 5.10E-04 - 2.08E-04 - 3.76E-01 - 3.96E-03 -
40 8.28E-06 5.95 2.38E-07 9.77 1.24E-02 4.92 6.76E-05 5.87
80 1.87E-07 5.47 1.04E-09 7.84 5.64E-04 4.47 1.55E-06 5.45
160 5.44E-09 5.10 7.11E-12 7.19 3.29E-05 4.10 4.53E-08 5.09

N Eu order Ef order Efx order Ec order

P 2

40 3.24E-03 - 3.21E-03 - 9.58E-03 - 6.36E-03 -
80 2.25E-04 3.85 2.23E-04 3.85 6.86E-04 3.80 4.44E-04 3.84
160 1.45E-05 3.96 1.43E-05 3.96 3.90E-05 4.14 2.86E-05 3.96
320 9.10E-07 3.99 9.01E-07 3.99 3.00E-06 3.70 1.80E-06 3.99
640 5.66E-08 4.01 5.60E-08 4.01 1.51E-07 4.31 1.12E-07 4.01

P 3

20 1.88E-04 - 7.28E-05 - 2.16E-04 - 1.41E-04 -
40 5.17E-06 5.19 1.02E-06 6.16 3.07E-06 6.14 2.03E-06 6.12
80 1.63E-07 4.99 1.54E-08 6.04 4.63E-08 6.05 3.10E-08 6.03
160 5.04E-09 5.01 2.39E-10 6.01 7.18E-10 6.01 4.81E-10 6.01
320 1.57E-10 5.01 3.73E-12 6.00 1.12E-11 6.00 7.51E-12 6.00

P 4

10 2.21E-04 - 7.63E-05 - 2.15E-04 - 1.27E-04 -
20 5.70E-06 5.28 4.52E-07 7.40 1.26E-06 7.42 8.66E-07 7.20
40 1.05E-07 5.76 2.05E-09 7.78 6.17E-09 7.67 4.04E-09 7.74
80 1.72E-09 5.93 8.31E-12 7.94 2.57E-11 7.91 1.66E-11 7.93
160 2.72E-11 5.98 3.27E-14 7.99 9.96E-14 8.01 6.55E-14 7.98

Lastly, we test the order of convergence for E∗ on uniform mesh for the four sets of

parameters. Table 3.8 shows that E∗ has a convergence rate of at least 2k, and can go up

to 2k + 2. Similar higher order of convergence behaviors exists in the literature [23, 65].
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Table 3.5: Example 3.5.1. Error table for intermediate quantities when using alternating
flux on nonuniform mesh. Ending time Te = 1, x ∈ [0, 2π].

N ‖ζh‖ error order ‖(ζh)xx‖ order E[ζh] order E[(ζh)x] order

P 2

10 3.96E-01 - 3.02E+00 - 4.51E-02 - 3.37E-01 -
20 3.28E-02 3.60 2.23E-01 3.76 1.57E-03 4.84 1.82E-02 4.21
40 2.08E-03 3.98 1.42E-02 3.98 4.21E-05 5.22 9.42E-04 4.28
80 1.29E-04 4.01 7.95E-04 4.15 1.17E-06 5.16 5.50E-05 4.10
160 8.17E-06 3.98 9.54E-05 3.06 3.83E-08 4.94 3.55E-06 3.96

P 3

10 9.54E-03 - 8.83E-02 - 7.52E-05 - 1.31E-03 -
20 1.93E-04 5.63 1.76E-03 5.65 1.75E-07 8.75 6.16E-06 7.74
40 2.86E-06 6.08 2.59E-05 6.09 3.42E-10 9.00 2.45E-08 7.97
80 4.31E-08 6.05 3.91E-07 6.05 1.45E-12 7.88 2.71E-10 6.50
160 6.87E-10 5.97 6.19E-09 5.98 6.76E-15 7.74 2.59E-12 6.71

P 4

10 1.35E-04 - 1.41E-03 - 4.97E-07 - 2.81E-05 -
20 7.10E-07 7.57 8.60E-06 7.36 1.20E-09 8.69 9.88E-08 8.15
40 2.50E-09 8.15 4.24E-08 7.66 2.56E-12 8.88 2.90E-10 8.41
80 9.90E-12 7.98 2.55E-10 7.38 2.98E-15 9.74 7.48E-13 8.60
160 3.58E-14 8.11 2.22E-12 6.85 8.90E-18 8.39 5.46E-15 7.10

Table 3.6: Example 3.5.1. Error table for intermediate quantities when using flux parameters:
α1 = 0.3, β1 = 0.4

h , β2 = 0.4h on nonuniform mesh. Ending time Te = 1, x ∈ [0, 2π].

N ‖ζh‖ error order ‖(ζh)xx‖ order E[ζh] order E[(ζh)x] order

P 2

40 1.46E-02 - 2.67E-01 - 2.55E-03 - 2.13E-02 -
80 9.35E-04 3.97 2.57E-02 3.38 7.74E-05 5.04 1.25E-03 4.09
160 5.96E-05 3.97 2.86E-03 3.17 2.52E-06 4.94 7.56E-05 4.05
320 3.76E-06 3.99 3.30E-04 3.11 7.74E-08 5.02 4.76E-06 3.99
640 2.38E-07 3.98 4.25E-05 2.96 2.57E-09 4.91 3.19E-07 3.90

P 3

10 2.02E-02 - 1.78E-01 - 5.73E-04 - 1.15E-03 -
20 4.31E-04 5.55 3.90E-03 5.52 1.09E-06 9.04 5.48E-06 7.71
40 6.46E-06 6.06 5.83E-05 6.06 3.27E-09 8.38 2.99E-08 7.52
80 9.72E-08 6.05 8.76E-07 6.06 9.55E-12 8.42 1.84E-10 7.34
160 1.55E-09 5.97 1.40E-08 5.97 4.28E-14 7.80 1.56E-12 6.89

P 4

10 2.27E-04 - 2.23E-03 - 1.03E-06 - 2.06E-06 -
20 1.22E-06 7.54 1.30E-05 7.42 4.13E-09 7.96 1.66E-08 6.96
40 4.30E-09 8.15 5.93E-08 7.78 1.01E-11 8.67 6.95E-11 7.90
80 1.71E-11 7.98 4.66E-10 6.99 1.82E-14 9.12 2.33E-13 8.22
160 6.17E-14 8.11 3.19E-12 7.19 3.61E-17 8.98 8.34E-16 8.13
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Table 3.7: Example 3.5.1. Error table for intermediate quantities when using central flux on
uniform mesh. Ending time Te = 1, x ∈ [0, 2π].

N ‖ζh‖ error order ‖(ζh)xx‖ order E[ζh] order E[(ζh)x] order

P 2

40 4.53E-03 - 3.84E-02 - 3.04E-05 - 2.79E-04 -
80 3.15E-04 3.85 3.03E-03 3.66 1.16E-06 4.71 8.31E-06 5.07
160 2.02E-05 3.96 1.29E-04 4.55 1.79E-07 2.70 1.31E-06 2.66
320 1.27E-06 3.99 1.59E-05 3.03 7.14E-09 4.65 5.08E-08 4.69
640 7.92E-08 4.01 5.73E-07 4.79 2.90E-10 4.62 2.11E-09 4.59

P 3

20 1.03E-04 - 9.27E-04 - 4.27E-08 - 5.25E-06 -
40 1.44E-06 6.16 1.29E-05 6.17 1.75E-10 7.93 4.32E-08 6.93
80 2.18E-08 6.04 1.99E-07 6.02 4.23E-13 8.69 1.64E-10 8.04
160 3.38E-10 6.01 3.05E-09 6.03 2.91E-16 10.50 3.24E-14 12.31
320 5.28E-12 6.00 4.76E-11 6.00 1.28E-18 7.83 1.41E-15 4.52

P 4

10 1.06E-04 - 1.05E-03 - 7.67E-07 - 2.26E-05 -
20 6.37E-07 7.37 7.12E-06 7.21 3.03E-09 7.99 7.70E-08 8.20
40 2.88E-09 7.79 3.20E-08 7.80 5.78E-12 9.03 6.36E-11 10.24
80 1.17E-11 7.94 1.84E-10 7.44 9.33E-15 9.28 5.24E-13 6.92
160 4.63E-14 7.98 2.45E-12 6.23 3.04E-17 8.26 8.82E-16 9.21

Table 3.8: Example 3.5.1. Postprocessing error table for the four sets of parameters. Ending
time Te = 1, uniform mesh on x ∈ [0, 2π]. The first row below labels the parameters by
(α̃1, β̃1, β̃2).

Fluxes (0.5,0,0) (0, 0, 0) (0.3, 0.4, 0.4) (0.25, {2, 5, 9}, 0)

N E∗ order E∗ order E∗ order E∗ order

P 2

10 1.00E+00 - 2.81E-01 - 1.00E+00 - 1.53E-01 -
20 2.84E-01 1.81 3.71E-02 2.92 1.20E-01 3.06 8.05E-02 0.93
40 2.11E-02 3.75 3.23E-03 3.52 9.63E-03 3.64 2.68E-03 4.91
80 1.37E-03 3.94 2.24E-04 3.85 7.55E-04 3.67 1.20E-04 4.49
160 8.69E-05 3.98 1.44E-05 3.96 5.13E-05 3.88 6.99E-06 4.10

P 3

10 1.00E+00 - 1.00E+00 - 1.00E+00 - 1.00E+00 -
20 6.04E-02 4.05 6.29E-02 3.99 6.05E-02 4.05 7.02E-02 3.83
40 5.39E-04 6.81 6.05E-04 6.70 5.26E-04 6.85 5.46E-04 7.01
80 3.28E-06 7.36 5.04E-06 6.91 2.82E-06 7.54 2.91E-06 7.55
160 3.14E-08 6.70 6.49E-08 6.28 2.04E-08 7.11 1.79E-08 7.34

P 4

10 1.00E+00 - 1.00E+00 - 1.00E+00 - 1.00E+00 -
20 4.54E-02 4.46 4.54E-02 4.46 4.54E-02 4.46 4.54E-02 4.46
40 1.32E-04 8.42 1.32E-04 8.42 1.32E-04 8.42 1.36E-04 8.39
80 1.70E-07 9.60 1.70E-07 9.60 1.70E-07 9.60 1.66E-07 9.67
160 1.79E-10 9.89 1.80E-10 9.89 1.79E-10 9.89 1.75E-10 9.89
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Chapter 4

Sparse grid central DG methods for

linear hyperbolic systems

In this chapter, we develop sparse grid central discontinuous Galerkin (CDG) method for

the following time-dependent linear hyperbolic system with variable coefficients

∂u

∂t
+

d∑
i=1

∂(Ai(t,x)u)

∂xi
= 0, x ∈ Ω, (4.1)

subject to appropriate initial and boundary conditions. In the expression above, d ≥ 2 is

the spatial dimension of the problem, u(t,x) = (u1(t,x), · · · , um(t,x))T is the unknown

function, Ai(t,x) ∈ Rm×m, i = 1, . . . , d are the given smooth variable coefficients. We

assume Ω = [0, 1]d in this chapter, but the discussion can be easily generalized to arbitrary

box-shaped domains. The model (4.1) arises in many contexts [46], such as simulations of

acoustic, elastic waves, and Maxwell’s equations in free space. The scheme we develop in this

chapter can also apply to the case when Ai(t,x) is defined through another set of equations

that can be nonlinearly coupled with u, such as the models in kinetic plasma waves and

incompressible flows.

Similar to [38], in this chapter, we restrict our attention to smooth solutions of (4.1). It is

known that for non-smooth solutions, adaptivity should be invoked to capture discontinuity
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like structures. This can be achieved using the idea in [39] and is left for our future work.

Based on the sparse grid DG scheme constructed in [38], the goal of the present chapter is

to design and analyze the sparse grid CDG method. Motivated by the Riemann-solver-free

property and large CFL number allowance of CDG methods, we develop sparse grid CDG

method to compute hyperbolic systems efficiently. We investigate stability, convergence rate

and CFL condition of the resulting scheme. A novelty of this work is the design of the

scheme for non-periodic problems, where a new hierarchical representation of the solution

is presented, which results in a sparse finite element space that can be defined on the dual

mesh. L2 projection results are studied for this space, which helps the convergence proof of

the schemes for initial-boundary value problems.

The rest of this chapter is organized as follows: in Section 4.1, we construct the sparse

grid CDG formulations for periodic and non-periodic problems, and perform numerical study

of the CFL conditions. In Section 4.2, we prove L2 stability and error estimates for scalar

equations. The numerical performance is validated in Section 4.3 by several benchmark tests,

including scalar transport equations, acoustic and elastic waves.

The contents of this chapter has been published in [75].

4.1 Numerical Scheme

In this section, we define and discuss the properties of the proposed sparse grid CDG meth-

ods. For convenience of notations, we rewrite (4.1) in a component-wise form as

∂ul

∂t
+∇ · (Al(t,x)u) = 0, l = 1, · · · ,m, x ∈ Ω, (4.2)
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where Al(t,x) = (Al1(t,x), · · · , Ald(t,x))T ∈ Rd×m denotes a collection of the l-th row of

each matrix Ai. The problem is solved with given initial value u(0,x) = u0(x), and periodic

or Dirichlet type boundary conditions.

We proceed as follows. First, we introduce the scheme for periodic problems. In this

setting, the finite element space on the primal and dual mesh can be defined in similar

ways. Then, we discuss the implementation details and perform numerical study of the CFL

conditions. Finally, we consider the more complicated non-periodic problems, for which a

new sparse finite element space will be introduced on the dual mesh.

4.1.1 Periodic problems

To define the sparse finite element space, we first review the hierarchical decomposition of

piecewise polynomial space in one dimension [76]. Consider a general interval [a, b], we define

the n-th level mesh Ωn([a, b]) to be a uniform partition of 2n cells with length hn = 2−n(b−a)

and I
j
n = [a+ jhn, a+ (j + 1)hn], j = 0, . . . , 2n − 1, for any n ≥ 0. Let

V kn ([a, b]) := {v : v ∈ P k(I
j
n), ∀ j = 0, . . . , 2n − 1}

be the usual piecewise polynomials of degree at most k on Ωn. Then, we have the nested

structure

V k0 ([a, b]) ⊂ V k1 ([a, b]) ⊂ V k2 ([a, b]) ⊂ V k3 ([a, b]) ⊂ · · ·

Similar to [76], we can now define the multiwavelet subspace W k
n ([a, b]), n = 1, 2, . . . as

the orthogonal complement of V kn−1([a, b]) in V kn ([a, b]) with respect to the L2 inner product
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on [a, b], i.e.,

V kn−1([a, b])⊕W k
n ([a, b]) = V kn ([a, b]), W k

n ([a, b]) ⊥ V kn−1([a, b]).

For notational convenience, we let W k
0 ([a, b]) := V k0 ([a, b]), which is the standard piecewise

polynomial space of degree k on [a, b]. This gives the hierarchical decomposition V kn ([a, b])

on Ωn as V kn ([a, b]) =
⊕

0≤l≤nW
k
l ([a, b]).

For a d dimensional domain [a, b]d, we recall some basic notations about multi-indices.

For a multi-index α = (α1, · · · , αd) ∈ Nd0, where N0 denotes the set of nonnegative integers,

the l1 and l∞ norms are defined as

|α|1 :=
∑d

i=1
αi, |α|∞ := max

1≤i≤d
αi.

The component-wise arithmetic operations and relational operations are defined as

α · β := (α1β1, . . . , αdβd), c ·α := (cα1, . . . , cαd), 2α := (2α1 , . . . , 2αd),

α ≤ β ⇔ αi ≤ βi, ∀i, α < β ⇔ α ≤ β and α 6= β.

By making use of the multi-index notation, we denote by l = (l1, · · · , ld) ∈ Nd0 the

mesh level in a multivariate sense. We define the tensor-product mesh grid Ωl([a, b]
d) =

Ωl1([a, b])⊗ · · · ⊗ Ωld
([a, b]) and the corresponding mesh size hl = (hl1 , · · · , hld). Based on

the grid Ωl, we denote by I
j
l = {x : xi ∈ I

ji
li
, i = 1, · · · , d} as an elementary cell, and

Vk
l ([a, b]d) := {v : v(x) ∈ Qk(I

j
l ), 0 ≤ j ≤ 2l − 1} = V kl1,x1

([a, b])× · · · × V kld,xd([a, b])
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as the standard tensor-product piecewise polynomial space on this mesh, where Qk(I
j
l )

denotes the collection of polynomials of degree up to k in each dimension on cell I
j
l . If

l = (N, · · · , N), the grid and space will be further denoted by ΩN ([a, b]d) and Vk
N ([a, b]d),

respectively.

Based on a tensor-product construction, the multi-dimensional increment space can be

defined as

Wk
l ([a, b]d) = W k

l1,x1
([a, b])× · · · ×W k

ld,xd
([a, b]).

Therefore, we have Vk
N ([a, b]d) =

⊕
|l|∞≤N
l∈Nd0

Wk
l ([a, b]d). The sparse finite element approxi-

mation space we consider, is defined by

V̂k
N ([a, b]d) :=

⊕
|l|1≤N
l∈Nd0

Wk
l ([a, b]d).

This is a subset of Vk
N ([a, b]d), and its number of degrees of freedom scales as O((k +

1)d2NNd−1) [76], which is significantly less than that of Vk
N ([a, b]d) with exponential de-

pendence on Nd. This is the key to computational savings in high dimensions.

The standard CDG schemes [48, 50] is characterized by numerical approximations on

two sets of overlapping grids: primal and dual meshes. Now, we are ready to incorporate

the sparse finite element space defined above into the CDG framework. For the domain

under consideration Ω = [0, 1]d, we let ΩN,P := ΩN ([0, 1]d) be the primal mesh and ΩN,D,

which is the periodic extension of ΩN ([−hN/2, 1− hN/2]d) restricted to [0, 1]d, be the dual

mesh. Similarly, we let V̂k
N,P := V̂k

N ([0, 1]d) and V̂k
N,D to be the periodic extension of

V̂k
N ([−hN/2, 1 − hN/2]d) restricted to [0, 1]d. Here and below, the subscripts P and D

represent the quantities defined on the primal and dual mesh, respectively.
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The approximation properties for the sparse finite element space have been established

in previous work [76, 38]. By using a lemma in [38], we can have estimates for L2 projection

operator onto the spaces V̂k
N,P , V̂

k
N,D.

To facilitate the discussion, below we introduce some notations about norms and semi-

norms. Let G = P,D, on primal or dual mesh ΩN,G, we use ‖ · ‖Hs(ΩN,G) to denote

the standard broken Sobolev norm, i.e. ‖v‖2
Hs(ΩN,G)

=
∑

0≤j≤2N−1 ‖v‖
2

Hs(I
j
N,G)

, where

‖v‖
Hs(I

j
N,G)

is the standard Sobolev norm on I
j
N,G, (and s = 0 is used to denote the

L2 norm). Similarly, we use | · |Hs(ΩN,G) to denote the broken Sobolev semi-norm, and ‖ ·

‖Hs(Ωl,G), | · |Hs(Ωl,G) to denote the broken Sobolev norm and semi-norm that are supported

on a general grid Ωl,G. For any set L = {i1, . . . ir} ⊂ {1, . . . d}, we define Lc to be the

complement set of L in {1, . . . d}. For a non-negative integer α and set L, we define the

semi-norm on any domain denoted by Ω′

|v|
Hα,L(Ω′) :=

∥∥∥∥∥
(

∂α

∂xαi1

· · · ∂
α

∂xαir

)
v

∥∥∥∥∥
L2(Ω′)

,

and

|v|Hq+1(Ω′) := max
1≤r≤d

 max
L⊂{1,2,··· ,d}
|L|=r

|v|
Hq+1,L(Ω′)

 ,

which is the norm for the mixed derivative of v of at most degree q+ 1 in each direction. In

this chapter, we use the notation A . B to represent A ≤ constant×B, where the constant

is independent of N and the mesh level considered. The following results are obtained from

Lemma 3.2 in [38].

Lemma 4.1.1 (L2 projection estimate). Let PP ,PD be L2 projections onto the spaces

V̂k
N,P , V̂

k
N,D, respectively, then for k ≥ 1, 1 ≤ q ≤ min{p, k}, and v ∈ Hp+1(Ω), which is

86



periodic on Ω, N ≥ 1, d ≥ 2, we have for G = P,D,

|PGv − v|Hs(ΩN,G) .


Nd2−N(q+1)|v|Hq+1(Ω)

s = 0,

2−Nq|v|Hq+1(Ω)
s = 1.

(4.3)

This lemma shows that the L2 norm and H1 semi-norm of the projection error scale like

O(Nd2−N(k+1)) and O(2−Nk) with respect to N when the function v has bounded mixed

derivatives up to enough degrees. This lemma will be used in Theorem 4.2.2 to establish

convergence of the scheme.

Now, we are ready to formulate the sparse grid CDG scheme. Below we review some

standard notations about jumps and averages of piecewise functions. With G = P or D,

let Th,G be the collection of all elementary cell I
j
N,G, ΓN,G :=

⋃
T∈ΩN,G

∂T be the union

of the interfaces for all the elements in ΩN,G (here we have taken into account the periodic

boundary condition when defining ΓN,G) and S(ΓG) := ΠT∈ΩN,G
L2(∂T ) be the set of L2

functions defined on ΓN,G. For any q ∈ S(ΓN,G) and q ∈ [S(ΓN,G)]d, we define their

averages {q}, {q} and jumps [q], [q] on the interior edges as follows. Suppose e is an interior

edge shared by elements T+ and T−, either on primal or dual mesh, we define the unit normal

vectors n+ and n− on e pointing exterior of T+ and T−, respectively, then

[q] = q−n− + q+n+, {q} =
1

2
(q− + q+),

[q] = q− · n− + q+ · n+, {q} =
1

2
(q− + q+).

The semi-discrete sparse grid CDG scheme for (4.2), based on the weak formulation

introduced in [48, 50], is defined as follows: we find ulh ∈ V̂k
N,P and vlh ∈ V̂k

N,D, such that
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∀ l = 1, · · · ,m

∫
Ω

(ulh)t ϕh dx =
1

τmax

∫
Ω

(vlh − u
l
h)ϕh dx +

∫
Ω
Al(t,x)vh · ∇ϕh dx (4.4)

−
∑

e∈ΓN,P

∫
e
Al(t,x)vh · [ϕh] ds,

∫
Ω

(vlh)t ψh dx =
1

τmax

∫
Ω

(ulh − v
l
h)ψh dx +

∫
Ω
Al(t,x)uh · ∇ψh dx (4.5)

−
∑

e∈ΓN,D

∫
e
Al(t,x)uh · [ψh] ds,

for any ϕh ∈ V̂k
N,P and ψh ∈ V̂k

N,D, where uh = (u1
h, · · · , u

m
h ),vh = (v1

h, · · · , v
m
h ) and τmax

is an upper bound for the time step due to the CFL restriction (see Section 4.1.3 for detailed

discussions).

4.1.2 Discussions on implementations

Here, we briefly discuss some details about the implementation of the scheme. We perform

the computation by using orthonormal multiwavelet bases constructed by Alpert [4]. In 1D,

the bases of W k
l ([0, 1]) are denoted by

v
j
p,l(x), p = 1, · · · , k + 1, j = 0, · · · , 2l−1 − 1

and they satisfy
∫ b
a v

j
p,l(x)v

j′
p′,l′(x)dx = δpp′δjj′δll′ . Figures 4.1a and 4.2a provide illustrations

of the basis functions for k = 0, 1 and l = 0, 1, 2. The bases in W k
l in multi-dimensions are

defined by tensor products

vs = v
j
p,l :=

d∏
i=1

v
ji
pi,li

(xi), pi = 1, · · · , k + 1, ji = 0, · · · ,max(0, 2li−1 − 1),
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where we have used the notation s = (l, j,p) and si = (li, ji, pi) to denote the multi-index

for the bases.

As for temporal schemes, we can use the total variation diminishing Runge-Kutta (TVD-

RK) methods [73] to solve the ordinary differential equations for the coefficients resulting

from the discretization. To calculate the right-hand-side of (4.4)-(4.5), the fast matrix-vector

product by LU split or LU decomposition algorithms [69, 70, 64] can be applied, by which one

can decompose all calculations into one dimensional operations. Below, we briefly describe

the LU decomposition algorithm for the calculation of the following matrix-vector product

which appears at the right-hand-side of (4.4)-(4.5)

bj =
∑

s:|l|1≤N
fst

1
s1,j1

· · · tdsd,jd ,

where fs can be the coefficient of the basis in sparse grid space and tisi,ji
, i = 1, · · · , d, are

the corresponding one-dimensional transform of coefficients from basis vsi to basis vji in the

i-th dimension in our scheme. Note that we have n = 2N (k + 1) one-dimensional bases in

each dimension, and we use vsi to denote the si-th basis. The bases are ordered according

to grid increment. Using Algorithm 1 in [70], we should calculate all the one-dimensional

transform along each direction associated with a block lower triangular matrix, and then

calculate all the one-dimensional transforms having a block upper triangular structure. The

fast matrix-vector product fs → bj on sparse grid with LU decomposition can be proceeded

as follows.

1. Calculate (block) LU decomposition tis,j =
∑n
m=1(Pl)is,m(uQ)im,j , s, j = 1, · · · , n, for

i = 1, · · · , d, where P i, Qi are the permutation matrices, li, ui are lower and upper

triangular matrices.
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2. Compute the transform with a (block) lower triangular matrix for i = 1, · · · , d,

b
s1,··· ,si−1,s

′
i,si+1,··· ,sd

←
∑
si:l1+···+ld≤N

fs(Pl)
i

si,s
′
i

.

3. Compute the transform with a (block) upper triangular matrix for i = 1, · · · , d,

bs ←
∑
s
′
i:l1+···+li−1+l

′
i+li+1+···+ld≤N

b
s1,··· ,si−1,s

′
i,si+1,··· ,sd

(uQ)i
s
′
i,si

.

Note that in step 1, the LU decomposition pivots only from rows or columns in the same

mesh level to maintain the hierarchical structure. This pivoting can be successfully done in

the sparse grid CDG scheme, but not in the sparse grid DG scheme, for which additional

splitting of the flux terms are deemed necessary for variable coefficient case.

For the integrals involving variable-coefficient, we use Gaussian quadrature to compute

these terms. Since these integrals are multi-dimensional integrations, we use the so-called

unidirectional principle to separate the integration into multiplication of one-dimensional

integrals. For example, if φ(x) = φ1(x1) · · ·φd(xd) is separable,

∫
Ω
φ(x) =

∫
[a,b]

φ1(x1) · · ·
∫

[a,b]
φd(xd).

When the variable coefficientAi(t, x) is separable, we can use unidirectional principle directly.

If it is not separable, we can find Ahi (t, x) as the L2 projection of Ai(t, x) onto the sparse

grid finite element space, and then use Ahi (t, x) to compute the integrals.

4.1.3 Discussions on CFL conditions

It is well known that the CDG schemes allow larger CFL numbers than the standard DG

methods except for piecewise constant approximations [50, 60]. Here, we perform a numerical

study of the CFL conditions of DG [27], CDG [51], sparse grid DG [38], and the sparse
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Table 4.1: CFL numbers of the DG method, CDG method, sparse grid DG method and
sparse grid CDG method with piecewise degree k polynomials, Runge-Kutta method of order
ν for Example 4.3.1 with d=2. The CFL numbers of the sparse grid DG/CDG methods are
measured with regard to the most refined mesh hN .

DG CDG sparse grid DG sparse grid CDG
k 1 2 3 1 2 3 1 2 3 1 2 3

ν = 2 0.33 – – 0.48 – – 0.66 – – 0.87 – –
ν = 3 0.40 0.20 0.13 0.66 0.36 0.24 0.81 0.41 0.25 1.17 0.65 0.44
ν = 4 0.46 0.23 0.14 0.90 0.52 0.35 0.92 0.46 0.28 1.58 0.94 0.62

grid CDG schemes. We only consider the two-dimensional case solving constant coefficient

equation ut + ux1 + ux2 = 0 for now. The results are listed in Table 4.1. The CFL number

of DG method is obtained from Table 2.2 in [27]. The rest of the table is computed by

eigenvalue analysis of the discretization matrix, and by requiring the amplification of the

eigenvalues to be bounded by 1 in magnitude. We observe that the sparse grid DG method

has CFL number that is about two times the CFL number of the standard DG method.

The sparse grid CDG method offers the largest CFL conditions among all four methods.

Here, as a side note, we find that the CFL number for two-dimensional CDG method is

larger than the CFL number for one-dimensional CDG method in [51]. This table shows

that one advantage of the sparse grid CDG method is the ability to take large time steps

for time evolution problems. In general, further numerical results suggest that for equation

ut + c1ux1 + c2ux2 = 0, the CFL number for sparse grid DG and sparse grid CDG method

will change with the value of the coefficients c1, c2. Results in higher dimensions are yet to

be studied. A preliminary calculation shows that for equation ut + ux1 + ux2 + ux3 = 0 the

CFL conditions for CDG, sparse grid DG and sparse grid CDG methods in 3D are all higher

than those for the 2D case in Table 4.1. The sparse grid CDG method still possesses the

largest CFL number among all four methods. Those interesting issues will be investigated

in our future work.
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4.1.4 Non-periodic problems

Here, we consider non-periodic problems, where equation (4.1) or (4.2) is supplemented

by Dirichlet boundary condition on the inflow edges. In this case, we can no longer use

periodicity to define the finite element space on the dual mesh, and a new grid hierarchy

needs to be introduced.

Recall that for standard CDG methods with non-periodic boundary condition on the

domain [0, 1], the finite element space on dual mesh with cell size hn = 1/2n is represented

by

V kn,D = {v : v ∈ P k(I
j
n,D), ∀ j = 0, . . . , 2n}, (4.6)

where the mesh is partitioned as

I0
n,D = [0,

hn
2

], I
j
n,D = [(j − 1

2
)hn, (j +

1

2
)hn], j = 1, . . . , 2n − 1, I2n

n,D = [1− hn
2
, 1],

which consists of 2n−1 cells of size hn, and two cells at the left and right ends of size hn/2. It

is easy to see that this space does not have nested structures, i.e. V kn−1,D 6⊂ V kn,D. Therefore,

we need a new hierarchy to define the increment polynomial spaces.

For a fixed refined mesh level N, we define the following grid Ωl,N,D on level l, l = 0 . . . N,

by a collection of cells as

I0
l,N,D = [0, hl −

hN
2

], I2l
l,N,D = [1− hN

2
, 1],

I
j
l,N,D = [jhl −

hN
2
, (j + 1)hl −

hN
2

], j = 1, . . . , 2l − 1,

which consists of 2l − 1 cells of size hl, and a cell at the left end of size hl −
hN
2 , and a cell

at the right end of size
hN
2 . This grid structure is naturally nested, and therefore V kl,N,D
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which consists of piecewise polynomials of degree k defined on Ωl,N,D are also nested, and

V kN,N,D = V kN,D as defined in (4.6).

Then the definitions of sparse finite element space in Section 4.1.1 can be naturally

extended here. We let W k
l,N,D, l = 1, . . . N be a complement set of V kl−1,N,D in V kl,N,D, i.e.

V kl−1,N,D ⊕W
k
l,N,D = V kl,N,D.

However, we no longer require W k
l,N,D to be L2 orthogonal to V kl−1,N,D, because such defi-

nition will be difficult to implement in practice. Instead, we define W k
l,N,D to be a span of

basis functions that are shifted basis functions of W k
l space defined in Section 4.1.1, namely,

W k
l,N,D = W k

l ([−hN
2
, 1− hN

2
])
∣∣
[0,1], l ≥ 1.

By denoting W k
0,N,D = V k0,N,D, we have decomposed V kN,D =

⊕
0≤l≤N W k

l,N,D. Illustration

of basis functions by such definitions for k = 0, 1 and l = 0, 1, 2 can be found in Figures 4.1b

and 4.2b. The dimension of W k
0,N,D is 2(k+ 1), while the dimensions of W k

l,N,D, l = 1, . . . N

are 2l−1(k + 1).

Finally, the sparse finite element space on the dual mesh of domain [0, 1]d is defined as

ˆ̃Vk
N,D :=

⊕
|l|1≤N
l∈Nd0

Wk
l,N,D,

where Wk
l,N,D = W k

l1,N,D,x1
×· · ·×W k

ld,N,D,xd
. This is a subset of the full grid space Vk

N,D =⊕
|l|∞≤N
l∈Nd0

Wk
l,N,D, and its number of degrees of freedom scales as O(2d−1(k + 1)d2NNd−1)

(the proof is similar to Lemma 2.3 in [76]), which is larger than that of V̂k
N,P , but still

93



significantly less than that of Vk
N,D with exponential dependence on Nd.

We will now investigate the approximation property of the space ˆ̃Vk
N,D.We can obtain the

following result, which essentially states that the L2 projection onto this newly constructed

space has the same order of accuracy as PP ,PD in Lemma 4.1.1.

Lemma 4.1.2 (L2 projection estimate onto ˆ̃Vk
N,D ). Let P̃D be the L2 projection onto the

space ˆ̃Vk
N,D, then for k ≥ 1, 1 ≤ q ≤ min{p, k}, and v ∈ Hp+1(Ω), N ≥ 1, d ≥ 2, we have

|P̃Dv − v|Hs(ΩN,D) .


Nd2−N(q+1)|v|Hq+1(Ω)

s = 0,

2−Nq|v|Hq+1(Ω)
s = 1.

(4.7)

Proof. The proof follows same procedure as Appendix A in [38]. We will mainly highlight

the difference in the proof (see Steps 1 and 2 below). The main difference lies in the fact

that all the hierarchical spaces (and associated projections) have dependence not only on l,

but also on the finest mesh level N.

Step 1: Decomposition of P̃D into tensor products of one-dimensional increment pro-

jections. We denote P kl,N,D as the standard L2 projection operator from L2([0, 1]) to V kl,N,D,

and the induced increment projection

Qkl,N,D :=


P kl,N,D − P

k
l−1,N,D, if l = 1, . . . N,

P k0,N,D, if l = 0,
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and further denote

P̃k
N,D :=

∑
|l|1≤N
l∈Nd0

Qkl1,N,D,x1
⊗ · · · ⊗Qkld,N,D,xd ,

where the last subindex of Qkli,N,D,xi
indicates that the increment operator is defined in xi-

direction. We can verify that P̃D = P̃k
N,D. In fact, for any v, it’s clear that P̃k

N,Dv ∈
ˆ̃Vk
N,D.

Therefore, we only need

∫
Ω

(P̃k
N,Dv − v)w dx = 0, ∀w ∈ ˆ̃Vk

N,D. (4.8)

It suffices to show (4.8) for v ∈ C∞(Ω) which is a dense subset of L2(Ω). In fact, we have

v = Pk
N,Dv + v −Pk

N,Dv,

where Pk
N,D = P kN,N,D,x1

⊗ · · · ⊗ PN,N,D,xd is the L2 projection onto the full grid space

Vk
N,D. Therefore,

∫
Ω

(P̃k
N,Dv − v)wdx =

∫
Ω

(P̃k
N,Dv −Pk

N,Dv)wdx +

∫
Ω

(v −Pk
N,Dv)wdx

= −
∫

Ω
(

∑
|l|∞≤N,|l|1>N

l∈Nd0

Qkl1,N,D,x1
⊗ · · · ⊗Qkld,N,D,xdv)w dx.

The last term in the first row of the equality above vanishes because w ∈ ˆ̃Vk
N,D ⊂ Vk

N,D.
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In addition, for any l ≥ 1, φ ∈ L2([0, 1]), ϕ ∈ V kl−1,N,D

∫
[0,1]

Qkl,N,Dφϕdx =

∫
[0,1]

(I − P kl−1,N,D)φϕdx−
∫

[0,1]
(I − P kl,N,D)φϕdx = 0,

Therefore, by properties of the tensor product projections

∫
Ω

(P̃k
N,Dv − v)wdx = 0, ∀w ∈ ˆ̃Vk

N,D,

and the proof for P̃D = P̃k
N,D is complete.

Step 2: Estimation of the increment projections. For a function v ∈ Hp+1([0, 1]), we

have the convergence property of the L2 projection P kl,N,D as follows: for any integer q with

1 ≤ q ≤ min{p, k}, s = 0, 1,

|P kl,N,Dv − v|Hs(I
j
l,N,D

)
≤ ck,s,q(h

j
l,N )(q+1−s)|v|

Hq+1(I
j
l,N,D

)
, j = 1, · · · , 2l − 1,

where the mesh size h
j
l,N =



hl − hN/2, j = 0

hl, j = 1, · · · , 2l − 1,

hN/2, j = 2l.

The estimation above directly applies for Qk0,N,D = P k0,N,D. For l ≥ 1, by simple algebra,
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we have

|Qkl,N,Dv|Hs(I
j
l,N,D

)
≤ c̃k,s,q2

−l(q+1−s)|v|
Hq+1(I

bj/2c
l−1,N,D

)
, j = 2, · · · , 2l − 1,

|Qkl,N,Dv|Hs(I
j
l,N,D

)
≤ ck,s,q(hl)

(q+1−s)|v|
Hq+1(I

j
l,N,D

)

+ ck,s,q(hl−1 − hN/2)(q+1−s)|v|
Hq+1(I0

l−1,N,D
)
, j = 0, 1,

< c̃k,s,q2
−l(q+1−s)|v|

Hq+1(I0
l−1,N,D

)
,

|Qkl,N,Dv|
Hs(I2l

l,N,D
)

= 0,

with c̃k,s,q = ck,s,q(1 + 2q+1−s).

The rest of the proof is then very similar to Appendix A in [38], and is omitted.

We now provide a numerical validation of Lemma 4.1.2 by considering the error of pro-

jection P̃D for a smooth function

u(x) = exp

 d∏
i=1

xi

 , x ∈ [0, 1]d. (4.9)

In Table 4.2, we report the L2 errors and the associated orders of accuracy for k = 1, 2, 3, d =

2, 3. It is clear that the predicted order of accuracy is achieved.

With the aid of this space, the semi-discrete scheme can now be defined similarly as

in (4.4)-(4.5) by using the space on the dual mesh as ˆ̃Vk
N,D, and replacing the numerical

values on the boundary of the domain by corresponding functions in the Dirichlet boundary

conditions.

We now comment on the implementation of this algorithm. As can be seen from Figures
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Table 4.2: L2 errors and orders of accuracy for L2 projection operator P̃D of (4.9) onto
ˆ̃Vk
N,D when d = 2 and d = 3. N is the number of mesh levels, k is the polynomial order, d

is the dimension. L2 order is calculated with respect to hN .

L2 error order L2 error order L2 error order
N hN k = 1 k = 2 k = 3

d = 2
3 1/8 8.93E-04 – 9.14E-06 – 6.40E-08 –
4 1/16 2.61E-04 1.77 1.29E-06 2.82 4.45E-09 3.85
5 1/32 7.34E-05 1.83 1.77E-07 2.87 3.01E-10 3.89
6 1/64 2.00E-05 1.88 2.37E-08 2.90 1.98E-11 3.93
7 1/128 5.35E-06 1.90 3.11E-09 2.93 1.29E-12 3.94

d = 3
3 1/8 6.19E-04 – 4.93E-06 – 3.18E-08 –
4 1/16 1.90E-04 1.70 7.45E-07 2.73 2.36E-09 3.75
5 1/32 5.71E-05 1.73 1.10E-07 2.76 1.69E-10 3.80
6 1/64 1.67E-05 1.77 1.58E-08 2.80 1.18E-11 3.84
7 1/128 4.80E-06 1.80 2.24E-09 2.82 9.35E-13 3.66

4.1b and 4.2b, there are two types of basis functions in 1D for the dual space.

• Type 1 bases (for l ≥ 0), which are the shifted and truncated multiwavelet bases.

• Type 2 bases (for l = 0), which are the Legendre polynomials of degree up to k on

[1− hN
2 , 1].

Clearly, Type 1 bases are orthogonal to Type 2 bases, because their support do not overlap.

Type 2 bases are orthogonal to each other due to the definition of Legendre polynomials.

However, Type 1 bases are no longer orthogonal to each other, due to the domain shift and

truncation. However, only the left-most element on each level are changed. For other bases

in that level, they will still retain orthogonality. The bases on left-most element in all level

are orthogonal to other bases, but not to each other, i.e., the bases defined on left-most

element in different levels are not orthogonal. This implies that although the mass matrix

is not identity here, it will have block structures and be sparse.
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(a) Primal mesh. Number of bases for l = 0, 1, 2 are
1, 1, 2.

(b) Dual mesh. Number of bases for l = 0, 1, 2 are
2, 1, 2.

Figure 4.1: Illustration of one-dimensional bases on different levels for k = 0: non-periodic
problems. Different colors represent different bases.

4.2 Stability and convergence

In this section, we prove L2 stability and error estimates for the sparse grid CDG scheme

for the scalar equation. We consider both periodic and non-periodic boundary conditions.

For periodic problems, (4.2) reduces to

∂u

∂t
+∇ · (Au) = 0, x ∈ Ω, (4.10)

where A = (A1(t,x), · · · , Ad(t,x)), and ‖A‖L∞(Ω) < ∞, ‖∇ ·A‖L∞(Ω) < ∞. We assume

Ai 6= 0 to avoid the discussion of different boundary conditions for degenerating coefficients.

However, there is no difficulty to extend the proof below to degenerating case. For non-
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(a) Primal mesh. Number of bases for l = 0, 1, 2 are
2, 2, 4.

(b) Dual mesh. Number of bases for l = 0, 1, 2 are
4, 2, 4.

Figure 4.2: Illustration of one-dimensional bases on different levels for k = 1: non-periodic
problems. Different colors represent different bases.

periodic problems, the following inflow boundary conditions are prescribed,

u(t,x)|∂Ω
xini

= gi(t, · · · , xi−1, xi+1, · · · , xd)

where

∂Ω
xini

:=


{x ∈ Ω|xi = 0}, if Ai(t,x) > 0,

{x ∈ Ω|xi = 1}, if Ai(t,x) < 0.

Correspondingly, we denote the outflow edges by

∂Ω
xouti

:=


{x ∈ Ω|xi = 1}, if Ai(t,x) > 0,

{x ∈ Ω|xi = 0}, if Ai(t,x) < 0.
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The scheme for periodic case reduces to: to find uh ∈ V̂k
N,P and vh ∈ V̂k

N,D, such that

∫
Ω

(uh)t ϕh dx =
1

τmax

∫
Ω

(vh − uh)ϕh dx +

∫
Ω
vhA · ∇ϕh dx−

∑
e∈ΓN,P

∫
e
vhA · [ϕh] ds,

(4.11)∫
Ω

(vh)t ψh dx =
1

τmax

∫
Ω

(uh − vh)ψh dx +

∫
Ω
uhA · ∇ψh dx−

∑
e∈ΓN,D

∫
e
uhA · [ψh] ds,

(4.12)

for any ϕh ∈ V̂k
N,P and ψh ∈ V̂k

N,D. For non-periodic problems, we require vh, ψh ∈
ˆ̃Vk
N,D,

and enforce uh|∂Ω
xini

= vh|∂Ω
xini

= gi on the boundary interface.

We can prove that the schemes retain similar stability properties as the standard CDG

schemes.

Theorem 4.2.1 (L2 Stability). With periodic boundary condition, the numerical solutions

uh and vh of the sparse grid CDG scheme (4.11)-(4.12) for the equation (4.10) satisfy the

following L2 stability condition

‖uh‖2L2(ΩN,P )
+ ‖vh‖2L2(ΩN,D)

. ‖uh(0,x)‖2
L2(ΩN,P )

+ ‖vh(0,x)‖2
L2(ΩN,D)

. (4.13)

For non-periodic boundary condition, the corresponding numerical solutions satisfy

‖uh‖2L2(ΩN,P )
+ ‖vh‖2L2(ΩN,D)

. ‖uh(0,x)‖2
L2(ΩN,P )

+ ‖vh(0,x)‖2
L2(ΩN,D)

+

∫ T

0

d∑
i=1

∫
∂Ω

xini

|Ai|g2
i ds dt if τmax .

hN
‖A‖1

.
(4.14)

Proof. For periodic boundary condition, let ϕh = uh in (4.11) and ψh = vh in (4.12),
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summing the two equalities up, we have

1

2

d

dt

∫
Ω

((uh)2 + (vh)2)dx

=
1

τmax

∫
Ω
vh uh − uh uh + uhvh − vhvh dx +

∫
Ω
vhA · ∇uh dx−

∑
e∈ΓN,P

∫
e
vhA · [uh] ds

+

∫
Ω
uhA · ∇vh dx−

∑
e∈ΓN,D

∫
e
uhA · [vh] ds

=− 1

τmax

∫
Ω

(uh − vh)2dx +

∫
Ω

A · ∇(uhvh)dx−
∑

e∈ΓN,P

∫
e
vhA · [uh] ds

−
∑

e∈ΓN,D

∫
e
uhA · [vh] ds.

Apply divergence theorem, and by periodicity, we have

∫
Ω

A · ∇(uhvh)dx−
∑

e∈ΓN,P

∫
e
Avh · [uh] ds−

∑
e∈ΓN,D

∫
e
Auh · [vh] ds = −

∫
Ω
∇ ·Auhvhdx.

By the simple inequality ab ≤ 1
2(a2 + b2),

1

2

d

dt

∫
Ω

(
(uh)2 + (vh)2)dx ≤ − 1

τmax

∫
Ω

(uh− vh)2dx +
1

2
‖∇ ·A‖L∞(Ω)

∫
Ω

((uh)2 + (vh)2)dx.

and the proof for the periodic case is complete by using Gronwall’s inequality.

For non-periodic boundary condition, we follow the same lines and plug in the corre-

sponding boundary condition,

1

2

d

dt

∫
Ω

((uh)2 + (vh)2)dx

=− 1

τmax

∫
Ω

(uh − vh)2dx−
∫

Ω
∇ ·Auhvhdx +

∫
∂Ω

A · nuhvhds
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−
d∑
i=1

∫
∂Ω

xini

A · ngi(uh + vh)ds+ 2

∫
∂Ω

xouti

A · nuhvhds


=− 1

τmax

∫
Ω

(uh − vh)2dx−
∫

Ω
∇ ·Auhvhdx

+
d∑
i=1

∫
∂Ω

xini

|A · n|(−uhvh + gi(uh + vh))ds−
∫
∂Ω

xouti

|A · n|uhvhds


≤− 1

τmax

∫
Ω

(uh − vh)2dx +
1

2
‖∇ ·A‖L∞(Ω)

∫
Ω

((uh)2 + (vh)2)dx

+
d∑
i=1

∫
∂Ω

xini

|A · n|(g2
i +

1

2
(uh − vh)2)ds+

1

2

∫
∂Ω

xouti

|A · n|(uh − vh)2ds


≤− 1

τmax

∫
Ω

(uh − vh)2dx +
1

2
‖∇ ·A‖L∞(Ω)

∫
Ω

((uh)2 + (vh)2)dx

+
d∑
i=1

∫
∂Ω

xini

|A · n|g2
i ds+

∫
∂Ω

xini
∪∂Ω

xouti

|A · n|1
2

(uh − vh)2ds


=− 1

τmax

∫
Ω

(uh − vh)2dx +
1

2
‖∇ ·A‖L∞(Ω)

∫
Ω

((uh)2 + (vh)2)dx

+
d∑
i=1

∫
∂Ω

xini

|Ai|g2
i ds+

∫
∂Ω

xini
∪∂Ω

xouti

|Ai|
1

2
(uh − vh)2ds

 .

by noticing A · n|∂Ω
xini

< 0 and A · n|∂Ω
xouti

> 0.

Let T iN,D := {T ∈ ΩN,D|T ∩ ∂Ωxi 6= ∅} denote the cells on dual mesh adjacent to

the boundary in the i-th direction. By inverse inequality, we have ‖uh − vh‖2L2(∂Ωxi)
.

h−1
N ‖uh − vh‖

2
L2(TiN,D)

≤ h−1
N ‖uh − vh‖

2
L2(Ω)

. Therefore, if τmax .
hN
‖A‖1

,

1

2

d

dt

∫
Ω

((uh)2 + (vh)2)dx ≤ 1

2
‖∇ ·A‖L∞(Ω)

∫
Ω

((uh)2 + (vh)2)dx +
d∑
i=1

∫
∂Ω

xini

|Ai|g2
i ds,

and the proof for the non-periodic case is complete by using Gronwall’s inequality.
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Now we are ready to prove L2 error estimate of the sparse grid CDG scheme.

Theorem 4.2.2 (L2 error estimate). Let u be the exact solution to (4.10) and uh, vh be

the numerical solution to the semidiscrete scheme (4.11) and (4.12) with initial discretiza-

tion uh(0,x) = PPu0, vh(0,x) = PDu0 for periodic boundary condition or uh(0,x) =

PPu0, vh(0,x) = P̃Du0 for non-periodic boundary condition. If τmax . hN , then for k ≥ 1,

u0 ∈ Hp+1(Ω), 1 ≤ q ≤ min{p, k}, N ≥ 1, d ≥ 2, we have for all t ≥ 0

‖u− uh‖L2(ΩN,P )
+ ‖u− vh‖L2(ΩN,D)

. Nd2−Nq |u|Hq+1(Ω)
. (4.15)

Proof. For periodic problems, we first introduce the standard notation of bilinear form

B(uh, vh;ϕh, ψh) =

∫
Ω

(uh)t ϕh dx−
1

τmax

∫
Ω

(vh − uh)ϕh dx−
∫

Ω
vhA · ∇ϕh dx

+
∑
e∈ΓP

∫
e
vhA · [ϕh] ds+

∫
Ω

(vh)t ψh dx−
1

τmax

∫
Ω

(uh − vh)ψh dx

−
∫

Ω
uhA · ∇ψh dx +

∑
e∈ΓD

∫
e
uhA · [ψh] ds.

By Galerkin orthogonality, we have the error equation

B(u− uh, u− vh;ϕh, ψh) = 0, ∀ϕh ∈ V̂k
N,P , ψh ∈ V̂k

N,D. (4.16)

We take

ϕh = PPu− uh, ψh = PDu− uh,

ϕe = PPu− u, ψe = PDu− u,
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then the error equation (4.16) becomes

B(ϕh, ψh;ϕh, ψh) = B(ϕe, ψe;ϕh, ψh). (4.17)

From Theorem 4.2.1, we get

1

2

d

dt

∫
Ω

(
ϕ2
h + ψ2

h

)
dx ≤ B(ϕe, ψe;ϕh, ψh) +

1

2
‖∇ ·A‖L∞(Ω)

∫
Ω

(ϕ2
h + ψ2

h)dx. (4.18)

We write the bilinear form on the right-hand side as a sum of three terms

B(ϕe, ψe;ϕh, ψh) = B1 +B2 +B3, (4.19)

where

B1 =

∫
Ω

(ϕe)t ϕh dx−
1

τmax

∫
Ω

(ψe − ϕe)ϕh dx +

∫
Ω

(ψe)t ψh dx−
1

τmax

∫
Ω

(ϕe − ψe)ψh dx,

B2 = −
∫

Ω
ψeA · ∇ϕh dx−

∫
Ω
ϕeA · ∇ψh dx,

B3 =
∑

e∈ΓN,P

∫
e
ψeA · [ϕh] ds+

∑
e∈ΓN,D

∫
e
ϕeA · [ψh] ds.

By Cauchy-Schwartz inequality, Lemma 4.1.1 and τmax . hN , we have

B1 .
∫

Ω
(ϕ2
h + ψ2

h)dx +N2d2−2Nq |u|2Hq+1(Ω)
. (4.20)

To estimate B2, B3, we use the following inverse inequalities ∀wh ∈ V̂k
N,G, for G = P,D,

|wh|H1(ΩN,G)
. h−1

N ‖wh‖L2(ΩN,G)
, ‖wh‖ΓN,G . h

−1
2

N ‖wh‖L2(ΩN,G)
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and trace inequality,

‖φ‖2
L2(∂T )

. hN
−1‖φ‖2

L2(T )
+ hN |φ|H1(T )

, ∀φ ∈ H1(T ), T ∈ ΩN,G.

Then we have

B2 .
∫

Ω
(ϕ2
h + ψ2

h)dx +N2d2−2Nq |u|2Hq+1(Ω)
(4.21)

and

B3 .
∫

Ω
(ϕ2
h + ψ2

h)dx +N2d2−2Nq |u|2Hq+1(Ω)
. (4.22)

Combining (4.20), (4.21), (4.22) with (4.18), we obtain

d

dt

∫
Ω

(
ϕ2
h + ψ2

h

)
dx .

∫
Ω

(ϕ2
h + ψ2

h)dx +N2d2−2Nq |u|2Hq+1(Ω)
.

Together with the estimates for initial discretization and by Gronwall’s inequality, the

proof is complete. For non-periodic problems, the argument is very similar as long as the

stability result holds. The proof is omitted for brevity.

This theorem proves L2 error of the scheme is O(Nd2−Nk) or O(|log hN |d hkN ) when the

exact solution has enough smoothness in the mixed derivative norms.

4.3 Numerical results

In this section, we present several numerical tests to validate the performance of the proposed

sparse grid CDG schemes. Unless otherwise stated, we use the third-order TVD-RK temporal

discretization [73] and choose the time step ∆t = c
d∑
i=1

ci
hN

, with c = 0.1 for k = 1, 2, where
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ci is the maximum wave propagation speed in xi-direction. To guarantee that the spatial

error dominates for k = 3, we take ∆t = O(h
4/3
N ). τmax is taken as 1

2k+1hN which is always

smaller than the maximum time step allowed based on the CFL number in Table 4.1. For

periodic problems, we only provide L2 errors on the primal mesh, because the results on the

dual mesh are similar. For non-periodic problems, the L2 errors are the L2 average of the

errors on the primal and dual meshes.

4.3.1 Scalar case

In this subsection, we consider the scalar case, i.e. m = 1.

Example 4.3.1 (Linear advection with constant coefficients). We consider


ut +

d∑
i=1

uxi = 0, x ∈ [0, 1]d,

u(0,x) = sin

2π
d∑
i=1

xi

 ,

(4.23)

with periodic or Dirichlet boundary conditions on the inflow edges corresponding to the given

exact solution.

The exact solution is a smooth function,

u(t,x) = sin

2π

 d∑
i=1

xi − d t

 .

In the simulation, we compute the numerical solutions up to two periods in time, meaning

that we let final time T = 1 for d = 2, T = 2/3 for d = 3, and T = 0.5 for d = 4.

We first test the scheme with periodic boundary condition. In Table 4.3, we report the

107



L2 errors and orders of accuracy for k = 1, 2, 3 and up to dimension four. As for accuracy,

we observe about half order reduction from the optimal (k+1)-th order for high-dimensional

computations (d = 4). The order is slightly better for lower dimensions. The convergence

order is similar to the performance of the sparse grid DG scheme in [38]. In Figure 4.3, we

plot the time evolution of the error of L2 norm of numerical solutions uh and vh, which is

given by

∫
Ω

(
(uh(t,x))2 + (vh(t,x))2)dx− ∫

Ω

(
(uh(0,x))2 + (vh(0,x))2)dx

for two-dimensional case for t = 0 to t = 100. From Theorem 4.2.1, such errors are propor-

tional to the difference between uh and vh. We can clearly see that the higher order accurate

scheme performs way better in conservation of L2 norm due to its higher order accuracy.
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Figure 4.3: Example 4.3.1. The time evolution of the error of L2 norm of numerical solutions
uh and vh of the sparse grid CDG method with d = 2. (a) k=1, (b) k=2, (c) k=3. N = 4, 5, 6.

Then, we test the scheme with Dirichlet boundary condition prescribed at the inflow edge

according to the exact solution. The results are listed in Table 4.4. The accuracy order is

similar to the periodic case.

Finally, we use this example to compare the performance of the DG, CDG, sparse grid
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Table 4.3: L2 errors and orders of accuracy for Example 4.3.1 at T = 1 when d = 2, T = 2/3
when d = 3, and T = 0.5 when d = 4. N denotes mesh level, hN is the size of the smallest
mesh in each direction, k is the polynomial order, d is the dimension. L2 order is calculated
with respect to hN .

L2 error order L2 error order L2 error order

N hN k = 1 k = 2 k = 3

d = 2

3 1/8 3.14E-01 – 1.20E-02 – 5.84E-04 –
4 1/16 6.99E-02 2.17 2.23E-03 2.43 8.50E-05 2.78
5 1/32 1.34E-02 2.38 4.87E-04 2.20 3.84E-06 4.47
6 1/64 3.43E-03 1.97 5.97E-05 3.03 3.89E-07 3.30
7 1/128 9.21E-04 1.90 9.33E-06 2.68 1.80E-08 4.43

d = 3

3 1/8 6.77E-01 – 5.27E-02 – 2.13E-03 –
4 1/16 3.56E-01 0.93 1.10E-02 2.26 2.62E-04 3.02
5 1/32 1.05E-01 1.76 1.82E-03 2.60 2.85E-05 3.20
6 1/64 2.54E-02 2.05 5.22E-04 1.80 2.01E-06 3.83
7 1/128 7.45E-03 1.77 6.89E-05 2.92 2.01E-07 3.32

d = 4

3 1/8 7.13E-01 – 1.26E-01 – 4.41E-03 –
4 1/16 6.48E-01 0.14 3.39E-02 1.89 7.56E-04 2.54
5 1/32 3.80E-01 0.77 6.91E-03 2.29 9.82E-05 2.94
6 1/64 1.37E-01 1.47 1.39E-03 2.31 9.44E-06 3.38
7 1/128 3.81E-02 1.85 3.56E-04 1.97 8.16E-07 3.53

Table 4.4: L2 errors and orders of accuracy for Example 4.3.1 with Dirichlet boundary
condition on the inflow edges at T = 1 when d = 2 and T = 2/3 when d = 3. N denotes
mesh level, hN is the size of the smallest mesh on the primal mesh in each direction, k is
the polynomial order, d is the dimension. L2 order is calculated with respect to hN .

L2 error order L2 error order L2 error order

N hN k = 1 k = 2 k = 3

d = 2

3 1/8 2.66E-01 – 1.66E-02 – 8.21E-04 –
4 1/16 7.47E-02 1.83 3.33E-03 2.32 8.80E-05 3.22
5 1/32 1.94E-02 1.95 5.97E-04 2.48 4.79E-06 4.20
6 1/64 5.44E-03 1.83 8.60E-05 2.80 4.50E-07 3.41
7 1/128 1.49E-03 1.87 1.35E-05 2.67 2.20E-08 4.35

d = 3

3 1/8 6.15E-01 – 5.34E-02 – 2.67E-03 –
4 1/16 2.86E-01 1.10 1.40E-02 1.93 2.87E-04 3.22
5 1/32 1.14E-01 1.33 2.57E-03 2.45 3.21E-05 3.16
6 1/64 3.23E-02 1.82 5.82E-04 2.14 2.60E-06 3.63
7 1/128 1.03E-02 1.65 9.81E-05 2.57 2.86E-07 3.18
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DG and sparse grid CDG methods. We use the following non-separable initial condition

u(0,x) = exp

sin

2π
d∑
i=1

xi

 , x ∈ [0, 1]d, (4.24)

where d = 2. When k = 1, 2, 3, Runge-Kutta methods of order ν = 2, 3, 4, respectively, are

used for time discretization. We take the time step according to the CFL numbers listed in

Table 4.1. We plot the comparison of the methods measuring L2 errors vs. CPU times in

Figure 4.4. The computations in this example are implemented by an OpenMP code using

computational resources from the Institute for Cyber-Enabled Research in Michigan State

University. We can see that the sparse grid CDG method outperforms the CDG method,

and the sparse grid DG method outperforms the DG method particularly when the mesh

level N is more refined. When the mesh level increases from N to N + 1, the CPU cost

for sparse grid method grows with the rate of about 4 to 5, while the factor is about 8 to

10 for full grid calculations, respectively, for this 2D case. This shows the advantage of the

sparse grid approach. When comparing the sparse grid CDG method with the sparse grid

DG method, it seems that for this example, the sparse grid DG method is more efficient. It

will be interesting to compare the results for fully nonlinear problems in higher dimensions,

for which the CDG method is more advantageous, and this is currently under investigation.

Example 4.3.2 (Solid body rotation). We consider solid-body-rotation problems, which are

in the form of (4.1) with periodic boundary conditions and

• d = 2, A1(t,x) = −x2 + 1
2 , A2(t,x) = x1 − 1

2 ,

• d = 3, A1(t,x) = −
√

2
2

(
x2 − 1

2

)
, A2(t,x) =

√
2

2

(
x1 − 1

2

)
+
√

2
2

(
x3 − 1

2

)
, A3(t,x) =

−
√

2
2

(
x2 − 1

2

)
.
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Figure 4.4: L2 errors and associated CPU times of DG, CDG, sparse grid DG and sparse
grid CDG methods for Example 4.1 with initial condition (4.24) at T = 1 for d=2. (a) k=1,
(b) k=2, (c) k=3.

Such benchmark tests are commonly used in the literature to assess performance of

transport schemes. Here, the initial profile traverses along circular trajectories centered

at (1/2, 1/2) for d = 2 and about the axis {x1 = x3} ∩ {x2 = 1/2} for d = 3 without

deformation, and it goes back to the initial state after 2π in time. The initial conditions are

set to be the following smooth cosine bells (with C5 smoothness),

u(0,x) =


bd−1 cos6

(πr
2b

)
, if r ≤ b,

0, otherwise,

(4.25)

where b = 0.23 when d = 2 and b = 0.45 when d = 3, and r = |x − xc| denotes the

distance between x and the center of the cosine bell with xc = (0.75, 0.5) for d = 2 and

xc = (0.5, 0.55, 0.5) for d = 3.

In Table 4.5, we summarize the convergence study of the numerical solutions computed

by the sparse CDG method, including the L2 errors and orders of accuracy. For this variable

coefficients equation, we observe at least k-th order convergence for all cases. The order is

slightly lower than the corresponding ones in Example 4.3.1.
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Table 4.5: L2 errors and orders of accuracy for Example 4.3.2 at T = 2π. N denotes mesh
level, hN is the size of the smallest mesh in each direction, k is the polynomial order, d is
the dimension. L2 order is calculated with respect to hN .

L2 error order L2 error order L2 error order

N hN k = 1 k = 2 k = 3

d = 2

5 1/32 1.53E-02 – 5.81E-03 – 1.34E-03 –
6 1/64 1.02E-02 0.58 1.50E-03 1.95 9.64E-05 3.80
7 1/128 4.66E-03 1.13 1.46E-04 3.36 1.16E-05 3.05
8 1/256 1.42E-03 1.71 2.34E-05 2.64 1.10E-06 3.40

d = 3

5 1/32 4.83E-03 – 6.25E-04 – 7.35E-05 –
6 1/64 1.87E-03 1.37 1.20E-04 2.38 9.18E-06 3.00
7 1/128 7.46E-04 1.33 3.39E-05 1.82 1.36E-06 2.75
8 1/256 2.55E-04 1.55 8.11E-06 2.06 1.94E-07 2.81

Example 4.3.3 (Deformational flow). We consider the two-dimensional deformational flow

with velocity field

A1(t,x) = sin2(πx1) sin(2πx2)g(t), A2(t,x) = − sin2(πx2) sin(2πx1)g(t),

where g(t) = cos(πt/T ) with T = 1.5, with periodic boundary condition.

We still adopt the cosine bell (4.25) as the initial condition for this test, but with xc =

(0.65, 0.5) and b = 0.35. Note that the deformational test is more challenging than the

solid body rotation due to the space and time dependent flow field. In particular, along the

direction of the flow, the cosine bell deforms into a crescent shape at t = T/2 , then goes

back to its initial state at t = T as the flow reverses. In the simulations, we compute the

solution up to t = T . The convergence study is summarized in Table 4.6. Similar orders

are observed compared with Example 4.3.2. In Figure 4.5, we plot the contour plots of the

numerical solutions on the primal mesh at t = T/2 when the shape of the bell is greatly

deformed, and t = T when the solution is recovered into its initial state. It is observed that
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the sparse CDG scheme with higher degree k can better resolve the highly deformed solution

structure.

Table 4.6: L2 errors and orders of accuracy for Example 4.3.3 at T = 1.5. N denotes mesh
level, hN is the size of the smallest mesh in each direction, k is the polynomial order, d is
the dimension. L2 order is calculated with respect to hN . d = 2.

N hN L2 error order L2 error order L2 error order

k = 1 k = 2 k = 3

5 1/32 1.73E-02 – 4.37E-03 – 1.14E-03 –
6 1/64 8.06E-03 1.10 1.17E-03 1.90 2.44E-04 2.22
7 1/128 3.29E-03 1.29 2.04E-04 2.52 2.05E-05 3.57
8 1/256 1.08E-03 1.61 2.78E-05 2.88 2.75E-06 2.90

4.3.2 System case

In this subsection, we consider system case, which means m > 1 in equation (4.1) or (4.2).

Example 4.3.4 (Acoustic wave equation with constant wave speed). We consider



ut = ∇ · v, x ∈ [0, 1]2,

vt = ∇u,

u(0,x) = u0(x), v(0,x) = v0(x).

(4.26)

with periodic boundary conditions. The initial conditions u0(x) and v0(x) are chosen ac-

cording to the following two types of exact solutions: the standing wave


u(t,x)

v1(t,x)

v2(t,x)

 =


−
√

2 sin(2
√

2πt) sin(2πx1) sin(2πx2)

cos(2
√

2πt) cos(2πx1) sin(2πx2)

cos(2
√

2πt) sin(2πx1) cos(2πx2)

 ,
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Example 4.3.3. Deformational flow test. The contour plots of the numerical
solutions on primal mesh at t = T/2 (a, c, e) and t = T (b, d, f). k = 1 (a, b), k = 2 (c, d),
and k = 3 (e, f). N = 7.
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and the traveling wave


u(t,x)

v1(t,x)

v2(t,x)

 =


√

2 sin(2
√

2πt+ 2πx1) cos(2πx2)

sin(2
√

2πt+ 2πx1) cos(2πx2)

cos(2
√

2πt+ 2πx1) sin(2πx2)

 .

We compute the solution until T = 1. Similar to the scalar case, we present the L2 errors

and orders of accuracy for u(t,x) =

[
u(t,x), v1(t,x), v2(t,x)

]T
in Table 4.7. From the

table, we still observe at least (k + 1/2)-th order for the solution.

Table 4.7: L2 errors and orders of accuracy for Example 4.3.4 at T = 1. N denotes mesh
level, hN is the size of the smallest mesh in each direction, k is the polynomial order, d is
the dimension. L2 order is calculated with respect to hN . d = 2.

L2 error order L2 error order L2 error order

N hN k = 1 k = 2 k = 3

standing wave

3 1/8 3.56E-01 – 1.05E-02 – 5.37E-04 –
4 1/16 7.93E-02 2.17 1.84E-03 2.51 4.31E-05 3.64
5 1/32 1.50E-02 2.40 3.18E-04 2.53 3.39E-06 3.67
6 1/64 3.72E-03 2.01 4.95E-05 2.68 2.77E-07 3.61
7 1/128 1.01E-03 1.88 7.60E-06 2.70 2.03E-08 3.77

traveling wave

3 1/8 3.97E-01 – 1.85E-02 – 7.75E-04 –
4 1/16 8.58E-02 2.21 3.36E-03 2.46 6.76E-05 3.52
5 1/32 1.97E-02 2.12 6.07E-04 2.47 5.68E-06 3.57
6 1/64 5.36E-03 1.88 9.66E-05 2.65 4.44E-07 3.68
7 1/128 1.50E-03 1.84 1.45E-05 2.74 3.39E-08 3.71

Example 4.3.5 (Two-dimensional homogeneous isotropic elastic wave [44]). The 2D elastic

wave equation in homogeneous and isotropic medium in velocity-stress formulation without

external source, is a linear hyperbolic system of the form

ut + A1ux1 + A2ux2 = 0, (4.27)
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where u =

[
σxx, σyy, σxy, v, w

]T
, σxx, σyy represents the normal stress and σxy rep-

resents the shear stress and v, w are the velocity in x and y directions.

A1 = −



0 0 0 λ+ 2µ 0

0 0 0 λ 0

0 0 0 0 µ

1
ρ 0 0 0 0

0 0 1
ρ 0 0


, A2 = −



0 0 0 0 λ

0 0 0 0 λ+ 2µ

0 0 0 µ 0

0 0 1
ρ 0 0

0 1
ρ 0 0 0


,

where λ and µ are the Lamé constants and ρ is the mass density of material. Eigenvalues of

A1 and A2 are −cp,−cs, 0, cs, cp, which give us the wave speed cp =
√

λ+2µ
ρ and cs =

√
µ
ρ

for P-wave and S-wave respectively. We consider the homogeneous material parameters

λ = 2, µ = 1, ρ = 1, then cp = 2, cs = 1. On domain Ω = [0, 1]2, we take the solutions

consisting of a plane P-wave traveling along diagonal direction n = (
√

2
2 ,
√

2
2 ) and a plane

S-wave traveling in the opposite direction, i.e.,

u(t,x) = Rse
sin(k·x+kcst) + Rpe

sin(k·x−kcpt),

where Rs = [−µ, µ, 0,−
√

2
2 cs,

√
2

2 cs]
T ,Rp = [λ + µ, λ + µ, µ,−

√
2

2 cp,−
√

2
2 cp]

T and k =

kn, k = 2
√

2π. Periodic boundary condition is applied and the initial condition is chosen as

u(0,x).

We compute the solution until T = 1. The L2 errors and orders of accuracy for u(t,x)

are shown in Table 4.8. We observe that the convergence order is close to k + 1.

Example 4.3.6 (Three-dimensional isotropic elastic wave [31]). We extend the previous

116



Table 4.8: L2 errors and orders of accuracy for Example 4.3.5 at T = 1. N denotes mesh level,
hN is the size of the smallest mesh in each direction, k is the polynomial order, dimension
d = 2. L2 order is calculated with respect to hN .

L2 error order L2 error order L2 error order

N hN k = 1 k = 2 k = 3

4 1/16 1.09E+00 – 2.72E-01 – 5.71E-02 –
5 1/32 7.47E-01 0.55 6.48E-02 2.07 6.19E-03 3.21
6 1/64 2.41E-01 1.63 9.65E-03 2.75 4.77E-04 3.70
7 1/128 7.14E-02 1.76 1.12E-03 3.11 2.55E-05 4.23

example to 3D and obtain the following linear hyperbolic system

ut + A1ux1 + A2ux2 + A3ux3 = 0, (4.28)

where u =

[
σxx, σyy, σzz, σxy, σyz, σxz, u, v, w

]T
, σ is the stress tensor and

u, v, w are the velocities in each spatial direction.

A1 = −



0 0 0 0 0 0 λ+ 2µ 0 0

0 0 0 0 0 0 λ 0 0

0 0 0 0 0 0 λ 0 0

0 0 0 0 0 0 0 µ 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 µ

1
ρ 0 0 0 0 0 0 0 0

0 0 0 1
ρ 0 0 0 0 0

0 0 0 0 0 1
ρ 0 0 0



, A2 = −



0 0 0 0 0 0 0 λ 0

0 0 0 0 0 0 0 λ+ 2µ 0

0 0 0 0 0 0 0 λ 0

0 0 0 0 0 0 µ 0 0

0 0 0 0 0 0 0 0 µ

0 0 0 0 0 0 0 0 0

0 0 0 1
ρ 0 0 0 0 0

0 1
ρ 0 0 0 0 0 0 0

0 0 0 0 1
ρ 0 0 0 0



,

117



A3 = −



0 0 0 0 0 0 0 0 λ

0 0 0 0 0 0 0 0 λ

0 0 0 0 0 0 0 0 λ+ 2µ

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 µ 0

0 0 0 0 0 0 µ 0 0

0 0 0 0 0 1
ρ 0 0 0

0 0 0 0 1
ρ 0 0 0 0

0 0 1
ρ 0 0 0 0 0 0



,

where λ, µ and ρ take the same values as the previous example. Hence, we have the same

values for cp and cs. Eigenvalues of A1, A2 and A3 are −cp,−cs,−cs, 0, 0, 0, cs, cs, cp, which

describe the wave speed for P-wave and S-wave (with different polarizations). On domain

Ω = [0, 1]3, we take the solutions consisting of a plane S-wave traveling along diagonal

direction n = (− 1√
3
,− 1√

3
,− 1√

3
) and a plane P-wave traveling in the opposite direction, i.e.,

u(t,x) = Rs sin(k · x− kcst) + Rp sin(k · x + kcpt),

where

Rs = [−2

3
µ,

2

3
µ, 0, 0,

1

3
µ,−1

3
µ,− 1√

3
cs,

1√
3
cs, 0]T ,

Rp = [λ+
2

3
µ, λ+

2

3
µ, λ+

2

3
µ,

2

3
µ,

2

3
µ,

2

3
µ,− 1√

3
cp,−

1√
3
cp,−

1√
3
cp]

T

and k = kn, k = −2
√

3π. Similarly, we consider periodic boundary condition and u0(x) =

u(0,x) as initial condition.
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We present the numerical results at T = 1. In Table 4.9, we get at least (k + 1/2)-th

order of accuracy for the solution u(t,x).

Table 4.9: L2 errors and orders of accuracy for Example 4.3.6 at T = 1. N denotes mesh
level, hN is the size of the smallest mesh in each direction, k is the polynomial order, d is
the dimension. L2 order is calculated with respect to hN . d = 3.

L2 error order L2 error order L2 error order

N hN k = 1 k = 2 k = 3

4 1/16 2.49E+00 – 4.93E-02 – 8.91E-04 –
5 1/32 7.70E-01 1.69 8.17E-03 2.59 8.66E-05 3.36
6 1/64 1.76E-01 2.13 1.59E-03 2.36 7.12E-06 3.60
7 1/128 4.27E-02 2.04 2.79E-04 2.51 5.42E-07 3.72
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Detailed discussions on the choice of the T matrix as in

(51) or (52)

We discuss what parameters result in |b1 ± b2| = 0, under the assumption that α1 has no

dependence on h, β1 = β̃1h
p1 , β2 = β̃2h

p2 , β̃1, β̃2 are nonzero constants that do not depend

on h.

b1 − b2 = (−β1 +
k(k − 1)

2h
)(1− β2

2k(k − 1)

h
) +

k(k − 1)

h
2α2

1

= (−β̃1h
p1 +

k(k − 1)

2
h−1)(1− 2k(k − 1)β̃2h

p2−1) + k(k − 1)2α2
1h
−1,

b1 + b2 = (−β1 +
k(k + 1)

2h
)(1− β2

2k(k + 1)

h
) +

k(k + 1)

h
2α2

1

= (−β̃1h
p1 +

k(k + 1)

2
h−1)(1− 2k(k + 1)β̃2h

p2−1) + k(k + 1)2α2
1h
−1.

If b1 − b2 = 0,∀h < h0, then

• α1 6= 0, then p1 = −1, p2 = 1 and β̃1, β̃2 satisfies

(−β̃1 +
k(k − 1)

2
)(1− 2k(k − 1)β̃2) + k(k − 1)2α2

1 = 0. (29)

Similarly, for b1 + b2 = 0,∀h < h0, then

• α1 6= 0, p1 = −1, p2 = 1 and β̃1, β̃2 satisfies

(−β̃1 +
k(k + 1)

2
)(1− 2k(k + 1)β̃2) + k(k + 1)2α2

1 = 0. (30)
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Detailed discussions on assumption A2

Parameter choices for |Γ| = |Λ| imply

Γ± Λ = β1 +
k2(k2 − 1)

h2
β2 +

k(k ± 1)

h
(−2α2

1 − 2β1β2) +
−k2 ± k

2h

= (β1 −
k(k ∓ 1)

2h
)(1− 2β2

k(k ± 1)

h
)− k(k ± 1)

h
2α2

1 = 0,

which indicates

• if α1 6= 0, then b1 ± b2 can be greatly simplified as follows.

– If Γ + Λ = 0, then k is odd, and

b1 + b2 =
k

h

(
1− β2

2k(k + 1)

h

)
,

b1 − b2 = − 2

k + 1

(
β1 −

k(k − 1)

2h

)
,

Λ = − 1

k + 1

(
β1 −

k2

h
+
k2(k2 − 1)

h2
β2

)
.

– If Γ− Λ = 0, then k is even, and

b1 + b2 =
2

k − 1

(
β1 −

k(k + 1)

2h

)
,

b1 − b2 = −k
h

(
1− β2

2k(k − 1)

h

)
,

Λ = − 1

k − 1

(
β1 −

k2

h
+
k2(k2 − 1)

h2
β2

)
, k > 1.
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• If α1 = 0, then

β1 =
k(k ± 1)

2h
, or β2 =

h

2k(k ± 1)
. (31)

More estimates related to Legendre coefficients

We provide estimates of the Legendre coefficients, especially their difference in neighboring

cells of equal size.

If u ∈ W k+2+n,∞(I), then expand ûj(ξ) at ξ = −1 in (2.24) by Taylor series, we have

for m ≥ k + 1, ∃z ∈ [−1, 1], s.t.

uj,m = C

∫ 1

−1

d

dξk+1

( n∑
s=0

d

dξs
ûj(−1)

(ξ + 1)s

s!

+
d

dξn+1
ûj(z)

(ξ + 1)n+1

(n+ 1)!

) d

dξm−k−1
(ξ2 − 1)mdξ,

=
n∑
s=0

θsh
k+1+s
j u(k+1+s)(x

j−1
2

) +O(hk+2+n
j |u|

Wk+2+n,∞(Ij)
),

(32)

where θs are constants independent of u and hj .

When hj = hj+1, we use Taylor expansion again, and compute the difference of two uj,m

from neighboring cells

uj,m − uj+1,m =
n∑
s=1

µsh
k+1+s
j u(k+1+s)(x

j−1
2

) +O(hk+2+n
j |u|

Wk+2+n,∞(Ij∪Ij+1)
). (33)

Then we obtain the estimates

|uj,m − uj+1,m +
n∑
s=1

µsh
k+1+s
j u(k+1+s)(x

j−1
2

)| ≤ Chk+2+n|u|
Wk+2+n,∞(Ij∪Ij+1)

, (34)
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where µs are constants independent of u and hj .

Two convolution-like operators

To facilitate the analysis in Chapter 2 and 3, we define two operators on a periodic functions

u in L2(I):

�u(x) =
N−1∑
l=0

(−1)l
−N + 2l

2
u(x+ L

l

N
), N is odd, (35a)

�λu(x) =
1

1− λN

N−1∑
l=0

λlu(x+ L
l

N
), |λ| = 1, (35b)

where L = b− a is the size of I and N is odd in (35a).

Expand u by Fourier series, i.e., u(x) =
∑∞
n=−∞ f̂(n)e2πinx/L, we have

�u(x) =
N−1∑
l=0

(−1)l
−N + 2l

2

∞∑
n=−∞

f̂(n)e
in(2π

L x+2π l
N )

=
∞∑

n=−∞
f̂(n)e

2π
L inx

N−1∑
l=0

−N + 2l

2
(−ei2π

n
N )l

=
∞∑

n=−∞

−2e
2πi nN

(1 + e
2πi nN )2

f̂(n)e
2π
L inx

,

�λu(x) =
1

1− λN

N−1∑
l=0

λl
∞∑

n=−∞
f̂(n)e

in(2π
L x+2π l

N )

=
1

1− λN

∞∑
n=−∞

f̂(n)e
2π
L inx

N−1∑
l=0

(λe
i2π nN )l

=
∞∑

n=−∞

f̂(n)

1− λe2πi nN
e

2π
L inx

.
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In addition, we can apply the operator on the same function recursively, we have

�
ν1
λ1
· · ·�νnλn u(x) =

∞∑
n=−∞

1

(1− λ1e
2πi nN )ν1

· · · 1

(1− λne2πi nN )νn
f̂(n)e

i2πL inx
,

(�λ)νu(x) =
∞∑

n=−∞

f̂(n)

(1− λe2πi nN )ν
e

2π
L inx

,

(�)νu(x) =
∞∑

n=−∞

( −2e
2πi nN

(1 + e
2πi nN )2

)ν
f̂(n)e

2π
L inx

.

Next, we estimate the two operators. Assuming u ∈ W 3,1(I), then the Fourier coefficient

f̂(n) satisfies: ∣∣∣f̂(n)
∣∣∣ ≤ C

|u|
Wk+4,1(I)

1 + |n|3
. (36)

Since N is odd, then ωn = e
2πi nN 6= −1,∀n. Hence, �u(x) are well defined. We estimate

�u(x) by splitting it into blocks of size N as

�u(x) =
∞∑

l=−∞
Sl, where Sl =

lN+N−1
2∑

n=lN−N−1
2

−2e
2πi nN

(1 + e
2πi nN )2

f̂(n)e
2π
L inx

.

Let’s estimate S0
k+1 first. Denote W1(n) = −2e

2πi nN

(1+e
2πi nN )2

e
2π
L inx

. For |n| ≤ [3N
8 ], |W1(n)| =

2
|1+ωn|2

≤ 2

|1+ei3π/4|2
= 2

2−
√

2
. For other n, |W1(n)| ≤ |W1(N−1

2 )| = 2

|1+ω(N−1)/2|2
≤ CN2
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from Taylor expansions.

|S0| ≤
[ 3N8 ]∑

n=−[ 3N8 ]

∣∣∣f̂(n)W1(n)
∣∣∣+

n=−[ 3N8 ]−1∑
−N−1

2

∣∣∣f̂(n)W1(n)
∣∣∣+

N−1
2∑

n=[3N8 ]+1

∣∣∣f̂(n)W1(n)
∣∣∣

≤ 2

2−
√

2

[ 3N8 ]∑
n=−[ 3N8 ]

∣∣∣f̂(n)
∣∣∣+ CN2

n=−[ 3N8 ]−1∑
−N−1

2

∣∣∣f̂(n)
∣∣∣+ CN2

N−1
2∑

n=[3N8 ]+1

∣∣∣f̂(n)
∣∣∣

≤ 2

2−
√

2

[ 3N8 ]∑
n=−[ 3N8 ]

∣∣∣f̂(n)
∣∣∣+ CN2 1

1 + (3N
8 )3

(
N

4
+ 2)|u|

W3,1(I)

≤ C


N−1

2∑
n=−N−1

2

1

1 + |n|3
+

1

(3
8)3

 |u|W3,1(I)
.

Then, in a similar way,

|Sl| ≤ C


lN+N−1

2∑
n=lN−N−1

2

1

1 + |n|3
+

1

(|l|+ 3
8)3

 |u|W3,1(I)
.

Therefore,

|�u(x)| ≤ C

 ∞∑
n=−∞

1

1 + |n|3
+

∞∑
l=−∞

1

(|l|+ 3
8)3

 |u|
W3,1(I)

≤ C|u|
W3,1(I)

. (37)

Similar to the estimation for �u(x) above, we split � into blocks of size N ,

�λu(x) =
∞∑

l=−∞
Sl, where Sl =

(l+1)N−1∑
n=lN

f̂(n)W2(n), W2(n) =
e

2π
L inx

1− λe2πi nN
.

W2(n) is singular when λ is close to any n-th root of unity. Assuming
∣∣∣1− λN ∣∣∣ =
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O(hδ
′
) and |λ − 1| = O(hδ/2) with 0 ≤ δ/2 ≤ 1. We can write λ = e±iθ and assume

θ ∈ (0, π) without loss of generality. First, we establish a relation between δ and δ′. Since

|λ| = |λN | = 1, we have δ, δ′ ≥ 0. Because 1 − λN = (e2πin/N )N − (eiθ)N = (e2πin/N −

eiθ)(
∑N−1
l=0 (e2πin/N )N−1−l(eiθ)l), thus

∣∣∣1− λN ∣∣∣ ≤ N
∣∣∣ωn − eiθ∣∣∣ ,∀n. With the assumption∣∣∣1− λN ∣∣∣ ∼ Chδ

′
, we get

∣∣∣ωn − eiθ∣∣∣ ≥ Chδ
′+1. Particularly, when n = 0, we have |1− λ| ≥

Chδ
′+1, hence δ/2 ≤ δ′ + 1.

In addition, |W2(n)| = |λ− ωn|−1 ≤ Ch−(δ′+1). With the assumption that 0 ≤ δ/2 ≤ 1,

there ∃n0 ∼ O(hδ/2−1) s.t. 2π
n0
N ≤ θ < 2π

n0+1
N . Let n1 = bn0/2c, n2 = 2n0 − n1,

then for n1 ≤ n ≤ n2,
∣∣∣f̂(n)

∣∣∣ ≤ C 1
1+n2

1
|u|

W2,1(I)
. For other n, |w2(n)| ≤ |w2(n1)| ≤

1
2|sin(πn1/N−θ/2)| ≤ Ch−δ/2. Thus,

|S0| ≤ Ch−δ/2

n1−1∑
n=0

+
N−1∑

n=n2+1

∣∣∣f̂(n)
∣∣∣
+ Ch−(δ′+1)

n2∑
n=n1

∣∣∣f̂(n)
∣∣∣

≤ C

h−δ/2 N−1∑
n=0

1

1 + |n|2
+ h−(δ′+1)(n2 − n1 + 1)

1

1 + n2
1

 |u|
W2,1(I)

≤ C

h−δ/2 N−1∑
n=0

1

1 + |n|2
+ h−(δ′+1)hδ/2−1h2−δ

 |u|
W2,1(I)

≤ C

h−δ/2 N−1∑
n=0

1

1 + |n|2
+ h−δ

′−δ/2

 |u|
W2,1(I)

.

Using similar approaches, for l 6= 0,

|Sl| ≤ C

h−δ/2 (l+1)N−1∑
n=lN

1

1 + |n|2
+ h−δ

′+δ/2 1

|n1/N + l|2

 |u|
W2,1(I)

.
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Summing up, we reach the estimation

|�λu(x)| ≤ C

h−δ/2 ∞∑
n=−∞

1

1 + |n|2
+ h−δ

′−δ/2 + h−δ
′+δ/2 ∑

l∈N,l 6=0

1

|l|2

 |u|
W2,1(I)

≤ Ch−δ
′−δ/2|u|

W2,1(I)
.

(38)

Corollary .0.7. When λi, i ≤ n is a complex number with |λi| = 1, independent of h, above

estimates yields following results:

∣∣∣�ν1λ1
· · ·�νnλn u(x)

∣∣∣ ≤ C|u|
W

1+
∑n
i=1 νi,1(I)

, |(�u(x))ν | ≤ C|u|
W1+2ν,1(I)

. (39)

Estimates for Mj,m

Let’s recall the definition

Mj,m = (Aj +Bj)
−1(GL−j,m +HL+

j,m), ∀m ∈ Z+,∀j ∈ ZN ,

where G,H,Aj , Bj , L
−
j,m, L

+
j,m,Γj ,Λj are defined in Table 2.1.

Aj +Bj = G[L−j,k−1, L
−
j,k] +H[L+

j,k−1, L
+
j,k] =

1

2

1 0

0 1
hj

M+ +

 α1 −β2

−β1 −α1


1 0

0 1
hj

M−,
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where

M± =

1 0

0 hj

 [L−j,k−1 ± L
+
j,k−1, L

−
j,k ± L

+
j,k]

=

 1± (−1)k−1 1± (−1)k

k(k − 1)(1± (−1)k) k(k + 1)(1± (−1)k+1)

 .

Therefore,

(Aj +Bj)
−1 =

1

D1
M−1
−

 −α1 β2 −
hj

2k(k+(−1)k)

β1hj −
k(k−(−1)k)

2 α1hj

 ,

where D1 =
(−1)khj

2k(k+(−1)k)
((−1)kΓj + Λj).

In what follows, we estimateMj,m when scale-invariant flux parameters are used in (40),

and when α2
1 + β1β2 = 1

4 in (41).

• Scale-invariant flux parameters.
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D1 is bounded by definitions of Γj ,Λj and mesh regularity condition. Then

(Aj +Bj)
−1G

1 0

0 1
hj

 =

1

D1
M−1
−

 −α1 β̃2hh
−1
j −

1
2k(k+(−1)k)

β̃1h
−1hj −

k(k−(−1)k)
2 α1


 1

2 + α1 −β̃2hh
−1
j

−β̃1h
−1hj

1
2 − α1

 ,

(Aj +Bj)
−1H

1 0

0 1
hj

 =

1

D1
M−1
−

 −α1 β̃2hh
−1
j −

1
2k(k+(−1)k)

β̃1h
−1hj −

k(k−(−1)k)
2 α1


 1

2 − α1 β̃2hh
−1
j

β̃1h
−1hj

1
2 + α1



and

Mj,m =(Aj +Bj)
−1G

1 0

0 1
hj


 1

m(m+ 1)



+ (−1)m(Aj +Bj)
−1H

1 0

0 1
hj


 1

−m(m+ 1)

 .

If the mesh is uniform, the three formulas above are independent of mesh size h.

For nonuniform mesh, by mesh regularity condition, ∃σ1, σ2, s.t., σ1 ≤ h−1hj ≤ σ2,

therefore,

∥∥∥∥∥∥∥∥(Aj +Bj)
−1G

1 0

0 1
hj


∥∥∥∥∥∥∥∥
∞

≤ C,

∥∥∥∥∥∥∥∥(Aj +Bj)
−1H

1 0

0 1
hj


∥∥∥∥∥∥∥∥
∞

≤ C,
∥∥Mj,m

∥∥
∞ ≤ C.

(40)
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• α2
1 + β1β2 = 1

4 .

Λj = 0. D1 =
hjΓj

2k(k+(−1)k)
and above formulas simplifies to

(Aj +Bj)
−1G

1 0

0 1
hj

 =

1

2D1
M−1
−

 −α1 − 1
2 +

β1hj

k(k+(−1)k)
β2h
−1
j −

1
2k(k+(−1)k)

β1hj −
k(k−(−1)k)

2 − α1k(k − (−1)k) α1 − 1
2 + β2h

−1
j k(k − (−1)k)

 ,

(Aj +Bj)
−1H

1 0

0 1
hj

 =

1

2D1
M−1
−

 α1 − 1
2 −

β1hj

k(k+(−1)k)
β2h
−1
j −

1
2k(k+(−1)k)

β1hj −
k(k−(−1)k)

2 + α1k(k − (−1)k) α1 + 1
2 − β2h

−1
j k(k − (−1)k)

 .

Thus, we have the following estimation

‖Mj,m‖∞ ≤

1 +

max

(
|β1|,

|12−α1|
h ,

|12+α1|
h ,

|β2|
h2

)
|Γj |

 . (41)

Proof of Lemma 2.2.2

By Definition 2.2.1, P ?hu|Ij =
∑k−2
m=0 uj,mLj,m + új,k−1Lj,k−1 + új,kLj,k. We solve the two

coefficients új,k−1, új,k on every cell Ij according to definition (2.16).

If assumption A0 is satisfied, it has been shown in Lemma 2.2.1 that (2.16) is equivalent
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to (2.20). Substitute u and ux by (2.23), we obtain the following equation

(Aj +Bj)

új,k−1

új,k

 = (Aj +Bj)

uj,k−1

uj,k

+
∞∑

m=k+1

uj,m(GL−j,m +HL+
j,m), (42)

the existence and uniqueness of the system above is ensured by assumption A0, that is,

det(Aj + Bj) = 2(−1)kΓj 6= 0. And (2.26) is proven by multiplying (Aj + Bj)
−1 on both

sides of above equality.

If any of the assumption A1/A2/A3 is satisfied, (2.16) can be written as

G
k∑

m=0

új,mL
−
m +H

k∑
m=0

új+1,mL
+
m = G

∞∑
m=0

uj,mL
−
m +H

∞∑
m=0

uj+1,mL
+
m,

where we used (2.23) and G+H = I2 in above equality. Since új,m = uj,m when m ≤ k−2,

A

új,k−1

új,k

+B

új+1,k−1

új+1,k

 =
∞∑

m=k−1

uj,mGL
−
m + uj+1,mHL

+
m.

In order to solve for új,k−1, új,k, we group above coupled equations for all j in a 2N×2N

linear system as follows,

M



ú1,k−1

ú1,k

· · ·

úN−1,k−1

úN−1,k

úN,k−1

úN,k



=



η1

θ1

· · ·

ηN−1

θN−1

ηN

θN



, (43)
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where ηj
θj

 = G

∞∑
m=k−1

uj,mL
−
m +H

∞∑
m=k−1

uj+1,mL
+
m,

and M = circ(A,B, 02, · · · , 02), denoting a 2N × 2N block-circulant matrix with first two

rows as (A,B, 02, · · · , 02), with 02 as a 2× 2 zero matrix. We can calculate that

detA = detB =
−2k

h
(α2

1 + β1β2 −
1

4
) 6= 0. (44)

It is clear that the existence and uniqueness of P ?h is equivalent to detM 6= 0. By a direct

computation, detM = detAN det(I2−QN ), where I2 denotes the 2×2 identity matrix, and

Q = −A−1B =
(−1)k+1

Λ

c1 + c2 b1 + b2

b1 − b2 c1 − c2

 ,

with

c1 = β1 +
k2(k2 − 1)

h2
β2 −

2k2

h
(α2

1 + β1β2 +
1

4
) := Γ, (45)

c2 =
k

h
(2α1), (46)

b1 = −β1 −
k2(k2 + 1)

h2
β2 +

2k2

h
(α2

1 + β1β2 +
1

4
), (47)

b2 = −2k3

h2
β2 +

2k

h
(α2

1 + β1β2 +
1

4
). (48)

The eigenvalues of Q are

λ1 =
(−1)(k+1)

Λ
(Γ +

√
Γ2 − Λ2), λ2 =

(−1)(k+1)

Λ
(Γ−

√
Γ2 − Λ2). (49)
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Since detQ = detB/ detA = 1, we have the relations λ1λ2 = 1 and

b21 − b
2
2 = Γ2 − Λ2 − c22. (50)

Below we discuss the existence and uniqueness of P ?h based on the types of eigenvalues

of Q.

A1 If |Γ| > |Λ|, then λ1,2 are real and different. Therefore, we can perform eigenvalue

decomposition of Q,

Q = TDT−1,

where

D =

λ1 0

0 λ2

 ,
and

T =

 1 − b1+b2

c2+
√

Γ2−Λ2

b1−b2
c2+
√

Γ2−Λ2
1

 , T−1 =
1

detT

 1
b1+b2

c2+
√

Γ2−Λ2

− b1−b2
c2+
√

Γ2−Λ2
1

 , (51)

where detT = 2
√

Γ2−Λ2

c2+
√

Γ2−Λ2
, except for the case when (b1 − b2)(b1 + b2) = 0 and c2 < 0,

where

T =

 1 −b1+b2
2c2

b1−b2
2c2

1

 , T−1 =

 1
b1+b2

2c2

−b1−b22c2
1

 . (52)
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In both situations, we have

detM = detAN det(I2 −

λN1 0

0 λN2

) = detAN det(

1− λN1 0

0 1− λN2

).

detM 6= 0 if and only if (λ1)N 6= 1 and (λ2)N 6= 1, which is true since |λ1| 6= 1 and |λ2| 6= 1.

A2 If |Γ| = |Λ|, then λ1 = λ2 = (−1)k+1 Γ
Λ and we have two repeated eigenvalues.

Perform Jordan decomposition:

c1 + c2 b1 + b2

b1 − b2 c1 − c2

 = T

c1 1

0 c1

 T −1,

and

T =

 c2 1

b1 − b2 0

 , if b1 6= b2, (53)

T =

2b1 0

0 1

 , if b1 = b2.

We define

J =
(−1)k+1

Λ

c1 1

0 c1

 =

λ1
(−1)k+1

Λ

0 λ1

 , Q = T J T −1,
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then

Qj = T J jT −1, J j =

λj1 κj

0 λ
j
1

 ,

I2 −QN = T

2 −κN

0 2

 T −1,

where κj =
(−1)(k+1)j

Λj
jΓj−1.

In both situations, detM 6= 0 if and only if (λ1)N 6= 1, meaning that we require N to

be odd and further, if k is odd, we require Γ = −Λ; if k is even, we require Γ = Λ. In both

cases, λ1 = λ2 = −1.

A3 If |Γ| < |Λ|, then λ1,2 are complex, |λ1,2| = 1, λ1 = λ2, still Q is diagonalizable, and

similar to A1, detM 6= 0 turns to (λ1)N 6= 1 and (λ2)N = (λ1)N 6= 1, i.e. we require

(−1)(k+1)N

Γ

Λ
+

√(
Γ

Λ

)2

− 1

N 6= 1.

Summarize above results, we proved the existence and uniqueness for P ?h when any of

the assumptions A0/A1/A2/A3 is satisfied.

In order to obtain the exact formula of új,k−1 and új,k, we analyze the inverse of the

matrix M. It is known that the inverse of a nonsingular circulant matrix is also circulant, so

is a block-circulant matrix. In particular,

M−1 = circ(r0, r1, · · · , rN−1)⊗ A−1
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where ⊗ means Kronecker product for block matrices and rl is a 2× 2 matrix defined as,

rj = Qj(I2 −QN )−1, j = 0, · · · , N − 1. (54)

Therefore, if any of the assumptions A1/A2/A3 is satisfied,

új,k−1

új,k



=
N−1∑
l=0

rlA
−1
(
A

uj+l,k−1

uj+l,k

+B

uj+l+1,k−1

uj+l+1,k

+
∞∑

m=k+1

uj+l,mGL
−
m + uj+l+1,mHL

+
m

)
,

=
N−1∑
l=0

rl

(uj+l,k−1

uj+l,k

−Q
uj+l+1,k−1

uj+l+1,k

+
∞∑

m=k+1

uj+l,m[L−k−1, L
−
k ]−1L−m

− uj+l+1,mQ[L+
k−1, L

+
k ]−1L+

m

)

=

uj,k−1

uj,k

+
∞∑

m=k+1

(N−1∑
l=1

uj+l,mV2,m + uj,mr0[L−k−1, L
−
k ]−1L−m

− uj+N,mrN [L−k−1, L
−
k ]−1L−m

)

=

uj,k−1

uj,k

+
∞∑

m=k+1

(
uj,mV1,m +

N−1∑
l=0

uj+l,mrlV2,m
)
,

where rN = QN (I2 −QN )−1 = r0 − I2 is used in the third equality. And (2.27) is proven.
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Proof of Lemma 2.2.3

Denote

Uj =

új,k−1 − uj,k−1

új,k − uj,k

 ,
When assumption A0 is satisfied (2.28) is a direct result of (2.26) and (41).

If any of the assumptions A1/A2/A3 is satisfied, we have

Uj =

új,k−1 − uj,k−1

új,k − uj,k

 =
∞∑

m=k+1

(uj,mV1,m +
N−1∑
l=0

uj+l,mrlV2,m).

In order to estimate Uj , we first compute rl to get its detailed dependence on l. If A1/A3,

Q is diagonalizable, then

rl = TDl(I2 −DN )−1T−1 =
λl1

1− λN1
T

1 0

0 0

T−1 +
λl2

1− λN2
T

0 0

0 1

T−1

=
λl1

1− λN1
Q1 +

λl2
1− λN2

(I2 −Q1),

(55)

where

Q1 =
1

2
√

Γ2 − Λ2

c2 +
√

Γ2 − Λ2 b1 + b2

b1 − b2 −c2 +
√

Γ2 − Λ2

 , (56)

when T is given by (51), and
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Q1 =
1

2c2

 2c2 b1 + b2

b1 − b2 0

 , (57)

when T is given by (52).

If assumption A2 is satisfied,

rl = Ql(I2 −QN )−1 =
(−1)l

2
I2 + (−1)l

−N + 2l

4Γ
Q2, (58)

where

Q2 = T

0 1

0 0

 T −1 =

 c2 b1 + b2

b1 − b2 −c2

 . (59)

When assumption A1 is satisfied, eigenvalues λ1, λ2 are real.

N−1∑
l=0

|
λl1,2

1− λN1,2
| = 1

1− |λ1,2|
1− |λ1,2|N

|1− λN1,2|
.

Without loss of generality, we assume |λ1| < 1 < |λ2|, then

N−1∑
l=0

|
λl1

1− λN1
| ≤ 1

1− |λ1|
=
|λ2|
|λ2| − 1

,

N−1∑
l=0

|
λl2

1− λN2
| ≤ 1

|λ2| − 1
.

And thus
N−1∑
l=0

‖rl‖∞ ≤
‖Q1‖∞
1− |λ1|

+
‖I2 −Q1‖∞

1− |λ2|
. (60)
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Then we have

‖Uj‖∞ ≤ C(1 +
N−1∑
l=0

‖rl‖∞)|u|
Wk+1,∞(I)

≤ Chk+1|u|
Wk+1,∞(I)

(1 +
‖Q1‖∞
1− |λ1|

+
‖I2 −Q1‖∞

1− |λ2|
),

where (2.25) and the fact that V1,m, V2,m,∀m ≥ 0 are constant matrices independent of h

are used in above inequalities.

When assumption A3 is satisfied, eigenvalues λ1, λ2 are complex, with |λ1,2| = 1 and

above estimation does not apply. We perform more detailed computation and use Fourier

analysis to bound Uj by utilizing the smoothness and periodicity of u. If u ∈ W k+2+n,∞(I),

Uj =
N−1∑
l=0

rl

∞∑
m=k+1

(
ul+j,m −

n∑
s=0

θsh
k+1+su(k+1+s)(x

j+l−1
2

))V2,m
)

+
N−1∑
l=0

rl

∞∑
m=k+1

n∑
s=0

θsh
k+1+su(k+1+s)(x

j+l−1
2

)V2,m +
∞∑

m=k+1

uj,mV1,m

= O(hk+2+n|u|
Wk+2+n,∞(Ij)

) +
∞∑

m=k+1

uj,mV1,m

+
∞∑

m=k+1

n∑
s=0

θsh
k+1+s

N−1∑
l=0

(
λl1

1− λN1
Q1 +

λl2
1− λN2

(I2 −Q1))u(k+1+s)(x
j+l−1

2
)V2,m

= O(hk+2+n|u|
Wk+2+n,∞(Ij)

) +
∞∑

m=k+1

uj,mV1,m

+
∞∑

m=k+1

n∑
s=0

θsh
k+1+s(Q1 �λ1

+(I2 −Q1)�λ2
)u(k+1+s)(x

j−1
2

)V2,m

≤ Chk+1‖u‖
Wk+3,∞(I)

(1 + h−δ
′−δ/2(‖Q1‖∞ + ‖I2 −Q1‖∞)),

where (32) is used in the first equality and (38) is used in the last inequality.
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When assumption A2 is satisfied, by similar computation, if u ∈ W k+2+n,∞(I),

Uj = O(hk+2+n|u|
Wk+2+n,∞(Ij)

) +
∞∑

m=k+1

uj,mV1,m

+
∞∑

m=k+1

n∑
s=0

1

2
θs

N−1∑
l=0

(
(−1)l + (−1)l

−N + 2l

2Γ
Q2
)
hk+1+su(k+1+s)(x

j+l−1
2

)V2,m

≤ Chk+1|u|
Wk+1,∞(Ij)

+

∣∣∣∣∣
∞∑

m=k+1

n∑
s=0

θsh
k+1+sQ2

2Γ
� u(k+1+s)(x

j−1
2

)V2,m

∣∣∣∣∣
+

∣∣∣∣∣
∞∑

m=k+1

n∑
s=0

1

2
θsh

k+1+s(u(k+1+s)(x
j+N−3

2
) +

N−1
2∑

l′=0

u(k+1+s)(x
j+2l′−1

2
)

− u(k+1+s)(x
j+2l′+1

2
)
)
V2,m

∣∣∣∣∣
≤ Chk+1‖u‖

Wk+4,∞(I)
(1 +

‖Q2‖∞
|Γ|

),

where (34) and (39) are used in the last inequality.

The estimates of Uj for assumptions A1, A2 and A3 are finished, and (2.29), (2.30) and

(2.31) are direct results of the estimation of ‖Uj‖∞.

Proof of Lemma 3.2.3

Proof. Since P ?hu = P
†
hu when A0, the formula for ùj,k−1, ùj,k is the same as (2.26). That

is, ùj,k−1

ùj,k

 =

uj,k−1

uj,k

+
∞∑

m=k+1

uj,mMm. (61)

Under assumption A1/A2/A3, above formula is well-defined if and only ifMm is not singular.

By the analysis ofMj,m in Appendix, the existence and uniqueness condition is det(A+B) =

2((−1)kΓ + Λ) 6= 0. Thus, by (40) and (2.25), (3.9) is proven.
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If any of the assumptions A1/A2/A3 is satisfied, then the difference of two projections

can be written as

Wu|Ij = P ?hu|Ij − P
†
hu|Ij = (új,k−1 − ùj,k−1)Lj,k−1 + (új,k − ùj,k)Lj,k.

The properties of P ?hu and P
†
hu yield the following coupled system

A

új,k−1 − ùj,k−1

új,k − ùj,k

+B

új+1,k−1 − ùj+1,k−1

új+1,k − ùj+1,k

 =

τj
ιj

 , ∀j ∈ ZN ,

τj
ιj

 =

 u
ux


∣∣∣∣∣∣∣
x
j+1

2

−G

 P
†
hu

(P
†
hu)x


∣∣∣∣∣∣∣
−

x
j+1

2

−H

 P
†
hu

(P
†
hu)x


∣∣∣∣∣∣∣
+

x
j+1

2

= G


(u− P †hu)|−x

j+1
2

− (u− P †hu)|−x
j+3

2

(u− P †hu)x|−x
j+1

2

− (u− P †hu)x|−x
j+3

2

 ,

where the second equality was obtained by the definition of P
†
hu (3.8b).

Gather the relations above for all j results in a large 2N × 2N linear system with block

circulant matrix M, defined in (43), as coefficient matrix, then the solution is

új,k−1 − ùj,k−1

új,k − ùj,k

 =
N−1∑
l=0

rlA
−1

τl+j
ιl+j

 , j ∈ ZN ,

where by periodicity, when l + j > N , τl+j = τl+j−N , ιl+j = ιl+j−N .

On uniform mesh, by the definition of Rj,m in (3.12), Rj,m(1) and (Rj,m)x(1) are

independent of j, we denote the corresponding values as Rm(1) and (Rm)x(1) and let
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R−m = [Rm(1), (Rm)x(1)]T . By (3.11), we have


(u− P †hu)|−x

j+1
2

− (u− P †hu)|−x
j+3

2

(u− P †hu)x|−x
j+1

2

− (u− P †hu)x|−x
j+3

2

 =
∞∑

m=k+1

(uj,m − uj+1,m)R−m

and

új,k−1 − ùj,k−1

új,k − ùj,k

 =
N−1∑
l=0

rl
( ∞∑
m=k+1

(ul+j,m − ul+j+1,m)A−1GR−m
) .

= Sj , j ∈ ZN . (62)

Using (33), we can estimate Sj by the same lines as the estimation of Uj in the proof of

Lemma 2.2.3 in Appendix, and (3.10) is proven.

Proof of Lemma 3.3.1

Proof. By error equation, the symmetry of A(·, ·) and the definition of sh, we have

0 = a(e, vh) = a(εh, vh) + a(ζh, vh) =

∫
I
shvhdx+

∫
I
(ζh)tvhdx− iA(vh, ζh), ∀vh ∈ V kh .

(63)

Now, we are going to choose three special test functions to extract superconvergence prop-

erties (3.16)-(3.18) about ζh. We first prove (3.16). In order to have A(vh, ζh) = ‖(ζh)xx‖2,

we choose a function v1 ∈ V kh , such that ∀j ∈ ZN , v1|Ij = αj,k−1Lj,k−1 +αj,kLj,k + (ζh)xx,∫
Ij
v1(ζh)xxdx = ‖(ζh)xx‖2

L2(Ij)
, v̂1|j+1

2
= 0 and (̃v1)x|j+1

2
= 0.

When the assumption A0 holds, the definition of v1 yields the following local system for
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each pair of αj,k−1 and αj,k,

(Aj +Bj)

αj,k−1

αj,k

 = −G

 (ζh)−xx

(ζh)−xxx

 ∣∣∣∣
j+1

2

−H

 (ζh)+
xx

(ζh)+
xxx

 ∣∣∣∣
j−1

2

, ∀j ∈ ZN .

αj,k−1

αj,k

 =− (Aj +Bj)
−1G

1 0

0 1
hj


 (ζh)−xx

hj(ζh)−xxx

 ∣∣∣∣
j+1

2

− (Aj +Bj)
−1H

1 0

0 1
hj


 (ζh)+

xx

hj(ζh)+
xxx

 ∣∣∣∣
j−1

2

,

(64)

thus v1 is nontrivial and uniquely defined under assumption A0. By orthogonality of Leg-

endre polynomials, it follows that

‖v1‖2L2(Ij)
= |αj,k−1|2

∫
Ij

L2
j,k−1dx+ |αj,k|2

∫
Ij

L2
j,kdx+ ‖(ζh)xx‖2L2(Ij)

≤ C(hj‖(ζh)xx‖2L2(∂Ij)
+ h3

j‖(ζh)xxx‖2L2(∂Ij)
+ ‖(ζh)xx‖2L2(Ij)

)

≤ C‖(ζh)xx‖2L2(Ij)
,

where (40), trace inequalities and inverse inequalities are used in above inequality.

Let vh = v1, then (63) becomes

0 =

∫
I
shv1dx+

∫
I
(ζh)tv1dx− i‖(ζh)xx‖2.

Hence ‖(ζh)xx‖2 ≤ ‖sh+(ζh)t‖ · ‖v1‖ ≤ C‖sh+(ζh)t‖ · ‖(ζh)xx‖. Therefore, (3.16) is proven

when assumption A0 is satisfied.

Similarly, in order to have A(vh, ζh) = −
∑N
j=1 |[ζh]|2

j+1
2

, we define v2 ∈ V kh , such that
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∀j ∈ ZN , v2|Ij = αj,k−1Lj,k−1 + αj,kLj,k,
∫
Ij
v2(ζh)xxdx = 0, v̂2|j+1

2
= 0 and (̃v2)x|j+1

2
=

[ζh]|
j+1

2
. When assumption A0 is satisfied, this definition yields the following local system

for each pair of αj,k−1 and αj,k,

(Aj +Bj)

αj,k−1

αj,k

 = G

 0

[ζh]

 ∣∣∣∣
j+1

2

+H

 0

[ζh]

 ∣∣∣∣
j−1

2

, ∀j ∈ ZN .

By same algebra as above, we have

αj,k−1

αj,k

 = (Aj +Bj)
−1G

1 0

0 1
hj


 0

hj [ζh]

 ∣∣∣∣
j+1

2

+ (Aj +Bj)
−1H

1 0

0 1
hj


 0

hj [ζh]

 ∣∣∣∣
j−1

2

.

By (40), it follows directly that

‖v2‖2L2(Ij)
≤ Ch3

j (|[ζh]|2
j+1

2
+ |[ζh]|2

j−1
2

).

Plug v2 in (63), we obtain

N∑
j=1

|[ζh]|2
j+1

2
= i

∫
I
shv2dx+ i

∫
I
(ζh)tv2dx ≤ ‖sh + (ζh)t‖‖v2‖.

Therefore, (3.17) is proven when assumption A0 is satisfied.

Finally, in order to have A(vh, ζh) =
∑N
j=1 |[(ζh)x]|2

j+1
2

, we choose v3 ∈ V kh , such that

∀j ∈ ZN , v3|Ij = αj,k−1Lj,k−1+αj,kLj,k such that
∫
Ij
v3(ζh)xxdx = 0, v̂3|j+1

2
= [(ζh)x]|

j+1
2

and (̃v3)x|j+1
2

= 0. Follow the same lines as the estimates for v2, we end up with the

estimates

‖v3‖2L2(Ij)
≤ Chj(|[(ζh)x]|2

j+1
2

+ |[(ζh)x]|2
j−1

2
).
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Plug v3 in (63), we obtain (3.18) when assumption A0 is satisfied.

Under assumption A1, we need to compute
∑N
j=1(|αj,k−1|2 + |αj,k|2) to estimate ‖v1‖2.

The definition of v1 yields the following coupled system

A

αj,k−1

αj,k

+B

αj+1,k−1

αj+1,k

 = −G

 (ζh)−xx

(ζh)−xxx

 ∣∣∣∣
j+1

2

−H

 (ζh)+
xx

(ζh)+
xxx

 ∣∣∣∣
j+1

2

, j ∈ ZN . (65)

Write it in matrix form

Mα = b, α = [α1, · · · ,αN ]T ,

where M is defined in (43) and

αj = [αj,k−1, αj,k], b = [b1, · · · , bN ]T , bj = −G

 (ζh)−xx

(ζh)−xxx

 ∣∣∣∣
j+1

2

−H

 (ζh)+
xx

(ζh)+
xxx

 ∣∣∣∣
j+1

2

.

Left multiply A−1 in (65), we get an equivalent system

M ′α = b′, M ′ = circ(I2, A
−1B, 02, · · · , 02), b′ = [b′1, · · · , b

′
N ]T , b′j = A−1bj ,

and (M ′)−1 = circ(r0, · · · , rN−1). By Theorem 5.6.4 in [29] and similar to the proof in

Lemma 3.1 in [10],

M ′ = (F∗N ⊗ I2)Ω(FN ⊗ I2),

where FN is the discrete Fourier transform matrix defined by (FN )ij = 1√
N
ω(i−1)(j−1),

ω = e
i2πN . FN is symmetric and unitary and

Ω = diag(I2 + A−1B, I2 + ωA−1B, · · · , I2 + ωN−1A−1B).
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The assumption
|Γ|
|Λ| > 1 in A1 ensures that the eigenvalues of Q = −A−1B are not 1, thus

I2 + ωjA−1B, ∀j, is nonsingular and Ω is invertible. Then

|ρ((M ′)−1)| = ‖(M ′)−1‖2 ≤ ‖F∗N ⊗ I2‖2‖Ω‖2‖FN ⊗ I2‖2 ≤ C. (66)

Therefore,

N∑
j=1

(|αj,k−1|2 + |αj,k|2) = αTα = (b′)T (M ′)−T (M ′)−1(b′)T

≤ ‖(M ′)−1‖22‖b
′‖22 ≤ C

N∑
j=1

‖b′j‖
2
2.

Since A−1G

1 0

0 1
h

 , A−1H

1 0

0 1
h

 are constant matrices, we have

‖b′j‖
2
2 ≤ C


∥∥∥∥∥∥∥
 (ζh)−xx

h(ζh)−xxx

 ∣∣∣∣
j+1

2

∥∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥
 (ζh)+

xx

h(ζh)+
xxx

 ∣∣∣∣
j+1

2

∥∥∥∥∥∥∥
2


≤ C(‖(ζh)xx‖2L2(∂Ij)

+ ‖(ζh)xx‖2L2(∂Ij+1)

+ h2‖(ζh)xxx‖2L2(∂Ij)
+ h2‖(ζh)xxx‖2L2(∂Ij+1)

)

≤ C(‖(ζh)xx‖2L2(∂Ij)
+ ‖(ζh)xx‖2L2(∂Ij+1)

),

where inverse inequality is used to obtain the last inequality. Finally, we obtain the estimate

‖v1‖2 =
N∑
j=1

|αj,k−1|2‖Lj,k−1‖2L2(Ij)
+

N∑
j=1

|αj,k|2‖Lj,k‖2L2(Ij)
+ ‖(ζh)xx‖2
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≤ ‖(ζh)xx‖2 + Ch
N∑
j=1

(|αj,k−1|2 + |αj,k|2)

≤ ‖(ζh)xx‖2 + Ch
N∑
j=1

(‖(ζh)xx‖2L2(∂Ij)
+ ‖(ζh)xx‖2L2(∂Ij+1)

)

≤ ‖(ζh)xx‖2 + Ch‖(ζh)xx‖2L2(∂IN )
≤ C‖(ζh)xx‖2,

where inverse inequality is used to obtain the last inequality. Then the estimates for (3.16)

hold true. (3.17) and (3.18) can be proven by the same procedure when assumption A1 is

satisfied, and the steps are omitted for brevity.

Remark .0.1. When assumption A2 or A3 is satisfied, the eigenvalues of Q are −1 or two

complex number with magnitude 1, then a constant bound for ρ((M ′)−1) as in (66) is not

possible. Therefore, we cannot obtain similar results for assumption A2 and A3.

Proof for Lemma 3.3.2

Proof. Since wq ∈ V kh , we have

wq|Ij =
k∑

m=0

c
q
j,mLj,m. (67)

Let vh = D−2Lj,m,m ≤ k − 2 in (3.19a), we obtain

c
q
j,m = −i2m+ 1

hj

h2
j

4

∫
Ij

∂twq−1D
−2Lj,mdx. (68)

Since D−2Lj,m ∈ Pm+2
c (Ij), by the property u − P ?hu ⊥ V k−2

h in the L2 inner product
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sense, we have

c1j,m =



−i2m+1
hj

h2
j
4

∫
Ij
∂t(u− P ?hu)D−2Lj,mdx = 0, m ≤ k − 4,

−i2m+ 1

hj

h2
j

4

∫
Ij

∂t((uj,k−1 − új,k−1)Lj,k−1

+(uj,k − új,k)Lj,k)D−2Lj,mdx,

m = k − 3, k − 2.

(69)

By induction using (67), (68), (69), for 0 ≤ m ≤ k − 2− 2q, c
q
j,m = 0.

Furthermore, the first nonzero coefficient can be written in a simpler form related to

uj,k−1 by induction.

When q = 1, we compute c1j,k−3 by (69) and the definition of w0. That is

c1j,k−3 = −i2(k − 3) + 1

hj

(hj
2

)2
∂t(uj,k−1 − új,k−1)

∫
Ij

D−2Lj,k−3Lj,k−1dx

= Ch2
j∂t(uj,k−1 − új,k−1).

Suppose c
q−1
k+1−2q = Ch

2q−2
j ∂

q−1
t (uj,k−1 − új,k−1), then

c
q
j,k−1−2q = −i2(k − 1− 2q) + 1

hj

(hj
2

)2
∂tc

q−1
j,k+1−2q

∫
Ij

D−2Lj,k−1−2qLj,k+1−2qdx

= Chj
2q∂

q
t (uj,k−1 − új,k−1).

The induction is completed and the second formula in (3.23) is proven when r = 0.

Next, we begin estimating the coefficient c
q
j,m. By Holder’s inequality and (68), we have

the estimates for c
q
j,m, k − 1− 2q ≤ m ≤ k − 2,

∣∣∣cqj,m∣∣∣ ≤ Ch2−1
s ‖∂twq−1‖Ls(Ij).
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To estimate the coefficients c
q
j,k−1, c

q
j,k, we need to discuss them under different assump-

tions. If assumption A0 is satisfied, meaning (3.19b) and (3.19c) can be decoupled and

therefore wq is locally defined by (3.19). By (3.20) and following the same algebra of solving

the k-th and (k + 1)-th coefficients in (42),

cqj,k−1

c
q
j,k

 = −
k−2∑
m=0

Mj,mc
q
j,m.

By (40), for all j ∈ ZN ,

∣∣∣cqj,k−1

∣∣∣2 +
∣∣∣cqj,k∣∣∣2 ≤ C

k−2∑
m=k−2q−3

∣∣∣cqj,m∣∣∣2 ≤ Ch3‖∂twq−1‖2L2(Ij)
.

max(
∣∣∣cqj,k−1

∣∣∣ , ∣∣∣cqj,k∣∣∣) ≤ C max
k−2q−3≤m≤k−2

∣∣∣cqj,m∣∣∣ ≤ Ch2‖∂twq−1‖L∞(Ij).

If any of the assumptions A1/A2/A3 is satisfied, (3.20) defines a coupled system. From

the same lines for obtaining (2.27) in Appendix, the solution for c
q
j,k−1, c

q
j,k is

cqj,k−1

c
q
j,k

 = −
k−2∑

m=k−1−2q

N−1∑
l=0

rlA
−1(GL−mc

q
j+l,m +HL+

mc
q
j+l+1,m)

= −
k−2∑

m=k−1−2q

(
c
q
j,mV1,m +

N−1∑
l=0

c
q
j+l,mrlV2,m

)
.

(70)

Under assumption A1 and scale invariant flux assumption, (60) implies
∑N−1
l=0 ‖rl‖∞ ≤

C. We have the estimate for c
q
j,m,m = k − 1, k, that is

∥∥∥∥∥∥∥
cqj,k−1

c
q
j,k


∥∥∥∥∥∥∥
∞

≤ C(1 +
N−1∑
l=0

‖rl‖∞) max |cqj+l,m| ≤ Ch2‖∂twq−1‖L∞(IN ).
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Under assumption A2 or A3,
∑N−1
l=0 ‖rl‖∞ is unbounded. Thus we use Fourier analysis to

bound the coefficients utilizing the smoothness and periodicity by similar steps of estimating

Uj in the proof of Lemma 2.2.3. In the rest of the proof, we make use of two operators �

and �, which are defined in (35b) and (35a).

When assumption A3 is satisfied, Q = −A−1B has two imaginary eigenvalues λ1, λ2 with

|λ1| = |λ2| = 1. rl =
λl1

1−λN1
Q1 +

λl2
1−λN2

(I2−Q1), where Q1 is a constant matrix independent

of h, and defined in (56) and (57). We perform more detailed computation of the coefficients.

In (69), plug in (2.27), for m = k − 3, k − 2, when ut ∈ W k+2+n,∞(I),

c1j,m = i
2m+ 1

h

h2

4

∫
Ij

[Lj,k−1, Lj,k]∂t

∞∑
p=k+1

(
uj,pV1,p +

N−1∑
l=0

uj+l,prlV2,p

)
D−2Lj,mdx

= i
2m+ 1

2

h2

4

∞∑
p=k+1

∂t

(
uj,pF

1
p,m +

N−1∑
l=0

uj+l,prlF
2
p,m

)

= i
2m+ 1

8

∞∑
p=k+1

( n∑
s=0

µsh
k+3+su

(k+1+s)
t (x

j−1
2

)F 1
p,m +O(hk+n+3|ut|Wk+2+n,∞(I)

)

+
N−1∑
l=0

( λl1
1− λN1

Q1 +
λl2

1− λN2
(I2 −Q1)

) n∑
s=0

µsh
k+3+su

(k+1+s)
t (x

j+l−1
2

)F 2
p,m

)
= i

2m+ 1

8

∞∑
p=k+1

n∑
s=0

µsh
k+3+s(u(k+1+s)

t (x
j−1

2
)F 1
p,m

+ (Q1 �λ1
+(I2 −Q1)�λ2

)u
(k+1+s)
t (x

j−1
2

)F 2
p,m

)
+O(hk+3+n|ut|Wk+2+n,∞(I)

),

where F νp,m = 2
h

∫
Ij

[Lj,k−1, Lj,k]Vν,pD
−2Lj,mdx, ν = 1, 2, are constants independent of h

and (32) is used in the third equality.

Plug the formula above into (70), by similar computation, we have

c1j,k−1

c1j,k

 = −i2m+ 1

8
h2

k−2∑
m=k−3

∞∑
p=k+1

n∑
s=0

µsh
k+1+s(u(k+1+s)

t (x
j−1

2
)F 1
p,mV1,m
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+ (Q1 �λ1
+(I2 −Q1)�λ2

)u
(k+1+s)
t (x

j−1
2

)(F 2
p,mV1,m + F 1

p,mV2,m)

+ (Q1 �λ1
+(I2 −Q1)�λ2

)2u
(k+1+s)
t (x

j−1
2

)F 2
p,mV2,m

)
+O(hk+2+n|ut|Wk+2+n,∞(I)

).

By (39), we have

(Q1 �λ1
+(I2 −Q1)�λ2

)νu
(k+1+s)
t (x

j−1
2

) ≤ C|ut|Wk+2+s+ν,1(I)
≤ C|u|

Wk+4+s+ν,1(I)
.

Therefore,

|c1j,m| ≤ C2h
k+3, m = k − 3, k − 2, and |c1j,m| ≤ C3h

k+3, m = k − 1, k.

By induction and similar computation, we can obtain the formula for c
q
j,m. For brevity,

we omit the computation and directly show the estimates

|cqj,m| ≤ C3qh
k+1+2q, k − 1− 2q ≤ m ≤ k.

When assumption A2 is satisfied, Q = −A−1B has two repeated eigenvalues. rl =

(−1)l

2 I2 + (−1)l−N+2l
4Γ Q2, where Q2/Γ is a constant matrix. For m = k − 3, k − 2, when

ut ∈ W k+2+n,∞(I), we compute c1j,m by the same procedure as previous case and obtain

c1j,m = i
2m+ 1

8
h2

∞∑
p=k+1

n∑
s=0

µsh
k+1+s(u(k+1+s)

t (x
j−1

2
)F 1
p,m

+
1

2
(�−1 +

Q2

Γ
�)u

(k+1+s)
t (x

j−1
2

)F 2
p,m

)
+O(hk+3+n|ut|Wk+2+n,∞(I)

).
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Plug formula above into (70), we have

c1j,k−1

c1j,k

 = −i2m+ 1

8
h2

k−2∑
m=k−3

∞∑
p=k+1

n∑
s=0

µsh
k+1+s(u(k+1+s)

t (x
j−1

2
)F 1
p,mV1,m

+
1

2
(�−1 +

Q2

Γ
�)u

(k+1+s)
t (x

j−1
2

)(F 2
p,mV1,m + F 1

p,mV2,m)

+
1

4
(�−1 +

Q2

Γ
�)2u

(k+1+s)
t (x

j−1
2

)F 2
p,mV2,m

)
+O(hk+2+n|ut|Wk+2+n,∞(I)

).

By (39), we have

(�−1 +
Q2

Γ
�)νu

(k+1+s)
t (x

j−1
2

) ≤ C|ut|Wk+2+s+2ν,1(I)
≤ C|u|

Wk+4+s+2ν,1(I)

and

|c1j,m| ≤ C2h
k+3, m = k − 3, k − 2, and |c1j,m| ≤ C4h

k+3, m = k − 1, k.

By induction and similar computation, we can obtain the formula for c
q
j,m. For brevity,

we omit the computation and directly show the estimates

|cqj,m| ≤ C4qh
k+1+2q, k − 1− 2q ≤ m ≤ k.

All the analysis above works when we change definition of wq to ∂rtwq (and change

(wq−1)t to ∂r+1
t wq−1 accordingly) in (3.19). Summarize the estimates for c

q
j,m under all

three assumptions, for 1 ≤ q ≤ bk−1
2 c, we have

|∂rt c
q
j,m| ≤ C2r,qh

k+1+2q, ‖∂rtwq‖ ≤ C(
N∑
j=1

k∑
m=k−2q−1

|∂rt c
q
j,m|

2hj)
1
2 ≤ C2r,qh

k+1+2q.
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Then (3.23), (3.24) is proven. And (3.25) is a direct result of above estimate and (3.22).
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[31] M. Dumbser and M. Käser. An arbitrary high-order discontinuous Galerkin method
for elastic waves on unstructured meshes—II. The three-dimensional isotropic case.
Geophysical Journal International, 167(1):319–336, 2006.

[32] V. Gradinaru. Fourier transform on sparse grids: code design and the time dependent
Schrödinger equation. Computing, 80(1):1–22, 2007.

[33] M. Griebel. A parallelizable and vectorizable multi-level algorithm on sparse grids. In
W. Hackbusch, editor, Parallel Algorithms for Partial Differential Equations, Notes on
Numerical Fluid Mechanics, volume 31, pages 241–251, Braunschweig, 1991. Vieweg-
Verlag.

[34] M. Griebel. Adaptive sparse grid multilevel methods for elliptic PDEs based on finite
differences. Computing, 61(2):151–179, 1998.

[35] M. Griebel and J. Hamaekers. Sparse grids for the Schrödinger equation. ESAIM:
Mathematical Modelling and Numerical Analysis, 41(02):215–247, 2007.

158



[36] M. Griebel and G. Zumbusch. Adaptive sparse grids for hyperbolic conservation laws. In
Hyperbolic Problems: Theory, Numerics, Applications, pages 411–422. Springer, 1999.

[37] M. J. Grote, A. Schneebeli, and D. Schötzau. Discontinuous Galerkin finite element
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