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ABSTRACT

ON SUPERCONVERGENT DISCONTINUOUS GALERKIN METHODS FOR
SCHRODINGER EQUATIONS AND SPARSE GRID CENTRAL DISCONTINUOUS
GALERKIN METHOD

By
Angi Chen

In this thesis, we design and analyze a discontinuous Galerkin (DG) method for one-
dimensional Schrodinger equations under a general class of numerical fluxes, and another
efficient DG method for high-dimensional hyperbolic equations.

In the first DG method, we develop an ultra-weak discontinuous Galerkin (UWDG)
method to solve the one-dimensional nonlinear Schrodinger equation. Stability conditions
and error estimates are derived for the scheme with a general class of numerical fluxes. The
error estimates are based on detailed analysis of the projection operator associated with each
individual flux choice. Depending on the parameters, we find out that in some cases, the
projection can be defined element-wise, facilitating analysis. In most cases, the projection
is global, and its analysis depends on the resulting 2 x 2 block-circulant matrix structures.
For a large class of parameter choices, optimal a priori L? error estimates can be obtained.
Numerical examples are provided verifying theoretical results.

In addition to the stability and error analysis, we analyze the superconvergence properties
of the UWDG method for one-dimensional linear Schrodinger equation with various choices
of flux parameters. Depending on the flux choices and if the polynomial degree k is even or
odd, we prove 2k or (2k — 1)-th order superconvergence rate for cell averages and numerical
flux of the function, as well as (2k—1) or (2k—2)-th order for numerical flux of the derivative.
In addition, we prove superconvergence of (k+2) or (k+ 3)-th order of the UWDG solution

towards a special projection. At a class of special points, the function values and the first and



second order derivatives of the UWDG solution are superconvergent with order k+2, k+1, k,
respectively. The proof relies on the correction function techniques initiated in [12], and
applied to [10] for direct DG (DDG) methods for diffusion problems. By negative norm
estimates, we apply the post-processing technique and show that the accuracy of our scheme
can be enhanced to order 2k. Theoretical results are verified by numerical experiments.

In the second DG method, we develop sparse grid central discontinuous Galerkin (CDG)
scheme for linear hyperbolic systems with variable coefficients in high dimensions. The
scheme combines the CDG framework with the sparse grid approach, with the aim of break-
ing the curse of dimensionality. A new hierarchical representation of piecewise polynomials
on the dual mesh is introduced and analyzed, resulting in a sparse finite element space that
can be used for non-periodic problems. Theoretical results, such as L2 stability and error
estimates are obtained for scalar problems. CFL conditions are studied numerically com-
paring discontinuous Galerkin (DG), CDG, sparse grid DG and sparse grid CDG methods.

Numerical results including scalar linear equations, acoustic and elastic waves are provided.
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Chapter 1

Introduction

1.1 Overview

The discontinuous Galerkin (DG) method is a class of finite element methods using com-
pletely discontinuous piecewise function space for test functions and numerical solution.
The first DG method was introduced by Reed and Hill in [59]. A major development
of DG method is the Runge-Kutta DG (RKDG) framework introduced for solving hyper-
bolic conservation laws containing only first order spatial derivatives in a series of papers
(25, 24, 22, 21, 26]. Because of the completely discontinuous basis, DG method has several
attractive properties. It can be used on many types of meshes, even those with hanging
nodes. The method has h-p adaptivity and very high parallel efficiency.

A particular type of DG methods that is related to this thesis is central DG (CDG)
scheme. The CDG schemes [48; 50, 51] are a class of DG schemes on overlapping cells that
combine the idea of the central schemes [56, 45, 49] with the DG weak formulation. Such
methods are intrinsically Riemann solver free, therefore no costly flux evaluations are needed
in the computation. It is well known that the CDG schemes allow larger CFL numbers
than the standard DG methods except for piecewise constant approximations [50, 60]. This
compensates the increased cost caused by duplicate representation of the solution on the

dual mesh.



In this thesis, we will focus on the design of a new DG method for one-dimensional
Schrodinger equations and its error analysis, and superconvergence analysis, as well as a
new sparse-grid central DG method for high-dimensional hyperbolic equations to make the

simulation more efficient and accurate.

1.2 UWDG method for one-dimensional Schrodinger

equations

In this section, we introduce the one-dimensional time-dependent nonlinear Schrodinger
(NLS) equation and review the numerical methods designed to solve this equation.

The NLS equation is written as follows:

g + uze + f(JuP)u =0, (1.1)

where f(u) is a nonlinear real function and u is a complex function. The Schrédinger equation
is the fundamental equation in quantum mechanics, reaching out to many applications in fluid
dynamics, nonlinear optics and plasma physics. It is also called Schrodinger wave equation
as it can describe how the wave functions of a physical system evolve over time. Many
numerical methods have been applied to solve NLS equations [14, 28, 42, 43, 58, 71, 74]. In
[14, 74], several important finite difference schemes are implemented, analyzed and compared.
In [58], the author introduced a pseudo-spectral method for general NLS equations. Many
finite element methods have been tested, such as quadratic B-spline for NLS in [28, 71] and
space-time DG method for nonlinear (cubic) Schrédinger equation in [42, 43].

Various types of DG schemes has been applied to solve Schrodinger equations and they



have different discretization for the second order spatial derivative term. One group of such
methods is the so-called local DG (LDG) method invented in [25] for convection-diffusion
equations. The algorithm is based on introducing auxiliary variables and reformulating
the equation into its first order form. In [80], an LDG method using alternating fluxes is
developed with L? stability and proved (k + %)—th order of accuracy. Later in [81], Xu and
Shu proved optimal accuracy for both the solution and the auxiliary variables in the LDG
method for high order wave equations based on refined energy estimates. In [47], the authors
presented an LDG method with exponential time differencing Runge-Kutta scheme and
investigated the energy conservation performance of the scheme. Another group of method
involves treating the second order spatial derivative directly in the weak formulations, such
as IPDG method [77, 30] and NIPG method [62, 63]. Those schemes enforce a penalty jump
term in the weak formulation, and they have been extensively applied to acoustic and elastic
wave propagation [37, 3, 61]. As for Schrodinger equations, the direct DG (DDG) method
was applied to Schrédinger equation in [52] and achieved energy conservation and optimal
accuracy.

In Chapter 2, we choose to discretize the second order spatial derivative term directly
using UWDG method, which can be traced backed to [13], and refer to those DG methods
[72] that rely on repeatedly applying integration by parts so all the spatial derivatives are
shifted from the solution to test function in the weak formulation. In [18], Cheng and Shu
developed UWDG methods for general time dependent problems with higher order spatial
derivatives. In [6], Bona et. al. proposed an UWDG scheme for generalized KdV equation
and performed error estimates.

We investigate a most general form of the numerical flux functions that ensures stability

along with our ultra-weak formulation. To estimate the convergence rate of our scheme,



we introduce special projections associated different flux parameters, and proved detailed
estimates for the projections. With the results for the convergence rate of the projections, a
priori L2 error estimates are obtained. Numerical tests are provided to verify the theoretical

results for projection operators and solution convergence rates under various flux parameters.

1.3 Superconvergence analysis of DG methods

The study of superconvergence is of importance because a posteriori error estimates can be
derived guiding adaptive calculations. For superconvergence of DG methods, many results
exist in the literature. We refer the readers to [2, 1] for ordinary differential equation re-
sults. In [19], Cheng and Shu proved that the DG and LDG solutions are (k + 3/2)-th order
superconvergent towards projections of exact solutions of hyperbolic conservation laws and
convection-diffusion equations using specially designed test functions when piecewise poly-
nomials of degree k are used. For linear hyperbolic problems, in [82], Yang and Shu proved
that, under suitable initial discretization, the DG solutions of linear hyperbolic systems are
convergent with optimal (k 4 2)-th order at Radau points. More recently, in [12], Cao et al
proved the (2k + 1)-th superconvergence rate for cell average and DG numerical fluxes by
introducing a locally defined correction function. The correction function also helps simplify
the proof for point wise (k + 2)-th superconvergence rate at Radau points and prove the
derivative of DG solution has (k + 1)-th superconvergence rate at so-called “left Radau”
points. Then this technique has been extended to prove the superconvergence of DG so-
lutions for linear and nonlinear hyperbolic PDEs in [11, 9], DDG method for convection
diffusion equations [10] and LDG method for linear Schrédinger equations [84]. Overall, for

equations with higher order spatial derivatives, the same type of correction functions can



be used for the LDG method which is based on a reformulation into a first order system of
equations. For DDG method, new correction functions are needed treating the second order
derivative directly [10].

Another type of superconvergence of DG methods is achieved by postprocessing the
solution by convolution with a kernel function, which is a linear combination of B-spline
functions. For linear hyperbolic systems, [23] provided a framework for constructing such
postprocessor and proving the superconvergence of the postprocessed DG solutions. Through
the analysis of negative norm estimates and divided difference estimates, they showed that
the postprocessed solution is superconvergent at a rate of 2k + 1. More recently, in [41, 54]
the analysis are extended to scalar nonlinear hyperbolic equations.

In Chapter 3, we study the superconvergence properties of the UWDG methods for linear
Schrodinger equation with scale invariant flux parameters. Such choice include all commonly
used fluxes, e.g. alternating, central, DDG and interior penalty DG (IPDG) fluxes. Using the
correction function idea and negative norm estiamtes, we are able to prove superconvergence
rate for solution and its derivatives at certain points, for cell averages and numerical fluxes,

for solution towards a special projection, and for the postprocessed solution.

1.4 Sparse-grid DG methods for high-dimensional

PDEs

It has been a challenging problem for numerical simulations in high dimensions due to the
so-called curse of dimensionality, which means the cost of computing and storing an approx-
imation with a prescribed accuracy increases exponentially on dimension d. Many discretiza-

tion techniques and computation techniques have been developed to alleviate the problem



to some extent. Among them, the sparse grid method has been a successful tool. It was
originally developed to solve PDEs [83, 33] based on tensor product hierarchical basis rep-
resentation. The method can reduce the full grid discretization complexity from O(h~%) to
O(h~1logy h|9~1), where h is the uniform mesh size in each dimension, and only slightly
deteriorate the accuracy. In recent years, sparse grid techniques have been incorporated in
collocation methods for high-dimensional stochastic differential equations [79, 78, 57, 53],
finite element methods [83, 8, 66/, finite difference methods [34, 36], finite volume methods
[40], and spectral methods [35, 32, 68, 69] for high-dimensional PDEs.

Recently, our research group initiated a line of research on the development of sparse
grid DG methods [76, 38, 39]. The sparse grid DG methods use the sparse finite element
space, which has multidimensional multiwavelet bases constructed by tensor products from
one-dimensional wavelet basis, in the DG framework to treat high-dimensional problems.
The methods has been proven to reduce the degrees of freedom of O(h_d) in the standard
full grid approximation space to O(h~!logs h|%1) and remain a L? convergence rate of
O(hF+1/2|10gy h|?) for transport equations and a convergence rate of O(h¥|logs h|?) in the
energy norm for elliptic equations.

In Chapter 4, we incorporate sparse grid DG method with central DG scheme to de-
velop a class of conservative numerical schemes with high computational efficiency for high-
dimensional hyperbolic equations. Our work consists of construction of the sparse finite

element space , L2 stability and error estimates, and numerical validation of the scheme.



Chapter 2

An UWDG method for Schrodinger

equation in one dimension

In this chapter, we develop and analyze a new ultra-weak discontinuous Galerkin (UWDG)
method for solving one-dimensional nonlinear Schrodinger (NLS) equations (1.1). The
method solves the equation without introducing any auxiliary variables or rewriting the
equation into a larger system.

The focus of this chapter is on the investigation of a most general form of the numerical
flux functions that ensures stability along with our ultra-weak formulation. The fluxes
under consideration include the alternating fluxes, and also the fluxes considered in [52], and
therefore allows for flexibility for the design of the schemes. The analysis in this chapter
relies on a detailed analysis of a special projection associated with different flux parameters,
whose dependence on mesh size can be freely enforced. Under certain flux parameters, the
projection can be defined locally. For other flux parameters, the projection is global and the
projection analysis is based on a block-circulant matrix with 2x 2 blocks. Our analysis reveals
that under a large class of parameter choices, the UWDG method is optimally convergent
in L2 norm, which is verified by extensive numerical tests for both the projection operators
and the numerical schemes for (1.1).

The remainder of this chapter is organized as follows. In Section 2.1, we introduce the



UWDG method with general flux definitions for one-dimensional nonlinear Schrodinger equa-
tions and study its stability properties. We introduce a new projection operator and analyze
its properties in Section 2.2, which is later used in Section 2.3 to obtain the convergence
results of the schemes. The main body of this chapter, the error estimates, is contained
in Section 2.3. Numerical validations are provided in Section 2.4. Some technical details,
including proof of most lemmas are collected in Appendix.

The major contents of this chapter has been published in [16].

2.1 Numerical scheme and stability

In this subsection, we formulate and discuss stability results of a DG scheme for one-
dimensional NLS equation (1.1) on interval I = [a, b] with initial condition u(z,0) = ug(z)
and periodic boundary conditions. Here f(u) is a given real function. Our method can be
defined for general boundary conditions, but the error analysis will require slightly different
tools, and therefore we only consider periodic boundary conditions in this chapter.

To facilitate the discussion, first we introduce some notations and definitions. For a 1-D

interval I = [a, b], the usual DG meshes are defined as:

7 3 N+
Lj=(x 1,2, 1) %_l(x 1+ 1),
J—g Ity 2" -5 IJt3p
and
hj: j+%—xj_%, h:m?xhj,



with mesh regularity requirement ﬁh] < 0, o is fixed during mesh refinement.

Denote Zy = 1,2,--- , N. The approximation space is defined as:
Vlf = {op, - Uhllj € Pk(Ij), Vj € Zn},

meaning vy, is a piecewise polynomial of z with degree up to k on each cell I;. For a function
vy, € V}f;, we use (vh);_% and (vh)j_% to refer to the value of vy, at Ij—% from the left cell
I; 1 and the right cell I; respectively. The jump and average are defined as [vp,] = v; — vy
and {vp,} = %(UIJ{ + v, ) at cell interfaces.

Throughout this chapter, we use the standard Sobolev norm notations | - |lys.p(7)

and broken Sobolev space on mesh Zp. We denote ||v|| ZJ 1 ||v||HS and

v]lws, 00(Z ) = Max; [[vllyyrs.oo( L) In Section 3.4, we consider negative norms and the def-

J7 v(2)®(x)dx

inition is HUHH—Z(I) = SUPpeCeo(1) e . . Additionally, we denote by ||v||L2 OTy) the
2 : ; —
broken L“ norm on cell interfaces, i.e., ||UHL2 oIy Z] 1Hv||L2 o1) WhereHvHLQ o1, )=
- 2 + 2 A= — -
(vijr%) + (ij_%) . We also denote || - || = || ||L2(I) = || HLQ(IN) to shorten the notation.
Lastly, we recall inverse inequalities, Yvj, € Vf{f ,
4 1
el < 7 onll 2z e Tonlyzor,) < OH 2ol 2z
(2.1)
lonllpoo(z;) < Ch™ ?||Uh||L2 ()
and trace inequalities
-1 2
9022001, < O Il 22)

here and below C'is a constant independent of the function v and the mesh size h.

In this chapter, we consider a DG scheme motivated by [18] and based on integration by



parts twice, or the so-called ultra-weak formulation. In particular, we look for the unique

function up, = uy,(t) € V,f, t € (0,T], such that

Z/ (up)tvpda +/ up(p)awdr — ap(vp)y | 1 +an(op)i |1
I I JT3 )
- — n 2 dr =0 2.3
ety |,y = o1,y + [ APy (2.3
holds for all vy, € V,f and all j =1, --- | N. Here, we require k > 1, because k = 0 yields an

inconsistent scheme. Notice that (2.3) can be written equivalently in a weak formulation by

performing another integration by parts back as:

i (s ~ / (st (= )z 3+ G =

P

ety |,y = oy + [ fuPunde =0 (24)
J

The “hat” and“tilde” terms are the numerical fluxes we pick for u and u, at cell bound-

aries, which are single valued functions defined as:

—_—

(up)e = {(up)z} + o l(up)a] + Bilupl,  ap, = {up} + aolup] + Bal(up)z], (2.5)

where «aq, a9, 81, f9 are prescribed complex parameters. They may depend on the mesh
parameter h. Commonly used fluxes such as the central flux (by setting a1 = ag = 1 =
P = 0) and alternating fluxes (by setting ap = —a9 = j:%,ﬁl = [ = 0) belong to this
flux family. The direct DG scheme considered in [52] is a special case of our method when
a] = —ag, 1 = %,ﬁg = 0,c > 0,a; € R. The IPDG method can also be casted in this

framework as a1 = ag = 3 = 0,61 = 7,¢ > 0.
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We write the scheme (2.3) in following short-hand notation:
aj(up,vp) — Z/] Flup)®)upvpde =0, V5 € Zy (2.6)
J
holds for all vy, € V}{“ , where

aj(up, vp) :/I (up)tvpdr — iAj(up,vp),
J

with

—_— e/~

Ajunn) = | (o) = (0071 )y + Tl = Conden g
as the UWDG spatial discretization for the second order derivative term.
Using periodic boundary condition, we sum up on j for (2.6) and get
alunen) =1 [ £(lunPuyonds =0, (2.7

where

a(up,vp) = /I(Uh)tvhdﬂﬁ — iA(up,vp),
N N

Alunn) = 3 Ajfunen) = [ unon)osde + 3 (anllon)s] = Canlelond) |, -

7=1 I 7=1

The following theorem contains the results on semi-discrete L? stability.

Theorem 2.1.1. (Stability) For u,v € H2(Iy) satisfying periodic boundary condition, we

have A(u,v) = A(v,u).

11



The solution of semi-discrete UWDG scheme (2.3) using numerical fluzes (2.5) satisfies

L2 stability condition

d 2
_ dr <
dt/]|Uh| x <0,

ImBy > 0, Impy < 0, |y +a3|* < —4ImpiImps. (2.8)

In particular, when all parameters aq, a9, 1, P2 are restricted to be real, this condition

amounts to

a1 +as =0 (2.9)
without any requirement on (1, Ba.

Proof. From integration by parts, we have

Similarly, A(v,u) = — [} ugvzde + Zﬁil (O]ug] — [vug] — vz[u]) |j+1' Plugging in the defi-
2

nition of the numerical fluxes in (2.5), we have at Tl Vi €Ly
2

ifvg] — [uve] — uzlv] = ({u} — e fu] + Bolus]) [ve] — ({u}(va] + [ul{ve})
= ({ua} + a1 ua] + Bi[u])[v]
= [ua]({v} — a1[v] + Bolve]) — [u] ({va} + aa[va] + Bi[v])
= ([ual{v} + {uw}v])

= a0 = [u]oy — [ugv],

12



then the proof for A(u,v) = A(v,u) is complete.

From integration by parts, we have, for Yuv;, € V]f

N

aluneen) = [ (wn)ronda + [ (un)a(un)ods + 1 lmon)e] =l + Dol
N
Alunson) == [ (@n)eon)edn + 3 (nl(en)e]  on(en)a] = Cmlalenl, 1.
j=1

Taking vp, = 4y, in (2.7) and compute its conjugate as well, we get

0—i /I F(lup ) up e + i /I £l )y P
= a(up, up) + a(up, up)

d -
-2 /I fup 2z — i A(up, ) + i AGu ). (2.10)

—i A(up, up) + iA(up, up) = —21mz (lun(@p)z] — ap[(@p)a] + (up)elup))l 1

= —2Im Z <{Uh}[(ﬂh)x] + [upl{(@n)a} — ({un} + azlug] + Bol(up)z]) [(@n)z]
j=1

+ ({n)a} + enl(un)a] + Aaln]) ], 1

=—2Imz — Boll(up)a)1* + Bul[up)” + aa[(up)z Huh]_‘)‘Q[uhH(@h)m])|j+%

N
= 20m Y (Bal(up)al* = Brlfup] P — (a1 + @) an] [(up)e])|

_ its
j=1

13



Plug it back into (2.10):

[ 43 2] — 2P 2l o+ o]}y 0
dt J; h = 2 hlx 11[%h 1 2)(Up hlxlsl; 1 .

Jt35
(2.11)
If the stability condition (2.8) is satisfied, we have
d 2
— dr < 0.
& [l <
If all parameters are real and (2.9) is satisfied, then (2.11) further yields:
d 2
— dr =0 2.12
& [z o (212)
which implies energy conservation. O

For simplicity of the discussion, in the contents below, we will only consider real param-
eters, i.e. when aq, a9, 81,2 are real and oy + ag = 0. This property of our scheme is
consistent with the energy conservation property of Schrodinger equations. It is essential to
have a symmetric A(uy, vy,) for designing a finite element scheme which is energy-preserving
for Schrodinger equations.

Now the numerical fluxes are defined by three parameters as,

—_~—

(up)az = {(up)z} + aal(up)z] + Bilupl, = {up} — arfup] + Bol(up)z], 1,51, 82 € R.

(2.13)
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Note we can rewrite the flux definition in a matrix form

N - T 1 1
up, u u +a1 =B —a1 P9
=G "l h , G= 2 , H = 2 :
(up)z (up)z (up) B A B st
(2.14)

where I9 denotes the 2 x 2 identity matrix. Note that G + H = [5,detG = det H =

—(a? + B1B2 — §) and GH = —(det G)I.

2.2 Projection Py

In this section, we perform detailed studies of a projection operator that is key to the analysis

of the UWDG scheme.

Definition 2.2.1. For the UWDG scheme with flux choice (2.13), we define the associated
projection operator P;{ for any periodic function u € Wl’oo(l) to be the unique polynomaial

Pru e Véf (when k > 1) satisfying

/I‘ Pluvpde = /I uvpdx Yy, € Pk_2(lj), (2.15a)

J J
Pru = {Pfu} — ar[Pfu] + Bo[(Pfu)s] = u at w1 (2.15b)
(Pru)y = {(Pyu)s} + o1 [(Pru)z] + B1[Pyu] = uy at :vj+%, (2.15¢)

for all j. When k =1, only conditions (2.15b)-(2.15¢) are needed.

—_——

This definition is to ensure u — lgh’% = 0 and uz — (Pyu)z = 0 at cell boundaries, which
will be used in error estimates for the scheme. In the following, we analyze the projection

when the parameter choice reduces it to a local projection in Section 2.2.1, and then we

15



consider the more general global projection in Section 2.2.2.

We can write (2.15b)-(2.15¢) in vector form as

- +
Pru Pru Pru u
h _al| gl " _ . (2.16)
(Pru)e (Pru)e (Pru)e Uy
It3 It3 I*3 It3

2.2.1 Local projection condition

In general, the projection P;; is globally defined, and its existence, uniqueness and ap-
proximation properties are quite complicated mathematically. However, with some special
parameter choices, P}’: can be reduced to a local projection, meaning that it can be solved
element-wise, and hence the analysis can be greatly simplified.

For example, with the alternating fluxes a1 = i%, B1 = P9 =0, P}’: can be reduced to
P]% and P]% defined below. P,’{ = P]% for parameter choice oy = %, fB1 = B9 = 0 is formulated

as: for each cell I;, we find the unique polynomial of degree £, Pﬁu, satisfying

/ P,}Lu vpdr = / uvpdz Yoy, € Pk*2(1j), (2.17a)
1 I
J J
Plu)” = ta 2.17b
(Plu)™ = u ey, (2.17b)
(Pﬁu)}' = Uy at T (2.17¢)
2

When k = 1, only conditions (2.17b)-(2.17¢) are needed.

Similarly, we can define Py = Pg for parameter choice a; = —%, B1 = B2 = 0 as: for

16



each cell I;, we find the unique polynomial of degree £, P}%u7 satisfying

/1" P;%u vpdr = /I uvpdr Yy, € Pk_Z(Ij), (2.18a)
J J
(P2u)t =u ata, 1. (2.18b)
2
(P}%u); = Uy at :L'j+%. (2.18c¢)

When k = 1, only conditions (2.18b)-(2.18¢c) are needed.

Similar local projections have been introduced and considered in [18]. It is obvious that
P}}u, Pgu can be solved element-wise, and their existence, uniqueness are straightforward.
From a standard scaling argument by Bramble-Hilbert lemma in [20], P}% and P}% have the

following error estimates: let u € Wk+1’p(fj)(p = 2,00), then

k+1
||u - P}ZL/UHLP(IJ) < Ch]+ |u|Wk’+1,p(I,)a p=200, v=12,
J (2.19)

k
”ul‘ - Pﬁua:”[,p(]j) < Chj'“|wk:+1,p(jj)u p=200, v=12

where here and below, C' is a generic constant that is independent of the mesh size h;, the
parameters aq, 31, f2 and the function u, but may take different value in each occurrence.
Naturally, the immediate question is that if there are other parameter choices such that

P}’{ can be reduced to a local projection. The following lemma addresses this issue.

Lemma 2.2.1 (The condition for reduction to a local projection). If a% + 5189 = %, P,’{ 18

17



a local projection. Moreover, (2.15b) and (2.15¢) is equivalent to

- +
P;;u P}’{u U
G + H =G +H

(Pru)x (Pru)z Uy Uy
T, q 1 T, .
Ity =3 Ity =3

(2.20)

Proof. The definition (2.15a) provides k& — 1 linearly independent equations for solving P}’:u
on each cell. If (2.15b) and (2.15¢c) can be locally decoupled, P; is a local projection. By

assumption oz% + B182 = zlp if B = B9 =0, then o] = :l:% and Pyu = P]% or P]%, and (2.20)

holds. The rest of the cases are

e if 51 # 0, left multiply (2.16) by a matrix, we have

b1 %4—041 U 0

B —(5—a1)| |ue B —(3—a)

B1 %4—041 P;{u

0 0 (Pru)z
T
T35
which implies the following decoupled relations
% + a1 % + a1
(Pru)™ + (Pru)f =u+ ugy atz. 1,
(P*u)—%_al(P* ):u—%_alu atr. |
h By M g " itz

18



e if B9 # 0, by similar linear transformation, we have

% — 0] B2 u 0 0 P;;u

—(%—}—aﬂ B9 Uy _(%"'al) B2 (P}tu)x

J+3
which implies
1 a1 1
(Pru)f + 2 5 (Pru)™ = ug + 2 5 Y atw, 1,
2 2 2
2.22)
1 1 (
_ 5t o _ 5+ aq
Pru); — 2 Pfu)” =up — 2——u atz 1

(2.21), (2.22) are the desired decoupled conditions on each cell I}, and it’s easy to verify that

(2.21), (2.22) are equivalent to (2.20). Therefore the proof is complete. O

This lemma implies that for any parameter satisfying a% +B169 = i, Pf{ is locally defined.
We remark that this condition turns out to be the same as the optimally convergent numerical
flux families in [17] for two-way wave equations, although they arise in different contexts.
Unfortunately, for the general definition of P; , unlike P}} and P,%, we cannot directly use the
Bramble-Hilbert lemma and the standard scaling argument to obtain optimal approximation

property, since the second and third relations in (2.21) and (2.22) may break the scaling.
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2.2.2 Py properties

Before moving on to detailed discussion on P}, we introduce some notations to facilitate the

discussion. We define the Legendre expansion of a function u € L?(I) on cell I ; as follows,

o0
ulr; = Zo wjmLjm (), (2.23)
m=

where Lj,(7) = Lin(€),§ = %, and Ly, (-) is the standard Legendre polynomial of

degree m on [—1,1]. In what follows, we write L; () as L;,, and Lp(§) as Ly, for
notational convenience. We can compute u; ,,, using orthogonality of Legendre polynomials

and Rodrigues’ formula,

2m + 1 om+1 [1
i = [ @)Ly =25 [ i€ L

J j -1
C2m+1 1 L d 5 . m 5 94
i 2m—m!/_1uj(€)d§_m(£ —1)"dg (224)

[ rl
:2m—|—1(—1) / d . d DM,

. 2
2 2Mmm) _1d_§lu3(§)d£m—l(§

where 4;(§) = u(x(£)) is defined as the function u| I transformed to the reference domain

[—1,1]. By Holder’s inequality, if v € WP (I),

1

p
|U|Wl’p(fj)7 0<l<m. (2.25)

l_
|ujm| < Ch

The L? projection P}? is closely related to u; . By orthogonality of Legendre polynomi-

als, we have
k

0
Phu = Z uj,ij,m-

m=0

We collect some frequently used notations in Table 2.1 for quick reference.
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Table 2.1: Notations for some frequently used quantities. Subscript j will be dropped for
uniform mesh.

Notation Definition Notation Definition
T T
G [2+a1 1—521 I F—al 152 ]
B 3 - aq 1 5+
&
r; 81+ h—%kQ(’fZ —1) - %(@% + B182 + 1) A; —%L—I;(Oé% + B8 — %)
pi
L; . L; .
- 2 dj,m( ]_i_%) I+ 2 dj,m@j_%)
jim Zdp. (. jim 2dp. (.
h dx_xm(l’]j%) h a:+j,m($i%)
A; GIL 1 L) B; HILT, . LT
Q ;A—lB i r Q'(1, — QM)!
M;m (4j + Bj)~ (GL;,, + HL},)

Next, we will write the explicit formula of P;L( in order to get a clear view of the existence
and uniqueness condition, as well as the error estimates. Suppose
k
P;;u = Z aj,mL],m
m=0
By the definition (2.15a), i, = wjm,m < k=2, ie.,
k—2 k
Pru= Y wjmLim+ Y djmLjm.
m=0 m=k—1

In what follows, we analyze the existence and uniqueness of P;, i.e., the existence and

uniqueness of 4 p_1,%; ; based on the following assumptions on parameters:
e AQ. (Local projection) oz% + 5152 = le and I'; # 0.
e Al. (Global projection) uniform mesh (h; = h,Vj), a% + B1Po # zll and ’%‘ > 1.

e A2. (Global projection) uniform mesh (h; = h,Vj), af + B8y # 1,

ry _
B =1

((—I)IHI%)N # 1. If N is odd, and if k£ is odd, we require I' = —A; if k is even,
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we require I' = A.
e A3. (Global projection) uniform mesh (h; = h,Vj), oz% + B18y # 21I7
N
2
<(—1)k+1%+ (%) . 1) 1.

Lemma 2.2.2 (P; existence, uniqueness and formula). If any of the assumptions above is

%’<1,

satisfied, P}’: exists and is uniquely defined. Furthermore, if assumption A0 is satisfied, then

ths U 00
]7k_1 juk_]-
= + 3w M (2.26)
gk ik o m=k

If any of the assumptions A1/A2/A3 is satisfied, then

i U, o0 N-1
J.k—1 5, k—1
- + > (wmVim + Y wiimriVam)s (2.27)
.k Uj m=Fk+1 1=0

where Vl,m = [Lz_p LZ]_lL;:“ VQ,m = [L]:;_la L];]_lLT_n_[LZ_lv L]j]_lL?—%? Ujp] = Ujt]—N

when 74+ 1> N , and r; is defined in Table 2.1.
Proof. The proof of this lemma can be found in Appendix. O

Lemma 2.2.3. Suppose any of the assumptions A0/A1/A2/A3 holds and u satisfies the

condition in Definition 2.2.1. For p = 2,00, if assumption A0 is satisfied,

|s—a1l |3+a1l |6
max (|/81|7 ?h ) jh 7hT2

min; ||

1P = ull oy < CH Mul oo (2.28)
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If assumption Al is satisfied,

@1l | 2 — Q1|

Pru — < ChkHl 1 2.2
|| hu’ UHLP(I) —O |U|W/€+1,OO([)( + |1_|)\1|| + |1_|)\2|| )7 ( 9)
where A1, Ay are defined in (49), Q1 is defined in (56) and (57).
If assumption A2 is satisfied,
| P — ul| < CRM L) (1+ ”QQHOO) (2.30)
h LP(I) = Wht4,00(7) N :

where Qg 1is defined in (59).
If assumption A3 is satisfied, and assuming ‘1 — )\{V‘ = O(hél), 11— )| = O(h®/2) with

0<§<2,

— /_
| P = ull oy < CR M ull g o0 gy (1B 7 2(1Q1 oo + 172 = Q1lloc))- (231)

Proof. Proof is given in Appendix. O

Above estimates provides error bound that can be computed once the parameters are
given, yet its dependence on the mesh size h is not fully revealed, particularly when the
parameters «aq, 51, 89 also have h-dependence. To clarify such relations, next we will inter-
pret (2.29) when considering the following common choice of parameters, where a1 has no
dependence on h, 1 = Blhpl,ﬁg = thp% 31, [572 are nonzero constants that do not depend
on h. If indeed (81 or fs is zero, it is equivalent to let p1, ps — 400 in the discussions below.
We will discuss whether the parameter choice yields optimal (k + 1)-th order accuracy.

To distinguish different cases, we illustrate the choice of parameters p, p2 in Figure 2.1.
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Figure 2.1: A sketch to illustrate the different cases parametrized by the values of py, ps.

For example, A1.1 means p; > —1,p2 > 1, A1.5 means p; = —1,po = 1 and A1.7.1 means

p1 > —1,po = 1. The main results are summarized in Table 2.2.

Table 2.2: Interpretation of error estimate (2.29).

1 If k=1and py <1, then

2 Py is suboptimal and is (k + p2)-th order accurate,

3 else

4 if limy, o |A1, Ao| = 1 with [A1, Ao| = 1 + O(h%/2), then

5 Py is suboptimal and is (k + 1 — §)-th order accurate,
6 else

7 Py has optimal (k + 1)-th order error estimates.

8 end

9 end

The main reason of order reduction for £ = 1,p9 < 1 in line 2 of Table 2.2 is that the
term such as MlﬁHQlﬂoo is of O(hP271) instead of O(1), and this will cause (1 — pg)-th

order reduction. The situation happens for A1.3, A1.4 and A1.6.2 when k = 1.
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The main reason of order reduction in line 5 is because of the terms such as 1_|1)\1| ) 1_||1/\2|

n (2.29). The fractions cannot be bounded by a constant if limj,_,o [Aa] = 1.

1 1
I=[A1]7 1=[Ag]

By definition of Aq, Ay in (49), we know that ’%’ — 1 < A, \o] — 1. More precisely, if

= O(h=%/2). The

)K( = 1+ 0(h),6 > 0, then [\, Aal = 1+ O(h2), then 1=, =y =
relation T2 — A% = (by — b2)(by + b2) + ¢3 also indicates that there is some cancellation of
leading terms in by — by or by + by, making ||Q1]/co ~ O(h_5/2), multiplying these factors
together will result in d-th order reduction in the error estimation of P}’{ . Note that b1, b2, co

and @1 are defined in (47), (48), (45) and (56).

Then we look at what parameter choices make ’%‘ — 1. Since

k2(k2-1) k2
81 +fﬂ
A B
1+ Ak k=1,
we have

—|—2a2
1. ALL (py > —1,po > 1) with k = 1,01 = %T; =

5—2«

1

k(k+1)

no
=

1.6.1 (py = —1,p2 > 1) By =

REED L oa2k(k 7 1), %‘—>

1.6.2 (p1 = —1,p2 < 1) with k > 1, 51:Mir1), L= b+ —8—| = 1.

B
=

~ 202
4. A1.71 (py > —1,pa =1) o = k:FI) + k(kiln ‘F

5.A1.72 (p1 < —L,pa=1) fo = 2E(kEL)’ ‘%‘->‘k+%‘—>1-

k;:l:l
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Remark 2.2.1. We only considered T given by (51) (when Q1 is given by (56)) in the
discussion above. By Appendix, we can conclude that under the parameter conditions in
assumption A1, (b1 +bg)(by — b2) = 0 only can happen if p1 = —1,po = 1 with (29) or (30).

This is A1.5, for which we always have optimal error estimate.

Remark 2.2.2. Through numerical tests, we found that (2.29) is mostly sharp with two ex-
ceptions. When limy,_,o | A1, A2| = 1, the estimates show that there will be order reduction for
error of Py, while in numerical experiments (see e.g. Tables 2.8, 2.9), such order reduction
15 observed only when limy,_,o A1, Ao = 1 but not —1. We believe when limj,_,g A1, 9 = —1, a
refined estimate can be obtained similar to (2.30) under assumption A1. We have not carried
out this estimate in this thesis.

Another example we find for which (2.29) is not sharp isk =2, py = =2 or =3, pg =1,

(041,51,52) =(0.25, -1, %), where parameters belong to A1.7.2, By = WEFT) and A\, Ay —

1

k+1
1+O(h_(1+p1)/2). The theoretical results predict accuracy order of (k+24+p1) but numerical
experiments in Table 2.10 show the order to be (k + 3 4 p1). Our estimations can’t resolve

this one order difference. This special parameter may trigger a cancellation we didn’t capture

n analysis. We will improve this estimate in our future work.

Remark 2.2.3. In most cases, (2.30) yields optimal accuracy order, except when k = 1,1 =

0,61 = 0,82 = O(hP2),ps < 1, where the Py is only (k + p2)-th order accurate because

3 Bat g
HQﬁJ‘lOO = ‘b1|j(|b2| — —n? T 2he O(hP271) in (2.30). This is verified numerically in
2h
Table 2.12.

Remark 2.2.4. If /2 > 1, we can show §/2 = §' +1. This is because |1 — \j| = [1 — €| =
2|sin(6/2)|, and |1 — )\{V| — |1 — N0 = 2| sin(NO/2)|. When §/2 > 1, one can assert that

1 — M| ~0,]1— )\{V] ~ N, i.e. §/2 =0 + 1. With this condition, we notice that (2.31)
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yields an reduction of §-th order in convergence rate by checking the order of each term. This

order reduction s consistent with numerical experiments in Example 2.4.4.

Now we can summarize the estimation of P;; for some frequently used flux parameters.
For IPDG scheme with a1 = o = 0,01 = ¢/h, and DDG scheme discussed in [52] with
a1 = constant, f1 = ¢/h, B3 = 0, and the more general scale invariant parameter choice
a1 = constant, 1 = c¢/h,By = ch, P;; always have optimal error estimates. For those
parameters, we can show that the eigenvalues \q, \9 are always constants independent of h,
therefore, by Lemma 2.2.3, we will have optimal convergence rate. Corresponding numerical
results are shown in Tables 2.4 and 2.7.

For a natural parameter choice where a1, 81, o are all real constants, if 59 # 0, then P;{
has first order convergence rate when £ = 1 and optimal convergence rate when & > 1 by
Lemma 2.2.3. Corresponding numerical results are shown in Tables 2.3 and 2.12. Lastly, for
central flux a; = ag = 1 = B2 = 0, this parameter choice satisfies assumption A3 when
k =1 and assumption A2 when k& > 1, thus we can verify that Pf’: has optimal convergence

rate. Corresponding numerical results are shown in Table 2.11.

2.3 Error estimates

In this section, we will derive error estimates of the DG scheme (2.3) for the model NLS
equation (1.1). We will focus on the impact of the choice of the parameters aq, 51, 52 on the
accuracy of the scheme. The error estimates rely on the projection error estimates to obtain

convergence result.

Theorem 2.3.1. Assume that the exact solution u and the nonlinear term f(|u|?) of (1.1)

are sufficiently smooth with bounded derivatives for any time t € (0,T¢] and that the nu-
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merical flur parameters in (2.13) satisfy the existence conditions of P;: in Lemma 2.2.2.
Furthermore, assume €, = u — P;;u has at least first order convergence rate in L? and L™
norm from the results in Lemma 2.2.3. With periodic boundary conditions solution space V}f

(k > 1), the following error estimation holds for uy, which is the numerical solution of (2.3)

with fluz (2.13):

lu = wunll g2y < Cx (l[(w = un)le=oll + I (en)ell + llenll) (2.32)

where Cy depends on k, HfHWQ,OO, u as well as final time Ty, but not on h.

Proof. When P}’: exists, we can decompose the error into two parts.
e=u—up=u— Piu+ Piu—uy:=e,+ (.
By Galerkin orthogonality, Vv, € V,f,

0= ale,up) — i /I F(luf?yuopdz + i /I F(lup 2)upopdz

— alepvp) + alCpop) — i /I F(|uf?)uvpdz + i /I £l g

By letting v;, = (}, and taking conjugate of above equation, we have

a(Chaa) +G(Ch75) (233)
= — a6y, ) — alen. ) — 2 /I £ (a2 (G )dz + 2 /I £ (lup ) (up Gy e
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By Taylor expansion
1 -
Flupl?) = F(Jul?) + £ (lu*)E + Ef”EQ,

where f” = f"(c), ¢ is a value between |uy|? and |u|?. E = |up|? — |u]? = —2Re(en) + |e|>.

Therefore, the nonlinear part becomes

/ F(luf?) I (uy) der — / £ (lup 2T (up Gy i
I I
_ /I F(lu)m(eGy) + (F(ul?) — £(lupl?)) im(uy)da

=N1 +N2 +N3,

where

Ni= [ #uPin(eG) = (1) Bl e,
Ny = /If/(]u\2)EIm(e§) — %f”E%m(uﬁ)das,

Ngz/%f’/EQIm(ea)dx,
1

will be estimated separately as follows.

e Nj and N5 terms.

Since e(p, = ,C, + |Gy, EIm(ug)’ = ‘(—QRe(eﬂ) + leHIm(udy)| < C’(H“H%oou) +
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lull oo (ryllell oo ¢ry) (enl? + [¢al?), we have

N1 < Ol fllyoo (1 lulioo gy + lullzoorylell ooy ) (lenll® + 1Ga1%),

N2 < Ol Bl ooy (14 NulBooqry + Nl ooqn el ooy ) (el + 1G4112).

e N3 term.

N3] < CIF" oo | BNl ooy lenll” + 11¢h117)-

To conduct a proper estimate for the nonlinear part, we would like to make an a priori

assumption that, for A small enough,
lell = [l — up|| < B, (2.34)

By our assumption on Py, [lep|[zp(r) < C1h, p = 2,00, thus [[¢4]| < C1hY? and ¢l oo () <
C1 by inverse inequality, then |le[|poo(ry < C1, [[Ellpoc(ry < C1. Here and below, C1 is a
generic constant that has no dependence on h, but may depend on u according to the lemma
used to estimate €.

Therefore, we get the estimate:
2 2
N1+ [N2| + N3] < Cr(llepl| + 11Cu 1), (2.35)

where C] depends on ||f||W2,OO and wu.
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For linear part of the right hand side in (2.33), we have

alen, To) + alens ) = /I (e1)6Cn + (em)iCuel — i /I (1) (@)
N

2

N
+i32 (@@l — @Gl
j=1

Y

D=

ZQ/IRQ((Eh)ta)diC.

The last equality holds because of the definition of Pju. For the left hand side of (2.33), by

similar computation in stability analysis we have

— 0 d
(G +0(Gu ) = 5 [ 1P (2.36)

Combine these two equations with (2.35):

d
I < N(en)el® + NIGalI* + Crlllenll® + 1GuI%).

Assuming u¢, u have sufficient smoothness, then by Gronwall’s inequality, we can get:

I6all? < Ot (IGhle=oll3 2,7y + Nen)ell® + Iien)II?)

and we obtain (2.32).
To complete the proof, we shall justify the a priori assumption. To be more precise, we
consider hg, s.t., Vh < hg, Cxh < %h0'5, where Cy is defined in (2.32), dependent on T, but

not on h. Suppose 3t* = sup{t : [|u(t*) —uy(t*)| < h¥5}, we would have ||u(t*) —uy, (t*)| =
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h0-5 by continuity if #* is finite. By (2.32), we obtain ||e|| < Cyh < %ho“r’ if t* < T, which
contradicts the definition of t*. Therefore, t* > T, and the a priori assumption is justified.

]

Remark 2.3.1. If f is a constant function, we can prove the same error estimates without
using the a prixori assumption. Therefore, the assumption that €, = u — P]Z:u has at least
first order convergence rate in L2 and L™ norm is no longer needed.

Moreover, the estimates for ||ep || has been established in Lemma 2.2.3. In other words, the
error of the DG scheme (2.3) has the same accuracy as Pgu, as long as P;Zu 1s well-defined

and the numerical initial condition is chosen sufficiently accurate.

2.4 Numerical results

In this subsection, we present numerical experiments to validate our theoretical results.
Particularly, in Section 2.4.1, we provide numerical validations of convergence rate for the
projection Pf’: as discussed in Lemma 2.2.3 with focus on the dependence of the errors
on parameters ag, 31,02 . Section 2.4.2 illustrates the energy conservation property and

validates theoretical convergence rate of DG scheme for NLS equation (1.1).

2.4.1 Numerical results of the projection operator Py

Example 2.4.1. In this example, we focus on local projection where 04% + 1P = %l, and
verify the conclusions in Lemma 2.2.1 by considering a smooth test function u = cos(x),x €
[0, 27] on a nonuniform mesh and k = 1,2,3 for various sets of parameters (ay, 81, 32). The
nonuniform mesh is generated by perturbing the nodes of a uniform mesh of N cells by at

most 10%.
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We first consider two sets of parameters (a7, 81, 82) = (0.3,0.4,0.4) and («aq, 51, F2) =
(0.3,0.4/h,0.4h). The results with (a1, 1,82) = (0.3,0.4,0.4) are listed in Table 2.3. By
plugging in the parameters into (2.28), we have that when k = 1, the projection has sub-
optimal first order convergence rate, while for k£ > 1, optimal (k + 1)-th order convergence
rate should be achieved. For k =1, I'; = 1 — %, which does not depend on (9 any more.
This technical difference cause the discrepancy of the convergence order between £ = 1 and
k > 1 in Table 2.3. Results in Table 2.3 agree well with the theoretical prediction. On the
other hand, when we choose parameters (a1, 81, f2) = (0.3,0.4/h,0.4h), by Lemma 2.2.3, we
should observe optimal convergence rate for all £ > 1, and this is verified by the numerical
results in Table 2.4.

In [16], we also proved that P} is superclose to P]% when o = 0,7 = :I:% and Bo/Tj ~
o(1). We choose the parameters as (aq, 51, 52) = (0.5,1,0) to verify this claim, i.e., the
difference between P;; and P,% can have convergence rates higher than k + 1. The results are
listed in Table 2.5. The difference of the two projections is indeed of (k + 2)-th order for any

k > 1 in all norms.

Table 2.3: Example 2.4.1. Error of local projection P}’:u — u on a nonuniform mesh. Flux
parameters: a1 = 0.3, 51 = 0.4, 5o = 0.4.

N L' error | order | L? error | order | L™ error | order
160 | 1.98E-02 - 1.56E-02 - 1.81E-02 -
320 | 9.98E-03 | 0.99 | 7.87E-03 | 0.99 | 9.20E-03 | 0.97
640 | 5.01E-03 | 0.99 | 3.95E-03 | 0.99 | 4.55E-03 | 1.02
1280 | 2.51E-03 | 1.00 | 1.98E-03 | 1.00 | 2.27E-03 | 1.00
160 | 2.18E-06 - 1.91E-06 - 3.73E-06 -
320 | 2.71E-07 | 3.01 | 2.39E-07 | 3.00 | 5.14E-07 | 2.86
640 | 3.37E-08 | 3.01 | 2.97E-08 | 3.01 | 6.71E-08 | 2.94
1280 | 4.19E-09 | 3.01 | 3.69E-09 | 3.01 | 7.99E-09 | 3.07
160 | 2.82E-09 - 2.45E-09 - 5.67E-09 -
320 | 1.76E-10 | 4.00 | 1.53E-10 | 4.00 | 3.76E-10 | 3.92
640 | 1.10E-11 | 4.00 | 9.50E-12 | 4.01 | 2.25E-11 | 4.06
1280 | 6.86E-13 | 4.00 | 5.93E-13 | 4.00 | 1.46E-12 | 3.95

P2

P3

33



Table 2.4: Example 2.4.1. Error of local projection P}tu — w on a nonuniform mesh. Flux
parameters: o = 0.3, 51 = 0.4/h, o = 0.4h.

N L' error | order | L? error | order | L™ error | order
160 | 3.42E-04 - 3.50E-04 - 8.62E-04 -
320 | 8.55E-05 | 2.00 | 8.75E-05 | 2.00 | 2.21E-04 | 1.96
640 | 2.14E-05 | 2.00 | 2.19E-05 | 2.00 | 5.45E-05 | 2.02
1280 | 5.34E-06 | 2.00 | 5.47E-06 | 2.00 | 1.36E-05 | 2.00
160 | 6.36E-06 - 6.06 E-06 - 2.06E-05 -
320 | 8.17E-07 | 2.96 | 7.99E-07 | 2.92 | 3.09E-06 | 2.73
640 | 1.02E-07 | 3.00 | 1.00E-07 | 2.99 | 4.51E-07 | 2.78
1280 | 1.27E-08 | 3.01 | 1.24E-08 | 3.02 | 5.12E-08 | 3.14
160 | 3.32E-09 - 2.93E-09 - 7.58E-09 -
320 | 2.08E-10 | 4.00 | 1.83E-10 | 4.00 | 5.08E-10 | 3.90
640 | 1.30E-11 | 4.00 | 1.14E-11 | 4.01 | 3.04E-11 | 4.06
1280 | 8.09E-13 | 4.00 | 7.12E-13 | 4.00 | 1.99E-12 | 3.93

P2

P3

Table 2.5: Example 2.4.1. Difference of local projection P} with P]}L: Pru — P]%u on a
nonuniform mesh. Flux parameters: a; = 0.5,81 =1, 39 = 0.

N L' error | order | L? error | order | L™ error | order
160 | 2.09E-05 - 1.96E-05 - 4.66E-05 -
320 | 2.56E-06 | 3.03 | 2.40E-06 | 3.03 | 5.99E-06 | 2.96
640 | 3.17E-07 | 3.01 | 2.96E-07 | 3.02 | 7.17E-07 | 3.06
1280 | 3.94E-08 | 3.01 | 3.67TE-08 | 3.01 | 9.11E-08 | 2.98
160 | 5.00E-09 - 5.05E-09 - 1.82E-08 -
320 | 3.14E-10 | 3.99 | 3.21E-10 | 3.98 | 1.28E-09 | 3.83
640 | 1.96E-11 | 4.00 | 2.00E-11 | 4.00 | 8.56E-11 | 3.90
1280 | 1.22E-12 | 4.01 | 1.24E-12 | 4.01 | 5.02E-12 | 4.09
160 | 2.91E-12 - 3.38E-12 - 1.40E-11 -
320 | 9.11E-14 | 5.00 | 1.06E-13 | 5.00 | 4.72E-13 | 4.89
640 | 2.84E-15 | 5.00 | 3.27E-15 | 5.01 | 1.40E-14 | 5.08
1280 | 8.84E-17 | 5.00 | 1.02E-16 | 5.00 | 4.63E-16 | 4.92

Pl

P2

P3

Example 2.4.2. In this example, we consider global projection when the parameter choices
satisfy assumption A1. We consider a smooth test function u = ecos() op [0, 27] with a

uniform mesh of size h =21 /N and k = 1,2,3 for various sets of parameters (aq, 1, 52).

We first test the situation when limj,_,o|A1, A2| # 1 by setting the parameters (v, 51, 52)
= (0.25,1,1),p; = —0.5,p2 = 2. Another example is (a1, 51, 52) = (0, %,h), for which the
eigenvalues A, A9 are constant dependent on k but not h. These two parameter choices

belong to A1.1 and Al.5, respectively. The numerical results shown in Tables 2.6 and 2.7
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verify the optimal (k + 1)-th order convergence rate predicted by (2.29).

Then we test the situation when limy_,g|A1, 2| = 1 by using two sets of parame-
5 A k(k—1 k(k+1 5 5
ters (Oél,ﬁl,/BQ) = (0257 (2 ) + (8 )71)7 b1 = _17 b2 = 2737 and (Oé17B1752) =

(0.25, ﬁ, 1),p1 = —2,—3,p2 = 1. The first set of parameters belongs to A1.6.1 and
we can verify that lim,_,o A1, Ao = (—1)%. (2.29) and Algorithm 2.2 imply (k + 2 — po)-th
convergence order. The numerical results listed in Table 2.8 show that the expected order
reduction only happens when limj,_,j A1, A2 = 1, but not for limy,_,5 A1, Ao = —1. The second
set of parameters belongs to A1.7.2 and we can verify that limj,_,q A1, Ay = (—=1)F 1. (2.29)
and Algorithm 2.2 imply (k + 2 + p1)-th convergence order. The numerical results listed in
Table 2.9 also show that order reduction is only observed when limj,_,g A1, Ao = 1.

Lastly, we test (041,51,32) = (0.25, -1, %) with k = 2,p; = —2,—3,p9 = 1, where our
theoretical results predict accuracy order of (k 4+ 2 + pq), but numerical experiments show

the order to be (k + 3+ p1) in Table 2.10. This is one of the exceptions that (2.29) is not

sharp and has been commented in Remark 2.2.2.

Table 2.6: Example 2.4.2. Error of global projection P}’{u — u. Flux parameters: a1 =
0.25,01 = 1,02 =1, p = —0.5,pp = 2. (AL.1)

N L' error | order | L? error | order | L™ error | order
160 | 0.10E-03 - 0.69E-03 - 0.89E-03 -
320 | 0.26E-04 | 1.93 | 0.18E-03 | 1.93 | 0.23E-03 | 1.94
640 | 0.67E-05 | 1.98 | 0.46E-04 | 1.97 | 0.58E-04 | 1.98
1280 | 0.17E-05 | 1.99 | 0.12E-04 | 1.99 | 0.15E-04 | 2.00
160 | 0.63E-06 - 0.52E-05 - 0.87E-05 -
320 | 0.88E-07 | 2.85 | 0.71E-06 | 2.88 | 0.11E-05 | 2.95
640 | 0.11E-07 | 2.95 | 0.91E-07 | 2.97 | 0.14E-06 | 3.00
1280 | 0.14E-08 | 2.99 | 0.11E-07 | 2.99 | 0.17TE-07 | 3.01
320 | 0.64E-10 - 0.49E-09 - 0.72E-09 -
640 | 0.45E-11 | 3.82 | 0.35E-10 | 3.80 | 0.52E-10 | 3.79
1280 | 0.29E-12 | 3.93 | 0.23E-11 | 3.91 | 0.34E-11 | 3.92
2560 | 0.19E-13 | 3.97 | 0.15E-12 | 3.96 | 0.22E-12 | 3.96

Pl

P2

P3

Example 2.4.3. In this example, we consider global projection when the parameter choices
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Table 2.7: Example 2.4.2. Error of global projection P}’:u—u. Flux parameters: a1 = 0,31 =
37, B2 = h. (AL5)

N LY error | order | L? error | order | L™ error | order
320 | 0.11E-03 - 0.63E-03 - 0.38E-03 -
pl 640 | 0.28E-04 | 2.00 | 0.16E-03 | 2.00 | 0.95E-04 | 2.00
1280 | 0.70E-05 | 2.00 | 0.39E-04 | 2.00 | 0.24E-04 | 2.00
2560 | 0.18E-05 | 2.00 | 0.98E-05 | 2.00 | 0.60E-05 | 2.00
320 | 0.11E-06 - 0.71E-06 - 0.62E-06 -
p2 640 | 0.14E-07 | 3.00 | 0.89E-07 | 3.00 | 0.77E-07 | 3.00
1280 | 0.18E-08 | 3.00 | 0.11E-07 | 3.00 | 0.96E-08 | 3.00
2560 | 0.22E-09 | 3.00 | 0.14E-08 | 3.00 | 0.12E-08 | 3.00
320 | 0.38E-10 - 0.25E-09 - 0.22E-09 -
p3 640 | 0.24E-11 | 4.00 | 0.16E-10 | 4.00 | 0.14E-10 | 4.00
1280 | 0.15E-12 | 4.00 | 0.99E-12 | 4.00 | 0.86E-12 | 4.00
2560 | 0.92E-14 | 4.00 | 0.62E-13 | 4.00 | 0.54E-13 | 3.99

Table 2.8: Example 2.4.2. Error of global projection Pju — u. Flux parameters: aj =

0.25, By = BEZD | KRHD 3 10, pp = —1, py = 2,3. Note here limy,_yo Ay, Ag = (—1)F.
(A1.6.1)

N L error | order | L? error | order | L™ error | order

Pl 640 | 0.75E-05 | - | 0.52E-04 | - | 0.66E-04 | -

1280 | 0.19E-05 | 1.97 | 0.13E-04 | 1.97 | 0.17E-04 | 1.97
b2 =2 2560 | 0.48E-06 | 1.99 | 0.34E-05 | 1.98 | 0.42E-05 | 1.99
b=y 5120 | 0.12E-06 | 1.99 | 0.84E-06 | 1.99 | 0.11E-05 | 1.99
P2 640 | 0.15E-06 | - | 0.12E-05 0.23E-05 | -

1280 | 0.39E-07 | 1.94 | 0.32E-06 | 1.93 | 0.61E-06 | 1.94
p2=2 2560 | 0.98E-08 | 1.97 | 0.82E-07 | 1.97 | 0.16E-06 | 1.97
fr=1 5120 | 0.25E-08 | 1.98 | 0.21E-07 | 1.98 | 0.39E-07 | 1.99
P2 640 | 0.14E-04 | - | 0.12E-03 | - | 0.21E-03 | -
by — 1280 | 0.71E-05 | 1.00 | 0.58E-04 | 1.00 | 0.11E-03 | 1.00

2560 | 0.35E-05 | 1.00 | 0.29E-04 | 1.00 | 0.54E-04 | 1.00
5120 | 0.18E-05 | 1.00 | 0.15E-04 | 1.00 | 0.27E-04 | 1.00
3 320 | 0.12E-09 - 0.95E-09 - 0.20E-08 -
640 | 0.78E-11 | 3.99 | 0.60E-10 | 3.99 | 0.13E-09 | 3.99
1280 | 0.49E-12 | 3.99 | 0.38E-11 | 3.99 | 0.80E-11 | 3.99
2560 | 0.31E-13 | 4.00 | 0.24E-12 | 3.99 | 0.51E-12 | 3.97

H
I
INENE@Y

> v
[l
o N

are similar to central fluzes, and satisfy assumptions A1 and A2, for smooth function u =

3% o [0,21] with a uniform mesh of size h =2 /N and k = 1,2, 3.
k2 k Iy
For central flux (aq, 81, 82) = (0,0,0), I' = =57, A = 55 If kb > 1, N = k> 1, flux

parameters satisfy to assumption Al, and if £ = 1, I' = —A and flux parameters satisfy
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Table 2.9: Example 2.4.2. Error of global projection P*u — u. Flux parameters: a; = 0.25,

B =1, [y = k =Ty P1 = —2,—3,po = 1. Note here hmh_>0 A, A9 = (—1 )k+1 (A1.7.2)
N LY error | order | L? error | order | L® error | order
P2 320 | 0.28E-07 - 0.21E-06 - 0.24E-06

_ 3 640 | 0.35E-08 | 3.00 | 0.27E-07 | 3.00 | 0.31E-07 | 3.00
Pr= 1280 | 0.44E-09 | 3.00 | 0.33E-08 | 3.00 | 0.38E-08 | 3.00
2560 | 0.55E-10 | 3.00 | 0.41E-09 | 3.00 | 0.48E-09 | 3.00
320 | 0.70E-08 - 0.57E-07 - 0.12E-06 -
_ 9 640 | 0.94E-09 | 2.90 | 0.77E-08 | 2.90 | 0.16E-07 | 2.91
Pl o 1280 | 0.12E-09 | 2.95 | 0.99E-09 | 2.95 | 0.20E-08 | 2.95
P2 =13 2560 | 0.15E-10 | 2.98 | 0.13E-09 | 2.98 | 0.26E-09 | 2.98
320 | 0.16E-06 - 0.13E-05 - 0.24E-05 -

3

P 3 640 | 0.40E-07 | 2.00 | 0.32E-06 | 2.00 | 0.61E-06 | 2.00
%1: 1 1280 | 0.10E-07 | 2.00 | 0.79E-07 | 2.00 | 0.15E-06 | 2.00
2712

2560 | 0.25E-08 | 2.00 | 0.20E-07 | 2.00 | 0.38E-07 | 2.00

Table 2.10: Example 2 4.2. Error of global projection Pgu — u. Flux parameters: a7 =

0.25,8; = —1, 3y = k+1),p1 —2,—3,py = 1. Note that limj,_,g A1, A2 = 1. (A1.7.2)
N L' error | order | L? error | order | L™ error | order
p? 320 | 0.72E-07 | 2.99 | 0.56E-06 | 2.98 | 0.94E-06 | 2.97
640 | 0.90E-08 | 2.99 | 0.71E-07 | 2.99 | 0.12E-06 | 2.99
n i _12 1280 | 0.11E-08 | 3.00 | 0.89E-08 | 3.00 | 0.15E-07 | 2.99
P =13 2560 | 0.14E-09 | 3.00 | 0.11E-08 | 3.00 | 0.19E-08 | 3.00
P2 320 | 0.80E-06 | 2.01 | 0.63E-05 | 2.01 | 0.12E-04 | 2.01

_ 640 | 0.20E-06 | 2.00 | 0.16E-05 | 2.00 | 0.30E-05 | 2.00
%1 1 1280 | 0.50E-07 | 2.00 | 0.39E-06 | 2.00 | 0.75E-06 | 2.00
2712 2560 | 0.13E-07 | 2.00 | 0.98E-07 | 2.00 | 0.19E-06 | 2.00

to assumption A2. We conclude that P}’: exists and is unique for £ = 1 when N is odd
and k > 1 for arbitrary N. Pg has optimal error estimates as proved in Lemma 2.2.3. Our
numerical test in Table 2.11 demonstrates optimal convergence rate for all k.

A similar flux is (a1, 1,82) = (0,0,1). When k& = 1, this flux parameter set satisfies
assumption A2 and (2.30) yields first order convergence rate as discussed in Remark 2.2.3.
When k = 2, 3, similar to central flux, this parameter choice satisfies assumption A1, showing

optimal convergence rate. The numerical test in Table 2.12 verifies the theoretical results.

Example 2.4.4. In this example, we consider global projection when the parameter choices
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Table 2.11: Example 2.4.3. Error of global projection P;:u — u. (Central flux) Flux param-
eters: a1 = 0,51 =0,52 =0.

N L' error | order | L? error | order | L™ error | order
93 | 0.12E-03 - 0.74E-03 - 0.55E-03 -
pl 279 | 0.13E-04 | 2.00 | 0.82E-04 | 2.00 | 0.61E-04 | 2.00
837 | 0.15E-05 | 2.00 | 0.91E-05 | 2.00 | 0.68E-05 | 2.00
2511 | 0.17E-06 | 2.00 | 0.10E-05 | 2.00 | 0.76E-06 | 2.00
160 | 0.11E-05 - 0.85E-05 - 0.10E-04 -
p2 320 | 0.14E-06 | 3.00 | 0.11E-05 | 3.00 | 0.13E-05 | 2.99
640 | 0.17E-07 | 3.00 | 0.13E-06 | 3.00 | 0.16E-06 | 3.00
1280 | 0.22E-08 | 3.00 | 0.17E-07 | 3.00 | 0.20E-07 | 3.00
160 | 0.11E-08 - 0.83E-08 - 0.11E-07 -
p3 320 | 0.68E-10 | 4.00 | 0.52E-09 | 4.00 | 0.68E-09 | 4.00
640 | 0.42E-11 | 4.00 | 0.32E-10 | 4.00 | 0.42E-10 | 4.00
1280 | 0.27E-12 | 4.00 | 0.20E-11 | 4.00 | 0.26E-11 | 4.00

Table 2.12: Example 2.4.3. Error of global projection P}ju — u. Flux parameters: a1 =
0,61 =002 =1.

N L' error | order | L? error | order | L* error | order
93 | 0.21E-01 - 0.12E+00 - 0.68E-01 -
pl 279 | 0.72E-02 | 1.00 | 0.40E-01 | 1.00 | 0.23E-01 | 1.00
837 | 0.24E-02 | 1.00 | 0.13E-01 | 1.00 | 0.75E-02 | 1.00
2511 | 0.80E-03 | 1.00 | 0.44E-02 | 1.00 | 0.25E-02 | 1.00
160 | 0.11E-05 - 0.86E-05 - 0.10E-04 -
P2 320 | 0.14E-06 | 3.00 | 0.11E-05 | 3.00 | 0.13E-05 | 3.00
640 | 0.17E-07 | 3.00 | 0.13E-06 | 3.00 | 0.16E-06 | 3.00
1280 | 0.22E-08 | 3.00 | 0.17E-07 | 3.00 | 0.20E-07 | 3.00
2560 | 0.27E-09 | 3.00 | 0.21E-08 | 3.00 | 0.25E-08 | 3.00
160 | 0.27E-08 - 0.23E-07 - 0.36E-07 -
p3 320 | 0.17TE-09 | 4.00 | 0.14E-08 | 4.00 | 0.22E-08 | 4.00
640 | 0.11E-10 | 4.00 | 0.89E-10 | 4.00 | 0.14E-09 | 4.00
1280 | 0.66E-12 | 4.00 | 0.55E-11 | 4.00 | 0.87E-11 | 4.00

cos(x)

satisfy assumption A3 for the smooth function u = e on [0, 2] with uniform mesh size

h=2nx/N and k =1,2,3.

An example of A3 is shown in Table 2.13, where the parameters are (oq,ﬁ],ﬁg) =
(0.25,—1,m), p1 = —2,—-3,po = 1, similar to the parameters in Table 2.9. The
asymptotic behavior of A\j, Ao when h approaches 0 is indeed similar to Table 2.9, that is,

AL, do| = 1+ O(h~P1t1/2) and limy,_,g A1, A2 = (—1)¥T1. Same as previous examples,
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order reductions are only observed when limj,_,g A1, Ao = 1, that is for £ = 3.

We performed more numerical results under assumption A3, and all are similar to those
of Al as long as the eigenvalues \i, Ao are approaching 1 at the same rate. Hence, we will
not show more examples under assumption A3.

Table 2.13: Example 2.4.4. Error of global projection P;;u — u. Flux parameters (A3, and

similar to A1.7.2 in Table 2.9): aj = 0.25,5) = —1, fo = m,pl = —2,-3,py = 1.
Note here limj,_,o A1, Ay = (=1)F+1,

N LY error | order | L? error | order | L error | order

320 | 0.28E-07 - 0.21E-06 - 0.24E-06 -

2

P 640 | 0.35E-08 | 3.00 | 0.27E-07 | 3.00 | 0.31E-07 | 3.00
P1="3 | 1980 | 0.44E-09 | 3.00 | 0.33E-08 | 3.00 | 0.38E-08 | 3.00
B2=1 | 2560 | 0.55E-10 | 3.00 | 0.41E-09 | 3.00 | 0.48E-09 | 3.00
320 | 0.70E-08 | - | 0.57E-07 | - | 0.12E-06 | -
_ _, | 640 | 0.94E-09 | 2.90 | 0.77E-08 | 2.90 | 0.16E-07 | 2.91
PA=7% 11280 | 0.12E-09 | 2.95 | 0.99E-09 | 2.95 | 0.20E-08 | 2.95
92213 | 9560 | 0.15E-10 | 2.98 | 0.13E-09 | 2.98 | 0.26E-09 | 2.98
320 | 0.16E-06 | - | 0.13E-05 | - | 0.24E-05 | -
3 640 | 0.40E-07 | 2.00 | 0.32E-06 | 2.00 | 0.61E-06 | 2.00
P1="3 | 1980 | 0.10E-07 | 2.00 | 0.79E-07 | 2.00 | 0.15E-06 | 2.00
92215 | 2560 | 0.25E-08 | 2.00 | 0.20E-07 | 2.00 | 0.38E-07 | 2.00

2.4.2 Numerical results of the DG scheme

In this subsection, we show the numerical results of the DG scheme applied to the NLS
equation. For the time discretization, we use third order IMEX Runge-Kutta method [5]
and fix At = 1/10000, which is small enough to guarantee that the spatial errors dominate.
To be more precise, we treat the DG discretization of linear term u,, implicitly and nonlinear

term f(Ju|?)u explicitly.

Example 2.4.5. In this ezample, we verify the energy conservation property of our scheme
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by considering the following linear equation

Ut + Ugpye = 0,

with the progressive plane wave solution: u(x,t) = Aexp(i(z —t)), with A = 1.

We use L? projection as the numerical initial condition. In the discussion of stabil-
ity condition, we derive that when Imfy > 0,Imf; < 0,|a; + a_2|2 < —4ImpB1ImpBy, our
scheme for Schrodinger equation is stable. Furthermore, when aq + ag = 0, 81, 2 are real
numbers, the scheme is energy conservative. In this example, we compare two different
parameter choices to verify the energy conservation property. The parameter choices are
(a1, a0, 51, 82) = (0.25,—0.25,1 — 4,1 + 1), and (a1, a9, f1,P2) = (0.25,—0.25,1,1) when
k =2, N =40, ending time 7' = 100. Both are numerically stable flux parameters. For the
first set of parameters, we expect energy decay due to the contributions from the imaginary
part of 51,2 as in (2.11). For the second set of parameter, energy should be conserved.

In Fig. 2.2, we verify that as t increases from 0 to 100, the flux with only real parameters
preserve ||uy,||, while the flux with complex numbers have much larger errors. More precisely,
for real parameters, ||uy, (0, -)|| — |luy (100, )| = 7.9E-09, for complex parameters, ||up/(0, )| —

[, (100, )| = 5.7E-04.

Example 2.4.6. Accuracy test for NLS equation

g + gz + [ulu + Julfu =0, (2.37)

which admits a progressive plane wave solution: wu(x,t) = Aexp(i(cx — wt)), where w =

 — |AP? — A withe=1,A=1.

40



0.0006
— real

— imag

0.0005 A

0.0004 4

0.0003 1

0.0002 4

Absolute value of ||us(E, -)||i2y difference

0.0001 A

0.0000 A

Figure 2.2: Example 2.4.5. Absolute difference of |jup(t,-)|| with [Jup(0,-)] with two
sets of parameters (aq, a9, 51, 82) = (0.25,—0.25,1 — i,1 + 7) (denoted by “imag”) and
(a1, a0, 51, B2) = (0.25,—0.25,1,1) (denoted by “real”) when k = 2, N = 40, ending time
T, = 100.

For numerical initial condition, P;{ is used when applicable, otherwise standard L2 pro-
jection is applied. On uniform mesh, we use four sets of parameters. The numerical errors
and orders are shown in Tables 2.14 - 2.19, where corresponding projection results are listed
in Tables 2.3, 2.4, 2.11, 2.12, 2.8 and 2.10 respectively. Our numerical experiments show
that the order of convergence for the scheme is the same as the order of error estimates for
the projection P7.

We would like to make some additional comments on Tables 2.16 and 2.17, whose pa-
rameter choices satisfy assumption A2 when k£ = 1. The existence of P;L( requires N to be
odd for this parameter assumption. However, this assumption is not needed for the optimal
convergence rate of the numerical scheme for (2.37) as shown in Tables 2.16 and 2.17. Similar

comments have been made in [6].
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Table 2.14: Example 2.4.6. Error in L', L? and L norm for solving NLS equation (2.37)
on a nonuniform mesh using flux parameters (corresponding to Table 2.3) oy = 0.3, f1 =
B2 = 0.4, ending time T, = 0.3.

N | L' error | order | L? error | order | L™ error | order
40 | 2.86E-02 - 2.48E-02 - 3.92E-02 -
80 | 1.26E-02 | 1.18 | 1.02E-02 | 1.28 | 1.56E-02 | 1.33
P'| 160 | 6.34E-03 | 1.00 | 4.99E-03 | 1.03 | 6.77E-03 | 1.20
320 | 3.18E-03 | 1.00 | 2.56E-03 | 0.96 | 3.47E-03 | 0.96
640 | 1.58E-03 | 1.01 | 1.27E-03 | 1.01 | 1.85E-03 | 0.91
40 | 2.22E-04 - 2.13E-04 - 6.06E-04 -
80 | 1.99E-05 | 3.48 | 2.13E-05 | 3.33 | 7.28E-05 | 3.06
P?| 160 | 3.17E-06 | 2.65 | 3.03E-06 | 2.81 | 9.01E-06 | 3.02
320 | 3.49E-07 | 3.18 | 3.34E-07 | 3.18 | 1.23E-06 | 2.87
40 | 1.54E-06 - 1.35E-06 - 3.29E-06 -
80 | 4.96E-08 | 4.96 | 4.36E-08 | 4.95 | 1.29E-07 | 4.67
P3| 160 | 2.81E-09 | 4.14 | 2.60E-09 | 4.07 | 8.37E-09 | 3.95
320 | 1.61E-10 | 4.13 | 1.57TE-10 | 4.05 | 7.68E-10 | 3.45

Table 2.15: Example 2.4.6. Error in Ll, L? and L norm for solving NLS equation (2.37)
on a nonuniform mesh using flux parameters (corresponding to Table 2.4) oy = 0.3, 51 =
0.4h, B3 = 0.4/h;, ending time T, = 1.

N | L' error | order | L? error | order | L™ error | order
40 | 7.47E-03 - 6.50E-03 - 1.29E-02 -
80 | 2.10E-03 | 1.83 | 1.76E-03 | 1.89 | 4.22E-03 | 1.62
P'| 160 | 4.82E-04 | 2.12 | 4.18E-04 | 2.07 | 1.16E-03 | 1.86
320 | 1.21E-04 | 1.99 | 1.05E-04 | 1.99 | 2.87E-04 | 2.01
640 | 3.12E-05 | 1.96 | 2.71E-05 | 1.95 | 7.40E-05 | 1.96
40 | 5.14E-04 - 5.37E-04 - 1.74E-03 -
80 | 6.81E-05 | 2.92 | 7.00E-05 | 2.94 | 2.99E-04 | 2.54
P?| 160 | 8.04E-06 | 3.08 | 8.06E-06 | 3.12 | 3.58E-05 | 3.06
320 | 9.53E-07 | 3.08 | 9.75E-07 | 3.05 | 3.92E-06 | 3.19
640 | 1.68E-07 | 2.50 | 1.61E-07 | 2.60 | 4.90E-07 | 3.00
40 | 1.30E-06 - 1.25E-06 - 4.09E-06 -
80 | 5.74E-08 | 4.51 | 6.00E-08 | 4.38 | 2.60E-07 | 3.98
P3| 160 | 4.44E-09 | 3.69 | 4.12E-09 | 3.86 | 1.49E-08 | 4.13
320 | 2.25E-10 | 4.30 | 2.13E-10 | 4.28 | 9.65E-10 | 3.94

Example 2.4.7. A simulation for the NLS equation

iy + gy + 2Ju?u =0
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Table 2.16: Example 2.4.6. Error in L', L? and L norm for solving NLS equation (2.37)
using central flux (corresponding to A2 in Table 2.11) a1 = 51 = 3 = 0, ending time T, = 1.

N | L' error | order | L? error | order | L> error | order
40 | 0.28E-02 - 0.22E-02 - 0.27E-02 -

80 | 0.71E-03 | 2.00 | 0.56E-03 | 2.00 | 0.67TE-03 | 2.02
P'| 160 | 0.18E-03 | 2.00 | 0.14E-03 | 2.00 | 0.17E-03 | 2.01
320 | 0.45E-04 | 2.00 | 0.35E-04 | 2.00 | 0.41E-04 | 2.00
640 | 0.11E-04 | 2.00 | 0.88E-05 | 2.00 | 0.10E-04 | 2.00
40 | 0.13E-03 - 0.11E-03 - 0.16E-03 -
80 | 0.16E-04 | 2.99 | 0.14E-04 | 2.99 | 0.20E-04 | 3.00
P?| 160 | 0.21E-05 | 3.00 | 0.18E-05 | 3.00 | 0.25E-05 | 3.01
320 | 0.26E-06 | 3.00 | 0.22E-06 | 3.00 | 0.31E-06 | 3.00
640 | 0.32E-07 | 3.00 | 0.27TE-07 | 3.00 | 0.39E-07 | 3.00
40 | 0.22E-06 - 0.18E-06 - 0.24E-06 -

80 | 0.16E-07 | 3.76 | 0.13E-07 | 3.80 | 0.13E-07 | 4.16
P3| 160 | 0.10E-08 | 4.00 | 0.79E-09 | 4.00 | 0.84E-09 | 4.00
320 | 0.62E-10 | 4.00 | 0.49E-10 | 4.00 | 0.52E-10 | 4.00
640 | 0.39E-11 | 3.99 | 0.31E-11 | 3.99 | 0.33E-11 | 3.96

Table 2.17: Example 2.4.6. Error in L', L? and L norm for solving NLS equation (2.37)
using flux parameters (corresponding to A2 in Table 2.12): a1 = 1 = 0,02 = 1, ending
time T, = 1.

N L' error | order | L? error | order | L™ error | order
40 | 0.17E+00 - 0.13E+00 - 0.14E+00 -

80 | 0.92E-01 | 0.90 | 0.72E-01 | 0.89 | 0.75E-01 | 0.87
P11 160 | 0.48E-01 | 0.94 | 0.38E-01 | 0.94 | 0.38E-01 | 0.97
320 | 0.24E-01 | 0.97 | 0.19E-01 | 0.97 | 0.19E-01 | 0.98
640 | 0.12E-01 | 0.98 | 0.97E-02 | 0.98 | 0.98E-02 | 0.99
40 | 0.13E-03 - 0.11E-03 - 0.17E-03 -

80 | 0.16E-04 | 3.00 | 0.14E-04 | 3.00 | 0.20E-04 | 3.02
P?] 160 | 0.21E-05 | 3.00 | 0.18E-05 | 3.00 | 0.25E-05 | 3.01
320 | 0.26E-06 | 3.00 | 0.22E-06 | 3.00 | 0.31E-06 | 3.01
640 | 0.32E-07 | 3.00 | 0.27E-07 | 3.00 | 0.39E-07 | 3.00
40 | 0.68E-06 - 0.56E-06 - 0.83E-06 -

80 | 0.42E-07 | 4.00 | 0.35E-07 | 4.01 | 0.51E-07 | 4.01
P31 160 | 0.26E-08 | 4.00 | 0.22E-08 | 4.00 | 0.32E-08 | 4.00
320 | 0.16E-09 | 4.00 | 0.14E-09 | 4.00 | 0.20E-09 | 4.00
640 | 0.10E-10 | 4.00 | 0.85E-11 | 4.00 | 0.13E-10 | 4.00

with double-soliton collision

u(z,t) = sech(x + 10 — 4t) exp(i(2(x + 10) — 3t)) + sech(z — 10 + 4t) exp(i(—2(z — 10) — 3t)).
(2.39)
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Table 2.18: Example 2.4.6. Error in L', L? and L norm for solving NLS equation (2.37)

using flux parameters (corresponding to A1.6.1 in Table 2.8): «a; = 0.25,51 = @ +

M) Gy = 1.0,p1 = ~1,p2 = 2,3, ending time T, = 1.

N | L' error | order | L? error | order | L™ error | order

40 | 0.41E-02 - 0.37E-02 - 0.72E-02 -
p! 80 | 0.12E-02 | 1.77 | 0.10E-02 | 1.82 | 0.21E-02 | 1.80
po = 2 160 | 0.31E-03 | 1.93 | 0.25E-03 | 2.05 | 0.39E-03 | 2.39
B = i 320 | 0.87E-04 | 1.86 | 0.69E-04 | 1.87 | 0.10E-03 | 1.94
640 | 0.23E-04 | 1.93 | 0.18E-04 | 1.94 | 0.26E-04 | 1.97

40 | 0.49E-04 - 0.49E-04 - 0.13E-03 -
p? 80 | 0.83E-05 | 2.55 | 0.73E-05 | 2.74 | 0.14E-04 | 3.23
po = 2 160 | 0.31E-05 | 1.44 | 0.29E-05 | 1.32 | 0.65E-05 | 1.12
3, = % 320 | 0.95E-06 | 1.69 | 0.92E-06 | 1.69 | 0.20E-05 | 1.70
640 | 0.26E-06 | 1.85 | 0.25E-06 | 1.86 | 0.55E-06 | 1.87

40 | 0.36E-03 - 0.34E-03 - 0.74E-03 -
p? 80 | 0.21E-03 | 0.78 | 0.20E-03 | 0.76 | 0.43E-03 | 0.77
P2 =3 160 | 0.11E-03 | 0.92 | 0.11E-03 | 0.92 | 0.23E-03 | 0.92
3, = % 320 | 0.56E-04 | 1.00 | 0.53E-04 | 1.00 | 0.11E-03 | 0.99
640 | 0.28E-04 | 1.00 | 0.27E-04 | 1.00 | 0.58E-04 | 1.00

p3 40 | 0.19E-05 - 0.19E-05 - 0.43E-05 -
- 80 | 0.43E-07 | 5.50 | 0.38E-07 | 5.65 | 0.84E-07 | 5.66
b2 B % 160 | 0.15E-08 | 4.88 | 0.15E-08 | 4.68 | 0.26E-08 | 5.00
br=3 320 | 0.91E-10 | 4.00 | 0.90E-10 | 4.02 | 0.17E-09 | 3.94
640 | 0.58E-11 | 3.96 | 0.57E-11 | 3.99 | 0.11E-10 | 3.98

Table 2.19: Example 2.4.6. Error in L', L? and L norm for solving NLS equation (2.37)

using flux parameters (corresponding to A1.7.2 in Table 2.10): a3 = 0.25,5; = —1,09 =

é,pl = —2,—3,p3 = 1, ending time T, = 1.

2k(k+1)
N L' error | order | L? error | order | L™ error | order
40 | 0.60E-04 - 0.54E-04 - 0.95E-04 -
p? 80 | 0.76E-05 | 2.99 | 0.68E-05 | 2.98 | 0.12E-04 | 2.96
pr = —2 160 | 0.96E-06 | 3.00 | 0.85E-06 | 3.00 | 0.15E-05 | 2.99
B~1 = % 320 | 0.12E-06 | 3.00 | 0.11E-06 | 3.00 | 0.19E-06 | 2.99
640 | 0.15E-07 | 3.00 | 0.13E-07 | 3.00 | 0.24E-07 | 3.00
40 | 0.95E-04 - 0.85E-04 - 0.15E-03 -
pP? 80 | 0.21E-04 | 2.22 | 0.18E-04 | 2.20 | 0.33E-04 | 2.18
p1=-3 160 | 0.49E-05 | 2.08 | 0.44E-05 | 2.07 | 0.79E-05 | 2.06
31 = % 320 | 0.12E-05 | 2.02 | 0.11E-05 | 2.02 | 0.20E-05 | 2.02
640 | 0.29E-06 | 2.02 | 0.27E-06 | 2.02 | 0.48E-06 | 2.02

We use periodic boundary condition and L? projection initialization to run the simulation

for double-soliton collision solution. The two waves propagate in opposite directions and
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collide at t = 2.5, after that, the two waves separate. Such behaviors are accurately captured

by our numerical simulations, see Figure 2.3 for details.

T=0 T=25

lu,|

lu,|

Figure 2.3: Example 2.4.7. Double soliton collision graphs at t = 0,2.5,5 and a x —t plot of
the numerical solution. N = 250, P2 elements with periodic boundary conditions on [-25,25].
Central flux (a1 = 1 = f2 = 0) is used.
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Chapter 3

Superconvergence analysis of UWDG
method on linear Schrodinger

equation

In this chapter, we study the superconvergence properties of the UWDG method on solving
the following linear Schrodinger equation:

iug +ugy =0,  (z,t) € I x(0,T¢],
(3.1)

u(z,0) = u(),

where I = [a, b] and periodic boundary condition. We consider solving the equation with scale
invariant flux parameters. Such choice include all commonly used fluxes, e.g. alternating,
central, DDG and interior penalty DG (IPDG) fluxes.

We study the superconvergence property in two types. One type is the superconvergence
of cell averages, numerical fluxes, solution at special points and superconvergence towards the
projection P,’; in Chapter 2. Depending on the flux choices and the evenness of oddness of the
polynomial degree k, we obtain 2k or (2k—1)-th order superconvergence rate for cell averages
and numerical flux of the function, as well as (2k—1) or (2k—2)-th order for numerical flux of

derivative. The proof relies on the correction function techniques for second order derivatives
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applied to [10] for DDG methods for diffusion problems. We also prove the UWDG solution
is superconvergent with a rate of £ + 3 to the projection P,’: we introduced in Chapter 2
if £k > 3. At interior points whose locations are determined by roots of certain polynomials
associated with the flux parameters, we show that the function values and the first and
second order derivatives of the DG solution are superconvergent with order k + 2,k + 1, k,
respectively. Compared with [10] for solving diffusion problems, Schréodinger equation poses
unique challenges for superconvergence proof because of the lack of the dissipation mechanism
from the equation. One major highlight of our proof is that we introduce specially chosen
test functions in the error equation and show the superconvergence of the second derivative
and jump across the cell interfaces of the difference between numerical solution and projected
exact solution. This technique was originally proposed in [19] and is essential to elevate the
convergence order for our analysis.

Another type of superconvergence is by postprocessing the UWDG solution such that
the postprocessed solution is convergent faster than original solution. We introduce a dual
problem and prove (2k)-th order negative norm estimate. The order is one order less than
that in hyperbolic equations, due to the ultra-weak formulation which has boundary term of
the product of derivatives and function values. With the negative norm estimates and divided
difference estimates, we prove the (2k)-th order superconvergence rate for the postprocessed
solution.

The rest of this chapter is organized as follows. In Section 3.1, we recall the UWDG
scheme for linear Schrodinger equations and define some new notations. In Section 3.2, we
restate the projection results in Section 2.2 under scale invariant parameters and introduce
another related projection. Section 3.3 contains the superconvergence results of the UWDG

solution in various quantities. In Section 3.5, we provide numerical tests verifying theoretical
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results. Some technical proof is provided in the Appendix.

The major contents of this chapter has been published in [15].

3.1 Numerical scheme

In this chapter, the semi-discrete UWDG scheme for solving linear Schrodinger equation is
defined as follows: solve for the unique function wuy, = wuy,(t) € V}{C ,k>1,t e (0,T], such

that

aj(uh,vh) =0, Vjely (3'2)

holds for all vy, € V]Zf , where a; is defined in (2.6) and the numerical fluxes are defined in
(2.14).

Some commonly used fluxes take the following choices of parameters.

e central flux, oy = 1 = B9 = 0;

e alternating flux, aj = i%,ﬂl = 9 = 0;

e IPDG like flux, aj = 3 = 0,8 = f1h~1;

e DDG like flux, ay = dy, 82 = 0,8 = f1h~1;

e more generally, any scale invariant flux, a1 = a1, 8] = Blh_l, B9 = 6~2h;

where afq, 31, B~2 are prescribed constants independent of mesh size. In this chapter, we will
only consider scale invariant flux choices.

Compared with discretization for diffusion equations, we don’t have any extra diffusion
term in (2.10) to help with the estimates. Therefore, superconvergence error estimates are

more challenging compared with [10].
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To facilitate the discussion, we introduce notations that will be used in this chapter.

Similar to [12], we define operator D~ for any integrable function v on I ;j by

x §
D~ ly(z) = h%/ v(z)dr = / lﬁ(ﬁ)d& T €l

r. 1 —

i

Nl

Using the property of Legendre polynomials, we have

1
—1

1 1 1
D 2L, = Litao—1Li)— Ly —L: k> 2
Ik 2k +1 (2]{; + 3( Jik+2 ]7k) 2% — 1( 7,k ],k—2)) ) Z 4y

where D2 = D 1o DL,

3.2 Projections

(3.3)

(3.4a)

(3.4Db)

Under scale invariant flux parameter assumption, we have more concise results for P}’: . To

facilitate the superconvergence proof at special points, we introduce another projection op-

erator P;{ in this section.

To shorten the notation, from here on we use two notations Cy, and Cp, 5, to denote

mesh independent constants. Cy, may depend on |u|Wk+1+m,oo( N for assumptions A0/A1,

and ||U||Wk+3+m,00(]) for assumption A3, ||u||Wk+4+m,oo(I) for assumption A2. Cy, 4, may

depend on |U’Wk+1+m+2n,oo(l) for assumptions A0/A1, on Hu‘|Wk+3+m+3n,OO(]) for as-

sumption A3 and on Hu||Wk+4+m+4n,ooU) for assumption A2.

The definition of Pj is given in (2.15). When scale-invariant flux parameters are used,

we have the following Lemma.

49



Lemma 3.2.1 (P}’: under scale invariant flux parameters). Suppose any of the assumptions
A0/A1/A2/A8 holds, u satisfies the condition in Definition 2.2.1, and scale-invariant fluzx

parameters are used. We have the following estimates
Wim — wjm| < CohF ™ m =k — 1k, |lu— Phull vz, < CohFl, v =1200. (3.5)
In addition, if hj = hjyq,
|Gjm — wjm — (@ 1m — wjr1m)| < CLAFY2 m =k -1,k (3.6)

Proof. When scale invariant parameters are used, when assumption A0 is satisfied, (3.5) is
a direct result of (2.29) in Lemma 2.2.3. On uniform mesh, under assumption A1/A2/A3,
the matrices @1, Q2 and eigenvalues A1, Ay are constants independent of h. Thus, (3.5) is a
direct result of (2.30) and (2.31) in Lemma 2.2.3.

To prove the estimates for 4, — wjm — (Ujr1m — wjp1,m),m =k — 1, k, we denote

y Uj f—1 — Uj k-1 Ujy1 k-1 — Wjt1k—1

J
Uj fp — Uj g Uji1 k= Ujt1k

Plug (2.26), (2.27) in above formula. With the use of (33), U; can be estimated in the same
way as Uj; in the proof of Lemma 2.2.3, and then (3.6) is obtained. We omit the proof for

brevity. O]

With the optimal estimates of P;; u, we proved the optimal L? error estimate of the DG

scheme in Theorem 2.3.1, which is restated in a more concise version below.

Theorem 3.2.2 (Theorem 2.3.1 under scale-invariant flux parameters). Suppose any of the
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assumptions A0/A1/A2/A3 holds, let the exact solution u of (3.1) be sufficiently smooth,

satisfying periodic boundary condition and uy, be the UWDG solution in (3.2), then

1Pfu—upll < Coh*F1 lu—up|| < Con™ . (3.7)

Next, we introduce a local projection Pf]: as a variant of P,Z: and study its approximation
properties, especially the superconvergence property at a special set of points. Such super-
convergence estimates will help us reveal the superconvergence of UWDG solution at special
points. Similar ideas have been employed in [9] for proving the superconvergence at the

so-called generalized Radau points when using upwind-biased flux for hyperbolic equations.

Definition 3.2.1. For DG scheme with flux choice (2.14), we define a local projection op-
erator P]I for any periodic function u € WLOO(I) to be the unique polynomial P;gu € Vf{f

(when k > 1) satisfying

/ P;:u vpdr = / uvpdr, Yup, € Pck_2(1j), (3.8a)
I I
J J
—~ +
Pgu P,;ru U U
G +H =G +H (3.8b)
(P;gu)x (P;{u)x Uy Uy
X T, 1 T, 1 . 1
It3 =32 T3 )

for all j € Zy. When k =1, only condition (3.8b) is needed.

Projection P}]; is always a local projection. Denote P}]:uljj = 251:0 WjmLjm, by (3.8a),
Wjm = Ujm,m < k— 2. The similarities in definition imply that P;L( and P;[ are very close

to each other, as shown in the following lemma.
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Lemma 3.2.3. For periodic function u € W(I), if assumption A0 is satisfied, Pru =
P}];u. If any of the assumptions A1/A2/A83 is satisfied, P}]; exists and is uniquely defined if

F.
(—1)k+17é # 1 for all j € Zpy. Then,
k+1
Ju = Pl oy < OV Ml v =200 (3.9)
If any of the assumptions A1/A2/A3 is satisfied, we have

1B — Plull vz, < CLhF2, v =200, (3.10)

IN‘)

Proof. When assumption A0 is satisfied, due to (2.20), P;’ = P;{. The rest of the proof is

given in Appendix. O

To analyze the superconvergence property at special points, we need to investigate the

expansion of the projection error of Pg on every cell I, if AO/A1/A2/A3,

u; — U, > >
.]7k_1 jak_l
(u— PZU)!Ij =[Lj k-1, Ll + > uimLim= > ujmRjm
Uj e — 1)]7]{ m=k-+1 m=k+1

(3.11)

where wu; ,, is defined in (2.24) and

Rjm = Ljm = [Lj k-1, Lj p] M. (3.12)
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We write out the explicit expression of the leading term in expansions

Rjjpy1=Ljpq1+bLjp+cljp 1, (3.13)
where
201 2’;;4'1
_ J
Tj+ (—1)kA;
2(k+1)2 2(k+1
P - ( fj_ : (a%"’_ﬁlﬂ?_"%{) (— 1)k+1 L )(al + B1P2 — 71)
c=— J "
Tj+ (=1)kA;
%k(k; )k +1)2
I VENEITY

to determine the location of superconvergent points.
For s =0, 1,2, denote Df as the roots of %Rﬂﬁ_l, D% = Ué\le Dj., then it follows from

(3.11) and (2.25) that, for x € D‘;-,

o
s i3
O(u—Plu)x)= Y Wim 7= Rjm < Ch +3 SIU|W’€+278(1]-)’ (3.14)
m=k+2

indicating superconvergence at those points. We state such superconvergence results in
Theorem 3.3.6.

Since the expression of b, ¢ depends on hj;, on nonuniform mesh, Djéf ,s = 0,1,2 have
nodes with the different relative locations on each cell. For simplicity, below we discuss the

locations of D?, D}, Djz for special flux choices on uniform mesh.

iQkkH o= _ (k+1)?
sktl .

e Alternating fluxes: b = = .

e Central flux: if k is even, then b = 0,c = —%; if k is odd, then b =0,c = —1.
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(k+1)(k+2)—207 .

e IPDG fluxes: if k is even, then b = 0,c = — Kh—1)—20,

if k£ is odd, then b =0,c =

—1.

For central and IPDG fluxes, if kis odd, R p11 = Lj 41— Lj g1, %Rﬂﬂ_l = %Lj,kv
%Rj,wrl = 8’;—541};7# implying that DY, Djl-, D? are Lobatto points of order k + 1, Gauss
points of order li and Lobatto points of order k 4+ 1 excluding end points, respectively, on
interval I;. Therefore, card(D?) =k+1, card(D}) =k, card(DJQ-) =k—1

Cao et al. proved there exists k + 1 superconvergence points (Radau points) when using
upwind flux for linear hyperbolic problem in [12], k& + 1 superconvergence points (Lobatto
points) using special flux parameter in DDG method in [10] and &£+ 1 or k superconvergence
points, depending on parameters, for using upwind-biased flux for linear hyperbolic problem
in [9]. Analyzing the number and location of superconvergent points for our scheme is more
challenging. We shall only provide lower bound estimates for the number of superconvergence
points. For general parameters choices, when k > 2, R;pq L PC]‘;_Q(I j), by Theorem 3.3
and Corollary 3.4 in [67], we can easily show R; k41 has at least k — 1 simple zeros, i.e.,

card(D?) > k — 1. By the same approach, we can show when k& > 3, card(Djl-) >k —2, and

when k > 4, card(D?) > k — 3. For small k values, Djl-, D? can possibly be empty sets.

3.3 Superconvergence properties

In this section, we study superconvergence of the numerical solution. We investigate the
superconvergence of UWDG fluxes, cell averages, towards a particular projection and at

some special points. This analysis is done by decomposing the error into

e=u—up=¢ep+Cp €p=u—up, G =ur—u (3.15)
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for some uy € V}{f . For error analysis of DG schemes, uj is usually taken as a projection
of u. While for our purpose of superconvergence analysis, uj needs to be carefully designed
as illustrated in Section 3.3.2. Before that, we prove some intermediate superconvergence
results in Section 3.3.1 without specifying u;. Then, the choice of uj is made in Section

3.3.2 and the main results are obtained.

3.3.1 Some intermediate superconvergence results

D=

This subsection will collect superconvergence results of |[(Cy)zall ;2 (1) (% Zjvzl 1<l

Y

2 1)
ity
1

(% 25\21 |[(Ch)x]|§+%)? without specifying uy. The main idea is to choose special test func-
tions in error equation, similar to the techniques used in [19] for hyperbolic problems. This

is an essential step to elevate the superconvergence order in Theorem 3.3.4 when £ is even.

Lemma 3.3.1. For k > 2, let u be the exact solution to (3.1) and wy, be the DG solution
in (3.2). €p,,(p are defined in (3.15). We choose sy, to be a function in V]f, such that

7 spopdx = alep, vy), Yo, € V}f. Then, when any of the assumptions A0/A1 is satisfied,

1(Ch)azll < Clisp + (el (3.16)
1 1
(Nj:zl |[Ch]|§+%)? < CR?||sp, + (u)ill; (3.17)
1 & 1
(szl |[(Ch)m]|§+%)2 < Chlisp + (Cp)ell- (3.18)
Proof. The proof is given in Appendix. ]
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3.3.2 Correction functions and the main results

In this section, we shall present the main superconvergence results. The proof depends on
Lemma 3.3.1 and the correction function technique introduced by Cao et al. in [12, 10],
which is essential for superconvergence. We let ur = Pju when k = 2, and uy = Pyu — w,
when £ > 3, where w € V}{“ is a specially designed correction function defined below.
Similar to [10], we start the construction by defining wg, 1 < ¢ < Lk—_TlJ For k > 3, we

denote wy = u — Pju and define a series of functions wy € V}f, as follows

/ wg(vp)zede = —i/ (wg—1)tvpde, Yy, € Pck([j) \ Pcl(Ij), (3.19a)
’j Lj

wy = 0, at ijr%, (3.19Db)

(wg)z =0, at :cﬂ%, (3.19¢)

G +H =0. (3.20)

wy exists and is unique when any of the assumptions A0/A1/A2/A3 is satisfied for the same
reason as the existence and uniqueness of P;: :

With the construction of wg, we define

2
w(x,t) = Z wq(z,t), (3.21)
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then

1551
aj(en, vp) = aj(u— Plu,vp) + Y aj(wg,vp)
q=1
1552
:/ (wg)rvpde + Z (/ (wq)tvhdx—z’/ wq(vh)mdx>
I =1 \"Ij T (3.22)

k‘
,_.

:/ w( tvhdaj—i— Z / — Wqg—1 tvhdx

—/ (w k—1 )tvhdx, Yoy, € fo:(f)
r =)

The approximation property of wq and a;(ey, vy,) are presented in the following Lemma.

Lemma 3.3.2. For k > 3, suppose u satisfies the condition in Theorem 3.2.2. For wq,1 <

q < [%J,q—l—rﬁ L%J—I—l, we have

k
2 + ,
Ofwqlr; = Yo Lm0y oy = ORI (wjpy — ),
m=k—1-2q (3.23)
k+1+42
8{c§{m‘ < Oy, hF T2
and then
10} wyl| < Cop gh®+1+24, (3.24)
For any vy, € V}f,
k+1+42
ofenon)| < Cy g 12T oy (3.25)
Proof. The proof is given in Appendix. O]

Lemma 3.3.3. For k > 2, suppose u satisfies the condition in Theorem 3.2.2. If the
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parameters satisfy any of the assumptions A0/A1 and up|i—g = upli=g, we have

I(Codasl < €,y B (3.26)
1 o 2 % k+3+2 kL
<Nj§_jl|[<§h>l|j+%>2 <Oy okt 2 (3.27)
1 2 3 k242 L
(N;H@h)x]\ﬁ%)? S 7. (3.28)

Proof. This Lemma is a direct result of Lemma 3.3.1, once the estiamtes of ||sy, + ((p,)¢| is
acquired. When k = 2, w = 0. a(ep, vp) = [;(ep)ivpda from the definition of P, That is,
sy, = (€p,)¢ in the condition of Lemma 3.3.1. To bound ||({p)¢||, we take the time derivative

of the error equation and obtain

a(et,vp) = al(ep)t vp) + al(Cp)t vp) = 0.

Let vy = (Gt since a((C)e, (G)e) + a((Ca)e, (Gu)e) = £ l|(Cu)ell%, by the property of

Pfu, we have

%H(Ch)t“z = —a((ep)t, (Cn)e) — allen)ts (Cn)e) < 2ll(en)eelll(Ca)ell

which implies %H(Ch)t” < ||(ep)tt]]- To estimate ||(Cp)¢le=0ll, we let ¢ = 0 in the error

equation. Since (|i—g = (up, — ug)|=p = 0, we have

a(ep, vp) + /I(Ch)tlt:ovhdf =0.
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Let vy, = (Cp)tlt=0, then

1) ele=oll* < Nl (en)ellll(Cn)eli=oll-

Therefore,

IRl < [ICen)ell + 2l (ep ezl

By Lemma 3.3.1, estimates in (3.5) and the inequality above, we can get (3.26)-(3.28).
For k > 3, by (3.22), we have a(ep,vy,) = [j(w tvhdx that is, s, = (w Lkilj)t in
2
the condition of Lemma 3.3.1. Then, following the same lines of proof as above, by replacing

€p, with w and using Lemma 3.3.2, we are done. O]

=3

Now we are ready to state the following estimates of ||(},||.

Theorem 3.3.4. For k > 2, suppose u satisfies the condition in Theorem 3.2.2. Assume

up|t=0 = uslt—g, then Vvt € (0, T,],

(02’ = h2k if kis odd and A0/A1/A2/AS3,
ICull < (Chpoh®® + lecINU Ckh4k_1)% if k is even and AO/A1, (3.29)
\C2,kﬁ_f2h2k_l’ if kis even and A2/A3,
where INU s the collection of cells in which the length of 1; is different with at least one of

its neighbors.
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Proof. From error equation, a(e, (j,) = a(ey, () + a(Cy, () = 0, which gives us

d ) [ 2| (en)elllICh ]l k=2,
%HCh” = —a(ep, () — alep, Cp) < (3.30)
QH(U)L%J)t”HChHa k> 3.

By (3.5), (3.24) and Gronwall’s inequality, we have

k—1
IGhll < €y st T2 Vi e 0.,
L

Therefore, when k is odd, or k is even and parameters satisfy any of the assumptions A2/A3,
the proof is complete.
When £ is even and parameters satisfy any of the assumptions A0/A1, we make use of

Lemma 3.3.3 to show the improved estimates. We let [ = U&?J = k—?, then

alep, Cp) = /(W 1Cpdr = Z Z atcjm/ LjmCpdx

j=1m=1 ]
N E—
= Z@tcé"l/ j, 1Chd£(] + Z Z 81563 m/ j7mghdl’ = A1 + Ay,
J=1 j=1m=2 ]

where we denote the first term in the summation by A1, and the other term in summation

as Ag. Note that D_le’m 1 P% m > 1 in the inner product sense, thus D_ZLj’m(:tl) =
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0,m > 2. By integration by parts, we get

Ao = ZZ ‘78tc]m/D2L )

jlm2
B2

<Ch~ IZ| ]ac m’2+hzz / D_zij(Ch) dx) <Ch4k+ch2”(<h)xa@”

j=1m=2

< Cppoh™

where we have used (3.23) in the first inequality, and (3.26) in the third inequality.

h; ¢2
To estimate Ay, we take the first and second antiderivative of L;1 = § as —%(% — %),

(7‘7)25 —$ and apply integration by parts twice,
N T
hy &2 1. i+ &€ 1,
_ ) ) S L JT95 _ [
Al o Zl 2 atC]J ( 9 G)Ch’xj_% /I( 2 6)(Ch)xd$
J= J
N
h; 1,- _ h; &3¢
_ _]a l - . + g
=S Uy (2@l Gl )+ / (Cp)eods
j:z1 2 \3 ity Ty 2 6
N
h; 3
= Z é@tq@i + _/ 5 xmdl‘)
=1

+ % ((%)31502',1 - (%)3@41,1) %Ch’;_%»

N P TN Ty 2
rAlwsﬁhZ((g)ratcj,ﬂ) 0TS GIGIE, + on SIG o
7=1

J=1 j 1
S j+1 2
-1 2
18 Z‘( 71 Orcj — ( ’ )516 +1 1) +hZHCh|lL2(Mj)
=1 j=1
4k 2 NI hjs1 2
< Crpah™ + C|I¢ 117+ Cn > ((%)(%Cj’l_( A >8tcj+11)
=1
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where we used (3.23), inverse inequality, (3.26) and (3.27) in the last inequality.
We estimate the last term in A; by the estimation of the difference of u; ;, in neighboring

cells, similar to that in Proposition 3.1 of [6]. If h; # hjiq, then

h

' 1
If hj = thrl? by (3.23) and (3.6),

h; hjs1 hj2l+1 . ,

%&56&,1 - jTatC§~+1,1 = C(%) O wj gy — 1 — (i1 gt — @1 k1))

Therefore, we have

ALl < Crpoh™ + CIGIP+ D Cpp®L
IjCINU

Combine with the estimates for As, we have

d _
E||Ch||2 < Cppah™ +ClGIP+ Y oppth
IjCINU

By Gronwall’s inequality and the numerical initial condition, we obtain

1
IChll < (Crpoh®™ + > Cppthhz,
[jCINU

The proof is now complete. O

Above theorem states that for £ > 2, when k is odd or k is even and any of the as-
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sumptions A0/A1 is satisfied, |||l has the desired 2k-th order convergence rate. When k
is even and any of the assumptions A2/A3 is satisfied, we are unable to improve the order
because that a middle step, Lemma 3.3.3, is proved only under assumption AO/A1. However,
numerical result shows the superconvergence results of ||(,|| and the quantities in following
two theorems still hold when £ is even and any of the assumptions A2/A3 is satisfied. There
is room for improving the proof under such assumption.

Our main superconvergence results are listed in the following two theorems.

Theorem 3.3.5 (Superconvergence of numerical fluxes and cell averages). Let

o (LS b 5 - (A e )
f_(szl(u—uh)b_'_%) ) fx_<ﬁjzl(ugc_(uh)x)|3_i_%> )

= N (3.31)
EC:(NZ‘}L_/ u—uhd$‘>2

j=1 "9 71

be the errors in the two numerical fluxes and the cell averages, respectively. For k > 2,
suppose u satisfies the condition in Theorem 3.2.2. Assume uyp|i—g = ugli—o, then Vt €

(07 Te]

e if k is odd, parameters satisfy any of the assumptions A0/A1/A2/A3, we have

E;<C, ;<321h2k, Ey, <C, kQIh%_l, E.<C, k21h2k, (3.32)

) ) 9

63



e if k is even, parameters satisfy any of the assumptions A0/A1, we have

1 1
Ep < (Cpah®™ + Y opp* 2, By < (Cppoh™ + Y- Cppthan

I;cINU 1;cINU
(3.33)
1
Ee < (Cppoh®™ + 3~ pp®h2, (3.34)
I;cINU

where IVU s the collection of cells in which the length of I; is different with at least

one of its neighbors.

e if k is even and parameters satisfy assumption A2/AS3, we have

p2h—1 p2h=2 E.<C, p2h—1, (3.35)

Gt B = G 17

9

Proof. We first prove the estimates for £/;. By (3.19b) and the definition of P}, Eh(xj+1)
2

—

u—u_r(q:j =0, then

+%)

(w =)l 1 = (Gl = ({6} =@l + BalGual)l 1

Therefore, by inverse inequality and the fact Gy = Boh,

D=

L2
By < Ol 2oz,,)° < Ol

and the desired estimates for £y is obtained by (3.29). The estimates for £y can be obtained

following same lines.
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Next, we prove the estimates for E.. If k is odd, then f[- wgdr = 0,1 < ¢ < #, by
J

(3.23) and orthogonality of Legendre polynomials. Thus,

N
/u—uhd:c:/ u— Pru+ Z wq—i-Chdx:/ W g1 dx+/ Cpdz.
1 I = r; 7o) I

Thus,
1/ 2 2 9 9
= | u—upda] < G2+ w1 1, ).
’hj i’ oy P2 () TR 1)

< k—2

If k is even, then [; wqdz = 0,1 < 5=, by (3.23) and orthogonality of Legendre
J

(=)

polynomials. Thus, by similar step, we have
1 2 2
u— updr = (pdx, ‘— u—uhdx’ < _HChHLZ(I-)'
I I hj J1; h; j

Therefore,
2 NL/2 e I
E. <C(I<ulI7 + llwp—1]|7) 7= if k is odd, E. < C||p]| if k is even,
2

and the desired estimate for E. is obtained by (3.29) and (3.24). O

Theorem 3.3.6 (Superconvergence towards projections and at special points). Suppose u

satisfies the condition in Theorem 3.2.2. Assume up|i—o = Pyug, then vt € (0,T¢],

1
(Cah™ 432, onu Coh™™ 12 k=2, if A0 or At
J

lup, — Prull < (3.36)

Co 1 (1 + t)hk+3 k>3,

INU

where is the collection of cells in which the length of I; is different with at least one of
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its neighbors.

Assume D%, s =0,1,2 defined in (3.14) are not empty sets. Let

u <|DO| Z |u—uh >%7 Eux:(|D1 Z |U—uh |)%7

xeDV zeDl

1
Uxx (|D2| Z | )|2>j

reD?

(3.37)

be the average point value error for the numerical solution, the derivative of solution and the

second order derivative of solution at corresponding sets of points. Then

e if k =2 and any of the assumptions A0/A1 is satisfied, we have

1 1
Ey< (Ot + > ooptha By, <h N+ YT et
L;cINU 1;cINU

1
Eugy <h72(Cyh* 4 Y™ Conthh)2,

TN
L;cINU
(3.38)
e if k > 3 and any of the assumptions A0/A1/A2/A3 is satisfied, we have
By, < CQ,lhk—m, Ey, < 02’1h/€+1’ By, < CQ’lhk. (3.39)

Proof. When k = 2, we have uy, — P}’:u = —(p,. If any of the assumptions A0/A1 is satisfied,
by (3.29), we have

1
lu, — Prull < (Csh*™ + > Copth—hz.,
chINU

When k£ > 3, to relax the regularity requirement, we follow the same steps in Lemma
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3.3.2, and change the definition of uy to uy = Pfu —wy. Then €), = u — uy,(} = uy — wy,
and we obtain

la(en, vp)| < Co1BF 3oy, Yoy € V.

By the estimates above, (3.24) and the error equation, we obtain
d2 k+3
2 1Call” < 2l (wn)ellllCall = Co0n™
By Gronwall’s inequality,
1G]l < Conth™3 4+ [1(G)li=oll = Cotth"™3 + Jwili=oll < Con(1+H)AF3, vt € (0,70,

where up|i—g = PJug is used in the first equality. Since uj, — Pyu = —(, — wy, it follows

that Vt € (0, Te],
lup = Piull < 2(1¢u ] + llwnll) < Co1 (14 )15,

Then the proof for (3.36) is complete.

If any of the assumptions AO/A1/A2/A3 is satisfied, then

D=

1

E <(_
‘= \|DY|

S lw = Pfu)(@)f + [(Pju = w) (@) + (P — Plu)@)]?)
zeD0

< CW 2l g0 0,y + Ol Pw = gl + Cl| Pu — Bl

(

where (3.14), inverse inequality, and (3.10) are used in the last inequality. Then the estimates
for £, is proven by Lemma 3.2.3 and (3.36). The estimates for £, and E,,, can be proven

following the same lines.
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Remark 3.3.1. If the initial discretization is taken as up|i—g = uyl|i—g, the theorem above

still holds. Howewver, the reqularity requirement will be higher.

3.4 Superconvergence of postprocessed solution

In this section, we analyze the superconvergence property of the postprocessed DG so-
lutions for linear Schrédinger equation (3.1) on uniform mesh by using negative Sobolev
norm estimates. The postprocessor was originally introduced in [7, 55] for finite difference
and finite element methods, and later applied to DG methods in [23]. The postprocessed
solution is computed by the convolution of numerical solution wj and a kernel function
KZ’Z(J;) = ﬁK”vl(%), where d is the number of spatial dimensions, and [ is the index of H~
norm we're trying to estimate later. The convolution kernel has three main properties. First,
it has compact support, making post processing computationally advantageous. Second, it
preserves polynomials of degree up to v — 1 by convolution, thus the convergence rate is not
deteriorated. Third, the kernel K" ! is a linear combination of B-splines, which allows us to
express the derivatives of kernel by difference quotients (see section 4.1 in [23]).

We give the formula for the convolution kernel when the DG scheme uses approximation
space fo::

k
KAEFDFL ) = 3 p2EEDAL 0D (),
y=—k

2(k+1),k+1
Cca

where w(k+1) are the B-spline bases and the computation of coefficients £, n be
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found in [65]. Then we can define the postprocessed DG solution as

w= [ R w)d. (3.40)

u* is an “averaged” version of wj, such that it is closer as an approximation to the exact

solution w. Lastly, we define divided difference as

1 1 1
dpv(x) = E(v(:c + §h) —v(x — §h))
Now we are ready to state an approximation result showing the smoothness of u and

negative Sobolev norm of divided difference lead to a bound on u — u*.

Theorem 3.4.1 (Bramble and Schatz [7]). Suppose u™ is defined in (3.40) and KZUHUJHI:

%LKQ(]“‘H)’]“"H(QC), where K2FH1)EHL 4o o kernel function as defined above. Let u be the

S

exact solution of linear Schridinger equation (3.1) satisfying periodic boundary condition,

we H2H2(1). Then for arbitrary time t € (0,T.], h sufficiently small, we have

HU — U*H < Ch2k+2|u’H2k+2(I) + ; ||d('f);(u - uh)HH—(k—i—l)(IN)v (341>
a<k+1

where C'is independent of u and h.

The right hand side of (3.41) indicates that if ||d7 (u — uh)|’H_(k+1)(IN) converges at
a rate higher than k£ + 1, then we have superconvergence property for the postprocessed
solution. In what follows, we estimate the negative-norm term following the steps in [23].

First, we introduce a dual problem: find a function v such that v(-,t) is periodic function
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with period equal to the length of I, i.e., b — a for all t € (0,T¢] and

iUt — Uy = O, n R X (O,Te),
(3.42)

v(x,Te) = ®(z), = €R,
where @ is an arbitrary function in C3°(). We use the notation (¢,1)) := [; ¢pdx in this

section. At final time T,

(u(Te) = up(Te), @) = (u,v)(Te) = (up, v)(Te)
Te
= (u,v)(0) + ; {(u, 0t) + (ug, v) ydt = (up, v)(Te)

Te
= (,0)(0) = (up, v)(O0) = | - A((un)e, v) & (up, ve) et

Te
= (u — up,v)(0) — ; {((up)t; v) + (up, ve) }dt,

where the property uvy + upv = 0 is used to obtain the third equality.

The DG solution uy, satisfies (3.2). Therefore, we have Vo, € th

((up)t;v) = ((up)t, v —vp) + ((up)t, vp)
= ((up)t,v —vp) +iA(up, vp)

= ((up)t,v —vp,) — iA(up, v — vp) + iA(up, v).

Then we obtain

(u(Te) — up(Te), @) = O +ON + O,

70



where

Onrr = (u— up,v)(0),
Te
On =- 0 {((up)e,v —vp) — iA(up, v —vy)}dt, Yoy, € Vi,
Te
Oc=— [ {(up,ve) +iA(up, v)}dt.
0

By choosing the initial numerical discretization uy,(0) = Pguo and vy, = Pf?v, we have

O = (u—up,v)(0) = (u—up,v—1vy)(0) and

O] < |[(u = up)(O)]| - [[(v = vp) (O < Ch%”IIUIIHkH(I)HvHHkH(I)-

Since v is a smooth function, we have

Te
Oc =— ; {(up, ve) + i(up, veg) pdt = 0.

Choose vp, = P}?v and from the symmetry of the operator A(-,-), we get

Te
On| = / A, — op)dt
0

N

Te - -
— /0 jZ: (v —opl(up)z] — (v —vp)z[up)) }j%dt

1

Te
= / A(U — Up, uh)dt
0

Te N —
_ /0 j:zl (5 Tl = ()] = (0 =)ol = )|, y

< _ _
_CTeter?Oe?d(Hu uhHL?(f?IN)H(U Uh)xHLQ((?IN)

+ [|(u — uh)ﬂ?”Lz((‘)IN) HU/_ThHIQ(aIN))‘
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By (3.7),

Ju— uh||L2(8IN) = [Ju— P;L(UHLQ(BIN) + HP],{U - uh”LQ(QIN)

1 1 1
< Coh™ 2 + Ch™ 2| Pfu — up|| < Coh*2,

where we have used Lemma 2.2.3 and Theorem 3.2.2. Similarly, we have ||uz; — (uh)xHLQ(aIN)
1 L 3
< C9h*"2. By the property of L2 projection h2 vz — (Uh>f”HL2(81N) + hljve — (vp)z +
1
_ _ k1 it is strai
h2|jv UhHLQ(aIN) + |lv — o) < Ch ||U”Hk+1(1)' Then it is straightforward that for
scale invariant fluxes,

—_——

L
P O N e L T

v — UhHLQ(aIN) <Ch""2 ||U||Hk+1 (1)

Therefore, we have

Ox1] < Cob™ [[v]] i1 (3.43)

(1)’

Combine the above three estimate and the fact HU“HkJFl(I) = ||(I)||Hk+1( , we have

I)
|u(Te) — uh(Te”lH*(k*l)(I) < Cgh%.

Since we consider uj, with optimal error estimates on uniform mesh with mesh size h, then
the divided difference dj u satisfies the linear Schrédinger but with initial data djug, o < k+1
on shifted mesh. Similarly, dfu;, also satisfies the DG scheme (3.2) but with shifted mesh
and initial numerical discretization dju;, = P}(L)d%uo. Then by the same proof for u — uy,

above,

I = un) (T 1)y < Coral™, (3.44)
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where we used Taylor expansion to estimate dju to obtain the last inequality.

The following theorem is a result of (3.44) and Theorem 3.4.1.

Theorem 3.4.2. Let uy, be the UWDG solution of (3.2), suppose the conditions in Theorem

3.4.1 and any of the assumptions A0/A1/A2/A3 is satisfied, then on a uniform mesh

|u(Te) = u*(Te)|| < Chysh®. (3.45)

3.5 Numerical results

In this section, we provide numerical tests demonstrating superconvergence properties. In
the proof, we see that the initial value of uj, matters in estimating ||uj, — uyl|, thus will
impact the superconvergence estimation for £y and Ey, . Therefore, in our numerical tests,
we apply two types of initial discretization for uj. For computing the postprocessed solution
u*, we use the standard L2 projection P](l)u as numerical initialization to demonstrate the
convergence enhancement ability of postprocessor. For verifying other superconvergence
quantities, we apply the initial condition up|t—g = ur|t=g. In order not to deteriorate the

high order convergence rates, for temporal discretization, we use explicit Runge-Kutta fourth

order method with dt = ¢- h25, ¢ = 0.05 when k = 2 and ¢ = 0.01 when k = 3, 4.

Example 3.5.1. We compute (3.1) on [0, 27] with exact solution u(zx,t) = exp(i3(x — 3t))

using UWDG scheme (3.2). We verify the results with several flux parameters.

In the following tables, we show the convergence rate for quantities Ey, Ey . Ee, By, Ey,,

Ey,., as defined in (3.31) and (3.37) as well as
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which represent the error after postprocessing, and the error between numerical solution
and the projected exact solution P]’:u. In addition, we test the superconvergence of the
intermediate quantities ¢, = Pju — w — uy, as in Lemma 3.3.3, and introduce the following

notations:

l\.’)h—l
l\D\»—l

1N 1 X
B = (i P Ch v Bl = (i > G ]| ?)

J=1 j=1
The numerical fluxes we tested include

1. Tables 3.1, 3.5: A0 parameters, alternating flux, ay = 0.5, 81 = fo = 0, with nonuni-

form mesh;

2. Tables 3.2, 3.6: A0 parameters, a scale invariant flux, oy = 0.3, 51 = 074,62 = 0.4h,

with nonuniform mesh;
3. Tables 3.3, 3.7: Al parameters, central flux, oy = 1 = f2 = 0, with uniform mesh;

4. Tables 3.4: A3 parameters, a1 = 0.25, 89 =0, 1 = %, %, % for k = 2, 3,4, respectively,

with uniform mesh;
5. Table 3.8: all parameters mentioned above, with uniform mesh,

where the nonuniform mesh is generated by perturbing the location of the nodes of a uniform
mesh by 10% of mesh size.

We first verify the results in Theorems 3.3.5, 3.3.6 by examining Tables 3.1, 3.2, 3.3, 3.4,
where the parameters satisfy assumption A0, A0, Al, A3, respectively. We observe that
the scheme can achieve at least the theoretical order of convergence for the quantities in

these two theorems. To be more specific, Ep shows (k + min(3, k))-th order of convergence.
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Table 3.1: Example 3.5.1. Error table when using alternating flux on nonuniform mesh.
Ending time T, = 1, z € [0, 27].

N | L? error | order Ep order By, order E,, order
10 | 2.68E-01 - 2.53E-01 - 2.36E+00 - 8.92E-01 -
20 | 2.68E-02 | 3.32 | 247TE-02 | 3.36 | 2.78E-01 | 3.09 | 7.43E-02 | 3.59
P?| 40 | 2.00E-03 | 3.75 | 1.42E-03 | 4.12 | 6.02E-02 | 2.21 | 5.29E-03 | 3.81
80 | 1.91E-04 | 3.39 | 9.22E-05 | 3.95 | 1.50E-02 | 2.00 | 3.83E-04 | 3.79
160 | 2.19E-05 | 3.12 | 5.83E-06 | 3.98 | 3.78E-03 | 1.99 | 3.24E-05 | 3.56
10 | 1.02E-02 - 7.51E-03 - 1.60E-01 - 2.50E-02 -
20 | 5.65E-04 | 4.18 | 1.24E-04 | 5.93 | 2.00E-02 | 3.00 | 8.23E-04 | 4.93
P3| 40 | 2.94E-05 | 4.26 | 2.13E-06 | 5.86 | 2.43E-03 | 3.04 | 3.83E-05 | 4.42
80 | 1.87E-06 | 3.98 | 3.02E-08 | 6.14 | 2.99E-04 | 3.02 | 2.29E-06 | 4.06
160 | 1.18E-07 | 3.98 | 4.57E-10 | 6.05 | 3.76E-05 | 2.99 | 1.45E-07 | 3.98
10 | 6.45E-04 - 8.76E-05 - 1.79E-02 - 8.67E-04 -
20 | 2.06E-05 | 4.97 | 6.12E-07 | 7.16 | 1.25E-03 | 3.84 | 3.06E-05 | 4.82
P*| 40 | 6.83E-07 | 4.91 | 2.52E-09 | 7.92 | 7.45E-05 | 4.06 | 9.00E-07 | 5.09
80 | 2.04E-08 | 5.07 | 1.55E-11 | 7.35 | 4.70E-06 | 3.99 | 2.78E-08 | 5.02
160 | 6.10E-10 | 5.06 | 1.02E-13 | 7.24 | 2.85E-07 | 4.04 | 8.34E-10 | 5.06
N E, order Ey order Ey, order E,. order
10 | 2.83E-01 - 2.79E-01 - 9.10E-01 - 5.00E-01 -
20 | 2.30E-02 | 3.62 | 2.31E-02 | 3.60 | 6.94E-02 | 3.71 | 4.48E-02 | 3.48
P?| 40 | 1.47E-03 | 3.97 | 1.46E-03 | 3.98 | 4.45E-03 | 3.96 | 2.91E-03 | 3.94
80 | 9.12E-05 | 4.01 | 9.11E-05 | 4.01 | 2.75E-04 | 4.02 | 1.82E-04 | 4.00
160 | 5.78E-06 | 3.98 | 5.77E-06 | 3.98 | 1.74E-05 | 3.98 | 1.15E-05 | 3.98
10 | 6.81E-03 - 6.78E-03 - 1.98E-02 - 1.16E-02 -
20 | 1.40E-04 | 5.61 | 1.36E-04 | 5.64 | 4.08E-04 | 5.60 | 2.64E-04 | 5.45
P3| 40 | 2.16E-06 | 6.01 | 2.02E-06 | 6.07 | 6.06E-06 | 6.07 | 4.03E-06 | 6.03
80 | 3.73E-08 | 5.86 | 3.05E-08 | 6.05 | 9.13E-08 | 6.05 | 6.11E-08 | 6.04
160 | 8.04E-10 | 5.53 | 4.59E-10 | 6.05 | 1.38E-09 | 6.05 | 9.25E-10 | 6.05
10 | 1.09E-04 - 9.69E-05 - 2.83E-04 - 1.62E-04 -
20 | 1.04E-06 | 6.72 | 5.02E-07 | 7.59 | 1.57E-06 | 7.49 | 9.69E-07 | 7.39
P*| 40 | 1.28E-08 | 6.34 | 1.76E-09 | 8.16 | 5.26E-09 | 8.22 | 3.50E-09 | 8.11
80 | 1.94E-10 | 6.04 | 6.99E-12 | 7.97 | 2.09E-11 | 7.97 | 1.40E-11 | 7.97
160 | 2.85E-12 | 6.09 | 2.79E-14 | 7.97 | 5.55E-13 | 5.23 | 5.07E-14 | 8.10

Ey, Eu,, Ey,, are shown to have (k + 2)-th, (k + 1)-th and k-th order of convergence ,
respectively. Note that when & = 2, in Tables 3.2 and 3.4, there are situations when no
superconvergence point exists. This finding shows an evidence to the assertion that D?®
defined in (3.14) could be empty sets. The order of convergence for Ey, (Ef)z, E¢ in all
tables are 2k. In addition, Table 3.4 shows that when k is even and assumption A3 is

satisfied, the convergence order for all quantities are the same as when any of assumption
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AO0/A1 is satisfied, which is one order higher than the estimates in Theorems 3.3.5, 3.3.6.

Table 3.2: Example 3.5.1. Error table when using flux parameters: a; = 0.3, 81 = %—4, Bo =
0.4k on nonuniform mesh. Ending time T, = 1, = € [0, 27].

N | L? error | order Ep order E,,. order E,, order
40 | 1.66E-02 - 1.28E-02 - 2.38E-01 - DNE -
80 | 1.50E-03 | 3.47 | 7.46E-04 | 4.10 | 2.52E-02 | 3.24 DNE -
P?| 160 | 1.70E-04 | 3.14 | 4.91E-05 | 3.92 | 4.51E-03 | 2.48 DNE -
320 | 2.16E-05 | 2.98 | 3.12E-06 | 3.98 | 8.89E-04 | 2.34 DNE -
640 | 2.64E-06 | 3.03 | 1.96E-07 | 3.99 | 2.00E-04 | 2.15 DNE -
10 | 2.08E-02 - 1.57E-02 - 2.00E-01 - 4.47E-02 -
20 | 1.14E-03 | 4.19 | 2.75E-04 | 5.84 | 2.23E-02 | 3.17 | 1.42E-03 | 4.98
P3| 40 | 5.91E-05 | 4.27 | 4.83E-06 | 5.83 | 2.72E-03 | 3.03 | 6.57E-05 | 4.43
80 | 3.75E-06 | 3.98 | 6.81E-08 | 6.15 | 3.36E-04 | 3.02 | 3.91E-06 | 4.07
160 | 2.39E-07 | 3.97 | 1.09E-09 | 5.96 | 4.23E-05 | 2.99 | 2.47E-07 | 3.98
10 | 9.72E-04 - 1.48E-04 - 1.93E-02 - 1.32E-03 -
20 | 3.17E-05 | 4.94 | 1.04E-06 | 7.16 | 1.37E-03 | 3.82 | 4.63E-05 | 4.83
P4 40 | 1.05E-06 | 4.91 | 4.15E-09 | 7.97 | 8.18E-05 | 4.06 | 1.35E-06 | 5.10
80 | 3.14E-08 | 5.07 | 2.51E-11 | 7.37 | 5.16E-06 | 3.99 | 4.27E-08 | 4.99
160 | 9.39E-10 | 5.06 | 1.63E-13 | 7.27 | 3.13E-07 | 4.04 | 1.27E-09 | 5.07
N E, order E; order Ey, order E. order
40 | 1.26E-02 - 1.26E-02 - 3.83E-02 - 2.49E-02 -
80 | 7.43E-04 | 4.08 | 7.42E-04 | 4.08 | 2.28E-03 | 4.07 | 1.48E-03 | 4.07
P?| 160 | 4.82E-05 | 3.95 | 4.82E-05 | 3.95 | 1.47E-04 | 3.95 | 9.63E-05 | 3.94
320 | 3.09E-06 | 3.96 | 3.09E-06 | 3.96 | 9.39E-06 | 3.97 | 6.18E-06 | 3.96
640 | 1.94E-07 | 3.99 | 1.94E-07 | 3.99 | 5.86E-07 | 4.00 | 3.88E-07 | 3.99
10 | 1.44E-02 - 1.41E-02 - 4.38E-02 - 2.49E-02 -
20 | 3.08E-04 | 5.54 | 3.05E-04 | 5.53 | 9.17E-04 | 5.58 | 5.92E-04 | 5.39
P3| 40 | 4.70E-06 | 6.04 | 4.56E-06 | 6.06 | 1.37E-05 | 6.06 | 9.12E-06 | 6.02
80 | 7.56E-08 | 5.96 | 6.88E-08 | 6.05 | 2.06E-07 | 6.05 | 1.38E-07 | 6.04
160 | 1.03E-09 | 6.20 | 1.10E-09 | 5.97 | 3.29E-09 | 5.97 | 2.21E-09 | 5.97
10 | 1.77E-04 - 1.65E-04 - 4.69E-04 - 2.73E-04 -
20 | 1.56E-06 | 6.83 | 8.66E-07 | 7.57 | 2.52E-06 | 7.54 | 1.66E-06 | 7.36
P4 40 | 1.83E-08 | 6.41 | 3.04E-09 | 8.15 | 8.85E-09 | 8.15 | 6.02E-09 | 8.11
80 | 2.82E-10 | 6.02 | 1.21E-11 | 7.98 | 3.76E-11 | 7.88 | 2.41E-11 | 7.97
160 | 4.12E-12 | 6.10 | 4.41E-14 | 8.10 | 1.30E-13 | 8.18 | 8.73E-14 | 8.11

In Tables 3.1 and 3.2, we used nonuniform mesh in numerical test. The quantities tested
have similar order of convergence compared to the order of convergence on uniform mesh.
Another interesting observation is the order of convergence of Ey, . Our numerical tests show
that E'y, converges at an order of 2k for all four sets of parameters, which is at least one

order higher than the estimates in Theorem 3.3.5.
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Table 3.3: Example 3.5.1. Error table when using central flux on uniform mesh. Ending
time Te = 1, x € [0, 27].

N | L? error | order Ep order By, order E,, order
40 | 4.20E-03 - 3.21E-03 - 4.86E-01 - 3.39E-02 -
80 | 4.31E-04 | 3.29 | 2.23E-04 | 3.85 | 1.33E-01 | 1.87 | 4.49E-03 | 2.92
P?| 160 | 4.92E-05 | 3.13 | 1.43E-05 | 3.96 | 3.41E-02 | 1.97 | 5.69E-04 | 2.98
320 | 5.99E-06 | 3.04 | 9.01E-07 | 3.99 | 8.57E-03 | 1.99 | 7.14E-05 | 2.99
640 | 7.44E-07 | 3.01 | 5.60E-08 | 4.01 | 2.15E-03 | 2.00 | 8.94E-06 | 3.00
20 | 3.18E-04 - 7.32E-05 - 4.31E-02 - 3.34E-03 -
40 | 1.71E-05 | 4.21 | 1.02E-06 | 6.16 | 5.49E-03 | 2.97 | 2.04E-04 | 4.03
P3| 80 | 1.03E-06 | 4.05 | 1.55E-08 | 6.04 | 6.89E-04 | 2.99 | 1.27E-05 | 4.01
160 | 6.41E-08 | 4.01 | 2.41E-10 | 6.01 | 8.62E-05 | 3.00 | 7.91E-07 | 4.00
320 | 4.00E-09 | 4.00 | 3.76E-12 | 6.00 | 1.08E-05 | 3.00 | 4.94E-08 | 4.00
10 | 5.04E-04 - 7.75E-05 - 1.14E-01 - 1.32E-02 -
20 | 2.10E-05 | 4.58 | 4.91E-07 | 7.30 | 1.11E-02 | 3.36 | 6.17E-04 | 4.42
P*| 40 | 7.32E-07 | 4.84 | 2.65E-09 | 7.53 | 8.01E-04 | 3.79 | 2.17E-05 | 4.83
80 | 2.36E-08 | 4.96 | 1.60E-11 | 7.37 | 5.21E-05 | 3.94 | 6.76E-07 | 5.01
160 | 7.42E-10 | 4.99 | 1.13E-13 | 7.15 | 3.29E-06 | 3.99 | 2.19E-08 | 4.95
N E, order Ey order Ey, order E,. order
40 | 3.24E-03 - 3.21E-03 - 9.58E-03 - 6.36E-03 -
80 | 2.25E-04 | 3.85 | 2.23E-04 | 3.85 | 6.86E-04 | 3.80 | 4.44E-04 | 3.84
P?| 160 | 1.45E-05 | 3.96 | 1.43E-05 | 3.96 | 3.90E-05 | 4.14 | 2.86E-05 | 3.96
320 | 9.10E-07 | 3.99 | 9.01E-07 | 3.99 | 3.00E-06 | 3.70 | 1.80E-06 | 3.99
640 | 5.66E-08 | 4.01 | 5.60E-08 | 4.01 | 1.51E-07 | 4.31 | 1.12E-07 | 4.01
20 | 1.88E-04 - 7.28E-05 - 2.16E-04 - 1.41E-04 -
40 | 5.17E-06 | 5.19 | 1.02E-06 | 6.16 | 3.0TE-06 | 6.14 | 2.03E-06 | 6.12
P3| 80 | 1.63E-07 | 4.99 | 1.54E-08 | 6.04 | 4.63E-08 | 6.05 | 3.10E-08 | 6.03
160 | 5.04E-09 | 5.01 | 2.39E-10 | 6.01 | 7.18E-10 | 6.01 | 4.81E-10 | 6.01
320 | 1.57E-10 | 5.01 | 3.73E-12 | 6.00 | 1.12E-11 | 6.00 | 7.51E-12 | 6.00
10 | 2.21E-04 - 7.63E-05 - 2.15E-04 - 1.27E-04 -
20 | 5.70E-06 | 5.28 | 4.52E-07 | 7.40 | 1.26E-06 | 7.42 | 8.66E-07 | 7.20
P*| 40 | 1.05E-07 | 5.76 | 2.05E-09 | 7.78 | 6.17E-09 | 7.67 | 4.04E-09 | 7.74
80 | 1.72E-09 | 5.93 | 8.31E-12 | 7.94 | 2.57E-11 | 7.91 | 1.66E-11 | 7.93
160 | 2.72E-11 | 5.98 | 3.27E-14 | 7.99 | 9.96E-14 | 8.01 | 6.55E-14 | 7.98

Next, we test the order of convergence for quantities in Lemma 3.3.3. In Tables 3.5 and
3.6, we observe clean convergence order of 2k — 1, 2k + 1, 2k for ||(¢p)zzll, E[Ch]’ E[(Ch)m]
when k is even and 2k, 2k 4+ 2, 2k + 1 for these three quantities when k is odd. In Table 3.7,
the order of convergence has some fluctuation, but the quantities are shown to have the same
order of convergence as those in Tables 3.5 and 3.6. These convergence rates are consistent

with the results in Lemma 3.3.3.
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Table 3.4: Example 3.5.1. Error table when using flux parameters: a7 = 0.25,5; =
%, %, %, P2 = 0 on uniform mesh. Ending time T = 1, x € [0, 27].

N L? error | order Ep order E,,. order £, order
80 | 1.41E-03 - 8.17E-05 - DNE - 1.15E-02 -
160 | 1.65E-04 | 3.09 | 4.74E-06 | 4.11 DNE - 1.34E-03 | 3.11
P?| 320 | 2.03E-05 | 3.02 | 2.92E-07 | 4.02 DNE - 1.65E-04 | 3.02
640 | 2.53E-06 | 3.01 | 1.80E-08 | 4.03 DNE - 2.05E-05 | 3.01
1280 | 3.16E-07 | 3.00 | 1.22E-09 | 3.88 DNE - 2.55E-06 | 3.01
20 | 8.27E-04 4.58E-05 2.98E-01 - 6.63E-03 -

40 | 3.92E-05 | 4.40 | 5.20E-07 | 6.46 | 3.11E-02 | 3.26 | 3.60E-04 | 4.20
P3| 80 | 2.29E-06 | 4.10 | 7.54E-09 | 6.11 | 3.72E-03 | 3.06 | 2.18E-05 | 4.05
160 | 1.40E-07 | 4.03 | 1.16E-10 | 6.03 | 4.60E-04 | 3.02 | 1.35E-06 | 4.01
320 | 8.74E-09 | 4.01 | 1.80E-12 | 6.01 | 5.74E-05 | 3.00 | 8.43E-08 | 4.00
20 | 5.10E-04 - 2.08E-04 - 3.76E-01 - 3.96E-03 -
40 | 8.28E-06 | 5.95 | 2.38E-07 | 9.77 | 1.24E-02 | 4.92 | 6.76E-05 | 5.87
P*| 80 | 1.87E-07 | 5.47 | 1.04E-09 | 7.84 | 5.64E-04 | 4.47 | 1.55E-06 | 5.45
160 | 5.44E-09 | 5.10 | 7.11E-12 | 7.19 | 3.29E-05 | 4.10 | 4.53E-08 | 5.09
N E, order E; order Ey, order E. order
40 | 3.24E-03 - 3.21E-03 - 9.58E-03 - 6.36E-03 -
80 | 2.25E-04 | 3.85 | 2.23E-04 | 3.85 | 6.86E-04 | 3.80 | 4.44E-04 | 3.84
P?| 160 | 1.45E-05 | 3.96 | 1.43E-05 | 3.96 | 3.90E-05 | 4.14 | 2.86E-05 | 3.96
320 | 9.10E-07 | 3.99 | 9.01E-07 | 3.99 | 3.00E-06 | 3.70 | 1.80E-06 | 3.99
640 | 5.66E-08 | 4.01 | 5.60E-08 | 4.01 | 1.51E-07 | 4.31 | 1.12E-07 | 4.01
20 | 1.88E-04 - 7.28E-05 - 2.16E-04 - 1.41E-04 -
40 | 5.17E-06 | 5.19 | 1.02E-06 | 6.16 | 3.07TE-06 | 6.14 | 2.03E-06 | 6.12
P3| 80 | 1.63E-07 | 4.99 | 1.54E-08 | 6.04 | 4.63E-08 | 6.05 | 3.10E-08 | 6.03
160 | 5.04E-09 | 5.01 | 2.39E-10 | 6.01 | 7.18E-10 | 6.01 | 4.81E-10 | 6.01
320 | 1.57E-10 | 5.01 | 3.73E-12 | 6.00 | 1.12E-11 | 6.00 | 7.51E-12 | 6.00
10 | 2.21E-04 - 7.63E-05 - 2.15E-04 - 1.27E-04 -
20 | 5.70E-06 | 5.28 | 4.52E-07 | 7.40 | 1.26E-06 | 7.42 | 8.66E-07 | 7.20
P*| 40 | 1.05E-07 | 5.76 | 2.05E-09 | 7.78 | 6.17E-09 | 7.67 | 4.04E-09 | 7.74
80 | 1.72E-09 | 5.93 | 8.31E-12 | 7.94 | 2.57E-11 | 7.91 | 1.66E-11 | 7.93
160 | 2.72E-11 | 598 | 3.27E-14 | 7.99 | 9.96E-14 | 8.01 | 6.55E-14 | 7.98

Lastly, we test the order of convergence for E* on uniform mesh for the four sets of
parameters. Table 3.8 shows that E* has a convergence rate of at least 2k, and can go up

to 2k + 2. Similar higher order of convergence behaviors exists in the literature [23, 65].
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Table 3.5: Example 3.5.1. Error table for intermediate quantities when using alternating

flux on nonuniform mesh. Ending time T, = 1, z € [0, 27].

N | ||¢n] error | order | ||(Ch)ze|l | order Ele order | Fjg,), | order
10 | 3.96E-01 - 3.02E4-00 - 4.51E-02 - 3.37E-01 -
20 | 3.28E-02 | 3.60 | 2.23E-01 | 3.76 | 1.57TE-03 | 4.84 | 1.82E-02 | 4.21
P%| 40 | 2.08E-03 | 3.98 | 1.42E-02 | 3.98 | 4.21E-05 | 5.22 | 9.42E-04 | 4.28
80 1.29E-04 | 4.01 | 7.95E-04 | 4.15 | 1.17TE-06 | 5.16 | 5.50E-05 | 4.10
160 | 8.17E-06 | 3.98 | 9.54E-05 | 3.06 | 3.83E-08 | 4.94 | 3.55E-06 | 3.96
10 | 9.54E-03 - 8.83E-02 - 7.52E-05 - 1.31E-03 -
20 | 1.93E-04 | 5.63 | 1.76E-03 | 5.65 | 1.75E-07 | 8.75 | 6.16E-06 | 7.74
P3| 40 | 2.86E-06 | 6.08 | 2.59E-05 | 6.09 | 3.42E-10 | 9.00 | 2.45E-08 | 7.97
80 | 4.31E-08 | 6.05 | 3.91E-07 | 6.05 | 1.45E-12 | 7.88 | 2.71E-10 | 6.50
160 | 6.87E-10 | 5.97 | 6.19E-09 | 5.98 | 6.76E-15 | 7.74 | 2.59E-12 | 6.71
10 1.35E-04 - 1.41E-03 - 4.97E-07 - 2.81E-05 -
20 | 7.10E-07 | 7.57 | 8.60E-06 | 7.36 | 1.20E-09 | 8.69 | 9.88E-08 | 8.15
P*| 40 | 2.50E-09 | 8.15 | 4.24E-08 | 7.66 | 2.56E-12 | 8.88 | 2.90E-10 | 8.41
80 | 9.90E-12 | 7.98 | 2.55E-10 | 7.38 | 2.98E-15 | 9.74 | 7.48E-13 | 8.60
160 | 3.58E-14 | 8.11 | 2.22E-12 | 6.85 | 8.90E-18 | 8.39 | 5.46E-15 | 7.10

Table 3.6: Example 3.5.1. Error table for intermediate quantities when using flux parameters:

a1 =0.3,61 = %, P9 = 0.4h on nonuniform mesh. Ending time T, = 1, z € [0, 27].

N | |||l error | order | |[(Cp)zxl| | order Eie order | Eyq,), | order
40 | 1.46E-02 - 2.67E-01 - 2.55E-03 - 2.13E-02 -
80 | 9.35E-04 | 3.97 | 2.57E-02 | 3.38 | 7.74E-05 | 5.04 | 1.25E-03 | 4.09
P?] 160 | 5.96E-05 | 3.97 | 2.86E-03 | 3.17 | 2.52E-06 | 4.94 | 7.56E-05 | 4.05
320 | 3.76E-06 | 3.99 | 3.30E-04 | 3.11 | 7.74E-08 | 5.02 | 4.76E-06 | 3.99
640 | 2.38E-07 | 3.98 | 4.25E-05 | 2.96 | 2.57E-09 | 4.91 | 3.19E-07 | 3.90
10 2.02E-02 - 1.78E-01 - 5.73E-04 - 1.15E-03 -
20 | 4.31E-04 | 5.55 | 3.90E-03 | 5.52 | 1.09E-06 | 9.04 | 5.48E-06 | 7.71
P3| 40 | 6.46E-06 | 6.06 | 5.83E-05 | 6.06 | 3.27E-09 | 8.38 | 2.99E-08 | 7.52
80 | 9.72E-08 | 6.05 | 8.76E-07 | 6.06 | 9.55E-12 | 8.42 | 1.84E-10 | 7.34
160 | 1.55E-09 | 5.97 | 1.40E-08 | 5.97 | 4.28E-14 | 7.80 | 1.56E-12 | 6.89
10 | 2.27E-04 - 2.23E-03 - 1.03E-06 - 2.06E-06 -
20 | 1.22E-06 | 7.54 | 1.30E-05 | 7.42 | 4.13E-09 | 7.96 | 1.66E-08 | 6.96
P*| 40 | 4.30E-09 | 8.15 | 5.93E-08 | 7.78 | 1.01E-11 | 8.67 | 6.95E-11 | 7.90
80 | 1.71E-11 7.98 | 4.66E-10 | 6.99 | 1.82E-14 | 9.12 | 2.33E-13 | 8.22
160 | 6.17E-14 8.11 | 3.19E-12 | 7.19 | 3.61E-17 | 8.98 | 8.34E-16 | 8.13
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Table 3.7: Example 3.5.1. Error table for intermediate quantities when using central flux on
uniform mesh. Ending time T, = 1, x € [0, 27].

N | ||¢n]| error | order | ||(Ch)az|| | order Ele, order | Fjg,), | order
40 | 4.53E-03 - 3.84E-02 - 3.04E-05 - 2.79E-04 -
80 | 3.15E-04 | 3.85 | 3.03E-03 | 3.66 | 1.16E-06 | 4.71 | 8.31E-06 | 5.07
P?2| 160 | 2.02E-05 3.96 | 1.29E-04 | 4.55 | 1.79E-07 | 2.70 | 1.31E-06 | 2.66
320 | 1.27E-06 | 3.99 | 1.59E-05 | 3.03 | 7.14E-09 | 4.65 | 5.08E-08 | 4.69
640 | 7.92E-08 | 4.01 | 5.73E-07 | 4.79 | 2.90E-10 | 4.62 | 2.11E-09 | 4.59
20 | 1.03E-04 - 9.27E-04 - 4.27E-08 - 5.25E-06 -
40 1.44E-06 6.16 | 1.29E-05 | 6.17 | 1.75E-10 | 7.93 | 4.32E-08 | 6.93
P3| 80 | 2.18E-08 | 6.04 | 1.99E-07 | 6.02 | 4.23E-13 | 8.69 | 1.64E-10 | 8.04
160 | 3.38E-10 6.01 | 3.06E-09 | 6.03 | 2.91E-16 | 10.50 | 3.24E-14 | 12.31
320 | 5.28E-12 | 6.00 | 4.76E-11 | 6.00 | 1.28E-18 | 7.83 | 1.41E-15 | 4.52
10 | 1.06E-04 - 1.05E-03 - 7.67E-07 - 2.26E-05 -
20 | 6.37E-07 | 7.37 | 7.12E-06 | 7.21 | 3.03E-09 | 7.99 | 7.70E-08 | 8.20
P*| 40 | 2.88E-09 | 7.79 | 3.20E-08 | 7.80 | 5.78E-12 | 9.03 | 6.36E-11 | 10.24
80 1.17E-11 7.94 | 1.84E-10 | 7.44 | 9.33E-15 | 9.28 | 5.24E-13 | 6.92
160 | 4.63E-14 | 7.98 | 2.45E-12 | 6.23 | 3.04E-17 | 8.26 | 8.82E-16 | 9.21

Table 3.8: Example 3.5.1. Postprocessing error table for the four sets of parameters. Ending
time Te = 1, uniform mesh on x € [0,27]. The first row below labels the parameters by

(dbﬁlvﬁQ)'

Fluxes (0.5,0,0) (0, 0, 0) (0.3,0.4,0.4) (0.25, {2, 5, 9}, 0)
N E* order E* order E* order E* order
10 | 1.00E+00 - 2.81E-01 - 1.00E4+00 - 1.53E-01 -

20 | 2.84E-01 | 1.81 | 3.71E-02 | 2.92 | 1.20E-01 | 3.06 | 8.05E-02 0.93
P?| 40 | 2.11E-02 | 3.75 | 3.23E-03 | 3.52 | 9.63E-03 | 3.64 | 2.68E-03 4.91
80 | 1.37E-03 | 3.94 | 2.24E-04 | 3.85 | 7.55E-04 | 3.67 | 1.20E-04 4.49
160 | 8.69E-05 | 3.98 | 1.44E-05 | 3.96 | 5.13E-05 | 3.88 | 6.99E-06 4.10
10 | 1.00E+00 - 1.00E+00 - 1.00E+00 - 1.00E+00 -
20 | 6.04E-02 | 4.05 | 6.29E-02 | 3.99 | 6.05E-02 | 4.05 | 7.02E-02 3.83
P3| 40 | 5.39E-04 | 6.81 | 6.05E-04 | 6.70 | 5.26E-04 | 6.85 | 5.46E-04 7.01
80 | 3.28E-06 | 7.36 | 5.04E-06 | 6.91 | 2.82E-06 | 7.54 | 2.91E-06 7.55
160 | 3.14E-08 | 6.70 | 6.49E-08 | 6.28 | 2.04E-08 | 7.11 | 1.79E-08 7.34
10 | 1.00E400 - 1.00E+00 - 1.00E4-00 - 1.00E+00 -
20 | 4.54E-02 | 4.46 | 4.54E-02 | 4.46 | 4.54E-02 | 4.46 | 4.54E-02 4.46
P*] 40 | 1.32E-04 | 8.42 | 1.32E-04 | 8.42 | 1.32E-04 | 842 | 1.36E-04 8.39
80 | 1.70E-07 | 9.60 | 1.70E-07 | 9.60 | 1.70E-07 | 9.60 | 1.66E-07 9.67
160 | 1.79E-10 | 9.89 | 1.80E-10 | 9.89 | 1.79E-10 | 9.89 | 1.75E-10 9.89
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Chapter 4

Sparse grid central DG methods for

linear hyperbolic systems

In this chapter, we develop sparse grid central discontinuous Galerkin (CDG) method for

the following time-dependent linear hyperbolic system with variable coefficients

d
SN (1)

ot P ox;

subject to appropriate initial and boundary conditions. In the expression above, d > 2 is
the spatial dimension of the problem, u(t,x) = (u!(t,x),--- ,u™(t,x))T is the unknown
function, A;(t,x) € R™*™ j = 1,... d are the given smooth variable coefficients. We
assume ) = [0, 1]d in this chapter, but the discussion can be easily generalized to arbitrary
box-shaped domains. The model (4.1) arises in many contexts [46], such as simulations of
acoustic, elastic waves, and Maxwell’s equations in free space. The scheme we develop in this
chapter can also apply to the case when A;(t,x) is defined through another set of equations
that can be nonlinearly coupled with u, such as the models in kinetic plasma waves and
incompressible flows.

Similar to [38], in this chapter, we restrict our attention to smooth solutions of (4.1). It is

known that for non-smooth solutions, adaptivity should be invoked to capture discontinuity
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like structures. This can be achieved using the idea in [39] and is left for our future work.
Based on the sparse grid DG scheme constructed in [38], the goal of the present chapter is
to design and analyze the sparse grid CDG method. Motivated by the Riemann-solver-free
property and large CFL number allowance of CDG methods, we develop sparse grid CDG
method to compute hyperbolic systems efficiently. We investigate stability, convergence rate
and CFL condition of the resulting scheme. A novelty of this work is the design of the
scheme for non-periodic problems, where a new hierarchical representation of the solution
is presented, which results in a sparse finite element space that can be defined on the dual
mesh. L2 projection results are studied for this space, which helps the convergence proof of
the schemes for initial-boundary value problems.

The rest of this chapter is organized as follows: in Section 4.1, we construct the sparse
grid CDG formulations for periodic and non-periodic problems, and perform numerical study
of the CFL conditions. In Section 4.2, we prove L? stability and error estimates for scalar
equations. The numerical performance is validated in Section 4.3 by several benchmark tests,
including scalar transport equations, acoustic and elastic waves.

The contents of this chapter has been published in [75].

4.1 Numerical Scheme

In this section, we define and discuss the properties of the proposed sparse grid CDG meth-

ods. For convenience of notations, we rewrite (4.1) in a component-wise form as

l
%+V-(Al(t,x)u):0, l=1,---,m, x€Q, (4.2)
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where Al(t,x) = (All(t,x), - ,Afi(t,x))T e R™™ denotes a collection of the I-th row of
each matrix A;. The problem is solved with given initial value u(0,x) = ug(x), and periodic
or Dirichlet type boundary conditions.

We proceed as follows. First, we introduce the scheme for periodic problems. In this
setting, the finite element space on the primal and dual mesh can be defined in similar
ways. Then, we discuss the implementation details and perform numerical study of the CFL
conditions. Finally, we consider the more complicated non-periodic problems, for which a

new sparse finite element space will be introduced on the dual mesh.

4.1.1 Periodic problems

To define the sparse finite element space, we first review the hierarchical decomposition of
piecewise polynomial space in one dimension [76]. Consider a general interval [a, b], we define
the n-th level mesh Qy,([a, b]) to be a uniform partition of 2" cells with length h,, = 27" (b—a)

and I;ZL: l[a+ jhp,a+ (j+ 1Dhyl, j=0,...,2" — 1, for any n > 0. Let

VF((a,b]) = {v:ve P, Vj=0,...,2"—1}

be the usual piecewise polynomials of degree at most k£ on €2,. Then, we have the nested

structure

Vi ([a, b)) € Vi¥([a,0]) € V¥ ([a,b]) € V' ([a,b]) C -+

Similar to [76], we can now define the multiwavelet subspace W;f([a, b)), n=1,2,... as

the orthogonal complement of Vrf_l([a, b)) in V,5([a, b]) with respect to the L2 inner product
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on [a,b], i.e.,

VE (b)) @ WE([a,b]) = VE([a. b)), WE(a.b]) L VE([a,0]).

n

For notational convenience, we let Wé“([a, b)) = Vok([a, b)), which is the standard piecewise

polynomial space of degree k on [a,b]. This gives the hierarchical decomposition V.¥([a, b))
on {2, as V;{C([CL, b]) - @Oglgn Wlk<[a7 b])

For a d dimensional domain [a, b]d, we recall some basic notations about multi-indices.
For a multi-index a = (aq, -+ ,aq) € Ng, where Ny denotes the set of nonnegative integers,

the I1 and [°° norms are defined as

d
afy = Zi:l aj,  |otfoo = 08X 0.

The component-wise arithmetic operations and relational operations are defined as

a-B:= (1, ..,008q), c-a:=(cai,...,cay), 2% = (291,...,2%),

a<fBsq, <b;,Vi, a<fB<ca<Pand a#pL.

By making use of the multi-index notation, we denote by 1 = (Iy,---,ly) € Ng the
mesh level in a multivariate sense. We define the tensor-product mesh grid Q([a,b]?) =
Q (o, b)) ® - ® Qld([a, b]) and the corresponding mesh size hy = (hy, - - ’hld)' Based on

the grid €2, we denote by Iii ={x:x; € [;Z_i,z' =1,---,d} as an elementary cell, and

VE(la,0)?) = {v:v(x) € @F(1), 0 <j< 2l —1} = V/;xl([a,b]) X oo X V/;’xd([a, b))
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as the standard tensor-product piecewise polynomial space on this mesh, where Qk (If)
denotes the collection of polynomials of degree up to k in each dimension on cell If. If
1= (N,---,N), the grid and space will be further denoted by Qx([a,b]?) and V?V([a, b)%),
respectively.
Based on a tensor-product construction, the multi-dimensional increment space can be
defined as
Wi (la, b)) =W (la,b]) x - x W ([a,b]).

Therefore, we have Véﬂv([a, b4 = Djoo<n W{f([a, b]?). The sparse finite element approxi-

leNg
mation space we consider, is defined by

This is a subset of fov([a, b%), and its number of degrees of freedom scales as O((k +
1)@2N Nd=1Y [76], which is significantly less than that of V?V([a, b]?) with exponential de-
pendence on Nd. This is the key to computational savings in high dimensions.

The standard CDG schemes [48, 50] is characterized by numerical approximations on
two sets of overlapping grids: primal and dual meshes. Now, we are ready to incorporate
the sparse finite element space defined above into the CDG framework. For the domain
under consideration Q = [0,1]9, we let Qn.p = Qn([0, 1]%) be the primal mesh and QN D
which is the periodic extension of Qx ([—hy /2,1 — hy/2]%) restricted to [0,1]%, be the dual
mesh. Similarly, we let \Afﬁ‘{[’ p = \A/'?V([O, 1]%) and \A/?V, p to be the periodic extension of
\A/'ﬁfv([—hN/Q, 1 — hy/2]%) restricted to [0,1]%. Here and below, the subscripts P and D

represent the quantities defined on the primal and dual mesh, respectively.
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The approximation properties for the sparse finite element space have been established
in previous work [76, 38|. By using a lemma in [38], we can have estimates for L2 projection
operator onto the spaces \A/'f:\,’ P \A/'é‘;vv D

To facilitate the discussion, below we introduce some notations about norms and semi-
norms. Let G = P, D, on primal or dual mesh Qy g, we use || - HHS(QN7G) to denote

the standard broken Sobolev norm, i.e. ||UH%{S ( , where

=30 coN_q V]2
) 0<j<2¥ -1 HS(I.]]V,G)

is the standard Sobolev norm on I?VG? (and s = 0 is used to denote the

QNG

loll g,
HS (P )

L? norm). Similarly, we use | - | HS( ) to denote the broken Sobolev semi-norm, and || -

ONa
[ HS (O o) || HS(9 o) T denote the broken Sobolev norm and semi-norm that are supported
on a general grid € . For any set L = {if,...ip} C {1,...d}, we define L to be the

complement set of L in {1,...d}. For a non-negative integer o and set L, we define the

semi-norm on any domain denoted by €/

o o
oty = | g m |

Y

1] iy L2(Q/)
and
v 1 = Imax max v
| |7—LQ+ (Q/) 1<r<d | Lo{l,2- d} | |Hq+1,L(Q/) )
|L|=r

which is the norm for the mixed derivative of v of at most degree ¢ + 1 in each direction. In
this chapter, we use the notation A < B to represent A < constant x B, where the constant
is independent of N and the mesh level considered. The following results are obtained from

Lemma 3.2 in [38].

Lemma 4.1.1 (L2 projection estimate). Let Pp, Pp be L? projections onto the spaces

\Af‘l,‘;\,P,\AfﬁvD, respectively, then for k > 1, 1 < ¢ < min{p, k}, and v € HPTY(Q), which is
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periodic on 2, N > 1, d > 2, we have for G = P, D,

Nd2_N(Q+1)|U’Hq+1(Q) s =0,

Pev—vlasiy g S (4.3)

2_Nq|v|Hq+1(Q) s=1.

This lemma shows that the L? norm and H! semi-norm of the projection error scale like
O(Nd2=NE+1)y and O(2~NF) with respect to N when the function v has bounded mixed
derivatives up to enough degrees. This lemma will be used in Theorem 4.2.2 to establish

convergence of the scheme.

Now, we are ready to formulate the sparse grid CDG scheme. Below we review some
standard notations about jumps and averages of piecewise functions. With G = P or D,
let T}, ¢ be the collection of all elementary cell IAJ;V,G” Ing = UTGQN, o OT be the union
of the interfaces for all the elements in Q ¢ (here we have taken into account the periodic
boundary condition when defining I'y ) and S(I'q) := Ilpeq N, GLQ(QT) be the set of L2
functions defined on I'y . For any ¢ € S(I'y ) and q € [S(FNva)}d, we define their
averages {q},{q} and jumps [¢], [q] on the interior edges as follows. Suppose e is an interior
edge shared by elements T'; and T_, either on primal or dual mesh, we define the unit normal

vectors nT and n~ on e pointing exterior of T and T, respectively, then

4 = ¢ n” +qgtn, {¢}= %(q_ +q"),

[ = g -n +q"-nt, {q}Z%(q+q+)-

The semi-discrete sparse grid CDG scheme for (4.2), based on the weak formulation

introduced in [48, 50], is defined as follows: we find uﬁl € \Afﬁ,’ p and vﬁl € \Afﬁﬂ D> such that
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1
[heends——— [ 0h—udyonax+ [ Altxom, - Vepax (19
Q Tmax JQ Q
- > /Al(t, x)vp, - [op] ds,
eEFNJD €
/ (vfl)t WPy, dx = / (uﬁl — U%) WYy, dx + / Al(t, x)uy, - Vb, dx (4.5)
Q Tmax JQ) Q
- > / At x)wy, - [y ds
BEFN,D ¢
for any ¢}, € \Afﬁf\]’P and vy, € V?\/,D? where uy, = (u}ll, e upt), v, = (v,ll, -, vpt) and Tmax

is an upper bound for the time step due to the CFL restriction (see Section 4.1.3 for detailed

discussions).

4.1.2 Discussions on implementations

Here, we briefly discuss some details about the implementation of the scheme. We perform
the computation by using orthonormal multiwavelet bases constructed by Alpert [4]. In 1D,

the bases of VVZk([O, 1]) are denoted by
W), p=1, k+1, j=0, 2711

stv [P0l ()0
and they satisfy [ vp’l(x)vp,,l,(:p)d = 0,,/0,10y- Figures 4.1a and 4.2a provide illustrations
of the basis functions for £ = 0,1 and [ = 0,1, 2. The bases in Wlk in multi-dimensions are

defined by tensor products
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where we have used the notation s = (1,j,p) and s; = (I;, ;, p;) to denote the multi-index
for the bases.

As for temporal schemes, we can use the total variation diminishing Runge-Kutta (TVD-
RK) methods [73] to solve the ordinary differential equations for the coefficients resulting
from the discretization. To calculate the right-hand-side of (4.4)-(4.5), the fast matrix-vector
product by LU split or LU decomposition algorithms [69, 70, 64] can be applied, by which one
can decompose all calculations into one dimensional operations. Below, we briefly describe
the LU decomposition algorithm for the calculation of the following matrix-vector product

which appears at the right-hand-side of (4.4)-(4.5)

.« — 1 . e d .
bJ - Z fstsm'l tsdﬂd’
S:|l‘1§N

where fs can be the coefficient of the basis in sparse grid space and téi7 Jo 1=1,---,d, are
the corresponding one-dimensional transform of coefficients from basis vs; to basis vj; in the
i-th dimension in our scheme. Note that we have n = 2V (k 4+ 1) one-dimensional bases in
each dimension, and we use vs; to denote the s;-th basis. The bases are ordered according
to grid increment. Using Algorithm 1 in [70], we should calculate all the one-dimensional
transform along each direction associated with a block lower triangular matrix, and then
calculate all the one-dimensional transforms having a block upper triangular structure. The

fast matrix-vector product fs — b5 on sparse grid with LU decomposition can be proceeded

as follows.

1. Calculate (block) LU decomposition té,j = Z%:l(Pl)i,m(UQ)fn,j: s,j=1,---,n, for
i =1,---,d, where P! Q" are the permutation matrices, [’,u’ are lower and upper

triangular matrices.

89



2. Compute the transform with a (block) lower triangular matrix for ¢ = 1,--- | d,

b / D D fs(PD) .
51""’8i—1782"8i+17"'75d Zsz~ll+ +ld§N S( )37;78;
3. Compute the transform with a (block) upper triangular matrix for i = 1,--- . d,
bs <> 1 / (UQ)Z/

SZ':ll+'"+li—1+l;+li+1+"'+ld§N bsl,--- i 188415 8i752.'

Note that in step 1, the LU decomposition pivots only from rows or columns in the same
mesh level to maintain the hierarchical structure. This pivoting can be successfully done in
the sparse grid CDG scheme, but not in the sparse grid DG scheme, for which additional
splitting of the flux terms are deemed necessary for variable coefficient case.

For the integrals involving variable-coefficient, we use Gaussian quadrature to compute
these terms. Since these integrals are multi-dimensional integrations, we use the so-called
unidirectional principle to separate the integration into multiplication of one-dimensional

integrals. For example, if ¢(x) = ¢1(x1) - - - ¢4(zy) is separable,

| ota) = /[a’b] pr(a1) - /[a,b] ba(a).

When the variable coefficient A;(¢, ) is separable, we can use unidirectional principle directly.
If it is not separable, we can find A;‘(t,:r) as the L? projection of A;(t,z) onto the sparse

grid finite element space, and then use A?(t, x) to compute the integrals.

4.1.3 Discussions on CFL conditions

It is well known that the CDG schemes allow larger CFL numbers than the standard DG
methods except for piecewise constant approximations [50, 60]. Here, we perform a numerical

study of the CFL conditions of DG [27], CDG [51], sparse grid DG [38], and the sparse
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Table 4.1: CFL numbers of the DG method, CDG method, sparse grid DG method and
sparse grid CDG method with piecewise degree k polynomials, Runge-Kutta method of order
v for Example 4.3.1 with d=2. The CFL numbers of the sparse grid DG/CDG methods are
measured with regard to the most refined mesh A .

DG CDG sparse grid DG | sparse grid CDG

k 1 2 3 1 2 3 1 2 3 1 2 3

v 033 - - 1048 - - 1066 — - | 087 - -
v = 0.40 0.20 0.1310.66 0.36 0.24 | 0.81 0.41 0.25|1.17 0.65 0.44
v 0.46 0.23 0.14 ] 090 0.52 0.35]0.92 0.46 0.28 | 1.58 0.94 0.62

grid CDG schemes. We only consider the two-dimensional case solving constant coefficient
equation uz + Ugy + Ugy = 0 for now. The results are listed in Table 4.1. The CFL number
of DG method is obtained from Table 2.2 in [27]. The rest of the table is computed by
eigenvalue analysis of the discretization matrix, and by requiring the amplification of the
eigenvalues to be bounded by 1 in magnitude. We observe that the sparse grid DG method
has CFL number that is about two times the CFL number of the standard DG method.
The sparse grid CDG method offers the largest CFL conditions among all four methods.
Here, as a side note, we find that the CFL number for two-dimensional CDG method is
larger than the CFL number for one-dimensional CDG method in [51]. This table shows
that one advantage of the sparse grid CDG method is the ability to take large time steps
for time evolution problems. In general, further numerical results suggest that for equation
ut + c1ug + cougy = 0, the CFL number for sparse grid DG and sparse grid CDG method
will change with the value of the coefficients cq, co. Results in higher dimensions are yet to
be studied. A preliminary calculation shows that for equation us + Ugy + Ugy +Ugg =0 the
CFL conditions for CDG, sparse grid DG and sparse grid CDG methods in 3D are all higher
than those for the 2D case in Table 4.1. The sparse grid CDG method still possesses the
largest CFL number among all four methods. Those interesting issues will be investigated

in our future work.
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4.1.4 Non-periodic problems

Here, we consider non-periodic problems, where equation (4.1) or (4.2) is supplemented
by Dirichlet boundary condition on the inflow edges. In this case, we can no longer use
periodicity to define the finite element space on the dual mesh, and a new grid hierarchy
needs to be introduced.

Recall that for standard CDG methods with non-periodic boundary condition on the
domain [0, 1], the finite element space on dual mesh with cell size h,, = 1/2" is represented
by

Vi ={vive Pk ). vi=0,... 2"}, (4.6)
where the mesh is partitioned as

0,=0D, %”], =103 G4 hal =12 =1, == ")
which consists of 2" —1 cells of size hy,, and two cells at the left and right ends of size hy, /2. It
is easy to see that this space does not have nested structures, i.e. Vr]f—l, p¢ Véf’ p- Therefore,
we need a new hierarchy to define the increment polynomial spaces.
For a fixed refined mesh level N, we define the following grid € y p onlevel [, [ =0... N,
by a collection of cells as

hy. ol hy
livp =00 =57 Tinp =[=551

Hyp=lili= 25 G+ Db =2 =12 -1,

which consists of 2/ — 1 cells of size h;, and a cell at the left end of size h; — hTN, and a cell

at the right end of size TN This grid structure is naturally nested, and therefore VlkN D
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which consists of piecewise polynomials of degree k defined on (; y p are also nested, and
VJ@,N,D = VJ/\{jf,D as defined in (4.6).
Then the definitions of sparse finite element space in Section 4.1.1 can be naturally

extended here. We let W/fN,D? [ =1,...N be a complement set of Vlk—l,N,D in VZI,CN,D’ ie.
k k _1/k
ViZinD®WinDp =ViND:

However, we no longer require WZZTN, p to be L? orthogonal to Vlk_ LN.D’ because such defi-
nition will be difficult to implement in practice. Instead, we define WlkN p to be a span of
basis functions that are shifted basis functions of Wlk space defined in Section 4.1.1, namely,

h h
k koo AN N
Winp =Wi(l=—1- 7})|[O)1], 1> 1.

By denoting Wé“, N.D = Volf N.D» Ve have decomposed V/\“[’ D= @OSZS N WZITN, p- lustration
of basis functions by such definitions for £k = 0,1 and [ = 0, 1,2 can be found in Figures 4.1b
and 4.2b. The dimension of W&N,D is 2(k + 1), while the dimensions of WlIfN,D’ I=1,...N
are 2171 (k +1).

Finally, the sparse finite element space on the dual mesh of domain [0, 1]d is defined as

Sk k
Vo= P Winp
<N

d
leN0

where WﬁN,D = Wl]i,N,D,xl XX VVZZ,N,D,zd' This is a subset of the full grid space V?\T,D =

D1jao<n WﬁN,D? and its number of degrees of freedom scales as O(2471(k + 1)%2N Nyd-1)
1end
the proof is similar to Lemma 2.3 in [76]), which is larger than that of vk , but still
& N.,P
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significantly less than that of V?V p With exponential dependence on Nd.
We will now investigate the approximation property of the space \7?\, p- We can obtain the
following result, which essentially states that the L? projection onto this newly constructed

space has the same order of accuracy as Pp, Pp in Lemma 4.1.1.

Lemma 4.1.2 (L? projection estimate onto V?VD ). Let Pp be the L? projection onto the
space V’fVD, then for k> 1,1 < q < min{p,k}, and v € Hp+1(Q), N >1,d>2, we have

P pv — vl s (4.7)

Qn D) N
2_Nq|v\7_lq+1(ﬂ) s=1.
Proof. The proof follows same procedure as Appendix A in [38]. We will mainly highlight
the difference in the proof (see Steps 1 and 2 below). The main difference lies in the fact
that all the hierarchical spaces (and associated projections) have dependence not only on [,
but also on the finest mesh level N.
Step 1: Decomposition of P p into tensor products of one-dimensional increment pro-
jections. We denote Pl]fN, p as the standard L? projection operator from L?([0, 1]) to V/fM D

and the induced increment projection

if 1 =0,
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and further denote

ok e k k
PN,D a Z Qll,N,Dﬂq ®-- & Qld,N,D,xd>
<N
d
leNO

where the last subindex of Qf N.Da indicates that the increment operator is defined in x;-
[ REAR LD )
direction. We can verify that Pp = 15?\,’ p- In fact, for any v, it’s clear that 15%7 pv € \N/'éf\a D

Therefore, we only need
/Q(P%DU —v)wdx =0, Vw e \fojv’D. (4.8)
It suffices to show (4.8) for v € C°°(Q) which is a dense subset of L?(Q). In fact, we have
v = P?\LDU +v— P?V,D”?

where P?V,D = P]]%,N,D,:cl X ® PN,N,D,xd is the L2 projection onto the full grid space

Vlf\f, p- Therefore,

/Q(f)?\/',DU — v)wdx = /Q(f’éﬂv’Dv — P%’Dv)wdx + /Q(v - PIfV,Dv)wdx

_ k k
= — /sz( Z Qll,N,D,Il R ® Qld’N’D’zdv) w dX.
|l|OO§Nﬂ|1|1>N
1end

The last term in the first row of the equality above vanishes because w € \7?\, p C Vézv D
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.. 2 k
In addition, for any I > 1, ¢ € L=([0,1]),¢ € W_l,N,D

/ QiN,ng‘pdx :/ (I - Plk—l,N,D)ﬁbspdx —/ (L - Pz]fN,D)ﬁbsde =0,
[0,1] [0,1] [0,1]

Therefore, by properties of the tensor product projections

/Q(P?V,DU —v)wdx =0, Ywe V?V’D,

and the proof for f’D = f’]f\, p is complete.
Step 2: Estimation of the increment projections. For a function v € Hp+1([0, 1]), we
have the convergence property of the L2 projection PZITN, p as follows: for any integer ¢ with

1 < ¢ <min{p,k}, s=0, 1,

k . J \(g+1—s) _ _ l
|PZNDU_U| Yl SC]€787q(hl]\/'> |U| 1777 ) ]_1a72 _]-7
” H2(Ij v p) ’ HITI] \ p)
(
hy—hn/2, j=0
where the mesh size h{,N =9 Iy, j=1,- 721 1,

hi /2, j=2.

The estimation above directly applies for ng ND= P(If N p- Forl > 1, by simple algebra,
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we have

k : ; —l(g+1-s) . 9 ... 9l _
|Q1,N,D“|HS(IJ < Ch,s,¢2 |U|HQ+1([U/2J , J=2, 20— 1,

i.N.D) I~1.N.D)

k 1-
Q¥ sy ) < Chng ) o

I.N,D) HqH(Iij,N,D)
Fsqloy = b/ el g e =01
< 6k’5aq2_l(q+1_8)|U‘HQ+1(IZO_1,N,D)7
|QiN7DU’HS(IZQ,ZN,D) =0,
with &, 54 = cpsq(1+207179).
The rest of the proof is then very similar to Appendix A in [38], and is omitted. [

We now provide a numerical validation of Lemma 4.1.2 by considering the error of pro-

jection P p for a smooth function
d
u(x) = exp sz . xe0,1]% (4.9)
1=1

In Table 4.2, we report the L2 errors and the associated orders of accuracy for k =1,2,3, d =

2,3. It is clear that the predicted order of accuracy is achieved.

With the aid of this space, the semi-discrete scheme can now be defined similarly as
in (4.4)-(4.5) by using the space on the dual mesh as \Qf‘lfv’ p» and replacing the numerical
values on the boundary of the domain by corresponding functions in the Dirichlet boundary
conditions.

We now comment on the implementation of this algorithm. As can be seen from Figures

97



Table 4.2: L? errors and orders of accuracy for L? projection operator Pp of (4.9) onto
V’fv p When d =2 and d = 3. N is the number of mesh levels, k is the polynomial order, d

is the dimension. L2 order is calculated with respect to h .

L? error order | L? error order | L? error order

N | hy k=1 k=2 k=3
d=2

3| 1/8 [893E-04 - [9.14E06 - |G640E-08 -

4] 1/16 | 2.61E-04 1.77 | 1.29E-06 2.82 | 4.45E-09 3.85

5| 1/32 | 7.34E-05 1.83 | 1.77E-07 2.87 | 3.01E-10 3.89

6 | 1/64 | 2.00BE-05 1.88 | 2.37E-08 2.90 | 1.98E-11 3.93

7 | 1/128 | 5.35E-06 1.90 | 3.11E-09 2.93 | 1.29E-12 3.94
d=3

1/8 | 6.19E-04 193E-06 - | 3.18E-08

1/16 | 1.90E-04 1.70 | 7.45E-07 2.73 | 2.36E-09 3.75
1/32 | 5.71E-05 1.73 | 1.10E-07 2.76 | 1.69E-10 3.80
1/64 | 1.67E-05 1.77 | 1.58E-08 2.80 | 1.18E-11 3.84
1/128 | 4.80E-06 1.80 | 2.24E-09 2.82 | 9.35E-13  3.66

N O U =~ W

4.1b and 4.2b, there are two types of basis functions in 1D for the dual space.
e Type 1 bases (for [ > 0), which are the shifted and truncated multiwavelet bases.

e Type 2 bases (for [ = 0), which are the Legendre polynomials of degree up to k£ on

h
[1— = 1]

Clearly, Type 1 bases are orthogonal to Type 2 bases, because their support do not overlap.
Type 2 bases are orthogonal to each other due to the definition of Legendre polynomials.
However, Type 1 bases are no longer orthogonal to each other, due to the domain shift and
truncation. However, only the left-most element on each level are changed. For other bases
in that level, they will still retain orthogonality. The bases on left-most element in all level
are orthogonal to other bases, but not to each other, i.e., the bases defined on left-most
element in different levels are not orthogonal. This implies that although the mass matrix

is not identity here, it will have block structures and be sparse.
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[ 1/2 1 0 1/2-h J2 1-hy/2 1
=2 1 1 =21 1
0 1/2 1 0 1/2-hN/2 1-hN/2 1

a) Primal mesh. Number of bases for [ = 0, 1,2 are(b
1

) Dual mesh. Number of bases for | = 0,1,2 are
1,2 2,1,2.

(

1
Figure 4.1: Illustration of one-dimensional bases on different levels for £ = 0: non-periodic
problems. Different colors represent different bases.

4.2 Stability and convergence

In this section, we prove L2 stability and error estimates for the sparse grid CDG scheme
for the scalar equation. We consider both periodic and non-periodic boundary conditions.

For periodic problems, (4.2) reduces to

%‘f‘V'(AU) =0, x€, (4.10)
where A = (A1(t,x),- -+, Ag(t,x)), and [|A[[fo0(q) < 00, [V - Al[foo(q) < co. We assume

A; # 0 to avoid the discussion of different boundary conditions for degenerating coefficients.

However, there is no difficulty to extend the proof below to degenerating case. For non-
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I /L\ I /|_|
o N 1/2-th2\/ 1+hyf2 1

(=]
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(a) Primal mesh. Number of bases for I = 0, 1,2 are(b) Dual mesh. Number of bases for | = 0,1,2 are
2,2, 4. 4,2, 4.

Figure 4.2: Illustration of one-dimensional bases on different levels for £k = 1: non-periodic
problems. Different colors represent different bases.

periodic problems, the following inflow boundary conditions are prescribed,

ut, %)lo g, =gilt - Tim1, Tig1, o Td)

7

where

{x € Qz; =0}, if A4;(t,x) >0,
0 i =

xTt
2

{x € Q|z; =1}, if A;j(t,x) <0.
Correspondingly, we denote the outflow edges by
{x € Qlz; =1}, if A;(t,x) >0,
anqut =

7

{x € Qlz; =0}, if A;(t,x) <0.
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The scheme for periodic case reduces to: to find uy, € V?V,P and vy, € V?V,D’ such that

1
/Q(Uh)tsohdx == /Q(Uh_uh) th+/UhA Vepdx— Y /UhA [pn] ds,

max

GEFNP
(4.11)
dx = — d A -V dx — A -
/Q(Uh)twh X = /Q( up, — vp) Yy, X+/uh Yy, dx EG%D/% [vp] ds
(4.12)

for any ¢y, € \A/'?\, p and ¢, € \A/'é‘;v p- For non-periodic problems, we require vy, ¢y, € \7% D>
and enforce up|gn . = vplgn . = g; on the boundary interface.
i in

1 (3
We can prove that the schemes retain similar stability properties as the standard CDG

schemes.

Theorem 4.2.1 (L? Stability). With periodic boundary condition, the numerical solutions
uy, and vy, of the sparse grid CDG scheme (4.11)-(4.12) for the equation (4.10) satisfy the

following L? stability condition

2 2 2 2
R LY (AU P (X CR (4.13)

D)

For non-periodic boundary condition, the corresponding numerical solutions satisfy

2 2 < 2
||uh||L2(QNP)+||vh||L2(QN’D)N||uh<o M2y + IO 2

L (4.14)
+/ / |A |gz dsdt if Tmax S .
0 R

Proof. For periodic boundary condition, let ¢; = wy in (4.11) and v, = vy, in (4.12),
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summing the two equalities up, we have

—— d
a7 L (n)? + (o) )ax
1
= / VR, U, — Up Up, + UV —vhvhdx+/ vpA - Vuy, dx — Z /th~ [up,) ds
Tmax JQ) Q el y p e
+/uhA-Vvhdx— Z /uhA-[Uh]dS
Q e
eEFN,D
1
=— / (up, — vp,)?dx + / A - V(upvp)dx — Z /th - up] ds
Tmax JQ Q e
GEFNJJ
- Z /uhA- [vp,] ds.
BEFN,D €

Apply divergence theorem, and by periodicity, we have

/QA - V(upvp)dx — Z /eAvh - lup) ds — Z /eAuh ol ds = — /Q V - Aupvpdx.

GEFN,P 6EFN’D
By the simple inequality ab < %(a2 +b?),

1d
2dt Jo

((on)?+ (on)?)ix < =—— [ (un = )% 51V Alloeqey [ (@)% + (00)Px.

Tmax

and the proof for the periodic case is complete by using Gronwall’s inequality.

For non-periodic boundary condition, we follow the same lines and plug in the corre-

sponding boundary condition,

1d
2dt Jo

1
=— / (up, — vp,)?dx — / V - Aupvpdx + / A - nupvpds
Q Q o0

Tmax

((up)? + (vp)H)dx
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d
— Z / A - ng;(up, + vp)ds + 2/ A -nupvpds
=1 o0 mn o0 out

7 g -
2 2

1
=— / (uj, — vp)2dx — / V - Aupvpdx
Tmax J) Q
d
e 0|[ Anl e+ g+ ods = [ A s
1=1 o ; out
IEZ IZ
1 2 1 2 2
< - (up —op)"dx + S|V - Allpoo(qy | ((up)” + (vp))dx
Tmax J) Q
1 ) 1 )
+Z A n|(g7 + o un —vp)%)ds + 5 |A - n(up — vp)7ds
x zout
(3 1
1 2 1 2 2
< - (up —vop)"dx + S|V - Al poo(qy | ((up)” + (vp))dx
max J) Q
1
+Z / A - n|g’ ds+/ A - n]2(uh—vh) ds
aninUGQIWt
Z 2 1
1 2 1 2 2
=— (up, —vp)"dx + S[IV - All poo(q) | ((up)” + (vp)”)dx
Tmax J) Q
1
+ Z / |A; |922d3 + / |AZ|§(uh — vp)%ds
anmanxqut

z ) )

by noticing A - n\agxgn <0and A - n]agx?ut > 0.
Let TJZ.\/’D = {T" € Qu p|T N 9Oy # 0} denote the cells on dual mesh adjacent to
S

the boundary in the i-th direction. By inverse inequality, we have |uj, — vy, L2(00,.)

-1 2 -1 2 i U
hov o = onllg iy < Py llun = vnlly g - Therefore, if mmax S &y

b

d
L d 2 2 1 2 2 12
337 1 (@2 ()2)ax < 51V - Allgoeqo) [ (G + (o) o+ 3 / o, At

and the proof for the non-periodic case is complete by using Gronwall’s inequality. O
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Now we are ready to prove L2 error estimate of the sparse grid CDG scheme.

Theorem 4.2.2 (L? error estimate). Let u be the ezact solution to (4.10) and up, vy, be
the numerical solution to the semidiscrete scheme (4.11) and (4.12) with initial discretiza-
tion up(0,x) = Ppug,v,(0,x) = Ppug for periodic boundary condition or up(0,x) =
P pug,v,(0,x) = f’Duo for non-periodic boundary condition. If Tmax < hy, then for k > 1,

ug € Hp+1(Q), 1 <g<min{p, k},N > 1,d > 2, we have for allt >0

< NN ] (4.15)

”u_uhHLQ(QN7P) + Hu_vhHL2( Q)"

Qn D)

Proof. For periodic problems, we first introduce the standard notation of bilinear form

1
/ (vp, — up) op dx — / v A - Vi, dx
Tmax JQ Q

+ ) /UhA'[SOh] d3+/(’0h)t¢hdx—

T
€€FP € Q max

B(up, vp; op, ) :/Q<uh)t op, dx —

/ (up, — vp) Yy, dx
0

—/QuhA-whdx+ > [ unA-[ylds.

EEFD €

By Galerkin orthogonality, we have the error equation
B(u — wp,u—vy; o, bp) =0, Vo € Vi potoy € Vi . (4.16)
We take

op =Ppu—up, Y =Ppu—uy,

o*=Ppu—u, Y°=Ppu-—u,
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then the error equation (4.16) becomes

B(Sphawh;gphad)h) = B(SDea@Z)e;(szwwh)' (417)

From Theorem 4.2.1, we get

1d

(& e 1
5@/9 (3 + ¥ )dx < B(®, 0% op, p) + §||V-A||LOO(Q)/Q(QO%+@/J%)dX. (4.18)

We write the bilinear form on the right-hand side as a sum of three terms
B(¢°, v op,p) = Bt + B* + B, (4.19)

where

1

Tmax

B = [ nendx——— [0 =) nix+ [@vndx—— [ (= v)unax

Tmax

BQZ—/QweA-Vgohdx—/QgpeA~V¢hdx,

B Y [eaalise Y [l

eEFN,P eEFN,D

By Cauchy-Schwartz inequality, Lemma 4.1.1 and mpax S hpy, we have
1 2 2 2do—2N 2
B S /Q((,Oh + wh)dX + N*%2 q ’u|7-[qu1(Q) . (420)

To estimate B2, B3, we use the following inverse inequalities Ywy, € \A/'é‘/‘v g for G=P D,

|
71 -
\whlﬂl(QN’G) Shy HwhHLz(QMG), lwnllry ¢ < hN?||whHL2(QN,G)
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and trace inequality,

||¢||L2 or) S hn o7 ) TNl gy, Vo€ HYT),T € Oy .

Then we have

325/(@h+wh)dX+N2d2 2Nq|u‘7_lq+1( Q) (4.21)

and

335/(@h+wh)dx+N2dQ 2Nq yu\HqH( . (4.22)

Combining (4.20), (4.21), (4.22) with (4.18), we obtain

d 2 | 2 9da—2N
7 Q(cph+¢h)dx§/(g0h+l/}h)dx+]\f 2 q|u|,Hq+1( )

Together with the estimates for initial discretization and by Gronwall’s inequality, the
proof is complete. For non-periodic problems, the argument is very similar as long as the

stability result holds. The proof is omitted for brevity. m

This theorem proves L2 error of the scheme is O(N92~NVk) or O([log by | héfv) when the

exact solution has enough smoothness in the mixed derivative norms.

4.3 Numerical results

In this section, we present several numerical tests to validate the performance of the proposed
sparse grid CDG schemes. Unless otherwise stated, we use the third-order TVD-RK temporal

, with ¢ = 0.1 for £ =1, 2, where

discretization [73] and choose the time step At =

Z
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¢; is the maximum wave propagation speed in z;-direction. To guarantee that the spatial
error dominates for k = 3, we take At = O(h%g). Tmax 1S taken as ﬁh N which is always
smaller than the maximum time step allowed based on the CFL number in Table 4.1. For
periodic problems, we only provide L? errors on the primal mesh, because the results on the

dual mesh are similar. For non-periodic problems, the L? errors are the L? average of the

errors on the primal and dual meshes.

4.3.1 Scalar case

In this subsection, we consider the scalar case, i.e. m = 1.

Example 4.3.1 (Linear advection with constant coefficients). We consider

J (4.23)

with periodic or Dirichlet boundary conditions on the inflow edges corresponding to the given

exact solution.

The exact solution is a smooth function,

d
u(t,x) =sin | 27 sz —dt
=1

In the simulation, we compute the numerical solutions up to two periods in time, meaning
that we let final time T'= 1 for d = 2, T'=2/3 for d = 3, and T' = 0.5 for d = 4.

We first test the scheme with periodic boundary condition. In Table 4.3, we report the
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L? errors and orders of accuracy for k = 1,2,3 and up to dimension four. As for accuracy,
we observe about half order reduction from the optimal (k+1)-th order for high-dimensional
computations (d = 4). The order is slightly better for lower dimensions. The convergence
order is similar to the performance of the sparse grid DG scheme in [38]. In Figure 4.3, we
plot the time evolution of the error of L? norm of numerical solutions uj, and vy, which is

given by

/Q ((up(t, )2 + (v (£, %))%) dx — / ((up(0,3))% + (13, (0, %))?) dx

Q

for two-dimensional case for t = 0 to t = 100. From Theorem 4.2.1, such errors are propor-
tional to the difference between uj, and vj,. We can clearly see that the higher order accurate

scheme performs way better in conservation of L? norm due to its higher order accuracy.

-0.001

-0.002F

zz=z
LXEN

zz=z
o
LR

-0.003F
@ N

X s
-0.004

-0.005

-0.006 |

PARSTRTI BRI SUTII IR oopl—— 101 ooo7b 1o
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(a) k=1 (b) k=2 (c) k=3

Figure 4.3: Example 4.3.1. The time evolution of the error of L? norm of numerical solutions
uy, and vy, of the sparse grid CDG method with d = 2. (a) k=1, (b) k=2, (¢) k=3. N =4,5,6.

Then, we test the scheme with Dirichlet boundary condition prescribed at the inflow edge
according to the exact solution. The results are listed in Table 4.4. The accuracy order is
similar to the periodic case.

Finally, we use this example to compare the performance of the DG, CDG, sparse grid
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Table 4.3: L? errors and orders of accuracy for Example 4.3.1 at T =1 whend =2, T = 2 /3
when d = 3, and 7' = 0.5 when d = 4. N denotes mesh level, hy; is the size of the smallest
mesh in each direction, & is the polynomial order, d is the dimension. L? order is calculated

with respect to hy.

L? error  order | L? error order | L? error order
N hn k=1 k=2 k=3
d=2
3 1/8 | 3.14E-01 — 1.20E-02 — 5.84E-04 —
4 | 1/16 | 6.99E-02 2.17 | 2.23E-03 2.43 | 8.50E-05 2.78
5 1 1/32 | 1.34E-02 238 | 4.87TE-04 2.20 | 3.84E-06 4.47
6 | 1/64 | 343E-03 1.97 | 5.97E-05 3.03 | 3.89E-07 3.30
7 1 1/128 | 9.21E-04 1.90 | 9.33E-06 2.68 | 1.80E-08 4.43
d=3
3 1/8 | 6.77E-01 - 5.27E-02 - 2.13E-03 —
4 | 1/16 | 3.56E-01 0.93 | 1.10E-02 2.26 | 2.62E-04 3.02
51 1/32 | 1.05E-01 1.76 | 1.82E-03 2.60 | 2.85E-05 3.20
6 | 1/64 | 2.54E-02 2.05 | 5.22E-04 1.80 | 2.01E-06 3.83
7 | 1/128 | 745E-03 1.77 | 6.89E-05 2.92 | 2.01E-07 3.32
d=4
3 1/8 | 7.13E-01 — 1.26E-01 - 4.41E-03 —
4 | 1/16 | 6.48E-01 0.14 | 3.39E-02 1.89 | 7.56E-04 2.54
51 1/32 | 3.80E-01 0.77 | 6.91E-03 2.29 | 9.82E-05 2.94
6 | 1/64 | 1.37E-01 147 | 1.39E-03 2.31 | 9.44E-06 3.38
7 1 1/128 | 3.81E-02 1.85 | 3.56E-04 1.97 | 8.16E-07 3.53

Table 4.4: L? errors and orders of accuracy for Example 4.3.1 with Dirichlet boundary
condition on the inflow edges at 7' = 1 when d = 2 and T' = 2/3 when d = 3. N denotes
mesh level, hpy is the size of the smallest mesh on the primal mesh in each direction, k is
the polynomial order, d is the dimension. L? order is calculated with respect to h N-

L? error order | L? error order | L? error order
N hn k=1 k=2 k=3
d=2
3 1/8 | 2.66E-01 — 1.66E-02 - 8.21E-04 -
4 | 1/16 | 747E-02 1.83 | 3.33E-03 2.32 | 8.80E-05 3.22
51 1/32 | 1.94E-02 195 | 5.97TE-04 2.48 | 4.79E-06 4.20
6 | 1/64 | 5.44E-03 1.83 | 8.60E-05 2.80 | 4.50E-07 3.41
7 | 1/128 | 1.49E-03 1.87 | 1.35E-05 2.67 | 2.20E-08 4.35
d=3
3 1/8 | 6.15E-01 — 5.34E-02 - 2.67E-03 —
4 | 1/16 | 2.86E-01 1.10 | 1.40E-02 1.93 | 2.87E-04 3.22
51 1/32 | 1.14E-01 1.33 | 2.57TE-03 2.45 | 3.21E-05 3.16
6 | 1/64 | 3.23E-02 1.82 | 5.82E-04 2.14 | 2.60E-06 3.63
7 1 1/128 | 1.03E-02 1.65 | 9.81E-05 2.57 | 2.86E-07 3.18
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DG and sparse grid CDG methods. We use the following non-separable initial condition

d
u(0,x) = exp | sin 27TZJZZ' . xe0,1)4, (4.24)
i=1

where d = 2. When k = 1,2, 3, Runge-Kutta methods of order v = 2, 3,4, respectively, are
used for time discretization. We take the time step according to the CFL numbers listed in
Table 4.1. We plot the comparison of the methods measuring L? errors vs. CPU times in
Figure 4.4. The computations in this example are implemented by an OpenMP code using
computational resources from the Institute for Cyber-Enabled Research in Michigan State
University. We can see that the sparse grid CDG method outperforms the CDG method,
and the sparse grid DG method outperforms the DG method particularly when the mesh
level N is more refined. When the mesh level increases from N to N 4+ 1, the CPU cost
for sparse grid method grows with the rate of about 4 to 5, while the factor is about 8 to
10 for full grid calculations, respectively, for this 2D case. This shows the advantage of the
sparse grid approach. When comparing the sparse grid CDG method with the sparse grid
DG method, it seems that for this example, the sparse grid DG method is more efficient. It
will be interesting to compare the results for fully nonlinear problems in higher dimensions,

for which the CDG method is more advantageous, and this is currently under investigation.

Example 4.3.2 (Solid body rotation). We consider solid-body-rotation problems, which are

in the form of (4.1) with periodic boundary conditions and

e d=2, Ai(t,x) = —x9 + %, As(t,x) =1 — %,

o d=3, A(t,x) _ 2 <I2—%> , Ag(t,x) = %/22 <$1 —%> +l/7§ (953—%) , Ag(t,x) =
()
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—+&— Full DG
—A— Full CDG
—O— Sparse DG
———— Sparse CDG

—+&— Full DG
—A— Full CDG
—O— Sparse DG
———— Sparse CDG

—+&— Full DG
—A— Full CDG
—O— Sparse DG
———— Sparse CDG

L, error

] IR R | M shain L M 7 L L
10 10° 10’ 10 10" 10 107 ?
CPU time CPU time CPU time

(a) k=1 (b) k=2 (c) k=3

Figure 4.4: L2 errors and associated CPU times of DG, CDG, sparse grid DG and sparse
grid CDG methods for Example 4.1 with initial condition (4.24) at 7' =1 for d=2. (a) k=1,
(b) k=2, (c) k=3.

Such benchmark tests are commonly used in the literature to assess performance of
transport schemes. Here, the initial profile traverses along circular trajectories centered
at (1/2,1/2) for d = 2 and about the axis {z1 = 23} N {xg = 1/2} for d = 3 without
deformation, and it goes back to the initial state after 27 in time. The initial conditions are

set to be the following smooth cosine bells (with C® smoothness),

b4 1cosl (ZX) | if <D,
u(0,x) = (%) (4.25)

0, otherwise,
where b = 0.23 when d = 2 and b = 0.45 when d = 3, and r = |x — x| denotes the
distance between x and the center of the cosine bell with x. = (0.75,0.5) for d = 2 and
x. = (0.5,0.55,0.5) for d = 3.
In Table 4.5, we summarize the convergence study of the numerical solutions computed
by the sparse CDG method, including the L? errors and orders of accuracy. For this variable
coefficients equation, we observe at least k-th order convergence for all cases. The order is

slightly lower than the corresponding ones in Example 4.3.1.
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Table 4.5: L? errors and orders of accuracy for Example 4.3.2 at T = 2r. N denotes mesh
level, hp is the size of the smallest mesh in each direction, k is the polynomial order, d is
the dimension. L2 order is calculated with respect to h N-

L? error  order | L? error order | L? error order

N | hy k=1 k=2 k=3
d=2

5 | 1/32 | 1.53E-02 - 5.81E-03 - 1.34E-03 -

6 | 1/64 | 1.02E-02 0.58 | 1.50E-03 1.95 | 9.64E-05 3.80

7 | 1/128 | 4.66E-03 1.13 | 1.46E-04 3.36 | 1.16E-05 3.05

8 | 1/256 | 1.42E-03 1.71 | 2.34E-05 2.64 | 1.10E-06 3.40
d=3

1/32 | 4.83E-03 - 6.25E-04 - 7.35E-05 -

1/64 | 1.87E-03 1.37 | 1.20E-04 2.38 | 9.18E-06 3.00
1/128 | 7.46E-04 1.33 | 3.39E-05 1.82 | 1.36E-06 2.75
1/256 | 2.55E-04 1.55 | 8.11E-06 2.06 | 1.94E-07 2.81

oo J O Ot

Example 4.3.3 (Deformational flow). We consider the two-dimensional deformational flow

with velocity field

Aq(t,x) = sin?(ra1) sin(2ma9)g(t), As(t,x) = — sin®(zz9) sin(2rz1)g(t),

where g(t) = cos(wt/T) with T = 1.5, with periodic boundary condition.

We still adopt the cosine bell (4.25) as the initial condition for this test, but with x. =
(0.65,0.5) and b = 0.35. Note that the deformational test is more challenging than the
solid body rotation due to the space and time dependent flow field. In particular, along the
direction of the flow, the cosine bell deforms into a crescent shape at t = T//2 , then goes
back to its initial state at t = T as the flow reverses. In the simulations, we compute the
solution up to ¢t = T. The convergence study is summarized in Table 4.6. Similar orders
are observed compared with Example 4.3.2. In Figure 4.5, we plot the contour plots of the
numerical solutions on the primal mesh at ¢ = T'/2 when the shape of the bell is greatly

deformed, and ¢ = T when the solution is recovered into its initial state. It is observed that
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the sparse CDG scheme with higher degree k can better resolve the highly deformed solution

structure.

Table 4.6: L? errors and orders of accuracy for Example 4.3.3 at T = 1.5. N denotes mesh
level, hyy is the size of the smallest mesh in each direction, & is the polynomial order, d is
the dimension. L? order is calculated with respect to hy. d = 2.

N hn L? error order | L? error order | L? error order
k=1 k=2 k=3

5| 1/32 | 1.73E-02 — 4.37E-03 - 1.14E-03 -

6 | 1/64 | 8.06E-03 1.10 | 1.17E-03 1.90 | 2.44E-04 2.22

7 | 1/128 | 3.29E-03  1.29 | 2.04E-04 2.52 | 2.05E-05 3.57

8 | 1/256 | 1.08E-03 1.61 | 2.78E-05 2.88 | 2.75E-06 2.90

4.3.2 System case
In this subsection, we consider system case, which means m > 1 in equation (4.1) or (4.2).

Example 4.3.4 (Acoustic wave equation with constant wave speed). We consider

(

w=V-v, xel0,1]?

vy = Vu, (4.26)

\U(O,X) =ug(x), v(0,x) = vp(x).

with periodic boundary conditions. The initial conditions ug(x) and vy(x) are chosen ac-

cording to the following two types of exact solutions: the standing wave

u(t,x) —/2sin(2v/2nt) sin(27x1 ) sin(2m29)
vi(t,x)| = cos(2v/27t) cos(2ma1 ) sin(2ma9) )
_vg(t, x)_ ] cos(2v/27t) sin (2721 ) cos(2ma) |
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Figure 4.5: Example 4.3.3. Deformational flow test. The contour plots of the numerical
solutions on primal mesh at t =T/2 (a, ¢, e) and t =T (b, d, f). k=1 (a, b), k =2 (¢, d),
and k=3 (e, f). N=T1.
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and the traveling wave

u(t,x) V2 sin(2v/2nt + 2711 cos(2mws)
vi(t,x)| = | sin(2v27t + 2721) cos(2mao)
vo(t, X) cos(2v/2nt 4 2mx) sin(2mxs)

We compute the solution until 7 = 1. Similar to the scalar case, we present the L2 errors
T
and orders of accuracy for u(t,x) = |y(t,x), v1(¢,x), wvo(t,x)| in Table 4.7. From the

table, we still observe at least (k 4 1/2)-th order for the solution.

Table 4.7: L? errors and orders of accuracy for Example 4.3.4 at T = 1. N denotes mesh
level, hyy is the size of the smallest mesh in each direction, £ is the polynomial order, d is
the dimension. L? order is calculated with respect to hy. d = 2.

L? error order | L? error order | L? error order

N | hy k=1 k=2 k=3
standing wave

3 1/8 | 3.56E-01 - 1.05E-02 - 5.37E-04 -

4 | 1/16 | 7.93E-02 2.17 | 1.84E-03 2.51 | 4.31E-05 3.64

5| 1/32 | 1.50E-02 2.40 | 3.18E-04 2.53 | 3.39E-06 3.67

6 | 1/64 | 3.72E-03 2.01 | 4.95E-05 2.68 | 2.77E-07 3.61

7 | 1/128 | 1.01E-03 1.88 | 7.60E-06 2.70 | 2.03E-08 3.77

traveling wave
1/8 | 3.97E-01 - 1.85E-02 - 7.75E-04 -
1/16 | 8.58E-02 2.21 | 3.36E-03 2.46 | 6.76E-05 3.52
1/32 | 1.97E-02 2.12 | 6.07TE-04 2.47 | 5.68E-06 3.57
1/64 | 5.36E-03 1.88 | 9.66E-05 2.65 | 4.44E-07 3.68
1/128 | 1.50E-03 1.84 | 1.45E-05 2.74 | 3.39E-08 3.71

~N O Ot = W

Example 4.3.5 (Two-dimensional homogeneous isotropic elastic wave [44]). The 2D elastic
wave equation in homogeneous and isotropic medium in velocity-stress formulation without

external source, is a linear hyperbolic system of the form

u; + Ajug, + Agug, =0, (4.27)
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T

where u = , Oxz, Oyy Tepresents the normal stress and gy rep-

Oxx, Oyy, Oxy, U, W

resents the shear stress and v, w are the velocity in x and y directions.

000 A+2u O 0000 A
000 X 0 00 0 0 \N+2u
Ar=—=1000 0 puls A2=—-1000px 0 |
1 1
;00 0 0 00 50 0
1 1
00,5 0 0 0500 0

where X and p are the Lamé constants and p is the mass density of material. Eigenvalues of

Ay and Ay are —cp, —cs, 0, cs, ¢p, which give us the wave speed cp = 4/ )‘er2“ and cg = \/%

for P-wave and S-wave respectively. We consider the homogeneous material parameters
A=2,u=1,p =1, then ¢y = 2,¢s = 1. On domain Q = [0, 112, we take the solutions
consisting of a plane P-wave traveling along diagonal direction n = (ﬁ, @) and a plane

S-wave traveling in the opposite direction, i.e.,
u(t’ X) = RS€Sin(k'X+kCSt) + RpeSin(k'kaCpt)’

where Ry = [—,u,u,O,—\gcs,\/Tics]T,Rp = [N+ pu, A+ u,u,—‘/Ticp,—‘/T?cp]T and k =

kn, k = 2v/2x. Periodic boundary condition is applied and the initial condition is chosen as

u(0,x).

We compute the solution until 7 = 1. The L? errors and orders of accuracy for u(t, x)

are shown in Table 4.8. We observe that the convergence order is close to k£ + 1.

Example 4.3.6 (Three-dimensional isotropic elastic wave [31]). We extend the previous
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Table 4.8: L? errors and orders of accuracy for Example 4.3.5 at T = 1. N denotes mesh level,
hp is the size of the smallest mesh in each direction, k is the polynomial order, dimension
d = 2. L? order is calculated with respect to hy.

L? error  order | L? error order | L? error order
N hn k=1 k=2 k=3
4 | 1/16 | 1.09E+00 - 2.72E-01 — 5.71E-02 —
51 1/32 | 747E-01  0.55 | 6.48E-02 2.07 | 6.19E-03 3.21
6 | 1/64 | 2.41E-01 1.63 | 9.65E-03 2.75 | 4.77TE-04 3.70
7 1 1/128 | 7.14E-02 1.76 | 1.12E-03 3.11 | 2.55E-05 4.23

example to 3D and obtain the following linear hyperbolic system

where u =

USCI’u

Oyy»

u; + Aluxl + Azqu + Aguxg =0,

Ozzy, Ozy,

Oyz,

afEZv U’7

w,v,w are the velocities in each spatial direction.

0

0

e}
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0
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0

0
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0 0
0 0
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0
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0

117

v,

w

e}

(@] =

(4.28)

, 0 1S the stress tensor and

e}

] =

=

00 A o
00 A+2u 0
00 A 0
0Op 0 0
00 0 -
00 0 0
00 0 0
00 0 0
00 0 0




]
[ew]
o
(a]
(@]
(e
=
(@]
(@]

00000%000
0000%0000
00%000000

where A\, and p take the same values as the previous example. Hence, we have the same
values for ¢y and cs. Eigenvalues of Ay, Ay and Ag are —cp, —cs, —¢s,0,0,0, cs, ¢, ¢p, which

describe the wave speed for P-wave and S-wave (with different polarizations). On domain

Q = [0, 1]3, we take the solutions consisting of a plane S-wave traveling along diagonal
direction n = ( UYL \/3) and a plane P-wave traveling in the opposite direction, i.e.,

u(t,x) = Rgsin(k - x — kcst) + Ry sin(k - x + kept),

where
2 2 1 1 1 1 T
s=[— 3 3/~57003/~%—3 \/5087\/3057 0",
Ry =[A+ gm A+ g,u, A+ z s ?) M g H, ?)/% _%va —%Cp’ _%CP]T
and k = kn, k = —24/3. Similarly, we consider periodic boundary condition and uy(x) =

u(0,x) as initial condition.
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We present the numerical results at 7" = 1. In Table 4.9, we get at least (k + 1/2)-th
order of accuracy for the solution u(¢,x).

Table 4.9: L? errors and orders of accuracy for Example 4.3.6 at T = 1. N denotes mesh
level, hp is the size of the smallest mesh in each direction, k& is the polynomial order, d is
the dimension. L2 order is calculated with respect to hy. d = 3.

L? error  order | L? error order | L? error order
hn k=1 k=2 k=3

1/16 | 2.49E+00 - 4.93E-02 — 8.91E-04 -
1/32 | 7.70E-01 1.69 | 8.17E-03 2.59 | 8.66E-05 3.36
1/64 | 1.76E-01  2.13 | 1.59E-03 2.36 | 7.12E-06 3.60

1/128 | 4.27E-02  2.04 | 2.79E-04 2.51 | 5.42E-07 3.72

N o o2
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Detailed discussions on the choice of the 7' matrix as in
(51) or (52)

We discuss what parameters result in |by & bg| = 0, under the assumption that «q has no
dependence on h, 31 = Blhpl,ﬁg = ﬁNghPQ, ﬁ~1, BQ are nonzero constants that do not depend

on h.

k(k —1 ok(k —1).  k(k—1
by —by = (—51+%)(1—52 (h ))+ (h )204%
_(-@Mﬁ+Eﬁgi%fwu—zmk—n@mm—5+k@—1pﬁh4,
E(k+1 ok(k+1).  k(k
by = (- Dy g, LD, MEEL, g
::(-@Mﬂ+Eﬁgibfwu—2uk+n@mm”)+uk+nmﬁw¢

If by — by = 0,Vh < hg, then

e a1 #0, then py = —1, po =1 and 1, B9 satisfies

- k(k—1)

5 )(1 = 2k(k — 1)F9) + k(k — 1)202 = 0. (29)

Similarly, for by + bo = 0,Vh < hg, then

e a1 #0,p; =—1, pg =1 and 81, By satisfies

(g 4 M+ D)

)(1 = 2k(k +1)52) 4 k(k + 1)202 = 0. (30)
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Detailed discussions on assumption A2

Parameter choices for |I'| = |A| imply
K2 (k? — 1 k(k+1 —k2 Lk
F+A = B1+ (h2 )ﬁg—i— ( . )(—204%—251&2)—1- 57
k(kF1) k(k+1), k(k£1)_
= — — — 2 =
(B1 5 (1= 20———) 201 =0,

which indicates
o if a1 # 0, then by &+ by can be greatly simplified as follows.

— If '+ A =0, then k is odd, and

k
b1+b2:%(1—52 (h+1))’

51—62——— (ﬁ - (k_l)),

E+1 2h
k2 k2(k2—1)
A=— e a— .
k+1(61 h2 ﬁ2>
— If I' = A =0, then k is even, and
2 k(k+1)
bl‘i‘bz—m(ﬁl— o );
k 2k(k —1)
—} 1—
b1 — by h( Pa—rp ),
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o If vy =0, then

k(k 4 1) h

= R Ty

More estimates related to Legendre coefficients

We provide estimates of the Legendre coefficients, especially their difference in neighboring
cells of equal size.
If u € Wk+2+1.50(1) then expand 4;(§) at £ = —1 in (2.24) by Taylor series, we have

form>k+1, 3z € [-1,1], s.t.

L g “d (E+1)°
im = [ g (X g0

PN R d
R A T )dgm—k—l

n
— Z esh/?-i-l-i-su(k‘—i—l—i—s) (z. 1
s=0 ’ 772

(€% —1)™mde, (32)

) + O(h§+2+n ’u‘WkJrQJrn,OO(Ij))’

where 6 are constants independent of u and h;.
When hj = hj1, we use Taylor expansion again, and compute the difference of two u; ,,

from neighboring cells

n
_ k+1+ k+1+
Ujm — Uj+lm = E ,Ushj Sul 8)(3;

O hk-l—?-l—n _
j_%)‘f‘ ( j ’u‘Wk+2+n,OO(IjU[j+l)) (33)

s=1

Then we obtain the estimates

n
k+1 k+1
Ujm — Wj+1m + Z Mshj+ Ty (L) (z

k+2+n
j_%” <Ch |u’Wk+2+n,oo

(34
= (I]UI]+1> ( )
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where pis are constants independent of u and ;.

Two convolution-like operators

To facilitate the analysis in Chapter 2 and 3, we define two operators on a periodic functions

win L2(I):

N— 1
—N +2 l
== + (x—i-LN), N is odd,
l:()
;| Nl l I
Myu(z) = T > A e + L), Al=1,
=0

where L = b — a is the size of I and N is odd in (35a).

Expand u by Fourier series, i.e., u(z) =Y o2 f F(n)e2m /L e have

N-1 00
_ . l
Bu(r) = 30 () S e T )
=0 n=—oo
© - N-1 _N+92 n
_ T inx ZQT('N l
> fn)e > 5 )
n=—oo =0
n
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In addition, we can apply the operator on the same function recursively, we have

Vn 0 1 27
Xl/\l L9 ():Z

r 155 ine
Tl T f(n)e L7,
n—oo (1= A NWL (1= \ye®™ N )

A~

Next, we estimate the two operators. Assuming u € W?”l(I ), then the Fourier coefficient
f(n) satisfies:

|ul ka1

f ()

f(n ‘ < TP (36)
Since N is odd, then w" = N

TN # —1,¥n. Hence, Bu(z) are well defined. We estimate
Bu(z) by splitting it into blocks of size N as

IN+ L n
_26271'2N . 27rmx
Bu(x) = Z S;, where S = Z ————f(n)e L
1+ 27TZN)2
0 22N inx 3N
Let’s estimate S}, ; first. Denote Wy (n) = — 627”& ; L™ For [n| < [%57], [Wi(n)| =
(1+e"" " N)
2 2 N-1 2
< - < =
[1+wh]? = |1+e’37r/4|2 2- f For other n, [W1(n)] < [W1(55)]
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from Taylor expansions.

%] n=—l3g-1 o
Sl <= > [femwa)| + W) + Fmwin)
_ 3N N1 _3N
n=—[%"] 5 n=[g"]+1
, B n=-[3-1 Nt
< 5o 2 [felroent 3T fmfrent 30 |im)
B __3N _N-1 _3N
n=—[%"] 5 n=[=g-]+1
3]
2 - s 1
S v X 7|+ ON2 s (7 Dy
”:—[T]
N-1
e 22: ! Ly
> 3,1
v @) o)
n=—"9
Then, in a similar way;,
IN+ L , )
Kl (D DR e T 1 )
n=IN-N1
Therefore,
> 1 > 1
N=—00 [=—o0

Similar to the estimation for Bu(z) above, we split X into blocks of size IV,

00 (I+1)N-1 e%inm
Xyu(z) = Z S;, where §; = Z f(n)Wa(n), Wa(n) = —
l=—00 n=IN 1—Xe™"'N

W (n) is singular when X is close to any n-th root of unity. Assuming ‘1 — 2\ ‘ =
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O(h‘sl) and |A — 1| = O(h%/2) with 0 < §/2 < 1. We can write A = ¢*? and assume
6 € (0,7) without loss of generality. First, we establish a relation between ¢ and §'. Since
IA| = [AN] = 1, we have 6,8 > 0. Because 1 — AN = (e2mn/N N _ ()N — (e2min/N _

6i9)(2;i61(ean/N)N_l_l(ew)l), thus ‘1 .

’1 — /\N‘ ~ Ch5/, po'+1, Particularly, when n = 0, we have |1 — A| >

Ch%+1, hence §/2 < +1.

In addition, |Wa(n)| = [\ —w™| 7! < Ch=O"+1) With the assumption that 0 < §/2 <1,

_ +1
there Ing ~ O(hY/271) sit. 2%”—]\9 < n(fN . Let ny = |ng/2],n2 = 2ng — ny,
then for n1 < n < no, f(n)‘ < Cl+ 2|u]W2 L7y For other n, |wo(n)| < |wa(ny)| <

< Ch9/2, Thus,

1
2[sin(mny /N—0/2)]

ny—1 N—-1 ngy
Sol <02 N+ N ’f(n)’ +on 0+ Z ) )
n=0 n=ng-+1 n=n

-1
1 ! 1
<c[n2y RO (g — ng +1)——
= — 1+ [n]? * (2 =m+ 1)y +n2 uly2.1r)

N-1
—5/2 1 —(6'41)7,6/2—1, 25
< E
<C|h 2 1 P +h h h |U|W271(I)

1,—0/2 —5’—5/2
< :
< Z 11 |n|2 [uly2 )

Using similar approaches, for [ # 0,

(FON-1 / X
S|<c|ni2 NN e LU N — .
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Summing up, we reach the estimation

o0
—5/2 1 5" —5/2 |, —6'16/2 1
Myu(z)| < C [ R702 3 1+|n|2+h /24 p0 402 3 e [uly21
[EN,I#0

n=—oo

(38)
/
—§'—5/2
<Ch -0/ |ulw2,1(1)'
Corollary .0.7. When A;,i < n is a complex number with |\;| = 1, independent of h, above

estimates yields following results:

V1. i
X/\l G u(cc)‘ < C|U|W1+Zn

i=1 Vi,l(l)’ |(EEU($>>V’ < C‘U|W1—|—21/,1(1)~ (39)

Estimates for M;,,
Let’s recall the definition
M = (Aj + Bj)*l(Gijm +HLT ), VmeZ"Vj€ Ly,

where G, H, A, B;, L LT T Aj are defined in Table 2.1.

Jm? gm0

- Lo a1 | |1 0
Aj+ By =Gllyp o Ll + HILgy o Ll =50 | Mt |
0 E —ﬁl —Q 0 E
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where

1 0
_ - + - +
My = Ly p1ELjg 1o Lip £ Lyl
0 hj
14 (—1)k1 14 (—1)F
k(k—1)(1 £ (=DF) k(k+1)(1 4 (=1)FH)

Therefore,
8 "
1 -0 2 —
(4 + Bj)fl oyl 2k (k+(—1)F) 7
Dy E(k—(=D)F)
Prhj — =——— arh;
where D = S ((_1)ij +A;).

2 (k+(—1)F)

In what follows, we estimate M ,,, when scale-invariant flux parameters are used in (40),

and when oz% + 5162 = 21[ in (41).

e Scale-invariant flux parameters.

129



Dy is bounded by definitions of I'j, A; and mesh regularity condition. Then

o
(Aj-l—Bj) G X =
o L
hj
_ Sph—1 1 1 o -1
LM—l aq Pahh; R (D) 5 +ai Bahh;
Dy — ~ _(_1])k S ’
! Bih—1h; — ME=CDT) a1 U S
Lo
(Aj—i-Bj) H , =
o L
"
i 23 -1 _ 1 1 —1
LM—l aq Pahh; (P 3 —o1  Pohh;
-] ok -
L GrhLp — M=) al Bih™th; &+ ag
and
1 0 1

0 % m(m + 1)
1 0 1
+(=1)™A; + Bj)tH
0 % —m(m+1)

If the mesh is uniform, the three formulas above are independent of mesh size h.

For nonuniform mesh, by mesh regularity condition, doq,09,s.t.,01 < h_lhj < o9,

therefore,
71 1 0 L 1 0
(Aj + Bj) G . <C, (Aj + Bj) H . <C, HMj;mHoo <C
00 J 00

(40)
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o of +BiBy=1.

h;T;
— — J"J ; ;
Aj=0. Dy = ()R and above formulas simplifies to
. 1 0
(Aj + Bj)i G =
0 L
"
1 P1h; -1 _ 1
L R LN NS Bah; 2k (k+(—1)F)
2Dy k(k—(—1 - ’
Brhy — TG gk (k= (<)) aq — §+ Boh Uk(k — (-1)P)
. 1 0
(Aj + Bj)_ H =
0 L
hj
1 by S S
Loy T2 kG (DR Pah; 2k (k+(—1)F)
2Dy~ k(k—(—1)F)

Brhy — FEEG s ark(k — (—)F) aq+ § = Boh Lk(k — (—1)F)

Thus, we have the following estimation

1 1
ls—aq| [5+aq] |8
max <|51|7 2 h I V h ) ‘h?z'

T

[Mjmlloo < | 1+ (41)

Proof of Lemma 2.2.2

oy k—2 , .
By Definition 2.2.1, P}’:u|]j = o YjmLjm + 0 p—1Ljx—1 + ;1 L; . We solve the two
coefficients 1 ;. _1,; j, on every cell I; according to definition (2.16).

If assumption AOQ is satisfied, it has been shown in Lemma 2.2.1 that (2.16) is equivalent
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to (2.20). Substitute v and wu, by (2.23), we obtain the following equation

A; + B; -1 = (A; + B; ikt 3 - (GLT _ + HLT 42
(4; + Bj) = (4; + Bj) + > wim sm T HL ), (42)
Uj ke wj m=Fk+1

the existence and uniqueness of the system above is ensured by assumption A0, that is,
det(A; + Bj) = 2(—1)ij # 0. And (2.26) is proven by multiplying (A4; + Bj)_1 on both
sides of above equality.

If any of the assumption A1/A2/A3 is satisfied, (2.16) can be written as

k k 00 00
G Ly +H Y i ml, =G> wjmLoy +H > ujpy L,
m=0 m=0

m=0 m=0

where we used (2.23) and G+ H = I in above equality. Since 4, , = u;,, when m <k —2,
0 0 00
A +B = Y ujmGLy +ujprmHLY,.
ﬁch ﬁ’j—l—l,k m=k—1

In order to solve for Uj j—1,Uj |, we group above coupled equations for all j in a 2N x 2N

linear system as follows,

(G m
Uy 61
M Vay_yk-1| = |nv-1]| (43)
UN_1 k ON_1
UN -1 nN
i Nk |1 On |
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where

o
6> wln Y il
m=k—1 m=k—1

and M = circ(A, B,0g,- -+ ,02), denoting a 2N x 2N block-circulant matrix with first two

rows as (A, B,0g,--- ,09), with 02 as a 2 x 2 zero matrix. We can calculate that
—2k 1
det A = det B = — — (a3 + 1P — 1) #0. (44)

It is clear that the existence and uniqueness of P;; is equivalent to det M # 0. By a direct

computation, det M = det AN det(Iy — QN), where Iy denotes the 2 x 2 identity matrix, and

_ —1)k+l {er 2 b1+ b2
Q—-—atp- U
Y

by —by c1—c

with

k‘2 ]{?2 . k?2
er =+ T g 2 gyt D (45)
k
2 E(Qal) (46)
k2(k2 +1 242 1
=—0f1 — %52 + == (02 + B1f2 + 4) (47)
2k3 2%k 1
by= =g+ (0l + 1B+ ) (48)

The eigenvalues of () are

( 1 (k+1)

_1)(k+1)
n F+\/F2 A2 Ay = L(F— FQ—AQ). (49)

A = n
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Since det ) = det B/ det A = 1, we have the relations A\j A9 = 1 and

b3 =T2 - A% - 3. (50)

Below we discuss the existence and uniqueness of P;{ based on the types of eigenvalues
of Q.
A1 If |I'| > |A[, then A\q o are real and different. Therefore, we can perform eigenvalue

decomposition of @,

Q=TDT !,
where
A0
D = ,
0 X
and
1 __bithy 1 _ bty
by —bo ] ’ detT | bi—by ) ’
cg+VT2Z-A2 co+VI2Z-A2
_ 2V/T2-A2 _ _
where detT = Y~y except for the case when (by — bg)(by + b2) = 0 and ¢o < 0,
co+ —
where
1 _ bitbo 1 b1+b9
T = 22 | plo 22 | (52)
by —bo ) bi-by
2c9 2c9
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In both situations, we have

MV oo 1-\V 0
! ) = det AV det( ! ).

det M = det AN det(Iy —
0 Ay 0 1-AY

det M # 0 if and only if (A\{)Y # 1 and (A2)"V # 1, which is true since |A1| # 1 and |[A\g| # 1.
A2 If [T'| = |A], then \y = X\ = (—1)k+171§ and we have two repeated eigenvalues.

Perform Jordan decomposition:

c1+co b+ by cqp 1 .
=T T,
by —by c1—co 0
and
o 1
T = , ifby # ba, (53)
by — by 0
201 0
T = , ifby = bo.
0 1
We define
_1k+1
E il CEE I 1
j = A = ) Q = 7—&77'7 )
0 0 Al
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then

‘ . . W\ .
@ = TPTY gi= |t Y]

J
0 N

2 —KRN

L-QY =T T
0 2
NS
where r; = (D/(\—j)JjFJ_l.

In both situations, det M # 0 if and only if (Al)N # 1, meaning that we require N to
be odd and further, if k is odd, we require I' = —A; if £k is even, we require I' = A. In both
cases, A\ = Ay = —1.

A3 If [T'| < |A], then Aq 9 are complex, [Aj o] =1, A\ = A9, still Q is diagonalizable, and

similar to A1, det M # 0 turns to ()q)N # 1 and ()\Q)N = (M) #1, ie. we require

r I N
(—)FDN [ 2 (—) —1] #1

Summarize above results, we proved the existence and uniqueness for P}’{ when any of
the assumptions A0/A1/A2/A3 is satisfied.

In order to obtain the exact formula of @; ;1 and 4;;, we analyze the inverse of the
matrix M. It is known that the inverse of a nonsingular circulant matrix is also circulant, so

is a block-circulant matrix. In particular,

M~ =cire(rg,ry, - ry_1) @ A
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where ® means Kronecker product for block matrices and r; is a 2 x 2 matrix defined as,

= QI — QY)Y G0 N1 (54)

Therefore, if any of the assumptions A1/A2/A3 is satisfied,

.k
N-1 o0
U, U5
. k-1 A+, k-1 _

=) nA (A +B + Y Gl + i m LY ),

=0 Ujtik Uj 41,k m=k+1

N-1 00

U ; Us;
j+lk—1 J+1+1,k—1 _ 11—

= Tl( -Q + Z uj-i—l,m[Lk_lv Lk] Ly,

=0 Ujtlk Uji41,k m=k+1

- uj+l+1,mQ[L]—:_1> LZ;_] _1L7—”~/_1>

U 00 N-1
]ak_]- — —1—15—=
N p ( Wit Vom + wimrolLy_q, L] Ly

— Uj+N,m"N [L];_lu L];]ilL;n)

Uj’k_l 0 N—-1
- + Z (ujvmv]-vm + Z uj+l,mrlv2,m)>
Uj k m=k+1 =0

where ry = QN<IQ — QN)_l = rg — I3 is used in the third equality. And (2.27) is proven.
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Proof of Lemma 2.2.3

Denote
Uj jp—1 — Wj j—1
U] _ J J ’
Uje = Uk
When assumption A0 is satisfied (2.28) is a direct result of (2.26) and (41).

If any of the assumptions A1/A2/A3 is satisfied, we have

. N-1
u. J— u . OO
7,k—1 7,k—1
Uj = = D> WmVim+ D uiimriVam)-
aj,k — Uj,k: m=k+1 =0

In order to estimate Uj, we first compute 7; to get its detailed dependence on [. If A1/A3,

@ is diagonalizable, then

Al 10 AL 00
r=TD'(I,— DY) '™t = o7 T4 2

0 1 (55)

A A
_ 22 (1, —Q),
1—A¥Q1 1—A§(2 Q1)

where

o 1 co +VI2 — A2 b1 + ba (56)
1] = — , 56
T2 A2
2VIE = A b1 — by —cg + V2 — A2

when T is given by (51), and
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1 2c0 by +bo

b1 — by 0

when T is given by (52).

If assumption A2 is satisfied,

N —1)! —N +21
n=Q'n-o"y ' = Cln sy g, (58)
where
01 ) 9 b1 + by
Q=T T = : (59)
00 by —by —co

When assumption Al is satisfied, eigenvalues A\i, A9 are real.

N—1 I
Al2 11—V

| | =
i R

Without loss of generality, we assume |[A\;| < 1 < |Ag], then

N-1
IR SR Y1

2 T S T T R
N-1 )\12 1

T S
=0 72 2

And thus
N-1
1@1llc | 12— @1l
r < + . 60
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Then we have

N-1
1Ujllos < C1+ Y Iralloo)luly k41,00 )
=0
k1 1Qilloc | 12 — @illoo
R L ¥ R W)

where (2.25) and the fact that V7 ,,, V2, ¥m > 0 are constant matrices independent of h
are used in above inequalities.

When assumption A3 is satisfied, eigenvalues A, Ao are complex, with |[A\j 9| = 1 and
above estimation does not apply. We perform more detailed computation and use Fourier

analysis to bound U; by utilizing the smoothness and periodicity of u. If u € Whkt2+n.00(),

o0 n
1
Uj = Tl Z (Ul+j,m - Z 65hk+1+5u(k+ ) (xj+1—%))vz’m)

© n
k+1 (k+1
+ ] Z Z h++s ++S)(xj+l 1)Vam + Z Ui mV1m

m=k+1
s

= O(hk+2+n|ulwk+2+n,oo(jj)> + Z Uj,mvl,m
m=k+1
o~ Nm s N~ A A (k+1
+ Zes““Z(l_ Ql+m( — Q))uFHH) (¢

m=k+1 s=0 (=0 1

k+2
=O(h * Jrn|u’W'l<:—|—2—|—n 09(1 ) ) + Z UjmV1m
J m=k+1

+ 30 DRI QL Ry +H(T — Q)R T (o

m=k+1 s=0

/
< OBl ooy (1 721 Qulle + 12 = Qi )

)V2m

l\')h—\

-

where (32) is used in the first equality and (38) is used in the last inequality.
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When assumption A2 is satisfied, by similar computation, if u € Wk+2+n’oo(l ),

o0
k+2
Uj = O(h * +n|u’Wk+2+n,oon)> + Z Wi mV1,m
m=k-+1
o) n N-1
1 —N + 2]
D0 Dot 2 () () m Qe e 1y
m—Fk+1 s=0 1=0 2

Z Z 0, hk-i-l-i-s QQ (k+1+s) (. 1)Vam

k+1
< Ch + |U|Wk‘+1 oo

m=k+1 s=0 72
N—l
k+1+s y(k+1+s) (k+1+s)
Z Z sh ($3+N—7 Z“ (xj+2l/—l)
m=k+1 s= O =0
(k+1+s)
k+1 Q2]

where (34) and (39) are used in the last inequality.
The estimates of U; for assumptions A1, A2 and A3 are finished, and (2.29), (2.30) and

(2.31) are direct results of the estimation of ||U}||cc-

Proof of Lemma 3.2.3

Proof. Since Pju = P;Iru when A0, the formula for u; ;1,1 is the same as (2.26). That

is,

U, U 0
jvkj_l ]7k_1 z :
Lk ik | m=k

Under assumption A1/A2/A3, above formula is well-defined if and only if M, is not singular.
By the analysis of M ,,, in Appendix, the existence and uniqueness condition is det(A+B) =

2((=1)FT 4+ A) # 0. Thus, by (40) and (2.25), (3.9) is proven.
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If any of the assumptions A1/A2/A3 is satisfied, then the difference of two projections

can be written as
Wulr, = Piulr; — P}]:U‘Ij = (U k-1 = Wj 1) Lyj -1 + (G — U5 ) Lj -

The properties of P}’{ u and P);u yield the following coupled system

Uj -1 — Uj -1 Ujt1 fo—1 = Ujt1 k—1 7j :
Al g +B|’ / =7, vjezy,
Uj o = U Ujp1 ke = Witk Lj
to 1] T
T u P'u P'u
il G h g h
Lj Uy (P]];u)x (P;];U)x
Ity Ity Ity
(u—Pluly | —@w-Puly
_ G ]+7 ]+j
(u—Plu)aly | — (u—Plualy
Jt3 Jts

where the second equality was obtained by the definition of PhTu (3.8b).
Gather the relations above for all j results in a large 2N x 2N linear system with block

circulant matrix M, defined in (43), as coefficient matrix, then the solution is

. N N-1
u . — u . 7- .
Jak_]- ]7k_1 —1 l+] .
= Z T’ZA , )€ ZN,
Ujk = Ujk 1=0 Ut j

where by periodicity, when [ +j > N, 74 ; =71 i N, U4 = t4j—N-
On uniform mesh, by the definition of R;,, in (3.12), Rj,,(1) and (R;;,)z(1) are

independent of j, we denote the corresponding values as Ry, (1) and (R;,)z(1) and let
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Ry = [Rm(1), (Rm)z(1)]T. By (3.11), we have

(=Pl —@=Pul ~
T 2 T 21 = ) (Wim —ujp1m) B
(u—Ppu)zly | = (u—Pyu)ely 5 m=k+1
Jt3 Ity
and

g N N-1 00

Ujk—1 — Uj k-1

s T —1 — . .

= (> (wjm — wgjr1m)A GRy,) =8;, jE€Zy. (62)
ﬁj,k — ﬂj,k‘ = m=k+1

Using (33), we can estimate S; by the same lines as the estimation of U; in the proof of

Lemma 2.2.3 in Appendix, and (3.10) is proven. ]

Proof of Lemma 3.3.1

Proof. By error equation, the symmetry of A(-,-) and the definition of sj,, we have

0 = a(e,vp) = alep, vp) + alCp, vp) = /IShUhdx + /I(Ch)tvhdl’ —iA(vp, ), Vo, € Vi
(63)
Now, we are going to choose three special test functions to extract superconvergence prop-

erties (3.16)-(3.18) about ¢j,. We first prove (3.16). In order to have A(vy,, () = |(Ch)ez |,

we choose a function vy € V¥, such that Vj € Zy, ’Ul‘lj = a;p—1Ljp—1+ 0 Ljp+ (Cp)ax,

2 A
f]j Ul(Ch)xxdl’ = ||(<h)xa:||L2([j)a Ul|j+% =0 and (Ul)x|j+% =0.

When the assumption A0 holds, the definition of v yields the following local system for
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each pair of a1 and aj i,

O k-1 (Ch)z: (Cn)7:
(4;+B) | 7| =-¢ o —H o . Viely.
Ok (Ch)awa | 712 ()| V72
O k-1 L0 (Ch)z:
P =~ 4+ By '@ o 1
ok 0 7

Ry | LGz D)

(64)

L0 (Ch)gci_x
-1
_ (Aj-i—Bj) H , — |1
0 @ hj((h)a:x:z: )

)

thus vq is nontrivial and uniquely defined under assumption A0. By orthogonality of Leg-

endre polynomials, it follows that

2 2 2 2 2 2
o220 ) = gl [ 2gdetlagel? [ 13 dn 4 1 Garl2a,
J

J
< C(hj”(Ch)a:xH%Q(an) + h?\l((h)xzx!\%2(ajj) + H(Ch)a::cl!iz(lj))

< CH(Ch)foiQ(]jy

where (40), trace inequalities and inverse inequalities are used in above inequality.

Let vy, = v1, then (63) becomes

0= [ swoida+ [ (Gwrde = Gi)ee

Hence [|(Cp)aall® < s+ (Gl - l[vrll < Clisp + (Ga)ell - (n) |l Therefore, (3.16) is proven
when assumption A0 is satisfied.

Similarly, in order to have A(vy, () = — Zé\le |[Ch]|2+1, we define vg € V,f, such that
JTY
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Vi€ Zy,v2lr; = ajr-1Ljp-1 + @ikl ffj v2(Cp)zadr = 0, @2\].% =0 and (vz)xlﬂ% =

[Ch]|j+1. When assumption A0 is satisfied, this definition yields the following local system
2

for each pair of o ;1 and a;

aj,k—l 0 0
(Aj + Bj) =G RS 1+H R Vj e Zn.
O f [Chl| VT2 [Cul] V72
By same algebra as above, we have
O j1 10 0 10 0
’ = (A;+B) L@ H(A By H -
1 | I 1 | -
;i k 0 h; hilCpl| VT2 0 h; hilCpl| 772
By (40), it follows directly that
2 3 2 2
v < Ch; + .
ootz < ORI,y +1GIE_y)
Plug vy in (63), we obtain
N
S UG,y =i [ sneada i [ @orwade < -+ @il
o Al I I

Therefore, (3.17) is proven when assumption A0 is satisfied.

Finally, in order to have A(vy, () = Zj\le |[(Ch)x]|2+1, we choose v3 € V}f, such that
)

Vj € Zy,vslr; = jr-1Ljp-1+aj L such that ij v3(Cp)zadr =0, ’03\j+% = [(Ch)x“ﬂ_%
and (Ug)g;|j+1 = 0. Follow the same lines as the estimates for vg9, we end up with the
2
estimates
2 2 2
Jeslagr ) < ChUCAIE, y + IGeLE_y).
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Plug v3 in (63), we obtain (3.18) when assumption A0 is satisfied.
Under assumption Al, we need to compute Eﬁl(\aj7k,1]2 + ‘@j,kP) to estimate ||vy ||2.

The definition of vy yields the following coupled system

= F

O p—1 Q1 k-1 (Ch) (Ch)
G I - 3 -G m - H o . jEZy. (65)
@ k i1k (Cn)zwz | T2 (Cp)daa | VT2

Write it in matrix form

MOt:b, a:[alj...’aN]T7
where M is defined in (43) and
(Ch)a (Ch)ata
o = [oj g1, 0j k. b=[b1, -+ .by]T . bj = —G o, L

Left multiply A~! in (65), we get an equivalent system

Ma=b, M =circ(Iy, A7'B,0g,-- ,09),b' = [b],--- ,b)y]" b = A7 b,

and (M")~' = cire(rg,--- ,7y—_1). By Theorem 5.6.4 in [29] and similar to the proof in
Lemma 3.1 in [10],

M = (F ® L)QUFy @ Iz),

where Fy is the discrete Fourier transform matrix defined by (Fy)i; = \/Lﬁw(i_l)(j -1),

;21
w=e"N. Fy is symmetric and unitary and

Q =diag(lo+ A'B, Ih + wA™IB, -« | [+ wNT1ATIB).

146



The assumption % > 1 in A1l ensures that the eigenvalues of Q = —A~1B are not 1, thus

I» +w/ A~1 B, Vj, is nonsingular and € is invertible. Then

(M)~ = [[(M") M2 < |1 Fx @ Ball2/|R2) Fy @ L]l < C. (66)
Therefore,
N
D (il +lajil®) = ala = @) (") (M) )"
j=1
N
< I THBIYIE < ¢ D 11v513.
7=1
1 0 10
Since A~1G JATLH are constant matrices, we have
0 + 0 +
h h
(Ch)z: (Cn):
8113 < € N R
h(Ch)Exw Ity 9 h(Ch)Echm Ity 9

< 0<||<<h)m||§2(a]j) + ||<<h>m||§2(mj+l)
+ h2||(€h)$wx||12(8]j) + h2||(<h)xxx||22(8]j+1))

where inverse inequality is used to obtain the last inequality. Finally, we obtain the estimate

N N

2 2 2 2 2 2
ol = Dot P2 ) + Do lagal il ) + 1G]
J=1 J=1
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N
<Nzl + Ch Y (g1l + la il
j=1

N
< NGl + Oh (NGl 2o,y + W)l 2, )
j=1

< H(Ch)m:”z + Ch||(<h)xx||i2(3IN) < C“(Ch)xxHQa

where inverse inequality is used to obtain the last inequality. Then the estimates for (3.16)
hold true. (3.17) and (3.18) can be proven by the same procedure when assumption Al is

satisfied, and the steps are omitted for brevity. n

Remark .0.1. When assumption A2 or A3 is satisfied, the eigenvalues of Q) are —1 or two
complex number with magnitude 1, then a constant bound for p((M')~1) as in (66) is not

possible. Therefore, we cannot obtain similar results for assumption A2 and AS.

Proof for Lemma 3.3.2

Proof. Since wq € V}f, we have

k
— d .
wq|[j = Z ¢ mLjm: (67)

m=0

Let vy, = D*QLj’m,m <k —21in (3.19a), we obtain

2m+1h2'

a _ j 9,

Cim = 1 3 vy [lﬁtwq_lD Ljmdz. (68)
J

Since D_QLj’m € PC’”+2(Ij), by the property u — Pfu L V}f_Q in the L? inner product

148



sense, we have

12
4”@-%] t(u— Pfu)D 2L pde =0, m <k —4,
2
1 2m—|—1h
G = =2 [ o = ) L (69
J I m=k—3k—2.

. -2
Hwjk = Wig) L) D" Ljmdz,

By induction using (67), (68), (69), for 0 < m < k — 2 — 2q, Cim = 0.
Furthermore, the first nonzero coefficient can be written in a simpler form related to
uj p—1 by induction.

When ¢ = 1, we compute c} w—3 by (69) and the definition of wg. That is

2(k—3)+1/h;\2 , _
k3 = i h; (?f) a““mk—l-“mk—”b/][):”Gk—sLmk—ldI
J I

= Ch30¢(uj 1 — 1 j—1)-

-1 2q—2 Aq—1 ,
Suppose c%+1_2q = C’hjq of (4jg—1 — 1 —1), then

2@-1—2@+1(%

q _ _J
Cik—1-2¢ = ¢ hj 2> atcj,k+1 2q/ D~ ij 1-2¢Lj ki 1-24d7

2 ,
= Chy 0 (uj j—1 — U jp—1)-

The induction is completed and the second formula in (3.23) is proven when r = 0.
Next, we begin estimating the coefficient cg - By Holder’s inequality and (68), we have

the estimates for c;].m, Ek—1—-2¢<m<k-—2,

‘cq- ‘<C’h2_£H8w | s
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To estimate the coefficients cg. Y c;]. 1-» We need to discuss them under different assump-
tions. If assumption A0 is satisfied, meaning (3.19b) and (3.19¢) can be decoupled and
therefore wy is locally defined by (3.19). By (3.20) and following the same algebra of solving

the k-th and (k + 1)-th coefficients in (42),

1 =
JR—= _ q
- Z Mjamcj,m'
Cj i m=0

By (40), for all j € Zy,

2
<C Y || SO0l

y<C

g g 2
ik k-2 B<m<k—2 ijm‘ < OWl19rwg—1lloo1;)-

If any of the assumptions A1/A2/A3 is satisfied, (3.20) defines a coupled system. From

the same lines for obtaining (2.27) in Appendix, the solution for c;]. b1 c;]. ;18

a k=2 N-1
. = rA (GLij—H,m + HLij+l+1,m)
g =k—1-2q (=0
ik " 1 (70)
k—2 N-1
_ d d
= — (Cj’mvl’m + Z CjJrl’mTlVQ,m).
m=k—1-2q l=

Under assumption Al and scale invariant flux assumption, (60) implies Zf\i 61 I71]lc0 <

C'. We have the estimate for C;Z'm7 m =k — 1, k, that is

q N-1

c'ak_l 2

J <C(1+ g 1711l 00) max|c?+l’m\ < Ch Hﬁtwq—luLOO(IN)-
c? =0
j?k o0
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Under assumption A2 or A3, Z{\i 61 |I71]| 0o is unbounded. Thus we use Fourier analysis to
bound the coefficients utilizing the smoothness and periodicity by similar steps of estimating
U; in the proof of Lemma 2.2.3. In the rest of the proof, we make use of two operators X
and H, which are defined in (35b) and (35a).

When assumption A3 is satisfied, Q = —A~1 B has two imaginary eigenvalues Aj, Ay with

l l
A A9
M| =X =171 = )\NQl + - )\N (I — @Q1), where )1 is a constant matrix independent

of h, and defined in (56) and (57). We perform more detailed computation of the coefficients.

In (69), plug in (2.27), for m = k — 3,k — 2, when uy € Wk+2+m.00(1),

L 2m 1R > gl L
Cim =1 Y ] [Lj,k:—la Lj,k]at Z (u]"pvlvp + Z uj+l,prlv2’p>D Ljmdz
J p=k+1 =0
N-1
2m+1 h >
=1 5 Z 8t<ujp m + Z u]HprlF’ )
p k+1 =0
2m+1 > - k+3+s (k+1+s) 1 k+n+3
=1 ) Z (Z/Lsh Uy (x] %)F m T O(h |utywk—|—2—|—n,00([))
p*k+1 s=0
N-1 1
A k+3+s,, (k+1+8) 2
=3 N@ (1 - Q)) ) ush (2, Fm)
=0 1— )\ )\ —0 J 5

2 + Z ZM hk+3+s k+1+5)(:1:‘

p=k+1s5=0

E+1+ 2 k+3
QU+ = QR ) F )+ O ]y )

1) B
j- 3

where Fpy, = 7 f[ k=1 LjplVup D™ I{7 mdxr,v = 1,2, are constants independent of h
and (32) is used in the third equality.

Plug the formula above into (70), by similar computation, we have

k—2 %)

C},k‘—l _ 2m+1h2 Z Z ZM hk+1+s k+1+3)< i

1
ch€ m=k—3 p=k+1 s=0

JEpmVim

M\»—A
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k+14
+(Q18), +T — QR @ (R Vi + Fp Vo)

D=

j_

+ (@1 %), +(I2 — Q1)®A2)2U§k“+s)($~ %)Fg,m‘/zm)

By (39), we have

ket 1+
(Q1 %y, +(I2 - Ql)g)\g)yug e, 1) < Clutlykt2tstud gy < Clulyphrarsiva gy

D=

jf

Therefore,
bl S Conf 3 =k =3,k —2, and[e} | < C3pM m=k - 1k

By induction and similar computation, we can obtain the formula for c;]- m- For brevity,

we omit the computation and directly show the estimates
d k+1+2
|cj7m|§C’3qh 9 k—-1-2¢g<m<k.

When assumption A2 is satisfied, Q = —A~1B has two repeated eigenvalues. r; =

(-1 I —N421 : - _
Io 4+ (—1)'—F=@Q)2, where (Q2/I" is a constant matrix. For m = k — 3,k — 2, when
2 4T

ut € Wk+2+”’oo([ ), we compute c} m Dy the same procedure as previous case and obtain

IM+1.9 o= w

1 2 k+14s/ (k+1+4s)

Cjm = =g h E E psh *(yy (x
p=k+1s5=0

(R + %E)UIEIH_H_S) (z

1
)Fp,m

D=

j_

N —

+
=
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Plug formula above into (70), we have

k—2 00

1
Gk-1| _ _2m + 1 (+1+
T = RS S S bk i DFynVim
ck m=k—3 p=k+1s=0 2
7.k
1 Q2 (k+1+4
+ =@ + 2B @ )(ER Vi + FlnVam)
2 J 5 D, p
+imo+ @E)Qu<’””s>(x VEZ . Va.m) + O(RF 24y )
4 -1 t j— % 2,m twk—i—?—i—npO(I) .
By (39), we have
®@+ Lapu e ) < ol < Clu
jf% > t Wk+2+s+2u,1(1) = Wk+4+s+21/,1(1)

and

[l < CobFT3 m =k —3 k=2, and|c],, | < CypFTS m=k—1k

By induction and similar computation, we can obtain the formula for C?‘ m- For brevity,

3

we omit the computation and directly show the estimates

el < CyghP T2 k-1 -2g<m <k

All the analysis above works when we change definition of wg to 0jwg (and change

(wy—1)¢ to O +1wq_1 accordingly) in (3.19). Summarize the estimates for c?,m under all

three assumptions, for 1 < g < L%J, we have

< C hk+1+2q

DN

N k
k+1+42
0F ]l < Corgh® T2 Nfwgll <CQ L Do 10Fe] ,17hy)
j=1m=k—2q—1
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Then (3.23), (3.24) is proven. And (3.25) is a direct result of above estimate and (3.22). O
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