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ABSTRACT 

 

SPECIALIZED METABOLISM AND STRESS RESPONSE: STUDIES IN PREDICTING 

GENE FUNCTION AND REGULATION 

 

By 

 

Bethany Maren Moore 

 

One of the longstanding challenges in biology is to connect the wealth of genome data to 

the phenotypes it encodes. In plants, phenotypes can encompass a variety of traits, but one of 

interest is that of specialized metabolism, or the production of compounds unique to only 

specific lineages of plants rather than all plants. This interest comes from the wide range uses of 

specialized metabolites from defending a crop plant against insect herbivory to using the plant 

compound as a base for pharmaceuticals. The challenge faced is that due to their high diversity, 

among other reasons, the genes underlying the process of making specialized metabolites are not 

well characterized. In addition, specialized metabolism pathways can be induced by stress, 

however it is unclear how most SM pathways and stress responsive genes are regulated. 

Therefore, the research in this dissertation focuses on 1) How to identify the function of genes as 

being involved specialized metabolism 2) What characteristics are shared among specialized 

metabolism genes (SM genes) 3) How are SM genes and genes involved in response to stress 

regulated? 

For the first two questions, chapters 2 and 3 use machine learning modeling to predict 

specialized metabolism (SM) genes in Arabidopsis thaliana and Solanum lycopersicum (tomato). 

A shared set of characteristics emerges as being important that includes expression features 

under biotic stress and in specific tissue types. Additionally, evolutionary and duplication 

characteristics were important where SM genes tend to be recently and tandemly duplicated, as 

well as less conserved than genes not in SM pathways. Using these characteristics to build a 



 

machine learning model, 85.6% of SM genes in A. thaliana and 76.6% of SM genes in tomato 

were correctly predicted. Additionally, we show that the superior annotation in A. thaliana is 

able to make cross-species predictions in tomato as well as improve SM gene predictions relative 

to the model based only on tomato annotation. The improved model predicts 92.4% of SM genes 

in tomato correctly. Finally, machine learning is used to predict SM genes to a specific pathway. 

 For the third question, chapter 4 uses machine learning to predict how response to 

wounding stress is regulated and what regulatory elements are important for an SM pathway that 

is activated by stress. Important putative cis-regulatory elements were identified for genes 

differentially expressed under wounding stress and temporal patterns of regulation were 

discovered. Using machine learning, these putative cis-regulatory elements were found to be 

important in driving differential expression of genes at different time points after wounding. 

Additionally, regulatory elements were mapped to the genes in the SM pathway glucosinolate 

biosynthesis from tryptophan to determine element important for the regulation of this pathway 

under wounding stress. In this dissertation I examine computational approaches to identify gene 

function and regulatory mechanisms, highlighting the fact that machine learning can be a 

powerful tool to make challenging predictions. 
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CHAPTER 1 : INTRODUCTION 
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Understanding the link between genes and phenotypes 

 

 With the ever-increasing amount of available genome data, a major challenge in the field 

of genetics is to link genes with the phenotypes they produce (Dowell et al., 2010). Phenotypes 

are influenced by both genetic and environmental factors, and can encompass a variety of traits 

(Großkinsky et al., 2015). For example, in plant science a phenotype can be structural, from the 

whole plant level, such as height or yield to the physiological level of the production of certain 

metabolites via a metabolic pathway or a cellular response. Traits at the structural level are 

influenced by those at the physiological level, for example when a set of enzymes make a 

metabolite that is a pigment, we see this pigment in the color of the fruit or leaf of the plant 

(Großkinsky et al., 2015). At the molecular level, phenotypes can include transcriptome and 

proteome data, which are traits that build physiological phenotypes. Despite many new 

phenotyping technologies, a significant gene-to-phenotype gap remains (Tuberosa et al., 2014).  

Connecting genes to their phenotype can be challenging for a number of reasons. One is 

that plants exhibit plasticity, meaning that in different environments, the same genotype can 

exhibit different phenotypes (Tardieu et al., 2017). Thus, the expression of certain genes may 

only be seen under a certain stress or condition and large-scale experiments of different genetic 

backgrounds may be needed to uncover genes that may be beneficial under specific conditions. 

Another challenge is that traits are often quantitative, meaning several genes may be involved in 

producing a phenotypic trait (Tardieu et al., 2017). Additionally, many genomic markers may not 

actually be found in the causal gene or genes but may rather be linked to them. Thus, a region of 

the genome may be associated with a trait but not the specific gene(s) (Resende et al., 2014). For 

these reasons and others, predictive modeling is essential to connect genes to their phenotype. 
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Modeling via machine learning in biology 

 

 Recently, machine learning has emerged as a modeling system in biology. Due to the 

complex nature of biological systems, and now the overabundance of many data types, machine 

learning can inform the conversion of large, heterogenous data into biological knowledge by 

combining them into one model (Larrañaga et al., 2006). Different types of biological data - 

including genomic, transcriptomic, proteomic, gene networks, metabolomic, and evolutionary - 

can be used in machine learning models. Machine learning optimizes the performance of a model 

by learning from past “experience,” or known examples that constitute training data. The 

objective of a machine learning model is to then predict unknown examples based on inferences 

from the training data (Larrañaga et al., 2006). In a model, instances, or examples of what you 

want to predict, are categorized with a specific label. Features, or properties of the instances, are 

then used to classify the instances into different classes (Libbrecht and Noble, 2015). For 

example, when predicting genes from DNA sequences, the instances would be sequences, some 

of which are labeled as genes and others are not. Features, or various properties of each instance, 

are then used to discriminate between sequences that are genes and those that are not. These 

could be properties such as whether the sequence includes a sequence common to transcription 

start sites, such as ATG, whether it is in an open chromatin region, or whether that sequence is 

conserved in other species. The machine learning algorithm then uses these features to build a 

model that distinguishes gene sequences from non-genic regions. An example of using this type 

of approach is in predicting essential gene function, where genes that are essential to an organism 

are predicted relative to genes that are non-essential in Arabidopsis thaliana (Lloyd et al., 2015). 

Based on a set of labeled known lethal genes, the study predicts 1,970 unknown genes to be 

lethal in A. thaliana by combining evolutionary, expression, co-expression, and duplication-
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based data. This study also highlights the use of different machine learning algorithms such as 

Support Vector Machine (SVM) and Random Forest (RF). 

Different algorithms can perform differently for a given data set, depending on the 

overall structure of that data set. I briefly outline the algorithms tried or used in this thesis, 

however other algorithms for supervised machine learning are available. SVM maps features into 

a high-dimensional space, where features are used as hyperplanes to separate the data into 

different labels (Kotsiantis, 2007). RF, in contrast, is based on a series of decision trees, which 

use features as nodes in the tree to classify instances (Breiman, 2001). Each decision tree is made 

from random subsets of the training data, and the prediction is made from combining all trees 

into a ‘forest,’ where each tree votes for the label of the instance, and the most popular label is 

assigned to the instance (Breiman, 2001). I chose these algorithms out of a selection of other 

algorithms in our pipeline (https://github.com/ShiuLab/ML-Pipeline) because they were most 

compatible with the datasets I used and either RF or SVM consistently performed the best. It is 

important to understand that the algorithms, while having the ability to take on huge datasets, 

also assign weights to features, allowing the models to be interpreted. Thus, how important the 

feature is to your prediction can be determined with some caveats. One is that features are 

assumed to be independent, thus correlated features may have an impact on interpretability. For 

example, if features A and B both behave comparably in separating the instances into their 

respective labels, but feature A is slightly better than B, feature A will be interpreted as a 

significant contributor by the model. However, feature B, because the instances have already 

been mostly separated by feature A, drops in significance. Therefore, only one of the features 

will appear significant even though they both contribute similarly to the model. 

 Modeling with machine learning can be supervised, as was described in the above sample 

https://github.com/ShiuLab/ML-Pipeline
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where certain sequences are either labeled as genic or non-genic. In contrast, machine learning 

can also be used in an unsupervised manner, where instances are not labeled at all. Unsupervised 

machine learning allows for the algorithm to determine how best to group or label the data 

(Libbrecht and Noble, 2015). This type of machine learning is typically used in co-expression 

studies to determine gene function and is called clustering. For example, in a study to determine 

genes that belong to the same metabolic pathway, different clustering algorithms were used to 

cluster genes into different groups according to their expression patterns (Uygun et al., 2016). 

This type of study follows guilt-by-association logic where genes expressed the same way under 

different conditions will likely belong to the same pathway.  

Different algorithms can be used in unsupervised learning such as k-means, c-means, or 

hierarchal clustering, all of which use a type of distance measure to determine if a sample should 

be placed in a group. For example, partitioning clustering algorithms like k-means or c-means 

partition the data into clusters based on minimizing the within-group sum of squares. Using these 

algorithms, Euclidean distance between samples is measured, and samples are added to a group 

until the sum of squares (based on Euclidean distance) no longer decreases (Larrañaga et al., 

2006). In contrast, hierarchal clustering uses either an agglomerative or divisive algorithm, 

where the agglomerative starts with N groups and merges the 2 most similar clusters based on 

distance, proceeding to build a tree until all groups are merged. Divisive clustering starts with 

one cluster and divides the cluster into the most different clusters based on distances, then builds 

a tree out to N clusters (Larrañaga et al., 2006). Unsupervised machine learning modeling is 

emphasized when we don’t know what we are looking for in the data. 

Machine learning has several advantages over traditional statistical modeling. Much like 

Bayesian statistics, machine learning algorithms give a probability score to a sample being in a 
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certain group, or the alternative hypothesis. This is unlike the traditional p-value which 

calculates the probability of a sample to fall into the null hypothesis distribution, or outside of a 

given group. Machine learning also combines heterogenous data, which can be incorporated in a 

non-linear fashion. For example, both binary and continuous data can be used, with differing 

random distributions (normal or otherwise) into one model. Machine learning can also take 

thousands of features and learn which are relevant in predicting a class via a heuristic process 

(Larrañaga et al., 2006), therefore features not previously known to be important to a given 

model may turn out to be influential in the prediction. Feature selection can also be used to 

choose which features are best for distinguishing instances. Then, only these features will be 

used to build a model, which is often superior to a model with all the features. This can be useful 

to better understand the significant features so that the biology behind them can be interpreted, 

but also to simplify the model by removing noisy and redundant features (Libbrecht and Noble, 

2015). Finally, machine learning models can be applied to unknowns not present in the model. 

This dissertation highlights modeling using machine learning in two important areas of biology: 

the discovery of gene function and identifying elements important for regulating genes. 

Specialized metabolism: definitions, significance, and evolution 

 

The study of metabolism, where various metabolites are considered to be phenotypes of a 

particular plant, is of great interest in the plant science field. Plant metabolism can be divided 

into two categories: primary or general metabolism, and specialized metabolism. Primary or 

general metabolism includes metabolites synthesized by all plants, and these metabolites number 

in the range of 10,000 (Pichersky and Lewinsohn, 2011). In contrast, specialized metabolites are 

called so because they are unique to a specific species or lineage of plants but are not found in all 

plants. These types of metabolites are far more diverse, with number estimations at 
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approximately 200,000 for all plants, with estimates for individual species correlating with the 

number of genes in that species (Pichersky and Lewinsohn, 2011). Specialized metabolites 

(SMs) are a result of adaptations of a plant to a particular environment (Hartmann, 2007). They 

are involved in a diverse array of functions, from defense against a pathogen or insect, to 

attracting pollinators to flowers or seed dispersers to fruit (Pichersky and Lewinsohn, 2011). For 

these reasons, many specialized metabolites are studied for agricultural purposes. For example, 

specialized metabolites found in species of wild tomato, such as acyl sugars, resist arthropod 

pests commonly found in tomato crops, such as spider mites and whitefly (Alba et al., 2009). 

Other specialized metabolites, terpenoids, variants of which are found in most plants, protect 

against fungal or bacterial pathogens, in addition to insects. Many plant species rich in terpenoids 

are common spices such as mint, basil, oregano, rosemary, and thyme (Freeman, 2008), which 

not only gives them resistance to certain pests but also the culinary flavors they are known for. 

Overall, finding genetic resistance to problematic agronomic pests can have beneficial effects, 

such as reduced use of pesticides in agriculture. 

In addition to conferring desirable agronomical traits, many specialized metabolites from 

plants are also used to derive medicinal compounds. Historically, pharmaceuticals were almost 

exclusively derived from plants, until the late 19th century when the first drug, aspirin, was 

synthesized chemically (Schmidt et al., 2008). Despite advancements in synthetic chemistry, 

compounds from natural products still are used to derive medicines semi-synthetically. Of the 

medicinal compounds in current use, 25% are botanically derived, including Taxol, an anti-

cancer drug, and morphine, an analgesic (Schmidt et al., 2008). It is thought that plants are still 

able to make more complex molecules and more metabolic diversity than synthetic chemistry, 

thus making them continually useful in drug discovery (Schmidt et al., 2008). There are many 
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specialized metabolites currently used as medicines. These include tropane alkaloids, SMs from 

the Solanaceae family, that can affect many aspects of the central nervous system and have been 

used to treat Parkinson’s disease epilepsy, as vaso-dilators, and as local anesthetics, among many 

other uses (Grynkiewicz and Gadzikowska, 2008). Another drug made from specialized 

metabolites is the anti-malarial drug from the plant Artemisia annua. Although semi-synthetic 

versions are feasible, the majority of the anti-malarial product, artemisinin, still comes from the 

plant (Shen et al., 2016). A better understanding of the biosynthetic pathways that drive the 

production of these metabolites may help increase production of the medicinally derived 

compound and reduce overall costs of the pharmaceutical. The significance of specialized 

metabolism in plants merits further investigation into the genetic basis for these important 

molecules. From agricultural to medicinal, specialized plant metabolites have a diverse range of 

applications.  

Specialized metabolites are not found in all plants, so it is important to understand how 

they have evolved. Many specialized metabolites are derived from gene duplications and 

represent a diverging point from which plant families or plant species diverge from their 

ancestors. While gene duplication is not the only mechanism by which new gene function can 

arise, it is one of the most prevalent in plant genomes (Panchy et al., 2016). Genes that are 

duplicated are most often lost or pseudogenized, but gene duplications can result in neo- or sub-

functionalization, where one duplicate may retain its original function while the other develops 

novel function, or the duplicates retain different parts of the original function of the protein 

(Panchy et al., 2016). An example of an SM pathway that was a result of gene duplication is the 

divergence of the glucosinolate biosynthetic pathways in the Brassicaceae family. Glucosinolates 

represent a well-known specialized metabolite, as they are present in the model plant 
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Arabidopsis thaliana. The majority of genes in the glucosinolate pathways were derived from a 

whole genome duplication event at the base of the Brassica family, followed by lineage-specific 

tandem duplication events. Candidate glucosinolate genes were identified based on their 

duplication mechanism and timing (Hofberger et al., 2013). This study emphasizes that 

evolutionary characteristics and duplication events should be considered when attempting to 

identify the function of a gene. 

Predicting gene function: the challenge of predicting specialized metabolism genes 

 

In this section, we focus on identifying gene function, where the function of interest is 

specialized metabolism. Estimates of the number of genes involved in specialized metabolism 

are anywhere from 10-20% of genes for a given species, indicating that for the most well-

annotated plant species, Arabidopsis thaliana, there may be around 1,750-3,500 genes involved 

in specialized metabolism (Pichersky and Lewinsohn, 2011), however this is a very rough 

estimate based on the approximate number of specialized metabolites known in A. thaliana. 

Currently in A. thaliana there are a little under 400 enzymatic genes annotated as being 

specialized metabolites and around 500 genes ‘dual-annotated’ as having both general and 

specialized metabolic functions by either Gene Ontology or AraCyc, (Moore et al., 2019). 

Together, this indicates that anywhere from 800 to 2,500 genes, which are estimated to have 

specialized metabolism function, currently do not have this annotation. Additionally, SM genes 

are often derived via duplication from GM genes (for examples, see Shoji and Hashimoto, 2011; 

Ning et al., 2015). Because of this, SM and GM genes often belong to the same gene family, 

making them difficult to distinguish. For example, the cytochrome p450 family in Arabidopsis 

contains 81 genes that are classified as SM and 51 genes classified as GM (Moore et al., 2019). 

Slight changes in sequence can alter the function of an enzyme, making the function specialized 
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while the ancestral function was generalized, but not all sequence alterations result in specialized 

function (Schenck et al., 2017). Also, convergent evolution, where two enzymes with different 

ancestral functions evolve the same function, or the loss of function in one duplicated enzyme 

but not the other, may make an enzyme specialized (Pichersky and Lewinsohn, 2011). Therefore, 

it is challenging to detect whether an enzyme is specialized, even if it is in the same gene family 

and has high similarity to other SM genes. Additionally, as noted above, genes may have both 

specialized and general functions. This may be a result of genes upstream in a SM pathway being 

more general, in that they are in other general or specialized metabolic pathways, or they 

produce general metabolites that are then used in downstream specialized pathways. Therefore, a 

continuum of general to specialized may apply to the annotation of metabolic genes. In this 

dissertation, I outline ways in which high confidence predictions of gene function can be made 

in-silico using machine learning. 

Plant response to stress and gene regulation 

 Plant phenotypes, including specialized metabolites, can be cryptic, in that they are not 

readily displayed under ambient conditions, or in all parts of the plant. For example, some 

specialized metabolism pathways are induced by stresses such as wounding by an insect. The 

stress triggers the plant defense hormone, jasmonic acid (JA), among other signals, and JA 

activates the transcription factor MYC2. The MYC2 then activates specialized metabolism 

pathways, which increase specialized metabolites that can help defend the plant against the insect 

(Colinas and Goossens, 2018). Thus, the specialized metabolite may not be readily observed 

unless the plant is under a specific type of stress. Other specialized metabolites are only found in 

certain plant tissues. For example, nicotine is synthesized in the roots of Nicotiana tabacum 

before it is transported to the vacuoles in the leaves (Erb et al., 2009) and artemisinin is found 
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only in glandular trichomes in the Artemisia annua plant (Shen et al., 2016). Thus, the spatial and 

temporal components of a phenotype can be critical to understanding how they are regulated. 

Signals from the stress cause reprogramming of the gene expression network through a variety of 

mechanisms. For example, transcription factors are induced and bind to specific transcription 

factor binding sites (TFBS) on the DNA, which then induce stress-responsive genes. These 

TFBS elements can be cis-acting or trans-acting, where cis-elements are directly adjacent to the 

gene they regulate, in the promoter for example, and trans-elements are found on remote areas of 

the DNA away from the gene body, such as an enhancer (Colinas and Goossens, 2018). Other 

modifications in the structure of chromatin can regulate gene expression. Chromatin structures 

consist of DNA wrapped around histone marks and packaged tightly into nucleosomes. This 

condensed version of chromatin is referred to as heterochromatin, while DNA that is not wound 

as tightly around histone proteins is euchromatin. The fairly open euchromatin has higher 

amounts of gene expression than the heterochromatin, mainly because it is readily accessible to 

transcription factors (Asensi-Fabado et al., 2017).  Modifying histone proteins with acetylation 

or methylation can cause them to become more open or more closed, and this may be dependent 

on stress signals (Asensi-Fabado et al., 2017). Because of the many levels of regulation, and the 

cryptic response of stress-related genes, it is challenging to determine how stress-responsive 

genes are regulated. The second part of this dissertation focuses on using machine learning 

models to identify important regulatory elements in stress-responsive genes. 

Dissertation outline and significance 

 Genes underlying specialized metabolism provide targets for basic research but also for 

applications in the medicinal and agricultural realms. Given their range of uses and overall 

importance, identifying genes involved in specialized metabolism pathways remains a critical 
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goal in plant science. Chapters 1 and 2 represent significant advancements by: 1) using 

prediction models to identify genes belonging to specialized metabolism pathways and to 

annotate unknown enzymes as specialized or general metabolism genes in A. thaliana and 

tomato; and 2) quantifying the importance of expression, co-expression, evolutionary, 

duplication, and protein domain characteristics shared among SM genes and in contrast to GM 

genes. Chapter 2 goes further to assess the ability of a model built in A. thaliana to make cross-

species predictions in tomato. Additionally, chapter 2 evaluates the ability of prediction models 

to classify SM genes into individual SM pathways. Overall, chapters 1 and 2 define 

distinguishing characteristics of SM genes and make predictions of SM genes in multiple 

species. 

In addition, understanding how genes and SM pathways are turned on under a given 

stress is a continuing quest in plant research. Chapter 3 outlines models that evaluate the ability 

of known and putative cis-regulatory elements as well as open chromatin regions to regulate 

differential gene expression under wounding stress at different times. Additionally, chapter 3 

describes regulatory elements important for regulating an SM pathway that is activated under 

wounding stress. This chapter represents how machine learning can be used to provide insights 

into important regulatory characteristics for specific clusters of genes. Overall, this dissertation 

delineates the uses of predictive modeling in biology, both in finding gene function and 

understanding how genes are regulated by using information in silico, to help narrow down 

experiments in planta. 
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CHAPTER 2 : ROBUST PREDICTIONS OF SPECIALIZED 

METABOLISM GENES THROUGH MACHINE LEARNING 1 

  
1 The work on this chapter has been published: 
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Abstract 

Plant specialized metabolism (SM) enzymes produce lineage-specific metabolites with 

important ecological, evolutionary, and biotechnological implications. Using Arabidopsis 

thaliana as a model, we identified distinguishing characteristics of SM and GM (general 

metabolism, traditionally referred to as primary metabolism) genes through a detailed study of 

features including duplication pattern, sequence conservation, transcription, protein domain 

content, and gene network properties. Analysis of multiple sets of benchmark genes revealed that 

SM genes tend to be tandemly duplicated, co-expressed with their paralogs, narrowly expressed 

at lower levels, less conserved, and less well connected in gene networks relative to GM genes. 

Although the values of each of these features significantly differed between SM and GM genes, 

any single feature was ineffective at predicting SM from GM genes. Using machine learning 

methods to integrate all features, a prediction model was established with a true positive rate of 

87% and a true negative rate of 71%. In addition, 86% of known SM genes not used to create the 

machine learning model were predicted. We also demonstrated that the model could be further 

improved when we distinguished between SM, GM, and junction genes responsible for reactions 

shared by SM and GM pathways, indicating that topological considerations may further improve 

the SM prediction model. Application of the prediction model led to the identification of 1,220 

A. thaliana genes with previously unknown functions, each assigned a confidence measure called 

an SM score, providing a global estimate of SM gene content in a plant genome. 
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Significance 

 Specialized metabolites are critical for plant-environment interactions, e.g., attracting 

pollinators or defending against herbivores, and are important sources of plant-based 

pharmaceuticals. However, it is unclear what proportion of enzyme-encoding genes play roles in 

specialized metabolism (SM) as opposed to general metabolism (GM) in any plant species. This 

is because of the diversity of specialized metabolites and the considerable number of 

incompletely characterized pathways responsible for their production. In addition, SM gene 

ancestors frequently played roles in GM. Here, we evaluate features distinguishing SM and GM 

genes and build a computational model that accurately predicts SM genes. Our predictions 

provide candidates for experimental studies, and our modeling approach can be applied to other 

species that produce medicinally or industrially useful compounds. 
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Introduction 

 Gene duplication and subsequent divergence/loss events led to highly variable gene 

content  between plant species (Hanada et al., 2008; Panchy et al., 2016). These differential gain 

and loss events have given rise to diverse metabolic enzymes ranging from those involved in 

generally conserved, primary metabolic processes found in most species (referred to as general 

metabolism, or GM, genes), to those that function in lineage-specific, specialized metabolism 

(SM) (Hartmann, 2007; Chen et al., 2011; Pichersky and Lewinsohn, 2011; Chae et al., 2014). 

The proliferation of SM genes in plants has resulted in an overall far larger number of 

specialized than general metabolites. These specialized metabolites are important for niche-

specific interactions between plants and environmental agents that can be harmful (e.g. 

herbivores) or beneficial (e.g. pollinators) (Ehrlich and Raven, 1964; Chen et al., 2011; Ali and 

Agrawal, 2014). They are also the basis for thousands of plant-derived chemicals, many of which 

are used for medicinal and/or nutritional purposes, such as carotenoid derivatives with 

antioxidant properties in tomato (Zhong, 2002; Giuliano et al., 2008; Howat et al., 2014). Thus, 

identification of the genes encoding enzymes that produce specialized metabolites (referred to as 

SM genes) is key to understanding the causes underlying the diversity of plant specialized 

metabolites as well as for engineering plant-derived chemicals and pharmaceuticals. 

 Despite their importance, most plant metabolites and the enzymes and genes involved in 

their biosynthesis are yet to be identified (Milo and Last, 2012). Although many SM genes arise 

by duplication of GM genes (Shoji and Hashimoto, 2011; Ning et al., 2015) or other SM genes 

(Hofberger et al., 2013), duplication itself is not sufficient for pinpointing SM genes for four 

reasons. First, genes encoding GM or SM enzymes can belong to the same family, Second, 

duplicated GM genes may not necessarily become specialized (Panchy et al., 2016), and minor 
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sequence changes can lead to substantially altered enzyme functions (Moghe and Last, 2015; 

Schenck et al., 2017). Third, SM genes may arise through lineage-specific loss of the GM 

function without duplication. Finally, convergent evolution may explain the presence of 

unrelated enzymes in different lineages that use the same substrate to make similar products 

(Pichersky and Lewinsohn, 2011). Consequently, it remains unresolved whether most plant 

enzyme genes are involved in GM or SM pathways, even in the best annotated plant species, 

Arabidopsis thaliana (Initiative, 2000; D’Auria and Gershenzon, 2005; Chen et al., 2011; 

Pichersky and Lewinsohn, 2011). Therefore, in recent years there has been an enhanced focus on 

identifying SM genes (Schlapfer et al., 2017; Wisecaver et al., 2017). Multiple properties have 

been shown to differ between SM and GM genes (Kliebenstein, 2008; Chae et al., 2014; 

Schlapfer et al., 2017; Wisecaver et al., 2017). For example, whole genome duplications 

(WGDs) and tandem duplications both contribute to metabolic innovations in glucosinolate 

biosynthesis genes (Edger et al., 2015). In addition, compared with GM genes, SM genes tend to 

have a more restricted phylogenetic distribution, a higher family expansion rate, tandem 

clustering of paralogs, a propensity for genomic clustering (close physical proximity of genes 

encoding enzymes in the same pathways), higher degrees of expression variation, and higher 

degrees of co-expression. Co-expression with known SM genes (Wei et al., 2006; Wisecaver et 

al., 2017) or genomic neighborhood and gene-metabolite correlation (Higashi and Saito, 2013) 

were also used to predict SM pathway genes.  

 With the influx of more biochemical and -omic data, there is an increasing number of 

gene properties that can be evaluated for their utility in distinguishing SM/GM genes. 

Furthermore, the studies published to date have mainly focused on specific SM or GM pathways, 

raising the question of how SM/GM genes differ globally. This prompted us to examine 10,243 
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gene properties (referred to as features), including new features and those evaluated in early 

studies, falling into five categories (gene function, expression/co-expression, gene networks, 

evolution/conservation, and gene duplication) and evaluate the ability of each feature to 

distinguish SM genes from GM genes.  Earlier studies revealed that the association between 

features and SM genes is far from absolute (Uygun et al., 2016) and — in most cases — the 

effect sizes (i.e. the extent to which these specific features can distinguish SM and GM genes) 

were not reported.  To build on these studies, a machine learning approach (Schlapfer et al., 

2017), which jointly considers all five categories of heterogenous features, was used to 

distinguish SM and GM genes. This approach led to machine learning models that were used to 

predict if an A. thaliana enzyme gene is likely an SM gene. Furthermore, we examined the 

properties of enzyme genes in cases where the annotations and predictions differed. Our findings 

provide a global estimate of SM gene content in the Arabidopsis thaliana genome, and the 

identified features may pave the way for further improvement of the modeling approach. 

Results and Discussion 

Benchmark SM and GM genes 

Currently there are two major resources for plant SM and GM gene annotations: Gene 

Ontology (GO; (Botstein et al., 2000)) and AraCyc (Rhee et al., 2006). For SM genes, we started 

with the 357 genes with the GO term ‘secondary metabolic process’, and 649 enzyme-encoding 

genes in 129 AraCyc ‘secondary metabolism’ pathways (Dataset S1). Initial GM genes included 

2,009 annotated with the GO term ‘primary metabolic process’ and 1,557 enzyme-encoding 

genes in 490 AraCyc non-secondary metabolism pathways (Dataset S1). Although 32.4% of 

GO- and 41.8% of AraCyc-annotated GM genes overlapped, only 35 SM genes (15% of GO- 

and 8.3% of AraCyc-annotated SM genes) overlapped (Figure 2.1A). While this is a 
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significantly higher degree of overlap than expected by chance (Figure S2.1A, B), it indicates a 

greater inconsistency in SM annotation criteria than in GM annotation criteria between the GO 

and AraCyc datasets. Furthermore, 152 and 261 genes were annotated as both SM and GM in 

GO and AraCyc, respectively. This indicates that while SM and GM genes may have distinct 

properties, several genes can be both and their properties may not be distinct. Here we focus on 

cases that are not ambiguous, but later we delve into this gene set to see if genes involved in both 

SM and GM pathways can be uniquely classified. 

To further assess the differences in AraCyc and GO annotations, we asked whether SM 

and GM genes annotated based on these two sources have different functional and pathway 

annotations and Pfam protein domains. We found that GO- and AraCyc-annotated SM genes 

have substantially different enriched GO categories (Figure 2.1B, Dataset S1), AraCyc 

pathways (Figures S2.1C, Dataset S1), and protein domains (Figure S2.1D, Dataset S2). In 

contrast to SM genes, GO- and AraCyc-annotated GM genes tend be over-represented in the 

same functional categories and pathways (Figure 2.1B). Considering the above findings, we 

defined three benchmark sets (Dataset S1). The first (benchmark 1) was defined to include as 

many annotated SM genes as possible. Here, 393 benchmark 1 SM genes were defined as the 

union of GO and AraCyc SM annotations that have Enzyme Commission (EC) numbers. 

Similarly, 2,226 benchmark1 GM genes are from the union of GO and AraCyc primary 

metabolism gene annotations associated with EC numbers. In the second set (benchmark2), we 

used only AraCyc annotations, which were likely better annotated because the focus of AraCyc 

is on metabolic pathways (SM=411, GM=1306, Figure 2.1A). In the third set (benchmark 3), we  

intersection between GO and AraCyc annotations (SM=35, GM=650, Figure 2.1A). When we 

examined which gene feature could distinguish benchmark SM and GM genes (described in the 
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 (A) Overlap between Gene Ontology (GO)/AraCyc primary metabolism (PM) and secondary metabolism 

(SM) gene annotations. The number of genes in an intersection or in a complement set are shown. Three 

benchmark SM/GM gene sets were defined: benchmark 1 (Union), benchmark 2 (AraCyc), and 

benchmark 3 (Intersection) (see Methods). The table to the right shows the genes (labeled with lowercase 

letters in the Venn diagram) included in each benchmark set. (B) GO term enrichment in SM genes (left 

panel) and in GM genes (right panel). The three columns show statistics for GM/SM genes that are GO-

annotated, AraCyc-annotated, or belong to a combined set (union between GO and AraCyc).  Rows: GO 

terms. Color: represents the q-value (multiple testing corrected p-value) of the Fisher’s exact test for a GO 

term enriched in either GM (blue) or SM (red) genes (Dataset S2). White: no significant enrichment. 

  

Figure 2.1. Gene Ontology and AraCyc annotation of specialized and primary metabolism 

genes. 
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following four sections, Dataset S2), the p-values from testing >10,000 features were highly 

correlated among the three benchmark definitions (R2 ≥0.55, Figure S2.1E-G; all Pearson 

Correlation Coefficients (PCCs) ≥0.74, Dataset S2). Therefore, we focus on comparing 

benchmark1 (union-based) and benchmark2 (AraCyc-only) genes, particularly when the 

conclusions (whether a feature can distinguish between SM and GM genes) were inconsistent.  

Differences in gene expression and epigenetic marks between SM and GM genes 

A previous study showed that the expression of genes in some SM pathways tends to be 

more variable than the expression of genes in "essential pathways" (Kliebenstein, 2008). To 

further assess differences in SM and GM gene expression, we examined transcriptome datasets 

encompassing 25 tissue types (development dataset) and 16 abiotic/biotic stress conditions 

(stress dataset, see Methods; for all test p-values, see Dataset S2). In addition to confirming that 

benchmark2 SM genes tend to have higher expression variability (p=0.003, Figure 2.2A), we 

examined 23 additional expression features. We found that SM genes had significantly narrower 

breadths of expression (Mann Whitney U tests, for all benchmark sets: p<1e-35, Figure 2.2A), 

lower median expression levels (p=e-24, Figure 2.2A), and lower maximum expression levels 

(p=0.04, Figure 2.2A). These findings are consistent with the fact that SM genes have more 

specialized roles, whereas GM genes are involved in basic cellular functions (Hartmann, 2007; 

Chen et al., 2011). As expected with the established roles of some specialized metabolites in 

environmental interactions (e.g. (Steppuhn and Baldwin, 2007; Ali and Agrawal, 2014)), we 

found that benchmark1 SM genes tend to be up-regulated under a higher number of abiotic and 

biotic stress conditions compared with GM genes  (all p<2e-7, Figure 2.2B), largely similar to 

the results based on benchmark2 (p=0.24~1e-8). Relatively fewer SM genes were down-

regulated in the shoot under stress compared with GM genes (p=0.18~3.1e-5, Figure 2.2B), 
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likely reflecting a growth-defense tradeoff (Huot et al., 2014) where GM genes involved in 

house-keeping functions are down-regulated under stress and SM genes with roles in abiotic and 

biotic interactions are not. We do not, however, see the same trend in roots. Because CG 

methylation and histone modification can influence gene expression (Chan et al., 2005; Cedar 

and Bergman, 2009), we compared the numbers of these sites between SM and GM genes. We 

found that SM genes tend to have a lower degree of gene body CG-methylation than GM genes 

(Fisher’s exact tests, p<3e-4, Dataset S2). On the other hand, the extent of histone modification 

did not significantly differ between SM and GM genes for seven of the eight histone marks (see 

Methods, Figure S2.2A).  

Previous studies used expression correlation to evaluate how well genes in distinct SM 

pathways are correlated (Schlapfer et al., 2017; Wisecaver et al., 2017). To see if similar 

correlation measures could be used to distinguish SM and GM genes, we used maximum PCCs 

to evaluate expression correlation between each SM/GM gene and its paralogs (Figure 2.2C) as 

well as to other SM and GM genes (Figure 2.2D) in each of four expression datasets (abiotic 

stress, biotic stress, development, and hormone treatment). We found SM paralogs to have a 

significantly higher expression correlation than GM paralogs in all four data sets (Mann-Whitney 

U test, all p<0.05, Figure 2.2C). Because SM genes have undergone more recent expansion than 

GM genes (Hanada et al., 2008; Chae et al., 2014) and the degrees of sequence and expression 

divergence are positively correlated (Liu et al., 2011; Das et al., 2016), the higher expression 

similarities between SM paralogs than between GM paralogs may be partly explained by the 

more recent timing of SM duplication. We next looked at the maximum expression correlation 

between each SM gene and other SM genes (SM-SM) or GM genes (SM-GM), as well as 

between each GM gene and other GM genes (GM-GM) or SM genes (GM-SM). The expression 
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correlations ranked as follows: GM-GM > SM-GM > SM-SM > GM-SM (all benchmark1 

p<0.05, but all benchmark2 p>0.05 for correlation in the development and biotic stress datasets, 

Figure 2.2D). The higher expression correlation for GM-GM compared with SM-SM is likely 

because GM genes tend to be more broadly expressed and at higher levels than SM genes 

(Dataset S2). The ratio between expression level variance and mean is higher for genes with 

lower expression levels, such as SM genes, which contributes to the comparatively lower 

correlation between these genes. Taken together, our findings indicate that expression correlation 

features can distinguish SM and GM genes. 

Because pathway genes tend to be co-expressed and belong to the same co-expression 

cluster (Schlapfer et al., 2017; Wisecaver et al., 2017), we next assessed if benchmark1 SM and 

GM genes that belong to distinct pathways were members of distinct co-expression modules 

(Figure 2.2E, Dataset S2). Among these modules, 99 and 125 contained significantly more SM 

genes than randomly expected (α=0.05) and are referred to as SM modules. Similarly, 125 GM 

modules were significantly enriched in GM genes (p<0.05). Therefore, a subset of benchmark 

GM and SM genes tend to be co-expressed with other GM and SM genes, respectively. 

However, >50% of SM and GM genes did not belong to SM/GM modules (gray, Figure 2.2E). 

In addition, 0.3%-14.0% of GM genes were found in SM modules and 0%-32% of SM genes 

were found in GM modules, depending on the dataset and algorithm (Figure 2.2E). This pattern 

reflects the fact that GM genes which function immediately upstream of an SM pathway may be 

co-expressed with genes in the SM pathway in question. Examples include 208 "junction" genes 

interfacing GM and SM pathways based on AraCyc annotations (Dataset S2)). These findings 

further highlight challenges in differentiating SM and GM genes globally using co-expression  
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 (A) Distributions of SM (red) and GM (blue) gene expression-related values calculated from the  

Figure 2.2. Differences in expression and co-expression characteristics of benchmark1 SM 

and GM genes. 



29 

Figure 2.2 (cont’d) 

development dataset. Level: microarray intensity. Expression breadth: the number of tissues/ 

developmental stages in which a gene is expressed. Expression variation: median absolute 

deviation/median. (B) Distributions of the number of conditions in which a gene is up- or down-regulated 

in the abiotic stress (root and shoot) and biotic stress (shoot) datasets. (C) Distributions of maximum 

Pearson Correlation Coefficients (PCC) values between SM or GM genes and their paralogs in four 

expression datasets. All test statistics from (A-C) were generated using Mann-Whitney U tests. (D) 

Distributions of maximum PCC between GM-GM (light blue), GM-SM (dark blue), SM-GM (orange), 

and SM-SM (red) gene pairs using the same expression datasets as in (C). (E) Clustering of SM and GM 

genes based on their expression patterns in the diurnal development and stress datasets using six 

algorithms: HA (hierarchical, average linkage), HC (hierarchical, complete linkage), HW (hierarchical, 

Ward’s method), CM (c-means), KM (k-means), and AK (approximate k-means). Row: a benchmark 

SM/GM gene. Blue and red shading: the gene belongs a cluster with an over-represented number of GM 

genes and SM genes, respectively, compared with the background (p<0.05, Fisher’s exact test). 
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patterns alone. 

Network properties of SM and GM genes  

SM genes tend to have specialized functions and are involved in one or a few pathways, 

leading us to hypothesize that SM genes would have fewer connections in biological networks 

than GM genes. To test this prediction, we first assessed the connectivity among SM genes and 

among GM genes in a protein-protein interaction network (Arabidopsis Interactome Mapping 

Consortium, 2011) and found that SM genes have a significantly smaller number of physical 

interactions (mean = 1.25) than GM genes (1.84, benchmark1: p=0.03, benchmark2: p=3.85e-8, 

Figure S2.2B). The smaller number of SM gene interactions is not because SM genes have 

shorter coding regions (SM>GM, all p=0.004, Figure S2.2C) but is possibly due to the presence 

of fewer protein domains (SM<GM, benchmark1: p=0.35, benchmark2: p=4.3e-6 Figure 

S2.2D). Our finding that significantly fewer protein-protein interactions are known for SM 

proteins is consistent with SM genes having more specific functions than GM genes (Hartmann, 

2007). It is also possible that there have been more interaction experiments for GM genes, or that 

GM genes tend to function in larger pathways compared with SM genes. Although GM genes 

tend to have more interactions than SM genes, SM genes with certain domains, such as 

cytochrome P450, have a higher median number of gene interactions (99.5) when compared with 

their P450 GM counterparts (15.0). Thus, proteins in some domain families may deviate from the 

general trend we uncovered. 

Next, we examined the same relationships using the AraNet functional network (Lee and 

Lee, I., 2017), which connects genes with likely similar functions through the integration of 

multiple datasets, including expression and protein-protein interaction datasets. While the 

number of protein-protein interactions was significantly higher for GM genes relative to SM 
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genes (Figure S2.2B, all p<0.05), the differences in network connectivity between GM and SM 

genes in benchmark1 were not significant (p=0.139, Figure S2.2E) but were significant for 

benchmark2 genes (p=0.027). either were not significant or were marginally significant. AraNet 

considers multiple gene features including protein interactions, co-expression, shared domains, 

and homologous genes to construct gene networks, so it is not surprising that this result differs 

from that for analysis of only protein-protein interactions. These findings suggest that the amount 

of network connectivity is dependent on the type of network, and this may be useful for 

distinguishing between SM and GM genes. We should also note that the results from the 

benchmark1 and 2 sets are inconsistent, highlighting the impact of the benchmark definition on 

our analyses. In particular, benchmark1 p-values were higher than those of benchmark2, despite 

the fact that benchmark1 was substantially larger and would have lower p-values compared to a 

smaller dataset with the same effect sizes. This suggests that the AraCyc-only-based benchmark2 

is likely of higher quality.  

Evolutionary rates of SM and GM genes based on within- and cross-species comparisons 

SM genes are frequently involved in plant adaptation to variable environments  

(Steppuhn and Baldwin, 2007; Ali and Agrawal, 2014; Brachi et al., 2015). In contrast, GM 

genes, which are involved in ancient and stable metabolic functions such as photosynthesis, are 

expected to be more highly conserved (Puthiyaveetil et al., 2010) and experience stronger 

negative selection (De Smet et al., 2013; Lloyd et al., 2015). An earlier study found a high 

degree of genetic variation in glucosinolate genes across A. thaliana accessions (21). Here, by 

comparing SM to GM genes globally, we found that SM genes tend to have higher nucleotide 

diversities than GM genes (p=3.9e-19, Figure S2.3B). In addition, we analyzed 15 evolutionary 

features based on within species and across species comparisons of SM and GM genes. First, we 
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searched for A. thaliana SM and GM paralogs as well as homologs across six plant species 

spanning more than 300 million years of evolution (see Methods). A significantly higher 

proportion of SM genes have paralogs than GM genes (p=1.2e-10, Figure S2.3A). However, 

consistently fewer SM genes (14.8-54%) have homologs across species than GM genes (27-

76%) (all p<2e-4, Figure S2.3A). In addition, as expected for lineage-specific functions, only 

0.94% of SM genes have homologs in core eukaryotic genomes (Tatusov et al., 2003) compared 

with 14.7% of GM genes (Figure S2.3A). Finally, we determined the timing of GM and SM 

duplications over the course of land plant evolution using sequence similarity to determine the 

most recent duplication point (see Methods). We found that 75% of SM genes were products of 

duplication events after the divergence between the A. thaliana and B. rapa lineages compared 

with only 40% of GM genes (Figure 2.3A), indicating that SM genes tend to be more recently 

duplicated relative to GM genes. Additionally, 25% of SM genes were duplicated after the A. 

thaliana-A. lyrata split, compared with only 7% of GM genes (Figure 2.3A). Thus, SM genes 

have higher duplication rates but do not persist in the long run, leading to the observation of 

fewer homologs across species.  

We also found that SM genes and their homologs had significantly higher non-

synonymous (dN) to synonymous (dS) substitution rate ratios (all p<1e-06, Figure 2.3B) 

compared with GM genes. Together with other measures of selection (Figure S2.3C, D), both 

within- and cross-species comparisons suggest that SM genes are under weaker negative 

selection relative to GM genes. One reason for this pattern may be that these SM genes initially 

experienced positive selection (higher rate than GM) followed by negative selection (similar to 

GM). This would result in SM genes having a higher rate of evolution than GM genes, with the 

appearance of weaker negative selection. Another possible reason for this pattern is that some of 
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these SM genes may have experienced strong negative selection (similar to GM) but are now 

neutrally evolving. This may be because the selective agent (e.g. a particular environmental 

factor) previously contributing to the selection no longer exists. This is consistent with the roles 

of SM genes mostly in the production of metabolites important for tolerance to rapidly changing 

abiotic stress conditions and defense against biotic agents (Hartmann, 2007).  

Duplication mechanisms and genomic clustering of SM and GM genes 

 Gene duplication mechanism, such as whole genome duplication (WGD), tandem 

duplication, and dispersed duplication, may impact subsequent functional divergence and 

ultimately influence whether a duplicate is under selection and retained (Panchy et al., 2016). For 

example, genes in a few SM pathways, such as aliphatic glucosinolate biosynthesis, tend to be 

tandemly duplicated and have a higher degree of expression variation (Kliebenstein, 2008). To 

assess if SM and GM genes differ in their post-WGD retention rate, we compared the number of 

GM and SM WGD duplicates in the A. thaliana lineage. Although two different glucosinolate 

pathways arose in the α WGD event ~50 million years ago (Hofberger et al., 2013), these two 

pathways do not lead to a significantly higher number of SM WGD duplicates compared to the 

number of GM WGD duplicates. This indicates that SM genes from multiple SM pathways (not 

just those involved in glucosinolate metabolism) are not more likely to be derived from WGDs 

than GM genes (benchmark1 p=0.1, benchmark2 p=0.85, Figure S2.4A). This suggests that the 

likelihood of long-term retention of SM and GM WGD duplicates does not appear to differ 

significantly. In contrast, significantly more SM genes tend to be tandem duplicates than GM 

genes (p<2e-43, Figure S2.4A). Genes involved in response to the environment are more likely 

to be tandem duplicates (Rizzon et al., 2006; Hanada et al., 2008), and tandem duplication 

potentially allows for rapid evolution of SM gene families that are subject to selection in variable  



34 

 
Figure 2.3. Differences in the duplication timing, degree of selective pressure, paralog-

related features, and functional likelihood between benchmark1 SM and GM genes. 

(A) The distribution of duplication time points (y-axis) for each GM/SM gene (x-axis). Left/middle panel: 

a black line indicates that the GM (left panel) or SM (middle panel) gene in question likely duplicated 

prior to the divergence between the A. thaliana lineage and the species lineage to the left of the black line. 

Species order: based on the time of divergence from A. thaliana. Right panel: each bar represents the log2 

ratio (x-axis) between the proportions of SM and GM genes duplicated at each duplication time point (y-

axis). For full species names, see Methods. (B-F) Density plots showing SM (pink) and GM (blue) gene 

feature  
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Figure 2.3 (cont’d) 

distributions. Test statistics were generated using Mann-Whitney U tests. (B) Median nonsynonymous 

substitution rate/synonymous substitution rate (dN/dS) values between A. thaliana SM/GM genes and 

their A. thaliana paralogs or best matching homologs in six other species, arranged based on the time of 

divergence from A. thaliana. (C) The number of A. thaliana paralogs of SM or GM genes. (D) The 

maximum percent identity of an SM or GM gene to its paralogs. (E) The dS distribution between each 

SM or GM gene and its paralog. (F) The functional likelihood ranging from 0 to 1, which indicates the 

likelihood that a gene is under selection.  
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environments. 

The numbers of paralogs and pseudogenes were used as measures of the degree of SM 

and GM gene gains and losses, respectively. Our analysis revealed that SM genes tend to have 

more paralogs (p<3e-72, Figure 2.3C), higher sequence similarities to their paralogs 

(benchmark1: p=3e-3, benchmark2: p=0.3 Figure 2.3D), and lower synonymous substitution 

rates (dS) (p<2e-19, Figure 2.3E) compared with GM genes. Furthermore, a higher percentage 

of SM genes duplicated since A. thaliana diverged from A. lyrata (p<4e-8, Figure S2.4B), and 

SM genes tended not to be found in single copies (p<1e-3, Figure S2.4C). These findings all 

point to more recent expansion of SM gene families. We also compared the functional 

likelihood, which is a measure of how likely it is that a gene is functional and, thus, under 

selection (Lloyd et al., 2015), between SM genes, GM genes, and pseudogenes. Interestingly, the 

functional likelihoods of SM genes are significantly lower than those of GM genes, but higher 

than those of pseudogenes (ANOVA, Tukey’s test, p<2e-16, Figure 2.3F, Figure S2.4E). Genes 

under strong negative selection have high functional likelihoods that are close to one, whereas 

pseudogenes tend to have values close to zero (Lloyd et al., 2015). In addition, most 

pseudogenes are eventually removed from the genome (Balakirev and Ayala, 2003) and tend not 

to be under selection (Moghe et al., 2014). Our finding that SM genes tend to have lower 

functional likelihood is consistent with the hypothesis that some SM genes are under weaker 

selection and may be in the process of becoming pseudogenes. The proportion of pseudogene 

paralogs for SM genes (between benchmarks, 9.8-11.1%) compared with GM genes (6.1-6.5%) 

is not significant overall (p=0.04~0.2, Figure S2.4D). Considering that SM genes tend not to 

have cross-species homologs (Figure S2.3A), this finding suggests that pseudogenes are too 

short lived to be adequate indicators of gene loss.  



37 

SM and GM genes that function in the same pathway are sometimes found in genomic 

clusters (Qi et al., 2004; Sakamoto, 2004; Osbourn, 2010; Schlapfer et al., 2017), and we used 

two approaches to compare the occurrence of SM and GM genes in close physical proximity. In 

the first approach, we asked whether SM and GM genes tend to be located near other SM and 

GM genes, respectively, regardless of whether the neighboring genes are paralogous or not.  We 

found that SM genes cluster near other SM genes (benchmark1: p=9.5e-121, benchmark2: 

p=0.02 Figure S2.4F) and GM genes tend to be close to GM genes (p<2e-5, Figure S2.4G). It is 

surprising that the p-values for SM clustering differ so greatly between benchmark sets. This 

may indicate that AraCyc annotation (benchmark 2) is of higher quality. In the second approach, 

we defined metabolic clusters identified using Plant Cluster Finder (Schlapfer et al., 2017), but 

the identified clusters were not enriched in either SM or GM genes (Figure S2.4H). Taken 

together, SM genes are more likely to be tandemly duplicated and tend to belong to large gene 

families. Our findings provide genome-wide confirmation of earlier studies (e.g. 2, 15, 22) that 

focused on a relatively small number of SM genes or pathways. These characteristics may be 

useful features in distinguishing SM and GM genes. 

Machine learning model for predicting SM and GM genes 

In total, we examined 10,243 features (summarized in Dataset S3) that differ widely in 

their ability to distinguish benchmark SM and GM genes. For example, the best performing 

single feature—gene family size—led to a model with an Area under Receiver Operating 

Characteristic curve (AuROC) of 0.8. An AuROC of 0.5 indicates the performance of random 

guesses and a value of 1 indicates perfect predictions. However, using this high performing 

feature alone as the predictor resulted in a 43% False Positive Rate (FPR) and a 58% False 

Negative Rate (FNR). In addition, the majority of the features are not particularly informative 
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(Dataset S3), as the average AuROC for single feature-based models was extremely low (0.5) 

with an average FPR of 89%. These findings indicate that SM and GM genes are highly 

heterogeneous and cannot be distinguished with high accuracy using single features. To remedy 

this, we next integrated all 10,243 features, regardless of whether they were significantly 

different between SM and GM genes or not, to build machine-learning models for predicting SM 

and GM genes. We used machine learning because it allowed us to build an integrated model 

where multiple features were considered simultaneously. Integrated models offer better 

predictive power than individual features by lowering FNR and FPR.  

Two machine learning algorithms, Support Vector Machine and Random Forest, were 

used to build predictive models using all three benchmark datasets (Dataset S3, Figure 2.4A, 

Figure S2.6, see Methods). The best performing SM gene prediction model was based on 

benchmark2 (AraCyc-only) and Random Forest (AuROC=0.87, FPR=29.4%, FNR=14.8%; 

Figure 2.4A). Randomizing SM/GM labels but maintaining the same feature values associated 

with the benchmark genes as the initial model resulted in AuROCs=0.51~0.57, as expected for 

random guesses (Dataset S3). Note that the performance measures reported above were based on 

models built with a 10-fold cross-validation scheme where 90% of the data were used for 

training the models and 10% for testing them. Based on the prediction outcomes, each gene was 

given an "SM score" ranging from 0 to 1 indicating the likelihood that the gene is an SM gene. 

Based on a threshold SM score defined by minimizing false predictions (see Methods), 85.6% of 

the training SM genes (Figure 2.4B) and 73.1% of the training GM genes were correctly 

predicted (Figure 2.4B), which reflects an improvement over the individual feature-based, naïve 

models.  
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Features important for SM gene prediction and model application to unannotated enzyme 

genes 

In addition to the SM score, the machine learning result included a list of feature 

importance values, where features with more positive values are more informative for predicting 

SM genes. In contrast, more negative feature weights are more informative for predicting GM 

genes (Dataset S3, Figure 2.4C). Based on the AraCyc-only (benchmark2) model, the most 

informative features for predicting SM genes included specific protein domains as well as 

multiple gene duplication-related features, such as duplication mechanism (higher degree of 

tandem duplication), gene family expansion (larger family size), and higher degrees of 

correlation in expression between an SM gene and other SM genes or its paralogs (Figure 2.4C). 

In addition, higher evolutionary rates were among the most informative for predicting A. 

thaliana SM genes based on comparison of an SM gene to its Populus trichocarpa and Vitis 

vinifera homologs, but not to homologs from more closely related species. This pattern may 

reflect the fact that at these time points (post divergence between A. thaliana and the P. 

trichocarpa or V. vinifera lineages) a number of SM genes experienced accelerated, potentially 

positive, selection that contributed to the diversification of major SM pathways. In contrast, 

wider expression breadth, measured using the development expression dataset, and higher 

connectivity in gene networks were among the most important features for predicting GM genes, 

indicating the more generalizable functions of GM genes and the tendency to interact with a 

greater number of genes/gene products relative to SM genes. Finally, specific histone marks as 

well as hierarchical, k-means, and approximate k-means co-expression clusters based on the 

stress, diurnal, and development datasets were informative for predicting both SM and GM genes 

(Dataset S2). While earlier studies established that genes belonging to a particular SM pathway 
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Figure 2.4. SM gene prediction model performance based on benchmark. 

(A) AuROC curves of binary SM/GM prediction models built with Support Vector Machine (SVM) and 

Random Forest (RF) algorithms. TPR: true positive rate. FPR: false positive rate. (B) SM score 

distributions for benchmark GM, benchmark SM, hold-out SM (not included in models), unannotated 

enzyme, glucosinolate pathway, p450, terpene synthase, and methyltransferase 2 (methyltr_2) domain-

containing genes. Dotted line: SM score threshold (see Methods). Red and blue shading indicate genes 

predicted to be SM and GM genes, respectively. (C) The most important features for SM (red) and GM 

(blue) gene predictions. (D-G) Distributions of the values of representative, predictive features for 

correctly and incorrectly predicted SM and GM genes. Black horizontal bar: median. Overall p-values are 

from Kruskal-Wallis tests used to evaluate differences among classes. The Dunn post hoc test was used to 

test differences between classes (Dataset S3). (D) Functional likelihood. (E) dN/dS between A. thaliana 

and P. trichocarpa homologs. (F) Sizes of the gene families the four categories of genes belong to. (G) 

Expression breadth in the development dataset. 
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tend to be co-expressed (Higashi and Saito, 2013; Wisecaver et al., 2017), our findings 

demonstrate that there are global differences in expression patterns and properties between SM 

and GM genes. 

With the accuracy of the SM gene prediction models assessed through cross-validation 

and prominent features identified, we next applied these machine learning models to make 

predictions for 3,104 known enzymatic genes (with an EC number) not annotated to be SM or 

GM genes (Dataset S1). Of these genes, 51% (1,592 genes) were predicted to be SM genes. We 

took three approaches to assess the accuracy of these SM and GM gene predictions. First, we 

intentionally held out 10% of both known SM and GM genes (Figure 2.4B, Dataset S1) from 

any model training. Upon application of the machine learning model, 84% and 85% of withheld 

GM and SM genes were correctly predicted, respectively, indicating that the model has an 84% 

True Positive Rate (or 16% FNR). Second, we tested how well genes in well-known SM 

pathways involved in glucosinolate biosynthesis (38, 39) could be predicted. To do this we built 

a new model using the benchmark SM and GM genes but excluding genes from glucosinolate 

biosynthetic pathways (see Methods) (Figure 2.4B, Dataset S5). When applying this new 

model to glucosinolate genes, 79% of known glucosinolate pathway genes were correctly 

predicted as SM genes. The FNR was 16% overall, which is much better than the 58% FNR 

when using the single best feature, gene family size. 

Finally, methyltransferase, terpene synthase, and cytochrome P450 families were 

identified based on their respective protein domains (see Methods) and analyzed to test model 

performance within a specific family (Figure 2.4B, Dataset S5). These families were chosen 

because they tend to be associated with SM. To this end, we built three new models using our 

benchmark sets, excluding ‘hold out’ genes from the families we planned to predict. Upon 
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applying this model to each enzyme family, 97% of P450, 88% of terpene synthase and 92% of 

methyltransferase genes were predicted as SM genes (Figure 2.4B). Thus, these models 

predicted the majority of hold-out genes with known SM functions, glucosinolate pathway genes, 

and genes in enzyme families whose members predominantly play roles in SM pathways. In 

summary, our models allowed assessment of the relative importance of features in distinguishing 

SM and GM genes, as well as provided predictions for 1,217 SM genes among enzyme genes 

with no known SM/GM designation. In addition, our findings indicate that our models and this 

general approach are valuable for predicting unknown enzymes. 

Characteristics of Mis-Predicted Genes 

Although our SM prediction model performed well, 122 (16.7%) AraCyc annotated GM 

genes were mis-predicted as SM genes. In addition, 60 (15.3%) AraCyc annotated SM genes 

were mis-predicted as GM genes. To assess the properties of mis-predicted SM/GM genes, we 

determined how the values of a subset of the most informative features (Figure 2.4C, Dataset 

S3) differed between four gene classes defined based on the consistency between the gene 

annotation and the benchmark2 (AraCyc only)-based model prediction. These four classes 

included: (1) annotated GM predicted as GM (GM [annotation] GM [prediction]), (2) 

annotated SM predicted as SM (SMSM), (3) annotated GM predicted as SM (GMSM), and 

(4) annotated SM predicted as GM (SMGM). Genes in the mis-predicted classes (3 and 4) tend 

to have feature values between those of genes in correctly predicted classes (1 and 2). For 

example, the median values of the functional likelihood among these four gene classes follow the 

order: GMGM > SMGM > GMSM > SMSM (Figure 2.4D). The opposite pattern 

(SMSM has the highest value) was observed for dN/dS values (Figure 2.4E), gene family size, 

(Figure 2.4F), the number of conditions expressed (Figure 2.4G), and values for other gene 
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features we examined (Figure S2.5A-J). Thus, in the SMGM mis-predicted class, the 

annotated SM genes in fact possess multiple properties that are more similar to those of GM 

genes and vice versa, but no single feature can fully explain why these genes were mis-predicted.  

These observations suggest that some of the mis-predicted benchmark genes (Figure 

2.4B) may in fact be mis-annotated, or alternatively, they may point to a deficiency in our model 

(addressed in the next section). To assess how many of the mis-predictions are due to mis-

annotation, we collated information from 25 genes with predictions (from the benchmark2-based 

model) matching the AraCyc annotations (GMGM=4, SMSM=21), and for 32 genes with 

predictions that were not consistent with their AraCyc annotations (SMGM=20, 

GMSM=12) (Dataset S1, SI text). We focused on genes in the P450/terpene synthase families 

because there is substantial biochemical and functional information available for these genes 

(Matsuno, et al., 2009; Chen et al., 2011; Renault et al., 2014). For mis-predicted genes, which 

were manually examined, five (42%) genes in the GMSM class had supporting SM evidence 

(Dataset S1). In addition, 16 (80%) genes in the SMGM class have supporting GM evidence 

(Dataset S1). These findings indicate that a subset of these genes (66%) are "mis-predicted" due 

to mis-annotation, not due to prediction errors.  

For the benchmark1 set, which is based on the union between AraCyc and GO 

annotations, a similar percentage of the mis-predicted genes (5 of 11 GMSM (45%) genes 

examined) were likely mis-annotated (Dataset S1). This is consistent with our finding that some 

SM genes enriched in AraCyc pathways and GO terms—such as carotene, leucine, suberin, and 

wax biosynthesis—are found across all major land plant lineages and should be considered GM 

genes (Figure 2.1B, Figure S2.1C). It is also possible that some of the erroneous annotations are 

based on in vitro biochemical activity and/or sequence similarities alone, criteria that may not 
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accurately represent their in vivo functions. We should note that genes which were manually 

examined were mostly from the P450 and terpene synthase families. More enzyme families 

should be evaluated to obtain a more complete picture of the reasons behind inconsistent 

annotation and prediction. Together with the finding that nearly all (24/25) benchmark2 genes 

with consistent annotations and predictions had biochemical evidence supporting their SM or 

GM classification (SI text), these results further demonstrate the feasibility of using the model 

prediction outcome to prioritize future experiments to determine the in planta role of SM or GM 

genes, including those that may be mis-annotated or have functions in addition to their annotated 

activities. 

Impact of dual-annotated genes on model performance 

 The number of genes mis-predicted with our model which were not mis-annotated 

according to our manual examination (Dataset S1, SI text) indicate that our model can be further 

improved. Our original model focused on distinguishing SM and GM genes as binary classes but 

genes with both SM and GM functions were excluded. However, there are 261 genes (Figure 

2.1A) annotated as belonging to both SM and GM pathways in AraCyc (dual-annotated or DA 

genes, Figure 2.5A). We thus explored the possibility that DA genes have properties distinct 

from SM or GM genes and should be considered a distinct class. We first compared the SM 

scores between SM, GM, and DA genes based on our AraCyc-only binary model. If DA genes 

belong to a distinct class that is neither SM nor GM, the SM scores of DA genes should have a 

unimodal distribution with a median close to 0.5. Contrary to this expectation, the SM score 

distribution of DA genes is bimodal, where some DA genes resemble SM genes and others 

resemble GM genes (Figure 2.5B). Thus, based on a GM vs SM binary model, DA genes do not 

appear to belong to a distinct class. These findings raise the question whether the dual annotation 
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is valid. 

To assess whether our inability to distinguish DA genes from SM/GM genes is because 

the binary model is inadequate, we built a multi-class model assuming SM, GM and DA genes as 

three distinct classes and plotted the SM scores for each class in a ternary plot (Figure 2.5C-F). 

If the three classes of genes can be perfectly separated, then the highest gene density areas will 

be toward different corners of the ternary plots. Although the GM/SM/DA model has an F1-

score of 0.51 (higher than the F1 of 0.33 for a random model) and an accuracy of 0.53, the 

inclusion of DA genes as a third class significantly diminished the ability of the model to 

separate SM (Figure 2.5C) and GM (Figure 2.5D) genes. Note that SM and GM genes are not 

well separated in the ternary plots (Figure 2.5C, D), but in the binary model, their SM score 

distributions are highly distinct (Figure 2.5B). In addition, the DA gene distribution in the 

ternary plot overlapped with the distributions of both SM and GM genes (Figure 2.5E), 

consistent with the bimodal SM score distribution observed among DA genes. Thus, the DA 

genes belong to two sub-classes, with each subclass resembling SM or GM genes, again raising 

the question whether the dual annotations in AraCyc are valid. Curiously, GM genes separate 

into two populations in the GM/SM/DA model where one population is located towards the GM 

corner of the ternary plot (arrow g1) and the second population (arrow g2) overlaps with areas of 

high SM (arrow s) and DA (arrow d) gene density (Figure 2.5C). Therefore, although this three-

class model does not separate SM and GM genes well, it raises the question of how the two GM 

gene populations (g1/g2 peaks) differ and should be further examined.  

Consideration of junction genes in predictive model building 

 Another potential way to improve our model is to consider metabolic network topologies. 

We hypothesized that SM and GM genes closer to pathway junctions (Figure 2.5A, see 
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Methods) are more likely to be mis-predicted. We identified junction reactions connecting 15 

GM (upstream) and 20 SM (downstream) pathways. The 212 genes encoding enzymes 

responsible for junction reactions were referred to as junction (JC) genes. By further classifying 

JC genes based on the connectivity of their associated reactions, four topological sub-classes of 

junction genes were defined: 1J1: junction reactions, each connected with one reaction 

upstream and one reaction downstream, nJ1: multiple upstream reactions but only one 

downstream reaction, 1Jn: one upstream and multiple downstream reactions, and nJn: 

multiple upstream and downstream reactions (Figure 2.5A). Although junction genes as a whole 

also have a bimodal SM score distribution similar to that of DA genes (JC all, Figure 2.5B), the 

score distributions were distinct among the four topological sub-classes, indicating that network 

topology is a distinguishing characteristic between SM and GM genes. Considering that products 

of GM pathways serve as substrates for many other pathways, it is expected that GM genes 

functioning in junction reactions would be connected to multiple downstream pathways. 

Consistent with this, JC genes in the nJn and 1Jn subclasses where n>1 tend to be more 

similar to GM genes (Figure 2.5B). In contrast, SM enzymes are more likely involved in 

incorporating substrates from multiple reactions and serve as the committed step for producing 

specialized metabolites with an expected nJ1 topology. In addition, a typical SM pathway 

mostly contains a series of non-branching reactions that lead to specialized metabolite products 

and is also expected to have a 1j1 topology. Consistent with these expectations, JC genes in 

the nJ1 and 1J1 subclasses are the most similar to SM genes (Figure 2.5B).  

The GM/SM/JC 3-class model separated SM and GM genes significantly better (F1-score 

= 0.65, accuracy = 0.65, Figure 2.5G-J) than the GM/SM/DA model (Figure 2.5C-F), 

indicating that junction genes have unique characteristics and that some genes intersecting 
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Figure 2.5. Three-class models for classifying SM/GM/DA and SM/GM/JC genes.  

(A) Definition of DA (dual annotation) and JC (junction) genes. For JC genes, four sub-classes were 

defined based on the degree of connectivity, defined as the number of connecting reactions in the 

metabolic network based on AraCyc annotations. a-o: SM/GM enzymes that are annotated as GM (blue), 

SM (red), or DA (green outline), or are defined as JC (orange). JC reaction substrates and products are in 

black and gray, respectively.  (B) Distributions of SM scores based on the binary model built using 

benchmark2 data for GM, SM, DA, JC (all), and JC subclass genes. (C-F) Ternary plots showing the 

SM/GM/DA model-based score distributions for GM (C), SM (D), DA (E), and JC (F) genes. The g 

(blue), s (red), d (green), and j (orange) labels indicate the peak gene density areas (brighter yellow) 

occupied by GM, SM, DA, and JC genes, respectively. (G-J) Ternary plots showing the SM/GM/JC 

model-based score distributions for GM (G), SM (H), JC (I), and DA (J) genes. The color scheme 

follows that in (C-F). 
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annotated SM and GM pathways can be considered a separate class. In addition, the four 

topological sub-classes of JC genes are located in different areas in the ternary plots for the 

SM/GM/DA (Figure S2.7A) and GM/SM/JC (Figure S2.7B) models. We should emphasize that 

JC genes were defined based on a network constructed using AraCyc pathway annotations where 

the criteria for defining pathway boundaries may differ between research groups and/or 

annotators. Despite this, the GM/SM/JC model predictions demonstrate that JC genes are by and 

large distinct from GM/SM genes. Although we cannot be certain which JC genes were key 

enzymes in the committed steps entering SM pathways, the JC genes in the nJ1 subclass is 

clearly a class of its own with most genes at the JC-like corner (Figure S2.7B). Taken together, 

these findings demonstrate that further categorization of SM and GM genes based on 

biologically motivated criteria, such as network topology, could help further distinguish different 

types of SM or GM genes leading to modest improvement of our models. In addition, the binary 

classification of SM and GM genes, while meaningful, can be an over-simplification. Finally, the 

consideration of additional topological characteristics (e.g. pathway depth, terminal reaction) and 

additional biochemical features (e.g. substrate and product identities) may lead to further 

improvements in SM and GM predictions.     

Conclusions 

Machine learning models built using genomic features show considerable promise in 

predicting the functions of unclassified or unannotated genes (Lloyd et al., 2015; Schlapfer et al., 

2017). Prior to establishing such models for predicting SM and GM genes, we first explored how 

SM and GM genes in A. thaliana differ in >10,000 conservation, protein domain, duplication, 

epigenetic, expression, and gene network-based features. Most of these features have not been 

examined by other studies contrasting SM and GM genes. We demonstrated that machine 
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learning models in which these features are integrated to predict SM and GM genes perform well 

based on cross-validation performed using three benchmark datasets, three predominantly SM 

gene families, glucosinolate biosynthesis pathway genes, and 39 AraCyc-annotated SM genes 

that were deliberately withheld from the model building process. Focusing on the AraCyc-only 

benchmark (benchmark2), although 380 individual features significantly differed between SM 

and GM genes, the effect sizes are small, and any individual feature does a poor job of 

distinguishing SM and GM genes compared with the machine learning models. In addition, 

machine learning models allow the global prediction of SM and GM genes in a plant genome. 

Based on the SM scores derived from these models, candidate SM genes can be prioritized for 

further experimental studies. 

Although the binary SM/GM gene prediction model performed well, the FPR and FNR 

were substantial at 28% and 19%, respectively. Through closer examination of experimental 

evidence for 10 genes annotated as GM genes but predicted as SM genes, we found ~50% had 

evidence supporting classification as SM genes, indicating that a subset of the mis-predictions is 

likely due to mis-annotation. Thus, in addition to predicting likely GM/SM functions of un-

annotated enzymes, our models can be used to pinpoint potentially mis-annotated GM/SM genes. 

Mis-predictions can be avoided by further improving the model in two areas: the classes defined, 

and the features used. Classifying enzyme genes as GM and SM may be an over-simplification. 

By building two three-class models (GM/SM/JC and GM/SM/DA), we found that SM and GM 

genes could be further categorized based on the metabolic network topology and, to a lesser 

extent, based on their dual-annotated roles in both SM and GM pathways. Future studies 

distinguishing genes at the pathway level can be carried out using similar multi-class modeling 

methods. Additional features that can distinguish SM and GM genes may also be needed to 
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further improve model performance. One possibility is to incorporate topological information as 

features. Another possibility is to examine feature combinations (e.g. combining an expression 

and a duplication feature linearly or non-linearly) using approaches such as deep learning. 

In summary, we have conducted a global analysis of gene features that are useful to 

distinguish SM and GM genes. We also established well performing machine learning models 

that provide a global estimate of the SM gene content within a plant genome. The great majority 

of the predicted SM genes have not been assigned to pathways, highlighting the important next 

step of combining the GM/SM prediction scheme described here with approaches for pathway 

discovery and assignment. Considering that the most important features are related to gene 

duplication, evolutionary rate, and gene expression and that these types of data are readily 

available for an ever-expanding number of plant species, the machine learning workflow we 

have developed can be readily applied to any other species for predicting SM genes, or more 

generally, gene functions. Nonetheless, there is room for further improvement. Our prediction 

model serves as a baseline model for future studies incorporating additional features and 

algorithms that are anticipated to further improve the accuracy of predictions. 

Methods 

Specialized and general metabolism gene annotation and enrichment analysis 

Gene sets were identified based on GO ((Botstein et al., 2000); 

http://www.geneontology.org/ontology/go.obo), and/or AraCyc ((Rhee et al., 2006); 

http://www.plantcyc.org/) annotations, but not MapMan (Thimm et al., 2004). We did not 

analyze MapMan annotations because all GO and AraCyc SM genes, which include a large 

number of well-known SM examples, were annotated as GM in MapMan, raising questions 

about the utility of MapMan SM/GM designations. GO annotations for A. thaliana were 

http://www.geneontology.org/ontology/go.obo
http://www.plantcyc.org/
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downloaded from The Arabidopsis Information Resource (TAIR) (Berardini et al., 2015) and 

genes annotated with the secondary metabolism term (GO:0019748) and primary metabolism 

term (GO:0044238) were selected as potential SM genes and GM genes, respectively. Genes that 

were associated with more specialized primary and secondary metabolism child GO terms were 

also classified as GM and SM genes, respectively. Only genes annotated with either SM or PM 

terms, but not both, were included in the analysis and only those with experimental evidence 

codes IDA, IEP, IGI, IPI and/or IMP were included. For AraCyc genes, the v.15 pathway 

annotations were retrieved from the Plant Metabolic Network database 

(http://www.plantcyc.org) (Rhee et al., 2006). Potential SM genes were those associated with 

“secondary metabolites biosynthesis” pathways. Potential GM genes were those found in non-

secondary metabolite biosynthesis pathways. In addition, genes without experimental evidence in 

AraCyc (EV-EXP) were not included in the benchmark.  Some genes were annotated in both SM 

and non-SM pathways and were defined as dual-annotated (DA) genes, not as SM or GM.  

Potential SM and GM genes from GO or AraCyc were required to have an enzyme commission 

(EC) number annotation from AraCyc or from Pfam v.30 (http://pfam.xfam.org/) (Finn et al., 

2016). Five benchmark gene sets were defined. In addition, glucosinolate pathway genes were 

also defined to test model performance. The criteria for defining benchmarks and glucosinolate 

pathway genes are detailed in SI Methods. Terpene synthase, P450, and methyltransferase genes 

were identified from A. thaliana annotated protein sequences using the following domain 

matches from Pfam: terpene_synth, p450 and methyltr_2. Details of gene set enrichment analysis 

is available in SI Methods.  

Expression dataset processing and co-expression and gene network analysis 

Expression datasets were downloaded from TAIR. Target datasets included plant 

http://www.plantcyc.org/
http://pfam.xfam.org/
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development (Schmid et al., 2005), biotic stress (Wilson et al., 2012), abiotic stress (Kilian et al., 

2007; Wilson et al., 2012), hormone treatment (Goda et al., 2008) and diurnal expression 

(Mockler et al., 2007). Genes that were considered significantly expressed relative to the 

background in the development expression dataset were those with a log2 microarray 

hybridization intensity value of ≥4 (the cutoff value is based on our earlier study, (Lloyd et al., 

2015)). The median and maximum expression levels and expression variation and breadth across 

the developmental expression dataset were calculated as previously described (Lloyd et al., 

2015). Differentially expressed genes under biotic stress, abiotic stress, and hormone treatments 

were defined as those that had an absolute log2 fold change ≥1 and adjusted p<0.05 following 

analysis using the affy and limma packages in R (Gautier et al., 2004; Ritchie et al., 2015). For 

each gene, the number of conditions in which the gene in question was significantly 

differentially regulated was also calculated. This resulted in 16 expression values that were used 

as model features (Dataset S2). 

For each expression dataset (development, abiotic, biotic, and hormone), Pearson 

Correlation Coefficients (PCC) were calculated between each gene and genes in the same 

paralogous cluster as defined by ORTHOMCL v1.4 (Chen, 2006). For the gene in question, the 

maximum PCC <1 for genes in the paralog cluster was used as the PCC value. In addition to 

examining expression correlation, co-expressed genes in the biotic stress, abiotic stress, diurnal, 

and developmental datasets were classified into co-expression clusters using K-means, 

approximate kernel K-means, c-means, and hierarchical clustering algorithms as described in our 

earlier study (Uygun et al., 2016) resulting in 5,303 binary features. For K-means-related 

analyses, the within cluster sum of squares was plotted against the number of clusters, and K was 

chosen based on the number of clusters at the elbow or bend of the plot.  Gene clusters that were 
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significantly enriched in SM or GM genes were identified using Fisher’s exact tests (adjusted-

p<0.05). The number of AraNet gene network interactions ((Lee and Lee, I., 2017); 

http://www.functionalnet.org/aranet/), number of protein interactions (Arabidopsis Interactome 

Mapping Consortium, 2011), domain number, and amino acid length were calculated in our 

earlier study (Lloyd et al., 2015). There were 23 model features related to PCC values, 

significant cluster membership, and gene network data (Dataset S2).  

Conservation, duplication, methylation, histone modification, and genome location related 

features 

Nonsynonymous (dN)/synonymous (dS) substitution rates between plant homologs, core 

eukaryotic gene status, nucleotide diversity data, Fay and Wu's H and MacDonald-Kreitman test 

statistics were the same as used in our earlier studies (Moghe et al., 2013; Lehti-Shiu et al., 2015; 

Lloyd et al., 2015). Details on determining the timing of duplication of an A. thaliana gene is 

available in SI Methods. Pseudogenes were defined using a published pipeline (53). The lethal 

gene scores, which represent the relative likelihood that a mutation in a gene is lethal, and 

additional gene duplication-related features, including gene family size, rates of synonymous 

substitutions, α and β/γ whole genome duplication status, and tandem duplication status (Dataset 

S2), were obtained from (Lloyd et al., 2015). CG methylation and log2 fold change of histone 

marks relative to background were taken from (Lloyd et al., 2015) (detailed in SI methods). 

Three approaches were used to evaluate the degree of metabolic gene clustering (see SI 

Methods).  

Machine learning classification of SM and GM genes 

The prediction models were built based on 10,243 features using the Random Forest (RF) 

and Support Vector Machine (SVM) algorithms implemented using the Python package sci-kit 

http://www.functionalnet.org/aranet/
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learn (Pedregosa et al.). To build binary machine learning models, we used three benchmark sets 

(benchmark1, 2, and 3). For each benchmark set, SM and GM genes were first divided into a 

modeling set (90%) and a hold-out set for independent validation (10%). Since there were 

significantly more GM genes than SM genes, 100 balanced data sets were constructed by 

randomly selecting GM genes equal to the number of SM genes in each balanced set. 

Additionally, ten-fold cross validation was performed for 100 random draws of a balanced data 

set for each machine learning run, and grid searches were performed to obtain the best 

performing parameters for each model. Details for the performance measure are available in SI 

Methods. A confidence score between 0 and 1 was produced by the model and was used as the 

SM prediction score. For the procedure to define threshold SM score classifying a gene as SM or 

not, the performance measures used, and the random background model, see SI Methods. Dual-

annotation (DA) genes are genes annotated as both GM and SM pathway genes in AraCyc. 

Junction (JC) genes were defined based on the pathway annotation data (pathway.dat) from the 

PlantCyc A. thaliana v.12 dataset. Two three-class models were built. The first SM/GM/DA 

model used SM, GM, and DA genes (benchmark4) as the three classes. The second SM/GM/JC 

model used SM, GM, and JC genes (benchmark5). Additional information for defining the JC 

gene type is available in SI Methods. 
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Figure S 2.1. Overlap in SM/GM gene annotations from GO and AraCyc and enrichment 

of SM/GM genes in pathways and protein domains. 

(A) Distribution of the numbers of overlapping entries in trials where genes were randomly 

drawn based on the number of SM genes annotated by GO or AraCyc. The random draws were 

repeated 1,000 times. The blue region shows the 95th percentile of the random draw overlap 

distribution. (B) Same as (A) except the random sample sizes were based on the number of GO 

and AraCyc-annotated GM genes. (C) AraCyc pathway enrichment of SM genes relative to GM 

genes. SM and GM genes were annotated by GO, AraCyc, or both (Combined). The color in 

each cell represents the transformed q-value of the Fisher’s exact test for a pathway or domain 

enriched in SM genes, with darker red and blue indicating overrepresentation in SM and GM 

genes, respectively. (D) Same as (C), except that Pfam domain enrichment is shown. (E-G) 

Scatterplot comparing between two benchmark sets the -log(p-values) from tests of feature 

differences between SM and GM genes. The log(p-values) for all features are shown, and darker  
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Figure S 2.1 cont’d. blue indicates regions with higher concentrations of data points. (E) 

Benchmark 1 vs. benchmark 2 (F) Benchmark 2 vs. benchmark 3 (G) Benchmark 1 vs, 

benchmark 3.  
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Figure S 2.2. Differences in histone marks, protein-related features, and functional 

network-related features between SM and GM genes. 

(A) Histone modifications. For each GM (blue) and SM (red) gene, the log (base 2) ratio 

between immunoprecipitation and background signals was calculated for each histone mark. (B) 

The numbers of protein-protein interactions (PPI) for GM and SM proteins. (C) GM and SM 

protein lengths. (D) The number of protein domains in GM and SM proteins. (E) The number of 

AraNet functional network (FN) interactions for GM and SM genes. All p-values shown are 

based on Mann-Whitney tests. 
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Figure S 2.3. Differences in conservation-related features between SM and GM genes. 

(A) The percentage of A. thaliana GM (blue) and SM (red) genes with homologs in seven plant 

species and in core eukaryotic species. (B) Difference in nucleotide diversity (π) between GM 

and SM genes among 80 A. thaliana accessions. (C). Difference in the MacDonald-Kreitman 

(MK) test statistic (see Methods), a measure of selection that compares evolutionary rates both 

within species and across species, between GM and SM genes. (D) Difference in the Fay and 

Wu’s H statistic between GM and SM genes. H is a measure of selection where a positive value 

indicates a deficit of SNPs, potentially indicating a selective sweep, and a negative value 

indicates an excess of high-frequency derived SNPs. All p-values shown are based on Mann-

Whitney tests. 
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Figure S 2.4. Differences in gene duplication and genome co-localization features between 

SM and GM genes. 

(A-D) Percentage of GM (blue) and SM (red) genes: (A) with ≥1 tandem duplicates, α whole 

genome duplicates (WGD), or β/γ WGD, (B) with ≥1 duplicates derived from duplication events 

after the A. thaliana-A. lyrata split, (C) that are singletons defined as A. thaliana genes with no 

duplicate within species but with homologous genes in O. sativa and P. patens, and (D) with 

related pseudogenes. All p-values are from Fisher’s exact tests. (E) Functional likelihood 

distributions of SM and GM genes and pseudogenes. P-values were determined by ANOVA and 

post-hoc Tukey’s test. (F) Number of SM genes that are located ≤5 genes away from another SM 

(red) or GM (blue) gene. The p-value is from the Mann-Whitney U test. (G) Same as (F) except 

that the number for GM genes is shown. (H) Percentage of genes in a metabolic cluster, a 

homologous tandem cluster that includes SM/GM genes, or a non-homologous tandem cluster 

that includes SM/GM genes. All p-values are from Fisher’s exact tests.  
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Figure S 2.5. Feature importance and properties of predictions consistent or inconsistent 

with annotations. 

(A) Percentage of SM and GM genes (benchmark 2) duplicated via tandem or WGD mechanisms 

or duplicated in the A. thaliana lineage. Four categories are defined depending on annotation 

(left)prediction (right) consistency: GMGM (blue), SMGM (orange), GMSM (purple), 

and SMSM (red). (+) indicates significant overrepresentation of a category, while (-) indicates 

significant underrepresentation of a category using the Fisher’s Exact test. (B) Same as (A) 

except that the analysis is based on co-expression cluster-based features. HA: hierarchical 

clustering, average linkage. CM: c-means. k: number of clusters generated. cl: specific cluster 

name a gene resides in. (C-J) Distributions of the values of representative, predictive features for 

correctly and incorrectly predicted SM and GM genes. Black horizontal bar: median. Overall p-

values are from Kruskal-Wallis tests used to evaluate differences among classes. The Dunn post 

hoc test was used to test differences between classes. Colors: same as (A). For genes in each of 

the four categories, the features shown include: (C) number of genes found in a cluster C 

(developmental dataset, k=2000) where an SM or GM gene is present, (D) % sequence identity 

to the best matching A. thaliana paralog, (E) logarithm of the expression variation calculated 

using the development dataset, (F) nucleotide diversity among A. thaliana accessions, (G) 

maximum PCC value among all pairwise PCCs (development expression data) between each 

gene and an SM gene, (H) maximum PCC value among all pairwise PCCs (biotic expression 

data) between each gene and each of its paralogs, (I) maximum PCC value among all pairwise 

PCCs (abiotic expression data) between each gene and each of its paralogs, and (J) number of 

gene-gene interactions based on AraNet. (Dataset S3). 
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Figure S 2.6. Results for models based on benchmark1 and benchmark3.  

(A, B) ROC curves and AuROCs of models using Support Vector Machine (SVM) Random 

Forest (RF) algorithms. (A) Models based on benchmark1 (GO-AraCyc union). (B) Models 

based on benchmark3 (GO-AraCyc intersection). (C) Distributions of SM scores based on the 

benchmark1 model for benchmark, unknown, and holdout genes, as well as for genes in 

glucosinolate biosynthesis pathways and selected families with predominantly SM genes. 

Unknown: genes with no SM/GM annotation in either GO or AraCyc. Holdout: GM and SM 

genes deliberately set aside for validation purposes that were not part of the training/testing data 

used for building the model. methyltr_2: methyltransferase 2. Dotted line: SM score threshold 

(see Methods). Red and blue shading indicate genes predicted to be SM and GM genes, 

respectively. 
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Figure S 2.7. Distributions of scores for junction subclasses in the three-class models.  

(A) Ternary plots showing SM/GM/Dual-annotation (DA) model-based score distributions of 

genes in four junction subclasses. The four junction subclasses are as defined in Figure 5A. 

Areas with high gene density are in brighter yellow. J: Junction (JC) genes. n>1. (B) Ternary 

plots showing SM/GM/JC model-based score distributions of genes in four junction subclasses. 
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SI Text  

 

Manual annotation of enzyme genes with inconsistent predictions and annotations 

Our machine-learning model incorporated various characteristics such as gene 

duplication status and gene expression patterns not typically used in gene annotation, and 

accurately predicted SM genes the majority of the time. Thus, we assessed if the inconsistency in 

annotation and prediction is due to errors of the model or mis-annotation. We took a detailed 

look at SM genes predicted as GM (SMGM) or GM genes predicted as SM (GMSM) in the 

following two families: (1) terpene synthase, (2) cytochrome P450, and several biosynthetic 

pathways including carotenoid biosynthesis, inositol metabolism, and phenylacetaldehyde 

biosynthesis. For these selected families, mis-predicted genes and manual annotations were 

performed based experimental evidence from the literature including biochemical activity and/or 

genetics. For approximately 400 genes, there was a discrepancy between our model and the 

AraCyc annotation. A subset of these genes (32) were selected for manual annotation. For 20 SM 

genes predicted as GM (SMGM) 16 were manually annotated as GM (AraCyc mis-annotation) 

and 4 were manually annotated as SM (model mis-prediction). For 12 GM genes predicted as 

SM (GMSM) 5 were manually annotated as SM (AraCyc mis-annotation) and 7 were 

manually annotated as GM (model mis-prediction). For genes with inconsistent predictions and 

annotations we analyzed features in the model that may explain why these genes were mis-

predicted or mis-annotated.  

Terpene synthase genes 

 

We investigated terpene synthases because they are a well-studied group of enzymes 

mostly involved in the production of specialized metabolites (Chen et al., 2011). Of the 31 

terpene synthases the AraCyc-only (benchmark2) model was applied to, 29 encode enzymes 
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involved in the synthesis of monoterpenes, sesquiterpenes, diterpenes, and triterpenes, which are 

not universal to all angiosperms (Chen et al., 2011) and, thus, should be considered SM genes. 

Among these 29 terpene synthase genes, 28 were predicted as SM based on the machine learning 

model. In addition, 24 of these 29 genes were annotated as SM (SMSM category) and four 

annotated as GM (SMGM category). Based on literature information, these four AraCyc-

annotated GM genes (AT2G23230, AT3G29190, AT4G20200, AT5G48110) that are predicted as 

SM are most likely mis-annotated (Chen et al., 2011). Here we do not have example where the 

model makes incorrect prediction. 

Cytochrome P450 genes 

 

For cytochrome P450 (referred to as P450) mis-predictions, we have examples of both 

incorrect model predictions and potential mis-annotations. We examined three P450 GM genes 

predicted as SM. Two of these genes, AT1G01280 and AT1G69500 (median SM score 0.75 and 

0.68, respectively), are involved in sporopollenin biosynthesis (Morant et al., 2007; Dobritsa et 

al., 2009), a metabolite deposited on the outer layer of pollen grains that protects against 

desiccation, and are conserved in land plants (Liu and Fan, 2013). These two P450 enzyme genes 

show strong tissue-specific expression in young flowers, contributing to their mis-prediction as 

SM genes (Dataset S1, S2). When general metabolites are distributed in a tissue-specific pattern, 

and their biosynthetic genes have a tissue-specific expression pattern, obtaining an accurate 

prediction is challenging. 

We further found experimental evidence suggesting that the third P450 GM gene 

predicted as SM may actually be an SM gene. The P450 encoded by AT5G04660 operates at the 

interface of GM and SM pathways and is an enzyme catalyzing epoxidation of free fatty acids in 

plants (median SM score 0.91, Dataset S1). This enzyme was the first cytochrome P450 reported 
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to epoxidize unsaturated C18 fatty acids (Sauveplane et al., 2009), and is annotated as GM based 

on its activity on primary metabolites. However, a previous report showed that certain fatty acid 

epoxides have antifungal properties in plants (Kato et al., 1993). Our model predicts AT5G04660 

as an SM gene, likely due to its increased gene expression in response to environmental stresses.  

Carotenoid biosynthesis genes 

 

Carotenoids are a group of structurally diverse C40 hydrocarbon compounds broadly 

distributed in plants, which serve as important accessory pigments in the photosynthetic antenna 

complex and as precursors for the plant hormone abscisic acid (Bartley and Scolnik, 1995; 

Hirschberg, 2001; Nambara and Marion-Poll, 2005). Thus, enzymes involved in carotenoid 

biosynthesis should be considered GM genes. At least three genes (AT5G17230, AtPYS1, SM 

score=0.25; AT4G14210, AtPDS3, SM score=0.28; AT3G04870; AtZDS, SM score=0.24, 

Dataset S2) involved in the earlier steps of carotenoid biosynthesis are mis-annotated by AraCyc 

as SM genes, whereas our model correctly predicts them as GM. For example, AtPDS3, which is 

also the target of photobleaching herbicides (ChamovitzSO and Sandmannll), is a phytoene 

desaturase that introduces two double bonds into 15-cis-phytoene (Bartley et al., 1999). Mutants 

defective in AtPDS3 show an albino phenotype and arrested growth, likely due to impaired 

chlorophyll, carotenoid, and gibberellin biosynthesis (Qin et al., 2007). 

Inositol metabolic genes 

 

Inositol phosphate metabolism is conserved in eukaryotes, including plants, and is 

involved in cell signaling and homeostasis mechanisms, such as phosphate sensing (Tsui and 

York, 2010). At least one gene involved in phosphate sensing and homeostasis (AT5G42810; 

AtIPK1, SM score=0.19, Dataset S2) is predicted as a GM gene but mis-annotated by AraCyc as 

an SM gene. AtIPK1 possesses in vitro activity on inositol polyphosphate intermediates, and 
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atipk1 mutants show severe growth defects and aberrant phosphate homeostasis (Stevenson-

Paulik et al., 2005; Kuo et al., 2014). In addition to AtIPK1, eight other genes associated with 

inositol phosphate or inositol metabolism were annotated as SM genes by AraCyc, but GM by 

our model. These genes all possess roles consistent with involvement in GM.  

Phenylacetaldehyde biosynthesis gene 

Phenylacetaldehyde is a volatile specialized metabolite involved in plant defense and is 

induced upon herbivory (Gutensohn et al., 2011). AT2G20340 (AtAAS, median SM score 0.17, 

Dataset S2), which encodes an aromatic aldehyde synthase, converts phenylalanine to 

phenylacetaldehyde (Gutensohn et al., 2011; Torrens-Spence et al., 2013). Furthermore, AtAAS 

RNAi knockdown lines had increased phenylalanine and decreased phenylacetaldehyde levels 

(Gutensohn et al., 2011). These data suggest that AtAAS is responsible for making 

phenylacetaldehyde and acts in plant defense. However, AtAAS was mis-predicted by our model 

as GM, likely because AtAAS is expressed broadly (58 expression data points), whereas the 

average SM gene has a narrower expression pattern (27.5 expression data points, Dataset S2), 

has high connectivity in AraNet gene networks (91 gene-gene interactions compared with the 

median SM gene number of 27, Dataset S2), and is a member of a small gene family (only 2 

family members, whereas the median SM gene family size is 62.5, Dataset S2). 

SI Methods  

 

Definition of benchmark and glucosinolate pathway genes 

 

The benchmark1 SM and GM gene dataset was established by merging potential SM and 

GM genes identified based on the union of GO and AraCyc annotations but removing genes with 

ambiguous SM and GM classifications (e.g. SM in GO but PM in AraCyc). The second benchmark 

gene set (benchmark2) consisted of genes based solely on AraCyc (with an EC number) annotation 
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excluding DA genes. The third benchmark gene set (benchmark3) consisted of the intersection 

between AraCyc and GO annotations excluding DA genes as well as genes with conflicting 

annotation from the two databases. In addition to the binary classes, we defined a benchmark 

dataset for classifying AraCyc SM, AraCyc GM, and AraCyc DA genes (benchmark4). For 

benchmark5, a new junction (JC) class was defined using AraCyc pathway annotations by 

identifying connected reactions between SM and GM pathways. The full list of GM, SM, DA, and 

JC genes is available in Dataset S1. Glucosinolate pathway genes were defined as those annotated 

by AraCyc as being involved in one of multiple glucosinolate pathways (Dataset S1) or annotated 

to the GO terms: glucosinolate metabolic process (GO:0019760), glucosinolate biosynthetic 

process (GO:0019761), indole glucosinolate metabolic process (GO:0042343), glucosinolate 

transport (GO:1901349), or regulation of glucosinolate biosynthetic process (GO:0010439). This 

resulted in 72 genes annotated to glucosinolate pathways and processes (Dataset S1). 

Gene set enrichment analysis 

Enrichment of SM genes relative to GM genes (for each of the three binary benchmark 

sets) in AraCyc pathways or GO categories was assessed with Fisher’s exact tests, and test p-

values were corrected for multiple testing (Benjamin and Hochberg, 1995). The enrichment 

results are available in Dataset S2. GO slim terms and AraCyc pathways that mapped to a 

particular gene were used as binary features in prediction models (resulting in 636 features, or 1 

feature for each GO slim term and pathway). Pfam Hidden Markov Models (v.30) was used to 

identify protein domains in proteins encoded by SM and GM genes with HMMER (Finn et al., 

2015). A domain match was considered significant if the score was above the trusted cutoff 

parameter. Enriched domains were then used as model features (totaling 4,217 features). 
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Timing of duplication, histone mark data analysis and metabolic gene clustering 

The timing of duplication of an A. thaliana gene X was defined based on a comparison of 

the BLAST scores between X and its closest paralog Y (SX,Y) and between X and its closest 

homolog Z in each of 15 other plant species (SX,Z): Arabidopsis lyrata, Capsella rubella, Brassica 

rapa, Theobroma cacao, Populus trichocarpa, Medicago truncatula, Vitis vinifera, Solanum 

lycopersicum, Aquilegia coerulea, Oryza sativa, Amborella  trichopoda, Picea abies, Selaginella 

moellendorffii, Physcomitrella patens, and Marchantia polymorpha. Among cases where SX,Z > 

SX,Y, the species with gene Z most distantly related to A. thaliana was identified. Thus, gene X 

duplication likely occurred immediately prior to the divergence between A. thaliana and the 

species harboring gene Z (Dataset S2).  

The average of the log2 fold change of each histone mark was calculated for all histones 

that overlapped with a gene. There were 37 feature values related to conservation, duplication, 

methylation, and histone modification (Dataset S2).  

Three approaches were used to evaluate the degree of metabolic gene clustering. The first 

approach involved a co-localization measure for each gene X (GM or SM) defined as the number 

of GM or SM genes within five or ten genes from X (four features, Dataset S2). For the second 

approach, we first defined a metabolic gene cluster as a group of >1 genes annotated as SM or GM 

genes where the neighboring SM/GM gene was separated by <10 non-SM/GM genes and <100 

kb. The clusters were then determined to be homologous or non-homologous based on the presence 

of a significant BLAST match (E-value < 1e-05) in a given cluster (two features, Dataset S2). In 

the third approach, metabolic gene clusters were identified using the Plant Cluster Finder tool 

(Schlapfer et al., 2017) with the following parameters: has >2 metabolic genes, two reaction 

identifiers, all genes in the cluster are on the same chromosome, clusters of only tandem duplicates 
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are not allowed, and number of metabolic genes > number of non-metabolic genes (one feature, 

Dataset S2). The genomic clustering values (resulting in seven features) are shown in Dataset S2. 

Performance measure, threshold SM score, and random/background model 

Performance of the RF and SVM models was determined based on both AuROC, or the 

area under the plot of the true positive (TP) rate against the false positive (FP) rate, calculated in 

R using the ROCR package, and F-measure, the harmonic mean of precision (TP/TP+FP) and 

recall (TP/TP+FN), where FN= false negative. The threshold SM score for calling an SM gene 

was defined as the SM score with the highest F-measure in the RF or SVM model. AuROC and F-

measures were also calculated for each feature to determine their individual predictive value. In 

addition to cross-validation, the hold-out data were used to further assess model performance. 

Finally, the predictive value of each feature was calculated individually with a custom Python 

script using the known SM and GM genes and the individual feature values to calculate the FP, 

FN, TP, and TN rates and subsequently the F-measure and AuROC values (Dataset S3). For the 

random model, we first randomized the SM/GM labels of benchmark genes but with feature values 

associated with each gene unchanged. This randomized feature table was then used to establish 

machine learning models and the model performance was evaluated with F-measure and AuROC 

values. Models were applied to enzyme genes not classified by GO or AraCyc as SM or GM, but 

with known E.C. number annotations from AraCyc or Pfam v.30. Additional models were built to 

exclude genes in glucosinolate pathways or specific enzyme families (terpene synthases, 

cytochrome P450s, methyltransferases). The model built with genes excluding the designated 

pathway or family was then applied to classify genes in the pathway or family in question. 

 

 



72 

Definition of DA and JC genes for multi-class classification 

Dual-annotation (DA) genes are genes annotated as both GM and SM pathway genes in 

AraCyc. This classification was performed for testing if DA genes belong to a class of its own, 

distinct from GM and SM genes. Junction (JC) genes were defined based on the pathway 

annotation data (pathway.dat) from the PlantCyc A. thaliana v.12 dataset. Two types of JC genes 

were defined. For each reaction R in a GM pathway, if R was also found in an SM pathway, R 

was defined as a type 1 JC reaction, and the gene(s) encoding enzyme(s) for R was(were) 

referred to as type 1 JC genes. Type 2 JC genes were identified based on the overlap between the 

final products of GM pathways and the beginning substrate of SM pathways (Figure 5A). For a 

metabolic intermediate or product M in a GM pathway, if M was used as a substrate in an SM 

pathway, then the GM reaction(s) RG responsible for producing M and the SM reaction(s) RS 

using M as a substrate were defined as type 2 JC reactions. The genes encoding enzymes for RG 

and RS were referred to as type 2 JC genes. Two three-class models were built. The first 

SM/GM/DA model used SM, GM, and DA genes (benchmark4) as the three classes. The second 

SM/GM/JC model used SM, GM, and JC genes (benchmark5). For the three-class models the 

same Python package sci-kit learn and the same algorithms (RF and SVM) as the binary 

classification models were used; the only difference was that three class labels were used instead 

of two. 

Supplemental Datasets 

 

Dataset S1: Gene annotation and prediction scores 

Dataset S2: Feature values 

Dataset S3: Model scores and feature weights 
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Abstract 

Plant specialized metabolites mediate interactions between plants and abiotic/biotic 

environmental factors and have significant agronomical and pharmaceutical value. However, 

most genes involved in specialized metabolism (SM) are unknown because of the large number 

of specialized metabolites and the challenge in differentiating SM genes from general 

metabolism (GM) genes. To meet this challenge, we employed transfer learning, a type of 

machine learning strategy in which information from one species with substantially more 

experimentally derived function data is used to build a model to predict gene functions in another 

species. We focused on Solanum lycopersicum (tomato), a model crop for investigating SM 

pathways, and Arabidopsis thaliana (Arabidopsis), the best annotated plant species. Using 

machine learning methods to integrate five categories of gene features, predictive models 

distinguishing tomato SM and GM genes were built using different annotations and feature sets: 

(1) tomato annotations and gene features, (2) Arabidopsis annotations and gene features shared 

between tomato and Arabidopsis, and (3) tomato annotations filtered based on the Arabidopsis 

model predictions and tomato gene features. Although SM/GM genes can be predicted with 

reasonable accuracy based on tomato data alone (F-measure=0.74, compared with 0.5 for 

random guesses and 1.0 for perfect predictions), using information from Arabidopsis to filter 

likely misannotated genes significantly improves the predictions (F-measure= 0.92). This 

improvement is mainly due to significantly better GM predictions, most likely because these two 

species have multiple distinct SM pathways with properties that are not all shared, and thus 

cannot be readily transferred across species. This study demonstrates that SM/GM genes can be 

better predicted by leveraging functional annotation information across species. It also highlights 

the utility of transfer learning methods in biological applications. 
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Introduction 
 

 As more genome sequences become available, a major challenge in biology is to connect 

genotype to phenotype (Dowell et al., 2010). At the molecular level, phenotypes can be defined 

as products derived from genomic sequences, including transcripts, proteins, and/or metabolites. 

Plants produce a diverse array of specialized metabolites, with estimates upwards of 200,000 

structurally unique compounds (Ehrlich and Raven, 1964; Hartmann, 2007), many of which are 

important in medicine, nutrition, and agriculture (Giovannucci, 2002; Schmidt et al., 2008; 

Piasecka et al., 2015). Plant metabolic activities are broadly classified into two categories. The 

first is general (or primary) metabolism (GM), which involves the production of metabolites 

essential for survival, growth, and development in most, if not all, plant species (Hartmann, 

2007; Chen et al., 2011).  In contrast, specialized (or secondary) metabolism (SM) leads to the 

accumulation of lineage-specific metabolites that may confer a fitness advantage in particular 

environments (Ehrlich and Raven, 1964; Hartmann, 2007; Pichersky and Lewinsohn, 2011; 

Edger et al., 2015). For example, some plant specialized metabolites such as glucosinolates and 

terpenoids confer resistance against insects and pathogens (Wink, 1988; Piasecka et al., 2015). 

Another difference between general and specialized metabolites is that the later tend to 

accumulate in specific tissues such as in trichomes or fruit (Tohge et al., 2013; Nakashima et al., 

2016). In addition to their ecological and evolutionary importance, specialized metabolites are 

important for human health; ~25% of medicinal compounds are derived from plant metabolites 

(Schmidt et al., 2007; Schmidt et al., 2008). For example, members of the Solanaceae family, 

Solanum nigrum and S. lyratum, produce glycosides that have anti-tumor activity in cancer cell 

lines (Nohara et al., 2006). Atropa belladonna, also in the Solanaceae family, produces the 

tropane alkaloids hyoscyamine and scopolamine. This plant is named ‘beautiful woman’ because 
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in Roman times women used the extract to dilate their pupils (Rajput, 2014). The plant also has 

anticholinergic activity and are used to treat parasympathetic nervous system disorders and 

asthma(Capasso et al., 2000; Grynkiewicz and Gadzikowska, 2008).  Furthermore, specialized 

metabolites contribute to desirable agronomic traits such as the aromas and flavors of fruits 

(Tohge et al., 2013) and defense against agricultural pests (Osbourn, 1996). 

 Tomato is a model crop species that has emerged as a system for investigating SM 

pathways. For example, the production of acylsugars, a specialized metabolite, in tomato and its 

wild relatives is important for repelling herbivores (Lucini et al., 2016; Maciel et al., 2017; Fan 

et al., 2019). Some specialized metabolites found in the tomato fruit also confer health benefits 

by, for example, reducing risk of cancers and coronary heart diseases (Giovannucci, 2002; Blum 

et al., 2005; Andersen and Markham, 2006). Despite recent progress in elucidating tomato SM 

pathways, our understanding of many of the steps in these pathways are incomplete due to the 

diversity of specialized metabolites within the tomato lineage. Many genes that underlie the 

production of specialized metabolites belong to the same gene families as genes involved in GM 

(Pichersky and Lewinsohn, 2011; De Luca et al., 2012; Facchini et al., 2012; Milo and Last, 

2012), which makes them difficult to distinguish. Currently, genetic approaches are used to 

identify SM genes in tomato, including gene silencing (Itkin et al., 2013), genetic mapping (Xu 

et al., 2013), and the use of introgression lines (Schilmiller et al., 2010). In addition, genes 

involved in SM or belonging to a particular pathway can be predicted computationally. For 

example, protein sequence information can be used to predict enzymatic functions and assign 

genes to pathways (Karp et al., 2011; Chae et al., 2014; Schlapfer et al., 2017). However, 

inferring gene functions using sequence information alone can lead to high error rates (Rost, 

2002). In addition to sequence similarity, gene co-expression networks have been used to 
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classify genes into specific metabolic pathways (Wisecaver et al., 2017). Similarly, involvement 

of genes in a pathway can also be hypothesized using correlation of gene expression with the 

production of specific metabolites (Tohge et al., 2005; Saito et al., 2008; Adio et al., 2011). 

Finally, heterogenous gene features including gene duplication status, evolutionary properties, 

expression levels, placement in co-expression networks, and protein domain content have been 

integrated using supervised machine learning to make SM/GM gene predictions in Arabidopsis 

(Moore et al., 2019).  

  Supervised learning approaches leverage examples or instances (e.g., genes) with known 

labels (SM or GM) to learn how the properties (features) of those instances can be best used to 

distinguish instances with different labels in the form of a predictive model (Figure 3.1). There 

are two factors limiting computational predictions of SM/GM genes. First, although supervised 

learning methods for SM/GM prediction are effective in Arabidopsis, it remains unclear how 

these methods may work in species with less complete gene and pathway annotations. Second, as 

sequence similarity-based approaches have high error rates, it is challenging to transfer 

annotation information across species (Yu, 2004). The goal of this study is to address these 

limitations by improving computational approaches for distinguishing genes with SM and GM 

functions. To determine if the supervised learning approach to identify SM/GM genes developed 

for Arabidopsis can be used in another species (e.g., tomato), we first identified gene features 

(e.g., how a gene is expressed, what protein domains it contains) that were the most important for 

distinguishing SM genes from GM genes in tomato. Next, we assessed the ability to leverage 

annotation information from Arabidopsis to make predictions in tomato using an approach called 

"transfer learning" (Soria Olivas, 2010), where knowledge of SM/GM annotations from 

Arabidopsis was applied to models for tomato. 
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Figure 3.1. Machine learning diagram 

(A) Schematic showing the input data for machine learning. The first inputs are labeled 

instances, collectively referred to as the model training set. In this case the instances are genes 

and the labels are the gene classes (response variable; either SM or GM). The second input is 

features, or the predictive variables in the model. In this study, five feature categories, which 

each contain multiple features, were utilized: evolutionary properties, duplication features, 

protein domains, expression properties, and co-expression data. Each gene (instance) has a value 

for each feature. (B) The machine learning process. First the data set was split into training 

(90%) and testing (10%) sets. Next, equal numbers of training instances (i.e., 500 GM and 500 

SM genes) were randomly selected from the training set to learn prediction models. This step 

was repeated 100 times, with different subsets of GM/SM genes selected from the training set in 

each repeat, to assess the robustness of prediction models. For each repeat, a 10-fold cross-

validation was performed where the selected instances were further divided into a training subset 

(90%) for building the model and a cross-validation subset (10%; distinct from the testing set 

withheld from model building) to evaluate the model. After cross-validation, the optimal 

parameters were chosen to establish the final model for a given training/feature data set. Model 

performance assessed using the cross-validation sets was represented using the average F-

measure of all repetitions. In addition to assessing performance based on cross-validation, 

another F-measure was calculated for the final model based on its application to the testing set 

that was held out from the very beginning and never used for training. (C) The final model is 

applied on unannotated enzymatic genes to make predictions. 
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Results and Discussion 
 

Identifying specialized metabolism genes in tomato using machine learning approaches 

 

To predict SM and GM genes in tomato and to understand what gene features are most 

important for driving the distinction between these genes, a supervised learning approach was 

used to build a model capable of classifying a gene as either an SM or GM gene. We focused 

solely on genes predicted to encode metabolic enzymes rather than regulatory genes such as 

transcription factors. The first step in building a machine learning model was to select the genes 

on which to train the model (Figure 3.1A). We based the training data on TomatoCyc annotated 

genes (referred to as "annotated genes", see Methods, for annotation information see Dataset 

S4), where genes in pathways under the category “secondary metabolism biosynthesis” were 

considered SM genes (538 genes). Genes in any other pathway not under this category were 

considered to be GM genes (2,313 genes). Genes found in both SM and GM pathways (158 

genes) were excluded from feature analysis and model building. The remaining annotated genes 

were divided into two sets; 90% of genes were used as the training set, which was used for 

training the model. The remaining 10% of annotated genes were withheld from the model and 

used as an independent testing set to evaluate the performance of the model. For all annotated 

SM and GM genes (2,861), we collected and processed five general categories of tomato gene 

features (Figure 3.1A): evolutionary properties, gene duplication mechanism, protein domain 

content, expression values, and co-expression patterns (7,286 total features, see Methods, for 

feature values see Dataset S5). The values of these features for genes in the training set were 

then used to train models for predicting whether a gene is likely an SM or GM gene (see 

Methods, Figure 3.2A).  
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Multiple models were built using two machine learning algorithms, as well as different 

numbers of features (see Methods) to determine the best performing model for predicting SM 

and GM genes. We determined model performance by calculating precision (proportion of 

predictions that are correct) and recall (proportion of instances correctly predicted). The best 

performing model had a precision of 0.70 at a recall of 0.78. To jointly consider precision and 

recall, the harmonic mean of precision and recall (F-measure) was determined. The F-measure of 

the best performing model was 0.74 (highlighted in pink and labeled Model 1 in Figure S3.1A) 

compared with the first 9 models in Figure S3.1A which use the same training set but different 

algorithms or numbers of features (for other measure of model performance see Dataset S6). 

This model score is significantly better than a random guess (F-measure = 0.5) but is not perfect 

(F-measure = 1). Using this model, referred to as Model 1, 76.6% of annotated SM genes and 

71.0% of annotated GM genes had predictions consistent with their TomatoCyc annotations 

(Figure 3.2B). To provide an independent validation, the model was then applied to the test set, 

which resulted in a similar F-measure of 0.73 (Figure 3.2C, Dataset S6). Because the test set 

was withheld completely from the model, this indicated the model could be applied to genes with 

no annotation and provide reasonable predictions. In addition to model performance, each gene 

was given a likelihood score, referred to as the SM score (see Methods), which indicates how 

likely a particular gene is to be an SM gene (Figure 3.2B). For SM scores and SM/GM 

predictions for all tomato enzymatic genes for all models, see Dataset S7. 

Important features for predicting tomato SM genes 

 

To better understand what gene features are important for predicting SM and GM genes, 

we identified features with the top 50 importance scores from Model 1 (Figure S3.1B, for 

feature importance for each model, see Dataset S8). The importance score for a feature is a 
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Figure 3.2. Model 1 machine-learning results. 

(A) Schematic illustrating the first model, in which a tomato data set with 7,286 tomato features 

was used. The model was built using TomatoCyc annotations and applied to tomato genes. 

For B-C: SM likelihood score is represented on the x-axis, number of genes is on the y-axis. 

Prediction threshold, based on the score with the highest F-measure, is indicated by the dotted 

line, and predicted SM genes are shown to the right of the line in red while predicted GM genes 

are shown to the left of the line in blue. (B) Distribution of Model 1 gene likelihood scores for 

the TomatoCyc-annotated SM and GM genes used in training the model. (C) Distribution of 

Model 1 gene likelihood scores for test SM and GM genes (which were withheld from the model 

completely). 
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measurement of how much information is gained by including it in the model (see Methods); the 

higher the importance score, the better the feature is at separating SM and GM genes. Nine out of 

the top 10 important features are in the evolutionary property and duplication categories (Figure 

S3.1B). Gene family size, i.e., the number of paralogs of a gene, was the most important feature 

for the tomato SM/GM prediction Model 1. This is consistent with an earlier study in 

Arabidopsis (Moore et al., 2019); similar to SM genes in Arabidopsis, tomato SM genes tend to 

be in larger gene families (median = 8) compared with GM genes (median = 3, Figure 3.3A, for 

test statistics between all SM and GM gene features, see Dataset S9). Thus, SM genes tend to 

have a higher rate of duplication and/or duplicate retention than GM genes. SM genes are also 

more likely to be tandem duplicates (37%) than GM genes (13%). In addition, a lower proportion 

of SM genes have syntenic duplicates (17%), which are likely derived from whole genome 

duplication, compared with GM genes (25%, Figure 3.3B). This is consistent with the previous 

finding that genes that respond to environmental stimuli tend to be retained after duplication, 

particularly if they occur in tandem (Hanada et al., 2008; Kliebenstein, 2008).   

It was determined previously that Arabidopsis SM genes tend to experience more relaxed 

selection pressure relative to GM genes (Moore et al., 2019). Consistent with this, 6 out of the 

top 10 most important features for tomato Model 1 are maximum or median non-

synonymous/synonymous substitution rates (dN/dS) from comparisons of tomato genes to 

homologs in six other land plant species (Figure 3.3C, Figure S3.2A-H). The lower the dN/dS 

value, the stronger the negative selective pressure a gene has experienced. Similar to 

Arabidopsis, we found that SM genes in tomato tend to have a higher median or maximum 

dN/dS rate relative to between-species homologs compared with GM genes (Figure S3.2A-H). 

In addition, within-species maximum dN/dS values between tomato paralogs were also important 
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(ranked 4th, Figure 3.3D, Dataset S8). This is likely because GM genes are conserved among 

plant species and are therefore under stronger negative selection while many SM genes are 

derived from homologous GM genes but have experienced less stringent negative selective 

pressure. One possible reason for the elevated dN/dS is that SM genes may be under positive 

selection for producing specialized metabolites. Another possibility is that some SM genes are no 

longer under strong purifying selection because of environmental changes and are becoming 

pseudogenes. These explanations are supported by the observation that many more homologs of 

SM genes exist within species or in closely related species than in distantly related species 

(Figure 3.3E). It has also been shown that more recent duplicates tend to have higher dN/dS 

values (Lynch, 2000). Considering that SM genes tend to belong to large gene families with a 

high duplication rate, recent duplication events are also likely a contributor to the higher dN/dS 

values of SM genes compared with GM genes.   

  Variation in transcriptional levels and patterns between genes may represent differences 

in their functions and can therefore also be key features distinguishing SM and GM genes. To 

assess how expression data may be used to distinguish SM and GM genes in tomato, we 

compiled 47 transcriptome studies (for details on the datasets, see Dataset S10) spanning a range 

of environmental conditions, hormone treatments, and developmental stages, mostly in wild-type 

genetic backgrounds. In Model 1, 147 out of the top 200 most informative features were related 

to expression (Dataset S8). Among the top expression features (ranked between 12-30) were 

maximum log fold change between developmental stages, circadian time points, mutants vs. wild 

type, or hormone treatments vs. controls (Figure S3.1B, Dataset S8), where SM genes tended to 

have higher maximum fold change values than GM genes (Figure 3.3F-I, Dataset S9, S6), in 

contrast to absolute expression values where GM genes had higher expression levels than SM 
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genes (Figure S3.2I-J). Thus, when considering gene transcription, SM gene expression tends to 

differ between developmental stages, varying times of day, and in response to different 

environments (stress or hormone treatment) to a more extreme extent than that of GM genes. 

Consistent with this, expression variation (median absolute deviation, see Methods) is also an 

important feature (Dataset S8). Examples include expression variation among fruit ripening 

samples (ranked 46 out of 200) and between the mutant late termination (Tal et al., 2017) and 

wild-type plants (ranked 44 out of 200, Figure 3.3J-K). Higher expression variation indicates 

that SM genes are expressed at higher levels in certain development stages and/or environments. 

For example, many specialized metabolites important for fruit flavor and color are produced 

during tomato fruit development (Tohge et al., 2013). Aside from gene expression, the 

enrichment of specific protein domains such as the p450 domain among SM genes (Figure 

S3.2K) is an additional feature that differentiates them from GM genes. 

Characteristics of genes with inconsistent annotations and predictions 

 

Although the tomato SM/GM prediction model F-measure (0.74) was significantly better 

than a random guess (0.5), 29% of GM genes were mis-predicted as SM and 23% of SM genes 

were mis-predicted as GM when using an SM score threshold determined based on the optimal 

F-measure (Figure 3.2B). In addition, the tomato model did not perform as well as an earlier 

model for predicting Arabidopsis SM/GM genes (F-measure = 0.79, Moore et al., 2019). Note 

that the tomato model is trained on TomatoCyc annotations, which can be of poorer quality than 

those of AraCyc (Arabidopsis annotations)—there are only 16 experimentally verified 

TomatoCyc SM/GM genes compared to 1,652 in AraCyc. To understand why we obtained a high 

rate of mispredictions, we assessed what features may cause a gene to be mis-predicted. For  
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Figure 3.3. Duplication, evolutionary, and expression features important to the SM vs. GM 

model 1 

(A-F) GM genes are denoted in blue, SM genes are denoted in red. (A) Log 10 of the number 
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Figure 3.3 (cont’d) 
gene family members (paralogs) for each class of genes (SM and GM). (B) Percent of genes with 

a known duplicate (tandem or syntenic) for each class (SM and GM). (C) Maximum dN/dS 

values from comparisons of SM and GM genes to homologs in C. canephora and (D) S. 

lycopersicum. (E) Phylogenetic tree of 26 species showing speciation nodes, and a bar plot 

showing the percentage of tomato genes in each class (SM and GM) that have a homolog in an 

orthologous group in a given species. (F-I) Distribution of maximum fold change between all 

samples in a given dataset for genes in each class (GM and SM) over a (F) meristem 

development dataset (1 study, 18 samples), (G) circadian dataset (1 study, 86 samples), (H) 

mutant dataset (14 studies, 239 samples, see Dataset S10 for list of mutants) and (I) hormone 

treatment dataset (5 studies, 89 comparisons, see Dataset S10 for hormone treatments). (J-K) 

Distribution of variation in fold change in expression over a (J) fruit ripening dataset (1 study, 12 

samples) and (K) a dataset from the late termination mutant, which shows delayed flowering and 

precocious doming of the shoot apical meristem (1 study, 12 samples, see Dataset S10, LTM 

mutant) for each gene class (GM and SM). P-values are from the Mann-Whitney U test between 

SM and GM genes. 
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example, SM genes in general tend to be in larger gene families than GM genes, and genes 

annotated as GM but predicted as SM (annotatedpredicted: GMSM) tended to belong to 

larger gene families (median = 5) than those having consistent GM annotations/predictions 

(GMGM, median = 3, Figure 3.4A). Similarly, annotated SM genes predicted as GM 

(SMGM) belonged to smaller families (median = 3) compared with correctly 

annotated/predicted SM genes (SMSM, median = 10, Figure 3.4A). Additionally, we found 

that GMSM genes tended to be tandem duplicates, similar to SMSM genes and in contrast 

to GMGM and SMGM genes (Figure 3.4B). These findings indicate that mis-predicted 

genes tend to possess feature values that are deviated from the norms. 

Another example where GMSM and SMGM genes defied the general trend was in 

maximum dN/dS value, having higher and lower dN/dS values, respectively, compared with 

those genes with consistent annotations/predictions (Figure 3.4C, D, Figure S3.3A-H). For 

example, one of the GMSM genes, XP_010323708 (Solyc07g054880.3.1), has a maximum 

dN/dS of 0.25 relative to its Coffea canephora homolog, which is much higher than that observed 

for GMGM genes (dN/dS of 0.10) (Dataset S5, Dataset S9). This high dN/dS value likely 

contributed to the prediction of this gene as SM. When looking more closely at XP_010323708, 

we found that this gene was previously reported to encode a methylketone synthase that produces 

specialized methyl ketones specific to the Solanum genus (Yu et al., 2010), and should be 

annotated as an SM gene. Other GM genes with high dN/dS values from comparisons to their 

tomato paralogs were also predicted as SM genes. For example, three Glycoalkaloid metabolism 

(GAME) genes involved in steroidal glycoalkaloids production – GAME4, GAME12, and 

GAME17 – stand out as SM genes in our model while TomatoCyc incorrectly annotated them as 

GM genes. GAME4 and GAME12 both have high maximum dN/dS values relative to tomato 
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paralogs (0.30 and 0.26, respectively), a feature that many other SM genes share (SM median = 

0.27, GM median= 0.15). GAME17 belongs to a large protein family (30), another feature 

common to SM genes (SM median = 8, GM median = 3) and the most important feature for 

Model 1. In contrast to GMSM genes, SMGM genes have a maximum dN/dS score (median 

= 0.27) from comparisons to tomato paralogs that is significantly below that for SMSM genes 

(median= 0.33, Figure 3.4C, Dataset S9). Aside from evolutionary properties and duplication 

features, compared with SMSM genes, GMSM genes also had similar maximum expression 

fold differences (Figure 3.4E-H), expression variation values (Figure 3.4I, J), median 

expression levels (Figure S3.3I, J), and protein domain compositions (Figure S3.3K).  

In summary, we found that the distributions of feature values for mis-predicted GMSM 

genes mirrored those for annotated SM genes. Likewise, the feature values distributions for 

SMGM genes were similar to the overall distributions for annotated GM genes. These 

observations indicated that some SM genes in TomatoCyc looked more like GM genes and some 

GM genes looked more like SM genes which contributed to the discrepancies between 

annotation and prediction. An open question is whether these mis-predicted genes were 

misannotated in the first place or if they were correctly annotated but incorrectly predicted by a 

faulty model. This prompted us to look more closely at mis-predicted genes to see if their 

annotations were supported by compelling experimental evidence. 

Manual curation of SM/GM genes to obtain a benchmark set 

 

Based on comparison of feature value distributions, mis-predicted genes tend to possess 

properties more similar to the class (GM or SM) they were mis-predicted as. This is not a 

surprising outcome because our explicit goal was to learn about generalizable differences 

between annotated GM and SM genes. The unresolved question is why mis-predictions occur.  
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Figure 3.4. Feature distributions of genes which are predicted contrary to their annotated 

classification 

All plots show four classes of predictions from Model 1 (GMGM indicates a GM gene   
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Figure 3.4 (cont’d)  
predicted as GM, GMSM: a GM gene predicted as SM, SMGM: an SM gene predicted as 

GM, SMSM: an SM gene predicted as SM). (A) Log 10 of the number of gene family 

members (paralogs). (B) Percentage of genes with a known duplicate (tandem or syntenic). (C) 

Maximum dN/dS values from comparisons to homologs in C. canephora and (D) S. 

lycopersicum. (E-H) Distributions of maximum fold change over (E) the meristem development 

dataset (1 study, 18 samples), (F) the circadian dataset (1 study, 86 samples), (G) the mutation 

dataset (14 studies, 239 samples, see Dataset S10 for list of mutants) and (H) the hormone 

dataset (5 studies, 89 comparisons, see Dataset S10 for hormone treatments). (I-J) Distribution 

of variation in fold change in expression over (I) the fruit ripening dataset (1 study, 12 samples) 

and (J) the late terminal mutant dataset (1 study, 12 samples). For continuous data, p-values are 

from the Kruskal-Wallis test and post-hoc comparisons were made using the Dunn’s test.  

Different letters indicate statistically significant differences between groups (P < 0.05). For 

binary data (B) overrepresentation (+) and underrepresentation (-) were determined using the 

Fisher’s Exact test, where (+) is significant enrichment of SM genes and (-) is significant 

enrichment of GM genes. A p-value less than 0.05 after Benjamin-Hochberg multiple testing 

correction was considered significant. 
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Three factors may account for mis-predictions: (1) the genes were annotated correctly, and 

Model 1 was incorrect, (2) Model 1 made correct predictions, but the annotations were incorrect, 

and (3) both annotations and predictions were correct, because these genes have roles in both 

GM and SM, i.e., they have dual functions (DF). To assess these possibilities, we manually 

curated a set of 88 tomato genes (83 with annotations in TomatoCyc) encoding enzymes 

classified as SM, GM, or DF based on published evidence of in vitro enzyme activity and/or in 

planta characterization (see Methods). These 88 genes are collectively referred to as the 

benchmark set, and the curated evidence supporting their SM/GM/DF designations are shown in 

Dataset S4.  

 Out of 31 TomatoCyc-annotated GM genes analyzed, 24, 5 and 2 were manually curated 

as GM, SM and DF genes, respectively. Among the five annotated GM genes that were manually 

curated as SM, all five were predicted by Model 1 as SM. Four are the aforementioned genes 

Methylketone synthase (XP_010323708), GAME4, GAME12 and GAME17. The three GAME 

genes contribute to glycoalkaloid biosynthesis in several Solanaceae species (Itkin et al., 2013). 

The fifth gene correctly predicted by Model 1 is the neofunctionalized gene Isopropylmalate 

synthase 3 (IPMS3), which acquired a role in an SM pathway after the duplication of an ancestral 

IPMS gene involved in amino acid metabolism (GM pathway). IPMS3 is a tissue-specific SM 

gene involved in acylsugar production in glandular-trichome tip cells and is curated as an SM 

gene based on empirical evidence (Ning et al., 2015). Thus, in these cases, Model 1 made the 

correct predictions, but the annotations were incorrect. Two Geranylgeranyl diphosphate 

synthases (GGPS, NP_001234087 and NP_001234302) are manually curated as DF genes, but 

annotated by TomatoCyc as GM and predicted by Model 1 as SM. The challenge in classifying 

these genes might arise from the fact that GGPS enzymes catalyze core reactions in isoprenoid 
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biosynthesis, an ancient and diverse pathway that leads to the synthesis of both GMs and lineage-

restricted SMs (Ament et al., 2006).  

Manual curation of 45 TomatoCyc-annotated SM genes revealed that 3 were likely GM 

genes and 5 were likely DF genes. We chose to look in detail at the three manually curated GM 

genes that were annotated as SM: two carotenoid biosynthesis genes, PHYTOENE 

DESATURASE and TANGERINE (Isaacson et al., 2002; Romero et al., 2011), and a cytochrome 

P450, SlKLUH, that, when mutated, disrupts chloroplast homeostasis and has pleiotropic effects 

on plant growth and development (Chakrabarti et al., 2013). As carotenoid biosynthesis is 

conserved among all photosynthetic organisms (Cunningham and Gantt, 1998), and disruptions 

in basic development processes, such as gametophyte and seed development, is a strong indicator 

of essentiality in all plants (Meinke et al., 2008), these genes should be considered GM genes. In 

all three cases, Model 1 predictions agreed with the TomatoCyc SM annotations and, thus both 

the predictions and annotations were incorrect.  

Next, we focused on comparing the manually curated benchmark set to Model 1 

predictions. We found that 17 out of 29 (58.6%) total benchmark GM genes, and 13 of the 24 

benchmark GM genes that were annotated as GM by TomatoCyc (54%), were incorrectly 

predicted as SM by Model 1 (Figure S3.4A; Dataset S7). Thus, Model 1 tended to mis-predict 

benchmark GM genes as SM genes. In contrast, of the 51 total benchmark SM genes, 45 (88.2%) 

were correctly predicted by Model 1 (Figure S3.4A; Dataset S7). Taken together, our Model 1 

predictions were mostly consistent with the SM benchmark classifications. However, the model 

clearly had trouble predicting known GM genes. With regard to TomatoCyc-annotated genes, the 

opposite was true – 24 of 29 (82.8%) benchmark GM genes were correctly annotated as GM, and 

37 of 47 (78.7%) benchmark SM genes were correctly annotated as SM. Therefore, for SM gene 
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prediction, Model 1 has a lower error rate (11.8%) compared with the TomatoCyc annotation 

(21.3%), indicating that a higher proportion of benchmark SM genes were annotated in 

TomatoCyc than GM genes. However, for benchmark GM genes, Model 1 has a higher error rate 

(46% of benchmark GM genes predicted as SM genes) than the TomatoCyc annotation (14.3% 

of benchmark GM genes predicted as SM).  

Using transfer learning to make predictions across species 

 

Based on analysis of the benchmark data, there are two major sources for mis-

predictions. The first is that a subset of the TomatoCyc-annotated SM or GM genes were 

incorrectly annotated, and these mis-annotations were propagated into Model 1. The second is 

that Model 1 predict these genes correctly. These two explanations are not mutually exclusive, 

and the extent to which each contributes to mis-predictions remains to be determined. To 

determine the most likely reason for the mis-predictions and to improve upon Model 1, we used 

both the benchmark gene set and the TomatoCyc annotations to build a new model (referred to as 

Model 2), but this did not improve the prediction accuracy (F-measure=0.74, same as Model 1, 

Figure S3.1A, Dataset S6). This was likely due to the small proportion of benchmark gene-

inspired annotation corrections (30) relative to the large number of TomatoCyc-annotated genes 

(2,858).  

We next asked whether information from Arabidopsis, which diverged from the tomato 

lineage 83-123 million years ago (Ku et al., 2000; Sato et al., 2012), could be used to improve 

gene predictions in tomato. We chose to use a machine learning approach called transfer learning 

(Soria Olivas, 2010) in which a base model is first built using data from Arabidopsis and then the 

learned features and/or the base model itself are used to make predictions in tomato using the 

tomato annotations and features. To accomplish this, a list of 4,197 similar features in 
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Arabidopsis and tomato (referred to as shared features, see Methods) were identified. A model 

was built using previously defined AraCyc GM/SM annotations (Moore et al., 2019) and shared 

features. This model is referred to as Model 3 (Figure 3.5A). For comparison, we also built a 

model (Model 4) using TomatoCyc GM/SM annotations and tomato data for the same shared 

features as in Model 3 and to train the model (Figure 3.5B). Model 3 built with Arabidopsis 

shared feature data had an F-measure = 0.81 when it was used to predict Arabidopsis genes as 

GM/SM (Dataset S6). In comparison, Model 4 built with tomato shared feature data had an F-

measure = 0.75 when used for predicting tomato annotations (Dataset S6). Additionally, more 

GM/SM genes in Arabidopsis are predicted correctly by Model 3 (Figure 3.5C) than GM/SM 

genes in tomato by Model 4 (Figure 3.5D).The higher F-measure and better predictions for 

Model 3 are consistent with there being more experimentally based gene annotations for 

Arabidopsis than for tomato that likely contribute to the differences in model performance.  

We next applied Arabidopsis-based Model 3 to predict tomato SM and GM genes and 

obtained an F-measure of 0.69 (Figure 3.5E, Dataset S6). This was substantially lower than the 

F-measure obtained when applying tomato-based Model 4 to tomato genes (0.75, Dataset S6), 

and fewer TomatoCyc annotated GM/SM genes were predicted correctly (Figure 3.5F). Based 

on SM scores for these models, 21.1% of TomatoCyc GM genes were predicted as GM genes by 

tomato Model 4 but predicted as SM genes by Arabidopsis Model 3 (lower right quadrant, 

Figure 3.6A, Dataset S7). However, Model 3 predicted 50% of benchmark tomato GM genes as 

GM (Figure S3.4B), which – although far from perfect – is substantially better compared with 

the percentage of benchmark GM genes correctly predicted by tomato Model 4 (25%, Figure 

S3.4C). Thus, Arabidopsis data (when used to train Model 3) led to improved tomato GM gene 

predictions compared with tomato annotation data. Based on our finding that annotated GM 
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Figure 3.5. Schematics and prediction of the Arabidopsis model 3 and tomato model 4 with 

shared features. 

(A) Schematic diagram showing the Arabidopsis model (Model 3) built using the shared feature 

set between Arabidopsis and tomato. Model 3 was trained using Arabidopsis annotations and 

was then applied to Arabidopsis genes. (B) Schematic diagram showing the tomato model built 

using the shared feature set between Arabidopsis and tomato. (Model 4). Model 4 was trained 

using tomato annotations and was then applied to tomato genes. (C) Distribution of SM 

likelihood scores for Arabidopsis SM and GM training set genes from Arabidopsis Model 3. (D) 

Distribution of SM likelihood scores from tomato Model 4. Scores for tomato training set GM 

and SM genes are shown. (E) Schematic diagram of Arabidopsis Model 3 built using the shared 

feature set between Arabidopsis and tomato. Model 3 was trained using Arabidopsis annotations 

and then applied to tomato genes. (F) Distribution of SM likelihood scores from Arabidopsis 

Model 3. Scores for annotated tomato GM and SM genes are shown. For figures C, D, and F, SM 

likelihood score is shown on the x-axis, number of genes is on the y-axis. Prediction threshold, 

based on the score with the highest F-measure, is indicated by the dotted line, and predicted SM 

genes are shown to the right of the line in red while predicted GM genes are shown to the left of 

the line in blue. 
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genes were more likely to be misannotated compared with annotated SM genes (Figure S3.4B, 

C), this indicates that the decline in model performance was due to mis-annotation of tomato 

genes.  

Next, we asked how well Model 3 and 4 predict benchmark SM genes. We found that 

benchmark tomato SM genes were less well predicted using Arabidopsis Model 3 (84% correctly 

predicted, Figure S3.4B), a substantial drop from the near perfect predictions (97%) using 

tomato Model 4 (Figure S3.4C). This indicated that Arabidopsis data may provide more useful 

information about true GM genes in other species than about SM genes, likely because GM 

genes are conserved among plant species, and many have been studied using Arabidopsis as a 

model. Thus, it is more straightforward to transfer knowledge about Arabidopsis GM genes to 

tomato. SM genes, in contrast, are by definition lineage-specific and not all SM gene properties 

will be shared across species, which explains the drop in prediction accuracy in Model 3 

compared with Model 4. Nonetheless, the SM likelihood scores are largely consistent between 

Models 3 and 4 (Figure 3.6A, B; Figure S3.5A, B; Dataset S7), indicating there remain 

substantial similarities among SM genes across species. 

When we looked into the models in more detail, we found that the major reason why 

Arabidopsis Model 3 predicted genes differently from tomato Model 4 is because they have 

different important features (Figure 3.6C). Aside from the three most consistently important 

ones, which are gene family size, expression correlation between SM genes during development, 

and expression correlation between GM genes in the hormone dataset (Figure 3.6C), many 

features such as maximum dN/dS relative to C. canephora homologs are highly important in 

tomato Model 4 but much less important in Arabidopsis Model 3. Upon examination of feature 

value distributions, we found that, in general, the feature values of the tomato Model 4-based 
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predictions more closely aligned with those of the annotated genes in the tomato training set than 

with Arabidopsis Model 3-based predictions (Figure 3.6D-F). For example, annotated tomato 

SM genes predicted as GM genes by Arabidopsis Model 3 but as SM genes by tomato Model 4 

(referred to as SMGM3/SM4 genes, the plot in pink, Figure 3.6D) tend to be in large gene 

families like SMSM3/SM4 genes (the orange plot, Figure 3.6D). In contrast SMSM3/GM4 

genes (the brown plot, Figure 3.6D), tend to be in small gene families. This indicates that tomato 

Model 4 is more strongly influenced by gene family sizes when differentiating SM and GM 

genes than Arabidopsis Model 3. This general pattern is also true for expression-based and dN/dS 

features (Figure 3.6E, F; Figure S3.5C-F). For example, GMGM3/SM4 genes are likely 

predicted as SM genes by tomato Model 4 (the second plot, Figure 3.6F) because they have high 

dN/dS values similar to those of the SM genes used to train the model (the eighth plot, Figure 

3.6F). However, GMSM3/GM4 genes (the third plot, Figure 3.6F) tend to have lower dN/dS 

values similar to those of the GM genes used to train the model (the first plot, Figure 3.6F). In 

the above example, the Arabidopsis Model 3 yields predictions contrasting with those from 

tomato Model 4. Most notably, the Arabidopsis Model 3-based predictions have feature values 

that mostly defy the general trends of the GM and SM genes in the tomato training data. This 

indicates that there are differences between the training data for Arabidopsis Model 3 and tomato 

Model 4 that bias each model. 

Improved tomato-based model by removal of potentially mis-annotated genes based on the 

Arabidopsis model predictions 

  

We hypothesized that if the Arabidopsis Model 3-based predictions are correct, then the genes 

with contrasting predictions and annotations are mis-annotated and their removal from the 

training data would lead to significantly improved predictions. This is because training the model 
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Figure 3.6. Tomato Model 4 and Arabidopsis Model 3 comparison 

(A-B) Comparison of the SM score distributions from tomato Model 4 (y-axis) and Arabidopsis 

Model 3 (x-axis). For both models Random Forest (RF) and a shared feature set were used. 

Density of data points ranges from high (yellow) to medium (blue-purple), to low (white). (A) 

SM scores for TomatoCyc-annotated GM genes. (B) SM scores for TomatoCyc-annotated SM 

genes. (C) Comparison of importance score distributions for features of tomato Model 4 (y-axis) 

and Arabidopsis Model 3 (x-axis). Arrows point to important features: (1) Gene Family Size; (2) 

PCC (Pearson’s correlation coefficient) between SM genes, development data; (3) Breadth of 

expression, development data; (4) the normalized maximum dN/dS between Arabidopsis or 

tomato genes and their C. canephora homologs; (5) PCC between GM genes, hormone data. (D-

F) Feature distributions for annotated SM and GM genes that are predicted as SM or GM genes 

by Arabidopsis Model 3 and tomato Model 4. The x-axis lists the annotations for each group of 

genes, how they were predicted using Arabidopsis Model 3, and how they were predicted using 

tomato Model 4. P-values are from the Kruskal-Wallis test and post-hoc comparisons were made 

using the Dunn’s test.  Different letters indicate statistically significant differences between 

groups (P < 0.05). (D) Gene family size; (E) Expression breadth under development; (F) 

normalized maximum dN/dS between Arabidopsis or tomato genes and their homologs in C. 

canephora. 

 

 

 



107 

from incorrect examples (i.e., mis-annotated entries) will lead to suboptimal models making 

erroneous predictions. On the other hand, if the Arabidopsis Model 3-based predictions are 

completely uninformative, the removal of genes from the training set would not improve the 

prediction. Thus, to further test the above hypotheses, we removed TomatoCyc-annotated GM 

and SM genes that had contradictory predictions from Arabidopsis-based Model 3 (i.e. 

GMSM3 and SMGM3) from the training set. Using this filtered training data set, a new 

tomato data-based model, Model 5, was generated using the same shared feature set between 

Arabidopsis and tomato for Model 3 and 4 (Figure 3.7A, see Methods).  

When we applied this filter to build tomato Model 5, there was a dramatic improvement 

in tomato GM/SM gene predictions (F-measure = 0.92, Figure S3.1A, Dataset S6) compared 

with predictions based on Model 3 (F-measure= 0.69, Figure S3.1A, Dataset S6) and Model 4 

(F-measure = 0.75, Figure S3.1A, Dataset S6). In particular, we were able to predict 90.9% of 

all annotated GM genes and 92.4% of all annotated SM genes in the filtered training data as GM 

and SM genes, respectively (Figure 3.7B, Dataset S6). Thus, Model 5, trained on a data set 

where GMSM3 and SMGM3 genes have been removed, is significantly improved compared 

with previous models. To validate Model 5 with an independent dataset, we applied it to a testing 

set of 159 SM and GM genes withheld from Model 5 during training. We found that 84% and 

88% of the test set GM and SM genes, respectively, were predicted consistently with their 

annotations (Figure S3.6B).  

To test whether model improvement was due to the filtering out of a subset of 

misannotated genes from the tomato training data and not just to the removal of genes in general, 

we built 10 additional models (collectively referred to as Model 6) using the same number of 

tomato SM and GM training genes as used for training Model 5, except that the genes were 
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removed randomly. We found the median F-measure to be the same as that from Model 4 (where 

no SM or GM genes were removed; Figure S3.1A, Dataset S6, see Methods), showing no 

model improvement. Thus, the improvement in model performance of tomato Model 5 could not 

be attributed to random gene removal and was likely achieved because the filtered tomato 

training data did not contain mis-annotated genes that would confuse the model.  

After showing that Model 5 performed significantly better on training data, we next asked 

how Model 5 faired in predicting benchmark GM genes. We found that 75% of benchmark GM 

genes were correctly predicted by Model 5 (Figure S3.6A, Dataset S7), compared with 25% for 

tomato Model 4 and 50% for Arabidopsis Model 3 (Figure S3.4F, G). In contrast, there was no 

improvement in benchmark SM predictions when comparing Model 4 (94% correct, Figure 

S3.4F, Dataset S7) to Model 5 (92% correct, Figure S3.6A, Dataset S7). These findings 

indicate that the improvement in Model 5 is likely due to its ability to determine true GM genes 

while maintaining true SM gene prediction performance. In addition, our results suggest that the 

filtering step mostly corrected for GM genes misannotated as SM genes in TomatoCyc. 

Consistent with this conclusion, 83.1% of the annotated SM genes that were removed from the 

Model 5 training data because Model 3 called them as GM, were predicted as GM genes by 

Model 5 (Figure S3.6C). This indicates that introducing GM genes that were likely 

misannotated as SM genes into the training set led to a sub-optimal model. After their removal, 

the new model was able to better identify GM genes misannotated as SM. In contrast, among 

annotated GM genes removed from the training set because they were predicted as SM genes by 

Model 3, only 6.1% were predicted by Model 5 as SM genes (Figure S3.6C). Furthermore, GM 

genes identified as SM genes by Model 3, were mostly still predicted as GM genes, indicating 
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that the removal of these genes was relatively inconsequential, and the main issue was that a 

substantial number of GM genes were mis-annotated as SM genes.  

Additional models (Models 7 and 8) were trained using the same filtered gene set used in 

training Model 5 but with the full tomato feature data set (instead of just the shared features used 

in Models 3, 4, and 5; Figure S3.6D). The training set for Model 8 also included the benchmark 

gene annotations. Models 7 and 8 had similar performances (F-measure = 0.88 and 0.86 

respectively, Dataset S6, Figure S3.6E-G). Both Models 7 and 8 were significantly improved 

compared with Model 1 (F-measure = 0.74), particularly when predicting GM genes (similar to 

Model 5). Overall, using Arabidopsis Model 3 to remove potentially mis-annotated tomato 

genes, i.e. genes that were not good training examples, led to substantially improved models 

(Model 5 and 7), especially for predicting GM genes.  

While TomatoCyc provides annotations for many genes in SM pathways, the global SM 

gene content in tomato is unknown. To provide a genome-wide estimate of SM gene content in 

the tomato genome, we used Model 7 to classify 5,627 unannotated enzyme genes and found that 

2,865 are likely involved in SM pathways (Figure S3.6H). This indicates that substantially more 

SM genes are yet to be identified because only 696 genes are currently annotated in TomatoCyc. 

As noted earlier, each enzyme gene has an SM score from the model application, which can be 

interpreted as the probability that a gene is an SM gene (see Dataset S7 for scores for each 

gene); thus, those unannotated enzymes that are highly likely to be an SM gene can be prioritized 

for further investigation. 

 



110 

 

Figure 3.7. Important features for tomato Model 5  

(A) Schematic diagram showing the tomato model trained on filtered annotations (Model 5) 

applied to tomato. The shared data set was used to build a binary model using tomato SM and 

GM annotations after removing those annotations that were mis-predicted by Arabidopsis Model 

3. The model was then applied to tomato genes. (B) Distribution of SM likelihood scores from 

Model 5 using Random Forest (RF). Scores are for tomato training set GM and SM genes. SM 

likelihood score is shown on the x-axis, number of genes is on the y-axis. Prediction threshold, 

based on the score with the highest F-measure, is indicated by the dotted line, and predicted SM 

genes are shown to the right of the line in red while predicted GM genes are shown to the left of 

the line in blue. (C) Importance scores for Model 5. Importance scores were normalized, with 1 

or -1 being the highest importance score, and 0 being the lowest. Red and blue bars indicate 

whether a feature is correlated with SM genes and GM genes, respectively. Normalized 

importance scores are shown on the x-axis and features are shown on the y-axis. Feature type is 

shown as a bar on the y-axis where the color indicates the feature type: evolutionary (blue), 

duplication (green), expression (yellow), functional domain (purple), and co-expression (orange). 

 



111 

Relationships between improved performance and feature rankings 

 

 Models 5 and 7 substantially improved gene predictions in tomato compared with all 

other models because mis-annotated genes, mostly genes annotated as SM but predicted as GM 

by Arabidopsis Model 3, were removed from the training data. To better understand the reasons 

for the improvement in GM gene predictions, we looked into three examples where Models 5 

and 7 predicted manually curated GM benchmark genes as GM genes, but where tomato-based 

Models 1 and 4 predicted the genes as SM genes: 1-aminocyclopropane-1-carboxylate oxidase 1 

(LeACO1, NP_001234024), abscisic acid 8’-hydroxylase (CYP707A1, NP_001234517), and the 

cytochrome P450 SlKLUH (XP_004236064). In these cases, the mispredictions were likely due 

to gene expression-related features. While LeACO1 exhibited a maximum log2 fold change of 

7.0 based on the fruit ripening dataset (Dataset S5), which is consistent with the higher values 

observed for SM genes (median=1.9) than for GM genes (1.2, p=1.3e-15). Similarly, the 

variance of log2 fold change in expression during fruit ripening for SlKLUH is 2.5, which is 

consistent with significantly higher median variance for SM genes (1.5) compared with GM 

genes (1.0, p=1.9e-21). CYP707A1 is up-regulated under many developmental conditions (13), 

which is not typical for tomato GM genes (SM median =16, GM median = 9, p=9.3e-26). 

Additionally, the expression of LeACO1, CYP707A1, and SlKLUH correlates highly with that of 

other SM genes (PCC= 0.87, 0.63, and 0.83, respectively). The similarity of these expression 

feature values as those of SM genes likely contributed to their mis-prediction by Models 1 and 4.  

Importantly, Models 5 and 7 likely predict these three genes correctly as GM genes 

because of the reduced reliance of these models on features associated with gene expression. 

Models 1 and 7 both use the full feature set, but filtered training data were used to train Model 7. 

In Model 1, expression variance in fruit ripening was ranked 46 among important features, while 
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in Model 7 it was ranked 120 (Dataset S8). Similarly, when comparing Models 4 and 5, which 

both use the shared feature set but differ in whether filtered training data were used, the features 

expression breadth under development and expression correlation between SM genes were 

ranked higher for Model 4 (6 and 16, respectively) than for Model 5 (22 and 20, respectively) 

(Dataset S8). Model improvement is also due to higher ranking of evolutionary features, such as 

maximum dN/dS between tomato genes and C. canephora homologs, median dN/dS between 

tomato genes and homologs in Arabidopsis lyrata, and maximum dN/dS between tomato genes 

and homologs in Populus trichocarpa. In Model 5 these features were ranked 1, 2, and 3, 

respectively; in Model 4 they were ranked 2, 3, and 8, respectively; Dataset S8); in Model 7 they 

were ranked 1, 2, and 7, respectively; and in Model 1 they were ranked 2, 9, and 16, respectively 

Dataset S8. LeACO1 and CYP707A1 both have maximum dN/dS values from comparisons to C. 

canephora homologs (0.07) more similar to those of GM genes (median=0.10) than to SM genes 

(0.17). Similarly, SlKLUH has a maximum dN/dS value from comparisons to A. lyrata of 0.11, 

which is closer to the GM median (0.09) than to the SM median (0.15). Because in Models 5 and 

7 these dN/dS features were weighted more heavily and certain expression features were 

weighted less heavily, the dN/dS feature values contributed to their correct classification as GM 

genes. 

In addition to the features discussed thus far, we also found that gene family size was no 

longer the most important feature in Models 5 and 7, ranked 24 and 27, respectively, as it was 

Models 1, 3 and 4. Considering that some of the largest enzyme families - such as cytochrome P-

450 and terpene synthases - contain both SM and GM genes, this reduced importance likely 

contributed to improved predictions. Despite the improvement, Models 5 and 7 are by no means 

perfect and erroneous predictions still occur. For example, PSY1 is a fruit ripening-related gene 
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manually curated as an SM benchmark gene, but it was predicted as a GM gene by both Models 

4 and 5. PSY1 represents an unusual case of duplication-associated sub-functionalization and is 

specifically expressed in chromoplast-containing tissues such as ripening fruits and petals (Fray 

and Grierson, 1993). PSY1 has comparatively low dN/dS values (similar to GM genes), 

especially between tomato and C. canephora (maximum dN/dS = 0.06).  Because this dN/dS 

feature was the most important feature for Model 5, this ultimately contributed to the 

misprediction of PSY1 as a GM gene.  

Other examples are two GM terpene synthases involved in the biosynthesis of 

gibberellin, a plant hormone (Yamaguchi, 2008): copalyl diphosphate synthase (CPS, 

NP_001234008) and kaurene synthase (KS, XP_004243964). Both CPS and KS are mis-

predicted as SM genes in all models, presumably because of their high dN/dS values from 

comparisons to homologs in several species (CPS median dN/dS= 0.20, KS median dN/dS= 

0.26). These two enzymes were derived from an ancestral dual functional enzyme containing 

both copalyl diphosphate synthase and kaurene synthase activities (Chen et al., 2011). 

Angiosperm terpene synthases seem to have lost one activity or the other, but the ancient timing 

of the CPS/KS duplication (after divergence between bryophytes and the other land plant 

lineages) makes the high rate of evolution unusual. It is unknown what effect the loss of activity 

has on the evolution of the terpene synthase sequence. For all three genes, PSY1, CPS, and KS, 

the atypical evolutionary rates, either unusually low or high, led to mis-prediction. Overall, our 

machine learning approach led to a highly accurate SM/GM model with an F-measure of 0.91 

(where a value of 1 indicates a perfect model). However, while our approach ensures the 

identification of typical SM/GM genes, SM/GM genes with atypical properties that defy the 

general trend still are likely mis-predicted.  
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Predicting specialized metabolism pathways 

 

 While I was able to predict SM genes globally using a binary classification of SM or GM 

genes, the next logical step is to identify what pathways these SM genes belong to. This would 

facilitate targeting candidate genes responsible for the biosynthesis of different classes of 

specialized metabolites for functional analyses. To assess the feasibility, we first chose seven SM 

pathways that had sufficient gene numbers (see Methods) involved in the biosynthesis of 

phenylpropanoid derivatives, ranging from lignin and lignan derivatives to flavonoids and 

volatiles (Dataset S4). To characterize genes from multiple pathways at the same time, we built 

a multi-class model that distinguishes 8 classes (i.e. seven pathways + "mix") of genes from each 

other (Figure 3.8A, see Methods). Genes present in multiple pathways were put together into 

one class called “mix” in the multi-class model. The multi-class model has an average F-measure 

of 0.68, much better than a random model with F-measure = 0.14). Some pathways were 

predicted better than others – the two most extreme examples were PWY-6199, quercetin sulfate 

biosynthesis, with a near perfect F-measure = 0.99 and PWY-4203, volatile benzenoid 

biosynthesis I (ester formation), with the lowest F-measure = 0.44 (Figure 3.8B, Dataset S6). 

Note that the class containing genes belonging to multiple pathways (referred to as "mix", 

Figure 3.8B) had a F-measure = 0.24, which is close to random. This is because for the most part 

the multi-pathway genes were mostly placed in other pathways rather than lumped into the 

“multi” class (multi, Figure 3.8B, Dataset S6). Overall, we found genes unique to a particular 

pathway can be predicted with supervised learning but with variable accuracy.  

 Why are some pathways predicted better than others and how do features of genes from 

these seven pathways differ? To answer this question, we compared pairwise genes within a 

pathway to genes between pathways (see Methods) and found significant differences using the 
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Fisher’s exact test for binary data and Mann-Whitney U test for continuous data, and then 

examined the top 10 features with largest effect size (i.e. the lowest p-values) for each of the 

seven pathways. We found that 47 out of 53 features (Figure 3.8C) with the largest effect size 

for the seven pathways were expression or co-expression features, indicating this to be the major 

distinction among SM pathways. The largest distinguishing factor was down regulation under 

various hormone treatments (Figure 3.8C). Pathways 361, 5466, and 6673 had higher numbers 

of genes within each pathway down-regulated than between pathways, while for pathways 

5751,7139,4203, and 6199 it was the opposite. This indicates that the genes in pathways 361, 

5466, and 6673 were more responsive under hormone treatment than genes in pathways 5751, 

7139, 4203, and 6199, and this influenced how these genes were predicted.  

Additionally, different combinations of co-expression modules were useful in 

distinguishing between pathways. For example, in the well-predicted pathway 6199, modules 

under development, particularly fruit development, hormone, and biotic stress of Pseudomonas 

syringae were enriched. PWY-6199 produces quercetin sulfates, which are sulfonated flavonoids 

that are involved in pigmentation as well as auxin transport, and has anti-microbial activity 

(Teles et al., 2018). Thus, because of the function of the pathway, expression under specific 

conditions and in specific plant tissues that produce a lot of pigmentation (i.e. fruits), can help 

distinguish the genes in this pathway from other pathways. In contrast, PWY-361, lignin and 

phenylpropanoid biosynthesis is enriched in many clusters relating to development and mutation, 

particularly meristem development (Figure 3.8C). Because lignin is involved in making cell 

walls and contributing to rigidity of the plant, clustering in development modules for meristem 

may be predictive of genes being in the lignin pathway. Finally, one pathway, 4203, was not 

predicted well (F-measure = 0.44), and this may be because it closely mirrors pathways 6199,  
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Figure 3.8. Pathway model 

(A) Schematic diagram showing the pathway model 9 applied to tomato. The full tomato data set 

is used to build a multi-class model using tomato pathway annotations from seven SM pathways. 
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Figure 3.8 (cont’d) 
The model is then applied to tomato enzymatic genes. (B) Percent genes correctly predicted for 

each pathway of the Random Forest (RF) SM pathway model 9. Actual class is on the y-axis and 

predicted class is on the x-axis. Scale is shown from dark blue (100%) to white (0%). Genes 

present in each of the seven pathways are used to build the model (labeled as PWY-XX), and 

genes which are present in one of these seven SM pathways but also in present in any other 

pathway are labeled as “Multi”. (C) Feature enrichment of SM pathways comparing gene pairs 

within a pathway to gene pairs between pathways. Features are shown on the y-axis and 

pathways are shown on the x-axis. Feature enrichment is indicated by color ranging from red 

where it is most highly overrepresented in within-pathway gene pairs to blue where it is most 

overrepresented in between-pathway gene pairs. P-value is determined by the Fisher’s exact test 

with false discovery rate correction for binary features and the Wilcox Rank sum test for 

continuous features. Feature type is shown as a bar on the y-axis where colors are associated 

with the feature type for each feature and are as flows: light blue: evolutionary features; dark 

blue green: duplication features; yellow: expression features; dark pink: co-expression module; 

light purple: co-expression correlation. The expression data set used for each pertinent feature is 

also shown as a bar on the y-axis where colors are associated with the following expression data 

sets: green: development; dark blue: hormone; purple: mutant; dark yellow: stress. 

a greater distance across hormone down regulated conditions within their respective pathway 
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5466, and 361 in being enriched in the same co-expressed modules, but lacks unique modules 

that only genes in this pathway are enriched in. 

Overall we found expression and co-expression features to be more important for 

distinguishing genes at the pathway level (Figure 3.8C), while evolutionary features are more 

important for distinguishing SM genes from GM genes (Figure 3.7A). Features such as 

evolutionary properties, duplication type, and timing of duplication are helpful in distinguishing 

genes to a particular pathway but are not as important as expression features which have larger of 

effect sizes. Using only features with the largest effect sizes, however, may not be able to discern 

genes as well to a specific pathway as incorporating features of both small and large effects. 

Thus, using machine learning methods to model pathway specific genes can better capture the 

variation between pathways and make better predictions of genes to the finer pathway level 

scale. 

Conclusions 
 

SM and GM genes are difficult to distinguish due to the vast number of specialized 

metabolites that are limited to specific species and the fact that SM genes are often derived from 

GM genes. Additionally, most gene annotations are derived from the model plant A. thaliana, 

while many specialized metabolites of interest are found in medicinal plants or crops. Thus, if 

data from a better annotated species such as Arabidopsis can be used, directly or indirectly, to 

make cross-species predictions in another species, such as tomato, this could greatly improve 

annotations in non-model species. We used machine learning to establish models that could 

classify genes with SM and GM functions in tomato, but these models had relatively poor 

performance compared to models built in A. thaliana. Together with findings based on manually 

curated, benchmark genes, we discovered that the differences in features and model performance 
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were likely the result of mis-annotation of some tomato genes, which contributed negatively to 

the performance of machine learning models. Therefore we attempted a cross-species knowledge 

transfer by using the machine learning approach called transfer learning (Soria Olivas, 2010), 

where knowledge learned from a previously trained model (e.g., our Arabidopsis Model 3) is 

used (in this case, to remove predictions inconsistent with annotations) to train another model 

(e.g., tomato Model 5). By filtering out tomato-annotated genes that had predictions opposite 

from those of the Arabidopsis-based Model 3 from the training data, we significantly improved 

the accuracy of tomato SM/GM gene predictions. We demonstrated that this improvement would 

not have been possible without informed removal of potentially mis-annotated data. This 

approach can be applied more generally to any problem in a species that is relatively information 

poor by transferring knowledge from an information-rich one.  

It is important to note that a limitation to the transfer learning approach we used is that it 

is only useful for transferring knowledge, mechanisms, or phenomena that are similar across 

species. In our study, the transfer learning approach worked well for GM genes but it did not 

have an appreciable impact on the prediction of SM genes, likely because SM pathways are by 

definition specialized – thus, what you learn in one species does not necessarily apply to another. 

A specific example of where transfer learning can suffer is in predicting genes with atypical 

properties. The machine learning approach excels at spotting patterns in data, and the 

performance of machine learning models improves as more high-quality instances (e.g., 

experimentally validated SM/GM genes) and more informative features (e.g., dN/dS) are 

incorporated. However, it is a challenge to generate high-quality instances, and expert 

knowledge dictates what kinds of features are incorporated. In addition, the representation of 

genes that are considered "atypical" in the model can be limited by our ability to scour the 
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literature for novel features to represent these genes. 

We also find machine learning methods can be used to distinguish genes to a specific 

pathway, and that different types of co-expression, domain, and duplication features are 

important in distinguishing a gene to a particular pathway. A challenge for using supervised 

machine learning methods when distinguishing pathways is the lack of positive examples. We 

found that most SM pathways either did not have enough genes annotated to make predictions or 

had genes present in multiple pathways. This shows a need for using unsupervised machine 

learning methods with a heterogenous set of features to help predict pathways which currently 

only have one or two genes.   

In future studies, transfer learning can be used to predict GM and, to a lesser extent, SM 

genes in species that lack annotations and/or experimental evidence such as non-model, 

medicinal plant species. An open question in this area that needs to be addressed is whether more 

closely related species, even though they may not be as well annotated, are better candidates for 

transfer learning than better annotated but more distantly related species. In addition, as 

discussed above, our models can potentially be further improved by incorporating additional 

features, particularly those that are shared between species, using transfer learning. For example, 

data that are incorporated as features for across species models should come from experiments 

performed in more similar ways in terms of treatments applied and tissues investigated. 

Furthermore, we found that SM gene annotations can vary across species, so reliance on 

information from a particular species may skew the model predictions and the features that are 

most important for the model. Thus, in future studies comparisons between models using data 

from single and multiple species will be informative and potentially can further improve cross-

species predictions via transfer learning. Using transfer learning we may also be able to better 
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annotate less well known species. Another consideration is that we treated our research problem 

as a binary (SM or GM) classification problem. Over the course of evolution, some SM 

pathways may ultimately become GM pathways because of increasingly wider taxonomic 

distribution. Thus, the extent to which a gene is considered to be SM is likely continuous, where 

genes at the end of an SM pathway may be more “SM-like” than genes at the beginning of the 

pathway, which may be linked to GM pathways. The question is how to define the degree of 

involvement in SM pathways and determine whether continuous SM scores, where GM and SM 

genes have low and high scores, respectively, are good proxies for involvement in these 

pathways. This can be accomplished by mapping SM scores to pathways to see if they are 

predictive of where a gene lies in a pathway.  

Methods 
 

Annotation 

 

Only enzyme genes were included in this study. A gene was considered to be an enzyme 

gene if it had an EC or RXN number annotation in TomatoCyc or assigned using E2P2 v3.0 

(Chae et al., 2014). Tomato pathway annotations were downloaded from the Plant Metabolic 

Network Database, TomatoCyc v. 3.2 (Schlapfer et al., 2017). Pathways that were nested under 

“Secondary Metabolism Biosynthesis” or “Secondary Metabolites Degradation” were considered 

specialized metabolism (SM) pathways and genes within those pathways were considered SM 

genes. All other pathways were considered to be general metabolism (GM) pathways. If a gene 

was annotated as being in both an SM pathway and a GM pathway, the gene was considered to 

be dual function (DF). Additionally, the biosynthesis of plant hormones was considered GM 

even though some hormone pathways fell under the DF category. If a pathway was nested under 

both “secondary metabolism biosynthesis” and other general biosynthesis categories, the 
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pathway was determined to be DF. For specific SM pathway annotations, the path ID from 

TomatoCyc was used. 

Benchmark genes  

The benchmark gene set was identified based on expert knowledge and literature mining. 

Tomato genes were defined as GM, SM, or DF based on in planta functional analyses of mutant 

generated through gene silencing or knockout mutations and/or studies of in vitro biochemical 

activity. For the identity of the benchmark genes (i.e. manually curated as SM, GM, or DF 

genes), the evidence used for manual curation, and publications supporting the evidence, see 

Dataset S4. 

Features used for machine learning 

 

All gene feature values can be found in Dataset S5. These 7,286 features are divided into 

several categories, each with different numbers of features: protein domains (4,232 features), 

expression value (280), co-expression (2,670), evolution (78), and gene duplication (26). Protein 

domain Hidden Markov Models from Pfam v.30 (pfam.xfam.org/) was used to identify protein 

domains in annotated tomato protein sequences with HMMER 

(https://www.ebi.ac.uk/Tools/hmmer/https://www.ebi.ac.uk/Tools/hmmer/) using the trusted 

cutoff, then a binary matrix for each gene and domain was created where 1 indicates the protein 

sequence of a gene has a given domain and 0 indicates it does not.  

Expression value features 

 

For expression value features, RNA-seq Sequence Read Archive (SRA) files for tomato 

were downloaded from National Center for Biotechnology Information (NCBI; 

https://www.ncbi.nlm.nih.gov/) totaling 47 studies and 926 samples (Dataset S10). These data 

sets included development (13 studies including fruit, flower, leaf, trichome, anther, and 

https://www.ebi.ac.uk/Tools/hmmer/
https://www.ebi.ac.uk/Tools/hmmer/
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meristem tissues), hormone-related (5 studies: cytokinin, auxin, abscisic acid, gibberellic acid, 

and auxin inhibitor treatments), mutant (14 studies which compared various mutants against wild 

type), stress treatment (16 studies including shade, various pathogens, cold, light, and heat 

treatments), and circadian (1 study with 60 samples). RNA-seq data were processed to determine 

both fold change and fragments per kilobase of transcript per million mapped reads (FPKM) 

(https://github.com/ShiuLab/RNAseq_pipeline).https://github.com/ShiuLab/RNAseq_pipeline). 

The SRA files were converted to fastq format and filtered with Trimmomatic (Bolger et al., 

2014) for sequence quality with default settings. Bowtie (http://bowtie-

bio.sourceforge.net/bowtie2/index.shtml) was used to create the genome index from the tomato 

NCBI S. lycopersicum genome 2.5, then RNA-seq reads were mapped to the tomato genome 

using TopHat (Trapnell et al., 2009). Samples with <70% mapped reads were discarded. 

Cufflinks was then used to obtain FPKM values for mapped reads. HTSeq (Anders et al., 2015) 

was used to get raw counts for fold change analysis. Fold change analysis was performed using 

edgeR version 3.22.5 (McCarthy et al., 2012). Using each data set individually or all data sets 

combined, the median and maximum, and variation values for each gene were calculated. For 

breadth of differential expression, the number of conditions under which a gene was up- and 

down-regulated was determined using log fold change values for each data set or combination of 

data sets. A gene was considered up-regulated if it had a log fold change > 1 and a multiple-

testing corrected p-value < 0.05 and down-regulated if it had a log fold change < -1 and a 

corrected p-value < 0.05. 

Co-expression features 

 

For co-expression features, expression correlation was calculated using three methods: 

Pearson’s Correlation Coefficient (PCC), Spearman’s correlation, and Partial Correlation 

https://github.com/ShiuLab/RNAseq_pipeline
https://github.com/ShiuLab/RNAseq_pipeline
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml


124 

(Corpcor). For each enzymatic gene (annotated and unknown), its expression correlation with 

each annotated SM/GM/DF gene was calculated (excluding self-correlation) using each method, 

each expression measure (fold change or FPKM) and each individual expression dataset (with a 

distinct Gene Expression Omnibus GSE number), combination of datasets, and all datasets 

combined (see Dataset S10). Then, for an enzymatic gene, E, the median and maximum of the 

correlation values of gene E for each class (SM, GM, or DF) of genes was determined and used 

as feature values. Next, tomato genes were clustered into co-expression modules using six 

methods (k-means, c-means, complete/average/ward hierarchical clustering, and weighted 

correlation network analysis) across each individual expression dataset, dataset combination, and 

all datasets combined (same as for expression correlation). This was done using both fold change 

and FPKM values. Using Random Forest from Python package Scikit- Learn (Pedregosa et al., 

2011), the top 200 co-expression modules that were the best for distinguishing SM and GM 

genes for each clustering method were selected to be part of the feature matrix for the models. 

Evolutionary features 

 

Orthologs and duplication nodes were determined using OrthoFinder (Emms and Kelly, 

2015). For input, protein sequence files from 26 different species were downloaded from 

Phytozome (https://phytozome.jgi.doe.gov/pz/portal.html), Sol Genomics Network (SGN,  

https://solgenomics.net/), PlantGenIE (http://plantgenie.org/), or NCBI 

(www.ncbi.nlm.nih.gov/genome): Physcomitrella patens 318 v3.3 (Phytozome), Marchantia 

polymorpha 320 v3.1 (Phytozome), Selaginella moellendorffii 91 v1.0 (Phytozome), Picea abies 

V1.0 (PlantGenIE), Amborella trichopoda 291 v1.0 (Phytozome), Oryza sativa 323 v7.0 

(Phytozome), Brassica rapa 277 V1.3 (Phytozome), Capsella rubella 183 V1.0 (Phytozome), 

Arabidopsis thaliana 167 TAIR10 (Phytozome), Arabidopsis lyrata v2.1 (Phytozome), 

https://phytozome.jgi.doe.gov/pz/portal.html
https://solgenomics.net/
http://plantgenie.org/
http://www.ncbi.nlm.nih.gov/genome
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Medicago truncatula 285 Mt4.0v1 (Phytozome), Vitis vinifera 145 Genoscope 12x (Phytozome), 

Aquilegia coerulea V3.1(Phytozome), Populus trichocarpa 210 v3.0 (Phytozome), Theobroma 

cacao 233 v1.1 (Phytozome), Coffea canephora (SGN), Ipomoea trifida V1.0 (NCBI), Solanum 

tuberosum V3.4 (SGN), Solanum pennellii SPENNV200 (NCBI), Solanum lycopersicum V2.5 

(NCBI), Capsicum annuum CM334 v.1.55 (SGN), Capsicum annuum var. glabriusculum V2.0 

(SGN), Nicotiana tabacum TN90 AYMY-SS NGS (SGN), Nicotiana tomentosiformis V01 

(NCBI), Solanum melongena r2.5.1 (SGN), and  Petunia axillaris V1.6.2 (SGN).  

To identify putative orthologs, OrthoFinder was first run using default settings, including 

a BLAST run using protein sequence data for each pair of species with default parameters (E-

value<0.001), markov clustering (inflation parameter=0.1) to create initial orthogroups, and 

dendroblast to create distance matrices between protein sequences of genes within each initial 

orthogroup. Initial gene trees were created using OrthoFinder. Three initial orthogroups were 

found to contain a single copy gene from each of the 26 species. Protein sequences of genes in 

each of these three orthogroups were aligned with MAFFT (Nakamura et al., 2018), and the 

alignment was used to build a phylogeny with RAXML (-m PROTGAMMAJTT -number of 

bootstraps 100 -outgroups Mpoly, Ppaten). This putative species tree was used as input into 

OrthoFinder to reconcile the gene trees for redefining orthogroups. Genes were considered to be 

homologous if they were in the same orthogroup. dN/dS (non-synonymous to the synonymous 

substitution rate ratio) was calculated with the yn00 program using PAML version 4.4.5 (Yang, 

2007). Gene family size was determined by the number of genes in an orthogroup within the 

species S. lycopersicum. 

Duplication mechanism was determined using MCScanX-transposed (Wang et al., 2013). 

Four duplication mechanisms were used as features: 1) syntenic duplicates: paralogous genes 
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present in within-species collinear blocks; 2) dispersed (transposed) duplicates: for a pair of 

paralogs in species A, only one of their corresponding orthologs in species B is present in the 

inter-species syntenic block; 3) tandem duplicate: a gene is adjacent to its paralog; 4) proximal 

duplicates: a gene is separated by no more than 10 genes from its paralog. Genomic clustering 

features were derived from the genome annotation Solanum lycopersicum V2.5. A gene pair X 

and Y was considered to be in the same genomic cluster if gene X was located within 10 kbps 

downstream of the 3'-end or upstream of the 5'-end of gene Y, and X and Y were within 10 genes 

from each other. For gene X, the numbers of genes that qualified as Ys were determined 

separately for Ys in SM and GM pathways. The time point of the most recent duplication was 

determined from the most recent speciation node associated with each gene as determined by 

OrthoFinder (Emms and Kelly, 2015). Duplication nodes ranged from most ancient (Node 0) to 

most recent (Node 24). The most recent duplication points for genes appearing to originate from 

multiple duplication nodes were defined by the highest-numbered node they belonged to (Figure 

S3.7). Pseudogenes in tomato were determined as in Wang et al. (2018) where genomic regions 

with significant similarity to protein-coding genes but with premature stops/frameshifts and/or 

were truncated were treated as pseudogenes. Detailed methods and parsing scripts for different 

features can be found in: https://github.com/ShiuLab/SM-gene_prediction_Slycopersicum. 

Statistics 

 

Statistical calculations were performed using R and Python. For discrete features, their 

relationships with SM/GM designations were determined by the Fisher’s exact test. For 

continuous data, either the Mann Whitney U test (for comparing two groups) or the Kruskal-

Wallis test followed by Dunn Pairwise Comparisons (for >2 groups) were used for tests of 

significance. Statistical results are in Dataset S9. 

https://github.com/ShiuLab/SM-gene_prediction_Slycopersicum
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Machine learning models 

 

Multiple prediction models were made using the Python Sci-kit learn package (Pedregosa 

et al., 2011) with two algorithms, Random Forest (RF) and Support Vector Machine (SVM). The 

pipeline (Figure 3.1) used to run the models can be found here: https://github.com/ShiuLab/ML-

Pipelinehttps://github.com/ShiuLab/ML-Pipeline. For each model, 10% of the data was withheld 

from training as an independent, testing set. The remaining 90% was used for training. Because 

the dataset was unbalanced (2,321 GM genes, 537 SM genes), 100 balanced datasets were 

created from random draws of GM genes to match the number of SM genes. Using the training 

data, grid searches over the parameter space of RF and SVM were performed. The optimal 

hyperparameters identified from the search were used to conduct a 10-fold cross-validation run 

(90% of the training dataset used to build the model, the remaining 10% used for validation, 

Figure 3.1) for each of the 100 balanced datasets. In total eight models were established using 

different feature and training datasets as described in Results & Discussion. For a subset of 

models, feature selection using RF was implemented to reduce the features to 50, 100, 200, 300, 

400, 500, and 1000 to determine the optimal number of features. Model performance was 

evaluated using F-measure, the harmonic mean of precision and recall. Each model outputs an 

SM score for each gene that is defined as the mean of predicted class probabilities of a sample to 

be in the SM class based on all decision trees in the forest. For each tree, the SM class 

probability was the fraction of genes predicted as SM. The threshold of the SM score used to 

determine if a gene was an SM or GM gene was the SM score value when the F-measure was 

maximized. The models also have an importance score for each input feature, which takes into 

account the weight of the feature by assessing how well the feature (node) splits the data between 

SM and GM genes in a decision tree in the "forest" and this is weighted by the proportion of 

https://github.com/ShiuLab/ML-Pipeline
https://github.com/ShiuLab/ML-Pipeline
https://github.com/ShiuLab/ML-Pipeline
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samples reaching that node (impurity score). The decrease in impurity score from each decision 

tree is averaged across all decision trees in the forest so that the higher the number, the more 

important the feature (Breiman, 2001; Louppe, 2014).  

Shared features between Arabidopsis and tomato 

 

 Dataset S11 lists the shared features and their values for Arabidopsis and tomato. For 

binary data, the features that were shared by both species were kept. These included two types of 

binary features: (1) protein domains: ~4,000 Pfam domains common between Arabidopsis and 

tomato; (2) evolutionary features: presence of a homolog in one of the 26 species, pseudogene 

paralog, and tandem paralog, and whether the most recent duplication events took place in the 

lineages leading to the nodes shared by both species (nodes 0-7). The shared features also 

included the following continuous features: gene family size, genomic cluster gene count, 

median/maximum dN/dS values between genes and their homologs in each of the 26 species, 

median/maximum dN/dS values between genes and their paralogs, and expression-based 

features. To generate shared expression features, expression data were placed into four categories 

– abiotic, biotic, hormone, and development – in both species. For each category, the 

Arabidopsis expression breadth, breadth of differential expression, and co-expression correlation 

values using PCC were obtained from an earlier study (Moore et al., 2019). The same sets of 

features were generated for tomato in this study. Continuous values were normalized within each 

species so that they would be comparable across species. For the normalization script see 

https://github.com/ShiuLab/SM-gene_prediction_Slycopersicum. 

Pathway characteristics 

Within and between pathway gene pairs were determined by taking all within pathway 

pairs and taking a random equal number of between pathway pairs. For each pair, the overlap for 

https://github.com/ShiuLab/SM-gene_prediction_Slycopersicum
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binary features and the distance of continuous features was calculated. Significance was then 

calculated for each within pathway and between pathway gene sets using the Fisher’s exact test 

for binary data and the Mann Whitney U test for continuous data. The log of the p-value (or q-

value for Fisher’s exact test) was taken for features enriched for the between-pathway class and 

the negative log of the p-value or q-value for the Fisher’s exact test was taken for features 

enriched for the within-pathway class. 
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Figure S 3.1. Comparison of all model scores and Model 1 feature importance  

(A) Comparison of model scores. F-measure is shown on the y-axis and model is shown on the 

x-axis. Model type is denoted by color. Gray indicates variations of Models 1-8 that are not 

described in the text. (B) Bar plot of the top 50 most important features for Model 1. The 

importance score is on the y-axis and all scores are normalized to the score of the most important 

feature, which was set as 1. Red bars represent features that are enriched for SM genes while the 

blue bars represent features enriched for GM genes. Features are listed along the x-axis, with the 

color denoting the feature category.  
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Figure S 3.2. Important features for Model 1. 

(A-K) Distributions or bar plots of feature values for TomatoCyc-annotated SM and GM genes. 

(A-J) Significance determined by the Mann-Whitney U test. (A-H) Distributions of the 

maximum or median dN/dS value for a given gene relative to their homolog in P. patens, S. 

moellendorffii, A. trichopoda, O. sativa, B. rapa, A. coerulea, P. trichocarpa and S. pennellii. (I, 

J) Distributions of log 10 of median FPKM values for the Inflorescence data set and Root data 

set. (K) Percent of genes with a given Pfam domain. Overrepresentation (+) and 

underrepresentation (-) was determined using those genes with a p-value less than 0.05 from a 

Fisher’s Exact test between SM and GM genes with Benjamin-Hochberg multiple testing 

correction.  
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Figure S 3.3. How features shape predictions  

For all distributions of each predicted class, GMGM represents GM genes predicted by Model 

1 as GM, GMSM represents GM genes predicted by Model 1 as SM, SMGM represents SM 

genes predicted by Model 1 as GM, and SMSM represents SM genes predicted by Model 1 as 

SM. Significant differences between continuous variables were determined by the Kruskal-

Wallis test (A-J) and post-hoc comparisons were made using Dunn’s test. Different letters 

indicate statistically significant differences between groups (P < 0.05). For binary data (K), 

overrepresentation (+) and underrepresentation (-) were determined by the Fisher’s Exact test 

where (+) is significant overrepresentation of a predicted class and (-) is significant 

underrepresentation. A p-value < 0.05 after Benjamin-Hochberg multiple testing correction was 

considered significant. (A-H) Distributions of the maximum or median dN/dS value for a given 

gene from comparisons to its homolog in P. patens, S. moellendorffii, A. trichopoda, O. sativa, 

B. rapa, A. coerulea, P. trichocarpa and S. pennellii. (I, J) Distributions of log10 (median 

FPKM) values for the Inflorescence (I) and Root (J) data sets. (K) Percentage of genes with a 

given Pfam domain.  
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Figure S 3.4. Manually annotated gene predictions 

(A) Bar plot showing the percentage of manually annotated benchmark genes predicted as SM or 

GM by Model 1. The original annotation from TomatoCyc is shown first, followed by the 

benchmark annotation and then the prediction. (B) Same as (A), except that the predictions were 

made using the Arabidopsis Model 3 with shared features. (C) Same as (A), except that the 

predictions were made using the tomato Model 4 with shared features. 
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Figure S 3.5. S. lycopersicum and A. thaliana model comparison and model performance 

(A-B) Comparison of the SM score distributions for tomato Model 4 (y-axis) and Arabidopsis 

Model 3 (x-axis). Support Vector Machine (SVM) and a shared feature set were used for both 

models. Density of data points ranges from high (yellow) to medium (blue-purple) to low 

(white). (A) SM scores for GM genes; (B) SM scores for SM genes; (C-F) Feature distributions 

for annotated SM and GM genes that are predicted as SM or GM genes by Arabidopsis Model 3 

and tomato Model 4. The x-axis lists the annotations for each group of genes predicted using 

Arabidopsis Model 3 and tomato Model 4. P-values are from the Kruskal-Wallis test and post-

hoc comparisons were made using the Dunn’s test. Different letters indicate statistically 

significant differences between groups (P < 0.05).  (C) maximum Pearson’s Correlation 

Coefficient (PCC) between a given gene and all other SM genes under stress conditions; (D) 

maximum PCC between a given gene and all other SM genes during development; (E) maximum 

PCC between a given gene and all other GM genes under hormone treatment; (F) normalized 

median dN/dS values between tomato or Arabidopsis genes and their homologs in O. sativa. 
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Figure S 3.6. Finalized models with A. thaliana mis-predictions removed, benchmark and 

test predictions 

(A) Bar plot showing the percentage of manually annotated benchmark genes predicted as SM or 

GM by Model 5. The original annotation from TomatoCyc is shown first, followed by the 

benchmark annotation and then the prediction. Distributions of SM likelihood scores are shown 

in plots B, C, G, and H. (B) Model 5 test set SM and GM genes, which were held out from the 
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Supplemental Figure 3.6 (cont’d)  
model building process completely. (C) TomatoCyc SM and GM genes with annotations 

opposite to Arabidopsis Model 3 predictions removed from the filtered training set. (D) 

Schematic diagram showing the application of tomato Model 7 to tomato. The full tomato 

feature dataset was used to build a binary model using TomatoCyc SM and GM annotations after 

removing genes mis-predicted by Arabidopsis Model 3. The model was then applied to tomato 

genes. (E) TomatoCyc filtered training set SM and GM genes from tomato Model 7. (F) Bar plot 

showing the percentage of manually annotated benchmark genes predicted as SM or GM by 

Model 7. The original annotation from TomatoCyc is shown first, followed by the benchmark 

annotation and then the prediction. (G) Model 7 test set: SM and GM genes, which were held out 

completely from the tomato Model 7 building process and (H) unannotated tomato enzymes. For 

plots (B, D, F, and G): SM likelihood score is shown on the x-axis, number of genes is on the y-

axis. Prediction threshold, based on the score with the highest F-measure, is indicated by the 

dotted line, and predicted SM genes are shown to the right of the line in red while predicted GM 

genes are shown to the left of the line in blue.  
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Figure S 3.7. Speciation nodes 

Phylogenetic tree of 26 species showing speciation nodes (N0-N24). Most recent gene 

duplication node in text refers to the speciation node where gene was last duplicated. 
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Supplemental Data 

Dataset S4: Tomato gene annotation information 

Annotation information based on TomatoCyc and manual annotation. 

Dataset S5: Original features 

Dataset includes all of the features used for Models 1, 2, 7, and 8. 

Dataset S6: Model scores  

Scores and information for all models. 

Dataset S7: SM gene scores 

SM prediction scores for all genes for each of the models. 

Dataset S8: Feature Importance 

Feature importance scores for all models discussed in the text. 

Dataset S9: Feature Statistics 

Statistics for original and shared features. 

Dataset S10: Transcriptome studies 

Information about all expression datasets used in the models. 

Dataset S11: Shared features 

Dataset includes all of the shared features between Arabidopsis and tomato used for Models 3, 4, 

and 5. 
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Abstract 
 

 Plants respond to wounding stress by changing gene expression patterns and inducing 

jasmonic acid (JA), as well as other plant hormones, to cope with stress. This includes activating 

some specialized metabolism pathways, including the glucosinolate pathways, in the case of 

Arabidopsis thaliana. We model how these responses are regulated by using machine learning to 

incorporate putative cis-regulatory elements (pCREs), known transcription factor binding sites 

from literature, in-vitro DNA affinity purification sequencing (DAP-seq) sites, and DNase I 

hypersensitive sites to predict gene expression for genes clustered by their wound response. We 

found temporal patterns where regulatory sites and regions of open chromatin differed between 

clusters of genes up-regulated at early and late wounding time points as well as clusters where 

JA response was induced relative to clusters where JA response was not induced. Overall, we 

found identifying pCREs improved model predictions and discovered 4,255 pCREs related to 

wound response at different time points and 2,569 pCREs related to differences between JA-

induced and non-JA induced wound response. In addition, pCREs found to be important at 

different wounding time points were mapped to the promoters of genes in a glucosinolate 

biosynthesis pathway to determine the regulation of this pathway under wounding stress. 
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Introduction 
 

Plants cope with many environmental stresses by reprogramming their pattern of gene 

expression to trigger chemical and physiological responses (Bostock et al., 2014). These stress 

responses are essential to plant survival in their respective niches and are optimized for a plant’s 

particular environment (Bostock et al., 2014). Gene expression reprogramming is a complex 

process that involves multiple levels of regulation. At the DNA sequence level, short stretches of 

DNA (regulatory elements) are recognized and bound by transcription factors that can activate or 

repress gene expression (Zou et al., 2011). Beyond the level of DNA sequence, chromatin 

structure can impact whether a regulatory element is accessible to a transcription factor. 

Chromatin structure can be modified based on signals stress response signals (Asensi-Fabado et 

al., 2017). Finally, reprogramming can also occur by modifying (Glisovic et al., 2008) or turning 

over (Hutvagner and Simard, 2008) messenger RNA.  

Stress responses change over time, adding an additional level of temporal complexity to 

transcriptional response to stress. For example, after an initial response, genes that are turned on 

may act to turn on or off other genes, resulting in a cascading effects. This type of gene 

expression reprogramming mechanism is beneficial when different responses are needed at 

different times. For example, response to wounding stress in plants changes over time as the 

plant first needs to recognize damaging patterns, then respond by sending various hormone 

signals, and ultimately repair the wound (Ikeuchi et al., 2017). This means that stress responsive 

genes may be regulated differently depending on when they are expressed.  

The production of various hormone signals allows plants to coordinate their response to 

different stresses because the interactions of certain hormones can regulate a specific response 

from the plant by changing the expression of certain genes. For example, response to wounding 
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stress involves several hormones, with the most ubiquitous signal being jasmonic acid (JA) 

(Howe and Jander, 2008). After wounding, JA levels increase and bind to JAZ repressor 

proteins, which allows Myc2 transcription factors to become active (Chung et al., 2008). Myc2 

transcription factors then activate wounding responses, such as JA biosynthesis, to amplify the 

JA signal and activate other defensive processes (Chung et al., 2008). Additional hormones 

interact with JA to moderate wounding response. For example, while JA induces the expression 

of certain wounding response genes, ethylene simultaneously represses the expression of these 

genes at the damaged site in order to make sure the correct spatial response pattern is produced 

(Rojo et al., 1999). Ethylene also works in a synergistic fashion with JA to fine-tune wounding 

response by inducing the expression of proteinase inhibitor genes (O’Donnell et al., 1996) and by 

activating ERF1, another transcription factor that triggers defense responses (Lorenzo et al., 

2003). Abscisic acid (ABA), which responds to many abiotic stresses, is also induced by 

wounding (León et al., 2001). While ethylene, ABA, and JA rapidly respond to wounding, other 

hormones such as auxin and cytokinin, start to accumulate around 12 hours after wounding and 

are involved in signaling for the expression of genes that ultimately work to repair the wound 

(Ikeuchi et al., 2017). While a great deal is known about hormone signaling in response to 

wounding, it is unclear what other regulatory mechanisms are involved in response to wounding 

and how these mechanisms interact with hormone signals. In particular, regulatory mechanisms 

for wounding responses not directly regulated by JA are less well understood. 

Wounding can also induce the production of specialized metabolites that can deter further 

stress. For example, after wounding stress, Arabidopsis thaliana activates glucosinolate 

pathways. These glucosinolates and the bioproducts generated from their degradation affect the 

plant’s interactions with biotic stresses, such as microbes and herbivores (Yan and Chen, 2007). 
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Additionally, mutants with decreased glucosinolate levels show greater susceptibility to the 

necrotrophic fungus Fusarium oxysporum (Tierens et al., 2001). Glucosinolate production is 

shown to be regulated by JA, salicylic acid (SA), and ethylene (ACC). These hormones work 

together to modulate glucosinolate levels in response to stress, by activating Myb and Dof 

transcription factors (Yan and Chen, 2007). Additionally, glucosinolates can be divided into 

different types, such as indole or aliphatic glucosinolates, and these types may be induced by 

various stresses and regulated in different ways (Yan and Chen, 2007). While specific 

transcription factors have been shown to turn on glucosinolate biosynthesis (Frerigmann and 

Gigolashvili, 2014), the regulatory elements or chromatin structure of how and when these 

transcription factors bind has not been resolved.  

Here we assessed the extent of divergence in gene expression among various time points 

following wounding by correlating wounding data with other types of stress or hormone 

treatment. By using a time course data set, where transcriptional response is recorded over a 24-

hour period (Kilian et al., 2007), we captured differences in differential gene expression and the 

regulatory elements required to regulate this transcriptional response. In addition, by clustering 

wound-responsive genes into groups based on whether or not they also respond to JA, we were 

able to single out differences between JA and non-JA regulatory mechanisms in regard to 

wounding. Finally, by using a time course study, we were able to identify important regulatory 

elements for the specialized metabolism pathway glucosinolate biosynthesis from tryptophan, 

which is induced by wounding. The goals of this study were to uncover the cis-regulatory code 

involved in regulating temporal responses to wounding stress, to see how wounding stress 

independent of the wound-induced hormone JA is regulated, and finally to understand how 

certain specialized metabolism pathways are regulated. 



152 

Results and Discussion 
 

Transcriptional response to wounding varies functionally across time points 

 

To understand how transcriptional response to wounding varies across time points, we 

used expression data downloaded from TAIR, in which a range of abiotic stress treatments 

(seven in total, including wounding) were applied to 18 day old A. thaliana seedlings (Kilian et 

al., 2007). Samples were harvested at multiple time points after treatments ranging from 15 

minutes to 24 hours after treatment. Control samples were performed in parallel to exclude 

circadian effects (see Methods, Kilian et al., 2007). We identified genes that were up- or down-

regulated at time points ranging from 15 minutes to 24 hours after wounding (diagonal values; 

Figure 4.1A) and how frequently the same genes were differentially expressed in these different 

time points (lower triangle; Figure 4.1A). We found a cascading effect, where the majority of 

genes up-regulated at 15 and 30 minutes after wounding are still up-regulated at one hour (63% 

and 70% respectively), but by three hours <25% of those genes were still up-regulated (Figure 

4.1A, Dataset S13). Consequently, the genes up- or down-regulated at later time points tended to 

be different than those differentially expressed earlier, with the genes responsive at 12 and 24 

hours after wounding having the least amount of overlap with genes from previous wounding 

time points (Figure 4.1A, Dataset S13). Thus, different time points after wounding have 

overlapping but distinct sets of genes which are up- or down-regulated, suggesting temporal 

variation in how wound response is regulated.  

To determine how response to wounding differs from response to other environmental 

conditions, we measured how similar the pattern of differential gene expression was between  

(also downloaded from TAIR, see Methods). The Pearson’s correlation coefficient (PCC) was 

used to compare the log2 fold change values across genes between wounding and other  
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Figure 4.1. Gene expression correlation across stress and hormone data sets and the 

overlap of wound and JA differentially expressed genes.  

A. Heatmap showing the number of genes overlapping in each wounding time point cluster. The 

order of rows and columns are the same, based on time point. Number of genes range from 0 

(white) to 760 (red) and actual value is printed in the heatmap. B. Heatmap of Pearson’s 

correlation coefficient (PCC) between data sets based on the log2 fold change between treatment 

and control. PCC values in heatmap range from 1 (red) to -1 (blue). The order of the rows and  
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Figure 4.1 (cont’d) 

columns are the same, which is based on hierarchal clustering. The stress and hormone 

treatments are labeled by color and stress time point is labeled on y-axis.  

Different wounding time points and other abiotic stress, biotic stress, and hormone treatments  
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stress/hormone treatments and then hierarchal clustering was used to find conditions where 

differential gene expression was most similar (Figure 4.1B). We found that gene expression 

patterns 30 minutes, 3 hours, and 6 hours after wounding clustered together, 24 hours and 12 

hours after wounding cluster together, and then 15 minutes and 1 hour after wounding cluster 

together. To better understand this pattern, we first looked at how wounding time points 

correlated with abiotic stress response. 

We found a cascading effect, where the majority of genes up-regulated at 15 and 30 

minutes after wounding are still up-regulated at one hour (63% and 70% respectively), but by 

three hours <25% of those genes were still up-regulated (Figure 4.1A, Dataset S13). 

Consequently, the genes up- or down-regulated at later time points tended to be different than 

those differentially expressed earlier, with the genes responsive at 12 and 24 hours after 

wounding having the least amount of overlap with genes from previous wounding time points 

(Figure 4.1A, Dataset S13). Thus, different time points after wounding have overlapping but 

distinct sets of genes which are up- or down-regulated, suggesting temporal variation in how 

wound response is regulated.  

To determine how response to wounding differs from response to other environmental 

conditions, we measured how similar the pattern of differential gene expression was between 

different wounding time points and other abiotic stress, biotic stress, and hormone treatments 

(also downloaded from TAIR, see Methods). The Pearson’s correlation coefficient (PCC) was 

used to compare the log2 fold change values across genes between wounding and other 

stress/hormone treatments and then hierarchal clustering was used to find conditions where 

differential gene expression was most similar (Figure 4.1B). We found that gene expression 

patterns 30 minutes, 3 hours, and 6 hours after wounding clustered together, 24 hours and 12 
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hours after wounding cluster together, and then 15 minutes and 1 hour after wounding cluster 

together. To better understand this pattern, we first looked at how wounding time points 

correlated with abiotic stress response. 

Patterns of DGE 15, 30 minutes or 1 hour after wounding, correlated more strongly with 

those of other early abiotic stresses compared to late wounding time points (12 or 24 hours after 

wounding). For example, DGE response 15 minutes after wounding had a PCC of 0.51 to the 

DGE response 15 minutes after UV-B light treatment and a PCC of 0.48 to the response to cold 

treatment after 3 hours. In contrast, the correlation of the response patterns between 15 minutes 

after wounding and 12 or 24 hours after wounding was 0.23 and 0.11, respectively. Gene 

expression patterns at 30 minutes and 1 hour after wounding were also similar to those under 

certain abiotic stresses, such as cold, UV-B, osmotic, and genotoxic stress. Additionally, early 

DGE 15 minutes and 1 hour after wounding were more similar to each other (PCC= 0.39) and to 

30 minutes after wounding (PCC= 0.33 and 0.30 respectively) than to later time points (for PCC 

results, see Dataset S12). Curiously, DGE 30 minutes after wounding was highly correlated with 

DGE 3 and 6 hours after wounding (PCC = 0.59 and 0.57, respectively), while responses 3 and 6 

hours after wounding are also highly correlated with each other (PCC= 0.55, Dataset S12). Thus, 

there is some association between response at mid-range time points and early time points. 

Similarly, expression patterns of later time points after wounding (12 and 24 hours after 

wounding) correlated most strongly with each other (PCC=0.55) compared with other earlier 

wounding time points (PCC ranging from -0.25 to 0.28). The DGE response from the 12 and 24 

hour time points also had a high correlation to the DGE response at 12 or 24 hours after UV-B or 

osmotic treatment, showing late wound response is more similar to other late abiotic stress 

responses than to early wound response. Thus, transcriptomic responses were more similar 
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among comparable time points between treatments than largely differing time points within 

wounding. This indicates that temporal patterns can impact gene expression more than the type 

of abiotic stress. 

Certain types of biotic stresses, such as insect chewing, can create wounds in plants. 

Therefore, although wounding is an abiotic stress, we wanted to see how different wounding 

timepoints may correlate with a range of biotic stresses. When observing wounding response 

patterns in relation to biotic stress, 15 minutes, 1 hour, 12 hours, and 24 hours after wounding 

have the highest correlations to biotic stress DGE response out of all wounding time points 

(Figure 4.1B). The biotic stresses included pathogens Pseudomonas syringae and Phytophthora 

infestans, as well as pathogen-derived elicitors Flagellin (bacterial), necrosis-inducing 

Phytophthora protein (oomycete), and Hairpin Z (bacterial). While the 15 minute, 1, 12, and 24 

hour time point responses all correlate with the different types of biotic stress listed above, the 12 

and 24 hour time point DGE responses have a higher correlation to (PCC range from 0.35 to 

0.47) the DGE responses to P. infestans than any other wounding time point (Figure 4.1B, 

Dataset S12). P. infestans is a necrotrophic oomycete that creates extensive tissue damage in the 

plant, which may be similar to wounding damage, and the later time points of both stresses may 

be most similar because of similarities in immune response and recovery. It is interesting that 

wound DGE response at 3 and 6 hours after wounding do not correlate with biotic stress 

response (PCC range -0.09-0.07, Dataset S12). One hypothesis is that initial response to 

wounding triggers some of the same pathways involved in response to other biotic stresses and 

the late response to wounding triggers pathways involved in recovery from other biotic stresses, 

but the middle time points are involved in separate functions from biotic stress. This could 

explain similarities in DGE response seen between early and late time points. 
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Hormonal responses are also triggered by wounding, including JA, ABA, and ACC 

(ethylene), and may correlate with wound response. While JA response is known to be induced 

by wounding (Chung et al., 2008), ABA is induced during multiple abiotic stress responses 

(Nakashima et al., 2009), and ACC can also have both positive and negative interactions with JA 

to promote a synergistic response to wounding (Lorenzo et al., 2003). Also, certain hormones, 

including IAA, ABA, and JA have a positive relationship where the hormones up- or down- 

regulate the same genes (Goda et al., 2008). While DGE 15 minutes after wounding was not 

similar to DGE after hormone treatment, by 30 minutes after wounding, DGE was similar to 

DGE 30 minutes after treatment with five different hormones (ABA, ACC, brassinosteroid (BL), 

gibberellic acid (GA), and JA, PCCs ranging from 0.37-0.52; Figure 4.1B, Dataset S12), 

indicating a strong temporal component to how genes are expressed, and the initial response to 

wounding may involve multiple hormones. The DGE responses at time points at 3 and 6 hours 

after wounding were more similar to the DGE response to plant hormones at 30 minutes 

including ABA, ACC, BL, GA, and JA (PCC range from 0.54-0.39), than most other wounding 

time points with the exception of 30 minutes after wounding (PCC range from -0.04-0.21; 

Figure 4.1B, Dataset S12). Similarities between several hormonal responses and response to 

wounding at mid-range time points indicate that many stress-responsive hormones may still be 

involved in wound response even after 6 hours. Finally, 12 and 24 hours after wounding, 

transcriptomic responses show little correlation with DGE responses to the hormones correlated 

with earlier time points, with the highest correlation to DGE response to JA treatment after 3 

hours (PCC = 0.26 and 0.14, respectively, Dataset S12). This indicates that the later responses to 

wounding may not signal stress-responsive hormones or that they do not correlate with the early 

transcriptomic responses to many hormone treatments. Overall, the high association of DGE 
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patterns in early and mid-range time points after wounding to early hormone treatment DGE 

patterns indicates an interaction between wound response and hormone response, in which 

wound response likely signals various stress-related hormones, but this interaction lessens over 

more time after wounding. 

Modeling temporal wound response using machine learning  

 

 The temporal differences in transcriptional response to wounding described above 

suggest that the regulation of wounding response changes over time, with regulatory control 

being more similar within early time points (0.25, 0.5, 1 hours), middle time points (3 and 6 

hours) and late time points (12 and 24 hours) compared to between these time points. In order to 

compare what regulatory mechanisms were important across different time points, we first 

needed to model the regulatory code of transcriptional response to wounding for time point. We 

used a machine learning approach to generate models of the regulatory code that could classify a 

gene as being differentially regulated or non-differentially regulated at a specific time point. 

First, we tested how well-known sequence based regulatory information was able to 

model wounding response. We collected 52 known cis-regulatory elements (CREs) associated 

with JA, wounding, or insect response identified previously using experimental or computational 

approaches (see Methods; Dataset S14). To incorporate the known CRE information into a 

model, we mapped each putative regulatory sequence to the promoters (defined as 1 kb upstream 

of the transcription start site, see Methods) of each gene in a cluster (each cluster consisting of 

genes up- or down- regulated after wounding at a given time point), as well as to genes in a 

“null” cluster, consisted of genes that are not significantly up-regulated or down-regulated under 

any stress or hormone treatment. Two algorithms, Random Forest (RF) and Support Vector 

Machine (SVM) were used to build models for each wounding response timepoint. To measure 
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model performance, F-measure was used which jointly considers precision, or the number of 

genes that were differentially expressed and were predicted as differentially expressed over the 

number of all of genes the model predicted as differentially expressed, and recall, or the number 

of genes which were differentially expressed and were predicted as differentially expressed over 

the number of genes which were differentially expressed (predicted or not). The F-measures for 

models built for each wounding time point cluster ranged from 0.67 to 0.71, scores that show our 

models performed better than random guessing (F-measure = 0.5) but were not perfect predictors 

(F-measure = 1) (Figure 4.2, Dataset S15). Note that three wounding response timepoints were 

not included in this analysis: down-regulated 3 and 6 hours after wounding because too few 

genes had these responses to train a machine learning model (<10) and down-regulated 12 hours 

after wounding category because no known regulatory elements were present in the promoters of 

the genes in this group. 

Second, we incorporated additional levels of regulatory information into our models. We 

included in vitro DNA binding data of 510 TFs in A. thaliana generated with DNA affinity 

purification sequencing (DAP-seq) (O’Malley et al., 2016) and information about Dnase I 

Hypersensitive Sites (DHS) in A. thaliana at different developmental stages including seedling 

(leaf samples) and two-week old plants (flower buds) (Zhang et al., 2012). Each DAP-seq and 

DHS feature was considered present if its peak coordinates overlapped with the promoter region 

of a gene. Machine learning models trained using both known sequence and DAP-seq and DHS 

features performed slightly better overall than known sequence-based models alone, with the F-

measure ranging from 0.66 to 0.74 (Figure 4.2, Dataset S15). Models for genes up-regulated in 

early wounding response (0.25, 0.5, and 1 hours) benefited the most from the addition of these 

two data sets, with a +0.03, +0.03, and +0.02 improvement in F-measure, respectively. This may 
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Figure 4.2. Heatmap of the F-measure for wounding time point models.  

Each row is a different cluster which was used to build a separate model. Each column represents 

the datasets used as features in the model and the algorithm used (RF= Random Forest). Known 

only refers to CREs found in the literature (Dataset S14). DAPseq and DHS refer to the DAP-

seq and Dnase I hypersensitivity sites. FET enriched 6mer refers to the pCREs which were 

enriched for a specific cluster. The F-measure range is from 0.5 (white) to 1 (red), and gradient 

as well as actual F-measure is shown in each cell. The bar chart next to the heat map corresponds 

to each row/cluster and represents the number of genes in that cluster. 
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be because most known CREs are known from early wound response. Thus, more known 

information in the form of the DAP-seq data may improve the performance of early time point 

clusters more than later time points. Overall, while known sequence-based information and 

DAP-seq and DHS information is predictive of differential gene expression in response to 

wounding across time points, the models still have substantial room for improvement.  

Determining important known motifs for temporal wound response 

 

 To understand what known elements are important for driving expression at different 

times after wounding, we measured the importance of each feature (known CRE, DAP-seq, or 

DHS, see Methods) in each model in order to rank features in terms of how important they were 

for our ability to predict differential gene expression at different time points (Dataset S16). For 

early wound response (genes up-regulated 0.25, 0.5, and 1 hour after wounding), the most 

important known wound CREs identified by our models were CGCGTT (first ranked), a known 

regulatory elements for Rapid Wound Response (RWR) (Walley et al., 2007) and CACGTG 

(second ranked) that is bound by some Myc TFs in the basic Helix-Loop-Helix (bHLH) family in 

response to wounding and JA treatment (Fernández-Calvo et al., 2011). Genes with the RWR 

elements are known to respond quickly to wounding and have a variety of functions in the 

downstream response, including chromatin remodeling, signal transduction, and mRNA 

processing (Walley et al., 2007). These functions are consistent with stress-induced 

transcriptional changes, where chromatin conformation is changed to modulate binding of stress-

related TFs, mRNAs are modified post-transcriptionally, and signaling pathways up and down-

stream to transcription are involved in response to wounding stress. Other TFs that respond to 

wounding stress, Myc 2, 3, and 4 TFs, respond to both JA and wounding, and induce other JA 

responsive genes, ultimately triggering defense response to herbivory (Fernández-Calvo et al., 
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2011). In addition to genes up-regulated 0.25 ~ 1 hour post wounding, CACGTG, the wound 

response element that Myc TFs bind, was still important (ranked 1 or 2) among genes up-

regulated 3, 6 and 12 hours after wounding, but not the RWR element. By 24 hours after 

wounding, the CACGTG element was no longer important.  

DAP-seq binding sites were less important in predicting wound response than the known 

sequence-based sites, but still rank among the top 10 most important features for models 

predicting early wound response (Dataset S16). For example, the CAMTA TF family binding 

site, AAGCGCGTG, was ranked 3rd most important for genes up-regulated 0.25 or 0.5 hours 

after wounding but dropped to 11th at 1 hour after wounding, and even lower in later time points. 

At 1 hour, the AP2EREBP TF family binding site, GGCGGCGGCGG, started to become more 

important, ranking 10th in the model and increasing to 4th at 3 hours after wounding. In contrast, 

all DAP-seq sites became less important, or not important at all, for predicting genes up-

regulated 6, 12, and 24 hours after wounding. These findings highlight temporal differences in 

wounding regulation, but also that in-vitro TF binding sites do not capture the entirety of how 

wounding response is regulated, especially at later time points.  

In addition to known cis-regulatory elements and DAP-seq sites, open chromatin sites (DHS) 

were important for predicting expression at all time points after wounding (top ranked DHS sites 

for each cluster ranged from rank 1~4). However, DHS features tended to become more 

important at later time points (Dataset S16). For example, while different types of features were 

important at earlier time points, at 24 hours after wounding, the top 12 most important features 

were all DHS-related. This is rather intriguing and suggests epigenetic modifications are more 

important for later response to wounding. We propose three potential explanations for this 

finding. The first is that at the late time point transcription factor binding is no longer the major 
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determinant of regulation since the chromatin state for wounding stress has been established. 

While chromatin state does change under JA or wound stress, it is not clear to what extent or for 

how long (Berr et al., 2012).  Second, at this later time point, the functional diversity of genes 

has increased to a point that their transcriptional regulatory mechanisms have become more 

heterogeneous and thus no single CRE or DAP-seq feature has high importance. The third 

possibility is that the known CRE or DAP-seq features important for later time points are not 

present in our dataset. This could be because the later time points are not as well studied or 

because DAP-seq data is only available for ~38% of known TFs (Weirauch et al., 2014; 

O’Malley et al., 2016), which would suggest that there are novel regulatory sequences that have 

not yet been identified.  

Finding important temporal putative cis-regulatory elements for wound response using 

machine learning 

Although known CREs, in vitro TF binding data, and DHS are useful for building wound 

response prediction models for the clusters in Figure 4.2, the model performance is far from 

perfect which raises the question whether additional CREs remain to be discovered that can 

better explain the gene expression patterns seen. To discover novel putative CREs (pCREs), a k-

mer finding approach was used (modified from Liu et al., 2018), where all possible 6-30-mer 

sequences were tested for enrichment (p<0.01, see Methods) in the putative promoters of genes 

for each cluster (see Methods). Based on this criteria, between 42-1,081 pCREs were identified 

as enriched in genes from each wound response cluster, with the exception of the down-regulated 

wounding after 12 hours cluster, which had no enriched pCREs (Dataset S17). For each wound 

response cluster, the pCREs were used to build a wound response prediction model. We found 

that models built with pCREs alone (e.g. RF algorithm, F-measure range = 0.73-0.81) perform 
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better than models built with known CREs, DAP-seq and DHS for all clusters (e.g. RF 

algorithm, median F-measure range = 0.66 to 0.74, Figure 4.2, Dataset S15). Interestingly, 

models that combined pCREs with known CREs, DAP-seq, and DHS data did not perform better 

than pCRE-based models alone (e.g. RF-algorithm, median F-measure = 0.67-0.80). This 

indicates that these pCREs, some are variants of known CREs and other novel, may contribute 

substantially to the regulation of wound response at different time points.  

To understand why the models improve with the addition of pCREs, and what impact pCREs 

have across wounding time points relative to known information and open chromatin sites, we 

looked at the relative importance (normalized importance score, see Methods) of pCREs, DAP-

seq sites, and chromatin accessibility sites across the post-wounding time course (Figure 4.3). 

Overall, DHS sites tended to be most important, followed by pCREs, and then finally by DAP-

seq sites. When looking closer at individual up-regulated clusters, we found for early time point 

clusters (0.25, 0.5, and 1 hour after wounding, Figures 4.3A-C), a small percentage of pCREs 

have higher or as high of an importance score as the most important DHS sites. This indicates 

that a few unique regulatory elements, or variations of known elements which are not captured 

by the known TF binding sites are important for distinguishing differential expression at early 

time points. Other than this small subset of pCREs, DH-sites are in general more important than 

the majority of pCREs or DAP-seq sites. For middle range to later time points (3, 6, 12, 24 hours 

after wounding, Figures 4.3D-F), DH sites have the highest importance, but certain pCREs are 

also important, ranking just below the most important DH sites. In fact, there is a general shift 

where the majority of pCREs are of higher importance at these time points than at earlier time 

points (Figure 4.3G). This indicates that even though the most important features at late time 

points are the DH sites, there are more putative TF binding sites that distinguish mid-range to  
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Figure 4.3. Scaled importance value for each up-regulation wounding time point model 

(rows) for all features used in the final model.  

For A-L, density plots show importance value on the x-axis and the density of the feature on the 

y-axis. DAP-seq sites are in blue, DH sites are in purple, and pCREs are in pink. The importance 

value is scaled from -1 to 1 for each model, where positive value correlates with differential 

expression in a given cluster and -1 correlates with the null cluster. The higher absolute value 

correlates with higher importance of a given feature for a given model. Arrows point to a small 

peak of pCREs in figures A-D. A. wound up-regulated at 0.25 hours model, B. wound up-

regulated at 0.5 hours model, C. wound up-regulated at 1 hour model, D. wound up-regulated at 

3 hours model, E. wound up-regulated at 6 hours model, F. wound up-regulated at 12 hours 

model, G. wound up-regulated at 24 hours model, H. wound down-regulated at 0.25 hours 

model, I. wound down-regulated at 0.5 hours model, J. wound down-regulated at 1 hour model, 

K. wound down-regulated at 12 hours model, and L. wound down-regulated at 24 hours model. 



167 

late wound induced gene expression compared to earlier time points.  

Finally, down-regulation importance patterns are less consistent (Figures 4.3H-L) While 

genes down-regulated at 0.25, 0.5, and 1 hour are fairly similar where either DH sites or pCREs 

are the most important for regulation, down-regulated genes at 12 hours have no important 

pCREs, and down-regulated genes at 24 hours have almost exclusively pCREs as being 

important for regulation. This indicates that 24 hours after wounding is under the most unique 

regulation compared to all other time points, where up-regulated genes are mostly regulated by 

open chromatin, and down-regulated by pCREs. Also, it is important to note that open chromatin 

sites appear to be important features for models at all time points. While some sites are more 

important to earlier time points than they are to later ones, many sites have an equal relative 

importance across wounding time point, indicating open chromatin sites cannot distinguish the 

different expression patterns at different times after wounding. Together, the most distinguishing 

regulation of wounding time points may be the pCREs. 

Correlation to transcription factor families and cis-regulatory differences across time 

 

Next we wanted to determine which pCRE were similar to a known TF binding motif and 

which were likely to be novel regulatory elements. To do this, we first calculated the sequence 

similarity between each pCRE and each known binding motif in order to find the TF family 

who’s binding motifs best matched the pCRE. Figure 4.4 shows the importance rank across all 

time points for the top 10 most important pCREs for each wounding model. Similar to how more 

of the same genes were differentially expressed at nearby time point (i.e. the cascade effect), we 

found more important pCREs were shared with close time points, however some pCREs were 

uniquely important at a single time point. In fact, none of the top 10 most important pCREs were 

shared across all time points.  
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Figure 4.4. Average importance rank for the top 10 pCREs for each wounding time point 

model and their TF family.  

Wound time point models are the columns while pCREs are the rows. Average importance rank 

is the average rank across five duplicate models ran for the same time point. Highest rank (1) is 

red and ranks 150 or lower are blue. TF family association is based on the maximum PCC to 

known TF binding sites. PCC is shown for both DAP-seq and TFBM sites. 
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For early time points after wounding (i.e. 0.25, 0.5, and 1 hour), many of the top 

important pCREs were shared and resemble TF binding sites in the CG-1, bZIP, FAR1, LOB, and 

bHLH TF families (right two panels; Figure 4.4). Different binding sites which bind multiple TF 

families is consistent with the notion that a variety of signals are induced by wounding. For 

example, while JA is induced by wounding, other hormones or signals involved, such as ACC, 

hydrogen peroxide, and ABA, can amplify the JA response (Howe, 2004). Focusing on the top 3 

most important pCREs for each time point (excluding DAP-seq or DH sites, Figure 4.5), we 

found that 0.25 and 0.5 hours after wounding, CCGCGT, which is most similar to the binding 

motif of a CG-1 TF family TF, was the most important pCRE for up-regulated gene models, it 

then dropped to the 29th most important pCRE at 1 hour after wounding, and by 6 hours after 

wounding is not enriched in the cluster (Figure 4.5; for the importance rank of pCRE and PCC 

to known TF binding motifs from each TF family, see Dataset S16). This binding site is 

associated with TFs which respond to both abiotic and biotic stress. On the other hand, one hour 

after wounding, the pCRE CACGTG, which was not as important previously (0.25 hour rank = 

30, 0.5 hour rank = 17), was the 8th most important pCRE. This pCRE was most similar to the 

known binding motif for Myc2, a bHLH TF that responds to both JA and wounding (Dombrecht 

et al., 2007) (Figure 4.5, Dataset S16). This element remained important at both 3 and 6 hours 

after wounding (ranked 10 and 5, respectively), indicating a change in response at 1, 3, and 6 

hour time points and that JA hormones have been activated. Other important early pCREs 

remained important across the wider range of time points. One example is ACACGT, a pCRE 

most similar to the known binding motif for bZIP family TFs, which are activated by ABA 

(Yamamoto et al., 2011) and regulate responses to water deprivation (Figure 4.5). This pCRE            

was enriched in the promoters of genes from all time points and was important (rank < 11) for  
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Figure 4.5. Motif logos for the top 3 pCREs for each up-regulated wounding time point.  

Chart is divided by time point (0.25 to 24 hours after wounding). The first column is the top 3 

ranked pCREs for that time point. The second column is the average rank for that pCRE in the 

given model. The third and fourth columns are the best matched TF binding motif logos, forward 

and reverse compliment with PCC value. Columns 5-7 are the TF which binds a given logo 

(column 6), the TF family the TF belongs to (column 5) and GO functions of the TF (column 7). 
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models of wounding response at 0.25, 0.5, 1, 3, 6, and 12 hours (Figure 4.4, Dataset S16). 

Two pCREs (GTCGGC and GTCACA) were uniquely important for models built for 

mid-range time points (i.e. 3 and 6 hours after wounding), as the 5th and 6th most important 

pCREs for the genes up-regulated at 3 hours and 5th and 18th most important at 6 hours (Figure 

4.5). These elements were most similar to binding motifs of B3 and Homeodomain family TFs, 

respectively. Given these TF families are involved in development, response to auxin, and 

secondary wall biogenesis, this indicates that by 3 to 6 hours after wounding, the damage is 

likely being repaired.  

At the latest time points (i.e. 12 and 24 hours after wounding), we found that some 

important pCREs were the same as the pCREs important for earlier time points, while others 

were unique to the later response. As discussed previously, ACACGT, which was ranked 7th at 

12 hours after wounding and was also important for earlier time points (0.25, 0.5, 1, 3, and 6 

hours after wounding). While ATATTAT, which was most similar to binding motifs of TFs in 

the ARID family, was ranked 14th at 24 hours after wounding (Figure 4.5, Dataset S16) This TF 

family is involved in regulating glucosinolate metabolism. Other important pCREs at the latest 

time points, ATAATAA and AAAATGT, were elements that bind TF families which regulate 

development (Figure 4.5, Dataset S16).   

In summary, we found that pCREs important for our models of response at early time 

points (0.25 to 0.5 after wounding) tend to be associated with many stress and hormone 

responses, while pCREs 1 to 6 hours after wounding tend to be associated with TFs involved in 

JA signaling and ABA signaling. Finally, from 3-24 hours after wounding the pCREs tend to be 

associated with TFs involved in growth and very late responses (12-24 hours after wounding) are 

associated with TFs related to metabolic defense. Overall, we generated models of the cis-
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regulatory code in response to wounding that demonstrate how different sets of pCREs, which 

are likely bound by a variety of TFs, are important at different response times after wounding 

and could work to regulate a dynamic response to wounding over time. 

Modeling the regulatory code of JA-induced and non-JA-induced response to wounding 

 

 Having demonstrated how wounding response regulation changes over time, we next 

wanted to study the regulatory differences between JA-induced and non-JA-induced wounding 

responsive genes. Non-JA-induced wounding responses include those induced by rnase and 

nuclease activities that are triggered by wounding but not the application of JA (LeBrasseur et 

al., 2002). Thus to understand how non-JA induced wound responses are regulated, we used the 

hormone treatment data described above (Goda et al., 2008) to identify genes that were 

differentially expressed in response to wounding but not in response to JA at each timepoint. For 

this analysis, we only included timepoints (30 minutes, 1 hour, and 3 hours) for which we had 

data for both JA treatment and wounding. Across these three timepoints only 16%, 26%, and 

28% of genes up-regulated after wounding were also up-regulated after JA treatment, 

respectively (Figure 4.6A). The large number of non-JA induced wounding responsive genes is 

consistent with other studies of wounding which relay a JA-independent mechanism for 

wounding response (León et al., 1998; LeBrasseur et al., 2002). However, the regulatory code 

that governs these responses is less well understood. 

To determine the regulatory differences between JA-induced and non-JA induced 

wounding response, we first needed to generate models of these different regulatory codes. 

Using the same approach as described above we generated machine learning models of 

wounding response based on known CREs, DAP-seq sites, DH sites, and pCREs for up- and 

down-regulation responses at different time points. However, here we divided our genes in each  
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Figure 4.6. Gene overlap and model performance of each wound JA-induced and wound 

non JA-induced cluster.  

A. Heatmap showing the number of genes overlapping in each wounding-JA cluster. The order 

of rows and columns are the same, based on time point. Number of genes range from 0 (white) to 

558 (red) and actual value is printed in the heatmap. B. Each row is a different cluster (JA-

induced or JA non-induced) which was used to build a separate model. Each column represents 

the datasets used as features in the model and the algorithm used (RF= Random Forest). Known 

only refers to CREs found in the literature (Dataset S14). DAPseq and DHS refer to the DAP-

seq and Dnase I hypersensitivity sites. FET enriched 6mer refers to the pCREs which were 

enriched for a specific cluster. The F-measure range is from 0.5 (white) to 1 (red), and gradient 

as well as actual F-measure is shown in each cell. The bar chart next to the heat map corresponds 

to each row/cluster and represents the number of genes in that cluster. 
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cluster further by if they were differentially regulated under wounding and JA treatment (JA-

induced) or under wounding but not JA treatment (non-JA induced). Note that models were not 

generated for genes down-regulated 3 hours after wounding because not enough genes were 

available for training. Similar to our earlier results, we found that pCRE based models (F-

measures: 0.73 ~ 0.87) performed better than both known CREs based models (0.67 ~ 0.74) and 

known CREs and DAP-seq and DHS based models (0.66 ~ 0.73; Figure 4.6B, Dataset S15). 

This, again, indicated that pCREs were better able to model the regulation of JA-induced and 

non-JA-induced wounding response across time points, than using only known TF sites. 

Nonresponsive JA CREs: Known and putative  

 

To better understand differences between how JA-induced and non-JA-induced 

wounding responses are regulated, we next compared the importance of known CREs, DAP-seq 

sites, DH sites, and pCREs across models. We identified differences in which known CREs were 

important at 30 minutes and 1 hour after wounding between JA-induced and non-JA-induced 

responses. For example, CGCGTT, the RWR element, was the most important element for the 

non-JA-induced model, while for JA-induced models, the most important element was the Myc 

element, CACGTG (Dataset S17). Interestingly, the Myc element also ranks as the third most 

important feature in the non-JA-induced models. This could be because other TFs not involved 

in JA response (e.g. Myc-LIKE and BIM3 TFs) can bind to this element (O’Malley et al., 2016) 

or because the Myc element may be necessary to facilitate TF binding to a different regulatory 

element important for non-JA-induced response. Finally, we found that chromatin accessible 

sites have a higher overall importance for non-JA-induced than for JA-induced wounding 

response. Out of the top 10 most important features, 4 to 8 were DH sites for non-JA-induced up-

regulated models. In contrast, for JA-induced up-regulated models, none of the top 10 most 
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important features were DH sites (Dataset S17). This indicates that open chromatin sites are 

important for distinguishing genes that are non-JA-induced from those that are JA-induced. 

Next we compared the importance of pCREs between JA-induced and non-JA-induced 

models and, with the exception of the G-box motif (CACGTG) and the bZIP binding site 

(ACGTGT), found there to be little overlap between the two (Figure S4.2). For example, 

AACGTG and CACGTTT were ranked from 1st to 7th across timepoints in JA-induced models 

but were not enriched or were ranked much lower (69th to 157th) for non-JA-induced models 

(Figure S4.2, Dataset S16). These pCREs were most similar to binding motifs of TFs in the 

NAC and CAMTA families, respectively. In contrast, CCGCGT and GCCGAC, were the most 

important pCREs 0.5 and 3 hours after wounding in the non-JA-induced models but were not 

enriched or were ranked much lower (232th importance) for JA-induced models (Dataset S16). 

These pCREs were most similar to the binding motifs of TFs in the CG-1 and B3 TF families, 

respectively. Interestingly, these TF families are known involve TFs that have a general response 

to stress as well as those which are involved in auxin signaling and development, indicating two 

functions of wound stress response which do not involve JA. Together, this highlights how JA-

induced and non-JA-induced differential gene expression is likely regulated by different sets of 

regulatory elements that are recognized by different families of TFs.  

Modeling SM pathway regulation using wound stress data 

 

Another way to study response to wounding is by focusing on the response of whole 

metabolic pathways instead of the response of individual genes. Here, we measured the degree to 

which genes annotated as belonging to a particular specialized metabolism pathway were 

enriched in the genes up-regulated across the time series (Dataset S17). At earlier to mid-range 

time points (from 0.25 to 3 hours after wounding) JA biosynthesis was the most enriched 
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pathway (p-values range from 0.0015 to 3.5e-07; Dataset S17). However, by 6 hours after 

wounding, JA biosynthesis genes were less enriched (p-values = 0.0018) and by 12 hours it is 

not enriched at all. This demonstrates how the JA biosynthesis pathway is only 176ctive early in 

wounding response. Genes from the glucosinolate biosynthesis from tryptophan (Gluc-Trp) 

pathway, on the other hand, were enriched 0.5 hours after wounding (p-value = 0.008), were 

most enriched 12 hours after wounding (p-value = 0.0008) and were not enriched by 24 hours 

after wounding (p-value = 0.1). Finally, two genes from the anthocyanin biosynthesis pathway 

were up-regulated 0.5 hours after wounding and the same two genes remain up-regulated through 

24 hours after wounding. These examples demonstrate that some wounding responsive pathways 

are dynamic over time, while other wounding responsive pathways are steady. 

 To determine how dynamic changes in a metabolic pathway are regulated, we used the 

glucosinolate biosynthesis from tryptophan (Gluc-Trp) pathway as an example. No Gluc-Trp 

pathway genes were up-regulated at the earliest time point, however by 0.5 hours after wounding 

three genes were significantly up-regulated and by the one hour time point three additional genes 

were significantly up-regulated (see stars; Figure 4.7A). Looking beyond the first hour, we saw 

a cascading effect, where by 3 hours after wounding, the genes turned on at one hour still were 

still up-regulated, but the three genes that were first up-regulated at 0.5 hours were turned off. 

Continuing this trend, by six hours after wounding, only one gene that was up-regulated at one 

and three hours after wounding was still significantly up-regulated. (Figure 4.7A). This type of 

pattern could be due to genes upstream in the pathway being involved in up-regulating genes 

downstream in the pathway or could be due to having different TFs, not in the Gluc-Trp 

pathway, regulating up and downstream pathway genes.  
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To understand how the cascading response is regulated, , we mapped the pCREs found 

from each of the models for up-regulated genes at a given time point back to the promoters of the 

Gluc-Trp pathway genes (see Methods). Figure 4.7B shows the overlap of pCREs discovered 

from the wounding time point models that map to Gluc-Trp genes and their importance level at a 

given time point. We can see that starting at 0.5 hours after wounding, there is little overlap of 

important pCREs across time points with the exception of pCREs present at 6 and 12 hours after 

wounding. This indicates that for the Gluc-Trp pathway, genes turned on at different times have 

different regulatory elements which are specific to those genes. Figure 4.7C shows the highest 

ranked important pCREs for Gluc-Trp pathway genes at a given time point, and whether this 

pCRE is present or absent in Gluc-Trp pathway genes at other time points. For example, 

ACACGT, which is perfectly similar to the binding motif of a TF from the bZIP family 

(PCC=1), when specifically finding pCREs in Gluc-Trp genes, this pCRE is the most important 

element at 0.5 hours after wounding (Figure 4.7C). Additionally, this element is not found in 

Gluc-Trp pathway genes up-regulated at other time points. Other pCREs are important for 

regulating expression of pathway genes at later time points. For example, AACGTG, which is 

most similar to the binding motif of a bZIP family TF, is enriched in the promoters of Gluc-Trp 

pathway genes up-regulated 1, 3, 6, 12, and 24 hours after wounding, but has the highest 

importance at 6 hours after wounding. Overall genes belonging to the Gluc-Trp pathway have 

varied cis-regulatory elements depending on when they are up-regulated after wounding, and 

timing of response can be an important consideration when finding CREs related to certain 

pathways. 
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Figure 4.7. Co-expression and regulation of Glucosinolate from Tryptophan pathway 

genes.  

A. Heatmap showing the log2 fold change values of all genes in the Gluc-Trp pathway across the 

7 wounding time points. Genes are clustered using hierarchal clustering. Genes are on the y-axis, 

wounding time points are on the x-axis, and log2 fold change is represented as the color gradient 

from a value of 2 or greater (red) to a value of -1 or less (blue). Stars indicate gene is 

significantly up-regulated at a given time point. B. Scaled importance score of pCREs mapped to 

Gluc-Trp genes which are up-regulated at a given wounding time point. Importance is scaled 

from 0 to 1, where 1 is most important and 0 is least important. Each row is a pCRE and each 

column is the wounding time point. C. The most important pCRE for Gluc-Trp pathway genes at 

a given time point. First row is the pCRE and correlation to a known TF binding site. The second  
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Figure 4.7 (cont’d) 

row is the motif logo for the known TF binding site. The rest of the rows show whether that 

particular pCRE overlaps with Gluc-Trp genes at other time points. 
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Conclusion 
 

 The aim of this study was to better understand the temporal differences in transcriptional 

response to wounding stress in A. thaliana. We accomplished this by integrating multiple levels 

of regulatory information (e.g. sequence based and epigenetic features) into machine learning 

models of the regulatory code that could be used to predict if a gene was up- or down-regulated 

at a specific timepoint after wounding. We demonstrated that wounding response is regulated by 

a diverse set regulatory elements that are likely bound by TFs from a wide range of TF families. 

We identify 4,255 pCREs derived from wounding co-expression clusters up-regulated at 

different timepoints, with 3,493 (82%) having significant sequence similarity (PCC > 0.8) to 

known TF binding sites. These pCREs were more predictive of differential expression at each 

wounding time point than models based on known TF binding sites (derived from the literature 

and the DAP-seq database) and information about open chromatin sites. From our machine 

learning models, we were also able to quantify the relative importance of each pCRE included in 

the model for each time point. While some pCREs were important across multiple timepoints, we 

generally found that pCREs were either important for early or late time points after wounding. 

By modeling JA-induced and non-JA-induced transcriptional responses separately, we were able 

to identify 2,569 pCREs important for predicting genes up-regulated in response to wounding but 

not in response to JA treatment. Of these, 2,371 (92%) had significant sequence similarity (PCC 

> 0.8) to known TF binding sites. Finally, by focusing on genes in the Gluc-Trp pathway, we 

were able to identify pCREs important for predicting genes in this wound responsive specialized 

metabolite pathway. 

While our models perform notably better than random expectation, there is room for 

improvement. One possible reason we could not predict differential expression perfectly is that 
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we limited our study to focus on CRE sites in the promoter region (+1kb upstream of the 

transcription start site). However, CREs can be located in other regions, including in the 

downstream untranslated regions of the gene, in introns, or coding regions (Rose et al., 2008), 

which could be evaluated in future studies. Another limitation is that genes up- or down-

regulated at a particular time point might not all be regulated the same way. This is especially 

likely for large time point gene groups, like the cluster of up-regulated genes one hour after 

wounding, which contains 760 genes. If we could further break down this group, perhaps based 

on the gene’s response to other stresses, we may be able to model more specific responses at one 

hour, which could improve the overall performance. Finally, data regarding DAP-seq and DH 

sites did not come from wounded plants, and therefore are not capturing any changes that may 

occur to chromatin state or TF-binding sites after wounding. 

Many of the important pCREs found in this study have not been shown to be associated 

with wounding. This is especially true for pCRE found at later timepoints that have been less 

well studied. However, new technologies, such as CRISPR-cas9, make it possible to generate 

precise edits to the DNA allowing for the role of these pCREs in temporal wounding response to 

be tested experimentally. To that end, our study provides a set of important putative targets that 

could be used to prioritize experiments to can confirm novel pCREs associated with different 

types of wounding response. Finally, more can be done to find regulatory elements associated 

with different pathways. Because the Gluc-Trp pathway was associated with wounding, we were 

able to find elements which may help regulate that pathway. However, other pathways may 

respond to different types of stress or may be active during certain stages of development or in 

particular tissues. Therefore, future studies should focus on determining regulatory elements for 

particular pathways by using an associated expression data set. 
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Methods 

Expression datasets and analysis 

Microarray data from three different AtGenExpress studies were downloaded from TAIR 

and CEL files were processed using Affy program in R. The studies included biotic stress 

(Wilson et al., 2012), abiotic stress (Kilian et al., 2007; Wilson et al., 2012), and hormone 

treatment (Goda et al., 2008), where wounding is part of the abiotic stress dataset. These studies 

grew plants under similar conditions, were treated 18 days after germination, and were all part of 

the AtGenExpress project. Each study had 8 different treatments of either different stresses or 

hormones, for a total of 24 data sets. Samples from each data set were collected after treatment at 

a range of time points, including 15 minutes, 30 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 6 

hours, 12 hours, and 24 hours after treatment. Note that not all time points were used for each 

treatment. For each data set, controls were collected at the same time in order to control for 

circadian effects. 

Differential expression was calculated using affy and limma packages in R (Gautier et al., 

2004; Ritchie et al., 2015), and significantly differentially expressed genes were those that had 

an absolute log2 fold change  1 and adjusted p-value < 0.05. Up-regulated genes were those 

genes which were differentially expressed but with a log2 fold change  1, while down-regulated 

genes were those genes which were differentially expressed with a log2 fold change ≤ -1. For 

each expression dataset, Pearson’s Correlation Coefficient (PCC) was calculated between each 

treatment. 

Gene clusters 

Wounding time point clusters were determined by differential expression at each time 

point of wounding stress (0.25, 0.5, 1, 3, 6, 12, and 24 hours after wounding). For example, 

genes which were up-regulated at the time point of 1 hour after wounding were placed in cluster 
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1 while genes down-regulated at 1 hour after wounding were placed in cluster 2. This created a 

total of 14 wounding clusters. For wounding and JA clusters, genes were placed in a cluster 

based on whether they were differentially expressed in one or both treatments at the same time 

point. For example, a gene X up-regulated in both 1 hour after wounding and 1 hour after JA 

treatment would be placed in cluster 1, while gene Y up-regulated in 1 hour after wounding but 

not changed under 1 hour after JA treatment would be placed in cluster 2. Finally, for a gene Z 

up-regulated in 1 hour after wounding but down-regulated in 1 hour after JA treatment would be 

placed in cluster 3. Therefore, at each time point which is in both wounding and JA treatment 

datasets (0.5, 1, and 3 hours) each up- or down-regulated after wounding cluster was divided into 

3 separate clusters, for a total of 18 clusters. Three of these potential clusters actually contained 

no genes and were subsequently omitted (up-regulated after wounding but down-regulated after 

JA treatment at 0.5 hours, 1 hour, and 3 hours). A non-differentially expressed cluster was 

determined by genes which were not differentially expressed across all stresses and timepoints as 

well as all hormone treatments. For all gene clusters and overlap of clusters, see Dataset S13. 

Known cis-regulatory elements literature search 

 Known regulatory elements were curated from a literature search. They included 

elements shown to be responsive to JA, wounding, or insect stress. The studies for this search 

can be found in Dataset S14. Both experimental and computational data was included. 

Putative Cis-regulatory finding 

Promoter regions of each gene (identified as 1-kb upstream of the transcription start site) 

were downloaded from TAIR for A. thaliana. Using homemade python scripts 

(https://github.com/ShiuLab/MotifDiscovery) were used to identify all combinations of 6-mers 

present in gene promoters. The Fisher’s Exact Test (FET) was then used to determine 

https://github.com/ShiuLab/MotifDiscovery
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overrepresented putative cis-regulatory elements (pCREs) in the promoter region (defined as 

1000 bp upstream of gene start site) by comparing a given wounding up- or down-regulated 

cluster to the non-differentially expressed cluster. A range of p-value cutoffs (adjusted P < 0.01, 

P<0.01, adjusted P < 0.05, and P < 0.05) was used, however for later machine-learning models, 

the best results were with the non-adjusted P < 0.01. Using the Motif Discovery pipeline, kmers 

(oligomer sequences of length k) were searched for in the promoters of genes of interest. Starting 

with all possible 6-mers, sequences which were found to be significantly overrepresented in the 

clusters based on the p-values listed above, were kept. Another round of kmer finding then 

occurred where the significant 6mer was extended on either side, producing two 7mers, and these 

7mers were again tested to see if they were significantly overrepresented in the given cluster, and 

if their p-value was lower than the parent 6mer. If this was true, the 7mer was kept and the 6mer 

discarded. If not, the 7mer was discarded and the 6mer was kept. This procedure of “growing” 

kmers continued until the longest kmer with a p-value lower than its predecessor was obtained. 

These pCREs were then used as features to predict expression in machine-learning models. 

TAMO/1.0 (Gordon et al., 2005)was also used to create tamo files for each motif, which was 

used later to correlate to known transcription factor binding sites. 

Arabidopsis cistrome and epicistrome 

Two datasets providing in-vitro transcription factor (TF) binding sites were used to 

correlate to pCREs. First, A. thaliana motifs (position weight matrices) determined from protein 

binding arrays (called TF binding motifs or TFBMs) (Weirauch et al., 2014) were downloaded 

from http://cisbp.ccbr.utoronto.ca. DNA affinity purification sequencing (DAP-seq) peaks 

(O’Malley et al., 2016) were downloaded from http://neomorph.salk.edu/PlantCistromeDB. The 

peaks were then mapped to A. thaliana genome using python scripts. If the peak overlapped with 

http://cisbp.ccbr.utoronto.ca/
http://neomorph.salk.edu/PlantCistromeDB
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the promoter of a gene of interest, the peak was considered present as a feature for that gene. To 

provide insight into chromatin structure, Dnase I hypersensitivity (DH) sites (Zhang et al., 2012) 

were obtained from the National Center for Biotechnology Information database under the ID 

number GSE34318 as bed files. Bed files were parsed using python scripts to obtain gff files, 

which were then mapped to the A. thaliana genome. If the peak overlapped with the promoter of 

a gene of interest, the peak was considered present as a feature for that gene. 

Machine learning models 

Prediction models were built for each wounding time point cluster as well as for 

wounding-JA cluster where enriched pCREs from the promoter analysis were used as features to 

predict expression patterns in each expression class (up- or down-regulated genes in each 

cluster). Random Forest (RF), Support Vector Machine (SVM), and Gradient Boosting, (GB) 

were the machine learning algorithms implemented for each cluster using Python package sci-kit 

learn (Pedregosa et al., 2011). Python scripts used to run the models can be found here: 

https://github.com/ShiuLab/ML-Pipeline. For each model, 10% of the data was withheld from 

training as an independent, testing set. Because the dataset was unbalanced (i.e. 6,855 null genes, 

760 up-regulated genes under wounding at 1 hour), 100 balanced datasets were created from 

random draws of the null gene cluster to match with the number of genes in the differentially 

expressed cluster. Using the training data, grid searches over the parameter space of RF and 

SVM were performed. The optimal hyperparameters identified from the search were used to 

conduct a 10-fold cross-validation run (90% of the training dataset used to build the model, the 

remaining 10% used for validation) for each of the 100 balanced datasets. Model performance 

was evaluated using F-measure, the harmonic mean of precision and recall, where precision is 

defined as the number of true positives divided by the sum of true and false positives, and recall 

https://github.com/ShiuLab/ML-Pipeline
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is defined as the number of true positives divided by the sum of true positives and false 

negatives. Thus, in a binary model, a perfect prediction has an F-measure of 1 and the random 

expectation is 0.5. The models also have an importance score for each input feature, which is 

determined by the decrease in impurity of a node in a decision tree, and then averaged across the 

trees in the forest. Thus, the higher the number, the more important the feature (Breiman, 2001; 

Louppe, 2014). Importance value was scaled by normalizing based on the minimum and 

maximum values (where the minimum importance value is subtracted from a given value I, then 

divided by the difference between the maximum and minimum importance value). Importance 

rank was taken by ranking taking the importance value and ranking from highest to lowest. 

Percentile rank is taken by taking the rank of the feature and dividing it by the total number of 

features.  

For each cluster, models with only known (derived from literature) CREs were built 

(model set 1), then models with known CREs plus DAP-seq and DH site information were built 

(model set 2). Finally, models with DAP-seq, DH site and enriched pCRE information were built 

(model set 3). Additionally, for model set 3, five separate models for each wounding time point 

cluster were run to determine the average importance score for each feature. This was then used 

to rank the features (pCREs) from most important to least important based on the average of the 

importance rank for each feature from the five models. Before ranking, reverse compliment 

pCREs were removed, so that essentially the same pCRE was not ranked twice. To assess 

random expectation, gene clusters chosen randomly from the expression data sets were enriched 

for pCREs. These were then used to build machine learning models using the methods above. 

Random gene clusters were made for genes at n= 30, 50, 100, 150, 200, and 250 at 20 repetitions 

each. Model results are reported in Dataset S15. 
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Sequence similarity of pCREs to known TF binding sites 

To compare pCREs to potential know TF binding sites, pairwise PCC (Pearson’s 

correlation coefficient) distance between pCREs and TF binding sites (both DAP-seq and 

TFBMs) was generated using the TAMO program (Gordon et al., 2005). After calculating the 

PCC distance to all possible TF binding sites, the lowest distance (highest PCC) was determined 

for each pCRE as its best match. The best match was then used for visualization of the binding 

site logo.  

Pathway enrichment and pCRE mapping 

Pathway annotations were downloaded from the Plant Metabolic Network Database 

(https://www.plantcyc.org/). Enrichment tests were performed by using python scripts 

(https://github.com/ShiuLab/GO-term-enrichment) and the python fisher 0.1.9 package which 

implements the Fisher Exact test. In order to map pCREs back to the genes in the glucosinolate 

from tryptophan (Gluc-Trp) pathway, gff files were created which contained the coordinates of 

pCREs in the promotors of all A. thaliana genes. Genes which were part of the Gluc-Trp 

pathway which were expressed at a wounding time point were matched up with pCREs which 

mapped to them. Finally, the importance for pCREs which map to Gluc-Trp genes was 

determined for each wounding time point from the previous wounding models.  

 

  

https://www.plantcyc.org/
https://github.com/ShiuLab/GO-term-enrichment
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Figure S 4.1. Heatmap of the F-measure for all wounding SVM models.  

Each row is a different cluster which was used to build a separate model. Each column represents 

the datasets used as features in the model and the algorithm used (SVM= Support Vector 

Machine). Known only refers to CREs found in the literature (Dataset S14). DAPseq and DHS 

refer to the DAP-seq and Dnase I hypersensitivity sites. FET enriched 6mer refers to the pCREs 

which were enriched for a specific cluster. The F-measure range is from 0.5 (white) to 1 (red), 

and gradient as well as actual F-measure is shown in each cell. The bar chart next to the heat map 

corresponds to each row/cluster and represents the number of genes in that cluster. A. Wounding 

time point models. B. wounding JA-induced and non JA-induced models. 
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Figure S 4.2. Average importance rank for the top 10 pCREs for each wounding JA-

induced and non JA-induced model and their TF family.  

Wound time point models are the columns while pCREs are the rows. Average importance rank 

is the average rank across five duplicate models ran for the same time point. Highest rank (1) is 

red and ranks 150 or lower are blue. TF family association is based on the maximum PCC to 

known TF binding sites. PCC is shown for both DAP-seq and TFBM sites. 
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Supplemental Data 

Dataset S12: Between sample PCC results 

Dataset S13: Sample cluster overlap and genes in each cluster 

Dataset S14: Known cis-regulatory elements derived from literature 

Dataset S15: All machine learning model results 

Dataset S16: Feature importance for models using only known elements or sites 

Dataset S17: Summary table for the importance rank of each pCRE for each cluster and their 

correlation to DAP-seq or TFBM sites 

Dataset S18: Overall feature importance score for wounding JA-induced and non JA-induced 

clusters 

Dataset S19: All pCREs enriched for each wounding time point cluster and their p-values 

Dataset S20: Pathway enrichment for each wounding time point cluster and their p-values 
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