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ABSTRACT 

EARLY LINGUISTIC ENVIRONMENTS AND LANGUAGE DEVELOPMENT IN 

CHILDREN WITH COCHLEAR IMPLANTS 

By 

Meisam Khalil Arjmandi 

Prior research has documented tremendous variability in language outcomes of children 

with cochlear implants (CIs); despite more than a decade of research, a large portion of this 

variability remains unexplained. This study characterized the quantity and quality of early 

linguistic input in naturalistic environments of 14 early-implanted children with CIs to investigate 

variability across children as a possible source of variation that might help explain language 

outcome variability. In Chapter 2, daylong audio recordings from home environments of these 

children were analyzed to examine individual variability in language input they experienced in 

terms of lexical, morphosyntactic, and social-pragmatic properties. It was found that the quantity 

and quality of early language input varies substantially across children with CIs, where the degree 

of variability was comparable in magnitude to what has been reported between the most-

advantaged and least-advantaged typically hearing children. In Chapter 3, estimates of the quantity 

and quality of language input were adjusted to consider environmental noise and reverberation to 

better represent the “useable” amount of input experienced by the children. It was found that 

children with CIs are differentially impacted by noise and reverberation in their naturalistic 

environments, such that some children are doubly disadvantaged in acquiring spoken language, 

both due to substantial variability in the amount and quality of linguistic input available to them, 

as well as due to their exposure and susceptibility to environmental noise and reverberation. In 

Chapter 4, an initial test was conducted to obtain preliminary results regarding how language input 

factors might shape development of language outcomes in children with CIs. The preliminary 



 

 

 

results estimating the contribution of language input measures to language outcomes of the 

children with CIs suggested that measure of speech intelligibility tailored to children with CIs 

strongly predicted language outcomes. Overall, this study has provided evidence for substantial 

individual variability across children with cochlear implants in quantity and quality of their early 

language experience, which were mainly influenced by factors of child-directed speech and 

environmental noise and reverberation. This evidence-based knowledge can be used by parents 

and clinicians to effectively adjust early linguistic environments of children with CIs to maximize 

the advantage of using CIs.
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CHAPTER 1: Introduction 

Approximately 188,000 individuals around the world and more than 41,000 adults and 

26,000 children in the United States benefit from cochlear implants (CIs) to access sounds and 

speech in their environments (“National Institutes of Health, Cochlear Implants,” 2010). Despite 

a nearly successful development of spoken language in some pediatric recipients of CIs, the 

sources of enormous individual variability across children reported at all cochlear implant centers 

around the world is still unknown (Peterson, Pisoni, & Miyamoto, 2010). The unresolved question 

of sources of this enormous variability highlights the high risk of lack of developing age-

appropriate language to the extent that some children with CIs may never develop functional 

spoken language skills (Peterson et al., 2010). Therefore, there is a substantial need to understand 

factors that contribute to this tremendous individual difference in language outcomes of children 

with CIs. The present dissertation aims to address this knowledge gap by studying an under-

explored factor in language outcomes, variability in the quantity and quality of language input 

experienced by children with CIs in their naturalistic language environment. 

1.1. Individual variability in early linguistic environments may explain variability in 

language attainment 

There has been very little research on the impact of children’s language environment on 

their outcomes. Most of the research into variability in cochlear implant outcomes has been 

focused on device factors and implantation variables such as age at implantation and electrode 

configuration (Peterson et al., 2010). However, these factors together have explained a small 

fraction of the individual variability in language outcomes of this at-risk pediatric population, 

leaving a tremendous portion of sources of individual differences still unexplained (Niparko et al., 

2010; Peterson et al., 2010). Few studies highlighted the key role of children’s language experience 
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on their language outcomes (Szagun & Stumper, 2012). However, these studies focused on specific 

properties of language input such as grammatical structure of maternal speech, which were derived 

from speech samples at cochlear implant centers rather than children’s natural home environments. 

Therefore, while informative, such work skips basic questions about the home environment of 

children with CIs such as the quantity and quality of speech input experienced by children after 

their implantation. 

1.2. Quantity of early language experience 

There are many sources of evidence that nature of language input significantly affects 

language attainment in children with typical hearing, particularly in early childhood. Pioneering 

work by Hart and Risley (1995) established that there was a tremendous gap in the amount of 

language children experienced before kindergarten. They demonstrated a 30-million-word gap 

between children who lived in environments with highest amount of language input and those who 

experienced language environment with lowest quantity of language input by age 3. These findings 

have been refined and extended by recent studies where the original findings of 30-million-word 

gap has been associated to the characteristics of children’s linguistic environments rather than 

solely to their socio-economic status (Sperry, Sperry, & Miller, 2018). More importantly, all these 

studies demonstrated that the extreme individual disparities in quantity of early language 

experience is tightly translatable to disparities in children’s language outcomes. However, we have 

very limited knowledge about how quantity of early language experience varies across children 

with CIs in their home environment, knowing that these children are extremely variable in their 

language outcomes. The present project is inspired by the approach of Hart and Risley (1995) to 

understand to what extent individual children vary in quantity and quality of language input they 

experienced early after their implantation. 
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1.3. Quality of early language experience 

Early language input experienced by children may also vary across individuals for its 

quality, which may significantly impact children’s language development. Child-directed style is 

one of the major components of quality of early language input that best fosters language 

development in typically-hearing children (Weisleder & Fernald, 2013). This spoken 

communication style contains rich acoustic, linguistic and social-pragmatic information that 

together contribute significantly to improving the quality of speech experienced by children 

regardless of their hearing status (Dilley, Lehet, Wieland, Arjmandi, & Kondaurova, 2018; 

Weisleder & Fernald, 2013). Typically-hearing children who experience relatively greater amount 

of high-quality child-directed speech develop better language and cognitive skills (Golinkoff, 

Hoff, Rowe, Tamis-LeMonda, & Hirsh-Pasek, 2019; Weisleder & Fernald, 2013). This supportive 

effect of child-directed speech on children’s vocabulary growth persists regardless of whether the 

talker is primary caregiver or other household members and siblings (Shneidman, Arroyo, Levine, 

& Goldin-Meadow, 2013). Therefore, characterizing variability across children in the amount of 

high-quality child-directed speech may help us to explain an important fraction of variability in 

their language outcomes, particularly in children with CIs who hear an impoverished and degraded 

version of speech input. 

Furthermore, the amount of high-quality child-directed speech experienced in a day 

impacts other aspects of quality of language input. Children who live in environments with higher 

quantity of child-directed speech have greater chance of hearing more word types with higher 

repetition as well as experiencing higher examples of repeated and partially repeated utterances 

(Hoff, 2006). In addition, early language environments with higher amount of child-directed 

speech per day increases the chance of getting exposed to utterances that are semantically related, 
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leading to greater spoken communicative skills (Hart & Risley, 1995; Hoff-Ginsberg, 1991, 1994). 

Therefore, children who hear relatively lower amount of child-directed words in a day in their 

environments are at risk of developing smaller vocabulary size (Hart & Risley, 1995; Janellen 

Huttenlocher, Haight, Bryk, Seltzer, & Lyons, 1991). The quality of the experienced child-directed 

speech may also differ across children for the length of utterances, leading to developing variable 

language skills across typically-hearing children (Hoff & Naigles, 2002). The emerging consensus 

from these studies is that, at least for children with typically hearing, individual variability in 

amount of child-directed speech experienced per day explains variability in their language 

attainment. However, there is no knowledge about how the amount of high-quality child-directed 

speech vary across early language environments of children with CIs. 

More importantly, there is a highly degradative effect of noise, which disproportionately 

affects speech reception ability in individuals with cochlear implants (Neuman, Wroblewski, 

Hajicek, & Rubinstein, 2004). This effect has not yet been taken into consideration in a study of 

language development in children with cochlear implants. Listeners with CIs have great difficulties 

in understanding speech in background noise and/or reverberation compared to listeners with 

typical hearing, particularly when speech co-occurs with speech from multiple talkers (Caldwell 

& Nittrouer, 2013). This factor becomes more important knowing that children with CIs spend 

substantial portions of their daily lives in noisy environments (Busch, Vanpoucke, & van 

Wieringen, 2017). Therefore, noise in the environment is a crucial factor for language development 

of children with CIs that affects the quantity and quantity of language input experienced by 

children in their daily lives. 

The findings from these studies together demonstrate that individual variability in language 

outcomes of children is tightly related to their differences in quantity and quality of the experienced 
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speech in their early language environments. However, we have very limited knowledge about 

how the quantity and quality of speech experienced by children with CIs vary across children early 

after implantation and how these variations may relate to variability in their language outcomes. 

1.4. The present study 

Variability across children with typically hearing in quantity and quality of early language 

experience in strongly associated with their differences in language outcomes. Chapter 2 aimed to 

investigate the extent of individual variability across 14 early-implanted children with CIs in the 

quantity and quality of their language experience soon after their implantation. We characterized 

language input experienced by these children in their home environments for the total amount of 

words, the amount of child-directed words, diversity of words, complexity of utterances, the degree 

of adults’ engagement in child-adult interaction, and rate by which speech experienced by children 

in their environments. We examined the extent the individual children with CIs experienced 

language environments with different quantity and quality characterized by these traditional 

measures of language input. Considering that many children with CIs around the world are at high 

risk for lack of developing age-appropriate expressive and receptive language skills, this aim 

addresses a critical and timely question.   

Quantity and quality of early linguistic environments have been mainly investigated based 

on traditional measures of language input. There is no knowledge about how noise and 

reverberation in the actual environments of children with CIs may impact the number of useful 

words they experience and how it differentially affects the properties of children’s environments. 

Chapter 3 develops novel approaches to update the number of total words and high-quality child-

directed words heard by children with CIs in their early linguistic environments to investigates the 

extent to which quantity and quality of linguistic environments of children vary after the noise-
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based adjustment of language input. We analyzed speech input based on human coding of level of 

noise interference as well as a quantitative metric of speech intelligibility to adjust the quantity 

and quality of speech input for environmental noise and reverberation. This chapter addresses a 

crucial knowledge gap about the change in quantity and quality of language experienced by 

children with CIs after considering the effect of environmental noise and reverberation.     

Chapter 4 uses the traditional and updated measures of language input to examine how well 

each of these measures predict language outcomes of the 14 early-implanted children with CIs 

participated in this study. The finding from this research project will provide new evidence about 

how quantity and quality of early linguistic input experienced by children with CIs vary across 

individuals and how these changes are associated with children’s language outcomes in this at-risk 

pediatric population. We expect that outcomes of this study will provide evidence-based 

knowledge about quantity and quality of early language environments of children with CIs. This 

knowledge can be used to develop personalized early intervention strategies for clinicians and 

parents to maximize the likelihood of effective spoken communication skills in children with CIs. 
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CHAPTER 2: Variability in quantity and quality of early linguistic 

experience in children with cochlear implants 

2.1. Introduction 

Variability in language outcomes of children with CIs 

Cochlear implants (CIs) are prosthetic biomedical devices which have dramatically 

impacted the lives of many children with severe-to-profound hearing loss by allowing them access 

to sounds and speech (Geers, Nicholas, & Sedey, 2003; Svirsky, 2017; Wilson & Dorman, 2008). 

Gaining access to sounds and speech permits children with CIs to acquire verbal language (Blamey 

et al., 2013; Cohen, Waltzman, Roland, Staller, & Hoffman, 1999; Stallings, Gao, & Svirsky, 

2000; Summerfield & Marshall, 1995), to develop cognitive abilities (Pisoni, 2012), and to 

improve scholastic achievement (Spencer, Barker, & Tomblin, 2003). Despite all these advantages 

brought by cochlear implantation, there remains enormous unexplained variability among children 

with CIs in terms of their language outcomes after CI activation (Ertmer & Goffman, 2011; Geers 

et al., 2003; Holt, Beer, Kronenberger, Pisoni, & Lalonde, 2012; Niparko et al., 2010; Peterson et 

al., 2010; Pisoni, 2012; Svirsky, Teoh, & Neuburger, 2004a; Szagun, 2001; Tobey et al., 2013; 

Tyler et al., 2000). The magnitude of this variability is notably larger than that of children with 

typical hearing (Duchesne, Sutton, & Bergeron, 2009; Svirsky et al., 2004a; Szagun, 2001). After 

more than a decade of research on sources of this enormous variability in language outcomes of 

pediatric CI recipients, sources of such variability still remain poorly understood. Therefore, it is 

of the utmost importance to further focus on under-studied factors that potentially influence 

variability in the development of language in children who receive CI prosthetic devices. 

Early linguistic environment has been shown to play a primary role in language 

development in children with typical hearing (Hart & Risley, 1995; Hoff, 2003; Newman, Rowe, 
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& Bernstein Ratner, 2016; Weisleder & Fernald, 2013). Importantly, the quantity and quality of 

language input has been shown to vary substantially across language environments of typically-

hearing children. Hart and Risley (1995) demonstrated that there is substantial variability across 

children in properties of language they experience in their environments in a day. This large 

variability across children in amount of words they experience can be compounded over years to 

equate to a very large number. The scale of this growth was extremely large over years such that, 

by age 3, children living in linguistic environments with the highest relative quantity and quality 

experienced 30 million more words compared to those who lived in environments with the lowest 

quantity and quality of language input. 

The basic finding of Hart and Risley (1995) – showing substantial differences across early 

linguistic environments of children with typical hearing – has been replicated in several recent 

studies (Golinkoff et al., 2019; Hirsh-Pasek et al., 2015; Romeo et al., 2018). For children with 

typical hearing, this extreme individual variability in exposure to speech early in childhood 

translates into individual differences in their language outcomes and cognitive skills (Golinkoff et 

al., 2019; Hart & Risley, 1995; Hoff, 2003). However, there is a major knowledge gap about the 

extent early linguistic environments vary across children with CIs early in childhood, recognizing 

that individual variability in this at-risk pediatric population in language outcomes is considerably 

higher than that of children with typical hearing.                   

In the current study, we aimed to address this knowledge gap by exploring how quantity 

and quality of early linguistic environments vary across children with CIs along multiple linguistic 

and indexical dimensions. Inspired by Hart and Risley (1995)’s work, we analyzed audio samples 

recorded from naturalistic auditory environments of children with CIs to estimate the quantity and 
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quality of language input experienced by children in a day. This permitted estimates of how this 

differential experience could impact language exposure over years.  

To this end, in this chapter, we first discuss factors that have been shown to influence 

language development in children with CIs. Then, we will present evidence that the quantity and 

quality of early linguistic environments are key factors for language development in children both 

with typical hearing and with CIs, something that remains under-studied in explaining variability 

in language outcomes in this at-risk population. Next, we will present methods developed in this 

study to analyze early linguistic environment of children with CIs. We analyzed audio samples 

recorded from naturalistic environments of 14 early-implanted children with CIs to obtain 

estimates of the quantity and quality of language input they experienced. We particularly estimated 

the number of total words and child-directed words per day, as well as several other measures of 

lexical, morphosyntactic, and social-pragmatic information to characterize early language input. 

The results will be then presented in the Results section and will be further considered in the 

Discussion. 

Known factors contributing to variability in language outcomes of children with CIs  

Several factors have been studied in relation to pediatric CI users, which nevertheless fail 

to account for a large proportion of variance in these children’s language outcomes. Known factors 

contributing to language acquisition in children with CIs relate to intervention characteristics 

(Blamey et al., 2013; Ertmer, Young, & Nathani, 2007a; Graham et al., 2009; Holden et al., 2013; 

Iler Kirk et al., 2002; Kirk, Miyamoto, Ying, Perdew, & Zuganelis, 2000; Lazard et al., 2010; 

Levine, Strother-garcia, Golinkoff, & Hirsh-pasek, 2016; Nicholas & Geers, 2006; Anu Sharma, 

Dorman, & Kral, 2005; Summerfield & Marshall, 1995; Szagun & Schramm, 2016; Szagun & 

Stumper, 2012; Tobey et al., 2013; Willstedt-Svensson, Löfqvist, Almqvist, & Sahlén, 2004), 
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characteristics of the CI devices (Blamey et al., 1992; Lazard et al., 2010), and factors related to 

device-brain interactions (Aschendorff, Kromeier, Klenzner, & Laszig, 2007; Bierer, Spindler, 

Bierer, & Wright, 2016; Blamey et al., 1992; Finley, C. C., & Skinner, 2008; Holden et al., 2013; 

Jahn & Arenberg, 2019; Yukawa et al., 2004). Factors related to intervention include age of 

hearing loss identification, age at CI implantation (Diaz, Labrell, Le Normand, Guinchat, & 

Dellatolas, 2019; Dunn et al., 2015; Ertmer, Young, & Nathani, 2007b; Iler Kirk et al., 2002; Kirk, 

Miyamoto, et al., 2000; Levine et al., 2016; Nicholas & Geers, 2006; Anu Sharma et al., 2005; 

Szagun & Schramm, 2016; Szagun & Stumper, 2012; Tobey et al., 2013; Tomblin, Barker, 

Spencer, Zhang, & Gantz, 2005; Willstedt-Svensson et al., 2004), duration of implant use, 

communication mode (Connor, Alexander, & Teresa, 2000; Stacey, Fortnum, Barton, & 

Summerfield, 2006; Tobey, Geers, Brenner, Altuna, & Gabbert, 2003), duration of deafness prior 

to implantation (Blamey et al., 2013; Graham et al., 2009; Summerfield & Marshall, 1995), the 

level of residual hearing before CI activation (Gomaa, Rubinstein, Lowder, Tyler, & Gantz, 2003), 

as well as the history of hearing aid use (Nicholas & Geers, 2006). Factors such as working 

memory (Pisoni & Cleary, 2012), gender, family SES, and age of hearing loss onset can be 

categorized as factors associated with children’s personal characteristics. However, a large fraction 

of variability in language outcomes in children with CIs remains unexplained, even when these 

factors are taken into account. 

Sources of variability in language outcomes in children with CIs: A critical gap in knowledge 

Findings from language development studies and perceptual studies of speech recognition 

in children with CIs highlight that sources of variability in development of language in children 

with CIs have remained poorly understood. Children with CIs showed largely variable 

performance in perception and production of indexical and contextual information in speech 
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(Anderson, Lazard, & Hartley, 2017; S.-C. Peng, Tomblin, & Turner, 2008; Z. Peng, Hess, Saffran, 

Edwards, & Litovsky, 2019; Reed & Delhorne, 2005). For instance, although children with 

bilateral CIs showed above-chance performance in discrimination of consonant sounds, there were 

substantial differences among individual children in their performance (Peng et al., 2019). A 

similar pattern of large inter-subject variability was reported in pediatric CI patients in perceiving 

and producing speech intonation (Peng et al., 2008) and recognizing talkers’ voices (Tamati, Janse, 

Pisoni, & Baskent, 2017). Adults with CIs performed quite differently in separation of ten 

categories of environmental sounds when tested on four closed sets (Reed & Delhorne, 2005). 

These studies raise a fundamental question: that is, which component involved in language 

learning of children with CIs has not yet been well-studied that might explain the tremendous 

variability in children’s language outcomes? This fundamental question is addressed in the present 

dissertation.    

As mentioned, a large fraction of variability in language outcomes of children with CIs has 

not yet been explained, even after controlling for all the above-named factors. Relevant to selecting 

a population for study, age at implantation have been identified as a strong predictor of language 

outcomes (Holt & Svirsky, 2008; Nicholas & Geers, 2007; Svirsky et al., 2004a; Tomblin et al., 

2005). Results from these studies suggested that there is a sensitive period where children acquire 

language more effectively. These findings suggested that cochlear implantation is most effective 

when it occurs before 24 months of age (Geers, Nicholas, & Moog, 2007a; Holt & Svirsky, 2008; 

Svirsky, Teoh, & Neuburger, 2004b). However, recent findings by Szagun and Stumper (2012) 

demonstrated that the effect of age at implantation is highly dependent on the quality and quantity 

of language input and the duration of language experience. These findings demonstrate that 

although small portions of variability in language outcomes of children with CIs have been 
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explained by these factors, a large fraction of variance in language outcomes has not yet been 

explained, leading to high risk for language delay in some children. 

Theoretical frameworks relevant to language development 

A child’s language system reflects interactions between the linguistic environment and the 

plastic pediatric brain. These two sources of variability together form a complex dynamic system 

for language development (Sharma, Dorman, & Spahr, 2002; Anu Sharma et al., 2005; Szagun & 

Schramm, 2016; Szagun & Stumper, 2012). Variability in the outcomes of this complex system 

can be understood within dynamic systems theory (Smith & Thelen, 2003; van Geert & van Dijk, 

2002). Under this theoretical framework, complex cognitive systems, such as language, develop 

through interaction between physical and social components of environments (Smith & Thelen, 

2003; Verspoor, Lowie, & Van Dijk, 2008). Therefore, the weighting system for perception and 

production of linguistic units is the outcome of active, long-term daily interactions with linguistic 

environments, constructing a complex, dynamic language-learning process. The present study is 

conceptually informed by this framework. As this theory states (Verspoor et al., 2008), examining 

patterns of variability in language input from children’s environments is central to providing better 

explanations of sources of differences among individual children in language outcomes, 

particularly children with CIs (Geers, A. E., Strube, M. J., Tobey, E. A., & Moog, 2011). 

Impacts of the language environment on language development can also be understood 

relative to widespread findings that children exploit statistical and distributional characteristics of 

speech input in forming linguistic representations (Johnson & Jusczyk, 2001; Saffran, 2002; 

Saffran & Kirkham, 2018). For instance, they learn within-word transitional probabilities as 

important cue for vocabulary acquisition (Saffran, Aslin, & Newport, 1996; Saffran, Johnson, 

Aslin, & Newport, 1999; Saffran, Newport, & Aslin, 1996; Saffran & Kirkham, 2018). Children 
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further follow transitional probabilities at longer time-scales relevant to both prosodic cues and 

hierarchical linguistic structures. Saffran et al. (1996) showed that children, by at least 8 months 

of age, track within-word transitional probabilities that are significantly higher than the between-

word transitional probabilities. They also attend more to within-event probabilities between 

syllables and audiovisual events, leading to perception of a sequence as a unitary event. The same 

pattern of significantly higher within-event probabilities compared to between-events probabilities 

was observed between syllables and audiovisual events (Bulf, Johnson, & Valenza, 2011; Saffran, 

Newport, et al., 1996). From these findings it follows that higher exposures to language might 

render better estimates of within-word and across-word transitional probabilities. Therefore, these 

bodies of research on development as a dynamic system and statistical learning help inform 

understanding of how variability in exposure to language across children could lead to differential 

time-courses of development of linguistic systems.  

Quantity of ambient language as a factor in language development in children with typical 

hearing abilities 

Our core hypothesis was that sources of variability identified for children with typical 

hearing which help account for variability in their language development could also explain 

variability in language development in children with CIs. Prior studies have identified the early 

linguistic environment as a critical factor influencing later language outcomes for children with 

typical hearing (Hart & Risley, 1995; Hoff, 2003; Hurtado, Marchman, & Fernald, 2008; Janellen 

Huttenlocher et al., 1991; Neville & Bruer, 2001; Weisleder & Fernald, 2013).  Seminal work by 

Hart and Risley (1995) compared the quantity of words experienced by children with either upper 

socioeconomic status (SES) (13 children), middle SES (10 children), or low SES (10 children). 

They analyzed children’s language environments from the time children were 7-9 months old until 
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they were 3 years old based on a series of sequential monthly, hour-long recordings. Their 

estimates from analyzing these hours-long samples, based on linear extrapolation from the average 

number of words per hour over years, showed that after three years, the difference in number of 

words experienced by children in the highest SES bracket and the lowest SES bracket was 

approximately 30 million words, a word difference that is known as the so-called 30-million word 

gap. 

Sperry et al. (2018) examined the initial claim of Hart and Risley (1995) and showed that 

their findings from studying five American communities with widely variable SES levels did not 

support Hart and Risley (1995)’s claim that 30-million word gaps could be attributed to living in 

environments with lower SES versus those of higher SES families. Contrary to Hart and Risley’s 

findings, Sperry et al.’s investigation of videotapes of children’s spoken communication with their 

mother, grandmother and father showed that differences among children in exposure to amount of 

language was not associated with children’s SES. Rather, there were also children living in low-

income families experiencing a large amount of language input in a day. Sperry et al. (2018) also 

argued that overheard speech is as valuable as child-directed speech (CDS) for language learning, 

a claim that was rejected by Golinkoff et al. (2019). Golinkoff et al. (2019) further responded to 

Sperry et al. (2018)’s findings and argued that the difference across children is more about the 

amount of high-quality speech directed to children in their environments rather than solely the 

total amount of speech available in children’s language environment. The finding that greater 

quantity of language experience leads to higher vocabulary growth and attainment has been 

supported in multiple studies (Ramírez‐Esparza, García‐Sierra, & Kuhl, 2014; Rowe, Raudenbush, 

& Goldin-Meadow, 2012; Weisleder & Fernald, 2013).  
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The main takeaway from these studies is that the quantity of speech experienced by 

children in their language environments matters for their language development. In other words, 

these findings highlighted the fact that the amount of spoken communicative experience provided 

to children in their linguistic environments may substantially vary across families, leading to large 

individual differences in rates of language growth, ability to successfully comprehend language, 

and produce speech. It was shown that the individual variability in amount of words experienced 

was not mediated through family’s socioeconomic status, but rather the amount of high-quality 

language input. Therefore, variation in the quantity and quality of language input experienced by 

each child needs to be appropriately examined in order to better capture the connection between 

changes in specific components of language input and individual differences in language 

development (Hoff, 2006). 

Findings from studies like Hart and Risley (1995) and Sperry et al. (2018) motivated the 

present study to focus on characterizing variability in amount (i.e., quantity) of language in 

children with CI’s early linguistic environments before even targeting to seek their connection 

with language outcomes. We have almost no knowledge about how the quantity and quality of 

early linguistic environments of children with CIs vary across children. We examined the extent 

of variation across children with CIs in the quantity and quality of language input they experienced 

early after implantation to gain preliminary evidence of how children may be disproportionately 

benefited or disadvantaged due to individual differences in properties of early language input. 

Quality of language input and its influences on language development  

Studies with typical hearing children have also identified multiple factors which together 

are considered to relate to the quality of language input. This construct includes a notion of the 

person to whom individuals are speaking, how they pronounce their words and structure their 
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utterances, and the timing and conceptual relatedness of those utterances. All these factors were 

examined in the present study. 

Children learn language in natural auditory environments, where often multiple adults and 

other children are present (Busch et al., 2017). Whether speech was directed to the child  – namely, 

whether it was child-directed speech  – or else whether the child overheard speech that was not 

addressed to him/her in any way, is a major component of quality of language input experienced 

by child  (Fernald, 1989; Fernald, 2000; Frermann & Frank, 2016; Kuhl, 2000; Schachner & 

Hannon, 2011; Shneidman et al., 2013; Wang, Bergeson, & Houston, 2018). In fact, the positive 

effect of amount of speech input on children’s language outcomes depends largely on whether the 

speech was child-directed or overheard (Barnes, Gutfreund, Satterly, & Wells, 1983; Hoff-

Ginsberg, 1986; Hoff, 2003, 2006; Janellen Huttenlocher et al., 1991; Shneidman et al., 2013; 

Weisleder & Fernald, 2013). The facilitative effect of child-directed speech on vocabulary growth 

is present regardless of whether the talker of speech is primary caregiver or other household 

members and siblings (Shneidman et al., 2013). Therefore, differences among children with CIs 

in the amount of child-directed speech translates into their difference in both quantity and quality 

of language input. It is still unknown how individual children with CIs differ in terms of amount 

of high-quality child-directed speech they experience in their early linguistic environments. In the 

following paragraph, we will clarify the notion of what is “high quality” in terms of how speech 

is spoken (pronunciation factors) and what is said – cf. the structure of utterances (word choice, 

MLU, etc.).    

Child-directed speech provides acoustic, linguistic and extra-linguistic qualities that 

distinguish it from adult-directed speech or overheard speech. Children not only prefers listening 

to child-directed speech over adult-directed speech (Fernald & Kuhl, 1987; Wang, Shafto, & 
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Houston, 2018), but this preference also facilitates their language learning (Hoff, 2003; Weisleder 

& Fernald, 2013). Child-directed speech is often produced with acoustic qualities that distinguish 

it from adult-directed speech. Some of these distinguishing features are thought to facilitate speech 

processing and language learning both in children with typical hearing and children with CIs. For 

example, prosodic characteristics of CDS facilitates speech processing through enhancing their 

attention to speech (Bergeson, 2011; Fernald, 1992; Gout, Christophe, & Morgan, 2004; 

Kondaurova, Bergeson, & Dilley, 2012; Kondaurova, Bergeson, & Xu, 2013; Mehler, 2001; 

Nazzi, Dilley, Jusczyk, Shattuck-Hufnagel, & Jusczyk, 2005) and constrains children’s lexical 

access (Levitin et al., 2003; Thiessen, Hill, & Saffran, 2005). Higher fluctuation of pitch over time 

in this speaking style was shown to provide valuable syllabic stress cues that fostered word 

segmentation in listening to speech for children with CIs (Spitzer, Liss, Spahr, Dorman, & 

Lansford, 2009). These findings together demonstrate that studies should consider variability 

across children in their early linguistic input based on the amount and quality of child-directed 

speech experienced by children with CIs.  

The impact of child-directed speech on the quality of language input extends to other 

aspects of language such as lexical diversity and morphosyntactic complexity. For example, 

exposing children to a higher amount of high-quality child-directed speech in a day increases 

children’s chances of experiencing both more word types and higher repetitions of words (Hoff, 

2006). Mothers who speak more to their children provide more examples of semantically relevant 

utterances, which also facilitates children’s language learning (Hart & Risley, 1995; Hoff-

Ginsberg, 1994). These considerations show that child-directed speech contains high-quality 

features in terms of linguistic information. Taken together, these findings demonstrate that using 

a child-directed speaking style enriches linguistic and extra-linguistic information experienced by 
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children to the extent that differential exposure to this speech style is potentially a strong source 

of variability in language outcomes of children with CIs. We have minimal knowledge about 

individual variability across children with CIs in experiencing high-quality child-directed speech. 

Another aspect of verbal communication thought to influence child language development 

is parental responsiveness. Parental responsiveness relates to both timing and “contingency” – a 

construct that unites the notions of child-directedness and semantic cohesion. It is, therefore, an 

important aspect of assessing quality of early linguistic environments that significantly influences 

children’s vocabulary growth early in childhood. Parents’ prompt and contingent responses to 

children’s spoken communication enhances children’s understanding of pragmatic aspects of their 

native language and facilitates construction of word-referent mappings (Goldstein & Schwade, 

2008; Tamis-LeMonda, Kuchirko, & Song, 2014). Mothers’ responses to their prelinguistic 

infants’ emotional actions at 9 months was a strong predictor of infants’ language skills at 21 

months (Nicely, Tamis-Lemonda, & Bornstein, 1999). The same positive effect of parental 

responsiveness was observed on infants vocabulary growth (Tamis-LeMonda, Bornstein, Kahana-

Kalman, Baumwell, & Cyphers, 1998), communication diversity (Beckwith & Cohen, 1989), and 

faster rate of language development  (Tamis-LeMonda, Bornstein, & Baumwell, 2001; Tamis-

LeMonda et al., 1998). Variability in the level of parents’ responsiveness to their children’s verbal 

communicative activities explained variability in infants’ success in achieving language 

milestones (Tamis-LeMonda et al., 2001, 1998). The rate of language development in infants who 

experienced linguistic environments with high-responsivity mothers (90th percentile) at 9 and 13 

months was remarkably higher than those from families with low-responsivity mothers (10th 

percentile), with a time lag of 4 to 6 months in milestone achievements (Tamis-LeMonda et al., 

2001, 1998). These findings show that parental responsiveness is an important component of early 
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linguistic environments for understanding the connection between variability in the quality of 

language input and children’s language outcomes. The role of this factor becomes more important 

in children with cochlear implants who have limited access to fine-grained acoustic cues in speech 

and whose speech recognition is highly susceptible to environmental noise. 

Taken together, studies on early linguistic environments of children who are typically 

developing have demonstrated that variability in quantity and quality of language input strongly 

translates into variability in children’s language outcomes. Therefore, systematic investigation of 

variability across children with CIs in their early language experience may help us to better explain 

the sources of variability in these children’s language outcomes. 

Current Study  

There has been little research into variability in the quantity and quality of language input 

experienced by children with CIs in their natural language environments. Investigating variability 

across children with CIs in their early language experience may help us to better explain variability 

across children in their language outcomes. It further allows us to examine how properties of 

language input contribute to variability in outcomes above and beyond factors associated with 

child’s characteristics and intervention strategies (Geers et al., 2003; Holt et al., 2012). The 

findings from the literature discussed above support the notion that, at least for children with 

typical hearing, language outcomes are predicted by factors having to do with quantity and quality 

of language input. The present dissertation provides the first comprehensive study analyzing 

auditory environments of children with CIs in their home environments. The goal was to 

characterize language input along multiple linguistic dimensions that have been widely shown to 

play important roles in language outcomes of children with normal hearing as well as, to a much 

lesser extent, children with CIs.       
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In the present study, children had their CIs activated between approximately 8 months and 

22 months of age. Prior research has shown that this early age range is a time period of optimal 

neuroplasticity for learning language in children with CIs (Sharma et al., 2005, 2004; Svirsky, 

Robbins, Kirk, Pisoni, & Miyamoto, 2000). We characterized the quantity of language input 

experienced by each child based on the number of words they heard in a day. To characterize the 

quality of language input, the amount of child-directed speech, lexical diversity of speech, 

morphosyntactic complexity of speech input, rate of speech input, and caregiver responsiveness 

were measured to understand the range of individual differences among children with CIs in the 

quantity and quality of language in their home environments. We studied the magnitude of 

variability across children with CIs in their linguistic environments as a potential factor 

contributing to the observed enormous variability in language outcomes of this at-risk population. 

We analyzed audio recordings from 14 children with CIs to examine the quantity and 

quality of their early language experiences. Inspired by the pioneering work of Hart and Risley 

(1995), we randomly sampled from naturalistic audio recordings obtained from children’s home 

environments to estimate quantity and quality of language input. Quantity and quality of language 

input were characterized for lexical richness of input (i.e., the amount of words (Hart & Risley, 

1995) and lexical diversity (Carroll, 1938) as well as morphosyntactic complexity of speech input 

(Hoff, 2003). We also measured one aspect of caregiver responsivity, which was taken here as the 

frequency with which children’s speech or speech-like vocalization were responded to promptly 

with child-directed speech utterances. 

This chapter aimed to answer the following questions: 

Question 1: To what extent do children with CIs vary in the amount of total words and high-

quality child-directed words they experienced per day in their early linguistic environments?  
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It was expected that children with CIs will substantially vary in the amounts of total and 

child-directed words they experienced in a day in their naturalistic environments.  

Question 2: To what extent do quantity and quality differences across children with CIs “scale 

up” when extrapolated over multiple years to a degree of variability comparable to the 30-million 

word gap between most- and least-advantaged children in terms of quantity and quality of their 

language input (Hart & Risley, 1995)? 

We expected to observe a similar pattern involving a gap of approximately 30 million 

words between most-advantaged and least-advantaged children in this study, consistent with prior 

findings of Hart and Risley (1995). We anticipated that this word gap would appear for the amount 

of high-quality child-directed speech experienced by children and will be a function of the quantity 

and quality of children’s linguistic environments rather than their socioeconomic status.  

Question 3: How does the quality of the early linguistic environment vary across children with 

CIs in terms of lexical, morphosyntactic, and social-pragmatic information, as well as speech rate? 

It was expected that substantial variability across children would exist in the quality of their 

language input, which would extend to other domains of language, including lexical diversity, 

morphosyntactic complexity, parental responsiveness, and rate of speech, whether overheard or 

directed to the child.  

Question 4: How does speech directed to children with CIs differ from adult-directed speech 

across multiple language attribute dimensions, including lexical and morphosyntactic information 

as well as speech rate? 

We hypothesized that child-directed speech provides simpler models of language for 

children with CIs than adult-directed speech. We expected to observe that child-directed speech 

would have lower lexical diversity, lower morphosyntactic complexity, and lower speech rate.  
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2.2. Methods 

2.2.1. Participants 

This research project was part of a larger ongoing research project involving 14 families 

with a child with a CI who enrolled in a longitudinal study conducted by the Ohio State University 

Wexner Medical Center Department of Otolaryngology. The audio data was shared with Michigan 

State University for studying the early linguistic environments of these children. As part of their 

participation, families agreed to record their home environments using LENA devices for at least 

one day within the first year following activation of their child’s CI(s). This work analyzes these 

audio recordings to understand how individual children are different in terms of the quality and 

quantity of the experienced environments, and how these variations are eventually related to 

differences in their language outcomes. Recordings were collected at approximately 3 months, 6 

months, 9 months, or 12 months after CIs activation. The recordings for each child were not fully 

available at all four time-intervals due to attrition in participants, and also some families agreed to 

record their home environments for only one day (see Table 2-1). Therefore, the descriptive 

information in this section is derived from the available recordings. 

Children who participated in this study were 14 prelingually deaf children [4 boys (~29%) 

and 10 girls (~71%)] with an average of 3.57 months (SD = 0.26), 6.33 months (SD = 0.3), 8.74 

months (SD = 0.19), and 12 months (SD = 0.58) post-implantation hearing experience at the 3 

month, 6 month, 9 month, and 12 month post-CI activation recording intervals, respectively. Table 

2-1 presents children’s mean chronological ages and associated standard deviations at each of these 

four time-intervals of recording. Table 2-2 shows mean hearing ages and associated standard 

deviations. Children’s age at CI activation ranged from 8.12 months to 22.57 months (Mage= 14.97 

months, SDage = 4.1 months).  
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Of these 14 children, 11 children were bilaterally implanted (~76%) and three had a hearing 

aid in one ear and a CI in the other (~24%). Due to the small, heterogeneous clinical sample, some 

children had additional comorbid diagnoses (N = 4). Measures of children’s preoperative hearing 

status (preimplantation residual hearing) and their CI device information are presented in Table 2-

3. All infants were living in monolingual English language environments. Children’s 

socioeconomic status (SES) was indexed by their parents’ education level. Additional 

demographic and audiological information such as children’s SES and their CI device 

characteristics can be found in Tables 2-1 to 2-4. 

Table 2-1. Demographic information for 14 children with CIs who participated in this study. The 

information in this table includes children’s ID, gender, age at CI activation, number of analyzed 

recordings, and children’s chronological ages. 

Subject 

ID Code 

Subject 

ID 

 

Gender 

 

Age at CI 

Activation 

Number of 

Analyzed 

Recordings 

 Chronological Age 

 3m 6m 9m 12m 

BT0001 1 F 22.57 1    31.98  

BT0004 2 M 17.16 4  20.29 23.15 26.04 29.61 

BT0005 3 F 19.77 2  22.55 25.87   

BT0010 4 F 14.89 3  18.45 21.00 22.68  

BT0032 5 F 19.27 4  22.83 25.12 28.09 31.07 

BT0071 6 F 18.30 2  22.20 24.75   

BT0141 7 M 13.58 2  17.23 20.29   

BT0155 8 M 14.17 3*   20.94*  26.59 

BT0179 9 F 11.02 2*   17.68*   

BT0189 10 F 15.25 2  18.44 21.47   

BT0191 11 F 8.125 2  11.64 14.20   

BT0195 12 M 10.10 2   16.53  21.34 

BT0210 13 F 12.40 2*   18.53*   

BT0227 14 F 13.03 1    21.65  

   M  

 (SD) 

 
 

14.97  

(4.1) 

2.29  

(0.91) 
 19.20 (3.7) 

20.79 

(3.6) 

26.08 

(4.18) 

27.15 

(4.3) 

Note. All the reported ages are in months. Gender: F= Female, M= Male. * There was more than one recording at 

the specified time intervals for these participants, and the chronological age is the average chronological age derived 

from the multiple recordings in that time-interval. No recording was available for the time intervals marked with 

grey color. 
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Table 2-2. Demographic information for 14 children with CIs who participated in this study. The 

information in this table includes children’s ID; hearing age at four time-intervals of 3m, 6m, 9m, 

and 12m; their type of hearing loss, and the laterality of their hearing loss. 

Subject 

ID Code 

Subject 

ID 

 Hearing Experience Age  Type of Hearing Loss  Bilateral/ 

Unilateral  3m 6m 9m 12m  R L  

BT0001 1    8.54   SE SE  RL 

BT0004 2  3.16 6.02 8.92 12.48  CO+SE CO+SE  RL 

BT0005 3  3.81 6.13    SE  SE   RL 

BT0010 4  3.59 6.14 8.82   SE  SE   RL 

BT0032 5  3.60 5.89 8.86 11.83  SE  SE   R-HA 

BT0071 6  3.93 6.48    SE  SE   RL 

BT0141 7  3.68 6.74    SE  SE   RL 

BT0155 8   6.81*  12.45  CO+SE CO+SE  HA-L 

BT0179 9   6.69*    CO+SE CO+SE  R-HA 

BT0189 10  3.23 6.25    CO+SE CO+SE  RL 

BT0191 11  3.55 6.11    UN UN  RL 

BT0195 12   6.47  11.27  UN UN  RL 

BT0210 13   6.16*    CO+SE CO+SE  RL 

BT0227 14    8.65   UN UN  RL 

   M  

 (SD) 

 
 

3.57 

(0.26) 

6.32 

(0.3) 

8.76 

(0.16) 

12.01 

(0.58) 

       

Note. All the reported ages are in months. Hearing Experience Age is the number of months since CI activation for 

which the child had been receiving auditory input.   
* More than one recording at the specified time interval was available for these participants which were a few days 

apart; in these cases, the listed chronological age is the mean chronological age derived from the two recordings. 

No recording was available for the time intervals marked with grey color. Type of Hearing Loss: SE = 

Sensorineural, CO = Congenital, UN = Unknown. Bilateral/Unilateral: RL: bilateral implants, HA-L: CI in left ear 

and hearing aid in right ear, R-HA: CI in the right ear and hearing aid in the left ear. 
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Table 2-3. Demographic information for 14 children with cochlear implants participated in this 

study. The information in this table includes children’s ID, their hearing age at four time-interval 

of 3m, 6m, 9m, and 12m, their type of hearing loss, and the laterality of their hearing loss. 

Subject 

ID 

Subject 

ID 

  Mean PTA  

unaided (dB) 

 Com 

mode 

 Degree of HL 

    

BT0001 1   86.25  OC  Profound 

BT0004 2   120.00  TC  Profound 

BT0005 3   120.00  TC  Profound 

BT0010 4   120.00  TC  Profound 

BT0032 5   92.50  TC  Profound 

BT0071 6   119.50  TC  Profound 

BT0141 7   113.75  OC  Profound 

BT0155 8   110.00  TC  Profound 

BT0179 9   109.37  OC  Profound 

BT0189 10   70.56  TC  Severe 

BT0191 11   Unknown  TC  Profound 

BT0195 12   120.00  TC  Profound 

BT0210 13   120.00  TC  Profound 

BT0227 14   120.00  TC  Profound 

   M  

 (SD) 

 
   

    

 Note. PTA is pure-tone average before implantation (across the frequencies of 250, 500, 1000, 2000, and 

4000 Hz); Com Mode is the type of communication program that the child was following in speech-

language therapy; HL: hearing loss; OC: oral communication (exclusively spoken); TC: total 

communication (a combination of spoken language and Signed Exact English)    

 

Table 2-4. Demographic information for 14 children with CIs who participated in this study. The 

information in this table includes children’s ID, the etiology of their hearing loss, their SES (given 

as maternal education, with HS = high school diploma and BA = bachelor’s degree), and any 

additional diagnoses. 

Subject 

ID 

Subject 

ID 

  
Etiology of hearing loss 

 
SES 

 Additional 

Diagnosis     

BT0001 1   UN  Graduate  None 

BT0004 2   Connexin  HSD  GDD 

BT0005 3   Auditory Neuropathy  Graduate  GDD 

BT0010 4   Auditory Neuropathy  Less than HS  ANSD; ASD 

BT0032 5   EVA  HSD  None 

BT0071 6   UN  Elementary  None 

BT0141 7   CMV  Associates  cCMV;Global Delay 

BT0155 8   Connexin  BA  None 

BT0179 9   Connexin  HSD  None 

BT0189 10   EVA  BA  None 

BT0191 11   UN  Graduate  None 

BT0195 12   UN  Associates  None 

BT0210 13   Connexin  BA  None 

BT0227 14   UN  BA  None 

   M  

 (SD) 

 
   

    

 Note. Etiology of hearing loss. EVA: Enlarged vestibular aqueducts, CMV: Cytomegalovirus hearing loss. 

Additional diagnosis. GDD: Generalized developmental delay, ANSD: Auditory neuropathy spectrum 

disorder, ASD: Autism spectrum disorder, cCMV: congenital cytomegalovirus.  
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2.2.2. Acquisition and selection of audio recordings 

This project involved analysis of daylong audio recordings of natural environments for the 

14 early-implanted children with CIs described above. Recordings were made using a digital audio 

recorder, the Language ENvironment Analysis (LENA) device. LENA is a wearable audio 

recorder that collects children’s daily spoken interactions and automatically classifies stretches of 

audio as conversational blocks or pauses. LENA’s algorithms classify stretches of audio as female 

adult speech, male adult speech, key child, another child, overlapping vocalization, TV/electronic 

media, noise, silence, or uncertain. Seven categories except silence are then divided by LENA into 

“near-field” or “far-field” speech or speech-like vocalizations. The stretches identified as “near-

field” are grouped together into units, which are called “conversational blocks”. The remaining 

speech is labeled as “Pause”. LENA also provides automated measures of adult word counts 

(AWC) and other vocalization measures such as conversational turns (Gilkerson & Richards, 2009; 

Oetting, Hartfield, & Pruitt, 2009; Ye Wang et al., 2017). 

Overall, 32 day-long LENA audio recordings were collected and analyzed for the families 

participating in this study across four time points of 3-, 6-, 9-, and 12-month post-implantation 

(hereafter 3m-, 6m-, 9m-, and 12m post-implantation). At each interval, up to four daylong LENA 

recordings were made (see Table 2-1). Between one and four recordings were analyzed for each 

child (Mean number of recordings = 2.28, SD = 0.91). For 11 children, there were at least two 

recordings at two separate time-intervals. Two children had LENA recordings from all four time-

intervals. We analyzed a maximum of four LENA recordings per child in the first-year post-

implantation. For children with fewer than four recordings, we included the maximum number of 

recordings available for each child (see Table 2-1). 
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In the parent NIH-funded project, it was planned to use metrics derived automatically from 

LENA device as indices of the amount of language children with CIs were exposed to. However, 

LENA was not developed for performing the full kinds of analyses that were targeted in this 

project. Notably, child-directed speech versus overheard speech was one of the core classification 

categories in this project, which LENA is not developed to perform. Classification of child-

directed speech from overheard speech was very important for the purpose of this project, because 

its strong positive effect has been widely attested in prior studies (Hoff, 2003, 2006; Weisleder & 

Fernald, 2013). Therefore, to assess the amount of high-quality child-directed speech input, it was 

necessary to collect auditory perceptual judgments from human listeners to characterize audio 

samples. Some studies proposed using a binary decision of child-directed speech versus overheard 

speech on entire stretches of audio within a conversational block, the reliability of which has not 

yet been tested and is questionable (Hurtado et al., 2008; Soderstrom & Wittebolle, 2013; 

Weisleder & Fernald, 2013). 

To further evaluate LENA’s reliability for this project, a complementary study (which was 

not part of the present dissertation project) was conducted in our lab leading up to the present 

dissertation that assessed LENA’s reliability. This study revealed that LENA’s automatic 

classification and word count measures were insufficiently accurate to assess individual 

differences in a language input across children in a small sample (Lehet, Arjmandi, Dilley, & 

Houston, under review). Classification accuracy for speech of any type and adult speech varied 

widely, from 53% to 86% across families for any speech (corresponding to 14% to 47% false 

negative/error rates) and from 45% to 82% for adult speech (corresponding to a range between 

18% to 55% false negative/error rates) (Lehet, Arjmandi, Houston, & Dilley, under review). It was 

also shown that accuracy of LENA’s count of adult words was significantly affected by the talker’s 
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gender (male or female) and speaking style (child-directed speech or overheard speech). LENA’s 

inaccurate and widely variable classification of adult speech from other types of speech and child-

directed speech from overheard speech solidified the decision not to rely on LENA for studies of 

this research project. Overall, these findings showed that LENA’s classification was not reliable 

enough to be used for purposes of characterizing children’s linguistic environments, particularly 

when focusing on individual differences, as in this small sample study (Lehet et al., under review). 

As a result, an alternative method of assessing the amount and quality of language in children’s 

natural auditory environments was followed, as described in the next section. 

2.2.3. Sampling from day-long audio recordings 

In response to LENA’s limitations, we therefore developed a comprehensive coding system 

tailored toward characterizing the quality and quantity of early linguistic input in children with 

CIs. In this study, the basic metric for assessing quantity of language in children’s home 

environments was to determine per-day estimates of language input. Such per-day estimates were 

derived through analyzing chunks of audio sampled randomly from the day-long audio recordings, 

a common approach that is necessary to deal with the infeasibility of analyzing the entire day-long 

audio (Hart & Risley, 1995; Shneidman et al., 2013; Weisleder & Fernald, 2013). Accordingly, 

the amount of speech derived from randomly selected portions of audio recordings can be extended 

to the entire day to estimate the total amount of speech experienced by children per day (Hart & 

Risley, 1995; Shneidman et al., 2013; Weisleder & Fernald, 2013). Such per-day estimates of 

amounts of words have provided valuable knowledge in modeling individual variability in 

linguistic environments experienced by children in naturalistic settings (Hart & Risley, 1995; 

Weisleder & Fernald, 2013).           
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Recordings in this study were up to 16 hours long, which made it prohibitive for humans 

to listen and analyze the entire day-long audio. We therefore used random sampling as the most 

representative sampling method (Hart & Risley, 1995; Weisleder & Fernald, 2013). From within 

this set of day-long audio recordings, each with a length of around 16 hours, we randomly sampled 

intervals constituting 5% of the waking time of the child. To accomplish this sampling in a 

computationally tractable way, the entire day-long recording was first split into 30-second intervals 

as a preliminary to random selection. Next, those 30-second intervals that included any time during 

which the child was judged to be asleep were removed. The time intervals where the child was not 

awake were excluded by hand from the analysis based on contextual cues such as heavy breathing, 

parents discussing the child sleeping, etc. From the remaining set, 5% of the 30-second intervals 

were randomly selected for the analysis.  

Figure 2-1 shows the total (Figure 2-1A) and average (Figure 2-1B) amount of audio 

analyzed per recording for each CI child. Overall, a total of 17.7 hours of audio was analyzed by 

hand by human listeners for this project in 2,118 30-second samples. On average, 1.3 hours of 

audio were analyzed per child with a standard deviation of 0.58 hours. The variability in total 

amount of analyzed speech reflects the variability across children in the number of analyzed 

recordings and the amount of total speech available for analysis after excluding the audio segments 

where the child was asleep. As Table 2-1 presents, from 14 children, two had only one recording 

(~14%), eight had two recordings (~57%), two had three recordings (14%), and two had four 

recordings (~14%). The average total amount of day-long audio for each child after excluding 

sleeping time also varied between children, with the minimum amount being 6.5 hours and the 

maximum being 13.8 hours (SD = 2.1 hours). The average original length of day-long audio 

recordings for each child was also variable across children (min = 8.4 hours, max = 16 hours, SD 
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= 2.2 hours). This was because 4 of 14 families turned off the LENA recorder before it reached its 

full-day 16-hour recording buffer. In summary, there were three sources of variability affecting 

amount of audio analyzed: the number of day-long recordings available per child, variability across 

children in the amount of sleep time, and variability across children in the length of the original 

day-long recordings. The chosen method for calculating per-day estimates of language input took 

account of all this variability.  

 
Figure 2-1. (A) Total and (B) average amount of audio analyzed for each child with CIs 

participated in this study. 

2.2.4. Analysis of audio by human analysts 

Comprehensive coding system for characterizing early linguistic environments 

A comprehensive coding system was developed for this study to perform an accurate and 

informed analysis of auditory environments of the 14 children with CIs in this study. Our coding 

system was developed to prioritize coding portions of audio where there was an informative and 

useful speech-language model generated by a competent talker. The goal was to use this coding 

system to characterize early linguistic environments of each child in terms of total number of 

words, number of child-directed words (Hart & Risley, 1995; Montag, Jones, & Smith, 2018; 

Weisleder & Fernald, 2013), lexical diversity (Carroll, 1938; Montag et al., 2018), and 

morphosyntactic information (Hoff, 2003). Additionally, our coding system was designed to 
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permit human coders to analyze speech and background noise experienced by each child with CIs 

in his/her auditory environment.  

Below, we describe the basic elements of the coding system for talkers and the words they 

spoke in each child’s home environment. Using this comprehensive coding system, we were able 

to characterize the auditory information experienced by the child wearing the LENA device, which 

we frequently call the target child hereafter to distinguish him/her from other children in the 

environment. Additional details about the coding system focused on identifying background noise 

and masking and reverberation effects are discussed in Ch. 3, and readers are referred to that 

chapter for more details. 

Coding linguistic input experienced by the target child by human analysts 

The general sequence of actions for coding is shown in Figure 2-2. The audio samples were 

labeled by trained human analysts using Praat (Boersma & Weenink, 2001) textgrids using 

annotation conventions described in these sections while these textgrids were time-aligned with 

their corresponding audio files. The day-long recordings and textgrids were split into 15-minute 

intervals for coding so that context around each 30-second interval was available to human 

analysts. Therefore, when human coders analyzed 30-second audio samples they had clearly 

labeled samples embedded within longer sections of audio that could provide contextual 

information to inform their coding decisions.  

For each 30-second audio interval, human analysts first identified whether there was any 

human-generated sound, either live or recorded. If so, analysts marked the temporal starts and ends 

of the human-generated sound on the relevant tier in Praat (Boersma & Weenink, 2001), breaking 

contiguous speech into separate utterances as needed. Coding conventions further considered the 

gender of talker and whether the sound at the time of LENA recording appeared to have been live 
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or pre-recorded (such as television) (see Figure 2-3).For stretches judged to contain a human-

generated sound, analysts determined whether it was a speech by a “competent talker”, defined as 

a talker over the age of five who articulated words in an intelligible, audible fashion. For portions 

of audio judged to be speech by a competent talker, analysts determined the following information, 

all of which was captured in coding conventions in Praat textgrid annotations: (a) whether the 

speech was understandable, in which case they transcribed the words within a contiguous stretch 

of speech into the relevant Praat textgrid interval (including utterance with conventionalized 

sound-meaning mappings such as whoosh, moo, choo-choo, woo-hoo, yeah, etc.), (b) who spoke 

the speech (whether adult male, adult female, or child); (c) who the speech was directed to (whether 

the target child, and/or other children or adults); and (d) whether the speech was “in the clear” or 

whether it co-occurred with some type of noise or interfering signal. For simplicity, details on 

coding noise interference will be covered only briefly below. These noise coding conventions will 

be considered in more detail in Chapter 3, at which point we will consider analyses that utilized 

noise coding to develop updated measures of numbers of words experienced by each child over 

the day (See Figure 2-3 in Praat). Since our focus was on the auditory input experienced by the 

target child, any sounds judged to be from the target child were noted separately and coded in the 

appropriate tier (See Figure 2-3 and Table 2-5 and Table in Appendix I).  

Human analysts followed these structures closely for inserting the labels after they 

finalized their decisions. They used these structures when coding audio intervals on eight tiers to 

provide multiple types of information with the designated codes (see Table 2-5 and Appendix I). 

To increase the accuracy of the coding, human analysts were instructed to actively incorporate 

information from three sources. These sources were their perceptual auditory impression, the 
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waveform, and the spectrogram. Human analysts actively cross-checked information across these 

three sources to assist making better coding decisions. 

 
Figure 2-2. Block diagram of the general approach used by human analysts to code sampled audio 

files. Analyses presented in this chapter are based on coding steps shown by solid lines and solid 

boxes. The dashed lines and dashed-line boxes indicate steps associated with coding procedures 

for considering effects of noise and reverberation, which were developed for analyses of Chapter 

3 and are discussed in that chapter in more detail. 

 
Figure 2-3. Annotation scheme used by human analysts to code various sound events of interest in 

this study. The illustrated sample interval contains ~3.5 seconds of audio within a 30-second 

analysis interval drawn from a day-long audio recording of a child in the corpus, and was coded 

by a human analyst. For this interval, the CI child’s father was communicating with his child. The 

two top rows of the display show the waveform and spectrogram, respectively. Coding consisted 

of Praat Textgrid tiers providing for annotation of the following information (top to bottom): (1) 
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Figure 2-3. (cont’d) the Analyzed Interval tier indicated which 30-second sampled audio portions 

had been selected randomly for inclusion in the analysis (given with a ‘y’); (2) The Adult Female 

tier contained speech from competent female talkers (or the primary female for the conversational 

situation, who was usually the target child’s mother but necessarily always the mother, because 

our criteria specified that the primary talker was the one who held the floor); (3) The Adult Male 

tier was the same as Adult Female tier, except it was used to designate speech from male talkers; 

(4) The Target Child tier was used for the “target child” only and contained speech or speech-like 

or non-speech vocalization or cries from the target child; (5) The Other Talker tier contained vocal 

activities from other linguistically competent talkers (see text); (6) The Media tier contained any 

pre-recorded media-related content such as television, toys, tablets, etc.; (7) & (8) The Noise 1 and 

Noise 2 tiers contained noise sounds; (9) The Microphone Noise tier coded for microphone noise 

in the background which was detected. See Table 2-5 and Appendix A for further information on 

the structure and types of codes used in these nine tiers. Here, the father’s conversation with the 

target child is coded within three intervals, two of which overlapped with a child’s cry with 

medium interference determined by the “/M” code after “CRY”. “T” label at Level 1 of these three 

coded intervals indicates that the speech was directed to the target child; see Table 2-0-5. The 

father’s speech was transcribed for these three intervals while separated from Level 1 and Level 3 

information using a “;” and “/”, respectively. Further, an episode of the target child’s crying is 

coded as partially overlapped with the father’s speech with a level of interference judged to be 

medium (M) relative to his speech. See Ch. 3 for more details on the coding of noise. 

Table 2-5 depicts the hierarchical approach to coding information in the current system. In 

Table 2-5, Levels 1, 2, 3 and 4 depict successive levels of detail specified for coded audio. For 

instance, an audio stretch determined to contain Adult Female or Adult Male speech consisting of 

intelligible words (including lexicalized utterances with conventionalized sound-meaning 

mappings like choo-choo) utilized further annotation codes on Tier 1 or 2, respectively, as 

specified in Table 2-5 and the Table 1 in Appendix A and the coding description in Appendix C.  

If a Level 1 code was designated, then further detail about the vocalization was specified 

in higher levels of coding (e.g., Level 1, 2, 3, etc.) (See Table 2-5 and Appendix A). For example, 

when human analysts found an audio interval with speech, they demarcated the start and end of 

the speech and identified whether the talker was male or female. Then, depending on the gender 

of the talker and overall number of talkers, they used either Tier 1, 2, or 4 to insert various types 

of information, including who the speech was directed (see Appendix A for full list of code for 

addressee) corresponding to increasing levels of hierarchical detail (e.g., Level 1 of Tier 1 and 2 
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or Level 2 of Tier 4). If the speech was intelligible human analysts used Level 2 on tier 1 or 2 or 

Level 3 on tier 4 to insert the transcription. A similar procedure was followed for other types of 

information such as vocalization from target child and sound or speech from media. The codes for 

a given coded time interval that represented different hierarchical levels of information on a given 

tier were separated with a semi-colon (“;”); further, coding the level of noise and reverberation 

interference (i.e., Low, Medium, High) was distinguished by adding a slash separator (“/”). (See 

Chapter 3 for more discussion of coding and analyses related to noise and reverberation.) These 

separators later were used to extract the information at different coding levels on each tier.  

Table 2-5. Hierarchical structure of information coding in the system across 8 Praat tiers. Columns 

labeled Level 1 to Level 4 present information analysts coded at each level and correspond to 

successive levels of detail used later to classify intelligible speech utterances. The details of each 

information on each tier and level are presented in “reference table of codes” in Table 1 in 

Appendix A. SNG = singing; NSV = non-speech vocalization. See Chapter 3 for more discussion 

of coding of degree of interference from noise and reverberation (cf. codes P = primary talker; L 

= low interference; M = medium interference; H = high interference). 

Tier 

ID 
Tier Level 1 Level 2 Level 3 Level 4 

1&2 

Adult 

Female 

& 

Adult Male 

Addressee code 

Lexical transcription 

(for intelligible 

content only) or 

designation as SNG 

or 

NSV  

“P” and/or 

Noise interference 

{L, M, H} 

---- 

 

3 
Target Child 

Type of vocalization 

(speech/speech-like 

vocalization, cry, or 

NSV, etc.) 

Lexical transcription 

(for S only) 

Noise interference 

{L, M, H} ---- 

 

4 
Other Talker 

Codes indicating talker 

gender and age (adult 

or child) 

Addressee 

Lexical transcription 

(for intelligible 

content only) or 

designation as SNG 

or 

NSV  

“P” and/or 

Noise 

interference 

{L, M, H} 

5 Media Type Purpose Transcription 

Noise 

interference 

{L, M, H} 

6&7 Noise 1 & 2 Type 
Noise interference 

{L, M, H} 
---- ---- 

8 
Microphone 

Noise Type 
Noise interference 

{L, M, H} 
---- ---- 
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2.2.5. Coding training and procedure 

Thirteen human analysts who were all undergraduate research assistants from related 

majors (e.g., communicative sciences and disorders or linguistics) received extensive training to 

learn and implement the designed coding for this study. The overall process of training and coding 

took around 8 months to complete coding the selected audio for this study. We conducted an 

extensive training regimen to reduce variability in human analysts’ auditory perceptual judgments 

for various categories of interest in this study (Hallgren, 2012; McHugh, 2012). The instruction 

procedure involved lecture-style instruction in a group where coders guided to implement the 

coding on sample files with multiple levels of coding difficulties. Follow-up individualized 

meetings were regularly scheduled to keep track of analysts’ coding proficiency and accuracy. The 

training procedure included (a) instructing  human coders to effectively use Praat software for 

analyzing and coding the sampled audios; (b) providing brief background of the purpose of the 

project and how the developed coding system is related to the aims of this project; (c) instructing 

human analysts to read carefully through the coding document and the relevant addendum; (d) 

quizzing them on the coding system to make sure that they had a good understanding of the rules 

of coding; (e) assigning them to code a series of practice files with various levels of coding 

difficulties to make them familiar with the complexity of auditory environments from easy to very 

hard scenario; (f) evaluating coding of human analysts on practice files and providing them with 

individualized feedback based on their coding, with instructions to use the provided feedback to 

refine their coding for the practice files; and (e) performing a final evaluation to decide whether a 

human coder was subjectively qualified to start coding the actual audio files.  After assuring that 

a coder had acquired the requisite level of proficiency to start coding the actual files, the trained 

coders were assigned to analyze the randomly selected 30-second audio chunks for each LENA 
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recording in Praat while following closely the instructions given in the developed  language 

environment coding document.  

Error checking procedure. The coded textgrids by human analysts were checked for 

various types of minor errors during the course of coding procedure. From the pool of the files 

coded by each human analyst at the middle of coding procedure, ten files were randomly selected 

for each of thirteen analysts and assigned to a new analyst for evaluation. The results of this coding 

evaluation were that the new analyst generated instructive feedback for the original analysts to 

recheck their coding for prior files, to correct them, and to enhance their quality for the remaining 

files. Several Matlab scripts (Bořil & Skarnitzl, 2016) were developed to automatically check the 

accuracy of labels on all textgrids on nine tiers and at different levels as illustrated in Table 2-5. 

For example, a label of “AF;T;yeah” on the Adult Female tier would be detected by this error-

checking process for having incorrect label at Level 1 of this tier (AF is not in the set of defined 

codes for tier Adult Female and the nature of error was probably in this case due to choosing an 

incorrect tier to insert the label.). These minor errors were in turn passed to analysts for correction. 

This process also included checking for the separators of “;” and “/” to make sure that they 

represented the correct coding format. We reran the scripts for these types of errors multiple times 

to assure their accuracy, since these labels were later used to capture various measures of linguistic 

input.  

2.2.6. Inter-rater reliability analysis 

An inter-rater reliability analysis was conducted to assure acceptable agreement between 

human analysts in analyzing and coding the LENA audio samples. Multiple inter-rater reliability 

analyses were performed from the same common set of data coded by all analysts for these 
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analyses to examine the degree of agreement between coders in coding audio samples for different 

variables of interest.  

To conduct the inter-rater reliability analysis, the 13 human analysts were asked to code 

2% of the total 5% of randomly selected audio samples. Overall, about 0.36 hours (21.5 minutes) 

of audio from the total of 17.7 hours was coded by analysts for the inter-rater reliability analysis. 

The audio selected for the inter-rater reliability analysis had not been previously seen by coders in 

this study, and analysts coded these files independently of one another. The design of the coding 

study was a fully-crossed design where all randomly selected audio was coded by all thirteen 

coders (Hallgren, 2012).  

A frame-based inter-rater reliability analysis was conducted to assess the agreement 

between pairs of coders based on Cohens’ Kappa analysis as well as among coders for Fleiss 

Kappa analysis at the level of frames with 100 ms length. From these frames, inter-rater reliability 

was calculated based on two measures of reliability of Cohen’s kappa index and Fleiss’ Kappa. 

These metrics have been shown to be the most reliable ways to assess agreement among human 

coders for different categories of interest (Hallgren, 2012; McHugh, 2012). Since more than two 

human coders were involved in this project, the Cohen’s kappa statistics were estimated by 

calculating the average of kappa for all coder-pairs (Light, 1971). The final estimates of Cohen’s 

kappa were derived by averaging across coder pairs for each of the categories of interest. The 

primary categories for this study were “speech” vs. “non-speech”, “child-directed speech” vs. 

“adult-directed speech”, “clean vs. overlapped speech”, and “level of interference”. We calculated 

the Cohen’s kappa for other categories as well for reference. However, the number of levels were 

large for other categories and high agreement was not expected due to variability and higher 

resolutions for those categories. 
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Finally, a word-transcription reliability analysis was also conducted to identify how much 

coders agreed with each other in transcribing the speech of competent talkers at the level of the 

word. The analysis involved first identifying regions that coders coded as speech, followed by 

determining the degree of word similarity between coders’ transcriptions. The inter-rater analysis 

for word-transcription was computed by averaging over the percent of agreement between coders 

over the intersection of intervals identified as speech. 

2.2.7. Analysis of audio samples coded by human analysts 

Following application of the coding system to the 5% of randomly sampled 30-second 

audio stretches by the 13 analysts, we analyzed speech intervals and their transcriptions in each 

30-second audio sample to capture the following linguistic measures: (1) total number of words 

per-day, (2) type-token ratio (TTR), (3) area under the type-token curve (AUTTC), (4) mean length 

of utterance (MLU), (5) caregiver responsiveness, and (6) speech rate. A discussion of how these 

six measures were calculated is presented below. All these language measures (except caregiver 

responsiveness) were also calculated separately for subsets of intelligible speech consisting of 

either (a) child-directed speech, (b) overheard speech, and/or (c) adult-directed speech.  

Total word count per day. Total word count per day is a measure of the quantity of words 

that each child was exposed to in a day. To calculate this measure, the stretches containing live 

speech were first identified using their labels depending on their tier and level of information (see 

2-5 and Appendix A for the structure and details of codes on each tier and at each level of 

information.). In cases where speech from two or more talkers overlapped, the speech utterance 

from the talker designated primary in the conversation was identified and analyzed as the basis of 

counting the number of words. The speech stretches that overlapped with other sources of sound 

or/and speech and were split into smaller stretches due to variable level of noise over that speech 
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were merged and treated as one utterance as the focus of this study was on all available speech 

utterances without considering the effect of noise to update number of words. Utterances produced 

by media were excluded, since analysis of media was beyond the focus of this study. Further, prior 

studies showed that speech from media do not significantly contribute to language learning in 

children, particularly in early childhood (Ambrose, VanDam, & Moeller, 2014; Kuhl, 2007).       

Following the above approach, the number of words for all 5% randomly sampled 30-

second audio chunks were summed. The space delimiters between words in utterances were used 

in our automatic analysis of textgrids to separate words in transcriptions and count them. 

Contracted words were counted as one single word. This estimate was then extrapolated over a 

full 16-hour day based on the duration of 5% audio sampled from each day-long recording. For 

example, for a daylong recording with N words within its 5% analyzed audio with length of L 

minutes, the estimated number of words was (N/L)*60 minutes*16 hours. These analyses were 

repeated for data subsets (e.g., child-directed speech, overheard speech, and adult-directed speech). 

To estimate cumulative exposures experienced by each child over multiple years after CI 

activation, estimates derived as above were used to calculate estimates of N-year post-implantation 

exposures (where N is the number of years after implantation). These were calculated by using the 

per-day estimate (i.e., the average estimate for each child based on a 16-hour day derived as above), 

and multiplying by 365 days, times N years. For example, if the estimated total number of words 

per day for a child was 2,000 words, then the number of words experienced by the child after three 

years of implantation was estimated as 2,000 x 365 x 3 = 2,190,000 words.    

Type-token ratio (TTR). TTR is a measure of lexical richness in language. This traditional 

measure of language input has been commonly used in studies of language development to 

characterize the redundancy of speech input (Broen, 1972; Cheskin, 1981; Montag et al., 2018). 
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To calculate this ratio measure, word types determined across all 5% selected audio stretches, and 

then divided by total word tokens determined across all 5% selected audio stretches to calculate 

the TTR. A child who experienced language input with relatively higher TTR compared to other 

children would hear more word types, assuming that the number of word tokens in input was equal 

across children.  

For each recording, a measure of TTR was calculated based on the word transcriptions. 

Prior studies showed that TTR is not able to properly reflect the lexical richness of speech input 

across joint dimensions of variability in word types and work tokens (MacWhinney, 2017; Montag 

et al., 2018) because its value is sensitive to both diversity of word types and the total number of 

word tokens. Therefore, differences among children in the amount of TTR in their experienced 

speech is not necessarily translatable to lexical diversity, due to the possibility of exposure to 

variable numbers of words in their environments in a day. For example, if children differ from 

each other in the number of words they experienced per day while the word diversity in speech 

input is the same, those with a smaller number of words per day would be judged to experience a 

higher TTR. This would imply exposure to more diverse speech, which does not necessarily reflect 

individual differences in exposure to diverse words. In fact, these children experienced fewer 

unique word types with fewer repetitions of words compared to those who experienced an 

environment with a higher number of word tokens. To deal with this caveat in using TTR for 

characterizing lexical richness of language input, we used type-token curves to model the variation 

of input along both dimension of number of word tokens, and the number of words types (Montag 

et al., 2018), discussed in the next section.   

Type-token curve. We calculated the type-token curve as another measure of lexical 

richness (Montag et al., 2018). Type-token curves are an innovation of Montag et al. (2018), who 
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identified problems with the traditional TTR measure; Montag et al. suggested that type-token 

curves provide a better way of evaluating the richness of lexical input experienced by each child 

by quantifying how the number of word types and tokens grow together for an individual child. 

Following their approach, we analyzed the transcriptions of adults’ speech utterances within the 

5% sampled audio for each day-long recording to construct a type-token curve for each 

day/recording, following the approach discussed in (Montag et al., 2018).  

To compute type-token curves, the complete set of morphemes was first extracted from 

transcriptions of available competent talkers’ speech utterances. Separator characters (including 

the space between words and the “+” sign for separating morphemes in words coded in the 

transcriptions) were used as markers to identify words in utterances and separate them into 

morphemes as the smallest meaningful morphological units. Note that any audio intervals labeled 

with “X”, indicating words in transcriptions that were unintelligible to analysts, were excluded 

from this analysis. The pairs of word types and word tokens for constructing the type-token curve 

were then derived through a sequence of random selections of words from the entire set of words 

of a recording, followed by calculating word types for that set of randomly selected word tokens. 

We used morphemes instead of words to give us more resolution in exploring distributions in these 

smaller meaningful units of language. See further details of type-token curve determination in 

Appendix B.  

Area under the type-token curve (AUTTC): Area under the type-token curve (AUTTC) is a 

summary measure that we propose in this study to appropriately and simultaneously evaluate 

language input for the degree of lexical diversity experienced by each child. We suggest that 

AUTTC is able to reflect both the amount of speech experienced by each child per day, as well as 

the diversity of these words as an appropriate, single summary measure. In fact, a child who 
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experiences speech input with a relatively higher AUTTC value per day is exposed to a greater 

number of words, as well as higher word diversity compared to other children.  

To calculate this measure, we first constructed the type-token curve for each recording 

based on the approach discussed above. Then, we calculated the AUTTC for each day-long 

recording as a summary measure of lexical richness of speech input. Finally, the lexical richness 

of linguistic environments of each child was summarized by averaging AUTTC values over the 

recordings available for each child.          

Mean length of utterance (MLU). Mean length of utterance (MLU) in morphemes of adults’ 

speech (Brown, 1973) has been calculated as a traditional index of morphosyntactic complexity of 

speech input (DeThorne, Johnson, & Loeb, 2005; Parker & Duluth, 2005; Szagun & Stumper, 

2012). This measure reflects the average length of utterances in speech experienced by children in 

a day in their linguistic environments. Experiencing speech input with a relatively larger MLU 

indicates children’s exposure to longer utterances (Bornstein, Haynes, & Painter, 1998; Furrow, 

Nelson, & Benedict, 1979; Hoff & Naigles, 2002). Since increases in MLU can be due to either 

more words or more bound morphemes, MLUs more than 3.0 are advised to be interpreted 

cautiously (DesJardin & Eisenberg, 2007; Eisenberg, Fersko, & Lundgren, 2001).  

We analyzed all speech utterances available for each recording to evaluate the structure of 

language input in terms of MLU with respect to the number of words spoken in each utterance. 

We calculated this measure for total speech, child-directed speech, and overheard speech from the 

day-long recordings. To calculate this measure for each recording, the number of morphemes for 

a recording was counted from all utterances available in that recording. This count was then 

divided to the total number of utterances to calculate the MLU of speech experienced by child in 

his/her environments (Parker & Duluth, 2005).  
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Caregiver responsiveness. Caregiver responsiveness was calculated by counting the 

instances of speech or speech-like target child vocalization (i.e., the child with CIs) which were 

responded to by an adult producing child-directed speech within 3 seconds after initiation of 

child’s speech or speech-like vocalization. Note that this operational definition implies an 

assumption that the child-directed speech provided a relevant response to a child’s vocalization. 

We assumed that these two criteria – that the response occurred within this 3-second interval and 

identifying child-directed speech as a response to child’s vocalization – satisfies two main features 

of contiguity and contingency of responsiveness (Tamis-LeMonda et al., 2014). Since this 

exploratory approach has not yet been validated, the results need to be interpreted cautiously.  

To calculate this metric of caregiver responsiveness, we first identified the intervals 

containing speech or speech-like vocalization from the target child and searched for child-directed 

speech produced by an adult within 3 seconds after initiation of the target child’s speech or speech 

like vocalization. This count was then divided by the total number of child vocalizations to give 

the estimated metric of caregiver responsiveness to the child’s verbal activities. This measure was 

then averaged over recordings for children with more than one recording. 

Speech rate. Speech rate was calculated to evaluate the rate by which these children with 

CIs heard speech in their environments. Speech with a lower rate has been shown to be a strong 

predictor of speech clarity and intelligibility (Ferguson & Poore, 2010; Hargus Ferguson & Quené, 

2014). Speech rate for each recording was calculated as words per second by summing up all the 

words available in speech utterances and dividing the value to the total duration of the speech 

utterances for a recording. For children with more than one recording the final speech rate was 

calculated by averaging speech rate value across available recordings. We acknowledge that this 

method of rate calculation has a limitation that words per second might not be as accurate as 
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estimating rate differences as syllables per second. This is because word complexity might differ 

between adult and child-directed speech; therefore, the words/second measure might 

underestimate rate differences between adult-directed and child-directed speech as compared with 

a syllables per second measure.  

Software and coding routines in implementing analyses. To implement these analyses, the 

coded Praat textgrids were called and analyzed in Matlab software to characterize the quality of 

linguistic environments based on above linguistic measures. The coded Textgrids, together with 

the 30-second audio intervals sampled from each daylong recording were analyzed using Matlab, 

the mPraat toolbox (Bořil & Skarnitzl, 2016), and Praat (Boersma & Weenink, 2001) to derive 

per-day estimates of each of the above linguistic measures for each child. For children with more 

than one recording, estimate for each day were averaged together across multiple days (i.e., 

recordings) to give the final estimate for each child. 

2.3. Results 

2.3.1. Inter-rater reliability 

Good agreement was found for most coding category distinctions; see Table 2-6 for results 

of the inter-rater reliability for different categories of interest in this study. These results show that 

human coders demonstrated substantial agreement (0.61–0.80) for most categories that were a 

focus of this project (Landis & Koch, 1977). The categories with low agreement were not the focus 

of this study, although the human analysts were instructed to double-check those categories for the 

coded files and adjust or revise the interval and labels to have coding of acceptable quality.  

Additionally, pairwise correlations of word count for speech intervals were summed within 

each sample and calculated for the pairwise correlations between each rater. This analysis revealed 

high agreement, with r = 0.95 (SD = 0.01, range: 0.94-0.97). These results show that the 
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implemented training procedure was effective in permitting human coders to implement the 

complex coding system with high reliability for the purpose of characterizing children’s early 

linguistic environments. 

Table 2-6. The results of inter-rater reliability analysis for various categories of interest in this 

study. 

Category 
Measure of Inter-rater Reliability Analysis 

Cohen’s Kappa Fleiss’ Kappa 

Speech vs. Non-speech 0.68 0.69 

Addressee (child-directed & adult-directed) 0.88 0.60 

Clean vs. Overlapped Speech 0.67 0.61 

Level of Interference  0.87 0.2 

Type of Adult Vocalization 0.92 0.67 

Gender of Talker 0.61 0.61 

Presence of Target Child Vocalization 0.65 0.66 

Type of Target Child Vocalization 0.75 0.58 

Type of Media 0.24 0.47 

Purpose of Media 0.21 0.34 

Type of Noise 0.80 0.28 

 

2.3.2. Variability across children in the number of words experienced 

Total number of words experienced 

We first investigated how the number of words in environments of children with CIs 

differed across children. Based on extrapolations from our audio samples, children heard an 

average of 25,134 words per day (range: 37,745 words per day), as shown in Figure 2-4A. The 

first row of Table 2-7 summarizes the dispersion of the total number of words per day experienced 

across children. 
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Figure 2-4. Estimated (A) total words per day, (B) child-directed words per day, and (C) overhead 

words per day for each child in their home environments. In each panel a scatter plot shows the 

individual children, while the boxplot summarizes the distribution of language experienced in 

home environments. The data points are laid over a 1.96 standard error of the mean (95% 

confidence interval) in red and 1 standard deviation shown by blue lines. The solid and dotted red 

line show the mean and median, respectively.   

Table 2-7. Measures of dispersion and central tendency for estimates of number of words per day 

for each child in his/her linguistic environment derived from total speech, child-directed speech, 

and overheard speech. 

Measure of Language Input 

(per day) 

 Measures of Variability 

 Min Max Range Mean SD Median IQR 

Number of words  8,414 46,159 37,745 25,134 9,267 25,656 7,623 

Number of child-directed words  2,741 30,431 27,690 10,817 7,187 8,986 7,258 

Number of overheard words  3,306 22,797 19,491 14,317 5,724 15,377 8,176 

 

Number of words experienced in child-directed speech 

Figure 2-4B shows the distribution of estimated exposures to child-directed speech per day 

across the 14 children with CIs. Children heard an average of 10,817 child-directed words per day, 

with a difference of 27,690 words per day between the child hearing the least (Child 2) and the 

most (Child 1) child-directed words. The summary measures of variability in the second row of 
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Table 2-7 provide further information about how dispersed the children with CIs are with respect 

to the amount of high-quality child-directed words they experience in a day in their environments.    

An interesting observation relates to the change in the rank order of children relative to one 

another in how much child-directed speech they experience vs. total speech. For example, Child 

11 heard more total words than Child 6 (Figure 2-4A). However, Child 11 heard more child-

directed words than Child 6 (Figure 2-4B). Finally, Figure 2-4C shows the distribution of 

overheard words per day across children, which is just the difference between total words and 

child-directed words; overheard words include any words not judged to be spoken directly to the 

target child, including words directed to adults or other children. The third row of Table 2-7 

summarizes variability and central tendency in overheard words across children.  

Figure 2-5 shows the distribution of child-directed vs. overheard words per day for each 

child. The ratio on the top of each bar is the proportion of child-directed words out of the total 

number of words experienced by each child per day. This plot suggests that children who 

experienced a linguistic environment with a greater total number of words per day do not 

necessarily hear the most child-directed words per day as well. For example, the vast portion of 

speech in Child 3’s environment was overheard speech (Figure 2-5), which changes his/her 

distance from other children in terms of relative qualities of linguistic environments. 
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Figure 2-5. The distribution of child-directed and overheard words per day in the language 

environments of each child with a CI. The ratio on the top of each bar is the proportion of child-

directed words out of the total number of words experienced by each child per day. 

 

Number of words experienced over years after CI activation 

To estimate cumulative effects of differential word exposures over years, we extrapolated per-day 

word exposure estimates out to 5 years post-implantation.  

Projected word exposures: Total words 

Figure 2-6 shows estimated total words experienced by each child over 1, 2, 3, 4, and 5 

years after CI activation. The y-axis is shown on a log scale to better present the variation across 

children and over years after CI implantation. These rough estimates suggest that, over a three-

year span, participants are expected to have experienced on average 27.5 million total words. 

However, estimated total words varied substantially across children (min = 9.2 million words, max 

= 50.5 million words; range = 41.3 million words; SD = 10.1 million words; IQR = 8.3 million 

words). These finding replicates and extends the basic finding of Hart and Risley (1995), 

demonstrating that children who are the most advantaged in language exposure will have heard in 

excess of 30 million more words than the children who are least advantaged. 
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Figure 2-7 presents the same data from another direction and shows how estimates of the 

total numbers of words vary over years for each child with CIs. Vertical numbers 1-5 on each bar 

represent estimates of total numbers of words at 1 through 5 years post-implantation. As this figure 

suggests, the absolute magnitude of individual differences between children will largely expand 

over years, signaling substantial variability between children in the quantity of speech they are 

expected to have experienced before kindergarten. This has been shown to be a key factor leading 

to variability in children’s language and scholastic achievement (Golinkoff et al., 2019; Rowe, 

2012; Weisleder & Fernald, 2013). 

 
Figure 2-6. Estimated number of total words heard over years by the time of entry to kindergarten 

for each child. The "y axis” is presented in log scale. 
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Figure 2-7. Estimates of number of total words experienced over years by each child. Vertical 

numbers 1 through 5 on each bar represent the estimates for Year 1 through Year 5 post-

implantation. 

Projected word exposures: Child-directed words  

Figure 2-8 and 2-9 show estimated child-directed words experienced by each child over 

several years after CI activation in two different ways. Over a three-year span, participants are 

expected to have experienced on average 11.8 million child-directed words (min = 3.0 million 

words, max = 33.3 million words; range = 30.3 million words; SD = 7.9 million words; IQR = 7.9 

million words). This substantial variability across children suggests that by 3 years after CI 

activation, a gap of 30.3 million words will separate the child most advantaged in terms of child-

directed speech exposure from the child least advantaged. 
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Figure 2-8. Estimated number of child-directed words heard over years by the time of entry to 

kindergarten for each child. The y-axis is shown on a log scale. 

 
Figure 2-9. Variation in estimates of numbers of child-directed words experienced over years by 

each child. 

2.3.3. Variability across children in lexical richness of their linguistic environment 

Lexical richness of experienced speech based on type-token ratio (TTR) 

Lexical diversity of speech input, measured as type-token ratio (TTR), is a strong predictor 

of vocabulary growth in children with normal hearing (Hart & Risley, 1995; Hoff & Naigles, 2002; 
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Huttenlocher et al., 1991; Pan, Rowe, Singer, & Snow, 2005; Rowe, 2012; Shneidman et al., 2013; 

Weizman & Snow, 2001). A child who experiences language input with a relatively high type-

token ratio will have heard a greater diversity of words, compared with a child experiencing a 

relatively low type-token ratio, contingent on exposure to the same number of words. Figure 2-10 

shows scatterplots of this measure for 14 children with CIs for total, child-directed, and overheard 

speech.   

 
Figure 2-10. Type-token ratio calculated from (A) total, (B) child-directed, and (C) overheard adult 

speech in the environment of each child with CIs. 

Table 2-8. Measures of dispersion and central tendency of type-token ratio derived across children 

with CIs. These measures are presented for total speech, child-directed speech, and overheard 

speech. 

Measure of Language Input 

(per day) 

 Measures of Variability 

 Min Max Range Mean SD Median IQR 

Type-token ratio of total speech  0.24 0.44 0.20 0.36 0.05 0.36 0.09 

Type-token ratio of child-directed speech  0.26 0.66 0.40 0.45 0.10 0.45 0.09 

Type-token ratio of overheard speech  0.35 0.68 0.33 0.48 0.10 0.46 0.13 

 

 

 The plot shows a substantial range of variability of TTR from speech experienced 

by children in their environments (See also Table 2-8). A linguistic environment with relatively 

higher TTR value compared to other environments is considered to be a high-quality environment 
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due to the higher ratio between word types and tokens in speech input, reflecting a greater diversity 

of words. According to this measure, it appears that Child 1 experienced the lowest quality child-

directed input compared to other children, whereas it was previously revealed that this child 

experienced the best linguistic environment based on both total number of words and number of 

child-directed words. The TTR measure suggests this child experienced a great deal of repetition 

in the types of words heard. 

However, one weakness of TTR as a measure of children’s early linguistic experience is 

that TTR does not reflect merely the diversity of vocabulary in speech input, but is also sensitive 

to number of tokens in the analyzed sample, as observed in our data (e.g., TTR for Child 1) 

(Herdan, 1960; Montag et al., 2018). This means children who heard fewer words per day in their 

environments have a higher chance of having a higher TTR suggestive of hearing more diverse 

speech. However, the total number of unique word types for these children was not higher; due to 

exposure to smaller number of words per day, the repetition of words was lower compared to other 

children. Comparing Figure 2-10 with Figure 2-4 highlights the point that the TTR measure for 

child-directed speech shows more or less the reverse ordering of children compared with the 

number of child-directed words, indicating the weakness of TTR for appropriate representation of 

lexical richness of input.     

Lexical richness of experienced speech based on type-token curves 

To overcome the limitation of the TTR measure’s dependence on total numbers of word 

tokens, we also constructed type-token curves to characterize different degrees of lexical diversity 

across children’s linguistic environments. Type-token curves relate total word tokens to word types 

and were constructed through the random sampling process described in Appendix B (Malvern, 

Richards, Chipere, & Durán, 2004; Montag et al., 2018). As such, they plot how word type 



 

55 

exposures change as a function of number of words randomly selected from the entire words in a 

day. Therefore, a type-token curve that stands higher for the same amount of words indicates a 

speech input per day with higher word diversity.      

Figure 2-11 shows this curve for the recordings of each child at four time-intervals of 3m, 

6m, 9m, and 12m after CI implantation whenever a recording was available. The curves derived 

from total words, child-directed words, and adult-directed words are shown by blue, red, and 

yellow lines, respectively. As these curves suggest, individual variability across children in terms 

of diversity of vocabulary they are exposed to is partly a function of the numbers of words the 

experience in a day. Since these curves are constructed based on two values of number of words 

and word types, it was not practical and logical to average them over recordings. So, we presented 

them individually. Later, we will use a summary measure based on the area under this curve to 

make it possible to represent these two-dimensional data in one summary measure. 

Comparing the curves across children highlights the large individual variability in the 

quality and quantity of children’s linguistic environments. A striking observation from these 

figures is the extent to which the areas under the type-token curve change across children for high-

quality child-directed speech. Child 1 is distinguished from other children, such as Child 2, 

primarily due to the higher number of child-directed words, which also increased the chance of 

exposure to greater numbers of word types. It is also interesting how language environments of 

some children vary from day to day, particularly with respect to the lexical richness of high-quality 

child-directed speech. 
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Figure 2-11. Type-token curve and the area under them are shown for total words (blue line and 

blue shaded area), words directed to the target child (orange line and shaded area by orange), and 

adult-directed words (yellow line and shaded area by yellow). 
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 Figure 2-11. (cont’d) 

  
   

* 

* 

* 
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To better summarize the quality of linguistic environments of each child across lexical 

dimensions, we proposed calculating the area under the type-token curve (AUTTC) as a summary 

measure that jointly reflects the amount of daily speech in children’s environments and lexical 

diversity in speech input. Figure 2-12 presents the distribution of children based on this measure 

of lexical richness derived from three types of speech: total, child-directed, and overheard. The 

values are the average values of AUTTC calculated over the recordings available for each child. 

AUTTC is able to better represent richness of linguistic input experienced by each child along 

lexical dimension. Table 2-9 represents the central tendency and dispersion values for AUTTC 

measure for three types of total, child-directed, and overheard speech. The large differences 

between children and with respect to the average AUTTC value suggest that children with CIs do 

not benefit equally in experiencing high-quality early language input. Further investigation is 

required to understand the magnitude of contribution of this variability in lexical information to 

the large differences between individual children with CIs in their language outcomes. 

 
Figure 2-12. Variation in the area under the type-token ratio calculated for 14 children participated 

in this study for (A) total speech, (B) child-directed speech, and (C) adult-directed speech. 
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Table 2-9. Measures of dispersion and central tendency for the AUTTC derived from language 

input of each child in his/her linguistic environments. These measures were calculated for total, 

speech, child-directed, and overheard speech. 

Measure of Language Input (per day) 
 Measures of Variability 

 Min Max Range Mean SD Median IQR 

AUTTC 

from total speech (×104) 
 2.8 47.5 44.7 16.7 11.8 15.7 12.4 

AUTTC from child-directed speech (×104)  0.2 22.2 22.0 4.0 5.5 2.5 2.4 

AUTTC from overheard speech (×104)  0.6  16.2 15.6 7.0 4.8 6.8 6.5 

 

2.3.4. Variability across children in morphosyntactic complexity of their linguistic 

environment 

Figure 2-13 shows the scatterplot of MLUs of adults’ speech in the environments of 

children in this study for total words, child-directed speech, and overheard speech. Table 2-10 

shows the dispersion and central tendency of this measure across children for total words, child-

directed words, and overheard words. The variability in MLU of speech across children is 

particularly important because of the impact of high-quality child-directed speech on children’s 

language outcomes. Comparing Figure 2-4 and Figure 2-13 reveals an interesting pattern in this 

data. Language environments that attest a higher total number of words (e.g., Child 1 and 6) do 

not necessarily provide children with better morphosyntactic information (MLUm), suggesting that 

these two measures of language input (number of words and MLUm) probably characterize speech 

for two different qualities along largely orthogonal dimensions.  

     



 

60 

 
Figure 2-13. Mean length of utterance of speech experienced by each child with CIs in her/his 

linguistic environments derived from (A) total speech, (B) child-directed speech, and (C) adult-

directed speech. 

Table 2-10. Measures of dispersion and central tendency for the MLUm derived from language 

input of each child in his/her linguistic environments. These measures were calculated for total, 

speech, child-directed, and overheard speech. 

Measure of Language Input 

(per day) 

 Measures of Variability 

 Min Max Range Mean SD Median IQR 

MLUm of total speech  3.1 4.9 1.8 4.1 0.51 4.0 0.6 

MLUm of child-directed speech  2.8 4.5 1.7 3.7 0.52 3.7 0.8 

MLUm of overheard speech  3.8 5.5 1.7 4.5 0.52 4.5 0.8 

 

2.3.5. Variability across children in caregiver responsiveness 

Figure 2-14 shows differences across children in terms of caregiver responsiveness, 

defined as the percentage of children’s speech (or speech-like) vocalizations which were 

responded to promptly with child-directed speech by adult caregivers in the child’s home 

environment. The average caregiver responsiveness was 21% across children with a large range of 

40.1% across children (SD = 12.9%, IQR = 14.1%). This large amount of variability across 

children in caregivers’ responsiveness during the first year after CI activation may help us to better 

explain individual differences in language outcomes.  
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Further, we found a high positive correlation between caregivers responsiveness and 

number of child-directed words (r = 0.86, p <0.01). Figure 2-15 shows the relationship between 

these two measures across children in this study. Later, we will return to considering what this 

significant positive correlation could suggest about language development. 

                            

2.3.6. Variability across children in their experienced adults’ speech rate 

The distribution of speech rates in speech heard by 14 children with CIs in our study is 

shown in Figure 2-16 for total speech, child-directed speech and adult-directed speech. Adult-

directed speech is presented instead of overheard speech to exclude the confounding effect of 

different types of addressees on adult talkers’ speech rate in overhead speech (i.e., when addressees 

are other children or unknown). Within the 5% samples, the average rate of speech that children 

experienced in their environments was 3.5 words/second (range = 1.1, SD = 0.35, IQR = 0.7). 

Figures 2-16B and C suggest that this pattern is not consistent across children; some children 

Figure 2-14. Variation across children 

in the percent of caregivers’ 

responsiveness in the environment of 

each child. 

Figure 2-15. The relationship between 

number of child-directed words 

experienced by each child per day and 

caregiver responsiveness as a 

percentage. 
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experienced faster child-directed speech compared to the rate of adult-directed speech in their 

environments, although the overall distribution supports the prior findings in (Bergeson, Miller, & 

McCune, 2006). 

 
Figure 2-16. Variability across children in the rate of speech by which they experienced speech in 

their environments calculated from (A) total speech, (B) child-directed speech, and (C) and adult-

directed speech. 

Table 2-11. Measures of dispersion and central tendency for the average speech rate derived from 

language input of each child in his/her linguistic environments. These measures were calculated 

for total, speech, child-directed, and overheard speech in words per second. 

Measure of Language Input 
 Measures of Variability 

 Min Max Range Mean SD Median IQR 

Rate of total speech  2.7 3.7 1.0 3.4 0.30 3.5 0.6 

Rate of child-directed speech  2.5 3.9 1.3 3.1 0.35 3.1 0.4 

Rate of overheard speech  2.9 4.1 1.2 3.6 0.39 3.5 0.7 

 

2.3.7. Variability across children based on a multidimensional space of language input 

The measures presented thus far together provide multiple distinct, complementary 

estimates of the quantity and quality of language input in children’s early linguistic environments 

across lexical, morphosyntactic, and pragmatic language subsystems. Table 2-12 presents z-scores 

for each child for each of the measures of quantity and quality early linguistic environments. We 
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would like to point out that some of the linguistic measures used in this study are not yet validated, 

and therefore should be interpreted cautiously, such as caregivers’ responsiveness. 

Table 2-12. Z-score values of each child for each measure of quality and quantity of linguistic 

input. The measures from 1 to 11 include: (1) the total number of words per day, (2) the number 

of child-directed words per day, (3) TTR for total speech, (4) TTR for child-directed speech, (5) 

AUTTC for total speech, (6) AUTTC for child-directed speech, (7) MLU for total speech, (8) 

MLU for child-directed speech, (9) speech rate for total speech, (10) speech rate for child-directed 

speech, (11) caregivers’ responsiveness. 

CHILD 

    ID 

MEASURE OF LANGUAGE INPUT 

1 2 3 4 5 6 7 8 9 10 11 

1 2.27 2.73 -2.21 -2.14 2.61 3.31 -0.2 0.7 -1.02 -1.41 2.02 

2 -0.84 -1.12 1.37 2.35 -0.96 -0.69 -0.08 -1.1 -0.2 0.23 -0.79 

3 0.47 -0.57 -0.1 0.67 0.72 -0.33 1.42 0.96 -1.07 -0.1 -0.86 

4 -1.55 -0.84 1.07 0.67 -0.88 -0.53 1.71 1.69 -0.94 -0.51 -0.79 

5 -0.03 -0.41 -0.37 0.26 0.06 -0.29 -0.03 0.26 -0.45 -0.92 -0.41 

6 0.09 1.17 0.19 -0.88 -0.66 0.14 -1.52 -0.89 2.02 1.76 2.24 

7 0.46 -0.1 -1.18 -0.13 0.26 -0.18 -0.05 0.71 1.36 0.67 -0.14 

8 -0.1 -0.47 0.15 0.58 0.12 -0.26 -0.59 -0.45 1.07 0.31 -0.55 

9 -1.8 -0.79 1.23 -0.27 -1.18 -0.53 -1.87 -1.65 0.37 -0.01 -0.15 

10 0.36 0.37 0.35 0.12 -0.23 -0.07 0.45 0.59 0.97 0.74 0.48 

11 0.88 0.56 -0.61 -0.7 1.07 0.45 0.94 1.03 -0.54 -0.23 -0.54 

12 0.03 0.02 0.97 -0.05 -0.78 -0.5 -0.64 -1.23 -0.11 0.72 0.06 

13 0.11 -0.64 -0.74 -0.03 0.28 -0.46 0.56 -0.56 -0.44 0.83 -0.88 

14 -0.36 0.1 -0.12 -0.45 -0.43 -0.06 -0.11 -0.04 -1.01 -2.09 0.31 

 

2.3.8. Variation in quality and quantity of linguistic input based on child-directed speech vs. 

adult-directed speech 

The characteristics of speech spoken to children with CIs reflects similar modifications 

made by adults (mothers or caregivers) to their normal-hearing children when addressing their 

child (Bergeson, 2011). These differences across features of child-directed and adult-directed 

speech have not yet been studied for speech experienced by children with CIs in natural settings. 

Understanding how, and to what extent, changes in the addressee (target child vs. adults) modifies 

linguistic features of adults’ speech in naturalistic environments will allow us to better formulate 

the relationship between exposure to child-directed speech and improved language outcomes.  

Figure 2-17 shows the distributions of five language measures of number of total words 

per day, TTR, AUTTC, MLUm, and speech rate for child-directed and adult-directed speech 
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derived from analyzing the 5% audio samples in this study. These measures were the average 

measures for each child across his/her available recordings. The distributions are kernel 

distributions which are non-parametric representations of the probability density functions of each 

measure (Hill, 1985). Using kernel distributions allowed us to avoid making any assumption about 

distribution of the data. These plots corroborate prior findings that showed speech directed to 

children with CIs is lexically and morphosyntactically simpler than adult-directed speech 

(Bergeson, 2011). 

 
Figure 2-17. Distribution of measures of language input for child-directed vs. adult-directed speech 

in the environments of children with CIs. 

A set of paired t-tests, shown in Table 2-13, were conducted to identify whether the 

observed differences between child-directed speech and adult-directed speech across each of these 

dimensions of linguistic input were statistically significant. The results showed that child-directed 

speech was significantly different from adult-directed speech for TTR (p <0.05), MLUm (p = < 

0.01), and speech rate (p = < 0.01). child-directed speech and adult-directed speech were not 

significantly different for the total number of words or AUTTC. 



 

65 

Table 2-13. Results of statistical paired t-test to compare variation of measures of total number of 

words, TTR, AUTTC, MLU, and speech rate across child-directed speech and adult-directed 

speech conditions. 

Measure of 

Linguistic Input 

 Paired Differences 
 

 

 

 

t 

 

 

 

 

df 

 

 

 

 

p-value 

   
95% Confidence Interval of the 

Difference 

 Mean 
Std. 

Deviation 
Lower Upper 

Number of Words  3.5×103 8.6×103 -4.2×103 -5.7×103 0.35 13 0.73 

TTR  0.09 0.12 -0.16 -0.02 -2.8 13 0.01* 

AUTTC  126.46 6.22×104 -3.6×104 3.6×104 0.0076 13 0.99 

MLU  0.89 0.70 -1.29 -0.48 -4.77 13 0.00* 

Speech Rate  0.53 0.45 -0.79 -0.26 -4.34 13 0.00* 

 

2.4. Discussion 

The current study investigated early linguistic environments of 14 prelingually deaf 

children who received cochlear implants (CIs) early in childhood (age at activation < 24 months) 

to characterize variability across these children in terms of the quantity and quality of language 

experienced during the first year after implantation. Day-long audio recordings from the natural 

auditory environments of these children were extensively and systematically analyzed to evaluate 

inter-subject variability in the quality and quantity of language input experienced across a set of 

lexical, morphosyntactic, and pragmatic dimensions. The analysis of the sampled audio was based 

on a system of hand coding which was developed due to LENA being found to be unreliable and 

insufficient for the intended purpose of this study. 

Variability across children in the total amount of words experienced 

Our results showed significant individual variability across children with CIs in total words 

they experienced per day in their linguistic environments. This large variability is observable from 

the standard deviation of around 9,000 words per day with an interquartile range of around 7,000 

words per day (25th percentile: ~22,000 words per day; 75th percentile: ~29,000 words per day). 

Exposure to relatively larger amount of total words per day in some children (e.g., Child 1 at 
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46,000 total words per day) compared to other children (e.g., Child 9 at 8,000 words per day) 

suggests that children vary substantially in their chances to experience extra “nonregulatory” 

speech that is argued by Hart and Risley (1995) to be a source of individual differences in language 

outcomes. These differences between children with CIs in their exposure to very different numbers 

of total words per day can potentially impact their learning and developing words and a linguistic 

system. The striking range of disparity of ~38,000 words per day between the child who 

experienced the highest number of words and the one who experienced the lowest number of words 

highlights a potential contributor to the observed enormous variability across children in their 

language outcomes. 

Variability across children in the amount of high-quality child-directed speech 

It is not merely the quantity of words that a child hears in his/her linguistic environment 

that matters, but also the quality of speech experienced by children which is important. One of the 

major elements of quality of early linguistic environments is child-directed speech. Children with 

CIs in our study differed considerably in the amount of high-quality child-directed speech they 

experienced. The standard deviation of around 7,000 child-directed words across an average of 

~10,000 child-directed words per day suggests that children are substantially different from each 

other in terms of the amount of high-quality child-directed words they experience per day. The 

distance of around 27,500 words per day between the child living in a linguistic environment with 

lowest amount of high-quality child-directed speech (Child 2) and the child living in an 

environment with the highest amount of high-quality child-directed input (Child 1) may help us to 

explain variability between these children in their language outcomes later on. Experiencing a 

higher number of child-directed words per day not only exposes children to a greater number of 
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high-quality words but also increases the chance of hearing more words types with higher 

repetition (Huttenlocher et al., 1991; Naigles & Hoff-Ginsberg, 1998).  

These results extended – for the first time – the prior well-established findings in children 

with typical hearing to a pediatric CI population, namely, there is tremendous variability across 

children in amount of child-directed speech they experience per day (Greenwood, Thiemann-

Bourque, Walker, Buzhardt, & Gilkerson, 2011; Hart & Risley, 1995; Hoff, 2006; Sperry et al., 

2018). To our knowledge, this is the first study that demonstrates the patterns of large individual 

differences among children with CIs in exposure to total number of words early after their cochlear 

implantation, which may conceivably account for large differences between individual children 

with CIs in their language outcomes, a possibility explored in Chapter 4. 

Individual variability in the quantity and quality of language input over years after implantation  

Estimates of the amount of speech input were extrapolated to estimate cumulative effects 

of numbers of words over years on variability across children in the quantity and quality of 

language in their environments. Extrapolating to three years, we found evidence of a projected gap 

of near 30 million words separating the children experiencing the most and the least child-directed 

words, which is shown to be an important contributor to individual differences in children’s 

language development (Hart & Risley, 1995; Hoff, 2003; Weisleder & Fernald, 2013). This gap 

of 30 million words in exposure to child-directed corroborates prior findings by Hart & Risley 

(1995). However, this substantial difference across children with CIs in exposure to high-quality 

child-directed words was not associated with children’s socioeconomic status (Pearson r=0.35, p-

value=0.22), consistent with the findings from Sperry et al. (2018). 

Comparing the results of Hart and Risley (1995) and these results, we observe that a similar 

magnitude of difference across children exits, which could potentially have a major impact on their 
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school readiness (Rowe, 2012). The impact of these substantial differences across children in the 

amount of exposure to child-directed speech per day on vocabulary growth and early scholastic 

achievements in school is expected to be higher for children with CIs compared to children with 

typical hearing. This is because the reliance by children with CIs on facilitative properties of high-

quality child-directed speech is conceivably much higher than for typical hearing children. 

Individual variability in lexical diversity of language input 

The degree of word diversity has been recognized as a strong predictor of children’s 

vocabulary growth in children with typical hearing (Hart & Risley, 1995; Hoff & Naigles, 2002; 

Huttenlocher et al., 1991; Pan et al., 2005; Rowe, 2012; Shneidman et al., 2013; Weizman & Snow, 

2001). The results suggest that children were different in terms of exposure to more types of words 

based on TTR. However, these differences were not purely due to lexical diversity and influenced 

by the number of total words per day as well. To solve this caveat in using TTR to assess lexical 

diversity of speech input, we constructed type-token curves to appropriately represents the joint 

variation in number of words and word diversity (Montag et al., 2018). 

From type-token curves obtained from each recording, we demonstrated that children with 

CIs are quite different from each other in experiencing high-quality speech input characterized as 

exposure to more words with higher diversity in a day. Using type-token curve, we observed that 

children with CIs are largely different in experiencing child-directed speech with rich lexical 

information. The total number of words and word types are two important factors in explaining 

the individual differences in language outcomes of children with normal hearing (Hart & Risley, 

1995; Hoff & Naigles, 2002; Montag et al., 2018).  

We summarized the variation of language input across two dimensions of number of word 

types and word tokens by calculating the area under the type-token curve for each child. Our results 
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demonstrated a sizeable difference in lexical richness of language input experienced by children 

with CIs. An extreme individual difference in AUTTC for child-directed speech was observed 

between the child with the greatest and the lowest quality of linguistic environment. The variability 

in lexical richness among children is particularly large for child-directed speech, which may help 

us to explain a good portion of poor vocabulary growth in some children compared to others 

(Szagun & Stumper, 2012). 

Individual variability in morphosyntactic complexity in speech input  

Additionally, we examined how children with CIs varied in experienced linguistic 

environments based on morphosyntactic information in speech input, which is shown to influence 

language outcomes both in children with typical hearing (Furrow et al., 1979; Harkness, 1977; 

Hoff-Ginsberg, 1998; Huttenlocher, Vasilyeva, Cymerman, & Levine, 2002) and those with CIs 

(Szagun & Schramm, 2016; Szagun & Stumper, 2012). The results from this analysis showed that 

MLU in speech experienced by the 14 children with CIs in a day varies from an MLUm as short as 

2.8 to a long MLUm of 4.5. Although a few studies showed that shorter MLUs in speech input have 

a positive impact on syntactic development in children with typical hearing (e.g., Furrow et al., 

1979), several others showed the opposite pattern both in typical hearing children (Harkness, 1977; 

Hoff-Ginsberg, 1998; Huttenlocher et al., 2002) and in children with CIs (Szagun & Schramm, 

2016; Szagun & Stumper, 2012). This discrepancy across prior findings about the effect of MLU 

of speech input on language outcomes makes the interpretation of these observed variabilities 

across children with CIs in MLUm of their experienced language input difficult. Future studies 

with a higher-constraint design will be required to elaborate on the casual effect of variation in 

MLU on children’s language outcomes. 
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Individual variability in caregiver responsiveness 

One of the major aspects of quality of language environments is the quality of 

communicative interaction between children and adults, which triggers social-pragmatic 

components of language learning (Kuhl, 2004, 2007). We therefore derived a measure of caregiver 

responsiveness, taken as the percentage of the time that adults in children’s language environments 

responded promptly to speech or speech-like activities of the children with CIs with a child-

directed speech utterance. The range of variability was about 40% between the child who 

experienced the highest and lowest caregiver responsiveness. This suggests extreme individual 

variability across children in experiencing linguistic environments with rich social-pragmatic 

features. 

More importantly, the degree of responsiveness of adults was strongly associated with 

number of child-directed words per day. This could be interpreted to suggest that exposing children 

to a higher number of child-directed words increases their engagement in parent-adult interaction, 

and encourages them to initiate a conversation, leading to higher recruitment of language 

subsystems involved in receptive and expressive skills and better language outcomes (Evans, 

Maxwell, & Hart, 1999; Tamis-LeMonda et al., 2014). It should be noted that a higher number of 

child-directed words per day does not automatically satisfy the conditions for caregivers’ 

responsiveness. It is possible that both represent independent, converging measures of the quality 

of language environments provided by caregivers for children with CIs. 

Individual variability in the rate by which speech experienced 

Moreover, we examined the variability of rate of speech experienced by each child in 

his/her environments as one factor that might relate to clarity and intelligibility of perceived speech 

(Bradlow, Kraus, & Hayes, 2003). Different choices of speaking style often impact speech rate, 
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where slower rate is thought to contribute to enhanced intelligibility of clear speech compared to 

conversational speech both in typical listeners (Ferguson & Poore, 2010) and recipients of CIs (Li 

et al., 2011; Zanto, Hennigan, Östberg, Clapp, & Gazzaley, 2013). Our results showed that the 

range of difference between children in average of rate of speech input corresponded to 

approximately one more word per second both in child-directed and overheard speech, which may 

negatively impact children’s ability to segment words and comprehend speech in real-life settings.  

Prior studies showed that performance of listeners with CIs is considerably poorer than 

listeners with normal hearing (~90% decline) in understanding sentences spoken with high rate 

(Zanto et al., 2013). Four of 14 children with CIs in our study (Child 1, 4, 5, and 14) experienced 

child-directed speech with an average rate of greater than the mean of “normal speech rate” for 

adult (i.e., ~5 words/second) as reported in Zanto et al. (2013). This suggests that these children 

might be at risk for not taking advantage of high-quality child-directed speech input because adults 

used a fast speaking style when addressing the child with CIs. These rate differences across speech 

addressed to children with CIs may result in individual differences in effective isolation of speech 

sounds (vowels and consonants) and syllable boundaries during listening to continuous speech, 

processes critical for word segmentation and vocabulary learning during language development 

(Jusczyk, Hohne, & Bauman, 1999; Jusczyk, Houston, & Newsome, 1999; Mattys & Jusczyk, 

2001). Such possibilities remain to be tested. 

Individual variability in early linguistic environments in a multidimensional language space 

We computed the z-scores for each child for measures of number of words per day, type-

token ratio, area under the type-token curve, mean length of utterance, speech rate, and caregivers’ 

responsiveness to assess to what extent children are spread around the mean values. Based on these 

z-scores, we expect that Child 1 experienced language input with highest quality along multiple 
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dimensions, while Child 9 is at high risk for experiencing language input with lowest quality. 

These results in multidimensional language space corroborate the general trends of large 

variability across children in richness of language input experienced early after CI implantation. 

These results highlight the fact that children’s linguistic environments can be better modeled by 

measuring language input along multiple dimensions of vocabulary, syntax, and morphology for 

appropriate characterization of children’s language experience (Montag et al., 2018). This 

approach might be more effective particularly for studying children with CIs who are at high risk 

for developing poor language outcomes. Further research will establish the extent to which each 

of these measures of language input influences language outcomes, which can be further used to 

better model the connection between language input and outcomes. 

Indices of separation between child-directed speech and adult-directed speech  

We also examined how child-directed speech and adult-directed speech in early linguistic 

environments of children with CIs are different for number of words, TTR, AUTTC, MLU, and 

speech rate. The results from this analysis corroborate prior findings that child-directed speech 

provides simpler models of language input (see Hoff, 2006 for an extensive review). Our results 

suggest that child-directed speech has shorter MLU, lower TTR, and lower rate compared to adult-

directed speech. Our study is the first one that extends these results to characterizations of 

ecologically valid, naturalistic environments. However, the number of words and AUTTC in child-

directed speech and adult-directed speech obtained across children were not significantly different. 

These two measures mostly reflect the quantity of speech that are not expected to be a function of 

speaking style and there is no prior evidence for such a difference. Comparing the results of 

number of words for overheard speech (see Figure 2-5) with number of words for adult-directed 

speech suggests that this non-significant pattern is due to excluding the amount of words that were 
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identified as overheard words but not adult-directed words. In fact, a large portion of overheard 

words was not necessarily adult-directed words. These results provide preliminary evidence for 

language features that distinguish child-directed speech from adult-directed speech, which have 

been shown both in children with typical hearing and children with CIs (Bergeson, 2011; Bergeson 

et al., 2006). These patterns can be further studied in the future to understand how they relate to 

supportive effects of child-directed speech on language outcomes.    

Overall, we have provided evidence that the quality and quantity of early linguistic 

environments vary substantially across children with CIs. Children with CIs are at high risk for 

lack of developing age-appropriate language skills and the language outcomes are shown to be 

substantially different across children. Based on analyzing the audio samples recorded from natural 

linguistic environments of 14 early-implanted children with CIs, this study showed that individual 

children with CIs are at risk for experiencing extremely variable language input- measured through 

multiple features of quantity and quality of language input to represent lexical, morphosyntactic, 

and social-pragmatic aspects of input. Results from this study suggest that some children with CIs 

may be doubly disadvantaged in acquiring spoken language: both due to degradation associated 

with electronic hearing, as well as due to substantial variability in the amount and quality of 

linguistic input available to them.  

More importantly, this study has provided – for the first time – evidence of a cumulative 

30-million-word gap between children with CIs who experienced the highest quality language 

environment and the one who experienced the lowest quality language environment over three 

years’ time, mirroring the patterns in Hart and Risley (1995). This new evidence of substantial 

variability across children in their early language experience may conceivably account for a large 

portion of variability in children’s communicative outcomes in real-world language development 
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in this at-risk clinical population. Prior studies have shown that such large differences among 

children in exposure to high-quality child-directed speech strongly predict individual differences 

in children’s vocabulary skills and scholastic achievement (Dickinson, Golinkoff, & Hirsh-Pasek, 

2010; Hart & Risley, 1995; Hoff, 2003; J. Huttenlocher, Waterfall, Vasilyeva, Vevea, & Hedges, 

2010; Rowe et al., 2012; Walker, Greenwood, Hart, & Carta, 1994). Future research will establish 

the extent to which variability in the amount and quality of language input in the clinical population 

of children with cochlear implants predicts their language outcomes, and whether any such 

relationships reflect a causal mechanism. We will provide a preliminary test of this relationship in 

Chapter 4 of the current dissertation. 

Limitations of this study 

The relatively small sample in this study suggests that these results should be cautiously 

interpreted. Further studies with higher numbers of participants is necessary to assure that these 

results are generalizable. Also, our small sample of children was relatively heterogeneous. For 

instance, some children had mixed combinations of hearing aids and CIs, and others had multiple 

diagnoses. Each of these points of population variation deserves a well-powered investigation. The 

distribution of daylong audio recordings for each child was also not equal for all children, such 

that for some children four recordings were available, whereas others had only one recording. 

Conducting studies with a higher number of recordings during the first years after implantation 

will reduce the possible effect of noisy data in our small number of recordings on the estimated 

per-day measures. In addition, the results of this study were based on analyzing 5% of audio that 

was randomly sampled from each daylong audio recording. Although prior studies demonstrated 

that estimates based on analyzing several hours long of audio fairly represent quality and quantity 

of linguistic environments of children with typical hearing, further studies are required to examine 
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this for children with CIs. Another limitation of this study is related to the calculation of caregivers’ 

responsiveness, where we assumed that a child-directed speech within 3 seconds after initiation of 

speech or speech-like vocalization from the target child was semantically and contextually relevant 

to child’s vocalization. Considering these limitations, the results should not be taken as the final 

determination of how the quality and quantity of linguistic environments of children with CIs vary 

across children, but rather as preliminary findings to guide further exploration of these questions.  

Despite these limitations, the current study provides new evidence on how early language 

environments of children with CIs vary across children during early childhood based on analyzing 

their natural home environments. This is the first study to conduct an extensive and fine-grained 

investigation of the early language experience of children with CIs to assess individual differences 

in exposure to high-quality language input across lexical, morphosyntactic, and social dimensions, 

while considering the speaking style of adult talkers in children’s environments. 
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CHAPTER 3: Effects of environmental noise and reverberation on 

quality and quantity of early language and auditory environments 

of children with CIs 

3.1. Introduction 

The prior chapter articulated the central problem in the present dissertation: tremendous 

unexplained variability in language outcomes of children with CIs. A large literature with 

typically-hearing children motivated this dissertation project’s focus on variability in the quantity 

and quality of language input as a focus of likely unexplained variation in language outcomes of 

children with CIs. Specifically, building on seminal work of Hart and Risley (1995), we sought to 

determine if the magnitude of difference between children with CIs experiencing the most and the 

least language input approached the 30-million word gap reported by Hart and Risley for their 

typically-hearing children who heard the most and the least language, respectively. 

Very little research has focused on the effects of language input factors on language 

outcomes in children with CIs (see Szagun & Stumper, 2012 and Szagun & Schramm, 2016). 

However, crucially, no studies so far have examined other sources of variability that is likely 

essential to consider for this population: noise and reverberation in children’s linguistic 

environments. Populations of children and adults with CIs are extremely sensitive to noise, which 

can highly degrade speech perception in this population (Caldwel & Nittrouer, 2008; Dorman & 

Gifford, 2017; Hazrati & Loizou, 2012; Neuman et al., 2004; Neuman, Wroblewski, Hajicek, & 

Rubinstein, 2010a). 

The focus of this chapter is to address a fundamental knowledge gap in studies of language 

development in children with CIs, which is the effect of environmental noise and reverberation on 
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words experienced by children with CIs early after implantation. To this end, the present chapter 

develops analyses which characterize noise and reverberation affecting language input. We then 

derive estimates of the amount of “useable” language expected to survive noise and reverberation, 

updating Ch. 2 metrics the to provide noise-adjusted estimates of numbers of words experienced 

by children in their language environment. We specifically update per-day estimates of number of 

total words and child-directed words experienced by each chilfd through two separate novel 

approaches: (1) human perceptual judgments of the level of noise interference, and (2) using a 

quantitative metric of speech intelligibility tailored to children with CIs. Below we review the 

literature related to the effect of noise and reverberation on speech recognition and language 

development in listeners with CIs.     

Environmental noise and language development in children with cochlear implants 

A variety of studies support that environmental noise has severely degrading effects on 

speech perception and spoken word recognition for both adult and child CI users. Living in 

environments with high ambient noise levels may have serious negative consequences on children 

with CIs’ abilities to comprehend speech and learn language effectively (Caldwell & Nittrouer, 

2013; Davidson, Geers, Blamey, Tobey, & Brenner, 2011). Recipients of CIs have great 

difficulties in understanding speech in background noise and reverberation, particularly when 

speech occurs in a multi-talker setting (Caldwel & Nittrouer, 2008; Dorman & Gifford, 2017; 

Hazrati & Loizou, 2012; Neuman et al., 2004, 2010a). Talking and listening over a cellphone is 

also extremely challenging for users of cochlear implants (Adams, Hasenstab, Pippin, & Sismanis, 

2004; Cohen, Waltzman, & Shapiro, 1989). In addition, cochlear implants are mainly designed to 

transfer the frequency range that is responsible for speech perception without the ability to resolve 

fine musical patterns (Kong, Stickney, & Zeng, 2005; Svirsky, 2017). Therefore, recipients of 
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cochlear implants often do not derive pleasure enjoy listening to music compared to individuals 

with biologically intact hearing. Among these listening difficulties, speech recognition in noisy 

and/or reverberant environments makes for the greatest impact on language learning for children 

with CIs, as they are expected to spend substantial portions of their daily lives in noisy 

environments (Busch et al., 2017). 

Vulnerability to environmental noise is a critical factor for speech perception and language 

learning in pediatric users of CIs because of their significantly impaired ability to separate and 

process sound sources, due to their having only partial access to fine-grained spectro-temporal 

cues (Baskent & Gaudrain, 2016; Fu & Nogaki, 2005). Typically developing children with normal 

hearing need an average of 7 dB higher signal-to-noise ratio (SNR) at age 5 to show the same 

performance in word recognition as 12 years old children (Bradley & Sato, 2004), demonstrating 

the significant effect of age on word learning in noisy environments. The size of this age-noise 

interaction effect on lexical growth is expected to be considerably higher in children with CIs who 

have already shown deficits in word learning compared to children with typical hearing in quiet 

environments (Walker & McGregor, 2013). 

The effect of environmental noise and loudness on speech recognition of children with CIs   

As outlined in the prior sections, research with typically-hearing children has identified a 

number of language-input related factors which shape language outcomes. Further, a very small 

amount of research has investigated how variability in language input might shape language 

outcomes in children with CIs (Szagun & Schramm, 2016; Szagun & Stumper, 2012). However, 

no studies previously have considered in detail the effects of noise and reverberation on 

degradation of linguistic signals in examining such outcomes. Quantifying the effects of noise and 
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reverberation on language input to children with CIs was therefore a novel innovation, which was 

a focus of this dissertation. 

Language development in children with cochlear implants may be negatively influenced 

by living in complex listening environments where noise frequently exists. Speech recognition in 

noisy conditions is extremely challenging for recipients of CIs compared to their normal hearing 

peers (Busch et al., 2017; Dawson, Decker, & Psarros, 2004; Hazrati & Loizou, 2012; Neuman et 

al., 2004; Schafer & Thibodeau, 2006; Zeng et al., 2005). Naturalistic auditory environments of 

children with CIs is typically highly complex and full of these challenging conditions (Busch et 

al., 2017). Children with CIs showed significantly poorer performance in understanding speech in 

noise (Caldwell & Nittrouer, 2013; Hochberg, Boothroyd, Weiss, & Hellman, 1992; Munson & 

Nelson, 2005; Neuman et al., 2010a). Results from testing the performance of 27 kindergarteners 

with CIs on recognition of 10 phonetically balanced consonant-vowel-consonant (CVC ) words in 

variable noise levels (SNR: -3 dB, 0 dB, and +3 dB) and quiet condition showed an average of 

about 25% and 16% difference between these children and their normal hearing peers in phoneme 

recognition and words recognition, respectively. Speech recognition in children with CIs were 

significantly lower than their typically-hearing peers in all three noisy conditions and surprisingly 

even in quiet (Caldwell & Nittrouer, 2013).  

In addition, Firszt et al. (2004) showed that susceptibility of adult CI recipients to 

background noise for sentence comprehension (e.g., 60 dB SPL, SNR +8) was much higher than 

their difficulties in understanding soft speech analogous to quiet conversational scenes (e.g., 50 

dB SPL). A significant drop of about 22% in scores of open-set word recognition was reported in 

adults with CIs in response to 20 dB decrease (70 to 50 dB) in the sound pressure level (SPL) of 

the presented stimuli (Davidson, 2006), highlighting the extreme vulnerability of children with CIs 
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to background noise and soft speech (Firszt et al., 2004). Background noise and loudness of speech 

can vary dramatically in a wide range in natural linguistic environments, which may impact 

children’s processing of words in their language environment. Therefore, individual variability 

across children in experiencing speech in the presence of noise may translate into variability in 

their vocabulary growth and, by extension, language development. 

The effect of reverberation and noise on speech recognition of children with CIs 

Another common source of speech degradation in naturalistic environments that has 

substantial, negative impacts on speech comprehension in children with CIs is reverberation. 

Understanding speech in reverberant conditions is very challenging for recipients of CIs (Hazrati 

& Loizou, 2012; Neuman et al., 2004, 2010a); this may, in turn, impact the degree to which they 

benefit from speech in their environments toward developing language skills. Neuman et al. (2004) 

compared speech perception of 7 children with CIs in reverberant and quiet conditions with that 

of 18 normal hearing children in quiet condition in a virtual classroom. The results from their study 

showed a significant and substantial decline of approximately 20% in scores of speech recognition 

of children with cochlear implants in reverberant condition (0.8 s) compared to non-reverberant 

condition. Children were also largely different in their degree of susceptibility to reverberation for 

speech recognition. Performance of children with CIs further decreased when noise was added to 

the reverberation. The amount of SNR that children with CIs needed to obtain 50% speech 

recognition was substantially higher than the SNR level required by children with typical hearing 

(around 1.6 times of typical hearing listeners). 

 Hazrati & Loizou (2012) showed that detrimental effect of reverberation on speech 

intelligibility is higher than noise with an exacerbated effect in combined conditions (i.e., noise-

plus-reverberation). Overall, these studies have demonstrated that children with CIs are at risk for 
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experiencing extremely challenging situations for understating speech in their daily lives in natural 

linguistic environments, where speech frequently coexists with noise and/or reverberation. 

Therefore, studies of sources of variability in language outcomes of children with CIs require 

considering the impact of noise and/or reverberation on the quality and quantity of speech 

experienced by children with CIs in their linguistic environments. 

Given the goal of this study to quantify how language input was impacted by environmental 

noise and reverberation, the question is how this goal can be methodologically achieved. One 

possible solution is to use auditory perceptual judgments of humans as a “gold standard” to identify 

the level by which environmental noise interferes with speech that is most useful for children in 

their environments. Identifying the level of masking and disruption imposed by background noise 

on speech based on human auditory perceptual judgments has several advantages, including 

robustness to indexical variability in speech input and using contextual information to identify the 

extent speech in the environments of children with CIs are degraded due to background noise and 

other sources of speech degradation. In addition, human judgments of the level of intelligibility of 

speech is robust to variation of speech loudness and can readily and accurately separate the 

reference speech signal from sources of noise and speech degradation to identify the level of noise 

interference (Bregman, 1994). 

Additionally, a central innovation of this dissertation was to use a state-of-the-art, non-

intrusive quantitative acoustic metric, which has recently been developed to validly estimate 

intelligibility of speech input for CI users under various noisy and clean conditions. In particular, 

this study used a metric known as the speech-to-reverberation modulation energy ratio (SRMR) 

with its specific implementation tailored to listeners with CIs (SRMR-CI) in order to estimate the 

intelligibility of speech experienced by children with CIs in their home environments (Falk et al., 
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2015; Santos & Falk, 2014). The SRMR-CI quantitative, computational metric for estimating 

speech intelligibility for listeners with CIs emulates the frequency selectivity of CI speech 

processing to approximate speech intelligibility in this population. This measure is non-intrusive 

because it does not require a reference clean signal to measure the relative distortion between the 

original and degraded speech signal (Santos & Falk, 2014), which is a critical factor for studying 

the level of speech degradation in natural environments. This quantitative measure of speech 

intelligibility in listeners with CIs has been shown to be reliably correlated to speech intelligibility 

for CI users from clinical perceptual tests under different conditions of clean, noisy, reverberant, 

and noise-plus-reverberation (Falk et al., 2015). We calculated this metric for each speech 

utterance identified in the environment of children; we further mapped the obtained SRMR-CI 

value to a corresponding estimate of speech intelligibility as a percent. This speech intelligibility 

percentage value was used to update estimates of the number of words experienced by each child.    

Effects of environmental noise on the separability of child-directed speech from adult-directed 

speech 

In Chapter 2, we reviewed findings suggesting that children are uniquely attuned to child-

directed speech. As discussed, child-directed speech is characterized by a diverse set of acoustic 

properties that affect segmental and suprasegmental attributes. Environmental noise may 

negatively influence the extent to which children with CIs benefit from high-quality child-directed 

speech for learning language by distorting the acoustic information responsible for distinguishing 

child-directed from adult-directed speech. This potential distortion impacts the quality of linguistic 

environments of children with cochlear implants by making one environment less favorable for a 

child compared to another environment. Similar to their typically-hearing peers, children with 

impaired hearing are able to recognize speech directed to them from adult-directed speech, and 
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they also prefer to attend and listen to child-directed speech over adult-directed speech (Cooper, 

1990; Fernald, 1985; Grieser & Kuhl, 1988; Wang, Bergeson, & Houston, 2017; Werker, Pegg, & 

McLeod, 1994). Child-directed speech also facilitates language learning in children with cochlear 

implants (DesJardin & Eisenberg, 2007; Dilley et al., 2018). However, we have no knowledge 

about how various levels of environmental noise may deteriorate acoustic separability of child-

directed speech from adult-directed speech, changing the quality of linguistic environments to 

lower or higher quality. Therefore, this dissertation pursued analyses to answer these questions. 

Current Study 

Very little prior work has explored characteristics of early linguistic environments of 

children with CIs; crucially, this work has done so without considering the effect of noise and 

reverberation on the quantity and quality of speech input (Szagun & Stumper, 2012). However, 

language learning occurs in spectrally complex natural environments where children frequently 

face with challenging noisy or/and reverberant conditions (Dorman & Gifford, 2017; Fetterman & 

Domico, 2002; Fu & Nogaki, 2005; Neuman et al., 2004; Whitmal, Poissant, Freyman, & Helfer, 

2007). It is therefore critical to understand how background noise and/or reverberation may 

degrade lexical and acoustic information in speech experienced by or spoken to infants with CIs 

in natural environments. 

This study aimed to quantify the effects of noise and reverberation on quality and 

intelligibility of speech experienced by young children with CIs and to evaluate how these sources 

may influence the lexical experiences of these children. It was hypothesized that environmental 

noise and reverberation would significantly reduce the total amount of words and amount of high-

quality child-directed words experienced by children with CIs in their language environments. 

Characterizing the effect of noise on the number of useful words in children’s linguistic 



 

84 

environments is not only novel but will enhance our understanding both of how noise and 

reverberation in children’s linguistic environments may impact the quantity of useful speech and 

how this effect vary across children.  

Our approach involved a focus on deriving two updated measures - the total number of 

words and the number of child-directed words - adjusting for noise and reverberation to consider 

effects on early linguistic experience in these two dimensions for children with CIs. The word 

count adjustment process was implemented based on both human perceptual judgments of level of 

noise interference and the SRMR-CI quantitative measure of speech intelligibility that is tailored 

to listeners with CIs. These adjustments reflect how the estimates of useable numbers of words 

heard by children with CIs in their natural environments should be updated to account for the 

probable effects of noise degradation. This study also attempted to elaborate on the notion of 

“quality” to consider both (a) individual differences across caregivers (e.g., in child-directed 

speech vs. adult-directed speech separability), in light of (b) a factor especially important for this 

population, namely noise. This work addresses how separability of child-directed speech from 

adult-directed speech varies across caregivers, and how this separability is affected by background 

noise. 

This study will provide crucial new knowledge on how environmental noise degrades 

linguistic input at the word level. Our approach will involve using SRMR-CI quantitative acoustic 

measures of speech intelligibility to predict the quality and intelligibility of speech experienced by 

children with CIs in real-life settings, which will provide quantitative metrics for assessment of 

the amount of useable linguistic input in their environments. We also analyzed the spectro-

temporal characteristics of auditory environments of children with CIs to evaluate how the 

characteristics of noise (e.g., exposure levels, loudness and spectral distributional characteristics) 
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compared across children with CIs as an additional measure of quality of their linguistic 

environments. 

Below are the research questions that are investigated in the present study: 

Question 1: To what extent do environmental noise and/or reverberation influence the number of 

total words and child-directed words experienced by children with CI in their linguistic 

environments?  

We hypothesized that noise degrades input to a differential extent across individual home 

environments, such that the picture of amount of language input experienced by children will look 

substantially different before versus after considering the effects of noise degradation on language 

input. 

Question 2: How does consideration of noise and reverberation change the picture of the word 

gap across children in the sample, for total number of words and child-directed words?  

It was hypothesized that although noise and reverberation will significantly reduce the 

amount of words experienced by children, children still are substantially variable in quality and 

quantity of their linguistic environments.   

Question 3: Do adults change the acoustic properties of how they speak to children to compensate 

for interference due to ambient, overlapping noise in the environment?  

We predicted that the acoustic separability between child-directed and adult-directed 

speech (as gauged by the Mahalanobis distance metric) would decrease as the level of interfering 

noise increases. In particular, we hypothesized that higher degree of noise interference will 

negatively influence the acoustic separability between child-directed and adult-directed speech 

such that less discriminative acoustic information is available as the level of noise interference 
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becomes higher, leading to a lower Mahalanobis distance measure in higher noise condition 

compared with lower noise condition. 

Question 4: To what extent do the characteristics of environmental noise in terms of spectral 

energy and loudness vary across children?  

We hypothesized that spectral characteristics and loudness of background noise vary 

considerably from child to child, such that some children experience spectral noise profiles which 

are more detrimental than others. 

To investigate these questions, we utilized the database of audio which had been coded by 

humans according to procedures described in Chapter 2. We elaborated on this coding by 

developing a human coding system in which judgments were made about (which words were 

affected by noise, the source of the noises(s) and the extent to which the noise interfered with 

understanding the word). These human judgments were then used to update estimates of how many 

clean intelligible words were heard per day by each child. We also quantified the intelligibility of 

the signal using a computational method based on SRMR-CI metric. We then updated counts of 

words using each of these two measures to obtain a picture of variation to derive estimates of 

“clean, intelligible” words per day and estimate the growth in language input over years. We 

further characterized the spectral and loudness characteristics of ambient noise in each child’s 

environment and determined how acoustics of adult speech changed under different levels of 

ambient, interfering noise.            

3.2. Methods 

Participants. The participants in this study were the same 14 children with CIs studied in 

the chapter 2. Refer to Section 2.2.1. of Chapter 2 for more information about these children and 

their demographic characteristics.  
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Audio samples and database. In Chapter 2, we described a process for robust, accurate 

assessment of the intelligible word content in home environments of our sample of children with 

CI. Recall that audio samples were 30-second audio intervals randomly selected from the daylong 

audio recording after excluding the intervals where the child was not awake. Five percent of the 

audio was randomly selected and coded for intelligible words, including who was speaking 

(whether an adult or child, including the child with CIs) and who the speech was addressed to 

(whether the target child or someone else). In the present analyses, we expanded on coding derived 

from the same 5% audio samples as were studied in Chapter 2; these samples had been randomly 

selected from 32 LENA audio recordings recorded from the auditory environments of 14 early-

implanted CIs participated in this study. More information regarding the recordings and sampling 

process were presented in the Method section of Chapter 2. 

To recap, a main goal of analyses described in the present chapter was to leverage human 

annotation of degree of noise interference on word perception described briefly in Chapter 2 to 

derive estimates of clean or “useable” words which were predicted to more accurately depict input 

to these children. In addition, we explored applicability of a new measure, SRMR-CI, for a similar 

purpose in characterizing language input in naturalistic environments of children with CIs. We 

further investigated profiles of noise across children’s environments and how this noise might 

affect acoustic separability of child-directed speech vs. adult-directed speech. 

3.2.1. Human coding for noise source and level of noise interference 

Recall that Chapter 2, Section 2.2.4.2. under Method described the method used by human 

analysts for coding words in selected 30-second audio samples using Praat software in linguistic 

environments of children with CIs. As discussed in that chapter, coding involved indication of 

where the speech from an adult talker occurred and whether the talker was a man, woman, or child. 
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The human analysts identified whether the talker’s speech was directed to the target child with a 

CI, another child, or an adult. A final step was that human analysts identified whether the speech 

involved perceptual interference from any overlapping noise, and they coded the type and extent 

of the noise that overlapped and perceptually interfered with the words. Below, we describe the 

details of the noise coding, elaborating on points briefly discussed in Ch. 2. We then discuss how 

the noise coding was used in two ways to update estimates of word count. 

Figure 3-1 presents a schematic diagram of the human coding process, updated from Figure 

2-2, which shows the additional steps involved in analysis of perceptual interference from 

overlapping noise. In particular, after human analysts coded the selected audio for the above 

information, they coded whether there was one or more sound sources (e.g., background noise or 

competing talker(s) or some combination, etc.) that overlapped with words identified as “primary” 

(e.g., those from the talker holding the floor). When words were identified as having overlapping 

noise from one or more competing sound sources, human analysts next determined the perceived 

level of interference with understanding the words – whether low (L), medium (M), or high (H) – 

based on the judged relative loudness and masking by the competing sound source(s). 

Additionally, human analysts were instructed to identify (as best they could) the type of noise that 

overlapped with the primary speech. Information about the different types of noise categories and 

the relevant coding description are indicated in Appendix A (See Chapter 2 for more details on 

training and evaluation of the coding system.) In cases where there were multiple simultaneous 

talkers, analysts followed the steps explained in Appendix D.  
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Figure 3-1. Structure of the approach for coding the audio samples for determining the presence 

of any source of overlapped sounds or speech and its level of interference.  

3.2.2. Using human coding to provide updated estimates of number of “clean” words 

experienced by children with CIs 

From the noise interference coding described above, the number of total words and child-

directed words experienced by each child were updated based on two methods. The first of these, 

which is described in this section, uses coding provided by human for the level of noise 

interference when it overlapped with a speech interval to update the number of useful words 

experienced by the target child in his/her environments for that speech utterance. The goal was to 

use the auditory perceptual judgments of word masking made by human analysts to update the 

useful number of words experienced by each child for developing their vocabulary and language 

learning.  
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The computational approach to using human coding of noise interference to update total 

word counts and child-directed word counts is as follows. The coded textgrids were analyzed in 

Matlab and the mPraat toolbox (Bořil & Skarnitzl, 2016) to capture the level of interference of 

each speech interval and use that information to update the number of useable words experienced 

by each child in his/her environments. For each interval containing adults’ speech, we checked 

whether there was(were) source(s) of sound or speech that overlapped with the primary speech 

(see Chapter 2, Method section 2.2.4.2. for the definition of primary speech). If so, we searched 

for the level of interference code (L, M or H) on other tiers at its defined level as illustrated in 

Table 2-5 in chapter 2. For utterances with different levels of noise interference that were split into 

shorter utterances with its own level of noise interference, the number of words were updated 

separately for each shorter interval. This information was extracted in addition to the previous 

information described in Chapter 2, which involved whether speech was child-directed, adult-

directed, or overheard (which included adult-directed speech, but also speech directed to children 

other than the target child).        

To compute updated estimates of numbers of clean and “useable” words, the number of 

words for each speech interval was first extracted from transcriptions. Then, the following formula 

was used to update number of words based on low, medium or high level of interference (LOI): 

𝑓(𝑥) = {

1.00 ∗ 𝑥,  𝐿𝑂𝐼 = 0
0.75 ∗ 𝑥,  𝐿𝑂𝐼 = 𝐿𝑜𝑤
0.50 ∗ 𝑥,  𝐿𝑂𝐼 = 𝑀𝑒𝑑𝑖𝑢𝑚
0.25 ∗ 𝑥,  𝐿𝑂𝐼 = 𝐻𝑖𝑔ℎ

        (3-1) 

In the above, x is the number of words for each speech interval identified by the human coder, and 

f(x) is the updated number of words based on the level by which a speech interval overlapped with 

a source of interference. This formula is based on a major assumption that the auditory perceptual 
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distance in terms of the size of the effect of noise and masking on speech has equal perceptual 

distance between these levels of interference with linear behavior. 

3.2.3. Using SRMR-CI to provide updated estimates of number of “clean” words experienced 

by children with CIs 

The second method of updating the number of total words and child-directed words 

experienced by each child relied on a quantitative measure of speech intelligibility tailored for 

listeners with CIs, SRMR-CI. SRMR-CI was used to predict the degree of intelligibility of speech 

utterances and used the predicted intelligibility to update the number of useable words experienced 

by each child. The general approach for updating the number of words based on this quantitative 

metrics of speech quality and intelligibility is shown in Figure 3-2. 

 
Figure 3-2. General approach for updating the number of words based on SRMR-CI value. 
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Our hypothesis was that the SRMR-CI could be mapped to a percent intelligibility (SI%), 

which further could be validly used as a multiplier for the estimated useable number of words in 

the speech interval. In fact, the updated number of words for each speech interval is the number of 

words for that interval multiplied by the speech intelligibility percentage value obtained through 

SRMR-CI. To this end, we first constructed a mapping function from the SRMR-CI ratio to its 

corresponding speech intelligibility percentage value as proposed in Santos and Falk (2014). We 

calculated the SRMR-CI values for all speech intervals from all 5% audio samples derived from 

each of the 32 recordings. (See Ch. 2 for more details.) The intervals that were completely 

unintelligible (i.e., no intelligible words were transcribed) or partially intelligible (i.e., some words 

were intelligible and some were not) or overlapped with microphone noise were excluded from 

this analysis to avoid the effect of artifacts that could interfere with process of SRMR-CI 

calculation. We particularly used the updated version of this measure (Santos & Falk, 2014), which 

is expected to be more suitable in studies of naturalistic environments because it reduces the 

variability of the ratio to indexical factors such as talker gender (which affects e.g., F0) and 

contextual factors (Santos & Falk, 2014). To make this measure robust to these sources of 

variability, two methods of modulation energy thresholding and modulation frequency range 

limitation were applied (Santos & Falk, 2014).  

Following the above pre-processing steps, SRMR-CI values were mapped to their 

corresponding speech intelligibility percentage values based on a sigmoidal mapping function, as 

proposed in Falk et al. (2015). As shown in Figure 7-d in Falk et al. (2015), mapping the calculated 

SRMR-CI to a corresponding speech intelligibility percentage value using this sigmoidal function 

requires first scaling the SRMR-CI ratio to values between 0 and 1. In Figure 7-d in Falk et al. 

(2015), an SRMR-CI of zero corresponds to the metric’s minimum value, while an SRMR-CI of 
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1 corresponds to the average value attributed to clean speech samples. To carry out the required 

scaling, therefore, we computed the average value of the SRMR-CI of speech intervals identified 

by human analysts as clean; the raw SRMR-CI values were then scaled between 0 and 1 based on 

the following procedure. To compute an SRMR-CI scaled between 0 and 1, we first assumed that 

SRMR_CImax was the average SRMR-CI value obtained from SRMR-CIs of clean speech intervals. 

Further, we assumed that SRMR_CImin was the minimum SRMR-CI value from SRMR-CIs of all 

speech intervals from all 32 recordings. The SRMR-CI values were, then, scaled between 0 and 1 

based on the following minmax normalization formula: 

SRMR_CI
sclaed

= 
(SRMR_CI  - SRMR_CImin)

(SRMR_CImax - SRMR_CImin)
       (3-2) 

In the above, 𝑆𝑅𝑀𝑅_𝐶𝐼𝑠𝑐𝑎𝑙𝑒𝑑 is the scaled SRMR-CI value between 0 and 1. For the speech 

samples in this study, the obtained 𝑆𝑅𝑀𝑅_𝐶𝐼𝑚𝑎𝑥 was 1.65 and the 𝑆𝑅𝑀𝑅_𝐶𝐼𝑚𝑖𝑛 was 0.286. Note 

that 𝑆𝑅𝑀𝑅_𝐶𝐼𝑚𝑎𝑥 was the average of SRMR-CI values from speech segments in the clean 

category (i.e., coded as having no noise interference).  

Figure 3-3 shows the distribution of SRMR-CI values for the four levels of interference 

identified by human: clean (i.e., no noise interference), L, M, or H); higher SRMR-CI values 

reflects estimates of higher intelligibility. Across increasing levels of noise interference (left to 

right), this figure suggests that there is a fair negative correlation between a SRMR-CI value and 

increasing levels of noise interference for speech identified by human coders. This suggests that 

human coders and SRMR-CI were in rough agreement regarding trends for estimating levels of 

noise interference. However, it is expected that the results from human auditory perceptual 

judgments of the effect of noise/overlap on speech will be far from what listeners with CIs 

perceive, as shown in prior studies (Neuman et al., 2004). In fact, such judgments from adult 

listeners are a partial reflection of what children with CIs perceive.  
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Figure 3-3. The relationship between level of interference identified by human and the 

corresponding SRMR-CI values for each speech interval. The central red line indicates the median 

of distribution and bottom and top edges of the box show the 25th and 75th percentiles, respectively. 

Having determined scaled SRMR-CI values as described above, we then reconstructed the 

sigmoidal function given in Falk et al. (2015; Santos & Falk, 2014) that relates SRMR-CI values 

to estimated speech intelligibility (%). The pairs of scaled SRMR-CI values and their 

corresponding percent speech intelligibility (SI%) were obtained from (Falk et al., 2015). We used 

a non-linear least-square curve fitting approach to reconstruct this sigmoidal function that maps 

SRMR-CI values to their estimated speech intelligibility (%). The obtained sigmoidal function 

from this curve-fitting process was: 

SI(%)= 
K

1+e-(α1X-α2)
×100%          (3-3) 

The model parameters α1, α2, k are given in Appendix E. The model fitted the observations very 

well (R-Squared = 0.99), reflecting the fact that the predicted SI values from the model used here 

were very close to the observed data values derived from Figure 3-3.  

The number of words for each speech utterance was then updated according to the 

following overall procedure. We first calculated the SRMR-CI value for that speech signal and 

then scaled it between 0 and 1 based on the scaling formula (3-1). If the SRMR-CI value was equal 

or bigger than SRMR-CImax, we considered it to be a speech sample from the clean category with 
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SRMR-CI value of 1. We then estimated the speech intelligibility as a percent by using the 

sigmoidal mapping function constructed above. This speech intelligibility percentage value was 

used to update the number of words for each speech segment by multiplying the SI ratio with the 

number of words obtained from the transcription: updated number of words = number of words x 

SI. For example, a speech interval which contained 6 words with a raw SRMR-CI value for this 

speech of 1.5 (from a scaled value of 0.89 with SRMR-CImax= 1.65 and SRMR-CImin= 0.28) would 

result in a SI= 
0.88

1+e-(13.43*0.89-7.7) =0.87 (87%). The updated number of words for this interval would 

then be 6 x 0.87 = 5.22. This implies a loss of approximately one word (0.78 ≈ 1) for CI listeners 

in listening to this speech, as adjusted by quantitative measure of SRMR-CI.  

Finally, the updated number of words across speech intervals was then determined by 

summing the updated numbers of words across all 5% samples for that recording. Then, these word 

counts within the sampled audio were extrapolated over a full 16–hour day, following the 

methodology explained in Chapter 2. For children with more than one recording, the final updated 

per-day word estimate for each child was the average of values across multiple days (i.e., multiple 

recordings). 

3.2.4. Effect of noise on acoustic separability of child-directed and adult-directed speech 

The coding applied by human coders was used to further analyze the characteristics of early 

linguistic environments of children with CIs to better understand the effect of noise on separability 

of child-directed speech from adult-directed speech. The goal was to understand how separation 

of child-directed speech  from adult-directed speech  may be affected by four levels of noise 

masking ranging from no degradation (clear speech) to the speech that is overlapped with other 

sound source signals, causing low, medium, or high levels of noise interference. To this end, the 

labeled utterances within each 30-second chunk of audio were analyzed to describe the audio 
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characteristics in feature space. Speech utterances were partitioned into frames of 100 ms, on the 

assumption that they were quasi-stationary over these short segments. Twelve Mel-frequency 

cepstral coefficients (MFCCs) were then extracted for each frame. The MFCC model is inspired 

by the human auditory system and approximates its filtering structure and frequency resolution 

(Shaneh & Taheri, 2009). 

Each speech interval was binned into 30-ms frames and then windowed using a Hamming 

window of the same length. Twelve MFCCs were captured for each frame. Next, the acoustic-

phonetic distance between adult-directed speech  and CDS speech segments at each of four levels 

of degradation was computed using Mahalanobis distance (MD) (Masnan et al., 2015). The change 

in the acoustic distance between child-directed speech and adult-directed speech across different 

levels of noise interference was then evaluated based on variation in MD. 

3.2.5. Variability across children in exposure to noise in their auditory environments 

We analyzed auditory environments of each child when no speech was present to create a 

noise profile. Within each 5% randomly selected 30-second interval of audio from daylong 

recordings, potions of audio that only contained noise without any other sorts of communicative 

activities (e.g., live speech, media) were identified. These portions were then analyzed to capture 

two general forms of information: (1) the spectral energy of the noise under four sub-bands of 0-

1, 1-3, 3-5, and 5-8 KHz; and (2) loudness of the noise measured base on a designed A-weighted 

sound level meter (Genuit, 1999; Schomer, Suzuki, & Saito, 2002; Su, Rubin, & Terman, 2004). 

Figure 3-4 shows the block diagrams of the steps implemented to calculate these two metrics of 

noise characteristics in environments of children with cochlear implants.  
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Figure 3-4. Block diagram of the approach to construct the noise profile for environmental noise 

experienced by each child with a CI. 

Recall that human analysts labeled noise only when it overlapped with speech. So, only 

portions of audio that were (a) within randomly selected 5% of 30-second audio intervals but (b) 

not coded as speech were analyzed to characterize noise in the environments in these steps. First, 

to estimate the spectral energy of the noise under each sub-band, each noisy audio interval (i.e., 

portion of selected 30-second intervals without any live or pre-recorded speech activities) was first 

framed and windowed using a Hamming window (using a frame and window length of 30 msec). 

The absolute Fourier Transform of noise signal in each frame was then calculated by performing 

a Fast Fourier Transform (FFT) analysis. The spectrum was divided into four sub-bands spanning 

0-1 kHz, 1-3 kHz, 3-5 kHz, and 5-8 kHz. The energy of the FFT spectrum under each of four sub-

bands was calculated to characterize the spectral behavior of noise experienced by each child in 

his/her environment. The spectral energy under each frequency sub-band was calculated as 

following: 

εN=
1

L
∑ |XN[k]|2fH

k=fL
                (3-4) 

where 𝑋𝑁[𝑘] is the spectrum of the noise signal obtained from applying FFT on the noise 

signal xN[n]. fL and fH are the lower and higher bounds of the frequency range. We defined four 

frequency bands to compute spectral energy of noise spectrum under these sub-bands. The spectral 

energy of noise under each sub-band was calculated to summarize the spectral characteristics of 
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each noise frame by four measures of spectral energy (εN0-1
, εN1-3

, εN3-5
, εN5-8

). εNfL-fH
is the energy 

of the noise spectrum between the lower frequency 𝑓𝐿 and the higher frequency 𝑓𝐻. The overall 

spectral energy of the noise for a recording was summarized by averaging the spectral energy 

under each sub-band over all frames within the selected regions of a recording. 

In addition, we derived an analysis of environmental noise based on two major principal 

dimensions of “loud-soft” and “high-low”. This involved first measuring the loudness of noises in 

children’s environments in regions of audio discussed above using the A-weighting sound level, 

which is a common measure for assessment of environmental sounds, particularly the level of 

noise exposure and annoyance (Parmanen, 2007; Schultz, 1978). The A-weighting filter is a filter 

structure designed to mimic the perceptual response of the human hearing system to loudness, 

particularly loudness due to noise; see Figure 3-5. The frequency attenuation of the A-weighting 

filter corresponds to an empirical average obtained across a broad sample of perceptual 

experiments. This filtering scheme is frequently used in sound level meters to appropriately 

measure loudness levels in dB. As Figure 3-5 shows, the A-weighting filter has a peak response 

near 3 kHz and its frequency response rapidly decreases for lower frequencies (i.e., below 100 

Hz). The attenuation is nonmonotonic across the frequency range; and shows a gradual decrease 

from 3000 Hz to 8 kHz. As previously discussed, this is a crude approximation of the human 

hearing system, allowing us to quantify the level of sound sources with respect to a standard 

“human” observer. 
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Figure 3-5. Frequency response of A-weighting filter in dB scale. 

We used an A-weighting filter to modify the frequency spectrum of noise sound to better 

mimic the human hearing response to various levels of noise loudness and annoyance in children’s 

auditory environments. The signal level is measured in the frequency domain by applying 

Parseval’s relation (Schomer et al., 2002). We evaluated the amount and degree of noise exposure 

for each child based on this A-weighted sound pressure level, and also the energy of spectrum 

under four frequency sub-bands. We then defined a noise exposure index which was taken to be 

the summation of the duration of each noisy frame multiplied by its loudness level.  

NEIi= ∑ dBAl×Tl
L
l=1                     (3-5) 

where 𝑁𝐸𝐼𝑖 is the noise exposure index for the recording 𝑖. 𝑑𝐵𝐴𝑙is the noise loudness level 

of frame 𝑙 in dBA (A-weighted decibels) and 𝑇𝑙 is the duration of the frame. This index thus reflects 

both the duration of noisy auditory input and its loudness and annoyance experienced by the target 

child in her/his auditory environments. 

3.3. Results 

3.3.1. Noise-adjusted estimates of numbers of words experienced by children with CIs 

Total number of words. We first focused on the change in the total number of words due 

to their co-occurrence with overlapped noise. Updated estimates of the total number of words 
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experienced by each child are shown in Figure 3-6. Blue bars show the estimates of words per day 

for the 14 children for the Traditional method that does not consider noise interference; these 

values are slightly different from those in Chapter 2 because the speech intervals that overlapped 

with microphone noise were excluded here in order to have fair comparison with results from the 

two updated methods based on human coding and SRMR-CI values. Orange bars reflect estimated 

numbers of useable words, updated to consider noise interference based on human auditory 

perceptual judgments of level of interference (human-based). Yellow bars reflect estimated 

numbers of useable words, updated to consider noise interference based on SRMR-CI. Comparing 

these bars for each child and across children highlights the detrimental effect of noise and/or 

reverberation on the number of useable words experienced by children in their language 

environments. 

 

 
Figure 3-6. The estimate total number of words per day for 14 children with CIs based on three 

approaches of traditional (unadjusted for noise), and for two methods adjusted for noise: human-

based, and SRMR-CI-based. 
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Figure 3-7 shows the amount and distribution of word loss in number of words (panel A) 

and in percent (panel B) obtained from two word updating methods of human-based and SRMR-

CI-based compared to the number of words estimated from traditional method for the 14 children 

with CIs participated in this study. Pair 1 is the word loss between traditional method and human-

based method and Pair 2 is the word loss between traditional and SRMR-CI-based method.  

On average, children heard around 37,000 less words per day after updating the number of 

words for the effect of noise based on human coding of level of noise interference (see Pair 1 in 

Figure 3-7A). This means the total number of words experienced by children decreased ~15.5%, 

on average, across children after updating the number of useful words based on human auditory 

perceptual judgments of the level of speech degradation (see Pair 1 in Figure 3-7B). Table 1- 

presents the measures of central tendency and variability for the amount and percent of the word 

lost because of noise. This table suggests a gap of 9,216 words loss per-day between the child 

living in environments with lowest quality of language input and the one experienced the linguistic 

environments with highest quality in terms of word loss. The degree of individual variability across 

children can be characterized by standard deviation of 2,134 words per day and IQR of 1,273 words 

per day based on human coding of the level of noise interference.  

  Updating the number of words based on SRMR-CI metric, children lost 4,978 words on 

average (Table 3-1 and pair 2 in Figure 3-7A). These figures imply that the amount of decline in 

exposure to useful words was approximately 21% on average across children after considering 

noise and reverberation as quantified by SRMR-CI (Table 3-1 and pair 2 in Figure 3-7B). Such a 

large difference in the effective number of words available to children with typical hearing and 

those with CIs indicates the high degree of risk faced by children with CIs for gaining less-

developed language skills compared to those with normal hearing. The high degree of variability 
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across children in the amount of words they experienced per day based on updated values from 

SRMR-CI-based method can be observed by SD = 2,288 words and IQR = 1,569 words (Table 3-

1). Although the loss in exposures to useful words increases after taking into account the effect of 

noise and reverberation together based on SRMR-CI, the variability and word gap is almost the 

same regardless of the updating approach (i.e., standard deviation of around 2,000 words and word 

gap of around 9,000 words per day). 

 

Figure 3-7. (A) The number of words lost per day and (B) percentage of words lost per day 

compared to the traditional method after considering the effect of noise on the number of total 

words based on human coding (Pair 1) and SRMR-CI metric (Pair 2). In each panel a scatter plot 

shows the individual children and boxplot summarizes the distribution of word loss for each child 

in his/her environment. The data points are laid over a 1.96 standard error of the mean (95% 

confidence interval) in red and a 1 standard deviation shown by blue lines. The solid and dotted 

red line show the mean and median, respectively. 
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Table 3-1. Measures of central tendency and variability for the total number of word loss per day 

and its percent loss per day for two comparisons between “traditional and human-based method” 

and “traditional and SRMR-CI method”. 

Pair of Method 
 Measures of Central Tendency and Variability 

 Min Max Range Mean SD Median IQR 

Pair 1: Traditional vs. Human 
Words  773 9,989 9,216 3,706 2,134 3,357 1,273 

Percent  10.6 22.5 11.9 15.5 3.9 14.3 5.1 

Pair 2: Traditional vs. SRMR-CI 
Words 

 
1,313 10,521 9,208 4,978 2,288 4,97 1,569 

Percent 16.6 24 7.4 20.9 2.2 21 2.8 

 

Two paired t-tests were conducted to determine whether there was a statistically significant 

differences between estimates derived from traditional measures and those derived from either the 

human-based or SRMR-CI-based approaches. The first test compared the difference between 

traditional and human-based methods for the total number of words (Table 3-2). Results of these 

paired t-tests showed that the difference in the estimates of total number of words were statistically 

significant when comparing traditional (M = 23,503, SD = 9,214) and human-based (M = 19,797, 

SD = 7,443) approaches (t(13) = 6.49, p < 0.05). The second test compared the difference between 

traditional and SRMR-CI-based methods for the total number of words (Table 3-2). The difference 

in the total number of words estimated by traditional and SRMR-CI-based (M = 18,525, SD = 

7,014) approaches was also statistically significant (t(13) = 8.1, p < 0.001. In terms of the 

difference between human-based and SRMR-CI-based approach in estimating the total number of 

words, there was an average difference of 1,272 words per day (t(13) = 3.99, p < 0.05). However, 

the Pearson's linear correlation coefficient of 0.99 (p < 0.05) suggests that these two approaches 

probably behave equally in terms of modeling the effects of noise and reverberation on speech 

intelligibility and the number of useful words. 
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Table 3-2. Table Results of statistical paired t-test to examine the significant effect of updating 

approaches of human-based and SRMR-CI-based on the amount of total words lost. 

Pairs of Method 

 Paired Differences 
 

 

 

 

T 

 

 

 

 

df 

 

 

 

 

p-value 

   
95% Confidence Interval of the 

Difference 

 Mean 
Std. 

Deviation 
Lower Upper 

Traditional vs. 

Human 
 3,795 2,133 2,473 4,937 6.49 13 <0.001* 

Traditional vs. 

SRMR-CI 
 4,978 2,288 3,657 6,299 8.14 13 <0.001* 

 

We were also interested in examining the distribution of the words that overlapped with 

other sources of sound or speech and clean words for each child. Figure 3-8 shows the distribution 

of clean and overlapped words for each child per day. The ratio on top of each bar graph is the 

overlap ratio, which is obtained by counting the number of words per day that overlapped with a 

source of noise and dividing that count to the original number of words per day. This figure 

suggests that the traditional approach of word counts is not able to appropriately represent the 

actual total amount of words experienced by children with CIs early after CI activation. A vast 

portion of words in the environments of children are contaminated by other sources of sound or 

speech that overlap with useful speech input, which is expected to impact the number of useable 

words heard by children with cochlear implants. 
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Figure 3-8. Distribution of clean and overlapped words in per-day estimates of the total number of 

words for each child. 

Figure 3-9 shows how the distribution of noise categories overlapping with speech varied 

across children’s auditory environments. As this figure suggests, two categories of overlapped 

speech (i.e., a competing talker) and mix noise had the greatest prevalence across children. The 

category of mix noise was for either multiple non-primary talkers overlapping or for two or more 

types of sound source above overlapping or alternating rapidly (see Table 2-5 and Appendix A in 

Chapter 2). The distribution of categories of noise types were, for the most part, highly variable 

across children. The overall pattern of distributions of noise overlapped with speech in the 

environments of these 14 children highlights the complexity of the auditory environments of 

children with CIs with respect to understanding speech.    
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Figure 3-9. Distribution of various types of noise overlapped with speech in the environments of 

the 14 children with CIs. The code for various noise type are Speech = overlap speech, SNG = 

singing, NSV=non-speech vocalization, MUS=music, NOISE-GEN=general noise, NOISE-

VOCAL=vocalization form other children, NOISE-BABB=multi-talker babbling; NOISE-

ANIM=animal noise, NOISE-MECH=mechanized noise sources, NOISE-WATER=running 

water sound, NOISE-WIND=wind sound, CHILD-SP=speech from target child, CHILD-

CRY=target child cry, CHILD-NSV=non-speech vocalization from the target child, MIX= 

multiple non-primary talkers overlapping or wo or more types of sound source above overlapping. 

See Appendix A for more information regarding these categories of noise or speech or sounds that 

overlapped with speech from the primary talker.       

The variability across children in the total number of words they experienced changes when 

we update the number of words based on effects of noise and reverberation co-occurring with 

experienced words. Figure 3-10 shows the distribution of children based on the total number of 

words estimated by three approaches of traditional, human-based (i.e., updated based on human 

perceptual judgments of the level of noise interference), and SRMR-CI-based (i.e., updated based 

on SRMR-CI values). Table 3-3 further presents the measures of central tendency and variability 

for the distribution of total number of words obtained from the three methods of traditional, human-

based, and SRMR-CI-based approaches. Within the sampled audio, children experienced an 

average of 23,503 total words per day based on the traditional method, where effect of noise and 

reverberation were not modeled in the usefulness of heard speech (SD = 9,215 and IQR = 5,729). 
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This average total number of words was updated to 19,797 words after adjusting for the effect of 

noise through human perceptual judgments of word masking and utterance intelligibility 

(SD=7,443 and IQR =5,207). Updating the number of words based on quantitative metric of 

SRMR-CI resulted in an average total number of words of 18,525 words per day with standard 

deviation of 7,014 words and inter-quantile range of 4,681 words. These results suggest that 

patterns of variability across children persist after updating the estimates of the number of words 

per day. However, children with CIs are expected to be disadvantaged more compared to children 

with normal hearing, due to the amount of word loss estimated by these updating approaches that 

consider the effect of noise and/or reverberation in children’s environments on the amount of 

useable words. 

 

Figure 3-10. Estimated number of total words per day from traditional, human-based, and SRMR-

CI-based approaches. 
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Table 3-3. Measures of dispersion and central tendency for the total number of words estimated 

through traditional, human-based, and SRMR-CI-based approaches. 

Method of Word Estimate 
 Measures of Variability 

 Min Max Range Mean SD Median IQR 

Traditional  6,183 44,317 38,134 23,503 9,215 23,928 5,729 

Human-based  5,409 34,328 28,918 19,797 7,443 20,254 5,2075 

SRMR-CI  4,869 33,797 28927 18,525 7,014 18,793 4,681 

 

Hart & Risley (1995) showed how the individual differences between children with normal 

hearing in the number of heard words, could by age 3, extend to a 30-million-word gap between 

children hearing the most and the least spoken input in their linguistic environments. They also 

showed that these substantial individual differences in the number of heard words was strongly 

correlated to children’s language outcomes. We next examined how the cumulative values of the 

total number of words changed after updating the number of words for the damaging effect of 

noise and/or reverberation to better estimate the useable words heard by each child. Figures 3-11, 

3-12, and 3-13 show cumulative values of per-day estimates of total words over five years after CI 

activation, calculated based on the same extrapolation method over years described in Chapter 2.  

These figures highlight the extent to which the size of variability across children in the 

amount of exposure to words can grow over years after CI implantation, assuming children 

experience linguistic environments with the same characteristics over these years. A word gap of 

approximately 40 million words (41.76 million words) in the total number of heard words is 

expected by three years post-implantation between the children with the most and the least spoken 

language experienced in their environments (Mean = 30.5 million words, SD = 16 million words) 

(Figure 3-11). This word gap turns to around 31.2 million words by this age after updating the 

number of useful words based on human perceptual judgments of word degradation (Mean = 21.7 

million words, SD= 8.1 million words) (Figure 3-12). Updating the number of words based on the 

SRMR-CI method leads to an estimated 31.7 million word gap between the children experiencing 
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the most and the fewest useable exemplars by the time they have 3 years hearing experience (Mean 

= 20.8 million words, SD= 7.7 million words) (Figure 3-13). The striking pattern in these estimates 

is the amount of variability across children that remains even after updating the number of words. 

 

Figure 3-11. The total number of words extrapolated over 5 years after CI activation for each child 

estimated based on traditional approach. Numbers 1-5 next to data point circles reflect estimated 

child-directed words after 1, 2, 3, 4, or 5 years. 

 

 



 

110 

 
Figure 3-12. The total number of words extrapolated over 5 years after CI activation for each child 

estimated based on updated number of words by human auditory perceptual judgments. Numbers 

1-5 next to data point circles reflect estimated child-directed words after 1, 2, 3, 4, or 5 years 

 

Figure 3-13. The total number of words extrapolated over 5 years after CI activation for each child 

estimated based on updated number of words by SRMR-CI metric. Numbers 1-5 next to data point 

circles reflect estimated child-directed words after 1, 2, 3, 4, or 5 years. 

Change in numbers of child-directed words. The positive impact of words experienced by 

children significantly increases if the words are directed to them, i.e., if speech is child-directed. 
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After investigating the effects of noise and/or reverberation on the total number of words, we 

turned here to examining how updating the number of words for co-occurrence with noise and 

reverberation affected the amount of high-quality child-directed speech experienced by each child. 

Figure 3-14 shows the amount of child-directed words per day estimated through traditional, 

human-based, and SRMR-CI-based methods as shown by blue bars, orange bars, and yellow bars, 

respectively. Comparing the number of child-directed words per day estimated from these three 

measures within and across children highlights the large, and variable, degree of disadvantage 

brought by exposure to noise and/or reverberation for children with CIs in their auditory 

environments. 

 
Figure 3-14. The estimate total number of child-directed words per day for 14 children with CIs 

based on three approaches of traditional (unadjusted for noise; blue line), and for two methods 

adjusted for noise: human-based (orange), and SRMR-CI-based (yellow). 

Figure 3-15 shows the amount of word loss per day (panel A) and the percent of word loss 

per day (panel B) for child-directed speech based on our two updating approaches, human-based 

and SRMR-CI-based. The measures of central tendency and variability for the amount and percent 

of child-directed word loss are further presented in Table 3-4. On average, children lost 1,616 
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words per day due to the effect of noise that co-occurred with words. As this figure shows, there 

was a loss of 15.4% of child-directed words after considering the effect of noise based on human 

perceptual judgments of levels of inference (Table 3-4). The standard deviation of 1,414 in word 

loss and the range of 5,297 word loss (Table 3-4) shows the degree of variability and the range of 

difference across children experiencing high-quality child-directed words in the presence of 

environmental noise. 

 

 
Figure 3-15. (A) The amount of words lost per day and (B) percent of words lost per day compared 

to the traditional method after considering the effect of noise on the number of total words based 

on human coding (Pair 1) and SRMR-CI metric (Pair 2). 

Results of Figure 3-15 (pair 2) represents the amount and percent of child-directed word 

loss for each child after updating the number of child-directed words based on the SRMR-CI 

metric. Updating the number of child-directed words based on the SRMR-CI approach suggests 

that, on average, children lost the benefit of approximately 1,750 words per day due to background 

noise and/or reverberation, which corresponds to a loss of 17.6% of child-directed words (Table 

3-4). The variability across children in the amount of word loss per day based on the SRMR-CI 
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metric amounted to a standard deviation of 1,262 words and an interquartile range (IQR) of 1,370 

words. 

Table 3-4. Measures of central tendency and variability for the number of child-directed words 

lost and corresponding percentage word loss for two comparisons between traditional vs. human-

based and traditional vs. SRMR-CI updating methods. 

Pair of Methods 
 Measures of Central Tendency and Variability 

 Min Max Range Mean SD Median IQR 

Traditional-Human 
Words  192 5,490 5,297 1,616 1,414 1,133 1,146 

Percent  9 26.9 17.9 15.4 4.6 13.6 6 

Traditional-SRMR-CI 
Words 

 
290 5,239 4,949 1,750 1,262 1392 1,370 

Percent 14.6 21.6 7 17.6 2 17.4 2.6 

  

Two paired t-tests were conducted to examine whether the difference between traditional 

and human-based methods and also between traditional and SRMR-CI-based methods had 

statistically significant effects on the estimated numbers of child-directed words. Table 3-5 

presents the results of these two paired t-tests. This effect of noise and reverberation in children’s 

linguistic environments on the amount of word loss was statistically significant both based on 

human-based word updating approach (t(13)=4.27, p < 0.05) and the SRMR-CI-based one 

(t(13)=5.18, p < 0.05). 

Table 3-5. Results of statistical paired t-test to examine the significant effect of updating 

approaches of human-based and SRMR-CI-based on the amount of total words lost. 

Pairs of Method 

 Paired Differences 
 

 

 

 

t 

 

 

 

 

df 

 

 

 

 

p-value 

   
95% Confidence Interval of the 

Difference 

 Mean 
Std. 

Deviation 
Lower Upper 

Traditional vs. 

Human 
 1,616 1,414 799 2,433 4.27 13 0.00* 

Traditional vs. 

SRMR-CI 
 1,750 1,262 1,021 2,478 5.18 13 0.00* 

   

We examined what portion of high-quality child-directed words in the environments of 

each child overlapped with one or more competing sources of speech degradation. Figure 3-16 

shows the distribution of clean and overlapped words per day in child-directed speech experienced 
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by each child in his/her environment. The ratio on top of each bar in the graph is the overlap ratio, 

which is obtained by counting the number of words per day that overlapped with a source of noise 

and dividing that count to the original number of words per day. This plot suggests that some 

children who appeared to be relatively advantaged when considering traditional, raw word counts 

might not be so advantaged after considering the noise that co-occurred with words in their 

environments; see Child 6 and Child 7 as examples. 

 
Figure 3-16.  Distribution of clean and overlapped words in per-day estimates of the number of 

child-directed words for each child. 

Figure 3-17 summarizes comparisons of estimated numbers of child-directed words 

derived from a traditional approach and the two novel approaches that consider noise. Table 3-6 

further shows the measures of central tendency and variability for child-directed words obtained 

from these three approaches. The variability across children in the amount of child-directed words 

based on traditional approach are characterized by SD= 7,217 words per day and IQR = 7,365 

words per day (Table 3-6). The individual variability across children suggested by the human-

based approach is characterized by SD = 5,883 words and IQR = 5,812 words. The variability 
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across children in the amount of child-directed words based on SRMR-CI approach are 

characterized by SD= 5,962 words and IQR = 6,034 words (Table 3-6).   

 
Figure 3-17. Estimated number of child-directed words per day from traditional, human-based, 

and SRMR-CI-based approaches. 

Table 3-6. Measures of dispersion and central tendency for number of child-directed words 

estimated through traditional, human-based, and SRMR-CI-based approaches. 

Method of Word Estimate 
 Measures of Variability 

 Min Max Range Mean SD Median IQR 

Traditional  1,541 29,767 28,226 10,111 7,217 8,350 7,365 

Human-based  1,348 24,278 22,929 8,495 5,883 7,236 5,812 

SRMR-CI  1,251 24,528 23,277 8,361 5,962 7,075 6,034 

 

Previous studies showed that the cumulative number of child-directed words experienced 

by children during early childhood predicted their language and cognitive outcomes at 3 years old 

and later in school (Hart & Risley, 1995; Hoff, 2006; Weisleder & Fernald, 2013). Therefore, we 

estimated the cumulative number of child-directed words experienced by each child over years 

after CI implantation through performing the same extrapolation on the number of child-directed 

words per day as calculated from traditional, human-based, and SRMR-CI approaches. Figure 3-

18, 3-19, and 3-20 present the extrapolated data for the 14 early-implanted children in this study 
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derived from the three approaches of number of words estimation. The word gap between children 

with the highest-quality linguistic environments and lowest-quality environments for the number 

of child-directed words experienced by hearing age 3 was around 30 million words (30.9 million 

words, mean = 11.1 million words, SD = 7.9 million words), which is close to what was reported 

by Hart and Risley (1995). However, this gap in the number of child-directed speech slightly 

reduced to 25.1 million words (mean = 9.3 million words, SD = 6.4 million words) after updating 

word estimates based on human perceptual judgments. The word gap between children with 

lowest- and highest-quality language experience was estimated at a similar value of around 25.5 

million words by three years after implantation based on SRMR-CI method (Mean = 9.2 million 

words, SD = 6.5 million words).    

 
Figure 3-18. The number of child-directed words extrapolated over 5 years after CI activation for 

each child based on the traditional approach. Numbers 1-5 next to data point circles reflect 

estimated child-directed words after 1, 2, 3, 4, or 5 years. 
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Figure 3-19. The number of child-directed words extrapolated over 5 years after CI activation 

estimated based on updated human auditory perceptual judgments of the level of noise 

interference. Numbers 1-5 next to data point circles reflect estimated child-directed words after 1, 

2, 3, 4, or 5 years.  

 

 
Figure 3-20. The number of child-directed words extrapolated over 5 years after CI activation 

estimated based on updated word counts based on SRMR-CI metric. Numbers 1-5 next to data 

point circles reflect estimated child-directed words after 1, 2, 3, 4, or 5 years. 
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The effect of noise degradation and speaking style on variability across children. Speech 

with the highest quality in the environments of children with cochlear implants is child-directed 

speech with no degradation (i.e., clean). Figure 3-21 summarizes the patterns of variability across 

individual children with CIs in the number of experienced words based on two factors of speaking 

style (child-directed vs. total speech) and environmental noise and reverberation. Human-based 

and SRMR-CI based approaches provide higher resolution for updating the number of useful 

words experienced by each child and the numbers compared to simply making a binary decision 

of clean vs. overlapped in considering whether a word exemplar is useful for a child for building 

vocabulary. These plots point out two important messages in characterizing the quality and 

quantity of early linguistic environments in children with CIs: (1) environmental noise and 

reverberation may greatly reduce the quality and quantity of early linguistic input experienced by 

children with CIs compared to children with normal hearing, as highlighted by word loss of around 

9,000 words per day estimated for children with CIs compared to unadjusted word estimates 

(analogous to what a normal ear is expected to hear), and (2) the variability across children in the 

amount of high-quality words experienced per day remains substantial, even after updating the 

number of words based on the effects of noise and reverberation in children’s auditory 

environments. 
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Figure 3-21. Distribution of children for the total number of words per day (first column), 

clean/updated number of words per day (second column), and clean/updated number of child-

directed words per day (third column) they experienced in their environments, estimated based on 

(A) traditional, (B) human-based, and (C) SRMR-CI-based approaches. 
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3.3.2. Effect of noise on acoustic separability between child-directed speech and adult-

directed speech 

In Figure 3-22, the average value of Mahalanobis distance between child-directed speech 

and adult-directed speech intervals at each level of interference are shown, averaged across 14 

children. This figure suggests an opposite pattern compared to our expectation, which had been 

for a higher level of noise interference to result in lesser acoustic distance between child-directed 

and adult-directed speech. Possible reasons for such an unexpected pattern will be discussed in the 

Discussion section.            

 

Figure 3-22. Mean and standard deviation of Mahalanobis distance between child-directed and 

adult-directed speech intervals at four levels of speech degradation. 

3.3.3. Variability across children with cochlear implants in the profile of ambient noise in 

their linguistic environments 

Variation in noise energy spectrum. Figure 2-23 shows the average spectral energy for 14 children 

calculated over snippets of noise identified within 30-second audio samples. The patterns of 

variation in spectral energy in these plots show that the average spectral distribution of noise is 

fairly similar across children’s auditory environments. Further, average noise profiles reveal higher 
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amounts of average spectral energy in lower frequency regions (0-1 kHz) compared to higher 

frequency regions of the spectrum. 

 
Figure 3-23. The average spectral energy of noise under four sub-bands experienced by 14 children 

with CIs. 

Figure 3-24 shows the distribution of noise energy in environments of the 14 children as a 

scatterplot. The plot converges with the results shown in Figure 3-23 in suggesting that children 

differ from each other mainly in energy of low-frequency noise between 0-1 kHz.      



 

122 

 
Figure 3-24. Distribution of children based on the experienced average spectral energy of noise 

under four sub-bands of 0-1,1-3, 3-5, and 5-8 kHz.      

Variation in noise loudness. Figure 3-25 presents a histogram of dBA values for frames of 

noise ranging from soft to loud in the environments of the children. As is clear, children experience 

noise with various loudness levels and durations. Some children, such as Child 13, were not 

exposed to loud noises very often, and most of the noise in his/her environment had less than 40 

dBA loudness. Figure 3-26 shows the distribution of children in terms of exposure to noise 

measured by the noise exposure index and 90 percent noise exposure index for each child. The 

ninety percent noise exposure index was calculated by including only the frames for which the 

dBA loudness exceeded 90 dBA. Table 3-7 shows the measures of central tendency and variability 

for both noise exposure index and 90 percent noise exposure index. The values of standard 

deviation and IQR suggest that children vary largely in terms of exposure to noise in their auditory 

environments. 
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Figure 3-25. Histogram of noise loudness for each child. 

 
Figure 3-26. Variability across children in exposure to noise measured by (A) noise exposure index 

for all frames, (B) 90 percent noise exposure index, i.e., noise exposure index for noise frames 

with loudness of higher than 90 dBA.  
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Table 3-7. Measures of central tendency and variability for two measures of noise exposure: noise 

exposure index and ninety percent noise exposure index. 

Measure of Noise Exposure 
 Measures of Variability 

 Min Max Range Mean SD Median IQR 

Noise Exposure Index (x103)  34.5 167.5 133 82.4 46.8 67.8 66.978 

90% Noise Exposure Index (x103)  4.5 27.1 22.6 11.9 7.4 9.4 13.3 

 

Finally, the quality of exposure to noise for each child is quantified based on four 

descriptors that are commonly used to monitor the loudness and annoyance of environmental 

noises (Bockstael et al., 2011; Parmanen, 2007; Schomer et al., 2002). These descriptors are 

obtained from the histogram of dBA for each child. Ln is the noise level exceeded n% of the time. 

For instance, L50 is the median level that reflects the noise level that is exceeded 50% of the time 

during measuring the noise interval. Leq is the mean level of the noise. The difference between the 

mean level and the median level (L50-Leq) is shown as an index of the direction and amount of 

skewness of noise loudness with respect to the softest and loudest noise level in the noise profile 

of each child (Figure 3-27). For example, for Child 1, L50-Leq = 1.6 is positive, which means the 

distribution of noise loudness is negatively skewed, suggesting that child 1 experienced relatively 

high amounts of loud noise. On the other hand, L50-Leq for child 13 is negative with a value 

around -12.5, which means that the distribution of noise level is positively skewed for this child. 

Therefore, this child experienced a relatively healthy auditory environment in terms of low 

exposures to loud noise. Figure 3-28 shows variability across children in amount of loud noise 

they experienced in 5% audio samples. This figure suggests that children vary considerably in the 

amount of loud noise they experienced in their environments.           
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Figure 3-27. Noise descriptors for 14 children with CIs. 

 

   

3.4. Discussion 

In the present study, audio recordings from linguistic environments of 14 prelingually deaf 

children with sensorineural hearing loss were analyzed to investigate how environmental noise 

and/or reverberation impact the estimates of number of useable words experienced by children in 

their environments. We further used the updated estimates of number of total words and child-

directed words for each child to examine individual differences in early linguistic environments 

for these 14 early-implanted children. 

 

 

Figure 3-28. Distribution 

of children based on 

L50-Leq index. 
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The influence of environmental noise and reverberation on numbers of total words and child-

directed words 

The results from this study demonstrated that a significant number of both total words and 

child-directed words are likely lost in children’s language environments due to background noise 

and/or reverberation. Updating the number of words based on human perceptual judgments of the 

level of noise interference showed a statistically significant decline of ~15.5%, on average, in 

number of useful words experienced by children with CIs per day in their environments. A similar 

degree of word loss per day (~21%) was obtained by updating the number of words experienced 

by children with CIs after adjusting numbers of useable words based on the SRMR-CI 

computational metric of speech intelligibility tailored to listeners with CIs. These results from 

analyzing speech input experienced by children with CIs in naturalistic environments corroborate 

prior findings on the large detrimental effect of noise and reverberation on word and phoneme 

recognition from lab and virtual classroom (Caldwel & Nittrouer, 2008; Caldwell & Nittrouer, 

2013; Neuman et al., 2004), within a more ecologically valid investigation. 

Differential effect of noise across children’s language environment 

The results from this study demonstrated large individual differences across children in the 

amount of total words lost in their environment due to noise and/or reverberation. The degree of 

variability across children in the amount of word loss per day was comparably large across 

updating approaches derived from human-based noise level interference (SD ≅ 2,000 words loss 

per day, mean ≅ 3,700 words loss per day) and the quantitative SRMR-CI metric (SD ≅ 2,200 

words loss per day, mean ≅ 4,900 words loss per day). This pattern of individual differences in 

the amount of total word loss may be interpreted to suggest that some children are at higher risk 

of developing delayed receptive and expressive vocabulary skills compared to others. However, 
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there was a significant correlation between number of words per day obtained from traditional 

method and number of words per day obtained from each of the updated approaches (i.e., human-

based and SRMR-CI-based) (r = 0.99, p-value < 0.001), suggesting that although individual 

children were differentially impacted by noise and reverberation, the final impact on the absolute 

number of words experienced were almost the same. The updated number of child-directed words 

experienced by each child per day based on SRMR-CI method is expected to provide the most 

accurate picture of the quality by which these children perceived the child-directed words in their 

environments compared to the traditional and human-based methods. 

Although the differences among children in amount of word loss is large, variability across 

children in total words experienced remained sizable (SD = 7,443 words for human-based word 

adjustments and SD = 7,014 words for SRMR-CI-based word adjustments). Updating the number 

of words based on the effect of environmental noise and reverberation is expected to provide a 

better representation of the quality and quantity by which children experienced words in their 

environment. These results also showed that individual children were differentially impacted by 

the effect of noise and reverberation on the number words in their environment, which may 

conceivably explain an important portion of variability in language outcomes of these children. 

The effect of noise on separability of child-directed speech from adult-directed speech 

The current research used a signal-based approach to examine how the separability of 

child-directed speech from adult-directed speech is influenced by the level of noise interference 

with speech. Contrary to our initial expectation that the acoustic distance between child-directed 

and adult-directed speech would decrease as the level of noise interference increases, a higher level 

of background noise increased the acoustic distance between child-directed speech and adult-

directed speech. Our expectation was that noise that overlaps with speech would disrupt acoustic 
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cues that are responsible to distinguish child-directed speech from adult-directed speech. This 

unexpected result might be due to multiple sources of variability that were not controlled in this 

study due to the nature of the study design. One of these uncontrolled factors was the speech 

context that was not necessarily the same across two categories of child-directed and adult-directed 

speech utterances. Another uncontrolled factor related to the variable spectral characteristics of 

background noise interfering with speech, which was not controlled due to the exploratory nature 

of this study. Although the level of noise interference was controlled at four levels of null/clean, 

low, medium, and high, the variability in spectral characteristics of noise could lead to higher 

distances between MFCCs of the two classes of child-directed speech and adult-directed speech 

samples when the level of noise was higher, as the results suggest. Future perceptual and 

computational modeling studies with careful design will elaborate our understanding of how 

various levels of noise may impact separability of child-directed speech from adult-directed 

speech. Being able to acoustically separate child-directed speech from adult-directed speech is the 

preliminary step for children to prefer child-directed speech over adult-directed speech (Yuanyuan 

Wang, Bergeson, et al., 2018). 

Variability across children in the exposure to noise 

We also analyzed the non-speech regions in auditory environments of these 14 early-

implanted children to characterize only environmental noise and identify the extent to which 

children with CIs are differentially exposed to noise. Children clearly differed descriptively in the 

extent to which they were exposed to different sources of noise in their environments. However, 

our results suggest that children are not largely different in terms of the spectral characteristics of 

noise in their environment when focusing on the variation of spectral energy of noise in the 
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proposed four frequency bands. Specifically, our results suggested that children principally 

differed in the extent to which they were exposed to low-frequency (< 1 kHz) energy. 

Further, we examined how children varied in the amount of time they were exposed to loud 

noises in their environments. Two measures of noise exposure index and L50-Leq index were 

calculated to assess the extent of difference between children in their auditory diets. Our evaluation 

of the amount of loud noise in the environment of children showed that children varied widely in 

exposure to noise, ranging from as small as noise exposure index of 34.5x104 for some children to 

as large as noise exposure index of 133x104 for others with a large standard deviation of 46.8x104 

in a day. The same large amount of individual difference in noise exposure index was shown when 

only noise frames with loudness of higher than 90th percentile were included for noise exposure 

index calculation (range=22.6x104 and SD= 7.4x104). We further assessed the annoyance of 

environmental noise for each child based on four commonly used descriptors of L10, L50, Leq, 

and L90 (Bockstael et al., 2011; Parmanen, 2007; Schomer et al., 2002). The variability of L50-

Leq as an index of the direction and amount of skewness of noise loudness with respect to the 

softest and loudest noise level showed that children vary largely in exposure to noise in their 

auditory environments. The variability of this index was quantified by standard deviation of 3.9 

around mean of -0.85. This large variation among children in their auditory diets may contribute 

to the observed variability in language outcomes of these children with CIs. Therefore, exposure 

to sudden high-density noise or chronic noise with high energy may add to other challenges that 

children with CIs may face in their auditory environments, potentially contributing to differences 

among children in language and cognitive development. 

Overall, the results from this study have provided new evidence of how the quality and 

quantity of language experienced by children with CIs during the first year after implantation 
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significantly decreases due to background noise and/or reverberation in their environments. Based 

on rigorous analysis of samples of audio recorded from the auditory environments of 14 children 

with CIs, we showed that the number of total words and child-directed words experienced by 

children with CIs in a day significantly decreased because of the disrupting effects of background 

noise and/or reverberation on speech recognition – as modeled by two word count updating 

approaches: (1) human perceptual judgments of levels of noise interference, and (2) a quantitative 

measure of speech intelligibility tailored to listeners with CIs which is called the speech-to-

reverberation modulation energy ratio for CI users (SRMR-CI) (Falk et al., 2015; Santos & Falk, 

2014). These findings corroborate prior findings showing children with CIs are extremely 

susceptible to noise and reverberation in recognition of speech at multiple levels of granularity 

from phonemes, to words, to utterances (Caldwell & Nittrouer, 2013; Iglehart, 2009; Neuman et 

al., 2004).  

This study marks one step further in comparing to prior studies in findings of sources of 

variability in language outcomes of children with CIs. However, we have shown the extent to 

which the number of total words and high-quality child-directed words are influenced by noise 

and reverberation in naturalistic environments. Furthermore, the results from this study suggested 

that children with CIs are differentially impacted by the amount of noise and reverberation in their 

environments that co-occurred with speech. These results suggest that some children are relatively 

at higher disadvantage compared to others due to degradation imposed by noise and reverberation 

in their environments. 

We also demonstrated that early language environments of children with CIs are largely 

variable across children in amounts of loud environmental noise in a day, which suggests that 

distinct profiles of noise in the auditory environment may be a contributing factor for individual 
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variability in language outcomes of children with CIs. The findings from this study highlight the 

need for monitoring daily auditory environments of children with CIs for the amount of high-

quality child-directed speech and exposure to environmental noise and reverberation. These results 

provide novel evidence for parents, caregivers, and clinicians to pay careful attention to 

environments of their children, particularly during early childhood after cochlear implantation 

when children’s brain is highly plastic and sensitive to learn speech units (i.e., phonemes, syllables, 

words, and sentences) and rules (i.e., semantic, phonotactic, and syntactic). 

Limitations of this study 

This study is restricted by the same limitations discussed in the discussion of Chapter 2. In 

addition to those limitations, there are some limitations with the computational approaches that are 

proposed in this study to update the number of words based on their co-occurrence with noise and 

reverberation in the environment. In particular, to translate the human coding for level of noise 

interference into updates of the number of words, a simple mapping function was proposed that 

relied on an assumption of linear and equal distance between low, medium, and high levels of 

noise interference. Further auditory perceptual studies should be planned to investigate the validity 

of this assumption. 

 Another limitation of these analyses related to lack of robustness of the SRMR-CI 

metric to sources of artifacts in the recorded audio. This metric of speech intelligibility has been 

only tested on controlled speech stimuli from standard datasets. We used this metric to analyze 

audio environments of children with CIs recorded by LENA device under the major assumption 

that this metric would be robust to various artifacts related to recording device and environment. 

An important line of research for the future is to enhance this metric to be reliable for analyzing 

audio signals recorded from naturalistic environments. In addition, our noise-adjustment approach 
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included two other steps following calculation of a SRMR-CI metric. In the first step, raw metrics 

of SRMR-CI were scaled to 0 and 1. Several scaling function were tested to address inconsistent 

reports of the type of scaling used in the relevant papers (Falk et al., 2015; Santos, Cosentino, 

Hazrati, Loizou, & Falk, 2013; Santos & Falk, 2014). The minmax formula was similar to the 

approach in these papers and provided sensical results. The second step involved constructing a 

sigmoidal function, which was used to map an SRMR-CI value to its corresponding speech 

intelligibility percentage value, which depended on the distribution of SRMR-CI values for speech 

utterances categorized as clean speech by human analysts. Therefore, because SRMR-CI is a 

signal-based approach, its value for utterances in clean category might be affected by uncontrolled 

factors of the natural environments such as distance of microphone from talkers.  The second step 

involved updating the number of words by simply multiplying numbers of words in a speech 

utterance by the percent speech intelligibility. However, this mapping has not yet been validated 

and requires further investigation in the future. 

Furthermore, although we used the results of inter-rater reliability on the amount of 

agreement between human analysts to check all the noise coding, coding the level of noise might 

still have been negatively impacted by the performance of some coders. This was due to this 

study’s limitation in having access only to audio, not video, recordings, leading to increased 

ambiguity for coders about sources of noise. 

Despite these limitations and the exploratory nature of this study, the study is nevertheless 

conceptually and methodologically novel in terms of focusing on an unexplored and crucial aspects 

of early linguistic input. In particular, this is the first study to examine to estimate effects of noise 

and reverberation on estimates of the amount of words experienced by children with CIs in natural 

environments. We have demonstrated how children with CIs may be doubly disadvantaged in 
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experiencing high-quality language input: both due to degradation associated with electronic 

hearing and environmental noise and reverberation as well as due to substantial variability in the 

amount and quality of linguistic input available to them. The results from this study have 

highlighted the great difficulties that children with CIs face in understanding speech in naturalistic 

environments.  As an at-risk population, children with CIs face the task of building a mental 

lexicon from heard exemplars of words which are especially susceptible to signal degradation due 

to environmental noise and reverberation. The findings from this study have provided evidence for 

clinicians, parents, and caregivers that early linguistic environments of children with CIs are highly 

complex. Our results highlight that effective intervention strategies will likely require developing 

means of reducing the detrimental impact of noise and reverberation on children’s language 

learning and cognitive development.                   
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CHAPTER 4: Toward understanding effects of quality and quantity 

of early language in linguistic environments in children with CIs on 

language outcomes 

4.1. Introduction 

For children with typical hearing, prior studies have established that the quality and 

quantity of language input early in childhood has an important impact on their later language 

outcomes. However, the extent to which quality and quantity of language input to children with 

CIs plays a role in shaping their language outcomes is unclear. The purpose of the study presented 

in this chapter was to begin to establish links between differences in early language input for a 

small sample of children with CIs and the language outcomes in this population. In so doing, the 

analyses presented in this chapter aim to provide an initial test of the hypothesis that language 

input factors shape development of language outcomes in children with CIs. An exploratory 

approach was therefore taken in this chapter which was intended to investigate the extent to which 

variability in language input to a sample of children with CIs, as indexed by variability measures 

developed in Chapters 2 and 3, could conceivably account for variability in a set of outcome (or 

predicted) variables, as measured by standard clinical speech-language measures. These statistical 

relationships were examined to determine the strength of correlations between predictor variables 

and predicted variables for the small set of children with CIs examined in this dissertation project. 

Background: Review of language input factors which affect language outcomes in children with 

typical hearing 

Prior chapters discussed several factors that have been identified to contribute to large 

individual differences in speech and language outcomes in infants with normal hearing (Hart & 
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Risley, 1995; Hoff-ginsberg & Hoff-ginsberg, 1985; Hoff, 2003, 2006) as well as those with CIs 

(Connor et al., 2000; Geers, Hayes, & Louis, 2009; Geers, Nicholas, & Moog, 2007b; Niparko & 

Tobey, 1989; Peterson et al., 2010; Svirsky et al., 2004b; Szagun, 2001; Szagun & Stumper, 2012; 

Tomblin et al., 2005). Among these factors, very few studies have provided preliminary evidence 

that quality and quantity of early linguistic environment plays a crucial role in the development of 

speech and language in children with CIs. To the extent that this has been tested, studies have 

primarily focused on samples of continuous speech recorded in constrained situational settings, 

rather than actual linguistic environments of children with CIs (Szagun & Schramm, 2016; Szagun 

& Stumper, 2012). Therefore, there is limited knowledge about the relationship between aspects 

of early linguistic input and language outcomes of this at-risk population based on naturalistic data. 

To begin to understand these relationships, in this chapter’s analyses we used the language 

measures derived in Chapters 2 and 3 to investigate the relationship between lexical, 

morphosyntactic and social-pragmatic aspects of early language input and language outcomes of 

the sample of early-implanted children with CIs under study. 

Multiple factors associated with variability in language input have been identified 

previously as likely influencing language outcomes in typically-hearing children. As discussed in 

Chapter 2 and 3, child-directed speech is one of the key components of early linguistic 

environments that enhances development of lexical, semantic, and syntactic knowledge (Barnes et 

al., 1983; Huttenlocher et al., 1991; Szagun & Stumper, 2012) and improves children’s cognitive 

processing skills  (Bradley & Caldwell, 1976a, 1976b; Clarke-Stewart, 1973; McCartney, 1984). 

Experiencing linguistic environments with a relatively higher amount of child-directed speech 

facilitates language learning through exposing children to more diverse vocabulary (Hart & Risley, 

1995; Hoff & Naigles, 2002), higher instances of word repetition (Hoff-Ginsberg & Shatz, 1982), 
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and more instances of semantically coherent utterances (Golinkoff et al., 2019; Hoff-Ginsberg, 

1991, 1994). Collectively, these prior studies suggest that children benefit from child-directed 

speech due to its high-quality lexical, morphosyntactic and social-pragmatic information. Child-

directed speech is therefore expected to be particularly crucial for children with CIs who may face 

greater challenges in listening and understanding overheard speech that is not spoken directly to 

them. 

Consistent with the likely advantages of child-directed speech for children with CIs, a few 

studies have begun to show that children with CIs who experience language input with higher 

quality and quantity early in childhood showed better language development (DesJardin & 

Eisenberg, 2007; Fagan, M. K., Bergeson, T. R., & Morris, 2014; Szagun & Schramm, 2016; 

Szagun & Stumper, 2012). In particular, Szagun and Stumper (2012)’s study on 25 early-implanted 

children with CIs showed that children’s MLU or expansions at 24 and 30 months post-

implantation were predicted by maternal MLU or expansions at 12 months and 18 months after 

implantation. A large portion of the variance in children’s MLU (between 21% and 44%) was 

explained by maternal MLU. The same pattern was reported for maternal expansion, which 

accounted for 19% to 25% of variance in children’s MLU. Notably, the effect of the quality of 

maternal input on children’s language outcomes was greater than the effect of age at implantation. 

A similarly strong association between maternal input and children’s language outcomes was 

reported by Szagun and Schramm (2016). However, these two studies focused primarily on 

differences in grammatical structure of language input (Szagun & Schramm, 2016; Szagun & 

Stumper, 2012) and parental style (DesJardin & Eisenberg, 2007) and were not based on analyzing 

the actual home environments of children with CIs. These studies also did not address how 
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disassociating the effect of language input based on child-directed versus overheard speech might 

influence contribution of various properties of language input on children’s language outcomes.    

Background: Factors of language input which may uniquely affect language development in 

children with CIs 

An innovation of the present study involved considering in detail the potential impacts of 

ambient noise and reverberation on language development in children with CIs. For children with 

CIs, the amount of noise and reverberation experienced while listening to speech is expected to be 

a factor that might dramatically impact language development, by affecting the quantity and 

quality of speech-language input signals. In particular, noise and reverberation might reduce the 

quantity of words accessible as language input to children with CIs, because words which occur 

in the presence of substantial noise and reverberation may be too degraded to be understood as an 

instance of the spoken word. A focus of the present dissertation was therefore to consider the 

possibility that noise-adjusted word counts  – estimates of the numbers of total words or child-

directed words that were minimally impacted by noise – might better predict language outcomes 

than raw, traditional word counts which did not consider signal degradation due to noise. 

Complementary research supports the premise that noise and reverberation significantly 

affect perception of audio signals – including speech – experienced by children with CIs. Children 

with CIs face several challenges including appreciating music, listening and talking over 

cellphones, understanding speech in noisy and reverberant conditions. Among these challenges 

speech recognition is noisy and/or reverberant conditions is the most dangerous factor that may 

impact their language outcomes and contribute to individual differences (Caldwel & Nittrouer, 

2008; Neuman et al., 2004; Neuman, Wroblewski, Hajicek, & Rubinstein, 2010b). This issue is of 

substantial importance, considering that users of CIs spend significant portions of their daily lives 
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in noisy environments (Busch et al., 2017). In one study (Caldwell & Nittrouer, 2013), normal 

hearing children outperformed children with CIs by about 25% and 16% on recognizing phonemes 

and words, respectively, in noisy conditions. Listeners with CIs have higher difficulties in 

understanding speech in noise compared to understanding soft speech (Firszt et al., 2004). Natural 

auditory environments present highly complex conditions involving background noise and/or 

reverberation which can add to challenges of recognizing soft speech. Therefore, characterization 

of quality and quality of language input without considering effects of noise and reverberation will 

present an incomplete representation of what children with CIs experience in processing and 

learning speech and language.            

Current study 

Building on prior findings with typical hearing children and children with CIs, this study 

aimed to provide preliminary results by exploring the potential impacts of multiple variables 

associated with linguistic environments on standard scores of language outcomes in a small group 

of children with CIs. The relation between characteristics of early linguistic input and language 

outcomes were explored using standard statistical analysis to gain an initial understating of the 

contribution of these factors on children’s language outcomes. We will also present preliminary 

results of how noise-adjusted total word counts and amount of noise-adjusted child-directed words 

may affect prediction of language outcomes.  

The following research questions were addressed in the present study: 

Question 1: Do variability in the total words per day or child-directed words per day experienced 

by children with CIs predict language outcomes (from clinical speech-language assessments), 

without regard to noise and reverberation? 
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We hypothesized that variability in child-directed words will predict variability in language 

outcomes. It was also hypothesized that child-directed speech provides better language input to 

foster language development in children with CIs than total speech. We hypothesized that child-

directed speech provides better language input to foster language development in children with 

CIs than overheard speech. This led to the prediction that variability in child-directed words would 

better predict language outcomes than variability in total words. 

Question 2: Do noise-adjusted estimates of words per day (total or child-directed) predict 

outcomes better than traditional estimates that do not consider degradation due to noise and 

reverberation? 

We hypothesized that noise-adjusted estimates of child-directed words provide the best 

prediction of language outcomes. 

Question 3: What is the relative contribution of lexical, morphosyntactic, and social-pragmatic 

measures of language input on language outcomes of children with CIs at 6 months post-

implantation?  

We hypothesized that children who experienced richer lexical, morphosyntactic, and 

social-pragmatic language environments early in childhood would show better language outcomes.    

Question 4: What is the best way of taking into account noise and degradation to language input 

– human-based judgments or SRMR-CI estimates? 

We hypothesized that SRMR-CI will better represent the effect of noise and reverberation 

on speech intelligibility compared to human-based judgments. 
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4.2. Methods 

4.2.1. Participants 

Thirteen children from the total of fourteen children with CIs studied in prior chapters were 

further studied in this chapter. Language outcomes were not available for Child 14; therefore, this 

child was excluded from the analyses of this chapter.  

4.2.2. Measures of language input (i.e., predictor variables) 

The general approach taken in this chapter was to compute statistically the strength of 

predictive relationships between various predictor measures described in Chapters 2 and 3 and 

predicted variables, namely, language outcome measures determined from the Preschool 

Language Scale-Fifth Edition (PLS-5; Zimmerman, Steiner, & Pond, 2011). Table 4.1. lists the 

measures of quality and quantity of linguistic input and language outcomes studied in this chapter 

to investigate how characteristics of early linguistic input of children with CIs were related to their 

language skills early after implantation. 

Measures of language input for traditional and noise-updated measures were calculated in 

Chapters 2 and 3 to characterize early linguistic environments of children with CIs participating 

in this study. In Chapter 2, we measured the number words, type-token ratio and curves, MLU, 

caregiver responsiveness, and speech rate to characterize early linguistic environments of children 

with CIs. Chapter 3 addressed a major gap in understanding language learning in children with CIs 

by updating the number of words (both total and child-directed) by considering effects of noise 

and reverberation in the environment.  
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Table 4-1. Measures of quality and quantity of language input and language outcomes of the 13 

children available for this study. Measures of language input were derived from analyzing the 

audio samples recorded from the natural linguistic environments of children. Measures of language 

outcomes were obtained by administering PLS5 tests. 

Measures of Language Input 
Measures of Language 

Outcomes 

(1) Total words per day1 

(2) Child-directed words per day1 

(3) Noise-adjusted total words per day (estimated from human coding)2 

(4) Noise-adjusted child-directed words per day (estimated from human 

coding) 2 

(5) Noise-adjusted total words per day (estimated from transfer function from 

SRMR-CI to speech intelligibility)2 

(6) Noise-adjusted child-directed words per day (estimated from transfer 

function from SRMR-CI to speech intelligibility)2 

(7) Type-token ratio from total words1  

(8) Type-token ration from child-directed words1 

(9) Area under the type-token curve from total words1 

(10) Area under the type-token curve from child-directed words1 

(11) Mean length of utterance from total words1 

(12) Mean length of utterance from child-directed words1 

(13) Speech rate from total words1 

(14) Speech rate from child-directed words1 

(15) Caregiver responsiveness1 

(16) SRMR-CI2 

(1) Pre-school Language Scale–

Fifth Edition-Auditory 

Comprehension (PLS5-AC) 

 

 

(2) Pre-school Language Scale–

Fifth Edition-Expressive 

Communication (PLS5-EC) 

 1 These measures of language input were obtained in Chapter 2. 
 2 These measures of language input were obtained in Chapter 3. 

 

4.2.3. Measures of language outcomes (i.e., predicted variables) 

Language outcomes of the 13 early-implanted children were measured using the Preschool 

Language Scale-Fifth Edition (PLS5; Zimmerman et al., 2011), which is a standardized test to 

assess children’s receptive and expressive language skills.  This test was administered at 6 months 

post-implantation.   

The Preschool Language Scale-Fifth Edition (PLS-5): PLS-5 was administered to assess 

the expressive and receptive language skills of the children at 6 months after cochlear implantation. 

It is a standardized test that is individually administered to evaluate children’s expressive and 

receptive language skills. Items address children’s pre-verbal skills, interaction-based skills, as 

well as their language milestones until early literacy. The test is designed for administration to 

ages ranging from birth to 7 years and 11 months (Zimmerman et al., 2011). The chronological 
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age of children in the present study at 6 months post-implantation are given in table 2-1. This test 

is commonly used for testing language skills in children with hearing loss (Fitzpatrick, Durieux-

Smith, Eriks-Brophy, Olds, & Gaines, 2007; Geers et al., 2009). It has two components, Auditory 

Comprehension (PLS-AC) and Expressive Communication (PLS-EC), with standard scores to 

assess children’s language perception and production. The test was administered at Ohio State 

University by certified speech-language pathologists with extensive experience in assessing 

children with hearing loss. 

The PLS-5 standard scores were available for 13 children at 6 months post-implantation. 

We assumed that the per-day estimates of language measures calculated in Chapter 2 and 3 can be 

generalized to the entire first year after implantation as proposed in prior studies (Hart & Risley, 

1995; Shneidman et al., 2013; Weisle- der & Fernald, 2013). This assumption was based on the 

notion that there is no evidence that the characteristics of language spoken to children with CIs 

vary systematically and significantly over the first year after they receive their implantation. 

Therefore, a per-day estimate derived at 6 months or later can be a reasonable basis for estimating 

how much speech was spoken in the household prior to six months. Further studies in the future 

with more participants and recordings can provide more evidence on whether such an assumption 

is valid. 

4.2.4. Statistical analysis 

A series of simple linear regression analyses was conducted to examine the relative 

contribution of each measure of language input to language outcomes. The results from conducting 

the Anderson-Darling test showed that measures of language input were from a population with a 

normal distribution. We also used Pearson correlation coefficients to create correlation matrices 

for all pairs of measures of language input and language outcomes to simply examine how well 
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each of 16 measures of language input predict the two standard scores derived from PLS-AC and 

PLS-EC.        

4.3. Results 

4.3.1. To what extent are the total number of words and number of child-directed words 

(unadjusted for noise and reverberation) associated with language outcomes? 

Figure 4-1 shows four plots depicting the relationship between total number of words and 

outcome measures (top plots) and number of child-directed words per day and outcome measures 

(bottom plots). The analyses showed that none of these correlations were statistically significant. 
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Figure 4-1. The relationship between total number of words and (A) PLS-AC and (B) PLS-EC 

standard scores, as well as the relationship between number of child-directed words and (C) PLS-

AC and (D) PLS-EC standard scores. The r values are pairwise Pearson correlation coefficients 

between pairs of language input measure and language outcome. R-squared values are the 

coefficient of determination obtained from fitted ordinal linear regression models. The least-square 

regression lines are superimposed on each scatter plot. 

Several simple linear regression analyses were also performed to investigate how well 

traditional measures of language predicted PLS-AC and PLS-EC scores at 6 months post-

implantation. These measures of language input were type-token ratio, area under the type-token 

curve, mean length of utterance, caregiver responsiveness, and speech rate. Tables 4-2 and 4-3 

show that there were no statistically significant correlations among these variables.      
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Table 3-2. The pairwise correlation coefficient, R-squared values, and p-values for the fitted 

simple linear regression models for examining the relationship between each language input 

variable derived from total speech and each of two variables of language outcomes. 

Measure of 

Language Input 

PLS5-AC  PLS5-EC 

r R-squared p-value  r R-squared p-value 

TTR 0.0184 0.0003 0.95  0.0471 0.0022 0.88 

AUTTC -0.0025 0.0 0.99  0.0501 0.0025 0.87 

MLU -0.3143 0.0988 0.3  -0.3546 0.1271 0.23 

Caregiver 

Responsiveness 
0.02 0.0002 0.96  0.2 0.0403 0.51 

Speech Rate -0.0794 0.0063 0.8  0.011 0.0001 0.97 

  

Table 3-3. The pairwise correlation coefficient, R-squared values, and p-values for the fitted 

simple linear regression models for examining the relationship between each language input 

variable derived from child-directed speech and each of two variables of language outcomes. 

Measure of 

Language Input 

PLS5-AC  PLS5-EC 

r R-squared p-value  r R-squared p-value 

TTR 0.224 0.502 0.46  -0.279 0.0779 0.36 

AUTTC 0.0371 0.0014 0.9  0.177 0.0313 0.56 

MLU 0.3323 0.1104 0.27  -0.3312 0.1097 0.27 

Caregiver 

Responsiveness 
- - -  - - - 

Speech Rate 0.0103 0.0001 0.97  0.1187 0.0141 0.7 

 

 

4.3.2. To what extent do the updated total number of words and number of child-directed 

words, adjusted for noise based on human coding, predict language outcomes? 

Figure 4-2 shows measures of total number of words and number of child-directed words 

per day adjusted based on noise interference from human judgments plotted against language 

outcomes as measured by PLS-AC and PLS-EC. There was no significant relationship between 

any of these language input measures and either of the language outcome measures. 
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Figure 4-2. The relationship between updated total number of words based on human coding of 

level of noise interference and (A) PLS-AC and (B) PLS-EC standard scores. and human-based 

updated number of child-directed words and (C) PLS-AC and (D) PLS-EC standard scores. The r 

values are pairwise Pearson correlation coefficients between pairs of language input measure and 

language outcome. R-squared values are the coefficient of determination obtained from fitted 

ordinal linear regression models. The least-square lines are superimposed on each scatter plot. 

4.3.3. To what extent does the updated total number of words and number of child-directed 

words (adjusted for noise and reverberation based on SRMR-CI metric) predict language 

outcomes? 

Environmental noise and/or reverberation can greatly interfere with speech recognition in 

listeners with CIs, and therefore likely interfere with the language learning process. Figure 4-3 
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shows the relationship between number of words and number of child-directed words updated 

based on SRMR-CI metrics and PLS-AC and PLS-EC standard scores. This figure suggests that 

there was no significant correlation between updated number of words based on the SRMR-CI 

metric and either PLS-AC or PLS-EC standard scores. The updated number of child-directed 

words also did not predict expressive and receptive language outcomes. 

 

 
Figure 4-3. The relationship between updated total number of words based on SRMR-CI metrics 

and (A) PLS-AC and (B) PLS-EC standard scores, as well as SRMR-CI-based updated numbers 

of child-directed words and (C) PLS-AC and (D) PLS-EC standard scores. The r values are 

pairwise Pearson correlation coefficients between a given language input measure and the 

respective language outcome measure. R-squared values are the coefficient of determination 

obtained from fitted ordinal linear regression models. The least-square lines are superimposed on 

each scatter plot. 
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4.3.4. Predictive value of SRMR-CI metric for language outcomes of children with CIs 

Figure 4-4 plots average SRMR-CI from speech experienced by children in their home 

environments against children’s expressive and receptive language outcomes. Notably, SRMR-CI 

strongly predicted both PLS-AC and PLS-EC. Higher values of SRMR-CI were significantly 

associated with higher PLS-AC and PLS-EC standard scores, consistent with our expectation 

(Santos & Falk, 2014). Appendix F and G present correlation matrix scatterplots and their 

corresponding Pearson coefficients for all pairs made by 16 measures of language input and 2 

measures of PLS-AC and PLS-EC.   

 
Figure 4-4. The relationship between average SRMR-CI obtained over recordings and language 

outcome scores of PLS5-EC and PLS5-AC at 6 months post-implantation. The grey line is the 

least-square line calculated for each data. The R-squared values and p-values for the ordinary linear 

regression model are reported on each plot.   

4.4. Discussion 

In this study, we used traditional and noise-adjusted measures of language input derived 

from Chapters 2 and 3 to explore how well each measure of language input predicted language 

outcomes at 6 months after cochlear implantation for early-implanted children with CIs 

participating in this study. Our first question concerned whether individual variability in the total 
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number of words per day would predict language outcomes, as measured by PLS5-AC and PLS5-

EC standard scores. From these preliminary results based on small sample of children with CIs, 

no predictive value was found for total number of words per day. Our second question aimed to 

explore whether adjusting the number of words per day (total and child-directed) by considering 

the effect of noise and reverberation would better explain variability in language outcomes. We 

examined the predictive power of each of two methods for adjusting the number of words, i.e., 

human judgments of level of noise interference and the SRMR-CI metric, separately for PLS-AC 

and PLS-EC. Our preliminary results did not support our expectation, showing no predictive value 

of noise-adjustment estimates of words per day for explaining variability in language outcomes of 

this small group of children. However, these null results were anticipated to some extent because 

prior studies showed that the effect of child-directed speech appears after about 9 months (Rüter, 

2011; Szagun & Rüter, 2009). Another reason for these null results could be the limited statistical 

power in the present study due to the small sample size. In contrast, the language outcome scores 

used for the present study were measured at 6-months post-implantation and thus were available 

3 months before this minimum time lag for observing effects of language input. 

We considered whether the average SRMR-CI derived over speech utterances within 

children’s audio samples would predict language outcomes of these 13 children with CIs. The 

results showed that, indeed, the SRMR-CI quantitative measure of speech intelligibility was able 

to explain substantial variability in language outcomes of the 13 children. In particular, the average 

SRMR-CI values derived from analyzed sample audio explained 43% of the variance in receptive 

language skills (PLS5-AC) and 51% of the variance in expressive language skills (PLS5-EC) in 

these children. These results provide encouraging evidence, in that they suggest that SRMR-CI 
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value can be effectively used to assess the degree of intelligibility of speech experienced by 

children with CIs in their naturalistic home environments.  

Our exploration of the relative contributions of lexical, morphosyntactic, and social-

pragmatic measures of language input for children with CIs at 6 months post-implantation also did 

not provide any preliminary evidence of the connection between these measures of language input 

and language outcomes. We particularly explored the predictive value of type-token ratio (TTR), 

area under the type-token curve (AUTTC), mean length of utterance (MLU), caregiver 

responsiveness, and speech rate for PLS5-AC and PLS5-EC standard scores. None of the results 

from our simple regression analysis indicated a strong and significant correlation between each of 

these measures of language input and language outcomes.                

Caution should be taken in making strong claims about the predictive value of SRMR-CI, 

due to several limitations and possible confounding factors. First, the robustness of this metric to 

various sources of variability in real-life scenarios of audio recording has not yet been verified. In 

addition, analyzing a greater number of daylong recording should be planned for future studies to 

assure that the average values of SRMR-CI over 5% audio samples obtained from anywhere from 

one to four daylong recordings for each child in this study provide a fair representation of 

children’s auditory environments. 

A surprising result was that updating the number of words (total and child-directed) to 

consider effects of noise and reverberation did not increase the predictive strength of these 

variables for language outcomes. These unexpected results can be explained in several ways. 

Children with CIs have access to amplitude envelopes of speech signals but have very limited 

access to fine-grained spectro-temporal cues (Shannon, Zeng, Kamath, Wygonski, & Ekelid, 1995; 

Shannon, 2002; Svirsky, 2017). This suggests that the word level might not be the right level of 
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granularity for understanding processes by which children make sense of degraded speech input. 

Prior studies also showed that listeners with CIs are able to organize and access to words in the 

broader utterance context (Kirk, Hay-McCutcheon, Sehgal, & Miyamoto, 2000; Kirk, Pisoni, & 

Osberger, 1995; McMurray, Ellis, & Apfelbaum, 2019). This implies that updating word counts 

might not reflect the actual pathway through which noise impacts children’s understanding of 

speech.    

Overall, the results from this exploratory study have not provided strong evidence to 

support a role of the quality and quantity of language input on children’s language outcomes at 6 

months after implantation. One of the primary reason behind this null result may be that according 

to prior studies, there needs to be at least 9 months lag between exposure to high-quality child-

directed speech and language outcome assessments to observe effects of language input (Rüter, 

2011; Szagun & Rüter, 2009) as well as the methodological issue related to the small sample size. 

Given these major limitations, we observed that adjusting the number of words experienced by 

each child to consider effects of background noise and reverberation did not lead to better 

prediction of language outcomes in children with CIs. Nevertheless, the high predictive value of 

the SRMR-CI metric suggests that this quantitative measure of speech intelligibility, which is 

specifically tailored to listeners with CIs, can be used in conjunction with other clinical approaches 

to provide more evidence for parents and clinicians in developing effective strategies to modify 

linguistic environments of children. Training parents to become familiar with various noise and 

reverberation patterns in real-life scenarios can be a strategy for controlling the quality and quantity 

of speech input that children experience every day. Results from the correlations between SRMR-

CI and outcomes can be considered as preliminary evidence for researchers, clinicians, and parents 
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to pay more attention to the complexity of early linguistic environments experienced by children 

with CIs, particularly with respects to noise and reverberation.  

Limitations of this study 

The current study has multiple imitations which were already discussed in Chapters 2 and 

3. In general, the exploratory nature of this study, including the small number of children with CIs, 

encourage us to be cautious about interpretation and generalization of these findings. In addition, 

the language outcomes of PLS-AC and PLS-EC were only available at 6 months post-implantation, 

which essentially limited this study for the minimum time-lag required to observe the expected 

effect of several measures of quantity and quality of language input that their strong effects on 

language development have been largely shown in children with typical hearing. Another 

limitation of this study, which was due to attrition, was the number of recording available for each 

child and their sparsity. Although our approach for coding the auditory environments were 

meticulous and comprehensive, the representativeness of the calculated language measures was 

limited by the number of recording available for each child. 

Despite these limitations, this work has provided preliminary evidence that controlling the 

amount of noise and reverberation in linguistic environments of children with CIs may be an 

important consideration for intervention to improve language learning in children with CIs and 

decrease individual differences in their language skills. These preliminary results also provided 

evidence for SRMR-CI as a valid quantitative metric of speech intelligibility in listeners with CIs 

for use in monitoring quality and quantity of speech input experienced by children with CIs (Santos 

& Falk, 2014; Falk et al., 2015). Future studies along several lines can be targeted to provide more 

evidence for whether, and how, child-directed speech facilitates language development in children 

with CIs, as well as how environmental noise and reverberation may possibly impact language 
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outcomes in this at-risk population. Some possible future directions to improve on current research 

include: (1) studying more children who received their CIs early after implantation (i.e., less than 

24 months of age), (2) including more daylong audio recordings across the first year of 

implantation, (3) videotaping language environments of children with CIs to enhance the coding 

process, (4) improving the reliability and accuracy of the LENA device, while extending it to 

enable classification of major categories such as child-directed speech versus adult-directed 

speech, (5) improving the transfer function responsible for mapping the level of noise to word 

adjustment, (6) testing and validating the robustness of SRMR-CI to sources of variability in 

speech and across environments, (7) improving characterizations of how SRMR-CI maps to 

percent speech intelligibility and updated words.                 
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CHAPTER 5: Discussion and Conclusions 

Despite more than a decade of research on factors influencing language outcomes in children with 

CIs, the enormous variability in these outcomes is still unexplained. Findings from prior studies 

largely demonstrated that the amount and quality of language input during early childhood 

significantly influences children language development as well as cognitive abilities (Hart & 

Risley, 1995; Hoff, 2003). Drawing inspiration from Hart and Risley (1995), we focused on 

characterizing variability in language input across children with CIs to determine the language gap 

between children with CIs receiving the most and the least language input. This study is the first 

one to use data from naturalistic environments of 14 prelingually deaf children who received CIs 

before the age of 24 months to understand the degree of individual variability in experienced 

quantity and quality of language input. Given the limitations with the LENA device for studying 

individual variability (Lehet, Arjmandi, Dilley, & Houston, under review), we developed an 

extensive coding system in order for human listeners to assess the amount of speech, who the 

speech was directed to, whether the speech overlapped with noise, the level of noise interference, 

and the type of overlapped noise. We used this coding system to extensively analyze the audio 

samples from natural linguistic environments of these children to explore the extent of variability 

across children with CIs in their language input along lexical, morphosyntactic, and social-

pragmatic dimensions, focusing particularly on child-directed speech. To this end, we measured 

the number of words, type-token ratio, type-token curve, area under the type-token curve, mean 

length of utterance, caregiver responsiveness, and rate of speech experienced by children in their 

home environments. Treating the first year after implantation as a unit of time, the quality and 

quantity of language experienced by each child over the first year after implantation were 

summarized by per-day estimates of these measures. Using these measures, we demonstrated that 
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children’s early language environments vary substantially in terms of quantity and quality of 

language input. 

Prior studies showed how variability in the quantity and quality of language input across 

children with typical hearing translates into large variability in their language outcomes (Hart & 

Risley, 1995). Consistent with prior findings in typically-hearing children, our estimates 

demonstrated that children with CIs varied largely in the number of child-directed words they 

experienced per day. We showed how these per-day child-directed word differences across 

children may scale up remarkably over years to an extent comparable to that between most-

advantaged and least-advantaged typically hearing children (Hart & Risley, 1995). We found a 

similar pattern of an approximately 30-million-word gap between the most-advantaged and least-

advantaged children with CIs, consistent with prior findings of Hart and Risley (1995). This 

substantial word gap across children in experiencing high-quality, child-directed speech is of 

special importance, knowing that child-directed speech carries rich acoustic, linguistic, and extra-

linguistic cues that significantly facilitate speech and language learning in children (Hart & Risley, 

1995; Hoff, 2003; Weisleder & Fernald, 2013).  

The supportive effect of child-directed speech on children’s language outcomes becomes 

much more important for children with CIs. This is because these children have partial access to 

spectro-temporal cues in speech and are extremely vulnerable to sources of disturbances and 

interferences when listening to speech (Caldwell & Nittrouer, 2013; Hazrati & Loizou, 2012; 

Neuman et al., 2004). Children who experienced a relatively lower amount of child-directed 

speech had reduced chances to benefit from multimodal cues available in this type of speech to 

learn and construct language subsystems. It is therefore conceivable that the large differences 

between children with CIs observed in this study will contribute substantially to the large disparity 
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in their language outcomes. We further showed that how these per-day differences in exposure to 

varying amounts of child-directed speech can expand to around 30 million words after 3 years of 

hearing through CIs, which largely distinguishes some children from others in terms of the amount 

of child-directed speech experienced. Therefore, more attention to parents and caregivers’ spoken 

communication style during their interaction with children with CIs may be a simple and effective 

remedy to the observed large differences among children in their language skills. 

The quality and quantity of early linguistic environments of these 14 children with CIs 

were not dispersed only in the amount of speech they experienced. In addition, the results from 

our investigation demonstrated that children experienced language input with largely different 

lexical, morphosyntactic and pragmatic richness. Our novel measure of area under the type-token 

curve (AUTTC), which we proposed to model the quality and quantity of language input along 

two joint dimensions of number of words and word types, showed that children were largely 

dispersed in terms of their exposures to lexically rich, high-quality child-directed speech. Exposure 

to child-directed speech with richer lexical input both in terms of total number of words and 

number of unique word types has been shown to be an influential contributing factor to language 

outcomes in children with typical hearing (Golinkoff et al., 2019; Hoff-Ginsberg, 1991, 1994; Hoff 

& Naigles, 2002; Weisleder & Fernald, 2013). Therefore, this large variability across children in 

exposure to lexically rich speech input requires careful attention toward developing effective and 

evidence-based family-centered intervention strategies, particularly during the early period after 

implantation, in order to achieve an optimal match between plasticity of the brain and the early 

auditory diet. 

We also showed how speech directed to children with CIs provides simpler models of 

language compared to adult-directed speech, which is consistent with prior findings in typically 
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developing children (Furrow et al., 1979) and children with CIs (Bergeson, 2011). Child-directed 

speech in the environments of children with CIs was less lexically complex, as shown by smaller 

TTRs compared to adult-directed speech. In addition, the sentences spoken to the children with 

CIs had shorter MLUs and were spoken with slower rate compared to adult-directed speech, which 

suggested that children with CIs have access to language models with less lexical and 

morphosyntactic complexity when speech is directed to them. It is not yet clear whether and how 

these simpler models of language in child-directed speech may contribute to language learning of 

children with CIs. However, in this study, using the data from natural auditory environments of 

children with CIs, we have showed that child-directed speech is distinguished from adult-directed 

speech based on lower TTR, shorter MLUs, and lower speech rate. Such findings from analyzing 

data in naturalistic environments may suggest that adults modify their speaking style when talking 

to children with CIs to assure that children benefit most from the language input (Bergeson, 2011; 

Wang, Bergeson, et al., 2018). Future studies can elaborate whether these discriminant properties 

of child-directed speech significantly contribute to the development of language in children with 

CIs. 

Examinations of effects of environmental noise and reverberation on the quantity and 

quality of language input experienced by children with CIs has been a missing piece in studies of 

language development in this at-risk population. This is a critical knowledge gap, because listening 

to speech in noisy and reverberant conditions is extremely difficult for children with CIs, compared 

to children with typical hearing (Caldwell & Nittrouer, 2013; Neuman et al., 2004). We addressed 

this gap by developing two novel approaches to update the number of actual words heard by 

children with CIs in their home environments. In the first approach, results from auditory 

perceptual judgments of level of noise interference made by adult human analysts at four levels of 
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null clean, low, medium, and high were used to update the number of clean words experienced by 

each child. In the second approach, hearing the words through CIs was emulated by passing speech 

utterances through a computational model of speech hearing developed for listeners with CIs (i.e., 

SRMR-CI) to consider the effect of noise and reverberation on intelligibility of speech experienced 

by these children. The results of noise-adjusted estimates of number of child-directed words 

demonstrated – for the first time – that environmental noise and reverberation significantly reduce 

the amount of high-quality child-directed speech experienced by children with cochlear implants.  

 Our results suggested that variability across children with CIs in terms of amount 

of word loss due to noise and reverberation was large. Some children lost a relatively small amount 

of child-directed words, on the order of two hundred words per day, whereas other children missed 

a large amount, on the order of five thousand words per day. However, this difference was 

essentially due to the original amount of unadjusted child-directed words, rather than an effect of 

noise or reverberation on the updated words per se. Our data show evidence that children were 

differentially impacted by noise and reverberation, although the overall weight of variability across 

children in amount of high-quality child-directed speech experienced by children was almost the 

same before and after noise-adjustment. Results of this part basically suggest that the predictive 

value of the amount of child-directed speech is potentially improved after updating the number of 

words for noise and reverberation. Future studies with more children and recordings should be 

conducted to shed more light on this finding. 

In addition, we found a similar pattern of a 30-million-word gap in our estimated child-

directed words over three years after implantation based on the adjusted word counts, which could 

conceivably account for variability in language outcomes of children as demonstrated by Hart & 

Risley (Hart & Risley, 1995). The results from our study show how children with CIs are extremely 
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disadvantaged in experiencing high-quality child-directed words in their environments due to three 

factors. First, they must overcome a baseline disadvantage in ability to acquire language due to the 

extreme susceptibility of their impaired hearing to the amount and level of background noise and 

reverberation in their home environments. Second, the results from this study showed dramatic 

differences in the amount of high-quality child-directed speech experienced across different home 

environments of children with CIs, which raises the possibility of an additional disadvantage (e.g., 

Hart & Risley, 1995), namely that some children with CIs may receive very minimal language 

input, further challenging language acquisition. Unlike prior studies that merely focused on 

structural complexity of child-directed speech (Szagun & Schramm, 2016; Szagun & Stumper, 

2012), we were inspired by the seminal work of Hart and Risley (1995). Here, we showed that 

children with CIs not only are substantially different in terms of experiencing high-quality child-

directed words, but they are also at risk for missing a large amount of high-quality child-directed 

words available in their environments. 

Our analyses also showed that children with CIs experience various environments in terms 

of distribution of types of noise overlapping with speech in their environments. For example, the 

susceptibility of  recipients of CIs to mixed noise and multi-talker babbling noise in understanding 

speech is much higher than background noise with less spectral variation, such as white noise 

(Soleymani, Selesnick, & Landsberger, 2018; Tobey, Shin, Sundarrajan, & Geers, 2011). The 

results of distributions of various types of noise that overlapped with words highlighted the 

complexity of auditory environments of children with CIs, while also showing that variability 

between children in exposure to various types of overlapping noise was substantial. This 

corroborates prior findings regarding large differences among users of CIs in the quality of speech 

presented in background noise (Busch et al., 2017). Our results further demonstrated that 
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characteristics of environmental noise itself varied substantially across children with CIs, such that 

some children experienced environments with considerably higher-intensity noise compared to 

others. Exposure to high-intensity noise during early development may have detrimental 

consequences on the learning rates of these children with CIs, thereby contributing to differences 

in their language outcomes (Bureš, Grécová, Popelář, & Syka, 2010; Busch et al., 2017). 

We conducted an initial test on this small corpus of children with CIs to gain some 

preliminary data concerning the relationship between traditional (i.e., number of words, TTR, 

AUTTC, MLU, caregivers responsiveness, and speech rate) and updated measures of language 

input (i.e., noise-adjusted number of words), along with receptive and expressive language 

outcomes at 6 months post-implantation, as gauged through PLS5-AC and PLS5-EC standard 

scores. Our preliminary results did not show any significant correlation between measures of 

language input and language outcomes. These null results were anticipated, due to several 

limitations of this exploratory study, including, but not limited to, small sample size and access to 

measures of language outcome at a time interval before the 9-month time-lag required to observe 

the effect of noise (Rüter, 2011; Szagun & Rüter, 2009). However, we observed that the SRMR-

CI metric nevertheless strongly predicted language outcomes of children at 6 months post-

implantation, suggesting that interventions based on this quantitative metric may benefit children 

with CIs. The predictive value of this metric can be associated with its nature of emulating hearing 

speech through CIs (Falk et al., 2015), which is expected to closely approximate the degree of 

speech intelligibility from the ears of users of CIs. However, more studies in the future with a 

higher number of children and more recordings will help us to further examine the predictive 

ability of this metric.     
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The current research has several limitations. Perhaps the most significant limitation of this 

study was the small sample size drawn from a heterogenous population, which is the nature of 

most longitudinal studies on the pediatric CIs population, particularly in recording home 

environments of children, which generates major challenges for participant recruitment. The 

number of audio recordings available per child was small, which raises concerns about the 

representativeness of the number of recordings and their generalizability to the entire first year 

after implantation. Considering these limitations, the results should be viewed as preliminary 

findings for a very new line of research which has its own constraints and difficulties. Still, this 

line of research has potential to significantly benefit the field of language development in children 

with CIs, as well as typical-hearing children, by addressing contributions of one of the major 

unexplored components to variability in such development: early linguistic environments. Another 

limitation of this study concerned the uncontrolled quality of recordings made in naturalistic 

environments using LENA devices. Although we tested the reliability and accuracy of LENA 

devices for word counts and major categories of interest in this study (e.g., speech vs. non-speech, 

child-directed speech or adult-directed speech), further study is required to assure that the signal-

based metric of SRMR-CI behaves robustly in the presence of other sources of variability, such as 

variable microphone distance and devise position with respect to talkers. Further, the two transfer 

functions used for mapping the codes for level of noise interference and SRMR-CI values to 

updated numbers of words should be further studied through conducting perceptual studies to 

provide improved emulation of performance of children with CIs in speech recognition in the 

presence of noise and reverberation. 

 Despite these limitations, the present work has contributed to the field both 

conceptually and methodologically. For the first time, this study focused on several elements of 
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early linguistic environment which have been shown to best support language learning in typically-

hearing children, but which are understudied in children with CIs to examine how these elements 

vary across children. We showed that the pattern of a 30-million-word gap between most-

advantaged and least-advantaged typically hearing children (Hart & Risley, 1995) exists in 

children with CIs, which could conceivably help us to explain an important portion of variability 

in children’s language outcomes. In addition, this study has provided the first evidence showing 

that child-directed speech provides simpler models of language for children with CIs based on 

naturalistic data. More importantly, this is the first study that investigated variability across 

children in the quality and quantity of language input available to them after considering the effect 

of noise and reverberation on the amount of high-quality child-directed speech experienced by 

children. We demonstrated that environmental noise reduces the amount of child-directed words, 

but the 30-million-word gap still exists. This study has also provided evidence of substantial 

variability across children in exposure to various types of noise either in the presence of speech or 

noise itself. Our results suggest that SRMR-CI is a valuable quantitative metric for monitoring the 

quality of early linguistic environments of children with CIs for the intelligibility of speech in 

those environments. Furthermore, the methods are novel in terms of developing a Praat-Matlab 

interface tailored to analyze codes from a rich descriptive system implemented by human analysts, 

as well as the actual audio signal, in order to answer questions of this study by providing data at 

linguistic and acoustic levels. Other aspects of novelty include the proposed approaches for 

updating the number of words based on human coding of noise level and SRMR-CI metrics.     
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Future work 

This project opens up several lines of research for the future, all centered around a primary 

question of how properties of early linguistic environments contribute to tremendous variability in 

language outcomes of children with CIs. The primary focus of this project was early linguistic 

environments of children with CIs. Further studies with more enhanced and reliable tools should 

be conducted to better characterize properties of language environments of children with CIs that 

best support their language learning. The goal of these planned studies for the future is to provide 

evidence-based feedback for parents and clinicians to improve the quality of children’s language 

environments, particularly for those children who are at higher risk for underdeveloped language 

skills. Studies with higher participants and more controlled populations should be planned to 

reduce the possible confounding effects of uncontrolled variables in this study, such as additional 

comorbid diagnoses. Future studies equipped with video monitoring tools will significantly 

enhance the accuracy and reliability of several categories that were coded and analyzed in this 

study. Enhancing signal processing algorithms related to the SRMR-CI metric can further be 

examined and improved to achieve greater robustness for this metric against undesirable variables 

of naturalistic input, while conducting auditory perceptual studies on children with CIs to further 

improve the metric. The results from these envisioned perceptual studies can be specifically 

incorporated to improve the two transfer functions used in this study to map human codes for levels 

of noise interference and the SRMR-CI metric to corresponding levels of speech intelligibility.         
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APPENDIX A 

 

The Reference Table of Codes 

Appendix A-Table 1. The reference table of codes and their descriptions at different levels on each 

tier. 

Tier 2 & 3: Adult Female and Adult Male Tiers 

Tier 2 & 3: Level 1 - Addressee Codes 

Code/Contents Description 

T Addressing Target Child. Analysts used this code if they were reasonably 

confident that the adult was talking to the target child, from context or 

otherwise. 

O Addressing Other Child. Analysts used this label when the addressee was 

clearly another child besides the target child (for example, if the parent 

said the sibling’s name directly) 

A Addressing Adult. Analysts used this code when an adult speaker was 

talking to another adult. 

X Other Addressee. Analysts used this code when it was clear who the 

addressee is, but it was another category than above (e.g., self-directed, pet-

directed, or mobile/tablet app-directed), or the addressee was not clear. 

Tier 2 & 3: Level 2 – Type of Vocalization 

Code/Contents Description 

Transcription Analysts transcribed the words and utterances with conventionalized 

meanings. Partial, incorrect, and unintelligible words were indicated by an 

“X”. 

SNG Singing. Analysts used this code when words were produced as singing. 

NSV Non-Speech Vocalization. Any noise produced by talker that was not a 

speech utterance such as burps, yawns, etc. were coded as NSV, but only if 

they overlapped with speech.  

Tier 2 & 3: Level 3 - Level of Interference or Primary Talker 
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Appendix A-Table 1. (cont’d) 

Code/Contents Description 

L, M, H The level of interference (Low, Medium, or High). Analysts coded the level 

of interference of speech only when it overlapped with the speech of the 

primary talker. The primary speech could be from any tiers of Adult Male 

or Other Talker.  

P Primary talker. Analysts used this code when there was overlap among 

multiple talkers to identify whether the speech was from the primary talker, 

the one whose speech was most informative to the target child. 

Tier 4: Target Child Tier 

Tier 4: Level 1 - Type of Vocalization 

Code/Contents Description 

S Speech or Speech-like Vocalization. Analysts used this label to code any 

vocalization from the target child that was remotely speech or speech-like. 

CRY Crying or Whining. Analysts used this code when a child was loudly and 

clearly crying or was making a whining noise. 

NSV Non-Speech Vocalization. Analysts used this code to label any non-speech 

vocalization events such as yawns, sighs, and vegetative noises (burps, 

hiccups) only if they were overlapping with adult speech. 

Tier 4: Level 2 - Transcription 

Code/Contents Description 

Transcription Analysts transcribed child’s speech if it was clear enough to understand 

specific syllables. 

Tier 4: Level 3 - Level of Interference 

Code/Contents Description 
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Appendix A-Table 1. (cont’d) 

L, M, H The level of interference (Low, Medium, or High). Analysts used these 

labels to code the level of interference when child’s vocalization overlapped 

with a useful speech. 

Tier 5: Other Talker Tier 

Tier 5: Level 1 – Talker Codes 

Code/Contents Description 

AM Adult male. Analysts used this code on this tier when a situation involved a 

second adult male talker.  

AF Adult female. Analysts used this code on this tier when a situation involved 

a second adult female talker. 

CM Child Male. Analysts used this code to label speech from other male 

children who (1) were not the target child, and (2) were a competent speaker 

(> 5 years old).   

CF Child Female. Analysts used this code to label speech from other female 

children who (1) were not the target child, and (2) a were competent speaker 

(> 5 years old).   

C Child of uncertain gender. Analysts used this code to label speech from 

children for whose gender was not clear from the context. 

MIX Multiple non-primary talkers overlapping. Analysts used this code in cases 

where multiple speakers were talking simultaneously and it was possible to 

code different speakers on different tiers of Adult Male, Adult Female and 

this tier. Analysts made sure that this multiple talker situation did not reach 

the state of babbling (see the description for Noise 1 and 2 tiers).   

Tier 5: Level 2 – Addressee Codes 

Code Description 

T Addressing Target Child. Analysts used this code if they were reasonably 

confident that the adult was talking to the target child, from context or 

otherwise. 
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Appendix A-Table 1. (cont’d) 

O Addressing Other Child. Analysts used this label when the addressee was 

clearly another child besides the target child (for example, if the parent said 

the sibling’s name directly) 

A Addressing Adult. Analysts used this code when an adult speaker was 

talking to another adult. 

X Other Addressee. Analysts used this code when it was clear who the 

addressee is, but it was another category than above (e.g., self-directed, pet-

directed, or mobile/tablet app-directed) or the addressee was not clear. 

Tier 5: Level 3 – Words and Utterances with Conventionalized Meanings 

Code Description 

Transcription Analysts transcribed the words and utterances with conventionalized 

meanings. Partial, incorrect, and unintelligible words were indicated by an 

“X”. 

SNG Singing. Analysts used this code when words were produced as singing. 

NSV Non-Speech Vocalization. Any noise produced by a talker that was not a 

speech utterance, such as burps, yawns, etc., were coded as NSV, but only 

if they overlapped with speech.  

Tier 5: Level 4 - Level of Interference or Primary Talker 

Code Description 

L, M, H The level of interference (Low, Medium, or High). Analysts coded the level 

of interference of speech only when it overlapped with the speech of the 

primary talker. The primary speech could be from either the Adult Male or 

Adult Female tiers. 

P Primary talker. Analysts used this code when there was overlap among 

multiple talkers to identify whether the speech was from the primary talker, 

the one whose speech was most informative to the target child. 
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Appendix A-Table 1. (cont’d) 

Tier 6: Media Tier Codes 

Tier 6: Level 1 - Type of Media 

Code Description 

SP Speech. Analysts used this code when they heard speech but were not able 

to determine more about the talkers’ age or gender. 

MUS Music (with instruments/notes). Analysts used this label to code any sound 

with pitched instruments including electronic instruments and voice plus 

instruments.  

SNG Singing. Analysts used this label to code any pre-recorded media containing 

unaccompanied singing (voice with no instruments). 

AM Adult male. Analysts used this label to code events of adult male speaker 

that was unaccompanied by any other concurrent sound (e.g., a newscast 

delivered by a male talker where there is no music or other sound track). 

AF Adult female. Analysts used this label to code events of adult female speaker 

that was unaccompanied by any other concurrent sound. 

C Child. Analysts used this label to code a child speaker in the foreground 

and it was non-infant entertainment or content. 

MIX Analysts used this label to code two or more types of sound source above 

overlapping or alternating rapidly (for example, a person talking with a 

musical soundtrack in the background) and/or two or more media sources 

simultaneously. 

Tier 6: Level 2 - Purpose of Pre-recorded Content 

Code Description 

G General. This was the default label used by analysts when they did not 

have any sense of content.   

EDU Educational. This label was used to code any educational content that was 

judged to be child-oriented. 
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Appendix A-Table 1. (cont’d) 

C-ENT Child-oriented entertainment. This label was used by analysts to code 

events of child-oriented entertainment, specifically content that would be 

entertaining for a very young child (i.e., infant or toddler). Examples were 

Dora, Wiggles, Sesame Street.  

TOY Toy. This label used by analysts to code any pre-recorded content that were 

judged to be coming from a child’s toy of some kind. Examples were toy 

car sounds, baby doll sound, etc. 

INFO Informational. Analysts used this label to code informational, adult-oriented 

content. Examples were news broadcasts, “serious” informational podcasts 

(unless content is specifically oriented to infants, in which case, analysts 

used EDU or C-ENT), announcer’s voice on a classical music station, etc. 

POP, CLASS, 

JAZZ, MET 

Specific genres for music. analysts used these labels to indicate the 

specific genres such as pop, classical, jazz, metal, etc. 

ENT Entertainment. Analysts used this label to code any entertainment for 

middle school or older. Examples were Youtube video content oriented to 

teens or older, science shows geared toward middle schoolers, traditional 

TV shows like sitcoms, etc. 

MOV Movie. This label was used to code movies that were geared toward older-

age children or older. If the movie was clearly oriented toward an infant or 

toddler, analysts labeled it as C-ENT. 

Tier 6: Level 3 - Words and Conventionalized Utterances 

Code Description 

Transcription  Analysts transcribed words for rare cases where the media was audible 

enough to be understood. 

Tier 6: Level 4 - Level of Interference 

Code Description 

L, M, H Analysts used these labels to identify the level of interference when media 

overlapped with an informative speech. 

Tiers 7 & 8: Noise Tier Codes 

Tiers 7 & 8: Level 1 - Type of Noise 
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Appendix A-Table 1. (cont’d) 

Code Description 

G General. Analysts used this label to code events that did not fit neatly into 

one of the below categories.  

VOC Vocalization. Analysts used this label to code vocalizations from other 

children that were not clear speech or coming from children under the age 

of 5. 

BAB Multi-Talker Babble. Analysts used this label to code audio intervals where 

there were so many people talking in the background such that the 

conversation could not be made out.  

ANIM Animal. Analysts used this label to code a noise judged to be generated by 

any type of animal.   

MIX Mixed noise source. This label was used to code events with more than two 

simultaneous noises.  

MECH Mechanical noise. Analysts used this label to code sounds from mechanized 

sources, including appliances or motorized machines of any type.  

WATER Water noise. Analysts used this label to code the running water sounds such 

as running bath water, doing dishes, shower, rain, etc. 

WIND Wind noise. Analysts used this label to code wind sound that was in the 

child’s environments.   

Tier 7 & 8: Level 2 - Level of Interference 

Code Description 

L, M, H The level of interference (Low, Medium, or High). Analysts used these 

labels to identify the level of interference when media overlapped with an 

informative speech. 

Tiers 9: Microphone Noise Tier Codes 

Tier 9: Level 1 - Type of Microphone Noise 

Code Description 
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Appendix A-Table 1. (cont’d) 

M Microphone noise. Analysts used this code to indicate whether microphone 

noise occurred with intelligible speech or no speech at all. 

O Other. Analysts used this label when there were other oddities artefactual 

and associated with the LENA device itself. 

Tier 9: Level 2- Level of Interference 

Code Description 

L, M, H The level of interference (Low, Medium, or High). Analysts used these 

labels to indicate how much the microphone noise seemed to obscure other 

important sounds and speech that were happening. 
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APPENDIX B 

 

The Procedure for Constructing Type-token Curves 

The procedure for constructing type-token curves started with randomly selecting word samples 

from all the words derived from the transcription of speech utterances belonging to a day-long 

recording (from the 5% of randomly sampled 30-second audio portions). The number of words 

that were randomly selected in each trial increased in increment of 20 morphemes until the size of 

the random selection was equal to the total number of words available for a recording (i.e., the size 

of random selection changed from 20 to 40 to 60 until the maximum number of words was 

achieved). For each random selection, we counted the number of unique word types, leading to an 

ordered pair consisting of a number of word tokens and word types. At each size of random 

selection (e.g., 40), the sampling procedure and calculation of the number of word types was 

repeated 100 times and the final number of unique word types was the average of the values of 

unique word types over those repetition at each sample size of random selection. This was done to 

reduce the possible effect of random selection on the calculated number of words types (Montag 

et al., 2018). The final values for constructing the type-token curve were counts of the number of 

unique word tokens at each of these sample sizes, which spanned the range from 20 words to the 

total number of words within the 5% of selected audio from a daylong recording.  

An example of type-token curve derived from three types of total, child-directed, and 

overheard speech was shown in Figure 2-4. As explained before, the values on the graphs are the 

pairs of (number of word tokens, number of word types) derived for each sample size of random 

selection (i.e., 20, 40, 60, and so forth). The graph shows how the relationship between the number 

of word tokens and word types varies as the number of randomly chosen words in each selection 
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increases by a constant increment of 20. More information about the implementation process can 

be found in (Montag et al., 2018). 

 

 
Appendix B-Figure  1. Type-token curves derived from total, child-directed and overheard 

speech in the environment of Child 1. 
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APPENDIX C 

 

Further information about the coding procedure 

In transcribing the words, analysts decided whether there was a conventionalized meaning for the 

utterances. Examples of utterances with conventionalized meanings were onomatopoeia (e.g., 

whoosh), sounds that animals or other entities made (e.g., moo, neigh, choo-choo, etc.) or other 

conventionalized speech-like sound sequences with conventionalized meanings (e.g., woo-hoo). 

If the meaning of an utterance was judged to not have been conventionalized for the linguistic 

community, then analysts did not code it as a word on the corresponding tier.  A list of approved 

conventionalized meanings and spellings was created that analysts actively referred to during the 

coding process. This list was updated regularly during the coding project. In cases where human 

analysts were unsure whether an utterance had a conventionalized sound-mapping meaning, a 

project manager who was a native English speaker made the final decision. The morphemes in 

words in the transcriptions were separated by a “+” sign, which was later used to count the number 

of morphemes in transcriptions.  Connected words (e.g., “uh-oh”) and contracted words (e.g., 

“we’re”) were treated as one word when the textgrids were analyzed to capture measures of 

linguistic input. The spelling of all lexical transcriptions and the spellings of terms with 

conventionalized sound-meaning mappings (e.g., choo-choo) were double-checked by a senior 

research assistant with advanced coding skills and high familiarity with the coding system. 
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APPENDIX D 

 

The coding procedure followed by human analysts to code instances where there were multiple 

simultaneous talkers 

 

In cases where there were multiple simultaneous talkers, analysts first identified the Primary talker 

among multiple talkers, and then used the three tiers of AdultFemale or AdultMale, and/or 

OtherTalker to code speech of each talker on the appropriate tier (see Table 2-5 and Appendix A 

in Chapter 2). The primary talker was the one whose speech was judged to be most informationally 

relevant to the target child while providing the best word examples for her/him to learn from. As 

shown in Table 2-5 and Appendix A, as well as Figure 2-3 in Chapter 2, human analysts used the 

code of “P” at Level 3 of the AdultFemale and AdultMale tiers and Level 4 of the OtherTalker tier 

to identify the primary speech when there were multiple talkers. Human analysts used the 

following information and cues to identify the primary talker (“primary speech” hereafter): (a) 

whether speech was directed to the target child, (b) whether it was produced by a caregiver, (c) 

whether it was more intelligible to the ear of human analysts, (d) whether it was louder than other 

speech, indicating the closeness to the target child, and/or (e) whether it began before the 

interference (i.e., temporal precedence). After analysts identified the speech from the primary 

talker and marked that specific portion of audio on the textgrid, they identified the start time and 

end time within the utterance that other competing sound/speech sources (either noise or other 

speech) overlapped with the primary speech. Then they coded the stretches of overlapped 

sound/speech on the appropriate tier. (See Table 2-5 and Appendix A and Figure 2-3 in Chapter 

2.) Analysts then judged the level of interference of competing sources in terms of their masking 

and interfering effects on intelligibility of the primary speech, and coded the corresponding audio 
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stretches on the appropriate tiers. (See Table 4 in Chapter 2.) This was a decision relative to the 

loudness and intelligibility of the primary speech to understand to what extent one or multiple 

sources of interference may mask (or obscure) words that the target child heard.  

Overlapping sound or speech from any sources of media, human, and other noise types 

were labeled in their appropriate tiers. Their level of interference with the primary speech was 

coded as either low (“L”) or medium (“M”) or high (“H”). (See Table 2-5, Chapter 2.) If an interval 

with primary speech (i.e., an utterance) was partially contaminated by another overlapping source 

of sound/speech, analysts broke the interval up into separate intervals each with its own level of 

interference (i.e., clean, low, medium, high). (See Figure 2-3 in Chapter 2 for an example of this 

condition.) Words within an interval that was partially disrupted by noise were categorized into 

one of the two intervals with different levels of interference from overlapping sounds based on the 

portion of the word that was degraded. (The cut-off was fifty percent word degradation.) For 

example, in the case of the mother speaking to the target child and saying “Can you come back 

and play?”, if the child bangs blocks together during the word “back” the entire utterance would 

be split into three intervals coded as: {Boundary} T;can you come {Boundary} T;back 

{Boundary} T;and play {Boundary}. The type of overlapping noise and its level of interference 

would be coded on the Target Child tier for this case. (See Figure 2-3 in Chapter 2 for a similar 

scenario.) 
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APPENDIX E 

 

Parameters of the model for fitting SRMR-CI values to SI(%) 

The parameters of the model that fits the scaled SRMR-CI values to their corresponding 

SI(%) are presented below. The model parameters calculated from the non-linear curve-fitting 

procedure with their 95% confidence bounds are: 

α1 = 13.43 (13.13, 13.73), α2 = 7.701 (7.533, 7.868), k = 0.89 (0.88, 0.893) 

R-Squared = 0.99 

These parameters belong to the following sigmoidal mapping function: 

𝑆𝐼(%) =  
𝐾

1 + 𝑒−(𝛼1𝑋−𝛼2)
× 100% 
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APPENDIX F 

 

Correlation matric scatterplot with least-square fitted lines for pairs of measures of language 

input and measures of language outputs. 

 

 
Appendix F-Figure 1. Correlation matric scatterplot with least-square fitted lines for pairs of 

measures obtained from 16 measures of language input plus 2 measures of language outputs. Refer 

to Table 4-1 to match the numbers in this figure to their corresponding measures of language input. 
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APPENDIX G 

 

Pearson correlation coefficients for all possible pairs made by measures of language input 

and measures of language outcomes. 

 

Appendix G-Table 1. Pearson correlation coefficients for all possible pairs made by 16 measures 

of language input and 2 measures of PLS-AC and PLS-EC. r values that were statistically 

significant are bolded in the table. 
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