QUALITY OF LIFE OF WOMEN WITH BREAST CANCER IN YAUNDE, CAMEROON

Ву

PRUDENCE KUNYANGNA

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

Epidemiology- Master of Science

2019

ABSTRACT

QUALITY OF LIFE OF WOMEN WITH BREAST CANCER IN YAUNDE, CAMEROON

By

Prudence Kunyangna

This study explored associations between sociodemographic and medical factors and quality of life (QOL) of 297 breast cancer patients at the Medical Oncology General Hospital in Yaunde, Cameroon. Data are from abstracted medical records, questionnaires and a QOL instrument, *FACT-B*, completed by participants. Summary QOL scores (*FACT-G*, *FACT-B*, *FACT-B-TOI*) include various combinations of subscales. Higher scores indicate higher self-reported QOL.

In adjusted models, total *FACT-G* scores were lower for women who; were ≥ 45 years, had stage II, III and IV disease and higher for women who; had an occupation, had monthly household income above 50,000 CFA/month, lived with husband/boyfriend and, who lived with families. Total *FACT-B* scores were lower for women ≥ 45 years and higher for women who; had an occupation, had monthly household income above 50,000 CFA/month, lived with husband/boyfriend and, who lived with family. *FACTB-TOI* scores were lower for women who; were ≥ 45 years, had stage II, III and IV disease compared to stage 0/I and higher for women who; had an occupation, had monthly household incomes over 50,000 CFA/month, lived with husband/boyfriend and, who lived with families. Results suggest that clinicians should pay attention to QOL of African breast cancer cases who are older (> 45 years), live alone, have no occupation, have lower household income and who are diagnosed with advanced stage disease.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Dr. Claudia Holzman who worked with me day and night throughout the process of writing this thesis. Thank you for believing in me and for providing expertise, guidance, and motherly love and care throughout my program. I would also like to thank Dr. Huo Dezheng, for his generosity in providing data for this research and his expert knowledge and guidance throughout the process.

I also thank my thesis committee members Dr. Dorothy Pathak and Dr. David Todem for their support, suggestions and guidance throughout the process of writing this thesis.

Special thanks to the MSU Department of Epidemiology and Biostatistics and the MasterCard Foundation team for their support throughout my program. Lastly, I would like to thank all friends and everyone else who helped contribute to this project.

TABLE OF CONTENTS

LIST OF TABLES	vi
Chapter 1	1
1.1 Background	
1.1.1 Epidemiology of Breast Cancer	1
1.1.2 Global Incidence and Mortality of Breast Cancer	
1.1.3 Breast Cancer in Africa	3
1.1.4 Breast Cancer Screening	4
1.1.5 Breast Cancer Staging	
1.1.6 Breast Cancer Subtypes by Receptor Status	6
1.1.7 Breast Cancer Treatment	6
1.1.8 Quality of Life (QOL) of Breast Cancer Patients	8
Chapter 2	13
2.1 Quality of Life of Women with Breast Cancer in Yaunde, Cameroon	
2.1.1 Introduction	13
Chapter 3	15
3.1 Methods	15
3.1.1 Study population	15
3.1.2 Data collection and measures	15
3.1.3 Statistical methods	19
Chapter 4	20
4.1 Results	20
4.2 Distribution of Quality of Life Scores (QOL) scores	21
4.3 Sociodemographic factors and QOL scores	21
4.4 Medical factors and QOL scores	22
4.5 Multivariable models of sociodemographic and medical factors	
associated with QOL	23
Chapter 5	25
5.1 Discussion	25
APPENDIX	29
BIBLIOGRAPHY	49

LIST OF TABLES

Table 1. Characteristics of Analytic Sample	30
Table 2. Distribution of responses for Quality of Life (QOL) variables	. 37
Table 3. Bivariate analysis of sociodemographic characteristics	. 38
Table 4. Bivariate Analysis of Medical characteristics	42
Table 5. Multivariable Analysis of Sociodemographic and Medical Characteristics	46

CHAPTER 1

1.1 Background

1.1.1 Epidemiology of Breast Cancer

Breast cancer is a global major health burden in women. It is among the most frequent forms of cancer in women in both developed and developing countries. It accounts for over one million of the estimated 10 million neoplasms diagnosed globally each year. It is also a principal cause of cancer death among women globally ¹.

Breast cancer is highly heterogeneous in pathology, in some cases occurring as a slow growth with clear prognosis and in other cases occurring as aggressive tumors ². Approximately, eighty-one percent (81%) of breast cancer cases are diagnosed among women of 50 years or older and about 90% of breast cancer-related deaths occur in this group of women³.

There is an increased risk of developing breast cancer as a woman advances in age. Compared with lung cancer, breast cancer incidence is higher at all ages for women³. Of note, the risk of Estrogen Receptor (ER) positive breast cancer increases with age while the risk of ER negative breast cancer increases until age 50 and then remains constant. Therefore, postmenopausal women are more likely to develop Estrogen Receptor (ER) positive forms of breast cancer ⁴. Some other factors which increase a woman's lifetime risk of developing breast cancer include inherited genetic mutations such as BRCA1 and BRCA2, personal history of certain non-cancerous breast disease as well as family history of breast cancer, having first pregnancy after

30 years, not breastfeeding and never having a full-term pregnancy, alcohol consumption and previous treatment using radiation therapy around the chest area, among others ⁵.

1.1.2 Global Incidence and Mortality of Breast Cancer

The burden of all cancer is expected to increase to 23.6 million new cases per year globally by the year 2030 if recent trends in major cancers continues. The continuing global transitions signal an ever-increasing burden of breast cancer especially in developing countries⁶.

Among women in more developed countries (except Japan), world age standardized incidence rates of breast cancer are over four-fold higher than in women living in less developed countries. Breast cancer incidence rates increased rapidly in the 1980s largely due to the introduction of mammography screening. The overall rates stabilized by the 1990s followed by a slower increase during the latter part of the decade ⁷. The rates of breast cancer in migrants from low-risk countries who relocate to high risk countries increase and eventually becomes similar to that in the high risk country over one or two generations⁸.

Age adjusted breast cancer mortality rates in developed countries such as USA, UK, Canada and Netherlands are declining. Before the 1990s, there were stable or increasing breast cancer mortality rates in these countries. However, between 1990 and 1996, these countries started reporting a 5-17% decline in breast cancer mortality rates ⁹. Since 1990 to 2010, there has been a decrease of 34% in breast cancer mortality rates in the US ⁷.

In a research by DeSantis et al., (2015), analyzing breast cancer incidence and mortality estimates from GLOBOCAN 2012, Asian countries which represent 59% of the global population accounted for 39% of incident breast cancer cases, 44% of breast cancer mortality and 37% of world's 5-year prevalent cases. The United States and Canada which represent 5% of the world's population accounted for 15% of world's breast cancer incident cases, 9% of breast cancer mortalities and 17% of 5-year prevalent cases. On the other hand, African countries which represent 15% of global population accounted for 8% incident breast cancer cases, 12% of breast cancer mortalities and 7% of 5-year prevalent cases ¹⁰.

Among the six WHO regions (African Region, Region of the Americas, South-East Asia Region, European Region, Eastern Mediterranean Region and Western Pacific Region), GLOBOCAN breast cancer incidence had the highest rate (67.6) in the regional office for the Americas and the lowest rate (27.8) in the WHO regional office for South-East Asia. The highest standardized mortality (18.6) was observed in the WHO regional office for Eastern Mediterranean and the lowest rate (7) was observed in WHO regional office for the Western Pacific ¹¹.

1.1.3 Breast Cancer in Africa

Most African countries have limited breast cancer incidence data in Population Cancer Registries ¹². Although population based cancer registries may cover national populations, most cancer registries in Africa and other developing countries only cover smaller, subnational or selected urban areas ¹³. In the absence of population based cancer registries, most information on cancer epidemiology in Africa comes from small clinical and pathological case series and this

information could have some inherent selection bias, which can affect the understanding of cancer epidemiology in Africa ¹⁴.

According to a five-year breast cancer survival analysis by Allemani et al., (2015), from 1995-2009, the net survival rates in developed countries were over 85% while North Africa had lower survival rates, for example, 59.8% (95% CI:48.6–71.1) in Algeria, 76.6% (95% CI:55.5–97.7) in Libya and 68.4% (95% CI:64.5–72.2) in Tunisia. Data from three sub-Saharan African countries showed even lower survival rates. For example, South Africa had a 5 year survival rate of 53.4% (95% CI:35.5–71.3), while The Gambia had 11.9% (95% CI:0–24.7) and Mali had 13.6%(95% CI:0, 0–30.1) ¹⁵. It is estimated that more than 50% of women diagnosed with breast cancer in Africa die of the disease ¹⁶.

1.1.4 Breast Cancer Screening

Breast screening is performed in women without breast cancer signs or symptoms in order to detect breast cancer as early as possible ¹⁷. Breast cancer is a progressive disease and small, sub-clinical tumors can be detected as early stage breast cancer. Some methods of breast cancer screening include physical breast examinations and mammographic imaging.

Mammography is the best studied breast cancer screening method and is the only method recommended for screening the general population of women ¹⁸. Clinical trials and observational studies have established the importance of regular mammography in preventing breast cancer ¹⁹. The American Cancer Society recommends that women should begin annual

screening at age 45 while the United States Preventive Services Task Force, recommends that women without additional risks undergo mammography biennially starting at age 50. Screening at the population level aims to detect early stage breast cancer among asymptomatic women. This can drastically reduce the rates of morbidity and mortality from breast cancer since mammography is the most efficient way of identifying early stage breast cancer in women ²⁰.

1.1.5 Breast Cancer Staging

The stage of breast cancer can be assessed in three ways; tumor size, presence of nodal metastasis, and presence of distant metastasis, represented as the TNM staging ²¹. These stages determine whether a breast cancer case is assigned stage 0, I, II, III or IV, with stage 0 indicating non-invasive abnormal cells and stage IV indicating invasive cancers, thus, the cancer cells have spread to other areas of the body outside the breast. According to several clinical and experimental observations, the final step in breast cancer progression is metastasis ²².

There is also the Surveillance, Epidemiology, and End Results (SEER) summary staging system ²³. This summary staging classifies breast cancer as in situ (presence of abnormal cells that have not spread out of the milk duct), local (cancer is confined within the breast), regional (cancer has spread to nearby lymph nodes) and distant (the cancer cells have spread to other parts of the body) based on the extent of spread of breast cancer cells ²⁴.

1.1.6 Breast Cancer Subtypes by Receptor Status

There is a striking difference in breast cancer subtype distribution across populations. According to Huo et al., 2009, in a research analyzing over 500 breast cancer patients from different geographic regions in West Africa, only 25% of the samples were ER positive. The Hormone Receptor Negative subtype was predominant, and Triple Negative Tumors represented a majority of the breast cancer cases in West Africa ²⁵.

Stark et al.,2010, in a study analyzing 1008 white American, 581 African American and 75 Ghanaian women with breast cancer observed the highest prevalence of Triple Negative Breast Cancer (TNBC) in Ghanaian women (82.7%), followed by African American women (26.4%) and white American women (16.9%). The highest proportion of ER positive and/or PR positive, HER2 negative breast cancers were observed in white American women followed by African American and Ghanaian women ²⁶. Der et al., 2015, also analyzed 233 breast cancer cases from Ghanaian women in Korle Bu teaching hospital and observed that 58.3% of the samples were triple negative while 23.3% of the sample were negative for ER and PR but positive for HER2. It is speculated that hereditary factors may be contributing to the patterns in breast cancer subtypes in women of sub-Sahara-African descent ²⁷.

1.1.7 Breast Cancer Treatment

Treatment of breast cancer depends on the kind and stage of the breast cancer. Treatments include, surgery (lumpectomy, mastectomy, sentinel node biopsy etc.), chemotherapy, radiation therapy, hormonal therapy and biological therapy etc. ²⁸. The major therapeutic

modalities are surgery, radiotherapy and systematic therapy. The selection of treatment or combination of treatments for a breast cancer patient is based on the best existing treatments given the resources available ²⁹.

Breast conserving treatments have increased since the 1980s. Over the past 30 years, significant advances in modern radiotherapy equipment and techniques have been achieved which have contributed to a reduction in complications and improved survival rates among breast cancer patients. Moving from traditional mastectomy to breast conserving methods initially posed a challenge and took time as many physicians could not believe that breast conservation was as effective as the more extensive surgery ³⁰. In high income countries, breast conserving surgery (BCS) is the most preferred surgical option for managing non-metastatic breast cancer. However, the opposite may be said about developing countries. In a study by Cubasch et al., 2017³¹, in Soweto (South Africa), comparing the determinants of BCS and total mastectomy (TM), 354 (80%) out of 445 patients underwent TM and 91 (20%) underwent BCS. Nearly 40% of surgical patients were below 50 years and women younger than 40 years were more likely to receive BCS. The research concluded that TM was more common than BCS among the breast cancer patients in Soweto, both in patients with more locally advanced disease at diagnosis and patients in stage I and II disease.

Taylor et al., assessed the predictors of mastectomy in the Greater Western Region of Sydney and found that after adjusting for the clinical stage of disease, mastectomy was less frequent in younger women (39 years or less) compared to older women (OR= 0.48, p=0.05). Patients with

high SES had a statistically lower odds ratio (0.5) for mastectomy after adjustment for age and stage. While patients with larger tumors and more advanced disease stage had higher rates of mastectomy, histologic type was not statistically significant in predicting mastectomy.

Mastectomy rates also decreased as the number of patients treated by the surgeon increased $(p<0.01)^{32}$.

Diagnosing breast cancer by subtypes is important for both prognosis and treatment of breast cancer. ER positive and PR positive breast cancers can be treated with hormonal therapies while HER2 positive breast cancer can be treated with therapeutic agents. Triple Negative Breast Cancer is the worse in terms of prognosis and is typically treated with an assortment of chemotherapies ³³.

In sub-Saharan Africa, social and cultural factors play a big role in breast cancer diagnosis and treatment. Some women in this region use traditional medicines and/alternative treatments first and only present at hospital when the symptoms have worsened ³⁴.

1.1.8 Quality of Life (QOL) of Breast Cancer Patients

The World Health Organization (WHO) defines quality of life as an individual's perception of their position in life in the context of the culture and value systems in which they live and in relation to their goals, expectations, standards and concerns ³⁵. Quality of life of breast cancer patients are an important outcome because breast cancer patients are now surviving longer due to early detection and improved treatments over the years ³⁶.

Studies have reported predictors of long-term quality of life to include the stage of the tumor, adjuvant therapy, educational and marital status, comorbid conditions, and type of treatment; whether breast conserving or non-breast conserving ³⁷. Results of a five-year prospective study in Munich evaluating the quality of life of women with breast cancer who underwent breast conserving therapy or mastectomy, found that mastectomy patients had a significantly (p<0.01) lower body image, role and sexual functioning compared to women who underwent breast conserving therapy. Even patients who were 70 years or more reported a higher body image when treated with breast conserving therapy. Emotional, financial, social and future health were significantly worse in younger patients (p<0.01) ³⁸.

Quality of life issues among breast cancer patients based on a study conducted by Brady et al., in 1997 include pain, fatigue, fear of recurrence, feelings of lesser body image and femininity ³⁹. Holzner et al., (2001), in a study of breast cancer patients in Austria assessed the quality of life of breast cancer patients categorized into three groups; 1-2 years after initial treatment, 2 to 5 years after initial treatment and more than 5 years after initial treatment. Results of the study indicated that patients within the early phase of treatment (1-2 years) clearly had a reduced quality of life in many areas of life more especially in emotional and social domains. However, women in their third year of initial treatment had the highest quality of life compared to women within the first 2 years. Surprisingly, women who survived 5 years after initial treatment had a reduced quality of life in their emotional, social, cognitive, sexuality and role functions compared to women within 3-5 years ⁴⁰.

Several instruments have been used for measuring quality of life of breast cancer patients. The most widely used are the European Organization for Research and Treatment of Cancer-Breast Cancer Quality of Life Questionnaire (EORTC QLQ-BR23), Functional Assessment of cancer therapy-Breast cancer (FACT-B)/ Functional Assessment of Chronic Illness Therapy-Breast (FCIT-B), Breast Cancer Chemotherapy Questionnaire (BCQ), the Satisfaction with Life Domains Scale for Breast Cancer (SLDS-BC), the Medical Outcomes Study Short Form Survey (SF-36) and the Hospital Anxiety and Depression Scale (HADS) ³⁶.

The EORTC QLQ-BR23 was developed in 1987 and designed to be multidimensional in assessing the quality of life of cancer patients and also easy for self-administration. It includes five functional scales; physical, social, emotional, cognitive and role functions, three symptoms scale; pain, fatigue, nausea and vomiting and a global health and quality life scale ⁴¹. The FACT-B assesses wellbeing of cancer patients in terms of Physical, Emotional, Social, and Functional domains ³⁹.

Bonsu et al., 2014, in a qualitative exploratory study assessed the Emotional and Psychosocial experiences of 10 Ghanaian women with Advanced Breast Cancer (ABC). The women reported fear, anxiety and sadness. They described the pain as continuous, piercing and burning. The fear of death and high cost of treatment were also reported among the women ⁴².

Jaiyesimi et al., (2007), also assessed the Health-Related Quality of Life of 35 Nigerian women receiving radiotherapy for Breast cancer at the University College Hospital, Ibadan using the EORTC. In this analysis, they found that Physical, Emotional and Cognitive functioning scores were above average (76.9 +/- 20.6, 61.9 +/- 30.3 and 60.0 +/- 32.1 respectively). Role and Social functioning scores were below average (46.2 +/- 36.6 and 40.9 +/- 42.8 respectively). Symptom scale scores were high for fatigue, pain and financial difficulties (52.7 +/- 32.8, 59.1 +/- 34.4 and 71.4 +/- 38.8 respectively). Age was not significantly associated with any of the functional and symptom scale scores. The overall QOL was significantly associated with Physical, Cognitive and Social functioning and also significantly and inversely related to fatigue, vomiting, nausea, pain, insomnia and financial difficulties ⁴³.

Anarado et al., also explored the experiences and nursing support need of 20 women undergoing out- patient breast cancer chemotherapy in two teaching hospitals in Southeastern Nigeria through Focus Group Discussions. All participants reported inadequate preparation for chemotherapy before the commencement of treatment. Most participants felt they were not provided with adequate information on side effects of the drug and what to expect. Participants also reported that chemotherapy is scary, distressing and financially demanding. Nearly all participants reported experiencing no less than five side effects from chemotherapy. The most commonly reported side effects were loss of appetite, hair loss, fatigue, nausea and vomiting, diarrhea or constipation, and skin discoloration. Hope, faith and courage were the mediating factors between perceived distress of chemotherapy and the likelihood of completing the treatment 44.

These studies could have an inherent selection bias in them as women who were in very critical stages of breast cancer were less likely to be part of the study. Quality of life experiences might differ among women according to the stage of the tumor. The small sample sizes of most studies also limit the generalizability of findings to larger populations. Some studies were limited to only a small proportion of the population which may affect the generalizability of results. However, it will not be surprising to record low QOL for breast cancer patients in Africa as most breast cancer patients in Africa report to the hospital with advanced stages of the disease.

In addition, some breast cancer patients follow alternative treatment pathways such as traditional healers as they are usually cheaper and less invasive and only report to the hospital when the disease is advanced. Soliman et al., (2012), found that traditional herbalists play an important role in cancer management in sub Saharan Africa which indicate the widespread trust and belief in herbal and spiritual treatment ⁴⁵.

Given the low physician-to-patient ratio in most African countries, some patients will prefer traditional healers as they offer a much more intimate patient-practitioner relationship⁴⁶. The fear of mastectomy is also one of the major reasons for delayed care and/or seeking alternative treatments. Also, considering that the treatment of breast cancer is expensive, it could be financially draining for some patients which can affect their QOL.

Chapter 2

2.1 Quality of Life of Women with Breast Cancer in Yaunde, Cameroon

2.1.1 Introduction

Breast cancer remains the most frequent form of invasive cancer among women. On average, one out of eight women will be diagnosed with breast cancer in her lifetime⁴. In 2012, there was an estimated 1,671,149 new cases of breast cancer and 521,907 breast cancer related deaths globally. The incidence rate of breast cancer for this same year was 882.9/100,000 in developing countries and 793.7/100,000 in developed countries ¹¹. In 2018, the GLOBOCAN estimated 2,088,849 new cases of breast cancer and 626,679 breast cancer deaths ⁴⁷.

Breast cancer burden is expected to grow worldwide particularly in developing countries due to growth and aging of population as well as increased prevalence of risk factors associated with economic transition such as smoking, obesity, and some reproductive behaviors ⁴⁸. Despite the growing burden of cancer in Africa, it continues to receives a relatively low public health attention mostly because of other pressing public health issues such as malaria, tuberculosis and HIV/AIDS ¹⁶.

The reported high rates of curative treatment and long-term survival of breast cancer patients indicates that research should not only be focused on acute phase of cancer treatment and survival rates but also on the long term effective functioning and life satisfaction of the patient ⁴⁹. New therapeutic interventions are now evaluated by their ability to extend survival as well as improve the quality of life of cancer patients ⁵⁰.

Assessing public health related quality of life in cancer patients could contribute to improved treatment and could also be an important prognostic factor ³⁶. Also, information on the quality of life of breast cancer patients could help determine patient services that should either be developed or maintained. Assessing long term quality of life of breast cancer patients could help identify late psycho-social secondary outcomes of breast cancer which can help physicians target possible late effects that should be given special attention in follow up care ⁴⁹.

There have been a relatively large number of studies on assessing the quality of life of breast cancer patients in the U.S and other developed countries. However, there is a limited number of studies on the quality of life of breast cancer patients in Africa. Even for such studies that were done in Africa, there were a number of limitations in these studies which include small sample sizes, selection bias, not using validated quality of life instruments, using family members as proxy when patients were too ill to participate in the study, and limiting the studies to small proportions of the population which could all affect generalizability of the results.

The aim of this study is to explore the associations between sociodemographic and medical factors and how they relate to the overall quality of life of breast cancer patients in an urban setting in Cameroon (Yaunde) using the FACT-B instrument.

Chapter 3

3.1 Methods

3.1.1 Study population

The case-control African Breast Cancer Study originally started in Nigeria in 1998 and then expanded to Uganda and Cameroon in 2011 using the same questionnaires and protocols ⁵¹. The data for these analyses includes only breast cancer cases from the Yaounde, Cameroon component of African Breast Cancer Study. The study protocol was reviewed and approved by the Institutional Review Board of the University of Chicago (University of Chicago Biological Sciences Division Institutional Review Board (13304B and 10-023-B) and the Cameroon National Ethics Committee (N141/CNE/SE/2010).

Breast cancer cases were enrolled at the Department of Medical Oncology at the General Hospital in Yaounde, Cameroon, which serves a population of 2.5 million. All consecutive cases who visited the medical oncology clinic between 2011 and 2016 were invited to participate and all breast cancer stages were eligible. Participants ranged from 20 to 80 years of age. A total of 297 breast cancer cases were enrolled. The study participants provided written informed consent prior to their enrollment.

3.1.2 Data collection and measures

Trained interviewers administered the Functional Assessment of Cancer Therapy–Breast Cancer (FACT-B, Version 4) to assess health and quality of life of breast cancer cases. The FACT-B instrument includes the following subscales; Physical Well-being (*PWB*), Functional Well-being

(*FWB*), Emotional Well-being (*EWB*), Social Well-being (*SWB*), and Breast Cancer—Specific concerns (*BCS*). The instrument has a total of 37 items asking respondents to rate how true each statement is for the last 7 days. A total *FACT-B*, *FACT-G* and *FACT-B* TOI score is calculated by summing scores from the relevant subscales; total *FACT-B = PWB + SWB+ EWB+FWB+BCS*, *FACT-B TOI=PWB+FWB+BCS*, *FACT-G* total=*PWB+SWB+FWB+EWB*. Response scales range from 0 (not at all) to 4 (very much). The *FACT-B* is a well-validated instrument with high internal consistency and reliability ⁵².

Participants also completed a questionnaire regarding demographics, family history of breast cancer and history of benign breast disease, lifestyle factors, gynecological history, reproductive history, and alcohol consumption patterns. Information on the medical history of the participants was abstracted from hospital records and included treatment received (chemotherapy, radiation, hormonal, surgery, hormonal therapy), Tumor, Nodes involvement and Metastasis (TNM) stage, type of surgery received (lumpectomy, mastectomy, reconstruction), date of first breast cancer diagnosis, basis of diagnosis (clinical, histological, cytology), and start date of treatment. A new variable called 'time from diagnosis to interview' was constructed which indicates the length of time from when the case was first diagnosed with breast cancer to the FACT-B interview.

The demographic exposure variables of interest in this analysis included living/relationship status, highest educational level, occupation, religion, region, ethnic group, income level, and current age. These variables initially were categorized as follows:

- <u>Current age</u>; less than 40 years; from 40 to 44 years; from 45 to 50 years; greater than
 50 years
- <u>Educational level</u>; None/Primary; Secondary or vocational/technical; some university/
 bachelor's/ postgraduate degree
- Occupation: None/ housewife; Trader/ farmer; Artisan/ professional/ technician/clerical; Other
- Household income level; Less than or equal to 50000 CFA; greater than 50000 to 110000
 CFA; greater than 110000 to 5000000 CFA
- <u>Living status</u>; Living alone; living with husband or boyfriend; not married and living with family.
- Religion; Christianity; Islam/other
- Region; Central; Outside Central
- Ethnic group; Bantous; Semi-Bantous; Sudanese/Semites/other.

Preliminary analyses revealed similar mean Fact-B total and subscale scores for some of the categories within each variable. To limit the number of categories, and thereby reduce the degrees of freedom in our analyses, we performed pairwise comparisons and combined categories with mean scores that were not significantly different. This led to the following categorization scheme:

- Current age; Less than 45 years; and greater than 45 year
- <u>Educational level</u>; None/Primary; Secondary or vocational/technical; and some university/ bachelor's/ postgraduate degree

- Occupation; None/ housewife; and Trader/ farmer/Artisan/ professional/ technician/clerical/Other
- Household income level; Less than or equal to 50000 CFA; greater than 50000 CFA; and 'missing'.
- <u>Living status</u>; Living alone; living with husband/boyfriend; not married and living with family.
- Religion; Christianity; and Islam/other
- Region; Central; and outside Central
- Ethnic group; Bantous/Semi-Bantous; and Sudanese/Semites/other,

The medical exposure variables of interest in this analysis include the time from diagnosis to interview, chemotherapy (yes/no), surgery (yes/no) and TNM stage of disease. Abstracted variables indicating presence/absence of chemotherapy and surgery had 13% (39 cases) and 25% (73 cases) missing data respectively. We used other variables, i.e. start dates of specific treatments, in an attempt to reconcile missing data. Those with a start date were assigned a 'yes', and those with no start dates were assigned a 'no' for each of the two treatments. TNM classification had about 25% (74 cases) of its data missing and we preserved these missing data in a category called 'missing'. Two other potentially relevant variables, radiotherapy and hormone therapy, contained a large proportion of missing data, i.e. 80% and 86% respectively, and therefore were not analyzed. Time from diagnosis to interview was categorized as less than 6 months, greater than or equal to 6 months but less than one year, greater than or equal to one year but less than two years and greater than or equal to two years.

3.1.3 Statistical methods

Characteristics of the cases in this study sample were summarized with means for continuous variables and percentages for categorical variables. Our sample's mean Fact-B scores were compared with Fact-B mean scores from previous breast cancer studies, although no formal testing of differences was performed. Bivariate analyses using one-way ANOVA were used to assess exposure variables listed above in relation to Fact-B total scores and subscale scores, i.e. *PWB*, *SWB*, *EWB*, *FWB*, *BCS*, *FACTG*, *FACTB-Total* and *FACTB TOI*.

In ANOVA analyses of variables with more than two categories, a global p value of <0.15 (more liberal than a p<0.05 cutoff because of multiple categories and small numbers in some categories) was followed by an exploration of pairwise comparisons among categories.

Categories with no statistically significant difference in mean Fact-B scores were combined (as described above). Multivariable linear regression models included variables associated with Fact-B total and subscale scores in the bivariate analyses according to the criterion of p< 0.05.

Based on this criterion, different variables were selected for each subscale and total score multivariable model. We chose not to adjust our p value criterion for multiple comparisons because each of the variables under study have been associated with quality of life in breast cancer patients in previous studies.

Chapter 4

4.1 Results

A total of 297 women with various stages of breast cancer constituted the analytic sample of this study. The sample characteristics are presented in table 1. Women ranged from 20 to 80 years of age and more than half (54.27%) were married and living with their husband or boyfriend. About half of the women (52.05%, n=152) had completed only secondary or a vocational school and most were engaged in some form of occupation (66.44%, n=192). Christianity was the dominant religious group, i.e. 92.54% (n=273). More than half (57.63%, n=170) of the women lived in the central region of Cameroon and a little over half (53.87%, n=160) had a household income of over 50,000 CFA per month.

About 60% of the women were interviewed within the first 6 months of breast cancer diagnosis, but 13% were interviewed over 2 years after initially diagnosed. The largest proportion of women, approximately 42% (n=122) had 'stage two' breast cancer at diagnosis; for about 10% (n=31) of women cancer stage was not recorded. The majority (69.42%, n=202) underwent surgery as part of their treatment; two women received a bilateral mastectomy and 126 women (43.30%) had a unilateral mastectomy. A large proportion of cases received chemotherapy 86.25% (n=251). Data suggest only 12% of the women received radiotherapy, but missing data for this treatment modality make this estimate uncertain.

4.2 Distribution of Quality of Life Scores (QOL) scores

The means and distributions of the Fact-B quality of life scales in our study sample and in other studies are shown in Table 2. Although a formal statistical test was not performed to compare results across studies, it appears the mean SWB for our study was similar to that of other studies. Our study recorded lower means for PWB, EWB, FWB, BCS and FACT-B total when compared with the other studies.⁵²

4.3 Sociodemographic factors and QOL scores

Sub-scales: PWB mean scores were higher among women with a secondary/vocational education (compared to none/primary), women with a household income of more than 50,000 CFA per month, and women who lived with their husband/boyfriend (compared to those who lived alone) (Table 3). SWB mean scores were lower for women 45 years of age or older and women with none/primary education only. Higher mean SWB scores were reported by women involved in an occupation, women with a household income over 50,000 CFA per month, and women who lived with their husband/boyfriend. EWB mean score were associated with both incomes i.e. higher mean score among women who earned more than 50,000 CFA per month and occupation (women who were engaged in an occupation had higher mean scores). FWB mean scores were lower for women 45 years of age or older, but higher for women involved in an occupation, women with a household income of over 50,000 CFA per month, and women who lived with their husband/boyfriend or with their family (compared to women who lived alone). BCS mean scores were higher for women less than 45 years, women engaged in an

occupation, women with incomes over 50,000 CFA per month, and women living with husband/boyfriend and lower among women with none/primary education only.

Composite scales: mean FACT-G scores (PWB+SWB+EWB+FWB) were lower among women 45 years of age or older and women with non/primary education only. Higher mean FACT-G scores were reported among women with an occupation, women with a household income of over 50000 CFA per month, and women who lived with husband/boyfriend or with their families (compared to those who lived alone). Results for FACT-B total scores (PWB+SWB+EWB+FWB+BCS) were similar to those of the FACT-G. For both composite scores women living with husband/boyfriend also had higher mean scores than women living with their families. FACT-B TOI (PWB+FWB+BCS) results paralleled those of the FACT-G composite scores.

4.4 Medical factors and QOL scores

Subscales: Mean *PWB* scores were higher among women who did not receive chemotherapy compared to women who receive chemotherapy. Mean *EWB* scores were higher for women who received surgery and women who received chemotherapy compared to those who did not. FWB mean scores were higher for women with stage 0/I compared to women with stage III/IV breast cancer. BCS means scores were significantly higher for women with stage II breast cancer compared to women with stage IV.

<u>Composite scores</u>: Mean *FACT-G* scores were significantly higher for women with stage 0/I compared to women with stage IV breast cancer. *FACT-B TOI* mean scores were significantly lower for women with stage IV breast cancer compared to women with stage 0/I.

4.5 Multivariable models of sociodemographic and medical factors associated with QOL <u>Subscales</u>: In adjusted models some variables were no longer statistically significantly related to QOL. The following factors remained statistically significant in the various models (Table 5): PWB scores were lower for women 45 years of age and older and women who received chemotherapy (betas = -2.25, and -1.98 respectively). PWB scores were higher for women with secondary or vocational /technical education, women with an occupation, women with incomes over 50,000 CFA per month, and women living with husband or boyfriend (betas = 1.52, 1.19, 1.85, and 2.13 respectively). SWB scores were lower for women of 45 years or older (betas=-2.36) and higher for women who were engaged in an occupation, earned more than 50,000 CFA per month, women who lived with their husbands/boyfriends and women who lived with their families (betas=1.45, 1.86, 6.97 and 5.09 respectively). EWB scores were higher for women who were engaged in an occupation, women who had a monthly household income greater that 50 000CFA and women who received surgery (Betas: 1.41, 1.20, 3.29). FWB scores were lower for women 45 years or older and women with stage III and stage IV disease (betas=-1.67, -3.72 and -4.51 respectively). FWB scores were higher for women with an occupation, women with incomes over 50,000 CFA per month, women who lived with their husband/boyfriend and women who lived with their families (beats=1.79, 3.04, 3.35, 3.14 respectively). BCS scores were lower for women 45 years and older (betas= -1.36) and higher

for women with an occupation and women with incomes more than 50,000 CFA per month (betas=0.60, 1.26 respectively)

Composite scores:

In adjusted models the following were significantly associated with QOL: *FACT-G* scores were lower for women who were 45 years or older and women with stage II, stage III and stage IV disease (betas=-3.83,-6.09, -10.28 and -8.02 respectively) and higher for women who had an occupation, women with incomes above 50,000 CFA per month, women who lived with their husband or boyfriend and women who lived with their families (betas=5.76, 8.85, 13.41, 11.59). *FACT-B* total scores were lower for women 45 years or older (beta=-4.97). *FACT-B* total scores were higher for women with an occupation, women with a monthly household income above 50,000 CFA per month, women who lived with their husband or boyfriend and women who lived with their family (betas=6.96, 9.43, 14.38, 11.20 respectively). *FACTB-TOI* scores were lower for women of 45 years or more and women with stage II, stage III and stage IV disease compared to stage 0/I (betas=-2.65, -2.26, -4.47, -5.70) and higher for women with an occupation, women with incomes over 50,000 CFA per month, women who lived with their husband or boyfriend and women who live with their families (betas=3.96, 6.65, 6.09 and 4.53 respectively).

Chapter 5

5.1 Discussion

In this study, we examined the quality of life among women with breast cancer who presented to an oncology clinic in Cameroon, 2011-2016. Our results indicate that *total Fact-B* quality of life scores were significantly associated with women's age, occupational status, household income level and living/relationship status.

There are many studies on factors linked to quality of life among breast cancer patients living in high income countries. There are fewer studies, however, of quality of life conducted among African women with breast cancer. Some examples are Jaiyesimi et al who studied 35 Nigerian women using the EORTC quality of life scale and found lower QOL scores among women with financial concerns ⁵³. Bonsu et al focused on 10 Ghanaian women with advanced breast cancer and attempted to describe their physical and emotional experiences ⁴². In a study by Anarado, focus groups were used to capture QOL experiences and need for nursing support among 20 Nigerian women with breast cancer ⁴⁴. Women felt inadequately prepared for chemotherapy and expressed desires for more nursing support.

Of all factors included in our analyses, household income level was the one most consistently associated with Fact-B quality of life subscales and composite scales, i.e. higher household income level was positively associated with a better self-reported quality of life. This finding agrees with results of a systemic review by Mols et al., 2005, which concluded that a higher quality of life was positively related to a higher household income ⁵⁴. This is not surprising as women with a higher household income may be able to afford early diagnosis, better

treatments and more supportive care compared to their counterparts with lower income. Older women (greater than 45 years) in our sample reported a lower quality of life (lower total Fact-B scores) compared with younger women (less than 45 years). This is somewhat different from the Avis et al., 2005 finding of lower quality of life scores in younger vs older breast cancer cases ⁵².

Relationship/living status also is noteworthy because it was related to almost all the quality of life subscales. Our results indicate that women who lived alone had the lowest quality of life scores, followed by women who lived with other family members but not husband/boyfriend. Women who lived with their husbands/boyfriends reported the highest quality of life. These results are consistent with a study by Carvert et al., 2005, which showed that women with partners at the time when first treated reported less frequent negative feelings and more frequent positive feelings ⁵⁵. However, in Chen's study of Chinese breast cancer cases, single women had the highest QOL scores ⁵⁶. More studies are needed that explore breast cancer patients' experiences under these different living circumstances across different geographic settings and cultures; this may help determine specific types of support that can maximize quality of life for these women.

Women engaged in an occupation reported a better quality of life compared to those who did not list an occupation. Studies by Engel et al and Chen et al observed a similar finding ^{37 56}.

Working outside the home may have benefits such as taking one's mind off the illness, greater income and resource stability, and more support from co-workers. It is also possible that

women with the most advanced disease or debilitation from treatment or general despair dropped out of the workforce and this partially explains the observed associations. Women with advanced stage disease (stage IV) had the lowest Fact-B quality of life scores in FACT-G and FACTB-TOI. However, there was no significant difference among the TNM stages under FACTB total. Studies by Sharma et al., 2017, and Chen et al likewise noted that patients with advanced stage of breast cancer performed worse on QOL scores ⁵⁶.

A striking observation from our results is that BCS was not significantly associated with the stage of disease, despite BCS being the most breast cancer-specific subscale that directly queries about symptoms. Low scores in other subscales among women with advanced disease tap into both physical and psychological 'pain,' both likely to increase with more aggressive treatments and worse prognosis. After accounting for other factors, educational level, ethnic group and region did not have any significant associations with the quality of life scores of these breast cancer patients.

Strengths of this study include the relatively larger sample size compared to previous studies, the wide age range (20-80 years), and the QOL information direct from the patient and not a proxy. There are, however, multiple limitations worth noting. The sample comes from one oncology clinic in Cameroon, and women with longer times from first diagnosis to interview may over- represent those who survived for follow-up or reoccurrence. Most of the women were of a single religion or ethnic group. Thus, generalizability of our findings could be reduced. Other potentially important variables were not incorporated in this analysis, e.g. time from last treatment to interview. While this time window likely is associated with some quality of life

subscales it may be unrelated to age, income, living status and other variables we found significant in our analyses, therefore not a major source of unmeasured confounding. Also, we did not explore effect modifications by factors under study such as income. Further analyses of effect modifications might shed additional light.

Our study adds to a growing body of literature pointing to the need to consider quality of life in cancer patients. In particular, findings may differ across high income and low-income countries. Only by studying African women with breast cancer can we learn the specifics of what influences their quality of life, who needs the most support, and the types of support most needed. Our results suggest that clinicians should pay particular attention to the quality of life of African breast cancer cases who are older (greater 45 years), live alone, not involved in any type of occupation, have lower household income levels and are diagnosed with advanced stage disease. This study is a one-time snapshot in the lives of breast cancer patients in Yaunde, Cameroon. Future quality of life studies of breast cancer patients could gain additional insights by assessing changes in quality of life longitudinally in relation to disease stage, treatments and living circumstances.

APPENDIX

TABLES

Table 1. Characteristics of Analytic Sample (N=297)

Characteristics	No. of case	%	Mean	SD	Range
Days from diagnosis to interview (292) 5 missing			360.55	696.19	0-7672 days
Current age (296) 1 missing			47.37	11.77	20.0-80.0 yrs
Current age (in years) (N=296)	132	44.59			
Less than 45 years	164	55.41			
Greater than or equal to 45 years	10.	331.12			
Frequency missing =1					

Table 1 (cont'd)			
Relationship or living status (N=293)			
Living alone	31	10.58	
Living with husband or boyfriend	159	54.27	
Not married and living with family	103	35.15	
Frequency Missing = 4			
High act level of advection (N=202)			
Highest level of education (N=292)			
None/Primary	97	33.22	
Secondary or vocational/technical	152	52.05	
Some university/ bachelor's/ postgraduate degree	43	14.73	
Frequency Missing =5			
Occupation (N=289)			
None/ housewife	97	33.56	
Trader/ farmer/ Artisan/ professional/ technician/clerical/Other	192	66.44	
Frequency Missing = 8			

Table 1 (cont'd)			
Religion (N=295)			
Christianity	273	92.54	
Islam/Other	22	7.46	
Frequency Missing = 2			
Region (N=295)			
Central region	170	57.63	
Outside central region	125	42.37	
Frequency missing = 2			
Ethnic group (N=292)			
Bantous/ Semi-Bantous	274	93.84	
Sudanese/ Semites/OTHER	18	6.16	
Frequency Missing = 5			

Table 1 (cont'd)			
Income level (N=297)			
less than or equal to 50000 CFA	106	35.69	
greater than 50000 CFA	160	53.87	
	31	10.44	
missing			
Medical Characteristics			
Surgery (N=291)			
No	16	5.50	
Yes	202	69.42	
Missing	73	25.09	
Missing entire medical records =6			

Table 1 (cont'd)			
Type of Surgery (N=291)			
Bilateral Mastectomy	2	0.69	
Lumpectomy	73	25.09	
Unilateral Mastectomy	126	43.30	
Missing	90	30.93	
Missing entire medical records =6			
TNM Classification of Clinical stage (N=291)			
Stage_0/I	23	7.90	
Stage_II	122	41.92	
Stage_III	84	28.87	
Stage_IV	31	10.65	
Missing	31	10.65	
Missing entire medical records =6			

Table 1 (cont'd)		
Chemotherapy (N= 291)		
	1	0.34
No	251	86.25
Yes	20	
Missing	39	13.40
Missing entire medical records =6		
Missing medical records =6 RadioTherapy (N= 291)		
Madio Metapy (N- 251)		
No	22	7.56
Yes	36	12.37
Missing	233	80.07
	233	80.07
Missing entire medical records =6		

Table 1 (cont'd)			
HormonalTherapy (N= 291)			
No	28	9.62	
Yes	12	4.12	
Missing	251	86.25	
Missing entire medical records =6			
Time from diagnosis to interview			
Less than 180 days	177	59.60	
>= 180 but less than 365 days	46	15.49	
>= 365 but < 730 days	36	12.12	
>= 730 days	38	12.79	

Table 2. Distribution of responses for Quality of Life (QOL) variables

	Р	resent stud	у	Avis et	al., 2005		Other studies		
Scale	No. of patients	Mean	STD	No. of patients	Mean	SD	No. of patients.	Mean.	STD
PWB	295	18.82	5.75	201	23.84	4.68	161	21.42	5.46‡
SWB	295	21.05	5.51	201	21.05	5.44	161	22.76	4.95§
EWB	291	15.27	3.71	201	17.63	4.03	161	17.90	4.19
FWB	294	18.25	6.23	200	21.23	5.62	161	20.16	5.58
BCS	293	18.53	3.04	201	23.43	6.07	161	22.50	6.22
FACTB total	290	92.06	17.01	199	111.0	19.11	161	111.72	20.81
FACTB TOI	293	55.61	11.64						
FACTG	291	73.49	15.62						

Table 3. Bivariate analysis of sociodemographic characteristics

		DIAZO		CVA/D		EVA/D		EVA/D		D.C.	_	FACT	6		T-B		ACT-B
		PWB		SWB		EWB		FWB		BC		FACT-		to			OI
Sociodemographi	N	Me	Р	Mea	Р	Me	Р	Me	Р	Me	Р	Mea	Р	Mea	Р	Mea	Р
С		an		n		an		an		an		n		n		n	
		(SD		(SD)		(SD		(SD		(SD		(SD)		(SD)		(SD)	
))))							
Current age		18.		22.3		17.		19.		19.		78.1		97.3		57.5	
less than 45 years	13	97	0.7	5	<0.0	42	0.3	25	0.01	35	<0.0	6	0.01	1	<0.0	0	0.01
	2	(5.8	1	(5.2	1	(4.9	6	(6.0		(2.8	1	(16.		(18.	1	(12.	
		5)		5)		4)		1)		9)		68)		11)		00)	
	16	18.		19.9		16.		17.		17.		73.2		91.1		54.0	
>= 45 years	4	73		9		87		45		85		8		9		8	
		(5.6		(5.5		(5.2		(6.3		(3.0		(16.		(17.		(11.	
		9)		3)		5)		3)		1)		48)		70)		47)	
Education						-		-						90.2		53.4	
	97	17.	REF	19.8	REF	16.	REF	17.	REF	17.	REF	72.3	REF	9	REF	9	REF
None/Primary		67		9		82		84		88		1		(18.		(11.	
(REF)		(6.0		(5.8		(5.5		(6.2		(2.9		(17.		37)		56)	
•		3)		0)		6)		8)		6)		23)		·		•	
		•	0.0	•							0.06	· · ·					
Secondary or	15	19.	3 *	21.5	0.02	17.	0.5	18.	0.49	18.	*	76.6	0.05	95.3	0.03	56.3	0.07
vocational/techni	2	34	0.9	4	*	19	9*	40	*	62	0.01	9	*	5	*	0	*
cal		(5.4	8**	(5.1	0.28	(4.8	0.6	(6.0	0.65	(2.9	**	(16.	0.40	(17.	0.32	(11.	0.32
		8)		4)	**	3)	1**	7)	**	8)		24)	**	62)	**	50)	**
Some univ-		 19.		22.5		 17.		18.	0.36	20.	<0.0	79.1	0.03	98.4	0.01	58.2	0.03
ersity/bachelor's/	43	36	0.1	4	0.01	65	0.3	90	*	02	1*	8	*	8	*	8	*
postgrad	.5	(5.9	1*	, (5.1	*	(5.1	9*	(6.8		(2.8	•	(16.		(18.		(12.	
P03181 00		4)	-	(3. <u>1</u> 6)		(3. <u>1</u> 6)	,	1)		0)		(10. 74)		28)		08)	

Table 3 (cont'd)

Occupation																	
None/ housewife	97	18. 17 (6.1 3)	0.2	19.8 8 (5.6 6)	0.01	16. 22 (5.2 7)	0.0 4	16. 74 (6.2 6)	<0.0 1	17. 68 (2.7 8)	<0.0 1	71.3 9 (16. 22)	<0.0 1	89.1 0 (18. 37)	<0.0 1	52.6 0 (11. 96)	<0.0 1
Trader/farmer/te chnician Artisan/prof clerical/other	19 2	19. 08 (5.5 8)		21.6 4 (5.3 6)		17. 57 (4.9 9)		19. 01 (6.1 2)		18. 98 (3.1 0)		77.4 7 (16. 21)		96.3 9 (17. 69)		57.0 8 (11. 35)	
Religion Christianity	27 3	18. 72 (5.7 8)	0.2 7	21.0 6 (5.5 6)	0.95	17. 11 (5.1 0)	0.9	18. 38 (6.2 5)	0.18	18. 54 (3.0 7)	0.61	75.4 3 (17. 00)	0.92	94.0 4 (18. 45)	0.76	55.6 6 (11. 84)	0.76
Islam/other	22	20. 13 (5.4 2)		20.9 8 (5.3 3)		17. 00 (5.3 4)		16. 53 (6.1 6)		18. 20 (2.7 4)		75.8 2 (13. 07)		92.7 7 (13. 9)		54.8 6 (9.5 6)	
Region				•		,						<u> </u>					
Central	17 0	18. 50 (6.1 2)	0.2 5	20.7 8 (5.5 0)	0.37	16. 73 (4.8 4)	0.1 4	17. 67 (6.3 2)	0.06	18. 53 (2.9 6)	0.89	73.9 6 (16. 60)	0.08	92.4 6 (17. 75)	0.11	54.7 1 (11. 80)	0.13
Outside Central	12 5	19. 28 (5.2 2)		21.3 7 (5.5 5)		17. 64 (5.4 4)		19. 03 (6.0 8)		18. 49 (3.1 7)		77.4 6 (16. 77)		95.9 4 (18. 52)		56.8 1 (11. 44)	

Table 3 (cont'd)

Table 5 (cont a)																	
Ethnic group	27	18.	0.9	21.1	0.33	17.	0.8	18.	0.74	18.	0.85	7.49	0.77	94.0	0.80	55.6	0.94
	4	79	0	2		13	8	34		51		(16.		6		4	
Bantous/Semi-		(5.8		(5.3		(5.0		(6.2		(3.0		68)		(18.		(11.	
Bantous		1)		5)		5)		2)		8)				14)		83)	
		18.		19.8		16.		17.		18.		74.2		92.8		55.4	
Sudanese/Semite	18	96		3		94		83		65		5		8		4	
s/other		(4.8		(6.8		(6.4		(6.5		(2.1		(18.		(18.		(9.5	
		8)		9)		5)		3)		2)		75)		85)		8)	
Income level		17.		19.8		16.		16.		17.		71.0		88.9		52.5	
less than or equal	10	88	REF	6	REF	51	REF	79	REF	82	REF	4	REF	6	REF	8	REF
to 50000 CFA	6	(5.7		(55.		(5.3		(6.3		(2.7		(16.		(18.		(11.	
(REF)		7)		52)		6)		9)		9)		75		05)		47)	
		19.	0.0	21.8	<0.0	17.	0.0	19.	<0.0	19.	<0.0	78.7	<0.0	97.8	<.01	58.0	<0.0
Greater than	16	58	2 *	8	1*	78	5 *	46	1*	06	1*	8	1*	(16.	*	5	1*
50000 CFA	0	(5.6	0.2	(5.1	0.34	(4.7	0.0	(5.7	0.04	(3.0	0.14	(15.	0.11	70)	0.05	(10.	0.04
		8)	1**	4)	**	4)	5**	5)	**	2)	**	53)	**		**	87)	**
		18.		20.8		15.		17.		18.		73.4		90.8		53.3	
Missing		16	0.8	6	0.37	81	0.5	00	0.87	20	0.53	4	0.49	7	0.61	6	0.74
	31	(5.6	1*	(6.6	*	(5.6	1*	(6.9	*	(3.5	*	(19.	*	(20.	*	(13.	*
		1)		4)		7)		1)		2)		10)		91)		40)	

Table 3 (cont'd)

Living status	31	16.	REF	16.0	REF	15.	REF	14.	REF	17.	REF	63.9	REF	81.1	REF	49.4	REF
Living alone (REF)		98 (5.4 1)		5 (7.4 5)		68 (4.8 2)		81 (6.8 2)		61 (3.3 3)		5 (17. 78)		4 (18. 42)		0 (10. 70)	
Living with husband or boyfriend	15 9	19. 63 (5.5 6)	0.0 2* 0.0 6**	22.5 7 (4.9 1)	<0.0 1* <0.0 1**	17. 12 (5.1 8)	0.1 6* 0.6 4**	19. 06 (5.9 8)	<0.0 1* 0.19	19. 01 (2.9 3)	0.02 * 0.01 **	78.5 2 (16. 35)	<0.0 1* <0.0 1**	97.6 3 (17. 74)	<0.0 1* 0.01 **	57.7 9 (11. 28)	<0.0 1* 0.02 **
Not married and living with family	10 3	18. 29 (5.8 0)	0.2 6*	20.2 6 (4.7 5)	<0.0 1*	17. 43 (5.0 4)	0.1 0*	18. 04 (6.0 9)	0.01	18. 06 (3.0 0)	0.47	73.9 9 (15. 52)	<0.0 3*	92.0 4 (16. 73)	<0.0 1*	54.3 0 (11. 41)	0.04

P-values with * compares each category to the referent.

P-values without * are the global p values.

P-values with ** compares the other two non-referent categories

 $^{^{\}circ}$ indicate 2^{nd} vs 3^{rd} category

 $^{^{\}infty\infty}$ indicate 2nd vs 4th category

 $^{^{\}infty\infty}$ indicate 3rd vs 4th category

Table 4. Bivariate Analysis of Medical characteristics

		P	WB	SI	WB	EW	/B	FV	VB	ВС	CS	FACT	Γ- G	FACT- total	В	FACT TOI	-В
Medical	N	Me	Р	Me	Р	Me	Р	Me	Р	Me	Р	Mea	Р	Mea	Р	Mea	Р
characte		an		an		an		an		an		n		n		n	
ristic		(SD		(SD		(SD		(SD		(SD		(SD)		(SD)		(SD)	
)))))							
Surgery	46	18.	0.30	20.	0.53	17.	<0.01	18.	0.51	18.	0.34	75.1	0.23	93.6	0.21	54.8	0.93
	6	20		69		77		12		52		0		3		7	
Yes		(5.9		(5.9		(5.1		(6.4		(3.0		(17.		(19.		(12.	
		0)		6)		4)		6)		6)		75)		09)		05)	
		19.		19.		13.		17.		17.		70.4		88.3		54.0	
no	24	50		9		69		22		91		6		2		0	
		(6.5		(5.2		(5.3		(7.3		(3.4		(19.		(20.		(54.	
		2)		8)		6)		3)		6)		19)		87)		63)	
<u>Chemo</u>		18.		20.		17.		17.		18.		74.8		93.3		54.6	
yes	45	11	0.05	62	0.75	81	<0.01	99	0.34	52	0.44	6	0.92	9	0.98	5	0.23
	0	(5.9		(6.0		(5.1		(6.4		(3.0		(17.		(19.		(12.	
		3)		2)		1)		8)		8)		91)		27)		11)	
		20.		20.		15.		19.		18.		75.1		93.3		57.1	
	40	00		94		02		03		13		6		3		5	
no		(5.6		(4.8		(5.8		(6.6		(3.0		(17.		(18.		(13.	
		7)		4)		5)		7)		6)		08)		50)		02)	

Table 4 (cont'd)

Table 4 (C	UIIL U	')															
<u>TNM</u>																	
<u>Class</u>		19.	REF	22.	REF	18.	REF	20.	REF	18.	REF	81.3	REF	99.7	REF	58.2	REF
	19	24		75		68		65		38		2		0		7	
		(7.0				(5.3		(6.2		(2.9		(18.		(20.		(13.	
Stage 0/I		1)		(4.7		8)		9)		6)		37)		10)		43)	
(REF)		,		6)		,		,		,		,		,		•	
` ,				,													
		18.	0.56*	20.	0.06*	17.	0.26*	18.	0.10*	18.	0.70*	74.9	0.10*	93.6	0.13*	55.4	0.29*
	11	49		39		37		36		64		8		7		8	
Stage II	6	(5.5				(5.2		(6.2		(3.1		(17.		(18.			
	•	2)		(5.6		6)		6)		7)		22)		91)		(12.	
		-,		2)		٥,		٠,		,,		,		32,		07)	
		19.	0.98*	20.	0.06*	16.	0.10*	17.	0.05*	18.	0.97*	74.3	0.08*	92.3	0.14*	55.4	0.30*
	58	29	0.33 [∞]	28	0.89 [∞]	70	0.36 [∞]	84	0.55 [∞]	34	0.50 [∞]	9	0.81 [∞]	7	0.62 [∞]	7	0.99
Stage III	30	(5.1	0.55	20	0.03	(5.3	0.50	(6.3	0.55	(2.9	0.50	(17.	0.01	, (17.	0.02	, (11.	∞.55
otabe		9)		(6.1		4)		1)		1)		11)		91)		16)	
		٦)		5)		7)		±,		±)		11)		31)		10)	
		17.	0.34*	22.	0.66*	15.	0.04*	15.	<.01*	17.	0.26*	70.9	0.02*	88.8	0.09*		0.02*
	24	74	0.52 [∞]	08	0.12 [∞]	82	0.13^{∞}	35	0.02 [∞]	44	0.05 [∞]	9	0.24 [∞]	1	0.19 [∞]	50.7	0.05
Stage IV	27	(5.1	o.52 ∝	(4.4	0.12 ∞	(4.4	∞ ∞	(5.2	0.02 ∞	(2.5	©.∪⊃ ∞	(13.	0.2 ∓ ∝	(13.	o.15 ∝	7	∞∞
55565		9)	0.20∞	5)	0.12 [∞]	2)	0.42∞	9)	0.06 [∞]	6)	0.16 [∞]	38)	0.34∞	64)	0.35∞	,	0.06
		٦)	0.20 ∞∝	٦)	0.1 ∠ ∞∝	۷)	0.4 ∠ ∞∞	٦)	∞∞	O)	∞∝	30)	0.54 ∞∝	04)	0.55 ∞∞	(8.6	∞∞∞
																1)	
		10	0.70	22	0.00*	17	0.22*	10	40.CC	10	0.50*	70.6	0.56*	00.2	0.70*	-	0.00*
Missing	7.4	18.	0.78 *	22.	0.98*	17.	0.32*	19.	<0.66 *	19.	0.58*	78.6	0.56*	98.3	0.78*	58.3	0.98*
iviissiiig	74	81		71		26		90		65	<0.01	8		3		6	
		4.8						(6.0	<0.01	(3.0	4	(14.		(16.		(11.	
		3)		(3.7		(4.3		7)	4	9)		50)		49)		66)	
				9)		5)											
				9)		5)											

Table 4 (cont'd)

Medical characteri stics	N	PWB Mea n (SD)	Р	SWB Mea n (SD)	P	Mea n (SD)	P	FWB Mea n (SD)	P	Me an (SD	P	FAC TG Mea n (SD)	P	FAC TB total Mea n (SD)	P	FAC TB TOI Mea n (SD)	P
Time from diagnosis										,				(02)		(02)	
to interview Less than 6 months	17 7	19.4 6 (5.38)	REF	20.7 9 (5.6 0)	REF	16.97 (5.11)	REF	18.3 0 (6.25)	REF	18. 69 (3.0 3)	REF	75.7 5 (16. 38)	REF	94.2 8 (17. 69)	REF	56.3 9 (11. 24)	REF
≥6 mnths but < one year	46	17.6 4 (5.86)	0.06	21.8 4 (5.0 0)	0.25 *	16.67 (4.80)	0.7 2*	17.4 1 (6.50)	0.3 9*	17. 86 (3.2 0)	0.10*	74.1 7 (14. 94)	0.57*	92.1 1 (16. 72)	0.48*	.92 (11. 51)	0.07*
≥one year but < two years,	36	18.0 7 (5.98	0.19 * 0.74 ~	21.2 3 (5.7 9)	0.66 * 0.62 ~	17.31 (5.71)	0.7 3* 0.5 8°	19.0 1 (6.33	0.5 3* 0.2 5 ^{\infty}	18. 71 (2.8 5)	0.97* 0.21 [∞]	75.6 5 (18. 98)	0.88* 0.52	94.7 8 (20. 20)	0.94* 0.58 ^{\infty}	56.1 1 (12. 10)	0.90* 0.22 ^{\infty}
Greater than or equal to two years.	38	18.0 0 (6.80)	0.16 * 0.78 ~ 0.95 ~ ~	21.1 7 (5.5 3)	0.70 * 0.58 ~ 0.97 ~	18.26 (4.86)	0.1 7* 0.1 6 ^{∞∞} 0.4 3 ^{∞∞}	18.3 2 (5.79)	0.9 8* 0.5 1 ^{∞∞} 0.6 3 ^{∞∞}	18. 47 (3.1 1)	0.70* 0.36° ° 0.75° °	75.7 5 (18. 39)	0.99* 0.60° ~ 0.90° ~	94.2 3 (19. 96)	0.88* 0.69° 0.86° ««	54.8 0 (13. 06)	0.45* 0.46° ° 0.63°

Table 4 (cont'd)

P-values with * compares each category to the referent. ∞ P value of category 2 vs. 3 $\infty \infty$ P value of category 2 vs. 4 $\infty \infty \infty$ P value of category 3 vs. 4

 Table 5. Multivariable Analysis of Sociodemographic and Medical Characteristics

		PWB	SWB	EWB	FWB	BCS	FACT-	FACT-B total	TOI
Sociodemographic	N	β (SE)	β (SE)		β (SE)	β (SE)	β (SE)	β (SE)	β (SE)
Characteristics									
Current age							REF		
Less than 45 years	132	REF	REF		REF	REF		REF	REF
Creater than 15 years	164	-2.25	-2.36		-1.67	-1.36	-3.83	-4.97	-2.65
Greater than 45 years	164	(0.54****)	(0.54****)		(0.56**)	(0.30***)	(1.72*)	(1.85**)	(1.16*)
Education							REF		
None/Primary (REF)	97	REF	REF		REF	REF		REF	REF
Secondary or	152	1.52	0.70			-0.20	1.39	1.20	0.42 (1.28)
vocational/technical	132	(0.60*)	(0.59)			(0.33)	(1.90)	(2.02)	
Some university/	52	0.74	0.83			0.07	-1.26	-1.79	-2.41
bachelor's/		(0.85)	(0.89)			(0.50)	(2.88)	(3.07)	(1.93)
postgraduate degree		(0.00)	(0.00)			(0.50)	(=:,	(3.37)	(2.33)
Occupation None/housewife (REF)	97	REF			REF	REF	REF	REF	REF
Tanda (15 a a a a 1 A a); /									
Trader/farmer/Artisan/professional/	192	1.19	1.45	1.41	1.79	0.60	5.76	6.96	3.96
technician/ clerical/other	132	(0.55*)	(0.54**)	(0.51**)	(0.61**)	(0.30*)	(1.76**)	(1.88***)	(1.19***)

Table 5 (cont'd)

Table 5 (cont d)										
Sociodemographic		PWB	SWB	EWB	FWB	BCS	FACT-G	FACT-B	FACT-B TOI	
characteristics		β (SE)	β (SE)	β (SE)	β (SE)	β (SE)	β (SE)	total		
								β (SE)	β (SE)	
Income level										
Less than or equal	106	REF	REF		REF	REF	REF	REF	REF	
to 50000 CFA (REF)	-			REF						
Greater than 50000	160	1.85	1.86	1.20	3.04	1.26	8.85	9.43	6.65	
CFA		(0.59**)	(0.56**)	(0.52*)	(0.61****)	(0.32***)	(1.84****)	(1.95****)	(1.24****)	
Missing	31	1.51	0.80	-1.18	0.34	0.68	2.12	2.66	3.31	
		(0.99)	(0.93)	(0.87)	(1.03)	(0.52)	(3.03)	(3.21)	(2.01)	
<u>Living status</u>										
Living alone (REF)	31	REF	REF		REF	REF	REF	REF	REF	
		2.13	6.97		3.35	0.34	13.41	14.38	6.09	
Living with	159	(0.97*)	(0.89****)		(1.00***)	(0.50)			(1.96**)	
husband/boyfriend	-						(2.93****)	(3.04****)		
		1.44	5.09		3.14	-0.14	11.59	11.20	4.53	
Not married and living with family	103	(0.99)	(0.91****)		(1.02**)	(0.51)	(2.99***)	(3.12***)	(2.00*)	

Table 5 (cont'd)

		PWB	SWB	EWB	FWB	BCS	FACT-G	FACT-B	FACT-B TOI
Medical characteristics		β (SE)	β (SE)	β (SE)	β (SE)	β (SE)	β (SE)	total $\beta(SE)$	β (SE)
TNM Classification									
Stage O/I (REF)	23	REF	REF	REF	REF	REF	REF	REF	REF
					-0.99	-0.32	-6.09		-2.26
Stage II	122				(1.09)	(0.53)	(3.08*)		(2.08)
Stage III					-3.72	-0.14	-10.28		-4.47
	84				(1.14**)	(0.55)	(3.19**)		(2.16*)
Stage IV					-4.51	-0.09	-8.02		-5.70
	31				(1.40**)	(0.69)	(3.93*)		(2.69*)
Missing					-1.70	-0.12	-5.77		-1.55
	31				(1.37)	(0.67)	(3.83)		(2.60)
Chemotherapy									
No	40								
		-1.98		1.08					
yes	450	(0.95*)		(1.22)					
Surgery									
no	24								
				3.29					
yes	466			(1.57^*)					

^{*} indicates that the p-value is < 0.05

SE without any * indicates no significant difference

^{**} indicates that the p-value is <0.01

^{***} indicates that the p-value is <0.001

^{****} indicates that the p-value is <0.0001

BIBLIOGRAPHY

BIBLIOGRAPHY

- 1. Bray, F., McCarron, P. & Parkin, D. M. The changing global patterns of female breast cancer incidence and mortality. *Breast Cancer Res.* **6**, 229–239 (2004).
- 2. Tao, Z. Q. *et al.* Breast Cancer: Epidemiology and Etiology. *Cell Biochem. Biophys.* **72**, 333–338 (2015).
- 3. Siegel, R. L. & Miller, K. D. Cancer Statistics, 2019. **69**, 7–34 (2019).
- 4. Breast Cancer, An Issue of Surgical Oncology Clinics of North America, E-Book Lisa Newman Google.
- 5. CDC. CDC What Are the Risk Factors for Breast Cancer? *Centers for Disease Control and Prevention* (2017). doi:10.1002/pola.1994.080320302
- 6. Todua, F., Gagua, R., Maglakelidze, M. & Maglakelidze, D. Cancer Incidence and Mortality
 Major Patterns in GLOBOCAN 2012, Worldwide and Georgia ABSTRACT. Estimates of
 the worldwide incidence and mortality from 27 major cancers and for all Agency for
 Research on Cancer. We review the sources and methods used. (2015).
- 7. Desantis, C., Ma, J., Bryan, L. & Jemal, A. Breast Cancer Statistics, 2013. (2014). doi:10.3322/caac.21203.
- 8. Key, T. J., Verkasalo, P. K. & Banks, E. Reviews Epidemiology of breast cancer. **44**, 133–140 (1865).
- 9. Jatoi, I. & Miller, A. B. Why is breast-cancer mortality declining? *Lancet Oncol.* **4**, 251–254 (2003).
- 10. DeSantis, C. E. *et al.* International variation in female breast cancer incidence and mortality rates. *Cancer Epidemiol. Biomarkers Prev.* **24**, 1495–1506 (2015).
- 11. Ghoncheh, M., Mahdavifar, N., Darvishi, E. & Salehiniya, H. Epidemiology, Incidence and Mortality of Breast Cancer in Asia. *Asian Pacific J. Cancer Prev.* **17**, 47–52 (2016).
- 12. Curado, M. P. Breast cancer in the world: Incidence and mortality. **53**, (2011).
- 13. Todua, F., Gagua, R., Maglakelidze, M. & Maglakelidze, D. Cancer incidence and mortality Major patterns in GLOBOCAN 2012, worldwide and Georgia. *Bull. Georg. Natl. Acad. Sci.* **9**, 168–173 (2015).
- 14. Akarolo-Anthony, S. N., Ogundiran, T. O. & Adebamowo, C. A. Emerging breast cancer epidemic: evidence from Africa. *Breast Cancer Res.* **12**, S8 (2010).

- 15. Allemani, C. *et al.* Global surveillance of cancer survival 1995-2009: Analysis of individual data for 25 676 887 patients from 279 population-based registries in 67 countries (CONCORD-2). *Lancet* **385**, 977–1010 (2015).
- 16. Ghiasvand, R., Adami, H. O., Harirchi, I., Akrami, R. & Zendehdel, K. Higher incidence of premenopausal breast cancer in less developed countries; myth or truth? *BMC Cancer* **14**, (2014).
- 17. NCCN. Breast Cancer Screening and Diagnosis. *Nccn* **7**, 24–34 (2014).
- 18. Fuller, M. S., Lee, C. I. & Elmore, J. G. Breast cancer screening: An evidence-based update. *Med. Clin. North Am.* **99**, 451–468 (2015).
- 19. Smith, R. A. *et al.* American Cancer Society Guidelines for Breast Cancer Screening: Update 2003. *CA. Cancer J. Clin.* **53**, 141–169 (2003).
- 20. Youlden, D. R. *et al.* The descriptive epidemiology of female breast cancer: An international comparison of screening, incidence, survival and mortality. *Cancer Epidemiol.* **36**, 237–248 (2012).
- 21. Singletary, S. E. *et al.* Revision of the American Joint Committee on cancer staging system for breast cancer. *J. Clin. Oncol.* **20**, 3628–3636 (2002).
- 22. Hüsemann, Y. *et al.* Systemic Spread Is an Early Step in Breast Cancer. *Cancer Cell* **13**, 58–68 (2008).
- 23. WHO, W. H. O. Breast cancer. World Heal. Organ. (2018).
- 24. Desantis, C. *et al.* Cancer Treatment and Survivorship Statistics , 2012. *CA. Cancer J. Clin.* **62**, 220–241 (2012).
- 25. Huo, D. *et al.* Population differences in breast cancer: Survey in indigenous african women reveals over-representation of triple-negative breast cancer. *J. Clin. Oncol.* **27**, 4515–4521 (2009).
- 26. Stark, A. *et al.* African ancestry and higher prevalence of triple-negative breast cancer. *Cancer* **116**, 4926–4932 (2010).
- 27. Der, E. M. *et al.* Triple-negative breast cancer in Ghanaian women: The Korle Bu Teaching Hospital experience. *Breast J.* **21**, 627–633 (2015).
- 28. CDC. CDC How Is Breast Cancer Treated? (2018).

- 29. WHO | Diagnosis and Treatment.
- 30. Boyages, John Baker, L. Evolution of radiotherapy techniques in breast conservation treatment. **7**, 576–595 (2018).
- 31. Cubasch, H. *et al.* Breast conservation surgery versus total mastectomy among women with localized breast cancer in Soweto, South Africa. *PLoS One* **12**, 1–13 (2017).
- 32. Taylor, R., Stubbs, J. M., Langlands, A. O. & Boyages, J. Predictors of mastectomy for women with breast cancer in the greater western region of sydney. *Breast J.* **5**, 116–121 (1999).
- 33. Prat, A. *et al.* Clinical implications of the intrinsic molecular subtypes of breast cancer. **24**, 26–35 (2015).
- 34. D.A., T. & S.L., F. Sociocultural factors and breast cancer in sub-Saharan Africa: Implications for diagnosis and management. *Women's Heal.* **12**, 147–156 (2016).
- 35. WHO | WHOQOL: Measuring Quality of Life.
- 36. Montazeri, A. Health-related quality of life in breast cancer patients: A bibliographic review of the literature from 1974 to 2007. *J. Exp. Clin. Cancer Res.* **27**, 1–31 (2008).
- 37. Engel, J. *et al.* Predictors of Quality of Life of Breast Cancer Patients. *Acta Oncol. (Madr).* **42**, 710–718 (2003).
- 38. Engel, J., Kerr, J., Schlesinger-raab, A., Sauer, H. & Hölzel, D. Quality of Life Following Breast-Conserving Therapy or Mastectomy: Results...: EBSCOhost.
- 39. Brady, M. J. *et al.* Reliability and validity of the functional assessment of cancer therapy-breast quality-of-life instrument. *J. Clin. Oncol.* **15**, 974–986 (1997).
- 40. Psy-, G. Quality of Life in Breast Cancer Patients Not Enough Attention for Long-Term Survivors ? 117–123 (2001). doi:10.1176/appi.psy.42.2.117
- 41. Predictors of quality of life of breast cancer patients.
- 42. Bonsu, A. B., Aziato, L. & Clegg-lamptey, J. N. A. Living with Advanced Breast Cancer among Ghanaian Women: Emotional and Psychosocial Experiences. **2014**, (2014).
- 43. Jaiyesimi, A. & Ahmad, A. Health related quality of life and its determinants in Nigerian breast cancer patients. (2007).
- 44. Anarado, A. N., Ezeome, E. R., O, O. B., Nwaneri, A. C. & Ogbolu, Y. Experiences and

- desired nursing assistance of women on out-patient breast cancer chemotherapy in Southeastern Nigeria. **391**, 385–391 (2017).
- 45. Soliman, A. S., Annan, K., Lartey, R. N., Awuah, B. & Merajver, S. D. Traditional Herbalists and Cancer Management in Kumasi, . 573–579 (2012). doi:10.1007/s13187-012-0370-z
- 46. Manuscript, A. NIH Public Access. **34**, 139–149 (2014).
- 47. Fribert, P., Paulová, L., Patáková, P., Rychtera, M. & Melzoch, K. Alternativní metody separace kapalných biopaliv z média při fermentaci. *Chem. List.* **107**, 843–847 (2013).
- 48. Hanssen, H. P. Aus der forschung: Odontoblasten helfen dem gebiss bei der kariesabwehr. *Dtsch. Apotheker Zeitung* **151**, 50 (2011).
- 49. Holzner, B. *et al.* Quality of Life in Breast Cancer Patients—Not Enough Attention for Long-Term Survivors? *Psychosomatics* **42**, 117–123 (2001).
- 50. Assessment on the Quality Of Life of Breast Cancer Patients Undergoing Radiation Treatment in Ghana.
- 51. Qian, F. *et al.* Alcohol consumption and breast cancer risk among women in three subsaharan african countries. *PLoS One* **9**, (2014).
- 52. Avis, N. E., Crawford, S. & Manuel, J. Quality of Life Among Younger Women With Breast Cancer. **23**, (2005).
- 53. Health related quality of life and its determinants in Nigerian breast cancer patients. *African journal of medicine and medical sciences* **36**, 259–265 (2007).
- 54. Mols, F., Vingerhoets, A. J. J. M., Coebergh, J. W. & Van De Poll-Franse, L. V. Quality of life among long-term breast cancer survivors: A systematic review. *Eur. J. Cancer* **41**, 2613–2619 (2005).
- 55. Carver, C. S., Smith, R. G., Petronis, V. M. & Antoni, M. H. Quality of life among long-term survivors of breast cancer: Different types of antecedents predict different classes of outcomes. *Psychooncology.* **15**, 749–758 (2006).
- 56. Chen, Q., Li, S., Wang, M., Liu, L. & Chen, G. Health-Related Quality of Life among Women Breast Cancer Patients in Eastern China. *Biomed Res. Int.* **2018**, (2018).