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ABSTRACT 

TOWARDS DISCRETE-PULSE-BASED NETWORKING AND EVENT DETECTION 

ARCHITECTURES FOR RESOURCE-CONSTRAINED APPLICATIONS 

By 

Saptarshi Das 

In this dissertation thesis, we develop a scalable and energy-efficient discrete-pulse-based 

networking architecture along with a Spiking-Neuron-based low-power detection framework for 

use in resource-constrained settings. Applications such as Structural Health Monitoring (SHM) 

using wireless sensor networks powered by ambient energy harvesting are particularly suited for 

such a framework. The key idea in pulse-based networking is to eschew unnecessary overhead as 

incurred in traditional packet-based networking and encode only the essential information using 

small number of discrete pulses and their positions with respect to a synchronized time frame 

structure. The baseline pulse networking does not scale well with increase in network size. In order 

to ameliorate this, we develop a scalable time frame structure for use in applications with large 

network size while preserving the energy advantages of pulse networking. In addition, we stress 

the importance of judicious use of erratic energy availability in ambient energy harvesting powered 

systems. To that effect, we build energy-awareness syntaxes within the pulse networking 

framework for better utilization of energy resources in such systems. We also demonstrate the 

feasibility of pulse networking over a through-substrate ultrasonic link layer and the advantages 

thereof in terms of utilizing existing infrastructure and removing the need for radio retrofits. We 

explore how the protocol performance varies for an airplane stabilizer monitoring application 

powered by ambient vibration energy harvesting in different energy availability scenarios. Beyond 

this, we also develop a Spiking-Neuron-based low-power event pattern detection architecture and 

illustrate how this can be incorporated within a pulse-networked SHM system. The Spiking 



 
 

Neuron based architecture is evidenced to be simpler in terms of implementation but more efficient 

in terms of computation and energy usage, thus enabling in-situ detection even at intermediate 

nodes in the network and robust low-power event pattern detection immune to pulse drifts and 

errors. 
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CHAPTER 1: INTRODUCTION 

 

1.1. Motivation 

 

 Applications in diverse domains such as environment monitoring [1]–[3], habitat 

monitoring [4]–[6], structural monitoring [7]–[10], target tracking [11]–[14], and industrial 

process control [15]–[17] rely on the collection of granular information across areas of concern 

using distributed sensing devices. The data from such devices can be collected at a central location 

for processing and drawing higher level inferences in the context of the application involved. 

Energy-efficient wireless sensor networks [18]–[21] are well suited for such applications because 

they allow low-cost deployment and data communication across the sensor nodes as well as to a 

central Base Station. 

 Packet-based networking [22]–[24] is the dominant mode of networking for such 

applications. Various routing strategies and energy-efficiency improvements [25]–[34] have been 

proposed in the literature to suit such packet-based wireless sensor networking in low-power 

environments. The latter is the case when the sensing devices are equipped with small batteries or 

are powered by erratic energy harvesting sources such as wind or ambient vibrations. However, 

depending on the application involved and data size as well as latency requirements, packet-based 

networking is not always the most energy-efficient approach. It is to be noted in this regard that 

most of the energy usage in a typical sensing device for a wireless sensor network is expended in 

the wireless (radio, ultrasound etc.) transmission/reception/idling costs and less so in actual 

sensing. Therefore, reducing the former is very important for resource-constrained applications. 

Also, packet-based networking generally involves a considerable amount of overhead information 

beyond the actual data payload being transported, which is constituted of components such as the 
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packet preamble and header. The preamble uses a chosen bit pattern to synchronize transmission 

timing between senders and receivers in a wireless networking context. This is especially 

important when long data sequences need to be transported and in an environment with many other 

wireless devices using the same transmission channel. The packet header contains other 

information needed to ensure reliable transmission (error detection / correction), addressability, 

quality of service etc. Thus, the preamble and header are needed to ensure data reliability, 

transmission synchronization, low latency etc., especially when the Protocol Data Unit (PDU) 

being transported is long. However, in application instances such as Structural Health Monitoring, 

the essential data is often just binary event information from distributed sensors and thus very 

small. In such scenarios, Packet-based networking approaches can often be overkill as overhead 

costs easily overwhelm actual data networking costs. It has been shown in prior work [35] that 

discrete-pulse-based networking approaches can be much more energy-efficient compared to 

packet-based networking approaches when the information content is small, latency requirements 

are relaxed, and network event rate is not exceedingly high. This can be achieved by using a 

discrete pulse’s position in time within a synchronized time frame structure to encode next-hop 

information and origin location. 

 In this thesis, we will focus on applications which have the above-mentioned properties 

(i.e. low information content, less-stringent latency bounds) and explore several improvements 

that need to be incorporated to adapt the baseline discrete-pulse-based networking to various 

relevant application scenarios. The latter includes systems powered by scarce energy harvesting 

sources as well as large distributed networks where the baseline pulse networking might not easily 

scale. Specifically, we will develop scalable and energy-aware discrete-pulse-based networking 

architectures that can be applied in Structural Health Monitoring (SHM) applications. We will also 
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explore through-substrate networking using ultrasonic communication as a feasible and energy-

efficient mode of communication for distributed sensors in an SHM context. It will be shown that 

discrete-pulse-based networking can be well-adapted to such a communication scenario in a 

variety of energy availability situations. In addition, we will also consider how to process the 

communicated information from discrete-pulse-based networking using a low-energy detection 

architecture to create a holistic energy-efficient communication and detection platform for 

resource-constrained wireless sensor networks. For the detection purposes, we will demonstrate 

the use of a Spiking Neuron based architecture for its simplicity in implementation and inherent 

energy efficiency, yet robust generalizability in detecting spatiotemporal spike patterns. We 

outline the various research challenges involved in developing such an architecture and how these 

are being addressed in ongoing work. We also include performance results showing the efficacy 

of the Spiking Neuron based implementation in realistic application scenarios. 

1.2. Application Domain – Structural Health Monitoring 

 

 The core objectives in structural health monitoring (SHM) [36]–[38] are to collate 

information such as unusual stress, faults and cracks from many strategically positioned sensors 

over a target structure and infer the health of the structure using such information [39]. Energy-

efficient wireless sensor networks [7], [8], [40], [41] are often deployed for multi-hop data 

collection from such sensors to an access-point or a sink, where the collective data processing 

functions can be placed. 

 A notable observation is that after a certain amount of local processing at a sensor, often 

the transportable information from the sensor to an access-point is merely an event. This can be a 

threshold crossing of local stress, detection of a pre-defined temporal stress pattern, or even a crack 

in the extreme case. Since the event information is binary (yes or no), a single pulse can be used 
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to communicate this, thus eliminating the need for packets and their associated overheads such as 

synchronization preambles. This would lead to significant benefits in energy-starved 

environments. The low energy usage can also improve reliability of operation in systems powered 

by energy harvesting, by keeping the consumption rate lower than the energy generation rate. The 

primary design questions here are how to: 1) transport event localization information using a single 

pulse, 2) route a pulse multi-hop without explicit node addressing, and 3) provide reliable event 

delivery even under energy constraints. These problems can be architecturally addressed in a 

discrete-pulse-based networking framework by integrating a pulse's (i.e., event's) area of origin 

within a MAC-routing protocol framework and incorporating several energy-awareness syntaxes 

within the same framework as will be discussed in later sections in this thesis.  

 Thus, Structural Health Monitoring can be a good application instance for showcasing the 

advantages of discrete-pulse-based networking and discussing the changes needed for such an 

architecture to adapt it to specific application needs such as extreme resource constraint or 

scalability issues. A low-energy detection architecture would also be very useful for interpreting 

the communicated event information in the form of discrete pulses, especially if it can easily be 

interfaced with the networked pulses. Spiking Neuron based architectures can be useful in this 

regard because of their inherent low-complexity design yet robust generalizability and will be 

developed as an event pattern detection solution in this thesis.  

1.3. Scalability in Discrete-Pulse-Based Networking 

 

 The central foundation of the discrete-pulse-based architecture is a synchronized Frame 

Structure employed to control pulse transmission schedules such that the time of transmission can 

encode various information aspects that are useful to the application context. The size of such a 

frame is known to be related to the number of network cells [35], [42]. More precisely, the frame 
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size scales quadratically with increase in the number of network cells. It is also known that the 

frame size restricts the event delivery latency and event throughput of the network. Since, the core 

premise of discrete-pulse-based networking is to trade off latency (i.e. event delivery delay) and 

throughput for energy benefits, this works well for small to medium-sized networks if the limits 

for allowable delay and throughput are relaxed. In applications where such delay / throughput 

limits are more restrictive, but network cell count scaling needs to be supported in addition to 

energy efficiency, the frame structure does not adapt well. Network cell count might need to be 

increased to enhance maximum sensing localization resolution for the network or when the 

network area is increased. Hence, there is need for some redesign to adapt the baseline discrete-

pulse-based networking approach for a more generic and scalable scenario as will be developed in 

this thesis. 

1.4. Energy-Aware Discrete-Pulse-Based Networking 

 

 Various modern approaches employ sensing devices powered by energy harvested from 

the ambience e.g. solar power, vibration harvesting etc. Though harvesting sources have 

theoretically infinite potential, they can be exceedingly erratic in the short term. This can be shown 

to affect networking performance significantly in a baseline discrete-pulse-based networking 

approach. This is because, if networking is unaware of energy availability, transmission can often 

be wasteful when economy is warranted, leading to intermittent network failure due to power loss. 

Often, some amount of energy-awareness incorporated in the networking protocol can 

significantly improve network uptime while not sacrificing network throughput. We try to 

demonstrate this with our own improvements to the baseline discrete-pulse-based networking 

architecture. We also evaluate how such performance is affected for various energy harvesting 
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situations and show the utility of our approach across a wide variety of such scenarios in later 

sections of this thesis. 

1.5. Ultrasonic Through-Substrate Communication 

 

 Many structures that need to be monitored e.g. airplane wings / stabilizers, bridge beams 

etc. are constituted of substrate materials such as metal or composites, which themselves can be 

used as communication media for signals such as ultrasound. This has motivated the idea of 

developing a through-substrate sensor network. Tiny sensors, when embedded or affixed on a 

bridge or an aircraft wing, can communicate with each other using ultrasonic pulses propagating 

through the structure's solid substrate. This can eliminate the need for out-of-substrate radio or 

wired links. A prototype modem as described in [8], which deals with the various challenges in 

such a design, had been developed in our laboratory to demonstrate the feasibility of this approach 

and we discuss various physical layer implications of such an approach in the current thesis. 

 Moreover, opportunities exist in harvesting energy from ambient vibrations in several 

structures such as airplane wings, stabilizers, and bridge beams. Such harvesting can provide 

energy for sensing and communication of collected sensor information. Self-powered sensors have 

already been demonstrated [43], [44] which can use the energy from the signal being sensed to 

power the sensing, computation and non-volatile storage operation. Work is under way on a 

collaborative project to design a piezoelectric-based transducer that can use vibrations inside a 

structure to power communications in addition to sensing and buffering needs. The notable fact 

here is that the same transducer (i.e., a substrate-embedded piezoelectric module) can be used for 

sensing (ultrasonic fault signatures), communication (ultrasonic link), as well as energy harvesting 

(ultrasonic vibration harvesting) to power all operations. Such convergence of functionality in a 

through-substrate approach leads to a cleaner design by removing the need for separate retro-fitted 
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components for sensing, communication and, energy generation. We will demonstrate the 

feasibility of such an approach through simulation results in an integrated harvesting and 

communication framework in the current thesis. 

1.6. Spiking Neuron Based Event Pattern Detection 

 

 Structural Health Monitoring applications and others of the same family often require 

identification / classification of spatiotemporal event occurrence patterns [14], [15], [39], [45]–

[49] using distributed sensor measurements in order to make higher level inferences based on the 

same. A key requirement in such applications is that the sensing architecture be flexible enough to 

be able to identify a variety of event occurrence patterns i.e. if new patterns need to be detected, 

the architecture should be able to adapt to the new scenarios. Another aspect is the need for 

generalizability over a range of similar inputs i.e. detection robustness to minor changes in the 

same event pattern. Such applications also assume some amount of energy-efficient / energy-aware 

operation because many modern distributed sensing architectures for such aim to create cheap and 

maintenance-free operation by relying on small sensing devices with limited energy storage but 

theoretically infinite energy generation capacity (harvesting from environmental sources) albeit at 

low / erratic rates (harvesting source unpredictability) as discussed in the previous sections. 

Spiking Neuron based approaches can be shown to have these properties and work with much less 

energy compared to comparable approaches and are well amenable to discrete-pulse-based 

networking approaches. In this thesis, we propose such an architecture melding discrete-pulse-

based networking and spiking-neuron-based event pattern detection and discuss the research 

challenges associated with designing such a system. We also evaluate the developed architecture 

in the context of both synchronous and asynchronous discrete-pulse-based networking protocols 
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to show how the system can be a feasible and energy-efficient means of spatiotemporal detection 

especially combined with pulse networking. 

1.7. Dissertation Objectives 

 

 The core objectives of this dissertation would be to design the following – 

1) A scalable discrete-pulse-based communication protocol 

2) An energy-aware discrete pulse-based networking protocol, and analyze how performance 

varies in different energy harvesting / availability scenarios 

3) An ultrasonic through-substrate computing architecture, based on discrete-pulse-based 

communication and powered by vibration energy harvesting, for structural health monitoring 

applications, for example in airplane wing / stabilizer structures 

4) A spiking-neuron-based architecture for energy-efficient spatiotemporal event pattern detection 

which can easily interface with a discrete-pulse-based networking architecture 

1.8. Scope of Dissertation Thesis 

 

 In the current thesis, we cover all the objectives of the dissertation as listed in the last sub-

section, including published results on the same. In a prior thesis proposal, we had presented then-

completed work on the first 3 Dissertation Objectives and laid the foundations for the work on 

Spiking Neuron based pattern detection architecture (Dissertation Objective 4) and how future 

work would be used to evaluate this architecture.  
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Figure 1.1. Thesis Outline 

In the present thesis, we have extended the work from the proposal and completed the 

Spiking Neuron based detection architecture development and evaluation. In all, we have tried to 

develop a holistic solution for energy-efficient detection of structural anomalies using a through-

substrate network of inexpensive sensors powered by ambient vibration harvesting. In Figure 1.1, 

we provide an outline of the main thesis objectives and clearly indicate what has been achieved 

grouping the contributions under various pertinent application areas. In the following chapters, we 

will start with a survey of the existing state-of-the-art in these areas and then follow up details on 

our specific contributions. 
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CHAPTER 2: RELATED WORK 

 

2.1. Packet-Based Networking Alternatives 

 

 There are few reported approaches in the literature that address the energy and capacity 

overheads of packet-based network communication. This is mainly because networking for 

application niches such as Structural Health Monitoring, that require low volume information 

transport with relaxed latency requirements have not been explored very far. Research on 

networked systems with extreme energy constraints such as those powered by small piezo-electric 

energy harvesting devices is not very mature either.  We aim to bridge the gap in research in this 

domain through the present thesis work.  

 Strategies like aggregation of short payloads [50] and binary sensing models [51] have 

been proposed for reducing the networking energy burden, but the inherent packet overhead 

limitations remain. In [52], it is shown that in single-hop networks, the worst-case performance of 

pulse-based communication is better than packet-based ones, albeit with a worse delay 

performance. Inspired by this result, the authors in [35], [53], [54] developed the concept of multi-

hop pulse switching as an alternative to energy-inefficient packet-based communication. This 

concept is very well-applicable when the data to be transmitted is binary in nature and the tolerable 

delay is high. However, the multi-hop MAC-Routing protocol framework for event routing, as 

mentioned in [35], [42], has some limitations in the context of applications using energy-harvesting 

or extreme energy constraint. The latter is generally envisioned for various maintenance-free 

Structural Health Monitoring applications powered by ambient energy harvesting. The first 

shortcoming of the baseline pulse switching is that it implicitly assumes constant energy 

availability, which is not valid when the available energy is variable depending on the harvesting 
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conditions. This assumption can be detrimental in terms of energy management and can lead to 

unwanted power losses when the energy availability changes drastically. This is because the 

network energy usage is not matched with changing energy availability. Such erratic changes in 

energy generation are very probable particularly in harvesting-powered systems. In the current 

thesis, we will discuss energy-aware pulse routing syntaxes that have been developed to address 

this limitation. The second limitation is that the synchronized time frame structure proposed for 

the protocol in [35], [42] does not scale well for larger networks. We develop a new time-frame 

structure to ameliorate this. Yet another factor is that the architecture in [35], [42],  is designed 

using Ultra Wide Band–Impulse Radio as the physical layer. In the present thesis, we will show 

how this architecture can be adapted specifically for an ultrasound-based through-substrate 

physical layer which presents various challenges of its own. 

2.2. Energy Aware Networking 

 

 Various other approaches have been proposed in the literature [55]–[57] with regards to 

energy conservation, including data-driven approaches such as reducing data through in-network 

aggregation and compression [50] and interest driven data acquisition [58]. Another approach is 

to keep local energy costs low at the sensing nodes by adopting efficient sleep schedules and 

topology control (only a limited number of nodes are active, that is not in sleep), based on data 

and energy conservation requirements [55]. There have also been many approaches on energy-

aware MAC and routing protocols in packet-based sensor networks operating under various forms 

of energy constraints including from harvested energy. A general direction is to adapt the sensing 

duty cycle based on a harvesting model [59], [60] or by tracking the battery energy level and its 

depletion pattern [57]. Other approaches [58] include using an energy-efficient networking 

approach such as directed diffusion while building energy awareness features on top to prevent 
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energy leakage when the network is energy-constrained. Energy-harvesting aware protocols like 

[61] have also been discussed in the literature, which consider the harvesting rate and current 

consumption characteristics combined into a node's current energy state and utilize that to design 

the optimal routing approach such that the system can survive on the harvested energy. While these 

approaches provide generalized energy-saving concepts, they are designed for traditional packet-

based operation and thus cannot directly be applied to the pulse-based approach considered here.   

In the current thesis, we discuss the development of energy-aware mechanisms using 

similar principles to the literature, but specifically for pulse-switching protocols. Like the 

literature, these would attempt to achieve energy neutrality, but for a pulse switching network in a 

vibration based harvesting environment, and thus deal with the unique challenges presented there. 

In the thesis, we also present a fresh look at the pulse networking architecture presented in [35], 

[42], [54] toward solving the inherent disadvantage of very high latency when the network cell 

count is scaled. A scalable pulse architecture, as will be discussed in later sections of this thesis, 

also provides better applicability in terms of larger information content routing, lower latency, fair 

access latency to the network sink from across the network without increasing the energy cost. 

 Deployment strategies and their effect on energy-efficiency and reliable data acquisition in 

Wireless Sensor Networks (WSNs) has also been covered extensively in the literature [62]–[64]. 

For example, non-uniform deployment of sensors has been proposed to deal with disproportionate 

energy consumption at the sensor nodes close to the sink thus increasing lifetime of network 

operation. Also, strategies like separation of relaying (forwarding) and sensing functionalities has 

been suggested to increase energy efficiency. It is to be noted that such strategies can be used in 

the Pulse Networking architecture as well because they mainly deal with network organization and 

set-up which is independent of the actual networking scheme in this case. Use of mobile nodes for 
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data acquisition from WSN sensor nodes has also been put forward in the literature [65]. Since, 

the autonomous energy-rich sinks can travel to the source nodes and collect information, there is 

no need for multi-hop transmission and the sensing node energy is conserved (due to absence of 

forwarding function). Authors in [66], [67] discuss various challenges in a mobile sink scenario 

which includes various strategies for synchronizing sink acquisition schedules with node sensing 

schedules. It is to be noted that though mobile sink-based approaches have been shown to be 

advantageous in terms of energy conservation of the sensing nodes, they involve network 

maintenance in terms of using a source-coordinated sink mobility schedule. In the SHM 

monitoring applications, like the one we have mentioned before, the intent is to keep the data 

acquisition maintenance-free and the multi-hop approach works well in such scenarios due to 

absence of any extraneous control (for sinks etc.). 

2.3. Structural Health Monitoring 

 

 Structural Health Monitoring has been an area of growing interest in recent years. This is 

because of the vast array of infrastructure in need of maintenance and the fact that maintenance 

and repairs represent a staggering fraction of infrastructure costs. For instance, maintenance and 

repairs represent a quarter of airplane operating costs and the U.S. spends more than $200 billion 

dollars on maintenance of plant, equipment and facilities. The motivation in SHM is in reducing 

such costs by replacing scheduled maintenance with as-needed maintenance [68]–[70]. Other goals 

include anticipating structural lifetime and rate of degradation. Wireless sensor network-based 

approaches [7], [40], [71] provide a seamless way to deploy such monitoring solutions. Energy-

harvesting powered wireless networks can be even more useful because the network of sensors 

can function almost maintenance-free just based on ambient energy harvesting [72]–[74]. Various 

works have been proposed in the literature in this regard [59], [60], [72], [75]–[78]. However, 
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almost all these approaches rely on traditional pulse-based networking approaches which have 

been shown to be energy-expensive in such low information content scenarios. The differentiation 

proposed in this thesis is mainly in terms of adapting the pulse networking architecture to this 

domain. We will show that by incorporating pulse networking along with energy-awareness 

syntaxes as well as a scalable framing architecture, we can get better and more resilient 

performance in the SHM application context. We will also propose further low-energy detection 

solutions which can be embedded within the network nodes themselves and how a holistic low-

power networking and detection architecture can be developed based on the same.   

2.4. Through-Substrate Ultrasonic Communication 

 

 There have been other contemporary approaches towards the use of ultrasonic 

communication for sensor networking. The authors in [79] have outlined the advantages of using 

ultrasonic communication for human intra-body applications as opposed to radio communication. 

The latter is inefficient around human bodies because of water being a dominant constituent. The 

authors have discussed various adaptations to the MAC-layer protocol such as rate adaptation and 

stochastic channel access techniques. However, the advantages of these adaptations hold true 

mostly in the intra-body context (where radio propagation has disadvantages compared to 

ultrasonic), whereas the advantages due to the Pulse-based networking approach can be utilized 

even when the underlying technology is based on radio such as UWB [54]. Our choice of 

ultrasound as the medium for communication is mainly motivated by the advantages in integrating 

the sensing, communication and energy harvesting aspects in structural health monitoring 

scenarios which we detail further in the upcoming chapters of this thesis. 
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2.5. Spiking Neuron Based Event Pattern Detection 

 

 The work in [80] was one of the first among many [81]–[84] to describe a biologically 

plausible supervised synaptic learning rule that Linear Integrate and Fire (LIF) neurons can use to 

efficiently learn and read out spike-timing based neural codes. This is useful because neural codes 

that embed information in the spatiotemporal structure of spike patterns have been known to be 

computationally a very efficient means of encoding information. Thus, spiking neurons once 

equipped with the Tempotron learning rule should be able to leverage this. The Tempotron work 

[80] mainly attempts to show that a gradient descent-inspired learning rule, based on an error which 

is represented as the voltage distance between expected membrane potential for spike / non-spike 

and the maximum actual sub threshold membrane voltage, can be used with a very high capacity 

to decode information encoded in spatiotemporal spike patterns. This work [80] is primarily 

concerned with demonstrating that Tempotron can successfully distinguish between patterns from 

two different classes within some bounds on the number of total patterns given the number of 

synaptic inputs to the neuron. In the current thesis, we develop a framework for applying the 

Tempotron learning rule to a spiking neuron for detecting selected event occurrence patterns vs 

others. We also lay out the scenario in terms of a specific application (event pattern monitoring) 

and the spike patterns involved therein due to use of spike-based networking protocols. The 

premise here is that event sequences patterns’ detection can be valuable for many application-

specific inferences like structural anomaly detection, tracking progression of a structural crack 

along the structural substrate and so on. We provide the architectural details on how to create a 

Spiking Neuron-based architecture for such applications and why it would be useful in terms of 

energy-efficiency and deployment ease. We also articulate the research challenges and then 

provide a detailed characterization of the effect of different system and learning parameters on the 
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system performance. These include choice of training patterns, choice of pulse-based protocols 

(synchronous and asynchronous) as well as the system’s robustness to both spike jitter and a broad 

range of inter-event (spike) intervals, a presentation which has not been made in prior work. 

 Other works [81]–[83] have also covered the topic of spatiotemporal pattern recognition 

using Tempotron-like learning rules. For example, in [81] the authors aim to create a Spiking 

neuron-based learning framework that is able to distinguish among multiple classes of input 

patterns where information is embedded in the precise timing of spikes relative to each other to 

generate precisely timed output spikes. The authors suggest two specific learning rules and the 

main improvement over the Tempotron rule is the fact that the output spike jitter can be lower than 

the input spike jitter thus making the system more robust to noise. It is to be noted here that our 

current proposal of Spiking Neuron-based detection can also be reproduced in a similar setting 

replacing the Tempotron-based learning with the Chronotron rule as mentioned in [81]. However, 

we want to show the baseline operation of the application system in the context of our functional 

specifications and so consider only the Tempotron learning scenario. Future work will cover the 

implications of using different learning mechanisms. 

 Yet another approach to the spatiotemporal pattern classification problem using Spiking 

neurons is provided in [82]. This technique, called ReSuMe, applies a similar learning approach 

to Tempotron [80], but using a Widrow-Hoff rule to decide the weights’ updates and an error based 

on the distance of actual output spike trains produced from the desired spike trains. It is to be noted 

here that approaches like ReSuMe can produce different spike trains for different classes of input 

spike train patterns such that the precise timing of the output spikes can be read out to make 

conclusions about the pattern class. This is more generalized than the Tempotron approach where 

the output pattern can be either a spike or no spike indicating only two classes. However, the latter 
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approach is suitable for the purposes of our application i.e. binary event classification and hence 

we chose to leverage the simpler Tempotron approach. In future work, we have plans to integrate 

other works like ReSuMe and report the efficacy of the system. Our main contribution in relation 

to the other established approaches [80]–[84] to precise spike time based pattern classification lies 

in the fact that we adapt it with energy-efficient discrete-pulse-based networking protocols and 

consider the detection scenarios for different classes of unknown negative patterns and noise 

scenarios that would be present in a practical application scenario. 

2.6. Summary 

 

 In the following chapters of this thesis, we will develop scalability and energy-awareness 

within the inherent energy-efficient discrete-pulse-based networking paradigm. In addition, we 

will present an architecture for through-substrate ultrasonic communication for SHM applications 

using pulse networking and evaluate the system performance using realistic simulations for an 

airplane stabilizer structure. We will also develop a low-power Spiking Neuron based architecture 

for event pattern detection which we aim to incorporate in our pulse communication-enabled SHM 

architecture. We will mention the research challenges in this pursuit and how we tackle these. We 

will also include results from performance evaluation experiments for this low-cost detection 

architecture establishing its feasibility.  
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CHAPTER 3: SYNCHRONOUS PULSE NETWORKING 

 

In this chapter, we will cover briefly the fundamentals of the Synchronous Pulse 

Networking approach as has been published in [35], [42], [54]. This is necessary because in 

subsequent chapters we will refer to various augmentations to the baseline protocol architecture 

discussed here in response to application needs like network scalability, energy-harvested 

operation, and through-substrate communication. The basic premise is that a discrete-pulse-based 

networking approach is better suited in terms of energy efficiency for applications with low 

information and latency demands. We will present here the protocol syntaxes and features which 

lend the discrete-pulse-based architecture its energy economy in target applications like Structural 

Health Monitoring. 

3.1. Pulse Abstraction 

 

In the pulse networking domain, the key mechanism is to use individual pulses or the 

absence of such to indicate binary event information, that is presence or absence of an event. In 

low-information-density applications requiring ultra-low energy operation, use of the pulse 

abstraction can significantly lower the energy overhead of transmissions compared to traditional 

packet-based mechanisms. Often, just the binary event information from distributed sensors when 

collated at a central Base Station is valuable for making high-level inferences about the system 

being monitored. However, beyond the binary event information, at least two more pieces of 

information are required for such systems, namely the event location information and the next-hop 

information to facilitate multi-hop routing. Event location is needed to give proper context to the 

event occurrence info gathered while multi-hop routing is generally preferred as it enables the use 

of small, inexpensive individual sensing devices. In order to preserve the energy advantages of 

pulse abstraction over packet-based networking, at least these two essential pieces of information 
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need to be encoded without incurring further transmission costs. In further sections, we will cover 

how this is achieved. 

 

Figure 3.1. Cellular Network Model on a Rectangular Plate Structure 

3.2. Network Model – Cellular Abstraction 

 

Before delving into the pulse networking semantics, it is important to understand the 

general network model envisioned for such applications. The network of sensors for collecting, 

for instance structural event information, will consist of sensor nodes distributed uniformly across 

the structure being monitored and a strategically placed Base Station (sink) where information 

from sensors across the structure are collated. For simplicity, in Figure 3.1, we have shown an 

illustrative rectangular plate structure with sensor nodes embedded throughout the structural area. 

Data collection nodes are referred to as non-sink nodes while the data integration node is called 

the sink node (placed on the left edge of the plate). The sensor nodes are equipped necessary event 

sensing as well as forwarding functions (in terms of a pulse networking interface). Each node also 

has some pre-programmed localization information. Localization is accomplished with the 
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resolution of pre-defined sensor-cells like the hexagonal cells as shown in Figure 3.1. Each cell 

represents an event area, with a unique Cell-ID. Since spatial localization resolution is at the cell 

level, shrinking the sensor cell size can increase the resolution. This feature gives us the flexibility 

to tune our localization resolution based on application needs. Multiple sensor devices in each cell 

also enable data reporting redundancy which is valuable when the individual sensors might not be 

robust enough. Each sensor node belongs to one of these event areas (cells) and is pre-programmed 

with the Cell-ID of its own cell and those of its geographical neighbors. Although the cells in 

Figure 3.1 are shown to be hexagonal, there are no specific architectural requirements in terms of 

their symmetry, shape, and size. Generally, a hexagonal cell structure is chosen for maximal cell 

packing with minimum number of cells. Due to the cellular abstraction, the sensors are not 

individually addressed, and therefore no per-sensor addressing is necessary at the MAC or routing 

layers. 

3.3. Cellular Pulse Protocol Frame Structure 

 

 A summary of the Baseline Pulse Switching Protocol is provided in this section. The 

objective is to highlight its major features, which make it an interesting choice for the application 

domain discussed earlier. The details of the protocol were originally presented in [35], [42], [54].  

3.3.1. Pulse as a Protocol Data Unit 
 

Upon detecting an event at a network node, a discrete pulse is sent to the sink using a multi-

hop pulse routing process. Localization information about the received event is inferred by the 

sink from the time-of-arrival of the pulse with respect to a specified MAC-Routing frame structure 

as presented below. 
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Figure 3.2. MAC-Routing Frame for Pulse Switching [85] 

3.3.2. Joint MAC-Routing Frames 
 

 As reported in [35], [42], [54], a network-wide synchronized frame structure, as shown in 

Figure 3.2, is followed by each network node. The frame is controlled and enforced by the sink 

node. The frame is divided into many slots as shown in gray in Figure 3.2. Each slot in a frame is 

used for sending a single pulse. The width of a slot is chosen based on the minimum pulse 

separation delay for the physical link under consideration. For example, this can be on the order 

of nanoseconds (ns) [53] for UWB pulse radio systems while in the order of milliseconds (ms) [8] 

for ultrasonic pulse communication systems. This slot duration should also be large enough to 

accommodate any cumulative clock-drift during a frame, as well as the propagation delay for the 

physical layer communication medium used. It is to be noted that the propagation delay effects 

might lead to sync pulses reaching different nodes at slightly shifted time instants, but if the pulses 

arrive within the designated slot, the system operates correctly. As shown in Figure 3.2, each frame 

includes various downlink and uplink areas. Operational details for these are presented below. 
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Figure 3.3. Pulse Forwarding in the Localization Area [8] 

A. Frame Synchronization 

 

Every frame starts with a Sync Area, which is allocated to the sink for network 

synchronization. During the Sync Area, the sink sends a pre-defined pulse pattern, which other 

nodes can detect and use to identify the start of a frame. The sink, having unlimited energy supply, 

can transmit the sync pulses with high enough power such that they reach all nodes in the network. 

Generally, this is a single pulse transmitted in the sync slot. 

B. Pulse Forwarding 
 

The uplink Localization Area of the frame is the key to pulse forwarding. In a network with 

M sensor-cells (excluding the sink cell), this area contains M slot-clusters, each cluster containing 

(M+1) individual slots. Each slot-cluster corresponds to a specific Cell-ID representing an event’s 

cell of origin. In each slot-cluster, individual slots correspond to specific Cell-IDs, which represent 

the next-hop cell for a transmitted pulse within the slot cluster. Figure 3.3 shows an example 

scenario to demonstrate pulse forwarding using the Localization Area. It is important to note that 

the slot cluster for a pulse remains unchanged during the entire forwarding from the origin sensor 
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to the sink node, with the specific transmission slot dependent on the next hop as per the routing 

decisions. Hence, when the pulse arrives at the sink, its slot cluster indicates the cell of origin. 

Pulse forwarding decisions (i.e. the next hop) are made based on a sensor’s routing table, which 

maintains a sorted list of next-hop cells based on the hop-counts of the resulting routes based on a 

discovery process discussed hereafter. 

 There is also a Control Area prior to the Localization Area of the frame, which is used for 

announcing impending transmissions within the Localization Area. All non-transmitting nodes can 

use this information to decide sleep and wake-up schedules for additional energy savings. 

C. Route Discovery and Response Mechanism 
 

These are optional components of the frame structure. The first, that is Route Discovery, 

is a continuous background process that creates and maintains the routing table in each sensor in 

terms of the next-hop Cell-IDs. The Response mechanism, on the other hand, enables a single-

pulse acknowledgement for enhancing one-hop transmission reliability in presence of pulse errors. 

It is to be noted that the protocol works even without a Route Discovery scheme if there is a static 

routing table configured in each node before networking operation begins, but dynamic route 

discovery can help the network better adapt to changing conditions of routes e.g. in an energy 

dynamic environment. Response mechanism provides communication reliability but might be 

skipped in low Pulse Loss Rate environments to save energy on redundant pulse transmissions. 

Details of these two components are covered in [42], [54]. 

3.3.3. Protocol Features 
 

 The baseline Synchronous Pulse Switching protocol also provides other useful features 

such as Route Diversity (RD), Spatial Compression and Pulse Merging. RD is a protocol 
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parameter, which indicates the number of separate paths along which the pulse information should 

be propagated towards the sink providing redundancy and better reliability in case of cellular fault 

scenarios. Spatial Compression is a feature used to prevent identical transmissions from multiple 

nodes in the same cell. Yet another feature is Pulse Merging, which provides inherent in-network 

aggregation for events originated from same cells. It is to be noted that only nodes in the same cell 

can transmit simultaneously and, in such cases, there is no interference, rather the pulses are 

reinforced on superposition. Details of these are discussed in [42], [54].  

3.4. Need for Scalability and Energy Awareness Improvements 

 

It is to be noted that with increase in number of cells, the delivery delay for the Baseline 

Synchronous Cellular Pulse Networking scheme described above increases quadratically with the 

number of cells due to the Localization area size of the frame. Hence, the protocol is mostly 

targeted for networks with small number of cells for a reasonable localization resolution. When 

covering large areas, the protocol still works, though either with a reduction in spatial resolution 

(larger cells but lesser in number) or further relaxed delivery-delay specifications. However, when 

spatial resolution demand is high and further latency cannot be afforded, scalability suffers. This 

necessitates a fresh look at the fundamental time frame structure enabling pulse networking for 

possible changes to improve scalability. 

The baseline Synchronous Pulse Protocol architecture also implicitly assumes that the 

energy availability in the network is constant. In erratic energy-harvesting-powered systems, such 

an assumption is invalid and will lead to mismanagement of energy resources resulting in nodes 

running out of power prematurely. Hence, there is a need to incorporate energy-aware mechanisms 

within the baseline architecture to better equip the systems for energy-harvesting-powered 

operation.  
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3.5. Summary 

 

In this chapter, we covered the foundations of Cellular Synchronous Pulse Networking and 

how discrete pulses’ positions with respect to a synchronized time structure can be used to convey 

event information. We detailed the networking protocol components to show how medium access 

is managed and multi-hop routing achieved. We also consider the limitations of using this 

framework as-is in a dynamic and constrained energy environment or in networks with large cell 

counts. 

In the next chapter, we will develop a revised Synchronized Pulse Networking Frame 

Structure which can scale for larger networks without sacrificing the energy-efficiency benefits of 

Baseline Pulse Networking or realizing further latency concessions. In subsequent chapters of this 

thesis, we will also develop various energy-awareness syntaxes within the Baseline Pulse 

Networking framework which can provide more judicious management of dynamic energy 

resources and thus better performance in energy-harvesting-powered systems. 
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CHAPTER 4: DEVELOPMENT OF A SCALABLE PULSE FRAME STRUCTURE 

 

Building on the baseline synchronous pulse networking detailed in Chapter 3, in this 

chapter, we will develop a Scalable Cellular Pulse Networking (SCPN) architecture. We will 

design a novel time Frame Structure which can enable graceful scaling of Pulse Networking 

latency with an increase in the number of network cells. As mentioned earlier, increase in number 

of network cells can be mandated by need for a higher resolution of detection/monitoring or 

increase in the network area being covered. The basic premise is still to use discrete pulses to 

indicate event occurrence, but the pulse’s position in time will be with respect to a new frame 

structure which is smaller compared to the baseline version, allowing better latency performance 

without energy-efficiency concessions. 

4.1. Scalable Cellular Pulse Networking (SCPN) Frame Structure 

 

The scalable time frame structure as shown in Figure 4.1 is designed to be comprised of 

the following components: 

A. Discovery Sub Frame (DSF): This is a downlink portion of the frame which has similar 

functions to the corresponding one in the baseline synchronous CPN frame structure as discussed 

in Chapter 3 of this document. This sub-frame is involved in discovering neighbor nodes during 

the initial stages of network set-up and thus aids in formation of routing tables to be used during 

multi-hop event transmission from source to sink. The Discovery sub-frame uses up to (M+1) slots 

where M is the number of non-sink cells in the network. 

B. Next Hop Sub Frame (NHSF): This is a part of the frame where a pulse in a designated 

slot indicates to the receiver that it should be awake during the Event Origin Sub Frame (discussed 

hereafter) part of the frame. The NHSF is used to notify the appropriate next hops about 
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information coming their way. In the NHSF, each cell i is allocated the corresponding slot i. Nodes 

with cell-ID i are only awake to receive in their own cell-slot i.e. slot i in the NHSF. Nodes are 

asleep in other slots unless they have pending information to forward. If a node has information to 

forward, it checks its neighbor table and selects the appropriate next hop cell-ID based on energy-

aware routing strategies (detailed further in Chapter 5). If a node i decides to transmit to its 

neighboring cell j, it sends this transmission in the slot where j is receiving i.e. slot j. A pulse at 

slot s in the NHSF tells a receiver with cell-id s that it should be awake during the whole period of 

the Event-Origin Sub-Frame (EOSF) to receive event data coming its way. The NHSF uses up to 

(M+1) slots. 

 

Figure 4.1. Joint MAC-Routing frame for Scalable Cellular Pulse Networking [85] 

C. Event Origin Sub Frame (EOSF): The Event Origin Sub-Frame is used to indicate the 

event origin location for the information being forwarded. A pulse received at slot s in EOSF 

indicates an event originated at a node with cell-id s. It is to be noted here that the only nodes 

receiving in the EOSF will be the ones that have been notified about events coming their way 

during NHSF. So, all nodes indicated as next hops in NHSF will be awake and receiving in all 

slots of EOSF while all other non-transmitting nodes will be sleeping. All transmitting nodes will 
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be awake and transmit a pulse in the respective event origin cell-slots. The EOSF uses up to M 

slots where M is the number of non-sink cells in the network.  

Response Sub Frame (RSF): The Response Sub-Frame is identical to the Response Area 

in the baseline Pulse Networking Scheme and an optional component to guarantee reliable 

detection of pulse errors / false positives. The RSF uses up to (2*M + 1) slots. 

 

Figure 4.2. Demonstration of multi-hop event forwarding in SCPN 

Figure 4.2 demonstrates a multi-hop forwarding operation using the SCPN frame structure. 

An event originating in a node with cell-ID 6 is forwarded through nodes in cells 5, 3, 1 up to the 

sink (cell-ID 0). In Frame 1, the node is cell-ID 6 transmits a pulse in the NHSF slot 5. This 

indicates to the node in cell-ID 5 that an event is to be sent to them. As a result, nodes in cell-ID 5 

keep awake and listen during all slots in the EOSF of the same frame. Since the event is originated 

at cell-ID 6, the node in cell-ID 6 transmits a pulse in slot 6 of the EOSF which the node in cell-

ID 5 receives. In the next frame, the node in cell-ID 5 forwards the event it received in the last 

frame by first sending a pulse in slot 3 of NHSF to notify its neighbors in cell-ID 3. In the EOSF 

of this frame, the node in cell-ID 5, transmits in slot 6 (indicating the origin cell of the event) which 
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is received by the node in cell-ID 3 which is awake in EOSF because of the NHSF transmission 

of node in cell-ID 5. Hence, the event originated in node with cell-ID 6 has now been propagated 

up to the node in cell-ID 3. Using a similar procedure, the node in cell-ID forwards the event up 

to 1 and then on to the sink (cell-ID 0) as shown in Figure 4.2. 

It is to be noted that the NHSF and EOSF together combine the functionality of the 

Localization Area in the baseline Pulse Networking protocol. The important distinction is that 

while the Localization Area uses up to O(M2) pulse slots, the NHSF and EOSF in the new frame 

structure uses only (M + 1 + M) = (2*M + 1) i.e. O(M) pulse slots and is thus much better scalable 

with increase in the number of network cells. This saving in terms of the frame size can be utilized 

in multiple ways e.g. reducing the overall delivery delay or toward increasing the amount of 

information encoded in each frame while keeping the delivery delay at par with the baseline 

approach. 

The trade-off in the current approach is the lack of distinction between event origin data 

heard from different nodes in the EOSF. During the EOSF, there is a possibility of nodes, which 

are awake, overhearing pulses which are not meant for them and thereafter forwarding these pulses 

to their neighbors. As a result, there might be extra energy used or leakage for communicating 

redundant information (because the same information will also be propagated through the node 

where it was originally intended). In the current study, we have not proposed any solution to this 

because as the simulations demonstrate the scalable frame structure gives better energy 

performance compared to the baseline Pulse protocol despite the overhearing leakage if any. 

Moreover, overhearing is not always a problem. It can only become a source of leakage when data 

originated from different sources are being propagated in the same frame across different routes 

and the nodes on these routes are neighbors such that one can overhear pulses meant for the other.  
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Such confluence of factors is very rarely the case. For example, in many cases the events being 

propagated across different routes are originated at the same node. In such cases, there will 

effectively be a merging of the pulse in the same slot and overhearing is not an issue. Also, if the 

routes in consideration are spread apart, there would be no overhearing. Another important thing 

to note is that the root cause of overhearing is the fact that event pulses meant for multiple 

destinations are being transmitted in the same sub frame. This problem can be ameliorated by 

staggering the transmissions from neighboring nodes if there are multiple nodes forwarding the 

same data. 

4.2. Simulation Setting and Performance Results 

 

4.2.1. Network, simulation and event model 

 

An event-driven C++ simulator implementing MAC-Routing framing for both CPN and 

SCPN was developed. The baseline simulated network consists of TUPN sensor nodes evenly 

distributed on a rectangular plate structure with the sink node placed at the center left corner as 

indicated in Figure 4.3. The nodes are grouped into regular hexagonal cells with an average of 3 

nodes per cell. The spacing between individual nodes is 0.25 m and the transmission range is kept 

at 0.75 m. Height of each baseline hexagonal cell is 0.5 m. We used different dimensions of the 

plate to vary the network size and hence the number of cells in the network to compare 

performance of SCPN vs CPN as the network cell count is scaled. The effect would be similar if 

the cell count were increased by reducing the cell size. The latter is also often the case when higher 

localization granularity is required. As shown in Figure 4.3, we used 6 different plate sizes of 

dimensions 4m X 3m, 6m X 3m, 8m X 3m, 10m X 3m, 12m X 3m with the respective cell counts as 

32, 41, 59, 68, 86 and 113 respectively. The plate width was kept similar, to have comparable 
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routing across the network despite the scaling when a common cell is chosen as source among all 

the networks. 

 

Figure 4.3. Simulated Network Topologies 

 

Figure 4.4. Spatiotemporal variation in harvested energy 

An energy model is used where the energy for transmitting a single pulse is 100 μJ while 

the idle listening and sleep energy budgets are 1 mW and 1 μW respectively. Energy availability 
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at the nodes was designed to have both spatial and temporally variable components. Temporal 

variation was incorporated with the use of a duty cycle (DC) parameter which controls the 

proportion of time when harvesting power is available. Harvesting power availability is modeled 

as a stochastic process with energy availability (charging ON time) and non-availability (charging 

OFF time) intervals being exponentially distributed. The means of these distributions are chosen 

based on the DC selected. With this configuration, the harvesting power availability for different 

DCs is demonstrated in Figure 4.4 (a) with higher DC involving denser power availability leading 

to more harvested energy. Spatial distribution of energy is incorporated using a spatial distribution 

function which is linear in the current paper as shown in Figure 4.4 (b). Thus, the nodes near the 

left edge have less energy harvested compared to the nodes near the right edge assuming the anchor 

of the plate is at the left edge and tapering away toward the other edge as shown in the inset in 

Figure 4.4 (b). This is representative of the energy available using vibration harvesting on the plate 

which is more intense away from the anchor than near. It is to be noted that all nodes are charging 

synchronously in the simulated model because energy availability events are synchronous across 

the plate area. Events were generated at different source nodes across the rectangular plate and the 

corresponding average performance characteristics were noted. Events were assumed to be far 

apart from each other so that they can be considered as independent transmissions. For event 

transmission from any source node, 50 similar experiments were performed, and their average 

noted to take care of the stochasticity in the charging model introduced as part of the exponentially 

distributed Duty Cycle formulation. 
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4.2.2. Performance Results 
 

A. Delivery Delay and Event throughput 
 

To demonstrate the advantages of the SCPN design as compared to baseline CPN, we 

evaluated the network performance across different network sizes in terms of event delivery 

latency and throughput. In the initial experiments, we considered single event generation from 

cells across the plate to the sink and the highest level of energy availability i.e. no energy 

constraint. Further effects of energy constraint have been discussed in subsection C hereafter. 

 

Figure 4.5. Network Cell Count vs Average Per Hop Delivery Delay / Event Throughput 

As shown in Figure 4.5, network cell count has a more marked bearing on the delay / 

throughput parameters in the case of CPN as opposed to SCPN. It is to be noted that the y-axis of 

the delay / throughput plots is exponentially scaled which is intentional to demonstrate how 

quickly the average delay per hop and average event throughput scale in CPN when the cell count 

is increased. This is opposed to SCPN where the event delay increases much more gracefully i.e. 

slope of latency increase or throughput decrease is lower when the cell count is increased from 32 

to 113. It is to be noted that due to the use of a linearized frame structure, SCPN offers per hop 

latencies in the order of 1-5 seconds while CPN for comparison has per hop delays which are on 
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the order of 10-100 seconds. Similarly, for the average throughout, SCPN offers much better 

values of 0.1-1 events/second for the used network topologies as opposed to CPN which offers 

only 0.1 or lower. Both results are a consequence of the fact that latency and throughput are 

functions of the frame size and CPN aims to gracefully scale the same. The improved performance 

ranges open up the feasibility of more time-sensitive applications as well as ones where a high 

throughput is required for pulse-based networking. 

 

Figure 4.6. Heat maps for source-sink event delivery latency 

B. Source to Sink Event Delivery Latency 
 

For a better visualization of the latency advantages provided by SCPN, we have charted 

the source to sink delay (complete routing delay) for single events generated at different nodes 

across the plate in Figure 4.6. As seen from the heat maps provided in Figure 4.6, events that are 

located farther away from the sink, have much higher event delivery latency from source to sink 

compared to those located nearer to the sink. Such disparity becomes even higher when the 
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network cell count is increased as the network size increases. Thus, the distribution of event 

delivery delays is very non-uniform in the case of CPN and nodes farther away from the sink are 

implicitly disadvantaged. In the case of SCPN though, the source to sink delivery delays scale 

much more reasonably as the distance from the sink changes as well as due to network cell count 

changes. This can lead to a fairer event reporting schedule across the network. 

C. Effect of energy constraint on event delivery latency 

 

To evaluate the effect of energy constraint on the network performance, we considered two 

different network sizes - 4x3 with cell count 32 and 6x3 with cell count 41. As shown in Figure 

4.7, when the energy constraint in the network increases i.e. the duty cycle decreases, the average 

delay per hop increases for SCPN and much faster than that of CPN. 

 

Figure 4.7. Effect of Energy Constraint on Per Hop Delivery Latency 

At the highest energy constraint i.e. duty cycle 10%, the delay for SCPN and CPN are 

approximately similar. This nature of the latency is a consequence of the fact that with energy 
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constraint involved, the per hop latency not only a function of the frame structure, but also related 

to the delay brought about due to energy-aware event buffering. When the energy is low, 

irrespective of the protocol, the latency is large because it is primarily dictated by the time it takes 

for the nodes to acquire enough energy to transmit the pulses needed for event information 

transport. Hence, for either case of SCPN vs CPN, the latencies would be similar which masks the 

disadvantages of the longer frame structure of CPN compared to SCPN. In some low energy cases, 

as in DCs < 40 % in Figure 4.7, the delivery delay from SCPN can be higher than CPN. This is 

because, since more frames are completed for SCPN which involves more sync pulses as well as 

more attempts at node discovery, SCPN uses up more energy compared to CPN in the same time. 

This affects further transmission along the route and thus effective delivery delay. The observation 

from this graph is important because it indicates two things – one, that SCPN is roughly on par 

with CPN at high energy constraint, but is far more advantageous in network situations with low 

energy constraint; secondly, SCPN has lower increase in delivery delay with increase in network 

cell size irrespective of energy constraint. 

D. Energy Consumption 

 

It is to be noted that the energy consumption for both CPN and SCPN are roughly similar 

throughout the frame structure which is by design. In CPN, for a single hop transmission, the 

energy consumed by the network includes the transmission energy for the source / forwarding node 

and the reception energy for the receiving nodes i.e. idle listening. The number of pulses that need 

to be transmitted per event from a source / forwarding node for both CPN and SCPN are equal. 

For example, assuming a route diversity of 2, SCPN would have to transmit 4 pulses - 1 pulse for 

sync, 2 pulses for next hop and 1 pulse for event origin. Similarly, CPN would also involve 4 

pulses – 1 pulse for sync, 1 for control, 2 for localization. Also, the number of slots that the 
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receiving nodes need to be idle listening for events is the same – for a network with M non-sink 

cells, CPN receivers must be idle listening in all the slots in control frame i.e. M slots and 2 slots 

in Localization Frame, i.e. a total of M + 2. Similarly, in SCPN, receivers would be idle listening 

for 2 slots in NHSF and M slots in EOSF i.e. M + 2. Hence, the total energy consumption due to 

transmission and idling is identical for both protocols. SCPN stands to make some extra energy 

consumption when overhearing is involved as explained earlier. However, with proper strategies 

in place such as merging and staggering of events, such extra consumption is essentially removed 

as seen in our simulations. Thus, using SCPN, we can obtain better network performance with 

similar levels of energy consumption when the energy constraint is not very high. 

 

Figure 4.8. Effect of Information Content Size on Delivery Latency of Pulse Protocols 

E. Higher granularity information transport 
 

As mentioned previously, using the better scaling provided by SCPN we can include more 

information within the frame structure without sacrificing on the energy efficiency or latency. This 
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is demonstrated in Figure 4.8 above. In the baseline case, we use only 1 bit of event data i.e. the 

origin event area id. We can include further bits of information e.g. whether the available node 

energy is over / under a threshold etc. If such information were to be included in the CPN frame 

structure, the delay would increase significantly as demonstrated in Figure 4.8 for 1-bit vs 2-bit 

and 3-bit information. In SCPN though, such increase of information density does not need to 

come at a significantly higher latency price. In fact, even 2-3 bits of event information can be used 

in SCPN with a latency far less than the latency for 1-bit info using CPN. Such advantages are 

more pronounced when the network cell count is larger. 

4.3. Summary 

 

In this chapter of the thesis, we developed a novel time frame structure for discrete-pulse-

based networking that scales well with increase in the number of network cells. We also evaluated 

the performance of the new scalable pulse networking architecture vs the baseline synchronous 

cellular pulse networking approach introduced in Chapter 3. We have shown that the SCPN 

protocol can provide similar energy-efficiency to the CPN while lowering the delivery delay. The 

protocol can also be reliably used in a wide range of harvesting situations. In the next chapter, we 

will discuss energy awareness features that should be included in the Baseline Synchronous 

Cellular Pulse Networking approach for more judicious energy management in extreme resource-

constrained or dynamic energy availability scenarios. We will detail the energy aware protocol 

design and show the advantages of these new syntaxes through simulation experiments for a 

vibration-harvesting-powered network. 
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CHAPTER 5: ENERGY-AWARE PULSE NETWORKING 

 

In earlier chapters of this thesis, we have mentioned that we envision the use of networks 

of sensors powered by ambient energy harvesting. For instance, in Structural Health Monitoring 

applications, such harvesting can be done from ambient structural vibrations using piezoelectric 

transducers [85]–[88]. The advantage in a harvesting-powered network is that the individual 

sensors can be less expensive and bulky (because large batteries need not be included) while being 

practically maintenance-free (as energy availability is theoretically limitless). However, such 

ambient harvesting sources are by nature very erratic and energy availability cycles might not be 

well-synchronized with energy use cycles. As a result, in absence of appropriate energy 

management, there might be leakage and eventual sensor power loss affecting effective network 

lifetime. In this chapter, we will develop an energy-aware pulse networking protocol which can 

deal with these shortcomings of the baseline synchronous pulse networking architecture. We will 

show that in systems powered by various levels of energy harvesting availability, the energy-aware 

version of the protocol performs significantly better compared to the baseline version. We will 

also show how the performance varies for different harvesting scenarios based on vibration 

harvesting on a simple rectangular plate structure.    

5.1. Energy-aware Pulse Switching Protocol 

 

This section introduces specific protocol syntaxes developed to deal with stochastic energy 

harvested, for instance, from the ambience (e.g., vibration) of a target structure. As mentioned in 

Chapter 3, the synchronous pulse networking architecture consists of the use of discrete pulses to 

indicate event information. The baseline architecture does not change transmission schedules 

based on energy availability. When an event is available, transmissions are attempted. In case of 

energy-constrained scenarios, for example, slow harvesting, the baseline protocol would attempt 
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transmissions even when enough energy is not available to transmit all necessary component 

pulses. Since the transmission is incomplete, this energy is essentially wasted. In the proposed 

energy-aware version of the protocol, the main idea is to manage the stochastically available 

energy in a prudent manner such that the wastage on incomplete pulse routing is minimized while 

the number of fully routed events is maximized. 

5.1.2. Frame Adaptation 

 

The same frame structure, as discussed in Chapter 3 without the Route Discovery and 

Response Module, is used for this energy-aware version. The route discovery part is omitted due 

to its energy intensiveness. A static routing operation with pre-defined routing table entries is 

chosen instead. The response area which is responsible for dealing with pulse losses is also 

removed. Given the low pulse loss rates (PLR) of the physical layer proposed i.e. ultrasound 

communication [8], it was decided that the benefits of the response mechanism may outweigh its 

energy overheads. Thus in the revised frame format, every frame starts with a Sync Area followed 

only by the Control, Localization and Protection areas. 

5.1.3. Binary Event Buffer 
 

Due to insufficient energy, a pulse sensor network can become partitioned i.e. a pulse may 

arrive at a node but cannot be forwarded due to the lack of energy required for transmission. To 

accommodate such scenarios, a binary event buffer is provided which can be used for storing such 

a pulse until enough transmission energy is available for a forwarding operation. As shown in 

Figure 5.1, the length of the buffer at each node is M, where M is the total number of sensor cells 

in the network. At node-j, the i-th buffer bit is set to 0 or 1, depending on the absence or presence 

of a pulse originated at sensor cell i, buffered at node-j. At the start of each frame, every node first 



41 
 

checks whether there are any buffered events, and tries to transmit them in the respective slots 

based on its energy availability. When a pulse is generated or received (for forwarding) at a node, 

it is stored in the binary event buffer in the bit corresponding to the cell of its origination. If the i-

th bit of the buffer is already 1 in a node, and a new pulse originated at Cell-Id-i is received by the 

node, it simply ignores the new pulse without any changes in the buffer. This causes the old event 

to be merged with the new one at this point in the route. Such merging results in a loss of temporal 

resolution of event detection. For many structural health-monitoring applications, however, such 

a loss can be acceptable due to their low requirements on temporal granularity of event detection. 

 

Figure 5.1. Summary of Energy-Aware Pulse Switching 

5.1.4. Energy-aware Forwarding Syntaxes 
 

Each networked sensing unit contains an energy storage super capacitor that is charged at 

a rate based on the harvesting source. For structural health monitoring applications using Through-

Substrate Ultrasonic Pulse Networking (TUPN) units as discussed in Chapter 1, this harvesting 

source can be the ambient vibrations in the structure where the TUPN is embedded. All baseline 

forwarding decisions, as explained in Chapter 3, are modulated by the amount of energy available 

in the super capacitor and the estimated energy expenditure for sending the pending events that are 
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buffered in the binary event buffer. For example, the event buffer in Figure 5.1 indicates 

buffered/pending events from cell IDs 3 and M-1 that need to be forwarded. The protocol estimates 

the energy needed to send those event pulses with different route diversities (as defined in chapter 

3) and makes selective forwarding decisions based on that estimation and the available energy in 

the super capacitor. 

   While checking for available energy, the protocol first ascertains whether there is enough 

energy to transmit all pending events with the highest allowed RD, and if not then with the next 

lower RD and so on. If energy is not sufficient to transmit even with lowest RD (i.e., 1), then the 

node tries to transmit one event less than the number of pending events, with RDs starting from 

the highest and so on. If not even one event can be transmitted with the lowest RD, the node 

suspends transmissions in the current frame. Total energy consumption Ec is estimated as: 

  Ec = (nctrl + nloc) * epulse + pidling * F    … (5.1) 

where nctrl and nloc are the number of Control and Localization area pulses respectively, 

epulse is the energy consumption for a single pulse generation, pidling is the idling power, and F the 

frame duration. The idling energy consumption for a full frame is considered as a conservative 

estimation to remove the chance of nodes running out of energy in the middle of a frame. It is to 

be noted that nloc in the above equation is a function of the Route Diversity (RD), and hence 

estimates the energy expenses for different route diversity values. Depending on the amount of 

energy in the super-capacitor and the estimated amount needed, a node may be able to forward 

only a subset of all the buffered events. To ensure fairness, the events from the least recently used 

bits in the event buffer are selected for transmission first. 
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Figure 5.2. Routing Decision based on Energy Levels 

Figure 5.2 shows different energy availability situations in the super-capacitor and how 

they influence the routing decisions as per the protocol described above. A level E-Ti-Rj indicates 

the estimated energy needed for transmission of i events with a route diversity j. Each column in 

the figure shows an energy availability scenario (i.e. the y-axis levels) and a corresponding 

forwarding decision, marked as a {Allowed Events (AE), Route Diversity (RD)} pair. After the 

allowed events are subsequently transmitted, they are removed from the event buffer. 

5.2. Performance Results 

 

An event-driven C++ simulator implementing the MAC-Routing framing was developed. 

Both the non-energy aware (NEA) and energy aware (EA) versions of the protocol were simulated. 

Note that the baseline energy advantages of pulse switching over traditional packet-based event 

reporting have already been established in [4, 5]. In this chapter, we mainly validate and 

characterize the effectiveness of the energy-awareness of the architecture in a harvesting scenario. 

We first consider a scenario where the energy generation is synchronous across the network i.e. 

all nodes receive similar energy harvesting. In the next scenario, we cover the efficacy of energy-

aware pulse networking in scenarios where the energy generation is non-uniform across the 

network. 
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5.2.1 Results with Synchronous Energy Generation 
 

A. Model for Vibrational Harvested Energy – Synchronous 
 

The objective is to develop pulse network protocols that can operate using sparse energy, 

harvested from system ambience such as aircraft wing vibration. A piezoelectric harvesting mode 

using synchronous vibration is assumed. This implies that all the TUPN units mounted on a 

structure experience similar levels of ambient vibrations and resulting charging of their respective 

super capacitors. Discharging of the capacitors, however, will depend on the generated events and 

their resulting spatial-temporal patterns in different parts of the structure. An on-off charging 

model is used for evaluation of the protocol performance. In this model, only the ‘on’ duration 

corresponds to the availability of structure vibration sufficiently intense for harvesting. 

 

Figure 5.3. Capacitor charging for different duty cycles 

To simulate memory-less vibration patterns, exponentially distributed random processes 

are used for generating both the ‘on’ and ‘of’ periods of the vibration profile. The level of 

harvesting is parameterized by the average duty cycle of the on-off pattern. A higher duty cycle 

would correspond to an environment with a higher vibration level indicated by longer ‘on’ 

durations. The amount of energy harvested during the ‘on’ period depends on the specific 
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piezoelectric harvesting mechanism and its efficiency [89]. For the results in the next section 4.2., 

we use a specific harvesting rate of 100 μW during the ‘on’ periods. The corresponding capacitor 

charging patterns for two different vibration duty cycles are shown in Figure 5.3. The presented 

protocols were evaluated with different harvesting/charging rates representing different harvesting 

technologies and their efficiency. 

B. Network Structure and Event Generation 

 

The simulated network consists of 210 evenly distributed TUPN sensor nodes with a sink 

node placed at the lower left corner of a rectangular terrain that measures 6m x 3m. The nodes are 

grouped into 84 regular hexagonal cells with an average of 3 nodes per cell. The spacing between 

individual nodes is around 0.3 m and the transmission range is kept at around 0.75 m. Height of 

each hexagonal cell is 0.5 m with cell side length of around 0.288 m. 

  Events are generated at different network locations. For each event, a pulse is sent to the 

sink repeatedly with a pre-specified inter-pulse interval, such that even if a specific pulse is lost 

on its way due to insufficient energy availability or unreliable ultrasonic links, successive 

transmissions will increase the probability of successfully informing the sink about the event. 

Experiments were conducted with a variety of such pulse repetition intervals in order to understand 

their implications on event delivery latency under different energy constraints. 

C. Network Node Energy Traces 
 

Simulation experiments were performed using three duty cycles (DC) i.e. 20%, 30%, 40%, 

and three different pulse repetition intervals (PRI) i.e. 20, 10, and 5 frames for both NEA and EA 

pulse switching. The energy budget for a single pulse transmission was chosen as 10 mJ, and 

constant idling power consumption as 1μW, which includes the power consumption for reception 
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of pulses. A harvesting energy rate of 100 μW was used during the ‘on’ period of the fully 

synchronous structure vibration as discussed in Section 4.1.5. All the graphs in Figure 5.4 

demonstrate the remaining energy in the super capacitor of a node on the event delivery route. The 

first notable observation is that for the same vibration DCs (i.e. degree of harvesting energy 

constraint) and PRIs, the NEA protocol often leads the super-capacitor to zero-energy condition, 

whereas the EA version manages to avoid it. 

 

Figure 5.4. Energy trace at a node on event propagation route 

   It should also be noted that irrespective of the duty cycle, the consumption cycles in the 

NEA protocol operation are more sensitive to the pulse repetition intervals. For example, when the 

event generation interval is 5 frames, there is visible energy consumption after every 5 frames in 

the NEA protocol at all DCs, indicating pulse transmissions. However, at the lower DCs, the 

observed drop in energy is not enough for transmission of all the pulses, which requires at least 20 
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mJ for the lowest RD. This indicates that only a subset of all the needed pulses for an event are 

being sent. As a result, certain amount of energy is wasted even though the event is not successfully 

transmitted. This can affect future event transmissions in an adverse manner. This is especially 

true in the low DC scenarios where there is never enough energy to transmit all the pulses for an 

event at the lower PRIs (i.e., 5 and 10 frames).  

For the higher PRIs, since the node has more time to accumulate energy between successive 

event transmissions, incomplete transmissions are less frequent. In contrast, for the EA protocol, 

irrespective of the PRI, consumption happens only when sufficient amount of energy (i.e., 20 mJ) 

has been accumulated for sensing all the pulses needed for an event transmission. This avoids 

wastage caused by partial transmissions and therefore improves the overall energy economy. In all 

scenarios, as the duty cycle increases, the operation of the EA protocol becomes similar to the 

NEA case because of higher energy availability. 

D. Event Reporting Performance 
 

Figure 5.5 depicts the event reporting delay, which is the primary performance index of the 

system. Such delay is defined as the latency between the transmission of first pulse for an event 

from the source node and the first time that particular pulse or a subsequently repeated pulse for 

that event arrives at the sink node. This indicates the effective delay in reporting a structural failure 

event. Such delay is caused due to: 1) end-to-end routing delay, 2) pulse losses because of channel 

errors, 3) deferred/stalled pulse routing due to event buffering caused by energy unavailability in 

the energy-aware routing. Due to the pulse repetition feature of the event generation model, and 

the event buffering in the energy-aware routing protocol, an event is guaranteed to be reported 

with infinite delay. 
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Figure 5.5. Event Reporting Delay for Different Duty Cycles 

To accommodate practical settings, however, a notion of Allowed Delay (AD) has been 

developed while defining the concept of successful reporting. An event is regarded as successfully 

reported if it reaches from source to sink within a certain Allowed Delay. Figure 5.5. reports results 

for four different ADs, namely, 60, 120, 180 and 240 frames. For the required frame duration of 

76 sec corresponding to our network, in Figure 5.5 those delays correspond to approximately 1, 2, 

3, and 4 hours respectively. Those AD numbers are deemed reasonable for typical structural health 

monitoring applications. Observe in Figure 5.5, for all vibration DCs and ADs, the EA version of 

the protocol reports events quicker than the NEA version. Also, as expected, with higher AD limits, 

the average reporting delay for the NEA protocol increases, as more events can be considered as 

successfully delivered in the longer intervals. The EA protocol, however, appears to be insensitive 

to the AD. This is because of its ability to deliver all events with reporting delays that are well 

below the lowest AD even at the lowest vibration DC. We do not consider DCs below 20% because 

in such cases events are never delivered within the highest AD for the NEA version. Note that in 
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all the scenarios, for high DCs (i.e., 30% and above) both EA and NEA protocols behave similarly. 

The reporting delay stabilizes for both protocols since they are able to deliver all events 

successfully within the lowest AD due to high energy-availability. It is notable that improvements 

in delay demonstrated by the EA protocol are more pronounced under severe energy constraints, 

i.e. the low DC scenarios. Improvements are also higher with higher ADs. This can be explained 

using the next set of results showing the event delivery ratio in Figure 5.6. 

 

Figure 5.6. Event Delivery Ratio at Different Duty Cycles 

Event delivery ratio is defined as the fraction of generated events that are successfully 

reported to the sink for a given AD. As can be seen in Figure 5.6, for the NEA protocol, the delivery 

ratio improves with more structure vibration up to around DC 30%. Delivery ratio also improves 

with higher AD. Beyond that point, the system enjoys enough harvested energy, which results in 

near-100% event delivery. The EA protocol, however, is significantly less sensitive to both 

vibration DC and AD because of its judicious energy usage and event buffering as presented in 

Section V. In summary, the proposed EA protocol syntaxes show significant improvements over 
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its NEA counterpart in low structural vibration situations. Such improvements are consistent for 

both event reporting delay and delivery success. 

 

Figure 5.7. Route diversity for different energy availability 

E. Impacts of Adaptive Route Diversity 

 

A key component of the EA protocol is its ability to choose appropriate route diversity 

(RD) based on the instantaneous energy availability. Figure 5.7 reports the occurrence distribution 

of RDs under different vibration DCs and PRIs. It can be observed that for a given PRI, higher 

diversity routes occur more frequently as energy becomes plentiful (i.e. higher vibration DCs). For 

a given energy availability (i.e. DC), routes are more diverse for larger PRIs and less for smaller 

ones. This is because with more frequent pulse repetitions (small PRI) at the source, there is a 

bigger drain on the available energy, which prevents the protocol from choosing energy-expensive 

higher route diversities. These results validate the protocol’s ability to choose pulse RD in a 

manner that is adaptive to the instantaneous available energy. For the NEA version, such diversity 
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is statically chosen and can cause energy wastage leading to higher reporting delays and lower 

delivery success, depicted in Figs. 5.5 and 5.6. 

F. Event Buffering Characteristics 

 

In Section 4.1.3, we presented how event buffering can be leveraged in the absence of 

sufficient pulse forwarding energy  in the proposed protocol for reducing event losses and the 

resulting reporting delay reductions. 

 

Figure 5.8. Event buffering/storage delay (in frames) distributions 

Figure 5.8 reports an example distribution of the per-hop buffering delay (i.e., averaged 

over all the hops on an end-to-end route) experienced by an event on its way to the sink node. As 

can be seen from the distribution graphs, the distribution’s peak moves towards the lower end of 

the buffering delay as the vibration DC increases. This implies that when energy is scarce (i.e. low 

DC), the protocol employs longer storage times to allow sufficient accumulation of harvested 

energy before transmitting all the needed pulses for complete event forwarding. As the energy 



52 
 

becomes more abundant, the need for storage becomes less important and storage times approach 

the lower limit of one frame per hop. These observations validate the event-buffering process and 

its intended impacts. 

5.2.2. Results with Synchronous Energy Generation 

 

A. Model for Vibrational Harvested Energy – Asynchronous 

 

The main objective of following evaluation was to evaluate the performance of Energy-

Aware Pulse Switching protocol in dynamic energy harvesting scenarios without any limitations 

like synchronous energy harvesting in all nodes of the network. To that effect, a few representative 

vibration harvesting models were constructed for the evaluation experiments.  

In order to simulate an asynchronous vibration energy harvesting model, we used an 

exponentially distributed ON OFF charging (energy accumulation) model modulated by a spatial 

distribution function. The exponentially distributed ON OFF model helps to simulate the temporal 

variation in vibration (and hence, charging) while the spatial distribution function incorporates the 

spatial variation in harvested energy profiles. 

In order to parameterize the temporal variation in harvesting efficiency, we define a 

parameter called Duty Cycle as follows – 

Duty Cycle = Average of ON time distribution / (Average of ON time distribution + 

Average of OFF time distribution),  

where the ON time and OFF times of the model are both exponentially distributed to 

emulate memory less processes mirroring the fact that structural vibrations available are essentially 

stochastic in nature and not correlated. Duty Cycle, therefore, gives us a measure of the harvesting 
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efficiency of the system on a temporal level. The spatial distribution function is multiplied with 

the duty cycled energy to obtain a spatiotemporally variable vibration profile. 

We have used four different spatial distribution functions (as detailed in Equations 5.2 – 

5.5) to evaluate the efficacy of Energy-Aware Pulse Protocol operation when powered by a variety 

of vibration profiles. These vibration / harvested energy profiles correspond to the four anchor 

configurations for the rectangular plate as shown in Figure 5.9 (a)-(d). 

 

Figure 5.9. Rectangular plate designs with various anchor configurations 

In each equation below, the energy harvested during a single ON time of the vibration 

profile is evaluated. This energy is accumulated over the course of time as more ON times are 

encountered, leading to energy harvesting in a particular node. In relation to the equations below, 

the definition of component parameters has been provided in Table 5.1. 

Table 5.1. Asynchronous Harvesting Model Parameters 

Parameter Name Parameter 

Representation 

Parameter Definition 

Charge Interval tcharge ON time interval (modulated by the duty cycle) 

Charging Power Pcharge Harvesting power during the ON time (assumed to 

be constant) 

- m, c, k parameters determining the spatial variation 
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Table 5.1. (cont’d) 

- x X coordinate of the node whose 

energy is being calculated 

- y Y coordinate of the node whose 
energy is being calculated 

- xi X coordinate of the node i 

- yi Y coordinate of the node i 

Energy Charged echarge Energy accumulated in one 
Charge Interval 

 

echarge= (𝑚𝑥0 + 𝑐) ∗ 𝑡𝑐ℎ𝑎𝑟𝑔𝑒 ∗ 𝑃𝑐ℎ𝑎𝑟𝑔𝑒       … (5.2) 

echarge= (𝑚𝑥1 + 𝑐) ∗ 𝑡𝑐ℎ𝑎𝑟𝑔𝑒 ∗ 𝑃𝑐ℎ𝑎𝑟𝑔𝑒      … (5.3) 

echarge= (𝑚𝑥2 + 𝑐) ∗ 𝑡𝑐ℎ𝑎𝑟𝑔𝑒 ∗ 𝑃𝑐ℎ𝑎𝑟𝑔𝑒      … (5.4) 

echarge= [(x –  mean(xi))
2

+ (y − mean(yi))
2
] ∗ 𝑡𝑐ℎ𝑎𝑟𝑔𝑒 ∗ 𝑃𝑐ℎ𝑎𝑟𝑔𝑒  … (5.5) 

The first configuration (Fig 5.9 (a)) assumes that the anchor is continuously attached along 

the whole length and breadth of the rectangular plate. As a result, there is no spatial variation 

involved as indicated by the constant value of the Harvesting Power Multiplier in Fig 5.10 (a). 

This is because all the area of the plate experiences a consistent level of vibration due to similar 

anchoring configuration throughout. This effect is modeled in the Equation (5.2). 

In Figure 5.9 (b), an anchor configuration is demonstrated which tapers down from the left 

edge of the wing to the right edge. The anchor width is unchanged along the y-axis for all points 

which are located at a fixed distance from the left edge. Such a variation is modeled using the 

Equation (5.3) with the corresponding harvesting multiplier variation shown in Figure 5.10 (b). 
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Figure 5.10. Spatial variation of node charging profiles at a fixed duty cycle 

The third scenario illustrates a case where the anchor is present only near the left edge of 

the plate as shown in Figure 5.9 (c). As a result, rate of increase of vibration levels is higher when 

we move farther from the left edge. The corresponding harvesting power multiplier is 

demonstrated in Figure 5.10 (c) where the slope increases in quadratic manner in accordance with 

Equation (5.4). 

Figure 5.9 (d) demonstrates a slightly different anchoring scheme where the plate is affixed 

at the center instead of along the edge. This is represented by the charging equation in (5.5) where 

the energy accumulated depends on the position away from the center (in this case calculated using 

the mean of all the node positions since they are uniformly distributed along the two axes). The 

corresponding harvesting multiplier variation is shown in Figure 5.10 (d). As mentioned above, 
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the spatial variation in the equations (5.2) - (5.5) is demonstrated in the following temperature 

maps where the harvesting power multiplier based on the equations is plotted versus node location. 

This represents the available harvesting power distribution across the rectangular plate at a 

constant duty cycle or alternatively at a certain instant in time. 

 

Figure 5.11. Temporal variation in harvested energy availability using a duty cycled approach 

The temporal variation (change in duty cycle) for a specific spatial variation is 

demonstrated in Figure 5.11. As we move from Figure 5.11 (a)-(e), the duty cycle increases and 

as a result we can see that the temporal availability of harvesting power available is higher i.e. 

harvesting occurs at a higher rate leading to faster accumulation of energy. 

As we will show in the following sections, the spatial distribution function and the temporal 

harvesting efficiency combine to create a spatiotemporal variation in the harvesting profile which 

is then used to evaluate the operation of the Energy-Aware Pulse Switching Protocol when 

powered by the same. 
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B. Network structure, simulation parameters and event generation model 
 

The simulated network consists of 1057 TUPN sensor nodes evenly distributed on a 

rectangular plate structure with a sink node placed at the center left corner as shown in Figure 5.12. 

The nodes are grouped into 84 regular hexagonal cells (like Figure 5.12) with an average of 3 

nodes per cell. The spacing between individual nodes is around 0.3 m and the transmission range 

is kept at 0.75 m. Height of each hexagonal cell is 0.5 m with cell side length approximately 0.288 

m. An energy model is used where the energy for transmitting a single pulse is 10 mJ while the 

reception energy budget is 10 μW (10uJ/sec) including the energy required for pulse detection and 

idle listening. 

 

Figure 5.12. Cellular network model on a rectangular plate structure 

Events were generated at different source nodes across the rectangular plate and the 

corresponding performance characteristics were noted. Events were assumed to be far apart from 

each other to be considered as independent transmissions. For event transmission from a particular 

source node, 100 similar experiments were performed, and their average noted to take care of the 
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stochasticity in the charging model introduced as part of the exponentially distributed components 

Duty Cycle formulation. 

C. Network Node Harvested Energy Traces 

 

In order to demonstrate the spatiotemporal variation of harvested energy across the 

simulated rectangular plate, the energy traces for three representative nodes on the structure were 

obtained at varying levels of energy availability (signified by the Duty Cycle of ON-OFF 

charging). For example, the energy traces shown in Figure 5.13, were obtained from simulations 

on the rectangular plate anchored at the center. It is evident from the graphs that the energy 

harvested increases monotonically with increase in the temporal frequency of vibrations 

represented by the Duty Cycle (DC). The spatial variation in energy harvesting is also easily 

discernible with nodes near the anchor (e.g. Node 111) enjoying much less in terms of harvested 

energy compared to nodes away from the anchor (e.g. Node 183).  

It is to be noted that the former node always has lower levels of vibration being closer to 

the anchor location and thus consistently lower levels of harvested energy compared to the latter 

node irrespective of the duty cycle of vibrations. The positions of the selected nodes on the 

rectangular plate have also been indicated to demonstrate the dependence of node location on the 

harvesting rate. The figures thus demonstrate the spatial variation in energy profile (among the 

selected nodes at each duty cycle) as well as the temporal variation (for each node across the range 

of duty cycles observed). The range of duty cycles observed is divided into exponential intervals 

(0.025, 0.063, 0.158 etc.) such that the temporal variation for a large range of duty cycles can be 

demonstrated. 
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Figure 5.13. Energy traces for selected nodes on the rectangular plate 

D. Networking Performance Characteristics 
 

In this section, we evaluate the networking characteristics on using Energy-Aware Pulse 

Switching on the spatiotemporally variable harvesting profiles discussed in Section 3. 



60 
 

 

Figure 5.14. Delivery Delay characteristics for selected source nodes on the rectangular plate 

In Fig 5.14, the average delivery delay goes down exponentially as the energy availability 

in the system is enhanced. Fig 5.14 shows the average delivery delay for 5 representative nodes on 

the surface of the plate with anchor configuration at the center. It can also be seen that the 

variability in the delivery delay increases with decrease in duty cycle. This is because with decrease 

in duty cycle, energy availability is more erratic, and the temporal variation becomes more 

pronounced in this case. As a result, even for the same source node for various node deliveries, 

event delivery delay can differ substantially. 

In Figs. 5.15 and 5.16, we demonstrate the average harvested energy (over 100 seconds) 

and corresponding network delivery delay characteristics for events originated at source nodes 

across the rectangular plate using a temperature map. 
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Figure 5.15. Average Harvested Energy and Event Reporting Delay distributions across rectangular plate 

with different edge anchor configurations 

As the color moves from blue to red (i.e. height of the surface increases), the value of the 

appropriate parameter being showcased increases. Figure 5.15 demonstrates the energy generation 

and delay characteristics for the anchor configurations along edge of the rectangular plate (Figure 

5.9 (a)-(c)) while Figure 5.16 demonstrates the same for the center anchor configuration (Fig 5.9 

(d)). We also show the variation for separate duty cycles. 

As seen in Figure 5.15 (a), the harvested energy generation is consistent over the whole 

area of the rectangular plate (based on spatial distribution function shown in Figure 5.10 (a)). As 

a result, the delivery delay characteristics are mainly modulated by the distance of the source nodes 
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from the sink. This is seen in Figure 5.15 (b), where the nodes near the right edge of the rectangular 

plate have much higher delays compared to those near the left edge because the latter are situated 

closer to the sink. In Figure 5.15 (c), we demonstrate a spatial variation in harvested energy which 

varies approximately in a linear fashion along the x coordinate of the wing (corresponding to the 

spatial distribution described in Figure 5.10 (b)). As a result, the delay characteristics are also 

changed from the previous scenario. As can be seen in Figure 5.15 (d), at a lower duty cycle, when 

the energy is at a premium, the location of the nodes near the right edge of the plate allows for an 

energy benefit which even trumps the disadvantage of being further away from the sink in distance. 

As a result, the delivery delay for events sourced at nodes near the right edge of the plate turns out 

to be lower than even those on the left edge which are closer to the sink. The latter nodes despite 

being closely situated to the sink, receive very low levels of energy being near the anchor of the 

plate which affects their event reporting delay. This effect is less pronounced when the energy 

availability is less constrained, and the delay characteristics resemble the characteristics in the 

constant spatial variation scenario. A similar trend is seen in Figure 5.15 (f), because the 

corresponding energy availability curve in Figure 5.15 (e), is even steeper in the x-coordinate 

direction which ensures that nodes on the right edge of the plate have delays even less than the 

previous case for the higher duty cycle scenario. 

In Figure 5.16 (a), we show the average harvested energy for the anchor configuration of 

Figure 5.9 (d), corresponding to spatial distribution function as in Figure 5.10 (d). We consider the 

event delivery delay characteristics across the node for three different Duty Cycles 6.3%, 25.1% 

and 100% as shown in Figure 5.16 (b), (c) and (d) respectively. 
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Figure 5.16. Distribution of Average Harvested Energy and Event Reporting Delay across rectangular 

plate with central anchor configuration 

It is noted that nodes near the edges of the plate have lower delays consistently compared 

to those near the central regions. With the increase in duty cycle, the overall energy availability 

increases and as a result, even the central regions of the plate deliver events with less delay. The 

dark red regions correspond to higher delays which are notably seen to get thinner with increasing 

energy availability. The dark red regions extend from the center towards the right edge of the wing 

in the lower duty cycle scenarios (Figure 5.16 (b), (c)) because at  these harvesting levels the 

distance of the nodes on the right edge of the plate from the sink also plays a role is modulating 

the delivery delay values. Overall, it is noted from the delivery delay characteristics that the 

network performance is a function of the energy availability and the Energy-Aware Pulse Protocol 
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works based on the energy availability to modulate the transmission and lead to this behavior as 

we will further explore in the following sections. The increased delay allows for enough energy 

generation for event propagation instead of event losses and that is the benefit of the energy 

awareness in the Energy-Aware Pulse Protocol. 

 

Figure 5.17. Per hop transmission route diversity distributions for selected source nodes 

E. Route Diversity Distributions 

 

The Energy-aware Pulse Switching protocol helps to modulate the energy usage of 

individual nodes depending on their available energy levels based on energy harvesting. When 

energy is in abundance, the protocol assures that the nodes utilize maximum number of routes to 

ensure higher reliability which is represented by use of a higher Route Diversity. When the energy 

is scarce, nodes conserve their power and stagger the communication by storing generated events 

in the binary buffer until energy becomes available. Even when energy is available, if it is just 

enough for transmission, the nodes select a lower route diversity sacrificing more reliable 

transmissions (with higher route diversity) keeping in mind the energy limitations. This is 
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demonstrated in the graphs of Figure 5.17 where the selected route diversity distributions have 

been shown for various levels of energy harvesting. When the duty cycle is high representing a 

faster rate of energy harvesting, the nodes have a higher percentage of transmissions with greater 

route diversity compared to lower duty cycle cases where the energy availability is limited. 

 

Figure 5.18. Buffer storage time distributions vs harvesting efficiency (Duty Cycle) 

F. Buffer Storage Time Distributions 
 

In Section 4.1.3, we have discussed how a Binary Event Buffer has been incorporated per 

node within the Energy-Aware Pulse Routing scheme in order to reduce event losses due to energy 

scarcity. The latter can effectively translate into reduction in overall event reporting delay because 

the reporting of the event does not need to rely on subsequent repeat transmissions. 

In Figure 5.18, the distributions of the per-hop event buffering delay (averaged over all 

hops on an end-to-end route) have been demonstrated. As is evident from the distribution graphs, 

the peak moves towards the lower end of the storage times when the vibration DC increases. Thus, 

when the energy availability is scarce (lower DC), the percentage of larger buffer storage times is 
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higher than when energy is gratuitous (higher DC). This is effectively a consequence of the energy-

awareness in the pulse protocol coming into play. 

With energy at a premium, the protocol employs longer storage times to accrue enough 

energy for transmission of pulses needed for event forwarding. As energy becomes more abundant, 

the need for buffering is reduced and the per hop storage times gradually approach the lower limit 

of 1 frame delay which in this case corresponds to a time of 1.5 minutes as shown in Figure 5.18. 

Thus, the observations validate the event buffering process and its proposed impacts. 

5.3. Summary 

 

In this chapter, we have developed an energy-aware pulse networking protocol and show 

the advantages of using the energy-aware version over the baseline version of Pulse Networking 

in a vibration energy harvesting setting. We also provide evaluation of the energy-aware pulse 

protocol performance in a variety of harvesting scenarios which consider spatiotemporal variation 

of the energy harvesting availability. We conclude that the energy-aware protocol provides better 

performance over the baseline version as demonstrated in a wide variety of harvesting scenarios. 

In the next chapter, we will develop a Structural Health Monitoring framework utilizing 

Energy-Aware Pulse Networking in a piezo-electric transducer-based through substrate 

communication scenario. We will also evaluate the performance of the developed protocol 

framework using realistic vibration traces from an airplane wing structure. 
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CHAPTER 6: THROUGH-SUBSTRATE ULTRASONIC PULSE NETWORKING  

 

In this chapter, we develop a through-substrate ultrasonic communication framework 

utilizing the energy-efficient discrete-pulse-based networking architecture detailed in the previous 

chapters. We also evaluate the efficacy of this networking architecture in a realistic Structural 

Health Monitoring (SHM) setting, namely event monitoring on an aircraft stabilizer structure. For 

the evaluation process, first, a realistic acceleration profile across an airplane stabilizer is 

developed using dynamic response simulation based on Finite Element Modeling. Thereafter, a 

simulated model of harvested energy is obtained from the spatiotemporal vibration profiles on the 

stabilizer. Finally, Energy-Aware Pulse Networking (as detailed in Chapter 5) simulation is 

performed on an array of nodes distributed over the stabilizer. In this process, we also consider 

pulse networking time frame adaptations relevant for ultrasonic through-substrate operation.  

Using this evaluation framework, we demonstrate the performance advantages of the Energy-

Aware Pulse Protocol in such an SHM scenario. 

6.1. System Architecture 

 

The high-level system architecture envisioned for the representative SHM application of 

airplane stabilizer monitoring is shown in Figure 6.1. The broad idea is to use a through-substrate 

sensor network as shown in the figure, where a collection of Through-Substrate Ultrasonic Pulse 

Networking (TUPN) units are mounted / embedded on the structure being monitored. The example 

in Figure 6.1 (a) and 6.1 (b) demonstrates how an event transportation network can be formed on 

an airplane stabilizer through the stabilizer substrate itself. Each TUPN is comprised of a piezo-

electric transducer and a low-power computing module involved in sensing and networking control 

as shown in Figure 6.1 (e). In Figure 1(e), the computing module is a prototype, while in Figure 
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6.1 (f), we show a more recent work-in-progress integrated circuit (IC) chip with a smaller 

footprint both in size and in energy usage. 

 

Figure 6.1. Event Monitoring using a Through-Substrate Sensor Network 

The advantage of using a piezo-electric transducer in this application is three-fold. First, 

the transducer can be used for sensing purposes because it reacts to vibrations and can be used to 

identify vibration patterns that indicate structural anomalies. Secondly, the piezo transducer can 

be used to harvest energy from the ambient structural vibrations which can be used to power the 

TUPN modules. Finally, the piezoelectric modules can be used for communication through the 

very substrate that they are embedded on, thereby removing the need for any retrofitted 

components for communication such as radio transceivers. As shown in Figure 6.1 (c), neighboring 

TUPNs can form short ultrasonic communication links through the substrate (e.g., aluminum alloy 

or composite). A TUPN detected event (i.e., strain, fatigue etc.) results in an ultrasonic pulse, 

which is transported multi-hop to a data logger or sink node in such a manner that the latter can 
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indicate: 1) the very occurrence of the corresponding event, and 2) its location of origin with a pre-

defined resolution. Resolution is based on a cellular abstraction (Figure 6.1 (b)) in which the 

TUPNs are addressed not individually but based on the IDs of the cells in which they reside. Even 

with such limited information, several application level conclusions can be derived at the sink by 

correlating multiple event pulses [39]. 

6.2. Prototype Ultrasonic Transceiver and Link Characterization 

 

A prototype TUPN, as shown in Figure 6.1 (e), was developed and used for characterizing 

pulse-based ultrasonic data links (Figure 6.1 (d)) through metal substrates. Each TUPN can both 

transmit and receive using an ultrasonic piezoelectric attached. The Pulse Loss Rate (PLR) and 

False Positive Pulse Rate (FPPR) for communication using the above-mentioned transceiver 

through a 2024 Aluminum alloy plate (substrate) is listed in Table 6.1. We consider the ultrasonic 

link performance over a variety of distances and two different source voltages. It is to be noted 

that the choice of substrate material (Al 2024) was motivated by the fact that this is the most 

prevalent material used in aircraft stabilizer construction [90]. The two source voltage levels (i.e. 

3V, 6V) were chosen keeping in mind the different voltage requirements for transmission in two 

network roles – source (forwarding) and sink (synchronization) as will be discussed in Chapter 5 

for the pulse networking protocol. 

As shown in Table 6.1, for the distances and voltage levels considered in the experiments, 

the ultrasonic signal propagation was found to be reliable with PLR/FPPR ranges in the order of 

10-6. It is to be noted that the architecture is specifically designed for short links and an overall 

small network size. Hence, the choice of distance less than 1m for 3V source voltage experiments 

(pulse forwarding links) and up to 4m for 6V source voltage experiments (frame synchronization 
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pulse links). At such distances, the ultrasonic SNR levels and signal shape are good enough for 

efficient and robust signal reconstruction at the receiver. 

Pulse Link Length 

(meters) 

Pulse Voltage (80 μs 

pulses) 

Pulse Loss Rate (PLR) False Positive Pulse 

Rate (FPPR) 

0.5 3 2.16X10-6 4.02X10-6 

0.75 3 2.89X10-6 5.77X10-6 

1.00 3 3.02X10-6 7.21X10-6 

4.00 6 1.62X10-6 3.4X10-6 

 

Table 6.1. PLR/FPPR for ultrasonic communication over Al 2024 alloy plate using prototype TUPN 

module 

6.3. Application and Network Model 

 

6.3.1. Application Model  

 

 TUPN units, as discussed above, are distributed across the structure to be monitored and 

form an event transportation network. We use an airplane horizontal stabilizer as the target 

structure in this work. Each TUPN is equipped with piezoelectric sensors for structural event 

sensing, and piezoelectric transceivers for generating ultrasonic pulses when events are detected 

in the locality. The TUPNs are powered by energy harvested from structural vibrations using a 

piezoelectric transducer. The TUPN network is used for transporting local event information to a 

centralized Access Point / Base Station (Figure 6.1 (b)) where pulses received from multiple such 

units across the structure are collated to make inferences about the overall health of the structure, 

which is the stabilizer in our case. 

 



71 
 

6.3.2. Network Model 
 

 A cellular network abstraction is used for organizing the TUPNs distributed across the 

stabilizer. Localization is accomplished with the resolution of pre-defined regular hexagonal 

sensor-cells as shown in Figure 6.2. Each cell represents an event area with a unique Cell-ID. Since 

spatial localization resolution is at the cell level, shrinking the sensor cell size can increase the 

resolution. Each sensor node (i.e., a TUPN) belongs to one of these event areas (cells) and is pre-

programmed with the Cell-ID of its own cell and those of its geographical neighbors. Although 

the cells in Figure 6.2 are shown to be hexagonal, there are no specific architectural requirements 

in terms of their symmetry, shape, and size. Due to the cellular abstraction, the sensors are not 

individually addressed, and therefore no per-sensor addressing is necessary at the MAC or routing 

layers. 

 

Figure 6.2. Network Model on Airplane Stabilizer Structure 

6.3.3. Performance Needs 
 

 Event reporting delay from sensor to base station is considered the primary performance 

index for this architecture. Delay in this architecture depends on the route lengths and energy 
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availability in different parts of the target structure. As explained later (Section IX), pulse losses 

on the structure also translate into additional delay.  

In traditional networks, the delay typically ranges from few milliseconds to 100s of 

milliseconds. However, in a through-substrate network that runs on vibration-harvested energy, 

the expected delay can be much larger - in the range of few minutes to 100s of minutes. Such large 

delay can be acceptable for niche applications such as aircraft structure monitoring on a per-flight 

basis. For example, non-critical sensed events (e.g., anomalous stress pattern in certain parts of the 

structure such as an aircraft wing or stabilizer) during a flight can be reported to an access point 

while the aircraft is in flight. After landing, the collected data can be downloaded from the access 

point, thus avoiding the need for a ground-based structure inspection after each flight. For such an 

application, the reporting delay needs only to be smaller than typical flight duration, which can be 

up to tens to hundreds of minutes. 

6.4. Structural Vibration Model 

 

This section summarizes dynamic response simulation of an aircraft stabilizer for 

generating spatiotemporal vibration (i.e., acceleration) data. This data is then used for modeling 

energy harvesting for the target sensor network. The simulations were performed using a finite 

element method and the model was based on the geometry of the Boeing 737 horizontal stabilizer. 

Extracted results consisted of acceleration time histories at the TUPN node locations along the 

stabilizer surface.  

Structurally, a typical aircraft stabilizer consists of an internal framework of stringers (for 

bending resistance), and diaphragms (for shear resistance and load distribution) enclosed by a 

continuous surface, or skin (for torsional resistance and aerodynamic lift). The lift pressures 
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generated from the wind flow are primarily controlled by the airfoil shape and the skin; while the 

structural behavior (i.e., dynamic response) is primarily controlled by the internal framework.  

The finite element simulations were conducted with the program Abaqus [91], [92]. The 

geometry for the model was simplified to represent the main structural components for the 

stabilizer element and obtain a realistic dynamic response from the simulation. The airfoil 

geometry of the stabilizer was ignored. 

 

Figure 6.3. (a) 3D model of stabilizer, (b) Accln. of stabilizer based on Finite Element analysis 

A view of the model is shown in Figure 6.3 (a). All parts were modeled with continuum-

type shell elements with uniform thickness. Additional stiffness from the stringers was modeled 

by placing spars (beam elements) on the top edges of the leading and back stiffeners. Thickness of 

the shell elements including the box structure and the stiffeners was 5 mm. This thickness value 

was determined to obtain realistic dynamic properties due to additional mass from non-structural 

components in the stabilizer. The material properties assigned to the model were those of 

Aluminum 2024 [93] with an elastic modulus of 73.1 GPa, a Poisson ratio of 0.33 and density of 
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2780 kg/m3 [93]. Figure 6.3 (b) shows the instantaneous acceleration available at different parts of 

the stabilizer structure at a particular time, in this case the 7600th second after start of simulation.  

 

Figure 6.4. Total pressure profile and simplified triangular pressure profile vs. chord length (aircraft speed 

800 km/h) 

Frequency analyses were conducted to obtain vibration properties and a dynamic analysis 

was performed to determine spatiotemporal acceleration profiles under simulated cruising 

conditions for an aircraft. The aero-dynamic loading pressure on the stabilizer was estimated using 

FoilSim III [94] for a speed of 400 km/s and extrapolated to 800 km/s. The lift pressure distribution 

across the stabilizer chord length is illustrated in Figure 6.4. The loading pressure was then applied 

to the model as an incremental ramp with a noise perturbation of 10% over a time domain of 7600 

seconds. It should be noted that the simulated demand neglected the rigid-body flight dynamics of 

the plane and thus the simulation captures only the relative response of the stabilizer element. A 

surface contour plot of the average acceleration at the bottom surface nodes is shown in Figure 
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6.5. As expected, nodes at the tip experience greater acceleration on average than the nodes at the 

mid span of the stabilizer. 

 

Figure 6.5. Average Acceleration based on node coordinates (at aircraft speed of 800 Km/h) 

6.5. Energy Harvesting Model 

 

An energy harvesting simulation model was developed for translating the above 

spatiotemporal acceleration data into energy generation across the target stabilizer structure. A 

bridge rectifier based piezoelectric energy harvester circuit model as shown in Figure 6.6 is used. 

The piezoelectric module on the harvester is used to transform the ambient vibration in the 

structure to electric power, which is subsequently rectified and stored in an attached super-

capacitor for driving the TUPN module operation.  

In Figure 6.6, the left part represents the mechanical equivalent circuit for a single degree 

of freedom piezoelectric energy generator. The resistor Rm represents the damping constant, Kp 

represents the spring constant, and M represents the equivalent mass – all for the piezoelectric 

device. The transformer with gain ratio θ:1 is used for modeling the transfer of mechanical energy 
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to electrical energy. The parameter θ represents the electromechanical coupling constant, which is 

an inherent physical property of the piezoelectric device material. The parameter x represents the 

displacement of the piezo generator device (i.e., from its mean position) because of the vibration 

applied on the structure to which the device is attached. For a device mass of M, the generated 

force can then be written as Mx’’, where x’’ is the generated acceleration. 

 

Figure 6.6. Piezoelectric Harvester Circuit Model 

The right part of Figure 6.6 represents the equivalent circuit for generated electrical energy 

regulation and storage. A bridge rectifier is used to rectify and store the generated energy in a 

storage super-capacitor with capacitance Cstorage. Another capacitor with capacitance Cpiezo 

represents the internal capacitance of the piezoelectric device itself. The TUPN sensor nodes are 

to be connected across the storage capacitor as the load. 

𝑑𝑣0

𝑑𝑡
=

𝑑𝑥

𝑑𝑡
= 𝑣1          … (6.1) 

𝑑𝑣1

𝑑𝑡
= −

𝐾𝑝

𝑀
∗ 𝑣0 −

𝑅𝑚

𝑀
∗ 𝑣1 −

𝜃

𝑀
∗ 𝑣2 + [𝑎1 +

(𝑎2−𝑎1)∗(𝑡−𝑡1)

(𝑡2−𝑡1)
]                       … (6.2) 

𝑑𝑣2

𝑑𝑡
=

1

𝐶𝑝𝑖𝑒𝑧𝑜
∗  [𝜃 ∗ 𝑣1 + 𝐼𝑆 ∗ [𝑒

(
−𝑣2−𝑣3
2∗𝑛𝑉𝑇

)
− 𝑒

(
𝑣2−𝑣3
2∗𝑛𝑉𝑇

)
]]      … (6.3) 
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𝑑𝑣3

𝑑𝑡
=  

1

𝐶𝑠𝑡𝑜𝑟𝑎𝑔𝑒
∗ 𝐼𝑆 ∗ [𝑒

(
−𝑣2−𝑣3
2∗𝑛𝑉𝑇

)
+ 𝑒

(
𝑣2−𝑣3
2∗𝑛𝑉𝑇

)
− 2]     … (6.4) 

The equations 6.1 – 6.4 as shown above model the circuit in Figure 6.6. The differential 

equations have been formulated in terms of the four variables v0, v1, v2, v3. These variables capture 

the displacement (i.e., x), its first derivative (
𝑑𝑥

𝑑𝑡
), the voltage across the piezo capacitor (i.e. (𝑉𝑝

+ −

 𝑉𝑝
−) ), and the voltage across the storage super-capacitor (i.e. 𝑉𝑠𝑡𝑜𝑟𝑎𝑔𝑒 ) respectively. The 

parameters 𝑎1  and 𝑎2  represent the accelerations on the piezo module at consecutive discrete 

simulation time instants 𝑡1  and 𝑡2  respectively. The quantity(𝑎1 +
(𝑎2−𝑎1)∗( 𝑡−𝑡1)

𝑡2−𝑡1
)expresses the 

interpolated acceleration at any time instant t. The equations have been obtained using the 

equations of motion [43] of the piezoelectric element and the closed loop circuit equations. By 

solving these differential equations simultaneously for a specific input acceleration profile (i.e., 𝑎1 

and 𝑎2), it is possible to generate the corresponding harvested energy profile (
1

2
∗ 𝐶𝑠𝑡𝑜𝑟𝑎𝑔𝑒 ∗ 𝑣3

2). 

The efficiency of harvesting is sensitive to many parameters including the electromechanical 

coupling co-efficient (i.e., θ), which is a function of the piezoelectric material, as well as its 

dimensions. The amount of energy that can be stored in the super capacitor and the rate of energy 

accumulation depend on the capacitance of the storage capacitor. These parameters and their 

effects on the network performance during event reporting across the stabilizer structure will be 

presented in Section 6.7. 

6.6. Integrated Evaluation Architecture 

 

An end-to-end software simulation architecture was developed for evaluating network 

performance in the presence of models for structural vibration and the resulting harvested energy.   

As shown in the right column of Figure 6.7, a set of sensor nodes (i.e., the TUPNs) are distributed 
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over a target structure of airplane stabilizer to form a cellular pulse network. Each node executes 

the energy-aware pulse protocol as outlined in Chapter 5. The left column shows how 

spatiotemporal acceleration profiles (Section 6.4) are used for generating harvested energy using 

the model presented in Section 6.5. Based on the specific placement of a TUPN node, each sensor 

node can make use of a certain time-varying energy profile that is applicable for its specific 

location on the stabilizer structure. Using their specific time-varying energy input, as they execute 

the energy-aware pulse protocol, the reserve energy in the storage capacitor (see circuit in Figure 

6.6) cycles with time. An example of such cycling for a specific TUPN sensor node is shown in 

the bottom middle part of Figure 6.7. 

 

Figure 6.7. Architecture of integrated evaluation software 
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End-to-end event transportation performance is determined by the structure vibration 

profile, event generation profile, and the network performance. The integrated evaluation platform 

integrates all these components within a single software module that was written in C++. 

6.7. Performance Results 

 

6.7.1. Network, Energy and Event Generation Model 

 

The simulated network consists of 1057 TUPN sensor nodes evenly distributed on the 

described airplane stabilizer structure with a sink node placed at the center left corner as shown in 

Figure 6.8. The nodes are grouped into 56 regular hexagonal cells (as in Figure 6.2) with an average 

of 3 nodes per cell. The spacing between individual nodes is around 0.3m and the transmission 

range is kept at 0.75 m. Height of each hexagonal cell is 0.5m with cell side length approximately 

0.288 m. The entire simulated structure is approximately 6m x 3m x 0.005m. 

 

Figure 6.8. Pulse network mapping on a target aircraft stabilizer structure 

Energy needed for transmitting a single pulse is chosen to be 1 mJ. This transmission 

budget has been chosen in line with the estimates for ultrasonic message transmission budgets as 

reported in [8]. The power consumption for reception as well as idling operation is chosen to be 1 
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μW see datasheets for ATTiny25/45/85 at [95]–[97]). Higher values for these budgets (as 

compared to the references) are chosen to demonstrate the worst-case event reporting delays 

delivered by the proposed architecture. 

Event generation locations are uniformly scattered across the stabilizer. Single events are 

generated at different source locations across the stabilizer and their reporting characteristics are 

studied. Spatial and temporal energy generation is controlled using the harvested model described 

in the previous sections. 

6.7.2. Network Node Energy Traces 
 

 

Figure 6.9. Acceleration and harvested energy profile at chosen TUPNs 

Figure 6.9 shows the applied acceleration, generated from structure vibration, at four 

different nodes whose locations on the stabilizer are shown in Figure 6.8. A title {NID i, EA j} 

represents the corresponding node-id and event area (cell ID) that the node belongs to. In addition, 

the figure shows how the harvested energy builds up in each node’s storage capacitor in the 
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absence of any expenditure due to network activities. In particular, for one sample source node 

NID 51, the figure also demonstrates the variation in energy generation rate as a function of the 

harvesting efficiency which is indicated by the parameter Θ (Section 6.5).  

It should be observed the node situated near the outer tip of the stabilizer structure (i.e., 

NID 58 EA 55) experiences the highest level of vibration, and hence the fastest harvesting out of 

all other selected nodes. The node closest to the anchor of the stabilizer (i.e., NID 35 EA 11) 

experiences the least amount of vibration, and hence the lowest rate of energy build-up. The energy 

harvesting rates of the other two selected nodes are somewhere in between. The energy build-up 

for node {NID 51 EA 33} is shown for three different electromechanical coupling constants (i.e., 

θ) to demonstrate its effects on the harvesting efficiency and its resulting storage capacitor 

charging rate. The harvesting rate is important since the performance of the event transportation 

network protocol does depend on such rates across the structure as will be discussed in the 

following subsections.  

6.7.3. Event Reporting Performance 
 

The performance of multi-hop event reporting from a source sensor node (i.e., TUPN) to 

the sink node is characterized in terms of the reporting delay. Such delay is characterized with 

varying: 1) structure vibration intensity, 2) per-node storage capacitor size, and 3) 

electromechanical coupling efficiency of the energy harvesting piezoelectric material.  

Vibration intensity is controlled by a scalar acceleration multiplier, which is used for 

scaling the raw acceleration values generated by the finite element model. The maximum node 

accelerations are varied in the range 10 m/sec2 to 20 m/sec2 (i.e., approximately from g to 2g, 

where g is the acceleration due to gravity). Such a range for the acceleration values has been chosen 
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based on data from prior studies with representative unmanned aerial vehicles [98] which indicate 

that the accelerations range between ±1g and ±1.5g [98]. Three acceleration multiplier values 

have been used to create such variation viz. 10, 15 and 20. These correspond to maximum node 

acceleration values of 10.4652 m/sec2, 15.6978 m/sec2 and 20.9304 m/sec2 respectively. The 

corresponding average node acceleration values across the stabilizer are 1.0124 m/sec2, 1.5186 

m/sec2 and 2.0248 m/sec2 respectively.  

Experiments are conducted with different storage capacitor sizes that range from 1 μF to 

10 μF to characterize the effects of available storage. The electromechanical coupling co-efficient 

(i.e. parameter θ in Eqns. I – IV), a physical property of the piezoelectric generator material and 

its dimensions, is changed in the approximate range of 1.96*10-5 Coulomb/meter to 1.96*10-4 

Coulomb/meter. This is used for varying the available energy-harvesting rate. This maximum 

value for the co-efficient θ (i.e. 1.96 x 10-4) was calculated using Equation 6.5 [99] 

 𝜃 =  
𝑑31

1

𝐸11
+ 

1

𝐸12

∗ 𝑏 ∗ 𝑡 ∗  𝜋 ∗  
1

2∗𝑙
      … (6.5) 

Here we assumed a PZT ceramic type piezo material with the following characteristic 

parameter values [99] 

𝑑31 = 320x10-12 Coulomb/Newton 

𝐸11 = 5.0x1010 Newton/meter2   

𝐸12 = 6.2x1010 Newton/meter2 

It is to be noted that 𝑑31, 𝐸11 and 𝐸12 are inherent properties of the piezo material) [99].  

The dimensions of transducer were chosen as follows – 
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Length (l) - 31.7 mm 

Breadth (b) - 16 mm 

Thickness (t) - 0.0028 mm 

Figure 6.10 shows the delivery delay experienced by events (e.g., stress anomaly in the 

structure) detected at four different event areas of the aircraft stabilizer structure. The exact 

locations of origin of those events and the sink node are shown in Figure 6.8. The four event areas 

are subject to different vibration levels (at the same instant and across time) and correspondingly 

different levels of energy harvesting. Such variations in energy availability in these areas, and 

along the route to the sink, cause different event reporting delay for the pulse protocol. 

 

Figure 6.10. Event reporting delay with different vibration intensities 

Delays for those four areas are evaluated with three different vibration intensities, which 

are indicated by the corresponding average acceleration values in Figure 6.10. As expected with 

higher vibration intensities, the events from all four areas are reported to the sink with lower delays, 

mainly due to higher energy availability and lower event buffering at the intermediate nodes on 
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the route. It should also be observed that the relative patterns for the delay experienced by the 

events from all four areas are similar across all vibration levels.  

Figure 6.10 shows that with intense structure vibration, the reporting delay on the target 

stabilizer structure can be as low as a few minutes. With very low vibration, however, the delay 

can be as large as hundreds of minutes. High event reporting delays (i.e., minutes) can be 

acceptable for non-critical monitoring applications as outlined in the Performance Needs 

subsection in Section 6.3.3. 

 

Figure 6.11. Event reporting delay with different energy storage capacity 

Figure 6.11 depicts the dependence of event delivery delay on the available storage for 

harvested energy at individual nodes. As the super capacitor capacitance (Cstorage) (as shown in 

Figure 6.6) is increased, the net energy availability per node increases in a given time because for 

the same electrical voltage available, the higher capacitance can store a larger amount of electrical 

charge and thus energy. Thus, the event-buffering phenomenon (as introduced in the protocol in 

Chapter 5) occurs less frequently. This helps in reducing the overall end-to-end event reporting 

delay. This effect is evident in the delay for all four sample sensor nodes shown in Figure 6.11. 
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The rate of energy harvesting can be also increased by using a piezoelectric material with 

higher Electromechanical coupling coefficient (i.e., θ in Eqns. 6.1 - 6.4). Figure 6.12 depicts the 

delay improvement as a function of that parameter. As observed in Figs. 6.10 and 6.11, the relative 

delay patterns for the sensor nodes 35, 51, 256, and 58 remains the same across all the θ values.  

In each case, a higher value of Θ ensures faster harvesting and thus lower reporting delays on 

average. 

 

Figure 6.12. Reporting delay for different electromechanical coupling 

It is interesting to note that in all the three Figs. 6.10, 6.11 and 6.12, the nodes situated near 

the tip of the stabilizer and the edge e.g. 58, 55 enjoy less delivery delay compared to nodes situated 

near the heart of the stabilizer farther from the tip e.g. 256, 35. Such spatial variation in 

performance is explored in detail in the following results. 

Spatial distribution of energy availability and event reporting delay are shown in Figs. 6.13 

and 6.14 respectively. The average harvested energy over a 100 second period at different parts of 

the stabilizer structure is shown in Figure 6.13. The energy values are shown for different 

electromechanical coupling coefficient (i.e., θ). It can be observed that for all θ, the available 
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energy is higher at locations farther from the anchor of the stabilizer. As expected, with higher θ, 

more energy is harvested, causing a more visible gradient from the anchor to the tip. 

 

Figure 6.13. Spatial distribution of harvested energy 

 

Figure 6.14. Spatial distribution of event reporting delay 

Figure 6.14 depicts event reporting delay in the presence of the energy profile shown in 

Figure 6.13. The delay value in the temperature map at a given location represents the delay 

experienced by an event that is generated in that specific location on the stabilizer. The dark brown 

color near the anchor represents high delivery delay due to very low energy availability in that 

region. The blue color near the stabilizer tip indicates lower delay, owing to higher energy 
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availability in those regions as shown in Figure 6.13. It can be observed that with higher electro-

mechanical coupling constant θ, the overall delay reduces across the whole structure due to higher 

harvesting efficiency.  

A maximum allowable event reporting delay of 300 minutes was set for all the experiments 

corresponding to the results in Figure 6.14. This maximum allowable delay explains the sharp 

transition in the delay values near the middle part of the structure. Depending on the specific 

coupling constant θ, the delays are higher than this maximum allowable value up to a distance 

from the anchor of the stabilizer. Beyond that distance, the delay starts decreasing, thus causing 

the multicolor bands somewhere in the middle of the structure. Beyond that band area towards the 

tip, where the harvested energy is plentiful, the delay becomes very small as indicated by the blue 

color. It is to be noticed that the band moved towards the anchor with increasing energy availability 

caused by higher θ values. 

 

Figure 6.15. A lateral perspective of the delivery delay temperature map (θ = 1.96*10-4) 

To better understand the delay bands observed in the top view in Figure 6.14, we present a 

lateral view of the spatial delay profile in Figure 6.15, when θ is set to 1.96*10-4. It can be seen in 

Figure 6.15 that the delivery delay falls quickly as the event source is moved toward the tip of the 
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stabilizer. This sudden fall in the delay causes the multi-color delay band to be quite narrow in the 

top-view temperature maps in Figure 6.14. 

6.7.4. Impacts of Adaptive Route Diversity 

 

As an energy-aware routing syntax, adaptive route diversity is explored for delay 

reduction, especially when extra energy is available. Figure 6.16 depicts the effects of available 

energy on the effective route diversity for node (NID 58 EA 55), which is near the tip of the 

stabilizer. The figure shows that for the largest coupling constant (i.e., 1.96*10-4), when the 

harvested energy along the stabilizer is the highest, a large fraction of the transmissions uses a 

route diversity of 2. This is an attempt to reduce the event delivery delay by exploiting alternate 

routes, even though they consume higher energy which is abundant in this scenario. 

 

Figure 6.16. Transmission route diversity with varying coupling constant 

The trend is reversed as smaller coupling constant values are chosen. For example, when θ 

is 1.96*10-5, almost all the transmissions refrain from using multiple diversity (i.e., they use route 
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diversity of one). Note that for all experiments corresponding to Figure 6.16, a maximum allowable 

route diversity of 2 was chosen. 

 

Figure 6.17. Route diversity with varying storage capacitance 

 

Figure 6.18. Route diversity for different average acceleration levels 

The impacts of other energy-availability factors, namely, super capacitor storage 

capacitance and structure vibration intensity (i.e., the maximum acceleration) on route diversity 
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are shown in Figs. 6.17 and 6.18 respectively. The same trends (i.e., as observed in Figure 6.16) 

of high effective route diversities for high-energy situations can be observed in both Figs. 6.17 and 

6.18. High storage capacitance and large acceleration values create such high-energy situations. 

6.7.5. Impacts of Error 

 

In the absence of pulse loss, the energy-aware routing architecture ensures guaranteed 

event reporting even when the delay is increased due to energy unavailability along the route. 

However, when pulses are lost due to noise and detection errors, such guarantees cannot be made. 

To address that, a repetitive pulse generation model is adopted in which upon event detection, the 

source node starts generating pulses with a fixed periodicity (e.g., two frames) for indefinite 

period. This way, even when a pulse is lost, one of the subsequent pulses from the same event 

eventually gets delivered to the sink, causing an effective event delivery. The tradeoff of this pulse 

generation model is that the temporal resolution of event reporting is lost. Event reporting delay 

under this model depends on the pulse generation periodicity and the pulse loss rate (PLR).    

Event reporting delays from two different sensors to the sink on the aircraft stabilizer 

structure is shown in Figure 6.19. In both scenarios, the acceleration multiplier was set to 20 (i.e. 

an average acceleration of 2.0248 m/sec2), and the energy storage capacity at the super-capacitor 

was set to 10 μF. Delay for two different values of the electromechanical coupling co-efficient 

(i.e., θ) are shown in the figure.  

The first observation is that with increasing rates of pulse loss, the delay increases or stays 

constant. This is because after a pulse is lost, the event can only be reported when a later pulse 

corresponding to the same event makes its way to the sink node. In some cases, such as for node 

256 (where vibration intensities are low), even with an increase in PLR, the delivery delay does 
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not increase because the event buffering effect due to energy constraint overshadows the effect of 

delay due to pulse losses. 

 

Figure 6.19. Impacts of pulse loss on event reporting delay 

The second observation is that for a given θ, the delay for events from the sensor NID 58 

i.e., on tip of the stabilizer is lower than that for sensor NID 256, which is near the center of the 

stabilizer. This difference is mainly due to the highest energy availability near the tip, as 

demonstrated in Figure 6.13. Finally, for a given sensor, higher θ caused lower delay due to higher 

available harvested energy. Overall, the simulation results demonstrate that pulse losses affect the 

event reporting delay, which increases with an increase in PLR, but such increase can be minimal 

when there is already a significant amount of buffering delay in the system due to energy 

constraints. 
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6.8. Summary 

 

In this chapter of the thesis, we developed and evaluated a discrete-pulse-communication-

based sensor network architecture that uses through-substrate ultrasonic links and is powered by 

energy harvested from ambient structural vibrations. An airplane stabilizer is used as the target 

structure for both monitoring and harvesting purposes. Using an integrated simulator, it was first 

shown that in the presence of vibration energy harvesting, reliable network performance in terms 

of event reporting delay could be accomplished by employing the proposed energy-aware protocol 

syntaxes. Simulation results are then used for analyzing the network performance sensitivity to 

key system parameters, namely, structural vibration intensity, energy harvesting efficiency of the 

used piezoelectric material, the energy storage capacity at the pulse switching sensor nodes, and 

pulse losses caused by ambient vibration noise present in the structure. 

In the following chapter, we develop a Spiking-Neuron-based learning architecture for 

event sequence pattern detection purposes particularly suited to pulse communication systems. We 

will also demonstrate how this can be combined with the low-power event sensing and networking 

architecture developed in Chapters 4, 5, 6 to create a holistic low-power framework for event 

monitoring and detection for Structural Health Monitoring applications. We will support this 

design using evaluation results showing how the architecture can be effective for low-power 

detection. 
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CHAPTER 7: DISTRIBUTED COGNITION USING NETWORKED PULSES AND 

SPIKING NEURONS 

 

The need for identification of spatiotemporal patterns in distributed event occurrence 

sequences turns out to be a recurring theme in various popular application scenarios such as object 

tracking [14], intruder detection [45], structural health monitoring [39], and environment 

monitoring [46]. Wireless sensor networks are well-suited to such applications for seamlessly 

capturing the event occurrence information and sending to a centralized base station to facilitate 

pattern detection and inference. In-situ detection at local cluster-heads in the network, when 

possible, would be more energy-efficient and facilitate faster response, instead of transporting the 

data all the way to the Base Station. However, sensing nodes are generally energy-constrained and 

thus in-situ detection is less practical. In this chapter, we demonstrate that using a single-layer 

Spiking Neuron architecture, we can efficiently detect the occurrence of such pre-defined event 

occurrence sequence patterns and with much less energy compared to traditional neural network-

based approaches. This opens the possibility of in-place detection of such pattern sequences 

leading to less networking costs and quicker response. The proposed architecture can also easily 

be interfaced with various energy-efficient pulse networking architectures like those described in 

Chapters 4, 5, and 6 of this dissertation. It can thus be part of a complete discrete pulse-based 

sensing, networking and detection architecture aimed at optimal resource utilization. The latter can 

be very useful when employed in applications with small and inexpensive sensing devices or those 

powered by scarce energy harvesting and/or equipped with small batteries. Despite the simplicity 

of the architecture and inherent energy-efficiency, we demonstrate that high detection accuracy 

can be achieved, and the approach is well-generalizable over a reasonable range of event interval 

variation. The detection results are robust enough to handle practical amounts of pulse drift errors, 

and detection performance can be extended to cover pulse loss and false positive error scenarios 
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as well using appropriate modifications to the training process. In the current chapter, we provide 

details of the architecture, implementation and learning parameters as well as training 

methodology and the corresponding rationale for their choice to make the case for use of Spiking 

Neurons in energy-efficient distributed cognition applications. 

7.1. Introduction 

 

Applications in diverse domains such as habitat monitoring [46], target tracking [14], 

industrial process control [15], structural health monitoring [39] etc. are known to require the 

identification / classification of spatiotemporal event occurrence patterns using distributed sensor 

measurements in order to make higher level inferences based on the same. Wireless sensor 

networks (WSNs) [47] often provide a seamless way to implement such solutions by facilitating 

low-cost distributed sensing and communication among sensing nodes. Application instances 

could range from moving object identification [14], intrusion detection [45] to environmental 

change [6, 7], structural anomaly detection [39] etc.  

A key requirement in such applications is that the sensing architecture be flexible enough 

to be able to identify a variety of event occurrence patterns i.e. if new patterns need to be detected, 

the architecture should be able to adapt to the new scenarios. Another aspect is the need for 

generalizability over a range of similar inputs i.e. detection robustness to minor changes in the 

same event pattern. Applications in the field usually also assume some amount of energy-efficient 

/ energy-aware operation because many modern distributed sensing architectures for such, aim to 

create cheap and maintenance-free operation by relying on small sensing devices with limited 

energy storage but theoretically infinite energy generation capacity (harvesting from 

environmental sources) albeit at low / erratic rates (harvesting source unpredictability). 
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Neural network-based learning approaches have been shown to offer a good degree of 

accuracy when identifying / classifying spatiotemporal patterns in general and with a good degree 

of generalization robustness which can guarantee suitable operation in the field where conditions 

are highly dynamic even though underlying patterns might remain the same. However, perceptron-

based neural networks [100] (also referred to as second-generation neural networks) which are the 

workhorse of such applications, generally consume a considerable amount of energy in terms of 

computation because good recognition is associated with the use of extensive number of neurons. 

Learning systems like the actual human brain, however, are known to be much more efficient in 

terms of energy consumption for such computational tasks. This has motivated the development 

of the third generation of neural networks also referred to as Spiking Neural Networks which try 

to recreate the mammalian brain neuron functionality more faithfully than perceptron-based 

approaches. Spiking Neurons have been demonstrated to offer significantly higher computational 

capacity per neuron [80] and can thus, handle larger computational tasks at a lower energy budget 

due to lesser number of neurons being employed. This is mainly because Spiking Neurons can 

recognize inputs in the form of spike trains instead of mere values as in the perceptron-based 

networks. Encoding inputs in spike trains opens a much larger set of possibilities in terms of 

temporal coding, rank coding etc. which the spiking neurons can identify if suitably trained, all of 

which would be much more energy expensive to build / support using a perceptron-based 

architecture. In terms of hardware implementation as well, Spiking Neuron approaches can be 

more energy-optimized because they can be implemented using simple highly energy-optimized 

analog circuitry, eschewing the need for complex digital circuitry and the associated energy 

burdens for perceptron-based approaches. 
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Figure 7.1. Application Overview 

In the current work, we demonstrate the use of a Spiking Neuron based architecture and 

associated learning / training mechanism, based on a learning model called the Tempotron rule 

[80], to design an energy-efficient spatiotemporal pattern classification architecture for distributed 

networked sensing applications. We envision a scenario as demonstrated in Figure 1, where a 

distributed set of event occurrences across a sensor network are available to a central node such as 

a Base station or cluster-head. The latter has a pre-trained Spiking Neuron which can look at the 

sequence of event occurrences and detect a known pattern to indicate cognition of an 

environmental situation that needs to be acted upon or logged for future analysis. As discussed 

already, Spiking Neurons support extreme energy-efficient operation as well as good detection 

robustness. Further, because Spiking neurons accept spike trains as inputs, we can adapt them for 

use with various discrete pulse-based networking approaches as described in [101] and [102], 

which further helps energy-efficient operation. It has been shown in prior work [35] that discrete 

pulse-based communication approaches can be significantly more energy-efficient compared to 

traditional packet-based data communication approaches when the data content is small and 
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delivery delay constraints are relaxed. This is quite the case for the class of applications we 

mentioned earlier and, in particular, structural health monitoring, because the only information to 

be transferred are the time of event occurrence and its location (i.e. data content is small) and the 

event occurrence intervals are in most cases far larger than the data communication delays e.g. a 

person walking between sensors placed about 10 meters from each other can trigger events in 

intervals of about 4 – 8 seconds (assuming normal walking speeds) while communication of such 

event information from source to sink can generally be achieved in much less time than that, often 

in the order of milliseconds, thus allowing event information delivery latencies much larger than 

usual in communication networks. 

The primary objectives of the work presented in the current chapter are as follows - 

1) To develop an ultra-low-energy architectural solution for detection of spatial-temporal 

progression of events in WSNs, 

2) To demonstrate and evaluate the architecture’s ability / constraints in detecting a variety 

of spatiotemporal patterns of event occurrence across a chosen terrain (as in target trajectory 

detection, environmental change detection, structural anomaly detection applications etc.) using 

event occurrence data transmitted from sensing nodes dispersed across the terrain. Such event data 

will be available only as discrete low-energy asynchronous spikes with event source id information 

encoded, 

3) Develop reasonable learning mechanisms and training approaches such that the 

architecture can recognize a large variety of patterns as well as ensure robustness to reasonable 

pattern jitter. 

The key contributions are as follows – 
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a) Mapping spiking neuron-based pattern detection (Tempotron learning rule) to a pulse-

based wireless networking context, 

b) Use of a Spiking Neuron to learn unique temporal characteristics of expected pattern(s) 

c) Use of pulse networking schemes (Pulse Position Coded Pulses / Pulse Time Encoded 

Networking) for low-energy transmission of event occurrence information from source nodes to a 

central sink (single-hop / multi-hop) within constraints necessary for proper spiking neuron-based 

detection. 

In the following section, we first discuss the general application and network models 

considered in this work before going into the details of the learning and networking architecture 

and demonstrating performance / evaluation results. 

7.2. System Architecture 

 

Before we delve into the specifics of the Spiking Neuron Based learning approach and the 

discrete-pulse based coding architecture, it is reasonable to discuss in some detail about the nature 

of applications where this architecture would be best-suited. We envision applications where the 

need is to infer some higher-level conclusions based on a distributed set of sensor measurements 

across a terrain. For example, we can imagine a geographical area of chosen size (referred to as 

Sensing Area) with sensors deployed uniformly throughout at regular intervals as shown in the 

green shaded area to the left of Figure 7.2. Such sensors might be of diverse nature e.g. shadow 

detection [103], sound detection [104], temperature detection [105], structural anomaly detection 

[106] etc. The important notion here is that the nature of sensing is not as important as the fact that 

an event can be detected e.g. threshold crossing of the sensed value. The more important task here 

is to understand the order in which the events were detected at different sensors across the Sensing 
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Area and how far apart. This can give us clues to understanding several higher-level events e.g. if 

a person has been moving along a specific trajectory multiple times, if an intruder has moved into 

a restricted zone within the terrain, if a forest fire is spreading too far, too fast, if a crack is 

developing over a particular area of a structure etc. Other applications can include detection of 

toxic gas diffusion in a controlled environment for appropriate safety measures, trajectory 

detection of a customer in a retail store to understand retail shopping preferences, stealthy motion 

detection across a terrain indicating an intruder etc. 

 

Figure 7.2. Spiking Neuron Learning in Pulse Communication Networks 

In the architecture discussed here, each occurrence of a notable event will trigger 

generation of a spike train at the corresponding time. The spike train can be composed of one or 

multiple spikes depending on the transmission protocol choice and should incorporate the most 

important information about the event occurrence such as event location as well as other 

information such as granularity of detection etc. as relevant. Figure 7.2 shows such spike trains 
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being generated across multiple sensors (see (A) in Figure 7.2 (shaded in blue)) in response to an 

event occurrence trajectory (see (X) in Figure 7.2 shaded in red). Such spike trains from multiple 

sensing devices will travel across the communicating media (see (B) in Figure 7.2 shaded in 

orange) before they are collated at central locations such as Base Stations or cluster-heads (see (E) 

in Figure 7.2 shaded in yellow). Here, an appropriate address decoder is used to extract the event 

source id information and the relevant spike trains are fed to the correct inputs of a prior-trained 

Spiking Neuron based on where they were generated. The Spiking Neuron would be able to 

analyze the input spike trains and indicate detection of one or more event sequence patterns with 

suitable robustness. The neuronal synaptic inputs (see (C) in Figure 7.2) receive spikes from 

different synaptic inputs (shown in different colors) and based on these, the Spiking Neuron either 

generates an output spike or not (see (D) in Figure 7.2) to indicate detection of positive or negative 

patterns respectively. The panel on the lower right of Figure 7.2 shows the neuron’s inputs and 

outputs for different positive and negative patterns. It is to be noted that there is a baseline positive 

pattern and all patterns, which are slightly jittered versions of the baseline, would be regarded by 

the Spiking Neuron as positive patterns. Negative patterns can have totally different sequence of 

synaptic inputs or vastly large jitter levels even if like the baseline pattern in terms of component 

inputs and this is indicated by the lack of an output spike generation by the Spiking Neuron. 

7.2.1. Network Model 

 

It is prudent to discuss some of the assumed characteristics of the network model that would 

be best suited to the event pattern detection architecture that we discuss in this chapter. The sensing 

nodes will be equipped with low energy networking functions which can be used to transmit 

appropriate spike trains when sensing events are detected.  
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Figure 7.3. Network Topology 

In Figure 7.3, we show a representative network of sensors in a square topology as is used 

for our simulation results discussed in Section 7.6. The nodes have Manhattan connectivity i.e. 

each node can transmit only to neighboring nodes located within a grid distance of 10 meters. The 

nodes can encode event location information in spike train form and, at the receiving sink such 

information can be decoded correctly and efficiently to recreate the approximate event occurrence 

pattern. This can then be fed into the Spiking Neuron for detection of known sequences. The need 

for encoding individual node event information in spike trains arises because the nodes need to 

function in various multi-access channel scenarios where simultaneous transmissions (due to 

simultaneous event occurrences) would cause collisions and garbled transmissions. The other 

motivation is to reduce energy cost of transmissions. As will be described in the pulse-based 

communication protocols in Section 7.4, certain time-domain techniques can be used to ensure 

communication with minimal collision while incorporating the essential event information in low-

energy pulse trains.  It is to be noted that such encoding and decoding is not necessarily error-free 

and can introduce drift errors into the recreated event pattern sequence that is input to the Spiking 
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Neuron at the Base station. The choice of Spiking Neuron as the learning architecture is 

particularly in order to protect against such jitter scenarios and still produce robust detection 

results. In the current work, we also consider only one-hop connectivity between source and sink 

as shown in Figure 7.3. However, the detection architecture and associated networking approach 

proposed in this chapter can also be extended to multi-hop networks. 

7.3. Spiking Neuron Based Learning 

 

7.3.1. Key Concepts 

 

The primary motivation for the use of a Spiking Neuron-based learning scheme for the 

kind of applications discussed in Section 7.1 is the architecture’s energy efficiency [80] and easy 

amenability to synchronous / asynchronous spike-based input patterns (which is how the energy-

efficiently transmitted data from sensing nodes looks like using different pulse communication 

protocols as discussed in Section 7.4). Spiking Neuron-based learning schemes also provide 

robustness in terms of reasonable jitter tolerance and the ability to learn a larger diversity of 

patterns (compared to ordinary perceptron-style learning schemes) with similar number of neurons 

[80]. Finally, there is no need for manual coding as the pattern detection requirement changes i.e. 

the spiking neuron just needs to be re-trained with the new expected scenarios instead of requiring 

to be logically programmed for each unique pattern, thus saving on some circuit implementation 

costs as the neuron itself can be designed as a simple analog circuit instead of flexible (less energy-

efficient) digital design. 

7.3.2. Neuron Description and Tempotron Learning Rule 
 

Since the spiking neural architecture is primarily inspired by the human brain, we use the 

characteristics of neurons in the brain in our architectural neurons as well. The Leaky Integrate 
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and Fire (LIF) Model [80] is one of the predominant neuron models in the literature which closely 

maps the operation of neurons in the mammalian brain. The LIF neuron essentially models a 

neuron as driven by exponentially decaying synaptic currents contributed by several input 

synapses. The synaptic currents drive the evolution of the neuronal voltage (integration) and when 

this voltage crosses a threshold, the neuron is said to create an action potential or ‘fire’ i.e. 

essentially a spike will be emitted which can be transmitted to other neurons connected to the 

output. The sub-threshold membrane voltage of an exponentially decaying LIF neuron at any time 

t is given by – 

𝑉(𝑡) =  ∑ 𝑤𝑖 ∑ 𝐾(𝑡 − 𝑡𝑖) + 𝑉𝑟𝑒𝑠𝑡𝑡𝑖𝑖           … (7.1) 

where 𝐾(𝑡 − 𝑡𝑖) = 𝑉0[𝑒
[−

𝑡−𝑡𝑖
𝜏𝑚

]
 − 𝑒

[−
𝑡−𝑡𝑖

𝜏𝑠
]
] and, 

𝑡𝑖 =  spike times for synaptic input 𝑖, 

K is a causal filter vanishing for 𝑡𝑖 > 𝑡 and 

𝜏𝑚 ,  𝜏𝑠 are the decay constants for membrane and synaptic integration respectively. 

The neuron initially starts with a voltage 𝑉𝑟𝑒𝑠𝑡  and is then activated by several of its input 

synapses which try to raise the output voltage based on their relative importance indicated by the 

respective synaptic weights 𝑤𝑖. When the neuron voltage crosses a threshold, say 𝑉𝑡ℎ , the neuron 

emits a spike and the voltage returns to the original state i.e. 𝑉𝑟𝑒𝑠𝑡. The voltage is held at 𝑉𝑟𝑒𝑠𝑡  for 

a short period called the refractory period irrespective of any input contribution during this period. 

After the refractory period, the neuron is ready to again accept synaptic input contributions and 

fire accordingly.  
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Figure 7.4. Synaptic Voltage Evolution across Training Epochs – Effect of Positive and Negative 

Training Patterns 

The interesting fact here is that neuron’s input synaptic weights can modulate the response 

of the neuron to different input patterns. So, the idea is that by properly adjusting (learning) the 

appropriate weights of the synaptic inputs, the neuron can be trained to fire only when certain 

spatiotemporal input spike patterns are detected. Figure 7.4 shows the response of an LIF neuron 

to different input patterns in terms of membrane voltage and output spike creation at different 

stages of training as will be discussed in more detail in Sections 7.5, 7.6. In the figure, the shaded 

portions show the change in voltage as different spikes (part of a pattern – positive or negative) 

are input at the neuron synapses. As can be seen, the voltage pattern corresponding to similar input 

patterns seems to change over time and for the positive patterns, near the end of training, the 

voltage pattern is such that the threshold is crossed right after the last spike in the pattern and this 

results in an output spike. In case of the negative patterns, even at the end of training, the input 

spike patterns should not be able to elicit an output spike i.e. the membrane voltage needs to below 
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threshold as is the case shown in Figure 7.4. Our intention is to come up with a training mechanism 

which can create such outcomes.  

Various methods have been cited in the literature to accomplish this kind of training, out 

of which the Tempotron rule stands out because it was one of the first and robust enough to handle 

most of the application needs as mentioned in Section 7.1. The assumption of the Tempotron rule 

is that the neuron needs to be trained to distinguish between two sets of patterns i.e. a Tempotron 

neuron will be able to accomplish binary classification by firing a spike at the output when 

stimulated by a positive pattern spike train and, remaining quiescent when given a negative pattern 

spike train at the input. In order to achieve this, the Tempotron learning rule is applied over 

multiple epochs of training when a defined error in the output is used to motivate changes in the 

contributing input synaptic weights, thereby reducing the errors over time in a gradient descent-

style training approach.  

The Tempotron error is defined as follows – 

 For positive patterns, error = 𝑉𝑡ℎ −  𝑉𝑚𝑎𝑥  

 For negative patterns, error = 𝑉𝑚𝑎𝑥 −  𝑉𝑡ℎ , 

 where 𝑉𝑚𝑎𝑥  is the maximum voltage achieved during an epoch of training and 𝑉𝑡ℎ is the 

membrane threshold voltage. 

This works because for positive patterns, error is generated when the max voltage in an 

epoch is lower than the threshold i.e. spikes are not fired. On the other hand, for negative patterns, 

the error case occurs when the max voltage is higher than the threshold voltage i.e. a spike is fired, 

though it is not expected. Based on this error function, the Tempotron learning rule is defined as 

follows – 
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For the positive error scenario i.e. if no output spike is elicited in response to a positive 

pattern, weights at synaptic input 𝑖 are increased by – 

Δwi = 𝜆 ∗  ∑ 𝐾(𝑡𝑚𝑎𝑥 − 𝑡𝑖)𝑡𝑖<𝑡𝑚𝑎𝑥
    … (7.2) 

, where 𝑡𝑚𝑎𝑥 = Time at which post-synaptic potential 𝑉(𝑡) reaches its maximal value and, 𝜆 > 0 

specifies the maximum size of the synaptic update per input spike (or can also be looked upon as 

the learning rate for training purposes).  

For the negative error scenario, i.e. if an output spike is elicited in response to a negative 

pattern, weights at synaptic input 𝑖 are decreased by the amount specified in Eq. (7.2).  

Eq. 7.2 shows how the time of occurrence of the maximum output voltage helps to 

determine the amount of training updates and how the kernel function helps to distribute the 

updates across the different synaptic inputs based on their contribution to the error. In particular, 

spikes which are far away from the max voltage time have little bearing on its value and thus 

weights for synaptic inputs corresponding to these are modified to a lesser extent than those which 

have input spikes very close to the max voltage time. The kernel function helps to modulate the 

rate at which the effect of a particular spike impacts voltage increments and then decay. 

7.4. Baseline Pulse-based Networking Approaches 

 

7.4.1. Pulse Position Coding Protocol 
 

The Pulse Position Coding Protocol (PPCP) architecture, first explored in [102] aims to 

produce savings in terms of energy consumption by encoding any information to be conveyed in 

terms of the interval between consecutive spikes (discrete pulses). Depending on the value being 

encoded and the base of representation chosen, such intervals can be quite large. Hence, as shown 
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in [102], based on the energy consumption budget (transmission, reception, idling etc.) and the 

value to be encoded, we can choose an optimal base for representation of the value using multiple 

intervals (for each digit in the corresponding base representation) separated by discrete pulses or 

spikes. The trade-off is mainly in terms of energy vs delivery delay because the PPCP delivery 

latency depends on the interval between spikes and thus the value encoded and base of 

representation. If the number of spikes is increased by encoding the value in multiple small 

component intervals (digits), then delivery latency can be improved but at the cost of transmitting 

more spikes. On the other hand, larger intervals with less spikes can provide better energy 

utilization but at the cost of delay. However, this architecture can be very useful when the range 

of values to be encoded is limited. In either case, this approach has been shown to use significantly 

less energy compared to traditional packet-based networking approaches [102]. 

 

Figure 7.5. PPCP PDU Spike Representation 

Figure 7.5 shows a sample PPCP representation of a value ‘6’ which in our application can 

indicate a node id = 6. The protocol data unit (PDU) consists of a header portion constituted by a 
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pre-selected number of spikes at short intervals (called slots) to indicate start of data, a tail portion 

using one less pulse compared to header to indicate end of data and the actual value encoded within 

with different digits separated by single spikes. The number of spikes needed for the different 

delimiters e.g. header, tail, digit separator etc. depends on the choice of base and the max value to 

be supported. For example, if we need to support only values between 0-9 and the base is chosen 

to be 10, then we will not require multiple digits, thus no digit delimiter spikes. We can choose 

two spikes for the header and 1 spike for the tail. This is the case shown in Figure 7.5. As 

requirements get more involved though, the number of spikes comprising header and tail will need 

to be increased to still distinguish these from each other and the digit delimiter. 

 

Figure 7.6. Event Spikes vs PPCP Spikes 

The main idea here is that PPCP PDUs can be used to encode the essential information e.g. 

origin location of an event indicated by the corresponding sensing node id. This can be done using 

only three spikes (two for header, 1 for tail) if the value is limited in range and depending on the 
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base selection. Figure 7.6 shows how an event pattern in time would be translated into the 

corresponding PPCP spike patterns that will be sent over the channel with good energy utilization. 

The PPCP PDUs can be decoded at the sink to reasonably recover the original events’ sequence 

pattern and the event spikes corresponding to the different nodes can be fed to the proper synaptic 

inputs of the pattern-detecting neuron in order. The Spiking Neuron can then fire on its output if 

the pattern closely matches one of the positive patterns. 

7.4.2. Pulse Time Encoded Networking 

 

The PPCP protocol discussed in the previous section does not require any synchronization 

among the nodes for operation. However, in many applications, such synchronization can be 

achieved with the use of a central Base Station which can periodically broadcast sync messages 

and keep the network in sync. This is especially true for small network scenarios. In [35] as well 

as in Chapters 3, 4, 5, 6 in the current thesis, the authors discuss a pulse networking protocol that 

is well-suited to such scenarios and can use the synchronization to achieve data transmission with 

very small number of pulses per event. For example, in the Pulse Networking protocol mentioned 

in [35], the event information can be encoded using a single pulse’s presence or absence and event 

origin information can be encoded in the timing of the afore-mentioned pulse with respect to a 

synchronized time frame. Thus, using such a protocol, the number of pulses required is one-third 

of those required for PPCP transmissions in the best case. However, the trade-off here is the latency 

of such transmissions, because the synchronized time frame structure that is required here imposes 

inherent latency bounds on transmission. Moreover, synchronization is assumed which might not 

always be a given. However, assuming latency restrictions are relaxed, and synchronization is 

guaranteed, synchronous pulse networking can be a very efficient networking and medium access 

control policy. In the current work, we use a simplified version of the Pulse Networking 
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architecture as shown in Figure 7.7, with specific time slots assigned to every node for its event 

pulse transmission. This is also referred in the literature often as a Time Division Multiple Access 

scheme.  

 

Figure 7.7. Pulse Time Encoding – Frame Structure 

Each node has a specific slot assigned for its transmission and depending on the number of 

nodes which can interfere with each other’s transmissions, we can design a frame structure with 

slots for each node in the local vicinity. For example, Figure 7.7 shows the case for a network with 

M nodes which can interfere with each other’s transmissions, with the latter being mitigated using 

a medium access scheme comprising a frame with M slots. When an event is detected, nodes will 

transmit their information using a pulse only in their respective slot as shown for nodes 4 and 2 in 

Figure 7.7. Only one node can transmit in a specific frame in order to maintain event order 

resolution.  
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Figure 7.8. Event Spikes vs Pulse Time Encoding Spikes 

In Figure 7.8, we show how this translates to our application scenario. Once the events are 

generated, the sensing nodes trigger spikes in their respective time slots and the resultant spike 

train is transmitted through the channel. The latter is like the original event generation spike train 

though slightly delayed because of the need to transport spikes from different nodes in their 

respective slots. This is because, a node’s slot for transmission can be some time after the event is 

generated at the same node. This would make the transmitted pulse sequence somewhat different 

from the original event sequence pattern. However, when the number of nodes is limited and the 

slot size is small, the frame structure can be much shorter than the event intervals involved. Thus, 

small discrepancies in the spike timing due to framing can be smoothed out by the Spiking Neuron 

detection. Essentially, such small changes can be modeled like pulse drift and as we will show in 

Section 7.6, these can be handled very robustly using the Spiking Neuron architecture. 

  



112 
 

7.5. Adaptations of Spiking Neuron Learning for Pulse Networking 

 

7.5.1. Networking Adaptations 
 

As mentioned in Section 7.2, due to the need for a decoder at the receiver to read the event 

source id from the corresponding protocol specific PDU, the number of spikes that will be input 

to the Spiking Neuron at any synaptic input for a particular event will always be 1. What is more 

important is that the event intervals be sufficiently large compared to the protocol spike intervals 

or frame lengths. As mentioned in Section 7.2, we envision applications where the event intervals 

are on the order of seconds e.g. person walking across a network area with sensors spaced at a 

resolution of 10 meters or so. Such event intervals are indeed much larger compared to the actual 

transmission time for individual spikes in a PPCP PDU or the length of a TDMA frame. The latter 

is a function of the slot size used for transmission which is the minimal spacing between spikes 

such that they can be unambiguously resolved at the receiver and is generally on the order of 

milliseconds or less. We define the event intervals as the parameter beta and use values of beta ~ 

(4.5, 7.5) seconds as predicated by our sample application (discussed in Section 7.2), while using 

slot sizes in the order of milliseconds which leaves our event sequences unaltered by the choice of 

networking architecture. 

7.5.2. Membrane Time Constant Selection 

 

The membrane time constant and the synaptic integration time constants are two important 

parameters of the neuron model that decide which time scales the neuron will be working at and 

the temporal resolutions of patterns that the neuron can identify. If we have a general notion of the 

range for the event intervals that we are expecting for an application, then we can adjust the 

membrane and synaptic integration time constants accordingly such that the neuron is well-
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equipped to handle event patterns for that application. Synaptic and membrane time constants 

determine the level of contribution for spikes at different times to the membrane voltage of the 

neuron. Thus, with a larger synaptic integration time constant, spikes would take longer to 

influence the membrane voltage. On the other hand, larger membrane time constants make sure 

that the spike contributions to membrane voltage do not die out fast. The membrane time constant 

selection is important based on the application, because it determines the resolution of the spike 

patterns i.e. if the precise timing of each individual spike will decide the membrane voltage or a 

certain subset of this. In the case of our application, we need the neuron to adapt to the intervals in 

the positive pattern specified but also not be too tied to the precise spike timing because we want 

to ensure sufficient generalization of the detection mechanism to effects like pulse drift. In order 

to achieve this, we chose a membrane time constant which is on the order of the event intervals 

chosen but slightly larger e.g. for event intervals in the range 4.5 – 7.5 seconds, we choose a 

membrane time constant around 16 seconds with a synaptic integration time constant much smaller 

than that (precisely 16 / 64 = 0.25 seconds) such that spikes have nearly immediate effect on the 

membrane voltage but fall off slowly (larger membrane time constant) such that effect of multiple 

consecutive spikes can be accumulated to result in the final voltage and thus output spiking.  

7.5.3. Training Methodology 

 

In our application scenario, event patterns can arise due to two scenarios – the order of the 

nodes triggering events and the timing between such event occurrence. In order to represent the 

first scenario, we define something called a trajectory. A trajectory is a sequence of network nodes 

which comprise an event order. For example, if a man walks around the network and triggers 

events at nodes 1, 2, and 3 in order, then the trajectory he traversed would be 1-2-3. Given the 

network topology and connectivity, we can only have certain number of valid trajectories. In the 
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application scenario, we will be interested in certain fraction of these valid trajectories as positive 

trajectories while all others will be designated as negative trajectories. 

In order to train the neuron to identify the positive and negative patterns, the neuron needs 

to be exposed to representative positive and negative patterns over multiple epochs. In our 

application scenario, we envision having p valid positive trajectories and n valid negative 

trajectories. Each such trajectory can be used to generate a pattern by selecting the event intervals 

in the range corresponding to the application (controlled using the beta parameter). In order to 

keep the training uniform for positive and negative patterns, we expose the neuron to equal number 

of positive and negative pattern instances in every epoch. A collection of such epochs where all 

the positive and negative train patterns have been shown to the neuron is referred to as a batch. 

Every batch training is then repeated until the positive and negative training error values stop 

improving based on a convergence criterion as will be mentioned in more detail in Section 7.6. 

The training and testing processes work as follows – 

1) We design a set of positive patterns, one for each positive trajectory called the baseline 

positive patterns. During creation of the baseline patterns, we use various random event intervals 

in the specified range to provide generality. Similarly, a set of baseline negative patterns are also 

designed. For the negative baseline set, it is important to make an informed choice such that we 

can cover a large variety of negative patterns corresponding to all valid negative trajectories with 

a small number of negative baseline patterns. We have tried various strategies for selection of the 

negative patterns, but it appears that if we choose only patterns corresponding to trajectories which 

are most like the positive trajectory, we can get best results with least number of negative patterns. 

In order to calculate similarity, we use the relative percentage of similar spikes based on the gestalt 

pattern matching metric as available in the Python difflib helper called SequenceMatcher [107]. 
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We modified this slightly to make sure that when the second pattern contains the first pattern, then 

the similarity value is capped at 100%.  

2) Based on the positive and negative baseline patterns, we create some positive train and 

negative train patterns by introducing jitter in a reasonable amount to the baseline patterns as 

expected for the application. The motivation here is to expose the neuron to various generalized 

versions of the positive and negative patterns during training such that it can be robust during 

actual operation. The jitter is mainly used to model the effect of pulse drift errors. The number of 

both positive and negative training patterns is chosen as the maximum of the number of positive 

and negative baseline patterns. For both positive and negative cases, if the number of baseline 

patterns are less than the number of training patterns, some of the baseline patterns are repeated 

during training. 

3) During training, the patterns in the training set are input to the neuron. Every positive 

train pattern is followed by a negative input pattern. For each pattern as input, the neuron integrates 

the input spikes and generates a spike or not based on the membrane voltage evolution. If the 

neuron response is not as expected (i.e. spike for positive pattern or no spike for negative pattern), 

an error is calculated based on the maximum voltage achieved by the neuron as stated in Section 

7.3. Based on the error values, the input synaptic weights are updated to reflect the contribution to 

the error from multiple synaptic inputs. After the weights are updated, the process is repeated for 

the next training pattern and so on, until all training patterns are exhausted. This completes a batch 

of training. Training batches are repeated until the average error values over batch windows stop 

improving. 
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7.5.4. Test Methodology 

 

We generate test positive patterns based on the positive baseline patterns and by 

introducing various amounts of jitter but unrelated to the train patterns’ jitter. Thus, the positive 

test patterns are generalized versions of the baseline patterns, but different from the train patterns. 

For the negative patterns test, we decided to choose patterns based on all valid negative trajectories 

and we choose multiple instances of patterns with each trajectory but with different beta values in 

the range specified. We refer to these as unknown patterns as the Spiking Neuron has not 

necessarily been shown any of these (though some negative trajectories are covered in negative 

training) and we would like to train the neuron such that all or most of these unknown patterns can 

be detected. By varying both the trajectories as well as jitter, we aim to evaluate the generalization 

efficacy of the Spiking Neuron detection architecture. 

7.6. Simulation Process and Performance Results 

 

7.6.1. Simulation Environment and Process 
 

In order to simulate the Spiking Neuron-based learning architecture using a Tempotron-

style rule, we created a network simulation and learning framework in Python. In the framework, 

we can create arbitrary network topologies and simulate spike-based pulse communication using 

PPCP and Pulse Time Encoding-based protocols (as detailed in earlier section 7.4). In order to 

simulate the Linear Integrate and Fire neuron characteristics (as discussed in Section 7.3) and the 

corresponding output behavior in response to input spike patterns, we utilize the python interface 

to the neural simulation tool NEST also known as PyNEST [108]. This program can efficiently 

simulate the behavior of various neuron models, but we chose the LIF neuron because it is simple 

to understand yet sophisticated enough for our learning demonstration. The neuron parameter 
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settings such as membrane time constant, synaptic integration time constant, refractory period, 

threshold voltage etc. have been noted in Table 7.1. Most of these parameters have been chosen to 

use standard values [80], though we have adapted the membrane and synaptic integration time 

constants and spiking threshold voltage based on our application timing requirements as explained 

in the Section 7.5. We have also included various parameters related to the learning process in 

Table 7.1. These include the epoch time which was chosen to incorporate the longest possible 

pattern trajectory (i.e. trajectory of length = no. of nodes) and the largest possible event intervals 

(i.e. 7500 ms between each pair of events). The number of batches that the simulation learning 

process can run for is also kept high (500) and a convergence criterion is defined as follows which 

allows for training termination. We realized that the training should be regarded as converged 

when the training error can no longer be appreciably improved upon over subsequent batches of 

training. Thus, we defined the training as converged when the relative average error change over 

a window of the last 5 batches falls below 1%.  

Table 7.1. Experimental Parameters 

Symbol Parameter Name Parameter Value 

N No. of synaptic inputs 9 

n %. of negative trajectories chosen for 

negative pattern generation 

Variable – 1, 2, 4, 8, 16. 

𝛽 Event Interval Uniform (4.5, 7.5) seconds 

s Slot Size 50 ms 

𝜆 Learning Rate Variable – 0.01 (default) 

𝑉𝑡ℎ𝑟𝑒𝑠 Threshold Voltage -40 mV 

𝑉𝑟𝑒𝑠𝑡  Reset Voltage -70 mV 

E Epoch Length 𝑁 ∗ 𝛽𝑚𝑎𝑥  

W Set of Synaptic Weights All initialized to 0.01 (small, identical, non-

zero value) 
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Table 7.1. (cont’d) 

𝜏𝑚  Membrane Time Constant Variable - 16 secs (default) 
𝜏𝑠 Synaptic Integration Time 

Constant 

𝜏𝑚

64
 

𝑡𝑟𝑒𝑓  Refractory Period 2 ms 

j Jitter (%) - % of beta used as 

jitter 
Variable – 0, 4, 8, 16. 

 

Using the above-mentioned settings, we were able to train the Spiking Neuron with a 

variety of positive and negative patterns as discussed in Section 7.5 and then evaluate the learning 

efficacy using a range of selected test patterns. We finalized on using small, non-zero and identical 

weights for all synaptic inputs to start the training in order to remove any initialization bias. We 

also noticed that this performs better compared to a random initialization of synaptic weights 

because negative patterns have less chance of spiking in the absence of initial bias. For our negative 

training patterns, we chose only the ones which were very similar to the positive pattern trajectory 

as mentioned in Section 7.5. However, we made sure that the negative patterns which have 

trajectories with the positive pattern trajectory as a prefix are not part of the negative training set. 

This makes sense because, for example, if we have a positive trajectory 1->2->5->6, we would not 

expect our neuron to properly classify 1->2->5->6->9 as a negative because the neuron has already 

seen the first part as a positive trajectory. Hence, we do not include such trajectories as part of 

negative training and the failure to identify these is the limit of the Spiking Neuron performance. 

We report various statistics mainly regarding the detection accuracy performance of the neuron in 

a variety of pattern scenarios. We cover some internal probes into the learning architecture as well 

and discuss how these demonstrate the learning mechanism working efficiently. We also aim to 

demonstrate through our findings that the Spiking Neuron architecture discussed here generalizes 

well for a variety of application and error scenarios underscoring the importance of this research 

work. 
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7.6.2. Effect of varying the event interval range (beta) 
 

In order to understand whether the current neuron architecture is robust enough to 

generalize its event sequence detection to a suitably large range of individual event intervals, 

simulations were performed with various event interval ranges, starting from a narrow one (4.5 to 

4.75 seconds) up to a reasonably large one (4.5 to 7.5 seconds). The latter is large enough to mimic 

event intervals in a target application e.g. detection of person walking (speeds ~ [3 – 5 Kmph]) on 

a given trajectory inside the network area. As can be seen in Figs. 7.9 and 7.10 on the next page 

(for PPCP and TDMA cases respectively), the true positive rates and the unknown positives rates 

for all the interval scenarios are very similar when a moderately high value of n is used (e.g. n > 

8% of all valid negative trajectories), which tells us that the platform is suitable for application 

across a wide variety of event interval ranges and should thus be applicable to a number of similar 

application scenarios. We also notice that there is minimal variability as a result of the networking 

protocol used i.e. PPCP or TDMA and thus the architecture should work well for either 

communication protocol scenarios. 

 



120 
 

 

Figure 7.9. Effect of event interval range i.e. β on detection accuracy using PPCP communication 

 

Figure 7.10. Effect of event interval range i.e. β on detection accuracy using TDMA communication 
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7.6.3. Effect of varying positive pattern length 
 

In Figure 7.11, we show the effect of positive pattern choice of different lengths (indicated 

by parameter pl) on the detection accuracy performance. As is evident from the figures, the 

unknown accuracy results are best for the case of the positive patterns of largest length. This is 

intuitively expected of a well-working detection architecture, since the number of negative 

(unknown) patterns which can be similar to the positive patterns decrease as the positive pattern 

length increases. 

 

Figure 7.11. Effect of positive pattern length (pl) on detection accuracy across different negative training 

set sizes when using PPCP communication 
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Figure 7.12. Effect of positive pattern length on detection accuracy when using PPCP communication 

 

Figure 7.13. Effect of positive pattern length on detection accuracy when using TDMA communication 

As seen in Figs. 7.12 and 7.13, the true positive results seem to decrease with increase in 

the trajectory length, but this is a trade-off with the unknown positive (which goes down). We can 

adjust the threshold voltage of the output neuron to ameliorate this situation as our application 

prioritizes true positives vs unknown positives. The unknown positives rate is exactly the result 

we expected from our close negatives training process because the training should be able to adjust 

the weights to distinguish the positive pattern from all but the ones very similar to it i.e. ones which 
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have the positive pattern as some subset. In particular, as evidenced by the data logs collected, in 

the case for highest n (% of negative trajectories used for training) for each positive trajectory 

length, the Spiking Neuron failed to identify only unknown patterns which were based on 

trajectories that had the positive pattern trajectory as a prefix. All other patterns were correctly 

flagged as negative. This is also evidenced from the pattern similarity vs unknown positives rate 

performance as shown in Figure 7.14.  

 

Figure 7.14. Similarity of unknown pattern to positive pattern trajectory and its effect on detection 

accuracy for different positive pattern trajectory lengths - PPCP 

At low n values, some unknown patterns which have less similarity to the positive patterns 

are also mis-identified. However, with higher n, the percentage of such detections goes down and 

only a small percentage of unknown positives which are very similar (100%) to positive pattern 

are identified wrongly. Another observation is that the performance trajectories are similar for both 

PPCP and TDMA networking paradigms. 
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7.6.4. Effect of Pattern Type 
 

 

Figure 7.15. Detection Accuracy for Different Positive Pattern Types - PPCP 

 

Figure 7.16. Detection Accuracy for Different Positive Pattern Types – TDMA 

In order to understand whether our detection accuracy results are generalizable over a large 

variety of patterns, we decided to investigate the accuracy results for different positive patterns of 
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the same length. The results shown in Figure 7.15 and 7.16 are for different pattern types indicated 

by the value of pt = 1, 2, 3, 4, 5, corresponding to the positive pattern trajectories {1->2->5}, {6-

>9->8}, {7,->4->5}, {3,->6->9} and {2->5->8} respectively, each of length 3. As can be seen, the 

performance is largely similar across the pattern types in terms of both true positives and unknown 

positives and so is the case irrespective of the protocol used (PPCP / TDMA). 

7.6.5. Effect of Spike Jitter 

 

In Figs. 7.17 and 7.18 (see the next page), we show the effect of varying amounts of spike 

jitter on the detection performance of the Spiking Neuron. Spike Jitter as defined before is an 

amount of drift introduced in the train as well as test patterns in order to incorporate the practical 

implications of real-life pulse drift errors. Such pulse drifts can occur due to transmitter, receiver 

issues as well as energy constraints in the system which delay transmission / reception to conserve 

energy. Spike Jitter is incorporated as a relative proportion of the beta intervals used i.e. the event 

interval range. As can be seen in the results graphs, spike jitter up to a range of 16% seems to have 

little if any effect on the true positives as well as unknown positives rates for the Spiking Neuron. 

Only at the highest jitter in this range is the True Positives Rate slightly affected while the 

Unknown Positives Rate remains largely unchanged. This indicates that the Spiking Neuron 

architecture described here should work well for varying amounts of realistic spike jitter ensuring 

that the neuron’s detection is suitably general for the purposes of the applications proposed earlier. 
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Figure 7.17. Detection Accuracy for Different Pattern Jitter Levels - PPCP 

 

Figure 7.18. Detection Accuracy for Different Pattern Jitter Levels – TDMA 
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7.6.6. Effects of Learning Rate Selection for Training 
 

In order to understand the effect of learning rate on the event detection performance, we 

consider the Spiking Neuron learning performance at three different learning rates from 0.01 to 

1.0 as shown in Figure 7.19.  

As is evident from the performance plots, a lower learning rate seems to provide better 

performance, though we see that below 0.05, the performance improvement is not appreciable, so 

using 0.05 can be good enough especially because convergence would faster in this case. In our 

current application domain, convergence time is not of prime importance, so we can afford to use 

an arbitrarily low learning rate. This is turn ensures that the training process is smooth and can go 

down the error gradient without much unnecessary oscillation and thus reach the proper optima 

(and not get stuck at locally optimal solutions). 

 

Figure 7.19. Detection Accuracy for Different Learning Rates 
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7.6.7. Effects of Membrane Time Constant Selection for Training 
 

As shown in Figure 7.20, we have also investigated the effect of the neuron membrane 

constant choice on the detection performance. As can be seen, the performance is best when the 

membrane time constant is chosen at 16 seconds and falls off on either side for membrane time 

constants an order of magnitude higher and lower, especially for the lower scenario. It is to be 

noted here that the membrane time constant in our experiments is tied to the synaptic integration 

time constant as well (which is a fraction of the membrane time constant) and thus this parameter 

changes in sync as well. We can justify the membrane time constant = 16 seconds’ superior 

performance by noting that this membrane time constant is of the order of the event intervals 

chosen which are in the range 4.5 – 7.5 seconds. 

 

Figure 7.20. Detection Accuracy for Different Membrane Time Constants 
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7.6.8. Training Error Analysis 
 

If we analyze the error plots, shown in Figure 7.21, we can see that the error values initially 

fall sharply due to positive pattern training until positive error falls to a very low value. This is 

when close negative patterns start contributing to the negative error until some of the extraneous 

synaptic weights are reduced with the final positive and error values settling. Convergence criteria 

based on relative change of windowed error seems to identify convergence well. Absolute 

threshold-based convergence criteria might miss the negative pattern training completely giving 

sub-par results, while our final convergence criteria based on relative change of the windowed 

average error stops the training much more gracefully and at a point where we would intuitively 

like to stop the training process. The appropriateness is also indicated by the superior detection 

accuracy results mainly in terms of unknown positives. 

 

Figure 7.21. Positive and Negative Pattern Training Error Evolution across Training Mini-Batches 
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7.6.9. Synaptic Weights Evolution Analysis 
 

In Figure 7.22, we show the synaptic weights evolution for different synaptic inputs as the 

training proceeds from start to convergence. In the case illustrated in Figure 7.22, the pattern 

trajectory is 1->2->5 and we would expect that the weights for these synaptic inputs should go up 

while others should go down. This is exactly the case as we go toward convergence. Moreover, 

we see that as n is increased i.e. more negative patterns are used during training, the weights of 

synaptic inputs which are not part of the positive pattern are also changed, in this case on the 

negative side such that the patterns which are close to the positive pattern but not the same cannot 

trigger unwanted spikes. 

 

Figure 7.22. Synaptic Weights Evolution across Training Epochs for different sizes of negative train set 

7.6.10. Effects of Pulse Loss and False Positive Errors 
 

In order to demonstrate good adaptability of the current learning approach to practical 

application scenarios, we also evaluated the performance of the network in various spike insertion 

and deletion error scenarios. The former scenario is often referred to as a Pulse Loss scenario 
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which can result due to certain communicated pulses of the event pattern not reaching the final 

sink / destination due to channel collisions, reception problems etc. The latter scenario i.e. spike 

insertion in the original pattern can occur due to channel noise, receiver abnormality etc. and is 

generally referred to as a False Positive Error scenario. These two kinds of errors are important to 

consider in the context of the Spiking Neuron performance because abrupt deletion or insertion of 

spikes has the possibility to create valid patterns which might be mis-identified by the Spiking 

Neuron. It is to be noted here that, errors in the system will not all necessarily reach all the way up 

to the Spiking Neuron and affect performance. Since there is a decoder at the sink module (see 

Section 7.2) right before the Spiking Neuron, certain more obvious abnormalities in the pulse data 

can be recognized and removed / remedied even before reaching the Spiking Neuron and thus the 

neuron performance would not be affected. However, in certain cases as allowed by the network 

topology, communication protocol semantics etc., pulse loss or false positive errors might not 

create invalid patterns that can be detected at the decoder and thus creep into the Spiking Neuron 

input. We want to demonstrate here that in such situations, we can adapt the Spiking Neuron to 

the error scenarios by appropriately anticipating such errors and training the neuron to properly 

identify and classify these. This would be achieved with the trade-off of losing some granularity 

in negative pattern detection. 

It is to be noted here that the Pulse Loss Error as well as False Positive Pulse Error 

probabilities are generally very low, on the order of 10-5 [8] for the network architectures we are 

considering. Hence, we consider only single pulse insertion or deletion errors, assuming that two 

or more such errors within a single pattern would be much less probable (because the error rates 

get multiplied as the number of errors go up, each error being independent of others) and can be 

neglected for all practical purposes. For example, in the case of the positive pattern trajectory 1-2-
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5-6, we can assume pulse loss errors to create patterns such as 1-2-5, 2-5-6 (one pulse loss) etc. 

and not 1-2, 2-5 (two pulse losses) etc. False positive errors, on a similar token, would create 

patterns such as 4-1-2-5-6, 1-2-5-6-3 etc. In order to not mis-classify such error patterns as 

negative, we train with pattern instances of these trajectories as positive patterns while pattern 

instances of these trajectories are removed from the negative training scope. For each positive and 

negative trajectory chosen, we use multiple instances as before during training, such that the 

Spiking Neuron can generalize well for both event intervals and event occurrence sequence 

trajectories. 

 

Figure 7.23. Performance in the presence of Single Pulse Loss Errors - Positive and Unknown Pattern 

Detection Accuracy across different number of negative trajectories used for training 

As shown in Figs. 7.23 and 7.24, the true positive pattern detection (output spike) as well 

as unknown negative pattern detection (no output spike) accuracy approaches close to ideal value 

(100%) for high n i.e. negative training with a reasonably large percentage (12%-16%) of the total 

number of valid negative trajectories. The True Positives detection accuracy is particularly 
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consistent for Pulse Loss errors across all n (see Figure 7.23), while in the False Positives case, 

there is more variability (see Figure 7.24), albeit in a small range (90 – 100%), but the highest n 

performance is ideal i.e. 100%. Unknown Positives Detection Accuracy gets progressively lower 

with increasing n for both Pulse Loss and False Positive Error scenarios with the final values at n 

= 16% close to the ideal scenario for the positive trajectory used. Thus, we can reasonably conclude 

that with proper adjustments to the training procedure, we can adapt the Spiking Neuron 

architecture discussed here to effectively handle Pulse Loss and False Positive Error scenarios. 

 

Figure 7.24. Performance in the presence of False Positive Pulse Errors - Positive and Unknown Pattern 

Detection Accuracy across different number of negative trajectories used for training 

7.7. Summary 

In this chapter, we demonstrate that using a single-layer Spiking Neuron architecture, we 

can efficiently and effectively detect the occurrence of pre-defined event occurrence sequence 

patterns which can be valuable in applications like Structural Health Monitoring. The proposed 



134 
 

architecture can easily be interfaced with various pulse networking architectures (for energy-

efficient transport) and operate with high detection accuracy generalized over a reasonable range 

of event interval variation. The detection results are robust to decent amount of pulse drift errors 

and detection performance can be extended to cover pulse loss and false positive error scenarios 

using modified training pattern sets. We lay down details of the architecture implementation and 

learning parameters, training methodology and the corresponding rationale. Because of the simple 

architectural design but robust performance, this approach can be a good choice for resource-

constrained applications. In the next chapter which will conclude this thesis, we will talk about 

future research work in this direction. Especially, we will discuss how we can intend to extend the 

application and network size and scope to demonstrate that the Spiking Neuron detection 

performance scales well irrespective of the size of the network. We will also outline plans to use 

layering of the spiking neurons to achieve even better performance when the problem complexity 

is increased. 
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CHAPTER 8: SUMMARY AND FUTURE WORK 

 

8.1. Summary 

 

In this thesis, we have laid the foundations for the development of a holistic framework for 

applications like Structural Health Monitoring using maintenance-free wireless sensor networks. 

The proposed solution would be powered by ambient vibration energy harvesting to provide 

maintenance-free operation. Communication across the network will be based on energy-efficient 

through-substrate ultrasonic pulse-based communication. This would enable reliable networking 

performance and consistent network uptime despite the unpredictability of harvesting-powered 

operation. Through-substrate links based on piezo-electric transducers would enable wire-free 

communication without the need for retro-fitted wireless radio infrastructure deployment. We also 

outlined a Spiking Neuron based low-complexity event pattern detection architecture. The latter 

would enable easy identification of structural anomaly patterns based on the spatiotemporal binary 

event information available from across the structure. The low-energy Spiking Neuron architecture 

can also enable some amount of in-network processing, even on intermediate energy-constrained 

network sensing modules, instead of delegating all processing to the Central Base Station. This 

can provide savings in terms of networking cost and faster detection and response.  

In the various chapters of this thesis, we have developed the different components of the 

final envisioned architecture. This includes scalable and energy-aware pulse-based networking, 

through-substrate pulse networking in energy-harvesting-powered systems as well as design and 

evaluation of a single-layer Spiking Neuron based spatiotemporal event pattern detection 

architecture.  



136 
 

Future work on this broad topic can go along various routes. To start with, further research 

will need be carried out on the Spiking Neuron based detection architecture including an extensive 

evaluation of the same when used in more complicated (non-binary) pattern detection scenarios. 

Specifically, the weaknesses of the single-layer spiking neuron architecture will be scrutinized in 

such scenarios and improvements such as multi-layer designs will be considered and evaluated. 

The Spiking Neuron detection architecture can also be incorporated into a realistic Structural 

Health Monitoring application based on pulse networking, for instance, on an airplane wing and 

performance of the complete system can be evaluated in terms of detection accuracy to establish 

the advantages of this architecture. Beyond this, further research can also look into developing 

energy-harvesting-awareness mechanisms within the pulse networking framework (in addition to 

the energy-awareness syntaxes as discussed in prior chapters of this thesis) to make it even better 

suited to ambient harvesting-powered operation. 

In the following sections, we first discuss the application architecture envisioned in this 

thesis and then consider the future work proposals in some more detail. 

8.2. Application Architecture 

 

In Figure 8.1, we depict a high-level vision of the application architecture being proposed. 

As an outcome of this thesis, we envision a Structural Health Monitoring application based on 

through-substrate pulse communication and spiking neuron based low-power detection of 

anomalous spatiotemporal event sequence patterns. In an example application scenario of an 

airplane wing structure monitoring, the network of sensors would be deployed over the wing 

substrate as shown in Figure 8.1 (a). The distributed sensors will be grouped into a cellular 

abstraction (hexagonal cells shown here) with multiple sensors per cell for redundancy. All event 

addressing will be on a cellular resolution.  
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Figure 8.1. Structural Health Monitoring Platform based on Pulse Communication and Spiking Neuron 

Based Detection 

It is to be noted that all the sensors will be equipped with ultrasonic through-substrate 

communication-enabled pulse communication transceivers and such modules would be referred to 

as Through-Substrate Ultrasonic Pulse Networking (TUPN) units. When an event is detected based 

on local sensing, the corresponding TUPN unit would transmit a pulse to indicate occurrence of 

the event. This pulse would then be routed multi-hop along the network toward the Base Station 

over ultrasonic links based on the pulse networking semantics. The pulse networking protocol 

enables preservation of the source id information as well as next-hop routing information which 

enables the event information to reach from source to sink, that is the Base Station for further 

processing.   

As shown in the shaded red area on the bottom of the wing network, four cells (shown by 

the colored sensors) have event occurrences in a specific order as indicated by the arrows. This is 
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a sequence of events laterally across the wing and in a sequence from left to right, which might be 

indicative of a stress pattern of note. In order to detect such an event sequence pattern at the Base 

Station, the sequence of event pulses will be fed into a Spiking Neuron after appropriate address 

decoding to differentiate the pulse sources. The Spiking Neuron will look at the event sequence 

pattern and based on its pre-trained synaptic input weights, process the input pattern and create an 

output spike when an event pattern of note is detected. We have already evaluated various 

components on this architecture in Chapters 4 – 7. In future work, we intend to incorporate all 

these elements into a real application such as airplane wing monitoring and evaluate the 

performance in various ambient energy availability and network architecture scenarios. Using the 

performance analysis of such a study, we aim to establish the proposed architecture as a prime 

candidate for use in SHM applications. 

8.3. Extending Single-Layer Spiking Neuron-based Event Pattern Detection 

 

In Chapter 7, we have shown preliminary results on the detection performance of a single-

layer Spiking Neuron based detection architecture for a simple application scenario and a limited 

network topology. Notably, we have considered detection of a single positive pattern vs multiple 

negative patterns. We have done quite some analysis on the effect of spike jitter to ensure 

robustness of the detection mechanism as well as how to adapt the learning when channel errors 

are appreciable. We have also shown that the detection architecture is well adapted to work in 

consort with various energy-efficient discrete pulse-based networking mechanisms. In a more 

typical application though, we might have many such positive patterns which need to be detected 

by the same application. We have also noticed in some preliminary experiments that when the 

number of positive patterns increases, a single-layer Spiking Neuron architecture might be limited 

in terms of detection performance. Hence, future work can involve exploring multi-neuron and 
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multi-layer Spiking Neuron approaches and when they would be better suited compared to a 

single-layer single neuron architecture to ensure detection performance. The premise is that 

multiple neurons can share the detection load by handling different parts (sub-patterns) of the 

chosen pattern. A progression of layers can be trained to look at higher level features with low 

granularity in the starting layers, requiring individual neurons in the starting layers to be less 

accurate and less computationally powerful. In such scenarios, important considerations would be 

how to design the multi-layer neuronal connectivity to achieve best detection performance with 

the least number of additional neurons. Work can also be done in applying other Spiking Neuron 

learning rules apart from the Tempotron learning mechanism as used here. Use of more 

sophisticated learning mechanisms might enable better performance with minimal number of 

neurons added (and thus energy expended). 

8.4. Development of Energy-Harvesting Awareness in Pulse Networking 

 

In Chapter 5 - 6, we have developed energy-aware syntaxes within the discrete pulse-based 

networking framework. These enable the protocols to operate well in slow harvesting scenarios 

such as ambient energy harvesting. It is to be noted that such performance does not assume any 

knowledge of the energy harvesting availability. It only considers the energy availability in each 

network node’s energy storage. If some information or prediction of the energy harvesting 

availability is available, theoretically an improved utilization of the energy input can be achieved. 

Upcoming work can be aimed at tackling this aspect. Specifically, research attempts can be made 

to predict energy harvesting profiles based on machine learning approaches to enable a true energy-

harvesting-aware pulse networking platform for optimal network energy utilization. If historical 

data on the harvesting availability profiles are available, various time series prediction mechanisms 

can be utilized for forward prediction and planning including traditional mechanisms like 
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exponential moving averages and Auto Regressive Integrated Moving Averages (ARIMA) as well 

more sophisticated mechanisms such as the one mentioned in [109] as well as Deep Neural 

Network-based mechanisms that utilize recurrent layers such as Long Short Term (LSTM) 

memory networks [110]. The idea is that being able to predict the harvesting availability will 

enable better planning of system resources and enable more efficient utilization with less wastage. 
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