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ABSTRACT

MULTIVARIATE GENERALIZED FUNCTIONAL LINEAR MODELS WITH
APPLICATIONS TO GENOMICS

By

Sneha Jadhav

This thesis is focused on developing functional data methodology with the aim of address-

ing problems that arise in genetic sequencing data. While significant progress has been made in

identifying common genetic variants associated with diseases, these variants only explain a small

proportion of heritability. Recent studies suggest that rare variants could account for this variabil-

ity. With advancements in sequencing technology, large-scale sequencing studies are now being

conducted to comprehensively investigate the contribution of rare variants to the genetic etiology of

various diseases. Although these studies hold great potential for uncovering new disease-associated

variants, the massive amount of data and complex structure of sequencing data poses great analyt-

ical challenges on association analysis. Advanced methods are needed to address these challenges

and to facilitate the discovery process of new variants predisposing to various diseases. We use

functional data analysis methods to capture the complexities of sequencing data.

In the first chapter we investigate the importance of considering the genetic structure of se-

quencing data. In association studies the effect of appropriately modeling genetic structure of

sequencing data on association analysis have not been well studied. We compare three statistical

approaches which use different strategies to model the genetic structure. They are a burden test,

a burden test that considers pairwise correlation, and a functional analysis of variance (FANOVA)

test that models the gene through fitting continuous curves on an individuals genotype profile. We

find some evidence in favor of treating sequencing data as a function.

In the second chapter we present the definitions of some fundamental concepts in Functional



Data Analysis like the mean element, covariance operator and its eigen decomposition, and Karhunen-

Loève expansion. Basis expansion and in particular Karhunen-Loève expansion play an important

role in this thesis. We briefly discuss the estimators for the mean function, the covariance opera-

tor and their consistency. Results on the consistency of the eigenvalues and eigenfunctions of the

sample covariance operator are also stated.

Several times genetic data is collected on families, where the response variable or the trait of

the family members can be dependent on each other. Additionally, this trait of interest can be

discrete or continuous. Thus there is a need for a functional model that can handle dependent data

that may be continuous or discrete. The model proposed by Müller and Stadtmüller (2005) uses

the generalized estimating equations approach that can handle both continuous and discrete data.

However, they assume the response variable to be univariate and the sample to be independent.

There are no existing functional methods that we know of that can be directly applied to the family

data. In the third chapter we develop a framework for dependent generalized functional linear

models where the response is multivariate, that can be used to test for a certain type of association

between the genetic data and the trait of interest for family data.

In the fourth chapter we develop regression framework where the response variable has a nor-

mal distribution and there is measurement error in the regressor function. In this set-up, the true

regressor function is not observable. Instead, we observe a surrogate variable and its replicates.

The relation between the true function and the surrogate one is assumed to follow the additive clas-

sical measurement error model. We use the approach developed by Stefanski and Carroll (1987) to

propose an estimating equation for the parameters and show asymptotic existence and consistency

of the estimate obtained from this equation.
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Chapter 1

Modeling Sequencing Data

Genome-wide association studies have made substantial progress in identifying common variants

associated with human diseases. Despite this, a large portion of heritability remains unexplained.

Evolution theory and empirical human genetic studies suggest that rare mutations could play an

important role in human diseases, which motivates comprehensive investigation of rare variants

in sequencing studies. Advances in sequencing technology have enabled researchers to sequence

exome regions or even the whole genome at affordable costs (Cirulli and Goldstein, 2010). The

emerging sequencing data facilitates the study of massive amounts of single nucleotide variants,

including both rare and commons variants for their potential role in complex human diseases. Al-

though these studies hold great promise for identification of new disease-susceptibility variants,

the extremely large number of single nucleotide variants (SNVs) brings significant challenge for

association analysis. Each of these variants have a certain position on the chromosome that is also

available to us. Given the linkage disequilibrium (Laird and Lange (2010a)) and that the genes that

are closer together are more likely to be inherited together during meiosis, we should consider the

positions of the variants in our analysis. This suggests that we can consider the genetic data as a

function of the positions of the variants. Moreover, the sequencing data is usually high dimensional

and we shall see in subsequent chapters that treating it as a function will help address the problems

posed by its high dimensional nature. Treating this data a function does not require the data to be

independent or assume a certain correlation structure. The functional approach can accommodate
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rare variants. To explore the association of rare variants with human diseases, many statistical

approaches have been developed with different ways of modelling the genome so as to capture its

properties to the fullest. Conventional single-locus analysis suffers from low power because of low

frequency of SNVs and multiple testing issues. Grouping SNVs in a genetic region (e.g., gene)

could aggregate the association signal and alleviate the multiple testing issues, and therefore has

been widely used in statistical analysis of sequencing data (Lee et al. (2014)). Various statistical

methods have been proposed to group SNVs with or without considering the underlying genetic

structure. However, the impact of different strategies of modelling sequencing structure on the

association results has rarely been investigated. If empirical evidence suggests no use of consid-

ering the sequencing structure in the association analysis, it gives us a basis for excluding this

factor from statistical modelling. On the other hand, if it is important to consider the relationship

among SNVs, then we need to investigate appropriate strategies for characterizing the underlying

sequencing structure. As an initial step to investigate this issue, we choose three tests with different

ways of modelling the correlation between SNVs: 1) A weighted burden test (BT) (Madsen and

Browning, 2009); 2) A weighted burden test considering pairwise correlation (BTCOV) (Schaid

et al., 2013); and 3) A functional analysis of variance test (FANOVA) (Vsevolozhskaya et al., 2014)

that considers the relation among nearby loci and models the genotype profile of an individual as

a continuous function.

We briefly present the three methods below.

1.1 Burden Test

We consider a burden test developed by Madsen and Browning (2009). The test summarizes the

genetic score of multiple SNVs as γj =
L∑
i=1

gij
wi

, where gij is the number of low frequency allele
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of the SNV, i, for individual j. The weight is defined to emphasize the effect of rare variants i.e.

wi =
√
niqi(1− qi), where qi is the minor allele frequency (MAF) of the SNV, calculated from

controls. Because the test simply adds the genotype of each SNV weighted by its MAF, it does not

consider Linkage Disequilibrium (LD) or the correlation between SNVs.

1.2 Burden test that considers the pairwise Correlation

In addition to the above burden test, we also consider another type of burden test suggested by

Schaid et.al Schaid et al. (2013), which considers pairwise covariance. We consider the fol-

lowing summary of genetic scores, Sj =
L∑
i=1

gij
wi

, wl and gij are defined in the same manner

in BT. However, unlike the conventional burden test, the test statistic of BTCOV is given by

T =
((Y − Ȳ )′S)2

(Y − Ȳ )′Vs(Y − Ȳ )
, where Vs =

L∑
k=1

L∑
l=1

wkwlRkl
√
pk(1− pk)pl(1− pl) and Rkl is the

correlation between the SNPs.

1.3 Functional Analysis of Variance test

FANOVA fits a continuous function (curve) on the genotype data of an individual. ANOVA can

then be used to test the curve difference in cases and controls. While various smoothing methods

can be used to fit smooth functions on genotype data, we use the cubic B-splines to fit the smooth

functions. After continuous functions g(t), are obtained, the functional analysis of variance can be

used for association testing. FANOVA model is written as:

gij(t) = µi(t) + εij(t) εij(t)→ G.P (0, γ) i = 1, 2, ..., nj j = 1, 2,
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where, t denotes the genomic position of the genetic variant, k denotes the case or control group

and j denotes the individual,G.P (0, γ) denotes Gaussian process with γ as the covariance function,

εkj is the error term and µk is the mean function of group k.

To evaluate the association, we test the hypotheses: H0 : µ1(t) = µ2(t) ∀t vs. H1 : µ1(t) 6=

µ2(t) for some t. Similar to ANOVA, the test statistic for the hypothesis is,

F =

∫ 2∑
k=1

nk(µ̂k(t)− µ̂(t))2dt/(2− 1)

∫ 2∑
k=1

nk∑
j=1

(gkj(t)− µ̂k(t))2dt/(n− 2)

,

where µ̂k(t) = n−1
k

nk∑
j=1

gkj(t) and µ̂(t) = n−1
2∑

k=1
nkµ̂k(t). The numerator and the denomina-

tor in the F follow a mixture of chi-squared distributions. Satterwaite approximation is used to

approximate the distribution of F as F-distribution. The details can be found in Vsevolozhskaya

et al. (2014).

1.4 Simulation

We now report the finding of the simulation study that compares the performance of the three

methods. We selected a one mb region from chromosome three of the unrelated real sequencing

data provided by GAW19, which comprises of 8575 SNVs. For each replicate, we randomly

selected a 30 kb segment from the one mb region. From this segment, we randomly selected a

specified proportion of SNVs for generating phenotype. We used the logistic model to generate

phenotype from these selected SNVs. The two types of effects were considered in the simulation.

These effects refer to the coefficients of the SNVs in the logistic set up. We randomly generated the

regression coefficients from N(0, 1) for bidirectional effects and N(2, 1) for unidirectional effects.
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For each type of effect, we varied the proportion of disease-associated variants from 0.01 to 0.5.

One thousand replicates were simulated for each scenario for power and type-I error calculation.

For comparison, we adopted the same weight for both the burden tests. For FANOVA, we used the

penalized cubic B-splines to determine the smoothness of functions.

These simulations only evaluated one genetic region. To investigate the performance of the

three methods on regions with different genetic structures, we applied them to the unrelated sim-

ulated GAW data in order to evaluate the association of the 294 reported disease-associated genes

with the simulated hypertension phenotype. For the association analysis, hypertension (HTN1)

from the first simulation out of the 200 simulations was used. This data has a sample size of 142,

out of which there were 24 cases.

1.5 Results

Type-I error rates of the three tests were well controlled at 0.05 level (0.046 for BT, 0.044 for

BTCOV, and 0.047 for FANOVA). As we observe from Table 1, power of the three tests increases

as we increase the proportion of disease-associated variants. Overall, FANOVA has better or com-

parable performance to BT and BTCOV, while BTCOV obtains similar power to BT. The same

conclusion also holds when the effects are bidirectional (see Table 2). We also observe that the

power of the three tests was slightly lower in the case of bidirectional effects than in the case of

unidirectional effects. Table 3 summarizes the top ten genes with the smallest p-values from the

association analysis. Consistent with the result from simulations, we find that in general FANOVA

attains smaller p-values, while the p-values of BT and BTCOV were very similar. Here smaller

p-values indicate better performance as these genes were from the 294 reported disease-associated

genes.
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Table 1.1: Power for unidirectional effect

%CV .01 .05 .1 .15 .2 .25 .3 .5
BT 0.343 0.617 0.714 0.766 0.759 0.776 0.793 0.781

BTCOV 0.339 0.615 0.712 0.767 0.755 0.780 0.792 0.794
FANOVA 0.398 0.700 0.764 0.808 0.807 0.814 0.814 0.744

Table 1.2: Power for bidirectional effect

%CV .01 .05 .1 .15 .2 .25 .3 .5
BT 0.208 0.508 0.585 0.621 0.665 0.678 0.703 0.683

BTCOV 0.200 0.509 0.579 0.618 0.663 0.668 0.698 0.680
FANOVA 0.217 0.597 0.683 0.732 0.765 0.799 0.809 0.815

Table 3 summarizes top 10 genes with the smallest p-values from the association analysis.

1.6 Discussion

Through this study, we observe that overall BT and BTCOV have a comparable performance.

However, for one gene, THRA, BTCOV attained better performance than the other two tests. In

the follow-up analysis, we observe a small LD block in this gene (see Figure 1). The plot of the

fitted genotype curves reveal the association happens to lie in that LD block. Therefore, BTCOV,

which models the LD pattern, outperforms the other two tests. Also, the effects in the LD block

Table 1.3: Summary of top 10 genes with the smallest p-values from the association analysis

Gene BT FANOVA BTCOV
SUMF1 8.75E-05 1.31E-05 8.43E-05
RELB 6.57E-02 4.35E-04 7.08E-02
HIF3A 2.12E-02 4.34E-03 2.19E-02
THRA 1.85E-02 3.62E-02 9.68E-03
TFDP1 1.50E-02 1.95E-02 1.13E-02
PROK2 1.23E-02 1.27E-01 1.32E-02

POLR2A 2.10E-02 1.31E-02 2.25E-02
CD1C 2.76E-02 5.27E-02 1.42E-02
CCL24 2.24E-02 1.92E-02 2.71E-02

MAP3K6 8.72E-02 3.27E-02 8.45E-02
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were largely unidirectional, which is in favor of burden tests. The genetic structure of sequencing

variants is usually more complex than pairwise LD. Functional methods provide tool to visualize

this structure and explore the associated regions. Figure 1 reveals the interesting structure of RELB.

We can see that the associated region lies in LD block but the correlation is not as strong as that

for THRA. FANOVA performs much better for this gene.

1.7 Conclusion

Our observations indicate that the performance of tests depends on the underlying genetic structure

and hence ignoring it in the association analysis may not be ideal. It is advisable to use function

based approaches to explore and model the sequencing structure. As illustrated by Figure 1 (fitted

genotype function vs variant position), the plot of fitted functional curves provides a reasonable

way to explore the genetic structure. The disease-associated regions can also be visualized in the

plot. If the underlying genetic structure tends to be complex, it is also advisable to use function

based approaches, such as FANOVA, to adequately model the sequencing data.
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Figure 1.1: LD plots and plots of the fitted smooth functions for THRA
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Chapter 2

Preliminaries on Functional Data Analysis

Functional data can be viewed as realizations of a random variable that takes values in a Hilbert

space. In this light, we briefly introduce the concept of mean element and covariance operator

in Hilbert space and give some necessary definitions. We can also think of functional data as

the sample paths of a stochastic process with smooth mean and covariance functions. Both these

perspectives are discussed in a greater detail in Hsing and Eubank (2015). We briefly discuss the

estimation of the mean function and the covariance operator in the space L2[0, 1] of all square

integrable functions on domain [0, 1]. We also discuss the concept as well as the estimation of

eigenvalues and eigenfunctions of the covariance operator. Further details of these concepts can be

found in Horváth and Kokoszka (2012).

2.1 Definitions

Let f be a function on a measure space (E,B, µ) that takes values in a separable Hilbert spaceH.

Definition 2.1.1 A function f is called simple if it can be represented as: f(ω) =
k∑
i=1

IEi(ω)gi,

for some finite k, Ei ∈ B and gi ∈ H.

Definition 2.1.2 Any simple function f(ω) =
k∑
i=1

IEi(ω)gi with µ(Ei) < ∞, ∀i, is said to be

integrable and it’s Bochner integral is defined as:
∫
fdµ =

k∑
i=1

µ(Ei)gi.
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Definition 2.1.3 A measurable function f is said to be Bochner integrable if there exists a se-

quence {fn}∞n=1 of integrable simple functions such that lim
n→∞

∫
||fn − f || = 0. The Bochner

integral of f is defined as
∫
fdµ = lim

n→∞
∫
fndµ.

The existence of the sequence of functions fn in the above definition is guaranteed by the following

condition:
∫
||f ||dµ <∞.

Definition 2.1.4 Let {ei} be an orthonormal basis for Hilbert space H1 and X be a bounded

linear function fromH1 → H2 whereH2 is also a Hilbert space. If X satisfies
∞∑
i=1
||Xei||22 <∞,

where || ||2 is the norm on H2 then X is a Hilbert Schmidt operator. The collection of all such

Hilbert Schmidt operators is denoted by BHS(H1,H2). This is a Hilbert space. If X1, X2 ∈

BHS(H1,H2) then 〈X1, X2〉HS =
∞∑
i=1
〈X1ei, X2ei〉2.

Definition 2.1.5 Let X1 ∈ H1 and X2 ∈ H2. The tensor product X1 ⊗X2 is an operator defined

fromH1 → H2 in the following way: X1 ⊗X2(Y ) = 〈X1, Y 〉X2, where Y ∈ H1.

LetX be a random element of a separable Hilbert spaceH defined on a probability space (Ω,F ,P).

The norm on this space is denoted by || || and the inner product by 〈·, ·〉.

Definition 2.1.6 If E||X|| < ∞, the mean of X is defined as the Bochner integral µ = E(X) =∫
XdP .

Definition 2.1.7 Assume that E||X||2 < ∞. Then, the covariance operator for X is the element

of BHS(H) given by K = E[(X − µ)⊗ (X − µ)] =
∫

(X − µ)⊗ (X − µ)dP.

The Hilbert space of particular interest to us is the L2([0, 1]) space. We say that a function X

belongs to the space L2 = L2([0, 1]) if X is defined on [0, 1] and satisfies
∫ 1

0 X
2(t)d(t) < ∞.

L2 space is a separable Hilbert space with the following inner product: 〈X, Y 〉 =
∫ 1

0 X(t)Y (t)dt.
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We consider a random curve X(t), t ∈ [0, 1] to be a random element of L2. The mean func-

tion is µ(t) = E(X(t)) and the covariance function is K(s, t) = E(X(s)X(t)). We can see that

K(Y )(t) = E(〈X, Y 〉X(t)) = E
∫
X(s)Y (s)ds)X(t) =

∫
E(X(t)X(s))Y (s)ds =

∫
K(t, s)Y (s)ds.

We can show that the operator K is symmetric and positive definite.

Definition 2.1.8 Suppose that there exists a λ such that Ke = λe, then λ is the eigenvalue and e

is the eigenfunction of K.

Note that we can show that the eigenfunctions of K are linearly independent. We can orthonor-

malize them using Gram Schmidt orthonormalization and use them as basis functions. We use this

fact in our simulations extensively to generate basis functions.

2.2 Estimation

Now that we have presented some basic definitions, we turn to estimation of the defined constructs.

Assume that we have a sample of curvesX1, ...Xn fromL2, that are independent and have the same

distribution as X . We assume that X is integrable.

The mean function estimate is given by the sample mean:

µ̂(t) = n−1
n∑
i=1

Xi(t).

The covariance function estimate is given by its sample counterpart:

K̂(t, s) = n−1
n∑
i=1

(Xi(s)− µ̂(s))(Xi(t)− µ̂(t)).

11



Similarly the covariance operator estimate is given by

K̂(x) = n−1
n∑
i=1

〈Xi − µ̂, x〉(Xi − µ̂), x ∈ L2.

We state some results that establish the properties of these estimates.

Result 2.2.1 Under the assumption that sample of curves is i.i.d, integrable and has the same

distribution as X , E(µ̂) = µ and E||µ̂− µ||2 = O(n−1).

Thus, sample mean is an unbiased and consistent. Thus, from now on we can assume that the mean

function µ = 0. The estimate for covariance is biased just like in the multivariate case. This bias

is asymptotically negligible.

Result 2.2.2 If E||X||4 <∞, EX = 0 then E||K̂ − K||2HS = n−1E||X||4.

We often need to estimate the eigenvalues and eigenfunctions of the the covariance operator. Thus,

the estimates of these eigenvalues are given by K̂v̂ = λ̂v̂. Note that if v is an eigenfunction then

av is also an eigenfunction. The eigenfunctions are usually normalized so that ||v|| = 1. This does

not determine the sign of v. If k̂j = sign(〈v̂, v〉), then k̂j cannot be determined from the data.

Result 2.2.3 Suppose E||Xi||4 < ∞, EX = 0 and λ1 >, ..., > 0. Then, for each j ≥ 1,

lim sup
n→∞

nE(||k̂j v̂j − vj ||2) < ∞, lim sup
n→∞

nE(|λ − λ̂j |2) < ∞. If we assume that only the

top p+ 1 eigenvalues are non zero then the above result holds for 1 ≤ j ≤ p.

We now state the Mercers theorem and Karhünen Loéve expansion. Let (E,B, µ) be a measure

space. Suppose thatK is a measurable continuous function onE×E such that
∫ ∫

K(s, t)dµ(s)dµ(t) <

∞. Define, operator K by Kf(·) =
∫
K(s, ·)f(s)dµ(s). K is the integral operator of K and K is

the kernel function of K.

12



Definition 2.2.1 The kernel function K is symmetric if K(s, t) = K(t, s).

Definition 2.2.2 The kernel function is non negative definite if
n∑

i,j=1
cicjK(xi, xj) ≥ 0 holds for

all n ∈ N, x1, ...xn ∈ E, c1, ...cn ∈ R. It’s positive definite if the relation is strictly greater than

zero.

The following result is the Mercers Theorem. Notice that the covariance function has this repre-

sentation.

Result 2.2.4 Let K be a symmetric, non negative definite kernel function and K be its integral

operator. If (λi, ei) are the eigenvalue and eigenfunction pairs ofK, then K has the representation

K(s, t) =
∞∑
i=1

λiei(s)ei(t).

The following result is the Karhünen Loéve expansion.

Result 2.2.5 Let X be a zero-mean, square-integrable random function defined over a probability

space (Ω,F ,P) and indexed over a closed and bounded interval [a, b], with continuous covariance

function K(s, t). Let (λi, ei) be the eigenvalue and eigenfunction pairs of the integral operator of

the covariance function. Then, X(t) admits the following decomposition: X(t) =
∞∑
i=1

Ziei(t),

where Zk =
∫
X(t)ek(t)dt. Furthermore, the random variables Zk have zero mean, are uncorre-

lated and have variance λk.
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Chapter 3

Multivariate Generalized Functional Linear

Models

3.1 Introduction

The focus of this chapter is to provide a large sample test for assessing if a functional covariate

has a regression effect on real valued responses, when there is some dependence among responses.

This kind of data typically arises in family based genetic studies when gene expression data or

even DNA sequencing data is collected. The aim of these studies is often to test for regression

relation between the gene region and the phenotype of interest. Sequencing data for a gene or a

gene region consists of observations on a large number of single nucleotide variants. In the light of

linkage disequilibrium (Laird and Lange, 2010b), we know that the variants that are closer to each

other may have greater association than those that are farther from each other. This motivates us to

treat the high dimensional sequencing data as a function of the single nucleotide variant positions

and necessitates the use of a functional data based inference method for correlated data.

There is abundant literature on functional linear models (Cardot et al., 1999, 2003; Cardot and

Sarda, 2005; Cardot and Johannes, 2010; Ramsay, 2006). Recent reviews of functional regression

can be found in Morris (2015) and Wang et al. (2016). These linear models assume that the re-

sponse is a univariate continuous variable and the regressor variable is a function. However, in
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genetic studies the phenotype or the response variable is often binary and few papers discuss gen-

eralized functional linear models (Müller and Stadtmüller, 2005; Li et al., 2010; Gertheiss et al.,

2013) as needed for handling binary response variables. Existing methodology cannot be directly

applied to genetic family data, where the response variable is a vector of dependent traits and the

regressor is a vector of functions. We address this shortcoming using generalized estimating equa-

tions. The estimators thus obtained are shown to be consistent and asymptotically normal, under

suitable conditions on the underlying entities. The latter result is used to propose an asymptotic

test for regression relation between the functional covariates and the responses.

The chapter also includes a finite sample simulation study. Through this study, we first demon-

strate the importance of addressing correlation structures in the data and then compare the perfor-

mance of our proposed method with another method for family studies proposed by Wang et al.

(2013). This method is based on a generalized estimating equations approach suitable for accom-

modating a large number of variables. We also present additional results demonstrating the effect

of sample size, the dimension of parameter to be estimated and family (cluster) size on the power

of the proposed test.

This chapter is organized as follows. Section 2 contains formal description of the original

infinite dimensional model and a working truncated model based on the strategy proposed by

Müller and Stadtmüller (2005). Section 3 contains the description of the estimators based on

generalized estimating equations while section 4 describes the asymptotic normality results for

these estimators. Section 5 describes findings of a simulation study while section 6 presents a real

data application.
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3.2 Model

Letm,n be positive integers. We observe n clusters (Xi(t), t ∈ T = [0, 1], Yi), i = 1, ..., n, each of

size m, where, for each i, Xi = (Xi1, Xi2, · · · , Xim)T is a an m-dimensional predicting process

and Yi = (Yi1, Yi2, · · · , Yim)T is a vector of m responses. We assume that these n clusters are

independent and identically distributed and that all clusters have the same correlation structure. For

jth subject in ith cluster the predicting process Xij(t), t ∈ T, is assumed to be a square integrable

random process on T . The corresponding response Yij can be continuous or discrete, real valued

variable which is related to Xij(t), t ∈ T via the following generalized regression model, where ω

is a positive measure on T . For a constant β̃0, and a real valued function β̃(t), t ∈ T , let

ζ̃ij = β̃0 +

∫
β̃(t)Xij(t)dω(t), i = 1, ..., n, j = 1, ...,m.

All integrals in this paper are taken over the interval T , unless specified otherwise. In the rest of

this paper, i = 1, ..., n and j = 1, ...,m. We model the regression of Yij on Xij as

Yij = g(ζ̃ij) + eij , µij = E(Yij | Xij(t), t ∈ T ) = g(ζ̃ij), (3.2.1)

σ̃2(µij) = var(Yij − µij | Xij(T ), t ∈ T ) = σ2(ζ̃ij), ei = (ei1, ei2, ..., eim)T ,

R0 = cor(ei),

for a known real valued link function g and a positive function σ, where eij have zero mean. R0 is

m×m true correlation matrix.

We now give another representation of the model (3.2.1). Let ρj , j = 1, 2, ..., be an orthonormal

basis of the functional space L2(T, ω) = L2(ω). The predictor process and parameter function can
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be written as

Xij(t) =
∞∑
k=1

ε
(k)
ij ρk(t), β̃(t) =

∞∑
k=1

β̃kρk(t), (3.2.2)

with random variables ε(k)
ij =

∫
Xij(t)ρk(t)dω(t), and coefficients β̃k =

∫
β̃(t)ρk(t)dω(t). By

assumption 3.4.1 below, we obtain E(ε
(k)
ij ) = 0, for all i, j, and k. Note that the random variables

ε
(k)
ij and ε(l)

ij are uncorrelated for k 6= l. By the orthonormality of the basis functions,

∞∑
k=1

σ̃
(k)2
ij =

∫
E(X2

ij(t))dω(t) <∞,
∫
β̃(t)Xij(t)dω(t) =

∞∑
k=1

β̃kε
(k)
ij .

Using the above representation we now address the infinite dimensionality issue or equivalently

the issue of infinite number of predicting variables. Based on the truncation strategy proposed by

Müller and Stadtmüller (2005) we replace model (3.2.1) with the following approximate sequence

of finite dimensional models. Let p = pn be a sequence of positive integers tending to infinity and

define our new approximate model as

Yij = g
(
β̃0 +

pn∑
k=1

β̃kε
(k)
ij

)
+ eij , η̃

pn
ij = β̃0 +

pn∑
k=1

β̃kε
(k)
ij , (3.2.3)

U
(pn)
ij =

pn∑
k=1

ε
(k)
ij ρk(t), σ2(η

(pn)
ij ) = σ̃2(µ

(pn)
ij ) = var(eij |U

(pn)
ij )

ei = (ei1, ei2, ..., eim)T , R0 = cor(ei).

Let β̃ = (β̃0, ..., β̃pn)T . The superscript pn indicates the number of parameters. We exhibit this

superscript and subscript when necessary. We assume that the standardized error eij σ̃(µij) is

independent of ε(k)
ij for all i, j, k.

In the sequel, Nm(µ,Σ) stands for m-dimensional normal distribution with the mean vector µ

and covariance matrix Σ, m ≥ 1, and all limits are taken as n → ∞, unless specified otherwise.
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For any vector or a finite dimensional matrix A, ‖A‖ denotes the Frobenius norm of A.

3.3 Estimation

We use the generalized estimating equation set-up for estimating the parameter β̃. In most appli-

cations, we do not know the true correlation matrix R0, so we use a working correlation matrix

R(γ) to specify the working covariance. The parameter γ can be estimated using the residuals. We

use R̂ to denote an estimated working correlation matrix. The estimate R̂ that we use below was

suggested by Balan et al. (2005). Denote the derivative of function g as g′. The estimator denoted

by β̂ is the solution to the following equation.

U∗(β) =
n∑
i=1

FTi Gi(β)Ai(β)−1/2R̂−1Ai(β)−1/2ei(β) =
n∑
i=1

FTi Gi(β)V̂i(β)−1ei(β) = 0,

(3.3.1)

where,

Gi(β) =


g′i1(β) . . . 0

... . . . ...

0 . . . g′im(β)

 , FTi =



ε
(0)
i1 ε

(0)
i2 . . . ε

(0)
im

ε
(2)
i1 ε

(2)
i2 . . . ε

(2)
im

...
... . . . ...

ε
(p)
i1 ε

(p)
i2 . . . ε

(p)
im


, ei(β) =


yi1 − gi1(β)

...

yim − gim(β)

 ,

Ai(β) = diag
(
σ2
i1(β), ..., σ2

im(β)
)
, R̂ =

1

n

n∑
i=1

Ai(β̌)(Yi − gi(β̌))(Yi − gi(β̌))TAi(β̌)

V̂i(β) = Ai(β)−1/2R̂Ai(β)−1/2.

Let εij = 1, εij = (ε
(0)
ij , ..., ε

(pn)
ij )T , gij(β) = g(εTijβ), gi(β) = (gij(β), ..., gij(β)), σi1(β) =

σ(εTijβ) and β̌ be a preliminary
√
n/pn consistent estimate of β. It can be obtained using the
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independence estimating equations. Further details of this estimator can be found in Wang et al.

(2011).

3.4 Asymptotic Theory

3.4.1 Existence and Consistency

We first state the assumptions needed for existence of the solution of (3.3.1) and its consistency.

Note that λmax(A), λmin(A) denote the maximum and minimum eigenvalues of a matrix A re-

spectively. Also→D (→P ) denote convergence in distribution (probability).

Assumption 3.4.1 Assume that E{X(t)} = 0 for all t, E‖X‖4 <∞ and ‖β̃‖2 <∞.

Assumption 3.4.2 Function g is monotone, invertible, and has two continuous bounded deriva-

tives. The function σ2 has a continuous bounded derivative and is bounded from below by δ > 0.

Assumption 3.4.3 Assume that pnn−1/2 → 0.

Assumption 3.4.4 The true correlation matrix R0 has positive eigenvalues. The estimated work-

ing correlation matrix R̂ satisfies ‖R̂−1 − R̄−1‖ = Op{(pn/n)1/2}. R̄ is a constant positive

definite matrix with positive eigenvalues.

Assumption 3.4.5 There exist two positive constants b1, b2 such that b1 ≤ λmin{E(FT1 F1)} ≤

λmax{E(FTi Fi)} ≤ b2.

We assume that the mean function of the regressor functions is zero to ease some of the calcu-

lations. Note that since we can obtain a consistent estimator of the mean function this assumptions
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is easily satisfied. We assume thatE‖X‖4 <∞mainly to obtain consistent estimates of the eigen-

values (Horváth and Kokoszka, 2012). Assumption 4, 5 and 6 can also be found in Wang et al.

(2011). We prove that R̂ used in the score function satisfies the assumption 4.

Theorem 3.4.1 Under the assumptions 3.4.1–3.4.5, the solution β̂ to (3.3.1) exists and satisfies

the following

||β̂ − β̃|| = Op(
√
pn/n)

The proof is along the same lines as Wang et al. (2011) and can be found in the appendix. We

approximate U∗(β) by Ū(β) =
∑n
i=1 F

T
i Gi(β)Ai(β)−1/2R̄−1Ai(β)−1/2ei(β). Thus, we can

consistently estimate the parameters even if the correlation structure is misspecified.

3.4.2 Asymptotic Normality

To show the asymptotic normality of the estimator we will approximate U∗(β) by

U(β) =
n∑
i=1

FTi Gi(β)Ai(β)−1/2R−1
0 Ai(β)−1/2ei(β). We will now rewrite the U(β) as

U(β) = DT (β)V (β)−1/2(Y − µ(β)),

where,

Vi(β) = Ai(β)R−1
0 Ai(β), i = 1, ..., n, V (β) =



V1(β) 0 . . . 0

0 V2(β) . . . 0

...
... . . . ...

0 0 . . . Vn(β)


,

(3.4.1)
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D(β) =



V
−1/2
1 (β) 0 . . . 0

0 V
−1/2
2 (β) . . . 0

...
... . . . ...

0 0 . . . V
−1/2
n (β)





G1(β) 0 . . . 0

0 G2(β) . . . 0

...
... . . . ...

0 0 . . . Gn(β)




F1

...

Fn

 ,

Γ(β) =
1

n
E(D(β)TD(β)) = (γkl(β))0≤k,l≤p , Ξ(β) = Γ(β)−1 = (ξkl(β))0≤k,l≤p,

J(β) =
dU(β)

dβ
, Y = (Y11, Y12, ..., Y1m, ..., Ynm)T , R−1

0 =


l11 . . . l1m

...
... . . .

lm1 . . . lmm

 .

Next, we shall state the needed assumptions for establishing the asymptotic normality of β̂.

Assumption 3.4.6 Assume that pnn−1/8 → 0.

Assumption 3.4.7 The matrices Γ = Γ(β̃) = n−1E{D(β̃)TD(β̃)} and n−1D(β̃)TD(β̃) are

non-singular for all n.

Assumption 3.4.8 The eigenvalues of Γ are bounded and
∥∥∥{D(β̃)TD(β̃)

n

}−1 ∥∥∥ = Op(p
1/2
n ).

We are now ready to state the theorem regarding the normality of the estimate. Let Γ̃ =

n−1D(β̃)TD(β̃) and Γ̂ = n−1D(β̂)TD(β̂). Note that Γ̃ depends on the unknown parameter

where as Γ̂ is a plug in estimator of Γ̃.
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Theorem 3.4.2 Under the assumptions 1–9, the following statements hold.

n(β̂ − β̃)TΓ(β̂ − β̃)− (pn + 1)√
2(pn + 1)

→D N(0, 1). (3.4.2)

n(β̂ − β̃)T Γ̃(β̂ − β̃)− (pn + 1)√
2(pn + 1)

→D N(0, 1). (3.4.3)

n(β̂ − β̃)T Γ̂(β̂ − β̃)− (pn + 1)√
2(pn + 1)

→D N(0, 1). (3.4.4)

Note that this theorem can be used to construct 1 − α confidence bands. Refer to corollary

4.3 in Müller and Stadtmüller (2005). The proofs of both the theorems are given at the nd of this

chapter.

We are now ready to describe a test for the problem of testing for no regression relation between

a real valued response and a functional predicting variable. Referring to the model (3.2.1), testing

for no association between the response and the predicting process is equivalent to testing for

H0 : β̃ = 0. Since we use the sequence of approximate models proposed in (3.2.3), we test the

following hypothesis instead: H0 : (β̃1, ..., β̃pn) = (0, ..., 0), versus the alternative that H0 is not

true, for a given appropriate value of pn. The proposed test rejects H0 for the large absolute values

of the statistic

Dn =
nβ̂T Γ̂β̂ − (pn + 1)√

2(pn + 1)
.

From Theorem 2 it follows that the test that rejects H0 whenever |Dn| > zα/2 is of the asymptotic

size α, where zα is the 100(1− α)th percentile of standard normal distribution.
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3.5 Simulation

In this section we report the finding of several simulation studies, which investigate different as-

pects of the proposed testing procedure. In the first study we demonstrate the importance of con-

sidering the correlation structure in the data. We then explore the applicability of our method to

sequencing data. In this study, we use sequencing data in the simulation to demonstrate the appli-

cability of our method to genetic studies. We also compare the empirical power of our test to that

of gSKAT proposed by Wang et al. (2013). We then study several other aspects of the proposed

test by varying the sample and cluster sizes and the dimensions pn.

For the first simulation we generated pseudo-random regression functions using Fourier basis

functions ρj , j ≥ 1, and the following model: X(t) =
∑pn
k=1 ε

kρk(t), εj are independent and

identically distributed with N(0, 1) distribution. We then evaluated each function on a grid of

finite points to obtain functional data that are realizations of an underlying function. We take

this approach as in applications only finite discretization of functional data is available. We then

applied a smoothing procedure to this discrete data to obtain smooth functions that are used in our

proposed test. This smoothing procedure is described later in the section. We simulated the effect

function β̃(t) in the following way: β̃(t) =
∑pn
k=1 β̃kρ

k(t), β̃k = k−1δ, k ≥ 1. Here, δ determines

the magnitude of the effect of the regression function on the response. The choice of the number

of basis functions pn selected to generate each of these functions is set to 10n1/7.

We studied the performance of our method when the response is continuous and binary. For

cluster size m = 3 and the case of continuous response we used the following model to generate

the response variables: Yi =
∫ 1

0 Xi(t)β̃(t)dt+ ei, ei ∼ N3(0̄, R) where, 0̄ is a vector of zeroes of

length 3 and R is a 3× 3 correlation matrix with all off diagonal elements equal to γ, |γ| < 1.

For binary response, we generated the correlated responses using the function from the bindata
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package in R software with marginal probabilities given by g
( ∫ 1

0 X(t)β̃(t)dt
)
, where g is the

logistic link function. The correlation matrix is the same as in the previous case.

We then studied the empirical power of the proposed test of no regression relation by consid-

ering the underlying correlation structure and treating the observations as being independent. We

label these two approaches as F test and Ind test, respectively. In these power studies, we chose

n = 500, replicated 1000 times and the significance level α = 0.05. The value of δ is fixed at

0.08 for continuous traits and at 0.1 for binary ones. The number of parameters pn was determined

using five fold cross validation procedure (see the end of this section about how we chose the value

of pn). We can see from Table 3.1 that as the correlation increases between the individuals the

empirical power of the F test increases whereas that of the Ind test remains more or less the same

as expected. This demonstrates the need to factor in the correlation structure. The empirical level

for this study can be found in Table 3.2. For the second study, we compared the performance in

Table 3.1: Empirical power as a function of γ

Corr(γ) Continuous Trait Binary Trait

F Test Ind Test F Test Ind Test
0 0.421 0.418 0.137 0.127

0.05 0.456 0.45 0.130 0.124
0.30 0.567 0.457 0.165 0.124
0.50 .692 0.443 0.195 0.129
0.80 0.993 0.455 0.308 0.134

Table 3.2: Empirical level as a function of γ

Corr(γ) Continuous Trait Binary Trait

F Test Ind Test F Test Ind Test
0 0.03 0.051 0.039 0.032

0.05 0.048 0.049 0.036 0.035
0.30 0.045 0.051 0.032 0.029
0.50 0.059 0.043 0.043 0.037
0.80 0.068 0.047 0.041 0.037

terms of power of our test and gSKAT for testing of no regression relation. Note that gSKAT is a
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sequence kernel association tests that is based on generalized estimating equations. It is not meant

for functional variables though it can handle cases where the number of variables is larger than the

sample size. To make the comparison fair and to investigate the treatment of sequencing data as a

function we used real genetic data from the 1000 Genome Project (?) and then simulated response

values using this data. In particular, we used a region of the genome (Chromosome 17) from this

dataset for following simulation. Note that this a not a family data set and thus, all the individuals

are assumed to be independent. The primary focus of this simulation is to investigate the treatment

of sequencing data as a function.

In real applications, we do not observe the regressor function, but assume that the densely

observed data is a realization of a function. So the first step in any functional data study is a

smoothing step which involves constructing regressor functions from observed data.

Smoothing methods given in Ramsay (2006) typically use the following model to fit a single

curve: The given curve Xij is observed at l discrete points (t1, ..., tl). Let xijk, k = 1, ..., l, denote

these observed values. We then recover the function Xij from these observed values by fitting the

linear model xijk =
∑r
q=1 cqφq(tk), k = 1, ..., l, where φq’s are basis functions. We choose a

large value for r and use penalization techniques to ensure that the fitted function is not very rough.

We penalize the integral of the squared second derivative, i.e., we choose cq, 1 ≤ q ≤ r to minimize∑l
k=1(xijk −

∑r
q=1 cqφq(tk))2 − λPEN2(Xij). We take PEN2(Xij) =

∫
D2Xij(s)ds, where

D2 denotes the second derivative. The underlying function Xij is approximated by Xij(t) =∑r
q=1 ĉqφq(t). We used cubic B-spline basis functions and the smooth.spline function available in

R software to carry out the smoothing procedure. We specified the knots to be at (t1, ..., tl) leading

to r = l + 4− 2.

After obtaining the underlying function we simulated a discrete and continuous response using

the sequencing data. Let X denote the sequencing data matrix of dimension
∑n
i=1mi × l, where
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n, mi, and l represent the number of clusters, cluster size, and the number of variants, respectively.

For the selected region from the 1000 Genome Project, l = 800, n = 1092 while the family

size mi is one for all the families. Then the responses are generated using the relations Yi =∑l
k=1 β̃kXik + ei, ei ∼ Nm(0̄, Ri), β̃k = k−1δ, k = 1, · · · , l, where now Ri is the mi × mi

correlation matrix with all off diagonal terms equal to γ = 0. For the binary case we proceeded as

before using the rmvbin function in R. The following empirical powers are based on 1000 replicates

and level of significance of 0.05. We chose pn by using the five fold cross validation procedure

(see the end of this section). We can see in Table 3.3 shows that both the tests have comparable

power but Type-I error for gSKAT for the binary case is inflated.

Table 3.3: Empirical power comparison with the gSKAT

Effect(δ) Continuous Trait Binary Trait

F Test gSKAT F Test gSKAT
0.00 0.041 0.048 0.047 0.061
0.50 0.102 0.108 0.072 0.063
1.00 0.314 0.374 0.114 0.133
3.00 0.996 0.994 0.555 0.608
5.00 1.00 1.00 0.951 0.962

In the simulation study to investigate the effect of sample size and cluster size on the power of

our test, the regression function was generated using the Fourier basis functions and the response

variable was generated using the linear and logistic model as in the first simulation study. The

choice of the number of basis functions pn selected to generate the regression functions is again

set to 10n1/7. Effect size δ used in this study is set equal to 0.1 and 0.05 for binary response and

continuous response, respectively. The correlation for the sample size and the cluster study are set

to 0.8. From Table 3.4 we can see that the power increases with the sample size for both types of

the response variables.
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Table 3.4: Empirical power as a function of sample size

Sample Size Continuous Trait Binary Trait
500 0.718 0.295
1000 0.970 0.65
2000 1 0.946

To demonstrate the effect of using large cluster size m, we used a sample size of 100 in the

study. Results of this simulation can be seen in Table 3.5. We observe that the Type I error is

inflated with the increase in the cluster size. For a cluster of size m the number of parameters in

the correlation matrix is of order m2. Large m will affect the consistency of correlation estimate

(R̂) used in the score equation (3.3.1) rendering our asymptotic results invalid .

Table 3.5: Empirical level as a function of cluster size

Cluster Size Continuous Trait Binary Trait
3 0.203 0.05
10 0.659 0.14
20 0.867 0.4

Table 3.6 below demonstrates the effect of increasing the number of parameters pn in the

model. The regressor function and the continuous response variable were simulated as before. The

number of basis functions used to generate the regressor was set to pn = 30, 50, 90. Sample size

was 500, the effect size δ was 0.05, correlation parameter γ was taken to be 0.8. The number of

parameters in the model pn was chosen to be 30, 50, 90 instead of using cross validation. We can

see that as the number of parameters increases the Type-I error also increases.

Table 3.6: Effect of increasing pn

pn Empirical level
30 0.068
50 0.065
90 0.107

The following figure displays Q-Q plots to check the normality of the test statistic. For small
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dimensions the test statistic follows a chi-square distribution with p degrees of freedom. As we

increase p the normal approximation becomes more appropriate.

Figure 3.1: Normal Q-Q plots
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An important problem that we need to address while applying our method is the determination

of the number of parameters pn. In all of the simulations reported here, we used the functional prin-

cipal component analysis method for dimension reduction. We projected the infinite dimensional

function on to a finite pn dimensional subspace spanned by the first pn eigenfunctions of the covari-

ance operator of the regressor functions. This covariance operator is estimated from the regressor

functions obtained by smoothing of the observed data. We first selected those values of p̃ for which
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the proportion of variance explained by the first p̃ principal components
∑p̃
k=1 λk

/∑∞
k=1 λk var-

ied from 80% to 99% as the potential values for the number of parameters pn. We then used 5 fold

cross validation to select a final value for pn.

3.6 Application to the sequencing data from the Minnesota Twin

Study

Substance use disorders and related health conditions pose a remarkable burden on global health.

Twin and family-based studies have suggested a substantial genetic contribution to substance de-

pendence (e.g., nicotine and alcohol dependence). Studies have been successful in identifying

genetic variants contributing to nicotine dependence. In this application, we applied the pro-

posed method to assess the dependence between 15 neuronal nicotinic acetylcholine receptors

(nAChRs) subunit genes and nicotine dependence using the sequencing data from Minnesota Twin

Study (Vrieze et al., 2014). Genetic associations between nAChRs subunit genes and nicotine

dependence has already been established. A comprehensive study on the these genes (Saccone

et al., 2009) found associations for loci in the CHRNA5, CHRNA3,CHRNA4, CHRNB4,CHRNB3,

CHRNB1, CHRNA6, CHRND, CHRNG, CHRNB4 with nicotine dependence. Our aim is to con-

firm whether our test can replicate these associations. The sequencing data set we used for this

analysis has 662 families and 1445 individuals.

Nicotine dependence is a continuous variable measured based on the protocols of the Substance

Abuse Module of Composite International Diagnostic Interview (Hicks et al., 2011). It considers

the frequency and quantity of nicotine use including cigarettes, cigars, pipes and chewing tobacco.

Covariates of age and sex were also considered. We first fit a regression model with nicotine

dependence as response and age and sex as predictors, and then used the residuals in the analysis.
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We apply our proposed test to each of the 15 genes individually. As the response and regressors are

centered, we omit the intercept from this analysis. The smooth functions obtained by the smoothing

method discussed earlier in the simulation section serve as regressors in the test. Table 3 report

the number of parameters i.e., pn used for each gene. Note that as these values are small, normal

approximation does not work as can be seem from Figure 3.1 . We instead use D∗n as the statistic

that follows χpn and use this to report the un-adjusted p-values for the F-test. From this table, we

find that the p-values for F-test are smaller than those of the gSKAT for many genes. Also, our

method is able to detect several associations that are undetected by gSKAT, which might suggest

that our method has better performance. Note that even after adjustment for multiple testing our

method is able to find associations for genes, such as CHRNB2, CHRNA6 and CHRND.

Table 3.7: p-values for Minnesota Twin Study

Gene F Test gSKAT pn D∗n
CHRNA1 0.929 0.621 2 0.147
CHRNA2 0.740 0.595 2 0.600
CHRNA3 0.057 0.611 2 5.713
CHRNA4 0.011 0.125 2 8.900
CHRNA5 0.148 0.415 2 3.810
CHRNA6 4E-05 0.216 6 29.765
CHRNA7 0.625 0.736 2 0.937
CHRNA9 0.400 0.524 2 1.831
CHRNB1 0.017 0.870 2 8.047
CHRNB2 2E-09 0.1351 7 53.838
CHRNB3 0.003 0.429 5 17.524
CHRNB4 0.382 0.561 2 1.922
CHRND 8E-04 0.175 2 14.230
CHRNE 0.207 0.675 2 3.142
CHRNG 0.044 0.270 2 6.219
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3.7 Discussion

The proposed method can be easily extended to include additional finite dimensional covariates

Z = (Z1, ..., Zk) as well as finitely many functional regressors X1, ..., Xl. The main question

is to choose the dimension p1n, ..., pln for each of the functional regresors. We can use cross

validation techniques to determine p1n, ..., pln. Note that this is more computationally challenging

than the case of a single functional regressor. The dimension of the truncated model (3.2.3) is

pn =
l∑

j=1
pjn + k + 1.

3.8 Results

This section contains the consistency and existence results. Note that C denotes a constant in the

details below.

Proposition 3.8.1 The inverse of estimated correlation matrix R̂−1 converges to the inverse of the

true correlation in probability i.e. ‖R̂−1 −R−1
0 ‖ = Op{(pn/n)1/2}.

Proof LetR∗ = n−1
n∑
i=1

A
−1/2
i (β̃){Yi−gi(β̃)}{Yi−gi(β̃)}TA−1/2

i (β̃). Central limit theorem

gives us ‖R∗ − R0‖ = Op(n
−1/2). We will show that ‖R̂ − R∗‖ = Op{(pn/n)1/2}. Combining

these two results will yield the proposition. Recall that eij(β) = yij − g(εTijβ), σij(β) = σ(εTijβ).

We have

‖R̂−R∗‖2 =
m∑

ji,j2=1

{
1

n

n∑
i=1

eij1(β̌)eij2(β̌)

σij1(β̌)σij2(β̌)
−
eij1(β̃)eij2(β̃)

σij1(β̃)σij2(β̃)

}2

≤ 2
m∑

ji,j2=1

I2
j1j2,1

+ 2
m∑

ji,j2=1

I2
j1j2,2

,
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where

Ij1j2,1 =
1

n

n∑
i=1

eij1(β̌)eij2(β̌)− eij1(β̃)eij2(β̃)

σij1(β̌)σij2(β̌)
,

Ij1j2,2 =
1

n

n∑
i=1

eij1(β̃)eij2(β̃)

{
1

σij1(β̃)σij2(β̃)
− 1

σij1(β̃)σij2(β̃)

}
.

We first show that
m∑

ji,j2=1
I2
j1j2,1

= Op(pn/n). Using Assumption 3.4.2

I2
j1j2,1

≤ C

[
1

n

n∑
i=1

eij1(β̌){eij2(β̌)− eij2(β̃)}

]2

+ C

(
1

n

n∑
i=1

eij2(β̃){eij1(β̌)− eij1(β̃)}

)2

≤ C

[
1

n

n∑
i=1

eij1(β̃){gij2(β̃)− gij2(β̌)}

]2

+ C

[
1

n

n∑
i=1

{gij1(β̃)− gij1(β̌)}{gij2(β̃)− gij2(β̌)}

]2

+ C

[
1

n

n∑
i=1

eij2(β̃){gij1(β̃)− gij1(β̌)}

]2

.

Using Cauchy Schwarz inequality,

m∑
ji,j2=1

I2
j1j2,1

≤ C
m∑

ji,j2=1

{
1

n

n∑
i=1

e2
ij1

(β̃)

}[
n∑
i=1

1

n
{gij2(β̃)− gij2(β̌)}2

]

+ C
m∑

ji,j2=1

[
1

n

n∑
i=1

{gij1(β̃)− gij1(β̌)}2
][

n∑
i=1

1

n
{gij2(β̃)− gij2(β̂)}2

]

+ C
m∑

ji,j2=1

[
1

n

n∑
i=1

{gij1(β̃)− gij1(β̌)}2
]{

n∑
i=1

1

n
e2
ij2

(β̃)

}

= Ij1j2,11 + Ij1j2,12 + Ij1j2,13.
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Now,

Ij1j2,11 = C

m∑
ji,j2=1

{
1

n

n∑
i=1

e2
ij1

(β̃)

}[
n∑
i=1

1

n
{gij2(β̃)− gij2(β̌)}2

]

= C


m∑
ji=1

1

n

n∑
i=1

e2
ij1

(β̃)


 m∑
j2=1

n∑
i=1

1

n
{gij2(β̃)− gij2(β̌)}2



Taylors expansion gives us {gij(β̌)− gij(β̃)}2 ≤ C(β̌ − β̃)T εijε
T
ij(β̌ − β̃), yielding

m∑
j2=1

n∑
i=1

1

n
{gij2(β̃)− gij2(β̌)}2 ≤ C

1

n

n∑
i=1

m∑
j2=1

(β̌ − β̃)T εij2ε
T
ij2

(β̌ − β̃)

≤ C(β̌ − β̃)T
1

n

n∑
i=1

FTi Fi(β̌ − β̃)

≤ C(β̌ − β̃)T
1

n

{
n∑
i=1

FTi Fi − E(FTi Fi) + E(FTi Fi)

}
(β̌ − β̃)

≤ C(β̌ − β̃)TE(FTi Fi)(β̌ − β̃)

≤ ‖β̌ − β̃‖2λmaxE(FTi Fi).

= Op(pn/n)

We get the above using Assumption 3.4.4, 3.4.5. We have n−1
n∑
i=1

e2
ij1

(β̃) = Op(1).Using similar

techniques for the remaining terms we can show Ij1j2,11, Ij1j2,12, Ij1j2,13 and thereby
m∑

ji,j2=1
I2
j1j2,1

are all of order Op(pn/n). The same holds for
m∑

ji,j2=1
I2
j1j2,2

to complete the proof.

Define,

Ū(β) =
n∑
i=1

FTi Gi(β)A
−1/2
i (β)R̄−1A

−1/2
i (β)ei(β),

J(β) =

[
∂U(β)

∂β

]
β
, J∗(β) =

[
∂U∗(β)

∂β

]
β
, J̄(β) =

[
∂Ū(β)

∂β

]
β
.
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Lemma 3.8.1 The jacobian J(β) can be decomposed as

J(β) = −H(β) +R1(β)−R2(β)−R3(β),

where

H(β) = −
n∑
i=1

FTi Gi(β)A
−1/2
i (β)R−1

0 A
−1/2
i (β)Gi(β)Fi,

R1(β) =
n∑
i=1

FTi G̈i(β)A
−1/2
i (β)F0(β)Fi,

R2(β) =
n∑
i=1

FTi Gi(β)A
−1/2
i (β)R−1

0 Ȧi
1/2

(β)A−1
i (β)diag{ei(β)}Fi,

R3(β) =
n∑
i=1

FTi Gi(β)A−1
i (β)Ȧi

1/2
(β)F0(β)Fi.

G̈i(β) = diag{g′′i1(β), ..., g′′im(β)}, Ȧi = diag{σ′i1(β), ..., σ
′
im(β)}, F0(β) = diag(R−1

0 A
−1/2
i ei).

Similar result holds for J̄(β) and J∗(β) i.e.

J̄(β) = −H̄(β) + R̄1(β)− R̄2(β)− R̄3(β),

J∗(β) = −H∗(β) +R∗1(β)−R∗2(β)−R∗3(β),

where

H̄(β) = −
n∑
i=1

FTi Gi(β)A
−1/2
i (β)R̄−1A

−1/2
i (β)Gi(β)Fi and

H∗(β) = −
n∑
i=1

FTi Gi(β)A
−1/2
i (β)R̂−1A

−1/2
i (β)Gi(β)Fi. Remaining terms R̄i(β), R∗i (β), (i =

1, 2, 3) are defined in a similar fashion by using R̄ and R∗ respectively.

Proof As the proof is simple but tedious we omit the details.
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Lemma 3.8.2 For all ∆ > 0, bn ∈ Rpn ,

sup

‖β−β̃‖≤∆(pn/n)1/2
sup
‖bn‖=1

|bTn (J∗(β)− J̄(β))bn| = Op{(npn)1/2}

Proof Due to Lemma 3.8.1 it is sufficient to prove the following results:

sup

‖β−β̃‖≤∆(pn/n)1/2
sup
‖bn‖=1

|bTn (H∗(β)− H̄(β))bn| = Op{(npn)1/2} (3.8.1)

sup

‖β−β̃‖≤∆(pn/n)1/2
sup
‖bn‖=1

|bTn (R∗i (β)− R̄i(β))bn| = Op{(npn)1/2}, (i = 1, 2, 3). (3.8.2)

We have

|bTn{H∗(β)− H̄(β)}bn| ≤
n∑
i=1

|bTnFTi Gi(β)A
−1/2
i (β)(R̂−1 − R̄−1)A

−1/2
i (β)Gi(β)Fibn|

≤ C‖R̂−1 − R̄−1‖
n∑
i=1

‖bTnFTi ‖
2

= C‖R̂−1 − R̄−1‖
n∑
i=1

bTnF
T
i Fibn

≤ COp{(pn/n)1/2}n

{
n∑
i=1

bTnF
T
i Fibn

n
− bTnE(FT1 F1)bn

}

+ COp{(pn/n)1/2}nbTnE(FT1 F1)bn

≤ COp{(pn/n)1/2}nλmax{E(FT1 F1)}

≤ COp{(pn/n)1/2}.

Similarly we can prove (3.8.2).
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Lemma 3.8.3 We have

sup

‖β−β̃‖≤∆(pn/n)1/2
sup
‖bn‖=1

|bTn{J̄(β) + H̄(β)}bn| = Op(n
1/2pn).

Proof From Lemma 3.8.1 it is sufficient to show that

sup

‖β−β̃‖≤∆(pn/n)1/2
sup
‖bn‖=1

|bTn R̄i(β)bn| = Op(n
1/2pn), (i = 1, 2, 3).

We first consider

R̄2(β) =
n∑
i=1

FTi {Gi(β)−Gi(β̃)}A−1/2
i (β)R̄−1Ȧi

1/2
(β)A−1

i (β)diag{ei(β)}Fi

+
n∑
i=1

FTi Gi(β̃){A−1/2
i (β)− A−1/2

i (β̃)}R̄−1Ȧi
1/2

(β)A−1
i (β)diag{ei(β)}Fi

+
n∑
i=1

FTi Gi(β̃)A
−1/2
i (β̃)R̄−1{Ȧi

1/2
(β)− Ȧi

1/2
(β̃)}A−1

i (β)diag{ei(β)}Fi

+
n∑
i=1

FTi Gi(β̃)A
−1/2
i (β̃)R̄−1Ȧi

1/2
(β̃){A−1

i (β)− A−1
i (β̃)}diag{ei(β)}Fi

+
n∑
i=1

FTi Gi(β̃)A
−1/2
i (β̃)R̄−1Ȧi

1/2
(β̃)A−1

i (β̃)[diag{ei(β)} − diag{ei(β̃)}]Fi

+
n∑
i=1

FTi Gi(β̃)A
−1/2
i (β̃)R̄−1Ȧi

1/2
(β̃)A−1

i (β̃)diag{ei(β̃)}Fi

=
6∑

i′=1

R̄2,i′ .

We investigate the first and last terms of the above equation and leave the rest to the reader. For

the first term using Assumption 3.4.5, 3.4.2 we get
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sup

‖β−β̃‖≤∆(pn/n)1/2
sup
‖bn‖=1

n∑
i=1

|bTn R̄2,1bn|

≤ sup

‖β−β̃‖≤∆(pn/n)1/2
sup
‖bn‖=1

n∑
i=1

|bTnFTi {Gi(β)−Gi(β̃)}A−1/2
i (β)R̄−1Ȧi

1/2
(β)A−1

i (β)

× diag{ei(β)}Fibn|

≤ sup

‖β−β̃‖≤∆(pn/n)1/2
sup
‖bn‖=1

C sup
i,j
{g′ij(β)− g′ij(β̂)}

n∑
i=1

‖bTnFi‖2

≤ sup

‖β−β̃‖≤∆(pn/n)1/2
sup
‖bn‖=1

C‖β − β̂‖
n∑
i=1

bTnF
T
i Fibn

≤ Op((npn)1/2).

In a similar fashion we can show that

sup

‖β−β̃‖≤∆(pn/n)1/2
sup
‖bn‖=1

n∑
i=1

|bTn R̄2,i′bn| = Op((npn)1/2), (i′ = 2, ..., 5).

We now investigate the last term R̄i,6. Using Assumption 3.4.2 we have

‖R̄2,6‖2 ≤ C

pn∑
k,l=0

n∑
i1,i
′
1=1

m∑
j1,j2,j

′
1j
′
2=1

ε
(k)
i1j2

ε
(l)
i1j1

ε
(k)

i
′
1j
′
2

ε
(l)

i
′
1j
′
1

ei1j1(β̃)e
i
′
1j
′
1
(β̃).

Taking expectation and using the independence of errors between clusters we get

‖R̄2,6‖2 = Op(np
2
n). (3.8.3)
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Thus we get,

sup

‖β−β̃‖≤∆(pn/n)1/2
sup
‖bn‖=1

|bTn (R̄2(β))bn| = Op(n
1/2pn).

We can obtain the result for R̄1 and R̄3 in a similar manner to complete the proof.

Lemma 3.8.4 We have

sup

‖β−β̃‖≤∆(pn/n)1/2
sup
‖bn‖=1

|bTn (H̄(β)− H̄(β̃)|bn = Op(n
1/2pn).

The proof of this lemma is similar to the proofs of Lemma 3.8.2, 3.8.3 so we omit the details.

Lemma 3.8.5 We have

(β − β̃)T H̄(β̃)(β − β̃) ≤ −Cn‖β − β̃‖2.

Proof Using Assumptions 3.4.2, 3.4.4, 3.4.5 ,

(β − β̃)T H̄(β̃)(β − β̃) = −
n∑
i=1

(β − β̃)TFTi GiA
−1/2
i R̄−1A

−1/2
i GiFi(β − β̃)

≤ −λmin(R̄) min
i
λmin(A−1

i )λmin(G2
i )

n∑
i=1

FTi Fi‖β − β̃‖
2

≤ −Cn‖β − β̃‖2.

Lemma 3.8.6 Let Ū(β) =
n∑
i=1

FTi Gi(β)A
−1/2
i R̄−1A

−1/2
i (β)−1ei(β). Then we can show that

‖Ū(β̃)‖ = Op{(npn)1/2}.

38



Proof Let R̄−1 = (l̄ij)1≤i,j≤m. Using Assumption 3.4.2,

‖Ū(β̃)‖2 =

pn∑
k=0

 n∑
i=1

m∑
j1,j2=1

g′ij2
(β̃)l̄j2j1ε

(k)
ij2
eij1(β̃)

σij1(β̃)σij2(β̃)

2

E(‖Ū(β̃)‖2) ≤ CO(npn).

Thus, the result is proved.

Lemma 3.8.7 We have ‖U∗(β̃)− Ū(β̃)‖ = Op(pn).

Proof Let Q = {qj1j2}1≤j1,j2,m = R̂−1 − R̄−1. We have,

U∗(β̃)− U(β̃) =
m∑

j1j2=1

qj1j2

n∑
i=1

g′(η̃ij2)e(η̃ij2)

σ(η̃ij2)σ(η̃ij1)
εij1 .

Note that,

E
∥∥∥ n∑
i=1

g′(η̃ij2)e(η̃ij2)

σ(η̃ij2)σ(η̃ij1)
εij1

∥∥∥2
= O(npn).

This implies,
∥∥∥∑n

i=1

g′(η̃ij2)e(η̃ij2)

σ(η̃ij2)σ(η̃ij1)
εij1

∥∥∥ = Op{(npn)1/2}, (1 ≤ j1, j2 ≤ m). Assumption 3.4.4

yields the result.

We are now ready to prove consistency result.

Proof of Theorem 1

According to Theorem 6.3.4 from Ortega and Rheinboldt (2000), to prove the existence and con-

sistency of the estimator β̂, it is enough to verify the following condition: for all ε > 0, there exists

a constant ∆ > 0 such that, for all n sufficiently large,

P

 sup

‖β−β̃‖=∆(pn/n)1/2
(β − β̃)TU∗(β) < 0

 ≥ 1− ε.
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This same technique has been used previously by Wang et al. (2013). Using Taylors expansion we

get,

(β − β̃)TU∗(β) = (β − β̃)TU∗(β̃)− (β − β̃)T {−J∗(β∗)}(β − β̃) (3.8.4)

= A1 + A2,

where, β∗ lies between β and β̃ i.e. max{‖β∗ − β‖, ‖β∗ − β̃‖} ≤ ‖β − β̃‖. Also, ‖β − β̃‖ =

∆(pn/n)1/2. By Lemma 3.8.6, 3.8.7,

A1 = (β − β̃)T Ū(β̃) + (β − β̃)T (U∗(β̃)− Ū(β̃))

|A1| ≤ ∆(pn/n)1/2(npn)1/2 + ∆(pn/n)1/2pn

≤ ∆Op(pn) + ∆op(pn). (3.8.5)

Next,

A2 = −(β − β̃)TJ∗(β∗)(β − β̃)

= −(β − β̃)T J̄(β∗)(β − β̃) + (β − β̃)T {−J∗(β∗) + J̄(β∗)}(β − β̃)

= A21 + A22.
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From Lemma 3.8.2 we obtain A22 = ∆2op(pn). Also

A21 = −(β − β̃)T {J̄(β∗) + H̄(β∗)}(β − β̃)

(β − β̃)T {H̄(β∗)− H̄(β̃)}(β − β̃)

(β − β̃)T H̄(β̃)(β − β̃)

≤ −C∆2pn + op(pn) + op(pn). (3.8.6)

From (3.8.4), (3.8.5), (3.8.6) we can see that (β − β̃)TU∗(β) = ∆Op(pn)−C∆2pn. Thus for

a suitable ∆ this term is negative in probability and we get the existence and consistency of β̂.

We now turn to prove the asymptotic normality result.

Note that,

D(β)TD(β) = −H(β) =
n∑
i=1

FTi Gi(β)A
−1/2
i (β)R−1

0 A
−1/2
i (β)Gi(β)Fi.

Similarly define,

D∗(β)TD∗(β) = −H∗(β) =
n∑
i=1

FTi Gi(β)A
−1/2
i (β)R̂−1A

−1/2
i (β)Gi(β)Fi.

Proposition 3.8.2 Let β∗ be a fixed value of β between β̂ and β̃,

‖J∗(β)− J(β)‖ = Op(n
1/2p1.5

n ) = op(n).
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Proof Using Lemma 3.8.1 we obtain,

‖J∗(β)− J(β)‖ ≤ ‖D∗(β)TD∗(β)−D(β)TD(β)‖+
3∑
i=1

‖R∗i (β)−Ri(β)‖,

= I1 + I2. (3.8.7)

We now look at each of these terms, I1 =
∥∥∥ n∑
i=1

m∑
j1j2=1

−
qj1j2g

′
ij1

(β)g
′
ij2

(β)

σij1(β)σij2(β)
εij1ε

T
ij2

∥∥∥, where

qj1j2 are the terms from R−1
0 − R̂−1. We use Lemma 3.8.1, Assumptions 3.4.2 and 3.4.6 to get

(I1/n)2 = Op(p
3
n/n) = op(1). Similarly we can prove that I2 = Op(n

1/2p1.5
n ) = op(n).

Proposition 3.8.3 Let β∗ be a fixed value of β between β̂ and β̃,

‖J(β∗)− J(β̃)‖ = Op(np
1.5
n /n1/4) = op(n).

Proof

‖J(β∗)− J(β̃)‖ ≤ ‖D(β∗)TD(β∗)−D(β)TD(β̃)‖+
n∑
i=1

‖R∗(β∗)−R(β̃)‖

= I1 + I2

I1 =
∥∥∥ n∑
i=1

m∑
j1j2=1

 g
′
ij1

(β∗)g
′
ij2

(β∗)

σij1(β∗)σij2(β∗)
−
g
′
ij1

(β̃)g
′
ij2

(β̃)

σij1(β̃)σij2(β̃)

 lj1j2εij1ε
T
ij2

∥∥∥
Recall that η̃ij = εTij β̃ and η∗ij = εTijβ

∗. Using integral form of the remainder in Taylor’s theorem,
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Theorem 1 and Assumption 3.4.2,

g′ij(β
∗)− g′ij(β̃) =

∫
g′′{λη̃ij − (1− λ)η∗ij}(η

∗
ij − η̃ij)dλ

≤ c× |η̃ij − η∗ij | ≤ c× ‖β̃T − β∗T ‖sup
i,j
‖εij‖ (3.8.8)

Consider,

P (sup
i,j
‖εij‖ ≥ n1/4) ≤ nmP (‖ε1‖ > n1/4)

≤ mE‖ε1‖4 = mE(‖ε1‖2)2 = mE

( pn∑
k=1

ε2
1k

)2

≤ mE

( ∞∑
k=1

ε2
1k

)2

= mE‖X1‖4 ≤ ∞

Combining the above result with (3.8.8) we get g′ij(β
∗) − g′ij(β̃) = Op(p

1/2
n n−1/4) This can be

used to show that I1 = Op(n
3/4p1.5

n ) = op(n). Similarly, we can prove the same result for I2.

Proposition 3.8.4 This proposition states that n1/2(β̂ − β̃) ≈

{
D(β̃)TD(β̃)

n

}−1
U(β̃)

n1/2

Proof Using Taylors expansion,

U∗(β̂) = U∗(β̃) + J∗(β∗)(β̂ − β̃)

U∗(β̃) = −J∗(β∗)(β̂ − β̃)

U∗(β̃)− U(β̃)

n1/2
+
U(β̃)

n1/2
= −J

∗(β∗)
n

(β̂ − β̃)n1/2
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From Lemma 3.8.7 we obtain,

U(β̃)

n1/2
= −J

∗(β∗)
n

(β̂ − β̃)n1/2

The right hand side can be written as

−J
∗(β∗)
n

(β̂ − β̃)n1/2 =
−J∗(β∗) + J(β∗)

n
(β̂ − β̃)n1/2 +

−J(β∗) + J(β̃)

n
(β̂ − β̃)n1/2

− J(β̃) +D(β̃)TD(β̃)

n
(β̂ − β̃)n1/2 +

D(β̃)TD(β̃)

n
(β̂ − β̃)n1/2

We can show that Ri(β̃) = Op(n
1/2pn), i = 1, 2, 3 in the same manner as (3.8.3). Using Assump-

tion 3.4.2, 3.4.6, Proposition 3.8.2, 3.8.3, Theorem 1 yields

−J
∗(β∗)
n

(β̂ − β̃)n1/2 =
D(β̃)TD(β̃)

n
(β̂ − β̃)n1/2

Thus, the Proposition is proved.

Let,

e′(β) = V (β)−1/2e(β), Zn(β) =

{
D(β)TD(β)

n

}−1
D(β)T e(β)′

n1/2
, (3.8.9)

χn(β) =
Ξ

1/2
n (β)D(β)T e′(β)

n1/2
, Ψn(β) = Γ(β)1/2

{
D(β)TD(β)

n

}−1

Γ(β)1/2.

As the functions in Proposition 3.8.4 are evaluated at β̃, for ease of notation we denote Zn =

Zn(β̃) , χn = χn(β̃), Ψn = Ψn(β̃), e′ = e′(β̃). From the statement of Theorem 2, 3.4.2, we are
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interested in ZTn ΓZn. We decompose it into the three terms as

ZTn ΓZn = χTnΨ2
nχn

= χTnχn + 2χTn (Ψn − Ipn+1)χn + χTn (Ψn − Ipn+1)(Ψn − Ipn+1)χn

= Fn +Gn +Hn, say.

We shall show that Hn/p
1/2
n and Gn/p

1/2
n are asymptotically negligible. This goal is in part

facilitated by the following proposition.

Proposition 3.8.5 We have

‖Ψn − Ipn+1‖2 = op(1/pn), (3.8.10)

(χTnχn − (pn + 1))/(2pn)1/2 d−→ N(0, 1). (3.8.11)

We shall prove this lemma shortly. As a consequence of this lemma, we obtain

|χTn (Ψn − Ipn+1)χn| ≤ |χnχTn | ‖Ψn − Ipn+1‖,

= Op(pn)op(1/p
1/2
n ) = op(p

1/2
n ).

This implies that Gn/p
1/2
n

p−→ 0. We can similarly show that Hn/p
1/2
n

p−→ 0. Hence

ZTn ΓZn

(2pn)1/2
=

Fn

(2pn)1/2
. (3.8.12)
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Proof We shall first prove (3.8.10). Observe that

‖Ψn − Ipn+1‖ ≤ ‖Ψn‖‖Ψ−1
n − Ipn+1‖ (3.8.13)

‖Ψn‖ ≤ ‖Ipn+1‖+
‖Ψ−1

n − Ipn+1‖
1− ‖Ψ−1

n − Ipn+1‖
.

We shall show that

‖Ψ−1
n − Ipn+1‖ = op(p

−1
n ) = op(1), (3.8.14)

implying ‖Ψn‖ ≤ ‖Ipn+1‖ = (pn + 1)1/2. This will prove (3.8.10), because

‖Ψn − Ipn+1‖ = Op(p
1/2
n )op

(
1

pn

)
= op

(
1

p
1/2
n

)
.

We now turn to the proof of (3.8.14). Let, Ξ = Ξ1/2Ξ1/2, Ξ1/2 = (ξ
(1/2)
ks )0≤k,s≤pn . We can write

Ψ−1
n = Ξ1/2 1

n
D(β̃)TD(β̃)Ξ1/2

=
1

n

n∑
i=1

m∑
j1j2=1

pn∑
ts=1

lj1j2g
′
ij2

(β̃)g′ij1
(β̃)

σij2(β̃)σij1(β̃)

[
ξ

(1/2)
ks ε

(s)
ij1
ε
(t)
ij2
ξ

(1/2)
tl

]
0≤k,l≤pn

.

Thus,

E‖Ψ−1
n − Ipn+1‖2 = E

pn∑
kl=0

 1

n

n∑
i=1

m∑
j1j2=1

pn∑
st=0

lj1j2g
′
ij2

(β̃)g′ij1
(β̃)

σij2(β̃)σij1(β̃)
ξ

(1/2)
ks ε

(s)
ij1
ε
(t)
ij2
ξ

(1/2)
tl − δkl


2

= E

pn∑
kl=0

(akl − δkl)2

= E

pn∑
kl=0

(a2
kl − 2aklδkl + δ2

kl), say.
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We investigate each term separately. Write
∑pn
kl=0 a

2
kl = B1 +B2, where

B1 =
1

n2

pn∑
kl=0

n∑
i=1

m∑
j1j2j

′
1j
′
2=1

pn∑
s1t1s2t2=0

lj1j2g
′
ij2

(β̃)g′ij1
(β̃)

σij2(β̃)σij1(β̃)
ξ

(1/2)
ks1

ε
(s1)
ij1

ε
(t1)
ij2

ξ
(1/2)
t1l

×
lj′1j
′
2
g′
ij′2

(β̃)g′
ij′1

(β̃)

σij′2
(β̃)σij′1

(β̃)
ξ

(1/2)
ks2

ε
(s2)

ij′1
ε
(t2)

ij′2
ξ

(1/2)
t2l

,

B2 =
1

n2

pn∑
kl=0

n∑
i1 6=i2=1

m∑
j1j2j

′
1j
′
2=1

pn∑
s1t1s2t2=0

lj1j2g
′
i1j2

(β̃)g′i1j1
(β̃)

σi1j2(β̃)σi1j1(β̃)
ξ

(1/2)
ks1

ε
(s1)
i1j1

ε
(t1)
i1j2

ξ
(1/2)
t1l

×
lj′1j
′
2
g′
i2j
′
2
(β̃)g′

i2j
′
1
(β̃)

σi2j
′
2
(β̃)σi2j

′
1
(β̃)

ξ
(1/2)
ks2

ε
(s2)

i2j
′
1
ε
(t2)

i2j
′
2
ξ

(1/2)
t2l

.

Using the fact that Ξ1/2Ξ1/2 = Ξ,

B1 =
1

n2

n∑
i=1

m∑
j1j2j

′
1j
′
2=1

pn∑
s1t1s2t2=0

lj1j2g
′
ij2

(β̃)g′ij1
(β̃)

σij2(β̃)σij1(β̃)
ε
(s1)
ij1

ε
(t1)
ij2

×
lj′1j
′
2
g′
ij′2

(β̃)g′
ij′1

(β̃)

σij′2
(β̃)σij′1

(β̃)
ε
(s2)

ij′1
ε
(t2)

ij′2
ξt1t2ξs1s2

E(B1) =
1

n
o

(
n

p2
n

)
→ 0

E(B2) =
1

n2

n∑
i1 6=i2=1

m∑
j1j2j

′
1j
′
2=1

pn∑
s1t1s2t2=0

E

{
lj1j2g

′(η̃i1j2)g′i1j1
(β̃)

σi1j2(β̃)σi1j1(β̃)
ε
(s1)
i1j1

ε
(t1)
i1j2

}

× E


lj′1j
′
2
g′(η̃i2j′2

)g′
i2j
′
1
(β̃)

σi2j
′
2
(β̃)σi2j

′
1
(β̃)

ε
(s2)

i2j
′
1
ε
(t2)

i2j
′
2

 ξt1t2ξs1s2

=
1

n2

n∑
i1 6=i2=1

pn∑
s1t1s2t2=0

γs1t1γs2t2ξt1t2ξs1s2 .
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We observe that ΓΞ = I and that each of the matrices are symmetric giving, implying

pn∑
t1=0

γs1t1ξt1s2 = 1, s1 = s2 (3.8.15)

= 0, s1 6= s2. (3.8.16)

Thus

E(B2) =
1

n2

n∑
i1 6=i2=1

pn∑
s1t2s2=0

γs2t2ξs1s2

pn∑
t1=0

γs1t1ξt1t2 (3.8.17)

=
1

n2

n∑
i1 6=i2=1

pn∑
s2=0

pn∑
s1=0

γs2s1ξs1s2

=
1

n2

n∑
i1 6=i2=1

pn∑
s2=0

1 =
pn + 1

n
2

(
n

2

)

=
(n− 1)(pn + 1)

n
.

In a similar fashion, we can show that,

−2

pn∑
kl=0

E(aklδkl) =
−2

n

n∑
i=1

pn∑
st=0

γst

pn∑
k=0

ξ
(1/2)
sk ξ

(1/2)
kt =

−2

n

n∑
i=1

pn∑
t=0

pn∑
s=0

γtsξst = −2(pn + 1)

and
∑pn
kl=0 δ

2
kl = pn + 1.

These results together imply that

E‖Ψ−1
n − Ipn+1‖2 = o

(
1

p2
n

)
+

{
(n− 1)(pn + 1)

n

}
− 2(pn + 1) + (pn + 1),(3.8.18)

= o

(
1

p2
n

)
+O

{
pn + 1

n

}
.
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Thus, we obtain ‖Ψ−1
n − Ipn+1‖ = op

(
1

pn

)
and conclude the proof of (3.8.10) in Proposition

3.8.5 .

Next we prove (3.8.11). Referring to (3.8.9),

χn =
Ξ1/2DTV −1/2e

n1/2
=

n∑
i=1

Ξ1/2FTi GiA
−1/2
i R−1A

−1/2
i ei

n1/2

=
n∑
i=1

Ξ1/2FTi GiA
−1/2
i R−1ẽi

n1/2
, ẽi = A

−1/2
i (β̃)ei(β̃)

=
1

n1/2

n∑
i=1

m∑
j1j2=1

pn∑
s=0



ξ
1/2
0s ε

(s)
ij1
g′ij1

(β̃)lj1j2 ẽij2

σij1(β̃)

...

ξ
1/2
pnsε

(s)
ij1
g′ij1

(β̃)lj1j2 ẽij2

σij1(β̃)


,

χTnχn =
1

n

pn∑
t=0


n∑
i=1

m∑
j1j2=1

pn∑
s=0

ξ
1/2
ts ε

(s)
ij1
g′ij1

(β̃)lj1j2 ẽij2

σij1(β̃)


2

= An +Bn, (3.8.19)

An =
1

n

pn∑
t=0

n∑
i=1

m∑
j1j2j3j4=1

pn∑
s1s2=0

ξ
(1/2)
ts1

ξ
(1/2)
ts2

ε
(s1)
ij1

ε
(s2)
ij3

g′ij1
(β̃)g′ij3

(β̃)lj1j2lj3j4 ẽij2 ẽij4

σij1(β̃)σij3(β̃)
,

Bn =

pn∑
t=0

n∑
i1 6=i2=1

m∑
j1j2j3j4=1

pn∑
s1s2=0

ξ
(1/2)
ts1

ξ
(1/2)
ts2

ε
(s1)
i1j1

ε
(s2)
i2j3

g′i1j1
(β̃)g′i2j3

(β̃)lj1j2lj3j4 ẽi1j2 ẽi2j4

nσi1j1(β̃)σi2j3(β̃)
.

We shall show that
An − (pn + 1)

p
1/2
n

is asymptotically negligible in Lemma 3.8.8 and that Bn has

desired distribution in Lemma 3.8.9.

Lemma 3.8.8 We have
An − (pn + 1)

p
1/2
n

p−→ 0.
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Proof Using independence of ẽ with all ε,

E(An) =

pn∑
t=0

n∑
i=1

m∑
j1j2j3j4=1

pn∑
s1s2=0

E
ξ

(1/2)
ts1

ξ
(1/2)
ts2

ε
(s1)
ij1

ε
(s2)
ij3

g′ij1
(β̃)g′ij3

(β̃)lj1j2lj3j4cov(ẽij2 ẽij4)

nσij1(β̃)σij3(β̃)

=
1

n

n∑
i=1

pn∑
s1s2=0

ξs1s2

m∑
j1j2j3=1

E

ε
(s1)
ij1

ε
(s2)
ij3

g′ij1
(β̃)g′ij3

(β̃)lj1j2

σij1(β̃)σij3(β̃)

m∑
j4=1

lj3j4cov(ẽij2 ẽij4).


We note that lj3j4 are elements from the inverse of the correlation matrix (R) and that covariance

matrix of ẽi = A
−1/2
i ei is R . Also for any invertible matrix M , M−1M = I . Using (3.8.16), we

obtain

E(An) =
1

n

n∑
i=1

pn∑
s1s2=0

ξs1s2

m∑
j1j2=j3=1

E

ε
(s1)
ij1

ε
(s2)
ij2

g′ij1
(β̃)g′ij2

(β̃)lj1j2

σij1(β̃)σij2(β̃)

 (3.8.20)

=

pn∑
s1s2=0

ξs1s2γs1s2 =

pn∑
s1=0

1 = pn + 1.

We now evaluate

E(A2
n) = E

 1

n

n∑
i=1

m∑
j1j2j3j4=1

pn∑
s1s2=0

ξs1s2ε
(s1)
ij1

ε
(s2)
ij3

g′ij1
(β̃)g′ij2

(β̃)lj1j2lj3j4 ẽij2 ẽij4

σij1(β̃)σij3(β̃)


2

= Aan + Abn, say. (3.8.21)

Now consider,

50



Aan =
1

n2

n∑
i=1

m∑
j1j
′
1...j4j

′
4=1

pn∑
s1s2s

′
1s
′
2=0

ξs1s2ξs′1s
′
2

× E


ε
s1
ij1
ε
(s′1)

ij′1
ε
(s2)
ij3

ε
(s′2)

ij′3
g′ij1

(β̃)g′
ij′1

(β̃)g′ij3
(β̃)g′

ij′3
(β̃)lj1j2lj′1j

′
2
lj3j4lj′3j

′
4
ẽij2 ẽij′2

ẽij4 ẽij′4
σij1(β̃)σij′1

(β̃)σij3(β̃)σij′3
(β̃)


= O

(
1

n

)
= o

(
1

p2
n

)
. (3.8.22)

Next, we have

Abn =
1

n2

n∑
i1 6=i2=1

m∑
j1j
′
1...j4j

′
4=1

pn∑
s1s2s

′
1s
′
2=0

ξs1s2ξs′1s
′
2
lj1j2lj′1j

′
2
lj3j4lj′3j

′
4

× E


ε
(s1)
i1j1

ε
(s′1)

i2j
′
1
ε
(s2)
i1j3

ε
(s′2)

i2j
′
3
g′i1j1

(β̃)g′
i2j
′
1
(β̃)g′i1j3

(β̃)g′
i2j
′
3
(β̃)ẽi1j2 ẽi2j

′
2
ẽi1j4 ẽi2j

′
4

σi1j1(β̃)σi2j
′
1
(β̃)σi1j3(β̃)σi2j

′
3
(β̃)


=

1

n2

n∑
i1 6=i2=1

∑
s1s2

ξs1s2γs1s2

∑
s′1s
′
2

ξs′1s
′
2
γs′1s

′
2

=
(n− 1)(pn + 1)2

n
. (3.8.23)

Upon combining this fact with (3.8.20), (3.8.21) and (3.8.22), we obtain

var(An) = E(A2
n)− E2(An) = o

(
1

p2
n

)
+

(pn + 1)2

n
.

Thus, we have
An − (pn + 1)

p
1/2
n

p−→ 0.
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From, (3.8.19) and Lemma 3.8.8 we obtain

χTχ− (pn + 1)

(2pn)1/2
=

Bn

(2pn)1/2
.

So the next lemma will establish (3.8.11).

Lemma 3.8.9 Asymptotic distribution of Bn is given as

Bn

(2pn)1/2
→ N(0, 1).

Definition 3.8.1

Wni =
i−1∑
i1=1

m∑
j1j2j3j4=1

pn∑
s1s2=0

ξs1s2ε
(s1)
i1j1

ε
(s2)
ij3

g′i1j1
(β̃)g′ij3

(β̃)lj1j2lj3j4 ẽi1j2 ẽij4

σi1j1(β̃)σij3(β̃)
,

W̃ni =
2

n(2pn)1/2
Wni.

Note that,

Bn =
2

n

n∑
i=1

Wni.

The random variables Wni form a triangular array of martingale differences w.r.t. the filtration

Fn,i = σ(ε
(k)
i1j
, eij , 1 ≤ i1 ≤ i, 1 ≤ j ≤ m, 0 ≤ k ≤ pn), (1 ≤ i ≤ n, n ∈ N). N denotes the set

of all natural numbers. This implies that W̃ni is also a martingale difference array.

Proof

To prove this lemma it is enough to prove the following:

n∑
i=1

W̃ni
d−→ N(0, 1). (3.8.24)
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According to the CLT for the sums of martingale difference arrays, see Corollary 3.1 in Hall

and Heyde (1980), it suffices to verify the following two conditions

n∑
i=1

E(W̃ 2
ni | Fn,i−1)

p−→ 1, (3.8.25)

n∑
i=1

E{W̃ 4
ni | Fn,i−1}

p−→ 0, for all ε > 0. (3.8.26)

Consider,

E(W 2
ni | Fn,i−1) =

i−1∑
i1,i2=1

m∑
j1j2j3j4=1

m∑
j′1j
′
2j
′
3j
′
4=1

pn∑
s1s2s

′
1s
′
2=0

×
ξs1s2ξs′1s

′
2
ε
(s1)
i1j1

ε
(s′1)

i2j
′
1
g′i1j1

(β̃)g′
i2j
′
1
(β̃)lj1j2lj′1j

′
2
lj3j4lj′3j

′
4
ẽi1j2 ẽi2j

′
2

σi1j1(β̃)σi2j
′
1
(β̃)

×E


ε
(s2)
ij3

ε
(s′2)

ij′3
g′ij3

(β̃)g′
ij′3

(β̃)ẽij4 ẽij′4
σij3(β̃)σij′3

(β̃)
| Fn,i−1


=

i−1∑
i1,i2=1

m∑
j1j2j3j4=1

m∑
j′1j
′
2j
′
3=1

pn∑
s1s2s

′
1s
′
2=0

×
ξs1s2ξs′1s

′
2
ε
(s1)
i1j1

ε
(s′1)

i2j
′
1
g′i1j1

(β̃)g′
i2j
′
1
(β̃)lj1j2lj′1j

′
2
lj3j4 ẽi1j2 ẽi2j

′
2

σi1j1(β̃)σi2j
′
1
(β̃)

×E


ε
(s2)
ij3

ε
(s′2)

ij′3
g′ij3

(β̃)g′
ij′3

(β̃)

σij3(β̃)σij′3
(β̃)

m∑
j′4=1

lj′3j
′
4
cov(ẽij4 ẽij′4

)


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=
i−1∑

i1,i2=1

m∑
j1j2=1

m∑
j′1j
′
2=1

pn∑
s1s2s

′
1s
′
2=0

×
ξs1s2ξs′1s

′
2
ε
(s1)
i1j1

ε
(s′1)

i2j
′
1
g′i1j1

(β̃)g′
i2j
′
1
(β̃)lj1j2lj′1j

′
2
ẽi1j2 ẽi2j

′
2

σi1j1(β̃)σi2j
′
1
(β̃)

×
m∑

j3j4=1

E


lj3j4ε

(s2)
ij3

ε
(s′2)

ij4
g′ij3

(β̃)g′ij4
(β̃)

σij3(β̃)σij4(β̃)

 ,

E(W 2
ni | Fn,i−1) =

i−1∑
i1,i2=1

m∑
j1j2=1

m∑
j′1j
′
2=1

pn∑
s1s2s

′
1s
′
2=0

×
ξs1s2ξs′1s

′
2
ε
s1
i1j1

ε
s′1
i2j
′
1
g′i1j1

(β̃)g′
i2j
′
1
(β̃)lj1j2lj′1j

′
2
ẽi1j2 ẽi2j

′
2

σi1j1(β̃)σi2j
′
1
(β̃)

× γs2s′2

=
i−1∑

i1,i2=1

m∑
j1j2j

′
1j
′
2=1

pn∑
s′1s
′
2s1s2=0

×
ξs′1s

′
2
ε
(s1)
i1j1

ε
(s′1)

i2j
′
1
g′i1j1

(β̃)g′
i2j
′
1
(β̃)lj1j2lj′1j

′
2
ẽi1j2 ẽi2j

′
2

σi1j1(β̃)σi2j
′
1
(β̃)

×
pn∑
s2=0

ξs1s2γs2s
′
2

=
i−1∑

i1,i2=1

m∑
j1j2j

′
1j
′
2=1

pn∑
s′1s1=0

×
ξs′1s1

ε
(s1)
i1j1

ε
(s′1)

i2j
′
1
g′i1j1

(β̃)g′
i2j
′
1
(β̃)lj1j2lj′1j

′
2
ẽi1j2 ẽi2j

′
2

σi1j1(β̃)σi2j
′
1
(β̃)

= A
(1)
n + A

(2)
n ,
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where

A
(1)
n =

i−1∑
i1=i2=1

m∑
j1j2j

′
1j
′
2=1

pn∑
s′1s1=0

ξs′1s1
ε
s1
i1j1

ε
s′1
i1j
′
1
g′i1j1

(β̃)g′
i1j
′
1
(β̃)lj1j2lj′1j

′
2
ẽi1j2 ẽi1j

′
2

σi1j1(β̃)σi1j
′
1
(β̃)

,

A
(2)
n =

i−1∑
i1 6=i2=1

m∑
j1j2j

′
1j
′
2=1

pn∑
s′1s1=0

ξs′1s1
ε
s1
i1j1

ε
s′1
i2j
′
1
g′i1j1

(β̃)g′
i2j
′
1
(β̃)lj1j2lj′1j

′
2
ẽi1j2 ẽi2j

′
2

σi1j1(β̃)σi2j
′
1
(β̃)

.

Note that

E(A
(1)
n ) =

i−1∑
i1=1

m∑
j1j2j

′
1=1

pn∑
s′1s1=0

×E


ξs′1s1

ε
s1
i1j1

ε
s′1
i1j
′
1
g′i1j1

(β̃)g′
i1j
′
1
(β̃)lj1j2

σi1j1(β̃)σ(β̃i1j
′
1
)

m∑
j′2=1

lj′1j
′
2
cov(ẽi1j2 ẽi1j2)


=

i−1∑
i1=1

m∑
j1j2=1

pn∑
s′1s1=0

E


ξs′1s1

ε
s1
i1j1

ε
s′1
i1j2

g′i1j1
(β̃)g′i1j2

(β̃)lj1j2

σi1j1(β̃)σi1j2(β̃)


=

i−1∑
i1=1

pn∑
s′1s1=0

ξs′1s
′
2

m∑
j1j2=1

E


ε
s1
i1j1

ε
s′1
i1j2

g′i1j1
(β̃)g′i1j2

(β̃)lj1j2

σi1j1(β̃)σi1j2(β̃)


=

i−1∑
i1=1

pn∑
s′1s1=0

ξs′1s1
γs1s

′
1

= (i− 1)(pn + 1),

E(A
(2)
n ) = 0.

The above facts together imply:

E{E(W 2
ni | Fn,i−1)} = (i− 1)(pn + 1).
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Thus

E{
n∑
i=1

E(W̃ 2
ni | Fn,i−1)} =

2

n2pn
E{

n∑
i=1

E(W 2
ni | Fn,i−1)} (3.8.27)

=
2

n2pn

n∑
i=1

(i− 1)(pn + 1)→ 1.

Next, we shall show that

var
{ n∑
i=1

E(W̃ 2
ni | Fn,i−1)

}
→ 0. (3.8.28)

To prove this claim, first consider

E{
n∑
i=1

E(W̃ 2
ni | Fn,i−1)}2 =

n∑
i=1

E{E(W̃ 2
ni | Fn,i−1)}2 (3.8.29)

+2
∑

1≤i1<i2≤n
E{E(W̃ 2

ni1
| Fn,i1−1)E(W̃ 2

ni2
| Fn,i2−1)}.

The second term satisfies

E(W 2
ni1
| Fn,i1−1)E(W 2

ni2
| Fn,i2−1)

=

i1−1∑
a1,a2=1

i2−1∑
a3,a4=1

m∑
j1j2j

′
1j
′
2=1

m∑
j3j4j

′
3j
′
4=1

pn∑
s′1s1s2s

′
2=0

×
ξs′1s1

ε
s1
a1j1

ε
s′1
a2j
′
1
g′a1j1

(β̃)g′
a2j
′
1
(β̃)lj1j2lj′1j

′
2
ẽa1j2

ẽa2j
′
2

σa1j1
(β̃)σa2j

′
1
(β̃)

×
ξs2s

′
2
ε
s2
a3j3

ε
s′2
a4j
′
3
g′(β̃a3j3

)g′(β̃a4j
′
3
)lj3j4lj′3j

′
4
ẽa31j4

ẽa4j
′
4

σa3j3
(β̃)σa4j

′
3
(β̃)

= A
(1)
n +B

(1)
n + C

(1)
n +D

(1)
n + E

(1)
n ,
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where,

A
(1)
n =

i1−1∑
a=a1=...=a4=1

m∑
j1j2j

′
1j
′
2=1

m∑
j3j4j

′
3j
′
4=1

pn∑
s′1s1s2s

′
2=0

×
ξs1s

′
1
ε
s2
aj1

ε
s′2
aj′1

g′aj1
(β̃)g′

aj′1
(β̃)lj1j2lj′1j

′
2
ẽaj2 ẽaj′2

σaj1(β̃)σaj′1
(β̃)

×
ξs2s

′
2
ε
s2
aj3

ε
s′2
aj′3

g′aj3
(β̃)g′

aj′3
(β̃)lj3j4lj′3j

′
4
ẽaj4 ẽaj′4

σaj3(β̃)σaj′3
(β̃)

,

B
(1)
n =

i1−1∑
a1=a2=1

i2−1∑
a3=a4=1

m∑
j1j2j

′
1j
′
2=1

m∑
j3j4j

′
3j
′
4=1

pn∑
s′1s1s2s

′
2=0

×
ξs′1s1

ε
s1
a1j1

ε
s′1
a1j
′
1
g′a1j1

(β̃)g′
a1j
′
1
(β̃)lj1j2lj′1j

′
2
ẽa1j2

ẽa1j
′
2

σa1j1
(β̃)σa1j

′
1
(β̃)

×
ξs2s

′
2
ε
s2
a3j3

ε
s′2
a3j
′
3
g′a3j3

(β̃)g′
a3j
′
3
(β̃)lj3j4lj′3j

′
4
ẽa31j4

ẽa3j
′
4

σa3j3
(β̃)σa3j

′
3
(β̃)

,

C
(1)
n =

i1−1∑
a1=a3 6=a2=a4=1

m∑
j1j2j

′
1j
′
2=1

m∑
j3j4j

′
3j
′
4=1

pn∑
s′1s1s2s

′
2=0

×
ξs′1s1

ε
s1
a1j1

ε
s′1
a2j
′
1
g′a1j1

(β̃)g′
a2j
′
1
(β̃)lj1j2lj′1j

′
2
ẽa1j2

ẽa2j
′
2

σa1j1
(β̃)σa2j

′
1
(β̃)

×
ξs2s

′
2
ε
s2
a1j3

ε
s′2
a2j
′
3
g′a1j3

(β̃)g′
a2j
′
3
(β̃)lj3j4lj′3j

′
4
ẽa1j4

ẽa2j
′
4

σa1j3
(β̃)σa2j

′
3
(β̃)
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=

i1−1∑
a1=1

pn∑
s′1s1s2s

′
2=0

m∑
j1j2j3j4=1

ξs′1s1
ξs2s

′
2

ε
s1
a1j1

ε
s2
a1j3

g′a1j1
(β̃)lj1j2lj3j4 ẽa1j4

ẽa1j2

σa1j1
(β̃)σa1j3

(β̃)

×
i1−1∑
a2=1

m∑
j′1j
′
2j
′
3j
′
4=1

ε
s′1
a2j
′
1
ε
s′2
a2j
′
3
g′
a2j
′
1
(β̃)lj′1j

′
2
lj′3j
′
4
ẽa2j

′
2
ẽa2j

′
4

σa2j
′
1
(β̃)σa2j

′
3
(β̃)

.

From (3.8.29) we can see that our interest is only in E(A
(1)
n + B

(1)
n + C

(1)
n + D

(1)
n ). So it is

sufficient talk about just the expectation of these terms i.e A(1)
n , B

(1)
n , C

(1)
n , D

(1)
n and E(1)

n . D(1)
n

has terms with a1 = a4, a2 = a3 and has same expectation as C(1)
n . E(1)

n has all the terms like

a1 6= a2 6= a3 6= a4 and so on with all of them the expectation is 0 and so E(En) = 0. We now

examine the expectations of the remaining terms i.e A(1)
n , B

(1)
n and C(1)

n i.e.

E(A
(1)
n ) = (i1 − 1)o

(
n

p2
n

)
,

E(B
(1)
n ) =

i1−1∑
a1=1

m∑
j1j2j

′
1j
′
2=1

pn∑
s′1s1=0

× E


ξs′1s1

ε
s1
a1j1

ε
s′1
a1j
′
1
g′a1j1

(β̃)g′
a1j
′
1
(β̃)lj1j2lj′1j

′
2
ẽa1j2

ẽa1j
′
2

σa1j1
(β̃)σa1j

′
1
(β̃)


×
i2−1∑
a3=1

m∑
j3j4j

′
3j
′
4=1

pn∑
s′2s2=0

× E


ξs′2s2

ε
s2
a3j3

ε
s′2
a3j
′
3
g′a3j3

(β̃)g′
a3j
′
3
(β̃)lj3j4lj′3j

′
4
ẽa3j4

ẽa3j
′
4

σa3j3
(β̃)σa3j

′
3
(β̃)


= (i1 − 1)(pn + 1)(i2 − 1)(pn + 1),
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E(C
(1)
n ) =

i1−1∑
a1=1

pn∑
s′1s1s2s

′
2=0

γs1s2γs′1s
′
2

i1−1∑
a2=1

ξs1s
′
1
ξs2s

′
2

= (i1 − 1)2(pn + 1).

Thus, we get

E{E(W 2
ni1
| Fn,i1−1)E(W 2

ni2
| Fn,i2−1)} = E(A

(1)
n +B

(1)
n + C

(1)
n +D

(1)
n + E

(1)
n )

= (i1 − 1)o

(
n

p2
n

)
+ (i1 − 1)(i2 − 1)(pn + 1)2

+ 2(i2 − 1)2(pn + 1). (3.8.30)

On the same lines we can show that

E{E(W 2
ni | Fn,i−1)}2 = (i− 1)o

(
n

p2
n

)
+ (i− 1)2(pn + 1)2 + 2(i− 1)2(pn + 1). (3.8.31)

Combining results (3.8.29), (3.8.30), (3.8.31) we obtain,

E{
n∑
i=1

E(W 2
ni | Fn,i−1)}2 =

n∑
i=1

(
(i− 1)o

(
n

p2
n

)
+ (i− 1)2(pn + 1)2 + 2(i− 1)2(pn + 1)

)

+ 2
n∑
i=1

i−1∑
i1=1

(
(i1 − 1)o

(
n

p2
n

)
+ (i− 1)(i1 − 1)(pn + 1)2

)

+ 2
n∑
i=1

i−1∑
i1=1

2(i1 − 1)2(pn + 1)

= O(n3)o

(
n

p2
n

)
+ n4(pn + 1)2{1 + o(1)}+ n4(pn + 1){1 + o(1)},
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E{
n∑
i=1

E(W̃ 2
ni | Fn,i−1)}2 = E{

n∑
i=1

E(
2

n2pn
W 2
ni | Fn,i−1)}2

= 1 + o(1).

Thus, we have proved (3.8.28). This fact together with (3.8.27) completes the proof of (3.8.25).

Next, we shall sketch a proof of the fact

n∑
i=1

E(W̃ 4
ni | Fn,i−1)

P−→ 0. (3.8.32)

This fact readily implies (3.8.26).

Note that

W 2
ni =

i−1∑
i1,i2=1

m∑
j1j2j3j4=1

m∑
j5j6j7j8=1

pn∑
s1s2s3s4=0

×
ξs1s2ξs3s4ε

s1
i1j1

ε
s3
i2j5

g′i1j1
(β̃)g′i2j5

(β̃)lj1j2lj5j6lj3j4lj7j8 ẽi1j2 ẽi2j6

σi1j1a(β̃)σi2j5(β̃)

×
ε
s2
ij3
ε
s4
ij7
g′ij3

(β̃)g′ij7
(β̃)ẽij4 ẽij8

σij3(β̃)σij7(β̃)
.

Using techniques similar to the ones in the previous result, we can write terms in W 4
ni in to 4 terms

of type i1 = i2 = i3 = i4 that are of order (i − 1)o(n2p2
n) and remaining terms that are of the

order i(i− 1)p4
no
(
n/p2

n

)
, to obtain
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n∑
i=1

E(W 4
ni) = O(n2)o(n2p2

n) +O(n3)p4
no

(
n

p2
n

)
,

n∑
i=1

E(W̃ 4
ni) = O

(
1

n4p2
n

){
O(n2)o(n2p2

n) +O(n3)p4
no

(
n

p2
n

)}

= o(1). (3.8.33)

Thus, from (3.8.33) we prove (3.8.26) and (3.8.24) and thereby Proposition 3.8.9. From Lemma

3.8.5 , we also prove 3.4.2 of Theorem 2. Next, we prove the remaining parts of Theorem 2.

We now prove 3.4.3 of Theorem2

Proof Recall, D(β̃) = D, Ψ−1
n = nΓ1/2(DTD)−1Γ1/2 and Γ̃ = DTD/n.

From Lemma 3.8.4 and (3.8.9) we have,

n(β̂ − β)TΓ(β̂ − β) = ZTn ΓZn.

Hence consider,

ZTn ΓZn − ZTn Γ̃Zn = ZTn Γ1/2(I −Ψ−1
n )Γ1/2Zn

= χTnΨn(I −Ψ−1
n )Ψnχn.

Taking norm we get,

∥∥∥ZTn ΓZn − ZTn Γ̃Zn

∥∥∥ =
∥∥∥χTnΨn(I −Ψ−1

n )Ψnχn

∥∥∥
≤ |χnχTn |

∥∥∥Ψn(I −Ψ−1
n )Ψn

∥∥∥ = Op(pn)Op

(
1

pn

)
.
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We use (3.8.11), (3.8.14) to get the above result. Thus, we obtain,

∥∥∥ZTn ΓZn − ZTn Γ̃Zn

(2pn)1/2

∥∥∥ = op(1).

This concludes the proof of 3.4.3 from Theorem 2.

We next prove 3.4.4 Theorem 2

Proof Consider,

∥∥∥n(β̂ − β̃)T
DTD

n
(β̂ − β̃)− n(β̂ − β̃)T

DT
β̂
D
β̂

n
(β̂ − β̃)

∥∥∥ ≤ ∥∥∥n(β̂ − β̃)
∥∥∥2∥∥∥DTD

n
−
DT
β̂
D
β̂

n

∥∥∥.

We have
∥∥∥DTD

n
−
DT
β̂
D
β̂

n

∥∥∥ = op(1) and from Theorem 1 we have n‖β̂ − β̃‖ = Op(1). Thus,

we get ∥∥∥n(β̂ − β̃)T
DTD

n
(β̂ − β̃)− n(β̂ − β̃)T

DT
β̂
D
β̂

n
(β̂ − β̃)

∥∥∥ = op(1).

Thus, the result is proved.
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Chapter 4

Measurement Error Model

In this chapter, we consider the problem of estimating the effect function in a functional regression

set-up where the response is a scalar and the regressor is a function, in the presence of measurement

error. This is as an extension of the functional model proposed in the previous chapter albeit with

stronger assumptions. In several studies the covariates are contaminated with errors. Sometimes,

this error can be easily determined and eliminated from the data. However, if it is random then we

need to adjust our analysis to account for this measurement error as ignoring it can lead to bias in

estimating parameters. We adapt the framework provided by Stefanski and Carroll (1987) to ac-

commodate functional covariate. We then use the Karhunen-Loéve expansion to obtain estimating

equations similar to those in Stefanski and Carroll (1987). The main difference between the two

frameworks is that the number of parameters to be estimated in the functional case is diverging

while in the non functional case is fixed. We prove the consistency of our estimates in the case that

the response has normal distribution conditional on the functional regressor. We perform a limited

simulation study to investigate the accuracy of our estimator.

There are two important features of measurement error models: the first one is the relationship

between the original unobserved process X(t) and the observed process W (t) with error, and the

type of data available to assess some characteristics of the measurement error. For the relationship

between X(t) and W (t) we assume the classical additive error model i.e. W (t) = X(t) + U(t),

E(U(t)|X(t), t ∈ T ) = 0, T = [0, 1]. We assume that replicates of W (t) are available. Further
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details of this model will be given subsequently.

There is little literature available on measurement errors in functional model. Cardot et al.

(2007) consider the linear functional model: Yi =
∫
β(t)Xi(t) + ei, i = 1..., n and assume the

following measurement error structure: Wi(tj) = Xi(tj) + Uij , i = 1, ..., n, j = 1, ..., p and

t1 < t2 <, ... < tp are the discrete points at which the curves are observed. Noise components Uij

are assumed to be independent of each other and error ei for all i, j. The noise components are not

considered to be discrete realizations of a continuous time stochastic process and are interpreted

as random measurement errors at finite discretization points. This particular measurement error

framework is used because in practice we only observe curves at finite discrete points instead

of the entire curve. Similar approach can be found in Cardot (2000). In her dissertation, Cai

(2014) extends the simulation extrapolation (SIMEX) method developed by Carroll et al. (2006)

to accommodate the measurement error at finite discrete points in linear as well as non-linear

functional models. The measurement errors Uij are allowed to have a sparse correlation structure

like the autocorrelation structure and are assumed to be normally distributed. The main advantage

of the method that we propose in this chapter is that it does not impose any restriction on the

covariance function of the measurement error process U(t), t ∈ T .

4.1 Model

We observe the following independent sample (Wi(t), t ∈ T = [0, 1], Yi), i = 1, ..., n, where

Wi(t) is the surrogate of the true covariateXi(t) which is unobservable. We assume thatWi(·), 1 ≤

i ≤ n are random elements of L2 = L2[0, 1] and that Yi given the functionXi(·), has the following
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distribution with respect to a dominating measure m :

fYi(yi; θ1, xi(·)) = exp

(
yi(β0 +

∫ 1
0 β̃(t)xi(t)d(t))− b(β0 +

∫ 1
0 β̃(t)xi(t)dt)

a(φ)
+ c(yi, φ)

)
.

(4.1.1)

All integrals hereafter are taken over [0, 1] and Xi(·),∀i and β̃(·) ∈ L2, θ1 = (β0, β̃(·), φ).

Let (ρk)∞k=1 be an orthonormal basis functions in L2 space. Using basis expansion we obtain

E(Yi; θ1, Xi(·)) =

∫
β̃(t)Xi(t)dt =

∞∑
k=1

Xikβ̃k,

where Xik =
∫
X(t)ρk(t)dt, β̃k =

∫
β̃(t)ρk(t)dt. Model (4.1.1) has infinitely many parameters.

We address this issue of infinite dimensions with a truncation strategy. Let β̃ = (β1, ..., βpn)T and

θ̃ = (β0, β̃, φ). Instead of the model (4.1.1), we work with the following sequence of models with

increasing dimension pn:

fYi(yi; θ̃, xi) = exp


yi

(
β0 +

pn∑
k=1

xikβ̃k

)
− b

(
β0 +

pn∑
k=1

xikβ̃k

)
a(φ)

+ c(yi, φ)

 . (4.1.2)

We assume the following relation between the true covariate Xi(·) and the observed surrogate

Wi(·) :

Wi(t) = Xi(t) + Ui(t), i = 1, ..., n, ∀t ∈ [0, 1], (4.1.3)

whereUi is a copy of Gaussian processU having mean function 0 and covariance functionK(·, ·), ∀i.

Take (ρi)
∞
i=1 to be the basis formed from the eigenfunctions of the integral operator K associated
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with the covariance function K(·, ·). Let Wik =
∫
Wi(t)ρk(t)dt and Uik =

∫
Ui(t)ρk(t)dt. This

yields the following measurement error set-up for (4.1.2):

Wik = Xik + Uik, i = 1, .., n, k ≥ 1.

Let, λk be the eigenvalue associated with the kth eigenfunction of K. From the Karhünen-Loève

expansion we obtain that Uik are independent and Uik ∼ N(0, λk), i = 1, .., n, k ≥ 1. Thus, we

have a additive measurement error set up where errors are independent with normal distribution.

This set-up is similar to that of Stefanski and Carroll (1987) where the authors proposed the

sufficiency estimator for generalized linear models. We use their approach to propose estimators

for the parameters. Denote Xi = (Xi1, ..., Xipn)T . Let W̃
(l)
i denote the lth replicate of Wi =

(Wi1, ...,Wipn)T . The likelihood of the replicates W̃i = (W̃
(1)
i , ...,W̃

(m)
i )′ is

f
W̃i

(w̃i, θ̃,xi) =
m∏
j=1

(2π)−pn/2

|Ω1|
exp

(
−1

2
(w̃

(j)
i − xi)

T (w̃
(j)
i − xi)

)
, (4.1.4)

where, Ω1 = diag(λ1, ..., λpn) is the unknown covariance matrix of the measurement error vector

and m denotes the number of replicates. We assume that m = 1 and Ω = Ω1/a(φ) is known. The

estimate of Ω1 and a(φ) are given subsequently. Let Y, W denote random variables with the same

distribution as Yi, Wi, i = 1, ..., n respectively. For now we drop the subscript i and use it when

necessary. We assume that W has no information on Y other than what is contained in x i.e

fY,W(y,w; θ,x) = fY (y; θ,x)fW(w, θ,x). (4.1.5)
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Let ∆(β̃) = (∆1, ...,∆pn)T = ∆ = W + Y Ωβ̃. The distribution of Y |∆ is given by

fY |∆(y|∆ = δ; θ) = exp
(
yη − 1

2
y2β̃TΩβ̃/a(φ) + c(y, φ)− log

(
S(η, β̃, φ)

))
, (4.1.6)

where S(η, β̃, φ) =

∫
exp

(
yη − 1

2
y2β̃TΩβ̃/a(φ) + c(y, φ)

)
dm(y), η = (β0 + δT β̃)/a(φ).

This distribution belongs to exponential family. This leads to the following estimating equations:

Ψs(y,w, θ) = (∂/∂θ)log fY/∆(y|δ; θ) evaluated at δ(β) = w + yΩβ.

Ψ(y,w, θ) =


(y − E(Y |∆(β) = δ(β))) /a (φ)

(y − E(Y |∆(β) = δ(β))) δ(β)/a(φ)−
(
y2 − E(Y 2|∆(β) = δ(β))

)
Ωβ/a(φ)

r(y,w, θ)− E(r(y,w, θ)|∆(β) = δ(β))

 .

(4.1.7)

where, r(Y,w, θ) =
∂c(Y, θ)

∂φ
− Y β0 + δ(β)Tβ

a2(φ)
a′(φ) + Y 2 β

TΩβ

2a2(φ)
a′(φ). Note that Ψ is unbiased

for θ. Any θ̂ satisfying
n∑
i=1

Ψ(wi, yi, θ̂) = 0 is called as a sufficiency estimator. This sufficiency

estimator does not maximize the conditional likelihood.

We present the case when Y has normal distribution. In this case, (4.1.7) can be written as

Ψ(y,w, θ) =


1

σ2
(y − µ)

Ωβ

1 + βTΩβ
− 1

σ2

(
(y − µ)2Ωβ − (y − µ)(δ(β)− 2µΩβ)

)
−1

2σ2
+

(y − µ)2(1 + βTΩβ)

2σ4

 . (4.1.8)

Let ∆∗(β) = (I + ΩββT )−1(∆(β)− β0Ωβ) and µ = (β0 + βT δ(β))/(1 + βTΩβ). Consider the
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following equations:

U(β) =
n∑
i=1

(∆∗i (β)Yi −∆∗i (β)β0 −∆∗i (β)βT∆∗i (β)) = 0, (4.1.9)

n∑
i=1

(Yi − β0 − βT∆∗i (β)) = 0,

σ2 =
1 + βTΩβ

n

n∑
i=1

(Yi − µi)2.

These equations resemble the usual normal equations. The solution to (4.1.9) is also a solution to

(4.1.8). Note that the above equations are non linear in the parameters. Let W∗ = W−W, Y ∗ =

Y − Y , where Y and W denotes the average of Y1, ..., Yn and W1, ...,Wn respectively. The

equations (4.1.9) can be re-written as

β0 = Y − βTW, (4.1.10)

U(β) = −
n∑
i=1

W∗
i Y
∗
i β

TΩβ +
n∑
i=1

Y ∗2i Ωβ −
n∑
i=1

W∗
iW
∗T
i β +

n∑
i=1

W∗
i Y
∗
i = 0,

σ2 =
1 + βTΩβ

n

n∑
i=1

(Yi − µi)2.

The equation U(β) = 0 is a quadratic equation and thus has two roots. There is no way of

determining which root is the correct. One way to handle this problem is to solve the equation

iteratively starting from the naive estimator. Naive estimator can be obtained by treating W as the

true covariate i.e. ignoring the measurement error. We state the assumptions needed to show that

the equations (4.1.10) has a solution β̂ and that this solution is consistent.

Assumption 1 p = pn →∞, pnn
−1/8 → 0.

Assumption 2 sup
i
‖Xi‖ = O(n1/4).
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Assumption 3 For all n we assume that ‖Ω1‖ = O(
√
pn).

Assumption 4 There exist positive constants b1, b2 such that for all n,

0 < b1 ≤ λmin

(
n∑
i=1

XiX
T
i

n

)
≤ λmax

(
n∑
i=1

XiX
T
i

n

)
≤ b2 <∞

Assumption 5 There exists a constant c such that for all n,

max


∣∣∣∣∣∣λmin

 n∑
i1 6=i2

Xi1X
T
i2

n2

∣∣∣∣∣∣ ,
∣∣∣∣∣∣λmax

 n∑
i1 6=i2

Xi1X
T
i2

n2

∣∣∣∣∣∣
 ≤ c

Assumption 6 For all n,

λmax(Ω1)

λmin(Ω1)
≤ λmin

(
n∑
i=1

XiX
T
i

n

)
c−1, c ≤ λmin

(
n∑
i=1

XiX
T
i

n

)

.

Lemma 4.1.1

‖U(β̃)‖ =
√
npn.

Proof

We can show that the distribution of Yi conditional on ∆∗ is normal with mean β0 + β̃T∆∗.

‖U(β̃)‖2 =

pn∑
k=1

(
n∑
i=1

(Yi − E(Yi|∆∗i ))∆
∗
ik

)2

=

pn∑
k=1

n∑
i=1

(
(Yi − E(Yi|∆∗i ))∆

∗
ik

)2
+

pn∑
k=1

n∑
i1 6=i2=1

(
(Yi1 − E(Yi1|∆∗i1))∆∗i1k

)(
(Yi2 − E(Yi2|∆

∗
i2

))∆∗i2k

)
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Taking expectation and using the fact that that the samples are independent we get

E(||U(β̃)||2) = O(npn).

As mentioned in chapter 3 the next theorem is sufficient to prove weak consistency of our

estimator.

Theorem 4.1.1 For all ε > 0, there exists a constant ζ > 0 such that for sufficiently large n,

P

 sup
||β−β̃||=ζ

√
pn/n

(β − β̃)TU(β) < 0

 ≥ 1− ε.

Proof

Let J(β) =

(
∂U(β)

∂β

)
and β∗ be such that ‖β∗− β̃‖ < ‖β− β̃‖. Using Taylors expansion we

obtain,

(β − β̃)TU(β) = (β − β̃)TU(β̃) + (β − β̃)TJ(β∗)(β − β̃)

= (β − β̃)TU(β̃) + (β − β̃)T (J(β∗)− J(β̃))(β − β̃) + (β − β̃)TJ(β̃)(β − β̃).

Using representation (4.1.10) of U(β) we get

J(β) = −
n∑
i=1

Ω(W∗T
i β)Y ∗i − ΩβW∗T

i Y ∗i + ΩY ∗2i −W∗
iW
∗T
i .
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Consider,

(β − β̃)T (J(β∗)− J(β̃))(β − β̃)

= (β − β̃)T

(
n∑
i=1

−Ω(W∗T
i β∗)Y ∗i − Ωβ∗W∗T

i Y ∗i + ΩY ∗2i −W∗
iW
∗T
i

)
(β − β̃)

+ (β − β̃)T

(
n∑
i=1

Ω(W∗T
i β̃)Y ∗i + Ωβ̃W∗T

i Y ∗i − ΩY ∗2i + W∗
iW
∗T
i

)
(β − β̃)

= (β − β̃)T
n∑
i=1

ΩY ∗i (W∗T
i β̃ −W∗T

i β∗)(β − β̃) + (β − β̃)T
n∑
i=1

ΩW∗T
i Y ∗i (β̃ − β∗)(β − β̃)

= A1 + A2

Consider,

|A1| = |(β − β̃)T
n∑
i=1

ΩY ∗i (W∗T
i β̃ −W∗T

i β∗)(β − β̃)|

≤
n∑
i=1

|(β − β̃)TΩY ∗i (W∗T
i β̃ −W∗T

i β∗)(β − β̃)|

≤ ‖Ω‖‖(β − β̃)‖2
n∑
i=1

‖Y ∗i W∗T
i (β̃ − β∗)‖

≤ ‖Ω‖‖(β − β̃)‖3
n∑
i=1

‖Y ∗i W∗T
i ‖

≤ ‖Ω‖‖(β − β̃)‖3
n∑
i=1

‖Y ∗i (X∗Ti + U∗Ti )‖

≤ ‖Ω‖‖(β − β̃)‖3
n∑
i=1

‖Y ∗i X∗Ti ‖+ Y ∗i U∗Ti ‖

≤ ‖Ω‖‖(β − β̃)‖3
n∑
i=1

‖Y ∗i X∗Ti ‖+ ‖Y ∗i U∗Ti ‖

≤ ‖Ω‖‖(β − β̃)‖3
n∑
i=1

‖Y ∗i ‖
(

sup
i
‖X∗i ‖+ sup

i
‖U∗i ‖

)
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Taking norm and using Assumption 1, 2, 3 we get,

sup
||β−β̃||=ζ

√
pn/n

||(β − β̃)T (J(β∗)− J(β̃))(β − β̃)|| = Op

(
ζ̃3√pnp1.5

n nn1/4

n1.5

)
= op(1).

We can prove similarly for A2. Now consider,

n−1(β − β̃)TJ(β̃)(β − β̃) = n−1(β − β̃)T

(
n∑
i=1

−2Ω(W∗T
i β̃)Y ∗i + ΩY ∗2i −W∗

iW
∗T
i

)
(β − β̃)

We have,

n−1
n∑
i=1

−2Ω(W∗T
i β̃)Y ∗i ≈ −2Ωn−1

n∑
i=1

E((W∗T
i β̃)Y ∗i )

= −2Ω
n∑
i=1

(XT
i β̃)2

n
+ 2Ω

n∑
i1 6=i2

(XT
i1
β̃)(XT

i2
β̃)

n2
,

n−1
n∑
i=1

ΩY ∗2 ≈ n−1
n∑
i=1

ΩEY ∗2

= Ω +
n∑
i=1

Ω
(XT

i β̃)2

n
− Ω

n∑
i1 6=i2

(XT
i1
β̃)(XT

i2
β̃)

n2
,

n−1
n∑
i=1

W∗
iW
∗T
i ≈ n−1

n∑
i=1

EW∗
iW
∗T
i

=
n∑
i=1

XiX
T
i

n
− Ω +

n∑
i1 6=i2

Xi1X
T
i2

n2
.

Thus,
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n−1(β − β̃)TJ(β̃)(β − β̃)

= (β − β̃)T

−Ω1

σ2
β̃T

n∑
i=1

XiX
T
i

n
β̃ +

Ω1

σ2
β̃T

n∑
i1 6=i2

Xi1X
T
i2

n2
β̃

 (β − β̃)

− (β − β̃)T

 n∑
i=1

XiX
T
i

n
+

n∑
i1 6=i2

Xi1X
T
i2

n2

 (β − β̃).

Let
∑n
i=1

XiX
T
i

n
= Q,

∑n
i1 6=i2

Xi1X
T
i2

n2
= R,max{|λmax(R)|, |λmin(R)|} = c. Taking supre-

mum

sup
||β−β̃||=ζ

√
pn/n

(β − β̃)TJ(β̃)(β − β̃)

≤ ζ2pn

(
−λmin(Ω1)

σ2
β̃TQβ̃ +

λmax(Ω1)

σ2

∣∣∣β̃TRβ̃∣∣∣− λmin (Q)

)
+ ζ2pnλmax (R)

≤ ζ2pn

(
−λmin(Ω1)

σ2
λmin (Q) ‖β̃‖2 +

λmax(Ω1)

σ2
c‖β̃‖2 − λmin(Q) + λmax(R)

)
= ζ2pnA

Assumptions 4, 5, 6 ensure that A ≤ 0. Thus, the theorem is proved.

4.2 Simulation

We report the details of a limited simulation study that investigates the accuracy of our proposed

estimator in presence of measurement error. While our method does not put restrictions on the

covariance function of the error process, given the challenges of generating a process with the

specific covariance structure we considered the identity covariance function i.e. σ2I{s=t}. This
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makes it easier to control the error in the model.

Following Xiaochen Cai (2014) we generated the functional covariate using the following:

Xi(t) =

pn∑
k=1

εikρk(t),

where, εik ∼ N(0, 1) and are independent for all i = 1, ..., n and k = 1, ...pn. We set pn = 8.

We generated the basis function using the Canadian weather data set Ramsay (2006). This data

set is available in the fda package in R software. We first smoothed the data using B-splines

smoothing that is described in the simulation section in Chapter 3. We generated the response

using Yi =
∫
Xi(t)β(t)dt + εi, where εi ∼ N(0, 1) and are independent for all i. We then

generated the surrogate variable Wi(t) using Wi(t) = Xi(t) + Ui(t) where, Ui(t) is a Gaussian

process with 0 mean function and covariance function given as K(s, t) = σ2I{s=t}. We vary the

value of σ2 to study the effect of measurement error on the estimation procedure. We use 100

replicates to estimate the covariance function. Let W̃i1, ...,W̃i100 denote the replicates of Wi and

W̃i. denote their mean. The estimate of the covariance function K(·, ·) of the measurement error

is
n∑
i=1

100∑
j=1

(W̃ij − W̃i.)(W̃ij − W̃i.)
T

n(100− 1)
.

Let λ̂k denote the kth eigenvalue of the K̂(·, ·). Then, Ω̂1 = diag(λ̂1, ..., λ̂pn). The dimension

pn is chosen by using 5-fold cross validation. We solve the (4.1.10) iteratively with start value

obtained from the naive estimator. The following table reports the result of the simulation. Error

is calculated as (β̂ − β̃)T (β̂ − β̃)/β̃T β̃. In Table 4.1, the naive estimator is the one where we

ignore the measurement error i.e treat W (t) as the true covariate. The corrected estimator is the

one obtained by solving (4.1.10). We can see that as the measurement error increases, the error
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Table 4.1: Error in the estimator as a function of σ2

Error(σ2) Naive Corrected
0.1 0.009 0.001
0.3 0.056 0.006
0.4 0.08 0.008
0.5 0.115 0.02
0.8 0.202 0.08
1 0.256 0.855

in the estimation increases for both the estimators. We can also see that the corrected estimator

improves the accuracy of the estimate. Recall that the estimating equation yields multiple solutions

and we do not have a way of choosing the correct one. To avoid this problem, we solve the equation

iteratively starting from the naive estimator. However, as the measurement error increases in the

data, the start values are farther from the true value and hence, the iterative algorithm does not

always converge to the true value. We observe that the corrected estimator performed better than

the naive one only for a limited range of σ2.
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