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ABSTRACT 

 

 

THE MICROBIOME OF ACUTE BACTERIAL GASTROENTERITIS AND THE 

FUNCTIONAL ROLE OF INTESTINAL BACTERIOPHAGES 

 

By 

Brian Nohomovich 

 Acute gastroenteritis has a major disease burden worldwide. There are 2.3 billion cases of 

acute gastroenteritis worldwide each year that accounts for 8% of all deaths in children under the 

age of 5. In the United States, there are an estimated 179 to 375 million cases annually. 

Gastroenteritis can have acute and chronic effects on human health. Pathogens often are not 

identified in cases of acute gastroenteritis due in part to the wide range of causative agents and the 

difficulties with standard culturing practices. The advent of next-generation sequencing has 

allowed the study of the intestinal microbiome to detect alterations in the composition as specific 

disease signatures. There have been few studies on the microbiome of gastroenteritis, but none 

have to date have studied both the virome and bacteriome together.  Through this combined 

analysis, a deeper understanding of gastroenteritis can be generated. 

 In this dissertation, the Microbiome (Virome and Bacteriome) of 79 cases and 125 member 

controls were examined. It was found that cases had lower diversity and richness in and increased 

abundances in Enterobacteriaceae. Additionally, associations with severe illness were made to a 

specific cluster of samples. Differential abundance analysis identified the involvement of both 

viruses and bacteria. Analysis of the same 79 cases in a recovery state (n=63), identified the 

changes that occur during and after infection. These changes agree with the case and control 

analysis. The functional aspects were analyzed of the viral communities. Three novel 

bacteriophages were isolated from stool samples and characterized. Two of the bacteriophages 



 

 

were determined to be lysogenic and were found in 23 additional E. coli O157:H7 strains based 

on BLAST alignments.  One of the lysogenic bacteriophages (PHG003), harbors an SbcC gene 

which is a predicted exonuclease but it’s important to the host bacterium remains unknown. 

Additionally, a lytic bacteriophage (PHG001) was also isolated and exhibited a relatively broad 

host range and was incredibly virulent to E. coli O157:H7.  Additionally, PHG001 exhibits a 

phage-antibiotic synergism with the use of ampicillin and mitomycin c. Either antibiotic with the 

bacteriophage exhibited a drastic reduction in bacteria growth. PHG001 also reduced shiga toxin 

expression compared to control levels.
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THE DISEASE BURDEN OF DIARRHEAL ILLNESS 

Acute gastroenteritis (infectious diarrhea) is a significant health burden and is one of the 

most common illnesses requiring hospitalization globally (1). There are 2.3 billion cases of acute 

gastroenteritis (2).  1.3 million deaths annually occur as a result diarrhea and in 2016 it accounted 

for 8% of all deaths among children under the age of 5 years (3). Diarrheal illness contributes to 

one in eight deaths in children younger than five years. 

With most infections occurring in developing countries (4), the estimated incidence of 

acute gastroenteritis in the United States ranges from 179 million (5) to 375 million cases (6), 

though this likely is an underestimation of the true incidence, as  50% of cases present without 

symptoms (7). There are 1.5 million office visits, 200,000 hospitalizations, and 300 deaths due to 

acute gastroenteritis of children in the United States (8). Studies have identified the causative agent 

of gastroenteritis in 2.4% to 32% of cases (9–11). A recent study found that 10% of hospitalized 

cases (n=196) tested positive for known gastroenteritis pathogens (12). In contrast, lower 

identification rates (1.5%) of the causative agent was identified when culturing for a subset of 

known pathogens in cases (13). Screening for a large number of pathogens increases the likelihood 

of identifying a causative agent in a case. However, extensive culturing for pathogen identification 

in cases of gastroenteritis is both cost and time prohibitive to perform. Furthermore, empiric 

management for most patients, which consists of nutritional support and the avoidance of 

antibiotics (except in select cases) (14, 15), will remain relatively unchanged despite a positive 

stool-culture result (9).  Given these limitations, culturing is still the primary diagnostic test for 

laboratory diagnosis in gastroenteritis (16). Although whole-genome sequencing of isolated 

pathogens can be used to confirm identity and predict virulence and phenotypes based on genomic 

alignments, culturing is still necessary to evaluate important phenotypes such as antibiotic 
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susceptibility, serotyping, and the expression of specific virulence factors. Studies have attempted 

to improve the predictability of stool culturing by utilizing serum c-reactive protein (CRP) and 

stool white blood cell counts (13), with some suggesting the use of a scoring system along with 

clinical presentation, stool culture, and CRP to guide patient management (17).   

The poor diagnostic yield and clinical utility of stool culturing is due in part to the great 

diversity of organisms that can potentially cause acute gastroenteritis and the impracticalities of 

directly culturing for each potential pathogen.  The most common potential pathogens that can 

cause diarrhea include viruses such as Norovirus, Astrovirus, and Rotavirus (5). Bacterial 

pathogens include Campylobacter jejuni, Escherichia coli (E. coli), Salmonella spp., and Shigella 

spp., while protozoan pathogens include Cryptosporidium and Giardia. Helminths such as Ascaris 

and Enterobius are also common causative organisms for diarrhea (18). Rotavirus, 

Cryptosporidium, Shigella, and E. coli account for most of the disease burden globally in children 

(19). E. coli infections can further impact childhood development (20) and induce acute kidney 

injury (21).  

Gastroenteritis has both acute and chronic indirect impacts on human health. An acute 

indirect effect involves immediate pathogen infection and resolution that as a result also leads to 

the expansion of Enterobacteriaceae in the gut (22). It can also lead to a chronic, inflammatory 

state in the gut that predisposes patients to post-infectious irritable bowel syndrome (IBS), or 

inflammatory bowel disease (IBD), with symptoms lasting up to 10 years after the infection (23, 

24). In the year following a case of infectious gastroenteritis, individuals are 2.4 times more likely 

to develop IBD (25). An underlying mechanism predisposing to these chronic conditions has been 

proposed, and involves triggering of a divergent inflammatory response due to the initial infection 

(22). This response, which was observed for infections caused by adherent invasive E. coli (AIEC), 
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creates a selective environment for bacterial proliferation and prolonged inflammation (26). 

Defining significant alterations that occur in the human gut microbiome during bacterial infections, 

otherwise known as intestinal dysbiosis, can not only identify novel mechanisms contributing to 

several human diseases, but may also lead to the identification of novel therapeutic interventions. 

THE MICROBIOME 

Microbiome as a term was first used in 1952 (27) and referred to the entire ecological 

community of microbes and their interactions with the immediate environment. A more modern 

definition of microbiome refers to the collective genomes of the microbes in a respective 

environment (28). Both definitions are interchangeably used in contemporary research studies. The 

former focuses on the main microbial members in a community, while the latter integrates 

molecular genomics to infer the presence of several additional elements, such as metabolic 

functions, in these communities. There are many determinants of the composition of the 

microbiome. For instance, studies have shown that diet (29), antibiotics (30), genetics (31), age, 

and geography (32, 33) can all shape a respective microbiome. Diseases can influence 

microbiomes, which has been demonstrated for diabetes (34), obesity (35), cancer (36), IBD (37), 

HIV (38), rheumatoid arthritis (39), and gastroenteritis (40). Sequencing technology is commonly 

used to study the microbiome due to difficulties in culturing all microbes residing in a given 

community.  

Characterizing the Microbiome 

The first application of genomics for characterizing a microbial community occurred in 

1986 with the use of vectors like Bacteria Artificial Chromosomes (41). In short, fragments of 

DNA present in a respective microbiome were subcloned and subjected to DNA sequencing 

techniques. The identification of unique DNA sequences, and the subsequent alignment of these 
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against other known genomes, allows analysis of the genomic architecture of the overall 

microbiome community. The advent of high throughput and automated sequencing technologies 

expanded the capacities of these studies, fostering more sophisticated methods to identify 

organisms via gene analysis. One example of this is called metataxonomics (42) a method that 

involves selective high throughput sequencing of single marker genes to identify and classify the 

organisms present in a given sample (43). Sequencing the ribosomal RNA (rRNA) genes, for 

instance, is useful for profiling the taxonomical composition of distinct microbial communities. 

Common marker genes include 16S rRNA for bacteria (43), 18S rRNA for eukaryotes (44), and 

the internal transcribed spacer (ITS) region of the ribosome for fungi identifications (45). Marker 

genes are well conserved and allow for differentiation to the species level (46) due to sequence 

variation in the hypervariable region of the target gene sequence. Quantitative Insights Into 

Microbial Ecology (47) or mothur (48) are examples of algorithms used for marker gene analysis 

and involve quality filtering, denoising (error correction), chimeric sequence removal, clustering 

of reads into operational taxonomic units (OTUs) and classification of OTUs utilizing a database 

such as the Ribosomal Database Project (RDP) (49), SILVA (50), or the now-defunct Greengenes 

(51). Use of these strategies have been instrumental in defining the bacteriome in environments, 

animals, and healthy and ill humans. Nonetheless, the use of marker genes has several significant 

limitations. Marker genes are imperfect; more than 50% of organisms are undetected with 16S 

rRNA amplicon sequencing (52). Additionally, viruses cannot be classified using this technology 

as they lack analogous universal conserved genes to serve as a unique identifier for an organism. 

Metagenomics utilizes high-throughput, non-targeted DNA sequencing of the microbial 

genomes in an environment without targeting a particular marker gene (53). Sequencing produces 

short fragments of base pairs, a “read”, representing a portion of a genome. Metagenomic analysis 
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of a microbiome begins with quality-control. Numerous tools are available for quality-control 

analysis, and include Cutadapt (54), Trimmomatic (55), FastX-Toolkit (56), and BBtools (57). 

FastQC (58) can be used, while MultiQC (59) can merge individual reports into a single final 

report.  Read alignment software such as Bowtie2 (60), BWA (61), or FastQ Screen (62) can be 

used to match reads against reference genomes (e.g., human) and to remove host sequences that 

were also sequenced during amplification. For larger datasets, digital normalization (63) with the 

Khmer package (64) can be used to reduce read redundancy and normalize coverage in samples, 

thereby making downstream analyses computationally cheaper.  

After quality-control assessments, sequenced reads can be assembled into contiguous 

sequences (contigs) or classified directly. Direct classification of reads is sufficient to profile the 

microbial community from environments with related microbial populations that are well studied 

(i.e. the human gut). This approach allows for an assessment of all types of genomes including 

viruses and does not have the bacterial bias inherent with 16S rRNA gene analyses. Additionally, 

species diversity, richness and uniformity of each community can be evaluated for each profile 

(65). Reads can be directly mapped to curated pathogen databases of genes to provide insight about 

gene functions using the tools listed above. Novel pathogens (66, 67) have been discovered using 

these approaches, and in microbial environments that are relatively unexplored, assembly and 

binning of sequences can provide a qualitative assessment of the respective microbiome.  

Deriving sequencing data and distilling the information into identification of specific 

organisms via single genome assembly is challenging, as assembly involves matching reads into 

longer contigs that can be used for downstream analyses (68). Two of the most common single 

genome assemblers are Velvet (69) and SPAdes (70). Although traditional assemblers assume 

uniform coverage across the genome to help resolve errors, metagenomics assembler such as Meta-
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Velvet (71), MegaHit (72), IDBA-UD (73), and Meta-SPAdes (74) relax this assumption. 

Additionally, metagenomics involves a mixed population of microbes at varying abundances and 

uneven sequencing depth, which needs to be accounted for by metagenomic assemblers. 

Metatranscriptomics is an alternative strategy to study functional metagenomics and attempts to 

capture all the RNA in a sample, which represents all genes that were transcribed (86). Regardless 

of the approach taken, annotation of the sequences must be performed before this analysis can be 

started.  

The functional capacity of an organism can be investigated directly once the nearly 

complete genome is available (78). Genes related to virulence or function can directly be extracted 

from MAGs and analyzed for multiples purposes including constructing phylogenetic trees to 

elucidate evolutionary relationships and diversity within a sample. Also, functional metagenomics 

can infer the translated product of identified gene sequences either through inference using 

software like Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 

(PICRUSt) (84) or direct expression of the gene in a vector (85).  

Metagenomic classification and sequence profiling can be performed on reads, assemblies, 

or MAGs. The Basic Local Alignment Search Tool (BLAST) (87), which is available in Genbank® 

(88) via the National Center for Biotechnology Information (NCB), is the traditional methodology 

used for aligning sequences. However, due to increases in both the database size and number of 

sequenced datasets, it has become computationally impractical to utilize BLAST alignments. 

Despite this, BLAST remains the most sensitive software (89) even though additional tools have 

been developed to expedite the classification process. Sequence classification techniques fall under 

one of the following categories: alignment-based approach Bowtie2 (60); kmer-based alignment 

with Kraken (90) or Clark (91); aligning translated nucleotides to a protein database by sequence 
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with Diamond (92) or by kmer with Kaiju (93); alignment of marker genes with PhyloPhlAn (94); 

or alignment of minhash signatures (95) with MASH (96) or Sourmash (97). The selection of the 

toolset to be used should reflect both the research goals and computational facilities available.  

Assemblies can be used to derive complete or near-complete genomes from metagenomes 

called metagenome-assembled genomes (MAGs). The process of creating a MAG involves 

binning of contigs to identify individual genomes within metagenomic samples (79). To do this, 

binned contigs are quality-controlled with GroopM CheckM (80), MaxBin 2.0 (81), and Metabat 

2 (82). GroopM (83) infers the population genomes by coverage of assembled contigs, while 

CheckM measures the completeness and contamination of a MAG with the use of single-marker 

genes. Moreover, MaxBin 2.0 utilizes an expectation-maximation algorithm to optimize the 

number of bins, and Metabat 2 merges contigs into MAGs. This tool is particularly useful for the 

identification of new species as was demonstrated in a prior study of microbial communities within 

hot springs, which identified 36 MAGs, some representing taxonomically underrepresented groups 

like archaea (78) or in a cattle rumen which uncovered 913 novel species of bacteria (79). Despite 

these difficulties, metagenomic assemblies have been used to identify a novel bacteriophage (75). 

This bacteriophage is a member of the most abundant bacteriophage family in the human 

gastrointestinal tract (76) and was recently isolated and cultured (77).  

The Bacteriome 

The microbiome is an umbrella term to represent all microorganisms residing in a given 

environment. The microbiome consists of other “-omes” (28) that are specific for bacteria, fungi, 

archaea, and viruses. Studies on the bacterial component of the microbiome, “the bacteriome,” 

have successfully documented the bacterial communities present via 16S rRNA sequencing, 

metagenomics (98), and culturing (99). The bacteria of the microbiome have been studied in 
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animals (100), at various sites in the human body (101), and in many human disease states (102–

105). Efforts have been employed to translate knowledge of a respective microbiome to clinical 

laboratory tests that can be utilized to improve patient care while classifying the common 

pathogenic and non-pathogenic taxa (106).  

Much work has been done relative to identifying crucial bacterial members of the distal 

gut microbiome in both health and disease states. Firmicutes and Bacteroides have been found to 

represent the most dominant phyla in the human colon (35), and alterations in phyla abundance 

have been associated with obesity (34, 35, 107, 108).  Bacteroidetes and Prevotella, both genera 

belonging to Bacteroides, are commonly found within the human gut. Enterotypes have been 

proposed that classify an individual’s intestinal microbiome based on the dominant genera of either 

Bacteroidetes or Prevotella, which were suggested to have an antagonistic relationship (109). 

Studies on diet (29) have shown that western-type diets have a high-abundance of Bacteroidetes, 

with 40-60% of an individual’s microbiome being comprised of this genus (110). A meta-analysis 

of diet studies further identified that Prevotella and Bacteriodetes represent the most significant 

percentage of a healthy person’s fecal microbiome and could be utilized as a marker for diet, with 

both genera representing biomarkers of diet and lifestyle (111). A study in germ-free mice also 

suggests competition between Bacteriodetes thetaiotaomicron and Prevotella copri, which 

occurred due to increased fiber intake (112). The Prevotella population, in particular, may be 

important for plant glycan digestion. Indeed, prior studies have linked Prevotella abundance to 

plant-based or Mediterranean diets even though its specific metabolic niche remains ill-defined 

(113); this could be due in part to its high degree of diversity (114). In a mouse model using twin 

microbiota discordant for obesity (107), it was found that the phenotype correlated with microbiota 

profiles. The obese phenotype in mice was associated with branch-chain amino acid metabolism 
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whereas the lean phenotype was associated with small-chain fatty acid fermentation. Small-chain 

fatty acids, such as butyrate, have been shown to decrease insulin sensitivity and energy 

expenditure in mice (115) and regulate gut hormones to promote a lean phenotype (116). 

Bacteroidetes abundance was associated with the lean phenotype in mice (107) and is probably 

due to being and is a butyrate producer (117). Methanogens have also been associated with a leaner 

body habitus (118). Chrisensenella is the most dominant methanogen family in the human gut 

(119) and is the most heritable bacteria family in repeat twin studies (120, 121). Methanogens can 

reduce hydrogen to methane, which promotes the growth of anaerobic bacteria (122). 

Additional populations of bacteria important for human gut health include Veillonella 

(123), and Bacteroidetes (124) that can both metabolize bile acids, which is vital for dietary intake 

of fats and fat-soluble vitamins. Akkermansia is involved in mucin degradation (125) which can 

lead to mucosal degradation (126). Bifidobacterium can promote health by the breakdown of 

sugars (127), which can then be cross-fed to other microbiota, like small-chain fatty acid producers 

(128). Odoribacter (129) and Roseburia (130) can produce small-chain fatty acids which have 

been shown to have anti-inflammatory effects (131). Faecalbacterium produces anti-inflammatory 

proteins that reduce inflammation in the gastrointestinal tract. The presence of these anti-

inflammatory proteins has been found deficient in Crohn’s disease patients and, therefore, could 

play a role in reducing colitis in mouse models (132). Similarly, Enterococcus represents a group 

of common commensals that can produce bacteriocins with antimicrobial properties (133); some 

members of Enterococcus, however, are opportunistic pathogens and can cause infections. 

Members of the phylum, Proteobacteria, are increased in abundance in disease (134). For example, 

Escherichia, a genus of Proteobacteria, has been associated with IBD (135, 136), gastroenteritis 

(40), and colorectal cancer (135, 137). By contrast, other genera within Proteobacteria can exhibit 
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anti-inflammatory properties. Acinetobacter,a genus of Proteobacteria, has been shown to directly 

induce T cell differentiation in vitro and downregulate helper T cells (138). Like Enterococcus, 

some members such as Acinetobacter baumannii, are opportunistic pathogens capable of causing 

human infections. Alistipes typically represent commensals found in lower abundance and have 

been associated with plant-based diets (139, 140); but, it was associated with abdominal pain in 

pediatric patients (141).  

The Virome 

Viruses can also affect both bacteria and humans. Viruses found within microbial 

communities examined by metagenomics represent the “virome”. As some of the viruses within 

the virome are bacteriophages, ie: viruses that infect bacteria, these microbial populations are 

commonly referred to as the “phageome”. Both play essential roles in shaping bacterial 

communities in any environment. Prior studies have classified viral communities using the 

multiple-displacement amplification (142), direct isolation of viruses with sequencing (143, 144), 

and viral genome identification in metagenomes (145). Through these studies it has become 

apparent that viral databases are sparse (146) with many of the genomes of isolated viruses not 

aligning to known viruses (143, 147–150). Importantly, assemblies of reads from metagenomes of 

isolated viruses have resulted in less than 2% of the sequences getting annotated taxonomically 

(151). This is in stark contrast to bacterial databases that can achieve greater than 90% annotation 

of the diversity in sequencing reads down to the species level in the human gastrointestinal tract 

(152). Viruses mutate more frequently than their hosts, and even if there exists an entry in the 

database, they still might not get classified. Despite the incompleteness of viral databases and the 

difficulty with the approaches in studying the virome, studies of viral communities have provided 

great insight into ecology and human health.  
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The Phageome 

Most studies have focused on healthy individuals to describe the bacteriophage component 

of the virome, “the phageome”. Studies have shown that the intestinal phageome rapidly changes 

in the first weeks of life (153) and through childhood into adulthood (154). The variation of the 

virome between individuals is high, but diversity within a person is low (143). Additionally, diet 

(147), antibiotics (155), and chronic diseases such as HIV (38), IBD (156), and colorectal cancer 

(157) have been shown to impact the phageome directly. Such chronic insults have been shown to 

contribute to rapid phageome evolution (150) driven mostly by temperate bacteriophages (144, 

158). Temperate bacteriophages, also called lysogenic phage, are bacteriophages that are 

incorporated in the bacterial genome as a prophage. The prophage is maintained and replicated 

alongside the host bacterial genome but can enter a lytic state, releasing progeny into the 

environment, which increases the abundance of bacteriophage present. 

Studies that have examined interactions between bacteriophage and their host bacteria in 

aquatic environments (159) have proposed a “kill-the-winner” (KTW) model for microbial 

ecosystems (160), an expansion Lotka-Volterra cycling model for predator-prey relationships 

(161). In the KTW model, latent prophages replicate in proportion to the abundance of its host 

bacteria, which results in a stable bacterial population (162). For instance, an outgrowth of a 

bacterial population could be lysed by increased replication of prophages present in its genome. 

Similar dynamics have been observed in the human gut as well. A prophage of Enterococcus 

faecalis expressed in the presence of amino acids, for example, resulted in a reduction of the 

bacterial host (163). Indeed, nutrient availability has long been established as a predictor of 

prophage induction (164–168).  
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Based on genomic alignments performed in one study, it was demonstrated that 

bacteriophages were capable of infecting several hosts within the oral microbiome by 

identification of the same prophages in different bacterial species. (169). There is evidence for 

cross-infectivity, or the ability of one bacteriophage to infect multiple hosts, outside of 

metagenomics. For example, a Myoviridae bacteriophage could infect Shiga toxin-producing E. 

coli (STEC) O157:H7 and Salmonella spp., two common but genetically distinct members of 

Proteobacteria (170). Tunavirinae, however, is a subfamily of bacteriophage that has high 

specificity for STEC O157:H7 but little infectivity for non-O157 STEC (171), demonstrating that 

variation in infectivity can also occur among members of the same species.  KTW does not fully 

explain this finding of cross-infectivity in bacteriophages as it typically models a single 

bacteriophage-bacterium relationship.  

THE IMPACT OF BACTERIOPHAGE ON MICROBIOTA 

A bacteriophage that has multiple hosts would have an increased chance of replicating and 

persisting in a given environment. The initial process of a bacteriophage infecting a bacterium is 

due to the presence of a receptor on the host bacterium. Detailed analysis is needed to identify 

critical receptors that bacteriophage targets to better define their relationship with specific 

members of the microbiota (172). Bacteriophage can directly impact host bacterial populations by 

altering transcription (173) and providing them with beneficial genes such as toxins (174, 175) or 

antibiotic resistance genes (143, 147, 176, 177) that facilitate survival in different environments.  

Few studies have directly studied both the virome and bacteriome simultaneously but have 

provided great insight into ecology. Studies of monozygotic twins have demonstrated that 

bacteriophage populations within the microbiome can directly shape bacterial diversity and that 

bacteriome abundance is inversely correlated with virome abundance (178). The inverse 
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correlation between the abundance of viruses and bacteria has been observed in other studies (38, 

156, 157). Furthermore, mouse models have shown that bacteriophage can directly impact the 

resident microbes (179), while mucosal models of confluent cell layers demonstrated that 

bacteriophage could transcytose across the mucosal surface (180). Similarly, another study found 

that bacteriophage in a mucin matrix could prevent pathogen colonization (181) while 

accumulating in the mucosa to a concentration 10x higher than the bacterial concentration. (181) 

This finding is in stark contrast to the bacteria to bacteriophage ratios that have been described in 

feces, which are generally 10:1 to 1:1 (143, 147, 158). Mucosal surfaces are common infection 

sites of invading pathogens, and bacteriophages are frequently found at these sites (181). 

Additionally, small intestine bacteriophage adhere to the KTW model by preserving bacterial 

diversity (182),  in contrast to bacteriophage of the large intestine that fail to preserve bacterial 

diversity (143).  

The “Piggyback-the-winner” (Figure 1.1) theory, attempts to reconcile some of the issues 

associated with the KTW model (183). Indeed, this theory proposes that bacteriophage will enter 

lysogenic life cycles either at low or high concentrations of their respective bacteria hosts,  but  

will be lytic otherwise (183). The evolutionary benefit of this is apparent. If a host is present in 

high concentration, then the bacteriophage can integrate and replicate alongside the host and take 

advantage of the rapid replication rates. However, if the host is present in low concentration, then 

the bacteriophage can integrate to maintain itself while not providing stress on the host (183). The 

piggyback-the-winner theory has been expanded to mucosal surfaces (184) in conjunction with the 

bacteriophage-adhering mucosal model (181). This latter theory proposes the existence of a 

bacteria and bacteriophage gradient across mucosal surfaces (181). Towards the lumen, bacteria 

and bacteriophage concentrations are highest and operate under lysogenic-favored replication 
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(184). The deeper layers of the mucosa become bacteriophage rich and bacteria scarce, which shift 

bacteriophage towards the KTW dynamics, or lytic-cycle activation of the bacteriophage (184). 

Ultimately, high bacteriophage concentrations are noted nearest the epithelial surface where 

bacteria concentrations are lowest (184). The proximity of bacteriophage to the epithelium also 

provides a site for interactions with the human immune system.  

BACTERIOPHAGE INTERACTIONS WITH THE HUMAN IMMUNE SYSTEM 

Bacteriophage have been shown to act directly and/or indirectly with the mammalian 

immune system (185, 186). Caudovirales abundance is increased during inflammatory diseases, 

including IBD (156, 187); however, there is also evidence that bacteriophage directly cause 

inflammation. Examination of the immune system response in mouse models has shown that some 

bacteriophage can activate the immune system throught  toll-like receptor (TLR)-9 mediated 

production of interferon (IFN)-gamma, (188) ultimately initiating both an adaptive T-cell response 

and exacerbating innate inflammation. Additionally, bacteriophage can influence the success of a 

fecal microbiota transplant (FMT). An FMT is the transfer of a donor’s microbiota into a patient. 

An increased abundance of bacteriophage has been associated with FMT failure in IBD patients 

(188, 189).  

Analysis of the virome in FMTs has also identified a stable core virome found in the human 

gastrointestinal tract (190). The core virome is a collection of bacteriophages that are shared across 

individuals (191, 192). Crassphage (75), for example, are part of this core virome in humans and 

represent members of one of the most abundant bacteriophage families (76, 77); they have not 

been associated with illness but were found to have a high degree of genetic diversity (193). While 

Crassphage was shown to infect Bacteroides intestinalis (77), in-silico analyses predict a broader 

host range (76). Microviridae were also suggested to comprise the core virome as they are 
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frequently found in humans (150, 151, 192, 194, 195) and animals (196) and have been shown to 

integrate as prophages in Bacteroidetes and Prevotella genera (197). Moreover, Faecalibacterium 

prausnitzii was indicated as a potential host of Microviridae since the presence of bacteriophage 

genes were identified in its genome (196). Additional investigation is needed to discover new 

viruses and evaluate their impact on human health.  

EUKARYOTIC VIRUSES 

Eukaryotic viruses are the other major component of the virome. The earlier studies on the 

soil virome utilized multiple-displacement amplification (198), which has an inherent bias to 

amplify circular DNA (199), and thus, the actual abundance of these viruses is unknown. Newer 

technologies have observed the virome of patients with IBD (156), HIV (38), non-polio acute 

flaccid paralysis (200), and hand-foot-mouth disease (201, 202).  Previous studies in patients 

suffering from diarrhea (203, 204) have identified novel species of virus (203, 205–208), many of 

which belong to Picobirnavirus (203, 206, 207, 209, 210). Picobirnavirus is a double-stranded 

RNA virus that was thought to utilize mammals as hosts because of the high frequency of recovery 

from mammalian stools (211–214), yet they have not been successfully cultured in the laboratory 

(215). Although Picobirnavirus was found in 20% of cases with diarrheal illness in one study 

(210), its significance and function remain unclear. Recently it was suggested that invertebrates 

and even bacteria could be the hosts of Picobirnavirus because a conserved motif (ribosomal 

binding site) from prokaryotes was found in untranslated regions of the Picobirnavirus genome 

(215).  

Additional eukaryotic virus families have been identified in the human gut, which include 

Papillomaviridae, Polyomaviridae, Herpesviridae, Anelloviridae, and Circoviridae. 

Anelloviridae, for instance, is diverse, comprising over 200 species, though they are not associated 
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with any diseases (216). Anelloviridae is found frequently in animals (217–219) and humans, 

namely the gastrointestinal tract (220, 221), respiratory tract (222), and cardiovascular system 

(223, 224). Although Anelloviridae has been reported to be elevated in disease states such as HIV 

(225), severe malnutrition (149), and malabsorption (226), these viruses have not been directly 

shown to cause disease. Further experimentation is needed to define the role of Anelloviridae in 

human health. 

Similarly, in the human gut elevations in eukaryotic viruses such as Mastadenovirus and 

Cytomegalovirus (Herpesviridae), have both been observed in gestational diabetes (227). Mouse 

models utilizing murine Cytomegalovirus (mCMV) provide protection against infection from both 

Yersinia pestis and Listeria monocytogenes (228) by upregulating cytokine INF-gamma. This 

upregulation creates a higher elevated basal state of inflammation that wards against incoming 

infections and is not antigen-specific for the bacteria, though this enhanced immune response could 

also lead to more serious conditions such as autoimmunity (229–231) or cancer (232, 233). 

Orthopoxvirus was also found to be elevated in the meconium in gestational diabetes in humans 

(227) but decreased Proteobacteria abundance was observed in mouse models of Orthopoxvirus 

infection (234). Importantly, Orthopoxvirus produces soluble molecules that bind chemokines, 

cytokines and interferon to dampen host immune responses (235, 236). Other eukaryotic viruses 

such as Norovirus, have been shown to affect the immune system. Norovirus inoculations in germ-

free mice, for instance, failed to elicit an immune response and restored the morphology of the 

intestinal tract that was affected by colitis (237). Inactivated Rotavirus could also reduce 

inflammation via activation of anti-inflammatory cytokines acting on toll-like receptors (238).  

In summary, both bacteriophage and eukaryotic viruses have wide-reaching effects on the 

bacterial microbiota and the human host. Bacteriophage can directly infect and affect bacterial 
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microbiota, transfer gene amongst different bacterial populations, and alter host physiology. 

Bacteriophage can directly interact with the human immune system in a pro-inflammatory manner. 

Eukaryotic viruses can infect the human host and alter immune cell responses; however, additional 

studies are needed to determine the significance of these viruses within a microbial community 

and association with disease.   

THE MICROBIOME OF VIRAL GASTROENTERITIS  

Viral gastroenteritis refers to a gastrointestinal infection caused by a virus, and the 

symptoms include vomiting and watery diarrhea. In a prior study, the microbiome of pediatric 

patients with acute viral gastroenteritis (n=20, 15 Norovirus, 5 Rotavirus) was compared to healthy 

controls (n=20). Patients were stratified by mild versus severe disease based on the clinical 

presentation (239). Patients with severe disease had decreased Shannon diversity compared to both 

the mild patient and healthy control groups (239). Additionally, Norovirus infections did not 

appear to alter the microbiome as noted in other studies (123, 240, 241), nor did it contribute to an 

increase in inflammatory markers like lactoferrin (240). Rotavirus, however, caused a significant 

decrease in Shannon diversity with decreases in Rikenellaceae, Porphyromonadaceae, and 

Alistipes (239). Parabacteroides were found in equal proportions among cases with both severe 

and mild forms of viral gastroenteritis (239). Additionally, Prevotellaceae, Staphylococcaceae, 

and Coriobacteriaceae, specifically Prevotella, TM7, Atopobium, and Staphylococcus, were 

associated with abdominal pain (239). Staphylococcus has also been correlated in a previous study 

with abdominal pain in children (242). Convulsions were associated with decreased abundance of 

Haemophilus and Faecalbacterium, while viral gastroenteritis patients with complications had an 

increased abundance of Campylobacteraceae, Neisseriaceae, Methylobacteriaceae, 

Sphingomonadaceae, and Enterobacteriaceae (239). Enterobacteriaceae, specifically E. coli, 
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were the only taxa elevated in patients with Norovirus infections (240). Stool consistency has been 

correlated with Norovirus infection (243), which coincides with associations seen in stool patterns 

related to bacterial richness and diversity in bacterial gastroenteritis (123, 244). Secondary 

infections due to viruses are a common occurrence in respiratory tract infections (245) but remain 

wholly understudied in gastrointestinal illness. One gastrointestinal study of mixed infections 

involving bacteria and viruses in children identified that more severe disease resulted when only 

one infectious agent was present (246). Alterations in the microbiome due to mixed infections 

included reduced diversity in Bacteroidetes and increased richness in Bifidobacteriaceae, which 

was correlated with disease severity (246). 

THE MICROBIOME OF BACTERIAL GASTROENTERITIS 

Bacterial gastroenteritis is an infection of the gastrointestinal tract by a bacterial pathogen 

and can present typically with bloody diarrhea as a distinguishing feature relative to viral 

gastroenteritis. Bacterial pathogens such as Salmonella can directly cause diarrheal illness by 

exploiting inflammation to create a niche for colonizing the gastrointestinal tract (247), 

subsequently altering the microbiota. Alterations in the microbiota due to a pathogen have been 

observed in mouse models of Citrobacteria rodentium (26), and the intestinal microbiota is 

restored to a pre-infection state once the pathogen is cleared (22). 

Enterotypes are a grouping of samples based on a dominant phylum (248). Patients with 

acute bacterial gastroenteritis have a shift in their microbiome to an Escherichia-Shigella 

enterotype (123). The dysbiosis from a bacterial pathogen affects three significant components of 

the microbiome. One, there is a decrease in short-chain fatty acid producers. Two, there is an 

increase in inflammation both due to a loss of small-chain fatty acid producers and anti-

inflammatory bacteria. Three, a commensal bacterium can then bloom and continue the disease 



 

20 
 

process as observed with AIEC (26). The amount of dysbiosis that occurs in an illness can be 

correlated with the severity of disease (242).  

The dysbiosis observed in bacterial gastroenteritis patients includes an increased 

abundance of Proteobacteria and a decrease in the Firmicutes:Bacteroides ratio (40, 123, 241). The 

dysbiosis that occurs is not pathogen-specific (40, 123, 241) and aside from increased abundance 

of Proteobacteria and decreases in Firmicutes and Bacteroides, there is little agreement among 

available bacterial gastroenteritis studies. For example, Lacnospiracae,  a family of small-chain 

fatty acid producers (249), was reported to be increased in abundance in two reports (123, 241) 

and decreased in abundance in other reports (40). (250); however, additional studies are needed to 

determine the alterations that occur with Lachnospiracae in bacterial gastroenteritis.  

Roseburia, another small-chain fatty acid producer, was reported to be in decreased 

abundance in one study (40), increased in abundance in another study (241) and not significantly 

different in abundance in a third study (123). Faecalbacterium can produce anti-inflammatory 

effects (251) and is decreased in abundance in some cases  of gastroenteritis (40, 123). Decreased 

Rikenellaceae abundance has been associated with inflammation in IBD patients (252) and 

likewise was lower in abundance in gastroenteritis cases (40, 123). 

Bilophila, a common commensal from the Proteobacteria phylum, was observed 

marginally increased in abundance in cases in one study (241), but these changes were not 

observed in two other studies of gastroenteritis (40, 123). Bilophila is bile-resistant and has been 

isolated from clinical specimens (253), which suggests it could be an opportunistic pathogen that 

arises during dysbiosis. Another opportunistic pathogen could be Streptococcaceae, which is a 

common commensal, but has been reported to be higher in abundance in gastroenteritis cases (40, 

123). Increased abundance of Streptococcaceae has been associated with gut inflammation (254, 
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255). Another common commensal found throughout the gastrointestinal tract is Veillonellaceae 

(256). Veillonellaceae can hydrolyze bile-acids (257). Genera of Veillonellaceae ar higher in 

abundance in gastroenteritis cases  (123). Additional studies are needed to confirm these findings. 

The metabolic profiles of gastroenteritis have been investigated using PICRUSt (123). 

Six metabolic pathways were enriched within the microbiome of stool samples that also 

exhibited a higher abundance of Proteobacteria (123). These included cytochrome P450 related 

genes were enriched which are essential for drug metabolism. Bacterial associated genes were 

elevated and included bacterial invasion genes and lipopolysaccharide biosynthesis proteins (123).  

Liposaccharides constitute a significant component of the bacterial cell wall and are inflammatory 

if derived from Proteobacteria (258, 259) and anti-inflammatory if derived from Bacteroidetes 

(260). Structural differences in LPS between species impact the inflammatory response differently 

(260). Other immune response system associated genes were also impacted. The RIG-I-like 

receptor signalling pathway was elevated in microbiomes with increased abundance of 

Proteobacteria (123). This finding is unclear since bacteria have not been shown to activate the 

RIG-I pathway directly (261). Additionally, glycan metabolism pathways were enriched in 

gastroenteritis patients (123). Glycans are important for adhesion to mucosal surfaces (262) and 

are involved in adhesion to the mucosa. Conversely, flavonol biosynthesis genes were decreased 

(123). Flavonol blocks the adhesion of E. coli to surfaces (263) and directly alters the composition 

of the microbiome based on consumption (264). Additional analysis by the same group (123) 

identified that cases with the Escherichia-Shigella enterotype have enrichment in pathways related 

to bacterial invasion of epithelial cells, RIG-I-like receptor signaling, lipopolysaccharide 

biosynthesis proteins, and enrichment of proinflammatory pathways. Further studies should focus 

on an integrative approach integrating metatranscriptomics and metagenomics to elucidate both 
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the metabolically potential and activity of the microbiome, as was done with the recent human 

microbiome project with IBD (103). Future studies need to sample multiple time points during an 

acute infection to understand longitudinal changes in the microbiome. 

CURRENT CHALLENGES AND GAPS 

Current research into gastroenteritis (both viral and bacterial) has focused on studying either the 

bacterial component of the microbiome (40, 123, 241) or the viral component separately (206, 

243). Studies of the microbiome that have performed network analysis to identify correlations 

between the virome and bacteriome (38, 156, 265) have provided great insight into the ecology of 

microbial communities and have highlighted new avenues to investigate disease pathogenesis. To 

date, there have been few sufficiently powered studies to analyse the virome and bacteriome 

together in acute bacterial gastroenteritis. Additionally, viral databases remain wholly incomplete, 

and additional isolation and characterization of viruses are therefore needed. 

In order to address these knowledge gaps, this study was conducted with the following objectives: 

1. Determine the organisms of the microbiome in acute bacterial gastroenteritis patients compared 

to non-infected controls that correlate with disease presentation. 

 Hypotheses: The microbiome of gastrointestinal patients will be distinct from that of their 

healthy family member controls. 

2. Determine the organisms of the microbiome in acute bacterial gastroenteritis patients compared 

to their recovery state to identify changes over time. 

 Hypotheses: The microbiome from recovered gastrointestinal patients will have profiles 

distinct from their infected microbiome. 

3. Characterize the functionality of bacteriophage isolated from intestinal viral communities. 
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 Hypotheses: The virome will have distinct functional profiles that are linked to the presence 

and abundance of Caudovirales. 

In all, this project will characterize the intestinal microbiomes of healthy controls and 

patients with acute bacterial gastroenteritis as well as a subset of the same patients after recovery. 

The network analysis will provide the most comprehensive picture of the microbiome of acute 

bacterial gastroenteritis to date. The matched cohort study of the cases and their follow-up state 

will directly assess for alterations in the microbiome. Additionally, bacteriophages will be isolated 

and characterized to add to existing databases and evaluate their ability to infect common enteric 

pathogens. 
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Figure 1.1. Lytic/lysogenic conversion of resident bacteriophage Adapted from (183). 
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Figure 1.2. Microbiome composition of the gastrointestinal tract Adapted from (266). 
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ABSTRACT 

Gastroenteritis contributes to a significant disease burden worldwide, and, while affecting 

all age groups, it predominately impacts children. Gastroenteritis is primarily an acute infection 

but can also be an inciting event to chronic diseases like inflammatory bowel disease (IBD) or 

irritable bowel syndrome (IBS). Gastroenteritis microbiome studies have traditionally focused on 

alterations in resident bacterial populations, often ignoring the distribution of viruses or the virome. 

Prior studies have identified Proteobacteria, specifically, the genera of Escherichia as being 

associated with gastroenteritis illness. As a result, this study was designed using metagenomics to 

investigate the microbiome among 79 patients with acute bacterial gastroenteritis for comparison 

to 125 healthy family members (controls). In total, over 1,000,000,000 reads (621,384,080 paired 

reads) were sequenced and evaluated. Our findings further confirm the presence of Proteobacteria-

dominant microbial communities in gastroenteritis patients. We also identify disease-specific 

changes in the microbiome specific to infection status, which include alterations in viruses and 

bacteria. Two case-dominated clusters with similar microbial profiles were identified. One of the 

clusters (Cluster 2) was significantly associated with more severe disease and had lower diversity 

and richness as well as a more dysbiotic microbial profile relative to communities representing the 

other clusters. Cluster 2 had 82 differentially abundant genera compared to other clusters, as was 

identified using Analysis of Composition of Microbiomes (ANCOM); 26 genera were above 

average in abundance in Cluster 2 relative to the average of all samples across the study for a given 

genus. Further analysis of these 26 genera using logistic regression identified four genera 

(Acinetobacteria, Salmonella, Orthopoxvirus, Serratia) to be strong features of Cluster 2 status. 

Identification of the microbes presented here builds on the understanding of enteric infections and 

could help identify novel avenues to therapy. 
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INTRODUCTION 

Acute gastroenteritis maintains a significant health burden globally; the estimated 

incidence of acute gastroenteritis in the United States ranges from 179 million (1) to 375 million 

cases (2), with many cases going unreported. Children are disproportionally affected; there are 1.5 

million office visits, 200,000 hospitalizations, and 300 deaths directly attributable to acute 

gastroenteritis in the United States (3). Worldwide there are 2.3 billion cases of acute 

gastroenteritis and 1.3 million deaths annually (4). Developing countries are impacted more 

severely by acute gastroenteritis, and children in these countries suffer the most significant disease 

burden. Diarrheal illness contributes to one in eight deaths in children younger than five years (5). 

Causative organisms of gastroenteritis vary and include viruses (Rotavirus, Norovirus, 

Adenovirus), protozoan (Cryptosporidium), and bacteria (Campylobacter jejuni, Escherichia coli, 

Salmonella spp., Shigella spp.) (6). Bacterial agents account for greater than 50% of the disease 

burden globally (6). The identification of a pathogen occurs in about 50% of symptomatic cases 

(7). This number may be lower; however, as a recent study of 196 hospitalized cases found that 

only 10% were culture-positive for causative agents of bacterial illness (8). Despite this limitation, 

culturing remains standard for laboratory diagnosis in gastroenteritis, and decisions on how to treat 

these infections are based primarily on clinical presentation and culture results (9). 

Amplicon sequencing has been utilized extensively to study the changes that occur in the 

resident microbial population within the human gut during gastroenteritis. Previously, acute 

bacterial infections were found to cause an increase in Proteobacteria, specifically the population 

of Escherichia (10, 11) with decreases in Firmicutes and Bacteroidetes (11). Traditional studies 

have focused on describing and characterizing intestinal bacterial communities due to the ease of 

16S rRNA sequencing; hence, little is known about the viral communities in the gut, particularly 
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during infection. Defining the viral populations inhabiting the human gut is essential for a thorough 

understanding of disease progression in bacterial gastroenteritis. Viruses can directly cause illness 

(i.e., Rotavirus) or assist in the disease process by carrying toxin genes (e.g., Shiga toxin-encoding 

bacteriophage (12, 13)). Secondary infections due to viruses are a common occurrence in 

respiratory tract infections (14) but remain wholly understudied in gastrointestinal illness. The 

work presented here aims to comprehensively define both the viral and bacterial communities in 

79 patients and 125 healthy family members using metagenomics with Illumina shotgun 

sequencing. We hypothesized that viruses (Siphoviridae and Podoviridae) that commonly infect 

members of Proteobacteria will be more abundant in patients than healthy individuals and will be 

associated with more severe disease. This work will increase the understanding of the microbial 

communities in gastroenteritis, which could lead to identification of novel therapeutic targets. 
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MATERIALS AND METHODS 

Sample selection and sequencing 

Samples were collected through the Enteric Research Investigative Network (ERIN) at 

Michigan State University (11). In brief, the ERIN study was an active surveillance system 

coordinated with the Michigan Department of Health and Human Services (MDHHS) and four 

hospitals, as described previously (11). A subset of 204 stool samples was analyzed for this study; 

79 samples were collected from patients with enteric infections caused by C. jejuni, Salmonella, 

Shigella, or Shiga toxin-producing E. coli (STEC), and 125 were received from healthy family 

members of the patients (controls). All samples were placed in Cary Blair transport media, 

homogenized, centrifuged, and stored in triplicate at -80 °C. DNA was extracted using the QIAmp 

DNA Stool Mini Kit (QIAGEN; Valencia, CA). Epidemiological data, including clinical details, 

exposures, and demographics were extracted for each patient using the Michigan Disease 

Surveillance System (MDSS), while questionnaires were used to obtain data about the healthy 

family members. All protocols were approved by the Institutional Review Boards at Michigan 

State University (MSU; IRB #10-736SM) and MDHHS (842-PHALAB) as well as the four 

participating hospitals. 

Sequencing libraries were prepared using the Illumina TruSeq Nano DNA Library 

Preparation Kit on a Perkin Elmer Sciclone NGS robot following the manufacturer's 

recommendations. Four equimolar library pools were generated with samples added in duplicate 

for each sequencing run. Libraries were quality controlled with qPCR and quantified with a Qubit 

dsDNA HS (Thermo Fisher Scientific, Waltham, MA, USA) and Caliper LabChipGX HS DNA 

(Caliper Life Sciences, Hopkinton, MA, USA). The library for Run 1 was loaded in two lanes of 

an Illumina HiSeq 2500 Rapid Run flow cell (v1) and sequenced in a 2x150bp paired-end format 
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using Rapid SBS reagents. The libraries for Runs 2, 3, 4, however, were each combined into 

separate pools, loaded onto two lanes of an Illumina HiSeq 2500 Rapid Run flow cell (v2), and 

sequenced in a 2x250 bp paired-end format.  Base-calling was performed with the Illumina Real-

Time Analysis (v1.18.61), and the output was demultiplexed and converted to FastQ format by 

Illumina Bcl2Fastq (v1.8.4). A non-parametric multivariate analysis of variance (NPMANOVA) 

test demonstrated that there was no difference (p = 0.159) between sequencing formats, and that 

library runs were homogenous via betadisper (p = 0.715). Similarly, the principal component 

analysis (PCA) showed no differences in the clustering of samples from each run (Figure 2.1A-

D), and hence, the sequences were merged into a single dataset for subsequent analyses. 

Power analysis 

The pwr package (15) in R (16), based on Cohen’s equations (17), was used to determine 

the necessary sample size for all statistical tests employed in this study, including Chi-square, 

analysis of variance (ANOVA), correlation, and regression. For all calculations, standard statistical 

assumptions were made (p = 0.05, power = 0.8, effect size = 0.5). Power curves were generated to 

represent the relationship between effect size and sample size. Multiple levels of power were 

assessed and visualized with different curves (Figure 2.2). The target power for this study was 0.8, 

which resulted in a sample size of 204 with an effect size ≤ 0.18. We have adequate power to detect 

differences between study groups (cases and controls) because we have 204 samples included. 

Sequence processing and metagenomics 

Processing and annotation Sequencing adaptors and low-quality reads were removed using 

Trimmomatic (18). FastQC (19) was used to read FastQ files and generate a quality control report 

that includes poor quality reads, adaptors, and GC bias. Using the methodology based on Norman 

et al. (20) and KBase (21), reads passing quality control (per base sequence quality > 30) were 
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compared to a database of human RefSeq genomes (GRCh38_1118, downloaded November 2018) 

available at the National Center for Biotechnology Information (NCBI) using Bowtie 2 (22) and 

SAMtools (23) to remove reads that match the human genome. Kaiju (24) annotated quality-

controlled reads to generate a microbiome profile by comparing each read to a non-redundant 

protein database (25) of viruses, bacteria, and fungi (nr_euk, downloaded January 2019) in NCBI. 

The tradeoff is that as quality-controlled reads are annotated, there is less specificity in 

categorizing those reads at lower taxonomical levels (i.e., species). On average, 90% of reads were 

annotated at the Phylum level, 62% at Genus, but only 22% of reads achieved Species-level 

determination (Figure 2.3). The results of the Kaiju output were merged into a table of samples 

with corresponding taxonomical classifications using a custom python script (26). This script is 

identical to the kaiju2table function in Kaiju, but the script was created before the functionality 

was available. An additional script was used that parsed Kaiju output at different taxonomical 

levels (Phylum, Class, Order, Family, Genus, Species) and split the output into viral and non-viral 

annotations. The analysis was also conducted at the levels of taxonomy listed above as done 

previously (27). 

Assemblies provide the most accurate picture for annotation and could allow for inference 

of genomic features. Assemblies were performed with Metaspades (28). On average, 10% of reads 

in cases, and 14% of reads in controls did not map to the assemblies, which was statistically 

significant (Mann Whitney U test p = 0.0004845). The significant differences in mapping 

frequencies of assemblies of cases and controls are a concern for introducing bias into the dataset, 

and thus, assemblies were not utilized for subsequent analyses. Case status differences were 

preserved across taxonomical levels and visualized with a Principle Components Analysis (PCA). 

Cases clustered distinct from controls at the Class (Figure 2.4A), Family (Figure 2.4B), Genus 
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(Figure 2.4C) and, Species (Figure 2.4D) level. Statistical trends were examined between 

sequencing depth, coverage, and alpha diversity metrics to determine if the minimum sequencing 

depth cutoff was adequate. Importantly, no trends were noted between the sequencing depth, 

coverage, and alpha diversity (R2 < 0.7, spearman p > 0.05). The lack of statistical associations 

between these factors demonstrates that the minimum sequencing cutoff was enough. 

Among all 204 samples, the maximum number of reads (paired-forward) sequenced in a 

sample was 7,427,518 (3.7 Giga base pairs [Gbp]) and the average sequencing per sample was 

3,046,000 reads (1.2 Gbp). There was no significant difference between the sequencing depth for 

cases versus controls (Mann Whitney U test p = 0.1886). Rarefy (29, 30), which involves 

subsampling the existing dataset, normalizes the sequencing data, but has been shown to introduce 

bias into a metagenomic dataset (31) and hence, was not utilized in our analysis. Instead, 

rarefaction (32), which measures species richness, was used, and rarefaction curves (33, 34) of 

genera data were generated with the rarefy and speccacum functions from the vegan package in R 

(16). Species accumulation curves (random sampling, Figure 2.5A) and rarefaction, Figure 2.5B) 

achieved plateau, suggesting that sequencing depth was sufficient for both cases and controls (35). 

Coverage for each sample was calculated based on Nonparielle3 (36) that uses read redundancy in 

the sample to calculate coverage. Nonparielle3 estimated the average coverage for all samples to 

be 78%. The Genus-level classification was used for analysis because the sequencing depth and 

taxonomical information available were optimal compared to other taxonomical levels. 

Cluster analysis To account for spurious associations, microbial taxa that were not present in at 

least 1% of samples were removed to reduce the false-positive rate of taxa significance as 

recommended (27, 37). Multiplicative simple replacement using the zCompositions package (38) 

in R (39) was used to replace zero counts in the taxonomy table, while MixOmics (37) was used 
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to calculate the relative abundance as a percent of the total annotated viral and bacterial 

populations, based on previously published methods (40). A center-log-ratio transformation was 

performed, and a compositional-data-analysis approach was used (41). Hierarchical clustering was 

performed using Ward’s linkage and Aitchison distance. (42). Statistical power was considered in 

the selection of the optimal number of clusters. As the number of clusters increases, the statistical 

power will decrease for the cluster due to a smaller sample size per cluster. For example, the 

calculated power with the sample size for six clusters was 0.75, which makes identifying statistical 

associations problematic. Only clusters that retained statistical power (> 0.8) were considered 

further. Finally, the distribution of cases and controls within each cluster was examined to create 

a balanced study design. Four clusters were determined optimal for this dataset based on the above 

considerations. To determine if microbial profiles were different based on clusters, a one-way NP-

MANOVA was performed with the adonis function from vegan (43). The p-values calculated for 

multiple-hypothesis testing were adjusted using a Bonferroni correction with the p.adjust function. 

Group heterogeneity for each cluster was assessed using the betadisper function from the vegan 

package. ANCOM (44) was used to determine the differentially abundant taxa found between 

clusters,  while SparrC (45) correlated different taxa with one another to create a taxonomical 

network visualized with SpiecEasi (45). The vegan package was used to calculate the alpha 

diversity (Shannon index), Richness (total number), and Evenness (distribution) at the genus level 

based on the read count of each taxonomical assignment. 

Data analysis 

Demographic and epidemiological data were managed using Microsoft Excel and Access. 

Statistical analyses were performed in R and EpiInfo (46). Chi-square and Fisher’s exact tests 

(counts < 5) were used to identify associations between exposure (independent) and outcome 
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(dependent) variables in univariate analysis; p-value < 0.05 was considered significant. 

Epidemiologic and demographic data were used as exposure variables to identify associations with 

outcomes (e.g., case status, cluster status). Clusters defined by hierarchical clustering were used 

as the outcome variable. Other factors, including demographics, diet, medications and travel 

history as well as differentially abundant microbes, were examined to identify associations with 

specific microbiome profiles or clusters. 

Univariate variables with strong associations (p < 2.0) with outcomes of interest were 

included in the multivariate logistic regression model. This stepwise model was generated using 

forward and backward selection and specific variables such as age, sex, race, residence, and 

infection type, were included in the model and evaluated for confounding. Factors were added or 

removed if they provided significant changes in the model (p < 0.05), and each factor was assessed 

for collinearity. The Wald test was used to assess the statistical significance of each coefficient 

present in the model, while the Hosmer-Lemeshow test (47) was employed to assess the goodness 

of fit. All scripts are available at githib.com/BrianNo. 
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RESULTS 

Characteristics of the study population 

Among the 79 patients with diarrheal infections (cases), 48.1% (n=38) were males and 

51.9% (n=41) were female (Table 2.2.). The highest frequency of cases occurred in the 19-64 age 

group (n=33, 41.8%) followed by children in the 0 and 9 age group (n=21, 26.6%). Cases resided 

in multiple counties throughout Michigan, although most were from Ingham (n=16, 20.51%), 

Wayne (n=16, 20.51%), and Washtenaw (n=11, 14.1%). A total of 48.7% (n=38) of the cases 

resided in urban counties, while 51.3% (n=40) were from rural areas. Most cases reported body 

aches (n=73, 94.8%), yet 69.1% (n=47) also reported fever and vomiting. A subset of 29 cases 

(37.7%) was hospitalized, and among these cases, 15 (53.6%) were hospitalized for more than two 

days (Table 2.3.). 

The 125 otherwise healthy family members (non-infected controls) had similar 

characteristics when compared to the cases. Sixty-seven (54.5%) healthy individuals were male 

and 45.5% (n=56) were female, and most were between 19 and 64 years of age (n=64, 42%) 

followed by 0 to 9 years of age (n=33, 26.8%). Non-infected controls also resided in multiple 

locations throughout Michigan, though most lived in Oakland (n=20; 17.2%), Wayne (n=20; 

17.2%), Ingham (n=15, 12.9%), and Eaton (n=13, 11.2%) counties. Approximately 52.6% (n=61) 

resided in urban counties, whereas 47.4% (n=55) were from rural areas (Table 2.2.). 

Cases and controls had different viral and bacterial read counts 

In total, 621,384,080 (284.7 Gbp) paired forward reads were sequenced across all 204 

samples, yielding 3,046,000 or 1.4 Gbp paired-forward reads per sample. Cases and controls 

achieved average sequencing depths of 3,032,694 reads (1.4 Gbp) and 3,054,410 reads (1.4 Gbp), 

respectively, with no difference between study groups (Mann Whitney U test p = 0.1886). The 



 

62 
 

average coverage, as determined by Nonpareil3 (36), was 78% across all samples. Although cases 

had lower coverage (77%) than controls (78.6%), the difference was not statistically significant 

(Mann Whitney U test p = 0.1936). On average, across all samples, 14.2% of reads fell below 

quality filtering parameters. More reads were removed from control sequences (14.7%) compared 

to cases (13.3%), though this difference was also not significant (Mann Whitney U test p = 0.1113). 

On average, 6% of quality-controlled reads were annotated as human across all samples. 

The abundance of human DNA differed by case status; cases contained 15.2% human reads 

compared to only 0.1% in controls, which was statistically significant (Mann Whitney U test p = 

8.509e-05). Kaiju annotated 61.7% of reads to the Genus level that passed quality control (i.e., 

trimming and human read removal steps) across all samples. Controls achieved a higher annotation 

frequency (63.3%) compared to cases (59.3%), but the difference in frequencies was not 

significant (Mann Whitney U test p = 0.07632). On average, 61.3% of reads were annotated to 

bacteria across all samples at the Genus level, and 0.5% of reads were assigned to viruses. Cases 

had a lower proportion of reads assigned to bacteria (58.7%) compared to controls (62.9%; Mann 

Whitney U test p = 0.04888). Cases also had an increased proportion of viruses (0.7%) compared 

to controls (0.3%), which was statistically significant (Mann Whitney U test p = 2.45e-05) (Table 

2.1.). Case communities had a lower Shannon index for diversity (Mann Whitney U test p = 

0.006634, Figure 2.6A) and richness (Mann Whitney U test p = 3.212e-12, Figure 2.6B) when 

compared to non-infected communities at genus level. Evenness was not significantly different 

between cases and controls (Mann Whitney U test p = 0.1474, Figure 2.6C). 

Microbiome composition varies between cases and controls 

In total, 473 (449 bacterial, 24 viral) Families were identified. At the Genus level, there 

were 2,659 genera identified (2,482 bacteria and 177 viruses). Examination of the top five virus 
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Families (Figure 2.7A) between cases and controls shows that Myoviridae and Poxviridae are more 

abundant in cases comprising 26% and 9% of viral reads on average respectively. Poxviridae was 

statistically significantly higher in cases compared to controls (Mann Whitney U test p = 1.4e-12). 

Microviridae and Siphoviridae are more abundant in controls than cases comprising 18% and 41% 

of the control virome on average, respectively. Microviridae was statistically significantly lower 

in cases compared to controls (Mann Whitney U test p = 6.4e-10). Bacteria profiles were different 

as well (Figure 2.7B). Examination of the top 10 Bacteria families shows that Enterobacteriaceae 

are significantly more abundant in case with bacterial reads accounting for 34.4% of the total 

bacterial reads in cases on average, which was statistically significant from controls (2.7%, Mann 

Whitney U test p = 2e-16). Bacteroidaceae, Ruminococcaceae, Rikenellaceae, and Prevotellacea 

were all significantly more abundant in controls on average than cases, accounting for 45%, 10%, 

9%, and 7%, respectively (Mann Whitney U test p = 0.01284, 1.8e-10, 1.5e-14, 1.152e-09). 

Collectively, these data provide support for the differences in microbiome profiles identified 

between patients with acute gastroenteritis and non-infected individuals (Figure 2.6, Figure 2.7). 

Further analysis of the microbiome in the 79 cases identified differences in the virome by 

infection type. The abundance of P22virus, for example, was significantly different across the four 

infection types (Kruskal wallis p = 0.01906) and was significantly higher in the Salmonella cases. 

Among these Salmonella cases, P22virus comprised an average of 14% of viral reads across 

samples compared to all other infection types combined (Mann Whitney U test p = 0.02669). A 

similar difference was observed for P2virus, which comprised, on average, 11% of viral reads in 

the communities from Salmonella patients compared the non-Salmonella infections (Mann 

Whitney U test p = 0.04498). In Shigella infections, P1virus comprised 12% of viral reads and 

was statistically significant compared to non-Shigella infections (Mann Whitney U test p = 
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0.03276). No differences, however, were observed in bacteriophage populations among cases with 

Campylobacter infections. 

In STEC-infected communities, Nona33virus comprised 20% of viral reads and was 

significantly different when compared to non-STEC infections (Mann Whitney U test p = 

0.03096). Patients with Shigella (11%) and Salmonella (4%) infections, however, also had a 

significant portion of mapping to Nona33virus. Intriguingly, Orthopoxvirus was a dominant 

member of the virome comprising 19% of viral reads on average. Patients with STEC infections 

had 6% of reads belonging to Orthopoxvirus, though this percentage was not significantly different 

when compared to patients with the other three infection types (Mann Whitney U test p = 0.4875) 

or other infection types (Kruskal–Wallis p = 0.3671) (Figure 2.8A). 

Differences in bacterial genera were also identified among cases when stratified by 

infection type (Figure 2.8B). Bacteroides, for instance, was a dominant bacterial member across 

samples from patients with all four types of enteric infections comprising an average of 42% of all 

reads (Figure 2.8). Specific bacterial populations, however, were also found to be more abundant 

in cases infected with specific pathogens. Genus Salmonella accounted for 20% of reads on 

average in Salmonella infections, which was significantly greater than the abundance in non-

Salmonella infections (0.31%) (Mann Whitney U test p = 2.482e-09). ANCOM also identified 

Salmonella to be differentially abundant in samples from Salmonella cases relative to all other 

cases (Figure 2.8B). Genus Shigella, which comprised 6% of reads on average in the Shigella 

cases, was also significantly more abundant (Mann Whitney U test p = 0.0009327) compared to 

non-Shigella cases (1.5%); this difference was also confirmed using ANCOM. The bacterial reads 

in Campylobacter cases were comprised of 2% of Campylobacter on average and were 

significantly more abundant (Mann Whitney U test p = 8.197e-06) than the non-Campylobacter 
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cases on average (0.003%). Finally, Escherichia comprised 6% of reads on average in STEC 

infections, which was proportionally lower compared to non-STEC infections on average (10%), 

but this difference was not statistically significant when comparing STEC to non-STEC infections 

(Mann Whitney U test p = 0.88) or across infection types (Kruskal–Wallis p = 0.101), (Figure 

2.8B). Interestingly, patients with Shigella infections had the greatest abundance of Escherichia; 

this percentage was significantly greater than the abundance in patients with STEC infections. 

Hierarchical clustering identifies distinct fecal microbiome profiles 

Four distinct clusters of microbiome profiles were identified. Cluster 1 (n=50) consists of 

48% males (n=24) and 52% females (n=26). Cluster 2 (n=29) has 58.6% males (n=17) and 51.4% 

(n=12) females. Cluster 3 (n=44) has 69.8% males (n=30) and 30.2% (n=13) females. Cluster 4 

(n=81) consists of 42.5% males (n=34) and 57.5% (n=46) females, (Table 2.4.). Additionally, the 

19-64 age group is the most common age group across all 4 clusters; Cluster 1 (n=24, 48%), Cluster 

2 (n=12, 41.4%), Cluster 3 (n=22, 51.1%), Cluster 4 (n=39, 38.7%). The second most common 

age group is 0-9 across all 4 clusters; Cluster 1 (n=12, 24%), Cluster 2 (n=8, 27.6%), Cluster 3 

(n=13, 30.2%), Cluster 4 (n=21, 26.3%) (Table 2.4.). 

Clusters also varied by health status. Cluster 1 (n=50) consists of 74% cases (n=37) and 

26% controls (n=13), while Cluster 2 (n=29) is comprised 96.6% cases (n=28). Together (Clusters 

1 and 2) accounted for 82% (n=65) of the cases (n=79). Cluster 3 (n=44) is 2.3% cases (n=1) and 

97.7% controls (n=43). Cluster 4 (n=81) consists of 16% cases (n=13) and 84% (n=68) controls. 

Together (Clusters 3 and 4) account for 88% (n=111) of the controls (n=125), (Table 2.4.). 

Together (Clusters 1 and 2) accounted for 82% (n=65) of the cases (n=79). Cluster 3 (n=44) is 

2.3% cases (n=1) and 97.7% controls (n=43). Cluster 4 (n=81) consists of 16% cases (n=13) and 

84% (n=68) controls, (Table 2.4.). Together (Clusters 3 and 4) account for 88% (n=111) of the 
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controls (n=125) (Table 2.4.). Case hospitalization rates were consistent across clusters that had at 

least 10% of samples in the cluster as a case Cluster 1 (n=12, 35.1%), Cluster 2 (n=11, 39.3%), 

Cluster 4 (n=5, 41.7%). Diarrhea was reported as the most common symptom for all clusters that 

contained at least 10% of samples as cases, Cluster 1 (n=36, 97.3%), Cluster 2 (n=26, 100%), 

Cluster 4 (n=11, 84.6%). Bloody stool was reported in Cluster 1 (n=10, 27%) less than Cluster 2 

(n=15, 85.2%). Bloody Diarrhea was most commonly reported in Cluster 2 (n=15, 57.7%). Fever 

was also frequently reported Cluster 1 (n=20, 62.5%), Cluster 2 (n=19, 79.2%), Cluster 4 (n=8, 

72.2%). 

PCA based on distances between microbiome samples showed that Clusters 3 and 4 are 

dominated mainly by non-infected samples and are localized within the right side of the PCA, 

while Clusters 1 and 2 are mainly dominated with cases and are localized more distally on the left 

side of the PCA (Figure 2.9A), and are distinct (NPMANOVA p = 0.006). Notably, Cluster 2 

(orange) comprises 96.6% of cases and is the most distant and most heterogeneous cluster (Figure 

2.9B). The differences between clusters can be quantified using standard diversity metrics. 

Shannon index was significantly different across clusters (Kruskal–Wallis p = 1.193E-05) 

with case-dominated clusters (Cluster 1 and Cluster 2) having), for instance, had a lower Shannon 

diversity compared to Cluster index than Clusters 3 and 4. Cluster 4, which had the highest number 

of non-infected communities, had the highest level of diversity relative to all other clusters. By 

contrast, Cluster 2, comprising 96.6% of all cases, had the lowest diversity (Figure 2.10A), further 

supporting the differences identified between infected and non-infected communities (Figure 2.6). 

Richness was different across clusters (Kruskal–Wallis p = 2.2E-16). Case-dominated clusters 

(Clusters 1 and Cluster 2) had lower richness compared to Clusters 3 and 4 (Figure 2.10B). 

Evenness was significantly different (Kruskal–Wallis p = 0.006705) across clusters (Figure 
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2.10C). Additional analysis by case-status identified that these trends extend beyond cluster status. 

In general, Case communities found within Cluster 3 and Cluster 4 had higher diversity compared 

to cases communities belonging to Clusters 1 or 2. This trend also held up for non-infected 

communities, as those communities that clustered outside of Cluster 4 or were found outside 

Cluster 4 exhibited lower diversity comparable to that of the case samples. To investigate clinical 

impacts of these observations, we sought to identify disease associations with case-dominated 

clusters. 

Gastroenteritis symptoms vary by microbiome composition 

A univariate analysis was performed to identify differences in clinical outcomes among 

cases with microbiome profiles belonging to each case-dominated cluster, Clusters 1 or 2. Clinical-

related characteristics (e.g., symptoms, hospitalization status) were classified as the exposure 

(independent variable), and Cluster designation (Cluster 1 or Cluster 2) was the outcome 

(dependent variable). Because Cluster 1 is more localized on the right side of the PCA (Figure 

2.9A) towards the non-infected clusters, we hypothesized that illness would be less severe (e.g., 

no bloody diarrhea, chills, fever) with more non-specific symptoms (e.g., abdominal pain, nausea, 

fatigue).  By contrast, Cluster 2 is the most distant cluster on the PCA (Figure 2.9A) from the non-

infected communities, and hence, we hypothesized that Cluster 2 would have associations with 

more severe disease indicators such as bloody diarrhea, fever, chills, and vomiting. We, therefore, 

examined the distribution of symptoms reported by all 79 cases within each Cluster. In this 

analysis, Cluster 1 was associated with body aches (OR: 4.3, CI (95%): 1.5, 12.8) (Table 2.5.) and 

bloody diarrhea (OR: 0.4, CI (95%): 0.2, 1.1), whereas Cluster 2 was associated with vomiting 

(OR: 2.6, CI (95%): 1, 7.1) (Table 2.6.), bloody diarrhea (OR: 3.6, CI (95%): 1.3, 9.7). A strong 

association was also observed between Cluster 2 and headache (OR: 2.5, CI (95%): 0.8, 7.3), 
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though the difference was not statistically significant. We then created a severe disease index score 

that consisted of hospitalization or a history of bloody diarrhea and fever as fever, and bloody 

diarrhea was significantly associated with each other (p=0.02). Importantly, patients with 

microbiome profiles belonging to Cluster 2 (n=28; 34.5%) were significantly more likely to have 

a higher severe disease index score when compared to patients with profiles belonging to all other 

Clusters (n=51; 65.5%). No associations were identified with sex, age, or race for either Cluster 1 

(Table 2.5.) or Cluster 2 (Table 2.6.). Based on these different associations with disease, we 

decided to investigate the differences in the microbiome between the clusters. 

Specific viral and bacterial populations dominate in case clusters 

Given the differences in the types of symptoms reported by cases with profiles belonging to Cluster 

2, we sought to identify specific viral and bacterial populations that define each Cluster. Cluster 1 

(green), for instance, has a microbiome composition that is more like that of Clusters 3 and 4 with 

minor alterations (Figure 2.11). Cluster 2 (orange), which was associated with more severe clinical 

symptoms, had the most distinct microbiome compared to the other three Clusters. It was 

hypothesized that Cluster 1 and Cluster 2 would have a common core microbiome since both are 

comprised mainly of cases with infections. We further hypothesized that Cluster 2 communities 

would have a distinct profile from Cluster 1 communities because of differences noted in symptom 

profiles of the patients. 

In total, 17 genera were shared across the four clusters which consisted mainly of 

Proteobacteria, Bacteroides, and Firmicutes. Additionally, 52 genera were unique to Cluster 2 from 

all other clusters (Figure 2.12A). In case clusters, ANCOM identified 24 differentially abundant 

genera in Cluster 1 and 86 in Cluster 2; 18 of the taxa identified were shared between communities 

representing both Clusters (Figure 2.12B). Orthopoxvirus was present in all four clusters but was 



 

69 
 

highest in abundance in Cluster 2 and Cluster 1 (Figure 2.12C). Nona33virus was highest in 

abundance in Cluster 2. Bacteroidetes was detected in all 4 clusters at varying abundance (Figure 

2.12D). Proteobacteria (Escherichia, Salmonella) were highest in Cluster 2, and Escherichia was 

second highest in Cluster 1. Alistipes were detected highest in Clusters 3 and 4, with Prevotella 

being both differentially abundant by ANCOM and highest in abundance in Cluster 3 (Figure 

2.12D). Further analysis of the case clusters identified specific changes. 

The common microbiome shared between Cluster 1 and Cluster 2 communities are 

dominated by Proteobacteria and include genera representing common enteric pathogens (e.g., 

Salmonella, Escherichia, Shigella) as well as Bacterioidetes (Alistipes), Firmicutes (e.g., 

Oscillibacter, Neglecta) and Orthopoxviris (Table 2.7.). The distinct microbiome of Cluster 1 

includes six genera representing Bacteriodetes (Odoribacter), Firmicutes (Christenselnella), and 

Others (Lachnoclostridium, Akkermansia Veillonella, Asaccharobacter). Cluster 2, however, is 

defined by 68 additional genera that are not found in Cluster 1 communities. Viruses represent 

36.7% of this difference (n=25 genera), and 96% of these viral taxa belong to Caudovirales and 

include Podoviridae (n=5 genera), Siphoviridae (n=12 genera), Myoviridae (n=8) and one 

eukaryotic virus (Cytomegalovirus) (Table 2.5.). 

Bacteria genera (n=46) that are differentially abundant in Cluster 2 communities relative 

to the rest of the samples consisted of 65% Firmicutes (n=30 genera), 11% Bacteroidetes (n=5 

genera), 11% Proteobacteria (n=5 genera), and 13% Others (n=6 genera). Network analysis of the 

differentially abundant taxa in Cluster 2 demonstrates that many are strongly correlated with one 

another (Figure 2.13). Enterobacterales (red) were positively correlated (green edges) with other 

pathogenic bacteria (Figure 2.13), including Lactobascillales (Enterococcus and Streptococcus), 

Bascillales (Staphylococcus), and Psuedomonindales (Acinetobacter, Psudomondonas). 
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Enterobacterales were also strongly correlated with viruses belonging to Orthopoxvirus and 

Caudovirales (P2virus, Nona33virus, P22virus). Additionally, Enterobacterales were primarily 

negatively correlated (red edges) with Clostridales (green) and Bacteroidales (yellow), (Figure 

2.13), while bacteriophage (pink) was negatively correlated with Clostridales (green). 

A univariate analysis was performed to identify taxa associated with Cluster 2 (Table 2.8.). 

Taxa were selected based on ANCOM analysis, and samples were evaluated for the relative 

abundance of a given Genus that was above or below the normalized average in order to identify 

the taxa that were higher in abundance for Cluster 2. Taxa were the exposure (independent 

variable), and Cluster 2 designation was the outcome (dependent variable). Cluster 2 was found to 

be associated with the following virus genera that were above the study average; Orthopoxvirus 

(OR: 19.4, CI (95%): 7.7, 48.9) and Cytomegalovirus (OR: 3.0, CI (95%) 1,8.6),  common enteric 

bacteriophage, Nona33virus (OR: 17, CI (95%): 6.1, 47), P22virus (OR: 6.6, CI (95%): 2.2, 20.1),  

P2virus (OR: 9.4, CI (95%): 3.3, 27.1), and P1virus (OR: 7.3, CI (95%): 2.2, 24.7). Additionally, 

associations were identified with bacteria genera that were above average in the study. Common 

enteric pathogens such as Salmonella (OR: 9.7, CI (95%): 3.5, 26.9), Escherichia (OR: 12.6, CI 

(95%): 5.2, 30.3), and Shigella (OR: 19.4, CI (95%): 7.7, 48.9) were highly abundant in Cluster 2 

communities relative to other Clusters. Other pathogenic bacteria such as Enterobacteria (OR: 

14.1, CI (95%): 5.7, 34.6), Pseudomonas (OR: 10.9, CI (95%): 2.4, 56.7), Staphylococcus (OR: 

12.1, CI (95%): 4.7, 31.4), Haemophilus (OR: 9.1, CI (95%): 3.5, 24), Acinetobacter (OR: 19.5, 

CI (95%): 7, 53.9), Streptococcus (OR: 10.1, CI (95%): 3.8, 27) and those that classify as 

opportunistic pathogens like Serratia (OR: 25.7, CI (95%): 9, 73.5) were also highly abundant 

(Table 2.8.). 
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Logistic Regression for predicting Cluster 2 status 

Based on the different associations with Cluster 2 status as well as the network analysis 

(Figure 2.13), we sought to build a model that incorporated these associations. The base model 

was built while including the presence of genera representing common enteric pathogens, namely 

Salmonella, Escherichia, and Shigella. The inclusion of Salmonella was determined to have the 

most substantial effect on the base model. Bacteriophages that infect Enterobacteriaceae 

(P22virus, P2virus, Nona33virus, Lambdavirus) were subsequently incorporated into the model 

(Table 2.7.) but were removed as more significant variables could explain their incorporation such 

as Salmonella. The Hosmer-Lemeshow goodness-of-fit test was evaluated to determine if the 

model was being overfitted. Wald’s test was used to incorporate significant variables. The final 

model demonstrated that Acinetobacter, Orthopoxvirus, Salmonella, and Serratia were the critical 

predictors of Cluster 2 communities (Table 2.8.). 

  



 

72 
 

DISCUSSION 

Studying the microbiome has traditionally utilized amplicon sequencing of targeted genes 

(16S) or shotgun sequencing. A recent study of 49 samples, which represents one of the most 

extensive paired comparisons to date, examined differences between shotgun metagenomics and 

amplicon sequencing. This study found that there were significant differences between the reported 

biodiversity for both methods (48). In brief, the shotgun metagenomics reported less richness 

overall but agreed consistently with amplicon sequencing in the taxonomy that was reported. This 

finding seems to be at odds with the other studies that have performed amplicon sequencing and 

found an increased richness with Illumina sequencing (49, 50). Small sample size studies (n < 10) 

that examined shotgun sequencing using the Illumina platform found increased richness and a 

better representation of community structure (51, 52). The human microbiome project performed 

marker gene analysis with shotgun sequencing (53) and compared it to amplicon sequencing 

(n=51). While it was concluded that the use of shotgun sequencing is a better approach, the 

reported results did not show significant differences at the genera level between shotgun 

sequencing and amplicon sequencing. Comparing across studies can be difficult with microbiome 

studies as there is not a consensus in the field on how comparable one set of results is to another, 

and the results can be reflective of the platform and approach being utilized (52). Studies can be 

compared by utilizing significant findings, even though differences in the study design might 

differ. 

The amount of bacteria reads in a fecal metagenome typically comprises >90% of reads 

(54), whereas viruses have been reported from 5.8% (27) to 22% (55) of the fecal microbiome, our 

identification rate was 0.5% on average across samples. We were able to achieve an annotation 

rate of 90% for reads at the Phylum-level. However, it is difficult to discern if a bacteriophage is 



 

73 
 

either a prophage or extracellular based on metagenomes, which could, in part, explain our lower 

identification rate of viruses. Additionally, our average coverage for all samples is 78%, which is 

lower than the ideal (>95% is saturation). A previous study found that increasing the sequencing 

depth by 2x resulted in a 3.3% increase in the number of genera present, with most of the increases 

attributable to rarer taxa like bacteriophage (56). There are, however, several significant limitations 

to the previous study, which cast doubt on its value. The sample size (n=8) was low and could lead 

to a spurious association. Both the Shannon and inverse Simpson indices were not associated with 

increased sequencing depth. The Shannon index represents the richness over the evenness in the 

community; hence, an increased richness should accompany changes in the Shannon index. Also, 

there was no mention of post-hoc corrections (Benjamin-Hochenberg) to control for false 

discovery in pairwise comparisons, which could lead to a false association due to a higher type I 

error rate. The Nemenyi post-hoc comparison utilized (56) is inappropriate for microbiome 

datasets (57). Indeed, as sequencing depth is increased, there is a higher chance of sequencing 

regions of the (meta) genome that can be annotated to a lower taxonomical level. However, we did 

not find that increasing sequencing depth was associated with increased richness in our study, 

which has much higher statistical power (n=204). Our depth and coverage are lower comparatively 

(56), so we might not have achieved enough sequencing depth to uncover the association reported 

with sequencing depth and richness (56). Despite these limitations we were still able to find trends 

in the analysis. 

The findings here on the microbiome are in line with our previous findings with 16S 

amplification (11). In total, we examined 204 fecal microbiomes (79 cases, 125 healthy controls) 

using metagenomics. The richness and Shannon index were both significantly higher in control 

(healthy groups) relative to the cases in this study and previously (11). We estimated 109 to 173 
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OTUs to be present in our amplicon analysis (11). Herein, we detected greater richness 

comparatively at the genera level with 2,659 genera; interestingly, 150 genera collectively 

accounted for 99% of our annotated reads, which is similar to the total number of OTUs in the 

previous study (11). We initially observed that case samples contained a higher proportion of reads 

on average that were annotated as human (15.2%) compared to controls (0.1%). The increased 

presence of human DNA in stool samples is a component of dysbiosis in Clostridium Difficile 

infection (58), IBD (59), and colorectal cancer (60), as such the increased presence of reads 

annotated as human in this study could be due to inflammation-induced tissue destruction present 

in cases from hemorrhagic colitis. The tissue destruction could lead to release of nutrients for the 

microbiota including carbon sources, vitamins, minerals like iron. Iron is necessary for the growth 

of many different strains of bacteria. Iron-acquisition by some bacteria has been linked to more 

invasive phenotypes (61) and is tightly regulated by the human body with siderophores. The 

release of the cellular contents could provide the necessary nutrients to drive the observed 

dysbiosis in gastroenteritis. A future investigation into the metabolic profiles of the reads present 

in this study would likely yield enrichment in iron-scavenging pathways within cases. 

The main finding in cases of gastroenteritis is increased Proteobacteria (10, 11). 

Proteobacteria, a dominant phylum, is associated with inflammation and is a signature of dysbiosis 

in many disease states including gastroenteritis (10, 62–65). Cases had a higher abundance of 

Proteobacteria compared to uninfected controls. Uninfected controls had higher abundances of 

Bacteroidetes and Firmicutes compared to cases. Both of these findings have been observed 

previously (11) and in literature (10, 66). These findings continue to the Family-level where 

Enterobacteriaceae was dominant in cases that likely represents either an increase in Escherichia 

abundance or the pathogen. Differential analysis at the genera level previously identified that 
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Roseburia, Blauta, and Lachnospiraceae were most differentially abundant in healthy people, (11)  

which we can affirm was differentially abundant in our analysis with ANCOM. We also identified 

that decreased relative abundance in Roseburia was associated with more severe illness. 

The dominant virus order detected in our study was Caudovirales, with Siphoviridae being 

the most abundant family of virus, which has been reported previously (67). Microviridae is also 

commonly found in healthy populations, and increases with age (68, 69), which we also observed 

was increased in abundance in our healthy controls. We also noted correlations between infection 

types and the microbiome as noted previously (11), but we expanded on those findings here. 

Salmonella infections had increased proportions of P22virus which is a genus of mostly 

Salmonella prophages (70). Nona33virus is a recently recognized genus, which consists of stx-

harboring bacteriophage that infect Escherichia (71) and was most abundant in STEC infections. 

P1virus were found to be specific for Shigella infections. Pathogen genomes harbor many 

prophages and we would expect to detect these at about equal frequency if these prophages were 

not active. Since the detected prophage listed above are differentially abundant, we expect that 

these are actively replicating phage and are most likely lytic. 

Phage may control populations of common commensal bacteria, like Enterococcus 

faecalis. A phage in E. faecalis can integrate into two distinct regions in the host genome (72). 

Expression of each insertion is regulated by nutrient availability, and, in optimal growth conditions 

for E. faecalis, the phage switches from the lysogenic phase to lytic, which prevents over-

expansion of the niche used by E. faecalis in the gut (72). This example highlights the “kill-the-

winner” (KTW) dynamic (73), which represents an expansion of the predator-prey Lotka-Volterra 

model (74). The KTW model is also applicable to other ecological systems and was initially 

defined based on observations of the ocean microbiome (75). KTW dynamics predict the 
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expansion of bacterial population results in a corresponding increase in the phage population that 

maintains individual populations, thereby increasing overall stability (76). The oral microbiome 

of five healthy individuals contained mostly lysogenic phages, suggesting these viruses may have 

a similar role in shaping this microbiome (77). The Bacteriophage Adhering to Mucus (BAM) 

model proposes phage localize and adhere to mucous membranes in the host. Cell culture work 

performed in vitro found that mucus-producing human colon epithelium is more protected from 

bacterial invasion if combined with a phage inoculum (78). Taken together, the BAM, KTW, and 

Lotka-Volterra models propose that phage regulate bacterial populations (79) and can actively 

ward off pathogens (78). Our findings support these models in that the presence of Enterobacteria-

phage being present alongside increases in their host Enterobacteriaceae. 

Enterotypes (27) are groupings or clusters of samples that have a typical microbial 

composition. Enterotypes exist independent of age and gender but can be influenced by diet (27), 

and their value is debated (80). We further grouped samples by total microbiome composition, as 

we did previously (11). Clustering offers immense benefit to microbiome research as it allows 

grouping of samples by similarity (or dissimilarity) with complex datasets. Studies on 

gastroenteritis have identified a subset of patients that will exhibit a shift to an E. coli-Shigella 

dominated enterotype, which is independent of the infecting agent (10). We can confirm that our 

dataset matches previous findings (10, 11). Cluster 1 and Cluster 2 which consisted of cases were 

Enterobacteriaceae dominant regardless of infection-type. Additionally, Clusters 3 and 4, which 

consisted mostly of samples from the healthy controls, were comprised mostly of Prevotella and 

Bacteroidetes, respectively, and could represent observed enterotypes based on diet (27). We did 

not directly assess enterotype status because of limitations in dietary information, but the findings 

here show the clustering of our controls differentiated by dominant enterotype-specific taxa. 
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Our previous study of an overlapping subset of 275 samples identified five clusters using 

16S rRNA sequencing (11). In this study of 204 samples, we identified four clusters that differed 

significantly from each other. While the inclusion of additional samples could have boosted the 

statistical power and might have split the dataset into two case and three control clusters as we 

found previously (11), similar results were observed across clusters. The majority of cases were 

found in Cluster 1 and Cluster 2 and were more likely to report symptoms, as reported previously 

(11). Similarly, we found that patients in Cluster 2 were at risk for more severe illness than other 

patients and had significant alterations in their microbiome which our previous study did not 

identify (11). These findings are due in part to the increased richness that can be assessed with 

shotgun sequencing. Cluster 1 was associated with more mild symptoms (body aches) and had a 

microbiome profile more like the controls. Similar associations have been reported that there is 

less severe disease in patients that have microbiome profiles more similar to uninfected controls 

(81). Cluster 1 was found to be associated with Veillonella which degrades bile acid (10) and has 

been associated with gastroenteritis previously (10). Cluster 1 was also associated with 

Akkermansia which degrades mucin (82), resulting in mucosal degradation (83).  The degradation 

of mucin could directly release bacteriophage localized within the mucosa and subsequently infect 

nearby bacteria. Such disruptions will undoubtedly impact the microbiota composition and alter 

immune system responses; further investigation is warranted. Odoribacter was also associated 

with Cluster 1 and produces many small-chain fatty acids including butyrate, acetate, and 

propionate (84), disruption of which alters inflammation. Other taxa identified but of unknown 

significance include Lachnoclostridium, which has been linked to colorectal cancer (85) and 

possibly present due to the inflammation, and Christensenella, which evidence suggests might be 

a keystone species for the healthy microbiome (86). Previous research has also correlated 
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abdominal pain with Alistipes (65) which was common to both Cluster 1 and Cluster 2 and 

Staphylococcus (81) which were specific to Cluster 2. 

Additionally, Cluster 2 was associated with more severe symptoms (bloody diarrhea and 

vomiting) and had more severe dysbiosis. Differentially abundant taxa identified specific to 

Cluster 2 include Roseburia, which was decreased in Cluster 2 and could create a pro-

inflammatory environment since Roseburia produces butyrate (87) that has been shown to 

decrease inflammation (88). Acinetobacter was also elevated and may play a role in an immune 

response. Importantly, recent evidence suggests that it can directly cause differentiation of T cells 

in vitro but also downregulates helper T cells (89), potentially altering the response by the immune 

system to the dysbiosis. Enterococcus, a common commensal, was also found to be elevated. 

Because Enterococcus has been shown to produce bacteriocins that have strong antimicrobial 

properties (90), the microbial population could have an impact on the growth and survival of other 

bacteria. 

Cluster 2 was also associated with many changes in viral composition, most of which 

directly utilize Enterobacteriaceae as the host. Caudovirales were increased for both gastroenteritis 

patients and within Cluster 2 communities; similar findings were seen in a study on IBD. 

Specifically, phage increased in abundance and diversity within IBD patients, while the bacterial 

population was conversely decreased (20), and blooms in bacteriophage have been tied to increases 

in host inflammation (91) and were found to affect the bacterial population directly (92). 

Expansions in Caudovirales have also been noted in viromes of immunocompromised HIV-

infected patients, who have altered pro-inflammatory microbiomes and increased Adenovirus 

abundance compared to healthy populations (63).  
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Eukaryotic viruses can affect the host immune system, as well. Orthopoxvirus, for instance, 

produces soluble molecules that bind chemokines, cytokines, and interferon to alter the immune 

response (93, 94). Testing in mouse models has elicited distinct microbial profile changes, which 

included decreases in Proteobacteria compared to mock (95). Other mouse models have also 

shown the importance of eukaryotic viruses. The presence of murine norovirus in germ-free mouse 

models restored the typical morphology of the intestinal tract through a signaling cascade without 

an overt immune response to the virus (96), suggesting that eukaryotic viruses can support the 

restoration of bowel homeostasis. Another study concluded that the presence of inactivated 

rotavirus could reduce inflammation in the colon through induction of anti-inflammatory cytokines 

acting on toll-like receptors (97). Additional confirmation is needed to confirm the findings of 

Orthopoxvirus, as this finding has been determined to be a false positive in other studies (63). 

However, in contrast to this study, these studies utilized viral only databases with BLAST with a 

standard e-value (105) given the smaller database size of the viral only databases a smaller e-value 

should be utilized. Here, we used the totality of the NCBI non-redundant database with a kmer-

based approach. At minimum, the identification of a sequence as Orthopoxvirus had to have a 

higher score compared to all other non-viral signatures in the database. Nonetheless, additional 

analysis is needed to confirm the presence of Orthopoxvirus and if it does indeed taper the immune 

system during acute gastroenteritis. Culturing would be ideal for confirmation of the findings 

presented, though many of the taxa identified are non-cultivable. 

Gastroenteritis can have two types of effects on human health — an acute effect results 

from a which involves immediate pathogen infection.For instance, Salmonella can directly exploit 

inflammation to colonize the GI tract resulting in diarrheal illnesses (98) and increased abundance 

of Enterobacteriaceae (99) which ultimately resolves. We observed findings related both to a 



 

80 
 

Salmonella infection resulting in increased Enterobacteriaceae. If the microbiome alteration does 

not resolve, a chronic inflammatory state can develop; with symptoms lasting up to 10 years after 

incident (100, 101) or inflammatory bowel disease (IBD). The year following a case of infectious 

gastroenteritis, individuals are 2.4 times more likely to develop IBD (102). An underlying 

mechanism towards the chronic state has been proposed. The pathogen initiates an inflammatory 

state-driven primarily by host immunity (99, 103), this creates an environment for a pathobiont, a 

resident microbe that has pathogenic potential, such as adherent-invasive Escherichia coli (AIEC) 

to bloom (104), which we have identified Escherichia here and previously (11) as being increased 

in abundance in cases compared to control populations regardless of infecting agent. Sensitization 

of the host defense to AIEC in mouse models prevented the bloom that occurred and improved 

health in murine models (104). Additional research is needed to determine if Escherichia can be 

prevented from blooming during acute gastroenteritis in humans. Examining the effects of iron on 

the microbiota may reveal a potential therapy, as an intervention could examine iron effects on the 

microbiota, specifically E. coli, to determine if iron-chelating agents could prevent further 

dysbiosis in gastroenteritis. The development of such a therapeutic would lower the disease burden 

of gastroenteritis and could potentially lower the incidence of chronic sequelae related to 

gastroenteritis such as IBS and IBD. 

In short, we aimed to analyze both the viral and bacterial signatures simultaneously in acute 

bacterial gastroenteritis. Cluster 2 had a more substantial proportion of viral reads present, which 

could be due to high rates of bacteriophage induction in response to changes in specific bacterial 

host populations. Additionally, the logistic regression model identified a common enteric pathogen 

(Salmonella), an opportunistic pathogen (Serratia), a bacterium that directly interacts with the 

immune system (Acinetobacter) and a eukaryotic virus (Orthopoxvirus), which also directly 
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interacts with the immune system but potentially opposes Acinetobacter to be the critical predictors 

of Cluster 2 communities. Although the study is limited by sample size (n=204) and sequencing 

(average coverage = 78%), cross-assembly (55) of the Orthopoxvirus sequences in this study could 

further validate the findings by achieving a more specific signature for annotation. Cross-assembly 

is a computationally intensive process and would require substantial resources to complete but 

would add considerable value as a follow-up study. Assemblies were not directly utilized in this 

study because of the statistical differences noted in mapping frequencies between cases and 

controls. In a future study, assemblies could provide a more specific signature for annotation. 

Additional studies are needed that directly assess the RNA virome, which remains an overlooked 

component of virome studies in general. Direct isolation of viruses, in combination with 

sequencing, is recommended, as studies of the virome remain primarily limited by lack of known 

viruses. 
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Table 2.1. Sequencing quality and coverage estimates for 204 metagenomes Results for the total sequencing (column 2), the 

quality control (columns 3-4), annotation results (column 5) and overall coverage (column 6). 

 

 

Study ID 

 

Reads Paired-forward total 

Count (Gbp) 

Reads remaining 

after low-quality read removal 

Count (%) 

Reads remaining 

after human read 

removal 

Count (%) 

Reads annotated 

Total (%) Viral 

(%) 

Nonpareil 

Coverage 

(%) 

ER0043 3690286 (1.1) 2551094 (69.1) 2550606 (100) 69.815823 (0.01) 87.1 

ER0073 4475020 (1.3) 2074677 (46.4) 1567523 (75.6) 68.416818 (0.07) 82.6 

ER0087 3773902 (1.1) 2545292 (67.4) 1933497 (76) 79.21824 (42.81) 77.6 

ER0109 3581466 (1.1) 2449737 (68.4) 2356690 (96.2) 63.66909 (0.01) 84 

ER0114 4322314 (1.3) 3059178 (70.8) 3059085 (100) 66.012962 (1.08) 83.5 

ER0117 4278113 (1.3) 2978060 (69.6) 159315 (5.3) 38.54845 (0.01) 27.2 

ER0130 2462439 (0.7) 1694157 (68.8) 1694025 (100) 60.618575 (0.04) 65.4 

ER0151 388095 (0.1) 231689 (59.7) 230122 (99.3) 65.682525 (1.57) 53.3 

ER0152 232570 (0.1) 125615 (54) 125096 (99.6) 66.652544 (0.01) 26.1 

ER0163 586349 (0.2) 364476 (62.2) 363875 (99.8) 51.344703 (0.08) 45 

ER0189 2237322 (0.7) 1579033 (70.6) 1578907 (100) 60.130712 (1.91) 78.8 

ER0190 1944382 (0.6) 1354015 (69.6) 1352769 (99.9) 70.613134 (0.01) 74.9 

ER0191 2156229 (0.6) 1345831 (62.4) 1345436 (100) 63.110984 (0.01) 70.3 

ER0192 545806 (0.2) 307626 (56.4) 307007 (99.8) 65.777413 (0.01) 44.3 

ER0194 1837552 (0.6) 1422110 (77.4) 111763 (7.9) 39.218257 (0.03) 34.1 

ER0196 4906306 (1.5) 3222852 (65.7) 3208766 (99.6) 47.144177 (0) 94.2 

ER0201 1276119 (0.4) 871703 (68.3) 842575 (96.7) 67.516847 (0.01) 70.3 

ER0203 2912425 (0.9) 2109330 (72.4) 2035748 (96.5) 59.215179 (0.01) 71.5 

ER0206 2802969 (0.8) 1965133 (70.1) 1746050 (88.9) 51.707844 (0.01) 79.6 

ER0210 444000 (1.3) 311323 (70.1) 310743 (99.8) 69.059241 (0.01) 37.4 

ER0222 2667880 (0.8) 1822512 (68.3) 1822313 (100) 57.56992 (0.06) 69.9 

ER0224 5897349 (1.8) 4028915 (68.3) 4028656 (100) 57.281524 (0) 90.2 

ER0225 4323343 (1.3) 2885169 (66.7) 2885122 (100) 52.604623 (1.24) 80.4 
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Table 2.1. (cont’d) 

     

ER0226 379000 (1.1) 263194 (69.4) 263167 (100) 60.683752 (0.01) 48.3 

ER0228 5384311 (1.6) 3651547 (67.8) 3651393 (100) 71.260326 (0.02) 79.1 

ER0229 5268224 (1.6) 3555546 (67.5) 3554925 (100) 76.039992 (0.01) 88.4 

ER0230 2110424 (0.6) 1423770 (67.5) 1423491 (100) 56.915487 (0.2) 56.2 

ER0231 5123000 (1.7) 3648988 (71.2) 3648390 (100) 50.212805 (0.01) 83.5 

ER0236 2844829 (0.9) 1890144 (66.4) 1889704 (100) 71.135879 (0.03) 79.5 

ER0237 544495 (0.2) 306045 (56.2) 304761 (99.6) 56.536419 (0.02) 41.8 

ER0238 4707792 (1.4) 3295554 (70) 3295476 (100) 59.955817 (0.03) 61.8 

ER0240 1763312 (0.5) 1215983 (69) 1215722 (100) 55.565508 (0.49) 45.6 

ER0241 1426161 (0.4) 924030 (64.8) 923599 (100) 51.784065 (0.96) 65.9 

ER0242 4328121 (1.3) 3033114 (70.1) 3032927 (100) 45.141548 (0.94) 83.8 

ER0243 3087983 (0.9) 2280010 (73.8) 2279662 (100) 53.469698 (0.11) 64.8 

ER0244 4423459 (1.3) 3054924 (69.1) 3054767 (100) 68.105447 (0.49) 83.9 

ER0245 4001677 (1.2) 2733059 (68.3) 2732743 (100) 59.360523 (0.47) 68.8 

ER0246 4907257 (1.5) 3382923 (68.9) 1913367 (56.6) 52.568997 (0.04) 67.1 

ER0273 3910156 (1.2) 2682649 (68.6) 2681579 (100) 66.538159 (0.01) 88.2 

ER0289 4104095 (1.2) 2792814 (68) 2792161 (100) 59.057322 (0.02) 83.3 

ER0290 182295 (0.1) 112589 (61.8) 112407 (99.8) 46.859599 (0.9) 37.1 

ER0291 4336392 (1.3) 2848156 (65.7) 2847519 (100) 68.727434 (0) 81.3 

ER0301 3125782 (0.9) 2105356 (67.4) 2092588 (99.4) 68.398843 (0) 80.5 

ER0303 3015911 (0.9) 1890784 (62.7) 1890241 (100) 61.867799 (0.01) 78.4 

ER0304 4194383 (1.3) 2812539 (67.1) 2812197 (100) 56.214372 (0.01) 78.3 

ER0305 4261812 (1.3) 2804294 (65.8) 2803791 (100) 61.269584 (0.04) 84.9 

ER0332 3238539 (1) 2174562 (67.1) 2161531 (99.4) 56.61745 (0.01) 75 

ER0379 2523145 (0.8) 1673988 (66.3) 1673843 (100) 59.533014 (0.01) 52.4 

ER0380 2526254 (0.8) 1682934 (66.6) 1682756 (100) 64.027065 (0.01) 66.5 

ER0438 3876292 (1.2) 2212919 (57.1) 2212507 (100) 61.098235 (0.02) 63.6 

ER0443 3654000 (1.6) 2514033 (68.8) 2513642 (100) 71.948559 (0.01) 77.4 

ER0444 4647744 (1.4) 3230445 (69.5) 3230348 (100) 73.648233 (0.01) 84.4 
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Table 2.1. (cont’d) 

     

ER0445 3527659 (1.1) 2404223 (68.2) 2403186 (100) 67.417172 (0.04) 79.9 

ER0628 4143623 (1.2) 2860706 (69) 2737187 (95.7) 62.884808 (0) 82.3 

ER0631 4947199 (1.5) 3491067 (70.6) 449651 (12.9) 66.886871 (1.71) 33 

ER0640 2264000 (0.9) 1583527 (69.9) 1521089 (96.1) 74.422937 (0) 85.7 

ER0641 1010000 (1.5) 709688 (70.3) 20171 (2.8) 47.109812 (0.01) 13.3 

ER0644 42000 (1.3) 30525 (72.7) 30449 (99.8) 49.513924 (0.01) 10.4 

ER0646 984000 (0.9) 700612 (71.2) 698633 (99.7) 61.67966 (0.01) 59 

ER0649 3253859 (1) 2358811 (72.5) 2321899 (98.4) 59.499313 (0.64) 67.1 

ER0653 5145388 (1.5) 3012888 (58.6) 1807740 (60) 58.371776 (0.02) 66.6 

ER0661 4139304 (1.2) 2909838 (70.3) 2389877 (82.1) 56.432873 (0.02) 77.9 

ER0676 1844000 (1.3) 1291819 (70.1) 200484 (15.5) 60.393479 (0.02) 23.6 

ER0680 3452654 (1) 2491927 (72.2) 2484834 (99.7) 49.292036 (0.03) 92 

ER0693 3819850 (1.1) 2601786 (68.1) 2580787 (99.2) 63.332222 (0.16) 82.2 

ER0694 3842806 (1.2) 2815063 (73.3) 1925995 (68.4) 67.870331 (0) 67 

ER0708 5468210 (1.6) 3536021 (64.7) 3535631 (100) 66.950614 (0) 91.9 

ER0003 2503344 (1.3) 2416794 (96.5) 2416565 (100) 51.377703 (0.01) 84.7 

ER0075 2513186 (1.3) 2443893 (97.2) 2437945 (99.8) 34.516915 (0) 99.2 

ER0092 2341075 (1.2) 2181952 (93.2) 1638581 (75.1) 23.65799 (0) 79.4 

ER0093 2438656 (1.2) 2339042 (95.9) 2338654 (100) 57.338745 (0.07) 70.3 

ER0126 2887334 (1.4) 2770758 (96) 2770687 (100) 63.744739 (0.02) 81 

ER0209 3463776 (1.7) 3199411 (92.4) 3195012 (99.9) 44.553532 (0.01) 94.4 

ER0264 2712638 (1.4) 2416483 (89.1) 1893607 (78.4) 44.312638 (0) 75.8 

ER0265 2018980 (1) 1942334 (96.2) 1930233 (99.4) 82.84611 (0) 96.4 

ER0275 2763759 (1.4) 2688130 (97.3) 2590963 (96.4) 69.863941 (0.01) 84 

ER0294 2302743 (1.2) 2231233 (96.9) 2230377 (100) 55.897398 (0.08) 78 

ER0299 2914589 (1.5) 2826233 (97) 2787126 (98.6) 78.899513 (0.06) 91.8 

ER0331 2756416 (1.4) 2683862 (97.4) 2683205 (100) 55.206048 (0.09) 95.1 

ER0376 2949070 (1.5) 2860618 (97) 2843485 (99.4) 83.066788 (0) 95.6 

ER0377 2982274 (1.5) 2880774 (96.6) 2843064 (98.7) 60.841207 (0.07) 80.2 
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Table 2.1. (cont’d) 

     

ER0385 3268838 (1.6) 3152845 (96.5) 3151489 (100) 72.824214 (0.01) 80.2 

ER0487 3032451 (1.5) 2937190 (96.9) 2937016 (100) 61.717564 (1.09) 89.9 

ER0510 4011214 (2) 3881859 (96.8) 3778439 (97.3) 48.601768 (0.01) 92.5 

ER0513 3647954 (1.8) 3259175 (89.3) 979802 (30.1) 66.217415 (0.01) 45.7 

ER0518 3734475 (1.9) 3560493 (95.3) 1838195 (51.6) 69.665266 (0.01) 59 

ER0519 2502866 (1.3) 2429050 (97.1) 2416803 (99.5) 66.073663 (0) 94.1 

ER0522 3761551 (1.9) 3629116 (96.5) 3628367 (100) 77.551334 (0.02) 96.7 

ER0535 2287524 (1.1) 2208850 (96.6) 2089682 (94.6) 63.897697 (0.02) 84.6 

ER0556 2879420 (1.4) 2802796 (97.3) 2802205 (100) 60.706754 (0.02) 90.5 

ER0557 3482958 (1.7) 3342524 (96) 2738584 (81.9) 65.538704 (0.07) 68.4 

ER0562 3865705 (1.9) 3669968 (94.9) 1650057 (45) 58.308875 (0.01) 51.6 

ER0563 2054040 (1) 1963311 (95.6) 1537503 (78.3) 46.312936 (0) 73 

ER0567 2686650 (1.3) 2586383 (96.3) 2565135 (99.2) 69.992498 (0) 82.5 

ER0568 2233653 (1.1) 2156875 (96.6) 2137755 (99.1) 72.081066 (0.01) 90.6 

ER0569 2717762 (1.4) 2593582 (95.4) 2591240 (99.9) 49.520458 (0.03) 80.5 

ER0576 2483636 (1.2) 2403597 (96.8) 2317317 (96.4) 53.035119 (0.01) 92.1 

ER0599 1989731 (1.4) 1926928 (96.8) 1918450 (99.6) 63.709328 (0.6) 43.6 

ER0610 2856204 (1.3) 2648770 (92.7) 942730 (35.6) 75.444685 (0.01) 82.5 

ER0642 2659009 (1.3) 2575434 (96.9) 2567963 (99.7) 82.258479 (0) 94.5 

ER0682 3396048 (1.7) 3270813 (96.3) 158886 (4.9) 40.450769 (0) 30.5 

ER0702 2854421 (1.4) 2715943 (95.1) 2713974 (99.9) 74.457471 (2.83) 92.6 

ER0730 4321568 (2.2) 4150575 (96) 4149231 (100) 64.124949 (0.11) 91.6 

ER0751 2832541 (1.4) 2745009 (96.9) 2744922 (100) 38.388086 (0) 94 

ER0769 2953626 (1.5) 2844938 (96.3) 2837734 (99.7) 61.962237 (0) 93.4 

ER0775 2937369 (1.5) 2834883 (96.5) 2831084 (99.9) 37.274218 (0) 89.6 

ER0776 3328875 (1.7) 3220930 (96.8) 3219376 (100) 40.818349 (0) 95.8 

ER0785 2704803 (1.4) 2613298 (96.6) 2608021 (99.8) 59.258712 (0.01) 89.2 

ER0794 2943331 (1.5) 2853100 (96.9) 2842644 (99.6) 61.341343 (0) 90.1 

ER0831 2669794 (1.3) 2576760 (96.5) 2558749 (99.3) 22.638276 (0) 95.7 
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Table 2.1. (cont’d) 

     

ER0853 2321135 (1.2) 2103992 (90.6) 1897677 (90.2) 47.315647 (0) 87.5 

ER0859 2507476 (1.3) 2430524 (96.9) 2428609 (99.9) 70.452843 (0) 94.3 

ER0868 2377090 (1.2) 2311151 (97.2) 2310675 (100) 75.008731 (0.01) 89.6 

ER0902 2953083 (1.5) 2847916 (96.4) 523324 (18.4) 42.10598 (0.01) 36.9 

ER0129 5858632 (2.9) 5688595 (97.1) 5688477 (100) 57.962686 (0.82) 90 

ER0188 3049908 (1.5) 2977225 (97.6) 2977173 (100) 69.675386 (0.03) 88.9 

ER0217 501000 (1.3) 474829 (94.8) 474780 (100) 49.220898 (0.01) 77.4 

ER0218 2191259 (1.1) 1896424 (86.5) 1895129 (99.9) 60.875956 (0.01) 72.7 

ER0219 2976614 (1.5) 2862329 (96.2) 2861903 (100) 82.163795 (0.01) 85 

ER0220 3251021 (1.6) 2687907 (82.7) 2685636 (99.9) 65.072276 (0.01) 81.5 

ER0223 3035510 (1.5) 2957218 (97.4) 2957211 (100) 68.798462 (0.03) 85.3 

ER0249 2786305 (1.4) 2534620 (91) 2532467 (99.9) 57.504394 (0.03) 78.7 

ER0250 2842178 (1.4) 2505249 (88.1) 2505155 (100) 64.732807 (0.92) 87.1 

ER0256 3377998 (1.7) 3297891 (97.6) 3297811 (100) 64.527671 (0) 76.4 

ER0257 2731396 (1.4) 2669738 (97.7) 2669720 (100) 71.197782 (0.08) 85.1 

ER0258 3154242 (1.6) 3082663 (97.7) 3082584 (100) 48.410613 (0.04) 68.9 

ER0259 4490498 (2.2) 4399245 (98) 4399206 (100) 63.397433 (0) 83.9 

ER0260 4120760 (2.1) 4036758 (98) 4036711 (100) 68.331358 (0.02) 82.7 

ER0261 3351840 (1.7) 3278816 (97.8) 3278471 (100) 52.448055 (0.34) 79.6 

ER0270 3505538 (1.8) 3415817 (97.4) 3415794 (100) 58.402948 (0.02) 84.2 

ER0271 2341654 (1.2) 2290512 (97.8) 2290442 (100) 48.322114 (0.14) 79.1 

ER0277 3683578 (1.8) 3587213 (97.4) 3587032 (100) 53.812907 (0.01) 76.2 

ER0278 294000 (1.8) 287107 (97.7) 287105 (100) 60.50121 (0.03) 44.8 

ER0279 3568011 (1.8) 3477383 (97.5) 3477352 (100) 67.082308 (0.01) 89.1 

ER0280 3102475 (1.6) 3006098 (96.9) 3005348 (100) 58.997568 (0.06) 84.2 

ER0281 3834430 (1.9) 3664627 (95.6) 3664459 (100) 56.366741 (0.01) 85.9 

ER0308 3119640 (1.6) 3020552 (96.8) 3020402 (100) 61.949613 (0.03) 83.2 

ER0323 2426809 (1.2) 2243376 (92.4) 2243269 (100) 66.586933 (0.01) 80 

ER0324 1439000 (1.7) 1145592 (79.6) 1145475 (100) 70.761783 (0.03) 63.8 
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Table 2.1. (cont’d) 

     

ER0325 3700987 (1.9) 3601773 (97.3) 3601692 (100) 56.972047 (0.03) 78.2 

ER0326 3749755 (1.9) 3610077 (96.3) 3610009 (100) 77.306206 (0.08) 88.4 

ER0327 185000 (1.6) 170720 (92.3) 170705 (100) 67.252863 (0.22) 24.4 

ER0336 3511575 (1.8) 3418976 (97.4) 3418923 (100) 62.121956 (0.13) 72.5 

ER0364 3999048 (2) 3904613 (97.6) 3904449 (100) 72.756066 (0.04) 95.9 

ER0413 3103342 (1.6) 2770518 (89.3) 2727572 (98.4) 44.762937 (0.09) 81.6 

ER0439 3178552 (1.6) 3061584 (96.3) 3061458 (100) 75.10139 (0.03) 84.8 

ER0440 156000 (1.7) 145301 (93.1) 145299 (100) 85.724609 (0.01) 73.5 

ER0446 3041907 (1.5) 2932061 (96.4) 2931818 (100) 68.021245 (0.02) 87.4 

ER0465 3602899 (1.8) 3501480 (97.2) 3501370 (100) 60.392224 (0.03) 90.8 

ER0466 2983258 (1.5) 2789012 (93.5) 2784280 (99.8) 66.697795 (2.39) 86.1 

ER0467 3038648 (1.5) 2903454 (95.6) 2903139 (100) 61.470901 (0.05) 86.2 

ER0468 2609413 (1.3) 2548530 (97.7) 2548505 (100) 72.31197 (0.06) 88.4 

ER0469 3562669 (1.8) 3472148 (97.5) 3472071 (100) 71.4306 (0.02) 90.6 

ER0470 3424225 (1.7) 3326276 (97.1) 3326229 (100) 73.126744 (0.01) 93.7 

ER0490 2907025 (1.5) 2837080 (97.6) 2836967 (100) 70.320706 (0.01) 90 

ER0499 3121529 (1.6) 3034411 (97.2) 3034089 (100) 68.255054 (0.01) 92.6 

ER0501 3456873 (1.7) 3360751 (97.2) 3360518 (100) 66.725358 (0.01) 89.5 

ER0503 2778570 (1.4) 2700540 (97.2) 2700286 (100) 67.444696 (0) 92.8 

ER0516 2601615 (1.3) 2441463 (93.8) 2438927 (99.9) 67.301717 (18.65) 92.2 

ER0541 3459582 (1.7) 3343595 (96.6) 3343582 (100) 58.343358 (0.35) 95.2 

ER0561 3360491 (1.7) 3223756 (95.9) 3223649 (100) 65.327449 (0.09) 79.7 

ER0612 3222010 (1.6) 3127004 (97.1) 3126934 (100) 64.859773 (0.37) 87.6 

ER0626 3291513 (1.6) 3080888 (93.6) 3080431 (100) 63.887005 (0.04) 84.5 

ER0627 3158973 (1.6) 2448164 (77.5) 2447774 (100) 58.972449 (0.13) 69.4 

ER0634 2257316 (1.1) 2039657 (90.4) 2037943 (99.9) 65.067949 (0.24) 77.6 

ER0664 2565189 (1.3) 2113453 (82.4) 2113142 (100) 57.720016 (0.14) 81.2 

ER0671 3072584 (1.5) 2982100 (97.1) 2981986 (100) 69.241249 (0.02) 89.1 

ER0690 3325404 (1.7) 3138520 (94.4) 3138246 (100) 65.935758 (0.01) 84.2 



 

89 
 

Table 2.1. (cont’d) 

     

ER0691 2919300 (1.5) 2729918 (93.5) 2723876 (99.8) 78.275627 (0.01) 90 

ER0692 3253856 (1.6) 3058749 (94) 3057723 (100) 82.487902 (0.22) 89.7 

ER0698 3080854 (1.5) 2753514 (89.4) 2752848 (100) 53.110106 (0.05) 79.4 

ER0699 4182037 (2.1) 4012817 (96) 4012757 (100) 57.69982 (0.08) 88.6 

ER0709 3523923 (1.8) 3356211 (95.2) 3353466 (99.9) 61.937564 (0) 98.5 

ER0739 3310926 (1.7) 3173864 (95.9) 3173802 (100) 58.05347 (0.09) 86.1 

ER0741 3258579 (1.6) 3057965 (93.8) 3056360 (99.9) 45.415706 (0.38) 82.7 

ER0763 3744482 (1.9) 3613376 (96.5) 3613220 (100) 70.974029 (0.01) 90.3 

ER0780 3458005 (1.7) 3341789 (96.6) 3341574 (100) 67.861244 (0.04) 84.7 

ER0781 3660688 (1.8) 3550589 (97) 3550541 (100) 65.110441 (0.01) 87 

ER0797 3298042 (1.6) 3198885 (97) 3197924 (100) 57.594757 (0.12) 74.7 

ER0886 3293716 (1.6) 3118915 (94.7) 3118785 (100) 49.57033 (1.77) 80.3 

ER0887 3191976 (1.6) 3088536 (96.8) 3088522 (100) 61.784428 (0.04) 92.6 

ER0944 3022773 (1.5) 2056838 (68) 2056703 (100) 51.88603 (0.12) 98.1 

ER0947 3187266 (1.6) 3031943 (95.1) 3031458 (100) 73.457522 (0.26) 94.5 

ER0958 2425696 (1.2) 2376242 (98) 2375942 (100) 70.169604 (0) 88.8 

ER0959 2395695 (1.2) 2084851 (87) 2084501 (100) 60.83966 (0.01) 88 

ER0961 3041780 (1.5) 2642845 (86.9) 2642585 (100) 65.16026 (0.04) 72.8 

ER0964 2530594 (1.3) 2471368 (97.7) 2470375 (100) 50.508265 (0.01) 89.3 

ER0974 3479256 (1.7) 3352624 (96.4) 3352448 (100) 76.237358 (0.05) 88.6 

ER1005 3617399 (1.8) 3540560 (97.9) 3535046 (99.8) 59.87265 (0.34) 97.2 

ER1010 590000 (1.6) 564765 (95.7) 564741 (100) 67.501858 (0) 80.6 

ER1012 3211292 (1.6) 3086791 (96.1) 3085013 (99.9) 66.919134 (0.01) 88.2 

ER1013 2400919 (1.2) 2233385 (93) 2233337 (100) 72.956246 (0.01) 82 

ER1014 2827546 (1.4) 2724897 (96.4) 2724862 (100) 61.710791 (0.02) 82.4 

ER1015 3146552 (1.6) 2917137 (92.7) 2916969 (100) 67.636418 (0.02) 81.3 

ER1016 2437204 (1.2) 2317764 (95.1) 2317613 (100) 62.170517 (0.03) 78.5 

ER1017 3097654 (1.5) 3014662 (97.3) 3014583 (100) 64.881034 (0.01) 83.1 

ER0212 5106975 (2.6) 4838587 (94.7) 4838511 (100) 68.707943 (0.68) 89.2 
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Table 2.1. (cont’d) 

     

ER0583 7427518 (3.7) 7248153 (97.6) 7247878 (100) 72.445071 (0) 97.7 

ER0128 3488364 (1.7) 3405121 (97.6) 3405029 (100) 68.198068 (0.41) 82.2 

ER0138 2809243 (1.4) 2529845 (90.1) 2529555 (100) 60.679996 (0) 89.8 

ER0500 2826292 (1.4) 2764180 (97.8) 2758963 (99.8) 47.98185 (0.01) 89 

ER1018 4840936 (2.4) 4722384 (97.6) 4722201 (100) 57.167467 (0.04) 84.2 
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Table 2.2. Characteristics of the 79 patients with enteric infections and 125 non-infected family members in the study 

 
Characteristic 

No. of 
cases‡ 

Percent (%) of 
cases 

No. of 
non-infected ‡ 

Percent (%) of 
non-infected 

 
p-value 

Demographic data      
Sex 
Male 
Female 

 
38 
41 

 
48.1 
51.9 

 
67 
56 

 
54.5 
45.5 

 
0.3765 

- 
Age group (years) 
0-9 
10-18 
19-64 
65+ 

 
21 
11 
33 
14 

 
26.6 
13.9 
41.8 
17.7 

 
33 
17 
64 
9 

 
26.8 
13.8 
52 
7.3 

 
0.5497 
0.6073 

- 
0.0177 

Race 
Caucasian 
African American 
Other 

 
60 
10 
4 

 
81.1 
13.5 
5.4 

 
14 
3 
0 

 
82.4 
17.6 

0 

 
1.0 

0.5412 
- 

Residence location 
Rural 
Urban 

 
40 
38 

 
51.3 
48.7 

 
55 
61 

 
47.4 
52.6 

 
0.5971 

- 
Residence (counties in Michigan) 
Calhoun 
Clinton 
Eaton 
Ingham 
Ionia 
Kent 
Lenawee 
Livingston 
Macomb 
Newaygo 
Oakland 
Ottawa 
Shiawassee 
Washtenaw 
Wayne 

 

 
1 
4 
5 
16 
2 
5 
1 
3 
3 
0 
8 
3 
0 
11 
16 
 

 
1.28 
5.13 
6.41 
20.51 
2.56 
6.41 
1.28 
3.85 
3.85 

0 
10.26 
3.85 

0 
14.1 
20.51 

 

 
2 
3 
13 
15 
7 
2 
3 
5 
12 
4 
20 
2 
1 
7 
20 

 

 
1.7 
2.6 
11.2 
12.9 

6 
1.7 
2.6 
4.3 
10.3 
3.4 
17.2 
1.7 
0.9 
6 

17.2 
 

 
1 

0.6867 
0.3749 
0.628 
0.279 
0.2404 
0.6235 

1 
0.1233 
0.1362 
0.2979 
0.6486 

1 
0.3869 

- 
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Table 2.2. (cont’d) 
 

     

Infection 
Camapylobacter 
Salmonella 
Shigella 
STEC 

 
29 
35 
10 
5 

 
36.7 
44.3 
12.7 
6.3 

 
45 
57 
17 
6 

 
36 

45.6 
13.6 
4.8 

 
0.7483 
0.7465 
0.7219 

- 
Epidemiological data      
Travel 
Domestic travel past 2 weeks 
Yes 
No 

 
 

16 
59 

 
 

21.3 
78.7 

 
 

34 
77 

 
 

30.6 
69.4 

 
 

0.1606 
- 

International travel past 2 weeks 
Yes* 
No 

9 
67 

 
11.8 
88.2 

 
2 

109 

 
1.8 
98.2 

 
0.0080 

- 
Food consumption 
Turkey 
Yes 
No 
Chicken 
Yes* 
No 
Beef 
Yes 
No 
Pork 
Yes* 
No 
Deli meat 
Yes 
No 
Raw fruits 
Yes 
No 
Raw leafy greens 
Yes 
No 

 
 

10 
15 
 

55 
10 
 

39 
5 
 

33 
7 
 

25 
24 
 

31 
6 
 

36 
17 

 
 

40 
60 
 

84.6 
15.4 

 
88.6 
11.4 

 
82.5 
17.5 

 
51 
49 

 
83.8 
16.2 

 
67.9 
32.1 

 
 

35 
88 
 

119 
4 

 
99 
24 
 

60 
63 
 

69 
54 
 

109 
14 
 

87 
36 

 
 

28.5 
71.5 

 
96.7 
3.3 

 
80.5 
19.5 

 
48.8 
51.2 

 
56.1 
43.9 

 
88.6 
11.4 

 
70.7 
29.3 

 
 

0.2526 
- 
 

0.0060 
- 
 

0.2552 
- 
 

0.0002 
- 
 

0.5460 
- 
 

0.4356 
- 
 

0.7096 
- 
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Table 2.2. (cont’d) 
 

     

Raw vegetables 
Yes 
No 
Raw eggs 
Yes 
No 

 
21 
13 
 
1 
39 

 
63.6 
39.4 

 
2.5 
97.5 

 
95 
28 
 
7 

116 

 
77.2 
22.8 

 
5.7 
94.3 

 
0.6910 

- 
 

0.6807 
- 

Water at home 
Any well* 
Any municipal* 
Only bottled 

 
13 
48 
8 

 
18.8 
69.6 
11.6 

 
20 
33 
0 

 
37.7 
62.3 

0 

 
0.0021 
0.0228 

- 

The percentages based on the number for which information was available. Counts are mutually exclusive for each category. ‡ Total 

number varies due to the difference in missing data. * indicates significance difference (p < 0.05) between variables using p-value 

calculated by Chi-square test and Fisher’s exact test for variables <5 in at least one cell. Mantel-Hanzel Chi-square was used to assess 

for trends. 
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Table 2.3. Clinical outcomes and animal contacts of the 79 patients with enteric infections 

included in the study  

Characteristic No. of cases‡ Percentage (%) of cases 
Clinical Outcomes among cases only   
Case hospitalization 
     Yes 
     No 

 
29 
49 

 
37.2 
62.8 

Hospital Duration 
     > 2 days 
     < 2 days 

 
15 
13 

 
53.6 
46.4 

Abdominal pain 
     Yes 
     No 

 
12 
65 

 
15.6 
84.4 

Body ache 
     Yes 
     No 

 
22 
55 

 
28.6 
71.4 

Diarrhea 
     Yes 
     No 

 
73 
4 

 
94.8 
5.2 

Bloody diarrhea 
     Yes 
     No 

 
29 
48 

 
37.7 
62.3 

Chills 
     Yes 
     No 

 
25 
52 

 
32.5 
67.5 

Fatigue 
     Yes 
     No 

 
41 
36 

 
53.2 
46.8 

Headache 
     Yes 
     No 

 
18 
59 

 
23.4 
76.6 

Nausea 
     Yes 
     No 

 
38 
39 

 
49.4 
50.6 

Vomiting 
     Yes 
      No 

 
27 
50 

 
35.1 
64.9 

Fever 
     Yes 
     No 

 
47 
21 

 
69.1 

30.9 
Animal Contact   
Any animal  
     Yes 
     No 
Reptile  
     Yes 
     No 

 
46 
26 

 
5 
67 

 
63.9 
36.1 

 
6.9 
93.1 
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Table 2.3. (cont’d) 
 
Livestock 
     Yes 
     No 

 
 
 

10 
62 

 
 
 

13.9 
86.1 

Birds/poultry 
     Yes 
     No 
Domestic 
     Yes 
     No 
Others 
     Yes 
     No 

 
15 
57 

 
40 
32 

 
13 
59 

 
20.8 
79.2 

 
55.6 
44.4 

 
18.1 
81.9 

The percentages based on the number for which information was available. Counts are mutually 

exclusive for each category. ‡ Total number varies due to the difference in missing data. 
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Table 2.4. Characteristics of individuals with microbiome profiles belonging to one of the 

four Clusters defined through hierarchical clustering 

 
Characteristic 

Cluster 1‡  
No. (%)  

Cluster 2‡  
No. (%) 

Cluster 3‡  
No. (%) 

Cluster 4‡  
No. (%) 

 
p-value 

Demographic data 
Case status 
     Case 
     Control 

 
 

37 (74) 
13 (26) 

 
 

28 (96.6) 
1 (3.4) 

 
 

1 (2.3) 
43 (97.7) 

 
 

13 (16 
68 (84) 

 
 

< 0.0001 
- 

Sex 
     Male* 
     Female 

 
24 (48) 
26 (52) 

 
17 (58.6) 
12 (41.4) 

 
30 (69.8) 
13 (30.2) 

 
34 (42.5) 
46 (57.5) 

 
0.0264 

- 
Age group (years) 
    0-9 
    10-18 
    19-64 
    65+ 

 
12 (24) 
7 (14) 
24 (48) 
7 (14) 

 
8 (27.6) 
4 (13.8) 
12 (41.4) 
5 (17.2) 

 
13 (30.2) 

6 (14) 
22 (51.1) 
2 (4.7) 

 
21 (26.3) 
11 (13.7) 
39 (38.7) 
9 (11.3) 

 
0.3958 
0.6406 
0.3460 

- 
Race 
     Caucasian 
     African American 
     Other 
Residence type 
     Rural* 
     Urban 
Infection 
     Campylobacter  
     Salmonella 
     Shigella 
     STEC 

 
31 (81.6) 
5 (13.1) 
2 (5.3) 

 
26 (52) 
24 (48) 

 
19 (38) 
20 (40) 
6 (12) 
5 (10) 

 
21 (80.8) 
4 (15.4) 
1 (3.8) 

 
13 (44.8) 
16 (55.2) 

 
7 (24.1) 
14 (48.3) 
7 (24.1) 
1 (3.4) 

 
6 (100) 
0 (0) 
0 (0) 

 
26 (66.7) 
13 (33.3) 

 
18 (40.9) 
21 (47.7) 
3 (6.8) 
2 (4.5) 

 
16 (76.2) 
4 (19.1) 
1 (4.7) 

 
30 (39.5) 
46 (60.5) 

 
30 (37) 

37 (45.7) 
11 (13.6) 
3 (3,7) 

 
1 
1 
- 
 

0.0457 
- 
 

0.6008 
0.4351 
0.4055 

- 
Epidemiological data      
Travel 
Domestic travel 
     Yes* 
     No 
International travel 
     Yes 
     No 

 
 

10 (20.8) 
38 (79.2) 

 
4 (8.2) 

45 (91.8) 

 
 

9 (33.3) 
18 (66.7) 

 
3 (11.1) 
24 (88.9) 

 
 

19 (45.2) 
23 (54.8) 

 
1 (2.4) 

41 (97.6) 

 
 

12 (17.4) 
57 (82.6) 

 
3 (4.3) 

66 (95.7) 

 
 

0.0080 
- 
 

0.3372 
- 

The percentages based on the number for which information was available. Counts are mutually 

exclusive for each category. ‡ Total number varies due to the difference in missing data. * 

indicates significance difference (p < 0.05) between variables using p-value calculated by Chi-

square test and Fisher’s exact test for variables <5 in at least one cell. Mantel-Hanzel Chi-square 

was used to assess for trends. 

 



 

97 
 

Table 2.5. Univariate analysis to identify disease associations for Cluster 1 in 79 patients with 

enteric infections 

 

Outcome 

 

Totals* 

 

No (%) Cluster 1 

OR 

(95% CI)† p-value‡ 

Sex 

    Male 

    Female 

 

38 

41 

 

15 (39.5) 

22 (53.7) 

 

1.0 

0.6 (0.2 - 1.4) 

 

- 

0.2068 

Age group (years) 

    0-9 

    10-18 

    19-64 

    65+ 

 

21 

11 

33 

14 

 

11 (47.6) 

5 (45.4) 

15 (45.4) 

7 (50) 

 

0.9 (0.3 - 2.7) 

1 (0.3 - 3.9) 

1.0 

0.8 (0.2 - 2.9) 

 

0.8764 

1 

- 

0.7752 

Race 

     Caucasian 

     African American 

     Other 

Residence Type 

    Urban 

    Rural 

 

60 

10 

4 

 

38 

40 

 

28 (46.7) 

5 (50) 

2 (50) 

 

18 (47.4) 

19 (47.5) 

 

1.1 (0.1 – 16) 

1 (0.1 – 19) 

1.0 

 

1 (0.4 - 2.4) 

1.0 

 

0.9 

1 

- 

 

0.9907 

- 
Infection 
     Campylobacter  
     Salmonella 
     Shigella 

     STEC 

Hospitalized  

     Yes 

     No 

 

29 

35 

10 

5 

 

29 

49 

 

15 (46.8) 

17 (48.6) 

2 (20) 

3 (60) 

 

13 (44.8) 

24 (49) 

 

1.4 (0.1 - 19) 

1.6 (0.2 - 21) 

5 (0.3 - 111) 

1.0 

 

0.8 (0.3 - 2.1) 

1.0 

 

0.7320 

0.6326 

0.1213 

- 

 

0.7227 

- 

Abdominal pain 

     Yes 

     No 

 

65 

12 

 

30 (46.7) 

7 (58.3) 

 

0.6 (0.1 - 2.5) 

1.0 

 

0.5360 

- 

Body ache 

     Yes 

     No 

Diarrhea 

     Yes 

     No 

 

22 

55 

 

73 

4 

 

16 (72.7) 

21 (38.2) 

 

36 (49.3) 

1 (25) 

 

4.3 (1.5 - 12.8) 

1.0 

 

2.9 (0.2 - 157) 

1.0 

 

0.0061 

- 

 

0.6161 

- 

Bloody diarrhea 

     Yes 

     No 

 

29 

48 

 

10 (34.5)  

27 (56.2) 

 

0.4 (0.2 - 1.1) 1.0 

 

0.0639  

- 

Chills 

     Yes 

     No 

 

25 

52 

 

12 (48) 

25 (48.1) 

 

1 (0.4 - 2.6) 

1.0 

 

0.9949 

- 
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Table 2.5. (cont’d) 

 

Fatigue 

     Yes 

     No 

 

41 

36 

 

18 (43.9) 

19 (52.8) 

 

0.7 (0.3 - 1.7) 

1.0 

 

0.4367 

- 

Headache 

     Yes 

     No 

 

18 

59 

 

9 (50) 

28 (47.5) 

 

1.1 (0.4 - 3.2) 

1.0 

 

0.8501 

- 

Nausea 

     Yes  

     No 

 

38 

39 

 

19 (50) 

18 (46.2) 

 

1.2 (0.5 - 2.9) 

1.0 

 

0.7356 

- 

Vomiting 

     Yes 

     No 

 

27 

50 

 

12 (44.4) 

25 (50) 

 

0.8 (0.3 - 2) 

1.0 

 

0.6415 

- 

Fever 

     Yes 

     No 

 

47 

21 

 

20 (42.6) 

12 (57.1) 

 

0.6 (0.2 - 1.6) 

1.0 

 

0.2654 

- 

 

* Depending on the variable examined, the number does not add up to the total (n=79) because 

of missing data. † 95% confidence interval (CI) for odds ratio (OR). ‡ p-value calculated by Chi-

square test and Fisher’s exact test was used for variables <5 in at least one cell. Mantel-Hanzel 

Chi-square was used to assess for trends. 
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Table 2.6. Univariate and multivariate analysis to identify disease associations for Cluster 2 

in 79 patients 

 

Characteristic 

 

Total* 

 

No (%) Cluster 2 

OR 

(95% CI)† 

 

p-value‡ 

Sex 

    Male 

    Female  

 

38  

41 

 

16 (42.1)  

12 (29.3) 

 

1.0 

1.8 (0.7 - 4.5) 

 

- 

0.2333 

Age group (years) 

    0-9 

    10-18 

    19-64 

    65+ 

 

21 

11 

33 

14 

 

8 (28.6) 

4 (14.3) 

11 (39.3) 

5 (17.9) 

 

0.8 (0.2 - 3) 

0.9 (0.2 - 5) 

1.0 

0.9 (0.2 - 4.3) 

 

0.7753 

1 

- 

1 

Race 

     Caucasian 

     African American 

     Other 

Residence Type 

    Urban 

    Rural 

 

60 

10 

4 

 

38 

40 

 

21 (35) 

4 (40) 

1 (25) 

 

16 (42.1) 

12 (30) 

 

0.5 (0.01 - 8.3) 

0.8 (0.1 - 9.8) 

1.0 

 

1.7 (0.7 - 4.3) 

1.0 

 

1 

1 

- 

 

0.2653 

- 
Infection 
     Campylobacter  
     Salmonella 
     Shigella 

     STEC 

 

29 

35 

10 

5 

 

7 (24.1) 

13 (37.1) 

7 (70) 

1 (20) 

 

0.8 (0.01 - 10) 

0.4 (0.01 - 5) 

0.1(0.001 - 2) 

1.0 

 

1 

0.6404 

0.1189 

- 

Hospitalized 

     Yes 

     No 

 

29 

49 

 

11 (37.9) 

17 (34.7) 

 

1.2 (0.4 - 3) 

1.0 

 

0.7733 

- 

Abdominal pain 

     Yes 

     No 

 

65 

12 

 

23 (35.4) 

3 (25) 

 

1.6 (0.4 - 10.3) 

1.0 

 

0.7410 

- 

Body ache 

     Yes 

     No 

Diarrhea 

     Yes 

     No 

 

22 

55 

 

73 

4 

 

5 (22.7) 

21 (38.2) 

 

26 (35.6) 

0 (0) 

 

0.5 (0.1 - 1.6) 

1.0 

 

Un (0.3 – Un) 

1.0 

 

0.2867 

- 

 

0.2937 

- 

Bloody diarrhea 

     Yes 

     No 

 

29 

48 

 

15 (51.7) 

11 (22.9) 

 

3.6 (1.3 - 9.7) 

1.0 

 

0.0096 

- 

Chills 

     Yes 

     No 

 

25 

52 

 

8 (32) 

18 (34.6) 

 

0.9 (0.3 - 2.5) 

1.0 

 

0.8202 

- 
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Table 2.6. (cont’d) 

 

Fatigue 

     Yes 

     No 

 

41 

36 

 

16 (39) 

10 (27.8) 

 

1.7 (0.6 - 4.4) 

1.0 

 

0.2978 

- 

Headache 

     Yes 

     No 

 

18 

59 

 

9 (50) 

17 (28.8) 

 

2.5 (0.8 - 7.3) 

1.0 

 

0.0962 

- 

Nausea 

     Yes  

     No 

 

38 

39 

 

13 (34.2) 

13 (33.3) 

 

1 (0.4 - 2.7) 

1.0 

 

0.9351 

- 

Vomiting 

     Yes 

     No 

 

27 

50 

 

13 (48.1) 

13 (26) 

 

2.6 (1 - 7.1) 

1.0 

 

0.0499 

- 

Fever 

     Yes 

     No 

 

47 

21 

 

19 (40.4) 

5 (23.8) 

 

2.1 (0.6 - 8.8) 

1.0 

 

0.2728 

- 

* Depending on the variable examined, the number does not add up to the total (n=79) because 

of missing data. † 95% confidence interval (CI) for odds ratio (OR). ‡ p-value calculated by Chi-

square test and Fisher’s exact test was used for variables <5 in at least one cell. Mantel-Hanzel 

Chi-square was used to assess for trends. 
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Table 2.7. Differentially abundant taxa determined by ANCOM for each case cluster 

Organism (Genus) Taxonomy (Order; Family) Cluster 1 Cluster 2 

Viruses 

P22virus 

P2virus 

Nona33virus 

Lambdavirus 

Kp15virus 

Hk97virus 

P1virus 

T7virus 

Sk1virus 

L5virus 

Felixo1virus 

C5virus 

Epsilon15virus 

Jerseyvirus 

Pepy6virus 

T5virus 

Sfi11virus 

Pis4avirus 

Muvirus 

Sfi21dt1virus 

K1gvirus 

Cytomegalovirus 

Tl2011virus 

Rb69virus 

Jd18virus 

S16virus 

Orthopoxvirus 

 

Caudovirales; Podoviridae 

Caudovirales; Myoviridae 

Caudovirales; Podoviridae 

Caudovirales; Siphoviridae 

Caudovirales; Myoviridae 

Caudovirales; Siphoviridae 

Caudovirales; Myoviridae 

Caudovirales; Podoviridae 

Caudovirales; Siphoviridae 

Caudovirales; Siphoviridae 

Caudovirales; Myoviridae 

Caudovirales; Siphoviridae 

Caudovirales; Podoviridae 

Caudovirales; Siphoviridae 

Caudovirales; Siphoviridae 

Caudovirales; Siphoviridae 

Caudovirales; Siphoviridae 

Caudovirales; Siphoviridae 

Caudovirales; Myoviridae 

Caudovirales; Siphoviridae 

Caudovirales; Siphoviridae 

Herpesvirales; Herpesviridae 

Caudovirales; Podoviridae 

Caudovirales; Myoviridae 

Caudovirales; Myoviridae 

Caudovirales; Myoviridae 

Viruses; Poxviridae 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Present 

 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Bacteria 

Salmonella 

Alistipes 

Escherichia 

Shigella 

Klebsiella 

Enterobacter 

Citrobacter 

Haemophilus 

Oscillibacter 

Serratia 

Atlantibacter 

Raoultella 

Kluyvera 

 

Enterobacterales; Enterobacteriaceae 

Bacteroidales; Rikenellaceae 

Enterobacterales; Enterobacteriaceae 

Enterobacterales; Enterobacteriaceae 

Enterobacterales; Enterobacteriaceae 

Enterobacterales; Enterobacteriaceae 

Enterobacterales; Enterobacteriaceae 

Enterobacterales; Enterobacteriaceae 

Clostridiales; Oscillospiraceae 

Enterobacterales; Yersiniaceae 

Enterobacterales; Enterobacteriaceae 

Enterobacterales; Enterobacteriaceae 

Enterobacterales; Enterobacteriaceae 

 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Proteus Enterobacterales; Morganellaceae Present Present 
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Table 2.7. (cont’d) 

 

Hafnia 

Neglecta 

Morganella 

Bacteroides 

Roseburia 

Clostridioides 

Ruminococcus 

 

 

Enterobacterales; Hafniaceae 

Clostridiales; Ruminococcaceae 

Enterobacterales; Morganellaceae 

Bacteroidales; Bacteroidaceae 

Clostridiales; Lachnospiraceae 

Clostridiales; Peptostreptococcaceae 

Clostridiales; Ruminococcaceae 

 

 

Present 

Present 

Present 

 

 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Butyricicoccus 

Chlamydia 

Porphyromonas 

Eubacterium 

Lactococcus 

Streptococcus 

Flavonifractor 

Holdemania 

Subdoligranulum 

Azospirillum 

Tannerella 

Anaerotruncus 

Agathobaculum 

Dysgonomonas 

Fusicatenibacter 

Acinetobacter 

Pseudomonas 

Pseudoflavonifractor 

Staphylococcus 

Bacillus 

Enterococcus 

Lactobacillus 

Alloprevotella 

Paenibacillus 

Intestinibacillus 

Intestinimonas 

Ruthenibacterium 

Gemmiger 

Anaeromassilibacillus 

Angelakisella 

Lawsonibacter 

Lachnotalea 

Peptostreptococcus 

Acetobacter 

Acidovorax 

Colibacter 

Tissierella 

Clostridiales; Clostridiaceae 

Chlamydiales; Chlamydiaceae 

Bacteroidales; Porphyromonadaceae 

Clostridiales; Eubacteriaceae 

Lactobacillales; Streptococcaceae 

Lactobacillales; Streptococcaceae 

Clostridiales; Ruminococcaceae 

Erysipelotrichales; Erysipelotrichaceae 

Clostridiales; Ruminococcaceae 

Rhodospirillales; Rhodospirillaceae 

Bacteroidales; Tannerellaceae 

Clostridiales; Ruminococcaceae 

Clostridiales; Ruminococcaceae 

Bacteroidales; Dysgonamonadaceae 

Clostridiales; Lachnospiraceae 

Pseudomonadales; Moraxellaceae 

Pseudomonadales; Pseudomonadaceae 

Clostridiales; Ruminococcaceae 

Bacillales; Staphylococcaceae 

Bacillales; Bacillaceae 

Lactobacillales; Enterococcaceae 

Lactobacillales; Lactobacillaceae 

Bacteroidales; Prevotellaceae 

Bacillales; Paenibacillaceae 

Clostridiales; Eubacteriaceae 

Clostridiales; unclassified Clostridiales 

Clostridiales; Ruminococcaceae 

Clostridiales; Ruminococcaceae 

Clostridiales; Ruminococcaceae 

Clostridiales; Ruminococcaceae 

Clostridiales; unclassified Clostridiales 

Clostridiales; Lachnospiraceae 

Clostridiales; Peptostreptococcaceae 

Rhodospirillales; Acetobacteraceae 

Burkholderiales; Comamonadaceae 

Veillonellales; Veillonellaceae 

Tissierellales; Tissierellaceae 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 
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Table 2.7. (cont’d) 

 

Victivallis 

Lachnoclostridium 

Akkermansia 

Veillonella 

Odoribacter 

Christensenella 

 

 

Victivallales; Victivallaceae 

Clostridiales; Lachnospiraceae 

Verrucomicrobiales; Akkermansiaceae 

Veillonellales; Veillonellaceae 

Bacteroidales; Odoribacteraceae 

Clostridiales; Christensenellaceae 

 

 

Present 

Present 

Present 

Present 

 

 

Present 

Asaccharobacter Eggerthellales; Eggerthellaceae Present  
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Table 2.8. Univariate and multivariate analysis for Cluster 2 status in 79 patients with enteric 

infections and 125 non-infected family members (controls) included in the study 

 

Characteristic 

 

Total* 

No (%) 

Cluster 2 

OR 

(95% CI) † 

 

p-value‡ 

Viruses above study average  

P22virus  

       Yes 

       No 

P2virus  

       Yes 

       No 

Nona33virus  

       Yes 

       No 

Lambda  

       Yes 

       No 

Orthopoxvirus  

       Yes 

       No 

Kp15virus  

       Yes 

       No 

Hk97virus  

       Yes 

       No 

P1virus  

       Yes 

       No 

T7virus  

       Yes 

       No 

Sk1virus  

       Yes 

       No 

L5virus  

       Yes 

       No 

Felixo1virus  

       Yes 

       No 

C5virus  

       Yes 

       No 

 

15 

189 

 

17 

187 

 

21 

183 

 

19 

185 

 

38 

166 

 

2 

202 

 

25 

179 

 

12 

192 

 

14 

190 

 

11 

193 

 

34 

170 

 

3 

201 

 

10 

194 

 

7 (46.7) 

22 (11.6) 

 

9 (52.9) 

20 (10.7) 

 

13 (61.9) 

16 (8.7) 

 

9 (47.4) 

20 (10.8) 

 

20 (52.6) 

9 (5.4) 

 

1 (50) 

28 (13.9) 

 

11 (44) 

18 (10.1) 

 

6 (50) 

23 (12) 

 

0 (0) 

29 (15.3) 

 

1 (9.1) 

28 (14.5) 

 

0 (0) 

29 (17.1) 

 

1 (33.3) 

28 (13.9) 

 

0 (0) 

29 (14.9) 

 

6.6 (2.2 - 20.1) 

1.0 

 

9.4 (3.3 - 27.1) 

1.0 

 

17 (6.1 - 47) 

1.0 

 

7.4 (2.7 - 20.4) 

1.0 

 

19.4 (7.7 - 48.9) 

1.0 

 

6.1 (0.1 - 488.4) 

1.0 

 

7 (2.8 - 17.8) 

1.0 

 

7.3 (2.2 - 24.7) 

1.0 

 

0 (0 - 1.8) 

1.0 

 

0.6 (0 - 4.5) 

1.0 

 

0 (0 - 0.6) 

1.0 

 

3.1 (0.1 - 60.8) 

1.0 

 

0 (0 - 2.7) 

1.0 

 

0.0001 

- 

 

< 0.0001 

- 

 

< 0.0001 

- 

 

0.0000 

- 

 

0.0000 

- 

 

0.2647 

- 

 

0.0000 

- 

 

0.0002 

- 

 

0.2270 

- 

 

1 

- 

 

0.0056 

- 

 

0.3702 

- 

 

0.3630 

- 
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Table 2.8. (cont’d) 

 

Epsilon15virus  

       Yes 

       No 

Jerseyvirus  

       Yes 

       No 

Pepy6virus  

       Yes 

       No 

T5virus  

       Yes 

       No 

Sfi11virus  

       Yes 

       No 

Pis4avirus  

       Yes 

       No 

Muvirus  

       Yes 

       No 

Sfi21dt1virus  

       Yes 

       No 

K1gvirus  

       Yes 

       No 

Cytomegalovirus  

       Yes 

       No 

Tl2011virus  

       Yes 

       No 

Rb69virus  

       Yes 

       No 

Jd18virus  

       Yes 

       No 

S16virus  

       Yes 

       No 

 

 

 

 

 

10 

194 

 

6 

198 

 

17 

187 

 

2 

202 

 

19 

185 

 

4 

200 

 

7 

197 

 

19 

185 

 

3 

201 

 

20 

184 

 

4 

200 

 

4 

200 

 

1 

203 

 

5 

199 

 

 

 

 

 

4 (40) 

25 (12.9) 

 

1 (16.7) 

28 (14.1) 

 

0 (0) 

29 (15.5) 

 

2 (100) 

27 (13.4) 

 

0 (0) 

29 (15.7) 

 

2 (50) 

27 (13.5) 

 

2 (28.6) 

27 (13.7) 

 

0 (0) 

29 (15.7) 

 

1 (33.3) 

28 (13.9) 

 

6 (30) 

23 (12.5) 

 

2 (50) 

27 (13.5) 

 

0 (0) 

29 (14.5) 

 

0 (0) 

29 (14.3) 

 

0 (0) 

29 (14.6) 

 

 

 

 

 

4.5 (0.9 - 20.3) 

1.0 

 

1.2 (0 - 11.4) 

1.0 

 

0 (0 - 1.4) 

1.0 

 

Inf (1.2 - Inf) 

1.0 

 

0 (0 - 1.2) 

1.0 

 

6.3 (0.4 - 90.6) 

1.0 

 

2.5 (0.2 - 16.3) 

1.0 

 

0 (0 - 1.2) 

1.0 

 

3.1 (0.1 - 60.8) 

1.0 

 

3 (1 - 8.6) 

1.0 

 

6.3 (0.4 - 90.6) 

1.0 

 

0 (0 - 9.3) 

1.0 

 

0 (0 - 234.5) 

1.0 

 

0 (0 - 6.7) 

1.0 

 

 

 

 

 

0.0378 

- 

 

1 

- 

 

0.1388 

- 

 

0.0196 

- 

 

0.0817 

- 

 

0.0976 

- 

 

0.2605 

- 

 

0.0817 

- 

 

0.3702 

- 

 

0.0333 

- 

 

0.0976 

- 

 

1 

- 

 

1 

- 

 

1 

- 
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Table 2.8. (cont’d) 

 

Bacteria above study average 

Bacteroides  

       Yes 

       No 

Salmonella  

       Yes 

       No 

Alistipes  

       Yes 

       No 

Escherichia  

       Yes 

       No 

Roseburia  

       Yes 

       No 

Shigella  

       Yes 

       No 

Clostridioides  

       Yes 

       No 

Klebsiella  

       Yes 

       No 

Ruminococcus  

       Yes 

       No 

Enterobacter  

       Yes 

       No 

Butyricicoccus  

       Yes 

       No 

Citrobacter  

       Yes 

       No 

Chlamydia  

       Yes 

       No 

Porphyromonas  

       Yes 

       No 

 

 

 

 

 

112 

92 

 

19 

 185 

 

76 

128 

 

42 

162 

 

47 

157 

 

38 

166 

 

85 

119 

 

27 

177 

 

63 

141 

 

33 

171 

 

53 

151 

 

21 

183 

 

30 

174 

 

31 

173 

 

 

 

 

 

12 (10.7) 

17 (18.5) 

 

10 (52.6) 

19 (10.3) 

 

0 (0) 

29 (22.7) 

 

19 (45.2) 

10 (6.2) 

 

0 (0) 

29 (18.5) 

 

20 (52.6) 

9 (5.4) 

 

6 (7.1) 

23 (19.3) 

 

8 (29.6) 

21 (11.9) 

 

0 (0) 

29 (20.6) 

 

17 (51.5) 

12 (7) 

 

0 (0) 

29 (19.2) 

 

10 (47.6) 

19 (10.4) 

 

5 (16.7) 

24 (13.8) 

 

3 (9.7) 

26 (15) 

 

 

 

 

 

0.5 (0.2 - 1.2) 

1.0 

 

9.7 (3.5 - 26.9) 

1.0 

 

0 (0 - 0.2) 

1.0 

 

12.6 (5.2 - 30.3) 

1.0 

 

0 (0 - 0.4) 

1.0 

 

19.4 (7.7 - 48.9) 

1.0 

 

0.3 (0.1 - 0.8) 

1.0 

 

3.1 (1.2 - 8) 

1.0 

 

0 (0 - 0.3) 

1.0 

 

14.1 (5.7 - 34.6) 

1.0 

 

0 (0 - 0.3) 

1.0 

 

7.8 (2.9 - 20.9) 

1.0 

 

1.2 (0.3 - 3.8) 

1.0 

 

0.6 (0.1 - 2.2) 

1.0 

 

 

 

 

 

0.1140 

- 

 

0.0000 

- 

 

0.0000 

- 

 

0 

- 

 

0.0005 

- 

 

0 

- 

 

0.0133 

- 

 

0.0138 

- 

 

0.0000 

- 

 

0 

- 

 

0.0001 

- 

 

0.0000 

- 

 

0.7765 

- 

 

0.5812 

- 
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Table 2.8. (cont’d) 

 

Eubacterium  

       Yes 

       No 

Lactococcus  

       Yes 

       No 

Streptococcus  

       Yes 

       No 

Flavonifractor  

       Yes 

       No 

Haemophilus  

       Yes 

       No 

Holdemania  

       Yes 

       No 

Subdoligranulum  

       Yes 

       No 

Azospirillum  

       Yes 

       No 

Tannerella  

       Yes 

       No 

Anaerotruncus  

       Yes 

       No 

Agathobaculum  

       Yes 

       No 

Dysgonomonas  

       Yes 

       No 

Fusicatenibacter  

       Yes 

       No 

Acinetobacter  

       Yes 

       No 

 

 

 

 

 

51 

153 

 

75 

129 

 

21 

183 

 

64 

140 

 

22 

182 

 

68 

136 

 

68 

136 

 

12 

192 

 

49 

155 

 

65 

139 

 

65 

139 

 

3 

201 

 

51 

153 

 

22 

182 

 

 

 

 

 

0 (0) 

29 (19) 

 

4 (5.3) 

25 (19.4) 

 

11 (52.4) 

18 (9.8) 

 

0 (0) 

29 (20.7) 

 

11 (50) 

18 (9.9) 

 

0 (0) 

29 (21.3) 

 

0 (0) 

29 (21.3) 

 

0 (0) 

29 (15.1) 

 

3 (6.1) 

26 (16.8) 

 

0 (0) 

29 (20.9) 

 

0 (0) 

29 (20.9) 

 

0 (0) 

29 (14.4) 

 

0 (0) 

29 (19) 

 

14 (63.6) 

15 (8.2) 

 

 

 

 

 

0 (0 - 0.3) 

1.0 

 

0.2 (0.1 - 0.7) 

1.0 

 

10.1 (3.8 - 27) 

1.0 

 

0 (0 - 0.2) 

1.0 

 

9.1 (3.5 - 24) 

1.0 

 

0 (0 - 0.2) 

1.0 

 

0 (0 - 0.2) 

1.0 

 

0 (0 - 2.2) 

1.0 

 

0.3 (0.1 - 1.1) 

1.0 

 

0 (0 - 0.2) 

1.0 

 

0 (0 - 0.2) 

1.0 

 

0 (0 - 14.9) 

1.0 

 

0 (0 - 0.3) 

1.0 

 

19.5 (7 - 53.9) 

1.0 

 

 

 

 

 

0.0001 

- 

 

0.0061 

- 

 

0.0000 

- 

 

0.0000 

- 

 

0.0000 

- 

 

0.0000 

- 

 

0.0000 

- 

 

0.2226 

- 

 

0.0976 

- 

 

0.0000 

- 

 

0.0000 

- 

 

1 

- 

 

0.0001 

- 

 

0 

- 
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Table 2.8. (cont’d) 

 

Pseudomonas  

       Yes 

       No 

Pseudoflavonifractor  

       Yes 

       No 

Staphylococcus  

       Yes 

       No 

Oscillibacter  

       Yes 

       No 

Serratia  

       Yes 

       No 

Bacillus  

       Yes 

       No 

Enterococcus  

       Yes 

       No 

Lactobacillus  

       Yes 

       No 

Alloprevotella  

       Yes 

       No 

Paenibacillus  

       Yes 

       No 

Intestinibacillus  

       Yes 

       No 

Intestinimonas  

       Yes 

       No 

Ruthenibacterium  

       Yes 

       No 

Atlantibacter  

       Yes 

       No 

 

 

 

 

 

10 

194 

 

56 

148 

 

24 

180 

 

58 

146 

 

22 

182 

 

57 

147 

 

20 

184 

 

45 

159 

 

25 

179 

 

39 

165 

 

53 

151 

 

63 

141 

 

43 

161 

 

4 

200 

 

 

 

 

 

6 (60) 

23 (11.9) 

 

0 (0) 

29 (19.6) 

 

13 (54.2) 

16 (8.9) 

 

0 (0) 

29 (19.9) 

 

15 (68.2) 

14 (7.7) 

 

13 (22.8) 

16 (10.9) 

 

14 (70) 

15 (8.2) 

 

6 (13.3) 

23 (14.5) 

 

2 (8) 

27 (15.1) 

 

11 (28.2) 

18 (10.9) 

 

0 (0) 

29 (19.2) 

 

0 (0) 

29 (20.6) 

 

0 (0) 

29 (18) 

 

3 (75) 

26 (13) 

 

 

 

 

 

10.9 (2.4 - 56.7) 

1.0 

 

0 (0 - 0.3) 

1.0 

 

12.1 (4.7 - 31.4) 

1.0 

 

0 (0 - 0.3) 

1.0 

 

25.7 (9 - 73.5) 

1.0 

 

2.4 (1.1 - 5.4) 

1.0 

 

26.3 (8.8 - 78.4) 

1.0 

 

0.9 (0.3 - 2.4) 

1.0 

 

0.5 (0.1 - 2.2) 

1.0 

 

3.2 (1.4 - 7.5) 

1.0 

 

0 (0 - 0.3) 

1.0 

 

0 (0 - 0.3) 

1.0 

 

0 (0 - 0.4) 

1.0 

 

20 (1.5 - 1059.6) 

1.0 

 

 

 

 

 

0.0007 

- 

 

0.0000 

- 

 

0.0000 

- 

 

0.0000 

- 

 

0 

- 

 

0.0286 

- 

 

0 

- 

 

0.8477 

- 

 

0.5412 

- 

 

0.0054 

- 

 

0.0001 

- 

 

0.0000 

- 

 

0.0009 

- 

 

0.0094 

- 
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Table 2.8. (cont’d) 

 

Raoultella  

       Yes 

       No 

Gemmiger  

       Yes 

       No 

Anaeromassilibacillus  

       Yes 

       No 

Kluyvera  

       Yes 

       No 

Angelakisella  

       Yes 

       No 

Lawsonibacter  

       Yes 

       No 

Lachnotalea  

       Yes 

       No 

Peptostreptococcus  

       Yes 

       No 

Proteus  

       Yes 

       No 

Acetobacter  

       Yes 

       No 

Hafnia  

       Yes 

       No 

Neglecta  

       Yes 

       No 

Morganella  

       Yes 

       No 

Acidovorax  

       Yes 

       No 

 

 

 

 

 

11 

193 

 

58 

146 

 

56 

148 

 

4 

200 

 

46 

158 

 

46 

158 

 

56 

148 

 

10 

194 

 

2 

202 

 

15 

189 

 

4 

200 

 

41 

163 

 

3 

201 

 

3 

201 

 

 

 

 

 

5 (45.5) 

24 (12.4) 

 

0 (0) 

29 (19.9) 

 

0 (0) 

29 (19.6) 

 

0 (0) 

29 (14.5) 

 

0 (0) 

29 (18.4) 

 

0 (0) 

29 (18.4) 

 

0 (0) 

29 (19.6) 

 

7 (70) 

22 (11.3) 

 

1 (50) 

28 (13.9) 

 

0 (0) 

29 (15.3) 

 

1 (25) 

28 (14) 

 

0 (0) 

29 (17.8) 

 

1 (33.3) 

28 (13.9) 

 

1 (33.3) 

28 (13.9) 

 

 

 

 

 

5.8 (1.3 - 24.8) 

1.0 

 

0 (0 - 0.3) 

1.0 

 

0 (0 - 0.3) 

1.0 

 

0 (0 - 9.3) 

1.0 

 

0 (0 - 0.4) 

1.0 

 

0 (0 - 0.4) 

1.0 

 

0 (0 - 0.3) 

1.0 

 

17.8 (3.7 - 114.4) 

1.0 

 

6.1 (0.1 - 488.4) 

1.0 

 

0 (0 - 1.6) 

1.0 

 

2 (0 - 26.4) 

1.0 

 

0 (0 - 0.5) 

1.0 

 

3.1 (0.1 - 60.8) 

1.0 

 

3.1 (0.1 - 60.8) 

1.0 

 

 

 

 

 

0.0103 

- 

 

0.0000 

- 

 

0.0000 

- 

 

1 

- 

 

0.0004 

- 

 

0.0004 

- 

 

0.0000 

- 

 

0.0000 

- 

 

0.2647 

- 

 

0.1355 

- 

 

0.4611 

- 

 

0.0017 

- 

 

0.3702 

- 

 

0.3702 

- 
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Table 2.8. (cont’d) 

 

Colibacter  

       Yes 

       No 

Tissierella  

       Yes 

       No 

Victivallis  

       Yes 

       No 

 

 

2 

202 

 

2 

202 

 

12 

192 

 

 

0 (0) 

29 (14.4) 

 

0 (0) 

29 (14.4) 

 

0 (0) 

29 (15.1) 

 

 

0 (0 - 32.5) 

1.0 

 

0 (0 - 32.5) 

1.0 

 

0 (0 - 2.2) 

1.0 

 

 

1 

- 

 

1 

- 

 

0.2226 

- 

Logistic Regression 

Multivariate Analysis 

OR 95 CI € p value‡ 

Model 1 

Salmonella: 

   

  Above study average: Yes 9.7 3.5 - 26.9 < 0.0001 

Model 2 

Orthopoxvirus:  

  Above study average: Yes 

Salmonella: 

  Above study average: Yes 

 

 

33.8 

 

23.5 

 

 

10.4 - 110.2 

 

5.8 - 95.7 

 

 

< 0.0001 

 

< 0.0001 

Model 3 

Acinetobacter: 

  Above study average: Yes 

Orthopoxvirus:  

  Above study average: Yes 

Salmonella: 

  Above study average: Yes 

 

 

13.3 

 

31.1 

 

19.0 

 

 

3.2 - 55.3 

 

8.5 - 113.2 

 

3.9 - 91.5 

 

 

0.0005 

 

< 0.0001 

 

0.0003 

Model 4 

Acinetobacter: 

  Above study average: Yes 

Orthopoxvirus:  

  Above study average: Yes 

Salmonella: 

  Above study average: Yes 

Serratia:  

  Above study average: Yes 

 

 

12.3 

 

14.4 

 

26.2 

 

13.1 

 

 

2.7 - 56.4 

 

3.5 - 58.5 

 

5.0 - 136.6 

 

3.0 - 57.5 

 

 

0.001 

 

0.0002 

 

0.0001 

 

0.0008  

Model 5 

Acinetobacter: 

  Above study average: Yes 

Orthopoxvirus:  

  Above study average: Yes 

Salmonella: 

  Above study average: Yes 

 

 

 

 

13.7 

 

16.7 

 

28.2 

 

 

 

 

2.7 - 69.0 

 

3.4 - 81 

 

5.2 - 154.0 

 

 

 

 

0.002 

 

0.0006 

 

0.0001 
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Table 2.8. (cont’d) 

 

Serratia:  

  Above study average: Yes 

Nona33virus: 

  Above study average: Yes 

 

 

 

14.5 

 

0.7 

 

 

 

3.1 - 68.9 

 

0.1 - 4.0 

 

 

 

0.0009 

 

0.7 

Model 6 

Enterococcus:  

  Above study average: Yes 

Acinetobacter:  

  Above study average: Yes 

Orthopoxvirus:  

  Above study average: Yes 

Salmonella:  

  Above study average: Yes 

Serratia:  

  Above study average: Yes 

 

 

2.5 

 

7.2 

 

13.9 

 

23.2 

 

10.8  

 

 

0.3 - 18.3 

 

1.0 - 51.2 

 

3.4 - 57.3 

 

4.2 - 127.4 

 

2.3 - 49.8 

 

 

0.4 

 

0.1 

 

0.0004 

 

0.0004 

 

0.003 

Model 7 

Enterococcus:  

  Above study average: Yes 

Orthopoxvirus:  

  Above study average: Yes 

Salmonella:  

  Above study average: Yes 

Serratia:  

  Above study average: Yes 

 

 

9.1 

 

16.3 

 

23.6 

 

8.5 

 

 

1.9 - 43.0 

 

4.1 - 65.0 

 

4.7 - 118.6 

 

2.0 - 35.4 

 

 

0.006 

 

0.0001 

 

0.0002 

 

0.004 

Model 8 

Acinetobacter:  

  Above study average: Yes 

Orthopoxvirus:  

  Above study average: Yes 

Salmonella:  

  Above study average: Yes 

Serratia:  

  Above study average: Yes 

 

 

12.3  

 

14.4 

 

26.2 

 

13.1 

  

 

2.7 - 56.4 

 

3.5 - 58.5 

 

5.0 - 136.6 

 

3.0 - 57.5 

 

 

0.001 

 

0.0003 

 

0.0001 

 

0.0008 

 Model Performance 

 Accuracy Accuracy (95 CI) AUC 

Final Model (Model 8)    

 0.902 (0.7859, 0.9674) 0.9757 

    

* The number of isolates may not add up to the total (n=204) due to missing data.  

† 95 confidence interval (CI) for the odds ratio (OR) 
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Table 2.8. (cont’d) 

 

‡ p-value was calculated by Chi-square and Fisher’s exact test was used for variables <5 in at least 

one of the cells. 

£ Logistic regression was performed via forward, backward selection while controlling for 

variables that yielded strong (p ≤ 0.20) associations with the outcome as Cluster 2 in the univariate 

analysis. Hosmer and Lemeshow Goodness-of-Fit test was used to assess each model. All variables 

were tested for collinearity. € Wald 95 confidence intervals (CI). 
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Figure 2.1. Assessment of differences in microbiome profiles generated from samples sequenced using two different platforms 

The principle component analysis (PCA) shows clustering of healthy individuals (controls; blue circles) and patients with enteric 

infections (cases; red circles) by infection type using the: A) Hiseq 2500v1; B) Hiseq 2500v2. C) All samples sequenced using both 

platforms were merged, and D) samples were stratified by sequencer. Elipses are CI (95%). 

.  
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Figure 2.2. Power analysis demonstrating the sample size needed to detect differences between sample groups (cases versus 

controls) Power curves were created based on the original Cohen power equations using conventional parameters. The curves show the 

relationship between the effect size (differences in means over pooled standard deviations) and the sample size needed to detect that 

effect size. The black circle represents the sample size (n=204) used in our study, which has a ≤ 0.18 effect size and falls on the 0.8 

power curve (blue line). Additional power curves at 0.5, 0.6, 0.7, and 0.9 were generated to yield different sample size and effect size 

estimates. 
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Figure 2.3. The percentage of bacterial and viral reads annotated at four taxonomical levels The number of reads annotated was 

compared to the number of quality-controlled reads for annotation and visualized based on the taxonomical level for all 204 samples. 

Annotated reads represent bacterial and viral sequences combined. For each taxonomical level, the line in the box represents the median, 

while the interquartile range (25%-75%) is the box surrounding the median. The whiskers indicate the variability outside the upper and 

lower quartiles, extending from 5%-95% of the samples. Outliers are represented as circles. 
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Figure 2.4. Principal Component Analysis (PCA) for 79 cases and 125 controls by infection type A) Order; B) Family; C) Genus; 

and D) Species. Ellipses indicate the 95% confidence intervals. 
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Figure 2.5. Rarefaction curves to evaluate the quality of sequencing. A) Random sampling was 

used to assess cumulative sequencing across all samples by study group, or cases (red line) versus 

controls (blue line); and B) Rarefaction to assess genera richness based on total reads sequenced 

across case (red line) and control (blue line) samples. The 95% confidence intervals are indicated 

for each curve.  
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Figure 2.6. Metrics for case vs control to assess diversity A) Shannon Index determined by 

using the diversity function in R, B) Richness, the total number of species, as determined using the 

specnumber function in R C) Evenness, the distribution of species across each sample. Boxplots 

were generated for case and control groups: The line in the box represents the median. The 

interquartile range (25%-75%) is the box surrounding the median. The whiskers extend 1.5 times 

the interquartile range. Outliers are circles. Calculations performed using the total microbiome 

(bacteria and virus) at the genera level. * statistical significance (p < 0.05). 
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Figure 2.7. Microbiome profiles of Case and Control samples A) The top 5 highest abundant viruses across the study. B) The top 10 

highest abundant viruses across the study. Both Viruses and Bacteria are presented at the Family taxonomical rank. The line in the box 

represents the median, the. The interquartile range (25%-75%) is the box surrounding the median. The whiskers extend 1.5 times the 

interquartile range. Outliers are circles. 
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Figure 2.8. Microbiome profiles of Case by Infection type A) The top 10 most important virus by infection type. B) The top 10 most 

important bacteria by infection type across the study. Both Viruses and Bacteria are presented at the Genus taxonomical rank. The line 

in the box represents the median, the. The interquartile range (25%-75%) is the box surrounding the median. The whiskers extend from 

1.5 times the interquartile range of samples. Outliers are circles. 
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Figure 2.9. Distinct microbiome profiles identified by hierarchical clustering A) Four distinct 

clusters were identified using principal components analysis (PCA), and B) the beta dispersion of 

each cluster shows the spatial relationship of each sample within the cluster. For both panels, the 

legend, axes, and colors for each cluster are the same, while ellipses indicate the confidence 

interval (95%). 
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Figure 2.10. Metrics for clusters to assess diversity A) Shannon Diversity determined by using 

the diversity function in R, B) Richness, the total number of species was determined using the 

specnumber function in R C) Evenness which is the distribution of species across each sample. 

Boxplots were generated for each cluster: The line in the box represents the median. The 

interquartile range (25%-75%) is the box surrounding the median. The whiskers extend 1.5 times 

the interquartile range. Outliers are circles. Calculations performed using the total microbiome 

(bacteria and virus) at the genera level. * denotes statistical significance (p < 0.05).  
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Figure 2.11. The four clusters have distinct microbiomes Clusters are colored as follows: 

Cluster 1 = green, Cluster 2 = orange, Cluster 3 = purple, Cluster 4 = pink. The coloring of the 

heatmap represents the Z-score or standard deviations from the mean within a column. Columns 

represent individual samples, and rows are taxa. Purple coloring represents more abundant taxa 

within a sample, whereas orange coloring represents lower abundant taxa. The dendrogram on the 

left represents the genera. Viruses are clustered at the bottom of the tree in V. 
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Figure 2.12. Case clusters have a common microbiome based on an analysis of 79 patients 

with enteric infections and 125 non-infected family members (controls) included in the study 

A) Venn diagram showing the number of differentially abundant and shared taxa across all four 

clusters. B) Case clusters (Cluster 1 and Cluster 2) showing the number of differentially abundant 

and shared taxa. C) The most differentially abundant viruses across clusters D) The most 

differentially abundant bacteria across clusters. 
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Figure 2.13. Network analysis of the microbes differentially abundant for Cluster 2 Sparcc 

with the Spieceasi pipeline was utilized to calculate correlations between taxa across samples. 

Edges represent correlations between taxa; positive correlations are in green, and negative 

correlations are red. The size of vertices represents the abundance found across samples and are 

colored based on higher taxonomical classification. Only significant correlations are represented 

(absolute value > 0.3).  
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ABSTRACT 

Acute bacterial gastroenteritis is a significant disease burden worldwide and affects all 

individuals of all ages. Gastroenteritis is primarily an acute, self-limiting infection, but it can be 

an initiating event for the onset of more chronic diseases like inflammatory bowel disease (IBD) 

or irritable bowel syndrome (IBS). Previous gastroenteritis studies identified increased 

Proteobacteria abundance in patients with active disease, specifically Escherichia. Few studies, 

however, have examined changes in the microbiome following recovery from an illness, and even 

fewer have evaluated the virome or the populations of viruses present in the microbiome. Herein, 

we have compared the composition of and changes within the microbiome among 79 patients 

(cases) with acute bacterial gastroenteritis to those from a subset (n=63) of the same cases post-

recovery. Our findings further confirm an increased abundance of Proteobacteria in cases. Also, 

patients with similar microbiome profiles clustered together, and patients with microbial 

communities belonging to Cluster 2 were significantly more likely to have severe disease and more 

extensive microbiome alterations during infection compared to other cases. Three bacterial 

populations, Alistipes, Sutterella, Odoribacter, were lower in abundance in follow-ups compared 

to controls (Chapter 2), suggesting that these microbes may fail to recover following severe enteric 

infections. These microbes could be investigated as novel probiotics. 
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INTRODUCTION 

The estimated incidence of acute gastroenteritis in the United States ranges from 179 

million (1) to 375 million cases (2), with many cases unreported. Gastroenteritis can have two 

types of effects on human health. The first effect is an immediate acute illness, which involves 

pathogen infection followed by an expansion of Enterobacteriaceae populations and subsequent 

resolution (3). The second potential effect is a chronic, insidious inflammatory state that 

predisposes patients to post-infectious irritable bowel syndrome (IBS), which can result in 

symptoms for up to a decade following onset (4, 5) or inflammatory bowel disease (IBD). 

Individuals are 2.4 times more likely to develop IBD in the year following a case of infectious 

gastroenteritis (6). 

Previous research has identified increased abundance of Proteobacteria in patients with 

acute bacterial gastroenteritis along with a decreased abundance of Firmicutes and Bacteroidetes 

(7). Another study identified the Escherichia-Shigella enterotype (8), which was defined as 

intestinal communities from gastroenteritis patients with an increased abundance of Escherichia, 

and was correlated with an over-abundance of Veillonella and Staphylococcus (8). Prior 

microbiome studies related to gastroenteritis have focused mainly on characterizing the 

composition of the bacterial populations during the infection. Few studies, however, have 

examined how the microbiome recovers following perturbations caused by infection with different 

bacterial pathogens. Consequently, we sought to determine how the viral and bacterial populations 

of the microbiome change during and after enteric infections. Classifying these changes will 

identify options to restore beneficial microbial communities that promote intestinal health. 
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MATERIALS AND METHODS 

Sample selection and sequencing  

Stool samples were obtained via an active surveillance system in coordination with the 

Michigan Department of Health and Human Services (MDHHS) and four Michigan hospitals (9). 

In total, 142 stool samples were utilized in this study; 79 samples were from patients with acute 

enteric infections (Chapter 2) and 63 from a subset of patients 1 to 26 weeks following recovery.  

Samples were transported in Cary Blair media, homogenized, centrifuged, and stored at -80 °C in 

triplicate. The QIAmp DNA Stool Mini Kit (QIAGEN; Valencia, CA) was used to extract DNA. 

Clinical details, demographics, and exposures were obtained for each patient using the Michigan 

Disease Surveillance System (MDSS). After recovery, cases were given a questionnaire regarding 

clinical symptoms and exposures. The Institutional Review Boards at Michigan State University 

(MSU; IRB #10-736SM), MDHHS (842-PHALAB), and the four participating hospitals approved 

all protocols. 

A Perkin Elmer Sciclone NGS robot following the manufacturer's recommendations was 

used to prepare libraries for sequencing using an Illumina TruSeq Nano DNA Library Preparation 

Kit. Samples were added in duplicate for each sequencing run on from one of four equimolar 

library pools. Quality control of the libraries was done with qPCR and DNA was quantified with 

a Qubit dsDNA HS (Thermo Fisher Scientific, Waltham, MA, USA) and Caliper LabChipGX HS 

DNA (Caliper Life Sciences, Hopkinton, MA, USA). The library for Run 1 was sequenced in a 

2x150 bp paired-end format after being loaded in two lanes of an Illumina HiSeq 2500 Rapid Run 

flow cell (v1) using Rapid SBS reagents. The libraries for Runs 2, 3, 4 were sequenced in 2x250 

bp paired-end format after being loaded onto two lanes of an Illumina HiSeq 2500 Rapid Run flow 

cell (v2). The Illumina Real-Time Analysis (v1.18.61) was used for base-calling. The Illumina 



 

140 
 

Bcl2Fastq (v1.8.4) demultiplexed the output and converted it to fastq format. As previously 

described in Chapter 2. No significant differences were observed in the microbiome composition 

or sample clustering by sequencing runs.  

Power analysis 

The pwr package (10) in R (11), utilizes the power equations developed by Cohen (12). All 

power calculations made standard assumptions (p = 0.05, effect size = 0.5, power = 0.8) for each 

statistical test in the study (Chi-square, analysis of variance, correlation, regression). Power curves 

were generated to show the relationship between sample size and effect size (Figure 3.1). The 

power curves demonstrate that a minimum of 88 samples is needed to have enough power (80%) 

to detect difference between two study groups (cases and follow-ups). The study has 142 samples 

(power=94%), thus we have adequate power to detect differences between the two study groups 

(cases and follow-ups). 

Sequence processing and metagenomics 

Processing and annotation Trimmomatic (13) was used to remove sequencing adaptors, and low-

quality reads. FastQC (14) generated a report regarding read quality, adaptor contamination and 

GC skew for sequenced reads. The following pipeline is based on on Norman et al. (15) and KBase 

(16). In brief, quality-controlled (per base sequence quality > 30) reads were aligned to a human 

RefSeq database (GRCh38_1118, downloaded November 2018) available at the National Center 

for Biotechnology Information (NCBI). using Bowtie 2 (17) and SAMtools (18). Quality-

controlled reads were annotated using Kaiju (19). Kaiju aligns each read to the non-redundant 

protein database (20) of viruses, bacteria, and fungi (nr_euk, downloaded January 2019) at NCBI. 

The results are then summarized to create a microbiome profile across different taxonomical ranks. 

On average 86% of reads were annotated at the phylum level, 62% at the genus level, and 26% at 
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the species level (Figure 3.2). Custom python (21) scripts were employed that mimic Kaiju’s 

kaiju2table function and split the output into viral and non-viral annotations. Subsequent analysis 

was performed at the following taxonomical levels (Phylum, Class, Order, Family, Genus, 

Species), as done previously (22).   

Reads were assembled with Metaspades (23). Reads were mapped to assemblies to assess 

assembly quality and on average, 10.9% of reads in cases, and 9.8% of reads in follow-ups did not 

map to the assemblies, which was not statistically significant (Mann Whitney U test p = 0.1146). 

Additional analysis was conducted the assessed statistical trends between sequencing depth, 

coverage, and alpha diversity metrics and no trends were noted between these variables (R2 < 0.7, 

spearman p > 0.05).  

The maximum number of reads (paired-forward) sequenced in a sample was 7,427,518 (3.7 

Giga base pairs [Gbp]) out of all samples (n=142) and the average sequencing per sample was 

2,967,423 reads (1.2 Gbp). No significant differences were noted between the sequencing depth 

for cases and follow-ups (Mann Whitney U test p = 0.3492). Rarefaction (24) measures species 

richness, and rarefaction curves (25, 26) of genera data were created with the rarefy and speccacum 

functions from the vegan package (27) in R. Sequencing depth was sufficient for both cases and 

follow-ups since both species’ accumulation curves (random sampling, Figure 3.3A) and 

rarefaction, Figure 3.3B) achieved plateau. Nonparielle3 (28) calculated coverage for each sample. 

The average coverage for all samples (n=142) is 80% based on Nonparielle3. The genus-level 

classification was used for analysis as was done in Chapter 2. Scripts are available at 

github.com/BrianNo. 

Cluster analysis Microbial taxa that were not present in at least 1% of samples were removed to 

reduce the false-positive rate of genera significance as recommended (22, 29). Zero counts in the 
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taxonomy table were replaced using multiplicative simple replacement with the zCompositions 

package (30) in R, which attempts to estimate a small value for zero based on the values in the 

table. MixOmics (29) calculated the relative abundance as a percent of the total annotated viral 

and bacterial populations, based on (31). A compositional-data-analysis approach was undertaken 

(32) and a center-log-ratio transformation was performed on the relative abundance. Hierarchical 

clustering of transformed microbiome profiles was performed using Ward’s linkage and Aitchison 

distance (33) between samples. 

The adonis function from vegan package in R performs non-paremetric MANOVA 

(NP_MANOVA) and determined if microbiome profiles were different based on cluster and case 

status. P-values for multiple hypothesis testing were adjusted using a Bonferroni correction with 

the p.adjust function. The betadisper function from the vegan package assessed group 

heterogeneity. Analysis of composition of microbiomes (ANCOM) (34) determined the taxa that 

were differentially abundant between groups (clusters, case status). A network analysis was 

performed following the Spieceasi pipeline (35) and correlations calculated between different taxa 

with SparrC (36) correlated different taxa with one another to create a taxonomical network. The 

alpha diversity (Shannon index), Richness (total number), and Evenness (distribution) at the genus 

level were calculated based on the read count of each taxonomical assignment using the vegan 

package in R. 

Data analysis 

 Microsoft Excel and Access were used to manage demographic and epidemiological data 

All statistical analysis was performed using R and EpiInfo (37). Univariate analysis was performed 

using chi-square and Fisher’s exact tests (for when counts < 5) to identify associations between 

the exposure (independent) and outcome (dependent) variables; p-value < 0.05 are considered 
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significant. Exposure variables include epidemiologic, exposure, and demographic data. Outcome 

variables include case status, cluster membership, and disease severity.  

Univariate variables that had strong associations (p < 2.0) with outcomes of interest were 

included in the multivariate logistic regression model. A forward and backward selection was used 

to build the model. Variables such as age, sex, race, and infection type, were included in the model. 

Factors were then added or removed if significant changes occurred in the model (p < 0.05). Each 

factor was assessed for collinearity. The statistical significance of each coefficient in the model 

was assessed with the Wald test. The Hosmer-Lemeshow test (38) assessed the goodness of fit. 
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RESULTS 

Case and follow-ups had different viral and bacterial read counts  

In total, 621,384,080 (189.2 Gbp) paired forward reads were sequenced across all 142 

samples, yielding 3,046,000 or 1.4 Gbp paired-forward reads per sample. Cases and follow-ups 

achieved average sequencing depths of 3,041,142 reads (1.4 Gbp) and 2,874,981 reads (1.4 Gbp), 

respectively, with no difference between study groups (Mann Whitney U test p = 0.3492). The 

average coverage, as determined by Nonpareil3 (28), was 80% across all samples. Although cases 

had lower coverage (77%) than follow-ups (83%), the difference was not statistically significant 

(Mann Whitney U test p = 0.349). On average, across all samples, 12.9% of reads fell below quality 

filtering parameters. More reads were removed from cases (13.3%) compared to follow-ups 

(12.4%) though this difference was also not significant (Mann Whitney U test p = 0.2195).  

On average, 6% of all quality-controlled reads were annotated as human derived. The 

abundance of human DNA differed by sample type; cases comprised 15.2% human reads 

compared to only 0.1% in follow-ups, which was a statistically significant difference (Mann 

Whitney U test p = 9.343e-12). Kaiju annotated 61.5% of reads to the Genus level that passed 

quality control (i.e., trimming and human read removal steps) across all samples. Follow-up 

samples achieved a higher annotation frequency (64.2%) compared to case samples (59.3%), the 

difference in annotation frequency was significant (Mann Whitney U test p = 0.01802). On 

average, 61% of reads were annotated to bacteria across all samples at the Genus level, and 0.45% 

of reads were assigned to viruses. Cases had a significantly lower proportion of reads assigned to 

bacteria (58.7%) compared to the follow-ups (64%; Mann Whitney U test p = 0.008385). Cases 

also had an increased proportion of viruses (0.7%) compared to follow-ups (0.2%), though this 

difference was not statistically significant (Mann Whitney U test p = 0.1449) (Table 3.1.). Case 
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communities were not significantly different in diversity using the Shannon index (Mann Whitney 

U test p = 0.4139, Figure 3.4A) but were significantly different in richness (Mann Whitney U test 

p = 1.273e-07, Figure 3.4B) when compared to follow-ups at the genus level. Evenness was not 

significantly different between cases and follow-up (Mann Whitney U test p = 0.8631, Figure 

3.4C).  

Description of Cohort 

 Between January 2011 and December 2015, stool samples were recovered from 79 patients 

with enteric infections and a follow-up sample was obtained from 63 of these cases after recovery 

from illness between 1 to 26 weeks post-infection. Among the cases included in this analysis, 

48.1% (n=38) were males while 51.9% (n=41) were female (Table 3.2.). Most of these cases were 

between 19 and 64 years of age (n=33, 41.8%) followed by 0 to 9 years (n=21, 26.6%). Cases 

reportedly resided in Oakland (n=20; 17.2%), Wayne (n=20; 17.2%), Ingham (n=15, 12.9%), and 

Eaton (n=13, 11.2%) counties; 48.7% (n=38) of these cases were from an urban residence 

compared to 51.3% (n=40) from a rural residence. Among the 79 cases, Salmonella spp. was the 

most common infection (n=35, 44.3%) followed by C. jejuni (n=29, 36.7%), Shigella spp. (n=10, 

17.7%), and STEC (n=5, 6.3%). The most common symptoms were body aches (n=73, 94.8%), 

fever (n=47, 69.1%) and vomiting (n=47, 69.1%). In all, 37.7% (n=29) of the cases were 

hospitalized, with 53.6% (n=15) of the cases requiring hospitalization for more than two days 

(Table 3.2.).  

Among the cases who submitted follow-up samples, 44.4% (n=28) were male and 55.6% 

(n=35) were female (Table 3.2.). The highest frequency of samples was collected from the 19-64 

age group (n=26, 41.3%); the second highest was in the 0-9 age group (n=17, 27%). The highest 

counties samples were collected from were Ingham (11,17.7%) and Washtenaw (10, 16.1%). 
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46.8% (n=29) of follow-up samples were from an urban residence and 53.2% (n=33) from a rural 

area (Table 3.2.). Each follow-up sample was cultured and confirmed to be negative for the 

pathogen associated with the original infection. These follow-up samples were submitted for 

patients originally infected with Salmonella spp. (n=28, 44.4%), C. jejuni (n=25, 39.7%), Shigella 

spp. (n=7, 11.1%) and STEC (n=3, 4.8%). 

Microbiome composition varies between patients and follow-ups 

In total, 473 (449 bacterial, 24 viral) Families were identified among all 142 samples. At 

the genus level, there were 2,659 genera identified (2,482 bacteria and 177 viruses). Five virus 

families including Myoviridae, Poxviridae, Microviridae, and Siphoviridae were found to be the 

most differentially abundant between cases and follow-ups (Figure 3.5A). Myoviridae and 

Poxviridae were more abundant in cases comprising 26% and 9% of viral reads on average 

compared to follow-ups, which comprised 19% and 1% of reads, respectively. Poxviridae was 

significantly higher in cases compared to follow-ups (Mann Whitney U test p = 5.404e-09). By 

contrast, Microviridae and Siphoviridae were more abundant in follow-ups comprising 17% and 

41%, respectively, compared to cases on average. Microviridae was significantly lower in cases 

(6%) compared to follow-ups (17%, Mann Whitney U test p = 0.0008933).  

Bacterial profiles were distinct between the case and follow-up samples as well (Figure 

3.5B). Examination of the top 10 differentially abundant bacterial families showed that 

Enterobacteriaceae were significantly more abundant in cases with bacterial reads accounting for 

34.4% of the total bacterial reads on average. This level was significantly different from the 

average level (2.9%) observed for follow-ups (Mann Whitney U test p < 2.2e-16). Bacteroidaceae, 

Ruminococcaceae, Rikenellaceae, and Prevotellacea were also significantly more abundant in the 
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recovered samples, on average, than in the case samples, accounting for 48%, 9%, 7%, and 4%, 

respectively (Mann Whitney U test p =0.008184, 2.971e-06, 0.01456, 0.003112).   

Hierarchical clustering generates four distinct clusters 

Cluster 1 (n=27) consists of 40.7% males (n=11) and 58.3% females (n=16). Cluster 2 

(n=33) has 54.5% males (n=18) and 45.5% (n=15) females. Cluster 3 (n=22) has 59.1% males 

(n=13) and 40.9% (n=9) females. Cluster 4 (n=60) consists of 40% males (n=24) and 60% (n=36) 

females, (Table 3.3.). Additionally, the 19-64 age group is the most common age group across all 

4 clusters; Cluster 1 (n=12, 44.4%), Cluster 2 (n=13, 39.4%), Cluster 3 (n=8, 36.4%), Cluster 4 

(n=26, 43.3%). The second most common age group is 0-9 across all 4 clusters; Cluster 1 (n=8, 

29.6%), Cluster 2 (n=8, 24.2%), Cluster 3 (n=7, 31.8%), Cluster 4 (n=15, 25%), (Table 3.3.) 

Clusters vary in accordance to health state. Cluster 1 (n=27) consists of 93% cases (n=25) and 7% 

follow-ups (n=2). Cluster 2 (n=3) is 100% cases (n=33). Together (clusters 1 and 2) accounted for 

73% (n=58) of the cases (n=79). Cluster 3 (n=22) is 31.8% cases (n=7) and 68.2% follow-up 

(n=15). Cluster 4 (n=60) consists of 23.3% cases (n=14) and 76.7% (n=46) follow-ups. Together 

(clusters 3 and 4) account for 97% (n=61) of the follow-ups (n=63), (Table 3.2). Case 

hospitalization rates were varied across clusters. Cluster 1 (n=6, 24%), Cluster 2 (n=16, 48.5 %), 

Cluster 3 (n=2, 28.6%), Cluster 4 (n=5, 38.5%). Reported symptoms (only available for cases in 

each cluster) were varied across clusters. This collective data is similar to the results with cases 

and controls (Chapter 2), suggesting further that the follow-up state is similar to controls. The PCA 

demonstrates that Cluster 3 and Cluster 4 are mainly localized on the right side and represent the 

majority of follow-up samples, (Figure 3.6A). Cluster 2 is located most distally on the left side of 

the PCA with some overlap into Cluster 1 which is localized medially, (Figure 3.6A). Cluster 3 

(purple) is the most mixed cluster (31.8% case and 68.2% follow-up) and is the most 
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heterogeneous (Figure 3.6B), followed by the most distant cluster, cluster 2 (100% cases). Clusters 

are considered distinct (permanova p < 0.001).  

Shannon index for diversity did not vary across clusters (Kruskal Wallis test p = 0.1787). 

However, trends were noted, Cluster 4, which had the most follow-ups, had the highest diversity. 

Cluster 2 (100% cases) had the lowest diversity (Figure 3.7A). Richness was significantly different 

across clusters (Kruskal Wallis test p = 2.573e-13). Case-dominated clusters (Clusters 1 and 

Cluster 2) had lower richness compared to the recovered, follow-up-associated clusters (Clusters 

3 and Cluster 4) (Figure 3.7B). Cluster 2 (100% cases) had the lowest richness of all clusters. 

Cluster 4 had the highest richness. Evenness was not significantly different across clusters 

(Kruskal Wallis test p = 0.7993 (Figure 3.7C)). Collectively, this data shows that clusters represent 

the collective differences observed in cases based on cluster membership. We then sought to 

identify disease associations with each case-dominated cluster.  

Gastroenteritis symptoms are associated with microbiomes from cases 

Univariate analysis with chi-square was identified disease associations with each cluster 

that was dominated by cases (Cluster 1 or Cluster 2). Each clinical characteristic (i.e., symptoms, 

hospitalization status) was considered an exposure (independent variable) and the cluster (Cluster 

1 or Cluster 2) to which the sample belong was the outcome (dependent variable). Cluster 1 is 

localized medially on the PCA, (Figure 3.6A). We hypothesize less severe illness (no bloody 

diarrhea, chills, fever) and more non-specific (abdominal pain, nausea, fatigue). Cluster 1 was 

found to be associated with body aches (OR: 7, CI (95%): 2.4, 20.8), (Table 3.4.). Cluster 2 was 

the most distant cluster on the PCA; we hypothesized that because of this distance (representing 

dysbiosis), Cluster 2 would have associations with more severe disease (bloody diarrhea, fever, 

chills, vomiting). Cluster 2 was associated with vomiting (OR: 5.7, CI (95%): 2.1, 15.8), and was 
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trending (p-value < 0.2) with bloody diarrhea (OR: 2.1, CI (95%): 0.8, 5.5), and headache (OR: 

2.3, CI (95%): 0.8, 6.6). Additionally, hospitalization was not associated with Cluster 1 (OR: 1.1, 

CI (95%): 0.4, 3.2), though patients with Cluster 2 communities were trending (p < 0.2) to more 

likely be hospitalized (OR: 2.3, CI (95%): 0.9, 5.9), (Table 3.5.). No associations were found with 

sex, gender, or race for either Cluster 1 or Cluster 2. Each cluster had different disease associations, 

so we then decided to determine the organisms that were distinct in each from the rest of the study. 

Specific viruses and bacteria are associated with either cluster 

 Cluster 1 (green) has a composition more like that of clusters 3 and 4 with minor alterations, 

(Figure 3.6A). However, there are distinct differences in Cluster 1, which also make it similarly to 

Cluster 2. Cluster 2 (orange) has the most distinct microbiome compared to the other three clusters. 

There are increases and decreases in several taxa, (Figure 3.8). The increased abundance of these 

taxa could represent a bloom in these microorganisms during infection. ANCOM was utilized to 

determine the microbial composition that is unique to Cluster 1 and Cluster 2. It was hypothesized 

that Cluster 1 and Cluster 2 would share some taxa in common, but Cluster 2 will have a very 

different profile, which will include Enterobacteriaceae, bacteriophages related to 

Enterobacteriaceae and eukaryotic viruses.  

ANCOM identified seven differentially abundant taxa in Cluster 1, 92 for Cluster 2, and 

seven of the taxa were shared between both clusters. All the taxa that were determined to be 

important for Cluster 1 are also found in Cluster 2. The microbiome that is shared (n=7 genera) 

between Cluster 1 and Cluster 2 is dominated by Proteobacteria (n=6 genera, 86%) and includes 

genera representing the common enteric pathogen, Salmonella, as well as other pathogens 

(Enterobacter, Citrobacter, Hemophilus) and Firmicutes (n=1 genus, 14%, Raoultella), (Table 

3.6.). Cluster 2 is defined by 85 additional genera distinct from the common microbiome between 
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Cluster 1 and Cluster 2. Viruses comprise 34.1% of this difference (n=29 genera). 89.6% of the 

viral taxa identified unique to Cluster 2 are Caudovirales (n=26 genera) and include; Podoviridae 

(n=6 genera), Siphoviridae (n=12 genera), Myoviridae (n=7), Helleviridae (n=1 genus), and 

eukaryotic virus (n=3), (Table 3.6.). Bacteria genera that are differentially abundant and unique to 

Cluster 2 (n=56 genera) consist of 64.2% Firmicutes (n=36 genera), 5.4% Bacteroidetes (n=3 

genera), and 25% Proteobacteria (n=14 genera), and 5.4% Others (n=3 genera), (Table 3.6.). 

Network analysis demonstrates that many of the genera identified differential for Cluster 2 is 

strongly correlated, (Figure 3.9). The Second highest differentially abundant (green) were 

positively correlated with one another as well Tissierellales (Tissierella), Lactobacillales 

(Lactobacillus), surprisingly Bacteriodales were not directly correlated. Clostridales were most 

negatively correlated (red edges) with Enterobacterales (red) and other pathogenic bacteria, 

including Bascillales (Staphylococcus) Lactobascillales (Enterococcus and Streptococcus), and 

Psuedomonindales (Acinetobacter, Psudomondonas) as well Caudovirales that infect 

Enterobacterales, Lactobacillaes, Bacillales, Pseudomondales. Eukaryotic viruses (Orthopoxvirus, 

Cytomegalovirus, and Mastadenovirus) were also negatively correlated with Clostridales. 

Enterobacterales was the other most highly connected part of the network and was 

positively correlated with other genera commonly representing pathogens, including 

Psuedomonindales (Acinetobacter, Psudomondonas), Lactobascillales (Enterococcus, and 

Streptococcus), and Bascillales (Staphylococcus). Enterobacterales was positively correlated with 

some Enterobacterales viruses like P2virus and Nona33virus and eukaryotic viruses 

Orthopoxvirus, Cytomegalovirus, and Mastadenovirus. 

A univariate analysis was performed in order to identify taxa that are in higher abundance 

(i.e., blooming) for Cluster 2 and subsequently change post-recovery. ANCOM analysis was 
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utilized in the selection of taxa, and factors were generated that stated if a sample was above or 

below the normalized average for a given taxon. Taxa were the exposure (independent variable) 

and the presence of a sample in Cluster 2 was the outcome (dependent variable). Cluster 2 was 

found to be associated with the following virus genera that were above the study average; 

Orthopoxvirus (OR: 15.2, CI (95%): 5.9, 39.5), representing 66.7% (n=20) of the total above 

average (n=30), and Cytomegalovirus (OR: 11, CI (95%) 2.4,69.1), common enteric 

bacteriophage, Nona33virus (OR: 13.2, CI (95%): 3.9, 52.5), representing 72.2% (n=13) of the 

total above average in study (n=18), Lambdavirus (OR: 8.8, CI (95%): 2.5, 36.3),  P22virus (OR: 

4.6, CI (95%): 1.1, 20.4), and P2virus (OR: 4.6, CI (95%): 1.4, 14.9), Kayvirus (OR: 2.9, CI (95%): 

1, 7.8),  Seuravirus (OR: 5.7, CI (95%): 1.3, 29.7), and Np1virus (OR: 5.5, CI (95%): 1.7, 17.3).  

Associations were observed for bacterial genera that were above average in the study 

including members comprising common enteric pathogens such as Salmonella (OR: 3.6, CI (95%): 

1.2, 10.1), Escherichia (OR: 14.1, CI (95%): 5.6, 35.8), and Shigella (OR: 22.2, CI (95%): 8.2, 

60.1). Other genera comprising pathogenic bacteria including Enterobacteria (OR: 30.6, CI (95%): 

9.3, 123.5), which represented 80% (n=20) of the total above average (n=25), Pseudomonas (OR: 

6.2, CI (95%): 1.1, 42.4), Staphylococcus (OR: 14.9, CI (95%): 4.4, 59.3), Haemophilus (OR: 4.3, 

CI (95%): 1.6, 11.5), Acinetobacter (OR: 37.9, CI (95%): 7.8, 369.5) representing 87.5% (n=14) 

of the total above average (n=16), Streptococcus (OR: 4.3, CI (95%): 1.6, 11.5), Klebsiella (OR: 

4.8, CI (95%): 1.8, 13.2), Vibrio (OR: 11.2, CI (95%): 3.8, 32.8), Enterococcus (OR: 18.7, CI 

(95%): 5.2, 86.5), other bacteria including; Citrobacter (OR: 3.7, CI (95%): 1.4, 10.1), Pantoea 

(OR: 204, CI (95%): 29.7, 8367.8) which represents 69.6% (n=32) of the total above average 

(n=46), Raoultella (OR: 6.2, CI (95%): 1.1, 42.4), Peptostreptococcus (OR: 14, CI (95%): 2.5, 

146.1), Hafnia (OR: 10.6, CI (95%): 0.8, 570), and Serratia (OR: 31.9, CI (95%): 8, 188.9), (Table 
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3.7.). Based on these different taxa associations with Cluster 2 and network analysis (Figure 3.9), 

we sought to build a model that incorporated these associations to define the most important 

members that could predict Cluster 2 status. 

Logistic Regression Modeling for predicting Cluster 2 status 

Pantoea was selected as the base-model because it had the greatest odds-ratio, the highest 

number of observations above average across samples, and was an integral member of the network 

analysis. Logistic regression was performed, additionally, with gastroenteritis-causing organisms 

(Salmonella, Shigella, Escherichia), of which Shigella was determined to have the most significant 

contribution to the model. Opportunistic pathogens were assessed and included (Enterobacter, 

Serratia, Enterococcus); Enterobacter was selected for final model due to improvements that it 

provided. Bacteriophages that directly infect Proteobacteria (P22viurs, Nona33virus, 

Lambdavirus) and Eukaryotic viruses (Orthopoxvirus, Cytomegalovirus) were tested and did not 

substantially improve the model. Wald’s test was used to incorporate significant variables. The 

Hosmer-Lemeshow goodness-of-fit test and the AIC were both evaluated to determine if the model 

was being overfitted. Wald’s test was used to incorporate significant variables. The final model 

(model 9) consists of Shigella, Enterobacter, Pantoea in defining Cluster 2 status, (Table 3.7.).  

Matched cohort further confirms previous findings 

We then performed a matched case follow-up cohort analysis to investigate the differences 

and examine dysbiosis longitudinally within the same individual. In total, there were 62 matched 

case and follow-up samples that were matched (n=124). No statistical differences in sequencing 

quality were found between this matched cohort (n=124) and the cohort used earlier (n=142) nor 

within the matched cohort. The total number of bacterial and viral Families (n=473) and Genera 

(n=2,659) were the same between both matched and unmatched cohorts. The Shannon index did 
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not vary between the case and follow-up states within the matched cohort (Wilcoxon Signed-rank 

test p = 0.3644); however, genera richness was significantly increased in follow-ups compared to 

cases (Wilcoxon Signed-rank test p =1.96e-06). Evenness was not statistically different between 

cases and follow-ups (Wilcoxon Signed-rank test p = 0.9144).  

Differential abundance analysis identified with ANCOM identified that 36 genera were 

differentially abundant between the matched cases and follow-ups. In total five genera were 

viruses (P22virus, P2virus, Nona33virus, Orthopoxvirus, P1virus) and 31 genera were bacteria. 

Among these  bacterial genera, 16 were Proteobacteria (Salmonella, Escherichia, Shigella, 

Klebsiella, Campylobacter, Citrobacter, Haemophilus, Vibrio, Pantoea, Acinetobacter, 

Pseudomonas, Atlantibacter, Proteus, Hafnia, Providencia, Morganella), 14 were Firmicutes 

(Roseburia, Veillonella, Flavonifractor, Subdoligranulum, Anaerotruncus, Pseudoflavonifractor, 

Staphylococcus, Oscillibacter, Intestinibacillus, Intestinimonas, Anaeromassilibacillus, 

Lawsonibacter, Neglecta), and one was Actinobacteria (Rothia).  

Examination of the top differentially abundant viruses (Figure 3.10A) demonstrated that 

Orthopoxvirus (Wilcoxon signed-rank test p = 0.0002967) and Nona33virus (Wilcoxon signed-

rank test p = 0.003692) were significantly increased in abundance in cases compared to the follow-

up samples. Felixo1virus (Wilcoxon signed-rank test p = 0.005037) and Seuratvirus (Wilcoxon 

signed-rank test p = 0.001004) were increased in abundance in follow-ups compared to cases. 

Examination of the bacterial changes (Figure 3.10B) demonstrates that Proteobacteria such as 

Escherichia (Wilcoxon signed-rank test p = 1.878e-08), Shigella (Wilcoxon signed-rank test p = 

1.201e-07), and Salmonella (Wilcoxon signed-rank test p = 1.86e-11) were significantly more 

abundant in cases than follow-ups. The follow-up samples, however, had significantly more 

abundant Bacteroides (Wilcoxon signed-rank test p = 0.005151) and Firmicutes such as Roseburia 
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(Wilcoxon signed-rank test p = 1.801e-06), Alistipes (Wilcoxon signed-rank test p = 0.002572), 

Akkermansia (Wilcoxon signed-rank test p = 0.001229), and Ruminococcus (Wilcoxon signed-

rank test p = 0.0001088) relative to the cases.  
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DISCUSSION 

The resident microbes are continually changing, and subsequently the microbiome is as 

well. Studies have found that an insult can perturb the microbiome and drastically change its 

composition. Studies that have followed the microbiome through a time course have linked 

changes to diet (39), antibiotic-use (40), pregnancy (41), prediabetes (42), and IBD (43). IBD 

patients (43) were found to have microbiome shifts that consistently show a lower abundance of 

Faecalbacterium, Subdogligranulum, and Roseburia which are considered important for a healthy 

microbiome. In the same study (43), E. coli, Haemophilus parainfluenzae, and Klebsiella 

pneumoniae were all increased in abundance, which are negatively correlated with health. Here 

we have observed similar findings as Roseburia (0%) was not elevated in communities belonging 

to Cluster 2, though Haemophilus (50%) and Klebsiella (52%) were elevated in Cluster 2 which 

represents microbes potentially blooming during the acute infection.  

There have been few studies that have examined acute bacterial gastroenteritis before and 

after an infection. Previously, a 16S rRNA sequencing analysis of 310 samples collected through 

our ERIN study showed expansions in Proteobacteria, specifically Escherichia, during acute 

bacterial gastroenteritis regardless of the agent causing each bacterial infection (7). Moreover, the 

abundance of Proteobacteria was found to decrease post-recovery, which was similar to the levels 

observed for uninfected, healthy individuals (7). Here we utilized metagenomics, which offers 

greater resolution of resident microbial communities, and observed similar trends. Specifically, we 

found an increased abundance of Escherichia among patient samples compared to the follow-up 

samples submitted by the patients following recovery from infection. No significant difference in 

the abundance of Escherichia was observed in these follow-up samples compared to those from 

healthy individuals (Chapter 2), suggesting that decreases in Escherichia may be important for 
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recovery. Additional bacterial populations, namely Alistipes, Sutterella, Odoribacter, were also 

found to be lower in abundance among the follow-up samples compared to controls (data not 

shown, Chapter 2). Alistipes abundance has been correlated positively with health (44), while 

Odoribacter represent a group of butyrate producers known to  regulate inflammation (45). 

Similarly, Sutterella  is a common commensals that could aid in immune regulation and function 

(46). Given that these microbial populations were lower in follow-up versus healthy samples, 

suggesting that these bacteria might be lost or failed to recover following infection. Therefore, 

these microbes should be investigated in future studies as potential targets for probiotic therapy to 

promote recovery from gastroenteritis. 

Fewer studies have directly studied changes in the virome in gastroenteritis. Previous 

studies have found that the virome has a high degree of variation between individuals, and the 

virome is conserved over time (47–49), suggesting the possibility of a core virome. It has been 

shown that the virome even stays constant after a fecal microbiota transplant (50). Studies have 

found increased abundance of Caudovirales, tailed bacteriophage, with chronic inflammatory 

disease like IBD (51), and increased abundance of adenovirus in HIV positive patients was 

associated with lower CD4 counts (52); however, neither of these studies followed the virome 

longitudinally. We sought to classify the alterations in the microbiome among patients with acute 

bacterial gastroenteritis during a disease state and a recovery state. The use of enterotypes (53) 

allows for clustering of samples based on common microbial compositions. Four clusters were 

identified; two case-associated and two follow-up-associated (recovery). Cluster 1 was associated 

with minor illness and associated more with the follow-up clusters; less severe disease has been 

noted in patients that had microbial profiles more similar to uninfected controls (54).  Cluster 2 

was associated with more severe illness and was more distant on the PCA with observable 
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differences notable on the heatmap. The taxa that were differentially abundant for Cluster 1 were 

also found in Cluster 2 and included the Proteobacteria (Salmonella, Citrobacter, Haemophilus, 

Enterobacter, Kluverya, Pantoea,) and Firmicutes (Raoultella). Salmonella has been shown to 

outcompete host microbes by exploiting inflammation (55). Additionally, Salmonella and 

Citrobacter have both been shown to induce inflammatory states in mouse models that allowed 

for the expansion of Escherichia to maintain inflammation long after the initial microbe cleared 

(56). Haemophilus is pro-inflammatory (57)  and commonly has been associated with 

hospitalization (58). Haemophilus has been associated with other illnesses including multiple 

sclerosis (59), rheumatoid arthritis (60), colorectal carcinoma (61), and gastroenteritis (8, 62). 

Pantoea was the most surprising finding as it can cause disease in humans (63), but little is known 

about pathogenesis or its role in the microbiome. Among all taxa identified, Pantoea had the 

highest association (OR: 204, 29.7 - 8376.8) with Cluster 2. There was no difference between 

Pantoea abundance in follow-up and control samples (data not shown), suggesting that Pantoea 

most likely represents an opportunistic pathogen that temporarily blooms in cases which may be 

lost when transitioning from the follow-up vs control states. 

Viruses (29 in total) and bacteria (56 in total) dominated the additional taxa. The 56 bacteria 

can be associated with disease or a healthy state. The majority of taxa that were differentially 

abundant in Cluster 2 are pro-inflammatory and include Escherichia and Shigella, both commonly 

elevated in gastroenteritis (7, 8), Staphylococcus has been associated with abdominal pain (54), 

but abdominal pain was not associated with Cluster 2. Acinetobacter had increased abundance in 

Cluster 2, and evidence suggests that it causes differentiation of T cells in vitro and downregulates 

helper T cells (64), potentially changing the immune system response to the dysbiosis. 
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Enterococcus produces bacteriocins that have strong antimicrobial properties (65), which can 

impact the growth of other bacteria and are elevated in Cluster 2.  

Bacteria commonly associated with good health were found to be decreased in Cluster 2 

and include; Subdogligranulum, Gemmiger (43),  and Roseburia, (66), all of which are butyrate 

producers that have been shown to decrease inflammation (67). Subdogligranulum is increased in 

abundance after supplementation with Lactobacillus (68, 69), a common probiotic. There are many 

changes to viral composition as well in Cluster 2, most directly infect Enterobacteriaceae.  

Caudovirales was increased for both gastroenteritis patients and Cluster 2; similar findings 

were seen in a study on IBD, phage increased in abundance and diversity within IBD patients, 

while the bacterial population was conversely decreased (51) and blooms in bacteriophage have 

been tied to increases in host inflammation (71) and affect the bacterial population directly (72). 

Expansion in Caudovirales have also been noted in viromes of immunocompromised HIV-infected 

patients, who have altered pro-inflammatory microbiomes and expanded Adenovirus populations 

(52). It has been proposed that Caudovirales can potentially control blooms in bacteria populations 

(73) through several mechanisms including adhering to mucosa (74) and direct population control 

through prophage induction (75). Our findings support these models in that the presence of 

Enterobacteria-phage is present alongside increases in their host, Enterobacteriaceae. Further 

analysis, however, will be needed to identify if the bacteriophages are lytic or lysogenic.  

Elevations in eukaryotic viruses such as Mastadenovirus and Cytomegalovirus have been 

observed in gestational diabetes dysbiosis (76), but their role remains ill-understood but was 

suggested that they could generate a pro-inflammatory environment. Orthopoxvirus was also 

found to be elevated in abundance in gestational diabetes (76). Orthopoxvirus produces molecules 

which can bind cytokines, chemokines, and interferon to lower the immune response (77, 78). 
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Mouse models infected with Orthopoxvirus have elicited distinct changes in the microbial profiles, 

which include decreases in Proteobacteria abundance compared to mock (79). Additional murine 

models have shown that eukaryotic viruses can alter the host immune system. Murine norovirus in 

germ-free mouse models restored the morphology of the intestinal tract through a signaling 

cascade without an immune response to the virus (80) this suggests that some eukaryotic viruses 

support bowel homeostasis and might be integral to its regeneration after being damaged. 

Additionally, inactivated rotavirus has been shown to reduce inflammation in the colon through 

the induction of anti-inflammatory cytokines acting on toll-like receptors (81).  

It should be noted that studies have identified that Poxviridae can be a false positive (52). 

However, previous studies utilized a viral only databases with BLAST at a standard e-value (10-

5); given the smaller database size of the viral only databases a more significant e-value should be 

utilized in studies that utilize a viral only database since e-value is calculated based on the database 

size; tools have been developed which attempt to ameliorate this issue (82). Here we used the 

entire NCBI non-redundant database (Bacteria, Viral, Eukaryotic) with a kmer-based annotation 

approach. In this study, the identification of a sequence as Orthopoxvirus has to have a higher 

score compared to all non-viral signatures in the database. Additional analysis is needed into the 

presence of Orthopoxvirus to confirm that it is a false positive of something known or unknown 

or is indeed Orthopoxvirus. Additionally, the biological significance of this virus needs to be 

investigated.  

The study here is limited due to sample size (n=142) and the timing of the follow-up 

samplings, which were inconsistent and varied between 1 and 26 weeks. Neveretheless, the study 

analyzed both the viral and bacterial signatures simultaneously in acute bacterial gastroenteritis in 

a patient and their recovered state. Our overall findings indicate that there might be two subtypes 
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of acute bacterial gastroenteritis with different microbial profiles and disease presentations. The 

more dysbiotic profile had a more substantial proportion of Caudovirales, which correlated 

negatively with decreases in healthy bacteria such as Subdoglibgranulum and Gemmiger and 

correlated positively with increases in inflammation-promoting bacteria like Shigella and 

Escherichia. The logistic regression model identifies Shigella, Enterobacter, and Pantoea as being 

able to identify Cluster 2 status. Interestingly Enterobacter and Pantoea were also found to be 

differentially abundant in Cluster 1 as well. Enterobacter and Pantoea could be critical changes in 

the microbiome of acute bacterial gastroenteritis. 
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Table 3.1. Sequencing quality and coverage estimates for 142 metagenomes Results for the total sequencing (column 2), the 

quality control (columns 3-4), annotation results (column 5) and overall coverage (column 6). 

 

 

 

Study ID 

Reads  

Paired-forward 

total 

Count (Gbp) 

Reads remaining 

after low-quality read 

removal 

Count (%) 

Reads remaining 

after human read 

removal 

Count (%) 

 

 

Reads annotated 

Total (%) Viral (%) 

 

 

Nonpareil  

Coverage (%) 

ER0106 2891668 (0.9) 1981379 (68.5) 1977478 (99.8) 66.39 (0) 0.96 

ER0110 4360036 (1.3) 2977906 (68.3) 2977572 (100) 65.94 (0.04) 0.88 

ER0162 3277708 (1) 2205167 (67.3) 2204701 (100) 70.19 (0) 0.86 

ER0187 4234852 (1.3) 2964081 (70) 2963580 (100) 66.02 (0.01) 0.86 

ER0214 4248380 (1.3) 2935060 (69.1) 2899595 (98.8) 69.58 (0.01) 0.85 

ER0221 3387746 (1) 2242100 (66.2) 2241949 (100) 59.87 (0.01) 0.81 

ER0227 985823 (0.3) 654468 (66.4) 654264 (100) 66.78 (0.01) 0.62 

ER0235 1151295 (0.3) 748995 (65.1) 745840 (99.6) 53.1 (0.01) 0.58 

ER0239 260491 (0.1) 145314 (55.8) 144650 (99.5) 63.57 (0.63) 0.3 

ER0288 5243347 (0) 3333372 (63.6) 3328755 (99.9) 45.63 (2.56) 0.78 

ER0302 5640052 (0) 3822002 (67.8) 3821846 (100) 74.35 (0) 0.93 

ER0378 3457684 (1.6) 2334944 (67.5) 2334771 (100) 59.1 (0) 0.87 

ER0437 591000 (1.7) 343633 (58.1) 343596 (100) 75.29 (0.02) 0.77 

ER0689 2184150 (1) 1511874 (69.2) 1507591 (99.7) 72.24 (0.01) 0.82 

ER0127 2704985 (1.2) 2188578 (80.9) 2186351 (99.9) 54.19 (0.06) 0.91 

ER0137 2513753 (0.7) 2429928 (96.7) 2429913 (100) 63.04 (0.05) 0.88 

ER0153 2131633 (1.4) 2047147 (96) 2046192 (100) 68.5 (0.02) 0.85 

ER0269 2570289 (1.3) 2471873 (96.2) 2471718 (100) 37.68 (0.02) 0.91 

ER0282 2776070 (1.1) 2631521 (94.8) 2631424 (100) 54.82 (0) 0.92 

ER0307 2243071 (1.3) 2129896 (95) 2121283 (99.6) 65.92 (0.02) 0.84 
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Table 3.1. (cont’d) 

      

ER0337 3254037 (1.4) 3104057 (95.4) 3104033 (100) 56.86 (0.99) 0.84 

ER0412 1605913 (1.1) 1447033 (90.1) 1436481 (99.3) 44.6 (0.06) 0.77 

ER0464 2496854 (1.6) 2381933 (95.4) 2381873 (100) 65.64 (0.02) 0.89 

ER0491 3162424 (0.8) 3078034 (97.3) 3077926 (100) 61.01 (0.07) 0.84 

ER0492 2231782 (1.2) 2113121 (94.7) 2112962 (100) 70.24 (0.06) 0.8 

ER0515 2639718 (1.6) 2426865 (91.9) 2346267 (96.7) 74.26 (3.3) 0.84 

ER0540 2379649 (1.1) 2249800 (94.5) 2249726 (100) 63.07 (2.22) 0.87 

ER0550 3356714 (1.3) 3254937 (97) 3252732 (99.9) 58.53 (0.04) 0.9 

ER0555 3562029 (1.2) 3458556 (97.1) 3458347 (100) 77.72 (0.01) 0.92 

ER0560 3543311 (1.7) 3377653 (95.3) 3377371 (100) 56.23 (0) 0.94 

ER0572 214000 (1.8) 203158 (94.9) 202618 (99.7) 58.79 (0) 0.52 

ER0611 2430348 (1.7) 2301399 (94.7) 2300918 (100) 71.48 (0.01) 0.88 

ER0624 2868691 (1.8) 2755771 (96.1) 2755499 (100) 71.56 (0.02) 0.88 

ER0625 3723758 (1.2) 2502102 (67.2) 2501405 (100) 55.34 (0) 0.88 

ER0647 2888229 (1.4) 2777506 (96.2) 2775514 (99.9) 69.25 (0.21) 0.85 

ER0658 2570167 (1.9) 2454406 (95.5) 2454118 (100) 61.59 (0.33) 0.82 

ER0663 2611261 (1.4) 2446519 (93.7) 2446423 (100) 74.71 (0) 0.88 

ER0666 2958009 (1.3) 2819037 (95.3) 2818652 (100) 68.82 (0) 0.88 

ER0670 2641744 (1.3) 2437352 (92.3) 2436914 (100) 69.92 (0.03) 0.93 

ER0697 2673696 (1.5) 2397073 (89.7) 2396593 (100) 68.29 (0.04) 0.8 

ER0710 2323990 (1.3) 2173969 (93.5) 2173724 (100) 70.73 (0.05) 0.86 

ER0712 2706939 (1.3) 2597534 (96) 2597311 (100) 65.47 (0.01) 0.9 

ER0740 3397680 (1.2) 3246871 (95.6) 3246679 (100) 61.59 (0.04) 0.88 

ER0742 2660072 (1.4) 1948236 (73.2) 1947274 (100) 75.14 (0.3) 0.83 

ER0762 2882882 (1.7) 2803803 (97.3) 2803576 (100) 76.18 (0.06) 0.9 
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Table 3.1. (cont’d) 

      

ER0779 2289969 (1.3) 2097476 (91.6) 2095887 (99.9) 71.62 (0.04) 0.84 

ER0795 3528372 (1.4) 3371056 (95.5) 3370768 (100) 71.88 (0.34) 0.91 

ER0834 2931611 (1.1) 2473584 (84.4) 2469797 (99.8) 31.01 (0.01) 0.81 

ER0835 212000 (1.8) 200843 (94.7) 200787 (100) 69.48 (0.01) 0.47 

ER0870 2579674 (1.5) 2506714 (97.2) 2506116 (100) 72.46 (0) 0.91 

ER0885 3281745 (1.6) 3141879 (95.7) 3141817 (100) 75.92 (0.04) 0.88 

ER0948 3189071 (1.3) 3068392 (96.2) 3068309 (100) 70.66 (0.01) 0.91 

ER0960 3145035 (1.6) 3026876 (96.2) 3026643 (100) 79.74 (0) 0.91 

ER0973 2908116 (1.6) 2794297 (96.1) 2793590 (100) 39.5 (0.03) 0.85 

ER0977 3169575 (1.6) 3065737 (96.7) 3064764 (100) 51.15 (0.01) 0.93 

ER1007 2212195 (1.5) 2130732 (96.3) 2130353 (100) 65.66 (0.02) 0.73 

ER1009 2144952 (1.6) 2079254 (96.9) 2078492 (100) 77.58 (0) 0.95 

ER1020 2600216 (1.1) 2519880 (96.9) 2519823 (100) 57.78 (0.03) 0.83 

ER0322 5205573 (1.1) 5097317 (97.9) 5097210 (100) 70.07 (0.03) 0.92 

ER1008 5195123 (1.3) 5016461 (96.6) 5013802 (99.9) 53.02 (0.12) 0.88 

ER1011 2618786 (1.7) 2450623 (93.6) 2450453 (100) 73.16 (0.01) 0.88 
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Table 3.2. Characteristics of the 79 patients with enteric infections and 63 recovered included 

in this study 

 
Characteristic 

No. of 
cases‡ 

Percentage 
(%) of 
cases 

No. of 
follow up ‡ 

Percentage 
(%) 

of follow up 
 

p-value 
Demographic data      
Sex 
     Male 
     Female 

 
38 
41 

 
48.1 
51.9 

 
28 
35 

 
44.4 
55.6 

 
- 

0.6642 
Age group (years) 
    0-9 
    10-18 
    19-64 
    65+ 

 
21 
11 
33 
14 

 
26.6 
13.9 
41.8 
17.7 

 
17 
8 
26 
12 

 
27 

12.7 
41.3 
19 

 
0.9109 
0.7872 
0.8585 

- 
Race 
     Caucasian 
     African American 
     Other 

 
60 
10 
4 

 
81.1 
13.5 
5.4 

 
50 
5 
2 

 
87.7 
8.8 
3.5 

 
0.5609 

1.0 
- 

Residence Type 
     Rural 
     Urban 

 
40 
38 

 
51.3 
48.7 

 
33 
29 

 
53.2 
46.8 

 
0.8191 

- 
Residence (counties in 
Michigan) 
     Calhoun 
     Clinton 
     Eaton 
     Ingham 
     Ionia 
     Kent 
     Lenawee 
     Livingston 
     Macomb 
     Oakland 
     Ottawa 
     Washtenaw 
     Wayne 

 
1 
4 
5 
16 
2 
5 
1 
3 
3 
8 
3 
11 
16 

 
1.3 
5.1 
6.4 
20.5 
2.6 
6.4 
1.3 
3.9 
3.9 
10.2 
3.9 
14.1 
20.5 

 
1 
4 
5 
11 
1 
4 
1 
3 
3 
7 
3 
10 
9 

 
1.6 
6.5 
8.1 
17.7 
1.6 
6.5 
1.6 
4.8 
4.8 
11.3 
4.8 
16.1 
14.5 

 
1.0 

0.6806 
0.4736 
0.7811 

1.0 
0.7041 

1.0 
0.6526 
0.6526 

0.5267  

0.6526  

0.5504  
- 

Infection 
    Campylobacter 
    Salmonella 
    Shigella 
    STEC 

 
29 
35 
10 
5 

 
36.7 
44.3 
12.7 
6.3 

 
25 
28 
7 
3 

 
39.7 
44.4 
11.1 
4.8 

 
0.7192 

1.0 
1.0 
- 

Epidemiological data      
Travel 
Domestic travel 
     Yes 
     No 
International travel 
     Yes 
     No 

 
 

16 
59 
 
9 
67 

 
 

21.3 
78.7 

 
11.8 
88.2 

 
 

16 
36 
 
1 
51 

 
 

30.8  
69.2 

  
1.9 
98.1 

 
 

0.2284 
- 
 

0.0476 
- 



 

166 
 

Table 3.2. (cont’d) 
 
Food consumption 
Turkey 
     Yes 
     No 

 
 

 
 

10 
15 

 
 
 

 
40 
60 

 
 

 
 

17 
40 

 
 
 

 
29.9 
70.1 

 
 
 

 
0.3667 

- 
Chicken 
     Yes 
     No 
Beef 
     Yes 
     No 

 
55 
10 

 
39 
5 

 
84.6 
15.4 

 
88.6 
11.4 

 
54 
3 

 
48 
9 

 
94.7 
5.3 

 
84.2 
15.7 

 
0.0840 

- 
 
0.5233 

- 
Pork* 
     Yes 
     No 
Deli meat 
     Yes 
     No 
Raw fruits 
     Yes 
     No 
Raw leafy greens 
     Yes 
     No 
Raw vegetables 
     Yes 
     No 
Raw eggs 
     Yes 
     No 

 
33 
7 
 

25 
24 
 

31 
6 
 

36 
17 
 

21 
13 
 
1 
39 

 
82.5 
17.5 

 
51 
49 

 
83.8 
16.2 

 
67.9 
32.1 

 
61.8 
38.2 

 
2.5 
97.5 

 
32 
25 
 

29 
28 
 

51 
6 
 

41 
16 
 

40 
17 
 
2 
55 

 
56.1 
43.9 

 
50.9 
49.1 

 
89.5 
10.5 

 
71.9 
28.1 

 
70.2 
29.8 

 
3.5 
96.5 

 
0.0065 

- 
 

0.9882 
- 
 

0.4193 
- 
 

0.4191 
- 
 

0.4089 
- 
 

1.0 
- 

Water at home 
     Any well 
     Any municipal 
     Only bottled 

 
13 
48 
8 

 
18.8 
69.6 
11.6 

 
5 
26 
4 

 
11.4 
74.3 
14.3 

 
1.0 
1.0 
- 

The percentages based on the number for which information was available. Counts are mutually 

exclusive for each category. ‡ Total number varies due to the difference in missing data. * 

indicates significance difference (p < 0.05) between variables using p-value calculated by Chi-

square test and Fisher’s exact test for variables <5 in at least one cell. Mantel-Hanzel Chi-square 

was used to assess for trends. 
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Table 3.3. Characteristics of clusters defined through hierarchical clustering 

 
Characteristic 

Cluster 1‡  
No. (%)  

Cluster 2‡  
No. (%) 

Cluster 3‡  
No. (%) 

Cluster 4‡  
No. (%) 

 
p-value 

Demographic data  

Case status  

     Case*  

     Follow Up  

 

 

25 (93) 

2 (7) 

 

 

33 (100) 

0 (0) 

 

 

7 (31.2) 

15 (68.2) 

 

 

14 (23.3) 

46 (76.7) 

 

 

0.0001 

- 
Sex 
     Male 
     Female 

 
11 (40.7) 
16 (59.3) 

 
18 (54.5) 
15 (45.5) 

 
13 (59.1) 
9 (40.9) 

 
24 (40) 
36 (60) 

 
- 

0.3031 
Age group (years) 
    0-9 
    10-18 
    19-64 
    65+ 

 
8 (29.6) 
3 (11.1) 
12 (44.4) 
4 (14.8) 

 
8 (24.2) 
6 (18.2) 
13 (39.4) 
6 (18.2) 

 
7 (31.8) 
3 (13.6) 
8 (36.4) 
4 (18.2) 

 
15 (25) 
7 (11.7) 
26 (43.3) 
12 (20) 

 
0.9212 
0.9699 
0.9585 

- 
Race 
     Caucasian 
     African American 
     Other 
Residence Type 
     Rural* 
     Urban 

 
21 (87.5) 
2 (8.3) 
1 (4.2)  

 
18 (66.7) 
9 (33.3) 

 
23 (76.7) 

6 (20) 
1 (3.3)  

 
11 (33.3) 
22 (66.7) 

 
16 (72.7) 
2 (9.1) 
4 (18.2)  

 
9 (40.9) 
13 (59.1) 

 
50 (90.9) 
5 (9.1) 
0 (0)  

 
35 (60.3) 
23 (39.7) 

 
0.0085 
0.0713 

- 
 

0.0219 
- 

Infection 
    Campylobacter 
    Salmonella 
    Shigella 
    STEC 

 
8 (29.6) 
17 (63) 
2 (7.4) 
0 (0) 

 
11 (33.3) 
13 (39.4) 
8 (24.2) 

1 (3) 

 
9 (40.9) 
10 (45.5) 
1 (4.5) 
2 (9.1) 

 
26 (43.3) 
23 (38.3) 

6 (10) 
5 (8.3) 

 
0.7004 
0.2486 
0.1458 

- 
Epidemiological data      
Travel 
Domestic travel 
     Yes 
     No 
International travel 
     Yes 
     No 

 
 

8 (30.8) 
18 (69.2)  

 
4 (14.8) 
23 (85.2) 

 
 

8 (25.8) 
23 (74.2) 

  
2 (6.5) 

29 (93.5) 

 
 

3 (15.8) 
16 (84.2) 

  
2 (10.5) 
17 (89.5) 

 
 

13 (25.5) 
38 (74.5) 

  
2 (3.9) 

49 (96.1) 

 
 

0.7305 
- 
 

0.0666 
- 

Food consumption 
Turkey 
     Yes 
     No 
Chicken 
     Yes 
     No 
Beef 
     Yes 
     No 
Pork 
     Yes 
     No 
 
 

 
 

5 (55.6) 
4 (44.4)  

 
24 (88.9) 
3 (11.1)  

 
18 (100) 

0 (0)  
 

18 (94.7) 
1 (5.3)  

 
 

 
 

3 (25) 
9 (75) 

  
19 (82.6) 
4 (17.4) 

  
13 (81.3) 
3 (18.8) 

  
10 (66.7) 
5 (33.3) 

 
 

 
 

4 (30.8) 
9 (69.2) 

  
15 (93.8) 
1 (6.3) 

  
14 (87.5) 
2 (12.5) 

  
8 (53.3) 
7 (46.7) 

 
 

 
 

15 (31.3) 
33 (68.8) 

  
51 (91.1) 
5 (8.9) 

  
42 (82.4) 
9 (17.6) 

  
29 (60.4) 
19 (39.6) 

 
 

 
 

0.5133 
- 
 

0.7514 
- 
 

0.2522 
- 

 
0.0175 

- 
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Table 3.3. (cont’d) 
 
Deli meat 
     Yss 
     No 
Raw fruits 
     Yes 
     No 
Raw leafy greens 
     Yes 
     No 
Raw vegetables 
     Yes 
     No 
Raw eggs 
     Yes 
     No 

 
 
 

9 (42.9) 
12 (57.1)  

 
10 (83.3) 
2 (16.7)  

 
15 (65.2) 
8 (34.8)  

 
12 (70.6) 
5 (29.4)  

 
0 (0) 

18 (100)  

 
 
 

9 (47.4) 
10 (52.6) 

  
12 (70.6) 
5 (29.4) 

  
15 (71.4) 
6 (28.6) 

 
6 (42.9) 
8 (57.1) 

  
1 (5.6) 

17 (94.4) 

 
 
 

10 (62.5) 
6 (37.5) 

  
14 (100) 

0 (0) 
  

8 (50) 
8 (50) 

  
6 (46.2) 
7 (53.8) 

  
0 (0) 

13 (100) 

 
 
 

26 (52) 
24 (48) 

 
46 (90.2) 
5 (9.8) 

  
39 (78) 
11 (22) 

  
37 (78.7) 
10 (21.3) 

  
2 (4.2) 

46 (95.8) 

 
 
 

0.6767 
- 
 

0.0728 
- 
  

0.1837 
- 
  

0.0707 
- 
  

1.0 
- 

Water at home 
     Any well 
     Any municipal 
     Only bottled 

 
2 (8.7) 

18 (78.3) 
3 (13)  

 
4 (14.3) 
21 (75) 
3 (10.7) 

 
3 (17.6) 
12 (70.6) 
2 (11.8) 

 
9 (25) 

23 (63.9) 
4 (11.1) 

 

0.7743  

1.0  
- 

The percentages based on the number for which information was available. Counts are mutually 

exclusive for each category. ‡ Total number varies due to the difference in missing data. * 

indicates significance difference (p < 0.05) between variables using p-value calculated by Chi-

square test and Fisher’s exact test for variables <5 in at least one cell. Mantel-Hanzel Chi-square 

was used to assess for trends. 
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Table 3.4. Univariate analysis to identify disease associations for Cluster 1 in 79 patients with 

enteric infections included in the study 

Characteristic Totals* No (%) Cluster 1 OR (95% CI)† p-value‡ 

Sex 

    Male 

    Female 

 

38 

41 

 

9 (16.7) 

16 (21.1) 

 

1.0 

0.5 (0.2 - 1.3) 

 

- 

0.1430 

Age group (years) 

    0-9 

    10-18 

    19-64 

    65+ 

 

21 

11 

33 

14 

 

8 (38.1) 

2 (8) 

11 (44) 

4 (16) 

 

0.8 (0.23 - 3) 

2.2 (0.4 - 24.5) 

1.0 

1.2 (0.3 - 6.7) 

 

0.7753 

0.4606 

- 

1 

Race 

     Caucasian 

     African American 

     Other 

Residence Type 

    Urban 

    Rural 
Infection 
     Camapylobacter  
     Salmonella 
     Shigella 

     STEC 

 

60 

10 

4 

 

38 

40 

 

29 

35 

10 

5 

 

21 (35) 

2 (20) 

1 (25) 

 

8 (21.1) 

17 (42.5) 

 

8 (27.6) 

16 (45.7) 

1 (10) 

0 (0) 

 

0.6 (0.01 - 8.3) 

1.3 (0.02 - 35) 

1.0 

 

1.0 

2.8 (1 - 7.5) 

 

0 (0 - 3.6) 

0 (0 - 1.5) 

0 (0 - 78) 

1.0 

 

0.6834 

0.8368 

- 

 

- 

0.0425 

 

0.3086 

0.0712 

1 

- 

Hospitalized  

     Yes 

     No 

 

29 

49 

 

6 (20.7) 

19 (38.8) 

 

0.4 (0.1 - 1.2) 

1.0 

 

0.0981 

- 

Abdominal pain 

     Yes 

     No 

 

65 

12 

 

21 (32.3)  

4 (33.3) 

 

1 (0.2 - 4.8) 

1.0 

 

1 

- 

Body ache 

     Yes 

     No 

Diarrhea 

     Yes 

     No 

 

22 

55 

 

73 

4 

 

14 (63.6)  

11 (20)  

 

24 (32.9)  

1 (25) 

 

7 (2.4 - 20.8)  

1.0 

 

1.5 (0.1 - 80.3) 

1.0 

 

0.0002  

- 

 

1 

- 

Bloody diarrhea 

     Yes 

     No 

 

29 

48 

 

7 (24.1)  

18 (37.5) 

 

0.5 (0.2 - 1.5) 

1.0 

 

0.2250 

- 

Chills 

     Yes 

     No 

 

25 

52 

 

10 (40)  

15 (28.8) 

 

1.6 (0.6 - 4.5) 

1.0 

 

0.3277 

- 

Fatigue 

     Yes 

     No 

 

41 

36 

 

14 (34.1) 

11 (30.6) 

 

1.2 (0.5 - 3.1) 

1.0 

 

0.7371 

- 
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Table 3.4. (cont’d) 

 

    

Headache 

     Yes 

     No 

 

18 

59 

 

6 (33.3) 

19 (32.2) 

 

1.1 (0.3 - 3.2) 

1.0 

 

0.9286 

- 

Nausea 

     Yes  

     No 

 

38 

39 

 

13 (34.2) 

12 (30.8) 

 

1.2 (0.5 - 3) 

1.0 

 

0.7471 

- 

Vomiting 

     Yes  

     No 

 

27 

50 

 

6 (22.2) 

19 (38) 

 

0.5 (0.2 - 1.4) 

1.0 

 

0.1583 

- 

Fever 

     Yes 

     No 

 

47 

21 

 

15 (31.9) 

8 (38.1) 

 

0.8 (0.3 - 2.2) 

1.0 

 

0.6187 

- 

 

* Depending on the variable examined, the number does not add up to the total (n=79) because 

of missing data. † 95% confidence interval (CI) for odds ratio (OR). ‡ p-value calculated by Chi-

square test and Fisher’s exact test was used for variables <5 in at least one cell. Mantel-Hanzel 

Chi-square was used to assess for trends. 
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Table 3.5. Univariate analysis to identify disease associations for Cluster 2 in 79 patients with 

enteric infections included in the study 

Characteristic Total* No (%) Cluster 2 OR (95% CI)† p-value‡ 

Sex 

    Male 

    Female 

 

38 

41 

 

18 (47.4)  

15 (36.6) 

 

1.0 

1.6 (0.6 - 3.8) 

 

- 

0.3316 

Age group (years) 

    0-9 

    10-18 

    19-64 

    65+ 

 

21 

11 

33 

14 

 

8 (38) 

6 (54.1) 

13 (39.4) 

6 (42.9) 

 

1.1 (0.3 - 3.3) 

0.5 (0.14 - 2.1) 

1.0 

0.9 (0.2 - 3.1) 

 

0.9240 

0.3796 

- 

0.8249 

Race 

     Caucasian 

     African American 

     Other 

Residence Type 

    Urban 

    Rural 
Infection 
     Camapylobacter  
     Salmonella 
     Shigella 

     STEC 

 

60 

10 

4 

 

38 

40 

 

29 

35 

10 

5 

 

23 (38.3) 

6 (60) 

1 (25) 

 

22 (57.9) 

11 (27.5) 

 

11 (37.9) 

13 (37.1) 

8 (80) 

1 (25) 

 

0.5 (0.01 - 7.2) 

0.2 (0.003 - 4) 

1.0 

 

3.6 (1.4 - 9.3) 

1.0 

 

0.4 (0.01 - 5) 

0.4 (0.01-5) 

0.1 (0.001-1.3) 

1.0 

 

1 

0.5594 

- 

 

0.0112 

- 

 

0.6347 

0.6404 

0.0889 

- 

Hospitalized 

     Yes 

     No 

 

29 

49 

 

16 (55.2) 

17 (34.7) 

 

2.3 (0.9 - 5.9) 

1.0 

 

0.0769 

- 

Abdominal pain 

     Yes 

     No 

 

65 

12 

 

27 (41.5) 

4 (33.3) 

 

1.4 (0.3 - 7.1) 

1.0 

 

0.7525 

- 

Body ache 

     Yes 

     No 

Diarrhea 

     Yes 

     No 

 

22 

55 

 

73 

4 

 

6 (27.3) 

25 (45.5) 

 

31 (42.5) 

0 (0) 

 

0.4 (0.2 - 1.3) 

1.0 

 

Un (0.5 - Un) 

1.0 

 

0.1417 

- 

 

0.1438 

- 

Bloody diarrhea 

     Yes 

     No 

 

29 

48 

 

15 (51.7) 

16 (33.3) 

 

2.1 (0.8 - 5.5) 

1.0 

 

0.1108 

- 

Chills 

     Yes 

     No 

 

25 

52 

 

8 (32) 

23 (44.2) 

 

0.6 (0.2 - 1.6) 

1.0 

 

0.3055 

- 

Fatigue 

     Yes 

     No 

 

41 

36 

 

15 (36.6) 

16 (44.4) 

 

0.7 (0.3 - 1.8) 

1.0 

 

0.4829 

- 
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Table 3.5. (cont’d) 

 

    

Headache 

     Yes 

     No 

 

18 

59 

 

10 (55.6) 

21 (35.6) 

 

2.3 (0.8 - 6.6) 

1.0 

 

0.1306 

- 

Nausea 

     Yes  

     No 

 

38 

39 

 

15 (39.5) 

16 (41) 

 

0.9 (0.4 - 2.3) 

1.0 

 

0.8896 

- 

Vomiting 

     Yes 

     No 

 

27 

50 

 

18 (66.7) 

13 (26) 

 

5.7 (2.1 - 15.8) 

1.0 

 

0.0005 

- 

Fever 

     Yes 

     No 

 

47 

21 

 

21 (44.7) 

6 (28.6) 

 

2 (0.7 - 6.1) 

1.0 

 

0.2097 

- 

* Depending on the variable examined, the number does not add up to the total (n=79) because 

of missing data. † 95% confidence interval (CI) for odds ratio (OR). ‡ p-value calculated by Chi-

square test and Fisher’s exact test was used for variables <5 in at least one cell. Mantel-Hanzel 

Chi-square was used to assess for trends. 
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Table 3.6. Differentially abundant taxa determined by ANCOM for each case cluster 

Organism (Genus) Taxonomy (Order; Family) Cluster 1 Cluster 2 

Viruses 

P22virus 

P2virus 

Nona33virus 

Mastadenovirus 

Lambdavirus 

Orthopoxvirus 

Kp15virus 

P1virus 

T7virus 

C2virus 

Phi29virus 

Sk1virus 

Felixo1virus 

Epsilon15virus 

Jerseyvirus 

V5virus 

T5virus 

Sfi11virus 

Pis4avirus 

Muvirus 

Sfi21dt1virus 

K1gvirus 

Kayvirus 

Cytomegalovirus 

Tl2011virus 

Hk578virus 

Rb69virus 

Seuratvirus 

Np1viru 

 

Caudovirales; Podoviridae 

Caudovirales; Myoviridae 

Caudovirales; Podoviridae 

Viruses; Adenoviridae 

Caudovirales; Siphoviridae 

Viruses; Poxviridae 

Caudovirales; Myoviridae 

Caudovirales; Myoviridae 

Caudovirales; Podoviridae 

Caudovirales; Siphoviridae 

Caudovirales; Podoviridae 

Caudovirales; Siphoviridae 

Caudovirales; Myoviridae 

Caudovirales; Podoviridae 

Caudovirales; Siphoviridae 

Caudovirales; Myoviridae 

Caudovirales; Siphoviridae 

Caudovirales; Siphoviridae 

Caudovirales; Siphoviridae 

Caudovirales; Myoviridae 

Caudovirales; Siphoviridae 

Caudovirales; Siphoviridae 

Caudovirales; Herelleviridae 

Herpesvirales; Herpesviridae 

Caudovirales; Podoviridae 

Caudovirales; Siphoviridae 

Caudovirales; Myoviridae 

Caudovirales; Siphoviridae 

Caudovirales; Siphoviridae 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Bacteria 

Salmonella 

Escherichia 

Clostridium 

Roseburia 

Shigella 

Blautia 

Clostridioides 

Klebsiella 

Ruminococcus 

Enterobacter 

Butyricicoccus 

Citrobacter 

Chlamydia 

 

Enterobacterales; Enterobacteriaceae 

Enterobacterales; Enterobacteriaceae 

Clostridiales; Clostridiaceae 

Clostridiales; Lachnospiraceae 

Enterobacterales; Enterobacteriaceae 

Clostridiales; Lachnospiraceae 

Clostridiales; Peptostreptococcaceae 

Enterobacterales; Enterobacteriaceae 

Clostridiales; Ruminococcaceae 

Enterobacterales; Enterobacteriaceae 

Clostridiales; Clostridiaceae 

Enterobacterales; Enterobacteriaceae 

Chlamydiales; Chlamydiaceae 

 

Present 

 

 

 

 

 

 

 

 

Present 

 

Present 

 

 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 
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Table 3.6. (cont’d) 

 

Eubacterium 

Lactococcus 

Streptococcus 

Flavonifractor 

Haemophilus 

Vibrio 

Subdoligranulum 

Anaerotruncus 

 

 

Clostridiales; Eubacteriaceae 

Lactobacillales; Streptococcaceae 

Lactobacillales; Streptococcaceae 

Clostridiales; Ruminococcaceae 

Enterobacterales; Enterobacteriaceae 

Vibrionales; Vibrionaceae 

Clostridiales; Ruminococcaceae 

Clostridiales; Ruminococcaceae 

 

 

 

 

 

 

Present 

 

 

 

 

 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Pantoea 

Coprococcus 

Agathobaculum 

Fusicatenibacter 

Acinetobacter 

Prevotellamassilia 

Pseudomonas 

Pseudoflavonifractor 

Staphylococcus 

Oscillibacter 

Serratia 

Bacillus 

Enterococcus 

Lactobacillus 

Alloprevotella 

Anaerotignum 

Intestinibacillus 

Intestinimonas 

Ruthenibacterium 

Atlantibacter 

Butyrivibrio 

Raoultella 

Gemmiger 

Anaeromassilibacillus 

Duodenibacillus 

Kluyvera 

Angelakisella 

Lawsonibacter 

Drancourtella 

Peptostreptococcus 

Proteus 

Synergistes 

Acetobacter 

Hafnia 

Cloacibacillus 

Christensenella 

Enterobacterales; Erwiniaceae 

Clostridiales; Lachnospiraceae 

Clostridiales; Ruminococcaceae 

Clostridiales; Lachnospiraceae 

Pseudomonadales; Moraxellaceae 

Bacteroidales; Prevotellaceae 

Pseudomonadales; Pseudomonadaceae 

Clostridiales; Ruminococcaceae 

Bacillales; Staphylococcaceae 

Clostridiales; Oscillospiraceae 

Enterobacterales; Yersiniaceae 

Bacillales; Bacillaceae 

Lactobacillales; Enterococcaceae 

Lactobacillales; Lactobacillaceae 

Bacteroidales; Prevotellaceae 

Clostridiales; Lachnospiraceae 

Clostridiales; Eubacteriaceae 

Clostridiales; unclassified Clostridiales 

Clostridiales; Ruminococcaceae 

Enterobacterales; Enterobacteriaceae 

Clostridiales; Lachnospiraceae 

Clostridiales; Lachnospiraceae 

Clostridiales; Ruminococcaceae 

Clostridiales; Ruminococcaceae 

Burkholderiales; Sutterellaceae 

Enterobacterales; Enterobacteriaceae 

Clostridiales; Ruminococcaceae 

Clostridiales; unclassified Clostridiales 

Clostridiales; Ruminococcaceae 

Clostridiales; Peptostreptococcaceae 

Enterobacterales; Morganellaceae 

Synergistales; Synergistaceae 

Rhodospirillales; Acetobacteraceae 

Enterobacterales; Hafniaceae 

Synergistales; Synergistaceae 

Clostridiales; Christensenellaceae 

Present 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Present 

 

 

 

Present 

 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 

Present 
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Table 3.6. (cont’d) 

 

Providencia 

Neglecta 

Morganella 

Colibacter 

Tissierella 

 

 

Enterobacterales; Morganellaceae 

Clostridiales; Ruminococcaceae 

Enterobacterales; Morganellaceae 

Veillonellales; Veillonellaceae 

Tissierellales; Tissierellaceae 

 

 

Present 

Present 

Present 

Present 

Present 

Culturomica Bacteroidales; Odoribacteraceae  Present 
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Table 3.7. Univariate and multivariate analysis of microbial factors for Cluster 2 status in 

79 patients with enteric infections and 63 recovered included in the study 

 

Characteristic Total* 

No (%) 

Cluster 2 

OR 

(95% CI) † 

 

p-value‡ 

Viruses above study average 

P22virus  

       Yes 

       No 

P2virus  

       Yes 

       No 

Nona33virus  

       Yes 

       No 

Mastadenovirus  

       Yes 

       No 

Lambdavirus  

       Yes 

       No 

Orthopoxvirus  

       Yes 

       No 

Kp15virus  

       Yes 

       No 

P1virus  

       Yes 

       No 

T7virus  

       Yes 

       No 

C2virus  

       Yes 

       No 

Phi29virus  

       Yes 

       No 

Sk1virus  

       Yes 

       No 

Felixo1virus  

       Yes 

       No 

 

 

 11 

 131 

  

13 

 129 

  

18 

 124 

  

1 

 141 

  

15 

 127 

 

 30 

 112 

  

1 

 141 

  

11 

 131 

  

10 

 132 

 

 3 

 139 

 

 13 

 129 

 

 7 

 135 

 

 2 

 140 

 

 

6 (54.5) 

27 (20.6) 

 

7 (53.8)   

26 (20.2)   

 

13 (72.2)  

20 (16.1)  

 

1 (100)  

32 (22.7)  

 

10 (66.7)  

23 (18.1)  

 

20 (66.7)  

13 (11.6)  

 

1 (100)  

32 (22.7)  

 

4 (36.4)  

29 (22.1)  

 

1 (10)  

32 (24.2)  

 

1 (33.3)  

32 (23)  

 

2 (15.4)  

31 (24)  

 

1 (14.3)  

32 (23.7)  

 

1 (50)  

32 (22.9)  

 

 

4.6 (1.1 - 20.4) 

1.0 

 

4.6 (1.4 - 14.9) 

1.0 

 

13.2 (3.9 - 52.5) 

1.0 

 

Inf (0.1 - Inf) 

1.0 

 

8.8 (2.5 - 36.3) 

1.0 

 

15.2 (5.9 - 39.5) 

1.0 

 

Inf (0.1 - Inf) 

1.0 

 

2 (0.4 - 8.5) 

1.0 

 

0.3 (0 - 2.7) 

1.0 

 

1.7 (0 - 33) 

1.0 

 

0.6 (0.1 - 2.9) 

1.0 

 

0.5 (0 - 4.7) 

1.0 

 

3.3 (0 - 266.7) 

1.0 

 

 

0.0196 

- 

 

0.0061 

- 

 

< 0.0001 

- 

 

0.2324 

- 

 

0.0002 

- 

 

< 0.0001 

- 

 

0.2324 

- 

 

0.281 

- 

 

0.4533 

- 

 

0.5506 

- 

 

0.7327 

- 

 

1 

- 

 

0.412 

- 
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Table 3.7. (cont’d) 

 

Epsilon15virus  

       Yes 

       No 

Jerseyvirus  

       Yes 

       No 

V5virus  

       Yes 

       No 

T5virus  

       Yes 

       No 

Sfi11virus  

       Yes 

       No 

Pis4avirus  

       Yes 

       No 

Muvirus  

       Yes 

       No 

Sfi21dt1virus  

       Yes 

       No 

K1gvirus  

       Yes 

       No 

Kayvirus  

       Yes 

       No 

Cytomegalovirus  

       Yes 

       No 

Tl2011virus  

       Yes 

       No 

Hk578virus  

       Yes 

       No 

Rb69virus  

       Yes 

       No 

 

 

 

 

 

 9 

 133 

 

 4 

 138 

 

 2 

 140 

 

 2 

 140 

 

 12 

 130 

 

 4 

 138 

 

 5 

 137 

 

 12 

 130 

 

 4 

 138 

 

 19 

 123 

 

 11 

 131 

 

 7 

 135 

 

 5 

 137 

 

 1 

 141 

 

 

 

 

 

4 (44.4)  

29 (21.8)  

 

1 (25)  

32 (23.2)  

 

1 (50)  

32 (22.9)  

 

2 (100)  

31 (22.1)  

 

0 (0)  

33 (25.4)  

 

3 (75)  

30 (21.7)  

 

3 (60)  

30 (21.9) 

  

0 (0)  

33 (25.4)  

 

1 (25)  

32 (23.2)  

 

8 (42.1)  

25 (20.3)  

 

8 (72.7)  

25 (19.1)  

 

3 (42.9)  

30 (22.2)  

 

1 (20)  

32 (23.4)  

 

0 (0)  

33 (23.4)  

 

 

 

 

 

2.8 (0.5 - 14.2) 

1.0 

 

1.1 (0 - 14.3) 

1.0 

 

3.3 (0 - 266.7) 

1.0 

 

Inf (0.6 - Inf) 

1.0 

 

0 (0 - 1.1) 

1.0 

 

10.6 (0.8 - 570) 

1.0 

 

5.3 (0.6 - 65.8) 

1.0 

 

0 (0 - 1.1) 

1.0 

 

1.1 (0 - 14.3) 

1.0 

 

2.9 (1 - 7.8) 

1.0 

 

11 (2.4 - 69.1) 

1.0 

 

2.6 (0.4 - 16.3) 

1.0 

 

0.8 (0 - 8.7) 

1.0 

 

0 (0 - 128.6) 

1.0 

 

 

 

 

 

0.2127 

- 

 

1 

- 

 

0.412 

- 

 

0.0527 

- 

 

0.0685 

- 

 

0.0392 

- 

 

0.0822 

- 

 

0.0685 

- 

 

1 

- 

 

0.0364 

- 

 

0.0004 

- 

 

0.3535 

- 

 

1 

- 

 

1 

- 
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Table 3.7. (cont’d) 

 

Seuratvirus   

       Yes 

       No  

Np1virus  

       Yes 

       No  

Bacteria above study average 

Salmonella  

       Yes 

       No 

Escherichia  

       Yes 

       No 

Clostridium  

       Yes 

       No 

Roseburia  

       Yes 

       No 

Shigella  

       Yes 

       No 

Blautia  

       Yes 

       No 

Clostridioides  

       Yes 

       No 

Klebsiella  

       Yes 

       No 

Ruminococcus  

       Yes 

       No 

Enterobacter  

       Yes 

       No 

Butyricicoccus  

       Yes 

       No 

Citrobacter  

       Yes 

       No 

 

 

 

 

10 

 132 

 

 14 

 128 

 

 

 17 

 125 

 

 33 

 109 

 

 40 

 102 

 

 28 

 114 

 

31 

 111 

  

31 

 111 

 

 51 

 91 

 

 19 

 123 

 

 46 

 96 

 

 25 

 117 

 

 34 

 108 

 

 19 

 123 

 

 

 

 

6 (60)  

27 (20.5)  

 

8 (57.1)  

25 (19.5)  

 

 

8 (47.1)  

25 (20)  

 

21 (63.6)  

12 (11)  

 

2 (5)  

31 (30.4)  

 

0 (0)  

33 (28.9)  

 

22 (71)  

11 (9.9)  

 

0 (0)  

33 (29.7)  

 

7 (13.7)  

26 (28.6)  

 

10 (52.6)  

23 (18.7)  

 

0 (0)  

33 (34.4)  

 

20 (80)  

13 (11.1)  

 

0 (0)  

33 (30.6) 

  

9 (47.4)  

24 (19.5)  

 

 

 

 

5.7 (1.3 - 29.7) 

1.0 

 

5.5 (1.7 - 17.3) 

1.0 

 

 

3.6 (1.2 - 10.1) 

1.0 

 

14.1 (5.6 - 35.8) 

1.0 

 

0.1 (0 - 0.5) 

1.0 

 

0 (0 - 0.4) 

1.0 

 

22.2 (8.2 - 60.1) 

1.0 

 

0 (0 - 0.3) 

1.0 

 

0.4 (0.2 - 1) 

1.0 

 

4.8 (1.8 - 13.2) 

1.0 

 

0 (0 - 0.2) 

1.0 

 

30.6 (9.3 - 123.5) 

1.0 

 

0 (0 - 0.3) 

1.0 

 

3.7 (1.4 - 10.1) 

1.0 

 

 

 

 

0.0108 

- 

 

0.0016 

- 

 

 

0.0132 

- 

 

< 0.0001 

- 

 

0.0008 

- 

 

0.0003 

- 

 

< 0.0001 

- 

 

0.0002 

- 

 

0.0445 

- 

 

0.0011 

- 

 

< 0.0001 

- 

 

< 0.0001 

- 

 

< 0.0001 

- 

 

0.0075 

- 
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Table 3.7. (cont’d) 

 

Chlamydia  

       Yes 

       No 

Eubacterium  

       Yes 

       No 

Lactococcus  

       Yes 

       No 

Streptococcus  

       Yes 

       No 

Flavonifractor  

       Yes 

       No 

Haemophilus  

       Yes 

       No 

Vibrio  

       Yes 

       No 

Subdoligranulum  

       Yes 

       No 

Anaerotruncus  

       Yes 

       No 

Pantoea  

       Yes 

       No 

Coprococcus  

       Yes 

       No 

Agathobaculum  

       Yes 

       No 

Fusicatenibacter  

       Yes 

       No 

Acinetobacter  

       Yes 

       No 

 

 

  

 

 

36 

 106 

 

 33 

 109 

 

 44 

 98 

 

 20 

 122 

 

 34 

 108 

 

 20 

 122 

 

 19 

 123 

 

 40 

 102 

 

 31 

 111 

 

46 

 96 

 

 37 

 105 

 

 32 

 110 

 

 38 

 104 

 

 16 

 126 

 

  

 

 

 

11 (30.6)  

22 (20.8)  

 

0 (0)  

33 (30.3)  

 

7 (15.9)  

26 (26.5)  

 

10 (50)  

23 (18.9)  

 

1 (2.9)  

32 (29.6)  

 

10 (50)  

23 (18.9)  

 

13 (68.4)  

20 (16.3)  

 

0 (0)  

33 (32.4)  

 

0 (0)  

33 (29.7)  

 

32 (69.6)  

1 (1)  

 

2 (5.4)  

31 (29.5)  

 

0 (0)  

33 (30)  

 

1 (2.6)  

32 (30.8)  

 

14 (87.5)  

19 (15.1)  

 

 

 

 

 

1.7 (0.7 - 3.9) 

1.0 

 

0 (0 - 0.3) 

1.0 

 

0.5 (0.2 - 1.3) 

1.0 

 

4.3 (1.6 - 11.5) 

1.0 

 

0.1 (0 - 0.5) 

1.0 

 

4.3 (1.6 - 11.5) 

1.0 

 

11.2 (3.8 - 32.8) 

1.0 

 

0 (0 - 0.2) 

1.0 

 

0 (0 - 0.3) 

1.0 

 

204 (29.7 - 8376.8) 

1.0 

 

0.1 (0 - 0.6) 

1.0 

 

0 (0 - 0.3) 

1.0 

 

0.1 (0 - 0.4) 

1.0 

 

37.9 (7.8 - 369.5) 

1.0 

 

 

 

 

 

0.229 

- 

 

0.0001 

- 

 

0.1658 

- 

 

0.0022 

- 

 

0.0008 

- 

 

0.0022 

- 

 

< 0.0001 

- 

 

< 0.0001 

- 

 

0.0002 

- 

 

< 0.0001 

- 

 

0.0027 

- 

 

0.0001 

- 

 

0.0002 

- 

 

< 0.0001 

- 
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Table 3.7. (cont’d) 

 

Prevotellamassilia               

       Yes 

       No 

Pseudomonas  

       Yes 

       No 

Pseudoflavonifractor  

       Yes 

       No 

Staphylococcus  

       Yes 

       No 

Oscillibacter  

       Yes 

       No 

Serratia  

       Yes 

       No 

Bacillus  

       Yes 

       No 

Enterococcus  

       Yes 

       No 

Lactobacillus  

       Yes 

       No 

Alloprevotella  

       Yes 

       No 

Anaerotignum  

       Yes 

       No 

Intestinibacillus  

       Yes 

       No 

Intestinimonas  

       Yes 

       No 

Ruthenibacterium  

       Yes 

       No 

 

 

 

 

 

9 

 133 

 

 8 

 134 

 

 34 

 108 

 

 19 

 123 

 

 34 

 108 

 

 19 

 123 

 

 33 

 109 

 

 18 

 124 

 

 20 

 122 

 

 12 

 130 

 

 30 

 112 

 

 33 

 109 

 

 32 

 110 

 

 27 

 115 

 

 

 

 

 

2 (22.2)  

31 (23.3)  

 

5 (62.5)  

28 (20.9)  

 

1 (2.9)  

32 (29.6)  

 

14 (73.7)  

19 (15.4)  

 

1 (2.9)  

32 (29.6)  

 

16 (84.2)  

17 (13.8)  

 

13 (39.4)  

20 (18.3)  

 

14 (77.8)  

19 (15.3)  

 

5 (25)  

28 (23)  

 

5 (41.7)  

28 (21.5)  

 

0 (0)  

33 (29.5)  

 

1 (3)  

32 (29.4)  

 

0 (0)  

33 (30) 

 

0 (0)  

33 (28.7) 

 

 

 

 

 

0.9 (0.1 - 5.3) 

1.0 

 

6.2 (1.1 - 42.4) 

1.0 

 

0.1 (0 - 0.5) 

1.0 

 

14.9 (4.4 - 59.3) 

1.0 

 

0.1 (0 - 0.5) 

1.0 

 

31.9 (8 - 188.9) 

1.0 

 

2.9 (1.2 - 6.8) 

1.0 

 

18.7 (5.2 - 86.5) 

1.0 

 

1.1 (0.3 - 3.6) 

1.0 

 

2.6 (0.6 - 10.3) 

1.0 

 

0 (0 - 0.3) 

1.0 

 

0.1 (0 - 0.5) 

1.0 

 

0 (0 - 0.3) 

1.0 

 

0 (0 - 0.4) 

1.0 

 

 

 

 

 

1 

- 

 

0.0169 

- 

 

0.0008 

- 

 

< 0.0001 

- 

 

0.0008 

- 

 

< 0.0001 

- 

 

0.0121 

- 

 

< 0.0001 

- 

 

0.7824 

- 

 

0.1498 

- 

 

0.0002 

- 

 

0.0008 

- 

 

0.0001 

- 

 

0.0006 

- 
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Table 3.7. (cont’d) 

 

Atlantibacter  

       Yes 

       No 

Butyrivibrio  

       Yes 

       No 

Raoultella  

       Yes 

       No 

Gemmiger  

       Yes 

       No 

Anaeromassilibacillus  

       Yes 

       No 

Duodenibacillus  

       Yes 

       No 

Kluyvera  

       Yes 

       No 

Angelakisella  

       Yes 

       No 

Lawsonibacter  

       Yes 

       No 

Drancourtella  

       Yes 

       No 

Peptostreptococcus  

       Yes 

       No 

Proteus  

       Yes 

       No 

Synergistes  

       Yes 

       No 

Acetobacter  

       Yes 

       No 

 

 

 

 

 

 3 

 139 

 

 38 

 104 

 

 8 

 134 

 

 34 

 108 

 

 19 

 123 

 

 7 

 135 

 

 4 

 138 

 

 26 

 116 

 

 34 

 108 

 

 21 

 121 

 

 9 

 133 

 

 2 

 140 

 

 2 

 140 

 

 11 

 131 

 

  

  

 

 

1 (33.3)  

32 (23)  

 

3 (7.9)  

30 (28.8)  

 

5 (62.5)  

28 (20.9)  

 

0 (0)  

33 (30.6)  

 

0 (0)  

33 (26.8)  

 

2 (28.6)  

31 (23)  

 

1 (25)  

32 (23.2)  

 

0 (0)  

33 (28.4)  

 

0 (0)  

33 (30.6)  

 

0 (0)  

33 (27.3)  

 

7 (77.8)  

26 (19.5)  

 

1 (50)  

32 (22.9)  

 

2 (100)  

31 (22.1)  

 

1 (9.1)  

32 (24.4)  

 

 

 

 

 

1.7 (0 - 33) 

1.0 

 

0.2 (0 - 0.8) 

1.0 

 

6.2 (1.1 - 42.4) 

1.0 

 

0 (0 - 0.3) 

1.0 

 

0 (0 - 0.6) 

1.0 

 

1.3 (0.1 - 8.7) 

1.0 

 

1.1 (0 - 14.3) 

1.0 

 

0 (0 - 0.4) 

1.0 

 

0 (0 - 0.3) 

1.0 

 

0 (0 - 0.6) 

1.0 

 

14 (2.5 - 146.1) 

1.0 

 

3.3 (0 - 266.7) 

1.0 

 

Inf (0.6 - Inf) 

1.0 

 

0.3 (0 - 2.3) 

1.0 

 

 

 

 

 

0.5506 

- 

 

0.0075 

- 

 

0.0169 

- 

 

< 0.0001 

- 

 

0.007 

- 

 

0.6638 

- 

 

1 

- 

 

0.0006 

- 

 

< 0.0001 

- 

 

0.0039 

- 

 

0.0005 

- 

 

0.412 

- 

 

0.0527 

- 

 

0.4575 

- 
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Table 3.7. (cont’d) 

 

Hafnia  

       Yes 

       No 

Cloacibacillus  

       Yes 

       No 

Christensenella  

       Yes 

       No 

Providencia  

       Yes 

       No 

Neglecta  

       Yes 

       No 

Morganella  

       Yes 

       No 

Colibacter  

       Yes 

       No 

Tissierella  

       Yes 

       No 

Culturomica  

       Yes 

       No 

 

 

 

4 

 138 

 

 6 

 136 

 

30 

 112 

 

 6 

 136 

 

 19 

 123 

 

 3 

 139 

 

 2 

 140 

  

2 

 140 

 

 2 

 140 

 

 

 

3 (75)  

30 (21.7)  

 

2 (33.3)  

31 (22.8)  

 

1 (3.3)  

32 (28.6)  

 

3 (50)  

30 (22.1)  

 

0 (0)  

33 (26.8)  

 

1 (33.3)  

32 (23)  

 

1 (50)  

32 (22.9)  

 

0 (0)  

33 (23.6)  

 

0 (0)  

33 (23.6)  

 

 

 

10.6 (0.8 - 570) 

1.0 

 

1.7 (0.1 - 12.4) 

1.0 

 

0.1 (0 - 0.6) 

1.0 

 

3.5 (0.4 - 27.5) 

1.0 

 

0 (0 - 0.6) 

1.0 

 

1.7 (0 - 33) 

1.0 

 

3.3 (0 - 266.7) 

1.0 

 

0 (0 - 17.7) 

1.0 

 

0 (0 - 17.7) 

1.0 

 

 

 

0.0392 

- 

 

0.6232 

- 

 

0.0028 

- 

 

0.1381 

- 

 

0.007 

- 

 

0.5506 

- 

 

0.412 

- 

 

1 

- 

 

1 

- 

Logistic Regression 

Multivariate Analysis 

OR 95% CI € p value‡ 

Model 1 

Pantoea  

  Above study average: Yes 

 

 

217.1 

 

 

27.5 - 1717.2 

 

 

< 0.0001 

Model 2 

Pantoea  

  Above study average: Yes 

Serratia  

  Above study average: Yes 

 

 

142.1 

 

10.7 

 

 

17.5 - 11157.2 

 

1.6 - 70.5 

 

 

< 0.0001 

 

0.01499 

Model 3 

Serratia  

  Above study average: Yes 

Pantoea  

  Above study average: Yes 

 

 

10.7 

 

142.1 

 

 

1.6 - 70.5 

 

17.5 - 11157.2 

 

 

0.01499 

 

< 0.0001 
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Table 3.7. (cont’d) 

 

Model 4 

Pantoea  

  Above study average: Yes 

Serratia  

  Above study average: Yes 

Enterobacter  

  Above study average: Yes 

 

 

 

 

92.8 

 

6.5 

 

5.5 

 

 

 

 

11.2 - 770.2 

 

0.8 - 50.3 

 

1.1 - 28.4 

 

 

 

 

< 0.0001 

 

0.0758 

 

0.0425  

Model 5 

Acinetobacter  

  Above study average: Yes 

Enterobacter  

  Above study average: Yes 

Pantoea  

  Above study average: Yes 

 

 

4.9  

 

5.8 

 

96.8 

 

 

0.6 - 43.6 

 

1.1 - 29.3 

 

11.7 – 800.2 

 

 

0.1532 

 

0.0364 

 

< 0.0001 

Model 6 

Salmonella  

  Above study average: Yes  

Enterobacter  

  Above study average: Yes 

Pantoea  

  Above study average: Yes 

 

 

5.2 

 

9.1 

 

62.7 

 

 

1.2 - 22.4 

 

1.8 - 45.9 

 

7.2 - 544.4 

 

 

0.1588 

 

0.0052 

 

< 0.0001 

Model 7 

Escherichia  

  Above study average: Yes 

Enterobacter  

  Above study average: Yes 

Pantoea  

  Above study average: Yes 

 

 

3.3 

 

7.4 

 

82.8 

 

 

0.8 - 13.2 

 

1.5 - 35.9 

 

9.8 - 698.5 

 

 

0.1020 

 

0.0146 

 

< 0.0001 

Model 8 

Orthopoxvirus  

  Above study average: Yes 

Enterobacter  

  Above study average: Yes 

Pantoea  

  Above study average: Yes 

 

 

3.1  

 

7.8 

 

81.5 

  

 

0.8 - 13 

 

1.6 - 37.4 

 

9.6 - 693.4 

 

 

0.1151 

 

0.0118 

 

< 0.0001 

Model 9 

Nona33virus  

  Above study average: Yes 

Enterobacter  

  Above study average: Yes 

Pantoea  

  Above study average: Yes 

 

 

4.9 

 

7 

 

103 

 

 

0.7 - 36.1 

 

1.4 - 34 

 

12.5 - 851 

 

 

0.1192 

 

0.0181 

 

< 0.0001 
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Table 3.7. (cont’d) 

 

Model 10 

Shigella  

  Above study average: Yes 

Enterobacter  

  Above study average: Yes 

Pantoea  

  Above study average: Yes 

 

 

 

 

5.2 

 

9.1 

 

62.7 

 

 

 

 

1.2 - 22.4 

 

1.8 - 45.9 

 

7.2 - 544.4 

 

 

 

 

0.0003 

 

0.0086 

 

0.0004 

 Model Performance 

 Accuracy Accuracy 95% CI AUC 

Final Model (Model 10)    

 0.9722 (0.8547, 0.9993) 0.9955 

    

* The number of isolates may not add up to the total (n=142) due to missing data.  

† 95% confidence interval (CI) for odds ratio (OR) 

‡ p-value was calculated by Chi-square test, and Fisher’s exact test was used for variables <5 in 

at least one of the cells. 

£ Logistic regression was performed via forward selection while controlling for variables that 

yielded strong (p ≤ 0.20) associations with the outcome as Cluster 2 in the univariate analysis. 

Hosmer-Lemeshow Goodness-of-Fit test. All variables were tested for collinearity. 

€ Wald 95% confidence intervals (CI) 
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Figure 3.1. Power analysis for chi-square and logistic regression modeling Power curves were 

created based on the Cohen power equations. The below curves show the relationship between the 

effect size (differences in means over pooled standard deviations) and the sample size needed to 

detect that effect size. The circle represents the study (n=142) within the 0.8 power curve (blue). 
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Figure 3.2. The percentage of reads annotated at four taxonomical levels The number of 

quality-controlled reads that were annotated compared to the total number of quality-controlled 

reads (n=142). The line in the box represents the median, and the interquartile range (25%-75%) 

is represented by the box. The whiskers are the confidence interval (5%-95%). Outliers represented 

as circles. 
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Figure 3.3. Rarefaction curves A) Random sampling assessed cumulative sequencing across 

all samples by study group and B) Rarefaction of total reads to assess the richness of genera. 

Curves represent plots of either case (red, n=79) or follow-up (purple, n=63) samples with 

confidence intervals (95%). 
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Figure 3.4 Diversity Metrics for the samples from 79 cases and 63 Followups. A) Shannon 

Index, B) Genera Richness, C) Evenness between groups. The lines in the boxes represent 

medians; the box is the interquartile range (25%-75%) and the whiskers are confidence intervals 

(95%). Outliers are circles. The asterisk (*) is significant finding (p < 0.05). 
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Figure 3.5. Microbiome profiles of patients during infection (Case) and post-recovery (FollowUp) A) The top 5 most abundant 

viruses across samples, and B) The top 10 most abundant bacteria. Both viruses and bacteria are presented at the Family taxonomical 

level. The line in the box represents the median. The interquartile range (25%-75%) in the box surrounding the median. The whiskers 

extend from 5%-95%. Outliers are circles. 
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Figure 3.6. Microbiome clusters identified by hierarchical clustering A) In total, four 

distinct clusters were identified. Cases are represented with circles, and follow-ups samples are 

triangles. B) The beta-dispersion or heterogeneity of each cluster and the spatial relationship 

between points. The ellipses for both plots represent the 95% confidence intervals. Colors 

represent each cluster are the same for both panels. 
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Figure 3.7. Diversity metrics for the microbiome profiles representing the four clusters A) 

Shannon Index, B) Genera Richness, C) Evenness between groups. The medians are represented 

the lines in the boxes, the box is the interquartile range (25%-75%), and the whiskers are the 

confidence intervals (95%). The asterisk (*) is significant finding (p < 0.05). Circles are outliers. 
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Figure 3.8. Community composition among samples representing the four clusters Clusters 

are colored to the previous PCA (cluster 1 = green, cluster 2 = orange, cluster 3 = purple, cluster 

4 = pink). Rows are colored by cluster based on genera abundance. A dendrogram shows the 

clustering of the samples (top), genera (rows). The heatmap cell colors represent the number of 

standard deviations a genus is from the mean within a column. Purple is more abundant taxa 

genera, whereas orange coloring represents lower abundant genera within a sample. 
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Figure 3.9. A network of differentially abundant microbes within Cluster 2 communities 

The vertices represent taxa and named by genus. The size of the vertex represents the abundance 

found across samples and are colored by higher taxonomical classification. Significant 

correlations are represented (absolute value > 0.3) by the edges; positive correlations are green, 

and negative correlations are pink. 
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Figure 3.10. Matched microbiome from 62 Cases and their Follow-Up samples A) The top 10 differentially abundant viruses across 

the matched samples. B) The top 10 highest abundant bacteria across the matched samples. Both viruses and bacteria are presented at 

the genera taxonomical rank. The line in the box represents the median. The interquartile range (25%-75%) in the box surrounding the 

median. The whiskers extend from 5% to 95% of the data. Outliers are circles. 
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ISOLATION OF BACTERIOPHAGES FROM THE HUMAN GUT THAT CAN LYSE 

ENTERIC PATHOGENS AND REPRESS SHIGA TOXIN PRODUCTION 

  



 

205 
 

ABSTRACT 

Bacteriophages are viruses that infect bacteria and are found in many environments, 

including the human gastrointestinal (GI) tract. The role that these viruses play in human health, 

however, is not well understood. The goal of this study was to isolate and characterize virus-like 

particles (VLPs), or bacteriophage communities, from the stools of patients with enteric infections 

and healthy individuals, and to evaluate their impact on enteric pathogens. Bacteria-bacteriophage 

interactions were evaluated using spot tests to examine the ability of the isolated VLPs to lyse 

three commensal Escherichia coli strains and three common enteric pathogens (E. coli O157:H7, 

Salmonella Typhimurium, and Shigella sonnei). Notably, the isolated VLPs lysed pathogenic 

strains at higher frequencies (78%) when compared to commensal strains (39%). Among the viral 

communities, Poxviridae and Anelloviridae were more abundant in samples from patients with 

acute bacterial gastroenteritis, while Caudovirales predominated across all samples. Isolation of 

three bacteriophages for genomic sequencing and characterization identified two related lysogenic 

phages (PHG002 and PHG003) and one lytic bacteriophage (PHG001). Homologous sequences 

for this lytic bacteriophage were found in 87% of the 15 sequenced viral communities. In culture, 

PHG001 reduced E. coli O157:H7 growth by 3-fold after 3 hours but had no bactericidal effect on 

three commensal E. coli strains. Importantly, PHG001 contributed to a 16-fold reduction in the 

expression of Shiga toxin genes by E. coli O157 at 3 hours. These results suggest that 

bacteriophage populations residing in the gut may play an important role in pathogen control and 

that further characterization of these populations is warranted. 
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INTRODUCTION 

Bacteriophages (phages) are ubiquitous viruses that infect bacteria. Phages are classified 

either as lytic due to their ability to lyse specific bacteria following replication within the host; or 

as temperate phages that remain dormant in host bacteria until induction (1). Phages have been 

cultured directly from human fecal samples, and the use of metagenomics has shown that phages 

are the most abundant double-stranded deoxyribonucleic acid (DNA) viruses in the gut (2, 3). 

Phages are critical for shaping the composition, diversity, and function of bacterial populations. 

They also exert selective pressures on bacteria, which can contribute to resistance to subsequent 

bacteriophage infections and alterations in the resident bacterial population (1). Additionally, 

bacteriophages can impact competition between species and mediate horizontal gene transfer (1, 

4). Gene transfer can introduce phenotypic changes into bacterial communities, alter bacterial 

metabolic profiles, and impact host immune responses (5, 6).  

Unlike bacterial populations in the gut, which are highly similar among related individuals 

(7, 8), a study of monozygotic twins and their mothers found that virus populations were unique 

per individual in both the types of viruses present as well as their functional gene profiles (3). 

Other studies of unrelated individuals also observed a high degree of interpersonal variation (5, 9) 

and have found that virus populations were relatively stable within individuals over time (3, 6). 

Nonetheless, the human gut serves as a reservoir for viruses, particularly phages that are common 

among individuals (9). Metagenomics data from 124 unrelated individuals, for example, revealed 

that 29% of the bacteriophage contigs were present in at least 10% of the individuals examined 

(9). Little is known, however, about whether specific bacteriophage populations are essential for 

either inhibiting or exacerbating acute bacterial gastroenteritis infections.  
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Bacteriophages have also been shown to prevent pathogen invasion of epithelial cells in 

mucosa cell lines through direct infection and lysis of the pathogen (10). Given this finding as well 

as the high degree of variation and stability among intestinal viral populations across individuals, 

we sought to investigate the role that intestinal bacteriophage populations play in enteric 

infections. It is indeed likely that variation in bacteriophage composition, abundance, and function 

within distinct intestinal communities can contribute to differences in susceptibility to enteric 

infections as well as disease severity and recovery. Hence, we isolated and sequenced virus-like 

particles (VLPs) from the stools of patients with enteric infections for comparison to those from 

healthy individuals. VLPs were examined for their ability to infect common bacterial pathogens 

and commensal E. coli strains, which are typically found in the GI tract and do not cause disease. 

A bacteriophage specific for Shiga toxin-producing E. coli (STEC) O157:H7 was isolated, 

sequenced, and used to evaluate host range and impact on Shiga toxin (stx) expression in vitro as 

well as its abundance within the sequenced viral communities. Examining the relationship between 

bacterial pathogens and bacteriophage populations within the gut during infection is critical to 

enhance understanding of the disease process and could lead to ideas for the development of new 

therapies and prevention methods. 
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MATERIALS AND METHODS 

Sampling and isolation of virus communities 

As described previously (11), stool samples were collected via the Michigan Department 

of Health and Human Services (MDHHS) from patients with bacterial gastroenteritis (cases) 

caused by Campylobacter jejuni, non-typhoidal Salmonella spp., Shigella spp., or Shiga-toxin 

producing Escherichia coli (STEC). Contract tracing was used to identify and enroll healthy family 

members of the patients (controls). For this study, 18 samples from patients (n=14) and healthy 

family members (n=4) were selected for isolation and characterization of the stool-derived viral 

communities. The 14 cases included patients with acute infections caused by C. jejuni (n=4), 

Salmonella spp. (n=4), Shigella spp. (n=4), and STEC (n=2).  

Polyethylene glycol (PEG) precipitation was used to recover the virus-like particles 

(VLPs) from each stool sample. In brief, stools were centrifuged at 4,000 RPM for 10 minutes 

to pellet debris, and the supernatant was collected for PEG precipitation as described (12). PEG 

(molecular weight = 8000) with NaCl (2.5% w/v) was added to 1/6 final volume of the supernatant 

and the mixture was inverted twice and stored at 4o C. The sample was centrifuged at 11,000 g for 

10 minutes and the pellet was resuspended in 15 ml of bacteriophage buffer containing Tris (10 

mM), pH 7.5, MgSO4 (10 mM), NaCl (68 mM), and CaCl2 (1 mM), filter-sterilized (0.22 µm) 

and stored at 4o C. All stool samples obtained in this study were previously approved for collection 

and use by the Institutional Review Boards at Michigan State University (MSU; Lansing, MI, 

USA; IRB #10-736SM) and the MDHHS (842-PHALAB). 

Spot testing, and quantification of viruses by plaque assays 

Spot tests were first performed with three pathogens and three commensals to classify the 

host range of the VLPs recovered from all 18 samples. The three pathogens, which were previously 
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isolated from patients with enteric infections, included: Shigella sonnei (TW16372), Salmonella 

enterica serovar Typhimurium (TW16390), and STEC E. coli O157:H7 (TW14359 (13)). Three 

commensal E. coli strains (TW17000, TW17041, and TW17368), recovered from the stools of 

healthy individuals, were evaluated for comparison. Each commensal E. coli strain was confirmed 

to lack genes encoding common STEC virulence factors including stx (Shiga toxin) and eae 

(intimin) by polymerase chain reaction (PCR) as described previously (13). The absence of other 

virulence-associated genes such as escV, bfpA, ipaH, estla, and elt, which are also common among 

pathogenic E.coli (14), was confirmed by genome sequencing.  

Spot testing was performed by growing each of the six bacterial strains in Luria Broth 

(Sigma-Aldrich, St. Louis, MO) to exponential phase at an optical density (OD600) of 0.2; 300 µl 

of bacterial cells were added to 3 ml soft agar (0.5%), mixed by inversion, and poured onto LB 

agar. After the agar solidified, 10 µl of supernatant containing the stool derived VLPs from the 14 

patients, and four healthy individuals were spotted on to each of the six bacterial lawns. Plates 

were incubated at room temperature for 20 minutes, followed by overnight incubation at 37°C. 

Plates were evaluated for any bacterial lysis. Clearance at the site where VLPs were added to the 

bacteria lawn was classified as lysis, which is indicative of the presence of bacteriophage within 

the VLP community that could inhibit bacterial growth. The Chi-square test was used to detect 

differences in lysis by bacterial type, and  Odds Ratios (OR) and their corresponding 95% 

confidence intervals (CI) were calculated in Epi InfoTM v.7 (15).   

The 18 viral communities were subjected to plaque assays using the double-layer method 

in order to quantify the abundance of VLPs infecting the six bacterial strains (16). Briefly, VLP 

stocks were serially diluted 10-fold in bacteriophage buffer, and 100 µl added to 300 µl of 

exponentially growing (OD600 = 0.2) bacteria. VLPs were allowed to adsorb to the bacterial host 



 

210 
 

by incubating at room temperature for 15 minutes. The VLP-bacteria co-culture was then added to 

3 ml of soft agar (0.5%), mixed gently, plated on LB agar, and incubated overnight at 37° C. 

Bacteriophages form plaques on soft agar when grown together with specific bacterial hosts. These 

plaques, which often represent single bacteriophages that can infect and replicate in the host 

bacteria, can be quantified as plaque-forming units (PFUs)/ml for each bacterial strain. All assays 

were repeated in triplicate. 

Metagenomics of virus communities 

All 18 stool-derived VLP communities were sequenced, though only 15 samples yielded 

good-quality reads (PHRED > 30) for inclusion in the analysis. In brief, DNA libraries were 

prepared using the PicoPLEX kit (Rubicon Genomics, Ann Arbor, MI, USA). After quality control 

checking and quantitation, this library pool was loaded onto an Illumina MiSeq V2 flow cell and 

sequenced using a standard 500 cycle reagent kit in a 2x250bp paired-end format (Illumina, San 

Diego, CA, USA) at the Michigan State University Research Technology Support Facility (RTSF). 

Base calling was performed with Illumina Real-Time Analysis (RTA) v1.18.54, and the RTA 

output data were demultiplexed and converted to FastQ format with Illumina Bcl2fastq v1.8.4. 

Coverage for each metagenome was estimated using Nonpariel3 (17). 

Reads were quality trimmed with Trimmomatic (18), and human reads were removed with 

Bowtie2 (19). Kaiju (20) was used to annotate quality-controlled reads to the non-redundant 

protein database in the National Center for Biotechnology Information (NCBI), and community 

viral profiles were generated by filtering for the top 1% of reported taxa. Zero counts were replaced 

with multiplicative simple replacement using the zCompositions package (21) in R (22). Profiles 

were total sum scaled, log-transformed, and visualized using ggplot (23). Diversity, richness, and 



 

211 
 

evenness were examined using vegan (24). All unassembled metagenome sequences were 

submitted to the NCBI) Sequence Read Archive.   

Bacteriophage isolation and propagation  

Individual plaques capable of lysing the E. coli O157:H7 (TW14359) strain in the plaque 

assays were picked for isolation and further characterization. In brief, plaques with unique 

morphologies were picked using a sterile 10 µl pipette tip, mixed with 200 µl of bacteriophage 

buffer, filtered with a 0.22 µm filter, and stored at 4°C. Bacteriophage stocks were created for 

TW14359 infections grown to an OD600= 0.2. Co-cultures were incubated aerobically at 37°C 

overnight, and 250 ml were aliquoted into separate 50 ml tubes and centrifuged for 10 minutes at 

4,000 RPM. The supernatant was filtered using a 0.22 µm filter, pooled and stored at 4°C for 

bacteriophage quantification, scanning electron microscopy (SEM), genome sequencing, and host 

range testing. Plaque assays were performed to quantify bacteriophage concentrations. 

Sequencing of bacteria and bacteriophage genomes  

The six bacterial strains used for the spot testing and host range analysis of VLPs were 

sequenced as were three isolated bacteriophages (PHG001, PHG002, and PHG003) recovered 

from the E. coli O157:H7 (TW14539) infections. Bacterial DNA was extracted using the Qiagen 

DNA Extraction kit (Qiagen Sciences, MD, USA), while bacteriophage DNA was isolated using 

the Phage DNA Isolation Kit (Norgen Biotek, Thorold, ON, Canada) per the manufacturer’s 

guidelines. A single pool of DNA libraries was prepared separately for the bacteriophage and 

bacterial samples using the Illumina Nextera Library Preparation Kit. Quality control and 

quantification of each library was performed using the following assays: Qubit dsDNA HS 

(Thermo Fisher Scientific, Waltham, MA, USA), Caliper LabChipGX HS DNA, (Caliper Life 

Sciences, Hopkinton, MA, USA) and Kapa Illumina Library Quantification qPCR (Kapa 
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Biosystems, Inc, Wilmington, MA, USA). Libraries were loaded on to a MiSeq Nano v2 flow cell 

and sequenced using a 500 cycle (PE250) v2 reagent kit (Illumina) at the MSU RTSF; the bacterial 

and bacteriophage DNA samples were sequenced separately. Similar to the metagenomics 

analysis, base-calling was performed with Illumina RTA v1.18.54, and FASTQ files were created 

on the demultiplexed output of RTA. Raw reads were trimmed with Trimmomatic (18) to remove 

ambiguous reads, low-quality reads, and adaptors. The quality of trimming was assessed with 

FastQC (25), while assemblies were performed using SPADES 3.6 (26). The reads were mapped 

using Bowtie2 (19), and genomes were annotated with Prokka (27). Functional annotation was 

performed using the Rapid Annotations using Subsystems Technology (RAST) server (28), and 

blastn (29) was used to find similar genomes in the NCBI genomic RefSeq database with an e-

value set at <10-5 (30). Assembled bacteriophage genomes were uploaded to the PHASTER server 

(31), an optimized version of PHAST that utilizes blast to identify and annotate prophage genomes. 

The output from PHASTER was downloaded and combined with the RAST and Prokka 

annotations that were performed on each genome.  

Prophages found in other bacterial genomes were identified with PHASTER and the 

genomes were downloaded. Related prophage genomes were aligned globally with Progressive 

MAUVE (32) to identify homologous regions. The genomes of PHG001, PHG002, and PHG003 

were uploaded to the ViPtree server for phylogenetic determination. In brief, ViPtree uses 

tBLASTx for phylogenetic analyses (33). A proteomic tree can be constructed based on the 

bacteriophage genome similarities compared to the viral host-db database, which allows for 

dendrogram based on established viral taxonomy, as demonstrated previously (33). Finally, the 

three bacteriophage genomes were blasted against the 15 VLP metagenomes to determine how 

frequently these and related phages were found within the viral communities examined in this 
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study. Sequencing reads were assembled using metaspades (34) from each virome, and assemblies 

were aligned with tblastx (e-value <10-10) (29)  to the assembled genomes. Scripts were developed 

in Python and are available on GitHun/BrianNo.  

To more comprehensively test the host range of lytic bacteriophage PHG001, spot testing 

was performed using 29 E. coli strains from the E. coli Reference Collection (ECOR) (Table 4.1.). 

This genetically diverse group of strains was initially recovered from humans without infections 

and comprised strains with multiple O-antigen types (35); the ECOR strains were classified as 

commensal E. coli in our analysis. Spot testing with PHG001 was also performed with 37 

additional STEC strains representing serogroups O157, O103, O111, O45, and O26, which are 

commonly associated with clinical infections in the United States. (36). These STEC isolates were 

recovered from patients in Michigan, as described in our prior study (37), and were classified as 

pathogens. All isolates were obtained from the STEC Center at MSU (www.shigatox.net). 

Bacteriophage infection of E. coli O157:H7 and burst size calculation  

PHG001 bacteriophage was used to infect E. coli O157:H7 strain TW14359 (OD600 of 0.2) 

at a multiplicity of infection (MOI) of 1. The bacteriophage titer was calculated every 20 minutes 

for the first 2 hours and again at 3, 4, 5, and 24 hours. Plaque forming units (PFUs) were quantified 

by plaque assay, and the burst size was calculated as described previously (38). Briefly, PFUs were 

plotted over time, and the latency period and burst size were determined. Latency was defined as 

the initial period of no change in PFU growth, while the burst size was determined by examining 

the time points before and after the burst. Assays were performed in triplicate, and the mean and 

standard deviation were calculated in R (22).  
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PHG001 impact on E. coli O157:H7 survival and toxin production  

The level of E. coli O157:H7 inhibition by the PHG001 bacteriophage was compared to 

the level of inhibition by antibiotics. Two O157:H7 strains were used for these experiments, 

including the Spinach outbreak strain, TW14359 (13), which contains stx2 and stx2c, and 

TW14313, which is positive only for stx2. The latter strain was evaluated for a subset of 

experiments, given that both strains had high levels of Stx production in a prior study (39). 

Ampicillin (3.8 µg/ml), mitomycin C (10 µg/ml), and PHG001 bacteriophage (1x108 PFU/ml) 

were examined as well as a combination of 3.8 µg/ml ampicillin or ten µg/ml mitomycin C with 

1x108 PFU/ml bacteriophage. Each of these treatments was added to E. coli O157:H7 grown to an 

OD600 of 0.2 and incubated aerobically at 37°C. Bacterial colony-forming units (CFUs) were 

quantified before bacteriophage challenge and 1, 2, 3, 4, 5, and 24 hours after challenge; irregular 

and regular colony morphologies were quantified at each time point. Experiments were performed 

in technical triplicate and repeated three times (n = 3). Data were log-transformed, and two 

standard deviations were plotted for each time point. 

To evaluate stx expression, RNA was extracted from E. coli O157:H7 strain TW14359 

(stx2, stx2c) cells following co-culture with PHG001 (MOI=1) and exposure to mitomycin C (10 

µg/ml) using the RNAeasy Minikit (Qiagen, Germantown, MD, USA). Comparisons were made 

to a mock infection consisting of only bacteriophage buffer. The Turbo DNA free kit (Ambion, 

Foster City, CA, USA) was used to remove DNA contamination, which was confirmed by the lack 

of amplification of the bacterial 16S rRNA gene using PCR. The iScript Select cDNA synthesis 

kit (Bio-Rad, Hercules, CA, USA) was used to generate cDNA from 1 µg of RNA, while 

quantitative real-time PCR (qRT-PCR) was performed with the iQ SYBR Supermix kit (Bio-Rad, 

Hercules, CA, USA) in 15 µl reactions with 10 µM primers specific to stx2c as described (40). A 
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CFX384 Touch Real-Time PCR detection system (Bio-Rad, Hercules, CA, USA) used with one 

cycle of 3 minutes at 95°C and 39 cycles of the following: 95°C for 10 sec and 60°C for 30 sec. 

The comparative threshold cycle (Ct) method (2-ΔΔCT) was used to calculate relative gene 

expression levels using gyrA as an internal control (41). Expression was normalized to basal stx2c 

expression in the untreated O157:H7 strain and a 2-fold change or higher in gene expression were 

considered biologically significant.  

Screening additional host backgrounds for infectivity by PHG001 

Isolated bacteriophage, PHG001, was also examined for its effect on the growth of 

commensal E. coli strains, TW17000 and TW17041, and pathogenic E. coli strains TW18499 and 

TW18502 grown at an OD600 of 0.2 and infected with a MOI of 1. Bacterial CFUs were quantified 

at each time point following infection with PHG001 by plating 50 µl of bacterial cells onto LB 

agar and incubating at room temperature for 20 minutes followed by overnight incubation at 37°C. 

Bacterial colonies were classified as regular or irregular in shape and counted.  

PHG001 was also used to infect E. coli O157:H7 strain TW14313, a previously 

characterized strain known for high Stx2 production (39), at two different concentrations to 

examine its effect on bacterial growth with increased concentration. PHG001 bacteriophage was 

added at 1x108 PFU/ml or 1x109 PFU/ml to bacterial cells grown to an OD600 of 0.2. Bacterial 

CFUs were quantified before (time point =0) and after 1, 2, 3, 4, 5, and 24 hours of growth. All 

bacteriophage-bacteria co-culture experiments, unless otherwise noted, were performed in 

triplicate and repeated three times. The mean and standard deviation were calculated for each 

experiment using R (22). Graphad Prism was used to visualize results.  
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RESULTS 

Variation in the abundance of lytic virus-like particles (VLPs) 

Stool derived VLPs isolated from four healthy individuals (controls) and 14 patients with 

enteric infections (cases) were evaluated for the ability to lyse common enteric pathogens and 

commensal E. coli. Intriguingly, the VLPs were significantly more likely to lyse the pathogens 

than the commensals (OR: 6.1; 95% CI: 2.60, 14.50) regardless of source. On average, 76.2% of 

the patient derived VLPs lysed the three pathogenic strains (n=42). VLPs isolated from patients 

lysed 78.6% (n=33) of S. Typhimurium (TW16390) challenges (n=42). Similar trends were noted 

with the VLPs isolated from patients and the other pathogen strains; S. sonnei (TW16372) was 

lysed 78.6% (n=33) of the time and STEC O157:H7 (TW14359) was lysed 71.4% (n=30) of the 

time (Table 4.1.). The results, however, were not statistically significant across patients with 

infections caused by different types of pathogens (Kruskal-Wallis test p > 0.05). By contrast, the 

four VLP communities isolated from healthy individuals showed growth inhibition of the three 

pathogens in almost all (91.7%) of the 12 infections (Table 4.1.). Healthy VLPs inhibited S. 

Typhimurium (TW16390) and STEC O157:H7 (TW14359) growth for all 12 (100%) infections, 

but only nine (75%) of the S. sonnei (TW16372) infections were inhibited. The results were not 

significantly different based on the pathogen tested as specific pathogens were not more likely to 

be inhibited than others (Kruskal-Wallis test p > 0.05). 

Infection of the three commensal E. coli strains (TW17000, TW17041, TW17368) by all 

18 VLP communities also resulted in variable inhibition patterns, though fewer commensal strains 

were inhibited when compared to the pathogenic strains. Specifically, the control derived VLPs 

were more likely to inhibit growth in the 12 commensal strain infections (n=10; 83.3%) compared 

to the 42 patient-derived VLPs infections (n=31; 73.8%), yielding an odds ratio (OR) of 5.4 (95% 
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confidence interval (CI): 1.3, 28.1). On average, only 31.3% of the 14 cases derived VLP 

communities inhibited growth in the three commensal strains. These 14-case associated VLPs 

prevented growth in 21.4% (n=3) of the commensal E. coli TW17000 infections, 42.9% (n=6) of 

the E. coli TW17041 infections and 28.6% (n=4) of the E. coli TW17368 infections (Table 4.1.). 

Among the 14 VLP communities from cases, there was no significant difference in inhibition 

frequencies in the three commensal E. coli strains based on the type of pathogen causing the 

patient’s infection (Kruskal-Wallis test p > 0.05).  By contrast, the four VLP communities from 

healthy individuals showed growth inhibition in 67.7% (n=8) of the 12 infections with all three 

commensal strains combined. VLPs from healthy individuals contributed to inhibition in half of 

the four commensal E. coli TW17000 and TW1704 infections, and in 100% of the four E. coli 

TW17368 infections (Figure 4.1A). The results, however, were not significantly different based 

on the commensal strain tested (Kruskal-Wallis test p > 0.05).  

The VLPs also varied in abundance across samples. The average abundance of 

bacteriophage was 1x109 PFU/ml for the three pathogen infections, which was slightly higher than 

the average abundance (1x108 PFU/ml) for the three commensal strains (Figure 4.1B). The 

difference in mean abundance between pathogens and commensals was not significant (Mann 

Whitney U test p > 0.05). Although the four VLP communities from healthy individuals had a 

lower average abundance of bacteriophage (5.1x108 PFU/ml) in the pathogen hosts when 

compared to the 14 VLPs from patients stool with acute infections (1.3x109 PFU/ml), the 

difference in means was also not significant (Mann Whitney U test p > 0.05). Overall, the highest 

bacteriophage titers on average were observed in the S. sonnei (1.7 x 109 PFU/ml) and STEC 

O157:H7 (1.1 x 109 PFU/ml) strains, while the broadest range of PFUs/ml (0 to 109) was observed 

in S. sonnei. 



 

218 
 

Coverage and annotation in metagenomes do not vary by case status 

All 18 of the VLPs were submitted for sequencing; three samples (two cases, one control) 

did not sequence well and were not included in the analysis. A total of 1,3765,249 paired forward 

reads were sequenced across the 15 samples (917,683 reads per sample). A higher sequencing 

depth with an average of 949,232 reads was achieved in the case samples compared to the controls 

(791,485 reads); this difference was not significantly different (Mann Whitney U test p > 0.05). 

The average coverage as determined by Nonpareil3 (17) across all 15 viromes was 73.7%. 

Although cases had less coverage (69.2%) compared to controls (91.9%), this was not a significant 

difference (Mann Whitney U test p > 0.05).  

Across all 15 samples, an average of 39.8% of reads fell below quality filtering parameters. 

Controls had a more substantial proportion of reads removed (44.5%) compared to cases (38.5%), 

though the difference in proportions was not significant (Mann Whitney U test p > 0.05). Overall, 

an average of 24.6% of quality-controlled reads was annotated as human. The presence of human 

DNA differed by case status; case samples contained 30.5% human reads compared to 1.1% in 

control samples, though this difference was not statistically significant (Mann Whitney U test p > 

0.05). Kaiju annotated 17% of the reads that passed quality control checks. Cases achieved a higher 

annotation frequency (18.9%) compared to controls (9.2%), but the difference in frequencies was 

not statistically significant (Mann Whitney U test p > 0.05). It is possible that the low sample size 

(n=15), unbalanced design of the comparison groups (12 cases, 3 controls), or the wide variability 

in samples for each parameter tested, contributed to this finding (Table 4.2.).   

Metagenomics reveals diversity within isolated virus communities 

Among the 15 sequenced VLPs, the Shannon diversity index was 2.34 ± 0.81. No 

difference was observed in the Shannon diversity in the 12 samples from patients (2.29 ± 0.9) 
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compared to the three samples from healthy individuals (2.57 ± 0.2). By contrast, the richness was 

significantly higher in the healthy (357 ± 56) versus patient (151 ± 58) samples (Mann Whitney U 

test p = 0.004). The richness was 192 ± 100 among all samples combined, which is more similar 

to the values observed for patients given the unbalanced study design. Interestingly, the evenness 

was almost identical in both the patients (0.47 ± 0.18) and healthy participants (0.43 ± 0.02).  

A high degree of variation was observed in the distribution and abundance of viral families 

across samples. The dominant families across all 15 samples were Siphoviridae, Myoviridae, 

Podoviridae, and Microviridae, which typically comprise bacteriophages and represented 92% of 

the viromes on average (Figure 4.2). Because only three viral communities from healthy 

individuals were available for analysis, our ability to examine differences by the source was 

limited. Nonetheless, we did observe an increased abundance of Siphoviridae in healthy versus 

patient samples comprising 78% and 50% of the virome, respectively. We also found that members 

of the Myoviridae family were more abundant in the patient communities (33%) compared to 

healthy (12%). No difference was observed among the Podoviridae and Microviridae families by 

case status.  

Eukaryotic viruses, which belong to Poxviridae, Pithoviridae, Anelloviridae, Mimiviridae, 

Nimaviridae, and Phycodnaviridae, were detected in most samples even though the relative 

abundance of each varied. On average, the eukaryotic virus families were five times more abundant 

in the patient samples than the healthy samples; this difference was not statistically significant, 

which may be due to the small sample size. The most abundant eukaryotic virus family was 

Poxviridae. The average relative abundance of Poxviridae was 40% in the 12 patient samples and 

less than 0.0001% in the three control samples. Notably, a wide range of Poxviridae abundance 

was observed among the patient samples (<.0001% to 41.0%). Exclusion of the sample with the 
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highest proportion of Poxviridae, however, still indicated that patients had a 326-fold greater 

abundance of Poxviridae than healthy individuals did. Similarly, members of the Anneloviridae 

family were 55-fold more abundant in patients, though a wide range (<.0001% to 49.0%) was also 

observed and only three healthy samples were evaluated. 

Diversity of bacteriophages capable of inhibiting STEC O157:H7 

Three plaques with unique morphology were identified following infection of STEC 

O157:H7 (TW14359) by VLPs isolated from two patient stool samples. These plaques varied in 

morphology as well as in genomic features; two were classified as lysogenic phages and one as a 

lytic bacteriophage. The two lysogenic phages, PHG002 and PHG003, were highly similar to each 

other with an identity of 99%. Both phages were most closely related to two known phages, 

Escherichia virus pro_147 and Escherichia phage pro483, belonging to the Myoviridae family that 

use Gammaproteobacteria as hosts (Figure 4.3A). Based on tblastx alignments, PHG002 and 

PHG003 form a distinct cluster with a lysogenic bacteriophage found within the STEC O157:H7 

host strain, TW14359. Because there are variable regions within each bacteriophage genome and 

some regions did not align entirely (Figure 4.3B), additional E. coli O157:H7 (taxid:83334) 

genomes were interrogated for the presence of these prophages. Notably, the use of blastn (query 

coverage > 99%, percent identity > 99%) identified 23 additional O157:H7 strains that possess a 

variant of PHG003, which is more distally related to the TW14359 bacteriophage than the PHG002 

bacteriophage despite having homologous regions (Figure 4.4). Additional analyses identified a 

host protein exonuclease, sbcC, from 241 bps to 2208 bps in PHG003 that was also found in the 

genomes of 13 of the 23 related bacteriophage s examined. Also, a screen of the 15 sequenced 

viromes showed that 93% (14/15) of the viromes have sequences homologous to both PHG002 

and PHG003. By contrast, the lytic bacteriophage, PHG001, has a single contiguous consensus 
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sequence (114,632 kbp) with coverage of 934x (Table 4.3.). Following annotation, 158 coding 

sequences, 187 genes, and 22 tRNAs were identified (Figure 4.5). The annotated subsystem 

features include 14 bacteriophage-related genes, and six metabolism-related genes; one involved 

in RNA metabolism, one in protein metabolism, and four in nucleoside and nucleotide metabolism. 

The PHG001 lytic bacteriophage is unique even though the VipTree phylogeny shows that it is 

related to several previously characterized bacteriophages, including Salmonella virus Stitch, 

Escherichia virus EPS7, Salmonella phage 188970_sal and Salmonella phage 100268_sal2 

(Figure 4.6A). These related bacteriophage s were all classified as members of the Siphoviridae 

family and utilize Gammaproteobacteria as hosts. Based on tblastx alignments, PHG001 is most 

closely related to Salmonella virus Stitch (92% query coverage, 97.0% identity) but is distinct 

from both Salmonella phage 118970_sal2 and Salmonella phage 100268_sal2. Screening the 15 

viral metagenomes detected the conserved regions of the PHG001 genome in 13 of the 15 (87%) 

samples based on tblastx alignments (e-value <10-10). 

Bacteriophage PHG001 has a broad host range 

The host range of PHG001 was determined by examining its effect on the growth of 71 E. 

coli strains of various serotypes and origins as well as the Shigella sonnei, and Salmonella 

Typhimurium strains evaluated in the VLP analysis (Table 4.4.). Among all 73 strains, PHG001 

inhibited the growth of 14 (34.1%) of the 41 pathogens and 10 of the 32 (31.3%) commensals. 

Strains belonging to specific E. coli serogroups were more commonly inhibited relative to others 

regardless of their source. For example, PHG001 more commonly inhibited commensal strains 

belonging to O6 (n=2; 100%) and O7 (n=3; 75.0%). Inhibition was also observed for one 

O2:nonmotile (NM) (50%), one O4:NT (50%), and three non-typeable (NT; 33.3%) commensal 

strains. Among the 39 pathogenic E. coli strains, all seven (100%) O157:H7 strains were inhibited 
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by PHG001 as were half (n=4) of the O26:H11 strains and two of the eight (25.0%) O103:H2 

strains. No inhibition was observed for S. Typhimurium, the eight STEC O111:H8 strains, or the 

eight O45:H2 strains; however, the S. sonnei strain was inhibited.  

It is interesting to note that the year of isolation may play a role in inhibition rates within 

serogroups. The four O26 strains with inhibition were recovered in 2014, whereas the four strains 

without inhibition were recovered in 2010. Similarly, two of the eight O103 strains with inhibition 

were recovered in 2010, while the four O103 isolates recovered in 2014 were not inhibited by 

PHG001. Although the sample sizes were small, these data suggest that isolates from specific time 

frames may be more similar to each other and hence, more susceptible to infection. By contrast, 

all seven O157:H7 strains inhibited by PHG001 were recovered in different years dating as far 

back as 2002, indicating that O157 strains are a primary host for this novel bacteriophage.  

Bacteriophage PHG001 growth in the E. coli O157:H7 host 

PHG001 was added to TW14359 (O.D. =0.2) and quantified to determine the 

bacteriophage concentration using a plaque assay. Samples were collected every 20 minutes for 

the first two hours following co-infection to generate a one-step growth curve to determine burst 

size (Figure 4.7). These samplings were followed by hourly samplings until hour five and one final 

sampling at hour 24. PHG001 growth shows that there is a 20-minute latency phase as there is no 

increase in bacteriophage concentration for this duration, and the burst size was 123 bacteriophage 

per hour of growth.  Three rounds of infection were identified through hour 2, and PHG001 

concentration increased linearly until hour five to a concentration of 1x107 PFU/ml. The goal of 

these experiments was to assess the replication ability of the bacteriophage in the STEC O157:H7 

host. We expect that the primary host will continue to grow as the MOI was low to keep the host 



 

223 
 

growing and provide a way to measure the amount of bacteriophage produced with each infection 

cycle.  

Ampicillin and bacteriophage affect the growth of E. coli O157:H7 

To evaluate the impact on E. coli O157:H7 (TW14313) growth over 24 hours, PHG001 

(1x108 PFU/ml, MOI=1) was added to E. coli (1x108 CFU/ml). TW14313 had a 3-fold reduction 

at 3 hours compared to the mock culture. The inhibition of TW14313 was dose-dependent, 

increasing the concentration of PHG001 by 10-fold (1x109 PFU/ml, MOI=10) further reduced the 

growth of TW14313 5-fold by hour 4 (data not shown). Ampicillin (3.8 µg/ml) added to 

exponentially growing bacteria without the presence of bacteriophage, demonstrated a 2-fold 

reduction (99% reduction) in E. coli O157:H7 growth by hour 5 (Figure 4.8). At 24 hours, the 

ampicillin treated culture was equal to the initial bacterial concentration of 1x108 CFU/ml, 

demonstrating that the ampicillin had little effect on bacterial growth over time. Despite an initial 

3-fold (99.9%) reduction by 5 hours, the bacteria treated with bacteriophage alone (1x108 PFU/ml) 

fully recovered against the bacteriophage challenge, reaching the same final concentration as the 

control (1x109 CFU/ml) by 24 hours (data not shown).   

Notably, the combination of ampicillin (3.8 µg/ml) and bacteriophage (1x108 PFU/ml) 

resulted in a 5-fold reduction in E. coli O157:H7 growth by hour two, and by five hours, there 

were no recoverable colonies (Detectable limit = 100 CFU/ml) (Figure 4.8). No colonies could be 

recovered after 24 hours as well (data not shown). Although regrowth of the bacterial population 

observed in the ampicillin and bacteriophage single treatments, the combination treatment showed 

a more rapid reduction, which prevented a rebound in bacterial growth after 24 hours. These data 

suggest a synergistic relationship between ampicillin and PHG001 and differential methods of 

inhibition. Intriguingly, abnormal colonies were noted to precede the rebound in bacterial growth 
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with reversion to normal morphology by 24 hours. Combination treatments exhibited a higher 

frequency of these abnormal colony variants compared to the bacteriophage alone treatments. 

PHG001 impact on E. coli O157:H7 growth and stx gene expression 

Several triggers, including antibiotics and other bacteriophages, are known to increase the 

production of Shiga-like toxin (stx) by E. coli O157:H7. To determine the effect of PHG001 on 

this important toxin, we examined the expression of stx2c in E. coli O157:H7 strain TW14359. 

Mitomycin C, a known inducer of stx, served as a positive control for increased stx2c expression. 

PHG001 (1x108 PFU/ml), mitomycin C (10 µg/ml), or a combination of both was added to 

exponentially growing E. coli O157:H7. Bacterial growth followed the trends observed with 

ampicillin. A 1-fold decrease in both the mitomycin C and PHG001 cultures was observed by hour 

2, but a more substantial 3-fold decrease was observed at hour 3 for the cultures treated with both 

the PHG001 alone and the combination of PHG001 + mitomycin C (Figure. 4.9A). The mitomycin 

C treated cultures had a 1-fold decrease in stx2c expression compared to the untreated O157:H7 

strain after 3 hours. Because three hours of post- bacteriophage infection correlated with the start 

of the exponential phase for PHG001-resistant bacteria, we assessed stx2c expression at this 

timepoint. Mitomycin C treated cultures had an 18-fold increase in stx2c expression, while the 

bacteriophage treated cultures exhibited a 16-fold reduction in expression relative to the untreated 

culture (Figure 4.9B). Moreover, the combination of bacteriophage and mitomycin C demonstrated 

a 4-fold reduction in stx2c expression.  
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DISCUSSION 

Herein, we determined the composition of the isolated virus communities among patients 

with enteric infections (cases) and healthy individuals (controls) and characterized three 

bacteriophages. The most abundant viruses present in the virus communities were Caudovirales 

(Siphoviridae, Podoviridae), and Microviridae, which have been reported as dominant members 

of the virome (2, 3, 6, 42). Anelloviridae, a single-stranded virus that has been reported to be 

elevated in disease (43–48), was above the study average in 57% of the viromes isolated from 

cases. Although Anelloviridae is ubiquitous and has been classified as a commensal virus not 

directly linked to disease (49), an association has been found between nasal Anelloviridae loads 

and bronchial inflammation (50). Since only three healthy control samples were available to 

compare to the case samples, our ability to detect differences by case status was limited. 

Nonetheless, cases had an increased abundance of Poxviridae, a viral family containing 

members that can cause human infections. Poxviridae abundance has previously been shown to be 

increased in patients with gestational diabetes (51) and HIV (52), though it was reported as a false-

positive because a virus-only database was utilized, leading to an incorrect annotation. Despite 

using the entire non-redundant protein database in NCBI in this study, it is still possible that 

Poxviridae was incorrectly annotated, thereby leading to false estimates of increased abundance. 

Cross-assembly of the reads specific to Poxviridae, which is a computationally intensive process, 

is needed in future studies for confirmation. Indeed, we estimate that it will take 200 computer 

hours to compile the reads representing Poxviridae. This endeavor would be worthwhile as the 

results would provide insight into different fields. If Poxviridae genomes are definitively present 

within the viromes, then this study would represent the first reported incident of Poxviridae in 

cases of acute bacterial gastroenteritis. If the presence of Poxviridae is falsely annotated, however, 
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then this will provide information to bioinformaticians regarding optimization of the methodology 

used for annotation. If the genome that is being annotated as Poxviridae is novel, then further 

characterization of the viral genome needs to be performed as was done previously for cross-

assembly phage (53), which has not been characterized phenotypically. Cross-assembly phage 

represents one of the most abundant proposed bacteriophage families found in human fecal 

samples (54). At the time of our analysis, the database (NCBI nr-protein) used for annotation did 

not contain cross-assembly phage, so these were not evaluated herein. Because many of the viral 

sequences were unannotated (83% on average across all samples), these sequences represent “viral 

dark matter” as was suggested previously (2, 3, 6, 55). More comprehensive databases are therefore 

needed to study the unknown viruses present. Additionally, this study focused solely on DNA 

viruses; future work should utilize reverse transcriptase to study the RNA component of the virome 

as well.  

We also tested the functionality of isolated VLP communities from healthy and sick 

individuals and demonstrated that these communities could inhibit the growth of three types of 

pathogenic enteric bacteria at higher frequencies compared to three commensal E. coli strains 

(78% and 39%, respectively). While there is limited research that compares the effect of VLPs on 

commensal and pathogenic bacteria, similar results for individual bacteriophage s were observed 

in vivo using a mouse model. Kasmanet. et al, for instance, found that 22 commensal E. coli strains 

were resistant to 59% of single bacteriophage challenges with lambda, M13, P1, T4, T7, and 

PhiX174 coliphage (56). It is indeed possible that there are distinct genotypic or phenotypic 

differences between pathogenic and commensal bacteria that allow them to ward off bacteriophage 

infection. Commensal bacteria are exposed to resident gut bacteriophage populations frequently, 

whereas many enteric pathogens are transient. Therefore, pathogenic bacteria may not necessarily 
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have the resistance that commensal bacteria need to protect against repeated bacteriophage 

infections. This difference may explain why pathogenic bacteria were more likely to be infected 

and lysed compared to commensals, though a future study with more strains and viral communities 

should be conducted for confirmation. Studies have also shown that bacteriophage treatment may 

not affect the resident microbiota. For instance, Bacteroides and Lactobacillus, essential members 

of a healthy microbiome, were not affected by the use of a bacteriophage for the treatment of C. 

difficile (57), which is because this bacteriophage was restricted to specific hosts. 

Three different bacteriophage s (PHG001, PHG002, PHG003) were isolated from the viral 

communities following infection of E. coli O157:H7. Two of these bacteriophage s, PHG002 and 

PHG003, represent related lysogenic bacteriophage s that were found in the 15 viromes examined, 

and in 23 additional E. coli genomes. Lysogenic bacteriophage s are important for pathogen 

evolution as they often carry genes such as virulence factors and antibiotic resistance genes, which 

can be transferred to other bacteria via horizontal gene transfer. We determined that both PHG002 

and PHG003 harbor an exonuclease encoded by sbcC.  SbcC along with SbcD, has been shown to 

process DNA intermediates at the convergence sites of replication forks, which allows for normal 

chromosome replication (58). Deletion mutations in sbcC and sbcD led to incomplete replication 

and genomic instability (58), while base-pair mutations in sbcC were shown to increase mitomycin 

C sensitivity (59). It is, therefore, possible that an additional copy of sbcC on a prophage integrated 

within the bacterial chromosome could enhance genomic stability in the host. 

The lytic bacteriophage, PHG001, was found to be related to other bacteriophage s 

available in the NCBI database but was classified as unique based on the VipTree phylogeny. 

Importantly, PHG001 successfully inhibited the growth of three E. coli O157:H7 (TW14359, 

TW14313, TW18502) strains but allowed commensal strains (TW17000, TW17041) to grow 
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uninhibited. A prior study demonstrated that bacteriophage isolated from dairy and cattle feedlot 

manure could target and lyse STEC serogroups O26, O111, and O157 with high frequency (60). 

Indeed, PHG001 exhibited a similar host profile and could inhibit all seven O157:H7 strains 

examined as well as those belonging to O26 and O103. Commensal E. coli belonging to serogroups 

O6, O7, and O2 were also inhibited, suggesting variation in the inhibition potential of specific 

bacteriophage s across serogroups. These findings are supported by data from other studies 

showing that different O157:H7-lysing phages have wide host ranges (38, 61, 62). The significance 

of a broader host range means additional opportunities for phage infection and replication, which 

could allow the virus to become a resident within a given microbial environment.  

The development of resistance to bacteriophage infection is a common occurrence and has 

been well studied. It was hypothesized that within a co-culture of bacteriophage and host bacteria, 

the bacteriophage would infect a subpopulation of bacteria, and ultimately the replication rate of 

the bacteriophage becomes tied to the subpopulation of host it can infect (1, 63). Resistance can 

arise due to mutations or possibly differences in transcription. For these reasons, multiple 

bacteriophages have been used to overcome bacterial resistance to a single bacteriophage. Indeed, 

previous work has shown that bacteriophage cocktails can drastically improve the efficacy of 

bacteriophage treatment. In one study, the combination of three bacteriophages isolated from 

human fecal samples in a cocktail demonstrated a five-fold reduction in E. coli O157:H7 

concentration (64). Another study of three different bacteriophages, which were pooled into a 

bacteriophage cocktail, demonstrated a 5-log reduction in E. coli O157:H7 growth (65). 

Comparatively, we demonstrated that PHG001 reduced the concentration of E. coli O157:H7 by 

three-fold over 5 hours, however, a rebound in bacterial growth was observed by 24 hours. Such 

rebounds, as measured by the turbidity of the bacterial culture (65), have been described for E. coli 
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O157:H7 and suggest that bacteriophage resistance is common. Future studies should, therefore, 

focus on the inclusion of multiple bacteriophages targeting E. coli O157:H7 in combination with 

PHG001 to determine whether E. coli O157:H7 can overcome infection by multiple bacteriophage. 

The impact of bacteriophage on bacterial cells should also be evaluated given that abnormally 

shaped resistant colonies were observed in our study and others (65, 66). Indeed, it was suggested 

that these abnormal colonies have deficiencies in the structure of the cell wall, or O-antigen, as the 

colony morphology has a rough appearance (67). Such deficiencies could enhance the ability of 

some antibiotics to enter the bacterial cell, resulting in lysis and a synergistic effect, which was 

observed herein. 

It is important to note that the abnormal E. coli O157:H7 colony morphology observed in our 

study was dependent on the presence of a bacteriophage. The highest frequency of irregular 

colonies appeared in the hour preceding and at the point of a bacteria rebound following PHG001 

infection (data not shown). The abnormal colonies were similar to those recovered from mice and 

steer samples treated with O157:H7 specific bacteriophages (68). The abundance of abnormal 

colonies, however, was at much lower concentrations (<30 CFU/ml) when isolated directly from 

animals than in our experiments, which resulted in at least 1x106 CFU/ml. We observed resistance, 

or a rebound in bacterial growth, within hours, whereas sample timing in the prior study found 

bacteriophage resistance to occur in O157:H7 at day seven (68). These findings suggest that there 

is variation in resistance development across strains and bacterial isolates. We found that resistance 

persists with subsequent culturing of resistant colonies, while a prior study found that resistance 

was lost with subsequent culture and growth of a resistant colony (68). 

Abnormal colonies with different morphologies have also been observed following 

bacteriophage infection (69); these colonies are similar to small colony variants that form 
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following exposure to antibiotics and are linked to drug resistance (70). While these colonies are 

distinct, their growth kinetics in co-culture was similar to those observed in the experiments 

involving PHG001 infection of E. coli O157:H7 strain TW14359. A previous study demonstrated 

that a bacteriophage challenge resulted in a rapid decrease in E. coli O157:H7 concentration 

followed by a subsequent rebound and plateau of the bacteriophage population (71). Resistance 

was proposed to be due to an alteration in the outer-membrane or LPS structure (69). Further 

characterization of the physiology and abundance of these resistant colonies needs to be evaluated 

to understand their role in bacteriophage resistance and pathogenesis.  

This study also examined Shiga toxin (stx) gene expression, a marker for STEC virulence and 

infection in humans as Stx production is a crucial contributor to hemorrhagic colitis, bloody 

diarrhea, and hemolytic uremic syndrome (72, 73). STEC infections result in a mortality rate 

between 3% to 5% (72) with 20% of surviving patients developing permanent kidney dysfunction 

(73). STEC harbors stx genes located on at least one bacteriophage incorporated into the STEC 

genome as a prophage, which, when the bacteriophage is replicated, causes cell lysis and Stx 

production (74). The genes that encode Stx are carried on lambdoid bacteriophage s and can be 

easily transferred to pathogenic and commensal strains of Enterobacteriaceae (75–77); stx 

expression is controlled by the bacteriophage repressor (78–80). Stx prophages can undergo 

spontaneous phage induction and enter the lytic cycle (81). Activation of the SOS response through 

DNA damage or halting DNA replication leads to replication of Stx bacteriophages (82). This 

bacteriophage induction occurs through Rec-A mediated cleavage of the bacteriophage repressor 

leading to toxin expression and bacteriophage replication (74, 82, 83). Numerous stressors can 

induce the SOS response, including UV light (84), hydrogen peroxide (85), EDTA (86), antibiotics 

(87) such as mitomycin C (83), and bacteriophage infection (74, 88). Bacteriophage infection can 
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cause changes in bacterial cellular processes, which includes altering the normal replication of the 

bacterium (89).  

Bacteriophage can increase the amount of single-stranded DNA (90) or directly degrade the 

bacterial chromosome (91, 92), inducing a stress response. Studies have shown that Stx prophages 

are more prone to induction relative to other prophages (81). Given these results from the literature, 

we hypothesized that PHG001 would increase stx expression by inducing prophage-mediated recA 

transcription by interfering with host DNA replication. Surprisingly, PHG001 reduced stx 

expression alone and in combination with mitomycin C, which has been shown to induce toxin 

expression (25). Indeed, stx expression was increased in E. coli O157:H7 by 18-fold in the presence 

of mitomycin C relative to basal expression. PHG001 can negate the induction of the SOS response 

in STEC as toxin expression was reduced 16-fold in culture alone following normalization to a 

constitutively expressed housekeeping gene, gyrA. Bacterial gene expression decreases globally 

with a lytic bacteriophage infection (93), though we observed a differential decrease in stx 

expression that would not have been observed if it was due solely to the global decrease by 

bacteriophage infection.  

Lytic bacteriophage has also been shown to increase the amount of resident prophage DNA 

present in bacterial cells after infection (89), which, if this occurred in this study, would result in 

an increase in toxin expression due to co-expression of stx and the stx prophage. A prior study 

performed transcriptomics to study the regulatory role of integrated bacteriophage in stx-positive 

E. coli (94) and lytic bacteriophage (93). After infection, lytic bacteriophage was shown to take 

over host transcriptional machinery in order to produce more bacteriophage (93). In Pseudomonas 

aeruginosa, for example, a lytic bacteriophage was shown to suppress the transcription of a 

resident prophage, P2 (93). These findings support the notion that prophage expression can be 
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affected by a lytic bacteriophage. In this study, repressing Stx prophage expression would 

subsequently result in a decrease stx expression because they are co-expressed. Nonetheless, 

transcriptomic studies are needed to expand on this work and determine the mechanism of stx 

expression inhibition by PHG001. Similar effects of reduced toxin production in the presence of 

an exogenous bacteriophage have been noted with Clostridium difficile in batch fermentation (57).  

Importantly, the combination of PHG001 and ampicillin completely inhibited the growth of E. 

coli O157, thereby representing a synergistic effect between bacteriophage and antibiotics. Phage 

and antibiotics have been shown to have this effect with a wide range of bacteriophage and 

antibiotics against multiple bacterial species. For instance, bacteriophage plus β-lactam antibiotics 

and quinolones were effective against uropathogenic E. coli (95), while bacteriophage and 

gentamicin could impact Staphylococcus aureus (96) and bacteriophage and tobramycin were 

useful against E. coli and Pseudomonas aeruginosa (97). Different antibiotics may have different 

effects on stx production. Ampicillin, for example, has been shown to have minimal impact on Stx 

production (87); this finding is likely because ampicillin acts in an SOS-independent manner, 

which if combined with bacteriophage, could result in an even more drastic reduction in toxin 

production. Bacteriophage holins and antibiotics work in conjunction to permit more extensive 

bacteriophage replication and subsequent host lysis (98). Additional studies related to this work, 

however, should quantify the bacteriophage concentration in conjunction with the antibiotics 

tested to observe changes in bacteriophage concentration as it relates to bacteria growth. Further 

research will need to consider the possibilities of phage-antibiotic synergy. The inhibition of toxin 

expression could provide an avenue for further investigation that could be beneficial for human 

health. It is important to note that PHG001 was found in 87% of the metagenomes present in the 

initial study and similar bacteriophage have been found in animal models (68).  
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Table 4.1. The effect of intestinal viral-like particles (VLPs) on lysis of three bacterial pathogens and three commensal 

Escherichia coli strains 

   Pathogens Commensal E. coli 

ID 

 

Stool 

source 

 

Type of infection 

Shigella sonnei 

(TW16390)   

Salmonella 

Typhimurium 

(TW16372)  

E. coli O157:H7 

(TW14359) TW17000 TW17041 TW17368 

ER644 Case C. jejuni + + + - - - 

ER629 Case C. jejuni + + + - - - 

ER641 Case C. jejuni - + + - - + 

ER649 Case C. jejuni + - + + + + 

ER631 Case S. enterica spp. + + + - + + 

ER676 Case S. enterica spp. + + - + + + 

ER628 Case S. enterica spp. + + - - - - 

ER646 Case S. enterica spp. + + + - + - 

ER694 Case Shigella spp. + + + - - - 

ER640 Case Shigella spp. + + + - + - 

ER653 Case Shigella spp. + + + - - - 

ER661 Case Shigella spp. - + - + + - 

ER680 Case E. coli (STEC) + - - - - - 

ER657 Case E. coli (STEC) - - + - - - 

 
 Total lysis by 

case VLPs  
11 (78.6%) 11 (78.6%) 10 (71.4%) 3 (21.4%) 6 (42.9%) 4 (28.6%) 

ER664 Control No infection + - + - - + 

ER693 Control No infection + + + - - + 

ER708 Control No infection + + + + + + 

ER689 Control No infection + + + + + + 

 
 Total lysis by 

control VLPs 
4 (100%) 3 (75%) 4 (100%) 2 (50%) 2 (50%) 4 (100%) 

STEC = Shiga toxin-producing E. coli 
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Table 4.2. Virome sequencing results and coverage 

 

 

Study ID 

 

Reads Paired-forward 

Total Count (Mbp) 

Reads remaining after 

low-quality read removal 

Count (%) 

Reads remaining after 

human-read removal 

Count (%) 

Total Viral Reads 

annotated 

Count (%) 

Nonpareil 

Coverage 

(%) 

ER628 185565 (92.8) 153692 (82.8) 136702 (88.9) 3572 (2.6) 77.3 

ER631 2238040 (1119) 78287 (3.5) 27532 (35.2) 1846 (6.7) 13.4 

ER640 934953 (467.5) 410744 (43.9) 407064 (91.9) 20799 (5.1) 94.8 

ER641 2457652 (1228.8) 1071369 (43.6) 29694 (2.8) 325 (1.1) 48.4 

ER644 116776 (58.4) 43107 (36.9) 40366 (93.6) 5659 (14.0) 83.0 

ER646 216413 (108.2) 95956 (44.3) 95874 (99.9) 3065 (3.2) 93.0 

ER649 1027408 (513.7) 455652 (44.3) 452157 (92.8) 76856 (17) 96.2 

ER653 149214 (74.6) 15283 (10.2) 7031 (46.0) 491 (7.0) 38.6 

ER661 411435 (205.7) 132230 (32.1) 85089 (64.3) 4112 (4.8) 62.4 

ER676 2900746 (1450.4) 498257 (17.2) 36432 (7.3) 1281 (3.5) 33.5 

ER680 273780 (136.9) 186159 (68.0) 184823 (99.3) 119180 (64.5) 96.3 

ER689* 369038 (184.5) 175885 (47.7) 173769 (98.8) 27383 (15.8) 89.9 

ER693* 714100 (357.1) 301210 (42.2) 295244 (98.0) 28674 (9.7) 88.7 

ER694 478812 (239.4) 172989 (36.1) 169547 (98.0) 148249 (87.4) 93.5 

ER708* 1291317 (645.7) 564402 (43.7) 563659 (99.9) 11401 (2.0) 97.1 

* Samples from healthy individuals (controls) 
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Table 4.3. Sequencing results and coverage estimates for three bacteriophages capable of inhibiting the growth of Escherichia 

coli O157:H7 

 

 

Phage ID 

 

 

Type 

Paired-forward 

total reads 

Count (Mbp) 

After low-quality 

read removal 

Count (%) 

 

Assembly 

Length (bp) 

 

Reads Mapped 

Count (%) 

 

  

Assembly Depth 

PHG001 Lytic 500184 (250.1) 429312 (85.8%) 114632 428634 (99.8%) 934.8x 

PHG002 Lysogenic 428774 (214.4) 349282 (81.4%) 32067 290472 (83.2%) 2264.6x 

PHG003 Lysogenic 367658 (183.8) 286807 (78.0%) 32178 253590 (69.0%) 1977.0x 
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Table 4.4. Characteristics of the strains used to determine the host range of a novel lytic bacteriophage, PHG001 

Accession Number Strain Strain type Spot test result* O-type H-antigen 

TW02054 ECOR-35 commensal - 1 NM 

TW02051 ECOR-26 commensal - 104 21 

TW03288 ECOR-28 commensal - 104 2 

TW02049 ECOR-24 commensal - 15 NM 

TW03299 ECOR-49 commensal - 2 NM 

TW03313 ECOR-61 commensal + 2 NM 

TW02062 ECOR-51 commensal - 25 - 

TW03279 ECOR-15 commensal - 25 NM 

TW03308 ECOR-54 commensal - 25 1 

TW02064 ECOR-59 commensal - 4 40 

TW03307 ECOR-53 commensal + 4 - 

TW03276 ECOR-10 commensal + 6 10 

TW03310 ECOR-56 commensal + 6 1 

TW02046 ECOR-12 commensal + 7 32 

TW02056 ECOR-38 commensal + 7 NM 

TW02057 ECOR-41 commensal - 7 NM 

TW03294 ECOR-39 commensal + 7 NM 

TW02055 ECOR-36 commensal - 79 25 

TW03272 ECOR-05 commensal - 79 NM 

TW03274 ECOR-08 commensal - 86 NM 

TW02058 ECOR-42 commensal - N 26 

TW02059 ECOR-43 commensal - N - 

TW03273 ECOR-06 commensal - N NM 

TW03275 ECOR-09 commensal - N NM 

TW03278 ECOR-13 commensal + N - 

TW03315 ECOR-63 commensal + N NM 

TW03268 ECOR-01 commensal - NT NM 

TW03269 ECOR-02 commensal - NT 32 
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Table 4.4. (cont’d) 

 
     

TW03271 ECOR-04 commensal + NT NM 

TW18515 STEC pathogen + O103 H2 

TW18525 STEC pathogen + O103 H2 

TW18531 STEC pathogen - O103 H2 

TW18538 STEC pathogen - O103 H2 

TW19067 STEC pathogen - O103 H2 

TW19078 STEC pathogen - O103 H2 

TW19079 STEC pathogen - O103 H2 

TW19085 STEC pathogen - O103 H2 

TW18511 STEC pathogen - O111 H8 

TW18523 STEC pathogen - O111 H8 

TW18524 STEC pathogen - O111 H8 

TW18527 STEC pathogen - O111 H8 

TW18990 STEC pathogen - O111 H8 

TW19035 STEC pathogen - O111 H8 

TW19051 STEC pathogen - O111 H8 

TW19057 STEC pathogen - O111 H8 

TW18526 STEC pathogen + O26 H11 

TW18535 STEC pathogen - O26 H11 

TW18536 STEC pathogen - O26 H11 

TW18585 STEC pathogen - O26 H11 

TW19056 STEC pathogen + O26 H11 

TW19068 STEC pathogen + O26 H11 

TW19070 STEC pathogen + O26 H11 

TW19088 STEC pathogen - O26 H11 

TW18494 STEC pathogen - O45 H2 

TW18496 STEC pathogen - O45 H2 

TW18504 STEC pathogen - O45 H2 

TW18505 STEC pathogen - O45 H2 
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Table 4.4. (cont’d) 

 
     

TW19074 STEC pathogen - O45 H2 

TW19076 STEC pathogen - O45 H2 

TW19080 STEC pathogen - O45 H2 

TW19083 STEC pathogen - O45 H2 

TW14588 STEC pathogen + O157 H7 

TW14313 STEC pathogen + O157 H7 

TW11039 STEC pathogen + O157 H7 

TW18482 STEC pathogen + O157 H7 

TW18484 STEC pathogen + O157 H7 

TW18485 STEC pathogen + O157 H7 

TW14359 STEC pathogen + O157 H7 

TW16372 Shigella sonnei pathogen +   

TW16390 
Salmonella 

Typhimurium 
pathogen -   

TW17000 E. coli commensal -   

TW17041 E. coli commensal -   

TW17368 E. coli commensal -   

ECOR = E. coli reference collection (35); STEC = Shiga toxin-producing E. coli 

* + indicates growth inhibition, while – indicates no inhibition. 

Note: The O- and H-antigen types are not known for commensal E. coli TW17000, TW17041, and TW171368, which were isolated 

from the stools of healthy participants. 
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Figure 4.1. Lysis of commensal and pathogens by intestinal virus-like particles (VLPs) 

Bacterial strains challenged with viral communities, or VLPs, isolated from 18 individuals. A) 

Lysis frequency; and B) average phage titer (Log plaque-forming units (PFU)/ml) per infection. 

Strains include three Shigella sonnei (TW16372), Salmonella Typhimurium (TW16390), STEC 

(TW14359), and three commensal E. coli (TW17000,17041,17368). 
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Figure 4.2. Viral community profiles isolated from the stools of patients with enteric 

infections and otherwise healthy participants The relative abundance of each viral family is 

shown across samples; count data was log-transformed, and total sum scaled. 

Note: Only three stool communities from healthy individuals were available for analysis, thereby 

limiting our ability to examine differences by source. 
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Figure 4.3. Sequence analysis of lysogenic phages, PHG002 and PHG003, recovered 

following infection of Escherichia coli O157:H7 strain TW14359 A) A proteomic dendrogram 

constructed using VipTree shows the relationship between PHG002 and PHG003 (blue stars) and 

23 closely related phage genomes. The virus family, Myoviridae (light green), and predicted host 

group, Gammaproteobacteria (dark green), are also indicated. Branch length scaling is represented 

linearly. B) Pairwise-alignment of five closely related phages identified in the proteomic tree. The 

dot plot (left) visualizes the comparison between the two viral genomes, while the blue bar 

represents the genome map of each virus. The percent identity, shown as the bar beneath each viral 

genome, indicates the similarity of the pair-wise comparison between the viruses. 
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Figure 4.4. Neighbor-joining tree of BLAST alignments of PHG002 A neighbor-joining tree was constructed from BLAST 

alignments to the Escherichia coli genome database on NCBI. Listed genomes were found to possess PHG002 or a closely related 

variant of PHG002 in the genome (100% alignment and >99% percent identity). The vertical bar designates a cluster of the most closely 

related bacteriophages (indicated as a green triangle at the node). The samples outside of the cluster have a percent identity (<80%). 
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Figure 4.5. PHG001 genomic map  The function of a given gene is represented in the legend at 

the bottom. The base pairs along the genome are represented by the lines, empty boxes represent 

predicted proteins of unknown function.  
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Figure 4.6. Sequence analysis of lytic phage PHG001 recovered following infection of 

Escherichia coli O157:H7 strain TW14359 A) A proteomic dendrogram constructed using 

VipTree shows the relationship between PHG001 (green star) and 23 closely related phage 

genomes. The virus family, Siphoviridae (orange), and predicted host group, 

Gammaproteobacteria (dark green) are indicated for each phage. Branch length scaling is linear. 

B) Pairwise-alignment of closely related phages identified in the proteomic tree. The dot plot (left) 

visualizes the comparison between two viral genomes. The blue bar represents the genome map of 

each virus. The percent identity, shown as the bar beneath each viral genome, indicates the pairwise 

similarity between the two-related viruses.  
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Figure 4.7. PHG001 growth in the Escherichia O157:H7 host The growth of PHG001 in 

plaque-forming units (PFU)/ml were evaluated in E. coli O157:H7 strain TW14359 over 24 hours. 

Timepoints were taken every 20 minutes for the first 2 hours, every hour up until hour 5, and then 

at hour 24 hours. Arrows represent latency periods. The initial burst size was calculated based on 

the time-points before and after the first burst. Experiments performed at a multiplicity of infection 

of 1. Error bars represent two standard deviations (N=3). 
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Figure 4.8. Effect of bacteriophage and ampicillin on the growth of Escherichia coli O157:H7 

E. coli O157:H7 strain TW14313 was challenged with media (mock, orange line), bacteriophage 

(108 PFU/ml, red line), ampicillin (3.8 µg/ml, blue line) and a combination of bacteriophage (108 

PFU/ml) and 3.8 µg/ml of ampicillin (purple line). The bacterial concentration was measured in 

CFU/ml every hour for up to 5 hours. Timepoint “PT” represents the concentration of the culture 

before inoculation, or pre-treatment with one of the three treatments, which were added to the 

bacterial culture at time 0. Error bars represent two standard deviations (N=3).  
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Figure 4.9. Effect of bacteriophage and mitomycin C on Escherichia coli O157:H7 growth 

and expression of Shiga toxin 2c A) E. coli O157:H7 strain TW14359 challenged with 

bacteriophage (108 PFU/ml, red line),  mitomycin C (10.0 µg/ml, green line), and a combination 

of bacteriophage (108 PFU/ml) and mitomycin C (10.0 µg/ml, brown line) at time = 0. PT (pre-

treatment) is the culture concentration 15 mins before the challenge. Error bars are two standard 

deviations. B) The fold-change in stx2c expression was measured at hour 3 and normalized to the 

level of expression observed in the untreated O157:H7 strain (Mock) using 2-ΔΔCT (40). Each box 

represents the 1st and 3rd quintiles between three biological replicates, while the whiskers represent 

the minimum and maximum, and the line is the median.  
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Acute gastroenteritis is one of the most common illnesses associated with hospitalization 

globally (1). The number of acute cases of gastroenteritis annually is staggering; 2.3 billion cases 

of acute gastroenteritis and 1.3 million deaths occur each year worldwide (2). There are healthcare 

disparities based on geographic location. Developing countries have the most significant disease 

burden associated with acute gastroenteritis due in part to lack of infrastructure. While diarrheal 

illness accounts for 8% of all deaths in children under the age of five globally (3), one in eight 

deaths occur in children under the age of five (12.5%) in developing countries (4). In the United 

States, the number of annual cases ranges from 179 million (5) to 375 million (6), though many 

cases are not reported, given that some infections are self-limiting. Children are affected more 

severely by acute gastroenteritis in the United States, which contributes to 1.5 million office visits, 

200,000 hospitalizations, and 300 deaths annually (7). Importantly, a subset of patients can have 

persistent long-term complications such as post-infectious irritable bowel syndrome with 

symptoms lasting up to 10 years (8, 9) or inflammatory bowel disease (IBD) (10). Mouse models 

have shown a potential mechanism in defining the movement from acute gastroenteritis to chronic 

conditions (11), which is driven primarily by host immunity due to changes in the microbiota from 

the infection (12). The microbiome is the genetic signature of the microbiota that inhabit a given 

environment. Although the function of a healthy intestinal microbiome has been elucidated, less 

is known about the impact of pathogen invasion. Defining the alterations in the human microbiome 

of the gastrointestinal (GI) tract due to acute bacterial gastroenteritis can aid in the development 

of prevention practices and in the identification of novel therapeutic targets that can be used to 

restore the microbiome to a healthy state. 

Human DNA has been suggested to represent a contaminant of the gut microbiome (13). 

In our studies, intestinal microbial communities from patients with enteric infections (cases) had 
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a higher proportion of sequencing reads, on average, that mapped to human DNA sequences 

(15.2%) compared to healthy individuals (controls) (0.1%, Chapter 2) or patients’ post-recovery 

(follow-ups) (0.1%, Chapter 3). This finding is consistent with studies on Clostridium difficile 

infections (14) and IBD (15) and colorectal cancer (16) patients, which have identified an increased 

quantity of human DNA in stool samples. This increase is likely due to the destruction of epithelial 

cells lining the GI tract. In enteric infections, tissue destruction is most likely a result of 

hemorrhagic colitis, which results in a release of nutrients such as carbon sources, vitamins, and 

minerals to the microbiota. This release of the cellular contents could provide the necessary 

nutrients to drive the observed dysbiosis in gastroenteritis. A future investigation into the 

metabolic profiles of the reads identified in this study is therefore warranted and could define 

critical metabolic pathways that are enriched during acute gastroenteritis infections.  

Proteobacteria was the most differentially abundant phyla detected in the intestinal 

microbiomes of patients with gastroenteritis and was significantly higher than in healthy controls 

(17, 18). This finding is consistent with other studies showing that increased abundance of 

Proteobacteria is associated with inflammation and contribute to dysbiosis in gastroenteritis and 

other disease states such as HIV and IBS (18–22). Cases also had a higher abundance of 

Proteobacteria compared to the follow-up samples, suggesting that the dysbiosis can be corrected 

following recovery. It is important to note that the alterations in Proteobacteria populations have 

been shown to vary across pathogens, as was observed previously (17). Indeed, each case was 

caused by either Salmonella spp., Shigella spp., Campylobacter jejuni, or Shiga toxin-producing 

Escherichia coli (STEC), all of which belong to the Proteobacteria phylum. The abundance of 

Escherichia, in particular, was significantly increased among cases regardless of the infecting 

agent. 
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In contrast, the microbiome of healthy individuals, including uninfected controls and 

patients following recovery (follow-ups), had a higher abundance of Bacteroidetes and 

Firmicutes compared to cases, which have been observed (17, 18, 23). Previous studies have 

identified genera Roseburia, Blauta, and Lachnospiraceae to be more abundant in healthy people 

(17), which we have confirmed in our analysis using ANCOM. We further found that decreased 

relative abundance of Roseburia was associated with more severe illness as it had decreased 

abundance in Cluster 2. Members of Roseburia represent a group of butyrate producers (24), 

which were suggested to dampens the immune response through nuclear kappa B and improves 

colitis in mouse models (25). Hence, decreasing the abundance of butyrate-producing microbes 

could increase the local immune response through lowered butyrate production.  

The bacterial component of the intestinal microbiome has been well characterized, 

however, less is known about the virome, or the collection of resident viruses, particularly during 

acute gastroenteritis infections. Prior studies have examined the virome with multiple 

displacement amplification (26), direct isolation of viruses with sequencing (27, 28), and 

identification in metagenomes (29). Through these studies it has become apparent that viral 

databases are incomplete (30) with many isolated viral particles not aligning to known sequences 

(27, 31–34), assemblies of reads from metagenomes of isolated viruses have yielded less than 

2% taxonomically annotated (35); this is in stark contrast to bacterial databases that can achieve 

greater than 90% identification of the diversity in the sequences down to the species level (36). 

This lack of annotation is referred to as “viral dark matter” and is due to the relatively small size 

of known viruses (30). Many of the entries in viral databases are predominately filled with 

Escherichia bacteriophage. Cross-assembly has been utilized to find a highly abundant 

bacteriophage within metagenomic datasets (37) and could be used on the sequences reported in 
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Chapters 2 and 3 in future analyses to detect and characterize unknown viruses. Newer, more 

encompassing viral databases such as the reference viral database (38), need to be utilized to 

improve the annotation rate of the sequences in virome studies.  

A recent study published in 2018 (39), recommended an investigation into the viruses 

present during episodes of gastroenteritis. Indeed, these viral populations were explored in 

Chapters 2 and 3, utilizing a kmer-based sequence annotation approach (40). Caudovirales, a 

significant family of bacteriophage, was increased in abundance among gastroenteritis patients 

compared to the uninfected controls and patients at follow-up or recovery. Previous studies have 

identified increased Caudovirales abundance and diversity within different patient populations.  

Piggyback-the-winner (41) states that bacteriophage abundance increases in response to an 

increase in the host population, which the bacteriophage utilizes for replication; this is likely the 

observation here. Indeed, the primary genera of bacteriophage found to be elevated in cases are 

Nona33virus, P2virus, P1virus, which infect Enterobacteriaceae hosts.  

Hierarchical clustering identified four distinct clusters of microbial profiles that differed 

by study group. Notably, Cluster 2 was composed of patients that had a more severe illness 

relative to other cases (Chapter 2). Differential abundance analysis identified 92 genera that 

varied in patients with microbiome profiles belonging to Cluster 2 when compared to the post-

recovery profiles (Chapter 3); only 82 genera were differentially abundant when compared to 

controls (Chapter 2). This difference could be due to individual variation in the microbiome, 

sample size differences between the two studies, or the follow-up were different from the healthy 

populations. We identified three genera (Alistipes, Sutterella, Odoribacter) that were lower in 

abundance among the follow-up samples compared to the control samples. The role of these 

three bacterial populations is not fully known. Alistipes have been correlated positively with 
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health (42), and Odoribacter produces butyrate and could be significant in regulating 

inflammation (43), and Sutterella is a commensal that might aid in immune regulation (44). 

These microbial populations could be investigated for their role in intestinal health in future 

studies as they may be able to facilitate faster recovery times. 

Use of logistic regression identified different microbial populations to be important for 

enteric infections among cases relative to otherwise healthy individuals; differences were 

observed between the study groups described in Chapters 2 (case vs. control) and Chapter 3 (case 

vs. follow-up). Cases with more severe infections and microbial communities belonging to 

Cluster 2 were more likely to have an increased abundance of Actinobacteria, Orthopoxvirus, 

Salmonella, and Serratia relative to all other samples. The identification of these four taxa is 

biologically plausible as both Actinobacter (45), and Orthopoxvirus (46–48) have been shown to 

interact with the immune system. However, Chapter 3 identified that three genera Shigella, 

Enterobacter, and Pantoea were predictors of microbial communities belonging to Cluster 2, 

though the controls were not included in this analysis. Enterobacter and Pantoea were found to 

be differentially abundant in Cluster 2 compared to the rest of the samples, which suggests that 

these microbial populations could serve as indicator organisms in patients to enhance detection 

of those with more severe clinical outcomes. The different findings between the chapters are due 

to the comparison of different samples as hierarchical clustering is dependent on the type and 

number of samples used in any given analysis. 

Further evaluation and validation of the results are needed through additional studies. A 

meta-analysis of the gastroenteritis studies available should be undertaken to determine the 

complete picture. The meta-analysis should (if possible) directly combine the sequencing data 

that is available for each study, as was previously done with the microbiome and diet (49).  
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These findings can then be evaluated in mouse models. Previous studies in mice have identified 

changes in the microbiome due to an exogenous challenge (11, 50). Citrobacter rodentium (the 

mouse equivalent to Salmonella), has been used to mimic gastroenteritis in mice (11) and can be 

used as a model for future studies. Mouse models, however, have limitations such as varying 

physiology, anatomy, diet, genetics, housing, and immune responses (51), which can impact 

interpretations regarding the human microbiome. Indeed, the microbiomes are distinctly different 

in mice and humans. Humans have been shown to have a greater abundance of Prevotella, 

Faecalibacterium, and Ruminoccus, whereas the dominant mouse gut microbiota consists of 

Lactobacillus, Alistipes, and Turicibacter (51). Clostridium, Bacteroides and Blautia were found 

to be shared between humans and mice. Despite these differences, studies in mice have been 

successfully utilized to study inflammatory triggers during colitis  (12). It may be possible to 

directly study the genera identified in Chapters 2 and 3 within mouse models to examine their 

effects. This approach could provide insight into the pathogenesis of gastroenteritis within mouse 

models and identify distinct ecological niches making the findings here more generalizable.  

Because the microbiome has been shown to vary across individuals in different 

geographic locations (52), this study consisted mainly of a Caucasian population that resided in 

Michigan. Repeating this study at a different site either within the United States or elsewhere 

could enhance understanding of the microbiome in a different setting while evaluating the impact 

of factors such as diet, infectious agents, etc., which could differentially impact the microbial 

populations. Identification of similar factors will also improve the generalizability of the results 

observed herein. It is also important to note that the microbiome will differ at different locations 

along the GI tract (53), and hence, the resident populations identified in this study will not 

necessarily match those that occur during gastroenteritis in different locations. 
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Since a prior study showed that bacteriophages adhere to mucosa and can prevent 

pathogen infection of eukaryotic cells (54), we expected to observe an enrichment of pathogen-

specific bacteriophages in the presence of a given pathogen. Indeed, we observed that isolated 

viral-like particles (VLPs) were six times more likely to lyse pathogenic strains than commensal 

E. coli strains. These findings suggest that bacteriophage capable of lysing pathogens are more 

common in intestinal microbial communities. Novel bacteriophages using E. coli as hosts have 

been isolated from fecal samples previously (55, 56). Notably, we isolated three novel 

bacteriophages, which were classified genetically as two lysogenic bacteriophages and one lytic 

bacteriophage (Chapter 4). Homologous sequences for the lysogenic bacteriophages were 

detected as prophages in 23 additional E. coli strains, while both bacteriophages carried the 

exonuclease sbcC that is essential for DNA replication and repair (57). Additional studies are 

needed to determine whether there is a benefit to the bacterial host that possesses an extra copy 

of the DNA repair gene; we hypothesize that the additional copy of sbcC results in fewer 

mutations and results in a more stable genome. The lytic bacteriophage, PHG001, demonstrated 

high selectivity and virulence towards multiple E. coli O157:H7 strains, though bacterial 

resistance towards PHG001 was observed by 24 hours. The resistant phenotype has a rough 

appearance (58, 59), which could be due to alterations in the cell wall or O-antigen given the 

high specificity of PHG001 to specific O-types. PHG001 also reduced expression of the Shiga 

toxin gene, stx2c, after infection of E. coli O157:H7 for three hours. Collectively, these results 

add knowledge to bacteriophage genomics and bacteriophage-host relationships and highlight the 

importance of better defining relationships within microbial communities. 

In future studies, a massively parallel screening approach could be utilized to investigate 

the role individual microbes play within the overall microbial community (60). This approach 
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would allow for the building of synthetic microbial communities and an assessment of the 

interactions and effects of different microbes in different conditions (60). Artificial microbiomes 

can be built that foster the growth of bacteria like Odoribacter, identified to be important for a 

recovered microbiome in our study. This type of analysis will allow us to understand how the 

microbiome recovers mechanistically from a perturbation such as illness. Translation of these 

studies could lead to improvement in therapeutics including fecal microbiota transplants (FMT). 

Fecal microbiota transplants (61) (FMT) involve the transfer of stool containing 

microbiota from healthy donors to patients to restore the microbiome to a healthy state(62). Cure 

rates of Clostridium difficile with the use of FMTs have been reported as high as 90% (63), and 

there are current FMT treatment investigations on metabolic syndrome (64), autism spectrum 

disorder (61), and IBD (65). Low counts of Faecalibacterium have been observed in IBD 

patients (66), which FMT attempts to restore via transfer from a healthy donor. Additional 

studies could investigate the impact of transferring genera identified here, namely Roseburia, 

Alistipes, and Odoribacter. The success of FMT has been linked to species richness, or the 

number of microbes, in the microbiome from the donor (67). Virus particles are transferred 

during an FMT (68), and higher numbers of unique bacteriophages in the donor are strongly 

correlated with the success of an FMT (69). Additionally, the use of bacteriophage could 

represent a targeted approach to prevent the overgrowth of Escherichia during gastroenteritis. 

Such an approach could increase recovery times and decrease the chronic disease burden as a 

prior colitis study found that blocking the overgrowth of Escherichia   during gastroenteritis 

could improve health in mice (11). 

In summary, we have comprehensively examined the microbiome in patients with acute 

bacterial gastroenteritis for comparison to healthy uninfected individuals and a subset of the 
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same patients post-recovery. Additionally, we have isolated and characterized three novel 

bacteriophages, and have examined the function of one lytic phage in multiple bacterial hosts. 

Collectively, these findings have improved our knowledge of acute bacterial gastroenteritis with 

the use of bioinformatics, and have identified specific microbiome profiles to be associated with 

more severe infections. These data provide insight into new prevention strategies and novel 

therapies to potentially facilitate treatment and recovery from acute bacterial gastroenteritis.  
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