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ABSTRACT 

AUTOMATICITY AS A HIDDEN COST OF EXPERTISE: 

SITUATIONAL AND INDIVIDUAL-DIFFERENCE FACTORS UNDERPINNING  

ERRORS OF AUTOMATICITY 

 

By 

Alexander P. Burgoyne 

A traditional view of automaticity holds that the ability to perform well-practiced skills 

without attention is adaptive because it frees mental resources to process other information. 

Without denying the benefits of automaticity, I show how it can also lead to error in domains of 

expertise such as driving, medical diagnosis, problem solving, and reading. I begin by discussing 

automaticity within the context of two theoretical frameworks, classical theories of skill 

acquisition and dual process theory. I then examine situational and individual-difference factors 

that make errors of automaticity more likely to occur. Next, using proofreading as a testbed, I 

demonstrate how knowledge, expectations, and other top-down constraints influence reading 

behaviors and comprehension. I then present two experiments to investigate the self-generation 

effect in proofreading: the hypothesis that it is more difficult to detect mistakes in one’s own 

writing than in the writing of others. The reasoning behind this hypothesis is that overfamiliarity 

with self-generated text increases the probability that errors are overlooked or seen but 

undetected. Finally, I discuss implications of the research and argue that understanding the 

benefits and consequences of automaticity is critical to improve decision-making outcomes 

across a wide range of applied contexts.
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INTRODUCTION 

One of the hallmarks of expertise is automatic processing. As we become highly skilled 

in complex tasks, we perform them with increasing facility until attention seems to be withdrawn 

altogether. Examples range from the mundane (e.g., walking to campus while holding a 

conversation) to the arcane (e.g., sight-reading piano music while shadowing continuous speech; 

Allport, Antonis, & Reynolds, 1972). Automatic processes are cognitive operations that can be 

performed without attention and are thus unaffected by cognitive load (Anderson, 1982; Evans, 

2008; Fitts & Posner, 1967). That is not to say that all tasks performed by experts within their 

domain of skill are performed automatically but, rather, that many proceduralized tasks can be 

performed automatically with sufficient training (Fitts & Posner, 1967). 

The cognitive processes that support expert performance are closely linked to those that 

support automaticity. As a case in point, classical theories of skill acquisition characterize the 

final stage of learning as proceduralized, autonomous, and effortless (Anderson, 1982; Fitts & 

Posner, 1967). However, although automaticity is often adaptive, it may come with a cost and 

lead to mistakes. That is, the same cognitive mechanisms that support expert performance may 

also contribute to the likelihood of error. This “hidden cost of expertise” — the errors that result 

from automatic processing — is the focus of the present work.  

In this dissertation, I investigate the potential for automatic processing to cause errors, the 

factors that make errors more likely to occur, and what can be done to reduce or even eliminate 

them. I begin by reviewing the role of automaticity in theories of skill acquisition and 

information processing, highlighting common themes and important distinctions across 50 years 

of research and theory. I then discuss automaticity as a source of expert error and the situational 

and individual-difference factors that increase the probability of mistakes. Next, using 
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proofreading as a testbed, I examine the cognitive processes underlying reading and proofreading 

and present two experiments designed to evoke errors of automaticity in the laboratory. Finally, I 

discuss implications of the research and argue that understanding the benefits and consequences 

of automaticity is critical to improve decision-making outcomes across a wide range of applied 

contexts. 
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  AUTOMATICITY 

Scientists and laypeople alike have long been interested in automatic processes, with 

scientific interest dating back at least to William James (1890). In fact, James (1890) quotes 

Henry Maudsley (1868), a British psychiatrist, who argues that much of everyday life might be 

characterized by automaticity:  

If an act became no easier after being done several times, if the careful direction of 

consciousness were necessary to its accomplishment on each occasion, it is evident that 

the whole activity of a lifetime might be confined to one or two deeds – that no progress 

could take place in development. (p. 155) 

This view has remained popular among some contemporary researchers. For example, the 

idea that automaticity pervades daily life is echoed by the title of Bargh and Chartrand’s (1999) 

highly cited American Psychologist article, “The Unbearable Automaticity of Being.”  

Cognitive processes that are described as “automatic” tend to meet a number of criteria. 

Jonides, Naveh-Benjamin, and Palmer (1985) defined automatic processes as those that are free 

from demands of processing capacity, difficult to alter or inhibit with voluntary control, and 

characterized by stereotypy, or marked similarity across repetitions. Along the same lines, 

Schneider and Shiffrin (1977) conceived of automatic processes as those that can operate without 

attention, are unaffected by capacity limitations, and can operate in parallel, while Fitts and 

Posner (1967) explained that automatic or autonomous processes are those that can be executed 

without attention.  

There is general agreement that automaticity develops as a function of experience 

(Anderson, 1982; Fitts & Posner, 1967). More specifically, the consistent pairing of stimulus 

inputs and response outputs in the form of motor behaviors, stimulus discriminations, judgments, 
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and decisions can lead to the automatic elicitation of learned responses (Stanovich, West, & 

Toplak, 2011). As Kahneman and Klein (2009) stated, the strengthening of input-output 

associations requires a “high-validity environment” (p. 519). That is, for automaticity to develop, 

cues from the environment must be predictive of outcomes and therefore useful to the performer. 

In a perfectly valid environment, the same input paired with the same response results in the 

same outcome every time.  

Theories of Skill Acquisition  

In classical theories of skill acquisition, the process is characterized by different stages of 

learning. In the early stages, performance of a skill is cognitively demanding, but with practice it 

becomes increasingly automatic (Fitts & Posner, 1967). Specifically, Fitts and Posner (1967) 

delineated three stages of skill acquisition: a cognitive stage, an associative stage, and an 

autonomous stage.  

During the cognitive stage, the performer’s primary goal is to “understand the task and 

what it demands” (Fitts & Posner, 1967, p. 11). That is, the performer must actively attend to 

instruction, events, and outcomes related to the execution of the skill. Typically, beginners’ skill 

execution is “slow, nonfluent, and error-prone” (Gray, 2004, p. 42). Errors may arise because the 

performer misunderstands the skill or lacks the requisite capacity. For example, they may be 

unable to maintain all of the relevant instructions in working memory (Anderson, 1982). 

Anderson (1982) states that verbal mediation, such as recalling and reciting instructions aloud, is 

common during the cognitive stage because declarative knowledge about the task must be 

maintained in working memory to influence performance. Performance is inconsistent in this 

first stage of skill acquisition as learners test different strategies, retaining those that work and 

discarding those that do not (Schmidt & Lee, 2005). 
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The second stage of skill acquisition, the associative stage, represents a transition from 

the cognitively-demanding first stage towards the autonomous final stage. In the associative 

stage, knowledge about the skill is converted from a propositional network of facts into a 

procedure, that is, an ordered sequence of steps. When a stimulus is presented, the performer 

retrieves the appropriate procedure stored in long-term memory and executes the skill 

(Anderson, 1982). With practice, associations between the steps are formed and strengthened 

such that performance of a given step cues performance of the next. However, because the 

associations are still being learned, attention is necessary to keep one’s place and ensure that 

each step is performed correctly. Speed of performance increases and errors are typically reduced 

in the associative stage (Fitts & Posner, 1967; Tenison & Anderson, 2016; Wiedenbeck, 1985). 

In the final stage, the autonomous stage, performance of the skill becomes automatic. An 

automated skill is one that is driven by procedural knowledge, can operate without much (or any) 

attention, places little demand on working memory, and is less susceptible to interference due to 

other ongoing activities or distractions (Beilock, Wierenga, & Carr, 2002; Fitts & Posner, 1967; 

Schmidt & Lee, 2005). Fitts and Posner (1967) note that “there is a good deal of similarity 

between highly practiced skills and reflexes” (p. 15). Along the same lines, Anderson (1982) 

suggests that this stage reflects a transition from “stimulus-retrieval-response” to a “stimulus-

response” process (Tenison & Anderson, 2016). In other words, in this stage, stimuli 

automatically cue a performer’s response without requiring effortful search for the relevant 

procedure stored in long-term memory. Skills in the autonomous phase continue to increase in 

speed and efficiency as a function of training, but the benefits of practice are subject to 

diminishing returns (Fitts & Posner, 1967). Because attention is no longer required for execution 

of the skill, performers may be able to simultaneously attend to other tasks without loss in 
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accuracy, as in the earlier example of sight-reading piano music while shadowing (i.e., listening 

to and repeating aloud) continuous speech (Allport et al., 1972). 

Evidence for the automaticity of well-practiced skills is provided by experiments that 

manipulate experts’ and novices’ focus of attention during performance. In the dual-task 

expert/novice paradigm, people attempt to perform a motor skill while either attending to aspects 

of the skill’s execution or to a distractor task, such as detecting a tone within an auditory stream. 

Three predictions follow from Fitts and Posner’s (1967) theory of skill acquisition that are 

relevant to the role of attention in procedural task performance. First, experts’ performance will 

be largely unaffected by a distractor task because execution of an automated motor skill requires 

little to no attention (Beilock et al., 2002; Gray, 2004). Second, novices’ performance will 

deteriorate when given a distractor task because in the early stages of skill acquisition one must 

pay attention to declarative knowledge about the skill (e.g., instruction) in order to properly 

perform it (Anderson, 1982). Third, experts’ performance will deteriorate when they focus on 

specific aspects of a skill because attending to its step-by-step execution undermines its 

proceduralization and automaticity (Anderson, 1982; Baumeister, 1984; Fitts & Posner, 1967). 

All three predictions have received support from the dual-task expert/novice paradigm in 

domains ranging from hockey puck handling and soccer dribbling to golf putting and baseball 

batting (Beilock et al., 2002; Gray, 2004; Leavitt, 1979; Smith & Chamberlin, 1992). For 

example, expert baseball players’ batting performance is unaffected by a distractor task, 

suggesting that attention is not necessary for the accurate execution of well-practiced skills 

(Gray, 2004). As another example, novices’ soccer dribbling suffers greatly under dual-task 

conditions, whereas experts are hardly affected (Smith & Chamberlin, 1992). This reinforces the 

idea that attention is more critical when performing novel tasks than well-practiced tasks. 
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Finally, skilled golfers show substantial performance decrements when asked to attend to 

specific mechanics related to the swing of the golf club, suggesting that attention can actually 

disrupt the performance of automated skills (Beilock et al., 2002). 

Taken together, the results of these studies provide evidence for the skill acquisition 

frameworks described by Fitts and Posner (1967) and Anderson (1982) and the role of 

automaticity in expertise. That is, performance of a skill is initially cognitively demanding and 

requires attention, but after sufficient practice, can become automated such that it no longer 

requires attention. This enables experts to focus on higher-level aspects of task performance 

during skill execution. For example, orchestral musicians can play their instruments while 

watching the conductor for cues on tempo and dynamics (Berlioz, 1915). 

Dual Process Theory 

 Dual process theory provides a more contemporary account of the role of automaticity in 

information processing. Dual process theory posits that cognitive operations can be categorized 

into one of two modes. Type 1 processes are described as fast, parallel, automatic, unconscious, 

intuitive, and seemingly effortless, whereas Type 2 processes are described as slow, sequential, 

controlled, conscious, reflective, and effortful (Evans, 2008; Evans & Stanovich, 2013; Frankish, 

2010; Norman et al., 2017). Dual process theory has been applied to domains such as judgment 

and decision making, learning and memory, and social judgment, to name a few (Evans, 2008).  

 Although numerous attributes have been ascribed to Type 1 and Type 2 processes, Evans 

(2008) and Stanovich and Toplak (2012) argue that only some of these attributes are defining 

characteristics; the rest are merely correlates. The need to distinguish between defining features 

and incidental correlates of Type 1 and Type 2 processes was motivated in part by criticisms of 

dual process theory. For example, Keren and Schul (2009) argued that many of the attributes that 
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have been used to describe Type 1 or Type 2 processes do not always co-occur (see Kruglanski 

& Gigerenzer, 2011, for a similar argument). Stanovich and Toplak (2012) countered that the 

attributes used to describe Type 1 and Type 2 processes should be thought of as “family 

resemblances” rather than “necessarily co-occurring properties” (p. 5).  

As Stanovich and Toplak (2012) stated, the defining characteristic of Type 1 processing 

is autonomy. That is, Type 1 processes do not require controlled attention and, as a result, place 

minimal demands on working memory capacity (Evans & Stanovich, 2013). Stanovich and 

Toplak (2012) suggest that Type 1 processes can include “innately specified processing 

modules” and “experiential associations that have been learned to automaticity” (p. 8). For 

example, stimulus discriminations that have been practiced extensively, such as determining 

whether a character is a letter or digit (Schneider & Shiffrin, 1977), can operate as Type 1 

processes (Evans & Stanovich, 2013). Other examples of Type 1 processes include completing 

the phrase “bread and ______,” answering the question “2 + 2 = ___,” reading words on large 

billboards, detecting hostility in a voice, and recognizing the face of one’s mother (Kahneman, 

2011, p. 21).  

To link Type 1 processing to automaticity as described by Fitts and Posner (1967), 

consider the execution of an autonomous skill. Performing an autonomous skill can be 

considered an operation of Type 1 processing because it no longer requires attention and places 

minimal demands on working memory capacity (Anderson, 1982; Fitts & Posner, 1967). Indeed, 

fully proceduralized autonomous skills align well with the description of “experiential 

associations that have been learned to automaticity” (Stanovich & Toplak, 2012, p. 8) and with 

the broader class of Type 1 processes described by Evans and Stanovich (2013). 
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Returning to dual process theory, Evans (2008) argues that the defining characteristic of 

Type 2 processing is the engagement of attention control and working memory capacity. 

Examples include calculating the answer to the question “17 × 24 = ____,” filling out a tax form, 

checking the validity of a complex logical argument, and comparing apartments in a new city 

(Kahneman, 2011, pp. 20-22). Hypothetical thinking is also considered a Type 2 process because 

it requires maintaining information in an active state and manipulating it in service of a goal. 

Hypothetical thinking is an example of cognitive decoupling – maintaining a secondary 

representation of a real-world state for the purposes of hypothesis testing and simulation. As an 

aside, the term “decoupling” appears to have first been used by Leslie (1987) to describe how 

children engage in “pretend play” (p. 416). Because Type 2 processes such as cognitive 

decoupling rely on working memory, they are typically “slow, sequential, and correlated with 

measures of general intelligence” (Evans & Stanovich, 2013, p. 235).  

 Type 2 processing can also be reconciled with Fitts and Posner’s (1967) theory of skill 

acquisition and, in particular, to the early stages of learning. Consider the role of working 

memory and attention control when attempting to learn a new skill. Beginners must maintain 

instructional material presented to them in working memory and must attend to the execution of 

the skill and the resulting outcome (Anderson, 1982; Fitts & Posner, 1967). This cognitively-

demanding stage of skill acquisition meets the essential criteria of Type 2 processing, requiring 

both attention and working memory. Performance of skills in the early stages of learning can also 

be described using many of the same terms as Type 2 processes: slow, sequential, controlled, 

conscious, reflective, and effortful. And with practice, an initially cognitively-demanding skill 

can become automated, just as Type 1 processes emerge when experiential associations are 

learned to the point of automaticity (Stanovich & Toplak, 2012). 
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Three lines of research provide evidence for the distinction between Type 1 and Type 2 

processes: experimental manipulations designed to evoke Type 1 or Type 2 processes; 

neuroimaging studies that distinguish between patterns of activation presumably reflecting Type 

1 or Type 2 processes; and individual-difference research showing that Type 2 processing 

correlates positively with cognitive ability but that Type 1 processing does not (Evans & 

Stanovich, 2013). 

Two experimental manipulations that appear to induce Type 1 processing are time 

constraints (Roberts & Newton, 2001) and concurrent working memory load (Neys, 2006). Both 

increased the likelihood that participants provided the intuitive yet incorrect response to the 

Wason card selection task (Wason, 1968), which has been taken as an indication of Type 1 

processing (see the section on problem solving in the next chapter). Neuroimaging work, on the 

other hand, has revealed distinct patterns of brain activity when participants think about 

immediate or delayed monetary rewards, the latter of which was presumed to evoke prospective 

hypothetical thinking (McClure, Laibson, Loewenstein, & Cohen, 2004). Finally, Evans and 

Stanovich (2013) report that cognitive ability correlates positively and significantly with correct 

responses on challenging problem-solving tasks, but correlates negatively or not at all with 

intuitive (yet incorrect) responses to the same problems (West & Stanovich, 2003). Evans and 

Stanovich (2013) argue that calculating the correct response to these problems requires working 

memory and attention control, whereas providing the intuitive response does not because 

intuitive responses are generated automatically by Type 1 processes. Thus, individual differences 

in cognitive ability should correlate with Type 2 but not with Type 1 processing performance, 

and indeed, this is the pattern of results that Evans and Stanovich (2013) report. 
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 To sum up, dual process theory contrasts automatic processes (Type 1) with controlled, 

effortful processes (Type 2). The key distinction between these two types of cognitive operations 

is the role of attention and working memory (Evans, 2008; Stanovich & Toplak; 2012). 

Similarly, attention and working memory play a critical role in the distinction between skills that 

have been practiced to the point of automaticity and those that have not (Anderson, 1982; Fitts & 

Posner, 1967). Although automatic processing is typically thought of as adaptive within skill-

acquisition frameworks, dual process theorists have identified ways in which automaticity can 

lead to mistakes. In the next chapter, errors of automaticity are discussed within the contexts of 

driving, medical diagnosis, and problem solving.  
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ERRORS OF AUTOMATICITY 

“The best swordsman in the world doesn’t need to fear the second best swordsman in the 

world; no, the person for him to be afraid of is some ignorant antagonist who has never had a 

sword in his hand before; he doesn’t do the thing he ought to do, and so the expert isn’t prepared 

for him” (Twain, 1889, p. 344). 

 In this chapter, I discuss how automaticity can lead to errors in the domains of driving, 

medical diagnosis, and problem solving. I also review evidence suggesting that errors of 

automaticity are associated with situational and individual-difference factors. The main argument 

to be presented is that automatic processes, which are typically thought of as adaptive, can also 

be a source of error. 

Driving 

 In some respects, we are all experts at going about our daily lives and solving the 

problems that arise along the way. For example, if we need to get to campus, we get in our car 

and go, often taking the same route each time. Driving a personal vehicle along a familiar route 

is one of the best-practiced skills in the adult population (Charlton & Starkey, 2013), and it is 

often done “on autopilot” while conversing with a friend, finishing breakfast, or listening to the 

radio. 

Indeed, some aspects of driving seem to be automated such that they no longer require 

attention. For instance, studies using dual-task paradigms have found that steering, driving speed, 

and following distance are unaffected by a distractor task in experienced drivers (Brown, 

Tickner, & Simmonds, 1969; Duncan, Williams, Nimmo-Smith, & Brown, 1992). By contrast, 

braking times show performance impairments when drivers are engaged in a secondary task 

(Duncan et al., 1992). Charlton and Starkey (2013) found that repeatedly driving on a familiar 
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route led to inattention blindness for roadside features, with many participants reporting that they 

were “driving without thinking about it” or “zoning out,” comments indicative of “driving 

without awareness” (p. 131). Similarly, a frequently reported experience is arriving at a familiar 

destination with little to no recollection of the trip (e.g., “how did I get here?”; May & Gale, 

1998). Because attention is necessary to encode episodic memory (Beilock & Carr, 2001; Craik, 

Govoni, Naveh-Benjamin, & Anderson, 1996), the absence of memory for a drive can be taken 

as evidence that attention was not fully engaged throughout the journey. What this suggests is 

that many of the actions that we use to navigate a familiar route are automated.  

 Now consider driving on the freeway after a heavy snowfall. In hazardous conditions, a 

car may lose traction without warning and quickly veer towards the guardrail. When sliding on 

ice, many drivers reflexively slam on the brakes and wrench the steering wheel away from 

danger, only to discover that this exacerbates the skid and causes them to lose control of their 

vehicle. In normal driving conditions, these braking and steering responses might save a driver 

from fast-approaching danger. In icy conditions, these same reactions can have dire 

consequences. 

In this scenario, the hasty response of applying the brakes and steering away from danger 

occurs automatically, but it is the wrong course of action. This is a failure of overgeneralizing 

(Taylor, 1975) – an approach that usually works is applied to a novel situation, in this case with 

disastrous results. Even drivers who have heard the mantra “you can’t steer out of a skid” have 

probably made this mistake because the braking and steering reactions occur rapidly and there is 

not much time to consider alternative solutions. In this case, the error might be considered a 

result of failing to inhibit a habitual response. However, with enough practice driving through the 

snow, drivers can (and do) learn to automate the correct procedure. In more general terms, then, 
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the problem is that automaticity is brought to bear on a situation for which it is not appropriate, 

but the performer discovers this only after a mistake has been made. 

Automaticity in driving can lead to other errors, too. For instance, if skilled drivers 

believe that they can operate their vehicle without attention, they may be more likely to engage 

in distracted driving. This may be why cell phone use while driving correlates with overestimates 

of driving competence and drivers’ illusion of control (Schlehofer et al., 2010). Drivers who text 

message while driving also report lower levels of feeling distracted while doing so (Struckman-

Johnson, Gaster, Struckman-Johnson, Johnson, & May-Shinagle, 2015). Taken together, these 

findings suggest that people may drive while distracted because they think they can get away 

with it. Research, however, shows that talking on the phone or text messaging while driving 

substantially impairs performance, leading to an increased incidence of car crashes (Drews, 

Yazdani, Godfrey, Cooper, & Strayer, 2009; Strayer & Johnston, 2001). As a case in point, 

distracted driving was cited as the cause of approximately 1 in 6 fatal vehicle collisions in the 

United States in 2008 (National Highway Traffic Safety Administration, 2011). Thus, automatic 

processes while driving could lead to errors because they allow drivers to direct their attention 

elsewhere when it is not prudent to do so. 

Medical Diagnosis 

 One of the most consequential mistakes a physician can make is a misdiagnosis 

(Croskerry, 2009). Patients given the wrong diagnosis may be given the wrong treatment or fail 

to receive essential medicine. In the United States, diagnostic errors cost between 40,000 to 

80,000 lives each year (Hayward, 2002). Graber, Franklin, and Gordon (2005) report that 74% of 

diagnostic failures can be attributed to errors in the physician’s thinking, as opposed to, for 

example, lack of knowledge. A portion of these errors is caused by automatic processing of 
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symptomology, such as using heuristics like pattern recognition to make diagnoses (Pham et al., 

2012). These errors may be avoidable. However, there are also contextual pressures that increase 

the likelihood that physicians rely on automatic processes to make diagnoses. 

 One way physicians make diagnoses is via pattern recognition (Croskerry, 2009). For 

example, if a child presents a familiar set of symptoms, such as fever, malaise, and red bumps on 

the skin, a pediatrician may diagnose chickenpox. This diagnosis might be based on prior 

experience with patients presenting similar symptoms and the pediatrician’s medical training. 

For common ailments, the pattern recognition process may be so well-practiced that the 

physician seems to know immediately what is wrong with the patient (e.g., “seen this many times 

before,” Croskerry, Singhal, & Mamede, 2012, p. 58). In such cases, the physician may be able 

to rely on Type 1 processing to make a diagnosis without loss in accuracy. Type 1 processing in 

this circumstance saves the physician time and effort (Croskerry et al., 2012). 

 However, a major challenge for medical diagnosis is that there is always some degree of 

“irreducible uncertainty” (Hammond, 1996). That is, there is no guarantee that a set of symptoms 

indicates one particular disease and not another, although for chickenpox, the likelihood of 

accurate diagnosis is probably quite high. Nevertheless, if 0.01% of patients diagnosed with 

chickenpox actually have infective endocarditis, an infection of the heart valves that also results 

in red bumps, a misdiagnosis could be fatal (Mayo Clinic Staff, 2018). In this case, the physician 

has to override Type 1 processing and spend more time with the patient to make an accurate 

diagnosis, asking follow-up questions and conducting additional tests. This Type 2 approach to 

diagnosis is more cognitively demanding and resource intensive, but it is less likely to result in 

error (Pham et al., 2012). 
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 Although studying failures of automatic processing in real-world medical contexts has 

proven difficult, numerous studies in the laboratory have shown that physicians are susceptible to 

errors arising from Type 1 processing. For example, Mamede et al. (2010) had residents in 

internal medicine make diagnoses based on case reports in different decision-making conditions. 

On trials designed to tap Type 1 processing, the residents were given no time for deliberation; 

they were asked to write down the first diagnosis that came to mind after reading the case report. 

On trials designed to tap Type 2 processing, they were asked to think carefully about each report, 

spending up to 8 minutes following instructions that induced an elaborate analysis of each case. 

The residents made significantly more misdiagnoses in the immediate-decision condition than in 

the careful-deliberation condition, suggesting that relying on Type 1 processing led to an 

increase in errors.  

 These results indicate that physicians should spend more time during diagnosis to allow 

Type 2 analytical reasoning to unfold and to mitigate Type 1 errors. In many medical settings, 

however, additional time and cognitive resources may not always be available. Medical 

emergencies demand rapid decision-making, and physicians may need to see many patients in a 

short time (Klein, 2005). For this reason, emergency medicine has been referred to as a “natural 

laboratory of error” (Bogner, 1994). Monitoring Type 1 processes becomes difficult under 

conditions of cognitive overload, a term used to describe the competing attentional demands 

placed on anyone needing to make complex decisions while multitasking, particularly under time 

constraints (Gilbert, Pelham, & Krull, 2003; Kirsch, 2000). Thus, physicians may struggle to 

override fast intuitive responses when making decisions about patients’ health during peak hours. 

Physicians are also notoriously overworked and often sleep-deprived. As a case in point, 

residents regularly work on-call shifts for over 24 hours at a time (Landrigan et al., 2004). 
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Croskerry (2009) suggests that sleep deprivation might compromise the effectiveness of 

deliberative Type 2 processes, which may cause physicians to rely on automatic Type 1 

processes more often. Indeed, sleep deprivation has been shown to impair working memory 

capacity and sustained attention (see Frenda & Fenn, 2016, for a review), both of which support 

Type 2 processing (Evans, 2008).  

Support for Croskerry’s (2009) point is also provided by a landmark study by Landrigan 

et al. (2004), showing that reducing residents’ work hours substantially reduced the incidence of 

medical errors. Residents who regularly worked traditional 30-hour shifts made 35.9% more 

serious medical errors than residents who were assigned to a staggered schedule with no shifts 

exceeding 16 hours. The errors ranged from misdiagnoses to ordering drug overdoses. This 

evidence is consistent with the idea that sleep deprivation increases the likelihood of expert error, 

perhaps because physicians are more likely to rely on Type 1 processes when Type 2 processes 

are compromised. However, an alternative explanation is that Type 2 processes are more likely 

to fail when decision makers are sleep-deprived (Harrison & Horne, 2000), which could also 

result in error. The combination of both factors could be especially damaging, but more work is 

needed to disentangle these possibilities.  

Problem Solving 

Although Type 1 processes provide quick and intuitive responses, these automated 

responses are not always optimal (Toplak, West, & Stanovich, 2014). Thus, one of the primary 

roles of Type 2 processing is to override Type 1 processing (Toplak et al., 2014). However, as 

demonstrated by studies of judgment and decision making, people are often cognitive misers 

when problem solving (Fiske & Taylor, 1984). That is, they rely on Type 1 processing to provide 

quick, intuitive responses rather than deliberating carefully about the problem to be solved. 
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Cognitive miserliness is a dispositional trait reflecting a preference for Type 1 processing 

irrespective of one’s ability or potential to engage in careful, reflective thought. 

The typical explanation for why people engage in miserly cognitive processing, or Type 1 

processing, is that Type 2 processing is cognitively demanding and perceived as aversive 

(Toplak et al., 2014). If most of the everyday problems we encounter can be solved quickly and 

effortlessly with Type 1 processing, then this approach becomes an attractive default mode even 

if it results in occasional errors. A potential benefit of relying on Type 1 processing in everyday 

circumstances is that time and effort are spared for situations that clearly demand careful, 

reflective thinking. 

Perhaps the most compelling evidence that people rely on Type 1 processing during 

problem solving is provided by Frederick’s (2005) 3-item cognitive reflection test. The questions 

are designed to prime an intuitive yet incorrect Type 1 response but are simple enough that 

anyone with basic mathematics ability can calculate the correct answer through Type 2 

processing. For example, consider this question: “A bat and a ball cost $1.10 in total. The bat 

costs $1.00 more than the ball. How much does the ball cost?” The intuitive response is 10 cents. 

People often report that this answer immediately springs to mind as if it were automatically 

primed by the question (Frederick, 2005). The rationale is that participants substitute the 

question being asked for a simpler one, namely, “what is the difference between the two values?” 

The correct answer, however, is not 10 cents, but 5 cents ($0.05 + $1.05 = $1.10).  

Most people do not perform well on the cognitive reflection test. At Michigan State 

University, students answered, on average, only 0.79 problems correctly out of 3 (Frederick, 

2005). The argument that poor performance indicates an overreliance on Type 1 processing is 

supported by three converging lines of evidence. First, when people answer incorrectly, they 
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almost always provide the intuitive responses primed by the questions (Frederick, 2005). That is, 

errors do not occur at random. This rules out the possibility that people make haphazard guesses 

when confronted with these problems; there is a systematic operating principle underlying their 

incorrect responses. Second, when people answer correctly, they often report thinking of the 

intuitive responses first before calculating the correct solutions (Frederick, 2005). This is 

consistent with the idea that Type 1 processes operate quickly, whereas Type 2 processes operate 

in a slower, more controlled manner. Third, when participants are asked to rate the difficulty of 

the items, people who answer them incorrectly rate them as easier than people who answer them 

correctly (Frederick, 2005). This finding supports the argument that to perform well on the 

cognitive reflection test, one must override Type 1 responses primed by the questions and instead 

engage in more effortful thinking. Those who fail to override Type 1 processing find the 

problems easier, despite getting the answers wrong, because they do not engage in effortful 

problem solving to calculate the correct solution. Taken together, this work suggests that miserly 

cognitive processing may be the result of automatic processes.  

Thus, although often adaptive, automaticity can lead to errors in many aspects of daily 

life. In the next chapter, I review the role of automaticity in reading, another well-practiced skill 

in the adult population. Although the cognitive processes that support reading may go unnoticed 

most of the time, I provide examples showing that what we read is not always what is presented 

to us. That is, knowledge and expectations are brought to bear on the reading process, which can 

result in mistakes, particularly when expectations are defied. 
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COGNITIVE PROCESSES IN PROOFREADING 

 Clear and accurate writing is essential in the professional world. Whether it is an 

attorney’s contract, a journalist’s report, or an academic’s article, many professions depend on 

the ability to communicate effectively through writing. Proofreading is an important step in the 

process. A misspelled word or misplaced comma can betray a lack of scrupulousness and even 

change the meaning of a sentence. Despite our best efforts, the occasional typographical error 

may go undetected in our writing, finding its way into a colleague’s inbox or a reviewer’s 

workflow. These mistakes can be costly.   

 In this chapter, I synthesize the literature on proofreading through the lens of cognitive 

science. In particular, I examine proofreading performance as it relates to familiarity with the 

material being read, top-down and bottom-up processing, and eye movements during reading. I 

present evidence suggesting that proofreading failures when reading our own work are caused by 

the automatic influence of memory of the text being proofread. That is, overfamiliarity with the 

text leads to an expectancy-driven style of processing that reduces the type of textual analysis 

needed for successful proofreading.  

Proofreading and Familiarity 

 In one of the first studies of proofreading, Levy and colleagues tested whether familiarity 

with a passage of text affected the ability to detect spelling errors (Levy, 1983; Levy & Begin, 

1984). Levy (1983) had participants read short passages and mark any errors that they noticed. 

There were two experimental conditions. In the unfamiliar condition, participants simply 

proofread error-filled versions of the passages. In the familiar condition, they first read error-free 

versions multiple times and then proofread error-filled versions of the same passages. Levy 
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(1983) found that participants in the familiar condition detected approximately 10% more 

typographical errors than participants in the unfamiliar condition. They also were faster. 

 One explanation for why familiarity facilitated proofreading is based on the observation 

that proofreading is a complex cognitive activity requiring multiple levels of processing, 

including word recognition, text integration, and comprehension (Levy, 1983). If participants in 

the familiar condition understood the text prior to proofreading it, they could allocate greater 

attention to word recognition and text integration while proofreading. Greater attention to the 

visual aspects of the text might have facilitated error detection, especially because the errors 

were all non-words: for example, the word about was changed to ahout. These types of errors 

would be particularly salient if one were attending primarily to lower-level word recognition 

processes. By contrast, participants in the unfamiliar condition would have to simultaneously 

engage in both lower-level word recognition and higher-level comprehension during the 

proofreading task, possibly taking attentional resources away from a more thorough visual 

analysis. This could explain why participants in the unfamiliar condition performed worse than 

participants in the familiar condition. 

 However, there are concerns with Levy’s (1983) findings. First, modern word processors 

have “spell check” to flag non-words. If familiarity only facilitates the detection of non-words 

during proofreading, then this benefit is largely inconsequential given present-day technology 

(handwritten messages would be an exception). Second, because participants in the familiar 

condition proofread not only more accurately but also more rapidly, they may not have been 

reading the text at all. Instead, they may have been visually scanning it for non-word letter 

combinations and eschewing higher order comprehension altogether.  
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 To test this hypothesis, Levy, Newell, Snyder, and Timmins (1986) investigated whether 

familiarity also facilitated the detection of word errors. A word error occurs when a word is 

changed to a different, contextually-inappropriate word. For example, Levy et al. (1986) 

exchanged the word sale for sail, a homophone. Other errors were prefix substitutions (e.g., 

loved was swapped for unloved) and single-letter substitutions that altered a word’s 

pronunciation (e.g., major was swapped for mayor). Levy et al. (1986) manipulated familiarity in 

the same way as Levy (1983): in one condition, participants proofread passages; in the other 

condition they familiarized themselves with error-free versions of the passages before 

proofreading. If participants in the familiar condition were scanning the text for salient non-

words without analyzing the passages’ meaning, word errors might go undetected. 

 Instead, Levy et al. (1986) found that familiarity with the text facilitated the detection of 

both non-word and word errors. The advantage of familiarity extended to all types of word 

errors, including homophones, prefix substitutions, and single-letter alterations affecting 

pronunciation. This suggests that participants in the familiar condition were processing higher-

level syntactic-semantic aspects of the text while proofreading, ruling out a “visual scanning” 

account of the results. Participants in the familiar condition processed the meaning of the text 

while proofreading and may have detected more word errors because they could compare their 

understanding of the text as they read it with their prior understanding of it.  

 A straightforward implication of these results is that error detection should be facilitated 

when we proofread our own work. Typically, we are highly familiar with our own writing, 

especially after having spent weeks or months working on a project. If Levy et al.’s (1986) 

hypothesis is correct, then having prior understanding of our work should support the detection 

of word errors because we can compare what we wrote to what we meant to write. Furthermore, 
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if familiarity facilitates reading comprehension, then attentional resources may be spared for 

more thorough visual processing of the text. This, in turn, might lead to greater detection of non-

word errors. Based on Levy and colleagues’ hypothesis, it follows that we should be excellent 

proofreaders of our own writing. 

The Self-Generation Effect  

However, there is reason to think that we may be worse at proofreading our own writing 

than the writing of others. Daneman and Stainton (1993) had participants spend 30 minutes 

writing a short essay on student life. They then assigned them to one of three conditions: in the 

self-generated condition, they proofread the essay they had just written; in the unfamiliar other-

generated condition, they proofread a different student’s essay; and in the familiar other-

generated condition, they familiarized themselves with a different student’s essay by reading it 

three times prior to proofreading an error-filled version. All participants were told that errors had 

been added to the essays before they began proofreading. 

Daneman and Stainton (1993) found that students who proofread their own essays 

detected 20% fewer errors than students who proofread a familiar essay written by someone else. 

Furthermore, replicating the results of Levy et al. (1986), students who proofread a familiar 

essay written by someone else detected 7% more errors than students who proofread an 

unfamiliar essay. This suggests that familiarity enhances proofreading only up to a point — once 

an essay is overfamiliar, performance decreases substantially, as shown in Figure 1.  
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Figure 1. Relationship between proofreading performance and familiarity with the essay being 

proofread. Means are presented at the base of each bar. Data from Experiment 1 of Daneman and 

Stainton (1993).  

 

 

 

Supporting this interpretation of the results, in a second experiment Daneman and 

Stainton (1993) had participants proofread essays two weeks after writing them. They 

hypothesized that if overfamiliarity led to poor proofreading performance, then after two weeks 

participants’ memory for their own essays would decay and overfamiliarity would no longer be a 

problem. Indeed, two weeks later, participants were able to proofread their own essays just as 

accurately as a familiar essay written by someone else.  

Daneman and Stainton’s (1993) results suggest that overfamiliarity, from having just 

written an essay and being “intimately acquainted with [its] semantic and syntactic features,” 

hinders proofreading performance (p. 306). Specifically, they argued that overfamiliarity 

automatically influences reading behaviors, causing participants to engage in a top-down, 

“expectancy-driven” (p. 299) style of processing that reduces attention to the visual and 
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semantic-syntactic aspects of the text. This worsens proofreading performance, they argued, 

because a thorough visual and semantic-syntactic analysis is necessary to detect errors.  

Today, nearly three decades later, Daneman and Stainton’s (1993) hypothesis about the 

mechanism underlying the self-generation effect has still not been rigorously tested. However, 

eye tracking can shed light on the focus of attention during reading and, in turn, can illuminate 

cognitive processes supporting proofreading performance. In particular, eye tracking could be 

used to measure indicators of top-down or “expectancy-driven” processing during proofreading. 

This would allow us to test Daneman and Stainton’s (1993) hypothesis that a reliance on top-

down processing drives the relationship between overfamiliarity and poor proofreading 

performance. 

Top-Down and Bottom-Up Processing  

 Before reviewing the literature on eye movements during reading, it is worth noting the 

distinction between top-down and bottom-up processes and how it might relate to reading 

comprehension. Typically, top-down processing refers to user-driven, or internally guided, 

allocation of attention, whereas bottom-up processing refers to stimulus-driven, or externally 

guided, allocation of attention (Wolfe, 2014).  

Kintsch (2005) argued that both top-down and bottom-up processes interact to produce 

text comprehension. In particular, Kintsch suggested that bottom-up processing during reading 

— a data-driven process based on analysis of the perceptual details of the text — results in 

knowledge activation. In turn, activated knowledge serves as a top-down constraint or backdrop 

against which further information is processed.  

In one example of this interaction between bottom-up and top-down processing, Kintsch 

(2005) tells a story about a trip to the grocery store, but the story is filled with ambiguities 



 

26 

because the context is never stated explicitly. However, once the reader has established a 

“grocery shopping” schema, either through induction or instruction, ambiguous sentences are 

readily understood within this top-down constraint. For instance, given the sentence “She was 

surprised by how much she had to pay” (p. 127), the reader can infer that a woman was at a 

checkout counter and paying for her groceries. None of this information is provided in the 

vignette. This example of an interaction between top-down and bottom-up processing reveals 

that textual information is not processed in a vacuum but, rather, is readily influenced by our 

expectations about it. As Kintsch (2005) stated, “What we see is in part determined by what we 

expect to see” (p. 127). A demonstration of this effect is found in some of the popular illusions 

shown in Figure 2, in which readers tend to see what they expect instead of what is presented.  

 

 
Figure 2. Readers often see the statements “I love Paris in the springtime” and “A bird in the 

bush” in the examples above, failing to detect the repetition of the word “the” in each case. One 

explanation for this phenomenon is an overreliance on top-down processing.  

 

 

 

In the context of proofreading, Daneman and Stainton (1993) characterize top-down 

processing as “expectancy-driven processing” (p. 299), by which they mean the guidance of 

attention by a mental representation of the material being read (i.e., a knowledge-driven process; 
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Kintsch, 1988). Mental representations can take many forms, such as general schemas — as was 

the case in the “grocery shopping” example — or a more specific memory of a passage of text, 

perhaps because one has seen the same passage before.  

A familiar idiom can serve as the basis for expectancy-driven processing. For example, a 

key word can be missing from the following phrase, but most readers will not have trouble 

understanding its meaning: “Fool me once, shame on you. Fool me twice, shame on ____.” In 

this example, expectancy-driven processing readily fills in the blank with the word “me.” As 

another example, our use of expectancy-driven processing becomes particularly salient when 

expectations are defied in noticeable ways, as in the now-classic quote from George W. Bush, 

“Fool me once, shame on you. Fool me—you can’t get fooled again” (“Top 10 Bushisms,” 

2009). 

Daneman and Stainton (1993) argued that an overreliance on expectancy-driven 

processing during proofreading resulted in a failure to detect word and non-word errors. Their 

hypothesis was that participants did not thoroughly process most of the words in their essays and 

instead used the occasional word as a retrieval cue, filling in the blanks with a mental 

representation of the essay they wrote.  

An important question, however, is why participants who were asked to carefully 

proofread an essay relied on a style of processing ill-suited to spot mistakes. Pilotti and 

Chodorow (2012) suggest that a shift to relying on top-down processing might be an automatic 

and unintentional consequence of overfamiliarity. Specifically, they cite evidence from priming 

experiments to argue that prior exposure to a stimulus affects the likelihood that memory 

influences processing of that stimulus (see, e.g., Crabb & Dark, 1999, 2003).  
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Indeed, there are instances when experts appear to reflexively engage in top-down 

processing of material within their domain of skill, sometimes at the expense of task 

performance. For instance, chess experts are reliably faster than novices at detecting whether a 

King is in check (i.e., under attack) (Reingold, Charness, Pomplun, & Stampe, 2001). However, 

a cost of expertise, similar to a Stroop-like interference effect, can be observed when players are 

told to indicate if the King is in check by a cued piece. On trials in which only a non-cued piece 

attacks the King, chess experts are slower to respond than when no cue is used at all (Reingold, 

Charness, Schultetus, & Stampe, 2001). This suggests that chess experts automatically process 

the whole position despite instructions to focus on only a particular piece, and their performance 

is negatively affected as a result. Thus, it seems plausible that students who were overly familiar 

with their own writing might have had similar trouble disengaging from an automatic, top-down 

processing style during the proofreading task. 

Eye Movements 

 One way to ascertain whether people rely on top-down processing when proofreading 

their own work is to examine their eye movements. The use of eye tracking to study reading 

behaviors has a rich history, spanning well over a century (Javal, 1878; Tinker, 1927). This is 

because the movement of the eyes during reading can be used to gain insight into the cognitive 

processes supporting comprehension. As Just and Carpenter (1980) state: 

Unlike a listener, a reader can skip over portions of the text, reread sections, or pause on a 

particular word. A reader can take in information at a pace that matches the internal 

comprehension processes. By examining where a reader pauses, it is possible to learn 

about the comprehension processes themselves. (p. 329) 
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Similarly, Rayner (1998) states that “eye movements are intimately related to the moment-to-

moment cognitive processing activities of readers” (p. 390). This suggests that eye tracking 

could be used to better understand the cognitive processes involved in proofreading. 

 What do typical reading behaviors look like through the lens of the eye tracker? Readers 

make rapid eye movements, called saccades, which are interleaved by periods of fixation, during 

which the eyes are relatively still (Rayner, 1978). The average fixation during silent reading lasts 

around 225 ms (Rayner, 1998). The average saccade spans approximately 8 letters and is 

somewhat invariant to the size of the typeface (Rayner, 1998). Readers make saccades in order to 

align the fovea, the center of the field of view, with the portion of the text that needs to be 

perceived accurately. This is because the fovea has better visual acuity than the parafoveal and 

peripheral visual fields (Latham & Whitaker, 1996; Rayner, Inhoff, Morrison, Slowiaczek, & 

Bertera, 1981).  

 English is read from left to right, but readers occasionally make regressions, moving their 

eyes from right to left or back to a previous line. Approximately 10-15% of saccades are 

regressions, which tend to occur if the reader has made too far of a forward saccade or is having 

difficulty understanding the material just read (Frazier & Rayner, 1982; Rayner, 1998). Readers 

can also fixate the same word multiple times; these fixations are often grouped together prior to 

data analysis so that the total time spent fixating the word, the dwell time, can be used as an 

index of processing time (Gidlöf, Wallin, Dewhurst, & Holmqvist, 2013).  

 Not all words are fixated during reading. Just and Carpenter (1980) found that people 

averaged 1.2 words per fixation when reading unfamiliar text. Providing a slightly different 

estimate, Brysbaert and Vitu (1998) report that proficient English readers can skip up to one third 

of the words in a passage. Furthermore, some words are more likely to be fixated than others. 
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Just and Carpenter (1980) state that readers are more likely to fixate longer words than shorter 

words. Short function words such as “the” are often skipped by skilled readers (recall “A bird in 

the the bush” from Figure 2) (O’Regan, 1975, as cited in Rayner, 1998).  

For example, Healy (1976) asked participants to read short passages of text and circle 

instances of the letter “t.” Participants were more likely to overlook the letter “t” when it was 

embedded in the word “the” than when it was embedded in the word “thy.” Healy (1976) 

attributed this effect to the high frequency of the word “the” (see also Minkoff & Raney, 2000). 

Healy’s (1976) work reinforces Kintsch’s (1988) point that reading is not driven exclusively by 

bottom-up processing. If it were, participants would have no more trouble spotting the letter “t” 

in the word “the” than in the word “thy.” Rather, skilled readers are akin to experts, who at times 

have difficulty inhibiting automatic processing of material within their domain of skill.  

 One debate in the literature concerns the frequency with which content and function 

words are fixated during reading. Function words, such as “and,” “or,” “the,” and “a,” primarily 

serve to indicate grammatical relations between the other words in a sentence (Schmauder, 

Morris, & Poynor, 2000). As such, function words include articles, pronouns, particles, and 

conjunctions. By contrast, content words, such as “school,” “notes,” “test,” and “essay,” are 

laden with compositional meaning (Schmauder et al., 2000). Content words include nouns, 

verbs, and adjectives. 

Carpenter and Just (1983) found that readers fixated 83% of content words but only 38% 

of function words in an essay reading task. This would seem to suggest that content words are 

fixated more often than function words. However, frequency and word length were confounding 

variables in Carpenter and Just’s (1983) experiment. That is, the function words were shorter in 

length and higher in frequency than the content words, and both factors have been found to 
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influence the likelihood of fixation (Rayner, 1998). To disentangle these confounds, Schmauder 

et al. (2000) matched function and content words for length and frequency and embedded them 

in short passages of text. They found that participants were just as likely to skip function words 

as content words: approximately 17% of each were skipped.  

Indicators of Top-Down and Bottom-Up Processing  

 Given the tight coupling of the focus of attention and the movement of the eyes during 

reading, indicators of bottom-up or top-down processing should be detectable in the eye 

movements of readers. To reiterate, top-down processing is knowledge-driven. By contrast, 

bottom-up processing is stimulus-driven; during reading, it is based on the perceptual details of 

the text (Kintsch, 2005). Thus, if a reader engaged primarily in bottom-up processing, one might 

expect to observe fixations on many of the words in a passage. Some support for this prediction 

is provided by Just and Carpenter’s (1980) observation that participants average 1.2 words per 

fixation when reading unfamiliar text. Although participants were not prevented from engaging 

in top-down processing, the use of an unfamiliar passage meant that they had less knowledge to 

bring to bear on the reading process than if a familiar passage had been used. 

If readers fixate most words when engaging in bottom-up processing, then the average 

length of their saccades must be short. This is because fixating every word in a sequence 

necessitates short saccades between words. Readers engaging in more bottom-up processing 

might also have longer dwell times because a thorough visual analysis of the text requires more 

processing time than a less thorough analysis (Rayner, 1998). In sum, readers engaging in more 

bottom-up processing might make more fixations, shorter saccades, and have longer dwell times 

than readers engaging in less bottom-up processing.  
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 Conversely, a top-down or “expectancy-driven” reading style might result in a different 

pattern of eye movements. Readers who have a robust mental representation of a passage may 

not fixate every word during reading (Pilotti & Chodorow, 2009). Instead, they may make few 

fixations with large saccades in between. Furthermore, if readers do not engage in a thorough 

perceptual analysis of the text, they may not spend as much time dwelling per fixation (Rayner, 

1998). Thus, readers engaging in more top-down processing may make fewer fixations, longer 

saccades, and have shorter dwell times than readers engaging in less top-down processing. 

 One way to test the influence of top-down or knowledge-driven processes on reading is to 

observe how eye movements change after reading the same passage multiple times. On a second 

reading, knowledge of the text can be brought to bear on the reading process. Therefore, the 

second reading is more conducive to top-down processing than the first. Hyönä and Niemi 

(1990) asked participants to read the same essay twice and instructed them to read for 

comprehension because there would be a memory test later. Relative to the first reading, on the 

second reading participants made fewer fixations per sentence (9.3 vs. 9.8), fewer regressions per 

sentence (1.0 vs. 1.2), and spent less time dwelling per fixation (243 ms vs. 254 ms). This result 

indicates that top-down influences affect the movement of the eyes during reading and that this 

effect can be detected using an eye tracker.  

 In a related study, Raney, Therriault, and Minkoff (2000) found that the effect of 

knowledge on eye movements during reading extended to paraphrased text. First, they had 

participants read an essay once for comprehension. Next, they had them read a paraphrased 

version of the same essay. If participants had developed an understanding of the first essay, then 

this knowledge might influence how they read the paraphrased version. When they compared 

participants’ eye movements while they read the first essay and the paraphrased version, they 
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found that relative to the first essay, participants spent less time reading paraphrased passages 

(28.4 s vs. 33.5 s), made fewer forward fixations (74.9 vs. 87.6), and spent less time dwelling per 

forward fixation (245 ms vs. 255 ms). Thus, it appears that there are reliable effects of 

knowledge on reading behaviors, as shown in Table 1. 

 

Table 1. Eye movements during reading indicative of top-down or bottom-up processing 

Processing Style Number of Fixations Saccade Distance Dwell Time 

Top-Down Less Longer Shorter 

Bottom-Up More Shorter Longer 
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AUTOMATIC PROCESSING DURING PROOFREADING 

In this chapter, I present two experiments designed to test Daneman and Stainton’s 

(1993) hypothesis that robust memory for self-generated text leads to an overreliance on top-

down processing, which in turn leads to reduced error detection. Although the goal of this work 

is to better understand the self-generation effect in proofreading, the broader purpose is to reveal 

a hidden cost of expertise: the sometimes detrimental effect of automatic processing of familiar 

material. 

Experiment 1 

 Experiment 1 was conducted in two sessions and was designed as a near replication of 

Daneman and Stainton (1993), incorporating the use of a computerized proofreading task and 

eye tracking during proofreading. The predictions are based on Daneman and Stainton’s (1993) 

results and hypotheses. The first prediction is that during Session 1, students who proofread their 

own essay shortly after writing it (the self-generated condition) will detect fewer errors than 

students who proofread someone else’s essay (the other-generated condition). The second 

prediction is that students in the self-generated condition will make fewer fixations, longer 

saccades, have shorter dwell times, and spend less time proofreading than students in the other-

generated condition. The third prediction is that during Session 2, which occurs one week after 

Session 1, students who proofread the essay they wrote one week prior will detect more errors 

than students who proofread an unfamiliar essay written by someone else.  

Participants 

 The participants were 64 undergraduate students (53 females, Mage = 19.28, SD = 1.29) 

recruited from introductory psychology courses at Michigan State University. They earned 

course credit for participating. All reported normal or corrected-to-normal vision and stated that 
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English was their first language. All participants provided informed consent. Of the 64 

participants who attended Session 1, 50 returned to the laboratory one week later for Session 2. 

One participant failed to follow instructions and was excluded from proofreading analyses for 

both sessions. Another participant was dismissed from Session 2 because the eye tracker 

calibration failed. This left a useable sample of 63 for Session 1 and 48 for Session 2 for the 

proofreading analyses. 

Procedure  

 Participants were tested individually in the laboratory. Each session lasted approximately 

1.5 hours. During Session 1, participants typed a short essay on student life, describing their 

coursework, the food on campus, and recreational activities. Next, they completed a reading 

comprehension test. While they were completing the reading comprehension test, any errors in 

their essays were corrected by the experimenter and 20 errors were added to the essays. Next, 

participants proofread either their own essay or another participant’s essay. Finally, they 

completed a test of fluid intelligence (Raven’s Advanced Progressive Matrices) and a test of 

perceptual speed (Letter/Number Comparison). 

 Session 2 occurred exactly one week later. First, participants completed another reading 

comprehension test. Next, they proofread either the essay they had written one week prior or 

another participant’s essay. Finally, participants completed a test of working memory (Symmetry 

Span), a test of perceptual speed (Pattern Comparison), another test of working memory (Visual 

Arrays), and a test of fluid intelligence (Letter Sets).  

Materials 

 Essay Writing Task. Participants were asked to type an essay on student life using a 

computer with “spell check” disabled. They were given the following instructions, adapted from 
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Daneman and Stainton (1993): “In this task we would like you to write a short essay about 

college life. Try to write as quickly as possible because you will only be given 20 minutes. We 

would like you to write about three topics related to student life: your classes and coursework, 

food, and things students do for fun. Don't be concerned about the literary quality of your work 

or your typing accuracy. Your essay may be used to determine what events are most typical in a 

student's life.” Participants were asked to continue writing until a large textbox presented on the 

screen was filled with text; essays were approximately 500 words long.  

 Adding Errors to Essays. Prior to adding errors to participants’ essays, an experimenter 

read each essay and corrected typographical or grammatical mistakes. Next, a computer 

program1 added 20 errors to each essay: six function word errors (e.g., or changed to of), six 

function non-word errors (e.g., are changed to ane), four content word errors (e.g., life changed 

to like), and four content non-word errors (e.g., notes changed to nofes).2 Thus, 10 word errors 

and 10 non-word errors were added to the essays; 12 were function errors and 8 were content 

errors. The errors added to the essays were randomly drawn from a list of target words. The list 

was developed during pilot testing and consisted of words that frequently occurred in 

participants’ essays and the 24 error words provided in an example essay by Daneman and 

Stainton (1993, p. 303). The use of the list ensured that similar types of errors were embedded in 

different participants’ essays.  

Prior to saving the essays with errors added to them, an experimenter read each essay to 

ensure that the word errors were indeed erroneous in context. That is, they were checked to make 

                                                           
1 The error-adding program was developed by a friend and colleague, Sari Sadiya. I am grateful to Sari for his help 

with these experiments.  
2 During pilot testing, this appeared to be the maximum number of errors that could be added to participants’ essays 

while consistently preserving the intended meaning of the sentences in which they were embedded. For comparison, 

Daneman and Stainton (1993) added 24 errors to their essays: 12 were word errors and 12 were non-word errors. 

Ten of the errors altered content words and 14 altered function words. 
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sure that they were nonsensical in the sentences in which they were embedded. Occasionally, a 

sentence made sense with a word error embedded. When this occurred, the error-adding 

computer program was run again, and the resulting essay was checked again. 

 Reading Comprehension Tests. Participants completed computerized versions of the 

Nelson Denny Reading Test (Brown, Fishco, & Hanna, 1993), the same test used by Daneman 

and Stainton (1993). Participants completed different versions of the test during Sessions 1 and 

2. Each version included seven reading passages and 38 questions with five answer choices. The 

time limit was 20 minutes, and the measure was the number of correctly answered questions. An 

overall reading comprehension score was computed by averaging performance on the two tests. 

 Proofreading Task. Participants performed the proofreading task using a specially-

designed computer program.3 Participants read the following instructions: “In this task you will 

read an essay. A number of errors have been inserted into the essay. Your task is to read the 

essay and highlight the errors. You can highlight errors in the essay by clicking and dragging 

with the left mouse button. To unhighlight something, click and drag with the right mouse button. 

You should try to proofread as quickly and accurately as possible.” Then, an essay with errors 

embedded in it was presented, and they proofread the essay. Participants were instructed to press 

the “escape” key on the keyboard when they reached the end of the essay. That is, participants 

were instructed not to re-read the essay. 

 Eye movements during proofreading were recorded using an EyeLink 1000. Left eye 

gaze was tracked at a temporal resolution of 1000 Hz. Stimuli were presented on a monitor 

positioned 692 mm from the participant, with screen dimensions of 433 × 271 mm and a 

resolution of 1680 × 1050 px. Drift correction was administered prior to displaying the essay to 

                                                           
3 I am grateful to David MacFarlane for his help developing the proofreading program. 
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be proofread. The EyeLink 1000 on-line parser was used to detect saccade and blink events. 

Additional filtering removed saccades larger than half the display size to omit eye movements 

between new lines.  

Participants were randomly assigned to one of two conditions, as shown in Table 2. 

During Session 1, participants in the self-generated condition proofread the essay that they had 

written approximately 20 minutes prior, whereas participants in the other-generated condition 

proofread an essay written by another participant. Participants were tested individually, but their 

condition assignments were “yoked” in pairs, such that the first participant in each pair was 

assigned to the self-generated condition and the second participant was assigned to the other-

generated condition and proofread the essay written by the first participant in their pair. During 

Session 2, participants in the self-generated condition proofread the essay written by the other 

participant in their pair; this will be referred to as the “other-generated” group in Session 2. 

Conversely, participants in the other-generated condition proofread the essay they had written 

one week prior; this will be referred to as the “self-generated one week ago” group in Session 2. 

 

Table 2. Condition assignments for the proofreading task in Experiment 1 

Condition Session 1 Session 2 

Self-generated Proofread own essay (N = 33) Proofread another participant’s 

essay (N = 25) 

Other-generated Proofread another participant’s 

essay (N = 30) 

Proofread own essay written one 

week ago (N = 23) 

 

 

Raven’s Advanced Progressive Matrices. In this test of fluid intelligence, participants 

were shown a set of patterns with the lower-right part missing. Participants selected from a list of 

options the pattern that logically completed the set. They were given 10 minutes to complete the 
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18 odd-numbered items from the test (Raven & Court, 1998). The measure was the number of 

correct responses. 

 Letter/Number Comparison. In this test of perceptual speed, participants determined 

whether two strings of letters or numbers were the same or different. They were given 30 s for 

each set of 72 items (Salthouse & Babcock, 1991); there were two sets of letter items and two 

sets of number items. The measure was the number of correct responses. 

Symmetry Span. In this test of working memory, participants made judgments about the 

symmetry of images while memorizing the position of squares appearing after each judgment 

(Oswald, McAbee, Redick, & Hambrick, 2015). The measure was the number of correctly 

recalled square positions. 

 Pattern Comparison. In this test of perceptual speed, participants determined whether 

two symbols were the same or different. They were given 30 s for each set of 30 items; there 

were two sets of items (Salthouse & Babcock, 1991). The measure was the number correct minus 

two times the number incorrect. 

 Visual Arrays. In this test of working memory, participants were sequentially shown a 

memory array of two to eight colored squares, a blank display, and a test array, which was either 

identical to the memory array or different. They determined whether the arrays were the same or 

different. There were 80 trials (Burgoyne, Hambrick, & Altmann, 2019). The measure was the 

number of correct responses.  

Letter Sets. In this test of fluid intelligence, participants were shown five sets of four 

letters (e.g., DEFG) and chose the set that did not follow the same pattern as the other four. 

Participants were given five minutes to complete 20 items (Harmon, Ekstrom, French, & 

Dermen, 1976). The measure was the number of correct responses. 
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Results of Experiment 1 

Session 1 Results 

 Examination of participants’ proofreading performance suggests that Daneman and 

Stainton’s (1993) results were not replicated (see Figure 3). That is, whereas the self-generated 

group was expected to detect fewer errors than the other-generated group during Session 1, the 

opposite pattern of results emerged: the self-generated group (M = 88.64%) detected 5.31% more 

errors than the other-generated group (M = 83.33%), but this difference was not statistically 

significant, t(61) = 1.92, d = .49, p = .059.  

 

 

Figure 3. Proofreading performance in Session 1 of Experiment 1. Means are presented at the 

base of each bar. Error bars represent ± 1 standard error around the mean.  
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Word and Non-Word Errors. A paired-samples t-test revealed that participants did not 

detect significantly more non-word errors (M = 87.30%, SD = 12.85%) than word errors (M = 

84.92%, SD = 15.95%), t(62) = 1.02, d = .16, p = .310. 

Word error and non-word error detection rates are plotted in Figure 4. The self-generated 

group detected significantly more word errors (M = 89.39%) than the other-generated group (M 

= 80.00%), t(61) = 2.43, d = .61, p = .018. That is, familiarity from having generated the text 

oneself facilitated the detection of word errors. By comparison, the self-generated group did not 

detect significantly more non-word errors (M = 87.88%) than the other-generated group (M = 

86.67%), t(61) = 0.37, d = .09, p = .712.  

 

 

Figure 4. Word error and non-word error detection rates in Session 1 of Experiment 1. Means 

are presented at the base of each bar. Error bars represent ± 1 standard error around the mean. 
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Content and Function Errors. A paired-samples t-test revealed that participants 

detected significantly more content errors (M = 89.09%, SD = 12.80%) than function errors (M = 

84.13%, SD = 13.61%), t(62) = 2.67, d = .38, p = .010. 

Content error and function error detection rates are plotted in Figure 5. The self-generated 

group detected 6.22% more content errors (M = 92.05%) than the other-generated group (M = 

85.83%), but this difference was not significant, t(61) = 1.97, d = .50, p = .054. The self-

generated group did not detect significantly more function errors (M = 86.36%) than the other-

generated group (M = 81.67%), t(61) = 1.38, d = .35, p = .173.  

 

 

Figure 5. Content error and function error detection rates in Session 1 of Experiment 1. Means 

are presented at the base of each bar. Error bars represent ± 1 standard error around the mean.  

 

 

 

Eye Tracking. Eye tracking data from the proofreading task suggest that the self-

generated group engaged in less thorough visual analysis than the other-generated group during 
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Session 1 (see Table 3). The self-generated group made fewer fixations (M = 660.9) than the 

other-generated group (M = 776.7), t(61) = 2.30, d = .58, p = .025. The self-generated group also 

made larger saccades (M = 44.5 px) than the other-generated group (M = 38.4 px), t(61) = 2.21, d 

= .56, p = .031. Although not significantly different, the self-generated group spent less time 

proofreading (M = 187.8 s) than the other-generated group (M = 209.4 s), t(61) = 1.75, d = .44, p 

= .085. The only result to trend opposite the predicted direction was for dwell time; the self-

generated group spent slightly more time dwelling per fixation (M = 284.7 ms) than the other-

generated group (M = 275.2 ms), t(61) = 1.10, d = .28, p = .274. 

 

Table 3. Descriptive statistics for the proofreading task in Session 1 of Experiment 1  

Measure 

Self- 

Generated 

Other- 

Generated 

Independent Samples Test of 

Difference Between Groups 

Session 1 Proofreading     

  Total errors detected (%) 88.6 (09.0) 83.3 (12.7) t(61) = 1.92, d = .49, p = .059 

    Word errors (%) 89.4 (09.3) 80.0 (20.0) t(61) = 2.43, d = .61, p = .018 

    Non-word errors (%) 87.9 (14.3) 86.7 (11.2) t(61) = 0.37, d = .09, p = .712 

    Content errors (%) 92.1 (09.8) 85.8 (15.0) t(61) = 1.97, d = .50, p = .054 

    Function errors (%) 86.4 (11.0) 81.7 (15.8) t(61) = 1.38, d = .35, p = .173 

    

Session 1 Eye Tracking    

  Number of fixations 660.9 (128.0) 776.7 (257.0) t(61) = 2.30, d = .58, p = .025 

  Saccade distance (px) 44.5 (10.5) 38.4 (11.4) t(61) = 2.21, d = .56, p = .031 

  Dwell time (ms) 284.7 (30.8) 275.2 (37.3) t(61) = 1.10, d = .28, p = .274 

  Time spent (s) 187.8 (38.4) 209.4 (58.7) t(61) = 1.75, d = .44, p = .085 

Note. Means are presented with standard deviations in parentheses.  

 

 

 

Two eye tracking measures correlated significantly with overall proofreading 

performance, as shown in Table 4: number of fixations (r = .27, p = .035) and time spent 

proofreading (r = .35, p = .005). Participants who made more fixations or spent more time 

proofreading detected more errors than participants who made fewer fixations or spent less time 

proofreading. Three eye tracking measures correlated significantly with non-word error 
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detection: number of fixations (r = .29, p = .023), saccade distance (r = -.26, p = .039), and time 

spent proofreading (r = .32, p = .011). The negative correlation with saccade distance indicates 

that participants who made shorter saccades detected more non-word errors. 

 

Table 4. Correlations between proofreading performance and eye movements in Session 1 of 

Experiment 1 

Measure 1. 2. 3. 4. 5. 6. 7. 8. 

1. Proofreading performance  ---        

2. Word errors detected .83 ---       

3. Non-word errors detected  .71 .19 ---      

4. Content errors detected  .74 .56 .58 ---     

5. Function errors detected  .91 .77 .61 .38 ---    

6. Number of fixations .27 .14 .29 .16 .27 ---   

7. Saccade distance  -.17 -.03 -.26 -.12 -.16 -.71 ---  

8. Dwell time  .17 .19 .06 .16 .13 -.37 .20 --- 

9. Time spent proofreading .35 .23 .32 .23 .33 .89 -.68 .08 

Note. Bolded correlations are statistically significant at p < .05. N = 63. 

 

 

 

Cognitive Ability. Descriptive statistics for the cognitive ability measures are presented 

in Table 5. None of the cognitive ability measures correlated significantly with overall 

proofreading performance, word error detection, non-word error detection, or content error 

detection during Session 1, as shown in Table 6. However, function error detection correlated 

significantly with performance on the two tests of fluid intelligence, Raven’s Matrices (r = .26, p 

= .042) and Letter Sets (r = .29, p = .043). 
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Table 5. Descriptive statistics for cognitive ability measures in Experiment 1 

Measure N M SD Range Reliability 

Reading comprehension 64 30.00 4.49 15.00 – 35.50 .72 

Raven’s matrices 61 9.34 3.38 3 – 17 .76 

Letter sets 49 10.63 2.91 4 – 15 .76 

Symmetry span 49 28.37 7.69 12 – 42 .75 

Visual arrays 49 58.53 13.68 10 – 75 .93 

Letter/number comparison 61 21.11 3.50 12.50 – 29.00 .78 

Pattern comparison 49 31.37 7.15 8 – 48 .68 

Note. Reliability was calculated using Cronbach’s alpha (α) based on item-level performance for 

all measures except letter/number comparison and pattern comparison, for which split-half 

coefficients were computed. Raven’s matrices and letter/number comparison were not completed 

by three participants during Session 1 due to time constraints.   
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Table 6. Correlations between proofreading performance and cognitive ability in Experiment 1 

Measure 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 

  1. Proofreading performance (S1) ---                

  2. Word errors detected (S1) .83 ---               

  3. Non-word errors detected (S1) .71 .19 ---              

  4. Content errors detected (S1) .74 .56 .58 ---             

  5. Function errors detected (S1) .91 .77 .61 .38 ---            

  6. Proofreading performance (S2) .37 .45 .08 .18 .39 ---           

  7. Word errors detected (S2) .33 .43 .03 .15 .35 .86 ---          

  8. Non-word errors detected (S2) .24 .24 .11 .13 .24 .65 .19 ---         

  9. Content errors detected (S2) .31 .34 .10 .14 .33 .63 .48 .51 ---        

10. Function errors detected (S2) .28 .36 .04 .14 .29 .88 .80 .52 .18 ---       

11. Reading comprehension .01 .08 -.09 .02 .00 .20 .10 .23 .18 .14 ---      

12. Raven’s matrices .21 .18 .14 .04 .26 .22 .06 .32 .25 .12 .34 ---     

13. Letter sets .23 .13 .23 .03 .29 .45 .35 .35 .35 .36 .35 .51 ---    

14. Symmetry span .18 .02 .28 .19 .13 .16 .11 .14 .00 .20 .02 .22 .37 ---   

15. Visual arrays -.12 -.10 -.07 -.11 -.09 -.10 -.01 -.20 -.18 -.02 .20 .09 .18 .32 ---  

16. Letter/number comparison -.07 -.19 .11 -.12 -.02 -.18 -.08 -.22 -.14 -.14 .03 -.04 .04 .23 -.05 --- 

17. Pattern comparison .13 .22 -.05 .24 .03 -.01 -.03 .03 -.10 .05 .05 .20 .08 .16 .07 -.11 

 Note. Bolded correlations are statistically significant at p < .05. Ns range from 45 to 63. S1 = Session 1; S2 = Session 2. 
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Session 2 Results 

To reiterate, the names of the conditions change from Session 1 to Session 2. The “self-

generated” group from Session 1 will be referred to as the “other-generated” group in Session 2 

because they proofread an essay written by someone else during Session 2. The “other-

generated” group from Session 1 will be referred to as the “self-generated one week ago” group 

in Session 2 because they proofread the essay they wrote one week prior during Session 2.  

Examination of proofreading performance during Session 2 revealed further lack of 

support for Daneman and Stainton’s (1993) findings (see Figure 6 and Table 7). Contrary to 

prediction, the other-generated group detected 3.60% more errors (M = 87.69%) than the self-

generated one week ago group (M = 84.09%) during Session 2, but this difference was not 

significant, t(46) = 1.44, d = .42, p = .158.  

 

 

Figure 6. Proofreading performance in Session 2 of Experiment 1. Means are presented at the 

base of each bar. Error bars represent ± 1 standard error around the mean.  
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Table 7. Descriptive statistics for the proofreading task in Session 2 of Experiment 1   

Measure 

Other- 

Generated 

Self-Generated  

One Week Ago 

Independent Samples Test of 

Difference Between Groups 

Session 2 Proofreading     

  Total errors detected (%) 87.7 (07.0) 84.1 (10.3) t(46) = 1.44, d = .42, p = .158 

    Word errors (%) 81.5 (11.9) 80.9 (15.4) t(46) = 0.16, d = .05, p = .874 

    Non-word errors (%) 93.8 (05.7) 87.3 (10.8) t(46) = 2.70, d = .78, p = .010 

    Content errors (%) 91.8 (08.6) 88.1 (12.5) t(46) = 1.24, d = .36, p = .223 

    Function errors (%) 84.9 (10.0) 81.4 (13.1) t(46) = 1.04, d = .30, p = .302 

    

Session 2 Eye Tracking    

  Number of fixations 658.1 (183.6) 710.3 (212.4) t(46) = 0.91, d = .26, p = .366 

  Saccade distance (px) 44.9 (12.7) 41.6 (11.2) t(46) = 0.93, d = .27, p = .356 

  Dwell time (ms) 265.9 (25.3) 277.2 (46.6) t(46) = 1.06, d = .31, p = .293 

  Time spent (s) 174.4 (46.5) 194.5 (56.6) t(46) = 1.35, d = .39, p = .182 

Note. Means are presented with standard deviations in parentheses.  

 

Word and Non-Word Errors. A paired-samples t-test revealed that participants 

detected significantly more non-word errors (M = 90.83%, SD = 8.95%) than word errors (M = 

81.25%, SD = 13.47%) during Session 2, t(47) = 4.51, d = .83, p < .001. This result is consistent 

with Session 1, but only in Session 2 was the difference significant. 

Word error and non-word error detection rates are plotted in Figure 7. The other-

generated group did not detect significantly more word errors (M = 81.54%) than the self-

generated one week ago group (M = 80.91%), t(46) = 0.16, d = .05, p = .874. However, the 

other-generated group detected significantly more non-word errors (M = 93.85%) than the self-

generated one week ago group (M = 87.27%), t(46) = 2.70, d = .78, p = .010. It is unclear what 

accounts for this unexpected finding. Perhaps participants in the other-generated group were 

more motivated during Session 2 or knew which errors to look for, because they had proofread 

their own essay during Session 1 and recognized similar errors embedded in their writing.  
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Figure 7. Word error and non-word error detection rates in Session 2 of Experiment 1. Means 

are presented at the base of each bar. Error bars represent ± 1 standard error around the mean. 

 

 

 

Content and Function Errors. A paired-samples t-test revealed that participants 

detected significantly more content errors (M = 90.11%, SD = 10.62%) than function errors (M = 

83.33%, SD = 11.53%) during Session 2, t(47) = 3.32, d = .61, p = .002. This finding is 

consistent with the results from Session 1.  

Content error and function error detection rates are plotted in Figure 8. The other-

generated group did not detect significantly more content errors (M = 91.85%) than the self-

generated one week ago group (M = 88.07%), t(46) = 1.24, d = .36, p = .223. The other-

generated group did not detect significantly more function errors (M = 84.92%) than the self-

generated one week ago group (M = 81.44%), t(46) = 1.04, d = .30, p = .302.  
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Figure 8. Content error and function error detection rates in Session 2 of Experiment 1. Means 

are presented at the base of each bar. Error bars represent ± 1 standard error around the mean.  

 

 

 

Cognitive Ability. Next, I examined whether performance on the cognitive ability tests 

correlated with proofreading performance during Session 2. Performance on Letter Sets, one of 

the two tests of fluid intelligence, correlated positively with proofreading performance (r = .45, p 

= .001; see the left panel of Figure 9), word error detection (r = .35, p = .016), non-word error 

detection (r = .35, p = .014), content error detection (r = .35, p = .015), and function error 

detection (r = .36, p = .013). Performance on Raven’s Matrices, the other test of fluid 

intelligence, correlated positively with non-word error detection (r = .32, p = .030; see the right 

panel of Figure 9). These significant positive relationships indicate that participants with higher 

fluid intelligence detected more errors than participants with lower fluid intelligence.  
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Figure 9. Left: scatterplot depicting correlation between Letter Sets and overall proofreading 

performance (r = .45, p = .001) during Session 2 of Experiment 1. Right: scatterplot depicting 

correlation between Raven’s Matrices and non-word error detection rates (r = .32, p = .030) 

during Session 2 of Experiment 1. Data points have been made semi-transparent and jittered 

slightly for readability. Confidence bands represent 95% confidence intervals. 

 

 

 

Eye Tracking. Data from the eye tracker during the proofreading task in Session 2 did 

not reveal any significant differences between groups (all ps > .18). The numerical difference 

between groups, however, trended opposite the predicted direction. That is, the self-generated 

one week ago group made slightly more fixations, shorter saccades, longer dwells, and spent 

more time proofreading than the other-generated group, as shown in Table 7. 

As in Session 1, time spent proofreading correlated significantly with overall 

proofreading performance (r = .30, p = .042; see Table 8). However, unlike in Session 1, the 

correlation between number of fixations and overall proofreading performance was non-

significant (r = .27, p = .064).  
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Table 8. Correlations between proofreading performance and eye movements in Session 2 of 

Experiment 1 

Measure 1. 2. 3. 4. 5. 6. 7. 8. 

1. Proofreading performance  ---        

2. Word errors detected .86 ---       

3. Non-word errors detected  .65 .19 ---      

4. Content errors detected  .63 .48 .51 ---     

5. Function errors detected  .88 .80 .52 .18 ---    

6. Number of fixations .27 .26 .13 .06 .30 ---   

7. Saccade distance  -.24 -.24 -.11 -.04 -.28 -.80 ---  

8. Dwell time  .12 .12 .06 .07 .11 -.21 .00 --- 

9. Time spent proofreading .30 .29 .14 .07 .33 .87 -.78 .28 

Note. Bolded correlations are statistically significant at p < .05. N = 48. 

 

 

 

Interim Discussion 

 Experiment 1 failed to replicate Daneman and Stainton’s (1993) results, as shown in 

Figure 10. Comparing the current results to theirs, although the unfamiliar groups did not 

perform significantly differently from one another, t(38) = 0.07, d = .03, p = .944, the self-

generated groups had a significant mean difference of 18.6%, t(41) = 5.71, d = 2.06, p < .001. 

Daneman and Stainton (1993) did not report standard deviations; estimates from Session 1 of 

Experiment 1 were used for these calculations. However, it is possible that participants in 

Session 1’s self-generated group were merely familiar with their essays, not overfamiliar with 

them. This seems plausible: following Daneman and Stainton (1993), participants were 

instructed to write their essays quickly and to not worry about their literary quality. This may 

have discouraged participants from committing much of what they had written to memory.  
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Figure 10. Comparison of observed results from Session 1 of Experiment 1 to Daneman and 

Stainton’s (1993) results from Experiment 1. “Unfamiliar” refers to the other-generated 

condition; “Familiar” refers to participants who proofread another participant’s essay after 

previewing it (not tested in Experiment 1); “Overfamiliar” refers to the self-generated condition. 

Means are presented at the base of each bar. 

 

 

 

The results of Session 1 of Experiment 1 are consistent with this possibility, as shown in 

Figure 11. That is, if participants were merely “familiar” with the essays they had written, the 

results are similar to Daneman and Stainton (1993): the self-generated group from Session 1 and 

the “familiar” group from Daneman and Stainton (1993) did not perform significantly differently 

from one another, t(41) = 0.42, d = .15, p = .679. From this standpoint, familiarity facilitated 

proofreading and was associated with less thorough visual processing of the text, consistent with 

the literature (Hyönä & Niemi, 1990). Although the results of Session 1 trended in this direction, 

most comparisons between groups were not significant due to insufficient statistical power, a 

point addressed below. 
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Figure 11. Re-plotting observed results, assuming that participants in the self-generated 

condition were familiar with their essays but not overfamiliar with them. Means are presented at 

the base of each bar. 

 

 

 

Experiment 2 

The purpose of Experiment 2 was to attempt to induce the self-generation effect in 

proofreading by encouraging automated processing of self-generated text. The key manipulation 

was that some participants were asked to study an essay and commit it to memory prior to 

proofreading. Specifically, participants were assigned to a self-generated condition or an other-

generated condition, as in Experiment 1, but they were also assigned to either study an essay 

prior to proofreading or not. Thus, there were four conditions: “self-study,” “self-no study,” 

“other-study,” and “other-no study.” 

In addition to the study manipulation, Experiment 2 included a recognition-based 

memory test as a manipulation check to examine the effect of studying on essay memory. 

Participants also completed the cognitive reflection test to assess whether miserly cognitive 

processing correlated negatively with proofreading, and the need for cognition questionnaire to 

test whether need for cognition correlated positively with proofreading performance. 
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Power Analyses 

In most cases, Experiment 1 lacked the statistical power needed to detect significant 

differences between groups. For example, although the difference between the self-generated and 

other-generated conditions’ proofreading performance during Session 1 was of moderate size (d 

= .49), it was not significant (p = .059). A post-hoc power analysis revealed that at an alpha level 

of .05, Experiment 1 had an estimated power of .59 to detect this effect. 

Nevertheless, the sample size, with ns of 33 and 30, exceeded Daneman and Stainton’s 

(1993) ns of 10 per group in Experiment 1 and ns of 20 per group in Experiment 2. Daneman and 

Stainton (1993) found a large effect (d ≈ .99) when comparing proofreading in the self-generated 

and other-generated conditions. Given the sample size, Experiment 1 would have had an 

estimated power of .98 to detect an effect of that magnitude. 

With this in mind, in Experiment 2 I planned to recruit more participants (approximately 

N = 100) so that the total sample could be divided into four conditions with adequate power. A 

sample of this size, according to G*Power (Faul, Erdfelder, Lang, & Buchner, 2007), would 

yield an estimated power of .96 to detect a difference of d = .99 between two groups and an 

estimated power of .54 to detect a difference of d = .50. 

Predictions  

 The first prediction for Experiment 2 concerns performance on the memory test. 

Participants in the self-study condition are predicted to outperform participants in the self-no 

study condition because the former will have typed and studied their own essays. The prediction 

therefore is that the studying manipulation will induce greater familiarity with the essay to be 

proofread. The other pairwise comparisons are exploratory; it is unclear, for example, whether 

memory performance will be better for the self-no study group or the other-study group.  
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 The second prediction concerns proofreading performance. The major prediction is that 

studying will negatively affect proofreading in the self-generated condition but facilitate 

proofreading in the other-generated condition. Participants in the self-study condition are 

predicted to proofread worse than participants in the self-no study condition. The rationale is that 

participants in the self-study condition will be “overfamiliar” with their essays, such that they 

fail to detect errors in their own writing. By contrast, participants in the self-no study condition 

will be merely “familiar” with their essays, facilitating proofreading. Participants in the other-

study condition are predicted to proofread better than participants in the other-no study 

condition. This would be consistent with the literature showing that familiarity with an essay 

written by someone else facilitates proofreading.  

 The third prediction concerns eye movements during proofreading. The prediction is that 

as essay familiarity increases, indications of visual processing will decrease. Therefore, 

participants in the self-study condition (the “most familiar” group) are predicted to make the 

fewest fixations, largest saccades, shortest dwells, and spend the least time proofreading. By 

contrast, participants in the other-no study condition (the “least familiar” group) are predicted to 

make the most fixations, shortest saccades, longest dwells, and spend the most time 

proofreading. It is unclear whether the self-no study and other-study conditions will differ, but 

these groups’ eye tracking results are predicted to fall between the self-study and other-no study 

conditions. 

Participants 

 The participants were 100 undergraduate students (74 females, Mage = 18.79, SD = 0.87) 

recruited from introductory psychology courses at Michigan State University. Participants earned 
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course credit for participating. All reported normal or corrected-to-normal vision and stated that 

English was their first language. All participants provided informed consent. 

Procedure  

 Participants were tested individually in the laboratory. They were first asked to type a 

short essay on student life. Next, they completed a reading comprehension test. During this time, 

any errors in their essays were corrected by the experimenter and 20 errors were added to the 

essays. Next, participants assigned to the “study” conditions spent five minutes reading an essay 

and committing it to memory (see “Study Time” below). Afterward, all participants completed a 

memory test in which they indicated whether they had seen a series of sentences before. Next, 

they proofread either their own essay or another participant’s essay. Finally, they completed a 

demographic questionnaire, the need for cognition questionnaire, and the cognitive reflection 

test.  

Materials 

 Essay Writing Task. The essay writing task was the same as in Experiment 1.  

 Adding Errors to Essays. Twenty errors were added to the essays using the same 

procedure as in Experiment 1.  

 Reading Comprehension Test. Participants completed Form G of the Nelson Denny 

Reading Test, used in Session 1 of Experiment 1.  

 Study Time. Participants were randomly assigned to either study an essay or not. There 

were two study conditions: the self-study condition studied their own essay; the other-study 

condition studied another participant’s essay. In both cases, the essay they studied was the essay 

they would later proofread. The essays had been corrected by the experimenter but were without 

errors so as not to spoil the proofreading task. The instructions were as follows: “Please read the 
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following essay three times and commit as much of it to memory as possible. There will be a 

memory test on this essay later on. You will have 5 minutes, starting now.”  

 Memory Test. All participants completed a memory test in which they were shown 10 

sentences, one after another, and were asked whether they had seen each sentence before. They 

answered using the keyboard, pressing “Y” for yes and “N” for no. Five of the sentences were 

foils taken from essays in Experiment 1 (e.g., “Classes are going well this semester”). The 

remaining five sentences were previously seen by the participant.  

Participants in the study conditions were shown sentences from the essay they had 

studied and would later proofread. In the self-no study condition, they were shown sentences 

from the essay they had written and would later proofread. Importantly, participants in the other-

no study condition were shown sentences they had written, not sentences from the essay they 

would later proofread. This is because in the other-no study condition, they needed to proofread 

an unfamiliar essay, so using sentences from the essay they would later proofread could spoil the 

proofreading task. These participants completed the memory test simply to match task demands 

across conditions.  

The purpose of the memory test was to determine whether studying improved 

participants’ familiarity with the essay they would proofread. The comparison of interest is 

between the self-study and self-no study conditions. It is assumed that participants in the other-

study condition would be more familiar with the essay they proofread than participants in the 

other-no study condition, because participants in the latter condition were asked to proofread an 

essay they had never seen before. 
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 Proofreading Task. The proofreading task was the same as in Experiment 1. Participants 

in the “self” conditions proofread their own essay and participants in the “other” conditions 

proofread another participant’s essay. 

Demographic Questionnaire. Participants reported their age, sex, GPA, and ACT score, 

if applicable. 

Need for Cognition. Participants completed the 18-item need for cognition questionnaire 

(Cacioppo, Petty, & Feng Kao, 1984), rating their agreement with each item on a 5-point Likert 

scale with response options ranging from strongly agree to strongly disagree. Two example items 

are “I only think as hard as I have to” (reverse scored) and “I find satisfaction in deliberating 

hard and for long hours.” The measure was the mean response to the items. 

Cognitive Reflection Test. Participants completed the 3-item cognitive reflection test 

(Frederick, 2005) as a measure of their ability or disposition to consider a question and inhibit 

reporting the first response that springs to mind. The three items are: 1) A bat and a ball cost 

$1.10 in total. The bat costs $1.00 more than the ball. How much does the ball cost? (answer: 5 

cents). 2) If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 100 

machines to make 100 widgets? (answer: 5 minutes). 3) In a lake, there is a patch of lily pads. 

Every day, the patch doubles in size. If it takes 48 days for the patch to cover the entire lake, how 

long would it take for the patch to cover half of the lake? (answer: 47 days). The measure was 

the number of correct responses.  
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Results of Experiment 2 

 Overall proofreading performance is depicted in Figure 12; descriptive statistics are 

presented in Table 9. Examination of Figure 12 shows that, consistent with predictions, the self-

study group performed worst on the proofreading task, whereas the other-study group performed 

best. A two-way ANOVA on overall proofreading performance was conducted, with essay 

condition (self vs. other) and study condition (study vs. no study) as between-subjects factors. 

The main effect of essay condition was not significant, F(1, 96) = 1.96, ηp
2  = .020, p = .165, nor 

was the main effect of study condition, F(1, 96) = 0.02, ηp
2

 = .000, p = .893. The Essay Condition 

× Study Condition interaction trended in the predicted direction but was not statistically 

significant, F(1, 96) = 1.71, ηp
2

 = .018, p = .194.  

 None of the pairwise comparisons of overall proofreading performance were significant 

(all ps ≥ .051). Trends are reported below. The self-study group (M = 82.80%) detected 6.00% 

fewer errors than the other-study group (M = 88.80%), t(48) = 2.01, d = .57, p = .051. The self-

study group (M = 82.80%) detected 2.60% fewer errors than the self-no study group (M = 

85.40%), t(48) = 0.68, d = .19, p = .498. Conversely, the other-study group (M = 88.80%) 

detected 3.20% more errors than the other-no study group (M = 85.60%), t(48) = 1.41, d = .40, p 

= .164. Finally, the self-no study group (M = 85.40%) detected roughly the same number of 

errors as the other-no study group (M = 85.60%), t(48) = 0.06, d = .02, p = .951.  

Broadly speaking, these results are consistent with predictions: studying facilitated error 

detection when proofreading someone else’s essay but made error detection more difficult when 

proofreading one’s own essay. Studying effects were small to moderate in size (ds of .19 and 

.40); the comparison between the self-study and other-study groups was moderate in size (d = 

.57). The lack of significant differences between groups is due to insufficient power: although 
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studying seemed to harm or help proofreading performance depending on whether participants 

proofread their own essay or someone else’s, the effects were not strong enough to reach 

statistical significance.  

 
Figure 12. Proofreading performance in Experiment 2. Means are presented at the base of each 

bar. Error bars represent ± 1 standard error around the mean.  

 

 

 

Table 9. Descriptive statistics for proofreading, eye tracking, and memory test in Experiment 2  

Measure Self-No Study Self-Study Other-No Study Other-Study 

Proofreading      

  Total errors detected (%) 85.4 (14.0) 82.8 (12.9) 85.6 (08.5) 88.8 (07.5) 

    Word errors (%) 80.4 (18.8) 81.2 (16.7) 82.4 (11.3) 88.8 (11.3) 

    Non-word errors (%) 90.4 (11.4) 84.8 (13.6) 88.8 (10.5) 88.8 (09.7) 

    Content errors (%) 92.0 (13.9) 90.0 (12.0) 88.5 (10.8) 94.0 (07.3) 

    Function errors (%) 81.0 (16.8) 78.0 (17.3) 83.3 (11.0) 85.7 (09.8) 

     

Eye Tracking      

  Number of fixations 808.6 (314.8) 707.0 (231.7) 804.7 (260.9) 857.2 (280.0) 

  Saccade distance (px) 44.8 (14.1) 45.5 (14.2) 42.5 (13.1) 40.3 (12.2) 

  Dwell time (ms) 227.9 (28.3) 231.2 (27.0) 228.9 (21.6) 234.1 (32.9) 

  Time spent (s) 181.1 (65.4) 162.7 (53.0) 183.0 (57.4) 196.7 (56.2) 

     

Memory Test 9.6 (0.6) 9.8 (0.5) 9.6 (0.9) 9.2 (0.7) 

Note. Means are presented with standard deviations in parentheses.  
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Word and Non-Word Errors. A paired-samples t-test revealed that participants 

detected significantly more non-word errors (M = 88.20%, SD = 11.40) than word errors (M = 

83.20%, SD = 15.03%), t(99) = 3.30, d = .37, p = .001. This result is consistent with the results 

from Experiment 1. 

Word error detection rates are depicted in Figure 13. Examination of Figure 13 shows 

that the self-no study group detected the fewest word errors, whereas the other-study group 

detected the most. A two-way ANOVA with word error detection as the dependent measure and 

essay condition and study condition as between-subjects factors was conducted. The main effect 

of essay condition was not significant, F(1, 96) = 2.60, ηp
2  = .026, p = .110. Also non-significant 

were the main effect of study condition, F(1, 96) = 1.46, ηp
2  = .015, p = .230, and the Essay 

Condition × Study Condition interaction, F(1, 96) = 0.88, ηp
2  = .009, p = .349. 

None of the pairwise comparisons of word error detection were significant (all ps ≥ .051). 

Trends are reported below. The self-study group (M = 81.20%) detected 7.60% fewer word 

errors than the other-study group (M = 88.80%), t(48) = 1.89, d = .54, p = .065. The self-study 

group (M = 81.20%) detected roughly the same number of word errors as the self-no study group 

(M = 80.40%), t(48) = 0.16, d = .05, p = .874. The other-study group (M = 88.80%) detected 

6.40% more word errors than the other-no study group (M = 82.40%), t(48) = 2.00, d = .57, p = 

.051. Finally, the self-no study group (M = 80.40%) detected 2.00% fewer word errors than the 

other-no study group (M = 82.40%), t(48) = 0.46, d = .13, p = .651. 
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Figure 13. Word error detection rates in Experiment 2. Means are presented at the base of each 

bar. Error bars represent ± 1 standard error around the mean.  

 

 

 

Non-word error detection rates are depicted in Figure 14. Examination of Figure 14 

shows that the self-study group detected the fewest non-word errors, whereas the self-no study 

group detected the most. A two-way ANOVA with non-word error detection as the dependent 

measure and essay condition and study condition as between-subjects factors was conducted. 

The main effect of essay condition was not significant, F(1, 96) = 0.28, ηp
2  = .003, p = .599, as 

were the main effect of study condition, F(1, 96) = 1.51, ηp
2  = .016, p = .222, and the Essay 

Condition × Study Condition interaction, F(1, 96) = 1.51, ηp
2  = .016, p = .222. 

None of the pairwise comparisons of non-word error detection were significant (all ps ≥ 

.120). Trends are reported below. The self-study group (M = 84.80%) detected 4.00% fewer non-

word errors than the other-study group (M = 88.80%), t(48) = 1.20, d = .34, p = .237. The self-

study group (M = 84.80%) detected 5.60% fewer non-word errors than the self-no study group 

(M = 90.40%), t(48) = 1.58, d = .45, p = .120. The other-study group (M = 88.80%) detected the 
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same number of non-word errors as the other-no study group (M = 88.80%), t(48) = 0.00, d = 

.00, p = 1.00. Finally, the self-no study group (M = 90.40%) detected 1.60% more non-word 

errors than the other-no study group (M = 88.80%), t(48) = 0.52, d = .15, p = .608. 

 

 
Figure 14. Non-word error detection rates in Experiment 2. Means are presented at the base of 

each bar. Error bars represent ± 1 standard error around the mean. 

 

 

 

Content and Function Errors. Next, I examined participants’ detection of content and 

function errors. A paired-samples t-test revealed that participants detected more content errors 

(M = 91.13%, SD = 11.28%) than function errors (M = 82.00%, SD = 14.20%), t(99) = 6.40, d = 

.71, p < .001. This result is consistent with Experiment 1.   

Content error detection rates are depicted in Figure 15. Examination of Figure 15 shows 

that the other-no study group detected the fewest content errors, whereas the other-study group 

detected the most. A two-way ANOVA with content error detection as the dependent measure 

and essay condition and study condition as between-subjects factors was conducted. The main 
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effect of essay condition was not significant, F(1, 96) = 0.01, ηp
2  = .000, p = .912, as were the 

main effect of study condition, F(1, 96) = 0.60, ηp
2  = .006, p = .439, and the Essay Condition × 

Study Condition interaction, F(1, 96) = 2.78, ηp
2  = .028, p = .099. 

Pairwise comparisons revealed that the self-study group (M = 90.00%) detected 4.00% 

fewer content errors than the other-study group (M = 94.00%), but this difference was not 

significant, t(48) = 1.43, d = .40, p = .161. The self-study group (M = 90.00%) did not detect 

significantly fewer content errors than the self-no study group (M = 92.00%), t(48) = 0.55, d = 

.16, p = .588. The other-study group (M = 94.00%) detected significantly more content errors 

than the other-no study group (M = 88.50%), t(48) = 2.11, d = .60, p = .040. Finally, the self-no 

study group (M = 92.00%) did not detect significantly more content errors than the other-no 

study group (M = 88.50%), t(48) = 0.99, d = .28, p = .325. 

 
Figure 15. Content error detection rates in Experiment 2. Means are presented at the base of 

each bar. Error bars represent ± 1 standard error around the mean.  
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Function error detection rates are depicted in Figure 16. Examination of Figure 16 shows 

that the self-study group detected the fewest function errors, whereas the other-study group 

detected the most. A two-way ANOVA with function error detection as the dependent measure 

and essay condition and study condition as between-subjects factors was conducted. The main 

effect of essay condition was not significant, F(1, 96) = 3.13, ηp
2  = .032, p = .080, nor was the 

main effect of study condition, F(1, 96) = 0.01, ηp
2  = .000, p = .906, nor was the Essay Condition 

× Study Condition interaction, F(1, 96) = 0.89, ηp
2  = .009, p = .348. 

None of the pairwise comparisons of function error detection were significant (all ps ≥ 

.060). Trends are reported below. The self-study group (M = 78.00%) detected 7.67% fewer 

function errors than the other-study group (M = 85.67%), t(48) = 1.93, d = .55, p = .060. The 

self-study group (M = 78.00%) detected 3.00% fewer function errors than the self-no study group 

(M = 81.00%), t(48) = 0.62, d = .18, p = .537. The other-study group (M = 85.67%) detected 

2.34% more function errors than the other-no study group (M = 83.33%), t(48) = 0.79, d = .22, p 

= .432. Finally, the self-no study group (M = 81.00%) detected 2.33% fewer function errors than 

the other-no study group (M = 83.33%), t(48) = 0.58, d = .16, p = .564. 
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Figure 16. Function error detection rates in Experiment 2. Means are presented at the base of 

each bar. Error bars represent ± 1 standard error around the mean. 

 

 

Eye Tracking. Data from the eye tracker during the proofreading task revealed no 

significant main effects of essay condition, study condition, or their interaction (all ps > .12). All 

comparisons between the self-study and self-no study groups were non-significant (all ps ≥ .20). 

Similarly, comparisons between the other-study and other-no study groups were non-significant 

(all ps ≥ .40), as were comparisons between the self-no study and other-no study groups (all ps > 

.56). However, consistent with predictions, the self-study group made significantly fewer 

fixations (M = 707) than the other-study group (M = 857), t(48) = 2.07, d = .59, p = .044. 

Furthermore, the self-study group spent significantly less time proofreading (M = 163 s) than the 

other-study group (M = 197 s), t(48) = 2.20, d = .62, p = .032. 

As in Session 1 of Experiment 1, number of fixations correlated significantly with 

proofreading performance (r = .22, p = .029), as did saccade distance (r = -.32, p = .001; see 

Table 10). Participants who made more fixations and shorter saccades detected more errors. The 

correlation between time spent proofreading and proofreading performance was non-significant 

(r = .19, p = .058). 
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Table 10. Correlations between proofreading performance and eye movements in Experiment 2 

Measure 1. 2. 3. 4. 5. 6. 7. 8. 

1. Proofreading performance  ---        

2. Word errors detected .88 ---       

3. Non-word errors detected  .77 .37 ---      

4. Content errors detected  .71 .65 .51 ---     

5. Function errors detected  .93 .81 .72 .39 ---    

6. Number of fixations .22 .13 .25 .14 .20 ---   

7. Saccade distance  -.32 -.22 -.32 -.27 -.26 -.87 ---  

8. Dwell time  -.05 -.02 -.07 -.01 -.06 -.30 .28 --- 

9. Time spent proofreading .19 .11 .22 .12 .18 .91 -.79 .09 

Note. Bolded correlations are statistically significant at p < .05. N = 100. 

 

Memory Test. Next, I examined participants’ performance on the memory test. Pairwise 

comparisons revealed that the self-study group performed slightly better on the memory test (M 

= 9.76) than the self-no study group (M = 9.63), but this difference was not statistically 

significant, t(47) = 0.86, d = .25, p = .394. The recognition-based memory test may not have 

been sensitive enough to detect the effect of studying on essay familiarity in the “self” groups. 

Memory performance was nearly at ceiling for both, but insufficient power also may have played 

a role; despite an effect of d = .25 the difference between groups was not significant.  

The other-study group performed significantly worse on the memory test (M = 9.20) than 

the self-no study group (M = 9.63), t(47) = 2.30, d = .66, p = .026, and the self-study group (M = 

9.76), t(48) = 3.18, d = .90, p = .003. Thus, memory for one’s own essay was stronger than 

memory for someone else’s essay. Recall that the other-no study group completed the memory 

test to match demands across conditions; their memory test sentences were taken from an essay 

they did not proofread, rendering their memory test data uninformative with respect to the 

proofreading task.  

Cognitive Ability and Personality. Descriptive statistics for the cognitive ability and 

personality measures are presented in Table 11; correlations are presented in Table 12. 
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Performance on the reading comprehension test did not correlate significantly with proofreading 

performance (r = .08, p = .427), nor did performance on the cognitive reflection test (r = .01, p = 

.909). Need for cognition did not correlate significantly with proofreading performance (r = -.08, 

p = .463). The correlation between cognitive reflection test performance and need for cognition 

was significant (r = .41, p < .001). 

 

Table 11. Descriptive statistics for cognitive ability and personality measures in Experiment 2 

Measure N M SD Range Reliability 

Reading comprehension 98 27.10 5.87 11 – 38 .83 

Cognitive reflection test 93 0.59 0.99 0 – 3 .78 

Need for cognition 93 3.49 0.65 1.56 – 4.83 .89 

ACT 58 27.22 3.88 16 – 35 - 

GPA 67 3.62 0.44 2.20 – 4.00 - 

Note. Reliability was calculated using Cronbach’s alpha (α). Two participants did not complete 

the reading comprehension test due to technical difficulties. Seven participants did not complete 

the non-reading comprehension measures due to time constraints. Some participants did not take 

the ACT; some were first year freshmen and did not yet have a college GPA. 

 

 

 

Table 12. Correlations between proofreading, cognitive ability, and personality in Experiment 2 

Measure 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 

  1. Proofreading performance ---          

  2. Word errors detected .88 ---         

  3. Non-word errors detected .77 .37 ---        

  4. Content errors detected .71 .65 .51 ---       

  5. Function errors detected .93 .81 .72 .39 ---      

  6. Memory test -.15 -.17 -.07 -.13 -.14 ---     

  7. Reading comprehension .08 .16 -.05 .16 .03 .11 ---    

  8. Cognitive reflection test .01 -.03 .06 .02 .00 .10 .36 ---   

  9. Need for cognition -.08 .07 -.23 .07 -.14 .13 .40 .41 ---  

10. ACT .16 .12 .14 .05 .18 -.09 .62 .48 .39 --- 

11. GPA .14 .15 .06 .01 .16 .05 .32 .05 .14 .36 

 Note. Bolded correlations are statistically significant at p < .05. Ns range from 45 to 100.  

 

 Regression Analysis. Next, I conducted a regression analysis to determine how much of 

the variance in overall proofreading performance could be accounted for by the predictors. The 
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dependent measure was proofreading performance and the predictors were study condition, essay 

condition, their interaction, number of fixations, dwell time, saccade distance, reading 

comprehension, memory check performance, need for cognition, the cognitive reflection test, 

self-reported ACT, and self-reported GPA. The results are presented in Table 13. 

 The model accounted for 51.5% of the variance in proofreading performance, F(12, 32) = 

2.83, MSE = .021, p = .009. The significant predictors were saccade distance (β = -.72, p = .012) 

and self-reported GPA (β = .33, p = .045). Memory test performance approached statistical 

significance (β = -.34, p = .073). Participants who made shorter saccades and had higher GPAs 

tended to detect more errors when proofreading. 

 

Table 13. Regression analysis predicting overall proofreading performance in Experiment 2 

Measure β 𝒓𝐬𝐞𝐦𝐢−𝐩𝐚𝐫𝐭𝐢𝐚𝐥
𝟐  t statistic p value 

Study condition .35 .033 1.48 .150 

Essay condition .03 .000 0.12 .908 

Study condition × essay condition -.24 .012 -0.91 .372 

Number of fixations -.14 .003 -0.47 .639 

Dwell time -.19 .024 -1.26 .216 

Saccade distance -.72 .108 -2.67 .012 

Reading comprehension .06 .002 0.34 .736 

Memory test -.34 .052 -1.85 .073 

Need for cognition -.22 .023 -1.24 .225 

Cognitive reflection test .01 .000 0.05 .958 

ACT .01 .000 0.05 .962 

GPA .33 .066 2.09 .045 

Note. Overall model R2 = .515. β = standardized regression coefficient. 𝑟semi−partial
2  reflects the 

unique proportion of variance in proofreading performance accounted for by each predictor. 

 

 

 

 Meta-Analysis. Finally, I conducted a meta-analysis of the results of Experiments 1 and 

2 to calculate the average self-generation effect in the proofreading task. Four standardized mean 

differences were entered into the analysis: self-generated vs. other-generated from Session 1 of 

Experiment 1; self-generated one week ago vs. other-generated from Session 2 of Experiment 1; 
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self-no study vs. other-no study from Experiment 2; and self-study vs. other study from 

Experiment 2. The standardized mean differences were treated as independent and random 

effects modeling was used for the analysis. 

The results are depicted in Figure 17, where it can be seen that the meta-analytic average 

effect of proofreading one’s own essay relative to someone else’s was d = -0.11, CI95% [ -.58, 

.35], p = .636. That is, people were only slightly worse at proofreading their own writing; this 

effect was non-significant. A post-hoc power analysis revealed that a sample of 4,298 

participants split evenly among two groups would be needed to have 95% power to detect this 

effect. 

 

 

Figure 17. Meta-analysis of the self-generation effect in Experiments 1 and 2. Plotted values are 

comparisons between self-generated and other-generated conditions; positive standardized mean 

differences indicate that people proofread their own work more accurately than someone else’s, 

whereas negative standardized mean differences indicate that people proofread their own work 

less accurately than someone else’s. Error bars represent ± 1 standard error.  
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Discussion 

 Taken together, the two experiments provide limited support for Daneman and Stainton’s 

(1993) hypothesis that memory for self-generated text leads to an expectancy-driven processing 

style that makes proofreading more difficult. Experiment 1 was a near replication of Daneman 

and Stainton (1993), but the results trended opposite the predicted direction; students who 

proofread their own essays detected slightly more errors than students who proofread someone 

else’s essay. One explanation for the lack of a self-generation effect is that students were not 

overfamiliar with their own essays. Experiment 2 used a studying manipulation to test this 

hypothesis. The prediction was that studying would facilitate proofreading another student’s 

essay but make proofreading one’s own essay more difficult. Indeed, students who studied and 

proofread their own essay detected the fewest errors, whereas students who studied and 

proofread someone else’s essay detected the most errors. Moreover, students who studied and 

proofread their own essay appeared to engage in more expectancy-driven processing; they made 

significantly fewer fixations to the text and spent less time proofreading than students who 

studied and proofread someone else’s essay.  

 The experiments also assessed individual differences in proofreading performance. In 

Experiment 1, the correlation between proofreading performance across sessions was positive 

and statistically significant (r = .37, p = .009), suggesting that individual-difference factors 

reliably predicted performance. Measures of fluid intelligence correlated with proofreading (rs 

ranged from .21 to .45), indicating that students with greater problem solving ability proofread 

more effectively. Performance on the reading comprehension tests did not significantly correlate 

with proofreading (rs ranged from .01 to .20), nor did need for cognition (r = -.08, p = .463) or 
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performance on the cognitive reflection test (r = .01, p = .909). The latter two results suggest that 

associates of miserly cognitive processing were not predictive of proofreading performance. 

 There were a few points of consistency across the experiments with respect to the 

detection of word errors, non-word errors, function errors, and content errors. In general, non-

word errors (i.e., misspellings) were more readily detected than word errors (i.e., wrong words). 

This finding has practical significance because word errors are also less likely to be detected by 

“spell check” than non-word errors. Thus, word errors appear to be especially pernicious when 

proofreading. I also found that content errors (e.g., school, notes, test) were more readily 

detected than function errors (e.g., and, of, or). However, function errors were also shorter 

(Mcharacters = 3.8, SD = 1.2) than content errors (Mcharacters = 4.7, SD = 1.3), t(106) = 4.11, d = .79, 

p < .001. This could drive detection rates because shorter words are less likely to be fixated 

(Rayner, 1998). By comparison, the length of word errors (Mcharacters = 4.2, SD = 1.3) and non-

word errors (Mcharacters = 4.2, SD = 1.3) did not differ, t(106) = 0.00, d = .00, p = 1.00.   

 Examination of the eye tracking data revealed that eye movements correlated with 

proofreading performance. Across experiments, number of fixations was positively correlated 

with proofreading (rs ranged from .22 to .27), indicating that students who made more fixations 

detected more errors. Time spent proofreading also correlated with performance (rs ranged from 

.19 to .35), indicating that students who spent more time proofreading detected more errors.  

Limitations 

 Three limitations of the experiments should be addressed. First, although adding errors to 

students’ essays afforded experimental control, it also threatened external validity. That is, it is 

unusual to be asked to proofread an essay after being told that errors have been added to it. 

However, if I left students’ errors in their essays instead of adding my own, the number and kind 
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of mistakes would differ across essays, and I would not know whether students were aware of 

their mistakes without asking them. For example, many misspelled the word “sophomore”; it is 

unclear whether these students would recognize “sophmore” as a non-word error. To avoid this 

issue, I added errors based on relatively short, frequently-used words. I also avoided swapping 

words such as their/there, whether/weather, and where/were, as these are often confused. Despite 

the threat to external validity, a real-world analogue of this approach might be receiving 

copyedits from an editorial office; sometimes, a well-intentioned editor makes unwanted changes 

to a manuscript and the author must correct these “mistakes” embedded in their own writing.  

 The second limitation is that I did not investigate whether errors that went undetected 

were overlooked or fixated but not recognized as errors. The two cases might reflect different 

psychological processes. Seeing an error but failing to detect it could be the result of not 

thoroughly processing visual or semantic-syntactic information, perhaps due to strong top-down 

influences overriding visual input, whereas overlooking an error – saccading past one without 

fixating it – captures a skimming behavior which might also be driven by overfamiliarity. 

Although eye tracking data could shed light on the prevalence of these cases, it was not feasible 

to conduct these analyses due to time constraints. The analyses require coding interest areas 

around each error in each essay (e.g., 1000 interest areas in Experiment 2; 20 errors × 50 unique 

essays), coding whether fixations occurred within the interest areas, and coding whether the 

errors within those interest areas were detected. Automating this procedure will facilitate these 

analyses, and this is a worthwhile pursuit for a follow-up project.   

 The third limitation is insufficient statistical power. Although the samples in both 

experiments were sufficiently large to detect effects of the magnitude reported by Daneman and 

Stainton (1993), the effects were weaker than theirs. Nevertheless, most effects were not small. 
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For instance, in Experiment 2, the difference in proofreading performance between the self-study 

and other-study groups was d = .57 (larger than one half of one standard deviation), yet the 

associated p value was p = .051. Greater statistical power might have also revealed significant 

differences between the “self” groups in the memory test of Experiment 2. Relatedly, a free 

recall memory test might have yielded larger differences in memory performance than the 

recognition test I used (Raajimakers & Shiffrin, 1992). In general, a larger sample and greater 

statistical power would provide more precise point estimates of observed effects. Given that my 

samples were larger than Daneman and Stainton’s (1993), it might have been prudent to put less 

confidence in their priors, which were based on small samples.  

Summary 

 Two experiments were conducted to investigate automated processing of self-generated 

text during proofreading. The first experiment yielded results that trended opposite the predicted 

direction, whereas the second experiment yielded results consistent with predictions, but most 

group differences were not statistically significant due to insufficient power. One-hundred sixty-

three participants were tested, which may be the largest sample used to investigate the self-

generation effect in proofreading with an eye tracker to date. Although the results were 

inconclusive, the experiments demonstrate that automatic processes are difficult to study in the 

laboratory, perhaps more so under contrived circumstances. Future research on the self-

generation effect will benefit from larger samples, a more sensitive memory test, and possibly, a 

more naturalistic proofreading task.  
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CONCLUSION 

 In this dissertation I reviewed evidence indicating that automaticity poses a hidden cost 

of expertise. A traditional view of automaticity holds that the ability to perform well-practiced 

skills without attention is adaptive because it frees mental resources to process other information. 

Without denying the benefits of automaticity, I showed how it can also lead to expert error in 

domains such as driving, medical diagnosis, problem solving, and reading. In some cases, these 

errors arise because automatic responses are brought to bear on situations for which they are not 

appropriate, but the mismatch between stimulus and response is only detected after a mistake has 

been made. Practice and experience may reduce the prevalence of these mistakes. In other cases, 

knowledge and expectations automatically influence how information is processed, creating a 

disjunction between what is perceived and what was presented. These types of mistakes might be 

reduced by spending more time engaged in scrutiny and deliberation. 

 However, overriding automatic processes is not trivial, nor necessarily advisable in all 

cases. For example, in fast-paced problem-solving environments like emergency rooms, there is 

limited time to deliberate and consider alternative courses of action. Professionals may be 

overworked or sleep deprived, too, such that analytical reasoning is either compromised or too 

resource-intensive to be applied universally. The benefits of automaticity – that it provides fast, 

effortless, and often accurate responding to situations characterized by stereotypy – may 

outweigh the costs in low-stakes situations. But when stakes are high, as is the case when a 

physician makes a life-altering diagnosis, a scientist publishes the results of their research, or a 

driver navigates an icy highway, errors of automaticity can be costly, even dire, and deliberative 

processing becomes worth the time and effort.   
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 In a pair of experiments, I attempted to induce automated processing of self-generated 

text by having students proofread error-filled versions of essays they had written or essays 

written by other students. The goal of these experiments was to shed light on the self-generation 

effect, the hypothesis that it is more difficult to spot mistakes in one’s own writing than in the 

writing of others. The rationale is that robust memory for self-generated text exerts an automatic 

influence on reading behaviors, increasing the likelihood that errors are overlooked or seen but 

undetected. The results, however, provided only limited support for this hypothesis, and at times 

were at odds with the existing, albeit sparse, research on the subject. Given that the samples were 

larger than those in previous studies in this area, the self-generation effect in proofreading may 

be more tenuous than previously thought.  

 Ultimately, my goal was to show how automaticity causes experts to err. Understanding 

the situational and individual-difference factors that make errors of automaticity more likely to 

occur will help professionals avoid costly mistakes and could lead to the development of 

organizational procedures that safeguard against these types of errors. In applied contexts, the 

challenge is for practitioners to conduct cost-benefit analyses to determine the optimal amount of 

time and reflective thought required to mitigate serious mistakes without severely compromising 

the productivity of day-to-day procedures. These analyses will likely differ across situations and 

individuals. More work is needed to understand the benefits and consequences of automaticity, 

but this program of research stands to improve decision-making outcomes across a wide range of 

applied contexts. 
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