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ABSTRACT

THE EFFECTS OF DOPING AND PROCESSING ON THE THERMOELECTRIC
PROPERTIES OF PLATINUM DIANTIMONIDE BASED MATERIALS FOR
CRYOGENIC PELTIER COOLING APPLICATIONS

By
Spencer Laine Waldrop

The study of thermoelectrics is nearly two centuries old. In that time a large number of ap-
plications have been discovered for these materials which are capable of transforming thermal
energy into electricity or using electrical work to create a thermal gradient. Current use of
thermoelectric materials is in very niche applications with contemporary focus being upon
their capability to recover waste heat. A relatively undeveloped region for thermoelectric
application is focused upon Peltier cooling at low temperatures. Materials based on bismuth
telluride semiconductors have been the gold standard for close to room temperature applica-
tions for over sixty years. For applications below room temperature, semiconductors based
on bismuth antimony reign supreme with few other possible materials.

The cause of this difficulty in developing new, higher performing materials is due to
the interplay of the thermoelectric properties of these materials. The Seebeck coefficient,
which characterizes the phenomenon of the conversion of heat to electricity, the electrical
conductivity, and the thermal conductivity are all interconnected properties of a material
which must be optimized to generate a high performance thermoelectric material. While for
above room temperature applications many advancements have been made in the creation
of highly efficient thermoelectric materials, the below room temperature regime has been
stymied by ill-suited properties, low operating temperatures, and a lack of research.

The focus of this work has been to investigate and optimize the thermoelectric properties

of platinum diantimonide, PtSbo, a nearly zero gap semiconductor. The electronic properties



of PtSbg are very favorable for cryogenic Peltier applications, as it exhibits good conductivity
and large Seebeck coefficient below 200 K. It is shown that both n- and p-type doping
may be applied to this compound to further improve its electronic properties. Through
both solid solution formation and processing techniques, the thermal conductivity may be
reduced in order to increase the thermoelectric figure of merit. Further reduction in thermal
conductivity using other novel approaches is identified as an area of promising future research.
Continued development of this material has the potential to generate a suitable replacement
for some low temperature applications, but will certainly further scientific knowledge and

understanding of the optimization of thermoelectric materials in this temperature regime.



I would like to dedicate this work to my family. Without their love, support, and
encouragement this would not have been made.
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Chapter 1

Introduction

1.1 Thermoelectric Effects

For over 150 years three effects of materials, the so-called thermoelectric effects, have been
studied due to their potential for applications in everyday life. These effects allow for the
targeted conversion of heat into electrical energy, or vice versa, electrical energy into heat.
Seminal to these effects is the Seebeck effect discovered in 1821 by Thomas Seebeck [1].
The Seebeck effect describes the generation of a voltage between the junctions of two dissim-
ilar materials held at differing temperatures. This effect is best visualized in its application

with thermocouples, as seen in Figure 1.1.



Material B aterial B

Material A

Figure 1.1: Schematic of thermocouple displaying Seebeck Effect

The Seebeck effect is governed by the movement of electrons in a material due to the
occurrence of a temperature gradient across it. The additional thermal energy on one side of
the material causes a net migration of the electrons in response to their increased momentum.
Turning our attention back to the thermocouple in Figure 1.1 we can see how this effect
generates a voltage. Depending upon the properties of material A and B their electrons will
respond to the addition of thermal energy with differing magnitude and create a voltage

potential. This effect is summarized by the equation:

AV = —a AT (1.1)

where AV, is the voltage generated, a4, is the Seebeck coefficient of the additive contri-
bution of the pair of materials A and B, and AT, the temperature difference. Each material
will have a Seebeck coefficient dependent upon its own properties which will contribute to
the overall parameter o 4.

In what can be thought of as the inverse of the Seebeck effect is the Peltier effect, which



was discovered in 1834 by Jean Peltier [2]. Peltier found that when a current is passed
between two dissimilar conjoined materials a cooling or heating effect is found at their
junction. In 1838 when Lenz was able to freeze water or melt ice depending upon the direction
of the current between two dissimilar materials he discovered the relationship between heat
flow, the current, and a coefficient depending upon the material. This relationship is given

by the equation:

Q=114 —1p)I (1.2)

where @, is the heating or cooling generated, II, is the Peltier coefficient, and I is the
current. Direct measurement of the Peltier coefficient of a material presents difficulties due
to irreversible heating processes that happen during this phenomenon.

Finally in 1854 William Thomson, known as Lord Kelvin, discovered the Thomson effect
[3]. This reversible effect defines the heat absorbed or rejected by a material due to a parallel

temperature gradient and current. This effect is given by the equation [4]:

G =T1Il(dT/dx) (1.3)

where ¢ is the heat absorbed per unit length, 74 is the Thomson coefficient, I is the cur-
rent, and dT/dx is the temperature gradient. Thomson additionally, using thermodynamic
arguments, was able to relate the Seebeck coefficient and the Peltier effect using the Onsager

relationships [5]. One of the Kelvin relations is given by the equation:

74— 71 = T(dagp/dT) (1.4)



which gives the relation between the Thomson coefficient and the differential of the
Seebeck coefficient at a temperature. The other Kelvin relation is much more applicable
to experimental work and gives the relation between the Seebeck coefficient and the Peltier

coeflicient:

llgp = aapT (1.5)

This relation allows for the conversion between the much easier to measure quantity o
and the Peltier coefficient.

The relations and equations above have all been dependent upon the junction of two
dissimilar materials, A and B, but it is advantageous to express these relations as dependent
upon only one material. To this effect superconducting materials, which have a Seebeck
coefficient of zero, have been utilized as a reference to determine the Seebeck coefficient
for a single material. In this manner standardized values have been determined for many

materials, against which an unknown Seebeck coefficient can be measured.

1.2 Application of the Thermoelectric Effects

The thermoelectric effects can be utilized for numerous applications. The most widely used,
thermocouples, allows for the accurate measurement of temperatures across a wide range
depending upon the materials utilized. In 1909 and 1911 Altenkirch derived the maximi-
mum efficiency of thermoelectric power generators and coolers [6,7] and in 1954 Julian H.
Goldsmid opened up the possibility of using semiconductors as coolers, paving the way for
further research in the field [5]. While the research and development of thermoelectric power

generators and coolers has had periods where little progress took place, this area is now the



most widely researched in the thermoelectric effects.

1.2.1 Power Generation

The vast majority of thermoelectric device research is directed towards the recovery of waste
heat. This is due to the need of increased energy sustainability and environmental conscious-
ness in our future world. As a growing number of global entities industrialize and expand,
the energy usage of prior global power users has remained nearly constant which is support-
ing this drive for increasing power generated through renewable means [8,9]. This pressure
for increased energy usage from industrialization is further fueled in relation to the expec-
tation of an increased global population [10,11]. With this increased energy usage much,
if not a majority, of the energy produced will be wasted as rejected heat. Thermoelectric
power generation modules make it possible for a fraction of this rejected heat to be harvested
and recirculated resulting in a significant potential reduction in the amount of total energy
production required.

Recovery of waste heat from the exhaust of automobiles is a potential application which
has garnered a significant amount of interest. This application would increase the gas mileage
of vehicles by removing the need for an alternator, which generates electricity for the vehicle
by sapping energy produced by the engine [12,13]. However, this application has several
disadvantages and an analysis of them highlights the many applications where thermoelectric
power generators are better applied. Thermoelectric power generators are solid state devices
without any moving parts, are scalable in size, and are extremely reliable in a steady state
environment free of vibration. The majority of vehicles are however constantly in a state
of flux, either heating up or cooling down due to being used multiple times a day and are

also prone to the occasional sudden stop and ever constant vibrations. Putting aside the



diminished efficiency of thermoelectric generators outside of their peak temperature, the
mechanical turbulence of a typical car ride and constant thermal cycling demonstrate how
ill-suited thermoelectric generators are for vehicles.

Examining the drawbacks of generators in automobiles highlights the applications for
which thermoelectric power generators are best suited: an environment where a constant
temperature is maintained and is free of vibrations. Two applications where this environment
may be found are in industrial power plants and in satellites using a radioisotope generator
[14]. Satellites using radioisotope generators are an excellent example of the long term
reliability of thermoelectric devices with the Voyager I and II spacecraft having operated
for almost 50 years [15]. Several other applications of thermoelectric power generators, (i.e.
wrist watches, cardiac pacemakers, recreational gear, etc.), have the potential for use in the

future if the efficiency of these devices can be improved.

1.2.2 Peltier Cooling

The application of thermoelectric devices upon which this work is focused is in Peltier cool-
ing. Peltier cooling utilizes the Peltier effect to generate a heat absorption on one side of
a thermoelectric device that can offer targeted and precise refrigeration with all of the ad-
vantages which were highlighted for power generators. Other advantages of Peltier cooling
devices are their low weight and small size when compared to mechanical cryocoolers. Me-
chanical cryocoolers are generally large, heavy devices which generate significant vibrations.
Thus, for many applications, the use of these mechanical cryocoolers creates unsuitable op-
erating conditions, (i.e. vibrations on an electronic component), or substantially increases
the weight or space requirements of the application.

An exciting application of Peltier cooling is in the refrigeration of infrared focal plane



array detectors. Much of the impetus for this research has been for military usage in missile
defense and forward looking infrared detectors [16]. For such applications reliability is of
the utmost importance which lends some credence to using a Peltier cooler due to their
inherent reliability. These detectors use materials such as HgCdTe, InSb, InGaAs, and VOy,
(Vandaium Oxide), with bandgap energies in the range of electromagnetic radiation such
that an incident infrared photon will cause an electron hole pair to be generated in the
material which creates the signal in these devices [17-19]. These detectors, however, need
to be cooled to the tens of Kelvins such that the ratio of noise to signal is minimized. This
noise is termed, "dark current”, because an aberrant signal is generated not from an incident
photon, but due to thermal excitation, which is why thermal energy must be kept within an
acceptable range in these detectors [20].

Several other possible applications of Peltier coolers lie in spot cooling of X-ray astronomy
detectors, laser equipment, medical equipment and transport, consumable food, residential
and industrial electronics, and in heat generating mechanical processing machines [21]. How-
ever, as with the applications of thermoelectrics for power generation, Peltier cooling is also
dependent upon the improvement of the efficiency or coefficient of performance, a metric of

the cooling power of a device in ratio with the power it requires, of these devices [22].

1.3 Thermoelectric Device Performance

Both Peltier coolers and power generators have a similar device schematic, shown in Fig-

ure 1.2.
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Figure 1.2: Schematic of Peltier Cooler and Thermoelectric Power Generator

As can be seen from the figure both devices consist of p- and n-type legs that are connected
electrically via a metal connector with an insulating layer between heat source and sink. This
allows for the thermoelectric legs to be electrically in series while thermally in parallel [23].
The distinction between p- and n-type materials is due to their dominant charge carrier
which gives rise to a positive Seebeck coefficient in the p-type material and a negative
Seebeck coefficient in the n-type material; the specific arrangement of n- and p-legs in series
allows for a current to flow. A further description of p- and n-type materials is given in the
following section.

In examining the Peltier cooler a standard thermodynamic metric for evaluating the
performance of a cooler is the coefficient of performance, (COP), ¢, which is a metric defined
by the ratio of cooling performed to the electrical power input [24]. The cooling power, Q.,
is a result of the Peltier effect transporting thermal energy through the material, a backward

flow of thermal energy through the material limited by the thermal conductivity of the



material, and approximately half of the joule heating due to a current passing through the

leg. The equation that defines this is:
1
Qc = (ap — an)IT, — KAT — 5121-2 (1.6)

Where I'is the current input, 7 is the cold side temperature, K is the thermal conductance
of the legs, AT is the temperature differential across the legs, and R is the electrical resistance
of the legs.

The power supplied to perform the cooling, W, is simply the electrical power: P=IV.
The voltage supplied is composed of two parts; the part to overcome the Seebeck voltage
generated by a temperature differential across the material and the part to overcome the

electrical resistance of the leg:
W =1V = I{(ap — an)AT — IR] (1.7)

The COP of a device is then:

Qe (ap—ap)IT, — KAT — 1I2R

== I[(ap — an)AT — IR] (18)

Several device optimization parameters can be solved for using equations 1.6 - 1.8, such
as the current to be used for maximum cooling power or the maximum AT that can be

generated given a set of material properties [25,26].

(1.10)

(1.9) ATz =



Using an optimal current input the ¢4, can be obtained:

T
5 _Tcw/l—i_ZTAvg_TfCL
AT TH ZT gy + 1

(1.11)

where the figure-of-merit, Z, for the thermoelectric module is used, which is distinct from
the often cited thermoelectric material figure-of-merit z. It is found that as Z increases
the COP also increases, Figure 1.3, thus Z, which is only dependent upon properties of the

materials used, should be attempted to be maximized [4].
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Figure 1.3: COP vs. Delta T with Hot Side Temperature of 300 K

In the development and engineering of new materials to be used in Peltier coolers, and
thermoelectric devices in general, it would be quite cumbersome to use the Z for the thermo-

electric module to compare and quantify the potential of individual materials. It is therefore
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advantageous to define a material specific figure-of-merit z [27]:

=29 (1.12)

Where o is the electrical conductivity, (p = 1/0, the electrical resistivity), and « is the
thermal conductivity. The thermoelectric module 7 is found to be a rather complicated
mean of the two 2’s of the legs and further complicating study, contact resistances can be
included resulting in a reduced effective Z. Additionally, the geometry of the legs should be

optimized by the equation [24]:

lpSn _ (Up’fp>l/2 (1.13)

InSp Onkn

where [ is the length of the leg and S is the cross-sectional area. When the thermoelectric
properties of both the p- and n-type materials are similar, Z is effectively the mean of z of
the legs and materials can be optimized separately, but when the properties begin to differ
these geometric arguments begin to play a more important role. This effect can become so
large that at extremely low temperatures a superconducting material may be better suited
for one of the legs than the typical semiconductor [23].

In the above description the so called thermoelectric properties «, o, and k have been
assumed to be constant with temperature, however this is not the case in real materials and
devices. Thus, it is helpful to examine a material at a mean operating temperature, which

then gives a unitless figure-of-merit, zT:

CYQO'

2T =="T)y (1.14)
K
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As a result of the dependence on average operating temperature of maximized Z, and
therefore maximum AT of cooling, a Peltier cooler would only be applicable for a small
range of temperatures. To tackle this issue thermoelectric modules may be cascaded such
that multiple layers of modules can be tailored for maximum COP in a specific AT range
and an overall increased AT can be achieved [28]. The main drawback to this system is
that with each subsequent stage there is an increased cooling load required with not only
the heat from the source, but also the heat generated from the preceding stages. In addition
to generating a greater temperature drop across the module a multi-staged cascade may be
used to increase the COP of a module [29]. If the COP of each stage is assumed to be the
same the overall COP of the module may be given as [24]:

1

1
¢N:(1+1/@)N_1 where (D:N(¢+1/2)—§ (1.15)

It is found in practical use that for the majority of applications a two stage module is
sufficient instead of increased spending on larger cascade modules as shown in Figure 1.4 [30].
It is additionally found that for temperature decreases that are well below the maximum
AT that a single staged module is sufficient, but when the necessary temperature drop

approaches the maximum then a two stage cascade may increase the overall COP greatly.
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Figure 1.4: Multi-Stage Device COP vs. Delta T with Hot Side Temperature of 300 K and
Z of 1073 K

1.4 Electronic Transport

While the three thermoelectric effects, Seebeck, Peltier, and Thomson effect allow for the use
of thermoelectric coolers and power generators, they are not the only properties of interest
in the search for increased zT. These other parameters include the electrical conductivity, o
and the thermal conductivity, K. This section will attempt to establish a base of information
on the properties of a material that determine the 2T and ultimately how those properties

may be manipulated such that more effective and efficient devices may be created.

1.4.1 Energy-Band Diagrams and Material Types

The Drude model presented by Paul Drude in 1900 predicts the motion of electrons based

upon a kinetic gas theory [31]. It is a classical model where the electrons are imagined as

13



a sea of charges interacting with only the ionic cores of atoms and acted on by an electric
field. The Drude model had many successes, especially with metals, in predicting things like
the electrical resistivity of a material and the Wiedemann-Franz law. The model, however,
fell short in some ways with a predicted electronic heat capacity much larger than that
experimentally observed in metals.

In 1928 Sommerfeld introduced quantum theory to electronic transport using Fermi-Dirac
statistics instead of the classical Maxwell-Boltzman statistics used by Drude [32]. Addition-
ally in 1928 Felix Bloch mathematically described the periodic potentials that interact with

electrons in a crystalline solid with Bloch functions [33]:

Uy (r) = KTy (r) (1.16)

where Wy (r) is the wavefunction of an electron, k is the crystal wave vector of the
electron, r is distance, and uy(r) is a function with the same periodicity as the crystal.
These wavefunctions are the eigenfunctions which satisfy the Schrodinger equation for the
available states of the electron:
h2

(—%VZ + U(r)) U =EV (1.17)

where % is the reduced Planck’s constant, m is the mass of the electron, and U(r) is the
periodic potential due to the crystal lattice. Due to the periodic nature of the crystal the
wave vector k can always be represented within the first Brillouin zone and another possibly

further elucidating version of Bloch’s theorem is [34]:

U(r+R) = XTU(r) (1.18)
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which demonstrates that for any translationally moved wavefunction ¥(r + R) there
exists a wave vector k which will relate this new wavefunction to a wavefunction within the
first Brillouin zone. This wave vector k may be plotted versus energy to give rise to the
extremely useful representation of the available energy states of a material as the energy
band diagram.

A schematic representation of an energy band diagram is shown in Figure 1.5.

Metal: Semiconductor: Insulator:

E;~0-5eV E,25eV

k

Figure 1.5: Schematic Energy Band Diagram for Metals, Semiconductors, and Insulators

This figure shows the underlying differences in the energy band diagram of metals, semi-
conductors, and insulators and demonstrates why the electronic properties of these categories
of materials vary so dramatically. The energy band diagram of a metal is shown to have
fully occupied electronic states up to the Fermi energy, Ez, which is well within the middle
of a band. As was shown by Sommerfeld the charge carriers that are within a few kT of

the Fermi energy are those that are able to electronically conduct. In the metal there are
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a plethora of carriers and available empty energy states around the Fermi energy and thus
its electronic properties reflect this; prominently a very high electrical conductivity. It is
in semiconductors and insulators where a band gap, or a region of non-overlapping energy
states where carriers are unable to populate, exists. In the insulator this band gap is so large
that at terrestrial temperatures carriers will not have enough energy to populate free, empty
states, in the conduction band. This is reflected in the electronic properties of insulators
and most prominently in an extremely low electrical conductivity. In the semiconductor the
band gap is found to be within range of thermal energy supplying greater than the band gap
energy to carriers, such that an electron may be able to populate a free energy state in the
conduction band. This gives rise to a wide range of electronic properties that semiconductors
may adopt.

Stemming from the concept of the energy band diagram is that of the effective mass of
a charge carrier and that of the conduction of charge by holes. The effective mass is the
curvature of a band extrema, either the minima of the conduction band, or the maxima of

the valence band. In one dimension, this may be expressed as [23]:

1
82E] (1.19)

" k2

While in reality the inertial effective mass is a tensor, which gives the effective mass of
carriers in the different directions of k-space, it is instructive to examine it as though a scalar
for discussion. When the curvature of these band extrema are negative, as in the conduction
band, the effective mass will be negative and the charge carriers are electrons in this case.
When the curvature is positive, as in the valence band, the charge carriers are holes. Holes

are quasi-particles, because their significance is due to the lack of an electron. Conduction
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by holes is still performed by the migration of electrons, but it is the absence of an electron,

which entails a positive charge, that is moving through a real material.

1.4.2 Electrical Conductivity

The ability of a material to conduct these charge carriers is defined as the electrical conduc-

tivity, o, one of the properties of a material that determines the figure-of-merit, 2T
o = nepe + phuy, (1.20)

where n is the electron concentration, e is the electronic charge, pe is the electron mobility,
p is the hole concentration, h is the hole charge, and pj is the hole mobility. For most
temperature ranges and purposes of thermoelectric materials it is advantageous to only have
one type of charge carrier conducting in a material. When both carriers are present this
mode of conduction is called bipolar conduction.

To begin the description of the electrical conductivity it is important to understand that,
for the vast majority of equations concerning carrier concentration, only slight modification
is required to switch between equations for electrons and holes. Therefore, in this description
only the equations for electron concentration will be expressed.

Utilizing Fermi-Dirac statistics the electron concentration in a material is given by:

0= /0 " hu(E)g(E)E (1.21)

where fy,(E), the Fermi-Dirac distribution, and g(E), the density of states for an electron
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in the energy band, are:

1
e BT 41
g(E) = STV2 B SR, (1.23)

where kp is the Boltzmann constant, m* is the effective mass of the charge carrier, h is
Planck’s constant, E is the conduction band minima, and E'g is the Fermi energy. The Fermi
energy is defined as the energy, at absolute zero, where all of the states below this energy
are occupied and none above it are. The Fermi-Dirac distribution gives the probability of

an electron existing in an energy state and is shown in Figure 1.6 for various temperatures.
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Figure 1.6: Fermi-Dirac Distribution for Multiple Temperatures

Observing the Fermi-Dirac distribution at 0 K it is found that there is a jump discon-
tinuity at energy equal to the Fermi energy. For all energies below the Fermi energy the

probability of an electron existing in this state is 100 % and above this energy equal to 0 %.
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At non-zero temperatures the distribution is found to be continuous and varying between the
values of 0 and 1 for energies approaching the Fermi level. This creates a non-zero potential
of a charge carrier to exist in an energy state above the Fermi energy when at non-zero
temperature. Of note is the increase in variance at higher temperatures, which results in a
further increased potential of finding a charge carrier in higher energy states.

The equation for carrier concentration can thus be given as:

87'('\/_ *3/2 V E— EC 1.94
+1
which may be simplified to:
2 Erp
n= NCﬁFl/Q(n) where 7 = kT (1.25)
and
2rm*kgT 3/2

N.=2 (T) (1.26)

where F} /2(77) is the Fermi-Dirac integral and 7 is the reduced Fermi energy. For an
intrinsic semiconductor, one in which there has been no doping, the number of electrons
and holes are equal due to the fact that as electrons are populated across the bandgap they
generate an equal number of holes from their absence. This result is stated in the law of

mass action:

nxp=ns (1.27)
where n; is the intrinsic carrier concentration. This concentration may be obtained by
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combining equations 1.27 and a simplified 1.24 to obtain:

ﬂ

ni(T) = \/NeNpe? BT (1.28)
This shows that the intrinsic carrier concentration is dependent upon the effective masses
of the charge carriers, due to the dependence of N, and N, upon the effective mass, as well as
upon the energy bandgap. For a given temperature the intrinsic carrier concentration will be
lower in a large bandgap material than for a low bandgap material. The ratio of the effective
masses is often more important than their absolute value. This will affect the electrical
conductivity, as seen in Equation 1.20, as well as the other thermoelectric properties in the
intrinsic regime. The Fermi energy of a material is also dependent upon the ratio of these

effective masses such that:

1 3 m
Efint. = Ev + 5Eg + 7kpTln (#C]) (1.29)

where the Fermi energy is dependent upon the energy at the top of the valence band, E,,
half of the energy of the bandgap, and then adjusted by the natural log of the ratio of the
effective masses. In the majority of materials this addition will only affect the Fermi level by
a small amount and for most purposes an assumption of the Fermi level lying in the middle
of the band gap will be a sufficient approximation.

As mentioned earlier, the electronic properties of semiconductors can vary over a wide
range. This is in part due to the variation in bandgaps in these materials, but also to the
effect of extrinsic doping. Doping is the process of substituting elements in a compound
with elements containing a differing number of valence electrons. In the most simplistic view

the dopant atom will be adding or subtracting electrons from the material system thereby
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directly affecting the carrier concentration. There are two categories of dopants, n-type,
where the dopant has additional valence electrons relative to that of the atom for which it is
substituting, and p-type, where the dopant has fewer valence electrons. Often, these dopants
will not have a very high solubility in the parent material, but this is not needed to affect
a dramatic change in the electronic properties. An often used example of extrinsic doping
is with silicon where phosphorous may act as an n-type dopant and boron may act as a
p-type. When these atoms are substituted the result is a change in the energy band diagram
where the Fermi energy may be shifted closer to the valence or conduction band depending
upon the addition of p-type or n-type dopant. The Fermi energy is shifted depending upon
if electrons or holes were added to the system, because this will affect the probability of an

energy state being filled. The equation for this shift is given by:

Ef = Ejnt. +1/2kpTIn (g) (1.30)

where the n and p in this equation may not be the same as that for an intrinsic semicon-
ductor.

The dopants, referred to as donors for n-type materials, and acceptors for p-type ma-
terials, require an activation energy before they contribute carriers to the system. These
activation energies are quite low compared to the bandgap and thereby ionize at tempera-
tures much lower than intrinsic carriers. The equation for the electron carrier concentration

in this region of ongoing ionization is:

NpN, 1
n ~ ﬂ/%e—ED/Q’“BT when Np > §Nce_ED/kBT > Ny (1.31)
where Np is donor concentration and Ep is the activation energy of a donor. Once
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the temperature has increased beyond the region where ionization is occurring the carrier

concentration is given as:

n = % {(ND — Ny + \/(ND — Ny)? + 4n? (1.32)
where N4 is the acceptor concentration. This equation can be simplified to n ~ Np
given that Np > Ny and [Np — Ng| > n;.

The extrinsic semiconductor can be doped so heavily that the Fermi level is within 1 - 2
kpT of a band edge. When this occurs the semiconductor is referred to as degenerate and
the carrier concentration is very large, similar to that found in a metal, over a wide range of
temperatures. However, for the extrinsic semiconductor that is non-degenerate the carrier
concentration is small at low temperatures but increases as donors or acceptors are ionized
with increasing temperature. As the temperature increases, the activation energy for all
donors or acceptors is met and a region of saturation occurs where no new carriers are being
populated to charge carrying energy states. At temperatures above the saturation region
intrinsic charge carriers will begin populating across the bandgap and carrier concentration
will again increase.

As can be seen in equation 1.20, the carrier concentration is only part of the electrical
conductivity. The other variable is the mobility of that charge carrier, which is defined from
the drift velocity of carriers in response to an electric field, v; = pE. The mobility may be

given as:

where T is the average scattering time. This average scattering time is dependent upon

22



the dominant scattering mechanism in a material for a given temperature, but may be given
by Matthiessen’s rule:
1 1 1

1
= + + + .. (1.34)

Tattice  Timpurities  Tdefects

where Tj4145ce 15 the scattering of charges due to the lattice ions, Tjmpurities is the scat-
tering due to impurities, and 7y, fecs 1S the scattering due to defects in the crystal lattice.

Lattice scattering is due to the interaction between charge carriers and phonons traveling
through the crystal lattice. As temperature increases more phonons are generated in the
lattice, which corresponds to more scattering of carriers, thus, as temperature increases the
dominant scattering mechanisms in materials becomes that from the lattice. It is found that
in this case mobility depends on temperature as: (g tice X T-3/2.

Impurity scattering however is the low temperature dominant scattering mechanism com-
pared to lattice scattering. Impurity scattering is found to depend upon the average thermal
velocity of charge carriers, meaning that the more energy a carrier has the less likely it is
to be scattered. Thus, at low temperatures, where the thermal velocity is low, more im-
purity scattering will occur than at high temperatures where thermal velocity is high. The
proportionality for this type of scattering is: fimpurity T3/2.

The scattering due to crystal defects is given as an example of a scattering mechanism
where the scattering rate is constant due to either an ordered or disordered defect causing the
scattering of a carrier. Another scattering mechanism found in degenerate semiconductors,
or for non-degenerate semiconductors that are at temperatures in the intrinsic regime, where
a high carrier concentration is obtained, is electron-electron scattering where the carriers in

a material will begin to scatter off of each other. This only begins to play a role at very
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high carrier concentrations, but can become the dominant scattering mechanism at high
temperatures, or in heavily doped semiconductors.

There are many more types of scattering mechanisms in materials, but for this work
these are found to often be the dominant scattering mechanisms of importance at observed
temperatures. The result of the switch between ionized impurity scattering, which decreases
as temperature increases, and acoustic phonon scattering, which increases as temperature
increases, is that there typically will be a maximum in the mobility over a temperature range.

How the electrical conductivity of a material ultimately responds to changes in carrier
concentration and mobility will differ in all materials and will be greatly affected by the
material synthesis and processing. However, a few generalizations may be made. Typically,
the electrical conductivity of a non-degenerate, extrinsically doped semiconductor will in-
crease as dopant carriers are populated, but will at higher temperatures begin to decrease
as acoustic phonon scattering begins to dominate. For the degenerate semiconductor the
electrical conductivity follows a trend that is much like that of a metal. Starting at low
temperature with a high conductivity, due to the high carrier concentration, there will be a

downward trend as acoustic phonons become a more dominant scattering mechanism.

1.4.3 The Seebeck Coefficient

The thermoelectric effects, with which this work began, are the foundation for the operation
of thermoelectric materials. The most direct of which to measure is the Seebeck effect and
namesake coefficient. As defined previously, the Seebeck coefficient is a reflection of the
response of electrons to a temperature gradient. The Seebeck coefficient is defined such that
an n-type material in open circuit conditions under a temperature gradient will generate

a voltage potential such that the electric field is pointed in the direction of the cold side,
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(the side with a negative charge buildup). This creates a negative Seebeck coefficient for an

n-type material and the inverse for a p-type material.
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Figure 1.7: Schematic of Open Circuit Seebeck Effect

As was introduced in the previous section the Fermi-Dirac function will also have a
gradient along the material due to the temperature differential. Using Boltzmann transport
equations, an equation can be obtained where the Seebeck coefficient is dependent upon the
integral of the partial derivative of the Fermi-Dirac function, density of states, energy, and
scattering terms. Ioffe was able to simplify the equation to [35]:

4N F (n)
a:—k—B (2 ) 3/24+A o (1.35)

¢ (% + A) Fijo4a(0)

where A is a term dependent upon the scattering mechanism, 7 is again the reduced
Fermi energy, kBTFT and Fj /247 and [ /24 are Fermi-Dirac integrals. This is assuming a
single parabolic band model with a single energy dependent carrier relaxation time. The
scattering dependent \ is equal to —1/2 for acoustic phonon scattering dominant energies

and equal to 3/2 for ionized impurity scattering dominant energies.
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Examining the Seebeck coefficient for metals the equation for the Seebeck coefficient can
be greatly simplified. The Mott-Jones equation gives the Seebeck coefficient for this class of

materials as [36]:

2
a % (EF><2+)\) (1.36)

Examining this equation, the dependence of the Seebeck coefficient on kgT/Ep is im-
mediately obvious. This is due to the fact that only those electrons that are within a few
kT of the Fermi energy will contribute to the effect.

To better examine the dependence of the Seebeck coefficient to the carrier concentration

in semiconductors the following equation can be shown [37]:

2
1 E 1 E

1.37
3 e n db uo dE E=Ep ( )

This equation shows that an increased Seebeck coefficient can be obtained by either hav-
ing a large energy dependence of the carrier concentration or mobility at the Fermi energy. To
obtain the former there needs to be a large change in the density of states at the Fermi energy
and to obtain the latter a strong energy dependent scattering mechanism is required [38].
This additionally shows the dependence of the Seebeck coefficient on carrier concentration
and carrier mobility. As carrier concentration and mobility increase the Seebeck coefficient
is found to decrease.

Just as with the electrical conductivity, when bipolar effects begin to play a role in

the intrinsic regime of a material, the Seebeck coefficient will be altered due to the mixed

26



conduction effects. The equation for this effect is given as [23]:

o = dnontpop (1.38)
on +0p

Here the Seebeck coefficient contribution of electrons and holes is given and weighted
by the electrical conductivity of those charge carriers. The first important point is that
for thermoelectric applications it is best to have a material of only one carrier type. Any
contribution of an additional carrier will only serve to decrease the overall Seebeck coefficient,
because oy, and o) have opposite signs. The next point to take note of is the dependence on
the mobility of the individual carriers. If a material does have bipolar conduction occurring,
then the contribution of the carriers may not be proportional. For example, if the electrons
in a material have a much higher mobility than the holes, then the material may be n-type
for similar electron and hole carrier concentrations.

If a degenerate, i.e. heavily doped, semiconductor with parabolic bands is assumed, with

only one carrier type, then the following may be obtained [39]:

(1.39)

o =

21.2
8 kBm*T (1>2/3
3eh? 3n

which shows even more directly the dependence of the Seebeck coefficient on the carrier
concentration and the effective mass. Thus, typically for high Seebeck coefficient in extrinsi-
cally doped, degenerate semiconductors a low carrier concentration and high effective mass
are desired. This trend in transport properties is directly contrary to what is required for
high electrical conductivity and is one of the so-called ”contra-indicated” properties that

thermoelectric materials possess.
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1.4.4 The Power Factor

The thermoelectric power factor of a material is the numerator in the figure-of-merit equation:

P.F. = d’c (1.40)

where P.F. is the power factor. It is found that the power factor depends on the square
of the Seebeck coefficient and the electrical conductivity. As mentioned earlier these two
properties have contra-indicated components. As the carrier concentration increases the
electrical conductivity is found to increase, but the Seebeck coefficient concurrently decreases.
Additionally, if the mobility of a carrier is decreased the Seebeck coefficient tends to increase,
however, the electrical conductivity will decrease. The contra-indication of these properties
results in a maximization of the power factor at certain carrier concentrations assuming
mobility is unchanged. This relationship is called the Pisarenko relationship and is shown

in Figure 1.8.
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Figure 1.8: Diagram of Power Factor, Seebeck Coefficient, and Electrical Conductivity
versus Carrier Concentration

This figure graphically demonstrates how the power factor will be maximized at a particu-
lar carrier concentration for a given material. For most material types a carrier concentration
in the range of 10 to 102! yields a maximized power factor. Current and advanced tech-
niques to increase power factor concentrate on band engineering to increase band degeneracy;,
carrier concentration doping with elements or materials which generate a minimum increase
in carrier scattering, and preferential carrier scattering mechanisms leading to optimiza-
tion [40]. However, as will be seen in the following section, a maximized power factor will

not always relate to a maximized zT.
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1.5 Thermal Transport

The flow of heat through a material is governed by Fourier’s law of heat conduction which
shows that the power conducted per unit area is proportional, by thermal conductivity, k,

to the ratio of the temperature difference over the distance of separation:

AQ AT

AtA ~ "AX (141)

Where AQ/At is the power conducted, A is the area through which the heat flux is trav-
eling, AX is the distance of separation, and x is the thermal conductivity. There are many
components to thermal conductivity including more exotic forms of heat conduction like
electronic spin waves, however in the study of thermoelectrics the majority are represented

by the electronic and lattice contributions.

1.5.1 Electronic Thermal Conductivity

The electronic thermal conductivity, as suggested by its name, is an effect mediated by the
flow of electrons in a material. This effect is dependent upon the electrical conductivity of a

material and is defined by the Wiedemann-Franz law:

ke = LooT (1.42)

where Lg is the Lorenz number. The Lorenz number is well defined for metals based

2 2
upon a free-electron model with little variation from the definition: Ly = %5~ (kTB > =

2.44 x 1078 WQK 2. However, in many semiconducting materials this value can vary due

to additional scattering mechanisms.
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1.5.2 Lattice Thermal Conductivity

The other majority component to the thermal conductivity in thermoelectric materials is the
lattice contribution, mediated by the quasi-particle phonon. The phonon is a quantization
of the energy transmitted by thermal vibrations through a crystal lattice and was given its
name by Peierls in 1929 [41]. Earlier work by Debye on a continuum lattice examined heat
conduction by lattice vibrations [42]. This work was foundational and is still very useful to
examine, however, it erroneously resulted in an infinite thermal conductivity. Peierls solved
this issue with the correction that higher order terms in the harmonic solutions would yield

a phonon mean free path before being scattered. The lattice contribution is defined by:

1
K] = gcvvlt (1.43)

where £ is the lattice contribution to thermal conductivity, ¢, is the specific heat per unit
volume, v is the speed of sound in the material, and /; is the mean free path of the phonon.
The specific heat and mean free path shown above are dependent upon both temperature
and the wavelength of phonons.

One of the successes of the Debye model was to describe the specific heat with a high
degree of accuracy. Debye assumed that there were 3N vibrational states for N atoms in
a material and that a maximum vibration frequency would be met, f;,, which yielded a
temperature, the Debye temperature, which corresponded to the temperature of the highest
normal mode in a lattice [43]:

_ fm

Op = i

SN )1/3 (1.44)

h = —
where v, U(47TV
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where O is the Debye temperature and N/V is the number density of atoms. Debye

was able to define the specific heat at constant volume as:

T \° [©p/T et
=9Nkp | =— —d 1.4
Cy 9 B (@D) /O (el‘ _ 1)2 Xz ( 5)

where x = Aw/kgT. This solution leads to two temperature regions of interest: that
below the Debye temperature and that above the Debye temperature. Below the Debye
temperature the specific heat reduces to a ¢, T3 dependency and above the Debye tem-
perature a saturation effect of all available modes occurs termed the Dulong-Petit limit where
Cy & %, with R being the gas constant and M the molar mass.

The mean free path of a phonon is determined by scattering mechanisms in the solid,
ly = vr. Mattheisen’s rule of scattering can again be used, only this time for phonons, to
understand how one scattering mechanism will dominate over others:

1 1 1 1

TTot. B I U

where 77, is the combined scattering rates, 7p is the boundary scattering rate, 77 is
scattering due to impurities, and 77 is the scattering due to the Umklapp process.

At low temperatures boundary scattering will dominate due to the long wavelength
phonons at those temperatures. In the perfect crystal the mean free path of phonons will be
approximately the smallest dimension of the crystal, L, [44] and the scattering rate can be

approximated by [45]:

T A= (1.47)
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This type of scattering can be manipulated by the introduction of additional boundaries
or interfaces. Reduction of particle size by a variety of methods, such as ball milling, melt-
spinning, and spark plasma sintering can yield greatly reduced lattice contributions due to
additional interfacial scattering of phonons [46].

Scattering from impurities is primarily due to disturbances in the periodic arrangement
of atoms in the lattice and how this affects the propagation of phonons. These disturbances
can occur through mass difference in solid solution formations, lattice vacancies, crystal
dislocations, and even the inclusion of differing isotopes of elements [47-50]. The scattering
rate arising from these mechanisms can be defined by [51]:

VI
-1 _ 4
= v (1.48)

where V is the volume of the unit cell, w is the wavelength, and I" is the mass-fluctuation
scattering parameter. The mass-fluctuation parameter contains a ratio of the change in mass
to the mass of the unsubstituted atom squared, which highlights that large differences in
mass will scatter phonons at a higher rate. This scattering mechanism additionally has a
large dependency upon the frequency, 7, I w?, which incidentally is very similar to the
relation for Rayleigh scattering of photons.

Phonon scattering by phonon-phonon interactions takes place by two different processes
each involving the interaction of three phonons. The first is termed a normal ”"N-" pro-
cess which is a non-thermally resistive scattering mechanism whereby the phonon-phonon
interaction momentum is conserved [52]. As this process is non-thermally resistive it does
not contribute to the total thermal conductivity. The second process termed Umklapp, or

U-process, however, does contribute to an increased scattering rate and thereby a reduction
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in the lattice contribution.

Umklapp scattering is a process whereby the resultant interaction of two phonons results
in a third phonon outside of the first Brillouin zone. A reciprocal lattice vector returns
the phonon to inside the 1st Brillouin zone resulting in a net backwards phonon flux [53].

The temperature dependence of the scattering rate for this mechanism was given by Peierls

as [41]:

;! oc TeOD/mT (1.49)

Slack further quantified this relationship with the following equation [54]:

B 2
-1 g 2, —0pn /3T
TR —U2®Dw Te D/ (1.50)

where v is the Griineisen parameter, and M is the average atomic mass. The parameter

of note here is the dependency of the scattering rate on the first order of temperature.

The total scattering rate is then given as:

Tjjolt' = Ufs + Aw4 + BwQTe_@D/?)T (151)

From this it can easily be seen that the boundary scattering effects have a more dom-
inant effect at low temperatures, with impurity scattering becoming larger as tempera-
ture increases, and finally Umklapp scattering beginning to have a more dominant role
at T'> 0.10p.

With both the specific heat and the scattering rate dependencies defined a few general-

izations of the lattice thermal conductivity may be made. At low temperatures, where the
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specific heat goes as T2, and boundary scattering is dominant, the thermal conductivity will
also go as a T3 dependency which has simply been depressed due to the constant boundary
scattering. As temperature increases impurity scattering also begins to increase which leads
to further suppression of the thermal conductivity. As temperature approaches the Debye
temperature, the thermal conductivity will peak at a maximum value. Once the Debye
temperature has been met the specific heat will stay constant as the Umklapp scattering
process begins to dominate. In this region the thermal conductivity will decrease with a

T~1 dependency, matching the behavior observed by Eucken in 1911 [55].

1.6 Material Selection and Enhancement of zT

In the selection of materials for thermoelectric applications a material must be selected that
can balance all of the contra-indicated properties which comprise the figure-of-merit. To
summarize the requirements of high 2T a material needs a high Seebeck coefficient, a high
electrical conductivity, and a low total thermal conductivity. An insulator will typically dis-
play very low thermal conductivity and a high Seebeck coefficient because of the large band
gap. However, insulators will, again because of the large band gap, have a very low elec-
trical conductivity. The case for metals is slightly more muddled, however, metals typically
have low Seebeck coefficients, and high electrical and thermal conductivities. Thus, it is the
semiconductor which has been identified and most widely researched for its potential in ther-
moelectric application [56]. Semiconductors may exhibit a wide array of electrical properties
over a large range of temperatures. They additionally may be modified to greatly reduce
their thermal conductivities. Above all else it is the large degree of tuning and tailoring that

may be performed on semiconductors that makes them attractive for use as thermoelectric
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materials.

As was stated before, the contra-indicated properties of the Seebeck coefficient and elec-
trical conductivity require a tuning of the carrier concentration for power factor optimization,
however for high 2T the additional parameters of k. and x; must also be addressed. The
relationship between ke and o is direct, and any decrease in ke comes at the expense of a de-
crease in o, and vice-versa. Additionally, many methods of lowering ; will negatively affect
the power factor by the introduction or exacerbation of scattering effects. It is beneficial to

rearrange the equation for 2T to simplify these connections:

a

= ——F-
L()—i-a—jlv

(1.52)

This equation removes the dependency on the electrical contribution to thermal con-
ductivity because of the direct connection between it and the electrical conductivity. It
additionally highlights the importance of the ratio of the lattice thermal conductivity to the
electrical conductivity and the importance of a high Seebeck coefficient. The higher the elec-
trical conductivity the lower the ratio of k;/oT will become. In the case where this quantity
becomes much less than 1, the 2T equation simplifies to 2T ~ o2 /Lg. Unfortunately in this
case the material has such a metallic electrical conductivity that its Seebeck coefficient will
typically be very low.

Another way in which equation (1.52) may be interpreted is to attempt to minimize
the lattice contribution. However, in the process of minimizing x; the likely result will be
to increase the intensity and number of scattering events for electrons, as well as phonons,
resulting in a dramatic decrease in mobility and thereby a subsequent reduction in the elec-

trical conductivity and the power factor. The interplay of these properties can be displayed
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in an expanded form of the Pisarenko plot which was shown before in Figure 1.8, where
it becomes clear that it is not a simple matter of tuning the carrier concentration to the
maximum power factor and then decreasing the lattice contribution to thermal conductivity.
It is thus beneficial to begin by selecting materials with favorable properties and then to
take a refined approach to optimizing the variables in 2T.

Slack proposed a paradigm of the optimal properties with which a material may be
selected in his phonon-glass electron-crystal model [57]. In this model Slack states that the
phonon mean free path should be that found in amorphous glasses, and the mobility of
carriers should be that found in single crystals. Under these criteria Slack proposed a term,
U, the weighted mobility where U = u <%—;>3/2 and R, where R = U/k;. Using these terms
Slack came to the conclusion that for high 2T the best materials will have a high mobility,
a high effective mass, and a low lattice contribution to thermal conductivity. This R term
could then be a filtering term to distinguish materials with high 2T values. In his survey
Slack found no material with R values high enough to result in 2T values of unity from 77
to 300 K, but outlined the requirements for 2T values as high as 4 at room temperature.

A material parameter, B, given the moniker ”quality factor”, is an attempt to define the
exact properties of a material which will result in a high zT. This was first introduced by
Chasmar and Stratton, named the material factor, 8 [58], and later reworked by Nolas and
Goldsmid [23]. Taking into account the changes in mobility with doping and carrier band
degeneracy the quality factor was given Snyder et al. as [59]:

— 2k}29h C1NVy

B = T 1.53
3m m?E%:l (1.53)

where Ny is the valence band degeneracy, Cj is the longitudinal elastic constant, mj is
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the conductivity effective mass, and = is the deformation potential. The band degeneracy
relates back to the concept of energy band diagrams, where the bottom of the conduction
band or the top of the valence band may be comprised of several overlapping bands. It is
seen from the above equation that a high band degeneracy with low conductivity effective
mass is preferred. This comes contrary to what is typically desired for the effective mass
and contrary to what Slack proposed. The parameter C; is a measure of the resistance of a
material to elastic deformation under an applied force and can be thought of as the stiffness
of the atomic bonding, and for high quality factor, should be maximized. Finally, the term,
=, which is a measure of the deformation potential of energy bands created by the interaction
of phonons with the band structure, should be minimized.

The lattice contribution to thermal conductivity in the Umklapp scattering dominated

region, can be approximated as [60,61]:

Mvg’ 1
1.54
L Y232 (N1/3) (1.54)

where M is the average mass, V is the unit cell volume, v is the Gruneisen parameter,

and N is the number of atoms in the primitive unit cell. This equation is especially useful for
the selection of a material because it highlights the importance of having a large number of
atoms in the primitive unit cell and having a high Gruneisen parameter, which is a measure
of the anharmonicity of bonding [62].

A final aspect of material selection that will be mentioned here is selection based upon
the electronic band gap. FEarly work by Chasmar and Stratton found a band gap of 6
kpT maximized thermoelectric performance in an indirect gap material with Mahan later

expanding that to 10 kg7 with similar values being found for direct gap materials [58,
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63,64]. Taking the midpoint of these values at 8 kgT the optimum band gap at 150 K
is approximately 0.1 eV and at 300 K is approximately 0.2 eV. Thus, for low temperature
applications and 2T maximization a low bandgap material is desired. This can be intuitively
understood by the requirement for one carrier type to be present in a material for the desired
temperature. If the bandgap of a material is too low for a desired operating temperature,
then intrinsic carriers will be populated and the Seebeck coefficient will be decreased. There
is more room for optimization if the bandgap is larger than this 6-10 k71" guide through
carrier concentration doping. Thus, for the work contained herein a low band gap material

will be preferred for low temperature thermoelectric applications.

39



Chapter 2

Experimental

2.1 Materials Synthesis

2.1.1 Furnace Reaction Method

For this work there were three main steps in the synthesis and processing of materials.
The first was the reaction of elements to form the desired compound. This step typically
consisted of a heating phase to supply the required thermal energy to allow for chemical
reaction between the different elements. The second step consisted of any post reaction
powder processing required by the particular project. This would entail any particle size
reduction attempts by ball milling or any material annealing required. The final step in the
synthesis procedure was a densification step whereby a dense pellet was created capable of
having transport measurements taken upon it.

As the specific experimental synthesis parameters varied for many of the materials ex-
amined a general guideline of what was performed will be given here. For the majority of
materials the initial reaction was facilitated by furnace heating. For all materials examined,
stoichiometric amounts of the elements were sealed in an evacuated quartz ampoule. The

elements used were supplied from either Sigma Aldrich or Alfa Aesar with a purity of at
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least 99.99 %. The elements were placed in a furnace which was heated to 800 °C for 4 days.
The reacted compounds were then quenched to room temperature in a water bath. After
the initial reaction samples were typically very porous with low densities, thus for transport
properties measurements a subsequent densification step was necessary.

Samples were ground via mortar and pestle to prepare for X-ray diffraction and either
material processing or densification depending upon the project. Between the initial reac-
tion, any post-reaction processing, and densification every sample was analyzed by X-ray
diffraction on a Rigaku Miniflex-IT using Cu-K,, radiation to ensure phase purity.

For projects which entailed particle size reduction a ball milling step was performed using
a SPEX MixerMill 8000D or a MixerMill 8000M in either a stainless steel ball milling jar
and media or a zirconium oxide, (zirconia), milling jar and media. The duration of milling
time differed between projects and will be given in the discussion of the applicable projects.
Samples which were annealed were again placed back into an evacuated quartz ampoule,
heated to their reaction temperature, and held for a specified time.

The final step in material synthesis was densification by spark plasma sintering, SPS, for
all projects in this work. A Thermal Technology model 10-4 system SPS machine was used
for early samples and a Dr. Sinter spark-plasma-sinter 211LX was used for later samples.
To prepare samples for sintering, a mortar and pestle were used to pulverize samples which
had not been ball milled. The powder was then loaded into a graphite die with graphite foil
spacers between two plungers which acted to give uniaxial pressure on the sample and to
apply a path of electric current through the sample. The die and plungers were stationed
between two water cooled graphite rams. A schematic representation and picture of the SPS

system is shown in Figure 2.1.
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Figure 2.1: Schematic of Spark Plasma Sinterer

SPS, or pulsed electric current sintering, is differentiated from other types of sintering
by the pulsed direct current which is applied across the sample. This pulsed electric current
results in two effects which create sintering in the sample. One of these is joule heating due to
the passage of a current through an internally resistive sample. The other effect is the arcing
of electric current between neighboring particles [65,66]. Through these two effects samples
with densities higher than 95% density were obtained. The final densified sample is in the
shape of a cylindrical puck and must be cut to perform transport properties measurement

upon.

2.1.2 Flux Synthesis

In the Conclusions and Future Directions chapter a material system will be presented which
used an entirely different initial chemical reaction than other samples. This material con-

tained the element phosphorous which has a low boiling point that made a furnace reaction
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method impossible due to the failure of quartz ampoules when phosphorous vaporizes. To
synthesize this material a flux method was utilized. For this method a secondary mate-
rial was added to the reactants which acted as a solvent for the desired compound. This
stabilized the mixture and allowed for the desired product to react [67].

The synthesis procedures outlined here were based upon the work by Odile et al. [68].
Stoichiometric amounts of elements were sealed in an evacuated quartz tube with 85 wt% tin
added as the flux. The heating profile for this reaction consisted of an initial ramp to 250 °C
at 1.0 °C per minute with a dwell time at this temperature of 12 hours. Another ramp was
performed up to 1000 °C at 0.5 °C per minute with a dwell time of 2 days. A slow cooling
step was performed at a rate of 5 °C per hour to 550 °C to allow the desired compound
to form. Once the furnace had cooled to 550 °C a water quench to room temperature was
performed.

Samples were ground via mortar and pestle and examined with X-ray diffraction for the
desired product. To liberate the product from the tin flux a reaction with 6 molar hydrochlo-
ric acid was performed. The reaction with hydrochloric acid will generate the creation of
tin chloride, a salt, and hydrogen gas. Thus, the generation of bubbles due to hydrogen gas
formation was an indication that the reaction was proceeding. When hydrogen production
ceased it was assumed that the reaction was complete. Finally, the mixture was washed
with distilled water to dissolve and remove the tin chloride salt. The remaining material
after the wash should be the desired product. After this step typical powder processing and

densification procedures were resumed.
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2.2 Material Characterization Techniques

2.2.1 X-ray Diffraction

X-ray diffraction was performed to characterize the phase purity of powderized samples. This
technique allows for the analysis of the crystal structure of a sample due to the diffraction
of X-ray radiation from atoms in the lattice. Due to the periodic nature of atoms in crystal
lattices the spacings between planes of atoms can be examined by the angle with which X-ray
radiation diffracts.

As X-ray radiation is diffracted from the crystal lattice these waves may interact by either
constructive or destructive interference. In destructive interference the waves are completely
”out-of-phase” meaning that the crest of one wave is perfectly aligned with the valley of the
wave it is interacting with. Mathematically this is expressed as when the phase of one wave in
a set is at an odd multiple of 7 relative to the other wave. X-rays in this arrangement are said
to destructively interfere and have an amplitude of zero which does not generate any signal
in X-ray diffraction. Constructive interference however occurs when waves are perfectly ”in-
phase”, which may differ by an even multiple of 7. In this instance the crests of both waves
perfectly align which results in a doubling of the amplitude of the resultant wave. It is these
constructively interfering waves which generate the signal in X-ray diffraction.

Since it is constructively interfering diffracted beams which generate the output signal
in X-ray diffraction the spacing between planes of atoms and the angle with which they

constructively interfere is given by Bragg’s law:

nA = 2dpstn(6) (2.1)
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where )\ is the wavelength of incident X-ray radiation, djj; is the spacing between planes
of atoms, and @ is the angle of incident X-ray radiation in relation to the atomic plane. A

schematic representation of this is given in Figure 2.2.

E) Ay
AB = nA : Constructive

A B nil = dhkl sin 8

Figure 2.2: Schematic of Bragg Diffraction

A desktop Rigaku Miniflex IT using Cu-K,, radiation with a wavelength of A = 1.54 A was
used. To determine the lattice parameter of samples an internal silicon standard was added
to account for any offset in 260 due to systematic error or a height offset of the diffracted
powder. For this work the samples examined all had cubic crystal structures, thus the lattice
parameters were all equal, a = b = ¢, and all internal angles equal to 90°. Using reciprocal
space dj; parameters where h, k, and | are the Miller indices of planes, the lattice parameter

could be obtained by:

1 W24 k2 P

d%kl - (2.2)
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To analyze the particle size reduction effects of ball milling X-ray diffraction was again
utilized. Particle size reduction results in a broadening of the observed peaks for a material.
The width of the peak, taken at half the maximum intensity, can be related to the particle

size by the Debye-Scherrer equation [69]:

K\
L_

= 50l (2.3)

where L is the crystallite size, K is the shape factor, 3 is the broadening at half maximum,
and @ is the 26 position at which the peak maximum occurred. The shape factor is very
often close to unity but depends upon the shape of the crystallite. When determining the
broadening at half maximum it is important to subtract any instrumental broadening, which
may occur due to several factors including imperfectly monochromatic radiation production
from the machine and a non-infinitesimally small diffraction surface.

However, a reduction in crystallite size is not the only sample effect which can lead
to broadened X-ray peaks. The other factor occurs due to any internal strain effects in
the crystal lattice. These can arise from lattice distortion from dislocations, concentration
gradients, and several other factors which cause a displacement of atoms from their most
thermodynamically stable position. The Debye-Scherrer equation is unable to separate the
peak broadening due to lattice strain from the reduction of crystallite size, however the

Williamson-Hall equation has made these two effects separable and is given by [70]:

Beos(0) = KT)\ + 4esin(0) (2.4)

Using this equation it is possible to plot Scos(f) vs. sin(f) to obtain the y-axis offset

which can be solved for to obtain the crystallite size. This method gives an average crystallite
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size and should be confirmed with additional methods to quantify exact crystallite sizes.
The technique is nevertheless a powerful tool for comparison between similar samples given

differing processing conditions.

2.2.2 Low Temperature Transport Property Characterization

To measure the thermoelectric properties of each sample a diamond saw was used to cut
samples into a parallelepiped of typical dimensions: 3 mm x 3 mm x 8 mm. These samples
were then measured on an in-house built Janis liquid nitrogen-flow cryostat from 80 to
350 K. Two key concerns for the accurate measurement of transport properties are good
electrical contacts between the sample and the measuring devices and good thermal contact
and sinking between the sample and the heat source and sink. To ensure good electrical
and thermal contact samples were soldered onto a copper base, which additionally acted
as a heat sink, and to the top surface of the sample an 800 €2 resistor was soldered. A
copper sheet was wrapped around the resistor to allow for good thermal contact between
the resistor and the sample and to also be a conduit for the current input. A Keithley
2400-LV Sourcemeter was used to source a known current through the resistor. A Keithley
2001 multimeter was used to measure the voltage drop across the resistor. With the known
current input into the resistor, and the voltage drop across it, the power output, in the form
of Joule heating, was able to be calculated. A current input, again using a Keithley 2400-LV
Sourcemeter, was soldered onto the copper sheet wrapped around the resistor which allowed
for the propagation of current down the sample and output through the copper base. For all
measurements a steady state heat flux condition was created by holding the powered resistor
on for at least ten minutes prior to any measurement. To measure the conduction of heat

through the sample two copper-constantan thermocouples were soldered onto the surface
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of the sample perpendicular to the flow of heat taking care to span the entire breadth of
the face of the sample. A Keithley 2182A Nano voltmeter was used to measure the voltage
generated by the thermocouples which could then be interpreted as the temperature of the
sample at that point. To reduce the loss of heat by conduction the cryostat was placed
under a vacuum of approximately 1075 torr. A schematic representation of this setup used
to measure thermal conductivity, electrical resistivity, and the Seebeck coefficient is given in

Figure 2.3.

—| Sample Current Input, I

800 Q Resistor [o»

Copper Heat
Sink and
Sample Current
Output, Ig

Figure 2.3: Schematic of Cryostat Measurement Setup

To determine the thermal conductivity of a sample the thermal conductance was first

determined by:

Vil
Ky = % (2.5)

where K is the measured conductance, Vg is the voltage drop across the resistor, Iz is
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the current passed through the resistor, and AT is the measured temperature drop between
the thermocouples. V gl is the power in the form of Joule heating generated by the resistor.
It is assumed that all of this heat is conducted into the top surface of the sample, further
highlighting the importance of good thermal contact. According to the Stefan-Boltzmann
law a certain amount of this heat will be lost as radiative energy as it propagates through
the sample. This law is given by: P = eaAT4, where P is the radiative heat lost, € is the
emissivity of the sample, ¢ is the Stefan-Boltzmann constant, A is the surface area of the
sample, and T is the temperature of the sample. Thus, the actual thermal conductance of
the sample is the measured component minus the radiative heat loss. To account for this
loss in samples with unknown emissivity a standard glass sample was used to determine the

typical radiative loss:

T 3
K pad = 000146 o (2.6)

where Kp,q is the radiative heat loss. Using this term the total thermal conductivity of
the sample could be found from the equation:
L

k= (K = Kpqq) * g (2.7)

where L is the thermocouple probe separation and S is the area of the sample. The
dependency of the conductivity to the dimensions of the sample highlight the importance of
having accurate dimensional measurement. To reduce the inherent error in the thermocouple
separation measurement the thermocouples should be separated as far as possible while still
allowing space for heat and electrical current flow to be homogeneous. To account for this

thermocouples were soldered onto the sample surface a minimum of 2 mm away from the
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ends of the sample. Thus, a typical thermocouple probe separation was approximately 5-6
mm. The error in this measurement is still estimated to be up to 10% due to inaccuracy in
dimension measurement, system error, and the radiative heat loss term.

To determine the Seebeck coefficient of samples the voltage drop obtained between the
copper contacts of the thermocouples were measured using a Keithley 2000 multimeter with
the heater energized. With the known voltage and temperature drop between thermocouple
probes the Seebeck coefficient may be directly obtained from: a = %, where Vg is the volt-
age drop between copper leads from the thermocouples and the AT is the same temperature
drop between the thermocouples as before. The error in this measurement is estimated to
be 5% due to inherent inaccuracy in measuring the temperature gradient and the relatively
low voltages generated due to the Seebeck effect.

The four probe electrical resistivity measurement method was used for samples where
again the voltage drop along the sample was measured between the copper leads of the
thermocouples. For this measurement the sample current is sourced in one direction and
then reversed to account for any contact resistances or the generation of a Seebeck voltage
from Joule heating. The equation describing this is:

Vg S

=5, 2 2.8
P=1 " T (2.8)

where Ig is the current passed through the sample. Sample dimensions are found to
play a role in evaluating another measured property which further highlights the need for
accurate sample dimensional measurement. The error in this measurement is also estimated

to be 5% primarily due to dimensional measurement.
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2.2.3 Hall Effect Measurement

The Hall effect is due to the presence of an orthogonal force, the Lorentz force, acting on
moving charge carriers in the presence of a magnetic field [71]. This force is dependent upon

the electric field acting on the charge carriers and the magnetic field by:

F=¢[E+ (v xB) (2.9)

where F is the Lorentz force, E is the electric field, v is the drift velocity of carriers,
and B is the magnetic field. The cross product of v and B yields a transverse component
which causes a migration of charge carriers to one side of a sample. This buildup of charge
generates a measurable voltage across the sample. This voltage is termed the Hall voltage
and is given as:

B

Vi = (2.10)

nte

where I is the current, ¢ is the thickness of the sample, and n is the charge carrier
concentration. A Hall coefficient, Ry, may then be defined as:
Vgt -1

Ry = 11~ — 2.11
H IB ne ( )

Using Hall testing the carrier concentration of a sample may be obtained and subsequently

the carrier mobility may be determined by the relation: o = ney; in the single carrier system.

A schematic representation of this system may be seen in Figure 2.4
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Figure 2.4: Schematic of Hall Effect Measurement Setup

To perform these measurements samples of dimensions ~ 0.25 mm x 3 mm x 8 mm with a
probe separation of approximately 5 mm were used. The thickness of samples was minimized
to result in higher signal to noise ratios in obtaining the Hall voltage. Samples were mounted
onto a flat copper base with 2 layers of cigarette paper to act as an electronic barrier, yet
still provide good thermal contact. All sample contacts were soldered on to encourage good
electrical contact with the sample. Magnetic fields ranging between 0 to 2 Tesla were used to
measure the Hall voltage from 80 to 350 K as measured with a Lakeshore 421 Gaussmeter.
The standard four probe electrical resistivity measurement method was used to determine the
resistivity of the sample at all temperatures measured using a Lakeshore 370 AC Resistance
Bridge. Samples were sealed in an evacuated atmosphere of approximately 10~° torr with
a liquid nitrogen flow to reach 80 K. A Lakeshore temperature control meter was used to

stabilize the system at each temperature.
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Chapter 3

Background on PtSbso

3.1 Low Temperature Thermoelectric Materials

Thermoelectric materials research for low temperature applications, typically room tem-
perature and lower, is an area of the field with relatively less work compared to the mid
temperature and high temperature regions of application. Since the 1950’s the reigning ma-
terial for room temperature applications has been BigTeg. Work by Goldsmid and Douglas
established BigTes [5,72,73] with zT values approaching unity around room temperature.
Over the past sixty years further work devoted to doping and solid solution alloying with
ShoTes have been able to increase the 2T of this material to values above unity up to tem-
peratures of 500 K [74-76]. Possibly of even more importance, BigTeg and its alloys have
the capability of assuming p- and n-type properties such that a thermoelectric module may
be made from the same base compound. This is highly beneficial because of the need to
have similar thermal expansion coefficients for the materials in a thermoelectric module to
avoid cracking from thermal cycling stresses. This has made BioTeg the ”go-to” material for
commercial application and use near room temperature.

These optimized BigTes alloys are limited to use around room temperature due to a

drop-off of their properties outside of this region. At temperatures lower than 250 K other
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materials have been found to have superior properties. Work by Smith and Wolfe established
the solid solution of bismuth and antimony as a material which shows superior properties
to BigTes at temperatures between 20 and 220 K [77]. Work with Bi-Sb alloys has been
able to show further enhancement due to the presence of a magnetic field, but even in a zero
field, this n-type material, with a Bi rich composition of 15% Sb, showed a figure-of-merit
maximized at 80 K with a 2T ~ 0.5 [78].

Further work in the low temperature region for thermoelectrics has been sparse due to
the dominance of these two compounds. A material that has shown promise as a potential
low temperature candidate is CsBigTeg. This layered material, which is structurally distinct
from BigTes, shows superior 2T to BigTe3 at low temperatures until approximately 275 K
with a maximum at 225 K of 2T = 0.8 [79].

FeSi first garnered interest due to its unusual magnetic properties [80], but later showed
a very large Seebeck coefficient of approximately 500 x4V /K at 50 K [81]. This large Seebeck
coefficient was shown to be from a phonon-drag effect, which correlated to a large thermal
conductivity at the same temperature. Many attempts have been made to dope FeSi to
enhance its thermoelectric properties, with the best dopant being found to be iridium [82].
This dopant showed a maximized zT = 0.12 for planetary milled samples at 100 K.

Other possible materials for low temperature application include those of the intermediate
valence systems such as CePdoPt with a 2T approaching 0.3 below room temperature and
YbScAl [83,84]. These systems allow for the chemical pressure tuning of the electronic
properties by simple substitution methods and make use of a complex electronic structure
with very sharp electronic density of states due to f-shell electrons. However, they still show
lower performance than the Bi-Sb alloys examined so long ago.

For further enhancement of the figure-of-merit at low temperature extensive work should
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be performed on known, as well as, unknown materials. The serendipitous finding of
CsBiyTeg as a superior thermoelectric demonstrates the possibility that there are still ma-

terial candidates as yet unknown for low temperature applications.

3.2 PtSb,

3.2.1 Crystal Structure and Phase Diagram

PtSbg is a semiconducting material which crystallizes in the cubic pyrite structure with
space group (Pa3). To start, a comparison to the rocksalt, NaCl, structure may be made. Pt
atoms occupy the cation Na sites in a face centered cubic arrangement, with positions: (0, 0,
0), (1/2,1/2,0), (1/2, 0, 1/2), and (0, 1/2, 1/2). The anion site is occupied by an Sb dimer
pair with positions: +(x, x, x), £(-x, x+1/2, 1/2-x), £(1/24x, 1/2-x, -x), and £(1/2-x,
-x, 1/24x) with internal parameter x = 0.375 [85]. The Sb dimers are oriented parallel
to the <111> directions with a Sb-Sb separation of 2.78 A [86]. The lattice parameter
through theoretical calculations and experimental work has been found to be a = 0.644
nm [85,87]. Platinum atoms are octahedrally coordinated with 6 bonded antimony atoms
while antimony atoms are tetrahedrally bonded to three platinum atoms and one other
antimony atom. Figure 3.1 shows a schematic of the pyrite crystal structure generated from

the software Vesta [88].
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Figure 3.1: Schematic of Pyrite Crystal Structure Showing Pt - Sb Local Bonding

Visible in this schematic is the distortion of the octahedral coordination of Pt where the
angles between Sb-Pt-Sb groups are no longer 90°. Due to this distortion local symmetry
is reduced from cubic to trigonal and it can also be seen that there is a rotation of the
octahedral axis away from the cubic lattice of approximately 24° [89].

PtSbo shares the pyrite crystal structure with several compounds, the namesake com-
pound, FeSo, CoSg, MnTes, RuSeg and RuTes, AuSbg, PdAs? and PdShg, and PtPngy, where
Pn = S, As, Sb, and Bi [90] [91]. The most exciting of these from the thermoelectric point
of view are the Pd and Pt based pyrite compounds due to the possibility of making a variety
of solid solutions which could lead to a reduction in the lattice thermal conductivity.

Using nuclear magnetic resonance Mallick and Emtage determined the likely formal va-
lence state of PtSbha to be PtQ_SbéF [92]. This valence state points to nearly only covalent
bonding in PtSbo, which is what would be expected due to the small difference in their Paul-
ing electronegativities, y, Pt(2.28) and Sb(2.05). The Sb-Sb dimers would be expected to

be entirely covalent and the Pt-Sb bond dipole would be very small with a Ay = 0.23 which
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would lend itself to being almost entirely covalent bonding [93]. Work by Lutz et al. have
shown that PtPny compounds going down the column of the periodic table have increasingly
stronger bonding which further supported the claim of primarily covalent bonding in this
system [94]. With the strong bonding found in PtSbs it is unsurprising that this compound
has a high melting point of 1226 °C [95]. Itkin and Alcock presented the phase diagram
of PtSbo where it is found that PtSbg forms by a congruent phase transformation from the
liquid phase at an atomic% Sb of 66.7% to the intermetallic PtSbg [96]. The phase diagram

for PtSbg is shown in Figure 3.2.
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Figure 3.2: Schematic Phase Diagram of the Pt-Sb System

3.2.2 Electronic Structure and Transport Properties

Much of the early work with PtSbo was performed on single crystals to determine the elec-
tronic properties of the compound. This early work established that PtSbo is a narrow-gap

semiconductor with a bandgap of approximately 0.1 eV [97-99]. Work by Damon et al.
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examined the magnetoresistance and piezoresistance of PtSbeo single crystals to find a likely
valence band maxima was located on the <100> directions [98]. Emtage built upon this
work using theoretical modeling and made electronic band structure calculations that would
last for the next 40 years. Emtage calculated that it is non-bonded d-orbitals that take part
in the formation of the conduction and valence bands. He found that there are valence band
maxima in the <100> directions and conduction band minima along the <111> directions,
which give rise to an indirect bandgap of Eg ~ 0.08 eV. A schematic representation of the
energy band diagram of PtSbg is given in Figure 3.3 modified from that generated by [100].
Damon et al. later supported the valence band maxima being on the <100> directions and
further showed that this was from six ellipsoid bands which produced unequal inertial effec-
tive masses, my, mo, and ms with ratios of 0.61:1:1.64 [101]. They additionally countered
Emtage’s earlier finding of an energy dependent band structure and gave a direct gap of
Eq >04¢eV.
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Figure 3.3: Schematic Energy Band Diagram of PtSbo
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Much of this early work on PtShg on single crystals had an interesting finding that even
when samples were undoped a large variation in carrier concentration and even dominant
charge carrier was found. Several groups provided further validation of the energy gap being
Eq = 0.1 eV and showed that acoustic phonon scattering was the dominant mechanism
above 50 K, however found a large variation for many single crystal carrier concentrations
ranging between c.c. ~ 1% 1016 to 1.5 * 108 and also disagreed on the dominant carrier
type [102-106]. These deviations are thought to have occurred because of variations in
stoichiometry due to the loss of antimony when melting the compound in preparation for
single crystal growth. More recent work on single crystal and polycrystalline samples showed
that a non-stoichiometry due to antimony loss can create n-type samples at room temperature
and below [100, 107].

Several doping experiments have been performed on PtSbo to examine its resultant be-
havior. Dargys and Kundrotas in 1983 examined the effects of tellurium doping on single
crystals and found with low but, unfortunately, unspecified dopant concentration at T = 25
K a very large Seebeck coefficient can be obtained at almost -800 pV/K [108]. It was evident
though that the PtSbo structure has a limited ability to incorporate dopants from the work
of Laudise et al. and Bennett et al. In an attempt to make a magnetic semiconducting
material Laudise et al. worked with the solid solution of PtSbo and the magnetic Heusler
compound PtMnSb. However, with concentrations of x=0.25 and higher in PtSby_,Mny;
secondary phases were found [109]. In the work by Bennett et al. the doping of several rare
earth elements were attempted in PtSbhg. Again, it was found that secondary phases were
produced from these dopants which in the case of Pt{_,Yb,Sbo created a superconducting
material [110]. This superconducting activity is thought however to have come from the

secondary phase in the system of PtSb, which is superconducting at T, = 2.1 K [111].
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Successful p-type doping on the Pt site in PtSbho was obtained by Nishikubo et al. by
Ir doping in a polycrystalline sample [112]. A large enhancement to the power factor was
obtained largely from a decrease in electrical resistivity. A decrease in the Seebeck coefficient
was found at low temperature, but above 300 K, in their lightest doped sample, the Seebeck
coefficient surpassed the un-doped material. The power factor was found to be approximately
18 /VLVV/cm—K2 at 150 K for the un-doped sample with an increase to approximately 43
uW/ cm-K2 at 400 K. Diminished thermal conductivity was additionally found in the doped
samples which ultimately gave an enhanced figure-of-merit.

Theoretical work by Mori et al. suggested that the origin of the large power factor found
by Nishikubo et al. was due to a corrugated flat band structure found in PtSbg [113]. This
work hearkened back to that of Emtage who found that a low energy barrier separated
the maximum in the valence band between another high lying band which created a wide
dispersive region separated by a 0.011 eV energy barrier. Typically, in a metal where the
Fermi energy is within a band, to have a large Seebeck coefficient the Fermi energy must
be near the band edge where the group velocities of electrons and holes will differ. This in
turn reduces the carrier concentration which negatively affects the power factor. Mori et al.
argued that due to the corrugated flat band structure in PtSbg hole doping did not cause a
large decrease in the Fermi energy which left the large Seebeck coefficient intact. This can
further be seen in theoretical work on electron and hole doping of PtSbo and experimental
polycrystalline work on tellurium doping [114, 115].

A final consideration for PtSbg is due to its narrow bandgap. The small bandgap of
only 0.1 eV creates the maximum in the Seebeck coefficient found at approximately 150 K
due to the population of electrons at this temperature from the material entering into the

intrinsic regime at this point. For the application of PtSbo at very low temperatures this
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very narrow bandgap is ideal, but for applications approaching room temperature, a wider
bandgap would be superior. This point was given by Mori et al. who concluded that the
materials PtP2 and PtAsg would be better candidates at higher temperatures due to their
larger bandgaps. This point was proven by Kudo et al. when they examined rhodium doping
of PtAsg [116]. The thermoelectric properties were examined from 2 to 600 K and found
the Seebeck coefficient increased over the entire temperature range and a maximized power
factor of 65 pW/ cm-K2 at approximately 440 K. Thus, the solid solution of PtSbhe with these

materials may be a route of engineering the bandgap in PtSba.

3.3 Nominally Undoped PtSb,

3.3.1 Synthesis

As outlined in chapter 2 undoped PtSbg was synthesized by the solid-state reaction of ele-
mental chunks of Pt and Sb in an evacuated quartz tube at 800 °C. Samples were allowed
four days to react to completion and were subsequently quenched to room temperature via a
water bath. A solid-state reaction was necessitated due to the high melting point of platinum
and the end compound, 1769 °C and 1226 °C respectively. Neither the furnaces used in syn-
thesis or the quartz tubes would have been able to facilitate such a high temperature to allow
for the liquid state to have been met and subsequently water quenched. Additionally, due
to the work of prior research it was known that many samples resulted in non-stoichiometry
due to the loss of antimony from its high vapor pressure at the melting point of PtShg. Since
antimony has a low melting point relative to platinum and PtSbs at 630 °C the synthesis
was allowed to proceed by way of diffusion. At a furnace temperature of 800 °C antimony

would melt and diffuse into and react with platinum to synthesize the desired end product.
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Experimentation on reducing and prolonging the reaction time generated secondary phases
with a decreased time and produced no benefit from prolonging the reaction time. To pre-
pare samples for X-ray diffraction and subsequent densification via SPS a mortar and pestle
was used to grind samples into a powder.

For nominal PtSbo two different SPS parameters were used to densify samples. In the
early experimentation of this work the parameters were a slow ramp to 900 °C over 30 minutes
where the sample was then held at this temperature for 30 minutes and then slowly cooled
to room temperature over 30 minutes at a pressure of 40 MPa. This produced samples with
greater than 95% theoretical density, but it was later found that a much shorter sintering time
could be used while retaining the near theoretical density. The shortened SPS parameters
were a ramp to 900 °C over 7 minutes with a dwell time of 10 minutes at 40 MPa of pressure.
After the 10 minutes of sintering the current was turned off, the pressure was removed, and
the sample was allowed to cool to room temperature limited by the rate at which the water
cooled graphite dies could dissipate heat.

Cylindrical samples densified by SPS were then cut by diamond saw and either prepared
for mounting on the cryostat, Hall measurement, or ground for XRD analysis as were all

future samples.

3.3.2 Structural Properties

The X-ray diffraction pattern of PtSbo is shown in Figure 3.4 compared against the theo-
retical pattern generated from Vesta using the parameters obtained by Brese et al. [86, 88].
It was found that the obtained pattern matched well with previous literature and yielded a

lattice parameter of a = 0.643 nm as determined by the inclusion of a silicon standard.
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Figure 3.4: X-ray Diffraction Pattern of PtSbo

At high 26 double peaks may be observed in the theoretical pattern due to the inclusion

of Cu-Kq, peaks. These peaks have been removed from the experimental data for ease of

analysis.

3.3.3 Electrical Properties

The Seebeck coefficient of PtSbg is shown in Figure 3.5 compared with data on polycrystalline

samples by Johnston et al. and Nishikubo et al. [90,112].
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Figure 3.5: Seebeck Coeflicient of PtSbo

It is shown that using this synthesis procedure the same p-type Seebeck coefficient is
found, however, its overall magnitude is shown to be diminished. Compared with the work
of Nishikubo et al. it is seen that the peak in Seebeck coefficient found in that work was
at a lower temperature, 130 K, than that found in this work, 150 K. This is indicative of
a narrower bandgap in the work by Nishikubo et al. with the onset of bipolar conduction
occurring at a lower temperature and is also indicative of a lower carrier concentration in
their sample at this temperature due to the increased magnitude. However, above 160 K the
magnitudes of both sets of data match and follow the same trend. Compared to Johnston
et al. it is seen that the peak in Seebeck coefficient occurs at the same temperature, yet,
it is only at high temperatures, > 300 K, that the magnitudes begin to converge, elsewhere
the magnitude of the Seebeck coefficient is greater. The overall increased magnitude of

Johnston’s results is indicative of lower carrier concentration or a difference in mobility across
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the entire temperature region measured. Though diminished compared to these other results
the Seebeck coefficient found, from as prepared PtShe, is very large at low temperatures
with a maximum at 160 K of 220 ¢V /K. This highlights the interest in this compound for
low temperature Peltier coolers: few materials have such large Seebeck coefficients in the
cryogenic temperature regime.

The electrical resistivity of undoped PtSbg is shown in Figure 3.6, also compared with
the work of Johnston et al. and Nishikubo et al. It should be noted that the y-axis is in a

logarithmic scale to show the wide ranging data.
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Figure 3.6: Electrical Resistivity of PtSho

Evidence for the lower carrier concentration of the Nishikubo et al. sample at low temper-
ature can be gleaned from this figure. At 80 K the electrical resistivity found by Nishikubo
is approximately an order of magnitude higher than that of this work and decreases rapidly

until it matches the electrical resistivity of this work at approximately 130 K. The data of
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Johnston et al. shows a relatively flat region until approximately 140 K, where it matches
the values of this work and the work by Nishikubo et al. The flat portion of the work of
Johnston et al. is thought to be in the extrinsic regime of carrier concentration which at 140
K enters the intrinsic regime and reduces the electrical resistivity.

Analysis of the electrical resistivity found from this work can best be done in conjunction

with Hall effect data as shown in Figure 3.7.
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Figure 3.7: Carrier Concentration and Mobility of PtShe

It is found that the carrier concentration from 80 to 140 K is relatively unchanged,
however the mobility in this temperature region is increasing with a T dependency. This
effect is what resulted in the decrease of the electrical resistivity in this region where the
results of Johnston et al. did not. At approximately 150 K the carrier concentration began
to increase rapidly. Fitting the curve where intrinsic carriers are being populated the band

gap may be found to be Es ~ 0.16 eV. While the carrier concentration is increasing the
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mobility is found to decrease with a T —3/2 temperature dependency. This is indicative of
acoustic phonon dominant scattering as was also found by Reynolds et al. in this temperature
regime [103]. As the mobility decreases by a factor of 2 from 140 K to 300 K the carrier
concentration increases by an order of magnitude, which resulted in the observed continued

reduction of the electrical resistivity in this temperature region.

3.3.4 Thermal Properties

The total thermal conductivity of PtShg is shown in Figure 3.8 compared with that found
by Nishikubo et al.
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Figure 3.8: Total Thermal Conductivity of PtShg

Good agreement is found between the results of this work and that of Nishikubo et al.
At 80 K the thermal conductivity is found to be very large at approximately 63 W/m-K.

This is found to be the maximum over the temperature range examined due to the low
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Debye temperature of this material. Above this temperature the specific heat is maximized
and Umklapp scattering is the dominant scattering mechanism. The thermal conductivity
is found to decrease with a T—9-77 temperature dependency, which indicates a mix of scat-
tering mechanisms over this temperature region. Compared with the standard commercial
thermoelectric material BigTeg this thermal conductivity is much too high and should be
lowered for enhanced figure-of-merit.

Examination of the individual contributions to thermal conductivity in Figure 3.9 shows
that the lattice contribution to thermal conductivity is dominant over the entire tempera-
ture range. The electronic contribution is determined using the Wiedemann-Franz law as

described in section 1.5.1.
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Figure 3.9: Lattice and Electronic Contributions to Thermal Conductivity of PtShe

The electronic contribution to thermal conductivity begins with a very low value at 80
K, where the electrical resistivity of PtSbe is at its maximum, and increases over the entire

temperature range as the electrical resistivity is found to decrease. The lattice contribution
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is found to be over an order of magnitude larger than the electronic contribution and will be
an opportune parameter to minimize for figure-of-merit enhancement.

The magnitude of the figure-of-merit of nominal PtSbe is low for all temperatures mea-
sured, but reaches a maximum between 220 to 250 K at a value of 2T ~ 0.009. Compared
to commercially maximized BigTes this value is almost two orders of magnitude too low.
However, as will be shown in the forthcoming chapters several avenues of enhancement are

possible in PtSbo that can increase its figure-of-merit substantially.
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Chapter 4

Antimony Site Doping in PtSbso

4.1 Background and Motivation

Electronic doping provides a "tuning knob” by which the carrier concentration and ulti-
mately the power factor of a thermoelectric material may be optimized. There are several
considerations when optimizing the power factor of a narrow bandgap material, which will
be shown here, but this method has been proven to increase the figure-of-merit.

The most dramatic of these considerations occurs in the Seebeck coefficient. It is well
known that as the carrier concentration of a material increases the Seebeck coefficient de-
creases, thus, when the nominally p-type PtSba is p-type doped it is expected that this will
increase the carrier concentration and subsequently decrease the Seebeck coefficient. How-
ever, an interesting effect occurs when a p-type material is doped with a donor atom. At
high dopant concentrations the nominally p-type material will exhibit a negative Seebeck
coefficient. This denotes that electrons are now the dominant charge carrier in this system as
compared to the intrinsic holes. As the concentration of n-type dopant is decreased the mag-
nitude of the Seebeck coefficient will increase due to fewer competing carriers and the peak
in the Seebeck coefficient will shift to lower temperatures due to fewer intrinsic hole carriers

needing to be populated to overcome the effect of the extrinsic electrons. At some very low
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concentration, dependent upon the material and intrinsic carrier concentration, the Seebeck
coefficient will reach a maximum in the magnitude of the negative Seebeck coefficient it will
display. After this maximum has been met a subsequent decrease in the dopant concentra-
tion will not dope a sufficient concentration of electrons to create an n-type material, and
the typical p-type Seebeck coefficient will re-emerge.

This chapter will focus on electronic doping on the antimony site of PtSbo. In previous
literature few dopants have been examined on the antimony site with even fewer making
a comprehensive examination over low temperature. The work by Dargys and Kundrotas
examined the effects of low dopant concentrations of tellurium on the antimony site. Their
work found significant enhancement in the Seebeck coefficient at low temperature reaching
approximately -800 pV /K as well as observing a change in dominant carrier type [108]. In
the work by Nishikubo et al. it was stated that the power factor of Sn doped PtSbhy was
increased to approximately 20 W /cm-K2 [112]. Further, theoretical work by Saeed et al.
showed the enhancement that may be found in electron and hole doped PtShg at room
temperature and higher [114].

With this prior research it was shown that significant improvements in the power factor
may be made, thus it was the goal of this work to perform a comprehensive examination
of the potential thermoelectric enhancement of PtSbo via n- and p-type dopants on the

antimony site.

4.2 Experimental Methods

To examine the effects of n-type dopants selenium and tellurium were selected due to the

additional valence electron that they have compared with antimony. To examine the effects
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of p-type dopants tin, germanium, and indium were selected since they have fewer valence
electrons than antimony. Samples with compositions PtSbo_,Dp,;, where Dp = Se, Te,
Sn, Ge, or In were synthesized with dopant concentrations ranging between 0 < x < 0.15.
While dopant concentrations varied, the n-type donor concentrations were kept low and
p-type acceptor concentrations spanned the entire range due to variations in the electronic
effects of each dopant. Samples were synthesized in the same manner as outlined for nominal
PtSbo though it should be noted that tellurium doped samples utilized the SPS parameters
which entailed the 30 minute dwell time while all other dopants utilized the shortened SPS

parameters.

4.3 Tellurium Dopant Results and Discussion

4.3.1 X-ray Diffraction

The X-ray Diffraction patterns of tellurium doped PtSbg are shown in Figure 4.1.
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Figure 4.1: X-ray Diffraction of Tellurium Doped PtSho

It was found that there were no observable secondary phases with tellurium dopant
concentrations of up to x = 0.04. It was additionally found that there were no shifts to
lower 26 values as tellurium dopant concentration increased which would be expected from
an increasing lattice parameter. This is thought to be due to the low overall concentration
of tellurium doped and the fact that the size difference between tellurium and antimony is

small.

4.3.2 Electronic Properties

The results of low n-type dopant concentrations on a narrow bandgap semiconductor are
shown very well by the results of tellurium doping. Examination of the Seebeck coefficient
data in Figure 4.2 showed that a change in dominant charge carrier occurred with very low

concentrations of tellurium dopant.
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Figure 4.2: Seebeck Coefficient of Tellurium Doped PtSbo

In the x = 0.02 and 0.04 samples an n-type sample was found with a low magnitude
across all temperatures measured due to the high concentration of extrinsic carriers. With
a reduction in the concentration of tellurium dopant it was found that the n-type character
remained and further that the magnitude of the Seebeck coefficient was found to be increased
at lower temperatures. These samples also showed a maximum, or peak in their trend, which
decreased in temperature as dopant concentration was reduced. At low temperatures, in
these low dopant concentration samples, the Seebeck coefficient increased with temperature
until the thermal energy met that of the bandgap. At this temperature intrinsic hole carriers
were then populated in the system which led to the competition of holes and electrons and
caused a decrease in the magnitude of the Seebeck coefficient. At high enough temperatures,
when the weighted contribution to the Seebeck coefficient of holes had surpassed that of

electrons, the overall measured Seebeck coefficient was found to return to a positive value.

74



This effect was best shown in the x = 0.0005 sample with a maximum Seebeck coefficient
of approximately -210 uV /K between 120 to 140 K. As temperature increased, and intrinsic
carriers began to be populated, the sample became p-type between 250 and 260 K.
Comparing the results of the Seebeck coefficient with those of the electrical resistivity,
shown in Figure 4.3, further evidence is shown for the bipolar conduction effects in this

narrow bandgap material.
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Figure 4.3: Electrical Resistivity of Tellurium Doped PtSbo

Starting with the lightest dopant concentration of x = 0.0005 there is a marked reduc-
tion in the electrical resistivity at low temperatures compared with that of nominal PtSbhs.
The effect of extrinsic doping is seen by the relatively flat trend in resistivity until such
temperatures are met where intrinsic carriers begin to populate in the material. It was seen
that at approximately 170 K the resistivity of this sample converged with that of undoped

PtSbo at which point the intrinsic carriers were driving the electrical resistivity to lower
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values. The electrical resistivity was found to be further reduced in the x = 0.001 and 0.002
samples illustrating the effect of increasing the dopant concentration. These samples again
showed the onset of intrinsic carrier population at approximately 170 K with a change in the
slope of their data that eventually converged with that of undoped PtSba. At the highest
concentrations examined in this work, the x = 0.02 and 0.04 samples, a metallic electrical
resistivity was found which was characterized by a flat trend. In these samples it was only
at approximately 350 K where this data converged with that of the undoped PtSba.

The power factor of all doped samples showed enhancement at low temperatures. At 80
K undoped PtSbg has a power factor of 3.5 /ULVV/cm—K2 while that of the x = 0.04 sample is
17.5 pW/ cm-K2. As temperature increased the power factors of the lightly doped samples
were maximized at varying temperatures, but the x = 0.02 and 0.04 samples, which showed
the lowest electrical resistivity, were found to have a minimum between 120 to 130 K and
then to progressively increase. The x = 0.04 sample showed the highest power factor at 350

K of approximately 24 uW /cm-K2.

4.3.3 Thermal Properties

Examining the response of the thermal conductivity to n-type doping, shown in Figure 4.4,

it was found that there was a general decrease as dopant concentration was increased.
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Figure 4.4: Thermal Conductivity of Tellurium Doped PtSbo

At low temperatures the reduction was further pronounced due to the increased effect
that ionized impurities have at low temperature compared to the effects of phonon-phonon
scattering at higher temperatures. However, it was found that even with the reduction shown
in these results further minimization techniques should be performed in future work.

Analysis of the electronic and lattice contributions to thermal conductivity showed that
the lattice contribution was still the dominant contribution in this material. At low tem-
perature the electronic contribution was over an order of magnitude less than the lattice
contribution and as temperature increased the lattice contribution was still approximately

five times as large as the electronic contribution at 350 K.

4.3.4 2T

The figure-of-merit of tellurium doped PtShg is shown in Figure 4.5.
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Figure 4.5: 2T of Tellurium Doped PtSho

At low temperatures the figure-of-merit of all doped samples was found to be increased
over that of the undoped PtSbg. The overall magnitude of this enhancement was small
at low temperature where this work was focused. At varying temperatures in all but the
highest doped samples the figure-of-merit of undoped PtSbo eventually surpassed those of
the doped samples. The most prominent values in this figure were those of the highest
dopant concentrations, x = 0.02 and 0.04. These samples showed a large enhancement over
that of undoped PtShg, most pronounced in the region around room temperature, achieving
a 2T of 0.059 at 350 K. Comparing this value to that of commercial BisTeg puts this into
perspective and shows that an enhancement of approximately 20 times is necessary for room
temperature application. Comparison to that of Bi-Sb alloys at 80 K shows the need for

several orders of magnitude improvement.
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4.4 Selenium Dopant Results and Discussion

4.4.1 X-Ray Diffraction

The X-ray diffraction patterns obtained for selenium doping are shown in Figure 4.6.
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Figure 4.6: X-ray Diffraction of Selenium Doped PtShg

It was shown that for all selenium doping concentrations no secondary phases were

present. Examination for a change in lattice parameter showed no shift, which was likely

due to the low concentrations of dopant added in this work.

4.4.2 Electronic Properties

An examination of the Seebeck coefficient of selenium doped PtSbo may be made from

Figure 4.7.
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Figure 4.7: Seebeck Coefficient of Selenium Doped PtSho

It was found that as with tellurium doping the n-type selenium dopant generated a
negative Seebeck coefficient for many doping concentrations. Examining the highest dopant
concentrations first the x = 0.01 and 0.02 samples showed a fairly flat trend in Seebeck
coefficient. It is of interest to note the cross over in the sample with the highest magnitude
between the x = 0.01 and 0.02 samples between the temperatures of 190 to 210 K. This was
due to the population of intrinsic carriers creating an overall decrease in the magnitude of
the x = 0.01 sample more than the x = 0.02 sample due to the fewer number of extrinsic
carriers in the x = 0.01 sample. Moving now to the x = 0.001 and 0.002 samples the effect of
a low extrinsic carrier concentration being acted upon by the population of intrinsic carriers
was seen. At low temperatures the Seebeck coefficient of these samples had a relatively large
magnitude that decreased as intrinsic hole carriers were populated which competed with the

extrinsically doped electrons. Finally, examining the x = 0.0005 sample it was found that

80



the maximum in the Seebeck coefficient was likely to occur at lower temperatures than were
examined here.

Comparing these results with those of the tellurium doped samples an interesting effect
may be observed. The x = 0.0005 composition for selenium doping versus the same composi-
tion for tellurium doping demonstrated that selenium was likely not doping as many extrinsic
carriers into the PtSbo electronic structure as tellurium did. Evidence of this came from the
result that the Seebeck coefficient did not have a maximum and was still decreasing at 80 K,
as well as, the lower temperature at which the sample transitioned to p-type when compared
to tellurium at this composition. Since the peak in the Seebeck coefficient for the selenium
sample was at a temperature lower than 80 K its carrier concentration was likely lower than
the tellurium sample. Additionally, the transition to p-type at a lower temperature indicated
that fewer intrinsic carriers were required to dominate over the extrinsic carriers. Thus, it is
likely that fewer extrinsic carriers were doped from selenium versus that of tellurium at the
same composition.

Comparing the element tellurium to selenium it is found that beyond the size difference
of the atoms the selenium atom has a Pauling electronegativity of y = 2.55, which is much
larger than that of tellurium or antimony. The degree of electronegativity of an element is
a characterization of the degree by which the element attracts electrons to itself. Thus, if
the more electronegative selenium is doped into PtSba it is less likely to fully donate the one
additional valence electron to the material system than tellurium.

The electrical resistivity of selenium doped PtSbg is shown in Figure 4.8.
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Figure 4.8: Electrical Resistivity of Selenium Doped PtSbo

It was found that the electrical resistivity of the x = 0.0005 sample supported the claim
that an effective decrease in the carrier concentration compared to Te at the same compo-
sition was observed. At low temperatures it was seen that the x = 0.0005 sample had a
higher electrical resistivity than undoped PtShg, which is different from the tellurium doped
sample with the same composition. This effect may have arisen from a decrease in the mo-
bility or a decrease in the carrier concentration and Hall measurements would be a future
route to probe this result. Examining those samples with a higher dopant concentration the
more expected low temperature decrease in the electrical resistivity was observed. This data
matched well with that found from tellurium doping and showed the same convergence of

electrical resistivity towards that of undoped PtShg as temperature increased.
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4.4.3 Thermal Properties

The thermal conductivity of selenium doped samples is shown in Figure 4.9.
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Figure 4.9: Thermal Conductivity of Selenium Doped PtSbo

Relatively little change in the thermal conductivity was found for the low dopant con-
centrations examined. The outlier in this data set was found for the x = 0.02 sample. Com-
parison of the thermal conductivity of this sample with that of a similar tellurium dopant
concentration showed very good agreement. Thus, it is not expected that this particular sam-
ple showed any larger decrease in the thermal conductivity than would be expected. These
results along with those of tellurium highlight the importance of minimizing the thermal

conductivity in future experimentation.

444 T

The figure-of-merit of selenium doped samples is shown in Figure 4.10
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Figure 4.10: 2T of Selenium Doped PtShg

The lackluster individual transport properties for selenium doping culminated in a re-
duced figure-of-merit for all dopant concentrations other than over a small temperature range
at low temperature. From an examination of the power factor it is expected that further
doping beyond the x = 0.02 concentration may lead to some enhancement, but the overall
magnitude for these samples was low enough that it is unlikely a significant improvement in

2T would be found before a solubility limit was met for selenium on the antimony site.

4.5 Tin Dopant Results and Discussion

4.5.1 X-Ray Diffraction

The X-ray diffraction patterns obtained for tin doping are shown in Figure 4.11.
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Figure 4.11: X-ray Diffraction of Tin Doped PtSho

It was found from this X-ray pattern that a likely solubility limit exists for tin doping on
the antimony site in PtSbgo. Low concentrations of tin dopant showed no secondary phases
present, however, at concentrations at and above x = 0.1, secondary phases of tin were found
to exist demarcated by a star in the figure. There are no Pt-Sn phases which crystallize in
the pyrite structure, thus it was not unexpected that there would be a solubility limit for
tin dopant on the antimony site even with the similarity between the two elements. This
resembled the limited solubility found by the work of Laudise et al. [109] and Bennett et

al. [110] where secondary phases with low concentrations of dopant were found.

4.5.2 Electronic Properties

The Seebeck coefficient of tin doped PtSbeg is shown in Figure 4.12.
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Figure 4.12: Seebeck Coefficient of Tin Doped PtSho

These results showed the effect of p-type doping on a nominally p-type material. It
was found for all dopant concentrations examined that a decrease in the Seebeck coefficient
was the result of an increase in the carrier concentration due to p-type doping. As the
concentration of dopant was increased it was found that the Seebeck coefficient decreased in
response. The maximum in the Seebeck coefficient for these samples was shifted to higher
temperatures compared with undoped PtSbgo and is only observable in the lowest doped
sample of x = 0.01. This sample showed a maximum at approximately 250 K. Doping in
the x = 0.01, 0.02, and 0.04 samples was found to decrease the magnitude of the Seebeck
coefficient at low temperatures, but increase it over that of the undoped PtSbo at higher
temperatures. This was due to the high concentration of extrinsic holes that had been
doped into the system. Thus, when the Seebeck coefficient of the undoped PtSbo was

decreasing due to the population of intrinsic carriers, the heavily doped x = 0.01 sample was
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relatively unchanged with intrinsic carrier population and its Seebeck coefficient increased

with temperature.

This conclusion was supported by the electrical resistivity data on these samples shown

in Figure 4.13.
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Figure 4.13: Electrical Resistivity of Tin Doped PtSbo

It should be noted that the y-axis for this figure is given in a logarithmic scale to show
the large change in the electrical resistivity demonstrated by these samples. At 80 K the
electrical resistivity was reduced by a factor of 24 in the x = 0.01 sample. All doped samples
showed a large reduction in electrical resistivity and displayed a metallic trend characterized
by a linearly increasing electrical resistivity with increasing temperature. This positive trend
was due to increasing scattering of carriers as temperature increased from phonons. In the
x = 0.01 and 0.02 samples a convergence with undoped PtSbho was found at temperatures

above room temperature, however for higher dopant concentrations the large extrinsic carrier
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concentration reduced the electrical resistivity beyond that of undoped PtShg. The solubility
limit of Sn in PtSbg was further exemplified by the similar electrical resistivities found in

the x = 0.1 and 0.15 samples.

4.5.3 Thermal Properties

The thermal conductivity of Sn doped samples is shown in Figure 4.14.
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Figure 4.14: Thermal Conductivity of Tin Doped PtSbo

Of note are the low temperature results in the highest dopant concentration samples, x
= 0.1 and 0.15. These samples showed a low and flat trend, while all other samples showed a
decreasing thermal conductivity with temperature. It is thought that the secondary phases
in the highest Sn dopant samples caused additional boundary scattering and is likely the
cause for the decreased thermal conductivity at low temperature.

Examination of these results would at first appear to show that Sn was able to reduce the
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thermal conductivity superior to that found from tellurium or selenium doping. However,
this was not the case, due to the increased dopant concentration examined in the work with
Sn. In Figure 4.15 the reduction in thermal conductivity found for all antimony site dopants

at 90 K is shown with the abscissa in a logarithmic scale.
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Figure 4.15: Thermal Conductivity of Te, Se, In and Sn Dopants at 90 K

This figure shows that, as a general trend, as dopant concentration increased the total
thermal conductivity decreased. Thus, when comparing the overall reduction in thermal
conductivity found for tellurium and selenium doping, for low dopant concentrations, with
those of tin, for higher dopant concentrations, the larger reduction found for tin is more
easily understood. The greater reduction in thermal conductivity found in higher dopant

concentration samples is likely due to increased phonon scattering on impurities.

89



4.5.4

2T

The figure-of-merit of Sn doped PtSbs is shown in Figure 4.16.
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It was found that for all Sn doped samples that at room temperature and higher the
figure-of-merit was enhanced to values similar to those obtained from tellurium doping. In
the tellurium doped system a dopant concentration of x = 0.02 resulted in the highest zT
at 350 K of approximately 0.059. In the tin doped system the highest 2T was found in x =
0.04 again with a value of 0.059 at 350 K. At low temperatures the lightly doped samples
of composition x = 0.01, 0.02, and 0.04 were found to have zT values larger than that

of undoped PtSbo. It should be noted again though that these values are very low when
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Figure 4.16: 2T of Tin Doped PtSbho

compared to the Bi-Sb alloys or commercialized BigTes.
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4.6 Germanium Dopant Results and Discussion

4.6.1 X-Ray Diffraction

The X-ray diffraction patterns of germanium doped PtSbg are shown in Figure 4.17.
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Figure 4.17: X-ray Diffraction of Germanium Doped PtSbo

These X-ray diffraction patterns showed the very limited solubility of germanium in
PtSbo. In the lowest dopant concentration of x = 0.005 a secondary phase was found in the
system and in the x = 0.01 sample a large amount of secondary phase was found. Comparison
to the results of Sn doping in PtSbhg would lead one to expect a solubility limit closer to a
composition of x = 0.1, however, likely due to the greater size difference between germanium
and antimony, a single phased sample was unable to be synthesized.

Due to the lack of single phased samples from germanium doping the transport properties

of this dopant were not examined in this work.
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4.7 Indium Dopant Results and Discussion

4.7.1 X-Ray Diffraction

The X-ray diffraction patterns of indium doped PtSbg are shown in Figure 4.18.
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Figure 4.18: X-ray Diffraction of Indium Doped PtSbo

The diffraction patterns for indium doping were found to coincide with that of the PtSho
structure. Extending to higher concentrations of dopant suggested a solubility limit for
indium at the composition of x = 0.05, due to secondary phases of PtIng at higher concen-
trations. For compositions of x = 0.05 or less no shift in the lattice parameter was found. It
is likely that indium did not generate secondary phases at the very low concentrations that
germanium did due to the greater size difference between antimony and germanium than

antimony and indium.
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4.7.2 Electronic Properties

The Seebeck coefficient for indium doped samples, shown in Figure 4.19, suggests that indium

dopes onto the antimony site as a p-type dopant.
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Figure 4.19: Seebeck Coefficient of Indium Doped PtSbg

It was expected that indium would p-type dope in PtSbg due to indium containing two
fewer valence electrons than antimony. The Seebeck coefficient behaved as expected from a
p-type dopant with a general decrease in the magnitude and a slight shift in the temperature
in peak Seebeck coefficient values towards higher temperatures.

Comparing indium with tin it was expected that indium would effectively dope two
acceptor states for every atom of indium compared to the single acceptor state which was
expected from tin doping. It can be concluded that this did not occur due to the larger

magnitude in the Seebeck coefficient and the higher electrical resistivity for comparable

doping compositions.
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The electrical resistivity of indium doped PtShg is shown in Figure 4.20.
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Figure 4.20: Electrical Resistivity of Indium Doped PtSbo

The typical p-type doping behavior was again found in this data with a reduction in
the electrical resistivity of these samples at low temperature. As temperature increased
the electrical resistivity was found to converge to that of undoped PtShg due to the onset
of intrinsic carriers. To directly compare compositions of indium with those of tin the x
= 0.01 composition is taken for discussion. At 80 K the indium x = 0.01 sample showed
an electrical resistivity of 2.5 mOhm-cm while the tin x = 0.01 sample showed a value of
0.3 mOhm-cm, nearly an order of magnitude difference. Some of this difference may be
due to increased scattering from the extra mass variance between indium and antimony as
compared with tin and antimony. However, another consideration is that indium only has
three valence electrons and it is being incorporated into a site for a tetrahedrally bonded

element. It is likely that indium, with three valence electrons, was thermodynamically less
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favorable to dope onto this tetrahedrally bonded site than tin, with four valence electrons,

which ultimately caused a decrease in the effective carriers it doped per atom.

4.7.3 Thermal Properties

The thermal conductivity of indium doped PtShg is shown in Figure 4.21.
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Figure 4.21: Thermal Conductivity of Indium Doped PtSbg

The expected minor reduction in thermal conductivity was found for these lightly doped
samples. With only a small decrease in the electrical resistivity the electronic contribution
was not found to increase substantially and the impurity scattering introduced by doping

suppressed the thermal conductivity across all temperatures measured.

4.7.4 zT

The resultant figure-of-merit values obtained for indium doped PtShg is shown in Figure 4.22.
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Figure 4.22: zT of Indium Doped PtSho

Due to the lackluster improvement in power factor at high temperature, from a decreased
Seebeck coefficient and slightly reduced electrical resistivity, as well as a minor decrease in the
thermal conductivity, the 2T for indium doped samples showed only minimal enhancement

above 200 K.

4.8 Conclusions

A comparison of the results found for tin and tellurium doping on the antimony site is
enlightening of the effects of p- and n-type doping in a narrow bandgap system. Unlike
materials with larger bandgaps the narrow bandgap system is in a state of intrinsic carrier
population at much lower temperatures and thus is often characterized by the effects of bipo-
lar conduction. The electrical conductivity is characterized by the conduction of both holes

and electrons though both terms are weighted by their respective mobilities. The Seebeck
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coefficient, on the other hand, is reduced due to bipolar conduction. When an extrinsic
dopant of opposite type to the nominal material is introduced those extrinsic carriers will
compete with the nominal carriers in establishing the Seebeck coefficient. Examining a sys-
tem with a large dopant concentration, of opposite type to the nominal system and extrinsic
carrier concentration much greater than the nominal carrier concentration, creates a change
in the sign of the Seebeck coefficient and yields a low magnitude due to the large number of
carriers. As the dopant concentration is decreased, the magnitude of the Seebeck coefficient
is increased and a maximum is found due to the onset of intrinsic carrier population. As
the dopant concentration is further decreased the Seebeck coefficient is expected to increase
significantly, and the maximum will shift to lower temperatures, until such a concentration
is met where there will be a sign change. Subsequent reduction in the dopant concentration

will return the Seebeck coefficient to its nominal state. Refer to Figure 4.23 to examine this

effect.
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This figure shows the Seebeck coefficients at 140 K of varying concentrations of tin
and tellurium doped PtSbe, with an undoped sample for reference. The compositions of tin
dopant are given as a negative on this figure to connote the loss of electrons with this dopant,
while tellurium composition is positive to connote the gain of electrons. Examination of this
figure displays the above mentioned effects for tellurium dopants. As the concentration of
tellurium was reduced, the magnitude of the Seebeck coefficient increased and at some very
low concentration would result in a maximized Seebeck coefficient for the electron dominant
system. At any concentration less than this, the result would be a return to positive values.
The effects of tin dopant displayed the typical decrease with increasing carrier concentration
that is expected.

From the study of n- and p-type doping on the antimony site it was found that PtSbo
could be made to assume a positive or negative Seebeck coefficient dependent upon the
dopant. It was additionally found that a maximization in the power factor was observed
for both donor and acceptor dopants in the lightly doped samples above room temperature.
In both tellurium and tin doped samples the highest power factors occurred at 350 K with
respective values of 24 W/ em-K2 and 26 uW/ cm-K2, both with the composition x = 0.04.
At low temperatures, between 80 and 200 K it was found that n-type dopants resulted
in enhancement while p-type dopants generated a decrease. Neither n- or p-type dopants
were found to significantly decrease the thermal conductivity beyond that expected for an
ionized impurity scattering site. It was additionally noted that the magnitude of the thermal
conductivity was prohibitive to the generation of large figure-of-merits.

Ultimately, the figure-of-merits of n- and p-type doping on the antimony site led to en-
hancement in the tellurium and tin dopants primarily due to their power factor enhancement

above room temperature. Thus, an endeavor to be presented in subsequent chapters is an
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attempt to further increase the figure-of-merit by reducing the thermal conductivity while

additionally tuning the carrier concentration to enhance the power factor.
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Chapter 5

Platinum Site Doping in PtSbo

5.1 Background and Motivation

From the results of electronic doping on the antimony site it was shown that the thermoelec-
tric properties of PtSbo could be greatly affected with very low concentrations of dopant.
Doping on the antimony site with elements of varying valence shell electron arrangements
will largely create an alteration in the Sb p-shell. Doping on the Pt site, however, will largely
alter the electronic configuration and the interaction of valence electrons in the Pt d-shell.
From the work of Emtage et al. it was shown that the interaction of the 5d and 6s bands
of platinum are what contribute to the minima of the conduction band being in the <111>
direction as opposed to the minima being in the same k-space as the valence band max-
ima, the <100> direction [99]. This leads one to presume that alterations in the electronic
structure of these 5d or 6s bands by electronic doping on the platinum site may affect the
minima of the conduction band and may lead to even more dramatic effects than antimony
site doping.

Prior work by Nishikubo et al. showed that the Pt site could successfully be doped with
iridium which acted as a p-type dopant [112]. This generated a large decrease in the electrical

resistivity and a decrease in the Seebeck coefficient. Similar to what was found for antimony
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site doping, the electronic doping of iridium resulted in an increase in the power factor and
a decrease in the thermal conductivity resulting in an increase in the figure-of-merit.

Beyond testing for possible routes to increase the figure-of-merit by p- or n-type doping
on the platinum site there were two other routes examined here. The first examined was
the effect of iron doping. It is well known that FeSbg is a narrow bandgap material which
exhibits an extremely large Seebeck coefficient between -45 mV /K and -30 mV /K [117,118].
This Seebeck coefficient is 2 to 3 orders of magnitude higher than the typical thermoelectric
material and has generated a large amount of research and attention. FeSbg has been
identified as a strongly correlated electron system which is characterized by a hybridization
gap around the Fermi energy [119,120]. This hybridization gap is due to the interaction of
the conduction band with d- or f-bands and leads to a very large anisotropy of the density of
states on either side of the gap [121,122]. Tt is this large anisotropy in the density of states
that leads to the large Seebeck coefficients in these materials [123].

Another route examined in this chapter was that of rare-earth doping with ytterbium.
Several studies have shown the promising electronic properties of ytterbium compounds i.e.
YbAl3 and YbAgCuy [124-127]. Both of these compounds show large power factors at low
temperature, behavior that is likely due to the intermediate valence state of Yb between the
27 and the 37 states. The chemical pressure tuning of the valence state of these compounds
is another route which may be possible with Yb doping, though it is likely that only low
concentrations of Yb would be soluble in the PtSbo structure which may limit the effects of
this technique. A final possible route with rare-earth doping would be with cerium due to
the similarity of the 4f configuration of Ce with that of Yb. Yb is found on the far end of
the lanthanides with one less electron than a full f-shell and Ce is on the near end with one

electron occupying the f-shell. Additionally, the Ce containing rare-earth compounds show
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good electronic properties at low temperatures and are likely to have interesting effects as a
dopant [128-130].
Thus, the effects of n- and p-type dopants, as well as iron and ytterbium doping on the

platinum site will be examined in this chapter.

5.2 Experimental Methods

To examine the effects of transition metal doping on the platinum site the elements iron,
silver, and niobium were selected. To examine the effects of rare-earth doping the element yt-
terbium was selected. Compounds with compositions Pt{_,Dp,;She were synthesized where
Dp = Fe, Ag, Nb, and Yb, with concentrations ranging between 0 < x < 0.1. Samples were
synthesized in the manner outlined in Chapter 2 without any post reaction processing. It
should be noted that iron and ytterbium doped samples utilized the 30 minute dwell time
SPS parameters while silver and niobium dopants utilized the shortened SPS parameters.
One final consideration was made for the ytterbium doped samples. Ytterbium is known
to react with oxygen, thus care was taken with these samples to limit their exposure. This
was especially important during the initial heat treatment during which sample reaction
was taking place. During the heat treatment it was discovered that unless the silica, SiO9,
ampoules were coated with a layer of carbon the ytterbium would react with the oxygen in
the sides of the ampoule. Thus, for all ytterbium containing samples a layer of carbon was

coated on the inside of the silica ampoules by deposition from boiled ethanol.
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5.3 Iron Dopant Results and Discussion

Iron has two fewer valence electrons than platinum, and would theoretically be a p-type

dopant. However, that is only part of the reason to explore iron doping, the other being that

FeSbs is a strongly correlated system that generates a large Seebeck coefficient. Therefore,

to explore the possible generation of this effect in PtSbe iron doping was performed.

5.3.1 X-Ray Diffraction

X-ray diffraction data on iron doped samples is shown in Figure 5.1
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Figure 5.1: X-ray Diffraction of Iron Doped PtSbo

It was found that for all dopant concentrations examined the single phase diffraction pat-

tern for nominal PtSbo was observed. Due to the size difference between iron and platinum,

when compared to germanium doping on the antimony site, it was surprising that while in

the case of germanium no solubility was found, up to 5 atomic% of Fe can be incorporated
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into the structure without the appearance of a secondary phase. However, FeSbo crystallizes
in the orthorhombic marcasite structure, which is related to the pyrite structure of PtSbho,

and may have allowed a higher solubility limit for this dopant.

5.3.2 Electronic Properties

In Figure 5.2 the data obtained for the Seebeck coefficient of this dopant is shown.
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Figure 5.2: Seebeck Coefficient of Iron Doped PtShg

Iron doping was found to have the conventional effect of p-type doping in this material.
With a slight dopant concentration, as in the x = 0.002 sample, a decrease in the nominal
positive Seebeck coefficient was found. The maximum in the Seebeck coefficient was also
found to be shifted to a higher temperature of approximately 225 K. At this temperature the
Seebeck coefficient of this composition surpassed that of nominal PtSbo. With increasing

concentration of iron dopant a further decrease in the magnitude in the Seebeck coefficient
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was found. In the x = 0.005 sample a further shifted maximum was found at approximately

300 K, and in concentrations higher than this the Seebeck coefficient was steadily increasing

even up to 350 K.

Examining the electrical resistivity in Figure 5.3, further evidence of iron acting as a

p-type dopant is shown. It should be noted that due to the large reduction in electrical

resistivity a logarithmic scale on the ordinate was utilized.
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Figure 5.3: Electrical Resistivity of Iron Doped PtShe

Starting again with the lightest iron dopant, the x = 0.002 sample, almost an order of

magnitude reduction in the electrical resistivity was found. A slight increase in resistiv-

ity with temperature was found until the onset of intrinsic carriers brought about a slight

decrease starting at approximately 210 K. Further iron doping reduced the resistivity and

generated a metallic trend.

A large enhancement was found in the power factors of these samples, shown in Figure 5.4.
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These Fe doped samples all showed enhancement above 210 K, where the Seebeck coef-
ficient of nominally undoped PtSbo was reduced due to the population of intrinsic carriers,
and for the x = 0.01, 0.05, and 0.1 samples was found to still be increasing at 350 K. At
low temperatures it was only the low dopant composition samples where the power factor
was not suppressed relative to undoped PtShg, yet even for these samples the values were

not greatly enhanced until above 210 K. The largest power factor obtained for the doped

* PtSb2
L A X =0.002 ..........
e x =0.005 o ® x X
X
ox=0.01 ° . x X X
L ° o O
x x=0.05 . X 4,0 00
+x=0.1 ::A““**+o+o
i 4 004
'y 0‘ * x 2'404504)':0 4 A,
6 * ¢ ¢ +0O N
= b xO+ ¢ ¢ A,
. 4 xo_‘x_o+ L PN o
+ .
A " $: oxo¥°¥ teae, .
- .
0. ’Oxo¥o¥o MR
*OEF +
| |
50 100 150 200 250 300 350

Temperature (K)

Figure 5.4: Power Factor of Iron Doped PtShe

samples was approximately 25 pW/ em-K2 from 280 to 320 K.

It is curious comparing this power factor with that of tin and tellurium dopants on the
antimony site that all three samples showed maximum power factors of approximately 25
uW/ cm-K? above room temperature. This indicates that there is relatively little change in
the electronic band structure, other than p-type doping effects, from the dopant of iron in this

system, where it was theorized that the 5d and 6s bands largely constitute the conduction
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band minima. Since an element with a different d-shell valence electron configuration from
that of platinum was doped here it was expected that more than the typical p-type doping
effects would be found. It is possible that since iron was acting as a p-type dopant in this
system this may have shifted the Fermi energy down to lower energies, away from the altered
conduction band, which may have minimized any effects which otherwise would have been

noted.

5.3.3 Thermal Properties

The thermal conductivity of iron doped PtSbg is shown in Figure 5.5.
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Figure 5.5: Thermal Conductivity of Iron Doped PtSbo

As with other p-type dopants the effects on the thermal conductivity were minimal and
resulted from ionized impurity scattering. The sample with the lowest total thermal con-

ductivity was found to be the x = 0.01 sample due to the increased electronic contribution
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from the further doped x = 0.05 and 0.1 samples.

5.3.4 zT

The resultant 2T of iron doped samples is shown in Figure 5.6.
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Figure 5.6: zT of Iron Doped PtSho

Very similar to the figure-of-merit found for tin and tellurium doped samples the iron
doped samples showed large enhancement above room temperature. The maximum 2T was
obtained in the x = 0.005 sample at 350 K with a value of approximately 0.057, though
the x = 0.01 and 0.05 samples were found to be within systemic error of this value. At
low temperatures a slight enhancement of the figure-of-merit was found for doped samples.

These results demonstrated that, as with doping on the antimony site, a large reduction in

the thermal conductivity was needed for substantial zT values to be obtained.
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5.4 Ytterbium Dopant Results and Discussion

5.4.1 X-Ray Diffraction

The X-ray diffraction patterns for ytterbium doped PtSbg are shown in Figure 5.7.
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Examination of these patterns shows no extraneous peaks corresponding to a secondary
phase and no shift in the lattice parameter. It should be noted that the composition of x
= 0.1 may be a solubility limit for ytterbium in the PtSbo structure due to the occurrence
of secondary phases for any larger composition. In trials with higher compositions an x
= 0.15 sample yielded secondary phases of antimony and a x = 0.2 sample yielded phases
of platinum ytterbium, Pt3Yb, and platinum antimony, PtSb. The finding of secondary
phases in samples with high concentrations of ytterbium dopant matched what was found

by Bennett et al. [110].
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Figure 5.7: X-ray Diffration of Ytterbium Doped PtSbg
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5.4.2 Electronic Properties

A comparison of the effect of varying concentrations of ytterbium dopant on the Seebeck

coefficient may be found in Figure 5.8.
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Figure 5.8: Seebeck Coefficient of Ytterbium Doped PtSho

First turning our attention to the lightest doped sample, the x = 0.01 composition, a
significant decrease in the Seebeck coefficient and a slight shift in the maximum was found
when compared to undoped PtShg. Moving to the next highest concentration, the x = 0.02
sample, an increase in the magnitude was found at low temperatures compared to the x
= 0.01 composition, which at approximately 170 K met that of the x = 0.01 sample and
followed the same trend as temperature increased. The x = 0.05 sample further increased
the magnitude of the Seebeck coefficient across all temperatures measured, and showed the
same range of temperatures where it was maximized. The final composition measured, the

x = 0.1 sample, showed the largest Seebeck coefficient of the doped samples with a slight
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shift in peak to lower temperatures of approximately 10 to 20 K, compared to the other
compositions. As dopant concentration increased, the temperature at which the Seebeck
coefficient of these samples surpassed undoped PtSbo decreased. At high temperatures all
samples were found to converge to approxim