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ABSTRACT 
 

THE INTEGRATION OF COMPUTATIONAL METHODS AND NONLINEAR MULTIPHOTON 
MULTIMODAL MICROSCOPY IMAGING FOR THE ANALYSIS OF UNSTAINED HUMAN AND 

ANIMAL TISSUES 
 

By 
 

Gabrielle Alyse Murashova 
 

Nonlinear multiphoton multimodal microscopy (NMMM) used in biological imaging is a technique 

that explores the combinatorial use of different multiphoton signals, or modalities, to achieve contrast in 

stained and unstained biological tissues. NMMM is a nonlinear laser-matter interaction (LMI), which 

utilizes multiple photons at once (multiphoton processes, MP). The statistical probability of multiple 

photons arriving at a focal point at the same time is dependent on the two-photon absorption (TPA) cross-

section of the molecule being studied and is incredibly difficult to satisfy using typical incoherent light, say 

from a light bulb  [1]. Therefore, the stimulated emission of coherent photons  [2] by pulsed lasers are used 

for NMMM applications in biomedical imaging and diagnostics. 

In this dissertation, I hypothesized that due to the near-IR wavelength of the Ytterbium(Yb)-fiber 

laser (1070 nm), the four MP— two-photon excited fluorescence (2PEF), second harmonic generation 

(SHG), three-photon excited fluorescence (3PEF) and third harmonic generation (THG), generated by 

focusing this ultrafast laser, will provide contrast to unstained tissues sufficient for augmenting current 

histological staining methods used in disease diagnostics. Additionally, I hypothesized that these NMMM 

images (NMMMIs) can benefit from computational methods to accurately separate their overlapping 

endogenous MP signals, as well as train a neural network for image classification to detect neoplastic, 

inflammatory, and healthy regions in the human oral mucosa. Chapter II of this dissertation explores the 

use of NMMM to study the effects of storage on donated red blood cells (RBCs) using non-invasive 2PEF 

and THG without breaching the blood storage bag  [3]. Unlike the lack of RBC fluorescence previously 

reported  [4–7], we show that with two-photon (2P) excitation from an 800 nm source, and three-photon 

(3P) excitation from a 1060 nm source, there was sufficient fluorescent signal from hemoglobin as well as 

other endogenous fluorophores. Chapter III employs NMMM to establish the endogenous MP signals 



 

 

present in healthy excised and unstained mouse and Cynomolgus monkey retinas using 2PEF, 3PEF, SHG, 

and THG. We show the first epi-direction detected cross-section and depth-resolved images of unstained 

isolated retinas obtained using NMMM with an ultrafast fiber laser centered at 1070 nm and a ~38 fs 

pulse [8]. Two spectrally and temporally distinct regions were shown; one from the nerve fiber layer (NFL) 

to the inner receptor layer (IRL), and one from the retinal pigmented epithelium (RPE) and choroid. Chapter 

IV focuses on the use of minimal NMMM signals from a 1070 nm Yb-fiber laser to match and augment 

H&E-like contrast in human oral squamous cell carcinoma (OSCC) biopsies. In addition to performing 

depth-resolved (DR) imaging directly from the paraffin block and matching H&E-like contrast, we showed 

how the combination of characteristic inflammatory 2PEF signals undetectable in H&E stained tissues and 

SHG signals from stromal collagen can be used to analytical distinguish healthy, mild and severe 

inflammatory, and neoplastic regions and determine neoplastic margins in a three-dimensional (3D) 

manner.  Chapter V focuses on the use of computational methods to solve an inverse problem of the 

overlapping endogenous fluorescent and harmonic signals within mouse retinas. The least-squares fitting 

algorithm was most effective at accurately assigning photons from the NMMMIs to their source. This work, 

unlike commercial software, permits using custom signal source reference spectra from endogenous 

molecules,  not from fluorescent tags and stains. Finally, Chapter VI explores the use of the OSCC images 

to train a neural network image classifier to achieve the overall goal of classifying the NMMMIs into three 

categories—healthy, inflammatory, and neoplastic. This work determined that even with a small dataset 

(<215 images), the features present in NMMMIs in combination with tiling, transfer learning can train an 

image classifier to classify healthy, inflammatory, and neoplastic OSCC regions with 70% accuracy.  

My research successfully shows the potential of using NMMM in tandem with computational 

methods to augment current diagnostic protocols used by the health care system with the potential to 

improve patient outcomes as well as decrease pathology departmental costs. These results should facilitate 

the continued study and development of NMMM so that in the future, NMMM can be used for clinical 

applications.  
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“The brick walls are there for a reason. The brick walls are not there to keep us out. The brick walls are 
there to give us a chance to show how badly we want something. Because the brick walls are there to stop 

the people who don’t want it badly enough. They’re there to stop the other people.” 
 

― Randy Pausch, The Last Lecture  
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PREFACE 
 
 

Medical diagnostic techniques and resources have improved exponentially over the past century, 

from the discovery of the X-ray by Wilhelm Conrad Roentgen in 1895, and the first use of the X-ray for 

medical imaging a year later by doctors in New Zealand, to the most recent advances in Magnetic 

Resonance Imaging (MRI) that can provide multi-contrast images from a single acquisition [9,10]. On a 

tangential path, the development of digital computation and the methods thereof have also grown 

tremendously, from the development of the first mathematical proofs behind the least squares method to 

solving matrix math, and the development of Neocognition and convolutional neural networks in 1979 and 

1980, through applying predictive algorithms for facial recognition and biomedical image 

reconstruction [11–14]. These two seemingly independent fields have evolved into a highly intertwined 

cross discipline where the predictive algorithms used in artificial intelligence are used as a technique for 

reconstructing medical images to improve image quality, reduce image acquisition times, and even diagnose 

illnesses and medical abnormalities. Beginning with the history and science behind multiphoton processes 

and concluding with machine learning architecture, in this dissertation I will present the path of my doctoral 

research and how it began with a focus on biomedical imaging using ultrafast lasers and turned into a cross-

over between imaging and using digital computational methods for inverse-problem solving and image 

classification to expand the limits of nonlinear multiphoton multimodal images.    
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Chapter I Introduction 

Multiphoton microscopy, once thought of as impossible concept, has more recently begun its 

migration into the biomedical imaging and diagnosis regime, owing its applicable uses to the development 

of the LASER [1,19]. Interactions between light and matter are naturally occurring phenomena. These 

observable light and matter interactions are occurring all around us and are essential in our day-to-day lives. 

Whether it be the reflected photons that show a reflection in the mirror, the chemical isomerization reaction 

of 11-cis-retinal to all-trans-retinal in the retina, or the ability to sanitize the bacteria on surfaces by using 

ultraviolet (UV) light, interactions between light an matter are extremely useful and necessary [20–22].  

Most of these interactions are linear processes that involve incoherent light, hence the reason for the 

abundance in nature. This incoherence, or the random polarization of photons, is a result of spontaneous 

emission. Linear light-matter interactions (LMI) are not the only possible or useful LMI’s, in fact, nonlinear 

interactions, utilizing multiple photons at once (multiphoton processes), have shown over the last century 

how they can enhance and even revolutionize the field of biomedical imaging.  

Prior to the development of the laser—previously referred to in this dissertation as LASER, in 1960, 

experimental evidence of multiphoton processes, specifically two-photon absorption (TPA), was lacking. 

TPA, first theorized and predicted by Maria Göppert-Mayer in 1931 [1], is the probability of two photons 

of incoming light being absorbed simultaneously. The TPA was calculated to be on the order of 10-50 cm4 s 

photon-1 (1 GM), a very small cross-section that would require a light pulse with power density of 

~1010W/cm2, to achieve. This is a nearly unsurmountable amount of power density to obtain from an 

incoherent light source. Stimulated emission of coherent (a constant phase difference between the waves of 

neighboring photons [2]) photons by lasers facilitated experimental evidence for nonlinear LMIs. This led 

to exploration of nonlinear optical effects in media that transformed optical applications and forged the way 

for nonlinear spectroscopy.  

Nonlinear multiphoton multimodal microscopy (NMMM) used in biological imaging is a technique 

that explores the combinatorial use of different multiphoton signals, or modalities, to achieve contrast in 

stained and unstained biological tissues. A focus of this dissertation is the methodical application of 
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NMMM imaging in unstained biological tissues to study the quantifiable properties that can be used to 

distinguish normal from abnormal tissues, in attempts to develop universal techniques to enhance current 

neoplastic (cancer) diagnostic procedures. Additionally, the work in the dissertation explores the use of 

computational methodologies to augment the findings from the NMMM images in the form of machine 

learning and inverse problem-solving techniques. 

1.1 On the relevance of NMMM imaging in biomedical settings 

Early diagnosis of abnormal, or potentially cancerous, tissues are pivotal to successful treatment 

and survival. If post-treatment neoplastic cells go undetected and reach the blood stream, there is a 

likelihood that a secondary tumor may develop from the migrating primary tumor cells. Determining if a 

tumor is benign or malignant can be a tedious process for the patient, physician, and pathologist. When a 

physician detects a suspicious area of tissue, a biopsy of that tissue region is taken and sent for further 

examination. Depending on the tumor, the physician resects the diseased or suspicious lesion, small sections 

at a time, and sends each section for pathology staining and examination. In more prominent tumors, as 

much of the area as possible will be excised without putting the patient at risk, under the notion that it is 

better to take more tissue than less. In both scenarios, the excised tissues go through a series of specific 

fixation steps, such as dehydration, embedding, sectioning, i.e. formalin-fixed and paraffin embedded 

(FFPE),   prior to antigen retrieval in order to preserve the natural structure and prevent degradation (Figure  

10) [23].  
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Figure 1.  Diagnostic sample collection and preparation process for pathology. a) typical sites of suspicion 
in the oral cavity. b) dehydrated excised biopsies. c) cassette preparation for biopsy mounting. d) 
mounting of biopsy in paraffin wax. e) microtome slicing of FFPE tissues for slide preparation. 

 
Unstained micron-thick tissues resemble plastic wrap and lack the necessary contrast to distinguish 

neighboring cells from one another. Pathologists utilize various histological stains to add cell-, structure-, 

and molecular-specific contrast to biopsied tissues.  One of the most well-known and commonly used 

combination stains is the hematoxylin and eosin (H&E) stain, where the basophilic hematoxylin attaches 

to acidic structures and stains them purple or blue, whereas the acidophilic eosin stains basic structures pink 

or red. This system of stains help distinguish structural components of tissues such as collagen and 

cytoplasm from cellular components, such as nuclei [24]. In addition to the H&E stain, there are other 

staining methods that utilize fluorescent antibodies, which can provide increased contrast of proteins in the 

cells. Furthermore, the combination of more than one staining technique is often necessary to distinguish 

cell types within certain structures, such as distinguishing collagen from elastin in connective tissue using 

Verhoeff’s stain which is a combination of 7 different stains [25].  The use of NMMM provides contrast to 

multiple cell and tissue types without histological staining. While this technique does not eliminate the 

costly process of preparing and staining biopsies for diagnosis purposes, the combination of NMMM with 

current techniques can augment the diagnostic process.  
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Rapid detection of cancerous tissue by non-invasive NMMM can promote timely and accurate 

diagnosis, increasing the likelihood of successful treatment and decreasing the amount of unnecessary or 

erroneous biopsy procedures on patients. NMMM provides visual information with sub-micrometer 

resolution, making it a great candidate for non-invasive biopsies. Over the nearly three-decades following 

the first demonstration of laser scanning two photon excited fluorescence (2PEF) microscopy by Denk, 

et.al  [26], the interest in and advancement of nonlinear optical microscopy and NMMM imaging has 

increased exponentially. More importantly, NMMM imaging has moved from feasibility experiments to 

demonstrating the benefits of using multimodal contrast in imaging living tissues [27] and to the use of 

NMMM in clinical research centers as an increasingly valuable tool [28]. Sub-micrometer resolution, 

chemical specificity, and precise three-dimensional (3D) reconstruction of imaged volume at depths down 

to 1.2 mm [29] are becoming a necessity in tissue examinations [30] for high specificity and accuracy in 

diagnosing cancers. 

1.2 Imaging Modalities of NMMM 

A typical laser scanning microscopy (LSM) experimental setup is shown in Figure 2. A femtosecond 

excitation source is used to generate ultrashort pulses. The position of the columnated excitation beam is 

controlled by a scanning system, such as a set of galvanometer mirrors that dictate the position of the 

excitation beam on the sample. By controlling the voltage applied to the mirrors, the dwell time, or how 

long the laser beam stays at a certain position, can be controlled. The scanned beam is sent through a set of 

lenses, a scan lens and a tube lens. The combination of these two lenses creates an afocal telescope system 

that will project an enlarged image of the laser beam on the pupil or base of the objective [31].  
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Figure 2. Typical laser scanning microscopy setup for nonlinear multiphoton multimodal microscopy. 

 

A high numerical aperture (NA) objective is used to minimize the excitation volume of the incoming 

laser beam on the sample tissue. In most cases, due to the omnidirectional scattering of fluorescence 

processes, immersion fluid (oil or liquid depending on the sample) is placed in between the lens of the 

objective and the glass base of the mounted tissue slide (Figure  3).  
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Figure 3. Effect of index-matching fluid on multiphoton signals 

 

In Figure 2, the objective is mounted on a motorized stage  to control the distance (z) of the objective 

from the sample, and is one of the necessities for performing depth-resolved imaging. Emitted photons are 

detected in the epi- (backwards) direction after being reflected off of a dichroic element at the base of the 

objective. The dichroic mirror prevents any excitation photons from the laser beam from being detected. 

Typically, wavelength- or wavelength range-specific optical filters are placed in front of the detector to 

collect photons within a specific wavelength range; this is a method of obtaining spectrally-resolved MMIs 

(Figure  4). Figure 4 shows a transmission spectra of multiple different band-pass filters used to separate 

the multiphoton signals (two-photon excited fluorescence (2PEF) and three-photon excited fluorescence 

(3PEF)) detected from unstained tissues.  



 

  7 

 

Figure 4.  Comparison of multiphoton processes detected from biological tissues and the 
corresponding transmission curves of select optical filters used to isolate said multiphoton signals.  

 
 The filtered photons are then focused by a lens onto a detector, typically a photo-multiplier tube (PMT), 

where the detection of a photon is transduced into an electrical signal. Image acquisition software will take 

these electrical signals and render them into images. Multiple data points are acquired at each position and 

these points are averaged to reduce noise in the final rendered image.  Specific experimental setup, 

acquisition parameters, and instrumentation are discussed in detail in Chapters 2-6.  

1.2.1 Harmonic Generation 

Harmonic processes are parametric multiphotonic processes (Figure 5) [32,33]. Like multiphoton 

fluorescence, two or more photons interact with the molecule simultaneously, however, because these 

processes are parametric, no transition to an excited state occurs, and therefore, no energy is transferred 

prior to emission [32–34]. 
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Figure 5. Potential energy diagrams of 2PEF, 3PEF, SHG, and THG. 
 

Parametric processes are polarization dependent. When the strong electric field of the laser interacts 

with matter, the electric field drives the electrons causing them to oscillate at the same frequency of the 

incident light, in other words it induces a polarization that is linearly dependent on the electric field strength: 

   (1) 

Where  is the polarization,  is the permittivity of free space,  is the nonlinear susceptibility 

term, and  is the electric field. The polarization is expressed in a Taylor series expansion to express 

the polarization under intense laser fields leading to nonlinear processes. 

    (2) 

Here, the second- and third-order nonlinear susceptibility terms are the dominating terms that lead to 

second harmonic generation (SHG) and third harmonic generation (THG), respectively. The polarization 

of the electrons depends on structural characteristics such as local organization and symmetry of the dipole 

moments within the molecule or crystal (Figure  6). For materials with inversion symmetry, for example 

table salt, the second-order nonlinear susceptibility (SONLS) vanishes. Materials without inversion 

symmetry have non-zero SONLS and will exhibit SHG [33]. THG is not dependent on the local symmetry 

of the material and is observed when a change in the index of refraction occurs at the focal plane, for 
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example in the presence of an interface [32–34]. This interface is required because the sign of the 

propagation k vector of laser light changes through the focal plane and is known as the Gouy phase-

shift [33]. In the absence of an interface, odd-numbered nonlinear optical processes (relevant to this 

discussion being THG) build up prior to the focal plane and then destructively interfere with those after the 

interface (because of their opposite sign k vector). This is why THG is not observed in bulk media and is 

observed when an interface is found at the focal plane. The above discussion can be illustrated in the model 

below. We begin by introducing a planar wave that causes a linear oscillation, , of a dipole 

moment, and then restrict this local response or polarization by limiting the maximum excursion of the 

electron like it is shown in Figure  6(a). Centrosymmetric and noncentrosymmetric media are both 

considered. When we Fourier transform the polarization to obtain the field emitted by the polarization in 

the frequency domain, as shown in Figure  6(b), even-ordered frequencies vanish for centrosymmetric 

media, but not for non-centrosymmetric media. 

 

Figure 6.The effect of a strong electric field on the polarization of a centrosymmetric material (top left) 
and a noncentrosymmetric material (top right) and the resulting frequencies (bottom), when the 

waveforms are Fourier transformed. 

cos( )tw

b. 

a. 
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Given that the main structural component of most biological tissues is collagen, a known second 

harmonic generator, the SHG signal at 535 nm is expected. Additionally, THG is expected whenever lipid 

deposits are found at the focal plane, such as in skin as well as in the retinas of patients with age-related 

macular degeneration (AMD), where drusen, i.e. yellow fatty deposits, form  [35,36]. 

In addition to spectral differences in the emission properties of multiphoton fluorescence versus 

harmonic generation, the temporal profiles of these processes differ as well. Mentioned earlier was that 

harmonic generation is a parametric process, meaning that generation of a harmonic signal is solely 

dependent on the interactions between the laser and the medium. Therefore, there is no lifetime decay of a 

harmonic process because the electron never reaches an excited state for radiative decay to occur and is 

only polarized while the laser pulse is present. Harmonic emission is therefore limited by the pulse duration 

of the laser, in this case ~40 fs  [37]. Therefore, we use harmonic emission to determine the instrument 

response function (IRF) for our system which is ~150 ps [38,39]. Conversely, fluorescence, being a 

spontaneous process, can take from tens of picoseconds to tens of nanoseconds to occur (Figure  

7) [37,40,41]. Fluorescence lifetimes are also dependent on the molecular environment, such as solvent, 

temperature, concentration of the fluorophore, and whether that fluorophore is bound to a protein, such as 

the case for nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) [42–48]. 

 

Figure 7. Time scales of molecular processes. Adapted from Figure  2 from Brinks, et.al. [15]. 
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1.2.2 Multiphoton Excited Fluorescence 

The development of ultrafast lasers and the discovery of multiphoton multimodal processes have 

enabled imaging transparent media that was only possible with the use of histological staining. Fluorescence 

is a spontaneous emission process that follows excitation of a molecule to its excited state [34,37]. In other 

words, as the excited state relaxes to its equilibrium geometry, energy is released as heat; emission occurs, 

and the electronic configuration relaxes back to the ground state by releasing a photon at a longer 

wavelength (lower in energy) than the excitation wavelength. Multiphoton excited fluorescence follows a 

similar process, however instead of a single photon, two, three, or more photons arriving simultaneously 

are absorbed by the molecule to induce a transition to the excited state. In these cases, the wavelength of 

the emitted photon is dependent on how many photons were absorbed (Figure  5) [34]. Therefore, a two-

photon excited fluorescence (2PEF) process would have a resulting photon with a wavelength equal to 

longer than half of the excitation wavelength. A three photon excited fluorescence (3PEF) process would 

result in a photon with a wavelength longer than one third of the excitation wavelength [34]. We have 

observed these multiphoton fluorescence processes from a number of endogenous fluorophores within the 

retina such as from NADH, FAD, rhodopsin, all trans-retinol, lipofuscin, and di-retinoid-pyridinium-

ethanolamine (A2E) –the major lipofuscin fluorophore [49]. 

1.2.3 Dependency of nonlinear multiphoton multimodal signals on pulse duration 

While single photon fluorescence is a linear process, multiphoton fluorescence and harmonic 

generation are nonlinear; therefore, high peak intensities from ultrashort laser pulses are essential for these 

processes to occur [42,50,51]. The likelihood a molecule will be excited by two photons of the same energy 

is determined by the TPA cross-section [33,51,52]. The probability of two-photon emission (TPE) is 

proportional to the absorption rate, hence, the higher the TPA, the greater the amount of fluorescence signal 

is expected for said laser intensity. 

The absorption rate for an n-photon process via pulsed laser irradiation can be expressed as 
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  (3) 

Where is the n-photon absorption rate, is the n-photon cross-section, and denotes the 

intensity of the laser pulse elevated to the nth power. Equation 3 can be expressed as the n-photon absorption 

rate per second, over the time period defined by the repetition rate of the laser. 

 (4) 

Where corresponds to the repetition rate of the laser,  is Planck’s constant, is the speed of 

light, and  is the central wavelength of the laser. For the case of a Gaussian pulse the absorption rate 

becomes 

  (5) 

Where is a constant, is the full-width at half maximum (FWHM) duration of the pulse, and  

is the pulse energy. It can therefore be shown that the nonlinear signal intensity to be expected is 

proportional to: 

  (6) 

Here, ignoring constants for concise comparison, the non-linear signal  is proportional to , which 

is proportional to the nth-order exponential of the pulse energy, divided by the pulse duration elevated to 

the (n-1) power. Laser pulses that are short in the temporal domain are broad in the spectral domain  [53,54]. 

Due to the mathematical dependency of nonlinear signal intensity on pulse duration (Eq. (6)), as well as the 

experimental evidence for two-photon microscopy, shorter pulses result in higher probability of achieving 

multiphoton multimodal signal generation (Figure  8). [55] A caveat of broadband pulses is the sensitivity 
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to group-delay dispersion (GDD), where the spectral phase function controlling the duration of the pulse 

has some curvature. In order to understand the dependence of pulse duration on spectral phase it is important 

to define spectral phase. The spectral phase of the pulse, which can be arbitrarily complicated, can be 

expressed by the Taylor series 

(7) 

The shortest pulse possible corresponds to the case when  and is known as transform-limited 

(TLim), i.e., all the frequency components within the pulse have the same phase (Figure  8) [54,56]. GDD 

or , also known as chirp is not the only type of dispersion that is encountered when performing 

multiphoton microscopy with a high-NA microscope third-order dispersion (TOD) or  can be 

significant when there is a microscope objective along the beam path. The effect of spectral phase on a 

pulse is illustrated in Figure  8. Here, the first-order dispersion function,  has a constant, linear, 

positive slope, and results in all the frequencies being delayed (see middle left figure) and arriving after

. When applying the parabolic spectral phase  (top center figure) lower frequencies get advanced 

whereas higher frequencies get delayed linearly with respect to the central frequency,  (middle center 

figure). When pulse has TOD, the higher and lower frequencies are delayed or advanced in the same manner 

with respect to . In a pulse with TOD, some of the frequencies destructively interfere with one another, 

splitting up the pulse with respect to the central frequency. Additionally, a pulse with TOD, the frequencies 

within the pulse are dispersed in time and either arrives before or after depending on the sign of 

 [56]. Corresponding laser pulse profiles are shown in Figure  8(bottom row). 
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Figure 8. Figure obtained from CLEO2016, SC352: Introduction to ultrafast pulse shaping—principles 
and applications. First-, second-, and third-order dispersion in the spectral phase domain (top and their 

effect on the frequency domain (middle) and the time domain (bottom) of the laser pulse. 
 

Multiphoton intrapulse interference phase scan (MIIPS) is used [16,56–58] to characterize a pulse and 

correct for dispersion. The spectral amplitude, and the spectral phase,  can be defined when the laser pulse 

is characterized,. When presented with a laser pulse with phase unknown, , MIIPS applies a set of 

calibrated reference functions, , to the input pulse using the spatial light modulator 

(SLM) shown in Figure 9(a) [16,56–58]. MIIPS uses the SHG spectra to characterize the unknown 

phase [16,56–58]. Mentioned earlier was the effect of  on pulse broadening as well as how nonlinear 

signals decrease with longer pulses [51]. MIIPS uses this relationship in order to determine when the 

spectral phase of the pulse [16,56–58]. Once each reference phase is applied, it cancels the local curvature 

of the unknown spectral phase, and the nonlinear optical signal at that frequency is enhanced [16]. This is 

shown in Figure 9(b), where the maximum SHG signal corresponds to the matching reference function. As 

soon as , the respective phase of the input laser pulse has been characterized [16].  MIIPS 

compresses the pulses once characterization of the pulse is achieved for all frequencies within the laser 

''( )j w

  f (ω) = a(ω −ω0 )2

0
''j

( ) ''( )''f w j w=



 

  15 

pulse bandwidth. In order to compress the laser pulse, MIIPS performs a double integration on  

determined during the pulse characterization to obtain , and then applies the negative counterparts 

of these functions,  to the SLM, thus canceling the phase of the laser pulse [16].  The process of 

characterization and compensation can be applied iteratively to arrive at pulses that are close to the 

theoretical transform limit [16,56–58]. 

 

Figure 9. The process of measuring and characterizing, the unknown  from an incoming laser 
pulse and correcting it to a TLim pulse. Figure obtained from Lozovoy, V.V, et al.  [16]. 

 

By correcting the spectral phase, as well as all the terms in the Taylor series, we are able to correct the 

temporal profile of the pulse to have all of the frequencies within the pulse arrive at the focus 

simultaneously. Doing so achieves maximum peak intensity at the focal plane of the microscope objective, 
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and enhancing all nonlinear optical processes to yield  the ability to enhance a multiphoton event at the 

focal point of the laser on the tissue sample [16]. 

1.3 Limitations of NMMM of unstained tissues 

 The combination of fluorescence and harmonic signals resulting from the interaction between 

biological tissues and an ultrafast excitation source, such as the Ytterbium-fiber (Yb-fiber) laser oscillator, 

provides a minimum of 4 levels of contrast—THG, 3PEF, SHG, 2PEF, to unstained biopsies. However, 

resolving the individual multiphoton signals is highly dependent on the molecular and structural source in 

addition to the detector. The compounds in biological tissues that are multiphoton excited by the Yb-fiber 

laser, central wavelength of 1070 nm, emit within the visible range of ~300 nm – 700 nm. In any region of 

biological tissue there can be numerous peptides, amino acids,  and soft tissue structures that emit 

fluorescence within this range [59–62]. The peak and the width of the detected emission spectra are 

dependent on the molecular structure, as well as the solvent environment surrounding the molecule. These 

traits add difficulty to identifying the single source of the emission. An example of some common sources 

of endogenous fluorescence detected in biological tissues is shown in Figure 10. 

 

Figure 10. Emission spectra of common sources of endogenous fluorescence in biological tissues. 

 In typical laboratory settings, fluorescent staining will be used to provide contrast to biological 

tissues. In these cases, biological cells or tissues are added to a solution of a fluorescent molecule, such as 

4′,6-diamidino-2-phenylindole (DAPI) [63,64]. After incubation, these cells can be imaged, and in the case 

of a DAPI-stained cell, the deoxyribonucleic acid (DNA) will be stained blue. How this pertains to the 

limitations of NMMM for unstained tissues is not towards data acquisition but more towards data 



 

  17 

processing. Unlike unstained imaging with NMMM, the contrast in fluorescently stained tissues comes 

from the emission wavelength of the fluorescent dye. The emission of these dyes also has a high quantum 

efficiency, meaning they have strong illuminance compared to endogenous fluorescence, causing the lower 

intensity autofluorescence to be more of background noise than contrast. Additionally, there are many 

software programs that will spectrally-separate the signals from different fluorescent dyes in images. These 

programs have the emission spectra of each commercial fluorescent dye that are used to un-mix the 

fluorescent signals within the tissue image on a pixel-by-pixel basis. Unfortunately, these types of software 

are not readily available for users who wish to upload their own source emission spectra and apply those to 

the spectral signals from images of unstained tissues. Therefore, additional methods for un-mixing the 

spectral signatures of NMMM images must be explored.  

1.4 Computational History and Inverse Problems 

 Upon the development of the first programmable and Turing-complete electronic computer in 1941 

by Konrad Zuse, nearly all people in the science, technology, engineering, and mathematics (STEM) fields 

in addition to the military were excited with the capability of programming a machine to perform arithmetic 

in scales that would be too vast for the mind of a single person or group. Following the release of the 

Electronic Numerical Integrator and Computer (ENIAC) in 1945 and the continued improvements in 

mathematics, computer programming, and hardware engineering, the use of computational methods in 

research (biology ~1980’s), military operations, and meteorology had exploded.  

1.4.1 Inverse problem and solutions 

 Computational algorithms have the ability to perform arithmetic at speeds well beyond what a 

human could process in a reasonable amount of time. Approximating the solution for the problem 

surrounding the lack of spectral resolution in NMMM images is one that can be done by applying a known, 

least-squares fitting algorithm [65–69]. This type of problem, previously referred to in this dissertation as 

“spectral un-mixing” is equivalent to a specific type of mathematical problem termed an inverse problem. 

An inverse problem is the case where one would desire to determine the model or source parameters that 

produce the data we observe [70–72].  
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𝑏 = 𝐴𝑥     (8) 

 Where b is our observed data, A is the model or source, and x are the weight(s) on each of the 

sources. Least-squares minimizes the sum of the squared residuals—the difference between the observed 

value, b, and the fitted value. We plan to employ this method to approximate the weights of each 

endogenous multiphoton signal detected from the NMMMIs of unstained normal retinas which is discussed 

further in Chapter 5 of this dissertation.  

1.5 Convolutional Neural Networks and Machine Learning 

A rapidly growing field using computational methods to solve everyday problems is machine 

learning. Machine learning (ML) is a computational method aimed to achieve generalized learning of a 

specific problem [73]. This is done by training a model to extract features, or characteristic data points, 

from images and other datatypes presented to it, and applying what it “learned” in order to properly classify 

an new and previously unseen image or input [73,74]. There are two types of ML, supervised (S) and 

unsupervised (US).  

 

Figure 11. General workflow for the two types of machine learning, supervised and unsupervised. 
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USML is used to separate data into groups where the ground truth, or the correct value is unknown 

and there is no training data, whereas the data used in supervised ML (SML) contains the ground truth 

labels corresponding to each data point, or image. In the case of SML on biological images, a pathologist 

will examine the images and label regions of the tissue these labels are termed classes. A general overview 

schematic of the two ML subtypes is shown in Figure 11. A successful SML model will have a generalized 

knowledge of the features corresponding to the class of each image, so that when the model is presented 

with a new image that it has never “seen” before, it will accurately assign it to the appropriate class.  

1.5.1 Architecture 

 ML models are comprised of an arrangement of connected neurons or nodes to form multiple layers, 

called a neural network (NN), similar to the NN architecture shown in Figure 12  [75]. NNs are modeled in 

a way to mimic the architecture of the human brain, where neurons pass information in the form of electrical 

pulses to other neurons. Inputs are received by the nodes of a NN, in the case of passive nodes, such as 

those that comprise the input layer, copies of the input data is made and then sent to all of the next nodes 

in the following layer. The layers following the input layer are active, meaning that the data is multiplied 

by weights before the values are duplicated and summed with the weighted values from the other nodes.   

 

Figure 12. Architecture of a typical neural network 
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Similarly, to the action potentials of the brain, in the active nodes of a NN, before new information 

is sent to the next layer, the values are passed through an activation function which emits the nodes output. 

The framework of the events occurring at the active nodes is depicted in Figure 13. There are many 

activation functions that can be specified depending on the type of problem being addressed, however, the 

importance lies in the threshold of the activation function.  

 

Figure 13. The processes taking place in active nodes of a neural network. 

Just as not all human decisions have a distinct yes or no, and your decision may come from 

“weighing” pros and cons, when developing a NN to tackle everyday problems, we want a NN to have this 

similar “thought” process. This is where the threshold of the activation function plays an important role, if 

we chose an activation function, such as a step function, plotted on the left panel of Figure 14, when y is 

below some threshold value, there will be no activation and everything above the threshold will be activated, 

even some values that may be close to being true will be labeled as false. The sigmoid function is the most 

basic example used in NNs due to its smooth threshold and the fact that it is differentiable and is plotted on 

the right panel of Figure 14. Newer activation functions, such as rectified exponential linear unit (ReLu) 

have been shown to perform better than the sigmoid function  [76]. Nevertheless, the smooth threshold of 

the sigmoid function allows one to best approximate the optimal weights and serves as a sufficient example 

showing the importance of using nonlinear activation functions.  
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Figure 14. Comparison of two functions, the sigmoid activation function and step function 

The process of receiving data, applying a predetermined weight, duplicating the data, and 

outputting the sum of weighted data to the next layer is repeated until the final layer is reached. One single 

pass through the layers for all of the data is termed an epoch. ML models repeat this process for many 

epochs, and after each epoch, the weights at each node are evaluated and updated, typically through a 

process called gradient descent until the global minimum is reached [77,78].  

1.5.2 Caveats of Machine Learning and Their Solutions 

Currently, the largest setback of utilizing ML methods for research and other problems is the need 

for large amounts of data. Typically, a general rule of thumb for the minimum number of images necessary 

in order to properly train a ML model for image classification, is 10x the amount of trainable parameters or 

features in a model’s NN. Obtaining this amount of data is expensive, however there are methods aimed at 

trying to combat this large data necessity, such as transfer learning (TrL) [79,80]. 

 

Figure 15. General overview of the transfer learning topic 
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 TrL is a process by which new data is fed into a select amount of NN layers from a previously 

trained model. An assumption made by TrL is that the low-level (less specific) features are extracted by the 

beginning layers of the NN, and the more high-level or sample-specific features are extracted by the final 

layers of the NN [80,81]. Knowing this, one can import a previously-trained model, such as one by Visual 

Geometry Group (VGG) net, or one trained on ImageNet or Modified National Institute of Standards and 

Technology (MNIST) datasets, which are typically trained or contain upwards of 10k curated labeled 

images, and only retrain the final layers on their data to have a successful classifier [82,83]. Figure 15 shows 

an overview schematic of the TrL process, where a set number of NN layers are not retrained on the new 

data and the remaining are retrained to learn the high-level features of the new data. ML is utilized in many 

fields, such as patient records, image reconstruction, and wearable health trackers in healthcare, facial 

recognition in security, and many others, however the work done in this dissertation focuses on applying 

SML and TrL to my dataset of oral cancer NMMMIs. This work, as well as more specific terms and 

parameters involved in image classifiers, i.e. overfitting and augmentation, are discussed further in Chapter 

6. 

Following more proof-of-concept research that explores the biomedical relevance and applications 

of NMMM imaging (Chapters 2-4), this dissertation explores the novel use of NMMM images of unstained 

tissues in a of couple computational models to achieve maximal spectral-tissue assignment accuracy 

(Chapter 5) as well as using a ML image classifier in attempts to determine the health status of oral cancer 

biopsies (Chapter 6). The combination of computational methods and NMMM shows promise towards 

augmenting current diagnostic protocols used by the health care system. 
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Chapter II 

Multiphoton excited hemoglobin fluorescence and third harmonic generation for non-invasive 
microscopy of stored blood 

Abstract 

Red blood cells (RBC) in two-photon excited fluorescence (2PEF) microscopy usually appear as 

dark disks because of their low fluorescent signal. Here we use 15fs 800nm pulses for 2PEF, 45fs 1060nm 

pulses for three-photon excited fluorescence, and third harmonic generation (THG) imaging. In this chapter, 

we find sufficient fluorescent signal that we attribute to hemoglobin fluorescence after comparing time and 

wavelength resolved spectra of other expected RBC endogenous fluorophores: NADH, FAD, biliverdin, 

and bilirubin. We find that both 2PEF and THG microscopy can be used to examine erythrocyte 

morphology non- invasively without breaching a blood storage bag. 

2.1 Introduction 

Two-photon excitation fluorescence (2PEF) imaging of unstained red blood cells (RBCs) for non-

invasive label-free blood analysis and deformability has been deemed undetectable at 800nm  [4,6,7]. This 

assessment is based upon the fact that spontaneous emission is dominated by fast non-radiative decay  [6,7]. 

RBCs exhibit strong absorption and are known to cast dark shadows in nonlinear fluorescence imaging of 

capillaries in vivo [5]. While increasing laser intensity may yield a fluorescent signal that is strong enough 

for label-free analysis, the high intensity would likely cause both linear and nonlinear photo-thermal 

damage to the RBCs, especially when using pulse widths greater than 150fs. 2PEF intensity is highly 

dependent on the characteristics of the laser source, with shorter pulse durations leading to higher 

fluorescence emission yields [51,84]. It follows that short pulse durations may lead to appropriately high 

levels of 2PEF signal, while limiting nonlinear photo-thermal damage for optimal non-destructive imaging. 

The long-term storage of RBCs leads to known changes in their health status. Current protocols 

call for the destruction of these stored blood components after 42 days, based on guidelines from the 

Committee for Standardization in Haematology [85]. As RBCs age, they lose the important flexibility and 

deformability that enables them to squeeze through small capillaries to deliver oxygen to tissue; this 
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capability cannot be regained after the transfusion occurs  [86,87]. Indeed, the effects of older (>14 days) 

transfused blood on mortality have been the subject of numerous studies  [88–91]. Recent work analyzing 

RBC cell membrane deformability before and three days following surgery found that storage times longer 

than three weeks led to irreversible damage to RBCs, which are then removed by the liver [86,87]. If blood 

could be imaged quickly and non-invasively prior to transfusion, it may be possible to assess the health of 

RBCs and thus reduce the risk of postoperative complications. Similarly, in emergencies, it may be possible 

to find healthy RBCs in blood beyond the 42 days storage, thus extending the availability of limited blood 

supplies. 

Non-invasive monitoring of RBC health via changes in cellular morphology can be accomplished, 

in principle, by imaging RBCs through the blood bag. Previous optical imaging studies of RBC morphology 

have required breaching the storage bag; these efforts, like those described above, found irreversible 

changes to the morphology with increasing storage duration  [85,92,93]. Nonlinear optical imaging of RBCs 

has been accomplished via several different methods including TPA  [7,94], 2PEF [95,96], and 

THG  [97,98]. For TPA imaging, an intensity modulated pump pulse train at 775nm and delayed probe at 

650nm were employed based upon the different excited state dynamics of oxyhemoglobin and 

deoxyhemoglobin [94]. 2PEF imaging has been accomplished via two- photon excitation of the Soret band 

in hemoglobin with ~250 fs pulses in the 600-750nm wavelength range  [95,96] . The fluorescence signal 

severely diminished when the excitation wavelength exceeded 750nm  [4]. Spectroscopic measurements 

were made on a solution of stabilized human lyophilized ferrous hemoglobin powder. Imaging of fresh 

mice blood was accomplished with 600nm excitation wavelength  [4], a wavelength that produced the 

strongest signal. Previous studies have shown that 2PEF signal increases by decreasing pulse 

duration  [51,84]. This suggests that short < 20fs pulses at 800 nm might be useful for imaging RBCs by 

enhancing 2PEF while keeping the number of laser photons (thermal energy) to a minimum. THG images 

of RBCs, on the other hand, have been efficiently generated by tuning the excitation wavelength to achieve 

resonant enhancement via the Soret band  [97,98].  
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We propose a method to image RBC morphology that does not require breaching the sterile 

environment of the blood storage bag. This consideration distinguishes the present study from prior work 

in that it provides a solid foundation for assessing RBC status non-destructively in a clinical setting. We 

explore 2PEF and THG modalities and compare these different contrast mechanisms to determine 

guidelines for imaging RBCs in storage while maintaining sterility. Nonlinear imaging with pulses shorter 

than 50fs from a Yb-fiber laser produce bright THG images of tissues [99]; here, we used a short-pulse Yb-

fiber oscillator [100] and a short-pulse Ti:Sapphire laser to image RBCs. Additional time and frequency 

resolved measurements were carried out in order to assign the emission signals. 

2.2 Materials and methods 

Two different lasers were used for this work. We used an 86 MHz repetition rate Titanium Sapphire 

(Ti:Sapphire) laser (KM labs, Boulder, CO), with an external pulse shaper (MIIPS Box 640, Biophotonic 

Solutions Inc., East Lansing, MI), producing sub-15fs pulses; and a 42 MHz repetition rate Yb-fiber laser 

with a built-in pulse shaper (MIIPS HD, Biophotonic Solutions Inc., East Lansing, MI)  [100] producing 

sub-45 fs pulses. The laser output is scanned by a pair of galvanometer mirrors (QuantumDrive 1500, 

Nutfield Technology, Inc., Hudson, NH) as illustrated in Figure 16. Dispersion correction, including high-

order terms accumulated in the beam path, was accomplished using MIIPS  [51] using an ultra-thin barium 

borate (BBO) crystal located at the focal plane (Microscope Detection Unit, Biophotonic Solutions Inc., 

East Lansing, MI). For imaging we used a 40x water immersion objective with a working distance of 0.5mm 

(Zeiss LD-C APOCHROMAT 1.1 NA, Jena, Germany), mounted on a TE200 inverted microscope (Nikon, 

Tokyo, Japan), modified for multi-photon microscopy. 

2PEF spectra and fluorescence-lifetime decay measurements were carried out in the epi direction 

using a 16-channel time-correlated single photon counting (TCSPC) system (SPC- 830, Becker & Hickl 

GmbH, Berlin, Germany). Images were obtained in the epi direction using a PMT (HC20-05MOD, 

Hamamatsu, Japan) after de-scanning and separation of signals using a 635nm long-pass dichroic mirror 

(Di02-R635-25x36, Semrock Inc., NY) and a 680nm short-pass emission filter (ET680-SP-2P8, Chroma 
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Technology Corp., VT). The microscope objective and filter combination in the epi direction resulted in 

poor THG detection efficiency at ~353nm. 

In the forward direction, THG was collected by a 15x objective (ReflX for UV, NT59- 886, NA 

0.28, Edmund Optics Inc., NJ) using a 410nm short-pass filter (410SP, Chroma Technology Corp., VT). 

This filter prevents detection of three-photon excited fluorescence expected at ~480nm. The forward signal 

was detected by a different PMT detector (H10720- 210, Hamamatsu, Japan). Signals were digitized by a 

PC data acquisition board for further image reconstruction. Ten to thirty 512x512 16-bit grayscale raw 

images were combined into a stack. An ImageJ (National Institute of Health—NIH, MD, USA) software 

function for averaging images in a stack was performed resulting in a single 16-bit grayscale image. 

Brightness and contrast levels were adjusted to increase the visibility of RBCs and the image was converted 

to 8-bit grayscale. False coloring from grayscale to shades of red was performed for Figure 17 and 19(b). 

Images were cropped to exclude scanning aberrations at the edge of the field of view. No editing was 

performed within the images. 

  

 

Figure 16. Schematic diagram of the microscopy setup for multi-photon imaging using different lasers. 
Ti:Sapphire or Yb-fiber laser oscillators can be used one at a time. 

 

A separate system was also used to measure the transient absorption (TA) properties of hemoglobin, 

which relies on the sequential stepwise absorption of two photons from the ground state to a final excited 
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state via an intermediate excited state. TA measurements were obtained from both human hemoglobin 

(Sigma-Aldrich H7379, St. Louis, MO) and red blood cells obtained from mice in accordance with the 

Institutional Animal Care and Use Committee of the Massachusetts General Hospital (IACUC protocol 

#2016N000078). Imaging was performed with a tunable dual-output pulsed femtosecond laser source 

(Spectra- Physics Insight DeepSee, Santa Clara, CA), using the fixed 1040nm output as the pump beam and 

the tunable output set to 735nm as the probe beam. This configuration allows for the stepwise absorption 

of 1040nm and 735nm photons by hemoglobin, which roughly equates to the absorption of a single 430nm 

photon. Similar multiphoton-based absorption techniques have been used and validated in the past to 

visualize heme proteins, such as in the case of two-photon excited photothermal lens microscopy [101]. 

Intensity modulation of the 1040nm beam was achieved using an electro-optic modulator (Thorlabs EO-

AM-R-20-C2, Newton, NJ) with 20 MHz modulation. Imaging was carried out on a modified confocal 

microscope (Olympus FV1000, Center Valley, PA) using a 1.20 NA 60x water immersion objective 

(Olympus UPLSAPO 60XW, Center Valley, PA). Forward detection was achieved using a photodiode 

coupled to a lock-in amplifier (APE Lock-in Amplifier, Berlin, Germany) placed downstream of a 710nm 

longpass filter (Chroma E710LP, Bellows Falls, VT) and a 950nm shortpass filter (Thorlabs FES0950, 

Newton, NJ). This configuration allows the transmission of the 735nm probe beam to the photodiode while 

blocking the 1040nm pump beam, where the lock-in amplifier can detect any intensity modulation transfer 

from the pump beam to the probe beam at the 20MHz modulation frequency. The output of the lock-in 

amplifier is then fed into an Olympus input-output box system and digitized for acquisition by the Olympus 

Fluoview confocal microscopy control software. 

All procedures involving human subjects, including consent forms, were approved by the 

Biomedical and Health Institutional Review Board (BIRB) at Michigan State University. Whole blood was 

obtained from consented healthy human donors by venipuncture and collected into heparinized tubes [102]. 

Upon collection in a citrate phosphate dextrose buffer solution, the blood was immediately centrifuged for 

10min at 500g and 4°C. The plasma and leukocytes were removed by filtration and the RBCs were added 

to an AS-1 storage solution. RBCs were subsequently diluted from ~70% to 0.4% in additive solution-1 
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(AS-1) solution for imaging. RBCs were introduced either in a chamber containing prepared RBCs or 

directly inside a sealed polyvinyl chloride (PVC) blood storage bag (200 gauge PVC, 50µm thick film) 

(Uline, WI) - the same as used for commercial storage - and hermetically enclosed by thermal 

splicing  [103].  

Erythrocyte ghosts (the resulting RBC membrane with all other intracellular components removed) 

were prepared according to a wash protocol based on published work [104]. RBCs were suspended in 

phosphate buffered saline (PBS), and then washed 3x at 500g for 10 minutes with the supernatant aspirated 

off after each wash. Four 40µL aliquots of compact RBCs suspended in 1mL lysis buffer (described below) 

were then centrifuged at 22,000g for 15 minutes. After discarding the supernatant, the remaining 

membranes were washed in lysis buffer 3x at 22,000g for 5 minutes. Finally, the supernatant was discarded, 

and the lysates were pooled. Lysis buffer was prepared by mixing 10 mM hydroxymethyl aminomethane 

hydrochloride (Tris-HCl) with 0.2 mM ethylenediaminetetraacetic acid (EDTA) at pH 7.2. The linear 

absorbance of erythrocyte ghosts was measured using a Unicam UV-2 spectrophotometer (ATi Unicam, 

Cambridge, UK) in a 1 mm quartz cuvette. 

2.3 Results 

2.3.1 2PEF microscopy imaging of RBCs on a coverslip and through PVC bag using Ti:Sapphire laser 

 

2PEF images of human RBCs were obtained in the epi direction with the 800nm Ti:Sapphire laser 

as shown in Figure 17 and through the PVC storage bag in Figure 18. Individual RBCs and their central 

pallor can clearly be seen. 
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Figure 17. 2PEF image of unstained human RBCs on a coverslip imaged by 15fs pulses with 10mW 
average power from the Ti:Sapphire laser tuned to 800 nm. Scale bar is 20µm. 

 

 

Figure 18. 2PEF image of RBCs detected through the PVC storage bag in the epi direction obtained with 
10mW average power 15fs pulses from the Ti:Sapphire laser tuned to 800 nm. Scale bar is 20µm. Video 

of flowing RBCs (Visualization 1). 
 

The possibility of photodamage was carefully considered. At lower excitation power (<5mW) the 

2PEF signals are very weak, but no signs of photodamage were observed in RBC appearance after > 2min 

of exposure. With an increase of excitation power to 10mW or 22mW using 800nm or 1060nm lasers, 

respectively, we observed both cell shrinkage and an increase of the fluorescence signal after tens of 

seconds of exposure. Similar photodamage effects on RBCs have been reported during optical trapping of 

human erythrocytes [105]. 
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RBC morphology can be clearly seen in Figure 18 and is important for determination of 

hematologic diseases. In fact, many diseases have normal blood counts but abnormal membrane 

morphology [106]. Under normal circumstances, mature RBCs are round biconcave disc-shaped cells 

measuring 7-8 microns in diameter. Both THG and 2PEF modalities allow measurements of the average 

cell diameter and thickness. From our results we obtain from 2PEF a mean diameter and one standard 

deviation 6.9 ± 0.5 µm and from THG a mean diameter of 8.1 ± 0.5 µm. We do not consider the different 

diameters to be significant given that these were two different blood samples. Taking into account a 

measured thickness of 2.2 ± 0.2 µm we are able to estimate the mean volume at 82 ± 11 µm3 and the surface 

area at 123 ± 18 µm2. Previous studies using holographic microscopy of RBCs reported a variation of the 

diameter  [107] ranging from 6µm-7.8µm, corpuscular volume [85,107] ranging from 88 to 102 CV [µm3], 

and surface area  [85] ranging from 107 to 131 µm2 with increasing storage times from 8 to 57 days. 

It is well known that preparation of fresh blood between coverslips can affect RBC appearance, 

where they can become echinocytes (star shaped RBCs)  [108]. Moreover, the blood collection tube is 

internally coated with EDTA. While its role is to prevent coagulation of collected blood, there is a 

possibility that echinocytosis may occur upon contact of RBCs with the EDTA coating [109]. In the blood 

storage bag, however, the concentration of EDTA is low enough that echinocytosis is not likely to 

occur [110]. Nevertheless, we expect that other morphological deformities such as elliptocytosis, cigar 

cells, schistocytosis, and sickle cells can indeed occur, and can be determined by non-destructive 2PEF 

imaging. 

2.3.2 THG microscopy imaging of RBCs on a coverslip and through PVC bag using Yb-fiber laser 

 

THG microscopy does not require fluorescence from the molecule; THG signal generation only 

requires a change in the index of refraction at the focus  [111]. While THG typically requires high peak 

intensities for imaging, this limitation is easily overcome by using shorter pulses and a lower average power. 

In Figure 19, the images were generated with less than 8mW of average laser power at the objective focus. 

THG images of RBCs on a glass cover slip detected in the trans direction are shown in Figure 19. Compared 
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to 2PEF, the RBC membrane boundaries are clearly seen on the THG image. The non-zero background in 

Figure 19 is a direct result of the out-of-focus THG signal generated from the glass-liquid interface.  

 

Figure 19. THG microscopy imaging of human RBCs on the glass cover slip obtained using a 1060 nm 
Yb-fiber laser emitting 45fs pulses with 8mW average power. a) Static image; b) Video of flowing RBCs 

(Visualization 2). Scale bar is 20µm. 

Precise morphology measurements such as RBC size can be performed with or without the blood 

bag. We used an Yb-fiber laser with a central wavelength of 1060nm and 45fs duration pulses to image 

RBCs through the PVC storage bag, as shown in Figure 20. The nonlinear optical signal was detected in 

both trans and epi directions, as shown in Figure 20(a) and Figure 20(b), respectively. For the trans direction 

acquisition, images were obtained near the edge of the PVC storage bag where absorption of the THG signal 

was minimized. In the epi direction, on the other hand, imaging can be performed anywhere in the bag. 

There is a difference with the images taken in the epi and trans direction, which is due to the emission being 

directional and phase matching favoring trans detection. The dependence of epi versus trans detection of 

THG signal has been quantified, with trans detection being best for thin samples and epi detection being 

strongly favored for thick samples where the signal corresponds to backscatter  [112]. The shape of RBCs 

can be clearly seen in both images. It is worth noting that the average excitation power was maintained 

below 20mW in order to avoid damaging the PVC bag, which occurs above 25mW.  
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Figure 20. THG images of RBCs detected through the PVC storage bag in trans direction (a) and in epi 
direction (b) excited by 7mW average power from an Yb-fiber laser. Scale bar is 10µm. 

2.3.3 The source of fluorescence in RBCs 

 

2PEF fluorescence from RBCs and erythrocyte ghosts has a broad emission spectrum from 400 to 

570nm with a peak around 480nm that can be excited by two 800nm photons. This weak fluorescence 

emission from blood has been attributed to a number of sources in past studies, including flavin-containing 

molecules such as flavin adenine dinucleotide (FAD) and riboflavin, nicotinamide adenine dinucleotide 

(NADH)  [113], hemoglobin  [95,114]and its fluorescent catabolites – biliverdin and bilirubin. Tryptophan, 

a common residue to most proteins, has an absorption band in the 260-290 nm range that can be reached 

via three- photon excitation by the Ti:Sapphire laser, but not the Yb-fiber [115]. Excitation produces a 

broad fluorescence centered at 340 nm that extends from 310 to 370nm. Fluorescence from RBCs was 

centered near 480nm. While it is possible that tryptophan was excited by the Ti:Sapphire laser, little or no 

fluorescence would be detected in our experiment given the 370nm long pass filter in our setup. The 

fluorescence lifetime reported for tryptophan in proteins shows a small amplitude ~0.2 for the 0.5ns 

component and the two equally weighted major components with ~2ns and ~5ns lifetime, 

respectively [116]. The difference in emission wavelength and fluorescence lifetime allows us to rule out 

tryptophan as the source of RBC signal. 

We investigated the fluorescence lifetime following one- (Figure 21(a)) and two-photon (Figure 

21(b)) excitation for RBCs, erythrocyte ghosts, NADH, biliverdin, bilirubin, riboflavin and hemoglobin; 
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all in physiological salt solution (PSS) containing 4.7mM KCl, 2.0mM CaCl2, 1.2mM MgSO4, 140.5mM 

NaCl, 21.0mM Tris-hydroxymethyl aminomethane, 5.5mM glucose, and 5% bovine serum albumin at pH 

= 7.4; all reagents were from Sigma Aldrich. The 2PEF lifetime decays were measured and compared with 

one-photon excited (355nm centered 12ps laser pulses) fluorescence lifetime decays for the same samples. 

Bilirubin, RBCs, and erythrocyte ghosts did not exhibit detectable fluorescence upon one-photon UV 

excitation and are thus not present in Figure 21(a). Table 1 summarizes fluorescence lifetimes for one-

photon excitation measurements, and Table 2 summarizes two-photon excitation fluorescence lifetimes 

obtained by fitting decay curves using single and double exponential decay models. The system response 

time for the two-photon excitation measurements is ~130 ps, while the system response time for the single-

photon TCSPC setup is ~45 ps (full-width at half maximum). We confirmed the two-photon dependence of 

the Hb 2PEF detected as a function of laser intensity (reported as average laser power) and show those 

results in Figure 22. Note that previous studies measured a 2PEF lifetime for Hb excited at 600nm to be 

230ps, a value indistinguishable from their system response time [4], whereas we measured a lifetime of 

280 ± 20ps. One explanation for the difference in lifetime is the intersystem crossing [4] and charge transfer 

states near 630nm  [117], these pathways are not accessible when exciting at longer wavelengths. The 

NADH lifetime is dependent upon solvent pH, and whether it is bound or unbound. Bound and free forms 

of NADH are known to have lifetimes  [113]corresponding to 1-2 ns and 450-600ps, respectively. We 

measured free NADH and found its lifetime in the 450-600ps range. Bound NADH has a lifetime that is 

too long to correspond to the 2PEF signal from RBCs.  

  



 

  34 

 

Figure 21. (a) One-photon excitation (355nm, 12 ps) fluorescence decay curves of hemoglobin, NADH, 
biliverdin, and riboflavin compared to (b) 2PEF (800nm, 15fs) decay curves for RBCs, their membranes 

and reagent-grade hemoglobin, biliverdin, bilirubin, riboflavin, and NADH. 
 

 Table 1. Fluorescence lifetime decays obtained from fitting one-photon excitation (355 nm) curves using 
single and double exponential models. 

 

Table 2. Fluorescence lifetime decays obtained from fitting two-photon excitation (800 nm) curves using 
single and double exponential models. 
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Figure 22. Hemoglobin fluorescence signal versus average excitation power from Ti:Sapphire laser (14 fs 
pulse duration FWHM) plotted in a logarithmic scale. The experimental points are fit by a linear function 

with slope equal to 1.89 ± 0.03, which is consistent with two-photon excited fluorescence. 

 

2PEF emission spectra of RBCs, their membranes and commercially obtained fluorophores are 

shown in Figure 23(a). To measure quantitatively the similarity between 2PEF spectra, we calculated the 

Pearson correlation coefficients between the fluorescence spectrum of RBCs and that of other samples, as 

summarized in Table 3. Both bilirubin and riboflavin’s weak Pearson correlation coefficients of 0.552 and 

0.208, respectively, suggest that they are not responsible for RBC fluorescence. Furthermore, riboflavin 

was omitted from the comparative plot of 2PEF peak wavelength vs. fluorescence lifetime (Figure 23(b)), 

because its lifetime is over an order of magnitude longer than that of RBCs and ghosts. We therefore 

conclude that the observed 2PEF emission from RBCs and ghosts indeed originates from hemoglobin. 

Table 3. Pearson correlation coefficients of 2PEF spectra. 
RBC Ghosts Hemoglobin NADH Biliverdin Bilirubin Riboflavin 

1.000 0.995 0.975 0.939 0.883 0.552 0.208 
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Figure 23. (a) 2PEF (800nm, 15 fs) emission spectra for RBCs, erythrocyte ghosts and reagent- grade 
fluorophores. (b) 2PEF peak wavelength vs decay lifetimes for RBCs, their membranes and reagent-grade 

hemoglobin, biliverdin, bilirubin, and NADH. 

It is well known that RBCs are densely packed with large amounts of hemoglobin. Hemoglobin is 

also bound to the membrane, as has been determined after several washes  [118]. The absorption spectrum 

of hemoglobin originates from heme, having an intense Soret or B-band (~400-430 nm, depending on 

oxidation state) and weak transition to the Q-band (~550nm). It is known that the fluorescence emission of 

hemoglobin is undetectable with one- photon excitation; however, 2PEF imaging of hemoglobin has 

recently been demonstrated using two-photon excitation wavelengths ranging from 550nm to 750nm [113]. 

2PEF of hemoglobin excited at 800nm has not been reported in any prior work, despite hemoglobin’s large 

two-photon absorption at longer wavelengths, with a maximum around 825nm  [114]. 

Further confirmation of the participation of hemoglobin was obtained by comparing transient 

absorption decay curves for pure hemoglobin and purified RBCs in Figure 24(a). In these experiments, we 

monitor transmission of 735 nm photons as a function of time following excitation with 1040nm photons. 

Absorption at 1040 nm is likely associated with the absorption of oxyhemoglobin at that wavelength. The 

similarity between the two suggests that the fluorescent signal from RBCs is the result of an excited state 

of hemoglobin, as opposed to other potential fluorophores. Background signal from the PBS solution 

appeared strictly when the two pulse trains were overlapped, likely due to the optical Kerr effect from the 

water solvent [119]. To first approximation, we assumed that hemoglobin was contained only within the 

volume of the RBC and not the membrane. Washing of the ghost cells was done to remove all hemoglobin, 

and we expected to find no more 2PEF signal. We found that after three washes, the signal from hemoglobin 
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remained constant, indicating that some of the hemoglobin was bound to the membrane and could not be 

removed. The inset in Figure 24(b) tracks absorption at 414nm with increasing washes and shows that a 

certain percentage of hemoglobin remained. Previous methods with subsequent washing of RBCs also 

found a small percentage of hemoglobin in the membrane that cannot be removed via washing [118].  

 

Figure 24. a) Transient absorption measurements of PBS, hemoglobin solution and purified RBCs 
following 1040nm pump and 735nm probe. b) Absorption spectra of PBS solution with ghosts washed 1 
to 4 times. Inset shows absorbance of ghosts after varying number of washes, probed at 414nm. Spectra 

were corrected for background and Rayleigh scattering. 

2.4 Conclusions  

We have investigated 2PEF and THG for label-free non-invasive RBC imaging. Unlike 

conventional laser microscopy systems (>100fs), the laser systems employed here produce very short pulses 

(15fs for the Ti:Sapphire and <45fs for the Yb-fiber lasers). Therefore, these short-pulse sources deposit 

less thermal energy and reduce photo-thermal damage to the RBCs. 2PEF signal increases as the inverse of 

pulse duration, while THG signals increase as the inverse of the pulse duration squared  [113]. Following 

successful 2PEF imaging of RBCs, we explored the source of the fluorescence and concluded it originated 

from two-photon excitation of the Soret band in hemoglobin based on fluorescence spectra, fluorescence 

lifetimes, as well as both linear and transient absorption data. The images are sufficiently detailed to assess 

morphological anomalies of RBCs non-destructively without breaching sterility using commercially 

available compact femtosecond laser oscillators. 

Multi-photon microscopy modalities such as THG and 2PEF can be used for non-invasive imaging 

of blood cells through the storage bag. Moreover, it was shown here that THG imaging provided the best 

resolution and image sensitivity for noninvasive imaging of stored RBCs without photodamage. We 
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conclude that using compact and reliable ultrafast laser oscillators may lead to improvements in non-

invasive blood analysis, including point-of-care assessment of RBC morphology. 
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Chapter III 

Multimodal nonlinear optical imaging of unstained retinas in the epi-direction with a sub-40 fs Yb-
fiber laser 

 
Abstract 

Ultrafast lasers have potential use in ophthalmology for diagnoses through non-invasive imaging 

as well as for surgical therapies or for evaluating pharmacological therapies. New ultrafast laser sources, 

operating at 1.07 µm and sub-40 fs pulse durations, offer exciting possibilities in multiphoton imagining of 

the retina as the bulk of the eye is relatively transparent to this wavelength, 3P excitation is not absorbed 

by DNA, and this wavelength has a greater penetration depth compared to the commonly used 800 nm 

Ti:Sapphire laser. In this chapter, we present the first epi-direction detected cross-section and depth-

resolved images of unstained isolated retinas obtained using multiphoton microscopy with an ultrafast fiber 

laser centered at 1070 nm and a ~38 fs pulse duration. Spectral and temporal characterization of the 

autofluorescence signals show two distinct regions; the first one from the nerve fiber layer to the inner 

receptor layer, and the second being the retinal pigmented epithelium and choroid. 

3.1 Introduction 

With the goal of exploring the feasibility of novel retinal diagnostics and therapies, we evaluate the 

use of unstained multimodal nonlinear optical imaging techniques  [8,26,120–122] with a compact 

femtosecond fiber laser  [123]. While advances in optical coherence tomography (OCoT) have made retinal 

imaging widely accessible in the clinic  [124,125], there is room for improvement with respect to providing 

chemical as well as subcellular resolution. Moreover, the sub-40 fs Yb-fiber laser centered at 1.07 µm being 

considered here for multimodal imaging could in principle be used for diagnostic imaging as well as for 

performing therapeutic treatments [126]. Here, we explore the use of this laser for retinal imaging. When 

compared to a 800 nm Ti:Sapphire laser, the longer central wavelength is advantageous because the 

absorption of DNA at 355 nm (3-photon of 1.07 µm) is at least 5 orders of magnitude weaker than at 266 

nm (3-photon of 800 nm) [127,128]. Furthermore, scattering decreases for longer wavelengths, which for 
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retinal tissues can be estimated to be 28% less for the longer wavelength [129,130], allowing greater 

imaging depth. 

In multiphoton biomedical imaging contrast arises from several different nonlinear optical 

processes, such as 2PEF, 3PEF, SHG, and THG, which are greatly enhanced at the focal plane [120–

122,131,132]. Multiphoton autofluorescence from NADH and FAD are conventionally used in biomedical 

imaging for diagnosis and monitoring the metabolic activity of cells  [45,133]. Label-free nonlinear optical 

imaging of retina has been reported using a Ti:Sapphire [132,134–137] and also with a Yb-fiber laser 

detecting THG in the forward direction and 2PEF in the epi direction [138]. Specifically, from the retina, 

multiphoton emission has been found from lipofuscin and A2E [139]. This is significant because lipofuscin 

and A2E emissions have been used to diagnose retinal diseases such as AMD [44,140–150].  

While this work presents the feasibility for an in vivo imaging system for retinal disease diagnosis, 

many additional studies will be needed to address technical limitations. Among the different limitations to 

be addressed, is the need for adaptive compression of the femtosecond laser pulses to account for the 

dispersion introduced by the cornea, lens, and vitreous humor. Fortunately, the dispersion introduced by 

those tissues has been measured and adaptively compensated [57,151]. Similarly, there may be the need for 

adaptive optics to adjust the focus of the laser in order to compensate for diffractive imperfections amongst 

different eyes, as well as for the limited NA of the eye [135,152]. In terms of safety, the American National 

Standards Institute (ANSI) standards limit eye exposure from a laser at ~1.07 µm to 4 mW, assuming a 

dilated pupil [153]. This value does not take into account the use of adaptive optics which would be used 

to improve focusing at the retina. Once these technical issues are addressed, validating the diagnosis of 

healthy retina animal models as well as diseased retina animal models, using this system, will need to be 

done. Finally, human trials would be required once all of the preliminary studies are completed successfully. 

In this work, we present the first all epi-direction images of unstained mouse retinas and a 

Cynomolgus monkey retina using a 1.07 µm Yb-fiber ultrafast laser with a ~38 fs pulse duration. Epi- as 

opposed to forward-direction detection was chosen as it is the only collection geometry that would permit 
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in vivo imaging. In addition, we measure both the spectra and lifetimes across the retinal layers from 7 µm-

thick cross-sections of mouse retinas. The spectroscopic and lifetime information that becomes accessible 

through multimodal imaging, as performed here, may in the future provide the functional imaging at sub-

cellular resolution that is presently missing from retinal diagnosis. Furthermore, the laser being used may 

at some point be evaluated for its ability to perform therapeutic interventions such as cauterization with 

greatly enhanced three-dimensional accuracy, as compared to present continuous wave lasers. 

3.2 Materials and methods 

3.2.1 Signal source, acquisition, and processing 

 

The custom designed laser source for our multiphoton microscope is a Yb-fiber laser oscillator 

producing pulses with sub-40 fs pulse durations (full-width half-maximum) (1.07 µm, 42 

MHz) [123](Figure 25). The microscope used was a Nikon TE2000 in the inverted configuration. For 

imaging, a 40x water immersion objective was employed with a working distance of 0.5 mm (Zeiss LD-C 

APOCHROMAT 1.1NA, Jena, Germany) to focus the beam on the retina to a beam waist (diameter of the 

beam at the focus) of ~0.5 µm, allowing the generation of peak intensities high enough to induce 

multiphoton processes with less than 7 mW of average power and pulse durations of 38 ± 1 fs. Thus, 

minimizing the effects of photobleaching and thermal damage. Laser scanning was done with galvanometer 

mirrors. The peak intensity was maximized through the use of a pulse-shaper (MIIPS HD, BioPhotonic 

Solutions Inc., East Lansing, MI, USA) to compensate for the high-order dispersion along the beam 

path [51,57,154]. 

Signal detection was accomplished in the epi-direction with two separate detection systems. To 

obtain frequency and time-resolved data a TCSPC system with a compact spectrometer and a 16-

photomultiplier tube (PMT) array were used (SPC-830 TCSPC, Becker-Hickl, GmBH). The spectral 

resolution of the TCSPC system is ~12.5 nm, limited by the physical size of each PMT in the array and 

confirmed with a mercury lamp. The grating in the spectrometer was rotated to select different spectral 

regions. Here two grating positions were used to collect the fluorescence spectra; one with a collection 
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range from ~300 nm to ~500 nm and the other from ~480 nm to ~680 nm. The images of the sliced mouse 

retinas obtained using the TCSPC were imaged with 6.9 mW of power or less for a total exposure time of 

4.5 minutes (90 seconds per grating position). 

The lifetime curves had a collection window of 12.5 ns, chosen because it is four times longer than 

the longest observed emission lifetime and not limited by the repetition rate of the laser. The analogue to 

digital converter (ADC) resolution was set to 256 time bins. The first two nanoseconds before the rise of 

the lifetime signal peak were used for background subtraction. The IRF was measured to be ~110 ps. Fits 

for the lifetimes were done in Python using the curve-fit function in module scipy.optimize  [155]. No 

efforts were made to deconvolve the IRF in the fits. However, this should only slightly affect fit values for 

lifetimes that are close to the IRF. 

Depth resolved imaging of the unstained Cynomolgus monkey flat mount was done with the same 

system as the sliced mouse retinas, however the emission was collected with a single PMT (HC2005MOD, 

Hamamatsu) instead of the TCSPC. To achieve depth imaging, the focal plane depth was scanned by a 

motorized stage (Focus Drive with Integrated Controller by TOFRA, Inc. Palo Alto, California) which was 

controlled by a home-built data acquisition program in LABVIEW (Dr. Peng Xi, Dantus Research Group, 

Michigan State University). The depth resolved images were acquired for a total depth of 220 µm, with a 

0.05-µm step in between -512x512 pixel image. Depth resolution is estimated to be ~1 µm, however, 

oversampling in depth allowed us room to average a few images at each depth. Each two-dimensional (2D) 

image was averaged for 5 seconds. Depth resolved imaging was done using a constant laser power of 7 mW 

through all the retinal layers. 

3.2.2 Preparation of fixed and unfixed thin sliced mouse retinas 

 

The C57BL/6 mice were purchased from the Jackson Laboratory (Bar Harbor, ME, USA) and were 

raised in a 12-hour light/12-hour dark cyclic environment and maintained on a standard diet at the Case 

Western Reserve University, School of Medicine animal resources facility. It is known that when B6 mice 

are raised under cyclic light conditions (12 hours of light and 12 hours of darkness), A2E— the major 
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component of lipofuscin, increases only moderately up to the age of 18 weeks [156]. The fixed thin retinal 

sections were prepared as follows: eyeballs were obtained from post-natal day (PND) 14 male pup of 

C57BL/6 mice immediately after euthanasia. Eyeballs were fixed with 4% paraformaldehyde in phosphate 

buffered saline (PBS, 136 mM NaCl, 2 mM KCl, 8 mM Na2HPO4, and 1 mM KH2PO4, pH 7.4) containing 

5% sucrose for short time. Then, their cornea and lens were removed in PBS solution. Resulting eyecups 

were fixed for 2.5 hours at 4 °C with gentle agitation. After fixation, eyecups were dehydrated with 

increasing series of sucrose in PBS and then infiltrated with a 2:1 mixture of 20% sucrose /PBS and optimal 

cutting temperature (OCT) compound (Sakura)  [157]. Eyecups were then frozen using 2-Methylbutane 

cooled with liquid N2. The unfixed thin sliced retina was prepared from a PND 80 ± 3 female mouse. The 

procedure of sample preparation is similar to that described for fixed retina preparation with the following 

modifications: 1) their cornea and lens were removed in Hank's Balanced Salt Solution (Thermo Fisher 

Scientific, Waltham, MA, cat. no. 14175095), 2) immediately after the dissection, resulting eyecups were 

transferred into a 2:1 mixture of 20% sucrose/PBS and OCT compound, and 3) eyecups were incubated for 

5 minutes and then frozen. Cryo-sections (7 µm) of the retinas were prepared with cryostat –microtome 

(CM1850, Leica, Bannockburn, IL). While cryo-preservation methods have been known to cause 

deleterious effects on endogenous fluorescence, it was reported [158] that endogenous fluorescence of FAD 

and NAD(P)H were preserved during fixation, paraffin-embedding, and subsequent slide preparation. In 

this work, we used less destructive cryo-preservation methods. Thus, unlike the paraffin-embedding 

method, tissue was not dehydrated with 100% ethanol and Xylene. Therefore, greater expected preservation 

of endogenous fluorescence is expected when compared to paraffin-embedding method— which is already 

known not to affect coenzyme fluorescence. Sections were dried at room temperature for ~2 hours for 

unfixed conditions and overnight at 37°C for fixed conditions. Then, sections were rehydrated with PBS 

for 20 minutes. Rehydrated sections were mounted in an imaging medium {glycerol 85% w/vol (Fisher 

Scientific, Pittsburgh, PA, cat. no. G-31), Mowiol4-88 15% w/vol (Millipore Sigma, Billerica, MA, cat. 

no. 475904) in Mammalian Ringer's solution [159]} and covered with #1.5 coverslips. Slides were kept at 

4 °C. Unfixed retinal sections were imaged within 2 days. It is important to note that fixation with 
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paraformaldehyde has been known to shift the emission peaks of molecules found in the retina  [160], 

however, these shifts are usually small (~5 nm) and do not impact the findings of this manuscript. All 

procedures and experiments were approved by the Institutional Animal Care and Use Committee (IACUC, 

Case Western Reserve University) and conformed to the recommendations of both the American Veterinary 

Medical Association Panel on Euthanasia and the Association of Research for Vision and Ophthalmology 

3.2.3 Preparation of fixed flat mount monkey retina 

 

The Cynomolgus monkey was raised in a 12-hour light/12-hour dark cyclic environment and 

maintained on a standard diet at Ricerca Biosciences LLC, Painesville, OH. Ricerca Biosciences collected 

a fresh eyeball from a 4-year-old male Cynomolgus monkey after euthanasia. The eyeball was washed with 

PBS three times. Then, the cornea, lens, and vitreous were removed in PBS solution. Next, retina was 

separated from the retinal pigmented epithelium (RPE) and four slits were made to the retina. The retina 

was then flattened in a cell culture dish with ganglion cell-side up. Following so, the flattened retina was 

fixed with 4% paraformaldehyde in PBS for 6 hours at 4 °C. After the fixation, the retina was washed with 

PBS and transferred onto a large glass slide with the ganglion cell side up (EMS, Hatfield, PA, cat. no. 

71862-01). The flattened retina was mounted in the imaging medium and covered with a #1 coverslip (EMS, 

cat.no. 63774-01). The retina was kept at 4 °C until it was imaged. 

3.2.4 Preparation of reference solutions 

 

Reference solutions of FAD and NADH were prepared by performing a 1:10 dilution of 10X PBS 

(Dot Scientific Inc.). The dilution was performed using MilliQ water. Thirty milligrams (mg) of each 

compound was added to separate solutions in PBS (136 mM NaCl, 2 mM KCl, 8 mM Na2HPO4, 

1mMKH2PO4, pH7.4) yielding concentrations of approximately 350 µM for NADH (Sigma Aldrich) and 

300 µM for FAD (Sigma Aldrich). An A2E reference solution was prepared using a 10 mM stock solution 

diluted in dimethyl sulfoxide to yield a final 1 mM concentration. A drop of each solution was placed on a 

microscope slide (Corning) followed by a coverslip (Corning) and then placed coverslip-side down on the 
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microscope objective. Water based immersion fluid (Zeiss, ImmersolTM, ne = 1.334 (23°C), ve = 85) was 

used to increase the numerical aperture (NA) between the coverslip and the microscope objective.  

 

Figure 25. The experimental apparatus consisted of an ultrafast fiber laser operating at 1.07 µm, a MIIPS 
pulse shaper, a laser scanning inverted microscope, and a photon detector, mounted in the epi-direction. 
The TCSPC was used to collect fluorescence spectra and lifetime, whereas the single PMT was used to 

acquire the depth resolved images. 

3.3 Results 

The multimodal images in Figure 26 present all the retinal layers, including the nerve fiber layer 

(NFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform 

layer (OPL), outer nuclear layer (ONL), inner receptor layer (IRL), outer receptor layer (ORL), and RPE,  

as well as the choroid and sclera. In Figure 26(a), the blue, green, and red channels represent emission 

centered at 535 nm, 575 nm, and 629 nm, respectively. Subsequently, the blue, green, and red channels in 

Figure 26(b) represent emission centered at 355 nm, 535 nm, and 629 nm. Each channel in both Figure 

26(a) and 2(b) have a spectral bandwidth of ~37.5 nm. Here, 355 nm and 535 nm correspond to THG and 

SHG, respectively. Further information for how the other wavelengths were chosen can be found in the 

Discussions section. 
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Figure 26. Three colored (red, green, blue) composite multimodal images of the retinal layers from a 7 
µm slice of a mouse retina taken with the TCSPC at 6.9 mW of power depths using a 1.07 µm Yb-fiber 
laser with 35.0 fs pulse durations. Image acquisition was done at 30-second intervals for a total of 4.5 

minutes. (a) Here the blue, green, and red channels represent emission centered at 535 nm, 575 nm, and 
629 nm, respectively. (b) The blue, green, and red channels represent emission centered at 355 nm, 535 

nm, and 629 nm, respectively. The bandwidth of each channel is ~37.5 nm. 

In Figures 27(a)-27(b) we plotted the lineouts of the spectral components from the multimodal 

images (Figure 26). In each of these figures the data are comprised of the sum of all pixels in a slice of each 

layer. The same sized slice was taken for each layer (~5 µm x 85 µm) to most accurately compare the 

emission spectra and emission yield across the layers. Although this prevents measuring the inhomogeneity 

in each retinal layer, the data were analyzed as such to achieve an acceptable signal-to-noise ratio. The 

emission spectra (Figure 27(a)) show that the strongest fluorescence is seen in the receptor layers (ORL 

and IRL). When the emission spectra are normalized to the maximum value for each layer (Figure 27(b)), 

it can be seen that the spectral shape of the emission is nearly identical in the most anterior layers of the 

retina (NFL through the OPL), with a maximum near 560 nm. The more proximal retinal layers, from the 

ONL to the choroid bear a greater signal at wavelengths > 600 nm. At the most posterior portion of the 

ocular tissue, the sclera has the most unique spectrum, displaying a peak at ~535 nm, that we attribute 

to SHG (see Discussion). Here, only a plot for the spectral range of 480-680 nm is shown, as the only 
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emission below 480 nm that could be characterized was a small amount of THG from the choroid, RPE, 

and sclera. No attempts were made at spectral unmixing as not all fluorophores contributing to emission 

spectrum were identified, and we were unable to obtain pure lipofuscin, which we believe to be a major 

component of the emission spectrum.  

 

Figure 27. Spectral emission from 480 to 680 nm detected from a mouse retina. a) The non- normalized 
emission spectra reveal that the receptor layers (ORL and IRL) have the strongest fluorescence emission. 
b) The normalized spectra more readily compare the different spectral shapes across retinal layers. Layers 

from the NFL thru the OPL all have nearly identical spectral shapes. The sclera has a unique spectral 
shape, where the peak at 535 nm is attributed to SHG (see Discussion). 

The lifetimes across the retinal layers are presented for two spectral regions, 556-594 nm (Figures 

28(a), 28(c)) and 610-648 nm (Figures 28(b), 28(c)). Both spectral regions show two characteristic lifetimes 

across the retinal layers. These two lifetimes can be grouped as a “longer” lifetime seen in the layers from 

the NFL through the ORL and the sclera, and a “shorter” lifetime seen in the RPE and choroid. Interestingly, 

the lifetimes for the RPE and choroid become shorter at longer detection wavelengths (i.e. from Figure 

28(a) to Figure 28(b)). This trend is shown directly in panel c, where the lifetimes for the choroid through 

the IPL are fitted for both the short wavelength range and the long wavelength range. In addition, we have 

also plotted in Figure 28(c) the lifetime measured from the sclera at 535 nm. The emission is dominated by 

SHG from collagen and coincides with the measured IRF of our system (~110 ps).  



 

  48 

 

Figure 28. Fluorescence lifetimes across the retinal layers from a mouse over a spectral range of a) 556-
594 nm, b) 610-648 nm, and c) short: 556-594 nm and long: 610-648 nm. The plots reveal that for a given 

spectral band, all the layers from the NFL through the ORL have nearly identical lifetimes, whereas the 
choroid and RPE have nearly identical lifetimes. Additionally, the lifetimes in the choroid and RPE 
become shorter for longer detection wavelengths (i.e. from panel a to panel b). This trend is shown 

directly in panel c, where the lifetimes for the choroid, RPE, IRL, and IPL are fitted for both the short 
wavelength range and the long wavelength range. Also in panel c is the lifetime measured at 535 nm from 

the sclera. SHG from collagen in the sclera is the source of this emission and coincides with the IRF of 
our system. 

The copious lifetime curves, and their accompanying parameters necessary to measure the fits for 

Figure 28, could not be effectively presented alongside each curve in the figure. Therefore, the fitting 

parameters and their calculated values for the lifetime decays shown in Figures 28(a)-28(b) are presented 

in Table 4 and Table 5. Given the similarities in the measured lifetimes from the ORL through the NFL 

layers (within 5%), we summed them together. The same was done for signals from the choroid and RPE, 

prior to fitting. Two different sets of fitting methods were used: mono- and bi-exponential fits for the ORL 

through the NFL and bi- and tri-exponential fits for the choroid and RPE. The fits were performed over two 

wavelength ranges: 556-594 nm and 610-648 nm. Tri-exponential fit values were excluded from Table 4 

and Table 5 for the ORL-NFL considering that the t2 and t3 values were equal. Likewise, mono-exponential 
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fit values were excluded from Table 4 and Table 5 for the RPE and choroid, as all of the fits had an R2 value 

of less than 0.91. Additional information on the fits, representative lifetime decay data, including why 

certain fits were excluded, can be found in Appendix I.  

Table 4.  Lifetime fitting of data shown in Figure 28. The parenthetical values correspond to one standard 
deviation. R2 is the coefficient of determination, a dimensionless quantity. 

 

Having established the nonlinear optical signals from the different retinal layers from thin- sliced 

mouse retinas, we performed depth-resolved imaging on an unstained fixed Cynomolgus monkey retina flat 

mount with a thickness of 220 µm. We were fortunate this retina became available as it most closely 

resembles the histology of a human retina. Single PMT signal detection allowed the collection of multiple 

photons per laser pulse (unlike TCSPC, for which fewer than one photon per pulse is the standard). Single 

PMT signals, however, lack spectral and temporal information. Figure 29 shows an 8-panel image of 2D 

slices of the retina at different depths. To assess the potential for in vivo imaging of human retinas with 

1.07 µm and sub-40 fs (34.8 fs) laser pulses, we used the flat mount configuration, as flat mounts are more 

representative of the geometry (the orientation of the plane of the retina to the incoming laser pulse) that is 

need in vivo. 

In addition to being the first epi-direction detected multimodal images of a retina, the quality of the 

images is excellent. We attribute the quality of the images to the use of sub-50 fs pulses, a high NA 

objective, and the use of a longer wavelength 1.07 µm laser with longer scattering length  [129,130,161]. 

In addition, we imaged in 0.05 µm z-steps so that averaging could be done for each retinal layer. The depth-

resolved image in Figure 29 shows sub-cellular resolution at each layer, with morphological characteristics 
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of specific layers being easily distinguishable. For example, nerve fibers in the NFL, ganglion cells in the 

GCL, cell nuclei in the INL, receptor cell nuclei in the ONL, inner segments of cone photoreceptors (large 

white features) and rod photoreceptor inner segments (smaller round features between the cone inner 

segments) in the IRL. Additionally, the ability to visualize details of the IPL and OPL layers is fascinating 

considering these layers are quite thin. This level of resolution, which could include additional wavelength 

channels, could be of importance for the diagnosis of retinal and ocular disorders, especially when 

observing the structural organization of the rods and cones in instances of retinitis pigmentosa, cone-rod 

dystrophy, as well as other retinal diseases associated with the sclera and composition of the retinosomes 

present in the RPE [162–165].  

 

Figure 29. Depth-resolved imaging of an unstained, fixed, Cynomolgus monkey retina flat mount. The 
total extent of the Cynomolgus monkey retina was 220 µm. The depth of each image is indicated in 

yellow. The scale bar is 15 µm and can be seen in the NFL panel. Each 2D image was an average of 5 
scans, averaged for 5 seconds. Each layer, beginning with the NFL and ending with the ORL and RPE 

retinosomes, from left to right, was an average of 182 images (9.1 µm), 190 images (9.5 µm), 182 images 
(9.1 µm), 139 images (7.0 µm), 51 images (2.63 µm), 233 images (11.7 µm), 211 images (10.6 µm), and 
33 images (1.7 µm), respectively. The depth resolved stack was obtained with 7 mW of average power at 
all depths using a 1.07 µm Yb-fiber laser with 34.8 fs pulse durations. In the IRL, inner segments of cone 

photoreceptors (large white features) and rod photoreceptor inner segments (smaller round features 
between the cone inner segments) are easily distinguishable. We believe that the bright particles in the 
bottom right panel are perhaps melanin or RPE retinosomes attached to the tips of photoreceptors. At 

each depth, the characteristic morphology of the retina layers is clear, indicating that the Yb-fiber laser is 
effective at achieving the cellular resolution needed for depth resolved imaging. Video of depth resolved 

imaging of retina used to obtain the images presented in this figure (Visualization 3). 
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3.4 Discussion 

With the work presented here, we have begun the initial studies required to propose use of the 1.07 

µm Yb-fiber laser for label free non-invasive retinal imaging and diagnosis in the clinical setting. As 

opposed to the conventional 800 nm Ti:Sapphire laser, fiber lasers  exciting at 1.07 µm offer potential 

advantages over the latter. Some of said advantages have been evaluated or determined by this initial study. 

In particular, we have shown that contrast can be achieved in unstained thin-sliced mouse retinas and we 

have also provided initial spectral and temporal characterization of retinal native autofluorescence. 

Additionally, depth- resolved imaging of a monkey retina was done to show feasibility of our system to 

image in a near-in vivo orientation using retinas that have similar characteristics to those in humans. 

The multimodal images of mouse retina in Figure 26 show clear delineation of the different retinal 

layers and their different spectral signatures. The emission spectra from each of the layers are given in 

Figures 27(a) and 27(b), where we are able to distinguish three main emissions. First, and best defined is 

the emission near 535 nm corresponding to SHG. The strongest  SHG emission comes from the sclera 

which the protective layer of the eye and is primarily composed of collagen and elastin, both strong SHG 

emitters  [33,121,166]. Not shown in Figures 27(a) and 27(b) but also observed was emission at 353 nm 

corresponding to THG, primarily from the choroid, however, smaller amounts can be detected in the sclera 

and RPE. THG emission is possible from interfaces where the index of refraction changes, such as in 

lipid and tissue interfaces, cellular membrane boundaries, as well as highly absorptive pigments like those 

in the RPE [33,136–138]. THG microscopy of thin retina sections, imaged in the forward-direction 

configuration with a Yb-fiber laser, centered at 1044 nm, found bright signals from the ONL, INL as well 

as the GCL  [138]. They did not image the choroid where we found the brightest THG signal in the epi 

direction. 

In terms of 2PEF, we observe two unresolved broadband emissions one centered at ~575 nm and 

the other at ~629 nm. We attribute the first to lipofuscin and the latter to A2E. The emission spectra of 

lipofuscin and its many fluorophores are highly dependent on the excitation wavelength and tissue layer 
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location within the retina  [167,168], but generally, this emission peaks at wavelengths > 550 nm. 

Unfortunately, little is known regarding the isolation and characterization of all the fluorophores of 

lipofuscin. A2E— fluorophore of lipofuscin, is one of the few that has been characterized and is known to 

be a degradation product of the visual cycle [140,141,144,146–148,162,169–171]. Specifically, A2E is 

derived from phagocytosis of photoreceptor disks in the RPE that comprise the outer segments of 

photoreceptor cells within the ORL. Due to the nature of their functions, both the choroid and RPE have a 

more diverse metabolic environment [140,143,147,149,150]. Therefore, detection of a greater 

concentration of A2E in these regions agrees with previous studies and is expected. 

In relation to the detection of FAD and NADH, the relative absence of fluorescence from FAD and 

NADH in our images was highly unanticipated. However, after obtaining the emission spectra and 

fluorescent lifetimes of pure FAD (300 µM) and NADH (350 µM) solutions with the TCSPC following 

direct excitation from our laser (5-minute acquisition time), the signal yield was significantly lower than 

any other fluorescent emissions seen in the retina. We found the expected fluorescence from NADH and 

FAD was present only as a result from three-photon excitation. The intrinsic low fluorescence yield of these 

chromophores, together with the required three-photon excitation explains their absence in our retinal 

images. We thus conclude FAD and NADH have negligible contributions to the emission spectra of 

unstained retinas with a 1.07 µm laser. The ability to isolate emission from lipofuscin and A2E from that 

of FAD and NADH may in fact be a significant advantage over other imaging techniques, as it is known 

that the levels of lipofuscin and A2E have been used to diagnose retinal disease [45,133,145]. 

The lifetimes plotted in Figures 28(a)-28(c) more readily allow for comparison from one retinal 

layer to the next. From the NFL thru the ORL a relatively long lifetime can be seen. In contrast, a shorter 

lifetime is seen in the RPE and choroid. Table 4 shows fit values for these two different curves. However, 

these fits do not yield lifetime values that are readily comparable to literature values of known 

chromophores. However, from the spectral data, we find nearly identical emission spectrum can be seen 

from the OPL through the NFL, with a peak emission around 560 nm (approximated from the plotted 

spectra). In addition, a peak around 640 nm becomes prominent from the ONL to the choroid. Clearly, we 
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are dealing primarily with two compounds, lipofuscin and A2E. 

Table 5. Fitting with fixed parameters for lifetime decays shown in Figures 28(a) and 28(b). The 
parenthetical values are the one standard deviation errors and have units of ns. R2 is the coefficient of 

determination (R2 error) and is a dimensionless quantity. 

 

 

We repeated the fits presented in Table 4, this time holding the lifetimes constant two  values found 

in the literature for lipofuscin and A2E  [44]. In Table 5, for the ORL to NFL, a bi-exponential fit works 

well when t1 = 0.39 ns and t2 = 2.24 ns are fixed, which corresponds to the bi-exponential values for 

lipofuscin in the literature  [44]. In the RPE and choroid curve, a tri-exponential fit works well when t1 = 

0.17 ns, t2 = 0.39 ns and t3 = 2.24 ns are fixed, where t1 corresponds to the literature value for the lifetime 

of A2E, and t2 and t3 are the lifetimes associated with lipofuscin  [44]. Additionally, in the RPE and choroid 

curve, a bi- exponential fit is performed where t1 = 0.17 ns and t2 = 1.3 ns. Here, t1 is again the lifetime of 

A2E and t2 is approximately the value of the mono-exponential fit for the ORL to NFL curve. Note that we 

find a greater contribution from A2E in the RPE and choroid. We also attribute the signals detected in the 

NFL to the ORL to either lipofuscin or one of its degradation products. The presence of degradation 

products could explain why an emission peak can be seen at 629 nm emission in the ONL, ORL and IRL, 

yet these layers do not show a short lifetime found for those signals in the RPE and choroid. To confirm 

that A2E can be readily excited with a 1.07 µm laser, we measured the spectrum and lifetime of a solution 

of A2E. The emission was very strong and the spectral shape and lifetime agreed with the literature and the 

emission from the retina (See Appendix II). Lipofuscin is very hard to isolate; therefore, we were unable to 

measure it in solution. In addition to lipofuscin and A2E, other known fluorescent compounds in the retina, 
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including rhodopsin, all-trans-retinal, and melanin, could contribute to the signals observed. Gathering our 

spectral and lifetime findings we are able to conclude that multimodal signals correspond to THG, SHG 

and 2PEF from lipofuscin and A2E. We find that the deeper retinal layers, where the receptors are 

concentrated, contain greater amounts of A2E. 

Our results include the first depth resolved multimodal images of monkey retina obtained in the ep-

direction. The images from the stack show excellent sub-cellular resolution, making it easy to distinguish 

among the different cell types in each layer. The robust signals detected bode well for the use of multimodal 

microscopy with a femtosecond Yb-fiber laser source for future retinal diagnostics. 

The composite images in Figure 26, their corresponding emission spectra (Figures 27(a) and 27(b)), 

as well as the lifetime measurements (Figures 28(a)-28(c)) come from one retina. However, similar 

measurements were performed on 9 total retinas (5 fixed, 4 unfixed). All measurements were performed 

with identical image acquisition times to ensure consistency amongst the samples. The results from those 

measurements are consistent with the findings of this work. We acknowledge that these are very preliminary 

studies and more studies will need to be completed prior to claiming this system as ready for clinical use. 

Furthermore, future studies should address differences in the retina from different animals (both sexes) for 

both healthy and for a few of the most common diseases. However, these initial findings presented here 

establish the feasibility for the overall goal. 

3.5 Conclusions 

In summary, we presented the first epi-direction multimodal imaging of unstained isolated mouse 

and Cynomolgus monkey retinas with an ultrafast fiber laser centered at 1.07 µm. Measurements of the 

fluorescence spectra and lifetime from a thin cross-section of a mouse retina showed that emission from the 

ORL to the NFL have similar spectra, including a relatively long lifetime. The RPE and choroid have similar 

spectra, including a relatively short lifetime. We attribute a majority of the short lifetime signal to A2E, and 

a majority of the long lifetime signal to lipofuscin or other lipofuscin degradation products. Interestingly, 

we show that FAD and NADH do not significantly contribute to the fluorescence emission from a 1.07 µm 
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laser. This is different from most multiphoton microscopy studies where FAD and NADH are usually the 

strongest autofluorescent signals. In addition, depth resolved imaging of an unstained Cynomolgus monkey 

retina is also presented using the same laser and experimental setup. The depth resolved images from the 

Cynomolgus monkey show that it is feasible to use our collection system to image the retina of live-animal 

subjects, and in the future of humans. 
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Chapter IV 

Tetra-modal multiphoton microscopy: A non-invasive technique for augmented histopathological 
analysis of oral squamous cell carcinoma biopsies 

 
Abstract 

Hematoxylin and eosin (H&E) staining is the typical test used by pathologists to differentiate 

among cell types in biopsies. Currently, it is widely used in oncology diagnostics (i.e. oral squamous cell 

carcinoma, OSCC), even though it has some disadvantages in costs and labor intensity. In this chapter, we 

developed a method of nonlinear multiphoton multimodal microscopy imaging (NMMMI) that uses second 

and third harmonic generation (SHG and THG) in tandem with two- and three-photon excited fluorescence 

(2- and 3PEF) for histopathological analysis in oncology diagnostics. To validate our method, we analyzed 

human and canine OSCC biopsies with varying stages of OSCC. As the result, we mimicked H&E contrast 

and achieved further differentiability that is not attained through H&E staining. Altogether, we were able 

to differentiate amongst eosinophilic structures such as cytoplasm, collagen, and elastin of the stroma in 

the oral mucosa that are not distinct in an H&E stain. In addition, we spectrally resolved inflammatory 

response cells (i.e. plasma cells and lymphocytes) using their 2PEF and 3PEF signals. Furthermore, our 

1070 nm ultrafast excitation source permits depth-resolved imaging with 2- and 3PE modalities resulting 

in images that can be used in quantitative analysis, such as comparing mean signal intensities amongst 

tissue classifications and collagen fibril orientation angles. With further optimization, we believe this 

technique can aid pathologists in a more timely, cost-effective, and efficient method in oncology 

diagnostics.  

 
4.1 Introduction 

Oral squamous cell carcinoma (OSCC) is a malignant neoplasm of the oral cavity which falls under 

the category of head and neck cancers. Major contributing factors to OSCC include: environmental (e.g. 

alcohol consumption, tobacco use, and recurrent ulceration), genetic (e.g. mutations in p53 - responsible 

for 25-69% of all oral cancers), and Human Papilloma Virus 16 (HPV16)  [172–177]. One of the most 
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impactful dangers of OSCC is that in the earliest stages, it can be completely painless and show no obvious 

changes, either physical or symptomatic, and without treatment can be fatal  [178].  The inferior labium 

(bottom lip), the front two-thirds of the tongue, the floor of the mouth, gingivae, roof of the mouth, the 

cheeks of the oral cavity,  the pharyngeal regions, and salivary glands are affected by OSCC [178]. OSCC 

contributes to roughly 2-4% of all cancer cases and is more prevalent amongst men in developing countries 

as well as in countries where smoking and chewing tobacco are common, such as India, South-Central Asia, 

and Pakistan  [175,178–180]. Survival rates for OSCC are typically above 60% in developed countries and 

near 40% for developing countries, which is heavily dependent on the awareness of the disease the patient 

has, initial wrong diagnosis, and lack of early detection  [146,148]. 

Currently, the methods for diagnosis begin with a physical exam, where a physician or dentist 

examines the oral cavity for abnormalities, such as irritation in the form of sores or leukoplakia (i.e. white 

patches)  [179]. In cases of suspicion, a biopsy will be sent to a pathologist for further analysis. The typical 

test for histology diagnostics is to perform H&E staining on the sliced samples. Unfortunately, this test has 

high human variance in diagnosis and is very costly. Therefore, research on exploring alternative techniques 

that can augment H&E staining for increased confidence in diagnosis is needed. For example, recent work 

on spectrum- and time-resolved endogenous multiphoton signals from premalignant and malignant gastric 

mucosa by Wei Zheng et al. showed that using multiphoton microscopy 2D and 3D images can be useful 

for characterizing subcellular morphological changes in the gastric mucosa and providing quantifiable 

identifiers of gastric disorders  [181]. As demonstrated by Zheng W., Boppart S., Tromberg B., Li X., and 

many others in the field, multiphoton microscopy has shown to be an incredibly valuable tool in detecting 

abnormalities in the cellular microenvironment of biological tissues  [181–186].   

Unlike staining, the contrast in imaging unstained tissues arises from the endogenous fluorescence 

and other multiphoton nonlinear signals present in all biological tissues  [8,181,187,188]. Other nonlinear 

multiphoton signals than fluorescence can provide a further specified identification of biological molecules 

and tissues. SHG, a two-photon process that is a result of ultrafast laser light interacting with an arrangement 

of molecules lacking a center of inversion, is a well-documented method of identifying certain biological 
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structures such as collagen fibrils and bundles  [8,33,121,189–191].  Three-photon harmonic processes, 

such as THG can provide additional contrast to multiphoton images of unstained biological tissues. THG 

signals arise from a shift in the Gouy phase at boundaries where there is a change in the index of 

refraction  [3,8,32,33,52,120,137]. This modality is ideal for the heterogeneous environment of biological 

tissues, as THG distinguishes fat globules, muscle fibers, and cell membranes from the surrounding cells 

and has shown its potential in detecting margins in esophageal squamous cell carcinoma  [57,123,137,190]. 

While 800 nm excitation sources are conventionally used in multiphoton imaging,  excitation using near-

IR radiation is advantageous due to the decreased scattering properties of this wavelength in biological 

heterogenous tissues  [42,50]. Contrary to excitation with a Titanium-Sapphire laser (λcenter= 800nm, λ3p= 

265nm), the longer wavelength (1070 nm) permits three-photon methods (λ3p= 353nm, e.g. THG and 

3PEF), above the DNA-damaging UV range. 

Therefore, in this study, we developed an imaging method that yields high-fidelity to H&E 2D 

slices and 3D volumetric imaging capabilities using an ultrafast Yb-laser with a central wavelength of 1070 

nm (near-IR radiation). As the result, this method obtained multiphoton multimodal excited images of 

unstained FFPE oral cancer biopsy tissues mounted on slides (2D) as well as directly from the paraffin 

block (3D).  Using two pseudo-color channels and our most primitive detection method – a single PMT and 

two optical filters – we matched H&E contrast and provided additional spectral distinction between the 

connective tissue of the stroma and the cytoplasm of the squamous cell layer. Furthermore, addition of a 

third filter to our detection method provided contrast and rapid detection of 2PEF signals from inflammatory 

cells in the stroma of unstained tumors. The contrast in these images permit collagen orientation angle 

measurements, which were directly related to the state of health of the tissue region. Overall, the ability of 

our technique to provide enhanced contrast over traditional H&E staining with a more primitive detection 

scheme shows great potential for oncology diagnostics. In fact, our nonlinear multiphoton multimodal 

microscopy imaging (NMMMI) technique can potentially be used in tandem with H&E staining to provide 

additional diagnostically relevant information that can lead to a more accurate diagnosis. In addition, the 

portability of this excitation source and its ability to penetrate biological tissues at depth in a non-destructive 
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form (i.e. directly from the paraffin block) can further reduce the cost of pathology sample processing in a 

clinical and research settings. 

 
4.2 Materials and Methods 

4.2.1 Human Tissue excision, processing, and sample preparation 
 

Head and neck squamous cell carcinoma biopsy samples were collected from six patients (50% 

male). All patients presented with biopsy confirmed squamous cell carcinoma and were clinically staged 

T2 (n=5) or T4 (n=1). Following examination and diagnosis, patients were scheduled for primary tumor 

removal (Figure 30a). During surgery, from the centered area of the primary tumor, a biopsy sample, 

representative of the primary tumor, was collected (Figure 30b). Biopsy samples were kept on ice, prior to 

slow-freezing in OCT. Hereafter biopsy samples were stored in the -80°C until further use. 

Tissue samples fixed in 10% Neutral Buffered Formalin are processed and vacuum infiltrated with 

paraffin on the Sakura VIP 2000 tissue processor; followed by embedding using a Thermo Fisher 

HistoCentre III embedding station (Figure 30c).  Once blocks cool, they are placed on a Reichert Jung 2030 

rotary microtome and trimmed. Once the block is trimmed to expose tissue, it is cooled and finely sectioned 

at 4-5 microns (Figure 30d).  Sections are dried at 56°C (not exceeding) in slide incubator to ensure 

adherence for 2 – 24 hrs.  Then, slides removed from the incubator and stained with a routine H&E method 

as follows:  Two changes of Xylene – 5 minutes each, two changes of absolute ethanol – 2 minutes each, 

two changes of 95% ethanol – 2 minutes each, running tap water rinse for 2 minutes, endure Hematoxylin 

(Cancer Diagnostics – Durham, NC) for 1 ½ minutes followed directly by a 10 – 15 second differentiation 

in 1% aqueous glacial acetic acid and running tap water for 2 minutes to enhance nuclear detail.  Upon 

completion of running tap water slides are placed in one change of 95% ethanol – 2 minutes, 1% Alcoholic 

Eosin-Phloxine B – 2 minutes to stain cytoplasm, one change of 95% ethanol for 2 minutes, four changes 

of 100% ethanol – 2 minutes each, four changes of Xylene – 2 minutes each followed by cover slipping 

with synthetic mounting media for permanent retention and visualization with light microscopy.  Slides for 

multiphoton laser microscopy are deparaffinized in the same manner described above using slight 
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differences. The differences are: only the first xylenes and ethanols to running tap water and then blocked 

for auto fluorescence utilizing ammonia/ethanol pretreatment the cover-slipped with ProLong Gold anti – 

fade media for imaging.   

4.2.2 Canine Tissue excision, processing, and sample preparation 
 

Squamous cell carcinoma cases within the oral cavity were identified from the archives of the 

Michigan State University Veterinary Diagnostic Laboratory.  All cases were surgical biopsies submitted 

by practicing veterinarians for histologic examination and diagnosis. The regions of tissue with normal and 

neoplastic histology were chosen by a board-certified veterinary pathologist using the adopted and accepted 

methods of cancerous cell classification and diagnosis  [192,193]. Tissues are fixed in 10% neutral buffered 

formalin for 24-48 hours and processed routinely into paraffin embedded blocks.  Blocks are sectioned at 

5 µm and stained with eosin and hematoxylin for diagnosis by a board-certified veterinary pathologist 

(Figures 30c and 30d).  The database was queried for canine and feline squamous cell carcinoma within the 

period of 2014-2018 and 27 cases were arbitrarily selected.  An additional 5 µm-thick section from each 

case was examined and all diagnoses were independently confirmed by Dalen Agnew, DVM, PhD, 

DACVP, Veterinary Diagnostic Laboratory, Michigan State University.  Demographic data including 

species, breed, age, and sex were also collected (supp. Material Table 1).  

 

Figure 30. Excised human oral cancer biopsy tissue sample preparation. a) Human oral cavity with typical 
sites of OSCC.  b) Freshly excised biopsy tissue after OCT clearing and dehydration. c) Paraffin 

embedding of the dehydrated biopsy tissue. d) Set and treated biopsy tissue paraffin blocks are sliced at 4 
µm thickness. One slice is left unstained for NMMMI and the other is stained with H&E. 
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4.2.3 Laser setup 
 

The laser source for our multiphoton microscope is a custom designed Yb-fiber laser oscillator 

generating pulses with sub-40 fs pulse durations (full-width half-maximum) (1.07 µm, 42 

MHz)  [123](Figure 31). Imaging was done on a Nikon TE2000 multiphoton inverted microscope (Figure 

32). A 40x water immersion (Carl Zeissä, Immersolä W, ne = 1.334 (23°C), ve = 72) objective was 

employed with a working distance of 0.5 mm (Zeiss LD-C APOCHROMAT 1.1NA, Jena, Germany) to 

focus the beam on the tissue to a beam waist (beam diameter at the focus) of ~0.5 µm, favoring the 

generation of peak intensities high enough to induce multiphoton processes with less than 4 mW of average 

power and pulse durations of 36 ± 1 fs. High peak intensities and low average power minimize the effects 

of photobleaching and thermal damage. The peak intensity was maximized through the use of a pulse-

shaper (MIIPS HD, BioPhotonic Solutions Inc., East Lansing, MI, USA) to compensate for the high-order 

dispersion along the beam path [194–196]. Laser scanning on the tissue was done with galvanometer 

mirrors. 

 

Figure 31. Schematic of the beam path and optical setup for NMMMI. An Yb-fiber oscillator excitation 
beam path leading into the MIIPS pulse characterizing system, and then into the Nikon TE2000 inverted 

microscope, where the paraffin block and tissue slides are imaged using NMMMI. 
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4.2.4 Imaging, detection, and signal processing 
 

All signal detection was accomplished in the epi-direction. Two detection methods were used, the 

first being with a time-correlated single photon counter (TCSPC, SPC-830, Becker-Hickl, GmBH). The 

TCSPC is able to collect frequency and time-resolved data with a compact spectrometer and a bialkali 16-

PMT  [38,193] (Figure 32). The spectral resolution of the TCSPC system is ~12.5 nm, limited by the 

physical size of each PMT in the array.  The epi-directional photons are reflected off of a mirror and coupled 

into an optical fiber bundle. The input of the fiber bundle is circular (d @ 4 mm) while the output of the 

bundle, before the polychromator, is rectangular (lxw @ 7 mm x 1 mm). At each pixel in the imaging region 

(512 pixels x 512 pixels in this work), for every photon, a timing pulse of the photon and the number of the 

channel (PMT) that detected the photon, is recorded. Over the signal period, the TCSPC builds up a photon 

distribution for each channel, resulting in emission waveform and lifetime decay data of the detected 

photons for each channel [38].  In this work, the lifetime decay data was not obtained as the acquisition 

method needed to achieve sufficient temporal resolution would require such an increase acquisition times 

that they would not be considered practical in a clinical setting. For instance, the acquisition time for a 

single 512x512 pixel image is timage=90s/lrange whereas the acquisition time for obtaining a well-resolved 

(~256-time binds) decay measurement is tlifetime= 90s/16x64 pixel region of interest (ROI). 

 

 

Figure 32. Optical table and NMMMI detection setup. a) 3D animated optical table arrangement of the 
NMMMI experimental setup. Photons are detected using two methods, a single photo-multiplier tube 

(PMT) or redirected via flip mirror for detection by, the time-correlated single photon counter (TCSPC). 
b) Simplified diagram to show how epi-direction photons are coupled into the TCSPC optical fiber 

bundle. c) Schematic of how photons are detected and recorded by the TCSPC software to build up the 
waveform data. 
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 Each 512x512 TCSPC image was obtained at two polychromator angles (~200 nm wavelengths 

range per each angle) permitting a total wavelength range of 400 nm (327 nm – 685 nm), collected at each 

pixel. 2 sets of images were obtained for each 512x512 (X-pixel by pixel) region of interest on the tissue 

area. Each image was acquired for 45 s. Therefore, the tissue was imaged for 90 seconds at each of the two 

polychromator position angles for a total acquisition time of 180 seconds. The images were obtained at an 

average power of ~3.6 mW. For each type of tissue region (normal or cancerous), 3-10 512x512 images 

were obtained to collect the data from multiple layers of the tissue (epithelium, squamous cell, and stroma 

layer) as well as to provide a broader view image of the tissue region.  

 The second method of detection was using a single PMT and optical bandpass filters. In all figures 

with NMMMIs acquired using the single PMT, 1-3 optical filters were used. The three bandpass filters that 

were used to restrict the detected wavelengths had the following transmission wavelength bands: 340 nm – 

410 nm, 515 nm – 545 nm, and 605 nm – 785 nm. All images were imaged at 3.2 mW-6.7 mW for 4-10 

seconds. 

The depth-resolved (DR) images obtained directly from the paraffin blocks of canine, feline, and 

human tissues were done so using the same microscope and objective as the TCSPC 2D images, however, 

the DR image data was detected using a single photo-multiplier tube (PMT, HC2005MOD, Hamamatsu). 

To achieve depth imaging, the focal plane depth was regulated by a motorized stage (Focus Drive with 

Integrated Controller, no. 101-18, TOFRA, Inc. Palo Alto, California) mounted directly to the base of the 

microscope, which was operated by a home-built data acquisition program in LABVIEW (Dantus Research 

Group, Michigan State University)  [197]. The DR images were acquired for a total of 170 µm, with Dz= 

0.1 µm step in between each 2D 512x512 pixel image scan. Each 2D image was averaged for 5 seconds. 

DR imaging was completed using 12 mW of average power. To achieve spectrally separated DR images, 

the same optical filters were used as those in the single PMT NMMMIs. 

All images of the H&E stained tissues were obtained using a Hamamatsu slide scanner. The images 

were then cropped using the Hamamatsu software, NDP NanoZoomer Digital Pathology.  
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4.2.5 Data processing 
 

The TCSPC data files are converted to asci format for processing. The asci-format data was 

reshaped into a four-dimensional (4D) array (16 PMTs, 512 pixels in X, 512 pixels in Y, 4 timing bins). 

The input 4D array is summed across the timing axis to result in a 3D array where a 512x512 image can be 

rendered for each of the 16 PMTs. All data processing was completed using python codes constructed in-

house. For image processing and RGB rendering, the Python Imaging Library (PIL) was used [194].  

Single PMT images are processed using ImageJ software (National Institute of 

Health)  [195,196,198]. For 2D images, all of the raw images are uploaded to ImageJ. The “z-stack” 

function is used to get a single, averaged image from the raw image stack. For images larger than ~320 µm 

(1-512x512 pixel image), the BigStitcher plug-in for ImageJ was used to stitch together images into a larger 

mosaic and reduce brightness artifacts around the border of each image [195,196,198]. The only additional 

image-processing that was done on the 2D images was done using GNU Image Manipulation Program 

(GIMP) to stitch the multi-image regions together. For DR images, the ImageJ Import.jlm macro was used 

to compile the raw DR imaging folders into an image sequence of averaged 2D image scans  [195,196,198]. 

This DR image sequence was uploaded to ImageJ where it can be viewed as gif or rendered into a 3D 

image. The scan ranges for each image in the DR image panel figures were chosen from the uploaded image 

sequence.  

 
4.2.6 Collagen orientation calculations 
 

The angle of collagen fibril orientation was performed using the OrientationJ plugin for ImageJ 

(NIH). The OrientationJ plugin has multiple functions, however, we are using the distribution function of 

the plugin to calculate the orientations of the collagen fibrils on a pixel-by-pixel basis over a 512x512 pixel 

ROI in normal (healthy), inflammatory, and neoplastic regions within human oral squamous cell carcinoma 

(HOSCC) biopsied tissues [199]. The parameters used in this work had been previously published [200]. 

Briefly, we used a cubic spine gradient, with a minimum coherency and maximum energy level set to 10%. 

These thresholding levels were chosen to reduce the likelihood of smaller structures, such as elastin, 
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interfere with the collagen measurements, as well as to limit the number of less isotropic structures 

dominating the histogram, respectively. The histograms for each of the ROI’s were saved and plotted as a 

circular histogram to enhance the ability to compare one to the other. Circular histograms were plotted 

using Plotly plotting software (Plotly Technologies Inc., Polar Charts in Python, Montréal, QC, 2019 URL: 

https://plot.ly/python/polar-chart/#new-to-plotly). Each histogram was repeated in triplicate, averaged, and 

normalized on a scale from 0 to 1 to better compare the relative shape of the distribution of angles from one 

classification of tissue to the next rather than comparing the frequency of each present angle in the 

distribution. 

 
4.2.7 Statistical analysis 
 

The total data size of the human contains n = 55 for normal and n = 101 for neoplastic tissues. We 

consider each 512x512 pixel image as an individual sample for the statistical analysis performed from the 

ROIs and multiple ROIs are obtained from each 512x512 pixel image. There are 6 total human biopsies 

used in this study, some of which have only neoplastic tissues, while others have normal and inflammatory 

regions in addition to neoplastic regions. One-way analysis of variance (ANOVA) test was performed on 

the dataset of the images presented in Figure 35, with n = 21. We compared four different tissue 

classifications for this study: normal (n = 3), mild inflammatory (MI) regions (n = 6), severe inflammatory 

(SI) regions (n = 6) , and neoplastic regions (n = 6).  

 
4.3 Results and Discussion 

4.3.1 Rapid NMMMI of unstained canine and human OSCC tissues mimic H&E contrast 
 

Typical H&E staining achieves distinction between eosinophilic structures, such as the cytoplasm 

and structural components of the stroma and basophilic nuclei. A hallmark of neoplasia is identifying the 

distribution, size, and morphology of nuclei [192,193]. The nuclei in neoplastic cells go through many 

changes, such as enlarged size, increased mitotic activity, pyknosis (shrunken and dense nuclei), and 

karyolysis (nuclear clearing)  [201]. Some of these abnormal nuclear states can be diagnosed via H&E 
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staining. To evaluate if our novel imaging technique can achieve similar contrast as H&E staining, we 

imaged normal and neoplastic HOSCC biopsies. 

 

 

 

Figure 33. H&E and NMMMIs of normal and neoplastic regions of HOSCC biopsies showing 
comparative contrast to H&E staining achieved with two optical filters. NMMMIs of the unstained 
normal (a) and neoplastic (b) HOSCC biopsy tissue slices, corresponding to the H&E image, are 

presented as individual channels (green and blue), containing photons from their respective optical filter 
bandpass ranges, 515 nm-540 nm (SHG) and 605 nm-785 nm (2PEF), respectively, as well as an overlay 
(SHG/2PEF). Zoomed in regions of the white, dashed boxes in the 2PEF images show a zoomed-in image 
of where we identify the nuclei, pointed out by red arrows. H&E and NMMMI scale bar = 50 µm, gray-

scale image scale bar = 10 µm. 
  

Figure 33 shows NMMMIs of normal and neoplastic HOSCC biopsy tissues with H&E-like 

contrast that were acquired using two different optical filters with a single PMT detector. The wavelength 

ranges of the two filters are 515 nm - 540 nm (green channel) and 605 nm - 785 nm (blue channel). The 

combination of these two filters allowed us to isolate the SHG signals from collagen in the stroma (green 

channel) and the 2PEF signals from the surrounding cytoplasm (blue channel), which is unattainable via 

H&E staining. This is due to the structure of the amino acids that make up each collagen fibril. The non-

centrosymmetric molecules yield a process called SHG, which is detectable by photons at exactly 535 nm 



 

  67 

(the second harmonic wavelength of our excitation source is 1070 nm)  [33]. These collagen specific SHG 

signals allow us to identify the boundary between the stroma and the squamous cell layer, which is useful 

when invasive neoplastic fronts begin to invade the stroma, as any disruption in the basement membrane 

facilitates cell migration.   

While the nuclei are identified by the hematoxylin in an H&E stain (appear blue), our method gives 

us the ability to detect the nuclei indirectly. We are unable to excite the nuclei with any of our harmonic 

wavelengths (l3photon = 353 nm, l2photon = 535 nm); therefore, they appear dark and show a lack of signal in 

our NMMMIs (red arrows, Figure 33). Nevertheless, the combination of signals in the blue channel from 

the cytoplasm and the lack of signal from the nuclei permit us to detect where the nuclei are in both normal 

and neoplastic tissues (Figure 33). Thus, we can quantify and track the ratio of nuclear to cytoplasmic 

diameter, which is a thoroughly explored method in neoplasia diagnostics.  

 
4.3.2 Additional histological contrast is achieved using time-correlated single photon counting to explore 

concealed multiphoton signals in human and canine OSCC biopsies 
 

To improve current methods in diagnosis, we also explored two methods by which we increased 

the spectral differentiation of our NMMMIs. The first method utilizes a TCSPC, which provides spectral 

differentiability by using a dispersive element to reflect the detected signals across an array of 16 

PMTs  [38] . Contrary to optical filters, which have broad transmission curves, the TCSPC can be thought 

of as a “fine-toothed comb”, where each detector has a range of 12.5 nm. The narrow resolution of the 

TCSPC can separate obscure signals that may be hidden due to a broad band filter. Thus, we used the 

TCSPC data to identify the wavelength ranges which corresponded to the critical changes in local signals 

of normal and neoplastic HOSCC tissues.  
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Figure 34. NMMMI of human and canine OSCC biopsies acquired using TCSPC. Brightfield images and 
single-channel NMMMIs of the corresponding H&E-stained tissue slices from normal and neoplastic 
OSCC biopsies from human (a,b) and canine (c,d). Each row contains the H&E image of where each 

NMMMI was obtained, a split-image of the H&E and RGB overlay NMMMI showing the histological 
accuracy achieved with multiphoton multimodal (MM) excited imaging, and the individual channels of 

the NMMMIs for each signal type. Wavelength ranges for SHG is centered at 535 nm, for the red channel 
2PEF, 550 nm- 580 nm, and for the blue 2PEF channel, 610 nm-660 nm. White scale bar = 50 µm. 

 

Figure 34 shows the multiphoton images acquired using the TCSPC. Using this set up, we detected 

a secondary emission in the stroma of the oral mucosa that was not differentiable with our previous set up 

(Figure 33) or via H&E staining. The secondary signals in the stroma arise from different structures than 

collagen; therefore, the combination of these new signals with SHG increased the contrast and texture of 

our NMMMIs. 
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The secondary signals in the stroma of both normal human and canine tissues, unlike the 

surrounding collagen fibrils, lack SHG capabilities (centrosymmetric) and have a 2PEF (550 nm - 580 nm) 

emission. In the healthy tissues, these fibrils are thinner than their collagenous neighbors and more 

dispersed than those in neoplastic regions (2PEF Red, Figure 34). Due to the location, morphology, and 

emission wavelength of the secondary structures of the stroma, we concluded that these structures were 

elastin fibrils. The differences in multiphoton multimodal (MM) signals and location between the collagen 

and the elastin fibrils were most apparent in the red-green-blue (RGB) split-images in Figure 34.  

Furthermore, in both human and canine neoplastic tissues, the collagen fibrils (SHG, Figure 34) 

tend to retain a longer and more continuous shape whereas the elastin fibrils (2PEF Red, Figure 34) are 

very short and tend to be less grouped than in healthy tissues. This discontinuous pattern observed in elastin 

fibrils could be due to a time-dependent relationship between elastin-specific matrix metalloproteinase 

(MMP) activities and progression from a hyperplastic state towards neoplasia. In fact, a tactic that 

neoplastic cells utilize to promote cell migration and metastasis involves the use of these MMPs to 

breakdown the structural components of the stroma [192,202,203]. For example, MMP-12 is an elastin-

specific MMP that has been shown to promote elastolysis, creating elastin fragments  [204–206]. These 

fragments further stimulate inflammatory responses, proliferation, and angiogenesis  [204–206]. In 

addition, MMP-12 showed a significant expression change between cases of neoplasia and healthy 

patients  [207]  [207]. Thus, based on our results, further studies on MMP-12 as detection tool of the subtle 

changes in the stroma, particularly in regions adjacent to the basement membrane, is needed. This could 

aid an early detection of neoplastic activity.  

 

4.3.3 Probing the inflammatory microenvironment of HOSCC using multiphoton excitation shows 
spectral signal distinction  

 
The immune system’s response to neoplastic cells is very similar to that of wound 

healing [193,208–211]. In wound healing, an influx of fibrinogen due to activated platelets begin to form  

a clot at the site of action  [193]. Chemokine signals initiate growth factor activation, MMPs, and fibroblasts 
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during tissue granulation for extracellular matrix remodeling [193]. Similarly, in the case of invasive 

carcinomas, neoplastic-associated chemotactic signaling recruits lymphogenic and angiogenic proteins. 

These mitogenic factors aid in the migration, proliferation, and promotion of neoplastic cells [212]. 

Contrary to the cellular environment in an area undergoing wound healing, the cellular environment of 

neoplastic invasive fronts lacks organization [212]. To examine these chemical and microenvironmental 

changes in tissues, specialized and immunohistochemical (IHC) stains are used. To evaluate our NMMMIs 

ability to reveal the MM and morphological changes in different OSCC cellular environments, we imaged 

regions of normal, inflammatory (mild and severe), and neoplastic biopsies.   

 

 

 
Figure 35.  NMMMIs of excised unstained and H&E stained human oral biopsy samples. NMMMI 

images of normal squamous epithelium and connective tissue of the stroma (a), mild inflammation (b), 
severe inflammation (c), and neoplastic region (d) with their corresponding H&E brightfield images. 
White arrows show collagen of the stroma. Pink arrows represent the highly fluorescent 3PEF cells of  

(b). Yellow arrows show the 2PEF signals from inflammatory cells. The white box in the RGB image of 
(b) shows where the 3PEF and 2PEF cells are present and are independent of one another. White and 

black scale bars represent 100 µm. 
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In this method, we increased the spectral differentiation of our NMMMIs by utilizing a third optical 

filter (i.e. 3PEF) with a single PMT detector (Figure 35).  While the TCSPC gave higher spectral resolution, 

the optical elements (optical fiber bundle) used in the setup were less efficient, leading to longer acquisition 

times. Therefore, we used the information we obtained from our TCSPC NMMMIs in combination with 

the original two-filter NMMMIs to determine which wavelength range would be ideal for adding a third 

color channel to our single PMT regime. We detected 2PEF signals, similar to those seen in Figure 33b, 

from non-cytoplasmic cells and 3PEF signals from larger tissue structures in inflammatory regions (Figures 

34b and 34c). These two signals, in addition to the SHG signals from collagen, were determined to be the 

defining signals between healthy, inflammatory, and neoplastic tissues. The optical filters separated signals 

into three wavelength ranges: 340 nm-415 nm (3PEF), 515 nm-540 nm (SHG), and 605 nm-785 nm (2PEF).  

Figure 35 shows NMMMI images obtained at a regions of normal, mild inflammation (MI), severe 

inflammation (SI), and neoplasia. We refer to MI regions as those that are furthest away from the neoplastic 

area, whereas SI regions are those that are neighboring the diseased tissue. Comparable to histology (Figure 

35a), distinct separation of the squamous cell layer and stroma, the uniform nuclear size, and the typical 

density of nuclei throughout the squamous cell layer are also detected in the NMMMI images of the normal 

regions of the oral mucosa. The distinct separation of the stroma and squamous cell layer can be seen when 

examining SHG NMMMIs of the normal region, where SHG from collagen is only present in the stroma 

(white arrows), signifying an intact basal membrane. There is a homogeneous 2PEF signal detected in the 

squamous cell layer and in the stroma surrounding the collagen structures which enabled detection of 

individual cells. We used the combination of SHG signals from collagen and 2PEF signals from the 

cytoplasm to observe the amount and distribution of nuclei from the basal membrane to the superficial 

region of the layer.  

The MI, SI, and neoplastic regions of Figure 35 present heterogeneous environments, highly 

contrasting the NMMMIs of the normal oral mucosa. In all three of the non-normal cases in Figure 35, we 

see a lack of organization and separation of the connective tissue network from the other cell types and 
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layers (SHG, 2PEF, and RGB NMMMIs). Additionally, the 3PEF signals in areas of MI and SI were 

prominent, however, these signals were not detected in the areas of normal and neoplastic oral mucosa 

(Figure 35). Using the H&E stained image as a reference, we inspected the nuclei of the 3PEF cells in 

Figure 35b (pink arrows) to determine their identity. We concluded that these cells were lymphocytes due 

to the large nuclei that crowded the majority of the cytoplasm and the diagnostic state of that region [213]. 

Moreover, we observed increased 2PEF signals (yellow arrows) from the cells that are not present in the 

normal tissues. We confirmed that the two- (yellow arrows) and three- (pink arrows) photon excited 

fluorescent signals arose from two different cell types and show their distinct locations in the white box in 

Figure 35b. We believe that these cells are plasma cells due to their morphology (H&E images, Figures 

35b-35d) as well as previously reported findings that state the presence of plasma cells in the humoral 

response of the neoplastic infiltrate  [214].  

Furthermore, in both cases of the proposed lymphocytes and plasma cells, there is a noticeable 

trend in the density of the MM signals associated with them. The peak quantity of these cells appeared to 

be in MI regions and declined with disease progression towards neoplasia. We explored this hypothesis by 

calculating the ratio of SHG to 2PEF for all tissue classifications in Figure 35. Mean intensity measurements 

were taken of the 2PEF and SHG signals from all ROIs of each NMMMI (n = 6), and SHG to 2PEF intensity 

ratios were calculated. The mean SHG/2PEF ratios for normal, MI, SI, and neoplastic NMMMIs were 

determined to be 0.88 ± 0.44, 0.63 ± 0.20, 0.73 ± 0.17, and 0.93 ± 0.24, respectively. While there was an 

anticipated numerical trend (SHG/2PEF ratio in MI regions should be lowest due to the high prevalence of 

plasma cells), there was no statistically significant difference in the ratios among the different tissue 

classifications (one-way ANOVA, p-value = 0.18). 
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Figure 36. Histogram plots of 6 ROIs from the NMMMIs (a) normal, (b) MI, (c) SI, and (d) neoplastic 

regions in each pseudo-colored channel of Figure 35. 
 

Typically, diagnosis of neoplasia is done by examining images of tissues or stained slides; however, 

this method can become complicated in unusual cases. A numerical value or quantifiable pattern used to 

generalize multiple different stages of neoplasia would optimize this diagnostic process.  To further evaluate 

the ability of our NMMMIs to facilitate neoplastic diagnostics, we examined the histogram plots of the 

SHG, 2PEF, and 3PEF signals from the NMMMIs of normal, MI, SI, and neoplastic tissue classifications 

(Figure 36).  

In normal and MI tissues (Figures 36a and 36b), we observed 3-4 distinct histogram modes. Among 

the 6 histogram plots within each MM signal group, there is little variation. On the contrary, in both cases 
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of SI (Figure 36c) and neoplastic regions (Figure 36d), the histograms are tetra-modal and have 

dissimilarities within each MM signal group. The histogram curves of the SHG signals broadened as health 

status declined: the averaged histogram width for normal, MI, SI, and neoplastic tissues were 11 ± 2 bins, 

92 ± 12 bins, 120 ± 7 bins, and 134 ± 8 bins, respectively (Figure 36). We attributed the trend in the shape 

of the SHG histogram curves to be representative of the increased heterogeneity and disorganization that 

was observed in the stroma (SHG, Figure 35) with disease progression.   

The 2PEF histogram profile of the MI regions was unimodal with a right-skewed gaussian shape. 

We predict that this mode belongs to the 2PEF signals from the plasma cells within the MI region (2PEF, 

Figure 35) due to the absence of this mode in Figure 36a and the lack of plasma cells in the NMMMIs of 

normal tissues. In contrast to normal and MI tissues, both of the 2PEF histograms from the SI and the 

neoplastic regions were bi-modal with gaussian profiles, with the median bin for each being 49 and 52, and 

58 and 64, respectively. Additionally, we observed that these two modes became more distinct and had a 

greater distance between their peaks (3 and 6 bins respectively) as the health of the tissue continued towards 

a neoplastic state. We attributed the increased intra-modal distance in the 2PEF histograms of SI and 

neoplastic tissues to the increased prevalence of neoplastic cells in those regions (2PEF, Figures 35c and 

35d). While the 3PEF histograms for normal, MI, and neoplastic tissue regions were all unimodal with a 

relatively gaussian profile (41 ± 3, 73 ± 3, 172 ± 38 bins, respectively), the 3PEF histograms for SI regions 

were bimodal with narrow distributions (median bins = 42 and 46, histogram widths = 69 bins and 73 bins). 

We related the bimodality and narrow distribution of these histograms to the combination of inflammatory 

and humoral responses, wound healing patterns (myofibril regeneration and stroma hyalinization), and 

neoplastic cell presence taking place in the SI area (Figure 35c). 
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4.3.4 Examination of collagen fibril orientation in HOSCC stroma shows distinct patterns in normal, 
neoplastic, and inflammatory regions of HOSCC biopsied tissues  

 

 

Figure 37. Collagen orientation in normal, MI, SI, and neoplastic regions of HOSCC biopsied tissues. a) 
CCD images of brightfield H&E stained slices of normal, MI, SI, and neoplastic regions of HOSCC 
biopsied tissues. Colored boxes represent ROIs where NMMMI was obtained from, nROI =3 for each 
condition. b) NMMMI of unstained HOSCC biopsy tissues (515 nm-535 nm). Scale bar = 50 µm. c) 

Collagen orientation polar plots for each tissue classification. The colors represent the appropriate ROIs 
from (a). 

 

Changes in the macroenvironment of the tissue structure is an additional hallmark of carcinoma 

diagnosis. A known identifier of neoplastic activity is the integrity of the basement membrane, which acts 

as the boundary between the vascular environment of the stroma and the squamous cell layer  [193]. To 
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evaluate our imaging technique as a method to track changes in the structure of collagen with disease 

progression, we employed collagen angle measurements on our SHG NMMMIs. 

In contrast to neoplastic regions, we have shown how the matrix network of the stroma in healthy 

tissues is highly ordered, where collagen and elastin fibrils form continuous and conjoint groupings. We 

measured the orientation of the collagen fibrils from normal (healthy), MI, SI, and neoplastic tissues to 

provide additional merit to these qualitative findings. Collagen orientation measurements were performed 

on three ROIs from each tissue classification category using the OrientationJ plug-in for ImageJ (NIH) 

(Figure 37b)  [195,196,200]. The green, magenta, purple, and red squares in Figure 37a correspond to one 

of the locations where the NMMMIs were acquired for the normal, MI, SI, and neoplastic NMMMIs of 

Figure 37b.  

Figure 37c shows the results of these measurements with the intensities of the histogram plots 

normalized on a scale from 0 to 1. The color of each row of orientation plots corresponds to the tissue 

classification NMMMI they were obtained from - the green, magenta, purple, and red orientation plots 

correspond to normal, MI, SI, and neoplastic regions. Each tissue classification shows a characteristic 

collagen orientation angle pattern, dependent on the health status of the tissue. We observed a trend towards 

a more negative orientation angle as the tissues diverge from a healthy state. The majority of the collagen 

fibrils in healthy tissues (green polar plots) had an orientation between 0° and 90° and neoplastic collagen 

fibrils (red polar plots) had an orientation between 0° and -90°. Depending on the severity or proximity to 

the neoplastic regions, the distribution of collagen orientation angle differs drastically. In cases of mild 

inflammation (magenta plots), there is a near 50% distribution of collagen orientations between -90° and 

90°; whereas, inflammatory regions adjacent to neoplastic cells - SI regions (purple polar plots) - show 

orientation angle distributions that are very similar to those of neoplastic areas (red polar plots) (Figure 

37c). 

We calculated the ratio of negative to positive orientation angles for each of the tissue classification 

to be 52%± 29%, 104% ± 9%, 105% ± 18%, and 216% ± 123% for normal, MI, SI, and neoplastic tissues, 
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respectively. Although our measurements of the ratio of negative to positive angle measurements matched 

the trend we observed, where we see an increase in negative collagen orientation angles with a decline in 

the health status of the tissue, the results showed there was no statistical significant difference among the 

groups (one-way ANOVA, p-value = 0.07).  

 
4.3.5  H&E-like contrast achieved at depths imaged directly from the paraffin block  

 

 

 

Figure 38. Representation of 2D images at different depths of a 3D depth-resolved stack from a human 
tumor embedded in a paraffin block. A sampling of images at a range of depths are shown. The rows of 
panel images are shown at depths ranges with the increasing depth; 1-12.9 µm, 24.8-27.4 µm, 44.6-47.8 
µm, 94.5-98.8 µm, and 121.8-135.5 µm. The wavelength ranges corresponding to the pseudo-colors used 
shown at the base of each column in the panel arrangement. The magenta images contain photons from all 
multiphoton signals detected. 3PEF and 2PEF images show the fluorescence from inflammatory response 

cells. The green channel (SHG) shows strong signals from collagen. Scale bar = 100 µm. 
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Traditional histopathological preparation techniques have had very few changes over the past century and 

continue to be a costly process  [215]. Unfortunately, the lack of reliable and diverse alternative options 

prevents any portion this process from being replaced. While there are additional options for unstained 

imaging, the increased scattering properties of other excitation wavelengths (800 nm) make them less ideal 

for volumetric imaging of minimally prepped biopsies or for in-vivo situations. To investigate our excitation 

source (1070 nm) as a candidate for future in-clinic imaging, we performed volumetric imaging of FFPE 

biopsied tissues directly from the paraffin block.   

Figure 38 shows a representative view of the depth-resolved images achieved using the 1070 nm 

excitation source with single PMT detection. The volumetric stack was imaged directly from the paraffin 

block. The full depth-resolved panel arrangement can be seen in Figure SX. Each volumetric image was 

obtained as a stack of multiple, contiguous 2D slices to reduce noise, with the depth range for each 2D 

image shown along the y-axis. The location where the DR NMMMIs were obtained is shown by the purple 

square on the H&E stained SI tissue slice in Figure 37a. To directly compare the different multiphoton 

signals detected from the biopsy, the summed volumetric image stacks are arranged in rows for each of the 

multiphoton signal sources detected. The magenta pseudo-colored images in Figure 38 contain the images 

detected using the optical filter with the broadest transmission spectrum (465 nm) (All signals, Figure 38). 

Additionally, the 3PEF NMMMIs are pseudo-colored as blue and second harmonic generation (535 nm) 

signals from collagen are pseudo-colored green. Furthermore, the remaining signals that result from 2PEF 

are pseudo-colored as red. The final column in Figure 38 contains the RGB overlay of the 2D images 

acquired with the 3PEF, SHG, and 2PEF optical filters. Importantly, we show that we are able to retain 

contrast at increasing depths using our imaging technique. We observed the individual collagen bundles at 

depths approaching 130 µm due to their strong SHG signal. Additionally, we were able to resolve individual 

plasma cells at greater depths (>150 µm) than individual collagen bundles due to the 2PEF signals from 
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these cells. Moreover, the RGB overlay images (Figure 38) nearly matched the 2D depth images obtained 

using our broad bandpass optical filter (All signals, Figure 38).  

 

 

Figure 39. Volumetric rendering of depth-resolved NMMMI of HOSCC biopsy obtained directly from 
the paraffin block. a) (top) Amira 3D rendering of the 2D image stacks of the human OSCC tumor as a 
YZ-plane flat face, Normalized intensity plots for each MM signal are plotted along the y-axis of (a). 

The color of each plot corresponds to the pseudo-colored channel for each signal type. (bottom) angled 
YZ-plane to show the joint of two different YZ-planes.  Yellow dashed lines show where the 

hyalinization can be identified indirectly. White scale bars indicate 50 µm. b) Collagen orientation angle 
polar plot for the depth-resolved images in the green channel of Figure 38b. 

 

In Figure 39a we show the 3D rendering of an OSCC tumor imaged directly from a paraffin block. 

We utilized only the SHG and 2PEF channels from Figure 38 in the 3D rendering due to the low intensity 

of 3PEF signals that were present at greater imaging depths. The substantial decrease in 3PEF that we 

observed was due to the mathematical relationship between MM signal intensity and imaging depth; where 

the signal strength of multiphoton signals that is detected decreases exponentially with the distance from 

the focal point. This exponential relationship is highly dependent on the order of the multiphoton process 
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as well as the imaged media  [26,33,216–219]. Nevertheless, the contrast that was achieved by the strong 

2PEF signals from the plasma cells and the SHG signals from the surrounding collagen allowed us to 

identify the hyalinization bundles which were previously identified by 3PEF (3PEF, Figure 35). The borders 

of these bundles are outlined with a yellow-dashed curve that is shown in Figure 39a. The intensity profiles 

for each MM signal which were used in the rendering (Figure 39a) are shown in the plot of Figure 39b. The 

color of each of the curves in Figure 39b corresponds to the pseudo-colored channel for each MM signal - 

the green and red curves belong to SHG and 2PEF, respectively. 

Although SHG is a multiphoton process and the signal intensity decreases exponentially, we are 

able to detect these signals from collagen at our most inferior depths (approaching 200 µm). This allowed 

us to perform the collagen fibril orientation angle measurements and track the trend of the collagen fibril 

orientations in a volumetric regime.  The polar histogram plots of Figure 39c contain the collagen 

orientation angles that were calculated at each of the imaging depths presented in the NMMMIs of the SHG 

channel of Figure 38. The histogram traces are all plotted on a single plot for a direct comparison of 

orientation angle distributions at depths farther into the bulk of the biopsy. Each of the histogram 

measurements were taken in triplicate, averaged, and normalized from 0 to 1. The color gradient of the 

polar plots in Figure 39c corresponds to a specific imaging depth; the lightest magenta line plot corresponds 

to the most superficial image of Figure 38, and the dark purple polar plot belongs to the most distal image 

of Figure 38.  

We observed polar plot patterns in Figure 39c that were comparable to those that were obtained at 

more shallow depths in similar inflammatory regions in Figure 37c. Interestingly, the measurements that 

were obtained at depths farther into the bulk of the tumor, resembled those of healthy tissue regions. This 

finding, in combination with the decrease in plasma cells and lymphocytes present in the 2- and 3PEF 

channels of Figure 38, lead us to the conclusion that this can be attributed to the lack of inflammatory events 

taking place at this depth i.e. the inflammatory response is more superficial. This may be potentially useful 

in determining tumor margins on a more precise scale in a volumetric capacity.  
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4.4 Conclusions 

Oral squamous cell carcinoma (OSCC), a form of head and neck cancer, is responsible for roughly 

2-4% of cancer cases and can show little to no symptoms. If left untreated, OSCC can be fatal. Current 

methods of diagnosis involve time and cost consuming process that not only involves an uncomfortable 

biopsy procedure but also costs histology departments resources to prepare, stain, and mount these biopsied 

tissues on slides for a pathologist to manually inspect and interpret.  By using the human eye as a diagnostic 

technique, the risk of an improper diagnosis is high. Here, we have shown how the use of NMMMI can be 

a useful tool to augment the current gold-standard of neoplasia diagnosis, H&E staining. In addition to 

matching H&E-like contrast in unstained excised tissues, we show our ability to distinguish elastin fibrils 

from collagen fibrils in the stroma and note changes in their structure and distribution in neoplastic tissues 

when compared to healthy tissues. Using these MM signals, our imaging technique can serve as a more 

direct way to evaluate the status of the basement membrane.  Furthermore, we excite and detect additional 

2PEF and 3PEF signals from cells in mild and severe inflammatory regions we attribute to plasma cells and 

lymphocytes, respectively. Our inability to excite the nuclei of the squamous cell layer warrants our ability 

to distinguish the boundaries between nuclei and the surrounding cytoplasm. The combination of direct and 

indirect detection makes it plausible to employ existing statistical measurements used in diagnostics, on 

images acquired with our new technique. Furthermore, our 1070 nm excitation source permits the ability 

to image FFPE HOSCC biopsies directly from the paraffin block and maintain the same the multi-spectral 

contrast in depth-resolved images as in 2D NMMMIs obtained from slide-mounted unstained tissue slices. 

Our NMMMIs of unstained tissues can be used for qualitative and quantitative measurements, including 

the orientation angle measurements of collagen fibrils in 2D and depth-resolved images of healthy, MI, SI, 

and neoplastic regions. We show a pattern in the change in collagen angle orientation distinct to the state 

of the tissue. We note that these angles trend towards negative values as the region of interest is in closer 

proximity to neoplastic regions. We conclude that with continued studies and improved instrumentation, 

the combination of endogenous 2PEF and 3PEF signal classification in inflammatory regions, evaluation 

of elastin fibril changes, and collagen orientation angle measurements show promise as a method of 
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augmenting current gold standard HOSCC diagnostic protocols as well as increasing the likelihood of early 

detection.  
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Chapter V 
 

Towards spectral unmixing of multiphoton multimodal images of unstained retinas using user-
defined signal sources and inverse problem solving algorithms 

 
Abstract 

 In this chapter, we begin by evaluating the most commonly used method of solving the inverse 

problem of the NMMMIs of unstained mouse retinas, least squares fit. The initial performance of the 

algorithm was evaluated on virtual phantoms that mimic the fluorescent profiles and heterogenous 

histological patterns observed in the NMMMIs where it was determined that the algorithm was less 

effective on distinguishing signals when there was significant overlap in the emission spectra of the source 

compounds, particularly in the case of FAD and NADH.  We applied the algorithm to the NMMMIs of 

mouse retinas, where it was shown that the LSqF algorithm successfully resolved the photon sources for 

collagen in the sclera as SHG, melanin disks in the IRL as melanin, and visual cycle catabolites in the ORL 

as both concentrations of A2E. We evaluated two other inverse problem solution algorithms, lasso and 

linear regression. Lasso was more effective at separating signals with significant overlapping spectra, e.g. 

NADH and FAD, however it was not accurate in assigning photons in the IRL and ORL, where nearly 13% 

(~2,000/15,360) of the photons were assigned to FAD and less than 7% (~1000/15,360) of photons within 

these regions were assigned to melanin and A2E—the main molecular components of those layers. The 

linear regression algorithm only assigned ~7% of the photons within the IRL to melanin, additionally, it 

did not incorrectly assign the photons in the ORL to melanin as was done by lasso, and accurately assigned 

them to A2E. Furthermore, linear regression model incorrectly assigned ~13% of the melanin photons to 

the sclera, in regions surrounding the collagen bundles as well as within them.  Furthermore, we conclude 

that the LSqF algorithm is best suited for solving the inverse problem of the NMMMIs from mouse retinas. 

With additional source signals provided, we suggest that using LSqF algorithm will become valuable 

technique to accurately assign and spectrally un-mix all endogenous photons on the pixel-level from 

unstained tissues. Moreover, this technique can be used as a baseline for endogenous signals in healthy 

tissues with the potential being used to diagnose abnormalities on a molecular level. 
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5.1 Introduction 

In microscopy, fluorescent staining is used to segment types of cells and proteins within biological 

tissues. Achieving this type of segmentation is possible in unstained tissues using ultrafast lasers and 

NMMMI. In this type of microscopy, endogenous fluorescence and harmonic processes within the tissues 

produce a signal that can be used to segment and identify different tissues within the image  [8,220–222]. 

Biological compounds often have broad emission spectra that occur within the visible range of the 

electromagnetic spectra (Figure 40). While unstained imaging is often desired because it is less resource 

intensive, difficulties with accurately distinguishing adjacent emission peaks can arise due to the overlap 

of emission spectra, which in some cases, only a few nanometers separate one peak from the other. This 

can be seen in Figure 40, where the wavelength spectra of pure fluorophores in solution and harmonophores 

are plotted. There is a significant distance between the elastin (light pink) and the A2E 1mM (red) emission 

peaks, whereas the emission peaks of NADH (orange), FAD (green), and melanin (magenta) are almost 

completely overlapping.  

 

Figure 40. Wavelength spectra of pure fluorophores and harmonophores found within human retinas. 
Solutions of pure fluorophores are excited with the Yb-fiber laser at the focal point of the microscope 

objective. Photons are detected using the TCSPC, where each PMT detector collects wavelength data over 
a 12.5 nm range, These signals are reconstructed into 2D array using a Python script. Each spectra is 

normalized from 0 to 1 to show the relative overlap and distance between neighboring peaks. Notice that 
many of the compounds overlap significantly, making difficult to determine their individual 

contributions. 
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Currently, a data acquisition method that can help with this issue is a TCSPC. The TCSPC disperses 

the collected emission signals across an array of PMTs using a grating  [38]. While this technique provides 

the user with the wavelength of the detected photons at each pixel (B), differentiation of the emission peaks 

is limited by the physical capabilities of the detector, and in the case of the TCSPC, the restricting element 

is the ~12.5 nm distance between cathodes. Here, we use a generic mathematical relationship to represent 

our scenario; where the emission wavelength of the collected photons is known (via TCSPC collection) and 

most of the sources of those signals can be assumed and used as a reference for fluorescence (A), the 

remaining unknown is the contribution from each of these reference signals (X) at each pixel within the 

image matrix. 

𝐴𝑋 = 𝐵      (9) 

This type of problem is commonly known as an inverse problem  [70–72]. Because there are many 

possible solutions to the above equation, it can be difficult knowing which solution is correct or best for the 

specific situation.  However, in this case, it can be assumed that there are a finite number of fluorescent 

sources at each pixel and therefore the solution to X is sparse.  If we consider the following equations: 

𝐴𝑋 = 𝐵      (10) 

𝐴 ∈ 𝐶)*+	;𝑚 = 𝑛 

𝑋 ∈ 𝐶)*0	; 1 ≤ 𝑙 ≤ 𝑚 

𝐵	 ∈ 𝐶4*+  

Where A is a square matrix containing the pixel data of the multiphoton multimodal image of an 

unstained retina, with dimensions, m and n, equal to the pixels in x and y, or 512x512 pixels. The component 

matrix, X, contains the source signals present on the map of A, and has dimensions that are dependent on 

the amount of source signal vectors known. Though the MP signal processes we are detecting are nonlinear 

in nature, the fact that the signals in A are known and only their parameter variables (X) are unknown, this 

problem is linear in a statistical sense [223]. B is the resulting image matrix where each component of B 

can be written as the linear combination of multiphoton signal sources and their appropriate weights of 
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unstained retina images determined by the product of A and X. The linear combination can be written as 

follows: 

𝑏5 = 𝐴𝑐5 = 	∑ 𝑥85𝑎8)
8:4      (11) 

We use these concepts in attempts to spectrally decompose the endogenous signals from unstained 

retinas. Our approach uses least-squares fit in order to determine the weighted linear combination of signals 

at each pixel within the image matrix, that results in the lowest error [65,68,69]. Because biological tissues 

contain numerous molecules and structures with fluorescent and harmonic properties, the component matrix 

is difficult to complete, resulting in a case where {xi} is not a basis for C l x n, and therefore, only maps a 

subset of B. The remaining unmapped signals of A are denoted as r. 

 

𝑏 = 𝑟 +	∑ (𝑥>𝑥>∗)𝑎)
8:4      (12) 

Using these assumptions, in this work, we applied compressed sensing techniques to our 

reconstructed NMMMIs as well as virtually stained phantom images and used the results to evaluate which 

inverse problem-solving algorithm is ideal for this specific case. While our component matrix of 

endogenous signals is not complete, we show partially unmixed images of unstained retinas. Additionally, 

we show the remaining image that is based on r, or the remainder of unmixed multiphoton signals. 

5.2 Materials and Methods 

5.2.1 Laser setup, detection, imaging, signal processing 

 The laser source for our multiphoton microscope is a custom designed Yb-fiber laser oscillator 

generating pulses with sub-40 fs pulse durations (full-width half-maximum) (1.07 µm, 42 MHz) [224] 

(Figure 41a). Imaging was done on a Nikon TE2000 multiphoton inverted microscope (Figure 41b). A 40x 

water immersion (Carl Zeissä, Immersolä W, ne = 1.334 (23°C), ve = 72) objective was employed with a 

working distance of 0.5 mm (Zeiss LD-C APOCHROMAT 1.1NA, Jena, Germany) to focus the beam on 

the tissue to a beam waist (beam diameter at the focus) of ~0.5 µm, favoring the generation of peak 

intensities high enough to induce multiphoton processes with less than 3.2 mW of average power and pulse 
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durations of 38 ± 1 fs. High peak intensities and low average power minimize the effects of photobleaching 

and thermal damage. The peak intensity was maximized through the use of a pulse-shaper (MIIPS HD, 

BioPhotonic Solutions Inc., East Lansing, MI, USA) to compensate for the high-order dispersion along the 

beam path [225–227]. Laser scanning on the tissue was done with galvanometer mirrors. 

5.2.2 Detection 

Signal detection was accomplished in the epi-direction with a time-correlated single photon counter 

(TCSPC, SPC-830, Becker-Hickl, GmBH). The TCSPC is able to collect frequency and time-resolved data 

with a compact spectrometer and a 16- PMT  [228] (Figure 41c). The spectral resolution of the TCSPC 

system is ~12.5 nm, limited by the physical size of each PMT in the array.  For each pixel in the imaging 

region (512 pixels x 512 pixels in this work), the emission wavelength and lifetime decay data of the 

detected photon are collected. The grating in the spectrometer was rotated to select different spectral 

regions. Here, two grating positions were used to collect the fluorescence spectra; one with a collection 

range from ~300 nm to ~500 nm and the other from ~480 nm to ~680 nm. The images of the sliced mouse 

retinas obtained using the TCSPC were imaged with 6.9 mW of power or less for a total exposure time of 

4.5 minutes (90 seconds per grating position). 
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Figure 41. a) Yb-fiber oscillator and beam path. b) Nikon TE2000 inverted microscope and single PMT. 
c) Time-correlated single photon counter (TCSPC). Showing the orientation of the retina slice (green 

circle). The laser beam propagates perpendicular to the retina slice. 
 

5.2.3 Tissue  

Transverse slices of mouse retinas and a Cynomolgus monkey retina flat mount were mounted on 

a microscopy slide (Corning) and was positioned perpendicular to the propagation of the laser beam. 

Information regarding how the slides were prepared and how the retinas were harvested can be seen in the 

original publication on the nonlinear multiphoton multimodal microscopy imaging of these retinas by 

Murashova et.al  [8] as well as in Chapter 3 of this dissertation.  

5.2.4 Preparation of reference solutions 

Preparation of reference solutions Reference solutions of FAD and NADH were prepared by 

performing a 1:10 dilution of 10X PBS (Dot Scientific Inc.). The dilution was performed using MilliQ 

water. Thirty milligrams (mg) of each compound was added to separate solutions in PBS (136 mM NaCl, 

2 mM KCl, 8 mM Na2HPO4, 1mMKH2PO4, pH7.4) yielding concentrations of approximately 350 µM for 

NADH (Sigma Aldrich) and 300 µM for FAD (Sigma Aldrich). An A2E reference solution was prepared 

using a 10 mM stock solution diluted in dimethyl sulfoxide to yield a final 1 mM concentration. A drop of 

each solution was placed on a microscope slide (Corning) followed by a coverslip (Corning) and then placed 
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coverslip-side down on the microscope objective. Water based immersion fluid (Zeiss, ImmersolTM, ne = 

1.334 (23°C), ve = 85) was used to increase the numerical aperture (NA) between the coverslip and the 

microscope objective. 

5.2.5 Preparation of Reference Signal Matrices, NMMMIs, and Phantoms for LSqF algorithm 

 Prior to being fed into the least-squares fitting (LSqF) algorithm, the spectral wavelength plots for 

each of the fluorescent or harmonic sources was transformed into a nxm matrix, where n was equal to the 

amount of total source spectra and m was equal to the length of each array. All data, including the spectra 

for the source signals are obtained from the TCSPC, where the detected wavelength profile is built up at 

each pixel in the 512x512-pixel array, for the entire wavelength range. Therefore, in order to construct the 

reference signal matrix, the 512x512-pixel image was converted into a 1x 262,144 array using the ravel() 

function from the Python Numpy library [229]. The resulting signal source matrix was of shape 6x262,144.  

 The NMMMIs were obtained at two different grating positions, which expanded the wavelength 

range of photons detected for each image. Therefore, we initially collected photon data over 32 PMTs, 

where there were only 4 PMTs with overlapping wavelength ranges, once the overlapping data was emitted, 

we resulted in data from 28 continuous PMTs, and a wavelength range of nearly 400 nm. In addition to the 

reference signal spectra, the NMMMIs were also transformed from a 512x512-pixel image into a 262,144-

length array, for the 28 PMTs, resulting in a 28x262,144-length array. After being fed the NMMMIs, the 

algorithm returned a 6x262,144-length array, where each column (n) had the photons assigned over the 

entire wavelength range for one of the source signals—NADH, FAD, melanin, SHG, A2E1mM, 

A2E10mM, or elastin. Each 262,144-length array was reshaped, using the reshape() Python Numpy 

function, into a 512x512-pixel image [230], resulting in one 512x512-pixel NMMMI for each of the signal 

sources. 

 In order to construct phantoms, select pixel ROIs from a 512x512-pixel matrix of zeros, were 

assigned values from the linear arrays of the pure compound spectra. The values were normalized on a scale 

of 0 to 1, so that the concentration of the compound, and thus the quantum yield of the signals, would not 

interfere with evaluating the baseline performance of the LSqF algorithm. ROIs were chosen to best 
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represent the histological shapes and organization seen in biological tissues, where there were vertical and 

horizontal bar ROIs of various widths as well as square ROIs. In addition to having single-source phantoms, 

where the ROIs contained data from only one type of spectral source, a heterogenous signal phantom was 

also constructed. The heterogenous phantom, containing signals from all sources—NADH, FAD, melanin, 

SHG, A2E1mM, A2E10mM, and elastin, had a vertical bar ROI for each of the signals. The width of these 

vertical bars were also not homogenous. Just as with the NMMMIs, the phantoms were first transformed 

into a 1D array prior to being fed into the LSqF algorithm. The resulting output from the algorithm was 

reshaped into a 512x512-pixel matrix to show the photon assignment for the ROIs for each of the single 

signal source phantoms as well as for the heterogenous phantom.  

5.3 Results and Discussion 

 The method by which the photons are organized in the images obtained by the TCSPC can be 

thought of as a binning process, where each PMT is a bin, with a width of 12.5 nm.  The wavelength range 

of the photons detected at each PMT is dependent on the angle of the dispersing grating, where the total 

wavelength range dispersed across the array of 16 PMTs, at one grating position, is approximately 200 nm. 

By acquiring images at two grating positions, we cover close to the entire visible range (300 nm – 700 nm) 

of the electromagnetic spectrum. Images obtained using the TCSPC are rendered on a single PMT basis 

and showed in the 7x5 (row x column)  image plot  of Figure 42. The wavelength range of the 35 images 

begins at 302 nm and ends at 684 nm.  
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Figure 42. Single PMT NMMMIs from the TCSPC. Each image contains photons over a 12.5 nm 
wavelength range. Photons within the top left image are centered at 302 nm. The wavelength ranges for 
each image increase towards the right and down, where the final image of the panel (bottom right) has 

photons centered at 683 nm. Images are 512x512-pixels (~320x320-µm) in size. White scale bars are 50 
µm. 

 
 In addition to providing histological contrast, plotting all of the individual PMT images (Figure 41) 

allows us to identify over which wavelength ranges there are distinct multiphoton processes. In Figure 42, 

we show where these distinct multiphoton signals are detected within the single PMTs from Figure 41. We 
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see two independent three-photon processes at 353 nm and 475 nm within the area of the choroid and RPE 

as well as the IRL and ORL. Interestingly at 535 nm, which is the second harmonic wavelength of our 

excitation source (1070 nm), we see a very diverse multiphoton environment. In addition to the SHG 

detected in the sclera of the eye, we detect a two-photon (2P) processes in the inner receptor layer (IRL) 

and outer receptor layer (ORL). Sum-frequency excitation with 1070 nm (535 nm) can result in second 

harmonic processes, which occur in non-centrosymmetric structures, and 2PEF processes, however, there 

can also be three-photon excited fluorescence detected at this wavelength. The stokes-shift of a fluorescence 

process is dependent on the molecular structure of the compound, which is one of the reasons for the varying 

width of emission spectra of fluorescent compounds. Therefore, the multiphoton (MP) processes detected 

in the IRL and ORL can be the combination of new 2PEF signals with the 3PEF processes detected at 475 

nm or these MP processes may be from a single fluorescent compound with the two emissions, however, 

for the scope of this work we refer to them as two independent MP processes. At 660 nm we detect a strong 

2PEF process in the retinal pigmented epithelium (RPE) and choroid, as well as a secondary MP process in 

the sclera distinct from the SHG of collagen.  

 

 

Figure 43. NMMMIs with distinct fluorophore signals characteristic to healthy retinas. The wavelength 
range covered in each image is shown above each tile. Images are 512x512-pixels (~320x320-µm) in size. 

Note the distinct formations identified in each image by their characteristic fluorescent and harmonic 
signals.  White scale bars are 50 µm. 

 
 To improve on the qualitative methods that show the distinction between the chosen characteristic 

MP signals from Figure 42, we assign a specific color to each wavelength range. In Figure 43, the three-

photon (3P) process signals, centered at 353 nm, are assigned as blue, the 2P signals centered at 535 nm as 
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green, and the additional 2P processes centered around 660 nm as red. Areas where two or more of the 

signals are present results in a pixel color that is the combination of the RGB false-colored channels. 

Interpreting these pixel colors allows us to qualitatively determine the dominating MP signal in that layer 

of the retina. In Figure 44, we see that the MP processes from the IRL are the combination of signals in the 

wavelength ranges of 475 nm – 550 nm and 625 nm – 675 nm.  Unlike the yellow pixel color representing 

the combination of signals detected in the more distal layers of the retina (ganglion cell layer – nerve fiber 

layer), the color of the pixels containing the IRL data have a high contribution of signals over the 

wavelength range of 625 nm – 675 nm (green).  The locations in the retina where the combination of 

different MP processes are detected is related to the function of the cells or structures within that layer. In 

structural locations of the eye, such as the sclera, we detect discrete MP signals that are separated by 

histological barriers, such as the SHG signals from collagen (green) and the 2PEF processes detected 

surrounding individual collagen bundles (red). In regions where there are multiple cellular processes taking 

place simultaneously, such as in the receptor layers (RL), where incoming light is focused on melanin disks 

in the outer segment of the RL (ORL), and cellular metabolism takes place in the inner segment of the RL 

(IRL), as part of the visual cycle, we detect a heterogeneous MP environment due to the multiple fluorescent 

compounds present. 
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Figure 44. Three colored (red, green, blue) composite multimodal images of the retinal layers from a 7 
µm slice of a mouse retina taken with the TCSPC at 6.9 mW of power depths using a 1.07 µm Yb-fiber 
laser with 35.0 fs pulse durations. Image acquisition was done at 30-second intervals for a total of 4.5 

minutes. (a) Here the blue, green, and red channels represent emission centered at 535 nm, 575 nm, and 
629 nm, respectively. (b) The blue, green, and red channels represent emission centered at 355 nm, 535 

nm, and 629 nm, respectively. The bandwidth of each channel is ~37.5 nm. 
  

We have shown how the spectral components of the retina that are detected by the TCSPC can be 

used to provide contrast to these unstained tissues in MP images. However, the capabilities of the TCSPC 

are limited by the resolution and physical size of the detectors. In combination with the broad emission 

spectra of fluorescent compounds, accurately identifying the individual MP signal contribution to each pixel 

is challenging. The computational techniques we use in efforts to determine the signal contribution of each 

fluorophore within our MP images are modeled as a system of linear equations. We aim to solve for the 

weights of each fluorophore on a pixel-by-pixel basis using the signals detected in healthy retinas in 

combination with the normalized emission spectra of pure compounds found within the retina. We use the 

pure compound signals as standards in this problem and are shown in the top plot of Figure 45. The emission 

spectra, corresponding to the fluorescent and harmonic signals detected in the healthy retinas from the MP 

images (Figures 42-44), are normalized and plotted in the bottom plot of Figure 45. In both plots, all of the 

signals are normalized from 0 to 1, while this type of normalization prevents us from accurately taking into 



 

  95 

account the relative intensity of one fluorophore to the next, the overlap of multiple signals at each 

wavelength becomes more apparent. Additionally, the emission plots for the MP images of the retina are 

plotted so that each curve corresponds to a single layer or region of the retina, showing how the MP signal 

contributions differ depending on the layer.  

 

Figure 45. (top) Normalized emission curves of the pure fluorophore and harmonic standards obtained 
from the TCSPC. (bottom) Normalized fluorescence and harmonic emission spectra acquired from the 

MP signals detected within excised retinas using the TCSPC. 
 

In biological imaging techniques where fluorescent tags are used to target specific cells, phantoms 

are used to establish a baseline for the fluorescent signals detected. We adopted a similar approach to 

establish the baseline of the least-squares fitting (LSqF) algorithm used in our study. We used the 

fluorescent and harmonic profiles of the pure compounds (Figure 45 top) to create virtual phantoms that 

incorporate a variety of different patterns and that mimic the dimensions of our MP images and are shown 

in Figure 46. We created virtual phantoms that only contain one MP signal within a specified region of 

interest (ROI), such as the FAD, NADH, Melanin, A2E (1mM), A2E (10mM), SHG, and Elastin Phantoms, 
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as well as virtual phantoms that contain all of the MP signal processes with different sized ROIs 

(FNMA1A10SE Phantom) (Figure 46). 

 

Figure 46. Generated image matrices to act as virtual phantoms. Each matrix is 512x512-pixels to match 
the NMMMIs. The contributing signals within each phantom are shown above each image. In the case of 
the single-source phantoms, only one type of fluorescent or harmonic signal occupies the ROI, noted by 

yellow pixels. The phantoms are normalized on a scale of 0 to 1, where a value of 1 is represented by 
yellow coloring. The heterogenous phantom contains fluorescent and harmonic signals from all of the 

sources, organized into vertical ROIs. White scale bars are 50 µm. 
 

 FAD is the dominating signal source in all cases where the LSqF algorithm is applied to the virtual 

phantoms. In Figure 47 we explore the error in photon source assignment in cases where both single MP 

source virtual phantoms and the heterogenous phantom were used. The top row of Figure 47  shows the 

virtual phantoms used as the input for the LSqF algorithm, the output images are the returned results from 

the algorithm, or, in the case of the heterogeneous input phantom, the output image is just one of the 

resulting images, and the bottom row shows the resulting error images where incorrect photons were 

assigned. In the case of mono-MP source virtual phantoms, photons were incorrectly sourced to FAD, 

however, the magnitude of the incorrectly identified photons was directly related to the intensity of the true 

source emission spectra where it overlapped with FAD, i.e. the emission spectra of melanin is more similar 

in shape and intensity to FAD than A2E (1mM), hence the larger percentage of melanin photons assigned 

to FAD than A2E (1mM) photons assigned to FAD. The heterogeneous virtual phantom resulted in a 
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multitude of incorrectly assigned photons, we further examine this virtual phantom more in depth in the 

following section.  

 

Figure 47. Images showing the output and the error in the photon assignments for each type of input 
phantom. The top row shows the input phantoms that were fed into the LSqF algorithm. The second row, 
titled “Output Images” shows the resulting image from after the LSqF algorithm, we see that in the case 
of single-source phantoms, most of the signals are properly assigned, i.e. most of the pixels in each ROI 

are equal to 1 (yellow). The bottom row presents the error, or photons that the LSqF algorithm incorrectly 
assigned. Here we show that in all cases, photons were incorrectly assigned to the FAD source, where the 

FAD photons were all incorrectly assigned to the NADH source. White scale bars are 50 µm. 
 

For virtual phantoms with only one fluorophore or harmonophore present, the algorithm was able 

to correctly identify the MP signal source in most cases. Interestingly, this was not the case for the virtual 

phantom containing all of the fluorophores and harmonophores. Figure 48 shows the output image results 

from using the least squares fitting algorithm on the heterogeneous virtual phantom. Each image in Figure 

47 shows the prediction of which ROIs had photon signals belonging to the MP signal source being 

examined (examined source is shown in the title above each image). The final image of Figure 47 shows 

the summation of all the photons from the resulting image outputs. Each ROI has a total value of 1, 

confirming that each photon has been accounted for, though some are incorrectly assigned. All photons 

belonging to FAD were incorrectly assigned to the NADH source, this could be due to the significant 

overlap between the peaks of the FAD and NADH spectra or due to the 10-pixel distance between the ROIs 
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for each fluorophore. Interestingly, a combination of <20% of photons from Melanin and A2E (1 and 

10mM) were wrongly assigned to FAD. Furthermore, we see partial incorrect photon source assignment in 

the Melanin and A2E (10mM) phantoms, where <10% of photons belonging to SHG were assigned to 

Melanin. Additionally, we see <5% of Melanin and A2E (1mM) photons were incorrectly assigned to SHG 

and <5% of Melanin, A2E (1mM), and SHG signals assigned to A2E (10mM) sources. We believe that the 

incorrect photon assignment is due to the significant overlap between the source emission profiles as well 

as the relative intensity of the profile peaks where those overlaps occur, such as in the case of the SHG, 

Melanin, and both A2E emission profiles in Figure 45, where each signal has a peak that overlaps with the 

bulk of the SHG spectral profile.  

 

 

Figure 48. Output images of the LSqF algorithm with the FNMA1A10SE virtual phantom image (Figure 
46) as input. The top and bottom rows show the output of the LSqF algorithm for the heterogenous source 
phantom, where each image shows the photons assigned to a single source, identified by the source name 

above each image. FAD was incorrectly assigned as the source for A2E 1mM and 10mM as well as 
Melanin photons, and all of the FAD photons were incorrectly sourced to NADH. White scale bars are 50 

µm. 
 

When the LSqF algorithm was applied to the MP images of the retina, we see similar MP patterns as in the 

manually-segmented MP images in Figures 43 and 44. Similar to the combination of 2PEF and SHG signals 

detected in the sclera of Figures 43 and 44, the resulting single-source MP images of Figure 49 show signal 
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contributions of SHG and A2E (1mM and 10mM) in the sclera. Collagen is a known second harmonic 

generating structure and the main structural component of the sclera; therefore, we believe that the photon 

assignment of SHG in the scleral region is accurate. The strong 2PEF signals detected in the IRL and ORL 

of the retina (Figures 43 and 44) are attributed the melanin, A2E (1mM) and A2E (10mM) by the LSqF 

algorithm which aligns well with the function of these layers. The outer segment of the receptor layer is 

comprised of stacks of melanin disks, with the purpose of absorbing electromagnetic radiation that is 

focused by the lens of the eye. As part of the visual cycle, the melanin within these disks are catabolized 

into A2E, packaged in vesicles in the RPE and transported out of the retina via the choroid. We see the 

majority of the signals in the ORL to be attributed to A2E (1mM) where only a portion of the signals are 

attributed to melanin and higher concentrations of A2E (A2E 10mM), we believe this is due to the fact that 

the tissues imaged here are not freshly-excised, and the majority of the melanin present in the ORL has 

degraded. In addition to this, we also attribute the presence of A2E around the collagen bundles of the sclera 

to the fact that these are not freshly excised tissues, as it has been shown that fluorescent components, 

including A2E, aggregate increase with time in FFPE tissues [158]. The ratios of FAD and NADH are 

commonly used to asses cellular metabolism and respiration rates in tissues, therefore, the presence of one 

without the other is unlikely. Nevertheless, in Figure 49, <5 photons/pixel were sourced to FAD and were 

present in the RPE, whereas NADH was present in the choroid. While the LSqF algorithm struggled to 

resolve photons from FAD and NADH independently from one another on the virtual phantoms, we see 

that the error for each of the MP sources is within 2-3% (~15.36x103 photons per image) of the total photons 

in the input MP image. We attribute these errors to multiple sources, including electronic noise from the 

detectors, light leak noise from the imaging location, as well as the fact that we do not have fluorophore 

standards for every MP signal present in healthy retinas. 
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Figure 49. Results of applying the single-vector LsqF algorithm on a NMMMI of unstained excised 
healthy retina. Each image contains photons corresponding to a single fluorescent or harmonic source. 

The signal source corresponding to each image is shown in the title above each output tile. Additionally, 
we present the error for each signal source in photons. Each image contains a total of nearly ~15.36x103 

photons, therefore, the number of incorrectly assigned photons is less than 3% of the total photons 
observed. We note the accurate assignment of the SHG photons to the sclera which is comprised of 

collagen, as well as the main contribution of Melanin to be in the IRL, where the majority of the melanin 
disks are present, and the assignment of A2E (in both concentrations) to the ORL, where the catabolites 

of the visual cycle—breakdown of melanin into A2E, occurs. White scale bars are 50 µm. 
 

 While least-squares algorithms are the most commonly employed algorithms for solving an 

overdetermined inverse problem, there are other methods, such as linear regression and Least Absolute 

Shrinkage and Selection Operator (LASSO/lasso). These two additional methods both have the same 

objective as LSqF—to minimize the error in the prediction of parameter values, however, they go about 

this in a different manner, such as having different normalization functions that can be useful in cases where 

the variables are highly correlated [223,231–234]. Following the initial experiments of using the LSqF 

algorithm on the NMMMIs, we evaluated the performance of using a linear regression model and a lasso 

model to spectrally un-mix the endogenous signals within the retina NMMMIs.  
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Figure 50. Compressed sensing image solutions from each of the four algorithms. Each column of images 
is the output from one algorithm, the rows of the figure correspond to which fluorescent or harmonic 

signal source’s photons are contained within that image. All images are 512x512-pixels (~320x320 µm) 
and were acquired using the TCSPC. White scale bars are 50 µm. 

 



 

  102 

Table 6. Error values from the output of the four spectral un-mixing solution algorithms.  

 

Figure 50 and Table 6 show the output images and the corresponding error resulting from each of the four 

methods used to spectrally un-mix the NMMMIs of mouse retinas. In Figure 50, each column of the panel 

figure corresponds to the algorithm that was used on the NMMMIs, whereas the rows of the figure 

correspond to the photons belonging to the fluorophore or harmonophore source signal within that image. 

The first two columns are the results from using the LSqF algorithm, while the signal sources were fed into 

the algorithm as a 1xm vector for each signal in column II (and in the previous work for this chapter), the 

signal sources were fed into the LSqF algorithm as an nxm matrix for column I. In column I of Figure 50, 

the LSqF algorithm assigned the majority of the photons within the IRL and ORL to NADH and A2E 1mM, 

however, it was shown in previous work that the quantum yield of NADH when excited by a 1070 nm 

source is very low, therefore, having a high percentage of the photons assigned to NADH is unlikely to be 

accurate. Moreover, the histological environment of the IRL is comprised of melanin disks, therefore, we 

would expect to see the majority of photons within this region to be assigned to having melanin as their 

source, and a portion of those photons to be assigned to the melanin catabolites, A2E, however, we see that 

there are very few photons assigned to melanin in any of the images in column I. Interestingly, we show 

that in addition to some of the photons being incorrectly assigned, feeding the signal source spectra into the 

LSqF algorithm as an nxm matrix had an impact on the error associated with each of the signal sources, 

particularly in the case of FAD and A2E 10mM, where we see a 95% increase in error for FAD and a 125% 

increase in error for A2E 10mM when compared to the error from the LSqF results in column II. Unlike 

the LSqF algorithm, the lasso algorithm (Figure 50, column III), assigned ~2000 photons/pixel to the RL 

regions and did not assign any photons to belong to NADH. Due to the fact that the peak absorbance 
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wavelength for NADH fluorescence is not within any of our excitation wavelength ranges (l3P=353 nm, 

l2P=535 nm, lNADH=475 nm), and the fact that the peak absorbance wavelength of FAD is near the SH 

wavelength of our laser (l2P=535 nm, lFAD=530 nm), we believe that the photon assignment of FAD in 

column III is accurate. Therefore, we suggest that the lasso algorithm performed best on accurately 

distinguishing photons from highly-overlapped emission spectra, such as the case of NADH and FAD, 

however, it was less accurate at correctly assigning photons to melanin within the RL regions than the LSqF 

algorithm of column II, where by the histological makeup of the retina, the majority of the photons from 

melanin would be found in the IRL, not the ORL [8,171,235–237]. While the linear regression algorithm 

of column IV was able to distinguish a portion of the FAD photons from the NADH photons, it failed to 

accurately assign melanin and SHG photons. Due to the constraints on SHG, we should only be detecting 

SHG photons from the collagen bundles within the sclera [8,52,121,238], while the LSqF and lasso 

algorithms were able to solely assign photons within these bundles to SHG, the linear regression model 

assigned a portion of the photons from collagen to melanin. While melanin is found in other areas of human 

tissue, it is unlikely that there would be melanin within the collagen bundles. Within the retina, the main 

location of melanin is within the stacks of melanin disks, comprising the IRL, however, there are photons 

surrounding the collagen bundles in the LSqF and lasso results of Figure 50, we suspect that these photons 

may actually belong to A2E due to the fact that this tissue is FFPE.  

5.4 Conclusions 

Due to the overlapping fluorescence and harmonic emission and wavelength spectra, separating the 

pixel-level contribution of each photon to its source can be difficult. Unfortunately, commercial algorithms 

that are able to spectrally un-mix signals rely on the using pure fluorescence spectra from fluorescently-

labeled tissues as one of the input parameters. These commercial un-mixing software programs are not 

customizable, and therefore, users cannot load pure emission spectra for fluorophores and harmonophores 

endogenous to unstained tissues, and apply those to the spectral un-mixing algorithm. 
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 In this chapter, we begin by evaluating the most commonly used method of solving the inverse 

problem of the NMMMIs of unstained mouse retinas, least squares fit. The initial performance of the 

algorithm was evaluated on virtual phantoms that mimic the fluorescent profiles and heterogenous 

histological patterns observed in the NMMMIs where it was determined that the algorithm was less 

effective on distinguishing signals when there was significant overlap in the emission spectra of the source 

compounds, particularly in the case of FAD and NADH.  

 Following the establishment of the  baseline performance of the LSqF algorithm, we applied the 

algorithm to the NMMMIs of mouse retinas, where it was shown that the LSqF algorithm successfully 

resolved the photon sources for collagen in the sclera as SHG, melanin disks in the IRL as melanin, and 

visual cycle catabolites in the ORL as both concentrations of A2E, and very few photons assigned to the 

metabolites, FAD and NADH. We evaluated two other inverse problem solution algorithms, lasso and linear 

regression. Lasso was more effective at separating signals with significant overlapping spectra, e.g. NADH 

and FAD, however it was not accurate in assigning photons in the IRL and ORL, where nearly 13% 

(~2,000/15,360) of the photons were assigned to FAD and less than 7% (~1000/15,360) of photons within 

these regions were assigned to melanin and A2E—the main molecular components of those layers. Unlike 

the lasso algorithm, the linear regression algorithm was less effective at resolving the FAD and NADH 

photons within the retina regions, and assigned nearly all of the photons within the metabolically-active 

area of the RL to NADH and FAD to the photons within the choroid. Interestingly, while the linear 

regression algorithm only assigned ~7% of the photons within the IRL to melanin, it did not assign the 

photons in the ORL to melanin and accurately assigned them to A2E. Additionally, the linear regression 

model assigned ~13% of the melanin photons to the sclera, in regions surrounding the collagen bundles as 

well as within them. It is unlikely for melanin to be present within the collagen bundles, only SHG photons 

should be detected here, additionally, due to the fact that these tissues are not freshly excised, and FFPE, 

we suggest that the photons surrounding the collagen bundles belong to A2E and not melanin.  

 Furthermore, we conclude that the LSqF algorithm is best suited for solving the inverse problem 

of the NMMMIs from mouse retinas. In addition to having the lowest error out of all three models tested, 
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it also accurately assigned photons to the histological locations where their presence had been previously 

documented. With additional source signals provided, we suggest that using LSqF algorithm will become 

valuable technique to accurately assign and spectrally un-mix all endogenous photons on the pixel-level 

from unstained tissues. Moreover, this technique can be used as a baseline for endogenous signals in healthy 

tissues with the potential being used to diagnose abnormalities on a molecular level. 
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Chapter VI 
 

A supervised machine learning approach to diagnose human and canine oral squamous cell 
carcinoma from a very small dataset of nonlinear multiphoton multimodal microscopy images of 

unstained biopsies 
 

Abstract 
 

In this chapter, we explore the use of transfer learning to achieve the overall goal of classifying the 

NMMMIs of unstained oral cancer biopsies into three categories—healthy, inflammatory, and neoplastic. 

We do this  by initially training a neural network model to detect basic histological components of human 

tissues such as the stroma and mucosa, from a large (6,000 images) Kaggle dataset containing images of 

stained human colorectal cancer biopsies. We then perform experiments to optimize the model’s 

architecture, i.e. hidden layers, as well as the optimizers, hyperparameters, and API callback functions used 

before retraining the model on a new and much smaller dataset of 215 NMMMMIs. In addition to having 

different class labels, these images were obtained from an entirely different detector and thus have different 

features than the Kaggle dataset. We explore using tiling methods to subsample and expand our dataset as 

well as “piggy-back” off of the full-sized image labels and apply those same labels to all of the 

corresponding subsampled tiled images. This research shows that a classifier can be trained using transfer 

learning, and if the optimal ratio of frozen to retrainable layers is determined and used, transfer learning 

can improve classification accuracy by 10% over training on the smaller dataset alone.   

 
6.1 Introduction 
 

Many medical diagnoses are centered around examination of histological slides of stained biopsied 

tissues by trained pathologists. Following initial examinations, if a physician finds an area of tissue that 

raises suspicion, surgical resection of the area in question is the next step. During the procedure, the 

physician will remove tissue from the area in question, thin slices at a time. If a rapid diagnosis of the tissue 

cannot be made in the operating room, these biopsies are sent to a pathologist where they are fixed, 

embedded in paraffin, sliced, and stained. These stains provide additional contrast and highlight certain 

histological features that the pathologist uses to make an expert decision of if there are any additional 
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diseased cells within that tissue section. This process will be continued until there are no longer any diseased 

cells in the biopsy and the margins of the tumor have been fully resected. While this is the gold standard, 

human involvement in the diagnostic process can lead to error in the diagnosis, where even an overlooked 

small cluster of cells can lead to a disease relapse. 

Over the past decade, integration of artificial intelligence (AI) in the fields of healthcare have 

greatly increased. Initially being more on the administrative side of healthcare, such as predicting the 

likelihood of a patient to miss their appointment  [239], more recently, AI has begun to show its merit in 

healthcare diagnostics  [240,241]. From identifying gene clusters from unrelated types of cancer to generate 

predictive models for breast cancer survival outcomes  [242,243] to the recently established (2018) 

Precision Medicine Platform by The American Heart Association, to provide a secure workspace for deep 

learning in the health sciences  [244,245], the involvement AI in healthcare now has the potential to make 

significant impacts towards personalized medicine. The subset of AI, machine learning for image 

classification, is now becoming even more popular with biopsy diagnostics in research, such as the work 

done by Beck et. al. where they used an unsupervised machine learning approach to discover stromal 

features associated with breast cancer survival  [246]. Where images are fed into a neural network model 

and used as training. There are two methods that an image classification model can be trained, either 

supervised, where each image has been professionally labeled to belong to a specific feature class, or 

unsupervised, where the model determines the features of each image and from this, assigns each image to 

a specific class determined by the model. Both types of training require large image datasets comprised of 

tens to hundreds of thousands of images, and depending on the complexity of the classifier, i.e. binary 

classification (two possible classes) or multiple feature classification, can take thousands of epochs (one 

complete sweep through all of the data) to effectively train. A well accepted rule of thumb is the rule of 10 

which says that in order to successfully train a model there needs to be 10 times the data for training than 

the number of trainable parameters. Though a timely endeavor, employing this type of AI in the clinic can 

improve patient quality of care. With further exploration of this area, large companies, such as Google, as 

well as research groups have developed incredibly well-trained models that have drastically decreased 
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prediction error since 2010  [83,247], and now outperform humans in their predictions from ImageNet 

datasets  [247–249].  

The main goal of developing and training an effective image classification model is to achieve 

generalized learning. Generalized learning is similar to how a human would effectively study for an exam, 

instead of memorizing the examples, you want to have a solid understanding of the general knowledge and 

reasoning behind why the answer is just that. In an image classifier, if the model begins to “memorize” the 

training images (also called overfitting), the model will not extract the general features that are distinct to 

each class. This becomes an obvious issue when the testing image set is fed into the model and instead of 

using generalized features to classify each image, the model performs poorly because these images are not 

the ones that were memorized. Models that memorize the training image set overfit the data, meaning that 

the accuracy and loss of the training set is higher and lower than that of the testing set, respectively or the 

case where the accuracy and loss of the testing set diverges significantly when compared to that of the 

training set. This is an issue frequently seen in image sets that are too small to train on and thus are not 

generalized enough.  

One approach to negate a lack of data is called transfer learning (TrL), where an image classifier 

model that is well-trained on large dataset is then either validated without retraining or partially retrained 

on a new problem with limited data. The idea is that features learned in the bigger dataset will transfer and 

be useful on a different classification problem.  

There are many methods of medical imaging, however, this research is employing an image 

classifier on multiphoton multimodal microscopy images (NMMMIs) of unstained human oral cancer 

biopsies excited with a 1070 nm ultrafast Yb-fiber laser. The primary advantage of using an unstained 

method is the potential to significantly reduce the cost of sample preparation with an increase of information 

allowed by the frequency range of the newer technique.  However, the disadvantage of this research is that 

this is a novel technology and we have a preliminary dataset of only 215 images.  This limited dataset makes 

traditional machine learning methods difficult to validate. 
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Specifically, we aim use supervised learning to train a model on an incredibly small labeled dataset 

with less than 215 512x512 images and three classes. Typically, the data used for an image classifier is 

divided into three sets; training, testing, and validation. Where the portion of the training set is largest 

(typically around 70-80% of the images), testing sets are comprised of 10-15% of the data, and the 

remaining portion of the images that have not been allocated will comprise the validation dataset. In most 

cases, the validation set is used to evaluate the model’s performance and as a method of fine-tuning the 

hyperparameters of the model. However, due to the smaller size of our original dataset—less than 215-

512x512-pixel images, we split our data into two categories, training and testing, and set aside a portion of 

the testing images to be used for validating our model.  

We employ different tiling sizes to increase the size of our data set and to determine the minimum 

image dimensions where useful features can still be extracted. We first utilize a previously labeled dataset 

from Kaggle. The colorectal histology MNIST dataset contains 5000 64x64pixel images of labeled H&E-

stained digital images with 8 different classes [250–252]. We use this dataset to determine the optimal 

training model architecture and layer hierarchy and hyperparameters for our model.  In addition to 

determining the optimal image dimensions of the NMMMIs, we evaluate the application of augmentation 

to our training set using the ImageDataGenerator object from Keras, and further determine the optimal 

parameters to be used for the augmentation [17]. This augmentation includes transformations such as 

rotation, scaling and mirroring and provides additional variation to the training set that will likely exist in 

actual data without the cost of preparing more samples. An example of the transformations made during 

augmentation can be seen in Figure 51, where we have applied the same transformations used in this work 

to an image of two cats so that the overall effect on the image is more apparent.  
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Figure 51. Input image (left) and the resulting augmented images (3x3 panel on right), from using the 
Keras ImageDataGenerator. The operations performed on each image are identical to those used in this 

work and are shown in Table 7 [17,18]. 
 

Training on the NMMMI dataset will be accomplished using the same model architecture and 

hyperparameters as on the Kaggle dataset, following this, TrL was performed on the NMMMI dataset using 

the previously trained Kaggle model. Additionally, we explored the ideal combination of frozen layers (FL, 

ie. not retrainable) and retrainable layers (TL) to reach maximum testing (validation) accuracy values. 

The potential of improving patient outcomes by integrating AI in healthcare diagnostics has already 

been shown to be a valuable resource, however, current model training methods rely strongly on large 

image datasets. This dependency creates a natural bias for which illnesses image classification can be used 

towards, with the most well-documented and examined diseases and cancers being those that prevail. We 

explore the use and effectiveness of employing augmented images obtained by different sampling methods 

in expanding considerably small (<215) image datasets with the goal of achieving an image classification 

model that avoids overfitting and can be termed generalized. If successful, our method can be used as a 

basis to expand image classification diagnostics to other under- represented and documented forms of 

cancer and other diseases, in addition to potentially reducing the costs of the current diagnostic methods by 

providing an all-in-one identification method that can replace multiple different staining modalities. 
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6.2 Materials and Methods 

6.2.1 Excitation source, Sample preparation, and image acquisition 
 

The laser source and microscopy setup for these experiments is identical to that used in Chapter 4. 

The excitation source is a Yb-fiber laser oscillator generating pulses with sub-40 fs pulse durations (full-

width half-maximum) (1.07 µm, 42 MHz)  [123](Chapter 4, Figure 31). The tissue slides were placed, 

coverslip-side down, on the stage of a Nikon TE2000 multiphoton inverted microscope for imaging 

(Chapter 4, Figure 32). A 40x water immersion (Carl Zeissä, Immersolä W, ne = 1.334 (23°C), ve = 72) 

objective was employed with a working distance of 0.5 mm (Zeiss LD-C APOCHROMAT 1.1NA, Jena, 

Germany) to focus the beam on the tissue to a beam waist (beam diameter at the focus) of ~0.5 µm, favoring 

the generation of peak intensities high enough to induce multiphoton processes with pulse durations of 36 

± 1 fs. The peak intensity was maximized through the use of a pulse-shaper (MIIPS HD, BioPhotonic 

Solutions Inc., East Lansing, MI, USA) to compensate for the high-order dispersion along the beam 

path [194–196]. Position and dwell time of the laser beam on the tissue was achieved using galvanometer 

mirrors. 

In addition to the excitation and microscope used to image this data, the samples and sample 

preparation are those demonstrated in Chapter 4. Images were obtained from a total of n= 6 biopsies and n 

= 36 imaging regions across the 6 FFPE prepared tissue slides. Further information regarding the sample 

preparation techniques are discussed in Chapter 4. 

All images used in this chapter are the single PMT images obtained alongside the single PMT and 

TCSPC data in Chapter 4. Signal detection was accomplished in the epi-direction using a single PMT 

detector. An optical filter was placed along the beam path, prior to the PMT to restrict the wavelength of 

photons detected to ~300 nm – 775 nm in conjunction with the dichroic mirror at the base of the objective. 

Each 512x512-pixel 2D image is an averaged stack of 4 images, acquired for one second each with an 

average peak power of 3.2mW-6.2mW. All wide view images contain 4-10 512x512-pixel images stitched 

together using the BigStitcher ImageJ package [198].  
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6.2.2 Image pre-processing and class distributions 

 
 
 

Figure 52. Schematic showing the process of tiling the large-scale (x,y-dimensions > 1000 µm) NMMMIs 
into multiple 64x64-pixel (~40x40 µm) images to increase the size of the NMMMI dataset. White scale 

bar on large image is 200 µm. White scale bar on tiled image is 32 µm. 
 

Each stitched mosaic is combination of multiple 512x512-pixel images. To expand our dataset, we 

tile the 512x512 images into 64x64. 128x128, and 256x256 pixel images and use these tiled datasets to 

train our image classifier model. This allows us to determine the ideal size of the NMMMIs needed to 

effectively train our classifier while minimizing overfitting. While tiling our images to larger sizes than 

64x64 pixels will reduce our total dataset size, the larger images may in turn have more information and 

features for the classifier to achieve generalization.  While this tiling method will increase our database 

size, we realize that by extrapolating the same class labels of the mosaic NMMMIs to their tiled 

contributions, we are adding additional bias to our dataset. The ideal method to avoid this would be to 

individually classify each tiled image independently of the mosaic image classification, however, due to 

the fact that our mosaic images are obtained from bulk regions of tumor, inflammation, or healthy tissues, 

we are basing our decisions on the assumption that all cells within the mosaic region belong to a single 

class. Additionally, tiling the mosaic NMMMIs will indefinitely introduce “empty” regions, where there is 

no tissue, such as in the top right corner of the image from Figure 52, which may also introduce bias to the 
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class assigned to that region. Individually labeling those regions with an “empty” class could prevent the 

addition of such bias and will be done in future work.  

Two independent sets of the scaled image tiles were used in this work. The first being tiles obtained 

from the 512x512-pixel NMMMIs. These tiles were obtained by dividing the original NMMMIs by an 

equal number of tiles with the desired dimensions. 

𝑂BCCCD = 𝑙 ∗ 𝑤               (13) 

 
 Where l and w correspond to the length and width (in pixels) of the input NMMMI. The second 

set of images were rescaled NMMMIs to match the resolution of the Kaggle dataset.  

 
𝑓 = 	 GHIIIJ

GKLMMNO
     (14) 

 
𝑅BCCCD = 𝑙 ∗ 𝑤 ∗ 𝑓	     (15) 
 

Where the length (l) and width (w) of the original NMMMI are multiplied by a rescaling factor, f. 

The rescaling factor was determined by the resolution (µm/pixel) of the NMMMIs and the Kaggle images 

and was determined to be 0.79. This was done to assess if the detectable features in a 64x64-pixel Kaggle 

image are equivalent to those seen in a 64x64-pixel NMMMI. The rescaled NMMMIs (RNMMMI) are then 

divided into square tiles with 64x64, 128x128, and 256x256-pixel dimensions. 

The class size distribution breakdown by original and final NMMMI dimensions can be seen in 

Figures 53a and 53b. The dataset sizes for the original (512x512-pixels) NMMMIs belonging to the three 

classes—cancerous, inflammatory, healthy (normal), in Figure 53a, are organized into four groups, e.g. 

64x64-pixels, 85x85-pixels, 128x128-pixels, and 256x256-pixels. Figure 53b, the class distributions for the 

rescaled NMMMIs provides similar information, however, the classes are organized into 3 groups for the 

tiled NMMMI dimensions. Due to the constraints of the new input dimensions of the rescaled NMMMIs—

384x384 pixels, we are unable to tile the NMMMIs into 85x85-pixels images.  
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Figure 53. Class distributions for the original (a) and rescaled (b) NMMMIs. The color of each bar plot 
represents each of the three classes, where red is for the Cancer class, orange is for Inflammation, and the 

yellow bars are for the Healthy class. Each plot has the class size distributions for each of the image 
dimension sizes used throughout this body of work, organized within groups based on the image 

dimensions along the x-axis. Annotated black brackets, surrounding each of the bar plots within the image 
dimension groups, shows the sum, or total number of tiled images within each group.  

 
In Figure 53, it is clear that we have imbalanced classes, i.e. number of samples differs from one 

class to another. While we are aware that this may introduce bias into our classifier, by training our model 

to generalize cancerous tissues best, we anticipate that having a multiclass dataset, instead of a binary class 

dataset, will help to counteract this bias. Furthermore, due to the fact that it is unlikely for physicians to 

intentionally biopsy healthy tissues, obtaining equivalent amounts of healthy samples to unhealthy, e.g. 

cancerous or inflammatory tissues, is difficult to achieve. Hence, the majority of the NMMMIs obtained 

from healthy regions belonged to the peripheral areas of the biopsies, where no abnormalities were detected, 

and the NMMMIs obtained from inflammatory regions were detected at the locations encompassing the 

margins separating the neoplastic and healthy cells.  

 
6.2.3 Computational time 
 
 All experiments were conducted on the Intel14 (Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz) 

and Intel16 (Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz) development nodes at the High Performance 

Computing Center (HPCC) at Michigan State University. Figure 54 shows typical run times for training the 
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models using the Kaggle, original resolution, and new resolution NMMMIs, for different image dimensions 

(different data set sizes).  

 
 

Figure 54. Typical run times for training the models on the Kaggle (left), original resolution NMMMIs 
(middle), and new resolution NMMMIs (right), for the different dataset sizes. Training times are 

represented in seconds form. Each color represents specific image dimensions. Diagonal patterned bar 
plots show for which image dimensions training was not performed. Note the decrease in training time 

necessary for the NMMMIs that are rescaled to match the resolution of the Kaggle images.  
 

The bar plots in Figure 54 are grouped into three main data set categories—Kaggle, Original 

Resolution NMMMIs, and New Resolution NMMMIs. Within each main category, there are four sub 

categories corresponding to the image dimensions, i.e. 64x64-pixels, 85x85-pixels, 128x128-pixels, and 

256x256-pixels. Due to the fact that in some cases, e.g. with the new resolution NMMMIs, it was not 

possible to subsample the full-sized NMMMIs (384x384-pixels) into 85x85-pixel tiles, therefore there was 

no training done for images of that size. In Figure 54 this is represented by diagonally patterned bar plots. 

The outline colors of these plots correspond to the image dimensions where training was not performed for 

each type of data set.  We note that the required training time (in seconds) decreases for the new resolution 

NMMMIs when compared to their original resolution counterparts. Interestingly, the size of the data set for 

the rescaled (new resolution) 64x64-pixel NMMMIs is equal to the data set size of the original resolution 

85x85-pixel NMMMIs (Figure 53), however, the training time for the original resolution 85x85-pixel 

NMMMIs is nearly 1.7x longer than the latter.  
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Figure 55. Typical training times for performing TL with a specified number of FL for the original and 
new resolution NMMMIs. The training times for the Keras recommended number of FL for the original 

and new resolution NMMMIs are shows by the solid red bar plot and the white bar plot with a red border, 
respectively. These times were obtained by training on 64x64-pixel images. Times are represented in 

seconds form. We note the relationship between training time and the number of FL, as the number of FL 
increases, training time decreases.  

 
In Figure 55, we show the typical training times (in seconds) for performing TL on the original and 

rescaled (new resolution) NMMMIs. The training times for training the Kaggle model on the original and 

rescaled NMMMIs while holding 9 layers frozen, as recommended by Keras, are shown as the solid red 

and the red-outlined bar plots, respectively. While we note the difference in training times between the two, 

the data set size of the original 64x64-pixel NMMMIs is 5760 images, whereas the data set size of the 

rescaled 64x64-pixel NMMMIs is 3240, therefore, we suggest that the decrease in training time required 

for the rescaled NMMMIs is most-likely related to the volume of the training data and not to the change in 

training methodology. In general, we note that training times decrease as the number of FL increases, this 

is to be expected as with more FL, less of the NMMMI images are used for retraining the model.   

 
6.3 Results 

6.3.1 Convolutional network training model 
 

Due to the large amount of data (>10,000 images) necessary for training a machine learning image 

classifier, performing these algorithms on small- (<1,000 images) and mid-sized (<10,000 images) 

individual and research-based datasets is uncommon. Unfortunately, in cases where obtaining more images 
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is impossible, problems that would benefit from an image classification algorithm, are disregarded. In order 

to avoid letting valuable data go to waste, we evaluate the performance of a convolutional network image 

classifier model on its ability to classify images of unstained normal (healthy), inflammatory, and neoplastic 

oral cancer biopsied tissues, obtained using multiphoton multimodal microscopy.  

Initially, we determined the ideal model architecture that would give us the maximum testing 

(validation) accuracy and minimal loss. To establish this baseline, we used an image dataset from Kaggle 

that we consider to be our synthetic data. The Kaggle dataset was a multi-class dataset (8 classes), 

containing 5000 labeled bright-field images of H&E stained colorectal (MNIST) tissues, each having 

dimensions of 64x64-pixels. The motivation behind choosing this dataset was due to the histological basis 

of the labels, all of which identified some standard histological component or layer, such as the stroma and 

the mucosa, respectively. These components are natively present in all of the oral cancer NMMMIs. 

Therefore, we hypothesized that if we structured the ideal model for the Kaggle images, which we refer to 

as the Kaggle model, shown in Figure 56, this same architecture can be applied to the oral cancer NMMMIs, 

as this architecture would be able to extract the low-level features of what constitutes tissue from the oral 

cavity. 

 
 

Figure 56. Model parameters and architecture with 14 trainable layers and the appropriate softmax layer 
to reflect the accurate number of classes for the images. 
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The Kaggle model is a convolutional network containing 14 layers, 447,273 trainable parameters 

(TrPs), and 0 non-trainable parameters (NTrPs). The only alterations to the model architecture that were 

made when the NMMMI image datasets were used was dependent on the type of experiment being run, for 

the baseline NMMMI classification, only the softmax layer (dense_2) was changed to match the number of 

output classes. In the case of the experiments for the tiling dimensions study, which will be discussed further 

on, only the input image size was adjusted to match each scaled training image, and the softmax layer to 

match the number of classes. Additionally, for the experiments focused on TrL, any alterations to the layers 

of the Kaggle model architecture are covered in section 6.3.7. 

 
6.3.2 Evaluation of a model’s performance and customization of training model parameters and 
hyperparameters on the Kaggle dataset 
 

To evaluate a model’s performance, we plot the training and validation—using a portion of the 

testing set not seen by the algorithm, referred to as “testing (validation)” throughout this work, accuracy 

and loss curves. Learning curves can provide valuable information about a model’s performance, such as if 

the model is overfitting or underfitting as well as if there is high bias in the model. Additionally, some 

information pertaining to the dataset, such as if there is high variation between the training and testing 

datasets as well as if the training set is unrepresentative itself can be extracted by a learning curve. Examples 

of these characteristics of learning curves are shown in Figure 57 using artificial data. 
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Figure 57. Characteristics of learning curves that provide valuable information regarding a model’s 
performance and about the datasets. From left to right and top to bottom: (top) learning curves showing a 
good fit, underfitting, underfitting, (bottom) overfitting, unrepresentative training dataset, high variance in 

training set, and high bias.  
 

Learning curves depicting a good fit (Figure 57a), have training and validation losses that decrease 

to a stable (steady state) value with a minimal gap between the two [234,253,254]. In the case of underfitting 

(Figures 57b and 57c), validation and training loss values may not change throughout the training cycle and 

appear as a flat line (Figure 57b), showing that the model was unable to learn anything from the training 

set, or in the case of Figure 57c, the training and validation loss values continually decrease, however, they 

do not reach a stable value during the training cycle and more training may be of good use [234,253,254]. 

Over time, the validation loss may increase and diverge from the training loss, this is an example of 

overfitting, where the model did not achieve good generalization from the training dataset (Figure 57d). 

Training data that is unrepresentative of the validation data, meaning that the training data does not provide 

enough information for the model to have a solid understanding of the concept being learned, are generally 

indicated by noisy loss curves, that while they improve with each epoch, there still remains a gap between 

the two [234,253,254]. Furthermore, a model trained on a dataset with high variance may have a large gap 

in between the loss and accuracy curves (Figure 57e), whereas a model with high bias may have a midpoint 

accuracy value between the accuracy and loss curves (Figure 57f, red dashed line).  
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Once the overall model architecture was optimized, we then experimented with the learning rate 

values and optimization functions available using the Keras library. We evaluated five different 

optimization functions—Adadelta, Adagrad, Adamax, Adam, and Nadam. Each of these optimizers are 

adaptive gradient descent algorithms that assist in minimizing error functions used in gradient descent in 

order to minimize the loss and updating the calculation of the weights and biases following each 

epoch [255–260]. These error functions are dependent on the internal learnable parameters of the model, 

therefore, there is not just a universal optimizer to use, the ideal optimizer for may differ from one model 

to the next. As a general comparison, each of the optimizers performs a type of gradient-based optimization, 

where they differ is with respect to the changes in their learning rates over an amount of time as well as 

with how the weights are updated. The mathematical proofs for these differences has been shown in 

previous work and will not be discussed here [255,256,258–260].  

Just as choosing the proper optimizer can significantly impact a model’s performance, choosing 

the ideal learning rate (LR) is a challenge and also significant, if a LR is too large, the global minima may 

be missed, however, choosing a LR that is too small can cause incredibly long convergence times [259]. A 

useful technique and argument available in the Keras library will make use of a LR scheduler, this will 

decrease the LR incrementally based on a certain threshold value [261]. The use of schedulers will be 

discussed further on. Here, we evaluated each of the five optimizers using four different learning rates—

0.01, 0.002, 0.001, and 0.0001. The combination of these learning rates was chosen based on their use as 

the default parameters within the Keras documentation [257].  

In Figure 58, we plot the accuracy values for each optimizer using each of the four LR values. 

When looking at these curves, the main take-away that we are trying to obtain is the ideal optimizer with 

its ideal LR value, we are looking for testing (validation) accuracy and testing (validation) loss values that 

are higher and lower than the corresponding training values, respectively. In each plot, the training accuracy 

curves are green, and the loss curves are blue, the testing (validation) accuracy and loss curves are red and 

orange, respectively. When the learning rate is high, i.e. 0.01, we see divergence, in the case of the Adadelta 

and Adagrad and lack of learning anything, such as in the case of Adam and Nadam. Conversely, the highest 
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LR (0.01) was ideal for the Adamax optimizer and divergence occurred with lower LRs. Interestingly, 

contrarily to the Adam and Nadam optimizers, for lower LRs, i.e. 0.002, 0.001, and 0.0001, the accuracy 

values fail to increase to higher than the loss values Adadelta and Adagrad. While the Nadam optimizer 

performed similarly to Adam with a LR of 0.002 and 0.001, the steady-state (~last 25 epochs) training and 

testing (validation) accuracy (accT, accV) and loss (lossT,lossV) values for the Adam optimizer were accT = 

0.82, accV = 0.82, lossT = 0.62, lossV = 0.62 at LR 0.002, and accT = 0.88, accV = 0.88, lossT = 0.49, and 

lossV = 0.50 for LR = 0.001, respectively. For the Nadam optimizer, these values were, accT = 0.83, accV = 

0.83, lossT = 0.61, lossV = 0.61 at LR 0.002, and accT = 0.86, accV = 0.85, lossT = 0.49, and lossV = 0.57 for 

LR = 0.001, respectively. From Figure 58, we see that the optimal combination of optimizer and LR for 

this specific model is the Adam optimizer with a LR of 0.001. 
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Figure 58. Training and testing (validation) accuracy plots for determining the ideal combination of 
optimizer algorithm and learning rate for the Kaggle dataset. 

 
The model algorithm that the accuracy results plotted in Figure 58 were obtained from were run for 

1000 epochs, we show that in the case of the Adam and Nadam optimizers at either LR = 0.002 or LR = 

0.001, there is very little change in the testing (validation) or training accuracy and loss achieved after the 



 

  123 

500th epoch. From this, we hypothesize that 500 epochs should be sufficient for training our model and is 

the duration for how long the following experiments in the work will be trained for. 

 
6.3.3 Baseline results of Kaggle model architecture without with augmentation 
 
 When the size of a dataset is considered to be small, overfitting, i.e. memorization, is a common 

problem with a ML classifier. One of the methods by which this is challenged is by use of augmentation. 

Augmentation refers to the process of making slight changes to the data so that the detectable features are 

not altered but merely presented in a different way. Some examples of image augmentation are rotating, 

resizing, skewing, or translating (vertically or horizontally) an input training image about its axis [262–

264]. While it is important to understand that augmentation will not increase your dataset size, it can help 

to prevent overfitting. Similarly, to how a student may study a specific mathematical concept by attempting 

to solve different practice problems that cover that same concept.  

 
 

Figure 59. Sample of 25 non-augmented, labeled, and normalized input images from the Kaggle dataset 
which were fed into the ML model. Each image is 64x64-pixels or ~32x32 µm in size, with a resolution 

of 0.49 µm/pixel. White scale bars are 10 µm. 
 

 We trained our model, using both augmented and non-augmented input images from the Kaggle 

dataset to test the impact that augmentation would have. Figure 59 shows twenty-five of the non-augmented 

labeled Kaggle images that were fed into our model. Each image is 64x64-pixels, or ~32x32 µm with a 

single-color channel, normalized from 0 to 1. The ImageDataGenerator object from Keras was used to 
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perform the augmentation. The parameters and values used are presented in Table 7. The values used for 

the parameters are the default values recommended by the Keras documentation [17].  

 
Table 7.  ImageDataGenerator augmentation parameters and values applied to the training images. 

. 
   

 
 

Figure 60. Comparison between non-augmenting (left) and augmenting (right) the Kaggle images prior to 
being fed into the model. Training accuracy and loss curves are green and blue, respectively. Testing 

(validation) accuracy and loss are red and orange, respectively. Steady-state training and testing 
(validation) accuracy and loss values are shown above all curves. Inset plots of sample images from each 

experiment are presented within each of the two plots. White scale bars are 10 µm.  
 

The models for both the augmented and non-augmented Kaggle datasets were trained for 500 

epochs, the training and testing (validation) accuracy and loss values are plotted in Figure 60. Additionally, 

a sample image as well as the steady-state accuracy values are shown as insets to the main plot for each 

dataset used. The left plot corresponds to the non-augmented images used by the model whereas the right 

plot shows the data resulting from augmented images being fed into the model for training. While in both 

cases, the training accuracy and loss are acceptable values, the testing (validation) accuracy of the model 
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trained on the non-augmented dataset plateaus well below the training accuracy value (~12%) and the loss 

increases exponentially when compared to the training loss. Conversely, while the testing (validation) 

accuracy is slightly less than the training accuracy of the model supplied with the augmented images, 0.8390 

versus 0.8462, respectively, there is no divergence or significant decrease in the accuracy values between 

the training and testing (validation), showing the impact that augmentation had on the model trained on the 

Kaggle dataset. Hence, the augmented model has better performance than the non-augmented model. 

 
6.3.4 Baseline results of original resolution 64x64-pixel NMMMI using Kaggle model architecture 
without and with augmentation 
 
 Unlike the Kaggle dataset, the NMMMIs are obtained from unstained tissues. While imaging 

unstained tissues is valuable, images of stained tissues will have higher contrast, and a greater dynamic 

range of intensities. Furthermore, endogenous fluorescence has a lower quantum yield that the fluorescence 

emission of histological dyes, due to this, the NMMMIs are noisier than the stained Kaggle images. 

Nevertheless, we predict that though the accuracy values may be lower than those from the Kaggle model, 

augmentation will be useful in preventing overfitting on our model trained on the NMMMIs.  

 
 

Figure 61. Twenty-five sample images of the NMMMIs that are used in the image classifier model. Each 
image is 64x64-pixels, or ~40x40 µm in size, with 0.624 µm/pixel resolution, and normalized on a scale 
of 0 to 1. The class labels for each image are along the bottom of each image, where the one-hot encoded 

labels are along the y-axis of each image. White scale bars are 10 µm. 
 

 Prior to training the model, the 512x512-pixel NMMMIs are tiled into multiple 64x64-pixel images 

in order to match the size of the Kaggle images for input into the first layer of the classifier model. These 



 

  126 

tiled NMMMIs are showed in Figure 61. The method by which tiling was achieved can be seen in section 

6.2.2. The normalized NMMMIs (0 to 1), are then either augmented or not augmented prior to training. 

Similarly, to Figure 60, Figure 62 shows the accuracy curves from training the model on the non-augmented 

(left) and augmented (right) NMMMIs. As we expected, the accuracy and loss values from the model 

trained on the augmented NMMMIs are lower and higher than those from the model trained on the 

augmented Kaggle images, however, like in the case of the Kaggle model, we see a significant improvement 

on accuracy and loss values of the augmented NMMMI model than its non-augmented counterpart. In fact, 

we see the testing (validation) loss improve (decrease) by approximately 55%. Additionally, the augmented 

NMMMIs prevented overfitting, we did not see any divergence between the training and testing (validation) 

accuracy curves unlike in the case of the non-augmented NMMMIs. Furthermore, we note an improvement 

of 5% between the testing (validation) accuracy of the two cases.   

 

 
 

Figure 62. Comparison between non-augmenting (left) and augmenting (right) the NMMMIs prior to 
being fed into the un-trained model. Training accuracy and loss curves are green and blue, respectively. 
Testing (validation) accuracy and loss are red and orange, respectively. Steady-state training and testing 
(validation) accuracy and loss values are shown above all curves. Inset plots of sample images from each 
experiment are presented within each of the two plots. Key observation in this figure is that the loss curve 

is growing quickly in the non-augmented data while the loss is held under control with the augmented 
data. White scale bars are 10 µm.  
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6.3.5 Updating the Adam optimizer parameters to better suit the NMMMIs and implementing the reduce 
learning rate callback from Keras 
 
 The Adam optimizer performs gradient updates in mini batches, meaning that the number of 

iterations that the optimizer takes throughout a single epoch can be specified. In our case, we have a batch 

size of 16, therefore,  

B
a

     (16) 
 

The Adam optimizer will update gradients every time the above equation is satisfied, where N corresponds 

to the number to training elements, and a corresponds to the batch size.  Performing gradient updates in 

this manner not only decreases the computational cost of each epoch, but it also allows for more fine-tuning 

of the learning rate as the loss approaches the global minima [256,257]. In addition to the significance that 

determining the optimum LR can have on a model’s performance, the extent to how much this rate is altered 

during the training process is also important. As the we approach the global minima on a loss function, the 

slope, or rate of change at each update iteration, changes. In order not to miss the global minima, the LR 

needs to adapt to match the difference in slope of the gradient. The decay parameter (Table 8) for the Adam 

optimization function controls the extent to which the LR is changed while approaching the global minima. 

The decay value is used as a method of decreasing or increasing the LR. Depending whether on the initial 

LR is higher, i.e. LR > 0.01 or lower, i.e. LR < 0.002, altering the LR can improve stability and reduce loss 

for the former, or it can slow the convergence times for the global minima and have little effect on reducing 

loss for the latter [259]. We observed in Figure 61 that though our testing (validation) loss had decreased 

by applying augmentation to our NMMMIs, the signal-to-noise ratio (SNR) was still prevalent when 

compared to the training loss curves. Due to our already low initial LR of 0.001, we decided to prevent the 

Adam algorithm from decreasing the LR by setting the decay parameter to a value of 0.0 as well as 

implementing root mean square propagation (RMSProp). Table 7 shows the original (default) Adam 

optimizer parameter values as well as the newer values we implemented. The default values of the optimizer 

were those recommended by Kingma, D.  et.al. [256]. 
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Table 8. Adam optimizer default and new parameter values used for the NMMMI model. 

 
 
 
 Additionally, we implemented a Keras Callback function, ReduceLROnPlateau, which will reduce 

the learning rate by a factor specified by the user, once learning stagnates (plateaus) [261]. The callback 

will monitor a quantity, specified by the “monitor” argument in Table 7, for a set number of epochs 

(patience) until the minimum LR (min_lr) is reached.  Figure 63 shows the accuracy and loss curves for the 

training and testing (validation) set of NMMMIs using the adjusted Adam optimizer parameters and the 

ReduceLROnPlateau callback function. Conversely to the decay parameter for the Adam optimizer, the 

ReduceLROnPlateau parameter performs on an epoch-level, whereas the decay parameter will reduce the 

LR after each mini-batch [257,261]. Additionally, because the ReduceLROnPlateau callback only reduces 

the LR, there is no concern about the updated LR becoming larger than the initial LR, which would increase 

variance. These features of ReduceLROnPlateau, will still allow us to reduce the LR to better approximate 

the global minima than a constant LR, and ensure our new LR only decreases.  
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Figure 63. Accuracy results from the model trained on the NMMMI data with adjusted Adam optimizer 
parameter settings and implementing the Keras ReduceLROnPlateau callback. Testing (validation) 

accuracy and loss are red and orange, respectively. Steady-state training and testing (validation) accuracy 
and loss values are shown above all curves. Inset plots of sample images from each experiment are 

presented within each of the two plots. White scale bars are 10 µm. 
 

From looking at the NMMMI accuracy and loss curves (Figure 63), we can see that there are two 

major components against us, the gap between our loss and accuracy curves is high, and our curves are 

centered around 0.75 accuracy, i.e. our loss values never drop below 0.75, and our accuracy never increases 

beyond 0.75. Unfortunately, our curves being centered around such a high value is due to a significant 

amount of bias in our classifier, meaning that no matter how much additional data we feed the model, it is 

unlikely that our model will achieve good generalization. This was something that we had anticipated by 

extrapolating our labels from our mosaic (large view) images to their tiled counterparts. However, the large 

gap between the loss and accuracy curves is representative of high variance. There are a couple of ways 

that this can be alleviated, the first being to improve our data and the second being to simplify the model, 

with fewer or less complex features.  

  



 

  130 

6.3.6 Dimension scaling study for original and resized NMMMIs for Kaggle image resolution 
equivalency  
 

Table 9. NMMMI image sizes and corresponding training and testing dataset sizes for the dimensions 
scaling study. 

 
 

         
 

Figure 64. (left) 85x85-pixel (~53x53 µm), (middle) 128x128-pixel (~80x80 µm), and (right) 256x256-
pixel (~160x160 µm) tiled normalized and labeled NMMMIs. Image class label is shown on the x-axis of 

each image whereas the one-hot encoded label corresponding to the class label is on the y-axis of each 
image. White scale bars are 10 µm.  

 
We first tested the impact the input image dimensions had on the model accuracy. The stained 

Kaggle images at 64x64-pixels, have high contrast from the stains, this may impact how well the model is 

able to extract valuable features from the images. Due to the fact that the NMMMIs are unstained, we 

hypothesized that this may mean that by matching the image dimensions of our tiled NMMMIs (64x64-

pixels) to the Kaggle images, we have less extractable features compared to the Kaggle images. In other 

words, the features extracted from a 64x64-pixel Kaggle image are not equivalent and far greater than those 

which can be extracted from a 64x64-pixel unstained NMMMI. What may be equivalent to a 64x64-pixel 

Kaggle image may be, in fact, a larger NMMMI. In addition to the 64x64-pixel NMMMIs used for training 

and testing (validation) (Figure 61), we also used 85x85-pixel (~53x53 µm), 128x128-pixel (~80x80 µm), 

and 256x256-pixel (~160x160 µm) NMMMI tiles to train and validate our model. The data set size 

breakdown for each of the dimension sizes are shown in Figure 53 and Table 9.  Figure 64 shows nine of 
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the normalized and labeled NMMMIs for each of the new dimensions. The images corresponding to the 

64x64-pixel NMMMIs can be seen in Figure 61.  

 

 
 

Figure 65. Accuracy curves for dimension study of NMMMIs. The models trained and tested (validated) 
on 64x64-pixel, 128x128-pixel, and 256x256-pixel training NMMMIs are shown from left to right, 

respectively. Testing (validation) accuracy and loss are red and orange, respectively. Steady-state training 
and testing (validation) accuracy and loss values are shown above all curves. Inset plots of sample images 
from each experiment corresponding to each dimension used are presented within each of the two plots. 

White scale bars are 10 µm.  
 

With larger dimensions, the histological and tissue-level organization is more apparent when 

looking at the NMMMIs in Figure 64, however, this linear improvement on image quality with image size 

did not hold necessarily hold true in terms of training and testing (validation) loss and accuracy. Figure 65 

shows the accuracy plots corresponding to the 85x85-pixel, 128x128-pixel, and 256x256-pixel NMMMIs, 

respectively. We see the peak performance, in terms of testing (validation) accuracy and loss, on the 85x85-

pixel NMMMIs, with accv = 0.6698 and lossv = 0.8060. These values improved by approximately 2% and 

17% than those from the 64x64-pixel NMMMIs (Figure 63). On the larger NMMMIs, i.e. 128x128-pixel 

and 256x256-pixel, we see the testing (validation) loss and accuracy values worsen by approximately 4% 

and 4-8%, respectively. Additionally, on these larger NMMMIs we see that at certain time points, prior to 

200 epochs for the 128x128-pixel images, and for all 500 epochs of the 256x256-pixel images, there is no 

learning occurring and we are underfitting our data. This is most likely due to the fact that while our images 

are larger and have more information in them, the input data size for the 128x128-pixel NMMMIs is only 

25% and the data set size for the 256x256-pixel NMMMIs is only 6.25% the amount of  the original total 

data size for the 64x64-pixel NMMMIs (Table 9). 
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Table 10. New dimensions of the input and output NMMMIs, the total NMMMIs and the corresponding 

training and testing allocations for the new dimensions are also shown.  

 
 

           
 

Figure 66. Rescaled NMMMIs (left) 64x64-pixel (~40x40 µm), (middle) 128x128-pixel (~80x80 µm), 
and (right) 192x192-pixel (~120x120 µm) tiled normalized and labeled NMMMIs. Image class label is 

shown on the x-axis of each image whereas the one-hot encoded label corresponding to the class label is 
on the y-axis of each image. White scale bars are 10 µm. 

 
The second method by which we attempted to improve our data was by rescaling our 512x512-

pixel NMMMIs to a size that would correlate to the resolution of the Kaggle images. The Kaggle images 

have a resolution of 0.49 µm/pixel, whereas the NMMMIs have a resolution of 0.624 µm/pixel, this 

corresponds to the Kaggle images having ~79% greater resolution than the NMMMIs, which could 

inherently be one of the reasons as to why the model architecture customized for the Kaggle dataset is not 

performing as well on the NMMMI dataset. We predict that if we rescale the NMMMIs to a size that would 

permit the tiled NMMMIs to have the same level of features as the 64x64-pixel Kaggle images, the Kaggle-

designed model will perform better on the NMMMIs. 

 Prior to tiling, we down-sized our 512x512-pixel NMMMIs to 384x384-pixels. This was 20 pixels 

smaller on each x- and y-axis than would equal the resolution ratio of the Kaggle images to NMMMIs, 

however, these were the ideal initial dimensions in order to have output tiling dimensions of 64x64-pixels. 

Additionally, with the new input image dimensions of 384x384-pixels, the tiling dimensions for the largest-

scale NMMMIs were slightly smaller than the Kaggle image counterparts. The input dimensions, output 

dimensions, as well as the total number NMMMIs and the number NMMMIs used for training and testing 
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are presented in Table 10. The tiling dimensions for the rescaled NMMMIs were 64x64-pixels, 128x128-

pixels, and 192x192-pixels, and are shown as three-by-three image arrays in Figure 66, respectively.  

 

 
 

Figure 67.  Accuracy curves for scaling study of rescaled NMMMIs. The models trained and tested 
(validated) on 64x64-pixels, 128x128-pixels, and 192x192-pixels training NMMMIs are shown from left 
to right, respectively. Testing (validation) accuracy and loss are red and orange, respectively. Steady-state 

training and testing (validation) accuracy and loss values are shown above all curves. Inset plots of 
sample images from each experiment corresponding to each dimension used are presented within each of 

the two plots. White scale bars are 10 µm. 
 

 We trained and validated the established model (section 6.3.5) on each of the dimension sizes of 

the rescaled NMMMIs. Figure 67 shows the accuracy plots for the 64x64-pixel, 128x128-pixel, and 

192x192-pixel NMMMIs, respectively. Compared to the original-scale NMMMIs (Figures 61 and 62), the 

model trained on the 64x64-pixel rescaled NMMMIs had the highest validation accuracy (accv = 0.6744) 

and lowest testing (validation) loss (lossv = 0.8065) compared to the models trained on the larger dimension 

NMMMIs. The model trained on the 128x128-pixel NMMMIs had lower testing (validation) accuracy (accv 

= 0.6049) and higher testing (validation) loss (lossv = 0.9720) than the largest dimension NMMMI tiles 

(192x192-pixels), which had accv = 0.6528 and lossv = 0.8374, confirming the nonlinear dependence on 

input dimensions of testing (validation) accuracy and loss values that was shown in Figure 65. By training 

the model on rescaled NMMMIs (64x64-pixels), the testing (validation) accuracy improved by ~2.5% 

(accv(rescaled) = 0.6744) than the case of the original scaled 64x64-pixel NMMMIs (accv(original) = 0.6502, 

Figure 63) and nearly 17% for testing (validation) loss (lossv(rescaled) = 0.8065, lossv(original) = 0.9728). While 

the model trained on the original scale, 85x85-pixels NMMMIs performed better than the one trained on 

original scale 64x64-pixels NMMMIs, the model trained on the rescaled 64x64-pixels had slightly 
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improved testing (validation) accuracy (~0.5%) and nearly the same testing (validation) loss (Dv_acc = 

0.0005). Due to the fact that the total NMMMIs for both the original scale 85x85-pixel and rescaled 64x64-

pixel NMMMIs is the same (3,240 NMMMIs, Tables 9 and 10), we predict that the increase in testing 

(validation) accuracy is due to the rescaling of the NMMMIs. We believe that the improvement on accuracy 

of the model trained on the rescaled 64x64-pixel NMMMIs is related to the underlying architecture of the 

model. In all of our experiments, we are using a convolutional network architecture rather than a neural 

network comprised of many fully connected layers. Unlike the input layer of the latter, where the input 

image is essentially transformed into a linear array based on the input image dimensions—the input layer 

dimensions corresponding to a 64x64-pixel input image would be 1x 4096 nodes, the nodes of the 

convolutional input layer can be thought of an array equal to the input image dimensions, i.e. rows and 

columns of 64x64 nodes [265]. The convolutional architecture has been shown to be ideal for image 

classification due to the fact that the special relationship of neighboring pixels is preserved [80,82,83]. 

Instead of the pixel intensity being the weight applied to the corresponding node in the hidden layer of a 

fully connected network, the weights passed to the following hidden layer in a convolutional neural network 

are calculated from the pixel intensities within a local array, with dimensions specified by a filter (3x3-

pixels in this case) [265]. Due to the increased resolution of the Kaggle images of 79% when compared to 

the NMMMIs, it is likely that the weights and biases which was calculated from the 3x3-pixel kernel array 

and the resultant feature maps, i.e. the resultant total of all individual features extracted by the kernel at all 

local arrays within the input layer—32 in this case, was not as representative in the case of the original 

scaled NMMMIs as those from the rescaled NMMMIs and thus the feature extracted did not correlate to a 

robust generalization of the local array. Nevertheless, the gap between the testing (validation) loss and 

accuracy for the model fed the rescaled 64x64-pixels NMMMIs improved from ~32% (lossv(original) - 

accv(original) = 0.3226, Figure 63) to ~13% (lossv(rescaled) - accv(rescaled) = 0.1321, Figure 67), when compared to 

the model trained on the original scale 64x64-pixel NMMMIs, meaning that by rescaling the NMMMIs 

prior to training we reduced the variance in the model, which was one of the goals the rescaling experiments 

were set to achieve.  
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6.3.7 Improving testing (validation) accuracy of NMMMI IC without increasing input data using transfer 
learning on the pre-trained Kaggle model 
 
 Due to the fact that we are unable to obtain any additional NMMMIs, we perform TrL with our 

rescaled 64x64-pixels NMMMIs on the saved model that was previously trained on the Kaggle images. We 

are interested in determining if TrL will aid in lowering the accuracy value of ~0.75 that both the NMMMI 

training and testing (validation) accuracy and loss curves are centered about to create a better generalized 

model.  

 
 

Figure 68. Workflow schematic of transfer learning experiments with the pretrained Kaggle model on the 
rescaled 64x64-pixel NMMMI dataset. The key in the top-right corner of the figure shows the meaning 
for the abbreviations used within the figure. The workflow is split into three parts, 1. The initial training 
of the Kaggle and NMMMI models, independently, 2. The FC study to determine the optimal ratio of FL 
to retrainable layers, and 3. Appending the optimized number of retrainable layers determined in phase II 

to the last layer of the full Kaggle model.  
 

Ideally, the TrL experiments would be conducted in two stages, the first would determine the ideal 

number of FLs and retrainable layers, the number of retrainable layers is we will refer to as the finesse 

chunk width (FC). The second stage of the TrL experiments would append the optimal FC to the last layer 

of the full previously trained Kaggle model. However, we only conduct the experiments for phase I in this 
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work and the experiments for phase II will be completed in future work. Figure 68 shows the general 

workflow for the TrL experiments for both the work performed in phase I (this research) as well as those 

for phase II in future work. In phase I, indicated by a “2” in Figure 68, depicts the combination of the FL 

from the previously trained Kaggle model and the TL, where the rescaled 64x64-pixel NMMMIs will be 

used for training. The initial placement of the FC, i.e. the layer number where retraining on the NMMMIs 

begins, was dictated by the recommendation presented in an example in the Keras documentation for 

TrL [266,267]. 

 
6.3.8 Following Keras documentation for the number of frozen and retrainable layers 
 
 The model architecture, number of parameters per layer, total parameters (ToPrs), total trainable 

parameters (ToTrPrs), and non-trainable parameters (NTrPrs) for the TrL study that utilizes the 

recommended ratio of FL to retrainable layers, is shown in Figure 69. Here, the first 9 layers of the 

previously trained Kaggle model are frozen, the remaining 5 layers are retrainable, and the last layer (of the 

5 retrainable layers)—the softmax layer, is altered to match the number of classes for the NMMMIs. The 

new softmax layer (Dense) is named “output_dense” whereas in the original model (Figure 56), it was 

termed “dense_2”. 
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Figure 69. Transfer learning model parameters and architecture with 9 FL (non-retrainable) Kaggle 
layers, 4 TL, and an updated softmax layer to reflect the accurate number of classes for the NMMMIs.  

 
 We performed TrL on both the original-scaled 64x64-pixel NMMMIs as well as the rescaled (~1:1 

NMMMI to Kaggle ratio) 64x64-pixel NMMMIs using the previously trained Kaggle image classifier 

model from section 6.3.3 with the optimized Adam parameters determined in section 6.3.5. Figure 70 shows 

the mean steady-state (final 25 epochs) accuracy values from retraining 5 of the 14 Kaggle model layers.  

 
 

Figure 70. Steady-state accuracy values for recommended number of frozen layers for the models 
partially trained and then validated—using a portion of the testing dataset, on both the (left) original 
resolution 64x64 pixel NMMMIs and the (right) Kaggle-matched resolution 64x64 pixel NMMMIs. 

Matching the resolution of the NMMMIs to the Kaggle images shows improves accuracy from 64.1% to 
65.8%. 
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 Of the 5 retrainable layers, there are 418,564 parameters that are able to be trained on the NMMMI 

data, whereas there are only 28,064 parameters that are non-trainable as those are parameters within the 9 

frozen layers of the model (Table 10). From looking at the testing (validation) accuracy for the rescaled 

NMMMIs in Figure 70 (left), while we have increased the value by nearly 3% (2.73%) than the model 

trained on the original scale NMMMIs, the testing (validation) accuracy decreased by ~2% (1.63%) when 

compared to the model trained entirely on the rescaled, 64x64-pixel, NMMMIs (Figure 67). Using these 

metrics as evaluation parameters shows that while freezing the first 9 layers of the Kaggle model nearly 

follows the Keras recommendation for the percent of frozen to retrainable layers of 62.5% (freezing 9 of 

the 14 layers is 64.3%), the performance of our TrL model was less accurate than our optimized model with 

all 14 layers trained on the rescaled 64x64-pixel NMMMIs. We suggest that the features extracted, and 

weights calculated by the 9 frozen layers from the Kaggle model are not representative of the NMMMIs. 

Nevertheless, we believe that TrL is a valid technique to increase our accuracy for this specific set of 

images, and with the optimal combination of frozen and retrainable layers in the Kaggle model, we can 

improve our accuracy over the model used on the rescaled, 64x64-pixel NMMMIs in section 6.3.6.  

 
6.3.9 Determining the optimal Finesse chunk width for transfer learning on the NMMMI data set  
 
 Table 11 shows the parameter allocations for each of the TrL experiments with respect to the 

number of frozen layers. Layers 2, 3, 5, 8, and 12 are the only layers that contribute parameters to the total 

model, therefore, when the surrounding layers are frozen, there is no change in the number of TrPs or 

NTrPs. Nevertheless, by freezing the layers, whether or not they contribute to the number of parameters—

either TrPs or NTrPs, we prevent the previously calculated weights from changing, which may still have 

an effect on the accuracy of the model. 
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Table 11. Total, trainable, and non-trainable parameters with respect to number of frozen layers for 
transfer learning the Kaggle model on the scaled 64x64-pixel NMMMIs. 

 
 

  
 The accuracy for the training and validation (on a portion of the testing dataset) from the TrL 

experiments is shown as boxplots in Figure 71, where the left plot corresponds to the training accuracy and 

the right plot corresponds to the testing (validation) accuracy. Each boxplot was calculated from the mean 

of the final 25 epochs out of 10 trails for each of the 12 TrL experiments. The mean accuracy values for the 

training and testing (validation) data is shown by the red lines of each plot. The mean accuracy values for 

each TrL experiments were calculated by excluding any outliers. Any value that fell either above or below 

the values determined by adding and subtracting 1.5 x interquartile range (IQR) from the third and first 

quartile (Q3, Q1), were determined to be outliers.  

 
 

Figure 71. Steady-state accuracy values for the finesse chunk width study on the Kaggle-matched 
resolution 64x64 pixel NMMMIs. Testing (Validation) accuracy improves with fewer frozen layers than 

what was recommended by Keras (Figure 70).  
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 In both the training and testing (validation) boxplots, we see a general improvement on accuracy 

as the number of retrainable layers increases and the number of frozen layers decreases. In the training 

accuracy plot (Figure 71, left), the spread of the accuracy values is within a ~4% window and the 

distribution of values within each of the frozen layer assignments ranges from ~0.5-1.0%, whereas in the 

spread of the values for the testing (validation) accuracy of Figure 71, is approximately 10%, with the 

distributions of each frozen layer being within 0.5%. The improvement of performance and the decrease in 

distribution for each frozen layer experiment is most-likely due to the use of drop-out layers in our 

model [268].  Nevertheless, when following the Keras recommendation and utilizing only the last 5 layers 

as retrainable layers (Figure 70), the maximum validation (from the testing data set) we obtained was 

65.8%, whereas the highest testing (validation) accuracy, shown in the right plot of Figure 71, that our 

model achieved on the rescaled 64x64-pixel NMMMIs was 70.1%. This is over a 6% (6.13%) increase in 

accuracy by holding only the first 4 layers of the Kaggle model frozen and retraining the remaining 10 

layers on the rescaled NMMMIs.  

 

Figure 72. Selected accuracy curves for transfer learning of the Kaggle model on the NMMMIs with 2(a), 
4(b), 9(c), and 13(d) frozen layers. Steady-state (last 25 epochs) metric values for each of the experiments 
are in the textbox located in the top-right corner of each plot. Observe that as the number of frozen layers 
increase the variability in the results stabilizes and a general improvement on training and testing of the 

validation accuracy. 
 

 Figure 72 shows the accuracy curves for selected frozen layer transfer learning experiments. From 

Figures 70 (right) and 71 (right), we showed the general improvement on training and testing (validation) 

accuracy from holding 9 layers frozen, as was recommended in the Keras documentations, to holding 4 

layers frozen for the NMMMIs. In addition to these results, in Figures 72a and 72d, we compare the results 

a. b. c. d. 
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from holding 2 and 13 layers frozen, respectively. One of the goals aimed to achieve from these FL 

experiments was to reduce the gap between the loss and accuracy values, though holding 4 layers frozen 

achieved the highest testing (validation) accuracy, holding 2 layers frozen reduced this gap from ~19% 

(18.9%) in the case of 9 FL, to ~14% in the case of 4 FL down to ~11%. Additionally, holding 2 layers 

frozen resulted in the lowest testing (validation) loss of 80.1% than compared to holding 4 layers frozen 

(lossv = 84.8%) or 9 layers frozen (lossv=84.6%). Additionally, there was less divergence of testing 

(validation) loss (overfitting) from the training loss seen in the TrL model holding 2 layers frozen (Figure 

72a) than the model with 4 FL (Figure 72b).  Furthermore, the testing (validation) accuracy for the 2FL TrL 

model was higher than the model trained solely on rescaled 64x64-pixel NMMMIs in Figure 70 (left) by 

1%. The combination of the lowest testing (validation) loss, least amount of overfitting, and higher testing 

(validation) accuracy values shown in Figure 72a, for the TrL model with 2 FL seems to be ideal for use of 

NMMMIs.  

6.4 Conclusion 

 The long-term goal this work was to evaluate the combination of our NMMMIs and deep learning 

as a basis to develop an all-in-one identification method that can replace multiple different staining 

modalities, in order to improve patient outcomes by integrating AI in healthcare diagnostics. In particular, 

the work presented here demonstrates a first step to applying deep learning image classification to NMMMI 

histological images from datasets that are not large enough for conventional deep learning image 

classification methods. The initial model architecture optimization experiments showed that a 14-layer, 

convolutional neural network, integrated with dropout layers and ReLU activation functions were ideal for 

working with the colorectal-histology MNIST Kaggle dataset and the NMMMIs.  The Adam optimizer, 

with a LR = 0.001, outperformed the Nadam, Adagrad, Adadelta, and the Adamax optimizer functions with 

any of the four LRs that were evaluated, e.g. 0.01, 0.002, 0.001, and 0.0001.  We determined that rescaling 

the NMMIs in order to artificially match the resolution of the Kaggle images was crucial. The combination 

of Keras callback functions (ReduceLROnPlateau) and implementation of RMSprop with the optimal 

architecture, optimizer function, and LR, resulted in a validation accuracy—a subset of images from a 
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portion of the testing set, unseen to the classifier, of 67.4% and loss of 80.1% which was an improvement 

of 2% and 17% when compared to the model fed the original resolution NMMMIs. Furthermore, to improve 

these values in hopes of creating a robust generalized model, we employed TrL of the model previously 

trained on the Kaggle dataset with the recalled NMMMIs. We determined the optimal number of frozen 

and retrainable layers of the saved Kaggle model was, four FL and 10 retrainable layers, which performed 

better than the recommended ratio of FL to retrainable layers found in the Keras documentation. Using four 

FL in the transfer learning model resulted in a testing (validation) accuracy of 70.1%. We conclude that 

these results show promise, and with future work, such as labeling the tiled NMMMIs on an individual 

basis, re-optimizing the model architecture with respect to the NMMMIs and not an MNIST dataset, such 

as the Kaggle dataset used here,  as well as performing TrL on a another model, previously trained on a 

larger dataset, will result in the metrics necessary to have a robust and generalized image classification 

model that can use NMMMI to diagnose cancer without use of expensive staining equipment and painful 

biopsies. 
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Chapter VII Summary and Outlook 
 

Although lasers are regularly used in other applications, their use in the clinic has yet to be 

approved. With characterized and optimized laser pulses, MP can be achieved at lower average peak 

powers, such as the work presented in this dissertation, where the range of average power used for imaging 

is between 3.2 mW-6.7mW.  

The near-IR wavelength (1070 nm), as well as variety of multiphoton excitation modalities, and 

the fact that the 3P processes are above the DNA-damaging UV range, of the Yb-fiber laser used in this 

work, makes its use desirable in biomedical applications.  

My research successfully shows the potential of using NMMM in tandem with computational 

methods to augment current diagnostic protocols used by the health care system with potential to improve 

patient outcomes as well as decrease pathology departmental costs. These results should facilitate the 

continued study and development of NMMM so that in the future, NMMM can be used for clinical 

applications.  

 
7.1 Multiphoton excited hemoglobin fluorescence and third harmonic generation for non-invasive 
microscopy of stored blood 
 

We have investigated 2PEF and THG for label-free non-invasive RBC imaging. Unlike 

conventional laser microscopy systems (>100fs), the laser systems employed here produce very short pulses 

(15fs for the Ti:Sapphire and <45fs for the Yb-fiber lasers). Therefore, these short-pulse sources deposit 

less thermal energy and reduce photo-thermal damage to the RBCs. 2PEF signal increases as the inverse of 

pulse duration, while THG signals increase as the inverse of the pulse duration squared  [113]. Following 

successful 2PEF imaging of RBCs, we explored the source of the fluorescence and concluded it originated 

from two-photon excitation of the Soret band in hemoglobin based on fluorescence spectra, fluorescence 

lifetimes, as well as both linear and transient absorption data. The images are sufficiently detailed to assess 

morphological anomalies of RBCs non-destructively without breaching sterility using commercially 

available compact femtosecond laser oscillators. 
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Multi-photon microscopy modalities such as THG and 2PEF can be used for non-invasive imaging 

of blood cells through the storage bag. Moreover, it was shown here that THG imaging provided the best 

resolution and image sensitivity for noninvasive imaging of stored RBCs without photodamage. We 

conclude that using compact and reliable ultrafast laser oscillators may lead to improvements in non-

invasive blood analysis, including point-of-care assessment of RBC morphology. 

 
7.2 Multimodal nonlinear optical imaging of unstained retinas in the epi-direction with a sub-40 fs 
Yb-fiber laser 
 

Following the validation of the non-invasive applications of NMMM, in Chapter III we employed 

NMMM to establish the endogenous MP signals present in healthy excised and unstained mouse and 

Cynomolgus monkey retinas, using 2PEF, 3PEF, second harmonic generation (SHG), and THG. In this 

chapter, we presented the first epi-direction detected cross-section and depth-resolved images of unstained 

isolated retinas obtained using multiphoton microscopy with an ultrafast fiber laser centered at 1070 nm 

and a ~38 fs pulse duration. Moreover, we analyzed the spectral and temporal signatures of the 

autofluorescence signals and showed two distinct regions; the first one from the nerve fiber layer to the 

inner receptor layer, and the second being the retinal pigmented epithelium and choroid. 

In summary, we presented the first epi-direction multimodal imaging of unstained isolated mouse 

and Cynomolgus monkey retinas with an ultrafast fiber laser centered at 1.07 µm. Measurements of the 

fluorescence spectra and lifetime from a thin cross-section of a mouse retina showed that emission from the 

ORL to the NFL have similar spectra, including a relatively long lifetime. The RPE and choroid have similar 

spectra, including a relatively short lifetime. We attribute a majority of the short lifetime signal to A2E, and 

a majority of the long lifetime signal to lipofuscin or other lipofuscin degradation products. Interestingly, 

we show that FAD and NADH do not significantly contribute to the fluorescence emission from a 1.07 µm 

laser. This is different from most multiphoton microscopy studies where FAD and NADH are usually the 

strongest autofluorescent signals. In addition, depth resolved imaging of an unstained Cynomolgus monkey 

retina is also presented using the same laser and experimental setup. The depth resolved images from the 
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Cynomolgus monkey show that it is feasible to use our collection system to image the retina of live-animal 

subjects, and in the future of humans. 

 
7.3 Tetra-modal multiphoton microscopy: A non-invasive technique for augmented 
histopathological analysis of oral squamous cell carcinoma biopsies 
 

Oral squamous cell carcinoma (OSCC), a form of head and neck cancer, is responsible for roughly 

2-4% of cancer cases and can show little to no symptoms. If left untreated, OSCC can be fatal. Current 

methods of diagnosis involve time and cost consuming process that not only involves an uncomfortable 

biopsy procedure but also costs histology departments resources to prepare, stain, and mount these biopsied 

tissues on slides for a pathologist to manually inspect and interpret.  By using the human eye as a diagnostic 

technique, the risk of an improper diagnosis is high. Here, we have shown how the use of NMMMI can be 

a useful tool to augment the current gold-standard of neoplasia diagnosis, H&E staining. In addition to 

matching H&E-like contrast in unstained excised tissues, we show our ability to distinguish elastin fibrils 

from collagen fibrils in the stroma and note changes in their structure and distribution in neoplastic tissues 

when compared to healthy tissues. Using these MM signals, our imaging technique can serve as a more 

direct way to evaluate the status of the basement membrane.  Furthermore, we excite and detect additional 

2PEF and 3PEF signals from cells in mild and severe inflammatory regions we attribute to plasma cells and 

lymphocytes, respectively. Our inability to excite the nuclei of the squamous cell layer warrants our ability 

to distinguish the boundaries between nuclei and the surrounding cytoplasm. The combination of direct and 

indirect detection makes it plausible to employ existing statistical measurements used in diagnostics, on 

images acquired with our new technique. Furthermore, our 1070 nm excitation source permits the ability 

to image FFPE HOSCC biopsies directly from the paraffin block and maintain the same the multi-spectral 

contrast in depth-resolved images as in 2D NMMMIs obtained from slide-mounted unstained tissue slices. 

Our NMMMIs of unstained tissues can be used for qualitative and quantitative measurements, including 

the orientation angle measurements of collagen fibrils in 2D and depth-resolved images of healthy, MI, SI, 

and neoplastic regions. We show a pattern in the change in collagen angle orientation distinct to the state 

of the tissue. We note that these angles trend towards negative values as the region of interest is in closer 
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proximity to neoplastic regions. We conclude that with continued studies and improved instrumentation, 

the combination of endogenous 2PEF and 3PEF signal classification in inflammatory regions, evaluation 

of elastin fibril changes, and collagen orientation angle measurements show promise as a method of 

augmenting current gold standard HOSCC diagnostic protocols as well as increasing the likelihood of early 

detection.  

 
7.4 Towards spectral unmixing of multiphoton multimodal images of unstained retinas using user-
defined signal sources and inverse problem solving algorithms 
 

Due to the overlapping fluorescence and harmonic emission and wavelength spectra, separating the 

pixel-level contribution of each photon to its source can be difficult. Unfortunately, commercial algorithms 

that are able to spectrally un-mix signals rely on the using pure fluorescence spectra from fluorescently-

labeled tissues as one of the input parameters. These commercial un-mixing software programs are not 

customizable, and therefore, users cannot load pure emission spectra for fluorophores and harmonophores 

endogenous to unstained tissues, and apply those to the spectral un-mixing algorithm. 

 In this chapter, we begin by evaluating the most commonly used method of solving the inverse 

problem of the NMMMIs of unstained mouse retinas, least squares fit. The initial performance of the 

algorithm was evaluated on virtual phantoms that mimic the fluorescent profiles and heterogenous 

histological patterns observed in the NMMMIs where it was determined that the algorithm was less 

effective on distinguishing signals when there was significant overlap in the emission spectra of the source 

compounds, particularly in the case of FAD and NADH.  

 Following the establishment of the  baseline performance of the LSqF algorithm, we applied the 

algorithm to the NMMMIs of mouse retinas, where it was shown that the LSqF algorithm successfully 

resolved the photon sources for collagen in the sclera as SHG, melanin disks in the IRL as melanin, and 

visual cycle catabolites in the ORL as both concentrations of A2E, and very few photons assigned to the 

metabolites, FAD and NADH. We evaluated two other inverse problem solution algorithms, lasso and linear 

regression. Lasso was more effective at separating signals with significant overlapping spectra, e.g. NADH 

and FAD, however it was not accurate in assigning photons in the IRL and ORL, where nearly 13% 
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(~2,000/15,360) of the photons were assigned to FAD and less than 7% (~1000/15,360) of photons within 

these regions were assigned to melanin and A2E—the main molecular components of those layers. Unlike 

the lasso algorithm, the linear regression algorithm was less effective at resolving the FAD and NADH 

photons within the retina regions, and assigned nearly all of the photons within the metabolically-active 

area of the RL to NADH and FAD to the photons within the choroid. Interestingly, while the linear 

regression algorithm only assigned ~7% of the photons within the IRL to melanin, it did not assign the 

photons in the ORL to melanin and accurately assigned them to A2E. Additionally, the linear regression 

model assigned ~13% of the melanin photons to the sclera, in regions surrounding the collagen bundles as 

well as within them. It is unlikely for melanin to be present within the collagen bundles, only SHG photons 

should be detected here, additionally, due to the fact that these tissues are not freshly excised, and FFPE, 

we suggest that the photons surrounding the collagen bundles belong to A2E and not melanin.  

 Furthermore, we conclude that the LSqF algorithm is best suited for solving the inverse problem 

of the NMMMIs from mouse retinas. In addition to having the lowest error out of all three models tested, 

it also accurately assigned photons to the histological locations where their presence had been previously 

documented. With additional source signals provided, we suggest that using LSqF algorithm will become 

valuable technique to accurately assign and spectrally un-mix all endogenous photons on the pixel-level 

from unstained tissues. Moreover, this technique can be used as a baseline for endogenous signals in healthy 

tissues with the potential being used to diagnose abnormalities on a molecular level. 

 
7.5 A supervised machine learning approach to diagnose human and canine oral squamous cell 
carcinoma from a very small dataset of nonlinear multiphoton multimodal microscopy images of 
unstained biopsies 
 

The long-term goal this work was to evaluate the combination of our NMMMIs and deep learning 

as a basis to develop an all-in-one identification method that can replace multiple different staining 

modalities, in order to improve patient outcomes by integrating AI in healthcare diagnostics. In particular, 

the work presented here demonstrates a first step to applying deep learning image classification to NMMMI 

histological images from datasets that are not large enough for conventional deep learning image 
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classification methods. The initial model architecture optimization experiments showed that a 14-layer, 

convolutional neural network, integrated with dropout layers and ReLU activation functions were ideal for 

working with the colorectal-histology MNIST Kaggle dataset and the NMMMIs.  The Adam optimizer, 

with a LR = 0.001, outperformed the Nadam, Adagrad, Adadelta, and the Adamax optimizer functions with 

any of the four LRs that were evaluated, e.g. 0.01, 0.002, 0.001, and 0.0001.  We determined that rescaling 

the NMMIs in order to artificially match the resolution of the Kaggle images was crucial. The combination 

of Keras callback functions (ReduceLROnPlateau) and implementation of RMSprop with the optimal 

architecture, optimizer function, and LR, resulted in a validation accuracy—a subset of images from a 

portion of the testing set, unseen to the classifier, of 67.4% and loss of 80.1% which was an improvement 

of 2% and 17% when compared to the model fed the original resolution NMMMIs. Furthermore, to improve 

these values in hopes of creating a robust generalized model, we employed TrL of the model previously 

trained on the Kaggle dataset with the recalled NMMMIs. We determined the optimal number of frozen 

and retrainable layers of the saved Kaggle model was, four FL and 10 retrainable layers, which performed 

better than the recommended ratio of FL to retrainable layers found in the Keras documentation. Using four 

FL in the transfer learning model resulted in a testing (validation) accuracy of 70.1%. We conclude that 

these results show promise, and with future work, such as labeling the tiled NMMMIs on an individual 

basis, re-optimizing the model architecture with respect to the NMMMIs and not an MNIST dataset, such 

as the Kaggle dataset used here,  as well as performing TrL on a another model, previously trained on a 

larger dataset, will result in the metrics necessary to have a robust and generalized image classification 

model that can use NMMMI to diagnose cancer without use of expensive staining equipment and painful 

biopsies. 
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APPENDIX-I Extra information on the fits from Chapter III 

 

 

 

Figure 73 (Left). Lifetime decay fits and the corresponding residual plots for the RPE and choroid for the 
wavelength range of 556-594 nm. This figure shows the RPE and choroid fit poorly to a mono-

exponential function. (Right). Lifetime decay fits and the corresponding residual plots for the ORL 
through NFL for the wavelength range of 610-648 nm. This figure demonstrates that the ORL-NFL layers 

fit poorly to a tri-exponential function 

 

Figure 73 left and right show selected representative cases of how the criteria for excluding a certain 

fit type were. For the ORL through the NFL the tri-exponential fits were discarded in Table 4 as the values 

for t2 and t3 were identical (Figure 73). In Table 5, where the wavelengths were held fixed, the value for a1 

in the fits became negative. For the choroid and RPE, the mono-exponential fits were discarded as the R2 

value was always below 0.91 (Figure 73 right), which is well below the lowest accepted R2 value in either 

of the tables (R2=0.98) in this work.
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APPENDIX-II A2E solution measurements from Chapter III 

 

Figure 74. The spectra (Left) and lifetime (Right) from a 1 mM solution of A2E. The spectra peaks near 
625 nm, which is the same peak seen in the choroid, RPE, and receptor layers. The lifetime of ~173 ps 

agrees with the literature values [29]. 

The emission spectrum of A2E is highly dependent on the excitation wavelength  [142]. Therefore, 

we measured an isolated 1 mM solution to more accurately compare with the retina data. Our measurements 

show that the A2E solution has a peak wavelength ~625 nm, which is the same peak that can be seen in the 

choroid, RPE, and receptor layers. It is worth noting that the dichroic that was used to separate the 

fundamental from the fluorescence in the retina data starts to decrease in transmission at wavelengths 

greater than 650 nm. By the time the A2E solution was measured this optic had been replaced with one that 

has an edge at 750 nm. The lifetime was measured from the range ~600-670 nm. The value of ~173 ps 

agrees well with the literature value  [44]. 
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