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ABSTRACT 

 
QUANTIFYING IMPACTS OF GLOBAL CHANGE ON HYDROLOGY AND SEDIMENT 

 
By 

Travis A. Dahl 

The hydrologic cycle evolves over time, with landscape changes driving differences 

in evapotranspiration, runoff, and groundwater recharge while climate change affects the 

timing and magnitude of precipitation as well as temperature.  These changes also affect 

how sediment moves across the landscape and through watersheds.  In this dissertation, I 

examine how land use changes and climate change both affect the movement of water 

and sediment through watersheds in the Great Lakes Basin. 

Extreme cases of land use change, such as the logging and forest fires that affected 

large swaths of the Great Lakes in the late 19th and early 20th centuries, can greatly 

increase both streamflow and sediment transport.  Chapter 1 utilizes the process-based 

Landscape Hydrologic Model (LHM) to examine the hydrologic effects of land use change 

from the forested pre-settlement condition to clearcut, burned, and modern land uses in 

the northwestern corner of Michigan’s Lower Peninsula.  I show that extensive fires could 

have increased streamflow by 160% relative to the virgin forest landscape and 96% 

relative to the logged scenario.  Chapter 2 focuses on modeling of the Jordan River 

watershed, showing that logging may have increased sediment transport in the river by 

up to 34% compared to pre-settlement conditions and a watershed-wide fire could have 

increased the sediment transport capacity by as much as 166% above the pre-settlement 

levels.  A reach-based sediment budgeting tool, the Sediment Impact Assessment 

Methods (SIAM), highlights the possibility of complex system responses to land use 

change over time. 

Chapter 3 explores the potential impacts of climate change on sediment yield and 

dredging costs in the adjacent Maumee and St. Joseph River watersheds where I project 

that dredging costs may change in opposite directions (-8 to -16% in the St. Joseph but +1 

to +6% in the Maumee).  This difference between the two watersheds is driven by 

differences in the proportion of farmland and assumptions about how farmers will 



 
 

respond to a changing climate.  I also show that there is a large variation in sediment 

yield and sediment discharge predictions because of the differences among the various 

Global Climate Model (GCM) projections.   

Rather than downscale and run all of the GCM projections, many researchers 

average a subset of the projections together and use the ensembled climate data as the 

input to hydrologic models.  In Chapter 4, I compare different climate change scenario 

ensembling methodologies to determine if they produce the same results.  I show that a 

climate ensemble produces significantly (p < 0.05) different hydrologic model results 

than the ensemble of the hydrologic model results based on the individual climate 

scenarios.  I also demonstrate a method for selecting a subset of climate ensemble 

members that captures most of the range of the hydrology outputs while also matching 

the hydrologic and sediment results from the entire set. 

Global change causes complex hydrologic and sediment responses that need to be 

carefully considered in modeling and management.  Land use mediates the effects of 

climate change and there are potential feedback mechanisms that will depend on how 

farmers and other land managers respond to the changing climate.  This dissertation 

provides some of the information needed to identify and understand these interactions. 
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“Got to pay your dues if you wanna sing the blues and you know it don't come easy.”  

–Ringo Starr 

 

“Look! A trickle of water running through some dirt! I'd say our afternoon just got booked 

solid!”  

–Calvin & Hobbes (Bill Waterson) 
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CHAPTER 1:  
MODELED EFFECTS OF HISTORICAL LAND USE CHANGE ON REGIONAL 

HYDROLOGY USING AN INTEGRATED HYDROLOGIC MODEL 

Abstract 

 Humans have been altering the landscape for thousands of years.  These 

changes affect the hydrologic cycle by altering evapotranspiration, runoff, and 

groundwater recharge.  We used the process-based Landscape Hydrology Model to 

examine the impact that widespread logging, forest fires, and landscape recovery likely 

had in the northern portion of Michigan’s Lower Peninsula.  Compared to the pre-

settlement landcover, a clearcut landscape would have reduced evapotranspiration, 

leading to increased groundwater recharge (+19%) and streamflow (+5 to +37%) in the 

model.  Fires likely amplified this trend, with an extreme modeled burn scenario resulting 

in very large increases to groundwater recharge (+99%) and streamflow (+68 to +160%) 

relative to pre-settlement.  Our model results indicate that the modern landscape has 

slightly lower levels of evapotranspiration, but greater groundwater recharge (+2%) and 

streamflow (+2.1 to 5.8%) than it did pre-settlement. 

1. Introduction 

Humans can profoundly affect the hydrologic cycle through land use change.  

Urbanization is often mentioned in the context of changing hydrology but logging and 

wildfire can affect much greater areas.  Examples of these impacts exist from antiquity 

(Abrams and Rue, 1988; Ellis et al., 2013; Rothacker et al., 2018), but there is evidence that 

forest clearing and wildfires have accelerated in modern times (Gentry and Lopez-Parodi, 

1980; Hansen et al., 2010; Kalamandeen et al., 2018; Potapov et al., 2017).  It is important 

for mankind to have a better understanding of the hydrologic impacts of this land use 

change. 

Mature forests, like those that covered large portions of North America prior to 

European settlement, tend to produce little runoff due to their high rates of 

evapotranspiration.  Logging removes this evapotranspiration demand and reduces 
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canopy interception of rainfall for a period of time until the vegetation recovers, leading 

to increased streamflow for a period of time (Bosch and Hewlett, 1982; Bowling et al., 

2000; Gentry and Lopez-Parodi, 1980; Li et al., 2007; Zhang and Wei, 2014).  This 

increase in streamflow can last for several decades (Hicks et al., 1991; Lewis et al., 2001; 

Zhang et al., 2012). 

In a comprehensive review of the effects of fire on hydrology, Moody et al. (2013) 

describe the bare-ground hypothesis for the primary effect of wildfire on runoff as due to 

the removal of vegetation. This is supported by numerous papers that have found a 

significant linkage between vegetated area and runoff, both immediately post-fire and 

during the recovery process (Cerda, 1998; Johansen et al., 2001). The increase in runoff 

after a forest fire tends to last until a sufficient amount of vegetation regrows (Helvey, 

1980).  Regrowth can take more than 7 years, although many authors report shorter 

recovery times (Ebel et al., 2016; Moody and Martin, 2001b; Moody et al., 2013; Shin et al., 

2013).  Another, often cited effect of wildfires is an increase in the water repellency of 

soils that can decrease infiltration (Shakesby and Doerr, 2006).  This phenomena can be 

highly variable in both space and time, although the most extreme effects may only last 

minutes to months (Doerr et al., 2000; Doerr and Thomas, 2000). Additionally, there 

appears to be a critical threshold of soil moisture below which water repellency can 

become a significant issue, reducing its importance in humid environments (Dekker et 

al., 2001; Doerr and Thomas, 2000). 

The Great Lakes region of North America experienced both extensive logging and 

fires followed by a range of land use changes that include agricultural expansion, 

urbanization, and forest regrowth over the last 150 years and can help us to understand 

the potential effects of similar events in other non-alpine parts of the world.  Forests 

covered most of Michigan into the mid-19th century (Comer and Albert, 1998).  Large-

scale logging operations in the late 19th century removed almost all of the native forests 

(Dickmann, 2009), starting with the easily accessible softwoods and then moving on to 

the hardwoods and wooded wetlands as technology improved (Whitney, 1987). The 

logging industry often left behind branches, stumps, and other debris that provided fuel 
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for large fires, some of which were started on purpose (Dickmann, 2009). Haines and 

Sando (1969) note that at one point, in October, 1871, more than 10,000 km2 were 

burning across the Great Lakes states.  Some of these same areas were also part of a 4,000 

km2 fire in 1881. The mix of tree species that eventually repopulated these areas were 

often different than the original forests (Whitney, 1987). 

Directly measuring the impact of multiple land use changes is often impossible 

because the change has already occurred or will have undesirable consequences.  Instead, 

researchers often use hydrologic models to simulate the effects of land use changes.  

Hydrologic models have been used extensively to look at the effects of logging on 

evapotranspiration and streamflow (Bowling et al., 2000; Matheussen et al., 2000; Swank 

et al., 2001; Whitaker et al., 2002).  Twine et al. (2004) examined the hydrologic impact 

of converting forests and grassland to agriculture in the Mississippi River Basin, while 

other researchers modeled the hydrologic differences between pre-settlement and 

modern landcovers in the Upper Midwest and Great Lakes region of the United States 

(Fitzpatrick and Knox, 2000; Frans et al., 2013; Mao and Cherkauer, 2009). A number of 

researchers have also used hydrologic models to examine post-fire impacts on hydrology, 

although much of this work has been focused in the mountainous western United States 

(Gould et al., 2016; Larsen and MacDonald, 2007; Litschert et al., 2014; Miller et al., 

2003) or the Mediterranean (Fernandez et al., 2010; Karamesouti et al., 2016; Rulli et al., 

2013; Terranova et al., 2009) where fires have been more prevalent in recent decades.  

This study uses the process-based Landscape Hydrology Model (LHM) to examine 

the water balance and streamflow impacts of three large-scale anthropogenic 

disturbances in the Great Lakes region: logging, forest fire, and modern land use.  The 

model was run with the same 30 year meteorological forcing for each of the three 

scenario.  The effects of these disturbances are compared to model results for the pre-

settlement landcover of the early 19th century. 
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2. Methods 

2.1 Site Description 

The Extended Boardman-Charlevoix Watershed (EBCW) model covers the 

northwestern corner of Michigan’s Lower Peninsula.  The model is designed to capture all 

of the watersheds draining to Grand Traverse and Little Traverse Bays.  The model 

domain is bounded by Lake Michigan on the north and west, by the Muskegon River to 

the south, and the Sturgeon and North Branch Au Sable Rivers to the east (Figure 1.1).  

This larger domain ensures that both the surface watersheds and groundwatersheds are 

fully captured by the model.  The surficial geology of this area is dominated by glacial 

deposits and landforms (Blewett et al., 2009).  The soils tend have high sand content.  

The dominant modern land use is 47% forest (40% deciduous and 7% coniferous) with an 

additional 12% occupied by woody wetlands (Fry et al., 2013).  The remainder of the area 

is composed of grassland (13%), agriculture (10%), urban (8%), and open water (6%), with 

shrublands, wetlands, and barren areas each contributing less than 5% each. 

 

Figure 1.1. Extended Boardman Charlevoix Watershed Model location map.  The Jordan, 
Boardman, and Platte River watersheds are outlined in black. USGS gages are indicated 
by red triangles. 

The study area received an average of 842 mm of precipitation per year between 
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1986 and 2015 (Figure S1.1, left).  There is some spatial variation in precipitation, with the 

western portions of the EBCW receiving more precipitation (up to 914 mm/year), and the 

northern portions receiving the least (as low as 734 mm/year).  The mean annual 

temperature for the EBCW over the same time period was 7.3 °C (Figure S1.1, right).  The 

areas close to Lake Michigan on the west side of the model domain generally have 

warmer mean air temperatures (up to 8.4 °C) than the inland areas (as low as 6.1 °C), due 

to the moderating effect of the lake on winter temperatures. 

2.2. LHM Model Setup 

LHM is a process-based, gridded model that utilizes commonly available GIS data 

combined with energy and mass-balance equations to simulate evapotranspiration, 

groundwater recharge, and streamflow (Hyndman et al., 2007).  LHM can simulate 

snowmelt and other hydrologic pathways, including canopy growth and interception.  

The model can also be linked to MODFLOW (Harbaugh et al., 2000) to allow 

groundwater to move beyond the limits of individual surface watersheds.  LHM has been 

successfully applied to multiple watersheds in the Great Lakes Region (Luscz et al., 2017; 

Wiley et al., 2010). 

The EBCW LHM model is based on 1/3 arc-second (10 m) resolution digital 

elevation model data from the National Elevation Dataset, as well as data from the 

National Hydrography Dataset, and the National Wetlands Inventory.  Soil data were 

extracted from the Soil Survey Geographic Database (SSURGO) using the procedures 

described above.  The model uses a uniform grid cell size of 432 m. 

The base model simulation used the pre-settlement land-cover described by the 

General Land Office surveys [Figure 1.2.a; Comer and Albert (1998)].  We then modified 

the pre-settlement land cover data set to create a post-logging scenario by converting all 

the forested areas (deciduous and coniferous) to grasslands and all of the woody wetlands 

to wetlands (Figure 1.2.b).  We used a similar process to create the post-fire land use, 

converting all of the grasslands in the post-logging scenario to barren areas (Figure 1.2.c).  

This accounts for the major impacts of fire (removal of canopy interception and 

transpiration effects) but does not account for any impacts of fire-induced soil 
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hydrophobicity.  We assumed that any impact of fires on soil hydrophobicity would be 

negligible due to the humid nature and coarse-textured soils of the study area, an idea 

supported by two previous studies of fire-induced hydrophobicity in the Great Lakes 

(Reeder and Jurgensen, 1979; Richardson and Hole, 1978).  Finally, we modeled the 

modern land use scenario using the 2006 National Land Cover Dataset [Figure 1.2.d; Fry 

et al. (2013)] because it was representative of the 1988-2017 time period used for model 

validation.  Table S1.1 lists the proportions of each land use class for the modeled land use 

scenarios.  

 

Figure 1.2. The modeled land use scenarios used for comparison to modern land use 
consisted of: (a) pre-settlement; (b) post-logging; (c) post-fire; and (d) modern land use. 
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The model was run using the same climate inputs for each land use scenario.  

Climate data were obtained from the North American Land Data Assimilation System 

(NLDAS) 2a forcing dataset for 1988-2017 (Xia et al., 2012).  The input climate parameters 

included precipitation; temperature; shortwave and longwave radiation; specific 

humidity, and wind speed.  We wanted to look at the likely effects of land use change 

based a range of climate scenarios.  Our simulations used a thirty year period to capture a 

wide range of climate variability for each fixed land use case; this is the standard 

climatology length recommended by the World Meteorological Organization to calculate 

average conditions. 

2.3 LAI Model 

Typically, the vegetation components of LHM would be driven by Leaf Area Index 

(LAI) data from satellite remote sensing products, such as NASA’s Moderate Resolution 

Imaging Spectroradiometer (MODIS). These allow for vegetation to dynamically respond 

to climate conditions during the simulation period, without requiring that LHM 

dynamically model vegetation. However, when conducting scenarios involving land 

transformation (or altered climate), we need an alternate means of assigning LAI values. 

LAI then in turn controls landscape albedo, canopy height, stomatal conductance, and 

other aspects of the landscape. 

We validated the LAI model using the MODIS MCD15A2H and MCD15A3H 

products for 2000 – 2014.   These are Collection 6 products produced using the MODIS 

instruments on both the Terra and Aqua satellites.  They have a 500 meter spatial 

resolution and sub-weekly time scale. 

3. Results and Discussion 

3.1 Model Validation 

The EBCW model was validated by comparing observed data to modeled data 

when using the modern land use with NLDAS climate inputs for years 2000-2014.   
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Streamflow and Groundwater Head Validation 

We obtained observed groundwater head data from the State of Michigan’s 

Wellogic database and the USGS.  Our simulated groundwater head data matches the 

observed heads for years 2000-2014 with an r2 of 0.98 (Figure 1.3, left).  The median head 

residual is -1.63 m for all observations with 10% and 90% values of -13.65 m and 8.69 m, 

respectively.  The median decreases slightly over this validation time period, but remains 

centered near zero (Figure 1.3, right).  

We validated streamflow using three rivers in the EBCW model domain: the 

Jordan (174 km2), in the eastern portion of the domain; the Boardman (482 km2), in the 

central portion; and the Platte (325 km2), in the western portion (Figure 1.1).  When 

compared to monthly average gaged flows from the USGS for 2000-2014, this 

uncalibrated model reasonably matches the baseflows and the major rises on two of the 

rivers (Figure 1.4).  The Jordan and Boardman Rivers have Nash-Sutcliffe Efficiencies 

(NSE) of 0.42 and 0.52, respectively, for mean monthly flows.  The Platte, where the 

model overpredicts flows due to the spring freshet, has a NSE of -0.26 but maintains an r2 

of 0.45. 

 

Figure 1.3. Comparing simulated and observed groundwater head for years 2000-2014 
demonstrates the validity of the EBCW groundwater model.  The figure on the left shows 
simulated and observed heads along with the line of perfect agreement.  The figure on the 
right shows the time series of the residual mean with the grey-shaded area representing 
the 10th and 90th percentiles. 
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Figure 1.4. A comparison of gaged (black line) and simulated (red line) streamflows in 
three rivers (Jordan, a; Boardman, b; Platte, c) demonstrates the validity of the modern 
land use scenario model for years 2000-2014. 

LAI Validation 

The simulated LAI generally agrees with the observed data (Figure 1.5) and 

captures the annual vegetative growth dynamics (Figure 1.6).  Several of the land use 

types have a maximum modeled LAI value, which is visible in Figure 1.5 and Figure 1.6 

(e.g., shrubland in the middle of the bottom row in both figures).   
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Figure 1.5. Comparison of observed (horizontal axis) and simulated (vertical axis) LAI 
values for each land cover type.  The effect of the maximum LAI value in the model is 
visible for several of the cover types. 
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Figure 1.6. Comparison between observed (grey lines) and simulated (colored lines) LAI 
values shows that LHM reasonably captures the annual dynamics of vegetative growth. 

3.3 Land Use Scenarios 

Modeled pre-settlement groundwater recharge values ranged from 110 mm/yr 

(13.1% of precipitation) for the 10th percentile to 440 mm/yr (52.3% of precipitation) for 

the 90th percentile and a median of 36 0 mm/yr (42.8% of precipitation; Figure 1.7, top 

left), with the areas of coniferous forest generally producing greater recharge than 

adjacent deciduous forest areas and woody wetlands.  The pre-settlement scenario serves 

as a baseline for comparison for the other three land use scenarios (logging, fire, and 

current). 
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Figure 1.7. Map of the average annual groundwater recharge over the 30 year model run 
for the pre-settlement scenario (top left) and anomalies from pre-settlement for the post-
logging (top right), post-fire (bottom left), and modern land use scenarios (bottom right). 

Widespread land use change substantially can substantially shift the water balance 

across a large area like the EBCW.  Logging, converting the woodlands to grasslands and 

wetlands, changed the recharge values for those areas by +8 mm/yr (+7%; 10th percentile) 

to +84 mm/yr (+19%; 90th percentile), with a median change of +64 mm/yr (+19%; Figure 

1.7, top right).  The scenario simulating a widespread fire, where most of the vegetation 

was removed, resulted in even greater recharge values [+27 (+24%) , +354 (+99%), and 

+395 (+92%) mm/yr above pre-settlement for the 10th, 50th, and 90th percentiles, 

respectively; Figure 1.7, bottom left].  This burned scenario is extreme, demonstrating that 

watershed-scale fires (e.g., the 4,000 to 10,000 km2 fires in 19th Century Michigan) can 
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have a large impact on individual river basins.  Modern land use mostly increased the 

groundwater recharge above pre-settlement levels, but not as much as the post-logging or 

post-fire scenarios [-4 (-3%), +6 (+2%), and +39 (+9%) mm/yr for the 10th, 50th, and 90th 

percentiles, respectively; Figure 1.7, bottom right].  The moderated response is likely due 

to the similarity between the modern land use (Figure 1.2.d) and the pre-settlement 

condition (Figure 1.2.a), with only a few, localized areas of intense urbanization and 

patchy conversion of forest to grassland and pasture. 

LHM simulates the complete terrestrial hydrologic budget, and there are 

numerous components of the water balance affected by these scenarios. Two of these 

components, ET and runoff, are shown in the Supplement.  Figure S1.1.2 displays similar 

patterns of increased runoff.  Ultimately, changes in both recharge and runoff are largely 

due to decreases in modeled evapotranspiration (Figure S1.1.3), which are examined in 

greater detail below. 

Pre-settlement flows across the EBCW were lower than in any of subsequent land 

use scenarios (Figure 1.8).  Median flows were 5.1, 2.7, and 3.6 m3/s for the Jordan, 

Boardman, and Platte Rivers, respectively.  The baseflow-dominated Jordan River has a 

10%-90% flow range of 1.1 m3/s, while that range was 1.8 m3/s for the Boardman and 1.7 

m3/s for the Platte. 

The logged scenario had increased flows (16%, 33%, and 14% increases to median 

flows) and more variability of those flows as evidenced by increases in the 10%-90% range 

of 0.1, 1.9, and 0.6 m3/s (5%, 37%, and 14% more than pre-settlement) for the Jordan, 

Boardman, and Platte Rivers, respectively.  The increases in annual streamflows are 

similar to measured increases reported in the literature for other logged watersheds, 

which range from 8% to 80% (Lewis et al., 2001; Moore and Wondzell, 2005).  In a paper 

focused on the Great Lakes states, Verry (1986) summarizes previous work that observed 

increases in annual streamflow of 30 to 80% due to clearcutting of upland hardwoods, 

depending on the forest density. 
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Figure 1.8. Flow duration curves for the Jordan (a), Boardman (b), and Platte Rivers (c) 
indicate both the increase in flow and variability associated with land use change.  The 
light green bars depict modern land use scenario results in comparison to pre-settlement 
(dark green), post-logging (light brown), and post-fire (dark brown) results.  Additional 
shading in the figure indicates locations of overlap in the flow histograms. 

The post-fire scenario is a substantial shock to the system, resulting in median 

flows 68%, 160%, and 70% higher than during the pre-settlement period and an 

increased range between the 10% and 90% values, effects that are within the range of 

annual flow changes reported in the literature for the first year after a fire (Moody and 

Martin, 2001b; Scott, 1993).  In the Great Lakes region, Miesel et al. (2012) cite three 

studies with post-fire increases in water yield of 28-98%; Kolka (2012) gives a range of 60-

80%; and Wright (1976) attributes increases of 30-80% to fires in Northern Minnesota.  

As noted above, our fire scenario is extreme, and is used to illustrate the potential of the 

landscape to respond to alterations. Given the scale of each of these river systems (174 to 

482 km2), historically observed fires may have burned much of these or other similar 
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basins. Thus changes of this magnitude likely occurred during this period.  

The effects of fire on hydrology are often temporary, but the short-term increase in 

streamflow can cause long-term impacts to stream sediment budgets, morphology, and 

ecosystem structure. The effects of the historical fires in the EBCW were compounded by 

the fact that they occurred during and after essentially complete logging of the landscape. 

Logging altered riparian and in-stream structure as timber companies widened and 

channeled rivers to allow the transport of timber and stream beds were disturbed by log 

drives (Nilsson et al., 2005; Vincent, 1962). The paired disturbances of logging and fire 

likely profoundly altered water and sediment budgets across the region, forcing large-

scale ecosystem alterations.  

The current land use still has elevated streamflows across the EBCW relative to the 

pre-settlement condition, although the increases in median flow are minor (2.8%, 5.8%, 

and 2.1% for the Jordan, Boardman, and Platte Rivers, respectively).  These changes are 

roughly in proportion to the modeled difference between current and pre-settlement 

recharge—suggesting that most of the streamflow change can be attributed to shifts in 

groundwater sourced waters.  While urbanization can cause increased runoff, the small 

differences in the EBCW are unsurprising both because of the extent of reforestation and 

the areas of urbanization tend to be at the river mouths, downstream from the gaged 

locations summarized in Figure 1.8.  Mao and Cherkauer (2009) also show only small 

differences in evapotranspiration and runoff in this area of Michigan. 

Ultimately, changes in evapotranspiration and canopy cover drive much of the 

change in the major remaining water balance components (runoff and recharge), an 

effect that is well-documented in the literature (Bowling et al., 2000).  To examine these 

changes in greater detail, Figure 1.9 plots monthly-averaged values for each of six distinct 

categories of evaporation and transpiration in the model: open water evaporation, 

ice/snow sublimation, direct evaporation from the soil, canopy evaporation (i.e. water 

intercepted and stored in the canopy, which is subsequently evaporated), wetland 

transpiration, and upland transpiration. Note that on an hourly basis, all of the 

evaporation and sublimation terms can be negative as water condenses or deposits onto 
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water/ice surfaces due to reversed vapor pressure gradients. For two of these terms, open 

water evaporation and ice/snow sublimation, during the spring the net balance shifts 

negative, as relatively warm and humid air masses contribute additional water to the land 

and water surfaces in addition to what would otherwise come as precipitation.  

In this heavily forested region, canopy evaporation can account for as much as 

48% of the monthly evapotranspiration in the winter (Figure 1.9, top left).  This 

proportion falls to 26-28% during the peak of the growing season (June, July, and 

August), as transpiration in both the upland and wetland portions of the model increase 

to account for 56-58% of the total evapotranspiration.     

The primary modeled impact of logging and fire is to reduce vegetation and the 

associated canopy.  This reduction in canopy reduces both the evaporation directly from 

the canopy and the transpiration from the plants (Figure 1.9, top right and bottom left), 

effects also noted by other researchers in the Great Lakes region (Mao and Cherkauer, 

2009; Twine et al., 2004; Verry, 1986).  Once the EBCW recovered from logging and fire 

impacts, as seen in the current land use case, the reduction in the evapotranspiration 

components is on the order of the land-use that shifted from forest to urban.  While the 

modeling of Mao and Cherkauer (2009) indicated decreased evapotranspiration led to 

increased runoff across Michigan’s Lower Peninsula, their model results show relatively 

small decreases in evapotranspiration in the EBCW, and are consistent with our results. 

The impacts of the land use change on evapotranspiration are the largest during 

the growing season months of April through October.  Comparable modeling of the 

conversion from pre-settlement forest to grassland in the Great Lakes region indicated 

approximately a one month delay in peak evapotranspiration was associated with 

increased runoff in April to June (Mao and Cherkauer, 2009).  These results are similar to 

a study of a logged watershed in the Pacific Northwest of the United States where 

observed August flows increased for the first 8 years post-harvest (Hicks et al., 1991).     
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Figure 1.9. The largest impacts of shifting land use are due to changes in 
evapotranspiration during the growing season and, for the post-fire scenario, a reduction 
in canopy evaporation throughout the year. 

4. Conclusions 

Michigan’s Lower Peninsula has experienced a series of dramatic land use changes 

over the last 150 years; our models show that these changes led to major shifts in the 

regional hydrology.  In the EBCW, the extensively forested landscape that existed prior to 
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European settlement had relatively high evapotranspiration and low streamflow.  The 

virtually complete logging of these forests removed a significant portion of the vegetative 

canopy.  Our models demonstrate that this led to decreased evapotranspiration and 

increased streamflow.  Fires, the extent and timing of which are largely undocumented, 

burned large tracts of Michigan during and immediately after logging.  The most extreme 

of these fires would have left barren soil with little transpiration; this could have resulted 

in increases in streamflows up to 96% greater than those of the logged condition and 

160% more than those simulated for the virgin forest landscape.  Over the succeeding 

decades, much of the forest regrew, increasing evapotranspiration rates and leading to 

streamflows that are only slightly increased from the pre-settlement conditions. 

Land use and land cover changes similar to those experienced in the EBCW are 

still happening throughout the world.  As shown in this study, it is important to consider 

not just the visible impact of these changes, but the larger temporal effects on hydrology.  

It is encouraging that the modern land use in the EBCW, which incorporates farming and 

small urban areas, exhibits similar simulated hydrology to the pre-settlement condition. 
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APPENDIX 

  



 
 
20 

 

Figure S1.1. The average annual precipitation across the EBCW from 1986 to 2015 ranged 
from 734 mm to 914 mm, based on data from the NLDAS (top left).  The precipitation is 
usually greatest in September and October and lowest in February and March (bottom 
left).  The mean air temperature across the EBCW from 1986 to 2015, based on NLDAS data, 
shows the moderating effects of Lake Michigan along the western edge of the model 
domain (top right).  The mean air temperature across the basin is lowest in February and 
peaks in August (bottom right). 
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Table S1.1. Percentage of each land use type for each of the modeled scenarios. 

  Land Use Scenario 

  Pre-Settlement Logged Post-Fire Modern 

Urban 0% 0% 0% 8% 

Agriculture 0% 0% 0% 10% 

Grassland 2% 81% 0% 13% 

Deciduous 68% 0% 0% 40% 

Water 6% 6% 6% 6% 

Wetland 0% 13% 13% 1% 

Barren 0% 0% 81% 1% 

Coniferous 11% 0% 0% 7% 

Shrubland 0% 0% 0% 3% 

Woody Wetland 13% 0% 0% 12% 
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Figure S1.1.2. Map of average annual runoff over the 30 year model run for the pre-
settlement scenario (top left) and anomalies from pre-settlement for the post-logging 
(top right), post-fire (bottom left), and modern land use scenarios (bottom right). 
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Figure S1.1.3. Map of average annual evapotranspiration over the 30 year model run for the 
pre-settlement scenario (top left) and anomalies from pre-settlement for the post-logging 
(top right), post-fire (bottom left), and modern land use scenarios (bottom right). 
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CHAPTER 2:  
MODELED IMPACT OF HISTORICAL DEFORESTATION AND FOREST FIRE ON 

SEDIMENT TRANSPORT CAPACITY IN A BASEFLOW DOMINATED RIVER USING 
AN INTEGRATED HYDROLOGIC MODEL  

Abstract 

Globally, deforestation and forest fires are two of the most dramatic land use 

changes occurring today, but they also occurred in the past.  The legacy of these changes 

is often visible in the modern landscape due to the movement of water and sediment 

through the affected watersheds.  We present results from the Landscape Hydrology 

Model (LHM) that integrate both surface and groundwater flows through the Jordan 

River watershed in northern Michigan for a range of historical land use scenarios.  These 

include the pre-settlement, forested land cover; a post-logging scenario; a severe post-fire 

scenario; and the modern land cover.  We used the simulated surface runoff produced by 

LHM to estimate in-channel sediment transport using the sediment transport capacity 

calculator and the Sediment Impact Analysis Methods (SIAM) incorporated in the one-

dimensional hydraulic model, HEC-RAS.  Our modeling suggests that logging increased 

sediment transport capacities as much as 34% relative to pre-settlement conditions.  

Sediment transport capacity increased by up to 166% for the post-fire scenario.  The 

current sediment transport capacities are only slightly elevated relative to the pre-

settlement condition.  The SIAM results show that the effects of land use change are not 

uniform along the river and can lead to complex responses.  Our findings demonstrate 

the importance of considering the effects of land use change on in-channel transport in 

addition to the overland erosion. 

1. Introduction 

Large tracts of North America experienced significant land use change over the last 

two centuries.  These changes include logging of old growth forests and forest fires.  

While some parts of North America, particularly the northern portions of Michigan’s 

Lower Peninsula, are now partially reforested, the same large-scale land use changes are 
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occurring throughout the world.  It is important to understand the impacts of such land 

use changes on the hydrology and sediment of rivers in the impacted areas. 

Mature forests produce very little sediment during rain events (Neary et al., 2009).  

Wide-scale logging removes the trees, reducing canopy interception and moving the 

interception much closer to the ground.  This effect, combined with disturbance of the 

soil from the logging activity, can result in greatly increased sediment yield initially 

(Bathurst and Iroume, 2014; Beschta, 1978).  Logging activities are also often followed by 

an increase in streamflow due to reduced evapotranspiration as well as increased snow 

accumulation and melt rates.  This streamflow difference can be more noticeable during 

peak flows (Lewis et al., 2001). Sediment production can take decades to recover to its 

former levels after logging (Klein et al., 2012) and the sediment can remain in the channel 

for even longer (Roberts and Church, 1986). 

The primary focus of most post-fire sediment research has been on overland 

erosion or debris flows (Moody et al., 2013; Shakesby and Doerr, 2006).  Surface erosion 

is a function of overland flow and therefore depends on the same drivers.  Fires remove 

vegetation that would normally slow the velocity of overland flows and reinforce the soil 

matrix (Moody et al., 2013).  Such denuded soil is then more readily eroded. Fires can also 

affect the physical and chemical properties of the soil.  Hydrophobicity, which causes 

water to more readily run off than to infiltrate, is sometimes cited as a potential effect of 

forest fires (e.g., (Huffman et al., 2001; Litschert et al., 2014; Robichaud, 2000)), but it is 

also highly variable in both space and time (Doerr et al., 2000; Doerr and Thomas, 

2000).  Shakesby and Doerr (2006) state that sediment erosion rates from burned areas 

generally return to undisturbed levels in 3-10 years, although watershed sediment yields 

may lag because of in-channel storage.  This in-channel storage can lead to complex 

responses as accumulations of post-fire sediment move through the river network (Benda 

et al., 2003; Legleiter et al., 2003; Moody and Martin, 2001a). 

Michigan’s Lower Peninsula was covered by extensive forests prior to settlement 

by Europeans (Comer and Albert, 1998).  The logging activity that accompanied and 

sometimes preceded European settlement began in the mid-19th century and peaked in 
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the northern parts of the Lower Peninsula in the 1880s to 1890s (Dickmann, 2009).  The 

initial phases of logging focused on white and red pine (pinus strobus and pinus resinosa).  

As the stands of softwood were exhausted, the logging industry turned to hemlock and 

other hardwoods. This shift was aided by changes in technology, such as railroads, that 

allowed for easier harvesting and transport of the denser wood (Whitney, 1987).  In many 

places, farms moved in to the cut-over areas.  In some cases, the poor soils that had 

supported large forests were not sufficient to sustain the agricultural practices of the day 

and the farms were eventually abandoned. 

The brush, branches, and stumps left behind after logging were easily ignited 

either intentionally by settlers or accidentally by sparks from wood-burning locomotives 

and other sources of fire (Dickmann, 2009).  Six discrete fires burned over 10,000 km2 of 

the Great Lakes Region in early October, 1871 (Haines and Sando, 1969).  In September of 

1881, the Thumb Fire in Michigan’s Lower Peninsula burned over 4,000 km2, including 

some of the same areas that burned in earlier fires.  Fires were more common among the 

former softwood forests than the hardwood forests and coniferous swamps.  In some 

places, the fires were so severe that they burned all of the organics in the area, leaving just 

the mineral soil.  In these locations, the dominant trees in the forests were different after 

recovery, with aspen (Populus sp.), oaks (Quercus sp.), and jack pines (Pinus banksiana) 

taking the place of the mixed white and red pines (Pinus strobus and Pinus resinosa) 

(Whitney, 1987). 

The goal of this paper is to quantify the likely effects of land use change on 

sediment yield and in-channel transport.  To accomplish these goals, we modeled four 

different phases of land use (pre-settlement, logging, post-fire, and current) in Michigan’s 

Jordan River watershed using an integrated hydrologic model.  We then combined the 

resulting hydrologic and sediment yield information with a hydraulic model of the river 

mainstem to estimate sediment transport capacity and geomorphic impacts at the reach 

scale for each land use scenario. 
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2. Methods 

2.1. Site Description 

The Jordan River watershed occupies 333 km2 in the northwestern part of 

Michigan's Lower Peninsula.  Approximately the upper half of the 56 km-long mainstem 

generally runs southwest before it is captured by a glacial valley and turns northward.  

The lower, navigable portion of the river is much less sinuous than the upper reaches.  A 

significant tributary, Deer Creek, enters the Jordan River 2.6 km before the river empties 

into Lake Charlevoix at the town of East Jordan.  Elevations in the watershed range from 

177 to 415 m above sea level (Figure 2.1).  

 

Figure 2.1. There are four stream gages in the Jordan River watershed in the northwestern 
portion of Michigan’s Lower Peninsula.  The Webster gage is maintained by the USGS.  
The remaining gages (Fisheries, Graves, and Deer) are maintained by the Michigan State 
University Hydrogeology research group. 
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Prior to European settlement, the Jordan River watershed was dominated by old-

growth forest (Figure 2.2.a; (Comer and Albert, 1998)).  These forests succumbed to the 

same fate as others in Michigan, with the first sawmill opening  in East Jordan at the 

mouth of the Jordan River in 1879 when the timber near the mill in Leland, Michigan was 

exhausted (Powers and Cutler, 1912).  Like most of the Great Lakes region, the Jordan 

River was impacted by the extensive historic trapping of beavers followed by their 

recovery in the modern era (Martin et al., 2015).  The Jordan River Watershed, like many 

other areas in Michigan, suffered from multiple wildfires after logging (Hay and 

Meriwether, 2004).  Eventually, the farms and second-growth forests came to dominate 

the watershed (Figure 2.2.d).  The land use in 2006 was 61% forest, with an additional 

14% woody wetlands, 12% cultivated crops, 8% herbaceous/grassland, and 5% developed 

(Fry et al., 2013). 

The coarse-texture glacial sediments that form the majority of the Jordan River 

watershed allow rapid infiltration of rainfall and promote a very stable flow regime in the 

river.  Groundwater is the dominant source of water in the river, with a baseflow index of 

87-89% (Wolock, 2003).  A United States Geological Survey gage (#04127800) was 

established in 1966 and the record of daily discharge since that time shows that the river 

experiences a small range of flows.  The median daily flow recorded at the gage for water 

years 1967-2017 was 5.7 m3/s, with a standard deviation of 1.2 m3/s.  The minimum daily 

flow was 4.2 m3/s and the maximum was 26.8 m3/s.  The low variation in flow is a feature 

of groundwater-dominated systems, although the prevalence of small beaver ponds in the 

upper reaches of the watershed may also play a role (Martin et al., 2015). 

2.2. Field Data Collection 

We collected elevation, flow, and bathymetry data during a canoe trip on 13-15 

July, 2011.  Elevation data were collected using a Global Positioning System (GPS) 

receiver.  Flow and bathymetry data were collected using a Sontek ADCP at 11 locations 

along the Jordan River (Figure S2.1).  We also used a total station to survey a subset of the 

cross sections used for flow measurement. 

To obtain bed material gradations, we collected grab samples at evenly spaced 
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intervals along representative transects at 4 locations along the river on 13-14 October, 

2011.  After these samples were dried and sieved, the volume of the particles in each size 

class was measured by displacement in a graduated cylinder to calculate the sediment 

density (ρ).   

We measured sediment transport during base flow at two sites, Graves Crossing 

and Webster Bridge, on June 23rd, 2014, following the methods described in (Edwards 

and Glysson, 1999).  Suspended sediment sampling utilized the equal-discharge 

increment and a DH-81 sampler. We collected bed load with a BLH-84 sampler, using the 

Multiple Equal-Width Increment method and ensured that at least 35 evenly-spaced 

vertical samples were collected.  

2.3. Landscape Hydrology Model (LHM) 

Process-based hydrology models allow researchers to simulate the streamflows 

that would result from alternate land uses.  This study uses the Landscape Hydrology 

Model (LHM), a gridded model that couples surface and groundwater processes to 

simulate evapotranspiration, groundwater recharge, and streamflow (Hyndman et al., 

2007; Kendall, 2009).  LHM simulates a number of physical processes to support these 

hydrologic calculations, including canopy interception and snowmelt.  Groundwater flow 

in LHM is calculated using MODFLOW (Harbaugh et al., 2000).  Several previous 

implementations of LHM in the Great Lakes region are documented in the literature 

(Luscz et al., 2017; Wiley et al., 2010). 

LHM Sediment Yield Module 

We developed a new sediment yield module for LHM based on the Modified 

Universal Soil Loss Equation (MUSLE; (Williams, 1975; Williams, 1995)).  The MUSLE is 

also the sediment yield algorithm implemented in the Soil and Water Assessment Tool 

(SWAT; (Neitsch et al., 2011)).  It utilizes the peak runoff rate for a given day in 

conjunction with the total runoff volume to estimate the sediment yield for a given 

location.  LHM calculates the peak hourly runoff (mm/hr) and the total daily runoff 

volume (mm) to calculate a daily sediment yield (t/ha) from each grid cell according to 

Equation 1. 
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𝑆𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑌𝑖𝑒𝑙𝑑 = 1.586 ∗ (𝑄 ∗ 𝑞𝑃𝑒𝑎𝑘)
0.56 ∗ 𝐴0.12 ∗ 𝐾 ∗ 𝐶 ∗ 𝑃 ∗ 𝐿𝑆 ∗ 𝑅𝑂𝐾𝐹 (1) 

where, Q is the total daily runoff volume (mm), qPeak is the peak hourly runoff rate 

(mm/hr), A is the watershed area (ha), K is the soil erodibility factor, C is the cover and 

management factor, P is the support practice factor, LS is the topographic (land slope) 

factor, and ROKF is coarse fragment factor.  We set the P factor to 1 for this simulation, 

because no permanent support practices (such as terracing) have been implemented in 

the Jordan River watershed. 

The K used by LHM is calculated from the fractions of sand, silt, clay, and organic 

carbon according to the equation provided by Williams (1995). The LS factor is estimated 

in the model based on the average flowpath length to the stream within each grid cell and 

the average slope within the grid cell, according to the equations suggested by (Williams, 

1995).  The coarse fragment is calculated based on the percentage of rock in the top layer 

of soil, as shown in Equation 2 (Williams, 1995). 

𝑅𝑂𝐾𝐹 = e−0.03∗Pct_Rock      (2) 

The C factor for each model grid cell is determined based on the area-weighted 

average from the individual land use types present.  LHM assumes that water and wetland 

areas produce negligible amounts of sediment (C=0).  We assume barren areas have no 

appreciable canopy or ground cover and assign them a C factor of 0.45 based on 

(Wischmeier and Smith, 1978).  Both coniferous and deciduous forests are assigned C 

values of 0.001, based on the assumption that they are fully mature. The model calculates 

the C factor for vegetated land uses (agricultural, grassland, and shrubland) from the 

percentages of canopy cover, litter cover, and canopy height.  These values are linearly 

interpolated from the data in (Wischmeier and Smith, 1978) when the canopy height is 1 

m or less.  In cases where the canopy height is greater than 1 m, LHM multiplies the C 

factor for 0% canopy cover by the data in (Wischmeier and Smith, 1978) regarding the 

effect of fall height (the distance from the canopy to the ground). LHM calculates the C 

factor for urban areas as an area-weighted combination of the impervious surface area 

(C=0.001) and the remaining area (calculated in the same manner as the vegetated land 

uses). 



 
 
31 

To estimate the proportions of sand, silt, and clay in the eroded material, we 

implemented the method described by (Foster et al., 1980; Foster et al., 1981).  We 

assumed that the large and small sediment aggregates calculated by this method would 

break apart into their constituent sand, silt, and clay particles when they enter the river.  

This algorithm has been successfully implemented in several other models, such as SWAT 

and AGNPS (Neitsch et al., 2011; Young et al., 1989).   

LHM Model Setup 

The groundwatershed for the Jordan River is much larger than the surface 

watershed.  We used a model domain that covered the entire Extended Boardman-

Charlevoix Watershed (EBCW) to appropriately capture the groundwater impacts on the 

hydrology of the Jordan River.  This model was validated using both groundwater heads 

and streamflows in the Jordan River.  Additional details of the creation and validation of 

this model are described in Chapter 1.  We used soils data, including the proportions of 

sand, silt, and clay, from the Soil Survey Geographic Database (SSURGO). 

Land Use Scenarios 

We simulated four different land use scenarios (Figure 2.2).  The General Land 

Office surveyed Michigan in the early 19th century.  The Michigan Natural Features 

Inventory (MNFI) used this information to create maps of land use (Comer and Albert, 

1998). We used the MNFI maps for our pre-settlement condition (Figure 2.2.a).  We 

simulated the post-logging condition by converting all of the deciduous and coniferous 

forests from the pre-settlement map to grassland and the woody wetlands to wetlands 

(Figure 2.2.b).  Since large tracts of Michigan burned during and immediately after 

logging, we created a post-fire scenario where all of the grassland from the post-logging 

scenario was converted to a barren land use (Figure 2.2.c).  Finally, we used the 2006 

National Land Cover Dataset to represent the modern land use in the Jordan River 

watershed (Figure 2.2.d). 

A number of studies that simulated soil loss after forest fires using the Revised 

Universal Soil Loss Equation relied on changes in the cover factor to account for most of 

the effect of fire (Larsen and MacDonald, 2007; Litschert et al., 2014).  Some studies also 
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incorporated changes to the soil erodibility factor (e.g., Miller et al. (2003)).  Larsen et al. 

(2009) make a convincing argument that hydrophobic effects are both short-lived and 

often minor relative to the impact of changes to the hydrologic cycle associated with 

altered vegetative cover.  Reeder and Jurgensen (1979) examined fire-induced 

hydrophobicity in the Upper Peninsula of Michigan and found that it was not a long-term 

issue based on the soils of the region.  Richardson and Hole (1978) found that even if fire-

induced water-repellency is present, water can still percolate rapidly into coarse-textured 

soils in Wisconsin.  We assumed that in the humid environment and coarse-textured soils 

of Northwestern Michigan the potential hydrophobicity was unlikely to have long-lasting 

effects and could be disregarded in our model. 

 

Figure 2.2. The modeled land use scenarios were (a) pre-settlement; (b) post-logging; (c) 
post-fire; and (d) modern land use. 



 
 
33 

2.4. Hydraulic Model 

We developed a one-dimensional hydraulic model of the lower 17.5 km of the 

Jordan River using the Hydrologic Engineering Center River Analysis System (HEC-RAS; 

Brunner, 2018).  As shown in Figure 2.3, the model covers the area from Graves Crossing 

to the mouth of the river at Lake Charlevoix.  Initial elevations for the model cross 

sections were extracted from a commercially-available 5m resolution Digital Terrain 

Model (NEXTMAP, Intermap Technologies, Inc.).  This data had noticeable “stair-

stepping” that coincided with the contour lines from the source topographic maps. 

The artificial "stair-steps" were smoothed out of the DTM by combining GPS 

elevation data with ADCP depths to better estimate the true thalweg elevation at various 

points along the river. After fitting several regressions to this thalweg elevation data, we 

decided to represent the data were by two equations: one for the upper channel and one 

for the lower channel. A third-order polynomial was used to interpolate between points 

above Webster Bridge and a second-order polynomial was used downstream of this point. 

These regressions show a generalized elevation change along the length of the modeled 

portion of the river (Figure S2.2).  

The NEXTMAP based cross-sections from GeoRAS show a distinct water surface 

from the confluence with Deer Creek, downstream to Lake Charlevoix (Figure S2.3).  For 

the cross-sections in this area, the nearest surveyed bathymetry was applied based on this 

water surface.  Bathymetry for cross-sections upstream of this point were modeled using 

the nearest surveyed bathymetry with a constant bank height (above the thalweg).  

Inspection of the surveyed data indicated two distinct bank height regimes.  A bank 

height of 1.26m was used between Deer Creek and approximately 1 km downstream of 

Webster Bridge, while a bank height of 1.05m was used from this point upstream.  This 

dividing point was based on the qualitative fit from the cross-section surveys that 

extended past the top of the banks.  Once the bathymetry was applied to each cross-

section, we adjusted the entire cross-section vertically so the channel thalweg elevation 

was aligned with the regression equations. 

The Jordan River HEC-RAS model uses a fixed water level elevation, the average 
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level of Lake Charlevoix, as the downstream boundary condition.  The upstream 

boundary condition is the flow provided by LHM at Graves Crossing.  We also 

incorporated flow changes at Old State, Webster, and the confluence with Deer Creek to 

account for increases in flow due to small tributaries and groundwater inputs, as modeled 

by LHM.  The LHM provided Jordan River streamflows under each land use scenario and 

we assumed the same Lake Charlevoix level for each scenario. 

We calibrated the model longitudinally to water depths and flows collected during 

a site visit on 13-15 July, 2011 by adjusting the in-channel Manning’s roughness values.  We 

also calibrated the model to observed depths reported by the USGS at the Webster Gage 

(#04127800) within two years of our site visit.  USGS flow and stage measurements below 

the bank height were used as validation for the previously determined in-channel 

roughness values.  We adjusted the overbank roughness values separately to match the 

observed USGS data for out of bank flows. More details are available in the Appendix, 

under Hydraulic and Sediment Transport Model Validation. 
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Figure 2.3. HEC-RAS model cross-section and flow change locations on the lower Jordan 
River.  The river flows from South to North. 

2.5. HEC-RAS Sediment Transport Capacity Calculator 

We used the Sediment Transport Capacity Hydraulic Design Tool in HEC-RAS to 

compute transport potential at each cross-section in the model.  We selected sediment 

transport functions based on their appropriateness for the bed material gradation.  

Calculations were made with 10%, 50%, and 90% exceedance flows from the LHM model 

for each land use scenario.  We ran the transport capacity tool with ρ = 2.65 g/cm3, which 

is typical of silica and the sand-sized particles from the bed of the Jordan River.  Finally, 
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we compared the current low flow transport capacity to bedload measurements collected 

in the field at the same flows. 

2.6. Sediment Impact Assessment Methods (SIAM) 

The Sediment Impact Assessment Methods (SIAM) were developed to estimate 

reach-based, in-channel sediment budgets and subsequently incorporated into HEC-RAS 

(Gibson and Little, 2006; Little and Jonas, 2010; Mooney, 2006; Mooney, 2007).  SIAM 

was developed to compare the effects of different scenarios on sediment continuity and 

budgets for individual river reaches.  SIAM allows the user to define the local inputs of 

sediment to a reach and the wash load threshold.  SIAM uses the hydraulics provided by 

HEC-RAS to calculate the total sediment transport based on an annual flow-duration 

curve.  For each reach, SIAM calculates the local sediment budget for the bed load 

material, transporting bedload material equal to the sediment transport capacity and all 

wash load (material remaining in suspension) to the next downstream cross-section.  

SIAM implicitly assumes that the system is capacity-limited rather than supply-limited. 

We divided the SIAM model of the Jordan River into four sediment reaches, based 

on flow changes and morphologic similarity (Below Graves, 13.6 – 17.5 km from the river 

mouth; Below Old State, 7.7 – 13.6 km; Below Webster, 2.6 – 7.7 km; and Below Deer 

Confluence, 0.0 – 2.6 km).  We added a fifth sediment reach, using the most upstream 

cross-section of the HEC-RAS model, to act as a sediment supply reach.  The sediment 

supply reach produces material equal to its transport capacity and serves as a source of 

incoming bedload material for our study reaches.  We excluded the supply reach itself 

from our sediment analysis.  We ran the SIAM model using flow-duration curves based 

on the averages from our thirty-year LHM runs for each land use scenario.  We used the 

average sediment yield from LHM cells adjacent to the river as sediment inputs for each 

reach.  We ran the SIAM model with the Meyer-Peter Müller sediment transport formula 

and a sediment specific gravity of 2.65. 
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3. Results and Discussion 

3.1 Field Measurements 

The flow measured at Graves Crossing during the sediment sampling was 4.76 

m3/s and 5.31 m3/s at Webster Bridge. The five suspended sediment samples collected at 

Graves Crossing had concentrations ranging from 7.5 to 17.7 mg/l, with a mean of 11.9 

mg/l (or 4.9 tonnes/day).  Four suspended sediment samples were analyzed from 

Webster Bridge, ranging from 4.7 to 10.0 mg/l, with a mean of 7.7 mg/l (or 3.6 

tonnes/day).  We estimated bedload from our measurements as 0.9 tonnes/day at Graves 

Crossing and 1.6 tonnes/day at Webster Bridge for these flows. 

The sieve analysis of the bed material samples indicated that there was little 

longitudinal variability in the gradations (Figure 2.4).  We decided to model the bed 

gradation using the average of the three bed material sampling locations in our model 

domain (Graves Crossing, Old State, and Webster Bridge).   

 

Figure 2.4. The bed material gradations collected at different locations along the Jordan 
River were similar.  We used the average bed gradataion from the three downstream 
locations for modeling.  The density of the bed material varied by size class, with particles 
larger than 0.5 mm being significantly less dense than silica (2.65 g/cm3). 

The bed material density estimates revealed that some size classes of the bed 

material deviated substantially from the silica density assumption (ρ = 2.65 g/cm3) used 

in most sediment transport.  In the Jordan River, medium sands and smaller particles 

have similar densities to silica.  Larger particles, particularly gravel-sized and larger 
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particles, however, were less dense, with some less than 1.9 g/cm3.  These larger particles 

appear to be carbonate concretions (Figure 2.5) that can be easily broken by hand.  It is 

possible that the friable nature of these concretions biased the bed gradations as some of 

the particles may have broken down into smaller sizes while being sieved. 

 

Figure 2.5. Photo of a low-density (ρ = 1.9 – 2.3 g/cm3) concretion that makes up many of 
the large particles on the bed of the Jordan River. 

The large, low-density particles are prevalent throughout the Jordan River.  Some 

of these particles are cobble-sized (> 64 mm in diameter).  Particles of this size with 

typical silica densities (2.65 g/cm3) can form an effective armor layer that reduces bed 

degradation.  It is not clear from our observations if the lighter material found in the 

Jordan acts as an effective armor layer. 

3.3. LHM Flow Results 

The effects of land use change increased in magnitude in a downstream direction, 

as expected for a gaining stream like the Jordan (Figure 2.6).  Logging in the Jordan River 

watershed increased the median in-channel flows by 13-18%, according to our 

simulations.  This is towards the low end of impacts of logging on streamflow reported for 

other watersheds (Lewis et al., 2001; Moore and Wondzell, 2005).  A devastating, 

widespread fire similar to those that occurred elsewhere in Michigan after logging likely 
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would have increased the median flows by 57-78% above pre-settlement conditions.  This 

is within ranges reported for the first year after a fire (Moody and Martin, 2001b; Scott, 

1993).  The regrowth of much of the forested area has led to current flow conditions that 

are similar to pre-settlement (+3%). 

 

Figure 2.6. Flow duration curves for the four flow change points in the model domain; 
these illustrate the effects of changing land use on hydrology in the Jordan River. 

3.4 Sediment Transport Capacity 

The Sediment Transport Capacity hydraulic design tool in HEC-RAS has six 

different sediment transport functions, but only Ackers-White and Meyer-Peter Müller 

are based on data similar to the measured Jordan River bed material gradations and flows.  

We ran the calculator using both selected transport functions for each land use scenario 

and found that Meyer-Peter Müller produced results closer to our measured values for the 

same flows.  The validation of the sediment transport capacity tool for the Jordan River is 

described in the Appendix.   

The sediment transport capacity for the current land use is almost 

indistinguishable from the Pre-Settlement case because the flows are so similar.  The 

mean sediment transport capacity for each land use scenario is shown in Figure 2.7, while 

the transport capacity associated with the 10% and 90% probability of exceedance flows 
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can be seen in the Appendix (Figure S2.5 and Figure S2.6).  The transport capacity 

generally increases more than flow due to the non-linear relationships between flow, 

shear stress, and sediment transport.   

 

Figure 2.7. The post-fire sediment transport capacity is much higher than for the other 
land use scenarios.  The values shown here were calculated using the Meyer-Peter Müller 
transport function for the median flow and averaged for each kilometer of the Jordan 
River.  The two dips in capacity, near 4500m and 8500m, are caused by decreases in the 
slope of the energy grade line associated with downstream constrictions in channel 
width.  

The logging scenario caused a noticeable increase in sediment transport capacity 

along the entire river, particularly at the downstream end.  The modeled sediment 

transport capacities are 10 to 34% greater than pre-settlement except for the downstream 

end, where they are 95% greater.  In the northern Great Lakes, other researchers have 

estimated post-logging sediment yields of 2 to 10 times the pre-settlement forested 

conditions on decadal time scales (Alighalehbabakhani et al., 2017a; Fitzpatrick and 

Knox, 2000), but it is difficult to directly compare modeled sediment yield at a watershed 

outlet to sediment transport capacity.  Sediment effects at the watershed outlet can lag 

behind the streamflow effects by more than a decade as the sediment is alternately stored 

and transported along the channel (Lewis et al., 2001; Swank et al., 2001). 

Flows from the Post-Fire scenario resulted in sediment transport capacities at least 

48% greater than in the Pre-Settlement case.  In some locations, such as the downstream 

end of the model or the dip in transport capacity around 4500m (Figure 2.7), the post-
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fire sediment transport capacity was more than double that of the pre-settlement 

scenario.  While these increases are large, they are dwarfed by the 1-2 order of magnitude 

increases measured in the literature for mountainous areas (Johansen et al., 2001; 

Karamesouti et al., 2016; Shakesby and Doerr, 2006).  Beaty (1994) observed bedload 

transport increases of 3-20 times the pre-fire rates near the Great Lakes, in western 

Ontario.  A likely reason that these observed increases in sediment export are so much 

higher than our sediment transport capacity results is that many watersheds, especially in 

mountainous areas, are supply-rather than transport-limited in the absence of wildfires 

(Moody and Martin, 2001a). 

Both the logging and post-fire scenarios produced disproportionately large 

sediment transport capacity increases in the downstream 1-2 km of the river.  This is 

because the downstream model boundary condition is a constant elevation, the average 

level of Lake Charlevoix.  The level of Lake Charlevoix fluctuates both seasonally and on 

an intrannual basis with the level of Lake Michigan.  Over the last century, Lake Michigan 

water levels exhibited a range of more than 1.9 m, with an average annual range of 0.3 m.  

If the elevated transport rates we simulated for a fixed lake level moved material at 

enhanced rates for an extended period of time, they would likely produce a delta 

extending both into the lake and upstream.  This delta would reduce the downstream 

slope and associated sediment transport capacity. 

3.5 SIAM 

The annual local sediment balance for each reach was calculated by SIAM for all of 

the land use scenarios.  Figure 2.8 shows these sediment balances, as well as the 

proportions of each grain size that make up the balance.  The most upstream reach 

(Below Graves Crossing) is slightly degradational for all of the land use scenarios except 

for Post-Fire.  However, the local balances in this reach are all less than 2% of the pre-

settlement transport capacity and it is reasonable to assume that they represent dynamic 

equilibrium.   
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Figure 2.8. SIAM calculated the annual local sediment balance by reach for the Post-
Settlement (PS), Logged (L), Post-Fire (P-F), and Current (C) land use scenarios.  In 
addition to the total sediment balance for each scenario, the balance was calculated for 
the silt, very fine sand (VFS), fine sand (FS), medium sand (MS), coarse sand (CS), very 
coarse sand (VCS), and very fine gravel (VFG) size classes. 

Sediment transport capacity declines in a downstream direction (Figure 2.7) as the 

slope of the river decreases.  This causes the remaining reaches to all have depositional 

sediment balances.  Land use change away from the pre-settlement condition results in 

increased deposition of sediment, even though more material is exported from each 

reach.  The reach below Old State exhibits the largest increases in aggradation due to the 

post-fire scenario, as the sediment eroded from the steeper reach upstream begins to 

settle out.  The most downstream reach, below the confluence with Deer Creek, is 

strongly controlled by the backwater from Lake Charlevoix, resulting in low energy grade 

line slopes and a consistently depositional sediment balance across all of the land use 

scenarios.  The reach below Deer Creek is also unique because it is the only one where the 

post-fire scenario has a slightly lower sediment balance than the logged scenario, 

although the difference is less than 2%.  The higher flows in the post-fire scenario result 

in greater proportions of coarse and very coarse sand in the sediment balances.  

The SIAM results highlight the potential for complex watershed responses to 

disturbance.  The Below Old State reach, for example, is likely to have a much greater 
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initial response to a watershed-wide fire than the other reaches (Figure 2.8).  This 

behavior is similar to observations of in-channel sediment storage and complex response 

in other watersheds (Benda et al., 2003; Lewis et al., 2001; Swank et al., 2001).  Legleiter 

et al. (2003) specifically call out the need to look at the complex spatial distribution of 

stream response for management purposes, a task we have shown can be aided by SIAM. 

4. Conclusions 

Land use change affects streamflow and sediment transport in rivers.  In the case 

of the Jordan River Watershed, these changes mostly reinforced trends that existed before 

European settlement.  The most upstream sediment reach that we included in our models 

remained in dynamic equilibrium for all of the land use scenarios, transporting enough 

bed material to deposit in each of the downstream reaches.  The complete logging of the 

Jordan River watershed resulted in sediment transport capacities that were 10 to 34% 

greater than pre-settlement capacities, while the post-fire scenario had modeled 

capacities 48 to 166% greater than pre-settlement.  If the altered land use persisted, these 

changes would alter the morphology of the river, producing feedbacks that could 

propagate throughout the watershed.  Current land use has only slightly increased the 

sediment transport capacity of the Jordan River slightly above the pre-settlement 

conditions. 

The reach-based sediment budgets from SIAM demonstrate significantly different 

sediment responses to disturbance.  While the upstream sediment reach remains in 

dynamic equilibrium across our land use scenarios, the three downstream reaches show 

varying levels of response.  In most reaches, the post-fire scenario would result in the 

greatest levels of aggradation, demonstrating the complex responses that are possible 

when a watershed is disturbed. 

Changing downstream water levels, multiple sediment densities of the bed 

materials, and potential armoring effects of the bed concretions are additional 

complicating factors that may significantly affect the sediment dynamics of the Jordan 

River and should be explored further in future work. 
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Data Collection 

 

Figure S2.1. We used a Sontek ADCP to collect flow and bathymetry data at 11 sites on the 
Jordan River in 2011. 

Bathymetric Adjustments 

 

Figure S2.2. Two regression lines were fit to the surveyed thalweg elevations along the 
modeled portion of the Jordan River, with the break between the lines at Webster Bridge. 
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Figure S2.3. Cross-sections extracted from the DTM often contained a flat area indicating 
the water surface of the river.  We combined this data with bathymetry collected using 
ADCP (inset figure) for use in the HEC-RAS model. 

Hydraulic and Sediment Transport Model Validation 

During calibration, we set the in-channel roughness values to 0.045 for river 

stations 17557.9 to 3097.9, just upstream of the confluence with Deer Creek.  We reduced 

the roughness values for the remaining cross-sections to 0.035.  Outside the banks, we set 

the roughness values to 0.12, representing medium to dense summer brush.  These 

adjustments resulted in a reasonable fit of the stage data at the Webster Bridge gage with an 

r2 of 0.97 and a Nash-Sutcliffe Efficiency of 0.96 (Figure S2.4). 
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Figure S2.4. The steady-state calibration for the USGS Gage at Webster Bridge (#04127800) 
showed a reasonable agreement. 

We validated the sediment transport capacity model using our sampling events 

from 2014 and the standard density assumption (ρ=2.65 g/cm3).  At Graves Crossing, we 

measured a total load of 5.8 tonnes/day.  The sediment transport capacity tool predicted 

205.1 tonnes/day (Meyer-Peter Müller) to 627.1 tonnes/day (Ackers-White) and an 

average capacity over the next kilometer downstream of 286.7 and 631.2 tonnes/day for 

Meyer-Peter Müller and Ackers-White, respectively.  At Webster Bridge, we measured a 

total load of 5.2 tonnes/day while the model predicted 159.7 (Meyer-Peter Müller) to 

342.6 (Ackers-White) tonnes/day.  Within a kilometer of Webster Bridge, the estimated 

average transport is 71.4 and 147.4 tonnes/day for Meyer-Peter Müller and Ackers-White, 

respectively.  The predicted sediment transport capacities are 1-2 orders of magnitude 

larger than what we measured, although it is possible this is a numerical modeling artifact 

of the procedure we used to estimate the longitudinal elevations for the hydraulic model.  

Graves Crossing is at the upstream cross-section of the model and Webster Bridge is at 

the junction of the two thalweg elevation curves, placing both of these points in areas 

where the model has high slopes.  Given the uncertainties inherent in sediment 

measurement and modeling, particularly with a limited set of samples, it is difficult to 

draw strong conclusions from this validation.  It is likely that collecting a more detailed 
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set of surveyed thalweg elevations into the model would improve the predictions.  For the 

purposes of this study, we opted to focus on differences from the pre-settlement case 

rather than the actual sediment transport numbers predicted by the model. 

Sediment Transport Capacity 

 

Figure S2.5. These plots show the sediment transport capacity calculated using the 
Ackers-White transport function and averaged for each kilometer of river.  The solid lines 
indicate the results for the 50% exceedance flow.  The difference between the sediment 
transport capacity at the 10% and 90% exceedance flows, indicated by the shaded 
polygons, is much smaller than the longitudinal variation. 
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Figure S2.6. The plots below show the sediment transport capacity calculated using the 
Meyer-Peter Müller transport function and averaged for each kilometer of river. The solid 
lines indicate the transport capacity at the 50% exceedance flow while the shaded 
polygons represent the transport capacity for the 10% to 90% exceedance flow range. 
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CHAPTER 3:  
IMPACTS OF PROJECTED CLIMATE CHANGE ON SEDIMENT YIELD AND 

DREDGING COSTS 

Abstract 

Changes in climate may significantly affect how sediment moves through 

watersheds into harbors and channels that are dredged for navigation or flood control.  

Here we applied a hydrologic model driven by a large suite of climate change scenarios to 

simulate both historical and future sediment yield and transport in two large, adjacent 

watersheds in the Great Lakes region.  Using historical dredging expenditure data from 

the US Army Corps of Engineers (USACE) we then developed a pair of statistical models 

that link sediment discharge from each river to dredging costs at the watershed outlet. 

While both watersheds show similar slight decreases in streamflow and sediment yield in 

the near-term, by mid-century they diverge substantially.  Dredging costs are projected to 

change in opposite directions for these two watersheds; we estimate that future dredging 

costs will decline in the St. Joseph River by 8-16% by mid-century but increase by 1-6% in 

the Maumee River.  Our results show that the impacts of climate change on sediment 

yield and dredging may vary significantly by watershed even within a region, and that 

agricultural practices will play a large role in determining future streamflow and sediment 

loads.  We also show that there are large variations in responses across climate 

projections that cause significant uncertainty in sediment and dredging projections. 

1. Introduction 

Changes in climate have the potential to significantly alter the movement of 

sediment through watersheds and directly affect dredging needs in rivers and harbors.  

There are over sixty-three commercial harbors in the Great Lakes and over 600 miles of 

navigation channel maintained by the U.S. Army Corps of Engineers (USACE). In 2014, an 

estimated 132 million tons of commodities were transported to and from U.S. ports 

located on the waterways of the Great Lakes system (USACE, 2014).  Many of the harbors 

are located at the outlets of rivers that can convey large amounts of sediment, 
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necessitating periodic dredging to maintain the navigation channels.  In spite of the 

importance of this system, previous studies have not examined the potential impacts of 

projected future climate changes on both sediment yield (sediment eroded from the 

landscape and delivered to the river) and the dredging requirements in this region. 

Current climate change projections generally show increasing temperatures and 

precipitation in the Great Lakes region of the United States, although the magnitude and 

seasonality of these changes depends on the emissions scenario and climate model 

(Hayhoe et al., 2010; IPCC, 2014; Pryor et al., 2013).  Precipitation is expected to increase 

in the winter and spring, but decline in the summer; temperatures are projected to 

increase more in the winter during the early part of the century, with changes in summer 

temperatures catching up by mid-century (Hayhoe et al., 2010).  The Third National 

Climate Assessment found that extreme rainfall and flooding events, and their associated 

erosion, are on an upward trend in the Midwest, including Indiana, Michigan, and Ohio 

(Pryor et al., 2014).  

Numerous studies have examined the potential implications of climate change on 

streamflow and sediment yield (e.g., Mukundan et al., 2013; Park et al., 2011; Serpa et al., 

2015).  In the Upper Midwest and Great Lakes regions, O'Neal et al. (2005) found that 

variability in soil loss would increase due to changes in crops.  Two separate studies 

looked at climate change effects on northern Illinois watersheds and found that 

streamflows would decrease, based on the projected climate change scenarios (Cherkauer 

and Sinha, 2010; Chien et al., 2013).  Several Soil and Water Assessment Tool (SWAT) 

models of the Maumee River have examined the potential effects of climate change 

scenarios.  For example, Bosch et al. (2014) modeled four watersheds that drain to Lake 

Erie and projected that flow and sediment yield would increase, based on climate 

projections from two emissions scenarios and three General Circulation Models (GCMs).  

In contrast, a more narrowly focused study on the Maumee that utilized three GCMs and 

a single emissions scenario found that annual average flow and sediment loads will 

decrease by mid-century (2045 to 2055), although there was significant variability in the 

monthly sediment loads (Verma et al., 2015).  As part of a nationwide study of 20 
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watersheds with SWAT simulations, Johnson et al. (2015) found that five of their six 

climate change scenarios would likely increase flow and sediment delivery in the Maumee 

by mid-century (2041 to 2070). 

Dredging quantities are imperfectly correlated to sediment discharge (the 

sediment delivered to the mouth of the river) since they depend on downstream water 

levels (for example, Lake Michigan levels varied 1.9 m over the last 30 years), the location 

where the sediment settles out relative to the navigation channels, and on the amount of 

funding available to conduct the dredging operations.  Some studies that discuss dredging 

in the context of climate change do so through the lens of rising water levels (Schwartz et 

al., 2004; Smith, 1991) rather than looking at changes in delivery of sediment from rivers.  

Schwarz et al. (2004) used both future projections and an arbitrary scenario of Great 

Lakes water levels to estimate increased dredging costs at Goderich, Ontario, on Lake 

Huron, but did not consider the possibility of changing riverine sediment input to the 

harbor.  Other authors consider the dredging as either one component of the overall 

sediment budget (Morang et al., 2013; Templeton and Jay, 2013) or as a causative effect of 

increased sediment delivery (Zhang et al., 2010).  We are not aware of any studies that 

directly link projected future riverine sediment delivery to changes in dredging needs. 

Here we used SWAT models of two large US watersheds draining into the Great 

Lakes to quantify the likely effects of climate change on the streamflow, sediment yield to 

the river, and sediment discharge at the mouth of the river.  SWAT-calculated sediment 

loads are then input to two statistical sediment dredging models to estimate historical 

dredging costs for each system. We then drive these linked models with both historical 

climate and future climate simulations based on downscaled scenarios from the 5th 

Coupled Model Intercomparison Project (CMIP5) for both “Contemporary” (~2011-2030) 

and “Mid-Century” (2031-2050) periods.  We run the whole suite of 234 climate models 

ensemble members included in the CMIP5 dataset to better understand how climate 

forecast uncertainties will propagate through the paired SWAT sediment transport and 

statistical dredging models.  We discuss results for Representative Carbon Pathways 

(RCPs) 6.0 and 8.5, while results for the remaining RCPs (2.6 and 4.5) are in the 
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Supporting Information. These results provide both a more comprehensive view of how 

climate may impact sediment yield differentially in these neighboring watersheds and a 

first quantification of how dredging costs may respond to climate changes. 

2. Methods 

2.1. Study Domain 

Two large, adjacent watersheds in the southern Great Lakes were selected for this 

study: the St. Joseph River and the Maumee River (Figure 3.1).  We chose these two 

watersheds because of their size, proximity to each other, and dredging requirements at 

the river mouths in the Great Lakes.  The St. Joseph River watershed covers parts of 

northern Indiana and southwestern Michigan and generally flows northwest into Lake 

Michigan at St. Joseph, MI.  According to the 2006 National Land Cover Database 

(NLCD) (Fry et al., 2013), this 12,138 km2  watershed consists of 49.3% agricultural row 

crops, 23.8% forest, 13.0% urban, and 12.2% pasture. The average annual flow at the USGS 

gage at Niles, MI (#04101500) between 1990 and 2009 was 113.6 cms.  Long-term 

sediment data was not available for the St. Joseph River.  The USACE dredges the harbor 

at St. Joseph, MI. 

The Maumee River watershed is located in northeastern Indiana, southeastern 

Michigan, and northwestern Ohio.  The main channel flows northeast to Toledo, OH and 

Lake Erie.  This 17,015 km2 watershed is more heavily agricultural and significantly less 

forested than the St. Joseph, consisting of 74.7% agricultural row crops, 10.8% urban, 

8.2% forest, and 5.2% pasture.  The average annual flow of the Maumee River in 

Waterville, OH (USGS gage 04193500) between 1990 and 2009 was 172.6 cms.  The 

average annual suspended sediment load at this site between 1990 and 2003 was 1.2 

million tonnes.  The USACE performs dredging operations at both a Maumee River and a 

Maumee Bay site. 
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Figure 3.1. Map of the St. Joseph and Maumee River watersheds, subwatersheds, and their 
2006 land use/land cover. 

2.2 SWAT Model Development and Calibration 

The Soil and Water Assessment Tool (SWAT) is a semi-distributed, lumped 

parameter hydrologic model developed by researchers at the U.S. Department of 

Agriculture’s Agricultural Research Service (USDA-ARS) (Arnold et al., 2012; Neitsch et 

al., 2011).  It is often used for sediment yield studies (Alighalehbabakhani et al., 2017b; 

Gassman et al., 2014; Krysanova and White, 2015) and is increasingly used to examine 

climate change impacts (Chaplot, 2007; Chien et al., 2013; Ficklin et al., 2009; Johnson et 

al., 2015).  SWAT models split their domain into subwatersheds and then subset these 

into Hydrologic Response Units (HRUs).  HRUs are the basic computational units of a 

SWAT model, which represent all of the area within a subwatershed with similar soils, 

slopes, and land uses.   

We developed SWAT models independently for each watershed using the 
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ArcSWAT 2012.10.0.7 plugin for ArcGIS, and used SWAT 2012 rev. 622.  Digital elevation 

models with a resolution of 1 arc-second were obtained from the National Elevation 

Dataset and used to delineate the watersheds.  The 2006 National Landcover Dataset was 

used to determine land use/land cover types and we used the default crop and harvest 

management parameters from ArcSWAT.  Soil types and soil hydraulic properties were 

determined using the SSURGO database from the Natural Resources Conservation 

Service.  Information on dams in the watersheds was obtained from the National 

Inventory of Dams maintained by the U.S. Army Corps of Engineers and those we deemed 

significant because of size or location were included in the models.  We selected dams 

with storage greater than 1,233,000 m3 for inclusion in the models.  We also included the 

St. Joseph River Dam, in Fort Wayne, IN, which only has a storage of 1,078,000 m3 while 

draining over 16% of the Maumee basin.  These datasets were all imported into ArcSWAT 

and used to determine watersheds, subwatersheds for modeling purposes (shown in 

Figure 3.1), and HRUs.  The St. Joseph SWAT model consisted of 32 subbasins and 278 

HRUs, along with 17 dams.  The Maumee SWAT model had 24 subbasins, 307 HRUs, and 

5 dams.  

The United States Department of Agriculture’s Agricultural Research Service (ARS) 

provides weather data, in SWAT format, for all counties across the US.  The daily data 

covers January 1950-December 2009, with the exception of January 2002.  January 2002 

was filled using SWAT’s weather generation routines that create typical weather time 

series for the location and time period.  We included 2002 in our simulations, but to 

avoid biasing further analyses due to the weather generation routine excluded January 

2002 from goodness-of-fit calculations, and excluded the entire 2002 year from the 

downscaling bias analyses.  

After initial set up of the models in ArcSWAT, we calibrated them using the SWAT 

Calibration and Uncertainty Programs (SWAT-CUP) tool (Abbaspour, 2015).  We ran 

both models from 1980 through 2009, using a daily time step, with at least a five year 

spin-up period.  Monthly outputs from the models were used for all comparisons.  We 

began our calibration by using the Sequential Uncertainty Fitting version 2 algorithm 
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(SUFI2) in SWAT-CUP to determine the sensitivity of the parameters in the SWAT 

models, based on the full allowable range of each parameter.  We then focused our efforts 

in succeeding calibration iterations on those parameters that had the most significant 

effect on the model outputs.  As a final step in the model parameterization, we tested the 

removal of each calibration parameter to arrive at a parsimonious set of calibration 

parameters. 

The St. Joseph River model was calibrated to the streamflow at the USGS gage at 

Niles, MI (#04101500).  The model was run from 1985 to 2009, with 1990-1999 used for 

calibration and 2000-2009 for validation.  Sediment discharge was then calibrated and 

validated for the same periods using a streamflow:sediment discharge curve for the 

harbor in St. Joseph, MI.  This curve was developed for a previous U.S. Army Corps of 

Engineers study of the St. Joseph River watershed (USACE, 2007).   

We calibrated the Maumee River model by first matching the hydrology using the 

USGS gages at Waterville, OH (#04193500) and Defiance, OH (#04192500).  The model 

was run from 1980 to 2003, with 1991-1999 used for calibration to match up with the 

period used for the St. Joseph model. The validation period was split between October 

1985 to December 1990 and January 2000 to September 2003, based on the availability of 

USGS sediment discharge data.  We calibrated and validated the simulated sediment 

discharge to data from the USGS Gage at Waterville, OH (#04193500) using periods 

matching the streamflow. 

2.3 Dredging Cost Estimation 

The U.S. Army Corps of Engineers provided us with dredging quantities for St. 

Joseph Harbor, the lower Maumee River, and the Maumee Bay (M. Mahoney, personal 

communication, 20 September 2013).  We created two models for dredging costs: 1) a 

linear regression, fit to historical dredging data and simulated modeled sediment fluxes, 

and; 2) a simpler 1:1 correlation between simulated sediment discharge and dredging costs 

(or percentage change in each). Our use of two models provides an estimate of cost 

model structural uncertainty, and allows us to evaluate a range of possible outcomes. To 

fit each model, dredging data from 1989-2009 was used for St. Joseph Harbor and 1990-
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2009 for the Maumee River and Maumee Bay dredging sites. 

We created linear regression models between the annual dredging costs, converted 

to 2009 dollars using the U.S. Bureau of Labor Statistics Consumer Price Index data, and 

the modeled sediment discharge from the SWAT models run using the historic gage data.  

To evaluate possible time-lagged responses between sediment discharge and dredging, 

regressions were tested using simulated sediment results from the same calendar year as 

the dredging; the same water year as the dredging; the prior calendar and water years; 

and one and two year (calendar and water year) moving averages of sediment discharge.  

As there are two dredging sites in the Maumee Watershed, in the river itself and in the 

bay at its mouth, we examined regressions to the Maumee River and Bay dredging sites 

both separately and as a combined amount.  We also added long-term average monthly 

water levels of Lakes Michigan and Erie to the regressions for the St. Joseph and Maumee 

dredging sites respectively. 

2.4 Climate Model Scenarios 

The analyses presented in the main paper utilized the World Climate Research 

Programme's (WCRP's) Coupled Model Intercomparison Project phase 5 (CMIP5; (Taylor 

et al., 2012) multi-model dataset.  We acquired bias-corrected, spatially downscaled 

versions of these datasets from a publicly available archive created by the United States 

Bureau of Reclamation and others (Brekke et al., 2013).  The temperature and 

precipitation data in this archive are available at a monthly time step and a spatial 

resolution of 1/8°.  This data needed to be further disaggregated for use with the SWAT 

models, which use daily data at a single weather gage location for each sub-basin.  We 

utilized all 234 CMIP5 model projections available from the archive.  The CMIP5 dataset 

consists of multiple Representative Carbon Pathways (RCPs), run across a large number 

of individual models.  To consider a larger ensemble, additional analyses were run with 

112 CMIP3 scenarios (Meehl et al., 2007) and the results are included in the Supporting 

Information for this paper. 

For brevity, analysis here is limited to CMIP5 RCP 6.0 (Masui et al., 2011); 37 

projections) and RCP 8.5 (Riahi et al., 2011); 71 projections), which represent a plausible 
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range of CO2 emissions given no additional conservation efforts.  These RCPs are 

particularly relevant given the 2011 – 2050 simulation period of this study. RCP 6.0 is 

most similar to the older B2 Special Report on Emissions Scenarios (SRES; (Nakicenovic 

and Swart, 2000), while RCP8.5 is similar to SRES A2/A1F1 (IPCC, 2014).  Results for the 

other climate change scenarios are presented in the Supporting Information. 

Two forecast periods were run: 2011 – 2030, hereafter called the Contemporary 

period, and; 2031 – 2050, called the Mid-Century period. SWAT model outputs for each 

period are individually averaged and presented below as both climate ensemble medians 

and ranges, as stated in figures and tables. 

We matched individual, observed gage locations used by the SWAT models with 

the closest spatial grid cell for the downloaded climate data.  These climate datasets were 

then spatially disaggregated from the grid cells to the individual gages and temporally 

disaggregated for 1980 to 2050 using the methodology from Maurer and Hidalgo (2008) 

and Wood et al. (2004) based on the ARS weather data described previously.  This 

procedure involved randomly selecting months from the historical data to serve as a 

template for temporal distribution. Temperatures at each gage location were adjusted 

using a monthly additive factor to match the average temperature for each month of the 

GCM results.  The precipitation data were adjusted using a monthly multiplier to match 

the total monthly precipitation for each month in the GCM results while maintaining the 

proportion of monthly rainfall across individual days.  The same sequence of reference 

months was used to downscale each of the climate change scenarios. 

To evaluate remaining bias in the climate simulations, we compared the 

downscaled precipitation and temperature data with the historical gage data. Bias was 

calculated by comparing the distribution of annual average temperature and total annual 

precipitation for the downscaled climate scenarios with that of the historical gage data 

from 1988-2008, excluding 2002.  The SWAT models were then run using the historical 

gage data for 1985-2009, and for each climate model scenario for 1985-2050.  To 

explicitly examine how biases in downscaled climate would propagate through the SWAT 

model streamflow and sediment discharge predictions, we compared the 1988-2008 
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(again excluding 2002) period for each scenario run to the same period run using gage 

data. 

3. Results and Discussion 

3.1. Model Calibration and Validation 

Results for the calibration and validation of the SWAT models are shown in Figure 

3.2 and Figure 3.3, with goodness-of-fit statistics summarized in Table 3-1.  Hydrologic 

calibration and validation of monthly outputs for the St. Joseph River model were both 

good, with Nash-Sutcliffe efficiencies of 0.78 for calibration and 0.72 for validation.  The 

sediment discharge calibration and validation for the St. Joseph model resulted in biases 

of -3.2% and +10.5%, respectively, which are both considered very good, based on the 

percent bias criterion of Moriasi et al. (2007). 

The calibration of the Maumee River model had nearly identical goodness-of-fit 

statistics for monthly flows at both stream gage sites.  The calibration Nash-Sutcliffe 

efficiency was 0.79 at Waterville, OH and 0.80 at Defiance, OH (see Figure 3.1 for 

locations).  Validation Nash-Sutcliffe efficiencies were 0.79 at Waterville and 0.82 at 

Defiance.  Sediment discharge at Waterville produced a very good percent bias both for 

the calibration period (+4.6%) and the validation period (+2.5%). 
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Figure 3.2. Calibration and validation of St. Joseph River SWAT model for (a) monthly 
streamflow and (b) monthly sediment discharge.  The validation months are indicated by 
the grey shaded boxes. The gap in the validation period for January 2002 is due to missing 
weather data. 
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Figure 3.3. Calibration and validation of Maumee River SWAT model for (a) monthly 
streamflow at Defiance, OH and (b) at Waterville, OH, and (c) monthly sediment 
discharge at Waterville, OH.  The validation months are indicated by the grey shaded 
boxes and were selected to maintain a common calibration period with the St. Joseph 
model while maximizing the use of available sediment data. The gap in the validation 
period for January 2002 is due to missing weather data. 
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Table 3-1. Summary of Calibration and Validation Statistics: R2, Nash-Sutcliffe Efficiency 
(NSE), and % Bias.  Note that January 2002 was excluded from the goodness-of-fit 
calculations due to missing weather data for that month. 

      Calibration Validation 

St. Joseph River 

at Niles, MI 

Calendar Years 1990-1999 2000-2009 

Flow 
R2 0.78 0.83 

NSE 0.78 0.72 

Sediment 

R2 0.59 0.47 

NSE 0.52 0.29 

% Bias -3.2% +10.5% 

Maumee River at 

Waterville, OH 

Water Years 1991-1999 Oct 1987-Dec 1990, Jan 2000-Sep 2003 

Flow 
R2 0.86 0.86 

NSE 0.79 0.79 

Sediment 

R2 0.53 0.49 

NSE 0.52 0.48 

% Bias +4.6% +2.5% 

Maumee River at 

Defiance, OH 
Flow 

R2 0.84 0.86 

NSE 0.80 0.82 

 

3.2 Downscaled Climate Model Bias 

We looked at Probability Density Functions (PDFs) of the mean annual 

temperatures and annual precipitation from both the downscaled climate model 

historical runs and observed station data (Figure S3.1 in the Supporting Information) in 

order to determine if they represented the same distribution as the observed data.  The 

overlap and similarities between the PDFs of the observed data and those of the 

downscaled climate data indicates that they likely represent the same distribution.  When 

interpreting Figure S3.1, it is important to understand that the bias correction performed 

on the climate model data by Brekke et al. (2013) utilized a temperature and precipitation 

dataset that was scaled to match long-term (1961-1990) average statistics (Maurer et al., 
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2002).  The downscaled climate model temperatures have a mean annual bias of +0.02 °C 

and a standard deviation of 0.01 °C for both RCP 6.0 and 8.5, relative to the gage 

observations.  The precipitation values for RCP 6.0 and 8.5 have mean annual biases of -

49.5 mm/yr (-5.1% of mean observed precipitation) and -48.9 mm/yr (-5.0%), 

respectively.  The standard deviation of the precipitation values is 25.0 and 29.0 mm/yr 

for RCP 6.0 and 8.5 respectively. It is also important to note that the sample sizes for the 

two RCPs discussed are different, as there were 37 RCP 6.0 scenarios and 71 RCP 8.5 

scenarios available from the archive.   

Biases in the downscaled climate inputs have the potential to propagate into the 

SWAT model outputs.  Figure 3.4 shows the PDFs of the simulated historical streamflow 

and sediment discharge at the mouth of each river.  Generally, the PDFs all follow similar 

patterns to the observed data.  Potential differences may exist due to the small sample 

size of the observations.  Streamflow and sediment discharge for the St. Joseph River have 

a slight high bias, while sediment discharge for the Maumee River has a slight low bias. 

The Maumee streamflow PDFs for the RCP 6.0 and 8.5 scenarios reasonably match the 

observed PDF.  In order to limit the potential influence of this on our analysis, we used 

anomalies (differences between projected and historical time periods from the same data 

set) for the remaining analysis.  Results for CMIP3 scenarios and additional CMIP5 RCP 

scenarios are summarized in the Supporting Information of this paper. 

The biases in SWAT model outputs, when using the downscaled projections to 

simulate the historical time period, are most likely due to the biases in the downscaled 

and disaggregated CMIP precipitation and temperature data.  This may be attributed to a 

combination of the spatial and temporal disaggregation processes used and the climate 

models themselves. 
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Figure 3.4. Probability density functions of: a) annual average streamflow for the St. 
Joseph River, b) annual average streamflow for the Maumee River, c) annual average 
sediment discharge for the St. Joseph River, and d) annual average sediment discharge for 
the Maumee River. All PDFs are for the historical period (1988-2001, 2003-2008), simulated 
using observed climate data and downscaled climate data. 
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3.3 Dredging Model Results 

 

Figure 3.5. Actual and modeled historical costs using multiple linear regression for: a) St. 
Joseph Harbor, b) Maumee Bay, and c) Maumee River.  The Maumee River modeled 
historical costs are shown both with and without including Lake Erie levels in the 
multiple linear regression. 

The actual annual dredging expenditures and the modeled costs are shown in 

Figure 3.5.  

Table 3-2 shows the fit and parameters for the best linear model of dredging costs 

at each location, where QS, WY is the sediment discharge for the water year of interest, QS, 

WY-1 is the sediment discharge for the preceding water year, QS, CY-1 is the sediment 

discharge for the preceding calendar year, and DS, WY is the deposition in the downstream 

reach of the Maumee River for the current water year.  The estimate of St. Joseph Harbor 

dredging costs had an R2 of 0.48.  The cost of dredging the two sites associated with the 

Maumee River were estimated as the sum of the Maumee Bay (R2=0.30) and Maumee 

River (R2=0.15) costs. 
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Table 3-2. Dredging cost linear models for each dredging location 

Dredging 

Location Model R2 

Equation 

Intercept, b ($)  Slope, m ($)  Predictor Variables 

St. Joseph Harbor 0.48 -693,700 + 14.30 * (𝑄𝑆,𝑊𝑌 + 𝑄𝑆,𝑊𝑌−1) 2⁄  

Maumee Bay 0.30 -859,800 + 1.26 * 𝑄𝑆,𝐶𝑌−1 

Maumee River 0.15 3,519,000 + 16.88 * 𝐷𝑆,𝑊𝑌 

The multiple linear regressions including water levels showed no significant 

improvement over the simple linear regression for either the St. Joseph Harbor or the 

Maumee Bay dredging sites.  Inclusion of Lake Erie water levels did improve the model fit 

for the Maumee River site (R2=0.38).  This improved estimate is shown as the dashed blue 

line in Figure 3.5c.  While climate change will affect future lake levels, it is unclear what 

the effect will be and we opted not to include it in our estimates of future dredging.  

3.4 Effects of Climate Change on Streamflow, Sediment Yield, Sediment Discharge, 

and Dredging 

The SWAT results are reported for three relevant outputs: streamflow at the river 

mouth, sediment yield from the entire watershed to the river, and sediment discharge at 

the river mouth.  The SWAT outputs for the Contemporary (scenario years 2011-2030) 

and Mid-Century (scenario years 2031-2050) climate change scenarios are summarized 

Table S3.1 and Table S3.2, respectively.   

 

The median streamflow values from the summary tables show small differences 

from the current climate.  In contrast, the box plots in Figure 3.6 illustrate that the 

changes in median monthly streamflow are small relative to the variability across climate 

scenarios for the Contemporary period. This is also true for the St. Joseph River in the 

Mid-Century period.  However, the Mid-Century Maumee streamflows have a median 

increase of 6.1 cms for the RCP 6.0 scenarios and 3.9 cms for the RCP 8.5 scenarios. 
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Figure 3.6. Differences in modeled streamflow between current (1989-2008), and both 
Contemporary (a, 2011-2030) and Mid-Century (b, 2031-2050) CMIP5 scenarios. 

Median sediment yield estimates for both the St. Joseph and Maumee appear to 

decrease slightly in the Contemporary scenarios, as seen in Figure 3.7.  Sediment yields in 

the St. Joseph watershed continue to decrease during the Mid-Century scenarios.  In 

contrast, there is a slight increase in the Mid-Century sediment yields for the Maumee 

River under both RCP 6.0 and 8.5 scenarios.  

Sediment discharge follows the same patterns as the sediment yield (Figure 3.7).  

The most significant difference is that over 75% of RCP 6.0 scenarios show an increase in 

sediment discharge for the Maumee relative to the current values. The percentage 

changes in the sediment discharge for the Maumee are similar to the simulated changes 

in streamflow.  The sediment discharge changes in the St. Joseph, however more closely 

resemble the changes in sediment yield.  There is a large amount of variability in these 

results and, with the exception of the Maumee RCP 6.0 sediment discharge, at least 25% 

of the scenarios fall on the opposite side of the no change line.   
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Figure 3.7. The top row shows differences in modeled sediment yield between historical 
(1989-2008) and both Contemporary (a, 2011-2030) and Mid-Century (b, 2031-2050) CMIP5 
scenarios.  The bottom row presents the differences in modeled sediment discharge 
between historical and Contemporary (c) and Mid-Century (d) CMIP5 scenarios. 

Several other studies have examined climate change in the Maumee River, 

although they used the CMIP3 climate scenarios and had differences in methodologies 

and study periods.  Results from both Johnson et al. (2015) and Cherkauer and Sinha 
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(2010) suggested little change in the average flows by mid-century, while Bosch (2014) 

projected a 6-18% increase in flow; these results are within the middle two quartiles of 

those presented here.  Verma et al. (2015) projected a reduction in flow of 8.5%, which 

would be in the lowest quartile of our results.  The sediment results from these studies 

are similar to those projected for streamflows, with Johnson et al. (2015) projecting very 

small (0.6%) increases in TSS, Bosch et al. (2014) projecting larger increases of 8-32%, 

and Verma et al. (2015) projecting decreases of 10.4%.  With the exception of the high 

estimate of 32% from Bosch et al., these estimates are within the range of our results, 

with the results from Johnson et al. (2015) being closest to our median. 

 

The responses of the two adjacent watersheds are similar, with the exception of 

the Mid-Century period in which median streamflow, sediment yield, and sediment 

discharge all start to increase in the Maumee River watershed, while they continue to 

decline in the St. Joseph River watershed.  A deeper investigation of model outputs 

revealed that this difference is due to the much greater proportion of agricultural land in 

the Maumee (Figure 3.1).  Sediment yield from agricultural land can be significantly 

affected by the cover practices used, with low or no-till practices and cover crops 

significantly reducing the soil erosion. This also implies that the timing of large 

precipitation events that coincide with periods of bare ground can produce a large 

proportion of the annual sediment yield.  The effects of climate change will depend on 

the coincident timing of these precipitation events and conditions, also suggesting that 

management will be important to mitigate the effects of climate change on sediment 

yield in agricultural watersheds. 

The higher temperatures in the Mid-Century scenarios lead to simulated faster 

crop growth, producing earlier and larger harvests.  This increase in agricultural 

production can be seen in Figure 3.8, which shows the change in harvested yield per 

hectare.  A similar increase in future crop yield due to longer growing seasons has been 

identified as a potential effect of climate change (Pryor et al., 2014). In the model, once a 

crop is harvested, the land lays fallow, with little to no transpiration, until the next 
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growing season.  This allows small increases in the modeled sediment yield (due to 

erosion from the bare earth) as well as increased runoff that translates into increased 

streamflow and sediment discharge.  This model phenomenon, as evidenced by a shift in 

evapotranspiration earlier in the year, was also noted by Ficklin et al. (2009) for a SWAT 

model of a highly agricultural watershed in California.  This example shows the 

importance of looking closely at both the model results and the underlying processes. 

It is possible that this phenomenon would be more limited in the real world.  If 

crops are harvested early enough, farmers may plant a second crop, increasing 

evapotranspiration and offsetting the effects on sediment and streamflow.  Alternatively, 

they may start to plant longer season crops that benefit from the increased temperatures.  

Both possibilities would also likely be accompanied by the use of additional fertilizers and 

possibly increased irrigation from groundwater.  

Whatever the outcome of future management decisions, these results point to the 

sensitivity of sediment yield and discharge to agricultural management.  Research is 

needed to quantify the likely effects of climate changes and to translate scientific results 

into potential policies to adapt to a changing climate.  While hydrologists and 

atmospheric scientists are prepared to discuss the physical aspects of the water cycle, 

agricultural specialists and social scientists can better predict how farmers will respond to 

the changing climatic conditions. 

Recent (1989-2009) dredging of St. Joseph Harbor averaged $517k per year (in 

2009 dollars).  Relative to modeled historical dredging costs, median estimates using the 

regression equation decline 5-13% in the Contemporary scenario and 14-16% in the Mid-

Century time period (Table 3-2, Figure 3.9).  The upper quartiles ranged from +6-12% in 

the Contemporary and +2-6% in the Mid-Century while the lower quartiles were -18% in 

the Contemporary and -25-28% in the Mid-Century.  The decreases in median dredging 

costs estimated using the 1:1 sediment discharge:dredging cost relationship were only 

about half as much, 4-5% in the Contemporary and 8-9% in the Mid-Century time 

periods. The upper quartiles for the 1:1 cost relationship ranged from +4-8% in the 

Contemporary and +3-4% in the Mid-Century while the lower quartiles were -11-12% in 
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the Contemporary and -14-16% in the Mid-Century. 

 

Figure 3.8. Difference in annual harvested yield per hectare estimated by the SWAT 
models for a) Contemporary (2011-2030) and b) Mid-Century (2031-2050) time periods.  As 
harvested yield increases, more land is left fallow in the SWAT models, leading to 
increased runoff and sediment yield.  Note that the values of the change in harvested 
yield are reflective of both area of cultivation, which is much greater in the Maumee, and 
increasing temperatures under climate change scenarios.  In our models, once the crops 
were harvested, SWAT treated the land as fallow, allowing increased runoff and sediment 
yield. 

The average dredging cost for the combination of the Maumee River and Maumee 

Bay sites between 1990 and 2009 was $2.7M (in 2009 $).  The median estimated future 

dredging costs (Table S3.3, Figure 3.9) based on the regression equation estimates show 

an increase of 1% or less for both the Contemporary and Mid-Century scenarios, with 

upper quartiles of 1-2% and lower quartiles of 0%.  The estimates that are based on the 1:1 

sediment discharge:dredging cost relationship are more variable, with median decreases 

of 2% in the Contemporary and 3-6% increases in the Mid-Century time period.  The 

upper quartiles for the 1:1 relationship are 4-5% in the Contemporary and 7-9% in the 

Mid-Century time periods, while the lower quartiles indicate a decrease of 6% in the 

Contemporary and a change of ±1% by Mid-Century. 
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Figure 3.9. Projected changes in dredging costs for: a) Contemporary (2011-2030) and b) 
Mid-Century (2031-2050) scenarios, relative to historical (1989-2008) costs.  Data shown 
includes both cost estimation methods, which are given equal weight, doubling the 
sample size. 

The changes in dredging costs vary between the two watersheds, the modeled time 

periods, across the climate models, and between the two different estimates of costs.  Of 

note is that, for the St. Joseph River, the regression equation estimates show greater 

changes and variability than the 1:1 sediment discharge:dredging cost relationship, while 

the opposite is true for the Maumee.  This difference in response between the two 

approaches to estimating the future dredging costs indicates the potential importance of 

examining multiple approaches when using empirical models. 

The historical dredging was not driven solely by the amount of sediment being 

delivered by the river.  The areas dredged are coastal harbors on the Great Lakes and are 

affected by longshore transport of sediment, short time period seiche events (over hours 

to days), and  variations in lake levels on seasonal, annual, and decadal time scales 

(Gronewold and Stow, 2014; Quinn, 2002). In particular, our modeling shows that the 

Maumee River site dredging appears to be driven by lake level variations on Lake Erie 

(Figure 3.5c). Dredged volumes are also affected by the limited budget available to the 

U.S. Army Corps of Engineers in any given year; there is a backlog of dredging need across 
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the Great Lakes (USACE, 2015).   

4. Conclusions 

We modeled future conditions in two large watersheds, the Maumee and St. 

Joseph Rivers, using 108 different sets of climate change inputs representing a plausible 

range of CO2 emissions.  In general, the median results suggest small decreases in 

streamflow in both watersheds, with similar decreases in sediment delivery to the river 

mouths. The exception to this is the Mid-Century scenario (2031-2050) for the Maumee 

River Watershed, where its managed agricultural landscapes are likely to drive the 

sediment and streamflow response of the watershed.  This implies that the response of 

farmers to the changing climate will significantly impact the streamflow and sediment 

yield in agricultural areas. 

There is a large amount of variation in the climate change model projections that 

drive similarly large variations in the predicted sediment yield and sediment discharge 

response.  Even though averages across climate model ensembles tend to show little 

change, the variance is large.  Of note, the differences between RCP 6.0 and RCP 8.5 

scenarios are smaller than the variation across models within each scenario. The 

responses will also vary between watersheds depending on the dominance of agricultural 

lands, farming practices, soil types, and other factors. 

We also estimated dredging costs using two methods and, in general, they 

decrease slightly at St. Joseph, MI (~ 4-8% median decrease in the Contemporary, 8-18% 

median decrease in the Mid-Century).  The Maumee dredging costs are likely to remain 

near the current range in the Contemporary, but are projected to increase slightly in the 

Mid-Century period (median increase of 1-6% in the Mid-Century).  This will depend on 

the responses of farmers in the watershed to climate change.  The model variance also 

indicates a significant uncertainty in outcomes. 

This study focused on the aggregated effects of a large number of downscaled 

climate scenarios but only a single sediment modeling framework using SWAT.  Our 

understanding of the potential impacts of climate change could benefit by extending this 
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research to include other sediment models and to examine the differences and variability 

within the CMIP5 projections.  There is also a need to explore the likely responses of 

farmers to lengthening growing seasons and the impacts of climate-induced changes in 

agricultural and management practices on the sediment regime of watersheds. 

Supporting Information 

Interested readers may view additional model results in the Appendix 

accompanying this chapter.  Figure S3.1 shows the PDFs of observed and downscaled 

temperature and precipitation.  Figure S3.2 shows the PDFs of mean annual temperature 

and precipitation for both the CMIP3 and CMIP5 scenarios.  We have provided the results 

for all of the CMIP3 scenarios modeled and the A1b scenarios as Figure S3.3 to Figure S3.7.  

CMIP5 results for all RCPs combined, as well as for RCPs 2.6 and 4.5 are presented in 

Figure S3.8 to Figure S3.12.  Table S3.1 and report the SWAT model outputs for the 

Contemporary and Mid-Century periods, respectively.  Table S3.3 reports the estimated 

change in dredging costs. 
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APPENDIX 
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Figure S3.1. Probability Density Functions for the historical period (1988-2001, 2003-2008) 
of observed and downscaled a) mean annual temperature and b) annual precipitation.  
Note that in panel b the RCP 6.0 and 8.5 lines are identical. 

 

Figure S3.2. Probability Density Functions of observed and downscaled a) mean annual 
temperature and b) annual precipitation for all CMIP3 and CMIP5 projections. 
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Figure S3.3.  Probability density functions for the historical period (1988-2001, 2003-2008) 
simulated using observed climate data and downscaled climate data from CMIP3: a) 
annual average streamflow for the St. Joseph River, b) annual average streamflow for the 
Maumee River, c) annual average sediment discharge for the St. Joseph River, and d) 
annual average sediment discharge for the Maumee River. 
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Figure S3.4. Differences in modeled streamflow between current (1989-2008), and both 
Contemporary (a, 2011-2030) and Mid-Century (b, 2031-2050) CMIP3 scenarios.  CMIP3 
indicates all downscaled CMIP3 scenarios while A1b are only those scenarios that used the 
A1b emissions scenario. 
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Figure S3.5. Differences in modeled sediment yield between current (1989-2008), and both 
Contemporary (a, 2011-2030) and Mid-Century (b, 2031-2050) CMIP3 scenarios.  CMIP3 
indicates all downscaled CMIP3 scenarios while A1b are only those scenarios that used the 
A1b emissions scenario. 
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Figure S3.6. Differences in modeled sediment discharge between current (1989-2008), and 
both Contemporary (a, 2011-2030) and Mid-Century (b, 2031-2050) CMIP3 scenarios.  CMIP3 
indicates all downscaled CMIP3 scenarios while A1b are only those scenarios that used the 
A1b emissions scenario. 
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Figure S3.7. Difference in annual harvested yield per hectare estimated by the SWAT 
models for a) Contemporary (2011-2030) and b) Mid-Century (2031-2050) CMIP3 scenarios.  
CMIP3 indicates all downscaled CMIP3 scenarios while A1b are only those scenarios that 
used the A1b emissions scenario. 
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Figure S3.8.  Probability density functions for the historical period (1988-2001, 2003-2008) 
simulated using observed climate data and downscaled climate data from CMIP5: a) 
annual average streamflow for the St. Joseph River, b) annual average streamflow for the 
Maumee River, c) annual average sediment discharge for the St. Joseph River, and d) 
annual average sediment discharge for the Maumee River. 
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Figure S3.9. Differences in modeled streamflow between current (1989-2008), and both 
Contemporary (a, 2011-2030) and Mid-Century (b, 2031-2050) CMIP5 scenarios.  CMIP5 
indicates all downscaled CMIP5 scenarios.  2.6 and 4.5 indicate the RCP 2.6 and 4.5 
emissions pathways, respectively. 
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Figure S3.10. Differences in modeled sediment yield between current (1989-2008), and 
both Contemporary (a, 2011-2030) and Mid-Century (b, 2031-2050) CMIP5 scenarios.  CMIP5 
indicates all downscaled CMIP5 scenarios.  2.6 and 4.5 indicate the RCP 2.6 and 4.5 
emissions pathways, respectively. 
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Figure S3.11. Differences in modeled sediment discharge between current (1989-2008), and 
both Contemporary (a, 2011-2030) and Mid-Century (b, 2031-2050) CMIP5 scenarios.  CMIP5 
indicates all downscaled CMIP5 scenarios.  2.6 and 4.5 indicate the RCP 2.6 and 4.5 
emissions pathways, respectively. 
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Figure S3.12. Difference in annual harvested yield per hectare estimated by the SWAT 
models for a) Contemporary (2011-2030) and b) Mid-Century (2031-2050) CMIP5 scenarios.  
CMIP5 indicates all downscaled CMIP5 scenarios.  2.6 and 4.5 indicate the RCP 2.6 and 4.5 
emissions pathways, respectively. 
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Table S3.1. SWAT model outputs for the Contemporary period (Scenario Years 2011-2030), 
reported as change from modeled historical (1989-2008) averages. 

    St. Joseph Maumee 

    RCP 6.0 RCP 8.5 RCP 6.0 RCP 8.5 

Streamflow 

(cms) 

Lower 

Quartile 
-9.1 -8.6 -11.6 -12.5 

Median -1.6 -0.1 -0.9 0.2 

Upper 

Quartile 
7.5 9.2 14.2 10.3 

Sediment 

Yield 

(105t/yr) 

Lower 

Quartile 
-24.03 -30.02 -88.67 -100.47 

Median -14.83 -10.17 -13.36 -4.25 

Upper 

Quartile 
8.07 6.13 72.63 77.97 

Sediment 

Discharge 

(105t/yr) 

Lower 

Quartile 
-2.55 -3.08 -16.02 -18.77 

Median -1.39 -0.92 -4.56 -4.80 

Upper 

Quartile 
1.50 0.95 11.86 13.75 
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Table S3.2. SWAT model outputs for the Mid-Century period (Scenario Years 2031-2050), 
reported as change from modeled historical averages. 

    St. Joseph Maumee 

    RCP 6.0 RCP 8.5 RCP 6.0 RCP 8.5 

Streamflow 

(cms) 

Lower 

Quartile 
-7.6 -13.0 -4.0 -5.3 

Median -1.1 -0.5 6.1 3.9 

Upper 

Quartile 
6.8 6.3 17.0 16.0 

Sediment 

Yield 

(105t/yr) 

Lower 

Quartile 
-27.41 -35.62 -49.10 -64.23 

Median -16.84 -16.35 16.31 5.45 

Upper 

Quartile 
2.96 3.07 76.54 88.07 

Sediment 

Discharge 

(105t/yr) 

Lower 

Quartile 
-3.05 -4.35 2.92 -3.03 

Median -2.04 -2.13 15.03 7.96 

Upper 

Quartile 
0.78 0.65 23.63 20.07 
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Table S3.3. Projected median annual dredging cost changes in $000s relative to dredging 
costs simulated using downscaled CMIP5 historical climate data for 1989-2008.  1:1 
Sediment OutflowDischarge:Dredging Cost method is based on 1989-2009. 

    
 

Regression 
1:1 Sediment Discharge 

(Based on 1989-2009) 

    
 

Contemporary 
Mid-

Century 
Contemporary 

Mid-

Century 

   Years 2011-2030 2031-2050 2011-2030 2031-2050 

St. Joseph 

Dredging 

Costs 

RCP 

6.0 

Upper 

Quartile 
95 60 40 19 

Median -120 -131 -28 -41 

Lower 

Quartile 
-173 -241 -59 -71 

RCP 

8.5 

Upper 

Quartile 
53 20 20 14 

Median -50 -159 -20 -46 

Lower 

Quartile 
-187 -297 -60 -85 

Maumee 

Dredging 

Costs 

RCP 

6.0 

Upper 

Quartile 
33 52 119 242 

Median 11 28 -42 150 

Lower 

Quartile 
-11 3 -159 29 

RCP 

8.5 

Upper 

Quartile 
43 49 138 198 

Median 14 25 -45 75 

Lower 

Quartile 
-10 -2 -174 -28 
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CHAPTER 4:  
CLIMATE AND HYDROLOGIC ENSEMBLING LEAD TO DIFFERING STREAMFLOW 

AND SEDIMENT YIELD PREDICTIONS 

Abstract 

Climate change is leading to alterations of the hydrologic cycle and sediment 

movement within watersheds, but there are large amounts of uncertainty about the 

details and impacts of these changes in the future.  To reduce this uncertainty, many 

researchers create ensembles by averaging together the projected temperature and 

precipitation from multiple global climate model (GCM) ensemble members before 

running these as forcing inputs through hydrologic and sediment yield models.  There is 

little research on whether these ensembled climate scenarios produce hydrologic model 

results to those that are representative of the hydrologic results based on individual 

climate ensemble members.  We created multiple sets of ensembled climate inputs for 

hydrologic and sediment yield models for a pair of adjacent watersheds that drain to the 

Great Lakes, based on both Representative Concentration Pathway (RCP) 4.5 and RCP 

8.5.  We then compared the hydrologic and sediment results of a model forced by these 

ensembled climate scenarios with those hydrologic ensembles created by running the 

individual climate ensemble members through the same hydrologic models.  We found 

that in all cases the results are significantly different at the 5% confidence level and the 

ensembled climate scenarios can lead to systematic negative biases in streamflow and 

sediment yield.   

We also looked at three different subset hydrologic ensembles: all 10 CMIP5 

ensemble members from the CSIRO mk3.6 model; a Representative ensemble with high, 

moderate and low precipitation predictions; and a Best Fit ensemble based on GCM 

performance relative to historic climate.  We found that the subset ensembles covered a 

large portion of the range of outputs for the whole set while producing mean annual 

streamflow, sediment yield, and sediment discharge results that are within 12.2% of the 

full hydrologic ensemble results. 
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1. Introduction 

Changes in climate, particularly precipitation and temperature, can cause a wide 

range of impacts to our environment.  Streamflow and sediment movement are 

particularly susceptible to changes in both magnitude and timing of precipitation.  They 

are also affected by differences in temperature, although less directly.  These changes to 

streamflow and sediment movement through a watershed in turn impact infrastructure, 

agriculture, and ecosystems.  

Many researchers have looked at the potential impacts of climate change on 

streamflow and sediment, but most limit their modeling efforts to a handful of climate 

scenarios (e.g., Cherkauer and Sinha, 2010; Johnson et al., 2015; O'Neal et al., 2005; Park 

et al., 2011; Serpa et al., 2015; Verma et al., 2015).  This can be problematic because 

research has shown there can be a significant difference in streamflows, sediment yield 

from the landscape, and sediment discharge across climate model ensemble members, 

even when they are driven by the same forcing conditions (Dahl et al., 2018).  One 

approach to reduce this variability while still minimizing the number of simulations 

required is to create an ensemble of the climate inputs (Praskievicz, 2016; Shrestha et al., 

2012; van Liew et al., 2012), with the implicit assumption that the mean behavior across 

models is representative of the most likely future conditions.   

Ensembled climate inputs are typically created by averaging the precipitation and 

temperature for a given point in time and space across multiple climate ensemble 

members.  This single ensembled climate is then run through a hydrologic model to 

produce a future streamflow and sediment discharge prediction (Figure 4.1).  It is not 

clear from the literature whether the streamflow and sediment transport resulting from a 

single, ensembled climate are the same as if all of the component climate ensemble 

members were run through the hydrologic model and used to create an ensembled 

hydrology. 
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Figure 4.1. In this paper, we focus on two RCPs (4.5 and 8.5).  Each of these RCPs was run 
through multiple climate models, with each climate model having one or more ensemble 
members provided to the CMIP5.  We define ensembled climate scenarios as being an 
average of selected climate model ensemble members before they are downscaled and 
run through a hydrologic model (dashed lines).  Ensembled hydrology scenarios are ones 
where the individual climate ensemble members are downscaled and run through the 
hydrologic model separately before being averaged together (dotted lines). 

To directly address this question, we modeled two large, adjacent watersheds in 

the Great Lakes region using the Soil and Water Assessment Tool (SWAT).  We ran these 

models using both individually downscaled climate model outputs and ensembles of 

these outputs.  We then compared the streamflow, sediment yield, and sediment 

transport results to determine whether a single climate ensemble run or a subset of the 

climate ensemble members can be used to accurately represent the climate model effects 

of all of the available ensemble members. 

2. Methods 

2.1. Site Description 

The Maumee and St. Joseph River watersheds span the lower portion of Michigan, 

stretching from Lake Erie to Lake Michigan (Figure 4.2).  The Maumee watershed covers 

17,015 km2 and is primarily agricultural (74.7% row crops and 5.2% pasture), according to 

the 2006 National Land Cover Database (Fry et al., 2013).  It drains portions of 

northeastern Indiana, southwestern Michigan, and northwestern Ohio to Lake Erie at 

Toledo, OH.  The mainstem of the Maumee River has United States Geological Survey 
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(USGS) flow gages at Defiance, OH (#04192500) and further downstream at Waterville, 

OH (#04193500).  The flow at Waterville averaged 172.6 m3/s between 1990 and 2009 

while the average annual suspended sediment load was 1.2 million tonnes between 1990 

and 2003. 

The St. Joseph River watershed abuts the northwestern edge of the Maumee 

watershed and extends westward to its outlet at St. Joseph, MI on Lake Michigan.  The St. 

Joseph watershed is smaller (12,138 km2) and has a lower proportion of agriculture (49.3% 

row crops, 12.2% pasture) than the Maumee, but more than twice as much forest (23.8% 

versus 8.2%).  The USGS gage at Niles, MI (#04101500) reported average flows of 113.6 

m3/s between 1990 and 2009.  There is no long-term sediment gaging at Niles, but a 

sediment-discharge relationship was developed by the USACE (2007). 

 

Figure 4.2. The Maumee and St. Joseph River watersheds constitute a contiguous block of 
land between Lake Erie and Lake Michigan, covering portions of Michigan, Ohio, and 
Indiana (modified from Dahl et al. (2018)). 
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2.2. Soil and Water Assessment Tool (SWAT) Models 

We used individual SWAT models for each watershed based on 1 arc-second 

resolution elevation data from the National Elevation Dataset, land use/land cover from 

the 2006 National Land Cover Database, and soil data from the Natural Resources 

Conservation Service’s Soil Survey Geographic database.  Information on dams included 

in the models was obtained from the National Inventory of Dams maintained by the U.S. 

Army Corps of Engineers.  The development and calibration of these models is more fully 

described in Dahl et al. (2018).  We ran the models using downscaled climate model data 

for 2010-2099 and used the first 5 years as a warmup period, excluding it from our 

analysis. 

2.3. Climate Data and Downscaling 

The Fifth Coupled Model Intercomparison Project (CMIP5; (Taylor et al., 2012)) 

resulted in at least 234 ensemble members from 37 different climate models. We selected 

Representative Concentration Pathways (RCP) 4.5 (Masui et al., 2011) and 8.5 (Riahi et al., 

2011) because they were both required by the CMIP5 experimental design and therefore 

had the largest numbers of available ensemble members. We retrieved bias-corrected, 

statistically downscaled versions of the CMIP5 climate model ensemble members from a 

dataset created by the United States Bureau of Reclamation and others (Brekke et al., 

2013).  The archive of downscaled CMIP5 model runs contains 70 complete runs of both 

RCP 4.5 and 8.5 with precipitation and temperature available on a monthly-basis for the 

North American Land Data Assimilation (NLDAS) grid.  We eliminated seven of the 

climate ensemble members (access1-3.1.rcp85, fgoals-s2.2.rcp85, fgoals-s2.3.rcp85, 

noresm1-me.1.rcp85, access1-3.1.rcp45, fgoals-s2.2.rcp45, and noresm1-me.1.rcp45) 

because they only had average tempertures available and one (hadgem2-es.1.rcp45) 

because it was missing data from December 2099. 

We created four separate climate ensembles for each of the selected RCPs by 

averaging the precipitation and temperature for all ensemble members at each time step 

and grid cell.  The first pair (RCP 4.5 and RCP 8.5) of climate ensembles used all of the 

available climate model ensemble members.  We then created a pair of climate ensembles 
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based only on the 10 ensemble members submitted from the CSIRO mk3.6 model (Jeffrey 

et al., 2013), because this submission had the most individual ensemble members of any 

model in the CMIP5. We generated a third pair of climate ensembles based on a 

representative subset of climate model ensemble members in an attempt to create a 

parsimonious representation of the full range of potential climate forcings.  Finally, we 

created a fourth pair of climate ensembles based on the subset of climate model ensemble 

members that did the best job of matching the historical climate of our study region. 

To select climate ensemble members representative of the full range, we first 

totaled the precipitation for each run both spatially (over the NLDAS grid cells centered 

on 40.1875°N to 42.4375°N and 86.4375°W to 83.0625°W) and temporally (from 2010 to 

2099).  The ensemble members were then sorted based on the total precipitation and 

percentiles were assigned to each run.  We then selected one ensemble member each 

from the top and bottom 10% and three from the middle 20% of total precipitation, 

choosing the same ensemble member from both RCP 4.5 and RCP 8.5 whenever possible.  

Additionally, we chose the lowest and highest ranked ensemble members from the 

CSIRO-mk3-6-0 model, because this submission had the largest number of ensemble 

members submitted to CMIP5.  The selected members of the Representative ensemble are 

all shown in Table 4-1. 

Table 4-1. Climate ensemble members selected for use in the Representative climate 
ensemble. 

RCP 4.5 RCP 8.5 

Ensemble Member Precipitation %  Ensemble Member Precipitation % 

access1-0.1.rcp45 3% access1-0.1.rcp85 3% 

ccsm4.4.rcp45 45% csiro-mk3-6-0.10.rcp85 43% 

mpi-esm-lr.1.rcp45 51% mpi-esm-lr.1.rcp85 46% 

csiro-mk3-6-0.7.rcp45 55% ccsm4.4.rcp85 47% 

csiro-mk3-6-0.1.rcp45 99% csiro-mk3-6-0.1.rcp85 93% 
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The Best Fit ensemble represents the set of climate ensemble members that did 

the best job in matching the historical climate of the study region.  We determined this 

by summing the precipitation over the study region and averaging the temperature for 

each ensemble member for 1971-1999 and comparing these results to the actual numbers 

taken from the NLDAS dataset.  We selected all climate ensemble members that were in 

the most representative quartile for both precipitation and temperature (Table 4-2).  

Similar to the observation of Knutti et al. (2010), we found that few ensemble members 

performed well for both temperature and precipitation, despite being bias-corrected to 

long-term (1961-1990) average temperature and precipitation (Brekke et al., 2013).  

We downscaled all selected scenarios using the same methodology as Dahl et al. 

(2018), which is based on the work of other researchers (Maurer and Hidalgo, 2008; 

Wood et al., 2004).  This method takes the bias-corrected, spatially downscaled data 

provided by the United States Bureau of Reclamation and disaggregates it spatially to 

individual gage locations and temporally to daily time steps.   
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Table 4-2. Climate ensemble members selected for the best fit climate ensemble were 
chosen based on being in the most accurate quartile for both total precipitation and 
average temperature over the period 1971-1999. 

RCP 4.5 RCP 8.5 

Ensemble 

Member 

Precipitation 

Percentile 

Temperature 

Percentile 

Ensemble 

Member 

Precipitation 

Percentile 

Temperature 

Percentile 

noresm1-

m.1.rcp45 
6% 15% 

noresm1-

m.1.rcp85 
6% 16% 

miroc-esm-

chem.1.rcp

45 

8% 23% 

miroc-esm-

chem.1.rcp

85 

8% 23% 

hadgem2-

es.2.rcp45 
13% 7% 

hadgem2-

es.2.rcp85 
11% 7% 

mri-

cgcm3.1.rcp

45 

17% 8% 

mri-

cgcm3.1.rcp

85 

15% 9% 

ccsm4.2.rc

p45 
25% 21% 

ccsm4.2.rc

p85 
23% 21% 

      
miroc5.1.rc

p85 
24% 10% 

 

2.4 Statistical Analysis 

We tested the differences between the hydrologic outputs of the ensembled 

climate and the ensembled hydrologic outputs of the individual climate ensemble 

members using Analysis of Covariance (ANCOVA).  ANCOVA tests for differences in both 

the slope and y-intercept of regression lines fit to the data.  We centered the years by 

subtracting the mean in order to minimize the effect of the large year values on the slope 
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in the ANCOVA test.  We also tested each line for monotonic trends using the Mann-

Kendall test.  We used a significance level of α = 0.05 for all tests. 

3. Results and Discussion 

3.1. Streamflow 

The mean annual streamflow based on the ensembled climate for the full set of 

GCM outputs and that from the ensembled hydrology for the same input data are shown 

in Figure 4.3.  This figure also shows the range of all of the individual climate ensemble 

members.  The streamflow for the ensembled climate is significantly different from the 

ensembled hydrology for the Maumee and St. Joseph Rivers under both RCP 4.5 and RCP 

8.5 at the 5% level of confidence.  Table S4.1 provides p-values for the ANCOVA tests.   

These significant differences are all based on the y-intercept and not slope, indicating a 

constant, systematic, negative bias induced by the ensembled climate.  The ensembled 

climate produces a mean annual streamflow that is 16.2 to 17.7 m3/s (12.1-13.0%) lower 

than the ensembled hydrology for the Maumee and 7.1 to 8.2 m3/s (5.2-6.1%) for the St. 

Joseph (Table 4-3).     

The Maumee River streamflow from the ensembled hydrology has statistically 

significant upward trends for both RCP 4.5 (p = 1.7×10-3) and RCP 8.5 (p = 4.78×10-11).  The 

ensembled climate streamflow trend is also significant for RCP 8.5 (p = 8.9×10-7) while 

the trend for RCP 4.5 is just outside of our selected significance range (p = 0.0524), 

indicating that choice of ensembling methodology can affect the detection of projected 

trends.  None of the St. Joseph River streamflows had statistically significant streamflow 

trends.  This disparity is likely due to the difference in land use between the two 

watersheds.  The Maumee has a much higher proportion of agriculture and, as noted by 

Dahl et al. (2018), this leads to a feedback effect on streamflow under a warming climate.  

As the climate warms, crops mature and are harvested earlier in the year, reducing the 

late season transpiration and allowing greater runoff.  Increasing crop yields have been 

noted as a potential effect of climate change previously (Pryor et al., 2014). 

The difference between the negative bias of the ensembled climate relative to the 
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ensembled hydrology is likely due to the combination of the non-linear hydrologic 

processes and a loss of the precipitation signal.  Knutti et al. (2010) noted this effect in 

GCMs and showed that the distribution of precipitation in multi-model ensembles is 

narrower than any of the individual runs because the differences from average are not co-

located in space or time.  When the precipitation and temperature differences are 

translated through the hydrologic model, this effect can be magnified. 

 

Figure 4.3. The mean annual flow of all the climate ensemble members is greater than the 
mean annual flow of the ensembled climate run through the same hydrologic model.  
This is true for both the Maumee (top) and St. Joseph Rivers (bottom) and regardless of 
RCP.  The red shaded area represents the full range of the individual climate runs used to 
create the ensembled hydrology. 

3.2. Sediment Yield  

The annual sediment yield produced by the ensembled climate and ensembled 

hydrology for all GCM outputs are significantly different (p < 0.05) for both the St. Joseph 

and Maumee Rivers (Figure 4.4; Table S4.2).  None of the slopes are significantly different 

between the two ensembling methods, indicating that the difference between the two 
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manifests as a consistent bias, with the ensembled climate resulting in mean annual 

sediment yields 899,728 to 952,111 tonnes (12.4-14.0%) lower in the Maumee and 8,617 to 

10,131 tonnes (10.8-11.2%) lower in the St. Joseph. 

  All of the ensembled sediment yields have statistically significant, upwards trends 

with p-values less than 2×10-3.  The ensembled climate results in consistently lower 

sediment yields than the ensembled hydrology.  It is interesting to note that both 

watersheds show large increases in sediment yield towards the end of the century under 

RCP 8.5.  These increases may be the result of earlier crop harvest leaving behind bare 

ground for longer periods of the year, an effect previously noted by Dahl et al. (2018). 

 

Figure 4.4. The mean amount of sediment delivered to the river each year has statistically 
significant differences between the ensembled climate and ensembled hydrology 
approaches.  The red shaded area represents the full range of the individual climate runs. 

3.3. Sediment Discharge 

 We report the sediment discharge as the amount of sediment exiting the mouth of 

the river (Figure 4.5).  The ensembled climate and ensembled hydrology for all climate 
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ensemble members produce statistically different sediment discharges (p < 0.05) for all 

watershed and RCP combinations, based on the intercept (Table S4.3).  The total annual 

sediment discharge at the mouth of the St. Joseph River is 1,591 (18.7%) to 1,744 (18.7%) 

tonnes lower for the ensembled climate than the ensembled hydrology. 

 

Figure 4.5. Sediment discharge differs between the climate and hydrologic ensembling 
methods.  The direction of this difference varies between the watersheds and depends on 
the reservoir sediment properties. 

The sediment discharge for the Maumee is the one variable we examined where 

the ensembled climate is greater than the ensembled hydrology.  The total annual 

sediment discharge at the mouth of the Maumee River is  118.5 to 155.4 kilotonnes (8.1-

10.8%) higher for the ensembled climate but 1.6 to 1.7 kilotonnes (18.7-18.7%) lower at the 

mouth of the St. Joseph River.  This difference between the two watersheds is caused 

primarily by the reservoirs in the models and the predominant grain sizes.  While all of 

the reservoirs in both SWAT models are treated as run-of-river, the median grain size 

(d50) differs between the two watersheds.  In the Maumee model reservoirs, the d50 is 
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0.041 mm (coarse silt) and the equilibrium sediment concentration is 1,135 mg/l.  

Changing these parameters to match those of the St. Joseph model reservoirs (d50 = 0.265 

mm or fine sand; normal sediment concentration = 335 mg/l) greatly reduces the 

difference between the ensembled climate and ensembled hydrology results (Figure S4.1).  

The importance of dams for sediment movement through the Maumee watershed has 

been previously established.  Alighalehbabakhani et al. (2017a) found that Independence 

dam, the second most downstream dam on the mainstem of the Maumee, had the highest 

sediment accumulation of the 12 dams they studied across the Great Lakes and their 

modeling results suggest that the Independence reservoir may already be filled with 

sediment. 

 

3.4 Effect of Ensemble Member Choice 

We created an ensembled climate and ensembled hydrology based on the 10 

ensemble members for the CSIRO mk3.6 model (Figure 4.6).  The ensembled climate and 

ensembled hydrology mean annual flows are significantly (p < 0.05) different in their y-

intercepts, but not their slopes (Table S4.1).  The ensembled climate is consistently lower 

than the ensembled hydrology with differences in the Maumee of 15 to 15.7 m3/s (10.6-

11.2%) and 6.8 to 7.2 m3/s (4.8 to 5.2%) in the St. Joseph (Table 4-3).  All of the Maumee 

River ensembles and the RCP 4.5 St. Joseph River ensembles have statistically significant 

increasing trends.  The CSIRO mk3.6 ensemble results for sediment yield (Figure S4.2, 

Table S4.2) and sediment discharge (Figure S4.3, Table S4.3) are similar to those for the 

ensembles based on the entire range of available climate ensemble members.  

It is interesting to note that the range of streamflows of the 10 ensemble members 

from the CSIRO mk3.6 model span almost the entire range of all the climate ensemble 

members (Figure 4.6).  While all of these ensemble members are from the same global 

climate model, they were initialized at different times from the control run (Jeffrey et al., 

2013), producing significant variability over the duration of the climate change run.  

Earlier work found that inter-model variability is the largest source of uncertainty in 

climate change ensemble members (Giorgi and Francisco, 2000a; Giorgi and Francisco, 
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2000b), but the wide range of streamflow and sediment results produced by the CSIRO 

mk3.6 ensemble members indicate that may no longer be the case for modern GCMs. 

 

 

Figure 4.6. The ten ensemble member from the CSIRO mk3.6 model have almost as large a 
range as all of the available climate ensemble members.  

The Representative ensembled climate streamflow is significantly different from 

the Representative ensembled hydrology across both models and RCPs (Figure 4.7, Table 

S4.1).  This difference is due to the y-intercept and there is no statistically significant 

difference in slope.  The ensembled climate results in streamflows that are 11.6 to 13.3 

m3/s (8.7-9.7%) lower in the Maumee and 6.4 to 6.5 m3/s (4.75-5.0%) lower in the St. 

Joseph than the ensembled hydrology (Table 4-3).  Both ensembling methods for the 

Representative climate ensemble members have statistically significant increasing trends 

for the Maumee River under RCP8.5.  The St. Joseph River only has a statistically 

significant trend for the RCP 8.5 ensembled climate.  Even though we selected the 

ensemble members to be representative, there are very different patterns of statistically 
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significant trends between this method and the ensembles made up of the full suite of 

climate ensemble members.  The impacts of ensembling using representative climate 

ensemble members on sediment yield and sediment discharge can be seen in Figure S4.4 

and Figure S4.5, respectively.  The ANCOVA results are available in Table S4.2 and Table 

S4.3. 

Table 4-3. The ensembled climate streamflow is consistently biased lower than from the 
ensembled hydrology, regardless of the choice of ensemble members. 

    

Ensemble Method 

Maumee  

Mean Annual 

Streamflow (m3/s) 

St. Joseph 

Mean Annual 

Streamflow (m3/s)   RCP 

All Members 

4.5 
Hydrology 134.0 136.7 

Climate 117.8 129.7 

8.5 
Hydrology 136.8 134.7 

Climate 119.1 126.4 

CSIRO mk3.6 

4.5 
Hydrology 140.9 143.2 

Climate 125.9 136.4 

8.5 
Hydrology 139.9 139.8 

Climate 124.3 132.6 

Representative 

4.5 
Hydrology 136.8 138.0 

Climate 123.5 131.6 

8.5 
Hydrology 133.4 130.7 

Climate 121.8 124.2 

Best Fit 

4.5 
Hydrology 134.7 134.8 

Climate 121.1 128.5 

8.5 
Hydrology 143.2 137.5 

Climate 128.0 130.1 
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Figure 4.7. The ensemble of a small number of representative climate model ensemble 
members does not capture the full range of variability and suffers from the same bias 
between ensembled climate and ensembled hydrology. 

The Best Fit ensembles behaved similarly to the Representative ensembles (Figure 

4.8).  Again, the streamflow associated with the ensembled climate was lower than the 

ensembled hydrology and significantly different in intercept but not slope (Table 4-3, 

Table S4.1).  The ensembled climate mean annual streamflow was 13.6 to 15.3 m3/s (10.1-

10.7%) lower in the Maumee and 6.3 to 7.4 m3/s (4.7-5.4%) lower in the St. Joseph than 

the streamflow for the ensembled hydrology.  In spite of these ensemble members being 

among the best at matching the historic climate, they still account for some of the most 

extreme streamflow in the all model ensemble and cover a large portion of the range of 

results.  This is not surprising because GCMs that perform well for historic climate can 

produce divergent outputs under future climate scenarios (Knutti et al., 2010). 
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Figure 4.8. The Best Fit Ensemble, based on the climate model ensemble members that 
most closely match historical climate results, is still susceptible to differences between 
ensembled hydrology and ensembled climate. 

These results clearly show that the ensembled climate and ensembled hydrology 

do not produce the same results.  Since many studies have limited computational 

resources, there are likely to be questions about which, if any, of the ensemble subsets 

(e.g., CSIRO mk3.6, Representative, or Best Fit) should be used.  When we compare the 

results for the three ensemble subsets presented here to the results from the full set of 

ensemble members, the mean streamflows are all within 5% (Table 4-4). The mean 

Representative ensemble streamflow, sediment yield, and sediment discharge are all 

within 3% of the ensembled hydrology for the full set of GCM outputs. Based on these 

results, we suggest that researchers looking to mimic the full range of ensemble members 

with a limited subset should consider something akin to our Representative ensemble 

where a limited subset of high, average, and low precipitation scenarios are combined. 
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Table 4-4. The three different subset ensembles all produce similar results to the full set 
of ensembles.  Here we show the difference from the mean ensembled hydrology for all 
GCM outputs. 

  Streamflow Sediment Yield Sediment Discharge 

 RCP Maumee St. Joseph Maumee St. Joseph Maumee St. Joseph 

CSIRO mk3.6 
4.5 +5.2% +4.7% +9.5% +11.3% +3.9% +12.2% 

8.5 +2.3% +3.8% +5.0% +7.5% +3.4% +7.8% 

Representative 
4.5 +2.1% +1.0% +2.1% +2.5% +1.9% +1.9% 

8.5 -2.5% -2.9% +0.8% +0.0% -1.3% -0.8% 

Best Fit 
4.5 +0.5% -1.4% +1.1% -0.9% +0.5% -2.0% 

8.5 +4.7% +2.1% +7.0% +2.8% +2.3% +3.3% 

 

Comparing the subset ensembles to the full ensemble raises some philosophical 

questions about what the correct ensemble is.  A common assumption in climate change 

studies is that climate models that predict the past well will continue to do so in the 

future.  This is far from certain, because climate models that agree on historical 

conditions often diverge for future predictions (Knutti et al., 2010; Pierce et al., 2009).  

The Reliability Ensemble Averaging (REA) technique (Giorgi and Mearns, 2002) attempts 

to address this by assigning weights based on both historical accuracy and how close they 

are to the mean of all future model predictions.  The REA method reduces the weight of 

outliers, implicitly assuming that they are much less likely to occur and may be the 

product of a flawed model.  In contrast, our Representative ensemble equally weights all 

of the ensemble members based solely on historical accuracy.  We suggest that if the 

purpose of a study is to look at the potential range of hydrologic and sediment impacts 

that may occur, a Representative ensemble is a good surrogate for the full range of 

climate ensemble members. 

4. Conclusions 

The use of an ensembled climate scenario as the input to a hydrologic model 

biases the result relative to the ensembled hydrologic output based on the individual 
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climate ensemble members, producing results that are significantly different (p < 0.05).  

This is most likely due to the loss of the precipitation signal that is offset temporally and 

spatially in the individual ensemble members.  When possible, ensembling should be 

done using the outputs of hydrological models rather than their inputs. Avoiding or 

acknowledging the potential for biasing the results will help scientists and policy makers 

formulate better responses to the changing climate. 

It is often necessary to use an ensembled climate or a limited number of climate 

runs due to computational limitations or time constraints, but it is important to do so in 

an informed manner. In this paper we have shown that it is possible to capture a 

significant amount of the range of all climate ensemble members using only a limited 

number (5-10) of members.  Selection of the ensemble members to encompass the full 

range of temperature and precipitation can result in a parsimonious ensemble that 

produces mean annual hydrologic and sediment model results similar to the full suite of 

potential ensemble members.  The selection of the particular ensemble members deserves 

further study and should consider whether the goal is to achieve a consistent mean or 

account for the likely range of future scenarios.   
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Table S4.1. ANCOVA tests for streamflow show that the ensembled climate is significantly 
(p < 0.05) different from the ensembled hydrology in all cases, based on the intercept.  
None of the slopes are significantly different. 

      Maumee St. Joe 

    Ensemble 

Method 

ANCOVA ANCOVA 

  RCP Slope Intercept Slope Intercept 

All Members 

4.5 
Hydrology 

5.50E-01 5.54E-27 4.79E-01 1.64E-10 
Climate 

8.5 
Hydrology 

6.01E-02 5.35E-25 2.61E-01 5.35E-25 
Climate 

CSIRO mk3.6 

4.5 
Hydrology 

7.92E-01 1.31E-07 8.55E-01 2.87E-03 
Climate 

8.5 
Hydrology 

8.22E-01 5.64E-08 8.29E-01 5.64E-08 
Climate 

Representative 

4.5 
Hydrology 

8.73E-01 3.21E-04 8.10E-01 2.61E-02 
Climate 

8.5 
Hydrology 

5.83E-01 1.01E-03 4.16E-01 1.01E-03 
Climate 

Best Fit 

4.5 
Hydrology 

9.85E-01 2.56E-05 7.97E-01 1.32E-02 
Climate 

8.5 
Hydrology 

6.35E-01 3.36E-06 6.29E-01 3.36E-06 
Climate 
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Table S4.2. ANCOVA tests on the mean annual sediment yield demonstrate that the 
ensembled climate is significantly (p < 0.05) than the ensembled hydrology in intercept 
but not slope, for all cases.  

      Maumee St. Joe 

    Ensemble 

Method 

ANCOVA ANCOVA 

  RCP Slope Intercept Slope Intercept 

All Members 

4.5 
Hydrology 

5.56E-01 7.30E-21 2.34E-01 6.02E-12 
Climate 

8.5 
Hydrology 

2.92E-01 2.19E-18 9.72E-02 2.19E-18 
Climate 

CSIRO mk3.6 

4.5 
Hydrology 

8.30E-01 2.21E-07 4.20E-01 9.63E-05 
Climate 

8.5 
Hydrology 

9.33E-01 2.72E-07 4.86E-01 2.72E-07 
Climate 

Representative 

4.5 
Hydrology 

8.31E-01 5.94E-05 7.99E-01 7.44E-03 
Climate 

8.5 
Hydrology 

5.05E-01 1.64E-03 5.90E-01 1.64E-03 
Climate 

Best Fit 

4.5 
Hydrology 

9.44E-01 1.39E-07 9.96E-01 9.88E-05 
Climate 

8.5 
Hydrology 

8.22E-01 9.21E-06 3.80E-01 9.21E-06 
Climate 
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Table S4.3. ANCOVA tests on the mean total annual sediment discharge show that the 
ensembled climate is significantly (p < 0.05) different from the ensembled hydrology for 
all cases.  This difference manifests in the intercepts but not the slopes. 

      Maumee St. Joe 

    Ensemble 

Method 

ANCOVA ANCOVA 

  RCP Slope Intercept Slope Intercept 

All Members 

4.5 
Hydrology 

4.27E-01 2.23E-24 5.13E-01 1.29E-19 
Climate 

8.5 
Hydrology 

6.90E-01 4.42E-17 1.25E-01 4.42E-17 
Climate 

CSIRO mk3.6 

4.5 
Hydrology 

8.32E-01 1.53E-10 5.36E-01 1.00E-08 
Climate 

8.5 
Hydrology 

7.70E-01 2.65E-06 7.69E-01 2.65E-06 
Climate 

Representative 

4.5 
Hydrology 

7.54E-01 2.07E-03 9.76E-01 1.75E-05 
Climate 

8.5 
Hydrology 

2.25E-01 9.64E-05 5.09E-01 9.64E-05 
Climate 

Best Fit 

4.5 
Hydrology 

3.38E-01 4.39E-05 4.26E-01 1.82E-07 
Climate 

8.5 
Hydrology 

1.05E-01 1.52E-04 4.40E-01 1.52E-04 
Climate 
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Figure S4.1. The reservoir sediment processes play an important role in sediment 
discharge, particularly under climate change.  Increasing the reservoir sediment d50 and 
normal concentration for the Maumee model to match those used for the St. Joseph River 
reservoirs causes the ensembled hydrology and ensembled climate to approach each 
other. 

 

Figure S4.2. Sediment yields based on climate inputs from the CSIRO mk3.6 global climate 
model. 
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Figure S4.3. Sediment discharge based on climate inputs from the CSIRO mk3.6 global 
climate model. 
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Figure S4.4. Sediment yields based on climate inputs from a representative selection of 
available climate ensemble members. 
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Figure S4.5. Sediment discharge based on climate inputs from a representative selection 
of available climate ensemble members. 
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Figure S 4.6. Sediment yields based on climate inputs from the best fit climate ensemble 
members. 
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Figure S 4.7. Sediment discharge based on climate inputs from the best fit climate 
ensemble members. 
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Table S4.4. The ensembled climate sediment yield is consistently biased lower than the 
ensembled hydrology, regardless of the choice of ensemble members. 

    

Ensemble Method 

Maumee  

Total Annual 

Sediment Yield 

(tonnes) 

St. Joseph 

Total Annual 

Sediment Yield 

(tonnes)   RCP 

All Members 

4.5 
Hydrology  6,434,215   80,081  

Climate  5,534,487   71,464  

8.5 
Hydrology  7,699,588   90,527  

Climate  6,747,477   80,397  

CSIRO mk3.6 

4.5 
Hydrology  7,044,665   89,116  

Climate  6,214,455   81,784  

8.5 
Hydrology  8,085,969   97,351  

Climate  7,250,606   88,792  

Representative 

4.5 
Hydrology  6,570,391   82,052  

Climate  5,865,431   76,019  

8.5 
Hydrology  7,757,722   90,552  

Climate  7,113,726   85,084  

Best Fit 

4.5 
Hydrology  6,506,819   79,372  

Climate  5,749,773   72,359  

8.5 
Hydrology  8,239,787   93,046  

Climate  7,372,572   84,225  
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Table S4.5. The ensembled climate sediment discharge is consistently biased lower than 
the ensembled hydrology for the St. Joseph River, regardless of the choice of ensemble 
members.  This difference is reversed for the Maumee River, where the ensembled 
hydrology produces lower annual sediment discharges than the ensembled climate. 

  

  

  

RCP 

Ensemble 

Method 

Maumee  

Total Annual 

Sediment 

Discharge (tonnes) 

St. Joseph 

Total Annual 

Sediment 

Discharge (tonnes) 

All Members 

4.5 
Hydrology  1,433,531   8,519  

Climate  1,588,889   6,929  

8.5 
Hydrology  1,454,865   9,312  

Climate  1,573,345   7,568  

CSIRO mk3.6 

4.5 
Hydrology  1,488,785   9,556  

Climate  1,637,137   8,095  

8.5 
Hydrology  1,503,671   10,034  

Climate  1,614,038   8,499  

Representative 

4.5 
Hydrology  1,461,130   8,685  

Climate  1,545,479   7,464  

8.5 
Hydrology  1,436,010   9,239  

Climate  1,537,315   8,178  

Best Fit 

4.5 
Hydrology  1,440,338   8,350  

Climate  1,542,808   7,133  

8.5 
Hydrology  1,487,714   9,619  

Climate  1,573,732   8,046  
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