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ABSTRACT 

 

DISTURBANCE ECOLOGY OF SOIL MICROBIAL COMMUNITIES IN 
RESPONSE TO THE CENTRALIA, PA COAL FIRE 

 
By 

 
Jackson Winther Sorensen 

 
Microbial communities are ubiquitous in our world and play important roles in biogeochemical 

and ecosystems processes on Earth. The ability of these microbial communities to provide these 

different processes is frequently tied to their community structure, which can be thought of both 

in terms of membership (i.e. who is there) and the relative abundance of these members. Changes 

in environmental conditions often lead to changes in microbial community structure as well. 

Microbial communities are formed through the process of assembly, which in turn is driven by 

the four processes of 1) Selection 2) Dispersal 3) Drift and 4) Diversification. Understanding the 

relative importance of each of these processes in different systems is important for predicting 

how microbial communities will change in response to disturbances.  

This dissertation presents work that uses the coal fire in Centralia, PA as a model press 

disturbance for understanding soil microbial community responses to and recovery from 

disturbance. The experiments herein aim to shed light the relative roles of Selection, Dispersal, 

and Drift in governing these responses in soil microbial communities experience a temperature 

disturbance. An observation study of a chronosequence of fire disturbance in Centralia, PA is 

used to generate hypotheses as to the relative roles of Selection, Dispersal, and Drift in the 

assembly of soil microbial communities experiencing a temperature disturbance. Further, an in 

depth look at some of these communities using shotgun metagenomics is used to observe specific 

microbial traits and characteristics selected for by the temperature disturbance. Finally, a 



laboratory soil mesocosm warming experiment investigates the relative influence of Dispersal 

and dormancy in governing responses to and recovery from disturbance.
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CHAPTER 1: Introduction 
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Microbial communities and structure-function relationships 

Microbial communities are ubiquitous in our world and are important players in 

important geochemical processes on Earth (1, 2). Microbes play important roles in the carbon 

cycle (3), and carry out key steps of the nitrogen and sulfur cycles (4, 5). Their functional 

potential is not limited to these environmental processes either, as they can play key roles in 

pathogen defense and growth promotion in plants (6, 7). There are an estimated 4-6 X1030 

microbial cells on Earth, equaling anywhere from 60-100% of the total carbon of plants and 

estimated at nearly 1012 species (1, 8). Overall, these microbial communities provide crucial 

functions for Earth 

The functional output of microbial communities is often dictated by their community 

structures. The relationship between the composition of a microbial community (taxonomic 

membership and relative abundances of those members) and the functions that it can perform is 

referred to as structure-function relationships. Early investigations into this relationship reported 

correlations between community structure and specific ecosystem functions (9–13) and others 

have shown strong causal relationship between community structure and ecosystem function (14, 

15). However, community structure does not always appear to be intrinsically linked to all 

functions. Some ecosystem processes may be more dependent on environmental context than on 

community structure, though even for these processes there appears to be some relationship 

between structure and function (14, 16). 
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Community assembly: Vellend’s synthesis of community ecology and Nemergut’s extension 

to microbes 

 Given the relationship between community structure and function, understanding what 

shapes community structure is an important field of study. The processes by which communities 

are formed is often referred to as assembly. Studies that have aimed to determine what governs 

assembly have often looked at the four sub-processes of Selection, Drift,  Dispersal and, 

Speciation. Vellend proposed a synthesis of these four processes as a model for community 

assembly (17) and  Nemergut and authors extended this synthesis to microbial communities, 

substituting Diversification for Speciation since microbiology lacks a strong species definition 

(18). Selection refers to natural selection from abiotic and biotic factors on fitness differences 

between species. Drift refers to slight stochastic changes in the abundance of different members. 

Dispersal is the process by which species travel between locations. Diversification is the process 

by which new genetic variation arises. The relative importance of each of these processes is 

dependent upon the environment. 

Selection is the most common assembly processes that has been studied to date. 

Numerous studies have looked at how certain environmental parameters shape and influence 

community structure. Rainfall, temperature, and pH have all been identified as important factors 

shaping community structure through selection (19–21). The influence of dispersal on microbial 

communities tends to vary by habitat type, with soils showing little evidence for the importance 

of dispersal in shaping community structure and dispersal having a greater influence in water and 

air environments (22, 23). The role of diversification in community assembly has typically been 

a difficult process to study. However, advances in high throughput sequencing techniques have 

made it possible to recover population level genomes of microbes from environmental 
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samples(24). A recent study used genome reconstruction from lake metagenomes across nine 

years to observe genome wide selective sweeps (25). Ecological drift appears to have its 

strongest influence when community size is small across, both for microbial and plant 

communities(26, 27).  

 Community assembly has historically borrowed terms from plant ecology to describe the 

different situations in which a community assembles. The first of these terms, primary 

succession, refers to assembly of a community on a blank slate environment, where there are no 

species to begin the assembly process. Some have suggested that this term is not as widely useful 

to microbial communities due to their larger phylogenetic and metabolic diversity in comparison 

to plants, and advocate defining different succession and assembly patterns based on the 

resources available at the environment(28). The second of the terms borrowed from plant 

ecology is secondary succession, or the assembly of communities after the occurrence of a 

disturbance. This type of succession occur when some type of disturbance shifts microbial 

community structure and allows new taxa to proliferate in the community. Some authors have 

advocated for calling microbial secondary succession “post-disturbance” succession, and 

splitting it into “post-press (after a long-term disturbance that impacts multiple generations) and 

post-pulse (after short-term disturbance)”(29). 

 

Disturbance and disturbance response 

Disturbances are events that cause some change in an ecosystem/environment. 

Historically, disturbances in abiotic factors which lead to different fit taxa being selected in the 

environment have been studied. These studies have shown that factors such warming, nutrient 

overload, rainfall/drought, and pH changes all have an influence on the resulting community 
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structure(14, 20, 30, 31). However, disturbances that influence any of the four processes of 

community assembly could have ramifications for the resulting community structure and 

function. 

When studying a microbial community’s response to a disturbance it helps to classify the 

potential outcomes of the disturbance. Allison and Martiny categorized these different types of 

responses(32). Given a disturbance, a community that does not change in either structure or 

function would be described as resistant. Given the same disturbance, a community that changes 

in structure but not in function could be described as functionally redundant. In this case despite 

an altered community composition, some metric about the community remains the same. This 

metric can be any function such as nitrogen fixation or decomposition, and so long as the metric 

remains the same while the community structure changes the community would be called 

functionally redundant. Finally, given the same disturbance, a community that changes in either 

structure or function, but returns to the original state would be called a resilient community. It is 

important to note that a single community could be functionally redundant for one metric while it 

may be sensitive to the disturbance for some other metric (i.e. an altered community structure 

may perform the same in regards to nitrogen fixation given a disturbance, but may perform 

differently in regards to primary production or respiration) . 

It is also possible to calculate indices of resistance and resilience of a microbial 

community for a particular parameter. Resistance can be thought of as the extent to which a 

disturbed community’s parameter of interest does not change in response to a disturbance after a 

given lag period(33, 34). Likewise, resilience indices can be calculated that represent the extent 

of recovery of a microbial community’s parameter post disturbance, and is frequently calculated 

as a rate. 
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While any environmental factor can be disturbed, it can be helpful to classify types of 

disturbances. One such way of doing so is to classify the disturbance based on its duration 

relative to the generation time of the disturbed community. A pulse disturbance is an 

environmental stress that acts on less than one generation for the community being described(33) 

and results in ecological change. A press disturbance on the other hand represents a stress that 

persists for multiple generations of a community and may result in evolutionary changes. 

 

Dormancy and its implications for community assembly 

Microbial species can have a particular trait that can greatly influence both their response 

to disturbance through the different processes of community assembly, dormancy. Dormancy is a 

state of reduced metabolic activity. Microbes enter dormancy to persist in the face of harsh 

environmental conditions. Dormancy strategies are widespread throughout the microbial world, 

though there are particular strategies that are phylogenetically conserved. For instance,  Gram 

positive bacteria of the phylum Firmicutes developed the ability to make endospores, a highly 

resistance cell that can persist and remain viable in environments for thousands of years(35). 

This particular form of dormancy is often initiated in response to a suite of environmental factors 

sensed by histidine kinases. Conversely, some bacteria spontaneously make persister cells, which 

are cells that have a reduced metabolic state. These persister cells were first observed as cells 

that were able to survive an antibiotic treatment but after regrowth, remained susceptible to the 

antibiotic(36). 

Dormancy has the potential to influence the four processes of community assembly and 

consequently microbial community disturbance response. Dormancy can ease the process of 

selection on microbes by reducing their susceptibility to the abiotic and biotic conditions. Indeed, 
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viable spores of thermophilic microbes have been found in habitats that are non-permissive to 

their growth, and as mentioned before, persister cells wait out ephemeral antibiotic 

treatments(37–39). Likewise, this increased resistance and relaxed selection causes cells in a 

dormant state to be better passive dispersers as well. Thermophilic endospores have been used as 

markers of global currents because of their longevity(40). Likewise, the global distribution of 

Polaromonas species across 6 continents at high elevations and in polar environments is thought 

to be due to the presence of a gene allowing them to enter into a dormant state different from that 

of thermophilic endospores(41). Efforts have also been made to incorporate dormancy into the 

island biogeography theory. The island biogeography theory posits that the number of species on 

an island is governed by the rate of immigration and rate of extinction(42). Accounting for 

dormancy within this theory would causes higher rates of immigration and lower rates of 

extinction, causing higher richness of communities(43). 

Dormancy’s direct influence on diversification is slightly harder to untangle. While 

dormancy does help cells evade selection, and therefore may be thought to slow evolution by 

natural selection, it also helps maintain genetic diversity locally. This maintenance of genetic 

diversity has important ramifications in microbial communities due to the possibility of 

horizontal gene transfer. Finally, it is unclear what, if any, direct effects dormancy may have on 

the drift of an assembling community. One potential avenue for influence could be related to 

community size. Drift is hypothesized and shown to have its largest influence when population 

or community sizes are small(44, 45). Since dormancy can frequently help increase persistence 

of microbial cells, it’s possible that dormancy actually lowers the impact of drift on microbial 

communities by maintaining large community sizes.  
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Some studies have made use of different molecular techniques to look at changes in 

dormant taxa through time or in response to different disturbances. One such technique is the use 

of heavy water stable isotope probing (46, 47). In this method, microbial communities are 

incubated in the presence of isotopically labeled water. Active microbes take up this labeled 

water and incorporate the “heavy” oxygen atom into their DNA allowing their DNA to be 

separated from the rest of the communities DNA through density gradient centrifugation. One 

such study used this method and saw that rare biosphere members were resuscitated from the soil 

during “rewetting” events (46). These rewetting events act as a disturbance of sorts to the “dried” 

microbial communities, and thus these findings support a role for dormancy and dormancy 

transitions in microbial community disturbance response.  

Another method for investigating dormant and active communities of microbes is the 16S 

rRNA:16S rRNA gene ratio methods. This method requires isolating both RNA and DNA from a 

sample and sequencing both sets of nucleic acids separately.  The relative recovery of sequences 

associated with a taxon in the total RNA of a community vs the total DNA of a community is 

used to infer the taxon’s activity. While a relationship between cellular rRNA content and 

activity has been observed for pure culture isolates, it is important to note that there are 

exceptions to this relationship(48), and as such 16S rRNA is indicative more of activity potential, 

then pure activity(49). Despite these drawbacks, there have been studies showing an agreement 

between 16S rRNA gene ratio methods and other methods for assessing activity such as 

differential staining(50). Likewise, a long-term study on salt marshes used 16S rRNA sequencing 

to investigate the active and dormant communities in response to elevated nutrients, another form 

of disturbance. This study found that despite total community richness and structure remaining 

the same in the presence of the nutrient stress, the active microbial community changed 
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significantly(31). The authors suggested that in this case, nutrient stress induced dormancy in 

many of the microbial community members.  

 

The Centralia, PA coal fire    

 This dissertation presents work centered on an atypical disturbance in the town of 

Centralia, PA. Centralia was originally a coal mining town, but the mines shut down and the 

locals used abandoned coal strip mines as landfills. These strip mines eventually became filled, 

and caught fire in 1962(51). The burning trash eventually spread to an exposed coal seam in the 

landfill.  Despite several efforts to extinguish the coal seam fire the state was unsuccessful in 

controlling the fire and eventually purchased all the land in the area and relocated most of the 

residents.  

The coal seam fire in Centralia burns to this day, and is expected to continue burning for 

another 100 years(52, 53). The fire slowly moves along the coal seam, warming the overlying 

soils and depositing them with coal combustion products. As the fire burns all the fuel in a given 

location, the overlying soils are allowed to cool back down to ambient temperatures and begin 

the process of recovery. Consequently, the coal fire has left behind a chronosequence of 

temperature disturbance, where there are currently areas that have never been affected by the 

fire, soils currently affected by the fire, and areas that at one point in time were affected but have 

since recovered to ambient temperatures. Previous studies of boreholes and fire affected soils in 

Centralia showed evidence for reductions in microbial diversity as temperatures increased, and 

also pointed to elevated levels of ammonium and nitrate in some of these boreholes(54).  

Throughout this dissertation, the coal mine fire in Centralia PA is used as a model system 

for a press disturbance on microbial communities. The coal fire in Centralia, PA is useful model 
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for multiple reasons. First, it represents an intense disturbance on the soil microbial communities, 

with coal combustion products being deposited on the surface soils and their temperatures having 

been measured at >400°C (55). The disturbance is also an appealing system due to the length of 

disturbance each field site experiences. A given surface soil site may be affected by the fire for 

years before the temperature at a site begins to recover. Similarly, there are also sites that were at 

one point in time affected by the fire, but are currently recovered in temperature. This allows for 

the long term study of recovery dynamics. Finally, the fire is expected to continue burning for 

over a hundred years(51–53), and while the timeframe is beyond the scope of this dissertation, it 

provides an opportunity to study disturbance ecology for years to come.   

Given the existing chronosequence of disturbance in Centralia, PA, in Chapter 2 we use 

16S rRNA gene sequencing of microbial communities along this chronosequence to assess both 

how microbial communities assemble during disturbance and how well they recover post 

disturbance. In Chapter 3 shotgun metagenomics of the chronosequence is used to investigate 

particular traits selected for by the elevated temperature and disturbance in Centralia. Finally, 

Chapter 4 assesses the influence of dormancy and dispersal on disturbance response and 

recovery using a mesocosm warming experiment in conjunction with 16S rRNA and 16S rRNA 

gene sequencing designed to mimic the warming of soils in Centralia, PA. Together these works 

expand our understanding of how community assembly processes act and interact with one 

another to govern community disturbance response in soil environments and set the path for 

future work predicting community outcomes to disturbance. 
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Abstract 

Press disturbances are stressors that are extended or ongoing relative to the generation times of 

community members, and, due to their longevity, have the potential to alter communities beyond 

the possibility of recovery. They also provide key opportunities to investigate ecological 

resilience and to probe biological limits in the face of prolonged stressors. The underground coal 

mine fire in Centralia, Pennsylvania has been burning since 1962 and severely alters the 

overlying surface soils by elevating temperatures and depositing coal combustion pollutants. As 

the fire burns along the coal seams to disturb new soils, previously disturbed soils return to 

ambient temperatures, resulting in a chronosequence of fire impact. We used 16S rRNA gene 

sequencing to examine bacterial and archaeal soil community responses along two active fire 

fronts in Centralia, and investigated the influences of assembly processes (selection, dispersal 

and drift) on community outcomes. The hottest soils harbored the most variable and divergent 

communities, despite their reduced diversity. Recovered soils converged toward similar 

community structures, demonstrating resilience within 10-20 years and exhibiting near-complete 

return to reference communities. Measured soil properties (selection), local dispersal, and neutral 

community assembly models could not explain the divergences of communities observed at 

temperature extremes, yet beta-null modeling suggested that communities at temperature 

extremes follow niche-based processes rather than null. We hypothesize that priority effects from 

responsive seed bank transitions may be key in explaining the multiple equilibria observed 

among communities at extreme temperatures. These results suggest that soils generally have an 

intrinsic capacity for robustness to varied disturbances, even to press disturbances considered to 

be “extreme”, compounded, or incongruent with natural conditions.  
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Introduction  

Human interactions with and alterations of environmental systems are important 

components of global change (1). Anthropogenic disturbances are outcomes of human activity, 

and include land-use and land-cover changes, pollution, dispersal of invasive species, and over-

harvesting of native animal or plant populations (2). Anthropogenic disturbances are typically 

classified as press disturbances, as they often impact multiple generations of organisms within 

their ecosystems (3). Because of their longevity, press disturbances have the capacity to alter 

ecosystems beyond the possibility of recovery (4).  

Within every ecosystem, microbial communities underpin biogeochemical processes, 

sustain the bases of food webs, and recycle carbon and nutrients. In some situations of 

anthropogenic disturbance, such as pollution, native microbial communities also can provide 

bioremediative functions to support ecosystem recovery (5-8). Because of their foundational 

roles in driving important ecosystem processes, understanding how microbial communities 

respond to press disturbance can provide insights into the potential for ecosystems to recover. It 

may also help to uncover mechanisms by which environmental microbial communities may be 

managed to improve ecosystem outcomes. A better understanding of microbial responses to 

press disturbances, including examples of communities that have recovered or shifted to an 

alternative stable state, is necessary to move toward the goal of microbial community 

management (9) . 

Recent work has highlighted the importance of understanding the relative contributions 

of community assembly processes to community changes (10-16), and these processes can also 

be informative for understanding community changes after a disturbance  (e.g., secondary 

succession; (12)). According to Vellend, 2010, community assembly can be summarized by four 
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major processes: dispersal, diversification, drift, and selection. Dispersal is the movement of 

individuals between localities, diversification is the generation of new genetic variation (which 

can lead to speciation), drift encompasses the stochastic processes resulting in fluctuations in 

member abundances (e.g. births and deaths), and selection refers to deterministic fitness 

differences among taxa driven by abiotic conditions or biotic interactions (as summarized by 

(11)). Together, these processes complement and interact to drive community patterns, and 

together provide a foundation on which to build a predictive theoretical framework for microbial 

community ecology. 

Because diversification processes are relatively more important at evolutionary scales, 

Vellend et al. 2014 focused on the remaining processes of ecological selection, drift, and 

dispersal. They asserted that selection processes are deterministic, that drift processes are 

stochastic, and that dispersal processes can be either or both, depending on the situation (14). 

Tucker and colleagues provided clarity to the distinction between deterministic/stochastic and 

niche/neutral processes, which are often used interchangeably. Niche/neutral refers to the 

ecological differentiation and equivalence of species, while deterministic/stochastic refers to 

non-probabilistic or probabilistic outcomes (15). Thus, neutrality concerns ecological 

equivalence of species, while stochasticity concerns demographic variability in birth, death, and 

dispersal.   

We aimed to understand the responses of soil microbial communities to an anthropogenic 

press disturbance, and to apply the Vellend, 2010, Nemergut et al., 2013, and Tucker et al., 2016 

conceptual frameworks of community assembly for interpretation of patterns. The town of 

Centralia, Pennsylvania is the site of an underground coal mine fire that has been burning since 

1962. It is one of thousands of coal mine fires burning in the world today (17), which are 
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inconspicuously common anthropogenic disturbances. However, the Centralia fire is especially 

long-lived, and, after efforts to extinguish it failed, it was left to burn until it self-extinguished 

(18). The fire is expected to burn slowly until the coal reserves have been consumed. The fire 

currently underlies more than 150 acres and continues to spread slowly (3-7 m/yr (19)) through 

underground coal seams. Depending on the depth of the coal bed, it burns at an estimated 46-69 

m below the surface (18,19). Heat, steam and combustion products vent upward from the fire 

through the overlying soils. The surface soil temperatures can exceed 80°C, scarring the 

landscape with dead vegetation that reveals the fire's subsurface trajectory. As steam and gasses 

pass through the overlying rock and soil, soil temperatures increase while soil chemical 

composition is altered by both spontaneous and microbial-mediated chemical reactions (20).  As 

the fire expands into new areas, it also retreats from some affected sites, which then recover to 

ambient temperatures (18,19). Thus, the “end” of the disturbance can be delineated by 

temperature recovery. In this way, a chronosequence of fire-affected Centralia soils provides a 

space-for-time proxy of disturbance response and recovery.  

Our research objectives were to understand the diversity and spatio-temporal dynamics of 

the surface soil bacterial and archaeal communities that have been impacted historically or are 

currently influenced by the ongoing subterranean coal mine fire in Centralia. We used a 

definition of disturbance response to include changes in member relative abundances as well as 

in composition. Previous work using terminal restriction fragment length polymorphism analysis 

showed that microbial diversity decreased at hotter sites, and that compositional changes were 

correlated with soil ammonium and nitrate concentrations (21). We move forward from this work 

to use high throughput sequencing of soil community 16S rRNA genes to quantify the 
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community dynamics along a chronosequence of fire response and recovery. We specifically 

investigated the community assembly processes of selection, dispersal, and drift. 

 

Materials and Methods  

Study site, soil sampling, soil biogeochemistry and microbial community DNA extraction 

We undertook fieldwork in Centralia (GPS: 46°46”24’N, 122°50”36W) on 5-6 October 

2014. We collected surface soils to capture the expected maximum changes along a 

chronosequence of fire recovery (Figure C.1). We sampled two fire fronts along gradients of 

historical fire activity. Fronts are trajectories of fire spread from the 1962 ignition site outward 

along near-surface coal seams (19). These fronts include surface soils that were previously hot 

and have cooled, as well as soils that are currently warmed by the ongoing fire. We collected soil 

from two unaffected, proximate sites as references, seven recovered sites along the gradient, and 

nine fire-affected sites (18 total soils), and these collections were distributed across both fire 

fronts. Soil samples were collected from the top 20 cm of surface soil (core diameter 5.1 cm), 

and were sieved through 4 mm stainless steel mesh. We collected cores only at bare surface soil 

locations (no vegetation) to minimize the influence of local vegetation and to maximize 

comparability between soils, as the thermal surface soils generally lacked vegetation. Collected 

soils were stored on ice up to 72 hr during transport to the laboratory, then stored at -80°C 

pending further processing. The physico-chemical characteristics of each soil sample (percent 

moisture, organic matter (500°C), NO3
-, NH4

+, pH, SO4, K, Ca, Mg, P, As, and Fe) were assayed 

by the Michigan State Soil and Plant Nutrient Laboratory according to their standard protocols 

(East Lansing, MI, USA, http://www.spnl.msu.edu/). Gravimetric soil moisture was measured 

after drying the soil at 80°C for 2 days. Fire history was estimated as years since the surface soil 
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was first hot from the fire, at each sampling location. Fire history observations were measured 

using either winter snow cover, aerial vegetation photography, or thermal infrared imagery, as 

collated and reported by Elick, 2011(Figure 3 therein). Soil community DNA was extracted from 

0.25 g of soil in three technical replicates using the MoBio Power Soil DNA Isolation Kit 

according to the manufacturer’s protocol (MoBio, Solana Beach, CA, USA). The concentration 

of the extracted DNA was measured using the Qubit® dsDNA BR Assay Kit (Life Technologies, 

NY, USA), and DNA amount was standardized for sequencing to 1,000 ng/sample.  

 

Soil cell counts 

Direct bacterial and archaeal cell counts were conducted on frozen soil samples based on 

a protocol to separate cells from soil reported in (22). To dissociate the microbial cells from soil 

particles, 10 g of soil was mixed with 100 mL of phosphate buffered saline containing 0.5% 

Tween-20 (PBST). Soil samples were homogenized in a Waring blender three times for 1 min 

each, followed by a 5 min incubation on ice. Slurries were centrifuged at 1000 x g for 15 min to 

concentrate soil particulates. Supernatants were set aside and stored at 4°C, and the remaining 

soil pellets were re-suspended in 100 mL of fresh PBST and blended for an additional 1 min. The 

soil slurry was then transferred to sterile 250 mL centrifuge bottles and the blender was washed 

with an additional 25 mL of sterile PBST and added to the slurry before centrifugation at 1000 x 

g for 15 min. All resulting supernatants for each site were combined, then centrifuged at 10,000 

x g for 30 min to pellet cells. Supernatants were discarded, and cell pellets were re-suspended in 

10 mL of sterile Milli-q water and 400 mL of 37% formaldehyde to fix cells. 1 mL of cell 

suspension was then carefully layered over 500 µL of sterile Nycodenz solution (0.8 g/mL in 

0.85% NaCl), then centrifuged at 10,000 x g for 40 min. The upper layer was then collected and 
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cells were pelleted by centrifugation at 20,000 x g for 15 min, then resuspended in 1 mL of 

sterile 0.85% NaCl. To dissociate remaining soil clumps, cell suspensions were sonicated for 10 

s in a sonicating water bath.  

Cell suspensions were stained with DTAF ((5-(4,6-Dichlorotriazinyl) 

Aminofluorescein)) according to (23). DTAF-stained smears were visualized on a Nikon Eclipse 

e800 microscope (Tokyo, Japan) equipped with a Photometrics Coolsnap Myo camera (Tuscon, 

AZ, USA), and images were collected using Micro-Manager software (24). Fiji image analysis 

software was used to adjust background, thresholding, and to conduct particle counts from 

images (25). Briefly, background correction was completed using an automated rolling ball 

subtraction with a 35-pixel radius, followed by automatic local thresholding using the Bernsen 

method with a 12-pixel radius to convert greyscale images to binary. Watershed segmentation 

was conducted to separate touching nuclei, then particles were counted using the ImageJ 

“Analyze Particles” function, excluding anything smaller than 0.1 micron (26). 

 

Quantitative PCR 

 We performed quantitative PCR (qPCR) using bacterial and archaeal 16S rRNA gene 

universal primer sets (Table B.1; (27)). The reaction mixtures consisted of 10 µL SYBR qPCR 

Master mix (Quanta Bioscience, Gaithersburg, MD, USA), 0.4 µL each of the forward and the 

reverse primers (0.4 pM), 2 µL of template DNA, and sterilized deionized water to adjust the 

final volume of 20 µL. The thermal profile was as follows: initial denaturation at 95°C for 10 s, 

followed by 40 cycles of denaturation at 95°C for 10 s, annealing at 50°C for 15 s, and extension 

at 72°C for 40 s. A final dissociation protocol (58°C to 94.5°C, increment 0.5°C for 10 s) was 

performed to ensure the absence of nonspecific amplicons. The reactions were conducted using 
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the Bio-Rad iQ5 real time detection system (Bio-Rad, Hercules, CA, USA). Please see the 

supporting materials for more details as to the qPCR methods. 

 

16S rRNA amplicon sequencing 

For each of the 54 DNA samples (18 soils, each with three replicate DNA extractions) 

and mock community DNA, paired-end sequencing (150 base pair) was performed on the 

bacterial and archaeal 16S rRNA gene V4 hypervariable region using the Illumina MiSeq 

platform (Illumina, CA, USA; Table B.1; (27). All of the sequencing procedures, including the 

construction of Illumina sequencing library using the Illumina TruSeq Nano DNA Library 

Preparation Kit, emulsion PCR, and MiSeq sequencing were performed by the Michigan State 

University Genomics Core sequencing facility (East Lansing, MI, USA) following their standard 

protocols. The Genomics Core provided standard Illumina quality control, including base calling 

by Illumina Real Time Analysis v1.18.61, demultiplexing, adaptor and barcode removal, and 

RTA conversion to FastQ format by Illumina Bcl2Fastq v1.8.4. Raw sequences were submitted 

to the GenBank SRA Accession SRP082686. 

To estimate sequencing error, mock community DNA was prepared from six different 

type strains (D. radiodurans ATCC13939, B. thailandensis E264, B. cereus UW85, P. syringae 

DC3000, F. johnsoniae UW101, E. coli MG1655). The genomic DNA from these type strains 

were extracted separately using the EZNA Bacterial DNA Kit (Omega Bio-tek, GA, USA) 

according to the manufacturer’s protocol, and then quantified using the Qubit® dsDNA BR 

Assay Kit (Life Technologies, NY, USA). Each isolates’ 16S rRNA sequence was amplified 

using universal 27F and 1492R primers. Amplification was performed with the GoTaq Green 

Master Mix (Promega) with the following reaction conditions: 0.4uM each primer, 20-200 ng 
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template, 12.5ul 2X GoTaq Green Mastermix and nuclease free water to 25 uL final volume. The 

products were visualized on 1% agarose gels before being cleaned using the Promega Wizard SV 

Gel and PCR Cleanup System per manufacturer’s instructions. Cleaned amplification products 

were sequenced using the 27F and 1492R primers using the ABI Prism BigDye Terminator 

Version 3.1 Cycle kit at Michigan State’s Genomics Research Technology Support Facility 

(https://rtsf.natsci.msu.edu/genomics/). Forward and reverse reads were merged using the merger 

tool in the EMBOSS (V. 6.5.7) package (28). Based on the DNA concentration, size of genomic 

DNA, and 16S rRNA gene copy number, the final mixture contained 100,000 copies of 16S 

rRNA gene from each strain. The mock community was sequenced alongside the 54 soils’ 

metagenomic DNA. All sequences are available in NCBI’s Short Read Archive 

(https://www.ncbi.nlm.nih.gov/sra/SRP082686).  

 

Sequence processing 

 Paired-end sequence merging, quality filtering, denoising, singleton-sequence removal, 

chimera checking, and open-reference Operational Taxonomic Unit (OTU) picking were 

conducted using a UPARSE workflow v8.1 (29,30). Open-reference OTU picking was modified 

for compatibility with the UPARSE pipeline but proceeded as described for open-reference 

workflows (31). We selected open-reference OTU picking because it allowed us to retain all 

high-quality sequences, even if they did not match to the reference database. In addition, we 

expected novel diversity in Centralia, and it was likely that many Centralia sequences would not 

hit to reference databases.  Furthermore, we wanted to create consistent OTU definitions that 

could be tractable across this study and future work. In the open-reference OTU picking 

workflow, reference-based OTU clustering first was conducted using the usearch_global 
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command to cluster sequences with 97% identity to the greengenes database (v 13.8, 

http://greengenes.secondgenome.com/downloads). Second, de novo OTU picking was performed 

for any sequences that did not hit the greengenes reference; the usearch command cluster_otus 

was used to cluster sequences at 97% identity (this step includes chimera checking). The 

reference-based and de novo OTUs were combined together to create the final dataset. Finally, to 

reduce the potential effects of candidate contaminant sequences, any sequences in the final 

dataset that matched 100% to a database of extraneous sequences (found in the mock 

community) were removed.  

Additional analyses were performed with QIIME v. 1.9.1 (32), including alignment with 

PyNAST (33), taxonomic assignment with the RDP Classifier (34), tree building with FastTree 

(35), subsampling/rarefaction to an equal sequencing depth, and within and comparative 

diversity calculations (e.g., UniFrac , (36)). Sequences identified as Chlorophyta, Streptophyta 

(i.e., Chloroplasts) and Mitochondria were removed before subsampling to an even sequencing 

depth. Our sequence analysis workflow and computing notes are available on GitHub 

(https://github.com/ShadeLab/PAPER_LeeSorensen_inprep/blob/master/Sequence_analysis/Moc

kCommunityWorkflow.md). We used the UPARSE workflow (with the recommended 10% 

divergence filter) for error rate calculation using the mock community 

(http://drive5.com/usearch/manual/upp_tut_misop_qual.html).  

 

Ecological statistics 

We first assessed the reproducibility of evenly-sequenced technical replicates (DNA 

extraction and sequencing replicates), and found that replicates were similar to one another in 

measures of within-sample (alpha) and comparative diversity (beta diversity). The average and 
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standard deviation of weighted nonnormalized UniFrac distances between replicates was 0.319 ± 

0.126 with a range from 0.105 to 1.29 (maximum distance between different samples was 4.49; 

Figure C.2; and alpha diversity among technical replicates provided in Table B.2). Given the 

low technical variability, unrarefied technical replicates were collapsed into one combined set of 

sequences for each soil core to provide more exhaustive sequencing of each soil; these collapsed 

samples were subsampled to an even sequencing depth (321,000 sequences per soil), and 

singleton OTUs (observed only once in the dataset) were removed before proceeding with 

analysis. Within sample-diversity of species richness, Faith’s phylogenetic diversity (whole tree 

method), and comparative diversity of weighted and unweighted UniFrac distance 

(nonnormalized and normalized, (37,38) were calculated within QIIME. Non-normalized 

UniFrac distances can fall outside of 0 and 1, while normalized UniFrac distances are bound to 0 

to 1; Lozupone et al., 2007 reported no differences in overarching patterns in beta diversity 

between the nonnormalized and normalized UniFrac (37), and we have found that this holds for 

our dataset (Table B.3). The data were then moved into the R environment for statistical 

analyses. Briefly, we used vegan functions for multivariate hypothesis testing, fitting 

environmental vectors to ordinations (envfit), constrained ordination (capscale), and Mantel tests 

(mantel) and to calculate Pielou’s evenness (39); the cmdscale function (stats) for principal 

coordinates analysis; custom code of neutral models of community assembly (40) as written and 

implemented by Burns et al., 2015 ("sncm.fit_function.R”); custom R scripts for beta-null model 

fitting written by Tucker et al., 2016, Appendix 2 therein) modified by our group to include 

weighted UniFrac beta-null modeling; and ggplot and ggplots2 for plotting (42). Our R script is 

available on GitHub (“R_analysis” repository in 

https://github.com/ShadeLab/PAPER_LeeSorensen_ISMEJ_2017) 
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Results and discussion 

Soil physical-chemical characteristics and microbial population size 

We measured a suite of contextual data for each sampling site, and asked whether any of 

those data were correlated with surface soil temperature (Figure C.3). Centralia soils generally 

represented a wide range of soil chemistry. We did not find strong correlations between 

measured contextual data and temperature, with the exception of correlations with ammonium 

and nitrate (Pearson’s R = 0.50 and 0.54, respectively; p < 0.05). This finding supports previous 

work in Centralia showing that ammonium and nitrate were elevated at active vents (21). In 

addition, the pH of recovered sites was consistently lower than reference sites (mean pH = 4.4 

and 5.9, respectively), and the hottest soils were more likely to have extreme or disparate values. 

In two previous reports, soil ammonium, nitrate, and sulfur concentrations were not necessarily 

correlated with absolute soil temperature values at Centralia, nor to proximity to an active vent; 

though extreme or disparate chemistry values were sometimes observed at hot sites, values 

comparable to unaffected sites were also routinely observed (20,21). The authors suggested that 

duration of fire impact, whether the fire was advancing or receding from the site, and other 

complex environmental factors were likely contributing.   

All soils were within one order of magnitude of 16S rRNA copies per dry mass of soil 

with fire-affected soils having the highest copy numbers and recovered soils having the lowest, 

but there were no statistical differences among groups (Figure C.4A, Student’s t-test all pairwise 

p ≥ 0.09). Total number of cells per dry mass of all soil ranged from 105 to 107 cells per gram of 

dry soil, but cell counts across fire classifications also were not statistically distinct (Figure 
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C.4B, Student’s t-test all pairwise p ≥ 0.09). Together, these data indicate overall community 

size is relatively stable across the fire gradient and that any changes in community structure 

along the fire gradient are due to changes in member abundances rather than to differences in the 

total number of individuals (community size) among soils.  

Sequencing efforts were near-exhaustive for these soils, as assessed by a clear asymptote 

achieved with rarefaction (Figure C.5). A summary of sequencing efforts, as well as a 

discussion of reference-based and de novo OTU taxonomic assignments for fire-affected and 

recovered soils, are provided in supporting materials. 

 

Selection 

To understand the influence of selection (deterministic) processes on community 

responses, we used surface soil temperatures measured in 2014 to designate categorical groups of 

communities according to their fire classification. Soils classified as reference and recovered had 

temperatures between 12 and 15°C (ambient air temperature was 13.3°C at the time of soil 

collection), while soils classified as fire-affected had temperatures ranging from 21 to 58°C. We 

hypothesized that within-sample diversity would be lower in fire-affected soils because of the 

extreme environmental filter of high temperatures, which we expected to result in lower richness 

and less phylogenetic breadth. Faith’s phylogenetic diversity and OTU richness both were lowest 

and most variable for fire-affected soils, and highest for reference sites (Figure 2.1; Student’s t-

test all pairwise p < 0.001). Pielou’s evenness had a similar trend, with fire-affected soils having 

lower evenness than other soils, suggesting that there are a small number of highly dominant 

OTUs in the fire-affected soils (all pairwise p > 0.05, not significant). These results generally 

agree with studies investigating soil microbial diversity after coal mine reclamation in China and 
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Brazil, respectively, where the most recovered/reconstructed soils (20 years post-mining in (43) 

and 19 years of reconstruction in (44)) had highest within-sample diversity and were most 

comparable to reference sites. Centralia soils are expected to share similar contamination from 

coal extraction with these mine reclamation soils, but also are distinct because of their thermal 

conditions and ongoing surface contamination by coal combustion products, such as inorganic 

gases containing arsenic, selenium, ammonium, sulfur, and hydrogen sulfide, and organic toxins 

like polycyclic aromatic hydrocarbons (20). Elements within inorganic gases mineralize and 

deposit around active vents (20). Some coal combustion products, like volatile sulfur and 

nitrogen compounds, may enrich for microorganisms capable of using them, while other 

combustion products, like organic toxins, may decrease microbial community size or diversity 

(20). 
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Figure 2.1. Alpha diversity of Centralia soils.  

Within-sample (alpha) diversity of fire-affected, recovered, and reference soils in Centralia for 

bacterial and archaeal community (A) Faith’s phylogenetic diversity (all p < 0.001); (B) richness 

(total no. observed OTUs clustered at 97% sequence identity, all p < 0.001); and (C) Pielou’s 

evenness (all p not significant). 
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 We used weighted UniFrac distance to assess comparative community diversity across 

the fire categories. Weighted UniFrac distance was chosen after considering multiple taxonomic 

and phylogenetic, and weighted and unweighted metrics. All resemblances revealed the same 

overarching patterns (all pairwise Mantel and PROTEST p < 0.001, Table B.3), demonstrating 

that these patterns were very robust. However, weighted UniFrac distance provided the highest 

explanatory value (Table B.3), suggesting that changes in both phylogenetic breadth and the 

relative abundances of taxa are important for interpreting community responses. As compared to 

recovered and reference sites, fire-affected soils were distinct (PERMANOVA pseudo F = 16.10, 

R2 = 0.50 and p = 0.001 on 1000 permutations) and more variable in their community structure 

(difference in median dispersions = 0.53, p = 0.008; Figure 2.2).  Differences in surface soil 

temperature had most explanatory value on Axis 1 (77.1% variance explained by Axis 1, 

temperature Axis 1 correlation = 0.97, p = 0.001, Table B.4), with nitrate and iron contributing; 

calcium and pH (and, to a lesser extent, soil moisture) explained variation on Axis 2 (12.7% 

variance explained by Axis 2, Table B.4). Notably, soil fire history (estimated years since the 

local soil surface was first measured hot as reported by (19)) was not correlated to community 

dynamics (Table B.4). 
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Figure 2.2. PCoA of Centralia Microbial communities based on weighted UniFrac. 

Principal coordinate analysis (PCoA) based on weighted UniFrac distances of phylogenetic 

bacterial and archaeal community structure. Colors show the fire classification of the soil as fire-

affected (red), recovered (yellow), or reference (green). The strength of statistically significant (p 

< 0.10) explanatory variables are shown with solid arrows. 
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Fire-affected soils were more variable in their community structure across soils, 

especially in soils at the most extreme temperatures observed (sites C13, C10 which were >50°C 

at the time of sampling and were at the opposite ends of PCoA2). In contrast, recovered soils 

were less variable, even though they spanned decades of difference in their years of peak fire 

activity (the earliest impacted soils that we sampled were last recorded to be hot in 1980; (19). 

Also, recovered soils were very similar in community structure to reference soils. These patterns 

show that Centralia soils achieve divergent community structures over the transition from 

ambient to extreme conditions, but then generally converge towards a consistent community 

structure after the fire subsides. These results also show resilience of soil communities impacted 

by an extreme press disturbance, with recovery occurring within 10-20 years after the stressor 

subsided. 

We observed a temperature “threshold” effect among fire-affected soils, and soils with 

temperatures between 21 and 24.5°C (sites C06, C11, and C16) separated cleanly from soils with 

temperatures greater than 30°C (Figure 2.2). To better understand the divergence in community 

structure among fire-affected soils, we performed a PCoA with these communities (Figure 

C.6A, Table B.5), and also a constrained analysis to ask what variability remained after 

removing the influence of temperature (Figure C.6B, Table B.6). Even after removing the 

influence of temperature, three discrete subsets of fire-affected communities separated from each 

other along both axes, with C13 remaining as an outlying point. C13 had very different calcium 

and pH than the other soils, and both of these factors had high value in discriminating C13 from 

the other fire-affected soils (p = 0.092 and 0.014 respectively). There were no other measured 

abiotic factors that explained the divergence among the fire-affected soils. In addition, the 

constrained axes had high explanatory value (Figure C.6B, combined axes 1 and 2 = 90.0% var. 
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explained), suggesting that, given the measured conditions, there are additional processes beyond 

abiotic selection that explain the differences in these subsets.  

We observed broad phylum-level changes in response to the fire (Figure 2.3, Table B.8). 

Not all OTUs affiliated with particular phyla had identical responses; however, our analysis of 

phylum-level responses points to some general trends. In particular, fire-affected soils were 

enriched for members of Chloroflexi, Crenarcheaota and many lineages of unidentified Bacteria. 

As compared to the fire-affected soils, recovered soils also were enriched for Parvarchaeota, 

Bacteroidetes, Elusimicrobia, Gemmatimonadetes, Planctomycetes, Spirochaetes, TM6, and 

Verrucomicrobia suggesting that members affiliated with this these phyla are able to persist after 

the fire subsides. Acidobacteria also had an increase in recovered soils (but less significant, p = 

0.10), presumably because of the decrease in soil pH observed post-fire (Figure C.3, pH panel: 

row 1, column 3). Reference soils had higher representation of Proteobacteria and 

Verrucomicrobia, which suggests that members of these phyla may be sensitive to the fire.   
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Figure 2.3. Phylum-level responses to the Centralia coal mine fire. 

Phylum-level responses to the Centralia coal mine fire. Mean relative abundance of phyla 

summarized within soil fire classifications (fire-affected, recovered, and reference). Unidentified 

Bacteria are a combination of OTUs unable to be assigned taxonomy at the phylum level, and are 

not a monophyletic group. “Phyla Below 0.01” are all OTUs assigned to phyla that collectively 

comprise less than 0.01 relative abundance in, and also are not a monophyletic group. 
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Dispersal and drift 

To investigate the relative importance of local dispersal, we assessed the value of spatial 

distance for explaining differences in community structure. If local dispersal were important, we 

would expect that soils in close proximity would have more similar community structures than 

soils that are distant from one another. We found no relationship in the measured spatial 

distances between soil collection sites and their corresponding differences in community 

structure for all sites (Mantel p = 0.66 on 999 permutations), nor for recovered sites only (after 

removing the fire-affected sites from analysis; Mantel p = 0.135 on 999 permutations). The lack 

of evidence for spatial autocorrelation suggests that local dispersal is not a key factor shaping 

community structure in Centralia soils.  

To explore the relative importance of drift in fire-affected and recovered soils, we used 

two complementary approaches. First, we fitted a neutral model of community assembly. The 

model predicts taxon frequencies as a function of their metacommunity log abundances, which is 

one method to consider the influence of drift with the influence of dispersal (calculated as an 

immigration term, m, to the model). The neutral model fit better to the recovered sites than to 

fire-affected sites (R-squared = 0.53, 0.12 respectively; Figure C.7, Table B.7). Furthermore, we 

found a lower influence of dispersal (lower value of m) in the fire-affected sites (Table B.7). 

These differences in fit and generally minimal influence of dispersal suggest that neutral 

processes play a more minor role in the microbial community assembly of fire-affected sites than 

they do in the recovered sites.  

Next, we asked how observed differences in beta diversity deviate from null expectations. 

We used abundance-based beta-null approaches to distinguish niche and null processes 

according to (15), and we extended their approach to also consider community differences in 
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phylogenetic breadth by applying it to weighted UniFrac distances. In this comparative approach, 

deviations to and from a permuted null expectation (neutral) are used to interpret the relative 

influences of neutral and niche processes, respectively. All Centralia communities deviated from 

neutral, with reference and recovered soils falling closer to neutral expectations than fire-affected 

soils (Figure 2.4A). Fire-affected soils had statistically higher beta-null deviations than 

recovered soils (both p < 0.05 for Bray-Curtis and weighted UniFrac). In the fire-affected soils, 

there was a consistent increase in niche processes with increasing soil temperature, and the 

hottest sites deviated furthest from the neutral expectation (Figure 2.4B). Accounting for 

phylogenetic breadth (using weighted UniFrac distance, Figure 2.4B suggested relatively less 

deviation from neutral than accounting for abundance alone (using Bray-Curtis dissimilarity, 

Figure 2.4B), but both resemblances had similar trends (Pearson’s R= 0.71, p = 0.001) and 

produced identical statistical outcomes. These abundance null deviation results agree with the 

Sloan neutral model because they suggest that unmeasured niche processes structure soil 

communities at temperature extremes.  
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Figure 2.4. Beta-null model deviations in Centralia soil microbial communities. 

The relative changes in niche and neutral processes assessed using deviations from abundance-

weighted beta-null models. Color gradient shows the soil temperature, as a proxy for disturbance 

intensity. (A) Abundance null deviations by fire classification. For both Bray-Curtis and 

weighted Unifrac resemblances, recovered and fire-affected communities had distinct null 

deviations (both p < 0.05); (B) Trajectory of beta-null deviations ranked by disturbance intensity 

from reference to fire-affected to recovered soils. Weighted UniFrac and Bray-Curtis trajectories 

are correlated (p = 0.71, p = 0.001). 
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Understanding community divergences at temperature extremes 

To dig deeper into the differences in the three subsets of fire-affected soil (Figure C.6) 

that were not well explained by measured abiotic selection, local dispersal, or drift as assessed by 

the Sloan neutral model of community assembly and beta-null modeling, we asked if there were 

notable differences in their dominant memberships. Fire-affected soils generally had more 

variability and greater phylogenetic breadth in their dominant membership than recovered soils, 

and each fire-affected subset harbored an exclusive membership among their most prevalent 

taxa. We examined the top 10 prevalent taxa from each of the nine fire-affected soils. 

Collectively, there were 68 unique top 10 OTUs in fire-affected soils (out of a possible 90, if 

each of the nine fire-affected soil harbored mutually exclusive membership across their top 10). 

These prevalent fire-affected OTUs spanned fourteen phyla or Proteobacteria classes, included 

30 de novo OTUs, and included seven taxa of unidentified Bacteria and two taxa of unidentified 

Proteobacteria. Acidobacteria OTUs were detected among the top 10 for all fire-affected soils, 

and eight of nine fire-affected soils included Chloroflexi among the top 10 OTUs. In comparison, 

recovered soils included ten phyla or Proteobacteria classes among their collective top 10, had no 

unidentified Bacteria or Proteobacteria, and included four de novo OTUs. Acidobacteria and 

Alphaproteobacteria OTUs were among the top 10 for all recovered soils, and six of the seven 

recovered soils also included Deltaproteobacteria. Together, these results show that fire-affected 

soils were more divergent and diverse in their prevalent membership than recovered soils.  

An analysis of occurrence patterns of prevalent OTUs also showed greater divergence 

among fire-affected soils than recovered (Figure 2.5), and further supported the distinction 

among the subsets of fire-affected soils revealed by the constrained ordination Figure C.6B). 

Fire-affected soils had more OTUs within their collective most prevalent taxa, and were more 
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heterogeneous as shown by the wider range represented by the color scale and the more 

divergent sample and OTU clustering. In fact, taxa that were among the top 10 in one fire-

affected soil were likely to be among the rare biosphere in another fire-affected soil, exhibiting 

stark contrast in their abundances within these soils. However, most of the top 10 prevalent 

OTUs were detected within every fire-affected soil (Table 1, Figure 2.5), suggesting that 

changes in taxa relative abundances, rather than turnover in membership, were driving these 

patterns. 
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Table 2.1. Ten most abundant OTUs in fire-affected Centralia soils.  

OTUs (defined at 97% sequence identity) were assigned to the most resolved taxonomic level 

possible; there were no taxonomic assignments that could be made to these prevalent OTUs 

below the family level (RDP Classifier confidence > 0.80).  

OTU ID Cumulative 

% abundance 

(out of total 

No. sequences 

in fire-

affected 

samples) 

% occurrence  

(out of 9 

warm or 

venting fire-

affected soils) 

Taxonomic assignment 

111933 5.5% 100% Archaea; Crenarchaeota; MBGA 
 

OTU_dn_1 2.5 100%   Bacteria;  Chloroflexi; 
Ktedonobacteria;Thermogemmatisporales; 
Thermogemmatisporaceae;  

OTU_dn_2 2.2 100%   Bacteria;  Chloroflexi; 
Ktedonobacteria;Thermogemmatisporales 
Thermogemmatisporaceae 

242467 2.0 100%  Bacteria;  Acidobacteria; DA052;Ellin6513 
174835 2.0 100%   Archaea;  Crenarchaeota; 

Thermoprotei;YNPFFA; SK322                                   
61819 1.7 100%   Bacteria;  Acidobacteria; TM1  
OTU_dn_17 1.5 78%   Bacteria;  Proteobacteria; 

Deltaproteobacteria                                                         
215700 1.4 100%   Bacteria;  Acidobacteria; 

Acidobacteriia;Acidobacteriales; 
Koribacteraceae  

OTU_dn_8 1.3 100%   Bacteria                                                                                                   
OTU_dn_3 1.2 100%   Bacteria   
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Figure 2.5. Heatmap of “top 10” prevalent taxa in Centralia soils.  

Relative abundances of the collection of the most prevalent combined “top 10” taxa (rows) 

observed in (A) fire-affected or (B) recovered soils (columns) in Centralia. Color  
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Figure 2.5. (cont’d) 

gradients indicate taxa relative abundances, with warm colors indicating prevalent taxa and cool 

colors indicating rare taxa within that soil.  Note differences in color scale gradient between (A) 

and (B). Column labels are sample IDs, and OTU IDs are provided as row labels. OTU IDs that 

begin “OTU_dn” indicate that the taxon was clustered de novo in the open-reference OTU 

picking workflow; IDs that are numeric indicate that the taxon was assigned with high identity to 

a reference in the greengenes database. For reference-based OTUs, the numeric identifier 

corresponds to its representative sequence in the greengenes database. Top dendrograms cluster 

soils that have similar community structure, and side dendrograms cluster OTUs that have 

similar occurrence patterns. 
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This dominance analysis helps to explain the lower fit of the neutral model, and the 

relatively higher influence of niche processes with beta-null modeling, to fire-affected 

communities. Outliers to the neutral model that were below detection (taxa that were present in 

fewer sites than predicted given their relative abundance in the metacommunity) included these 

many lineages that were prevalent in few fire-affected soils. Taxa that fall below their neutral 

model prediction have been proposed to be “selected against” or particularly dispersal limited 

(41). However, in the Centralia extreme environment, we suggest these are taxa that were most 

successful locally given the thermal disturbance.  

 

Community assembly processes given a press disturbance  

Centralia soil communities were sensitive to the coal mine fire, and changed substantially 

from reference conditions. Selection processes, specifically abiotic soil conditions, offered high 

explanatory value for Centralia soil community dynamics. These communities first were 

constrained by environmental filters imposed by the press disturbance, such as thermal 

temperatures in fire-affected soils and low pH in recovered soils. The fire acts as a strong 

environmental filter, resulting in decreased diversity and a very different phylogenetic 

representation among the surviving lineages in fire-affected soils. These environmental filters, 

such as changes in pH, likely alter the functions of the community as well as its composition. 

However, even after removing the influence of temperature on fire-affected communities, the 

communities fell into three distinct subsets that could not be explained by the physico-chemical 

characteristics measured. Furthermore, neutral modeling, beta-null modeling and lack of spatial 

autocorrelation suggests that these particular assessments for drift and dispersal processes offer 

minimal explanation for fire-affected sites. Given the low explanatory value of unweighted 
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resemblances in describing patterns of comparative diversity (Table B.3), and the observation 

that many of the prevalent taxa detected in some fire-affected soils were rare in other fire-

affected soils (Figure 2.5A), we can also attribute these patterns to changes in the relative 

abundances of taxa within a locality, rather than to changes in taxa turnover (differing 

memberships). Thus, given that neither assessed selection, dispersal, nor drift processes, nor their 

combination can provide a complete explanation for the divergence of fire-affected communities, 

the questions remain: why are fire-affected soils so divergent from each other, and how do they 

eventually manage to recover to the same post-disturbance community structure? 

One hypothesis is that the remaining variability in community structure of fire-affected 

sites may be attributed to priority effects initiated from different local transitions between the 

dormant seed bank and the active community. The proportion of dormant cells in soils is 

estimated to be as high as 80% (45), and the importance of dormancy for microbial community 

assembly processes has been discussed at length (11). Specific to the Centralia coal mine fire 

disturbance, thermophiles are prime examples of microbial seed bank members that often have 

been found in environments that are improbable to permit their growth (46-48).  

There are two aspects of seed banks that could help to explain Centralia community 

divergences at temperature extremes: membership and dynamics. If each soil harbored a 

different seed bank membership, different thermophilic taxa could become active and prevalent 

in each fire-affected soil, and would manifest as drift influences. This scenario is not well-

supported by our data because we detect the dominant members of each fire-affected soil in the 

other fire-affected soils, albeit in lower abundances. Alternatively, awakenings from the 

microbial seed bank (49) could result in priority effects at temperature extremes, in which the 

first fit microorganisms to wake after the fire’s local onset have important influence over the 
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community’s ultimate trajectory (50). In our chronosequence study, the outcome of priority 

effects would appear as divergent community structures at high temperatures that are explained 

by niche processes. In addition, unknown nuances in local abiotic conditions at fire onset could 

also set communities onto parallel trajectories and result in multiple equilibria during the press, 

which would also be explained by niche processes. Our data indirectly support either of these last 

two scenarios, as the three separate clusters of fire-affected communities suggest multiple 

equilibria (Figure C.6B). It could be that the most similar fire-affected communities began either 

from the same (or functionally equivalent) waking pioneer taxon, or from the same abiotic 

conditions (that are similar beyond reaching thermal temperatures), or from some combination of 

both, which initiated distinct trajectories towards each equilibrium. 

Diversification is a fourth community assembly process discussed by Vellend, 2010 and 

Nemergut et al., 2013. At ecological time scales, diversification was suggested by Vellend et al., 

2014 to have relatively lower influence than the other community assembly processes. We do not 

directly address diversification in this study, focusing instead on ecological processes. Aside 

from a consistent observation of Acidobacteria and Chloroflexi among the dominant taxa in fire-

affected soils, there is no evidence that different but closely related lineages are most prevalent 

across all fire-affected soils, which may have hinted at distinct but parallel trajectories of 

diversification within a locality. However, we cannot reject the hypothesis that diversification 

processes also contribute to divergences in community structure at temperature extremes. 
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Conceptual model 

Extending the conceptual models of (16) and (12), we present a hypothesis of the 

assembly processes shaping communities before, during, and after an extreme press disturbance. 

Our model is based on our chronosequence trajectory for beta-null data presented in Figure 

2.4B, and includes a phase encompassing the press disturbance, which extends beyond the 

representation of a pulse disturbance as a single time point as typical in previous conceptual 

models. Our model also incorporates a hypothesis of multiple transient equilibria within the press 

disturbance phase. We apply the advice of (15) to not use the direction of the change from 

neutral (positive or negative) to infer specific ecological processes.  

We hypothesize that weak variable selection drives stability in heterogeneous Centralia 

soil communities before the fire (reference sites in Figure 2.4; phase 1 in Figure 2.6). This is 

additionally supported by the literature demonstrating generally high heterogeneity and diversity 

in mature soil microbial communities (51). Next, strong environmental filtering from thermal 

temperatures (homogeneous selection, phase 2) decreases community diversity at the onset of the 

press disturbance. The lower diversity and prolonged disturbance conditions permit priority 

effects initiated by taxa fit in the thermal environment (e.g., thermophiles waking from the 

seedbank), which set communities onto distinct deterministic trajectories with multiple equilibria 

during the fire (phase 2). Alternatively, the distinct trajectories and multiple equilibria could 

have been initiated by unmeasured nuances in abiotic conditions at thermal onset. Finally, weak 

environmental filtering from increased soil acidity relaxes communities back towards neutral in 

post-fire conditions (homogeneous selection, phase 3). 
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Figure 2.6. Conceptual model of Centralia community assembly.  

Hypothesized conceptual model of Centralia community assembly following press disturbance. 

Phase 1 represents the stable soil community pre-fire, and is characterized by weak variable 

selection from typical soil heterogeneity and high community diversity. Because the disturbance 

is a press, phase 2 occurs concurrent with the fire, when strong environmental filters 

(homogenizing selection) imposed by the extreme conditions drive a sharp increase in niche 

processes away from neutral conditions at the onset of the fire. Within phase 2, multiple 

equilibria result from priority effects of pioneer taxa that are fit to survive in the extreme press 

environment. Phase 3 is post-fire, characterized by relatively weak environmental filtering (e.g., 

increased in soil acidity) that relaxes communities towards neutral. Complete neutrality was not 

observed in pre-fire or post-fire soils. 
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Regardless of the interim dynamics that resulted in community divergence to the stressor, 

Centralia soils eventually recovered to a community structure very similar to reference soils, and 

these community structures were explained by the ultimate post-fire soil environment. Our 

results show that Centralia soil communities, though sensitive to this extreme, complex, and 

arguably unnatural stressor, had near-complete return to pre-disturbance conditions, and were 

resilient within ten to twenty years after the stressor subsides.  We have no reason to suspect that 

temperate soils in Centralia are exceptional as compared to other soils. Thus, these results 

suggest that soils may have an intrinsic capacity for robustness to varied disturbances, even to 

those disturbances considered to be “extreme”, compounded, or incongruent with natural 

conditions. Understanding the precise functional underpinnings of soil microbial community 

resilience, including the roles of seed banks in determining that resilience, is a next important 

step in predicting and, potentially, managing, microbial community responses to disturbances.  
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APPENDIX A 

 

Supplemental methods and results  
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Supplemental Methods 

 We performed quantitative PCR (qPCR) using bacterial and archaeal 16S rRNA gene 

universal primer sets (Table B.1; (1)). The qPCR was conducted in 20 µL reactions, consisting 

of 10 µL SYBR qPCR Master mix (Quanta Bioscience, Gaithersburg, MD, USA), 0.4 pM each 

of the forward and the reverse primers, and 2 µL of template DNA. Triplicate qPCR reactions for 

each DNA sample was performed. The thermal profile was as follows: initial denaturation at 

95°C for 10 s, followed by 40 cycles of denaturation at 95°C for 10 s, annealing at 50°C for 15 s, 

and extension at 72°C for 40 s. A final dissociation protocol (58°C to 94.5°C, increment 0.5°C 

for 10 s) was performed to ensure the absence of nonspecific amplicons. The reactions were 

conducted using the Bio-Rad iQ5 real time detection system (Bio-Rad, Hercules, CA, USA).  

To create the standard curve for the primer set, extracted E. coli K-12 MG1655 genomic 

DNA was used to amplify 16S rRNA genes with the 515F and 806R universal primer set (1). 

The reaction mixtures consisted of 1X final concentration GoTaq® Green Master Mix 

(Promega), 1 pM each of the forward and the reverse primers, and 1 µL of E. coli template DNA, 

in a 50 µL final volume. The thermal profile was as follows: initial denaturation at 95°C for 10 s, 

followed by 30 cycles of denaturation at 95°C for 10 s, annealing at 50°C for 15 s, and extension 

at 72°C for 40 s. Amplified E.coli PCR products were purified using Promega Wizard SV Gel 

and PCR Cleanup System per manufacturer’s instructions. Purified PCR amplicons were cloned 

into the TOPO cloning vectors with a TOPO TA cloning kit (Invitrogen, Carlsbad, Calif.) 

according to the manufacturer’s protocol. Cloned plasmid DNA was extracted using QIAPrep 

Spin Plasmid Miniprep kit (Qiagen) following manufacturer’s protocol, and the concentration 

was measured using Qubit® dsDNA BR Assay Kit (Life Technologies, NY, USA). A standard 

curve was then constructed using a 10-fold dilution series of cloned plasmid DNA. Based on the 
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DNA size for plasmid DNA clone and Avogadro’s number (6.02 x 1023 molecules per mole), we 

calculated the copy number of cloned plasmid DNA (where 4.52 x 10-3 fg is equal to one plasmid 

copy). qPCR amplifications were performed in triplicate with a range of concentrations from 

18.8 to 1.88 x 108 copies of plasmid DNA using Bio-Rad iQ5 real time detection system, and the 

observed CT values were plotted with regression curve using Sigma plot software (Figure C.8). 

Copy number of 16S rRNA genes in each DNA sample was determined based on the observed 

CT values calculated by function of regression curve [Y = -3.13x + 41.81, where x is observed CT 

value and Y is converted copy number of 16S rRNA gene. The qPCR efficiency, E, was 

calculated based on the slope in the qPCR standard curves as described by (2): 

� = 10��� �	
��
 �
 

According to this calculation, the qPCR amplification efficiency of 16S rRNA gene using EMP 

primers was 2.08.  

 To calculate 16S rRNA copies per gram of dry soil, the average copies of the three qPCR 

technical replicates per DNA extraction was multiplied by the dilution factor (the elution volume 

of the DNA extraction divided by the microliters added to the qPCR reaction), and then that 

value was divided by the dry mass of the soil used for the DNA extraction to get copies per gram 

of dry soil. 

 

Supplemental Results 

After quality filtering, our 16S rRNA amplicon dataset produced 5,778,000 high-quality 

reads (5,776,626 sequences after omitting singletons OTUs) with a UPARSE-calculated error 

rate of 0.469%. In total, we observed 28,220 OTUs (26,846 when omitting singleton OTUs) 

defined at 97% sequence identity; approximately one-third of OTUs were defined based on high-
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identity matches to the greengenes v13.8 reference database (8,967 OTUs; 8,794 when omitting 

singleton OTUs), while two-thirds were defined de novo after unsuccessful attempts to match the 

database (19,253 OTUs; 18,052 when omitting singleton OTUs). We observed 65 phyla in 

Centralia soils. 

Though it was not unexpected in a soil ecosystem impacted by an unusual disturbance, 

the observation of a large proportion on de novo OTUs (with the open-reference OTU picking 

workflow) suggests that Centralia soils may harbor substantial undescribed microbial diversity 

and functions. Coal mine fire ecosystems have been sources of novel microbial functions, 

including reported aerobic nitrogen fixation (3)  and novel antibiotics (4,5). Furthermore, 

thermophiles are of interest for bioprospecting for natural products such as thermally-stable 

enzymes (e.g., for biomass deconstruction from lignocellulosic crops (6) and novel antibiotics 

(7). Among the de novo lineages of interest were several archaeal taxa tentatively identified as 

Crenarcheaota and Parvarcheaota, and several minor bacterial lineages tentatively assigned as 

TM6, TM7, OD1, OP11, LD1, WPS-2, and WS-3. A 16S rRNA clone library and T-RFLP study 

of three soil microbial communities that were each proximate to active coal seam vents in China 

also reported a proportionally large number of Crenarcheaota among detected archaeal clones 

(8), suggesting that these may be common inhabitants of soils impacted by long-term fires.  
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Table B.1. Primers used in this study. 

       
     

Primer 
name 

sequence (5' - 3') Target 
target 
site 

Product 
size  Tm Reference 
(bp) 

515F GTGCCAGCMGCCGCGGTAA 
16S 
V4 

515-
534 

291 
69.5 

Caporaso et al., 
ISME J. 2012 

806R GGACTACHVGGGTWTCTAAT 
787-
806 

45.1 
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Table B.2. Mean and standard deviation of phylogenetic diversity and richness across 

technical sequencing replicates. 

Three replicate DNA extractions, amplifications and sequencing reactions were performed per soil, 
and, after calculating the technical variability, these sequences were pooled into one aggregate set 
of sequences to achieve deep coverage of the community within each soil. 

SampleID PD_mean PD_sd Richness_mean Richness_sd 

C01 393.96 16.22 4073.67 55.77 
C02 392.48 9.42 3805.00 48.50 
C03 403.12 15.25 4498.67 39.72 
C04 374.95 6.51 4420.33 89.51 
C05 405.05 14.17 4389.33 109.25 
C06 332.89 13.26 3718.67 117.33 
C07 371.50 7.80 4253.00 67.01 
C08 525.93 5.37 6011.67 191.04 
C09 312.71 32.40 2328.33 352.23 
C10 267.32 27.06 2128.00 225.08 
C11 343.84 12.26 3886.67 81.56 
C12 249.92 29.65 2106.67 280.73 
C13 316.18 58.27 2471.00 816.28 
C14 307.29 16.47 2688.67 232.20 
C15 330.40 38.06 3011.67 435.15 
C16 356.85 12.24 3546.33 83.93 
C17 506.13 19.77 5724.00 179.43 
C18 392.64 13.98 4210.67 105.61 
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Table B.3. 

(A) Percent variation explained for PCoA axes 1 and 2 for weighted and unweighted UniFrac, 
Sorensen-dice, and Bray-Curtis distances/dissimilarities.  Nonnormalized Weighted UniFrac was 
chosen because it was most informative in explaining the variance along the first two axes.  (B) 
Pairwise resemblance correlations calculated with Mantel and PROTEST. All p < 0.001 for all 
tests. 

 

A. 

 
PCoA1 PCoA2 

Weighted UniFrac 77.1 12.7 
Normalized Weighted Unifrac 74.6 10.9 

Unweighted UniFrac 18.3 13.6 
Sorensen-dice 20.1 15.2 

Bray-Curtis 23.9 13.7 
B. 

Dist1 Dist2 Mantel_R 

weighted_UniFrac unweighted_UniFrac 0.63 
weighted_UniFrac normalized_weighted_UniFrac 0.96 
weighted_UniFrac BrayCurtis 0.72 
weighted_UniFrac Sorenson 0.68 
unweighted_UniFrac normalized_weighted_UniFrac 0.61 
unweighted_UniFrac BrayCurtis 0.81 
unweighted_UniFrac Sorensen 0.94 
normalized_weighted_UniFrac BrayCurtis 0.70 
normalized_weighted_UniFrac Sorensen 0.69 
BrayCurtis Sorensen 0.85 
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Table B.4. Explanatory value of soil contextual data to changes in Centralia soil community 

structure along PCoA axes for all soils. 

Factors significant at p < 0.10 are in bold. 

 PCoA1 PCoA2 R2 
P 

value 
 

% explanation 77.1 12.7    

Soil Temperature 0.968 -0.252 0.787 0.002 ** 

NO3N (ppm) 0.226 -0.974 0.290 0.067 . 

pH 0.185 0.983 0.649 0.008 ** 

K (ppm) -0.813 0.582 0.006 0.946  

Mg (ppm) -0.148 0.989 0.123 0.374  

Organic matter 0.812 -0.583 0.002 0.984  

NH4N (ppm) 0.194 -0.981 0.287 0.088 . 

SulfateSulfur (ppm) 0.121 -0.993 0.116 0.372  

Ca (ppm) 0.182 0.983 0.529 0.022 * 

Fe (ppm) 0.253 -0.967 0.271 0.094 . 

Fire history -0.605 0.797 0.253 0.169  

As (ppm) -0.014 -1.000 0.124 0.404  

P (ppm) 0.435 -0.900 0.093 0.462  

Soil Moisture (%) 0.263 -0.965 0.405 0.035 * 

Significant codes: ‘***’ 0.001; ‘**’ 0.01; ‘*’ 0.05; ‘.’ 0.1; ‘ ’ 1 

Number of permutations: 999 
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Table B.5. Explanatory value of soil contextual data to changes in Centralia soil community 

structure along PCoA axes for fire-affected soils. 

Factors significant at p < 0.10 are in bold. 

 PCoA1 PCoA2 R2 
P 

value 
 

% explanation 70.9 22.0    

SoilTemperature_to10cm 0.765 -0.644 0.578 0.088 . 

NO3N_ppm -0.002 -1.000 0.328 0.236  

pH 0.490 0.872 0.823 0.002 ** 

K_ppm 0.282 -0.959 0.232 0.429  

Mg_ppm 0.767 0.641 0.604 0.058 . 

OrganicMatter_500 0.407 -0.913 0.218 0.498  

NH4N_ppm -0.021 -1.000 0.342 0.155  

SulfateSulfur_ppm -0.216 -0.976 0.118 0.759  

Ca_ppm 0.613 0.790 0.694 0.015 * 

Fe_ppm 0.044 -0.999 0.355 0.204  

As_ppm -0.492 -0.871 0.388 0.228 
 

P_ppm 0.142 -0.990 0.238 0.453  

SoilMoisture_Per -0.023 -1.000 0.460 0.143  

Fire_history 0.742 -0.670 0.136 0.637  

Significant codes: ‘***’ 0.001; ‘**’ 0.01; ‘*’ 0.05; ‘.’ 0.1; ‘ ’ 1 

Number of permutations: 999 
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Table B.6. Explanatory value of soil contextual data to changes in Centralia soil community 

structure along the contrained PCoA axes for fire-affeted soils, after removing the influence 

of temperature. 
 
Factors significant at p < 0.10 are in bold. 
 

 CAP_A1 CAP_A2 R2 
P 

value 
 

% explanation 64.2 25.9    

SoilTemperature_to10cm 1.000 0.000 0.000 1.000  

NO3N_ppm -0.973 -0.233 0.354 0.285  

pH 0.771 0.637 0.729 0.014 * 

K_ppm -0.416 -0.909 0.093 0.730  

Mg_ppm 0.641 0.767 0.370 0.247  

OrganicMatter_500 0.070 -0.997 0.128 0.613  

NH4N_ppm -0.962 -0.273 0.367 0.240  

SulfateSulfur_ppm -0.988 0.154 0.234 0.446  

Ca_ppm 0.652 0.759 0.551 0.092 . 

Fe_ppm -0.862 -0.508 0.396 0.355  

As_ppm -0.948 -0.317 0.378 0.216 
 

P_ppm -0.132 -0.991 0.287 0.350  

SoilMoisture_Per -0.813 -0.583 0.419 0.203  

Fire_history 0.636 -0.771 0.276 0.375  

Significant codes: ‘***’ 0.001; ‘**’ 0.01; ‘*’ 0.05; ‘.’ 0.1; ‘ ’ 1 

Number of permutations: 999 
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Table B.7. Parameters and fits of neutral models. 

Model 

parameter 
all 

Fire-

affected 
Recovered 

m 0.04 0.08 0.10 

m.ci 0.00 0.00 0.00 

m.mle 0.04 0.08 0.10 

maxLL -5838.12 1187.68 -2735.42 

binoLL 475.69 1162.47 -143.93 

poisLL 475.67 1162.46 -143.94 

Rsqr 0.45 0.12 0.53 

Rsqr.bino -1.19 -0.86 -0.47 

Rsqr.pois -1.19 -0.86 -0.47 

RMSE 0.20 0.26 0.21 

RMSE.bino 0.39 0.38 0.37 

RMSE.pois 0.39 0.38 0.37 

AIC -11672.24 2379.36 -5466.85 

BIC -11655.75 2394.86 -5451.16 

AIC.bino 955.38 2328.94 -283.86 

BIC.bino 971.88 2344.43 -268.17 

AIC.pois 955.35 2328.92 -283.88 

BIC.pois 971.84 2344.42 -268.19 

N 321000.00 321000.00 321000.00 

Samples 18.00 9.00 7.00 

Richness 28220.00 17097.00 18866.00 

Detect 0.00 0.00 0.00 

%AbovePred 0.14 0.12 0.13 

%BelowPred 0.10 0.07 0.12 
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Table B.8. Welch’s t-tests comparing the mean relative abundances of phyla across fire-

affected and recovered soils. 

Bold values are significant at p < 0.05. 

Phylum T-statistic DF p-

value 

Crenarchaeota 2.80 8.36 0.02 

Euryarchaeota -0.47 11.86 0.65 
[Parvarchaeota] -3.31 11.34 0.01 

Unidentified Bacteria 2.33 8.22 0.05 

AD3 -1.58 7.28 0.16 

Acidobacteria -1.74 13.64 0.10 
Actinobacteria -0.22 13.12 0.83 
Armatimonadetes -0.58 13.21 0.57 
Bacteroidetes -4.00 9.73 0.00 

Chlamydiae -1.68 10.73 0.12 
Chlorobi -0.43 10.96 0.67 
Chloroflexi 2.82 9.67 0.02 

Cyanobacteria 1.85 8.07 0.10 
Elusimicrobia -3.45 8.01 0.01 

FCPU426 -0.79 11.28 0.45 
Firmicutes 0.60 10.97 0.56 

Gemmatimonadetes -2.24 12.33 0.04 

Nitrospirae 0.04 12.47 0.97 
OD1 -1.28 10.05 0.23 
OP11 -1.82 7.56 0.11 
Planctomycetes -3.33 11.61 0.01 

Proteobacteria -2.42 12.89 0.03 

SBR1093 2.02 8.00 0.08 
Spirochaetes -2.43 6.68 0.05 

TM6 -2.48 7.47 0.04 

Tenericutes 0.14 10.06 0.89 
Verrucomicrobia -3.78 10.92 0.00 

WPS-2 0.41 10.37 0.69 
WS3 -2.26 6.59 0.06 
Below_0.01 -0.27 8.39 0.79 
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Figure C.1. Soil sampling sites at Centralia mine fire. 

In total, 18 surface soil samples (5.08 cm x 20 cm PVC core) were collected along two fire fronts 

in Centralia, on 15/16 October 2014. Sampling sites encompass a gradient of historical fire 

activity (red flags: Fire-affected in 2014 (temperature > 21°C); yellow flags: recovered in 

temperature, post-fire; and green flags: reference soils). 
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Figure C.2. PCoA showing the variability among technical replicates.  

Three replicate DNA extractions, amplifications and sequencing reactions were performed per soil, 

and these sequences were subsequently pooled into one aggregate set of sequences to achieve deep 

coverage of the community within each soil. Error bars are standard deviation around the mean 

weighted UniFrac distance among technical replicates, each subsampled to an even 53,000 

sequences per replicate. 
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Figure C.3. Soil physical and chemical data plotted against temperature. 

 Color gradient shows the soil temperature, and symbols show soil fire classification in October 

2014 as fire-affected, recovered, or reference. 
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Figure C.4. Community size measurements. 

Quantification of (A) 16S rRNA copies per gram of dry soil and (B) cell counts per gram of dry 

soil in fire-affected, recovered, and reference soils. 16S rRNA copies were assessed using 

quantitative PCR, and cell counts were assessed using cell separation from soil, staining and 

microscope imaging. There were no statistical differences in values across fire classification for 

either measurement (all pairwise p > 0.09 with a student’s t-test). 
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Figure C.5. Rarefaction curves. 

Centralia 16S rRNA amplicon sequencing effort assessed by subsampling/rarefaction of (A) 

richness and (B) Faith’s phylogenetic diversity with increasing total number of sequences. 

  

A

B
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Figure C.6. Divergence in fire-affected soils is not well explained by temperature.  

(A) Principal coordinate analysis (PCoA) based on weighted UniFrac distances of phylogenetic 

bacterial and archaeal community structure in fire-affected soils. The strength of statistically 

significant (p < 0.10) explanatory variables are shown with blue arrows. (B) Constrained analysis 

(CAP) based on weighted UniFrac distances, where the explanatory value of temperature is 

removed from the analysis to understand the influence of the remaining explanatory variables. 
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Figure C.7. Neutral models of community assembly.  

(A) the total community (“All”, n= 18), (B) recovered soils (“Recovered” n=7), and (C) fire-

affected soils (“Fire_Affected”, n=9). Red symbols show OTUs that had higher abundance than 

their prediction, and blue symbols show OTUs that had lower abundance than their prediction. The 

thick yellow line is the neutral model prediction, and the thin yellow lines show a 95% confidence 

interval around the prediction. 
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Figure C.8. qPCR standard curve. 

Quantitative PCR standard curve for the amount of E.coli 16S rRNA gene copies (cloned into 

plasmids) versus CT values. The solid line is the regression (R2 = 0.988). The error bars are the 

standard deviations obtained in three independent experiments. 
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CHAPTER 3: Ecological selection for small microbial genomes along a temperate-to-

thermal soil gradient 
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Abstract 

Small bacterial and archaeal genomes provide insights into the minimal requirements for 

life (1) and are phylogenetically widespread (2). However, the precise environmental pressures 

that constrain genome size in free-living microorganisms are unknown. A study including 

isolates has shown that thermophiles and other bacteria with high optimum growth temperatures 

often have small genomes (3). It is unclear whether this relationship extends generally to 

microorganisms in nature (4,5), and in particular to microbes inhabiting complex and highly 

variable environments like soils (3,6,7). To understand the genomic traits of thermally-adapted 

microorganisms, here we investigated metagenomes from a 45°C gradient of temperate-to-

thermal soils overlying the ongoing Centralia, Pennsylvania (USA) coal seam fire. We found that 

hot soils harbored distinct communities with small genomes and small cell sizes relative to 

ambient soils. Hot soils notably lacked genes encoding known two-component regulatory 

systems and antimicrobial production and resistance. Our results provide field evidence for the 

inverse relationship between microbial genome size and temperature in a diverse, free-living  

community over a wide range of temperatures that support microbial life.  

 

Main 

Centralia, Pennsylvania is the site of a slow-burning, near-surface coal seam fire that 

ignited in 1962. The heat from the fire vents through overlying soils, causing surface soil 

temperatures to reach as high as > 400°C (8), but more recently in the range of 40 - 75°C (9,10). 

Centralia offers an interesting model press disturbance (11) that can be used to directly compare 

the traits of microorganisms that can withstand thermal temperatures to traits of microorganisms 

from proximal soils with ambient temperature.  
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We recently assessed compositional changes in Centralia soil microbial communities 

along an ambient-to-thermal temperature gradient overlying the fire (10). We collected surface 

soils that were hot from fire (“fire-affected”), previously hot but now recovered to ambient 

temperatures (“recovered”) and never impacted by the fire (“reference”). Fire-affected soils had 

starkly different community structure from ambient soils. These hot soils also had overlapping 

16S rRNA gene compositions but differences in which taxa were most abundant. However, after 

the fire advanced, soils reasonably recovered towards reference community structure. This 

suggested a considerable capacity of soil microbiomes for resilience, even after exposure to a 

severe and unanticipated stressor, and prompted us to ask what microbial attributes underlay the 

community changes in fire-affected soils. 

From twelve metagenomes (six fire-affected, five recovered, and one reference; Table 

E.1), we calculated average genome sizes inclusive of chromosomes and plasmids. Average 

genome sizes were negatively and strongly correlated with temperature (Figure 3.1A, Pearson’s 

R = -0.910, p < 0.001, n=12 metagenomes). This relationship was not due to changes in 

eukaryotes or plasmids along the gradient (Table E.2). We used three additional methods to 

assess changes in genome size with soil temperature and found them all to be in agreement 

(Figure F.1).  Though unmeasured variables might provide additional information, only 

temperature was explanatory out of thirteen measured soil variables (Table E.3). To the best of 

our knowledge, this is the first report of decreases in average genome size across an in situ 

temperature gradient that spans physiological requirements from mesophiles to thermophiles. 

  



 84

  

Figure 3.1. Changes in average genome size and cell sizes with temperature. 

Changes in average genome and cell sizes across the soil temperature gradient in Centralia. (A) 

Average genome size in each metagenome was calculated using MicrobeCensus and plotted 

against site temperature (Pearson’s correlation p = 4.095x10-5).  (B) Average cell length was 

measured from 44-910 cells from 3-9 replicate fields for each soil and plotted against soil 

temperature (Pearson’s correlation p = 0.022). (C) Average genome size had a direct  
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Figure 3.1. (cont’d) 

relationship with average cell size (Pearson’s correlation p = 0.025). All Pearson’s correlations 

were two-sided and had n=12 soils. 
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We next compared average genome sizes estimated from Centralia metagenomes to those 

from 22 public soil metagenomes (Figure 3.2A, Table E.4).  Generally, hot Centralia soils had 

small genomes relative to other soils, while ambient Centralia soils were closer to the average 

size observed among this set. The average genome sizes from ambient Centralia soils were in 

agreement with sizes reported from other soils and calculated using comparable methods 

(7,12,13).  

We compared average genome sizes in Centralia to the sizes of a collection of soil isolate 

genomes (RefSoil , Figure 3.2B). Genome sizes from RefSoil were not different across several 

soil types (Figure 3.2C), suggesting a minimal influence of soil type on genome size. While the 

average genome size in hot Centralia soils is not as small as the soil oligotroph Candidatus 

Udaeobacter (2.81 Mbp (6)), it is significantly smaller than directly-comparable ambient 

Centralia soils and small relative to other soils (Figure 3.2A). Together, these results support 

comparably small genomes in Centralia soils and more generally provide a range of expected soil 

genome sizes.  Moreover, the average genome sizes in Centralia ambient soils are not 

remarkably large. This suggests that the inverse relationship between genome size and soil 

temperature in Centralia soils is an ecologically meaningful outcome of abiotic filtering. 
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Figure 3.2. Comparison of Centralia genome sizes to other soils. 

Comparison of Centralia genome sizes to other soils. (A) Comparison to publicly available 

metagenomes of similar coverage and quality from the database MG-RAST. Average genome 

size in soil metagenomes, estimated using MicrobeCensus. Samples are ordered by average 

genome size and colored by sample location.  (B) Distribution of genome size from cultivable 

soil microorganisms (RefSoil) with and without plasmids. The mean genome size of Centralia 

active and recovered metagenomes are plotted over the distribution. (C) The distribution of 

genome size (including plasmids) are not distinct across different soil orders. Previously 

published estimates of the abundance of RefSoil organisms in the soil Earth Microbiome Project 

(53) dataset were used to estimate the distribution of genome size of soil microbiomes in 

Alfisols, Vertisols, and Mollisols. Midlines of each boxplot corresponds to the median values. 

The top and bottom of each boxplots represent the 75th and 25th percentiles respectively. The 

upper and lower whiskers extend to the furthest values that are not outliers.  
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It was hypothesized by Sabath and colleagues (2013) that small cells may be selected to 

minimize cellular maintenance costs at high temperatures and that small cells indirectly select for 

small genomes (3). We re-analyzed microscope images from soil cell counts in Centralia (10) to 

extract size information. Average cell sizes were also negatively correlated with temperature 

(Figure 3.1B; Pearson’s R = -0.65, p =0.021, n = 12 soils, Table E.5). Accordingly, cell size 

correlated with genome size (Figure 3.1C; Pearson’s R = 0.64, p = 0.025, n= 12 soils). These 

results agree with reported in situ relationships between cell size and temperature observed in 

aquatic systems (4,5).  Our results extend the cell size-temperature trend to soils and also to a 

45°C temperature range. 

Cell and genome sizes can be governed not only by environmental conditions but also by 

taxonomy (e.g., 3,14).  As we previously reported (10) and as confirmed by this work using 

phylogenetic inference of genome size (Figure F.1B), there were stark changes in community 

structure between fire-affected and ambient soils (Figure F.2).  This provides evidence that there 

was environmental filtering for taxa with small genomes in hot Centralia soils caused by 

compositional turnover. Using 104 high-quality, de novo metagenome-assembled genomes 

(MAGs; Figure F.1C, Table E.6), which represent some of the most abundant taxa, we asked if 

small MAGs typical of hot Centralia soils were relatives of thermophiles or lineages that have 

characteristically small genomes (Figure 3.3, Figure F.2B).  Some of the MAGs assembled 

from hot soils were related to known thermophile lineages, such as Crenarcheota, 

Thaumarchaeota and Chloroflexi; however, other “hot” MAGs cluster with lineages not 

described as thermotolerant (Figure 3.3A).  Taxonomy could not be assigned to 51 (out of 104) 

MAGs beyond the phylum level, and two Bacteria were unable to be assigned beyond the 

domain level, suggesting previously undescribed taxa (Figure 3.3B, Table E.6). For some phyla, 
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Centralia MAGs trended small relative to the median genome sizes of isolate references (e.g., 

Acidobacteria and Actinobacteria; Figure 3.3B), although there were exceptions (e.g, 

Chloroflexi). Other lineages did not have a sufficient number of reference genomes to make 

robust comparisons and point to phylogenetic gaps in soil reference genomes.  
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Figure 3.3. Distribution and diversity of Centralia MAGs in comparison to IMG and 

RefSoil database. 

Temperature distributions and diversity of Centralia MAGs compared to reference soil genomes 

from IMG and the RefSoil database.  (A) Microbial reference phylogeny based on single-copy 

(aka “marker”) genes (45) that was expanded to include Centralia MAGs. For clarity, large 

clades that did not contain MAGs are collapsed. The inner color ring shows phylum-level 

taxonomy, matched to phyla in panel B. The outer color ring shows the temperature reported for 

IMG reference lineages (muted) and the distribution and measured soil temperatures for 

Centralia MAGs (bright, black flags). (B) Genome sizes of RefSoil isolates compared to 104 of 

the highest-quality Centralia MAGs from fire-affected and ambient soils (taxonomy assigned by 

MiGA (44)). Sample sizes indicated in the panel headers are the total number of RefSoil  
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Figure 3.3. (cont’d) 

genomes or Centralia MAGs detected within each lineage. Note differences in y-axis ranges. 

Because the many of the highest-quality MAGs assembled from hot soils, Figure  

3.3B does not provide robust MAG comparisons across Centralia fire impact categories. 

Midlines of each boxplot corresponds to the median values. The top and bottom of each boxplots 

represent the 75th and 25th percentiles respectively. The upper and lower whiskers extend to the 

furthest values that are not outliers. Sample numbers for each box plot are indicated in the panel 

headers and refer to either genomes in the RefSoil database or MAGs detected in this study. 
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We used metagenome annotations from the KEGG module (KM) database to determine 

changes in functional genes with increasing temperature. KMs are groups of KEGG Orthologs 

(KOs) that represent complexes, functional sets, metabolic pathways, or signatures. Eighty-one 

percent of KOs detected in Centralia metagenomes were detected in all 12 soils, and many 

patterns with temperature were attributable to changes in normalized KO abundance rather than 

in KO detection. In total, 284 (out of 541 detected; 52.50%) were correlated with temperature 

(Figure 3.4, Table E.8, Supplementary Results).  

Twenty-seven KMs were positively correlated with temperature (Pearson’s R > 0.656, 

false discovery rate < 0.05;  Figure 3.4A, Table E.8). Anaerobic processes, including 

dissimilatory sulfate reduction (M00596), dissimilatory nitrate reduction (M00530) and 

denitrification (M00529), were enriched in hot soils (Figure 3.4A, cluster iii), aligning with 

known and expected environmental conditions in Centralia. Fire-affected soils from actively 

steaming vents had higher moisture than ambient soils (Pearson’s R = 0.714, p < 0.01, n = 12 

soils), which likely causes inundated and anaerobic microhabitats. Prior work in Centralia 

indicated an importance of these metabolisms: sulfur, sulfate, nitrate and ammonium were 

commonly elevated at vents (8,9). These results also agree with observations of thermophile 

metabolisms in other terrestrial and geothermal environments (15-18). These anaerobic KMs had 

similar dynamics to several archaeal proteins (Figure 3.4A, cluster iii; Archaeal ribosome 

M00179, polymerase M00184, and exosome M00390). There was an increase in Crenarchaeota 

in fire-affected soils (10), an archaeal phylum that includes sulfate reducers (19) and has nine 

soil reference genomes that average 2.26 Mbp (Figure 3.3B).  Together, these data suggest that 

pathways enriched in small genomes from hot soils encode functions attuned to the Centralia 

habitat.  
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Figure 3.4. KEGG modules correlated with temperature. 
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(Figure 3.4. cont’d) 

Modules (rows) are centered and standardized across Centralia metagenomes (columns), with 

warm colors showing relative enrichment and cool colors showing relative depletion. Modules 

with significant relationships with temperature are shown. Sites are arranged by increasing 

temperature from left to right. (A) 27 KEGG modules were positively correlated with 

temperature (Pearson’s R range = 0.646 to 0.933, n = 12 soils). (B) 257 KEGG modules were 

negatively correlated with temperature (Pearson’s R range = -0.642 to -0.925, n = 12 soils). A 

third of the KEGG modules negatively correlated with temperature were either two-component 

regulatory systems (blue dendrogram tips), antimicrobial resistance or production (gray tips), or 

both (black tips). Note differences in color gradient ranges across panels A and B. Row 

dendrograms show the hierarchical clustering of KEGG modules by response patterns to the 

temperature gradient. Numbers (e.g. i, ii) denote clusters of KEGG modules with similar 

response patterns to the temperature gradient. Full information on correlation statistics for each 

KEGG module is listed in Table E.8. 
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 Temperature was negatively correlated with 257 KMs (47.5%, Pearson’s R < -0.6, false 

discovery rate < 0.05; Figure 3.4B, Table E.8). In general, depleted KMs were detected across 

ambient soils. Of note were antimicrobial resistance and production and two component 

regulatory systems, which comprised 32.7% of KMs negatively correlated with temperature (84 

out of 257, Figure 3.4B). This trend was striking, but some KMs belonging to these categories 

had no relationships with temperature and these KM categories were always detected in fire-

affected soils.   

Thirty-nine modules for antimicrobial production and resistance were negatively 

correlated with temperature, which agrees with our prior analysis of antibiotic resistance genes in 

Centralia (20). Small genomes of host-associated symbionts often lack antimicrobial genes (21). 

However, the free-living marine Pelagibacter clade, a model for genome streamlining attributed 

to oligotrophic conditions, has a multidrug transporter conserved across sequenced genomes 

(22). The challenges in developing selectable antibiotic resistance markers for thermophiles 

(23,24) suggest that thermophiles might have fewer genes encoding resistance to described 

antimicrobials. Like most databases, KEGG is biased towards genomes and genes from fast-

growing mesophiles and may miss annotation of under-described thermophile antimicrobial 

genes. However, thermal conditions might present a strong environmental filter that reduces 

competition and the need for antimicrobial production and resistance. We previously reported 

decreased richness and phylogenetic diversity of fire-affected Centralia soils (10), suggesting 

that there is a smaller pool of potential competitors inhabiting the hot soils.  

Forty-nine detected two-component regulatory system modules were also negatively 

correlated with temperature (Pearson’s R < -0.6). Two-component systems allow bacteria to 

respond to multiple stimuli with little genetic material (25,26). Smaller genomes, including those 
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that are reduced or streamlined, can have fewer regulatory components (5,7,27) and less 

regulation (22,28-31). Our results suggest that thermophiles may have relatively low regulatory 

needs. It has been proposed that thermophiles with small genomes may be more likely to utilize 

global regulatory systems that mediate transcriptional responses to co-occurring environmental 

stimuli (29). Environmental stability is also predicted to influence the relative benefit an 

organism gains from investing in sensing its environment (32). For example, obligate 

endosymbionts are thought to have drifted towards having small genomes in part because 

conditions are stable and sensing requirements are minimal (7). In Centralia, seasonal 

temperature fluctuations in fire-affected and ambient soils are equivalent (Figure F.3), providing 

evidence that the soils experience similar environmental stability in temperature, albeit at 

different ranges. This suggests that wild small genomes are not necessarily conditional on stable 

environments (7) and invites investigation of whether two-component regulatory systems are 

consistently less prevalent among thermophiles.  

Our cultivation-independent field study supports cultivation-dependent studies that 

suggest higher temperatures support growth of bacteria and archaea with small genomes (3). 

Surprisingly, it also suggests that microbial populations inhabiting complex environments, like 

soils, may generally reflect similar overarching traits in genome size as those observed in 

laboratory studies.  

These results add evidence that supports selection for both smaller genomes and cells at 

higher temperatures, but also offer a key point of distinction. Our study considers the ecological 

process of selection (33) via abiotic environmental filtering, not the evolutionary process of 

natural selection towards streamlining. Though taxa enriched in hot soils characteristically had 

smaller genomes and cells, there is no evidence for contemporary genome streamlining in 
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Centralia. Rather, we suspect that these thermotolerant cells were resuscitated from the vast 

dormant pool in soil. This is supported by three lines of evidence. First, there was turnover in 

community membership across hot and ambient Centralia soils (10), providing evidence against 

contemporary streamlining within local lineages.  Second, many of the lineages that we detected 

in high abundance in certain hot sites were also detected in low abundance in other sites, 

including ambient sites (Figure 3.3A and (10)), suggesting a role for the rare biosphere or 

dormant pool as a diversity reservoir for unanticipated thermal conditions. Finally, many other 

studies have described thermophile persistence and resuscitation from non-thermal 

environments, suggesting that thermophilic lineages are widespread but typically inactive 

(16,34,35). Therefore, we posit that Centralia small genomes are characteristic of previously 

dormant thermophiles in the soil and not the outcome of genome streamlining.   

Centralia afforded a unique opportunity to directly compare the metagenomes of 

proximal soils along an extreme temperature range. It is unusual to observe such a wide 

temperature range in soils, especially one that is inclusive of thermal temperatures, historically 

and geologically comparable, and with shared exposure to the same regional pool of dispersed 

microbes. When more metagenomes are available, comparisons with other thermal soils will 

provide insights into the generality of the trends observed in Centralia.  

There are many environmental factors that contribute to microbial genome size, including 

oligotrophic conditions (6,36), relative environmental stability (7,32), and symbiotic lifestyle 

(28,31), and these factors are expected to interact with taxonomy (3,14). Furthermore, there are 

evolutionary explanations as to why small genomes might trend with high temperatures, as 

discussed in detail by Sabath and colleagues (3). Here, we provide evidence that many lineages 

of soil microorganisms that can thrive at thermal temperatures and have small genomes and cells, 
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supporting the hypothesis that small cells constrain genome size (3). Importantly, our results 

show that high temperature is one environmental factor that can drive overarching changes in the 

genomic and cellular traits of wild microbial communities.   
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Materials and Methods 

DNA extraction and metagenome sequencing 

DNA for metagenome sequencing was manually extracted using a phenol chloroform 

extraction (37) and then purified using the MoBio DNEasy PowerSoil Kit (MoBio, Solana 

Beach, CA, USA) according the manufacturer’s instructions. To briefly summarize the published 

methods we used (5), after the four cycles of freeze thawing, 10 mL of a Phenol-chloroform-

isoamyl alcohol mixture (25:24:1) was added to each sample, mixed and centrifuged at 7,500 g 

for 10 minutes. After precipitation, DNA was pelleted via centrifugation at 7,500 g for 15 min. 

The pelleted DNA was resuspended in 100 µL of TE buffer (10mM Tris-HCl, 1mM EDTA•Na2. 

The resulting manually extracted DNA was then purified using the MoBio DNEasy PowerSoil 

kit per the manufacturer’s instructions, omitting the 10 min vortexing step after adding solution 

‘C1.’ Total DNA sequencing was performed on all 12 samples by the Department of Energy’s 

Joint Genome Institute (Community Science Project) using an Illumina HiSeq 2500. Libraries 

were prepared with a targeted insert size of 270 base pairs. Samples had between 19Gbp and 

50Gbp of sequence data.  Additional methodology details are provided in Supporting Materials.  

 

Quality control, assembly and annotation 

Adapters were removed and quality trimmed at values less than 12 using BBDuk 

(https://sourceforge.net/projects/bbmap/). BBDuk was also used to remove reads that had more 

than one ambiguous base, a final length of less than 40bp after trimming, or an average quality 

score less than 8. Reads matching Illumina artifacts, spike-ins, or phiX were also removed and 

the resulting reads mapped to human genome HG19 using BBMap, removing all reads that hit 

with >93% identity. These quality controlled reads from each metagenome were assembled 
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separately using megahit (6) with kmer size ranging from 31-121 with a k-step of 10. Coverage 

of resulting contigs was estimated using seal to map all reads onto the contigs. 

To use all sequencing data, we worked with assembled and unassembled reads processed 

by Integrated Microbial Genomes (IMG) using their standard annotation pipeline (38). After 

comparing several annotation methods (Supplementary Discussion), we chose to use the KEGG 

Orthology database (39) for analyzing the Centralia data due to its inherent structure and ability 

to integrate metabolic pathways. KEGG Ortholog (KO) abundances were relativized to the 

median abundance in each site of a set of 36 single copy genes published previously (40) (Table 

E.7). One single copy gene (K01519) was an outlier in 7 out of 12 samples as assessed by 

Grubb’s test for outliers and removed. We analyzed patterns in KEGG Modules (KMs) (39), a 

set of manually defined functional units made up of multiple KOs. KM abundances were 

calculated based on the median abundance of their constituent KOs that were present in the 

metagenomes. KMs were included in analysis if 50% or more of their constituent KOs were 

identified in the dataset. Approximately one third of the open reading frames per sample were 

able to be annotated with KEGG (Table E.1). As a caveat to the study, unannotated open reading 

frames can result from erroneous reads and mis-assemblies but also could be previously 

undescribed and or divergent genes critical for microbial processes. Thus, new annotations could 

impact the overarching patterns described here.   

 

Average genome size 

Average genome size was calculated from the quality filtered DNA sequences using 

MicrobeCensus (“run_microbe_census.y –n 2000000”), which estimates average genome size by 

calculating the percent of sampled reads that match to a set of single copy genes (41).  We also 
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used three additional methods to calculate average genome size (Figure F.1), and all were in 

agreement in detecting a significant, negative relationship between temperature and average 

genome size. Finally, eukaryotic sequence and plasmid contributions were consistent and low 

across the metagenomes (Table E.2), showing that there was no systematic overestimation of 

genome size in ambient soils due to eukaryotic signal or characteristic changes in plasmids with 

temperature.   

We calculated the odds ratios for each of the 36 single-copy gene KOs, previously used 

by He et al. 2015 (40) to estimate average genome sizes. Odds ratios were determined at each 

site by comparing their abundance within a site to their average abundance across all 12 sites. 

One KO (K01519, Triosephosphate isomerase) was an outlier in seven out of twelve 

metagenomes, as determined by grubbs test, and was removed. 

We used previously published 16S rRNA gene sequencing data (3) to estimate average 

genome size. A mean phylum genome size was calculated for each phylum present in Centralia 

metagenomes using all complete or permanent draft genomes deposited in IMG. Outliers in 

genome size were identified using the Tukey method and omitted from calculation of the mean 

phylum genome size (13). Phyla present in Centralia metagenomes but without representative 

genomes in IMG were combined at the Domain level, and a mean Domain genome size was 

calculated in the same manner. Each site’s weighted mean genome size site was calculated based 

on the relative abundance of the phyla at each site. 

 Quality filtered metagenome reads were downloaded from JGI GOLD database. Paired-

end reads from all 12 soils were assembled together using MEGAHIT (v1.0.2) (6) with a kmer 

range from 27 - 107 and a k-step of 10. Reads were mapped to the resulting assembly using 

bbmap (v35.34) with a minimum identity of 76%. Resulting SAM files were converted to sorted 
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BAM files using SAMTools (v1.3). Contigs larger than 2,500bp were binned into metagenome-

assembled genomes (MAGs) with MetaBAT (v0.26.3) using the “--veryspecific” flag. 

Completeness and contamination were estimated for each MAG using CheckM (v1.0.5). MAGs 

with greater than 90% completeness and less than 5% contamination were used to estimate 

genome size. The genome size of a MAG was estimated by multiplying the sum of the length of 

its constituent contigs by inverse of its completeness (6). The average MAG size at each site was 

calculated by taking the mean of size of all MAGs detected in a site. 

 

Average Cell Size 

To calculate cell size, we re-analyzed microscope images previously used to count 

microbial cells for community size quantifications in the same soils (10). We hand-curated a 

debris-free subset from the images and measured 44 - 910 cells from 3 - 9 replicate fields for 

each soil. The major and minor axes of cells were measured using a FIJI macro in ImageJ 

(Version: 2.0.0-rc-65/1.51s Build: 961c5f1b7f). We found that cell size range and deviations 

(Table E.5) were consistent with those previously reported (42). 

 

Construction of metagenome-assembled genomes (MAGs), taxonomic assignments, and 

visualization 

Assembled contigs from quality filtered reads were binned into MAGs using MetaBAT 

(43) (v0.26.3) with the “--veryspecific” flag. Detailed description of assembly and binning 

procedures can be found in supplemental. Completeness and contamination were estimated for 

each MAG using CheckM (v1.0.5). MAG’s we assigned taxonomy using the Microbial Genome 

Atlas (MiGA) NCBI Prokaryote project (44). Highest quality MAGs with greater than 90% 
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completeness and less than 5% contamination were used to estimate genome size. The genome 

size of a MAG was estimated by multiplying the sum of the length of its constituent contigs by 

inverse of its completeness (6). The average MAG size at each site was calculated by taking the 

mean of size of all MAGs detected in a site. 

The CheckM (45) genome tree was extended to include Centalia high-quality MAGs.  

The Interactive Tree of Life (iTOL) (46) was used for visualization 

(https://itol.embl.de/tree/352041174435631527858534#). Temperature range and taxonomy for 

each genome in the tree was collected from JGI IMG. MAGs were classified as fire-affected or 

ambient based on in which group of samples they had a higher coverage, and 95% of MAGs had 

at least 10x greater coverage in one soil category as compared to the other.   

 

Comparisons with other soil metagenomes and genomes 

All metagenome data sets for comparison were obtained from MG-RAST 

((http://metagenomics.anl.gov/). The MG-RAST database was searched with the following 

criteria: material = soil, sequence type = shotgun, public = true. The resulting list of metagenome 

data sets were ordered by number of base pairs (bp). Metagenomic data sets with the most bp 

were included if they were sequenced using Illumina (to standardize sequencing errors), had an 

available FASTQ file (for internal quality control), and contained < 30% low quality as 

determined by MG-RAST. Within high quality Illumina samples, priority for inclusion was 

given to projects with multiple samples. When a project had multiple samples, data sets with the 

greatest bp were selected. This search yielded 22 data sets from 12 locations and five countries 

(Table E.4). Sequences from MG-RAST data sets were quality checked using FastQC (v0.11.3, 

(47) and quality controlled using the FASTX toolkit (fastq_quality_filter, "-Q33 -q 30 -p 50"). 



 104

Average genome size for each dataset was calculated from the quality filtered DNA sequences 

using MicrobeCensus with default parameters.  

 The RefSoil database of soil genomes (48) was used to estimate genome sizes of soil 

organisms. Genome and plasmid sizes from all 922 RefSoil organisms were extracted from 

GenBank files and read into R for analysis.  

 

Statistical analyses 

 Statistics for the metagenome datasets were performed in the R environment for 

statistical computing (49). The stats package was used for calculating two-sided Pearson’s 

correlations (49). The outliers package (50) was used for identifying outlying KOs. The ggplot2 

package was used for visualization (51). Heat maps were created with heatmap2 from the gplots 

package (52). 

 

Data Availability 

Metagenome data are available on IMG under the GOLD Study ID GS0114513. MG-

RAST data are available under Project IDs mgp3731, mgp252, mgp5588, mgp14596, mgp6377, 

mgp6368, mgp2592, mgp2076, mgp11628, mgp13948, mgp7176 and mgp15600.  

 

Code availability 

All analysis workflows are available on GitHub 

(ShadeLab/PAPER_Sorensen_NatMicro_2018). 
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Supplementary Results 

Comparison of metagenome annotation methods on results 

We first compared both assembled and unassembled data using the Cluster of 

Orthologous Groups (COG) (7), Pfam (8), KEGG Orthology (9-11), and Enzyme IMG (12) 

databases to investigate whether any of these databases provided more complete annotation or 

resulted in different overarching community patterns. We found that COG, pfam and KO 

annotated between 29 and 42% of the genes present at each site, while the Enzyme database 

annotated only 17.15% to 20.80%. Bray Curtis distance matrices calculated from the Centralia 

gene tables of each of these databases were all correlated (Mantel test all R > 0.738,  p < 0.001), 

but the Enzyme database consistently had the lowest correlation with other databases. 

 

Additional calculations of average genome size in Centralia 

For each metagenome, we assessed the abundance of 36 single copy genes (1) that were 

annotated to KEGG Orthologs (KO) (2).  Twenty-nine single-copy gene KOs had odds ratios 

positively correlated with temperature (p < 0.04, Pearson’s R > 0.59, Figure F.1A, Table E.7). 

None of the single-copy genes had correlations with metagenome sizes (all p > 0.15), affirming 

that this method is robust to differences in metagenome size. There were increases in single copy 

gene abundance with temperature, despite that the metagenomes had similar sequencing efforts. 

Thus, the odds ratios of single copy genes and estimates of genome size support a reduction in 

average genome size with increased soil temperature. 

We also calculated an average genome size for each soil based on the 16S rRNA gene 

phylum-level composition of the community (3), which allowed us to also assess whether the 
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changes in genome size could be attributed to replacement of members along the thermal 

gradient (community turnover). In agreement with the above estimates of genome size changes, 

this phylogenetic inference analysis revealed a negative correlation between average genome 

size and temperature (Figure F.1B, Pearson’s r = -0.860, p <0.001, n = 12 amplicon datasets). 

This suggests that the shift in average genome size was, at least in part, due to compositional 

changes favoring taxa with smaller genomes.  

 We also estimated the sizes of metagenome-assembled genomes (MAGs) that were 

observed along the temperature gradient. We assembled 104 MAGs from Centralia that had < 

5% contamination and > 90% completeness (Table E.6). There was an inverse trend in the 

average sizes of these MAGs with temperature (R = -0.63, p = 0.03, n = 12 metagenomes, 

Figure F.1C).  An analysis limitation is that these MAGs represent a subset of the most 

community members that were prevalent such that their genomes could be well-assembled from 

metagenomes, and so we do not know how representative these genome sizes are of their 

community. We expect that this trend is conservative because we did not weight by MAG 

abundance at each site to be cautious about abundance normalization. However, together with 

our other independent assessments of genome size, this provides additional support for the 

prevalence of small genomes in hot Centralia soils. 

 

Patterns of enriched KEGG Modules in hot soils  

For KMs positively correlated with temperature, all were enriched in the hottest soil 

(C10; 54.2 ºC). Most temperature-correlated KMs in soils C06 and C16 (21.7°C and 24.1°C, 

respectively) had relatively low abundances that were comparable to KM levels in sites with 

ambient temperatures. Broadly, the response patterns of the positively correlated KMs fell into 
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five clusters. Cluster i had a relatively linear response with increasing temperature, with no 

particular modules of note. Cluster ii also had a linear response to the temperature gradient, but 

contained KMs that were especially enriched in the hottest site C10. Cluster ii contained modules 

related to archaeal proteasome (M00343) and isoprenoid biosynthesis (M00365). In addition, 

cluster ii included two carbon transport systems: glucose/arabinose transporters (M00203) and 

trehalose transporters (M00604). Cluster iii contained 14 modules that were consistently 

enriched in the three hottest sites, C14(34.1ºC), C15(38.9 ºC) and C10(54.2 ºC), suggesting a 

threshold for these enriched modules with temperatures > 30ºC (Figure 3.4A). Site C15 

generally had lower representation of these KMs than C14 and C10. Archaeal ribosome 

(M00179), archaeal RNA polymerase (M00184) and archaeal exosome (M00390) respectively 

were more abundant in C10 (the hottest site, 54.2 ºC) than in C14 or C15. The KM for 

dissimilatory sulfate reduction (M00596) was also present in cluster iii. This clustering of 

dissimilatory sulfate reduction with archaeal proteins points to an enrichment in sulfate reducing 

archaea in hot soils, and is also supported by an increase in Crenarchaeota in fire-affected soils 

(3), an archaeal phylum including known sulfate reducers (4). In addition to sulfate reduction, 

the KMs for dissimilatory nitrate reduction (M00530) and denitrification (M00529) were also 

part of cluster iii. (Figure 3.4A). Clusters iv and v both had KMs enriched in C12. Cluster iv 

shares enrichment in KMs between C12 and C10 soils and includes three KMs related to 

photosynthesis (M00161, M00162, M00163). Cluster v includes KMs generally shared across all 

soils > 30 ºC, and included primary metabolisms (e.g. histidine biosynthesis).  
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Table E.1. Sequence summary information for Centralia metagenomes.   
 

  Sequencing 
Depth 
(Gbases) 

Raw 
Reads 

Quality 
Reads 

Aligned 
Reads 

Assembled 
Length 

Number 
Contigs 

Percent 
Genes 
Annotated 
with KO 

Site 
Temperature 
(°C) 

Cen01 23 1.59E+08 1.55E+08 1.18E+08 2.44E+09 5.05E+06 29.56 14.1 

Cen03 26 1.77E+08 1.74E+08 1.21E+08 2.85E+09 6.33E+06 30.85 14.7 

Cen04 25 1.71E+08 1.68E+08 1.08E+08 2.50E+09 5.98E+06 30.9 13.3 

Cen05 25 1.70E+08 1.67E+08 1.14E+08 2.77E+09 6.32E+06 30.34 14.0 

Cen06 22 1.51E+08 1.49E+08 1.10E+08 2.22E+09 4.63E+06 30.63 24.1* 

Cen07 21 1.41E+08 1.39E+08 9.64E+07 2.26E+09 4.84E+06 31.32 13.5 

Cen10 36 2.43E+08 2.38E+08 2.22E+08 1.17E+09 1.89E+06 35.57 54.2* 

Cen12 24 1.64E+08 1.61E+08 1.51E+08 1.20E+09 1.59E+06 33.04 32.0* 

Cen14 24 1.59E+08 1.57E+08 1.40E+08 1.42E+09 2.23E+06 34.21 34.1 

Cen15 20 1.32E+08 1.28E+08 1.09E+08 1.14E+09 1.84E+06 34.44 38.9* 

Cen16 51 3.40E+08 3.30E+08 2.93E+08 4.06E+09 6.61E+06 32.43 21.7 

Cen17 24 1.61E+08 1.55E+08 7.87E+07 1.90E+09 5.17E+06 31.14 12.1 
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Table E.2. Two-sided Pearson’s correlations of Eukaryotic-specific ribosomal KEGG 

Orthologs and plasmid pfam categories with temperature. 
KO/pfam Description Pearsons_R p_value 

K02868 Large subunit L11 -0.321 0.309 
K02997 Small subunit S9 -0.126 0.695 
K02870 Large subunit L12 -0.163 0.613 
K02865 Large subunit L10 -0.423 0.17 
K02901 Large subunit L27 -0.144 0.656 
K02932 Large subunit L5 -0.25 0.432 
K02981 Small subunit S2 -0.303 0.338 
K02953 Small subunit S13 -0.339 0.281 
K02949 Small subunit S11 -0.331 0.294 
K02891 Large subunit L22 -0.332 0.291 
K02900 Large subunit L27 -0.246 0.441 
K02920 Large subunit L37 0.303 0.339 
K02964 Small subunit S18 -0.303 0.338 
K02969 Small subunit S20 -0.206 0.521 
K02985 Small subunit S3 -0.337 0.284 
K02993 Small subunit S7 -0.186 0.562 
K02893 Large subunit L23 0.065 0.841 
K02905 Large subunit L29 Not Detected Not Detected 
K02923 Large subunit L38 -0.384 0.218 
pfam01446 Rep_1  0.104 0.747 
pfam01719 Rep_2  Not Detected Not Detected 
pfam01051 Rep_3  -0.393 0.207 
pfam05732 RepL  -0.276 0.385 
pfam07042 TrfA protein 0.456 0.136 
pfam04796 RepA_C  0.75 0.005 
pfam02486 Rep_trans  0.16 0.62 
pfam01402 RHH_1  0.368 0.239 
pfam01815 Rop protein Not Detected Not Detected 
pfam03428 RP-C  -0.518 0.084 
pfam10134 RPA  -0.032 0.921 
pfam06970 RepA_N  Not Detected Not Detected 
pfam06504 RepC  0.065 0.842 
pfam03090 Replicase  -0.491 0.105 
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Table E.3. Two-sided Pearson’s correlations of soil environmental variables with average 

genome size. 
 

  Pearson’s_R Test_Statistic FDR_AdjustedP_value 

SoilTemperature_to10cm -0.910 -6.920 0.001 

OrganicMatter_500 -0.131 -0.418 0.926 

NO3N_ppm -0.591 -2.317 0.113 

NH4N_ppm -0.592 -2.325 0.113 

pH 0.030 0.096 0.926 

SulfateSulfur_ppm -0.390 -1.338 0.391 

K_ppm -0.110 -0.350 0.926 

Ca_ppm 0.072 0.229 0.926 

Mg_ppm 0.121 0.385 0.926 

Fe_ppm -0.607 -2.415 0.113 

P_ppm -0.447 -1.582 0.314 

As_ppm -0.039 -0.125 0.926 

SoilMoisture_Per -0.590 -2.310 0.113 
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Table E.4. MG-RAST metadata for soil metagenomes used in this study. 
 

Project Name Sample Location Country Sample Shortname Project ID Sample Name Gbp 

ARMO Rondonia Brazil Brazilian forest mgp3731 mgm4546395.3 13.27 

ARMO Rondonia Brazil Brazilian forest mgp3731 mgm4536139.3 9.04 

ARMO Rondonia Brazil Brazilian forest mgp3731 mgm4535554.3 9.69 
Axel Heiberg 
Permafrost: Part 4A 

Central Axel 
Heiberg Island 

Canada Permafrost Canada mgp252 mgm4523023.3 6.52 

Axel Heiberg 
Permafrost: Part 4A 

Central Axel 
Heiberg Island 

Canada Permafrost Canada mgp252 mgm4523145.3 5.52 

CedarCreek minsoil 
June2013 

Bethel, MN USA Minnesota grassland mgp5588 mgm4541646.3 10.65 

CedarCreek minsoil 
June2013 

Bethel, MN USA Minnesota grassland mgp5588 mgm4541645.3 9.77 

Fermi-
syntheticlongreads 

Fermi National 
Accelerator 
Laboratory 

USA Illinois switchgrass mgp14596 mgm4653791.3 7.95 

Fermi-
syntheticlongreads 

Fermi National 
Accelerator 
Laboratory 

USA Illinois switchgrass mgp14596 mgm4653788.3 7.14 

GED prairie 
unassembled 

Iowa USA Iowa prairie mgp6377 mgm4539575.3 18.79 

GED prairie 
unassembled 

Iowa USA Iowa prairie mgp6377 mgm4539572.3 17.58 

GED prairie 
unassembled 

Iowa USA Iowa prairie mgp6377 mgm4539576.3 17.43 

GP corn unassembled  Iowa USA Iowa corn mgp6368 mgm4539523.3 8.12 
Hofmockel Soil 
Aggregate COB 
KBASE  

Boone County, IA USA Iowa agricultural mgp2592 mgm4509400.3 24.98 
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Table E.4. (cont’d) 

Hofmockel Soil 
Aggregate COB 
KBASE  

Boone County, IA USA Iowa agricultural mgp2592 mgm4509401.3 7.86 

ISA-SMC-2011 Auburn, IL USA Illinois soybean mgp2076 mgm4502542.3 12.54 

ISA-SMC-2011 Auburn, IL USA Illinois soybean mgp2076 mgm4502540.3 10.60 
Mining of new genes 
and pathways   from 
soil of mangrove 
forest 

Matang Mangrove 
Forest 

Malaysia Mangrove mgp11628 mgm4603402.3 24.38 

Mining of new genes 
and pathways   from 
soil of mangrove 
forest 

Matang Mangrove 
Forest 

Malaysia Mangrove mgp11628 mgm4603270.3 24.54 

NEON 
Disney Wilderness 
Preserve, FL 

USA Disney preserve mgp13948 mgm4664918.3 11.20 

Permafrost 
sediments, North-
East Siberia, Kolyma 
lowland 

Kolyma river 
lowland 

Russia Permafrost Russia mgp7176 mgm4546813.3 19.20 

Ungulate Exclosure 
2015 

Wyoming USA Wyoming soil mgp15600 mgm4670120.3 6.41 
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Table E.5. Cell size measurements from microscope images, quantified with FIJI software. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Soil Average_Area SD_Area Average_Length SD_Length Average_Minor SD_Minor Number_Cells 

Cen01 0.345 0.245 0.829 0.395 0.502 0.130 327 

Cen03 0.450 0.349 0.941 0.409 0.557 0.221 225 

Cen04 0.371 0.328 0.826 0.439 0.495 0.218 910 

Cen05 0.376 0.306 0.869 0.473 0.507 0.171 434 

Cen06 0.355 0.257 0.777 0.315 0.527 0.180 431 

Cen07 0.347 0.269 0.793 0.378 0.511 0.163 581 

Cen10 0.323 0.215 0.769 0.299 0.498 0.160 390 

Cen12 0.370 0.280 0.824 0.385 0.517 0.187 217 

Cen14 0.298 0.207 0.710 0.278 0.487 0.164 515 

Cen15 0.290 0.201 0.727 0.341 0.464 0.162 44 

Cen16 0.430 0.383 0.850 0.385 0.578 0.215 841 

Cen17 0.385 0.313 0.878 0.335 0.524 0.156 455 
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Table E.6. Completeness, contamination, and taxonomy of Metagenome Assembled 

Genomes (MAGs). 

MAG Completeness Contamination MiGA.Taxonomy 

METABAT_VerySpecific.86 100 0 f__Acidobacteriaceae 
METABAT_VerySpecific.338 100 0.99 p__Proteobacteria 
METABAT_VerySpecific.126 100 0.68 c__Spartobacteria 
METABAT_VerySpecific.189 99.62 4 p__Proteobacteria 
METABAT_VerySpecific.119 99.51 0.97 p__Thaumarchaeota 
METABAT_VerySpecific.132 99.5 0.28 c__Alphaproteobacteria 
METABAT_VerySpecific.561 99.44 2.31 p__Proteobacteria 
METABAT_VerySpecific.135 99.15 1.28 c__Actinobacteria 
METABAT_VerySpecific.57 99.12 1.75 f__Solibacteraceae 
METABAT_VerySpecific.244 99.06 0.06 f__Beijerinckiaceae 
METABAT_VerySpecific.384 98.99 1.36 f__Intrasporangiaeae 
METABAT_VerySpecific.343 98.9 2.2 c__Gemmatimonadetes 
METABAT_VerySpecific.180 98.65 2.2 p__Verrucomicrobia 
METABAT_VerySpecific.78 98.54 0.97 p__Thaumarchaeota 
METABAT_VerySpecific.138 98.41 3.17 p__Proteobacteria 
METABAT_VerySpecific.36 98.25 1.1 c__Solibacteres 
METABAT_VerySpecific.134 98.24 2.61 p__Acidobacteria 
METABAT_VerySpecific.41 98.21 2.15 f__Hyphomicrobiaceae 
METABAT_VerySpecific.396 98.18 1.82 c__Anaerolineae 
METABAT_VerySpecific.166 98.08 4.27 c__Solibacteres 
METABAT_VerySpecific.167 98.06 2.91 f__Nitrosophaeraceae 
METABAT_VerySpecific.71 98.03 0.74 o__Chitinophagales 
METABAT_VerySpecific.115 98.02 2.38 p__Chloroflexi 
METABAT_VerySpecific.209 97.82 1.71 c__Acidobacteriia 
METABAT_VerySpecific.334 97.8 1.37 p__Bacteroidetes 
METABAT_VerySpecific.176 97.73 0.97 p__Thaumarchaeota 
METABAT_VerySpecific.65 97.69 0.99 p__Chloroflexi 
METABAT_VerySpecific.377 97.69 1.98 p__Proteobacteria 
METABAT_VerySpecific.339 97.66 1.37 p__Bacteroidetes 
METABAT_VerySpecific.231 97.48 2.52 p__Proteobacteria 
METABAT_VerySpecific.52 97.4 4.03 p__Proteobacteria 
METABAT_VerySpecific.306 97.3 0.72 c__Spartobacteria 
METABAT_VerySpecific.258 97.29 1.31 o__Xanthomonadales 
METABAT_VerySpecific.412 97.29 3.94 f__Isosphaeraceae 
METABAT_VerySpecific.434 97.23 3.8 o__Nostocales 
METABAT_VerySpecific.152 97.13 3.34 c__Alphaproteobacteria 
METABAT_VerySpecific.140 97.08 1.01 c__Alphaproteobacteria 
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Table E.6. (cont’d) 

 

METABAT_VerySpecific.42 97.07 2.23 p__Actinobacteria 
METABAT_VerySpecific.82 97.01 3.85 p__Actinobacteria 
METABAT_VerySpecific.56 97.01 2.14 p__Actinobacteria 
METABAT_VerySpecific.79 96.84 3.73 c__Gammaproteobacteria 
METABAT_VerySpecific.331 96.7 2.2 c__Gemmatimonadetes 
METABAT_VerySpecific.325 96.7 2.38 p__Chloroflexi 
METABAT_VerySpecific.106 96.7 4.16 p__Proteobacteria 
METABAT_VerySpecific.385 96.66 0.58 c__Alphaproteobacteria 
METABAT_VerySpecific.154 96.64 0.84 p__Proteobacteria 
METABAT_VerySpecific.443 96.62 0 c__Spartobacteria 
METABAT_VerySpecific.199 96.59 0.57 p__Planctomycetes 
METABAT_VerySpecific.294 96.59 1.68 p__Proteobacteria 
METABAT_VerySpecific.137 96.58 2.23 p__Actinobacteria 
METABAT_VerySpecific.73 96.52 2.03 o__Rhizobiales 
METABAT_VerySpecific.388 96.51 2.33 p__Planctomycetes 
METABAT_VerySpecific.89 96.36 0.89 p__Proteobacteria 
METABAT_VerySpecific.457 96.32 2.94 p__Crenarchaeota 
METABAT_VerySpecific.175 96.25 1.12 c__Alphaproteobacteria 
METABAT_VerySpecific.38 96.15 2.94 c__Actinobacteria 
METABAT_VerySpecific.97 95.99 4.63 p__Firmicutes 
METABAT_VerySpecific.96 95.94 0 c__Solibacteres 
METABAT_VerySpecific.399 95.8 3.83 p__Proteobacteria 
METABAT_VerySpecific.59 95.7 1.68 p__Proteobacteria 
METABAT_VerySpecific.53 95.63 0.97 p__Thaumarchaeota 
METABAT_VerySpecific.32 95.07 0.12 c__Gammaproteobacteria 
METABAT_VerySpecific.117 95.06 1.55 c__Gammaproteobacteria 
METABAT_VerySpecific.18 94.69 1.26 c__Gammaproteobacteria 
METABAT_VerySpecific.278 94.54 2.52 p__Proteobacteria 
METABAT_VerySpecific.536 94.47 2.14 c__Gammaproteobacteria 
METABAT_VerySpecific.45 94.44 2.96 p__Firmicutes 
METABAT_VerySpecific.491 94.44 0.43 c__Solibacteres 
METABAT_VerySpecific.520 94.14 1.85 p__Armatimonadetes 
METABAT_VerySpecific.23 94.13 1.71 p__Actinobacteria 
METABAT_VerySpecific.33 94.07 3.36 p__Proteobacteria 
METABAT_VerySpecific.596 94.06 3.07 o__Oscillatoriales 
METABAT_VerySpecific.505 93.94 2.55 p__Proteobacteria 
METABAT_VerySpecific.174 93.91 4.4 c__Solibacteres 
METABAT_VerySpecific.129 93.82 1.4 f__Rhodanobacteraceae 
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Table E.6. (cont’d) 

 
METABAT_VerySpecific.223 93.78 1.94 f__Nitrosophaeraceae 
METABAT_VerySpecific.67 93.73 0.99 p__Proteobacteria 
METABAT_VerySpecific.208 93.18 4 p__Chloroflexi 
METABAT_VerySpecific.445 93.18 1.16 c__Gammaproteobacteria 
METABAT_VerySpecific.243 93.07 0.68 c_Chlamydiia 
METABAT_VerySpecific.47 93 0.93 p__Firmicutes 
METABAT_VerySpecific.155 92.87 0.93 p__Proteobacteria 
METABAT_VerySpecific.593 92.74 4.16 p__Chloroflexi 
METABAT_VerySpecific.342 92.72 4.82 c__Actinobacteria 
METABAT_VerySpecific.449 92.4 1.36 c__Gammaproteobacteria 
METABAT_VerySpecific.6 92.2 1.8 p__Acidobacteria 
METABAT_VerySpecific.91 92.19 1.71 d__Bacteria 
METABAT_VerySpecific.675 92.08 0.99 p__Proteobacteria 
METABAT_VerySpecific.233 92.08 0 p__Firmicutes 
METABAT_VerySpecific.577 92.06 1.56 d__Bacteria 
METABAT_VerySpecific.68 91.89 1.12 f__Acidiferrobacteraceae 
METABAT_VerySpecific.164 91.67 0.79 c__Alphaproteobacteria 
METABAT_VerySpecific.554 91.47 2.36 c__Spartobacteria 
METABAT_VerySpecific.427 91.45 0 c__Acidobacteriia 
METABAT_VerySpecific.507 91.36 1 c_Chitinophagia 
METABAT_VerySpecific.109 91.26 0.97 p__Thaumarchaeota 
METABAT_VerySpecific.483 91.22 4.89 p__Verrucomicrobia 
METABAT_VerySpecific.187 91.01 0.87 c__Solibacteres 
METABAT_VerySpecific.122 90.6 2.28 p__Proteobacteria 
METABAT_VerySpecific.692 90.59 2.73 p__Verrucomicrobia 
METABAT_VerySpecific.580 90.58 1.78 c__Acidobacteriia 
METABAT_VerySpecific.27 90.57 0.85 p__Acidobacteria 
METABAT_VerySpecific.333 90.29 0.07 c__Nitrososphaeria 
METABAT_VerySpecific.3 90.22 3.39 c__Alphaproteobacteria 
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Table E.7. Two-sided Pearson’s correlations of single-copy KEGG Ortholog odds ratios 

with temperature. 
  

KEGG Test Statistic T Pearson's r FDR Adjusted p-value 

K00773 2.502 0.621 3.89E-02 

K01409 2.180 0.568 5.92E-02 

K01889 4.385 0.811 1.89E-03 

K01890 -2.364 -0.599 4.49E-02 

K01937 -1.718 -0.477 1.20E-01 

K02428 5.214 0.855 6.15E-04 

K02519 -1.865 -0.508 9.72E-02 

K02864 6.485 0.899 1.57E-04 

K02867 6.863 0.908 1.41E-04 

K02874 8.547 0.938 7.88E-05 

K02876 6.307 0.894 1.67E-04 

K02881 6.339 0.895 1.67E-04 

K02886 4.662 0.828 1.28E-03 

K02890 7.058 0.913 1.41E-04 

K02906 5.893 0.881 2.74E-04 

K02926 2.361 0.598 4.49E-02 

K02931 6.994 0.911 1.41E-04 

K02933 8.036 0.931 8.15E-05 

K02946 5.791 0.878 3.00E-04 

K02948 9.381 0.948 5.13E-05 

K02950 6.542 0.900 1.57E-04 

K02952 6.442 0.898 1.57E-04 

K02956 6.807 0.907 1.41E-04 

K02959 2.726 0.653 2.74E-02 

K02961 6.606 0.902 1.57E-04 

K02965 7.171 0.915 1.41E-04 

K02967 4.877 0.839 9.67E-04 

K02982 5.421 0.864 4.79E-04 

K02988 6.565 0.901 1.57E-04 

K02992 8.233 0.934 8.15E-05 

K02994 9.828 0.952 5.13E-05 

K02996 6.990 0.911 1.41E-04 

K03106 1.680 0.469 1.24E-01 

K03470 6.948 0.910 1.41E-04 

K03596 -2.426 -0.609 4.28E-02 



 122

Table E.8. Significant two-sided Pearson’s correlations of KEGG Modules with temperature. 

Module Module Description Completeness Pearson's r 

FDR 

adjusted 

p-value 

M00432 Leucine biosynthesis, 2-oxoisovalerate => 2-oxoisocaproate 1 -0.925 1.32E-03 
M00183 RNA polymerase, bacteria 1 -0.922 1.32E-03 
M00709 Macrolide resistance, MacAB-TolC transporter 1 -0.917 1.32E-03 

M00477 
EvgS-EvgA (acid and drug tolerance) two-component regulatory 
system 

1 -0.916 1.32E-03 

M00729 Fluoroquinolone resistance, gyrase-protecting protein Qnr 0.667 -0.915 1.32E-03 
M00453 QseC-QseB (quorum sensing) two-component regulatory system 1 -0.912 1.32E-03 
M00499 HydH-HydG (metal tolerance) two-component regulatory system 1 -0.912 1.32E-03 
M00086 beta-Oxidation, acyl-CoA synthesis 0.5 -0.912 1.32E-03 
M00082 Fatty acid biosynthesis, initiation 0.571 -0.91 1.32E-03 
M00565 Trehalose biosynthesis, D-glucose 1P => trehalose 1 -0.909 1.32E-03 
M00258 Putative ABC transport system 1 -0.906 1.43E-03 
M00096 C5 isoprenoid biosynthesis, non-mevalonate pathway 0.9 -0.905 1.43E-03 

M00501 
PilS-PilR (type 4 fimbriae synthesis) two-component regulatory 
system 

1 -0.901 1.62E-03 

M00446 RstB-RstA two-component regulatory system 1 -0.901 1.62E-03 
M00017 Methionine biosynthesis, apartate => homoserine => methionine 0.846 -0.899 1.66E-03 
M00037 Melatonin biosynthesis, tryptophan => serotonin => melatonin 0.5 -0.899 1.66E-03 
M00134 Polyamine biosynthesis, arginine => ornithine => putrescine 1 -0.895 1.90E-03 
M00028 Ornithine biosynthesis, glutamate => ornithine 0.714 -0.891 2.13E-03 
M00050 Guanine ribonucleotide biosynthesis IMP => GDP,GTP 0.833 -0.888 2.30E-03 

M00042 
Catecholamine biosynthesis, tyrosine => dopamine => noradrenaline 
=> adrenaline 

0.5 -0.885 2.54E-03 

M00509 WspE-WspRF (chemosensory) two-component regulatory system 1 -0.883 2.60E-03 
M00649 Multidrug resistance, efflux pump AdeABC 1 -0.882 2.60E-03 
M00251 Teichoic acid transport system 1 -0.881 2.60E-03 
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Table E.8. (cont’d) 

 
  

M00135 GABA biosynthesis, eukaryotes, putrescine => GABA 0.6 -0.881 2.60E-03 

M00539 
Cumate degradation, p-cumate => 2-oxopent-4-enoate + 2-
methylpropanoate 

1 -0.881 2.60E-03 

M00454 KdpD-KdpE (potassium transport) two-component regulatory system 1 -0.88 2.60E-03 
M00394 RNA degradosome 1 -0.88 2.60E-03 
M00655 AdeS-AdeR two-component regulatory system 1 -0.878 2.70E-03 

M00046 
Pyrimidine degradation, uracil => beta-alanine, thymine => 3-
aminoisobutanoate 

0.667 -0.877 2.70E-03 

M00170 C4-dicarboxylic acid cycle, phosphoenolpyruvate carboxykinase type 0.5 -0.876 2.70E-03 
M00627 beta-Lactam resistance, Bla system 0.75 -0.873 2.91E-03 
M00221 Putative simple sugar transport system 1 -0.873 2.91E-03 
M00247 Putative ABC transport system 1 -0.872 2.91E-03 

M00722 
Cationic antimicrobial peptide (CAMP) resistance,  
phosphoethanolamine transferase PmrC 

1 -0.87 2.93E-03 

M00457 
TctE-TctD (tricarboxylic acid transport) two-component regulatory 
system 

1 -0.87 2.93E-03 

M00045 
Histidine degradation, histidine => N-formiminoglutamate => 
glutamate 

1 -0.869 3.00E-03 

M00115 NAD biosynthesis, aspartate => NAD 0.857 -0.867 3.08E-03 
M00013 Malonate semialdehyde pathway, propanoyl-CoA => acetyl-CoA 0.667 -0.866 3.08E-03 
M00498 NtrY-NtrX (nitrogen regulation) two-component regulatory system 1 -0.866 3.08E-03 
M00605 Glucose/mannose transport system 1 -0.866 3.08E-03 

M00006 
Pentose phosphate pathway, oxidative phase, glucose 6P => ribulose 
5P 

0.667 -0.863 3.25E-03 

M00126 Tetrahydrofolate biosynthesis, GTP => THF 0.565 -0.862 3.29E-03 
M00298 Multidrug/hemolysin transport system 1 -0.861 3.40E-03 
M00049 Adenine ribonucleotide biosynthesis, IMP => ADP,ATP 0.556 -0.857 3.57E-03 
M00156 Cytochrome c oxidase, cbb3-type 1 -0.857 3.57E-03 
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M00012 Glyoxylate cycle 0.667 -0.857 3.57E-03 

M00502 
GlrK-GlrR (amino sugar metabolism) two-component regulatory 
system 

1 -0.856 3.57E-03 

M00475 
BarA-UvrY (central carbon metabolism) two-component regulatory 
system 

1 -0.855 3.57E-03 

M00631 
D-Galacturonate degradation (bacteria), D-galacturonate => pyruvate 
+ D-glyceraldehyde 3P 

1 -0.853 3.77E-03 

M00641 Multidrug resistance, efflux pump MexEF-OprN 1 -0.853 3.77E-03 
M00169 CAM (Crassulacean acid metabolism), light 1 -0.851 3.94E-03 
M00015 Proline biosynthesis, glutamate => proline 0.75 -0.85 3.94E-03 
M00639 Multidrug resistance, efflux pump MexCD-OprJ 1 -0.85 3.94E-03 
M00210 Phospholipid transport system 1 -0.85 3.94E-03 

M00662 
Hk1-Rrp1 (glycerol uptake and utilization) two-component regulatory 
system 

0.5 -0.848 4.15E-03 

M00467 
SasA-RpaAB (circadian timing mediating) two-component regulatory 
system 

1 -0.846 4.22E-03 

M00140 C1-unit interconversion, prokaryotes 1 -0.845 4.28E-03 
M00250 Lipopolysaccharide transport system 1 -0.844 4.31E-03 
M00359 Aminoacyl-tRNA biosynthesis, eukaryotes 0.955 -0.843 4.41E-03 
M00669 gamma-Hexachlorocyclohexane transport system 0.75 -0.842 4.46E-03 
M00670 Mce transport system 0.75 -0.842 4.46E-03 

M00451 
BasS-BasR (antimicrobial peptide resistance) two-component 
regulatory system 

1 -0.841 4.46E-03 

M00129 Ascorbate biosynthesis, animals, glucose-1P => ascorbate 0.714 -0.841 4.46E-03 

M00551 
Benzoate degradation, benzoate => catechol / methylbenzoate => 
methylcatechol 

1 -0.84 4.48E-03 

M00230 Glutamate/aspartate transport system 1 -0.838 4.58E-03 
M00497 GlnL-GlnG (nitrogen regulation) two-component regulatory system 1 -0.837 4.58E-03 
M00549 Nucleotide sugar biosynthesis, glucose => UDP-glucose 0.833 -0.837 4.58E-03 
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M00172 C4-dicarboxylic acid cycle, NADP - malic enzyme type 0.75 -0.837 4.58E-03 
M00027 GABA (gamma-Aminobutyrate) shunt 0.857 -0.837 4.58E-03 
M00525 Lysine biosynthesis, acetyl-DAP pathway, aspartate => lysine 1 -0.836 4.64E-03 
M00526 Lysine biosynthesis, DAP dehydrogenase pathway, aspartate => lysine 0.9 -0.836 4.64E-03 
M00220 Rhamnose transport system 1 -0.833 4.85E-03 
M00699 Multidrug resistance, efflux pump AmeABC 0.5 -0.833 4.86E-03 
M00307 Pyruvate oxidation, pyruvate => acetyl-CoA 1 -0.831 5.07E-03 

M00473 
UhpB-UhpA (hexose phosphates uptake) two-component regulatory 
system 

1 -0.83 5.15E-03 

M00216 Multiple sugar transport system 1 -0.828 5.25E-03 
M00168 CAM (Crassulacean acid metabolism), dark 0.5 -0.828 5.28E-03 

M00527 
Lysine biosynthesis, DAP aminotransferase pathway, aspartate => 
lysine 

0.909 -0.827 5.33E-03 

M00002 Glycolysis, core module involving three-carbon compounds 0.917 -0.826 5.36E-03 

M00572 
Pimeloyl-ACP biosynthesis, BioC-BioH pathway, malonyl-ACP => 
pimeloyl-ACP 

0.8 -0.826 5.36E-03 

M00238 D-Methionine transport system 1 -0.826 5.37E-03 
M00204 Trehalose/maltose transport system 1 -0.823 5.66E-03 
M00628 beta-Lactam resistance, AmpC system 1 -0.823 5.66E-03 
M00157 F-type ATPase, prokaryotes and chloroplasts 1 -0.822 5.71E-03 

M00503 
PgtB-PgtA (phosphoglycerate transport) two-component regulatory 
system 

1 -0.822 5.71E-03 

M00189 Molybdate transport system 1 -0.821 5.76E-03 
M00455 TorS-TorR (TMAO respiration) two-component regulatory system 1 -0.82 5.83E-03 
M00097 beta-Carotene biosynthesis, GGAP => beta-carotene 0.833 -0.819 6.04E-03 
M00754 Nisin resistance, phage shock protein homolog LiaH 1 -0.816 6.34E-03 
M00193 Putative spermidine/putrescine transport system 1 -0.816 6.34E-03 
M00083 Fatty acid biosynthesis, elongation 0.8 -0.814 6.67E-03 
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M00377 Reductive acetyl-CoA pathway (Wood-Ljungdahl pathway) 1 -0.813 6.67E-03 
M00718 Multidrug resistance, efflux pump MexAB-OprM 1 -0.813 6.67E-03 
M00119 Pantothenate biosynthesis, valine/L-aspartate => pantothenate 1 -0.813 6.67E-03 
M00459 VicK-VicR (cell wall metabolism) two-component regulatory system 1 -0.812 6.77E-03 

M00485 
KinABCDE-Spo0FA (sporulation control) two-component regulatory 
system 

1 -0.811 6.77E-03 

M00595 Thiosulfate oxidation by SOX complex, thiosulfate => sulfate 1 -0.811 6.79E-03 

M00445 
EnvZ-OmpR (osmotic stress response) two-component regulatory 
system 

1 -0.811 6.79E-03 

M00504 
DctB-DctD (C4-dicarboxylate transport) two-component regulatory 
system 

1 -0.809 6.91E-03 

M00255 Lipoprotein-releasing system 1 -0.809 6.91E-03 
M00040 Tyrosine biosynthesis, prephanate => pretyrosine => tyrosine 0.6 -0.807 7.19E-03 
M00328 Hemophore/metalloprotease transport system 1 -0.807 7.19E-03 
M00546 Purine degradation, xanthine => urea 0.95 -0.805 7.26E-03 
M00044 Tyrosine degradation, tyrosine => homogentisate 0.833 -0.805 7.26E-03 
M00668 Tetracycline resistance, TetA transporter 0.5 -0.803 7.53E-03 
M00036 Leucine degradation, leucine => acetoacetate + acetyl-CoA 1 -0.803 7.53E-03 
M00208 Glycine betaine/proline transport system 1 -0.802 7.60E-03 
M00004 Pentose phosphate pathway (Pentose phosphate cycle) 0.867 -0.802 7.64E-03 

M00478 
DegS-DegU (multicellular behavior control) two-component 
regulatory system 

1 -0.801 7.64E-03 

M00593 Inositol transport system 1 -0.801 7.68E-03 
M00644 Vanadium resistance, efflux pump MexGHI-OpmD 1 -0.801 7.68E-03 
M00212 Ribose transport system 1 -0.8 7.68E-03 
M00760 Erythromycin resistance, macrolide 2-phosphotransferase I MphA 0.5 -0.798 8.04E-03 
M00324 Dipeptide transport system 1 -0.798 8.04E-03 
M00743 Aminoglycoside resistance, protease HtpX 1 -0.797 8.18E-03 
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M00227 Glutamine transport system 1 -0.796 8.22E-03 
M00009 Citrate cycle (TCA cycle, Krebs cycle) 0.769 -0.794 8.38E-03 
M00127 Thiamine biosynthesis, AIR => thiamine-P/thiamine-2P 0.7 -0.794 8.38E-03 

M00658 
VanS-VanR (actinomycete type vancomycin resistance) two-
component regulatory system 

1 -0.794 8.41E-03 

M00519 YesM-YesN two-component regulatory system 1 -0.793 8.41E-03 
M00063 CMP-KDO biosynthesis 1 -0.793 8.41E-03 
M00136 GABA biosynthesis, prokaryotes, putrescine => GABA 1 -0.793 8.44E-03 
M00672 Penicillin biosynthesis, aminoadipate + cycteine + valine => penicillin 1 -0.791 8.55E-03 
M00505 KinB-AlgB (alginate production) two-component regulatory system 1 -0.791 8.59E-03 
M00360 Aminoacyl-tRNA biosynthesis, prokaryotes 1 -0.79 8.68E-03 
M00555 Betaine biosynthesis, choline => betaine 1 -0.79 8.68E-03 
M00277 PTS system, N-acetylgalactosamine-specific II component 1 -0.786 9.28E-03 

M00656 
VanS-VanR (VanB type vancomycin resistance) two-component 
regulatory system 

1 -0.785 9.46E-03 

M00350 Capsaicin biosynthesis, L-Phenylalanine => Capsaicin 0.6 -0.784 9.70E-03 

M00022 
Shikimate pathway, phosphoenolpyruvate + erythrose-4P => 
chorismate 

0.8 -0.783 9.74E-03 

M00020 Serine biosynthesis, glycerate-3P => serine 1 -0.783 9.74E-03 
M00642 Multidrug resistance, efflux pump MexJK-OprM 1 -0.782 9.81E-03 
M00300 Putrescine transport system 1 -0.781 1.01E-02 
M00339 RaxAB-RaxC type I secretion system 1 -0.78 1.02E-02 
M00260 DNA polymerase III complex, bacteria 1 -0.78 1.02E-02 
M00766 Streptomycin resistance, deactivating enzyme StrAB 1 -0.779 1.02E-02 
M00077 Chondroitin sulfate degradation 1 -0.779 1.02E-02 
M00237 Branched-chain amino acid transport system 1 -0.779 1.02E-02 
M00361 Nucleotide sugar biosynthesis, eukaryotes 0.857 -0.777 1.04E-02 
M00025 Tyrosine biosynthesis, chorismate => tyrosine 0.857 -0.775 1.08E-02 
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M00532 Photorespiration 0.8 -0.773 1.12E-02 
M00335 Sec (secretion) system 1 -0.773 1.13E-02 
M00010 Citrate cycle, first carbon oxidation, oxaloacetate => 2-oxoglutarate 1 -0.77 1.18E-02 
M00024 Phenylalanine biosynthesis, chorismate => phenylalanine 0.857 -0.768 1.19E-02 

M00728 
Cationic antimicrobial peptide (CAMP) resistance, envelope protein 
folding and degrading  factors DegP and DsbA 

1 -0.768 1.19E-02 

M00589 Putative lysine transport system 1 -0.768 1.19E-02 
M00093 Phosphatidylethanolamine (PE) biosynthesis, PA => PS => PE 1 -0.768 1.19E-02 
M00149 Succinate dehydrogenase, prokaryotes 1 -0.768 1.19E-02 
M00232 General L-amino acid transport system 1 -0.767 1.20E-02 
M00318 Iron/zinc/copper transport system 1 -0.765 1.23E-02 

M00579 
Phosphate acetyltransferase-acetate kinase pathway, acetyl-CoA => 
acetate 

1 -0.765 1.23E-02 

M00474 
RcsC-RcsD-RcsB (capsule synthesis) two-component regulatory 
system 

1 -0.764 1.24E-02 

M00456 ArcB-ArcA (anoxic redox control) two-component regulatory system 1 -0.764 1.24E-02 
M00306 PTS system, fructose-specific II-like component 1 -0.763 1.26E-02 
M00524 FixL-FixJ (nitrogen fixation) two-component regulatory system 1 -0.762 1.27E-02 
M00538 Toluene degradation, toluene => benzoate 1 -0.762 1.27E-02 
M00124 Pyridoxal biosynthesis, erythrose-4P => pyridoxal-5P 1 -0.759 1.32E-02 
M00078 Heparan sulfate degradation 0.667 -0.759 1.32E-02 
M00200 Putative sorbitol/mannitol transport system 1 -0.758 1.33E-02 
M00713 Fluoroquinolone resistance, efflux pump LfrA 0.5 -0.758 1.33E-02 
M00714 Multidrug resistance, efflux pump QacA 0.5 -0.758 1.33E-02 
M00253 Sodium transport system 1 -0.756 1.36E-02 
M00240 Iron complex transport system 1 -0.756 1.36E-02 
M00368 Ethylene biosynthesis, methionine => ethylene 0.667 -0.755 1.39E-02 
M00493 AlgZ-AlgR (alginate production) two-component regulatory system 1 -0.754 1.39E-02 
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M00034 Methionine salvage pathway 0.842 -0.754 1.39E-02 
M00439 Oligopeptide transport system 1 -0.753 1.40E-02 
M00035 Methionine degradation 0.857 -0.752 1.41E-02 
M00542 EHEC/EPEC pathogenicity signature, T3SS and effectors 0.765 -0.752 1.41E-02 
M00299 Spermidine/putrescine transport system 1 -0.752 1.41E-02 
M00014 Glucuronate pathway (uronate pathway) 0.667 -0.752 1.42E-02 
M00330 Adhesin protein transport system 1 -0.748 1.48E-02 
M00500 AtoS-AtoC (cPHB biosynthesis) two-component regulatory system 1 -0.747 1.51E-02 
M00531 Assimilatory nitrate reduction, nitrate => ammonia 0.667 -0.745 1.55E-02 
M00740 Methylaspartate cycle 0.667 -0.745 1.55E-02 
M00570 Isoleucine biosynthesis, threonine => 2-oxobutanoate => isoleucine 1 -0.745 1.55E-02 

M00447 
CpxA-CpxR (envelope stress response) two-component regulatory 
system 

1 -0.744 1.57E-02 

M00511 PleC-PleD (cell fate control) two-component regulatory system 1 -0.742 1.61E-02 
M00704 Tetracycline resistance, efflux pump Tet38 0.5 -0.742 1.61E-02 
M00697 Multidrug resistance, efflux pump MdtEF-TolC 0.5 -0.742 1.61E-02 

M00654 
ParS-ParR (polymyxin-adaptive resistance) two-component regulatory 
system 

1 -0.741 1.63E-02 

M00101 Cholesterol biosynthesis, squalene 2,3-epoxide => cholesterol 0.727 -0.74 1.66E-02 

M00468 
SaeS-SaeR (staphylococcal virulence regulation) two-component 
regulatory system 

1 -0.738 1.69E-02 

M00256 Cell division transport system 1 -0.736 1.74E-02 
M00323 Urea transport system 1 -0.735 1.75E-02 
M00259 Heme transport system 1 -0.734 1.77E-02 
M00622 Nicotinate degradation, nicotinate => fumarate 1 -0.734 1.78E-02 
M00167 Reductive pentose phosphate cycle, glyceraldehyde-3P => ribulose-5P 0.625 -0.733 1.79E-02 
M00326 RTX toxin transport system 1 -0.732 1.81E-02 
M00618 Acetogen 1 -0.732 1.81E-02 
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M00016 Lysine biosynthesis, succinyl-DAP pathway, aspartate => lysine 0.929 -0.732 1.81E-02 
M00575 Pertussis pathogenicity signature 2, T1SS 1 -0.731 1.82E-02 
M00535 Isoleucine biosynthesis, pyruvate => 2-oxobutanoate 1 -0.731 1.82E-02 

M00533 
Homoprotocatechuate degradation, homoprotocatechuate => 2-
oxohept-3-enedioate 

1 -0.729 1.85E-02 

M00003 Gluconeogenesis, oxaloacetate => fructose-6P 1 -0.729 1.85E-02 
M00254 ABC-2 type transport system 1 -0.729 1.85E-02 
M00742 Aminoglycoside resistance, protease FtsH 0.833 -0.728 1.85E-02 

M00448 
CssS-CssR (secretion stress response) two-component regulatory 
system 

1 -0.728 1.85E-02 

M00741 Propanoyl-CoA metabolism, propanoyl-CoA => succinyl-CoA 0.846 -0.728 1.85E-02 
M00100 Sphingosine degradation 1 -0.728 1.85E-02 
M00023 Tryptophan biosynthesis, chorismate => tryptophan 0.688 -0.728 1.85E-02 

M00488 
DcuS-DcuR (C4-dicarboxylate metabolism) two-component 
regulatory system 

1 -0.727 1.86E-02 

M00517 RpfC-RpfG (cell-to-cell signaling) two-component regulatory system 1 -0.726 1.86E-02 
M00215 D-Xylose transport system 1 -0.726 1.86E-02 
M00663 SsrA-SsrB two-component regulatory system 1 -0.725 1.89E-02 
M00648 Multidrug resistance, efflux pump MdtABC 1 -0.724 1.89E-02 
M00338 Cysteine biosynthesis, homocysteine + serine => cysteine 1 -0.724 1.89E-02 
M00325 alpha-Hemolysin/cyclolysin transport system 1 -0.724 1.90E-02 
M00613 Anoxygenic photosynthesis in green nonsulfur bacteria 1 -0.724 1.90E-02 
M00607 Glycerol transport system 1 -0.723 1.91E-02 
M00471 NarX-NarL (nitrate respiration) two-component regulatory system 1 -0.722 1.93E-02 
M00356 Methanogenesis, methanol => methane 1 -0.721 1.97E-02 
M00060 Lipopolysaccharide biosynthesis, KDO2-lipid A 1 -0.72 1.98E-02 

M00513 
LuxQN/CqsS-LuxU-LuxO (quorum sensing) two-component 
regulatory system 

1 -0.719 2.00E-02 
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M00566 Dipeptide transport system, Firmicutes 1 -0.718 2.02E-02 

M00761 
Undecaprenylphosphate alpha-L-Ara4N biosynthesis, UDP-GlcA => 
Undecaprenyl phosphate alpha-L-Ara4N 

1 -0.716 2.07E-02 

M00660 Xanthomonas spp. pathogenicity signature, T3SS and effectors 1 -0.716 2.07E-02 
M00011 Citrate cycle, second carbon oxidation, 2-oxoglutarate => oxaloacetate 0.735 -0.716 2.07E-02 
M00222 Phosphate transport system 1 -0.716 2.07E-02 

M00778 
Type II polyketide backbone biosynthesis, acyl-CoA + malonyl-CoA 
=> polyketide 

0.545 -0.714 2.09E-02 

M00591 Putative xylitol transport system 1 -0.714 2.09E-02 

M00019 
Valine/isoleucine biosynthesis, pyruvate => valine / 2-oxobutanoate 
=> isoleucine 

1 -0.714 2.09E-02 

M00118 Glutathione biosynthesis, glutamate => glutathione 0.5 -0.714 2.09E-02 
M00449 CreC-CreB (phosphate regulation) two-component regulatory system 1 -0.713 2.09E-02 
M00332 Type III secretion system 1 -0.711 2.16E-02 
M00236 Putative polar amino acid transport system 1 -0.708 2.25E-02 
M00244 Putative zinc/manganese transport system 1 -0.706 2.29E-02 

M00727 
Cationic antimicrobial peptide (CAMP) resistance,  N-
acetylmuramoyl-L-alanine amidase AmiA and AmiC 

1 -0.706 2.29E-02 

M00213 L-Arabinose transport system 1 -0.704 2.33E-02 
M00779 Dihydrokalafungin biosynthesis, octaketide => dihydrokalafungin 0.75 -0.698 2.54E-02 
M00214 Methyl-galactoside transport system 1 -0.697 2.58E-02 
M00652 Vancomycin resistance, D-Ala-D-Ser type 0.6 -0.695 2.65E-02 
M00664 Nodulation 1 -0.694 2.69E-02 
M00696 Multidrug resistance, efflux pump AcrEF-TolC 1 -0.692 2.73E-02 
M00362 Nucleotide sugar biosynthesis, prokaryotes 1 -0.691 2.76E-02 

M00008 
Entner-Doudoroff pathway, glucose-6P => glyceraldehyde-3P + 
pyruvate 

1 -0.685 2.98E-02 

M00568 Catechol ortho-cleavage, catechol => 3-oxoadipate 1 -0.681 3.11E-02 
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M00476 ComP-ComA (competence) two-component regulatory system 1 -0.677 3.25E-02 

M00480 
VraS-VraR (cell-wall peptidoglycan synthesis) two-component 
regulatory system 

1 -0.673 3.41E-02 

M00235 Arginine/ornithine transport system 1 -0.673 3.43E-02 
M00001 Glycolysis (Embden-Meyerhof pathway), glucose => pyruvate 0.867 -0.67 3.54E-02 
M00506 CheA-CheYBV (chemotaxis) two-component regulatory system 1 -0.669 3.59E-02 
M00320 Lipopolysaccharide export system 1 -0.668 3.59E-02 
M00701 Multidrug resistance, efflux pump EmrAB 1 -0.668 3.59E-02 
M00514 TtrS-TtrR (tetrathionate respiration) two-component regulatory system 1 -0.668 3.60E-02 
M00617 Methanogen 0.557 -0.664 3.77E-02 
M00150 Fumarate reductase, prokaryotes 1 -0.664 3.77E-02 

M00674 
Clavaminate biosynthesis, arginine + glyceraldehyde-3P => 
clavaminate 

1 -0.663 3.77E-02 

M00194 Maltose/maltodextrin transport system 1 -0.661 3.90E-02 
M00319 Manganese/zinc/iron transport system 1 -0.66 3.91E-02 
M00581 Biotin transport system 1 -0.653 4.24E-02 

M00673 
Cephamycin C biosynthesis, aminoadipate + cycteine + valine => 
cephamycin C 

1 -0.651 4.34E-02 

M00645 Multidrug resistance, efflux pump SmeABC 1 -0.648 4.50E-02 

M00721 
Cationic antimicrobial peptide (CAMP) resistance, arnBCADTEF 
operon 

1 -0.648 4.50E-02 

M00584 Acetoin utilization transport system 0.75 -0.647 4.50E-02 

M00487 
CitS-CitT (magnesium-citrate transport) two-component regulatory 
system 

1 -0.647 4.51E-02 

M00121 Heme biosynthesis, glutamate => protoheme/siroheme 0.826 -0.642 4.74E-02 
M00095 C5 isoprenoid biosynthesis, mevalonate pathway 0.875 0.646 4.53E-02 
M00163 Photosystem I 1 0.657 4.06E-02 
M00161 Photosystem II 1 0.68 3.13E-02 
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Table E.8. (cont’d) 

 
  

M00052 Pyrimidine ribonucleotide biosynthesis, UMP => UDP/UTP,CDP/CTP 0.571 0.692 2.74E-02 
M00120 Coenzyme A biosynthesis, pantothenate => CoA 0.909 0.693 2.70E-02 
M00343 Archaeal proteasome 1 0.713 2.09E-02 
M00162 Cytochrome b6f complex 0.875 0.714 2.09E-02 
M00203 Glucose/arabinose transport system 1 0.737 1.72E-02 

M00633 
Semi-phosphorylative Entner-Doudoroff pathway, 
gluconate/galactonate => glycerate-3P 

0.8 0.75 1.46E-02 

M00275 PTS system, cellobiose-specific II component 1 0.76 1.30E-02 
M00365 C10-C20 isoprenoid biosynthesis, archaea 1 0.794 8.38E-03 
M00166 Reductive pentose phosphate cycle, ribulose-5P => glyceraldehyde-3P 0.857 0.806 7.26E-03 
M00530 Dissimilatory nitrate reduction, nitrate => ammonia 1 0.807 7.19E-03 
M00031 Lysine biosynthesis, mediated by LysW, 2-aminoadipate => lysine 1 0.829 5.20E-03 
M00423 Molybdate/tungstate transport system 1 0.831 5.07E-03 
M00763 Ornithine biosynthesis, mediated by LysW, glutamate => ornithine 0.833 0.833 4.85E-03 
M00026 Histidine biosynthesis, PRPP => histidine 0.789 0.84 4.49E-03 
M00596 Dissimilatory sulfate reduction, sulfate => H2S 1 0.846 4.22E-03 
M00604 Trehalose transport system 1 0.86 3.40E-03 
M00529 Denitrification, nitrate => nitrogen 0.917 0.872 2.92E-03 
M00159 V/A-type ATPase, prokaryotes 1 0.893 2.04E-03 
M00179 Ribosome, archaea 0.985 0.908 1.32E-03 
M00184 RNA polymerase, archaea 0.875 0.91 1.32E-03 
M00390 Exosome, archaea 1 0.916 1.32E-03 
M00391 Exosome, eukaryotes 0.5 0.917 1.32E-03 
M00177 Ribosome, eukaryotes 0.671 0.93 1.17E-03 
M00425 H/ACA ribonucleoprotein complex 0.5 0.933 1.13E-03 
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Table E.9. Permanent finished genomes per phylum in Integrated Microbial Genomes 

database used in Figure F.2. 
Phylum Genomes 

Chlorobi 21 
Crenarchaeota 224 
Acidobacteria 68 
Bacteroidetes 1900 
Proteobacteria 23638 
Planctomycetes 104 
Bacteria 48637 
Cyanobacteria 391 
Chloroflexi 154 
Verrucomicrobia 96 
Nitrospirae 49 
Actinobacteria 6075 
Armatimonadetes 13 
candidate division TM6 1 
Gemmatimonadetes 26 
Chlamydiae 270 
Elusimicrobia 42 
Candidatus Parcubacteria 60 
Firmicutes 14186 
candidate division WPS-2 8 
Euryarchaeota 651 
Candidatus Parvarchaeota 7 
OP11 0 
Spirochaetes 746 
Fusobacteria 132 
Candidatus Omnitrophica 60 
BRC1 2 
WS1 1 
Tenericutes 336 
candidate division GAL15 3 
Candidatus 
Saccharibacteria 

47 

Unclassified 0 
FBP 0 
Fibrobacteres 30 
Archaea 882 
NC10 0 
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Table E.9. (cont’d) 

 
Candidatus Aerophobetes 4 
Deferribacteres 51 
Deinococcus-Thermus 74 
Candidatus Fervidibacteria 13 
Aquificae 36 
Lentisphaerae 8 
cadidate division SR1 0 
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APPENDIX F 

 

Supplemental figures  
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Figure F.1. Complementary methods used to assess changes in average genome size across 

the soil temperature gradient in Centralia. 

(A) Odds ratios were calculated for 35 single-copy gene KEGG Orthologs in each site and 

plotted against site temperature. Reported   two-sided Pearson’s correlation is between all single 

copy gene odds ratios and temperature(p = 2.2x10-16). (B) Average genome size in each site was 
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Figure F.1. (cont’d) 

 calculated based on phylum level abundances from 16S rRNA gene amplicon data, using 

weighted average genome sizes of each phylum present in JGI IMG (accessed 19 June 2017, 

two-sided Pearson’s correlation p = 0.0003). (C) Average MAG size at each site was calculated 

based on presence/absence of 104 MAGs (two-sided Pearson’s correlation p = 0.029,). For all 

Pearson’s correlations, n= 12 soils. 
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Figure F.2.  Community structure in Centralia.  

(A) Relative abundance of phyla in fire-affected (red, n=6 soils) and recovered/reference (blue, 

n=6 soils) sites based on 16S rRNA gene amplicon sequences. Taxonomic assignments were 

with the RDP classifier against the greengenes database (B) Sizes of permanent draft and 

finished genomes in IMG from phyla detected in Centralia. Midlines of each boxplot correspond 

to median values. The top and bottom of each boxplot represent the 75th and 25th percentiles 

respectively. The upper and lower whiskers extend to the furthest values that are not outliers. 

Number of genomes per boxplot is described in Table E.9.  
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Figure F.3. Annual temperature fluctuations at three fire-affected and two ambient 

Centralia sites 

Annual temperature fluctuations at three fire-affected (circles) and two ambient (triangles) 

Centralia sites, measured using in situ temperature loggers (HOBOs) that were buried 5 - 10 cm 

below the surface. Temperature loggers were deployed after the soils were collected for this 

study. 
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CHAPTER 4: Dormancy dynamics and dispersal contribute to soil microbiome resilience 
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Abstract  

In disturbance ecology, stability is composed of resistance to change and resilience 

towards recovery after the disturbance subsides. Two key microbial mechanisms that can support 

microbiome stability include dormancy and dispersal. Specifically, microbial populations that are 

sensitive to disturbance can be re-seeded by local dormant pools of viable and reactivated cells, 

or by immigrants dispersed from regional metacommunities. However, it is difficult to quantify 

the contributions of these mechanisms to stability without, first, distinguishing the active from 

inactive membership, and, second, distinguishing the populations recovered by local 

resuscitation from those recovered by dispersed immigrants. Here, we investigate the 

contributions of dormancy dynamics (activation and inactivation), and dispersal to soil microbial 

community resistance and resilience. We designed a replicated, 45-week time-series experiment 

to quantify the responses of the active soil microbial community to a thermal press disturbance, 

including unwarmed control mesocosms, disturbed mesocosms without dispersal, and disturbed 

mesocosms with dispersal after the release of the stressor. Communities changed in structure 

within one week of warming. Though the disturbed mesocosms did not fully recover within 29 

weeks, resuscitation of thermotolerant taxa was key for community transition during the press, 

and both resuscitation of opportunistic taxa and immigration contributed to community 

resilience. Also, mesocosms with dispersal were more resilient than mesocosms without. This 

work advances the mechanistic understanding of how microbiomes respond to disturbances in 

their environment.  
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Introduction 

Ongoing changes to Earth’s climate are projected to alter disturbance regimes and to 

pervasively expose ecosystems to stressors like elevated atmospheric greenhouse gases and 

increased temperatures (1). Microbial communities, or microbiomes, provide vital ecosystem 

functions and are key players in determining ecosystem responses to environmental changes (2, 

3). Understanding the mechanisms that underpin microbiome responses to environmental 

disturbances will support efforts to predict, and, potentially, manage, microbiomes for stable 

functions within their ecosystems. 

In disturbance ecology, stability refers to consistent properties in the face of a stressor (4).  

Here, we apply terms from disturbance ecology as they have been adopted in microbial ecology 

(5–7). Stability includes components of both resistance and resilience. Resistance is the capacity 

of a system to withstand change in the face of a stressor, and its inverse is sensitivity. Resilience 

is the extent to which a system recovers following a disturbance, and is often expressed as a rate 

of change over time. Secondary succession is the process of community reassembly after a 

disturbance, and it can lead to either a state of recovery or an alternative stable state. Recovery is 

when a system fully returns to either its pre-disturbance state or is indistinguishable from a 

comparative control, and this term can be applied both to the state of the stressor and to the 

responsive community.  Similarly, an alternative stable state is when the system does not return 

but rather assumes a different state. Together, resistance and resilience are the major quantifiable 

components of stability, and they can be calculated from community measurements of alpha 

diversity, beta diversity, or function (6, 8).   

There are two related microbial mechanisms that support population persistence in the face 

of disturbance, and therefore contribute to community resistance, resilience, and recovery. One 
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mechanism is microbial dispersal, as successful immigrants can support resilience and recovery 

of sensitive populations. Across an interconnected landscape, microbial metacommunities are 

linked via dispersal, and so immigrants originate from the regional species pool (9–12). A second 

important but less-considered mechanism is microbial dormancy dynamics (13, 14). Dormancy 

dynamics include initiation and resuscitation. Initiation into dormancy can support local survival 

of populations sensitive to the disturbance, and therefore support community resistance by 

stabilizing community structure. Resuscitation from dormancy can support resilience and 

recovery by re-seeding sensitive populations from the local dormant pool. Thus, while both 

dispersal and resuscitation can support microbiome stability, dispersed immigrants originate 

regionally while resuscitated members originate locally. After a disturbance, if sensitive 

populations are not repopulated via immigration or resuscitation, they will become locally 

extinct and contribute to necromass (aka relic DNA, (15)). 

We designed a replicated time-series experiment to quantify the contributions of 

dormancy dynamics and dispersal to the response of a soil microbiome to a thermal press 

disturbance. We targeted a soil microbiome because terrestrial microbiomes are front-line 

responders to climate change and sequesters of carbon (2, 3), and therefore an important 

constituent to understand for predicting ecosystem outcomes to environmental change. Also, 

soils harbor the highest known microbial diversity (16–18) and present a maximum challenge in 

deciphering microbiome responses to disturbance. Furthermore, a majority of the microbial cells 

or richness in soil is dormant (13, 19), reportedly as high as 80%, representing a considerable 

pool of microbial functional potential. Finally, across heterogeneous soils, an average of 40% of 

the microbiome DNA was necromass that existed extracellularly (15). This suggests that DNA-

based methods of determining microbiome dynamics include both inactive and necromass 
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reservoirs, and that there is need for increased precision to move forward to quantify 

mechanisms underpinning microbiome stability. 

The mesocosm experiment reported here follows prior field work in Centralia, 

Pennsylvania (20–24). Centralia is the site of an underground coal seam fire that ignited in 1962 

and advances 5-7 my-1 along the coal seams (25, 26). The coal seams are highly variable in 

depth, but average 70 m below the surface (25), so as the fire advances underground it warms the 

overlying surface soils from ambient to mesothermal to thermal conditions. After the fire 

advances, previously warmed soils cool to ambient temperatures. In the field, we observed that 

previously warmed soils recovered towards reference soils in bacterial and archaeal community 

structure, with the exception of a slightly increased selection for Acidobacteria in the recovered 

soils (attributable to lower soil pH after coal combustion, (20)). However, during fire impact, 

there was high divergence among soil communities, and we hypothesized that differences in 

dormancy dynamics (e.g., different members resuscitating and initiating priority effects during 

the stress) may explain the divergences. We also hypothesized that resuscitation would shift 

community structure during the thermal disturbance, but that resuscitation and dispersal would 

together support resilience after the disturbance subsided. Therefore, in this experiment, we 

aimed to control dispersal, and also to quantify activity dynamics and determine their 

consistency and test our hypotheses. 

 

Materials and Methods 

Soil collection, mesocosm design, and soil sampling 

 Eight kg of soil was collected in Whirlpack bags from the top ten centimeters of a 

reference site in Centralia, PA (site C08, 40 48.084N 076 20.765W) on March 31st, 2018. The 
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site is temperate with the following chemical-physical properties: Organic Matter 4.8%; Nitrate 

7.9 ppm; Ammonium 20.5 ppm; pH 5; Sulfur 19 ppm; Potassium 69 ppm; Calcium 490 ppm, 

Magnesium 59 ppm; Iron 110 ppm, and Phosphorus 395 ppm. The ambient soil temperature 

when collected was 4°C. The sample was stored at 4°C until the experiment was initiated. Soil 

was sieved through a 4mm mesh, homogenized, and ~300 g were dispensed into 15 autoclaved 

quart-sized glass canning jars that were used as mesocosms (Ball). The homogenized soil sample 

intentionally was used in all 15 mesocosms to assess the reproducibility of community temporal 

dynamics starting from the same soil source. Percent soil moisture was determined using by 

massing and drying. Each mesocosm was massed weekly to assess evaporation and any loss of 

water mass was replaced with sterile water to maintain percent soil moisture throughout the 

experiment. Sterile metal canning lids were secured loosely to prevent anaerobiosis. All set-up 

and manipulation of the mesocosms was performed in a Biosafety Level 2 cabinet 

(ThermoScientific 1300 Series A2) and we used aseptic technique.   

Mesocosms first were acclimated at 14°C to mimic the ambient soil temperature at the 

typical time of fall soil collection and to coordinate with our previous field study (20). 

Acclimation proceeded for four weeks in a cooling incubator (Fischer Scientific Isotemp), and 

then soils were divided into three treatment groups (Figure 4.1). Six unwarmed control 

mesocosms (“Control”) were maintained at 14°C for the duration of the experiment. Nine 

warmed mesocosms (“Disturbance”) were subjected to a 12-week disturbance regime to simulate 

a press thermal disturbance. First, the temperature was gradually increased to 60°C, by 3°C to 

3.5°C daily increments over two weeks. Second, the temperature was maintained at 60°C for 8 

weeks. Sixty degrees was chosen because it was close to the observed maximum thermal 

temperature that we have measured in surface soils impacted by the Centralia coal seam fire (20). 
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Next, the temperature was gradually decreased to 14°C, by 3°C to 3.5°C daily increments over 

two weeks. Finally, the mesocosms were maintained at 14°C for four weeks until the penultimate 

sampling. From the nine disturbed mesocosms, four were randomly selected for the dispersal 

treatment (“Disturbance + Immigration”). These four disturbed mesocosms received a dispersal 

event one week after the temperature was recovered to 14°C after the thermal disturbance. Each 

was inoculated with 0.5 mL of a 10% weight by volume soil slurry made from a composite soil 

sample from the six unwarmed control mesocosms, and then gently mixed with a sterile spatula. 

Using qPCR data from control mesocosms at week 16, we estimate that approximately 6.37x106 

cells were dispersed into each Disturbance + Immigration mesocosm. We used soil from the 

control mesocosms to simulate dispersal from similar, adjacent soils to repopulate disturbed 

communities, as expected in the field. Finally, all mesocosms were left undisturbed at 14°C for 

another 25 weeks prior to the final 45-week sampling. During the final 25-week incubation, 

percent moisture was not monitored. 

 Mesocosms were non-destructively sampled after 4, 5, 6, 10, 14, 15, 16, 20, and 45 

weeks of incubation. At each time point, approximately 15 g soil was removed from a 

mesocosm, of which ~13 g was flash-frozen in liquid nitrogen for RNA preservation and stored 

at -80°C until RNA/DNA co-extraction.  
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Figure 4.1.  Experimental design of the mesocosm study. 

At time 0 (indicated by the asterisk), reference temperate soil (0-20 cm depth from surface) was 

homogenized and divided among fifteen 1 L glass mesocosms that were maintained at ambient 

moisture through the experiment. Nondestructive sampling of each mesocosm proceeded from 

week 4 onward as indicated by the x-axis. Unwarmed Control mesocosms (solid gold line, n = 6) 

were maintained at 14°C, which was ambient soil temperature at the time of collection. 

Disturbed mesocosms (dashed blue line, n = 9, including Disturbance and Disturbance + 

Immigration groups) were acclimated for four weeks at 14°C, increased to 60°C over two weeks, 

maintained at 60°C as a thermal press disturbance for eight weeks, then decreased back to 14°C 
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 Figure 4.1. (cont’d) 

over two weeks, and finally maintained for a total of 45 weeks. Four of the disturbance 

mesocosms received homogenized soil slurry from Control mesocosms as a dispersal event at 

week 17, after the thermal press was released (Disturbance + Immigration treatment; see 

methods). Note the break in the x-axis time scale between weeks 20 and 45. 
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RNA/DNA co-extraction 

 To obtain RNA and DNA from the same cell pool, we minimally modified a manual 

coextraction protocol originally published by (27). For each sample, 0.5 g of flash-frozen soil 

was added to Qiagen PowerBead Tubes containing 0.70 mm garnet beads. Next, 500 uL of a 5% 

CTAB/Phosphate buffer and 500 uL of phenol:chloroform:isoamyl alcohol were added to each 

PowerBead tube. Cells were then lysed using a Model 607 MiniBeadBeater-16 (BioSpec 

Products Inc.) for 30 seconds, followed by a 10 min centrifugation at 10,000 x g and 4°C. The 

top aqueous layer was transferred to a fresh tube and 500 uL chloroform:isoamyl alcohol was 

added. The tubes were inverted several times to form an emulsion before a five minute 

centrifugation at 16,000 x g and 4°C. The top aqueous layer was transferred to a clean 1.5 mL 

centrifuge tube. Nucleic acids were precipitated by adding two volumes of a 30% PEG6000 

1.6M NaCL solution, inverting several times to mix, and incubating on ice for two hours. After 

incubation, nucleic acids were pelleted by a 20 min centrifugation at 16,000 x g and 4°C. The 

supernatant was removed from each tube and one mL of ice-cold ethanol was added to the 

pelleted nucleic acids. Tubes were centrifuged for 15 min at 16,000 x g and 4°C, and the ethanol 

supernatant was removed. Pelleted nucleic acids were left to air dry before resuspending in 30 uL 

of sterile DEPC-treated water.  

 To purify the RNA, co-extracted nucleic acids were diluted 1:100 before treatment with 

Ambion Turbo DNA-free DNase kit, using the robust treatment option in the manufacturer’s 

instructions. Extracted nucleic acids were mixed with 0.1 volumes of the 10X Turbo DNase 

Buffer and three uL of TURBO Dnase enzyme (six units total) and incubated at 37°C for 30 min. 

After incubation, 0.2 volumes of DNase inactivation reagent was added and incubated for five 

minutes at room temperature before a five min centrifugation at 2,000 x g and room temperature. 
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The treated supernatant was removed and used as the template for reverse transcription. RNA 

purity was assessed by PCR (see below for details) and showed no amplification. Reverse 

transcription was performed with random hexamers using the SuperScript III First-Strand 

Synthesis System for RT-PCR(Invitrogen) per manufacturer’s instructions.  

PCR of cDNA and no-RT controls was performed using the Earth Microbiome Project 

16S rRNA gene V4 primers(515F 5’-GTGCCAGCMGCCGCGGTAA-3’, 806R 5’-

GGACTACHVGGGTWTCTAAT-3’) (16, 28). Temperature cycling was as follows: 94°C for 

four minutes followed by 30 cycles of 94°C for 45 seconds, 50°C for 60 seconds and 72°C for 90 

seconds followed by a final elongation step at 72°C for 10 minutes. Products were visualized 

using gel electrophoresis.   

 

16S rRNA and 16S rRNA gene sequencing and processing 

Here, for simplicity we use “microbiome” to refer to the bacterial and archaeal 

community members captured by amplifying and Illumina sequencing of the 16S ribosomal 

RNA and DNA (rRNA gene). Library preparation and sequencing was performed by the 

Michigan State University Genomics Core Research Facility. A single library was prepped using 

the method in Kozich et al (2013) (29). PCR products were normalized using Invitrogen 

SequalPrep DNA Normalization Plates. This library was loaded onto 4 separate Illumina MiSeq 

V2 Standard flow cells and sequenced using 250bp paired end format with a MiSeq V2 500 

cycle reagent cartridge. Base calling was performed by the Illumina Real Time Analysis (RTA) 

V1.18.54.  

All samples were first checked for any contaminating primer sequences using 

cutadapt(30), before being processed together using the USEARCH pipeline (31, 32). Briefly, 
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paired end reads were merged using -fastq_mergepairs and then dereplicated using -

fastx_uniques. Reads were clustered de novo at 97% identity and then the original merged reads 

were mapped to the representative sequences of each cluster. Each OTU was classified using 

SINTAX(33) and with the Silva database (version 123, (34)).  

 

Designating Total and Active Communities  

Each RNA and DNA sample was rarefied to 50,000 reads in R using the vegan package 

version 2.5-4 (35) discarding any samples which did not contain sufficient reads (Figure I.1). 

Samples for which either the RNA or DNA did not have 50,000 reads were omitted from the 

analysis presented here (12 out of 135 in total). The Total community was defined as the 

community recovered in the DNA reads. The Active community was defined per sample, using 

the DNA read numbers of those taxa that had 16S rRNA:rRNA gene ratio was >1 in each 

sample(36). Consequently, while every sample was initially rarefied to 50,000 reads, each 

sample’s active community varied slightly in total reads. Finally, we did not include taxa that 

had undefined rRNA:rRNA gene ratios (“phantoms”) in the analysis (Figure I.2, see discussion 

in supplementary materials). 

 

Quantitative PCR (qPCR) 

 qPCR was performed on the V4 region of the 16S rRNA gene and conducted in a BioRad 

CFX qPCR machine using the Absolute QPCR Mix, SYBR Green, no ROX (Thermo Scientific). 

Each reaction contained 12.5ul of the 2X Absolute QPCR Mix, 1.25 ul each of 10uM primers 

515F and 806R, 3uL of template DNA and 2uL of PCR grade water. Temperature cycling 

conditions were as follows: 15 minutes at 95°C, followed by 39 cycles of 94°C for 45 seconds, 
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50°C for 60 seconds, and 72°C for 90 seconds, followed by a final elongation step at 72°C for 10 

minutes. Fluorescence was measured in each well at the end of every cycle.  Extracted gDNA 

from E. coli MG1655 was used for the standard curve, and was run in triplicate with every plate. 

Samples were run in duplicate across different plates and those that amplified after the lowest 

point of the standard curve (27 copies per reaction) were treated as zeroes. No template controls 

were included in every qPCR plate and they never amplified. Amplification specificity was 

assessed by melt curve (60°C to 95°C, 0.5°C increments).   

 

Calculating resistance and resilience of community structure 

 We calculated resistance and resilience as described in Shade and Peter 2012 (6) and 

Orwin and Wardle 2004 (8). These are unitless metrics that have a theoretical range from -1 to 1. 

Resistance of the active community structure at week 10 was calculated for every disturbed 

mesocosm using Equation 1: 

Eq. 1  

 RS = 1 − �∗|�����|
���|�����| 

 

, where yc is the mean Bray Curtis similarity for Control mesocosms at week 10 compared to 

week 4 (pre-disturbance), and yd is the individually calculated Bray Curtis similarity of each 

disturbed mesocosm at week 10 to week 4. Resilience of the active community in each disturbed 

mesocosm was calculated for the observed secondary succession (week 16 to 45) as well as the 

initial (week 16 to 20) and the long-term (week 20 to 45) secondary succession using Equation 2. 

Eq 2. 
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RL = 2 ∗ |y�,� − y ,�|
("y�,� − y ,�" + |y�,$ − y ,$|) − 1 

 

, where s is the start of the secondary succession and e is the end,  yc,s is the mean Bray Curtis 

similarity of Control mesocosms at week S to week 4 (pre-disturbance), yd,s is the Bray Curtis 

similarity of each disturbed mesocosm at week S to week 4 (pre-disturbance), yc,e is the mean 

Bray Curtis similarity of Control mesocosms at week e to week 4, and yd,e is the Bray Curtis 

similarity of each disturbed mesocosms at week e to week 4. 

  

Ecological statistics 

 Ecological analyses were performed in R (37). The adonis and anosim function in the 

vegan package was used to perform PERMANOVAs (38) and ANOSIM respectively, to assess 

disturbance and immigration effects on community composition, and the betadisper function was 

used to quantify beta dispersion (39) with Tukey’s Honestly Significant Difference post-hoc test 

across Control, Disturbance, and Disturbance + Immigration treatments.  Pairwise tests for alpha 

diversity (Richness and Pielou’s Evenness), community size (i.e. 16S rRNA gene copies per 

gram of soil), and resilience values were performed using the Kruskal-Wallis test, with Dunn’s 

post-hoc correction for multiple comparisons when needed to assess differences between control, 

disturbance, and immigration treatments. Principal coordinates analysis was used for ordination 

of pairwise sample differences based on Bray-Curtis dissimilarity. Procrustes superimposition 

(PROTEST) was performed using the procrustes function in the vegan package to compare 

community structure trajectories in direction and extent of change and a false discovery rate 

adjustment was used for multiple tests. Data visualizations were performed using ggplot2 (40). 

Heatmaps were made using the heatmap.2 function in the gplots package (41).  
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 To understand potential roles of dormancy initiation and resuscitation in driving 

community resistance and resilience, we distinguished between taxa that changed in their activity 

from taxa that changed in their detection over the course of the disturbance. Taxa that fell below 

detection (there was no rRNA gene detected in a particular sample) were coded differently for 

the heatmap than taxa that became inactive (rRNA:rRNA gene shifted from > 1 to < 1). For the 

heatmap, we used the Active community for the input data, but coded taxa that fell below 

detection in the Total community as NAs to distinguish them from inactive taxa, which were 

coded as 0. Notably, taxa that fell below detection in the Total community could have been either 

active, inactive, or locally extinct. To conservatively attribute activity dynamics, we restricted 

the heatmap visualization only to the taxa that were among the 50 most abundant in Active 

samples over the course of the experiment.  

Responsive taxa were those that changed in activity over secondary succession (between 

weeks 16, 20, and 45) by their 16S rRNA:rRNA gene ratio, either from < 1 to > 1 or > 1 to < 1.  

Immigrant taxa were undetected in all disturbed mesocosms at week 16, but detected in Control 

mesocosms at Week 16 and Disturbance + Immigration mesocosms at either week 20 or week 45 

while remaining undetected in the Disturbance mesocosms. Contributions of responsive and 

immigrant taxa to beta diversity were calculated as the Bray-Curtis dissimilarity attributed to the 

responsive taxa subset and divided by the total Bray-Curtis dissimilarity, both calculated from 

the Total (DNA) community, as done previously to assess the contributions of conditionally rare 

taxa (42) and the contributions of core taxa (43) to beta diversity 
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Data availability and code 

 Sequence workflows, OTU tables, and statistical workflows to reproduce the analyses 

described here are available on GitHub 

(https://github.com/ShadeLab/PAPER_Sorensen_InPrep_Mesocosms).  All raw sequence data 

are deposited in the NCBI Short Read Archive under BioProject PRJNA559185. 

 

Results 

Sequencing summary 

 In total, we sequenced 135 pairs of samples (cDNA and DNA) across nine timepoints and 

15 mesocosms. We rarefied all samples to 50,000 reads, and removed those samples with fewer 

than 50,000 reads. This resulted in the removal of 12 samples and left 53 unwarmed Control, 36 

Disturbance, and 34 Disturbance + Immigration pairs of samples. After rarefaction, sample 

richness ranged from 84 to 4,108, with 16,854 total OTUs observed, inclusive of both DNA and 

RNA datasets. 

 

Overarching responses to the thermal press disturbance 

Total community richness responded consistently and as expected to the thermal press 

disturbance. There was a notable bottle effect of maintaining field soil in mesocosms, indicated 

by the gradual decrease in richness over time in the unwarmed Control treatment (Figure 

4.2AB). In the Disturbance treatment, there was a modest but statistically supported decrease in 

richness one week after warming from 14°C  to 37°C (week 5 all Disturbance v. Control 

comparison, Kruskal-Wallis test, p = 0.003), and then a more substantial decrease after warming 

to 60°C at week 6 (Kruskal-Wallis test, p = 0.002). Disturbance community size decreased over 
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weeks four to seven and then maintained at a median of 1.03 x 107 rRNA gene copies per g soil 

(Figure 4.3). Control communities decreased until week seven (bottle effect) and then increased 

rapidly by week ten and generally stabilized at median of 2.98 X 108 16S rRNA gene copies/g 

soil (Figure 4.3A). Together, these results show that the warming treatment acted as an 

environmental filter, resulting either in death or population decreases past the limits of detection 

for taxa that were otherwise fit in unwarmed conditions. Furthermore, there was a weak increase 

in richness after the dispersal event in the Disturbance + Immigration treatment, relative to the 

Disturbance treatment (Kruskal – Wallis test p= 0.088 at week 20, and p = 0.168 at week 45), 

and this increase was also observed for community size, which approaches that of the unwarmed 

control (Kruskal – Wallis test Control vs Disturbance + Immigration p=0.11, Control vs 

Disturbance p=0.0004, Disturbance vs Disturbance + Immigration p=0.013) (Figure 4.3B). This 

suggests that the dispersal treatment was effective in promoting the process of recovery in 

richness and community size. Importantly, Disturbance and Disturbance + Immigration 

mesocosms were not significantly different in either richness nor community size prior to the 

immigration event (Table H.1 and Table H.2) However, disturbed mesocosms did not 

completely recover richness to the level of the ambient Controls, even by week 45 (Figure 

4.2B). Evenness followed the same overarching patterns as richness (Figure 4.2CD). 

  



 163

 

Figure 4.2. Changes in alpha diversity over the disturbance experiment. 

Alpha diversity was assessed using operational taxonomic units clustered at 97% sequence 

identity, after 16S rRNA gene sequencing and rarefaction to 50,000 sequences per sample. (A) 

Changes in the observed no. OTUs (richness) in Control (gold, circles) and Disturbance (blue, 

squares and triangles) mesocosms over the thermal press (weeks 4-16). (B) Changes in richness 

in Control (gold circles), Disturbance (blue squares), and Disturbance + Immigration (pink 

triangles) mesocosms over the recovery period, weeks 20-45. The Disturbance + Immigration  
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Figure 4.2. (cont’d) 

mesocosms received a dispersal event at week 17. (C) Changes in evenness over weeks 4-16. (D) 

Changes in evenness over weeks 20-45. Asterisks indicate significant differences by a Kruskal 

Wallis test (n.s = not significant; * p<0.1, ** p<0.01, *** p<0.001, with a Dunn correction for 

multiple comparisons in B and D). 
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Figure 4.3.  Changes in community size over the disturbance experiment. 

Community size was estimated using qPCR of the 16S rRNA gene and standardized per gram of 

soil from which nucleic acids were extracted. (A) Changes in the 16S rRNA gene copies in 

Control (gold, circles) and disturbed (blue, squares and triangles) mesocosms over the thermal 

press (weeks 4-16). (B) Changes in the 16S rRNA gene copies in Control, Disturbance (blue 

squares) and Disturbance + Immigration (pink triangles) mesocosms over the recovery period, 

weeks 20-45. The Disturbance + Immigration mesocosms received a dispersal event at week 17. 

Asterisks indicate significant differences by a Kruskal Wallis test (n.s. = not significant, * p<0.1, 

** p<0.01, *** p<0.001, with a Dunn correction for multiple comparisons in B). 

  



 166

We compared community structure across treatments for the Total community dataset, 

rRNA gene; 14,159 OTUs) and the Active dataset (rRNA:rRNA gene > 1; 6,693 = OTUs). There 

were clear and consistent shifts in beta diversity in the disturbed mesocosms (n=9, inclusive of 

Disturbance and Disturbance + Immigration), as well as high reproducibility among replicates in 

community structure within treatments as shown by the overlap of symbols per treatment and 

timepoint in the ordination (Figure 4.4). As compared to the Controls, the disturbed mesocosms 

had increased betadispersion (variability in community structure) starting at week 6 onward, with 

the exception of week 10 (Figure 4.5). Over the experiment, disturbed mesocosms had distinct 

community structures compared to Control (disturbed v. Control PERMANOVA PsuedoF = 

63.87, Rsqr = 0.345, p=0.001 for Total communities, and PsuedoF=35.97, Rsqr=0.229, p=0.001 

for Active communities, all timepoints). Control communities were relatively stable over the 

study, while disturbed communities changed directionally, and were significantly different from 

Control communities after a single week of warming (week 5 Control vs Disturbed 

PERMANOVA PsuedoF = 3.06, Rsqr= 0.218, p=0.001 for Total community and PsuedoF= 2.88, 

Rsqr=0.208, p=0.001 for Active community, Table H.3). Disturbed communities continued to 

shift with temperature during the course of the experiment, and then shifted slightly back 

towards the Control after the stressor was released and Disturbance and Disturbance + 

Immigration communities had similar structures during the press (Table H.4). Though no 

disturbed mesocosms fully recovered to overlap with the Control communities, the Disturbance 

+ Immigration mesocosms were more similar to the Control than the Disturbance mesocosms 

without dispersal (Figures 4.2B, 4.3B, 4.4) . Across all treatments, Total communities and 

Active communities were synchronous in their temporal trajectories (Mantel R =0.943, p = 0.001 

on 999 permutations; Protest Sum of Squares =0.238, R= 0.873, p=0.001), but there was higher 
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betadispersion in the disturbed treatments for the Active communities  (Comparing Total v. 

Active for disturbed mesocosms, Kruskal Wallis p=0.029). This suggests that there was Active 

community variability masked by the contributions of dead and dormant taxa to the Total 

community.  
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Figure 4.4. Changes in beta diversity over the disturbance experiment. 

Pairwise differences in community structure was quantified using pairwise Bray-Curtis 

dissimilarity and then ordinated using Principal Coordinates Analysis (PCoA). Time is shown by 

symbol size, and mesocosm temperature is indicated by heat colors, with the brightest red 

indicating the warmest time point. Control mesocosms are circles, Disturbance are squares, and 

Disturbance + Immigration are triangles. (A) PCoA of the Total community, assessed using 

sequencing of the 16S rRNA gene. (B) PCoA of the Active community, including only OTUs 

that had 16S rRNA:rRNA gene > 1. 
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Figure 4.5.  Changes in beta dispersion over the disturbance experiment. 

Beta dispersion, an indicator of variability in community structure, was quantified using the 

distance to the median in ordination space (Figure 4.4.), which was constructed based on Bray-

Curtis dissimilarity. (A) Changes in beta dispersion in Control (gold, circles) and Disturbance 

(blue, squares and triangles) mesocosms over the thermal press (weeks 4-16). (B) Changes in 

beta dispersion in Control, Disturbance (blue squares), and Disturbance + Immigration (pink 

triangles) mesocosms over the recovery period, weeks 20-45. The Disturbance + Immigration 

mesocosms received a dispersal event at week 17. Asterisks indicate significant differences with 

a Tukey’s Honestly Significant Difference post-hoc test (n.s. = not significant, * p<0.1, ** 

p<0.01, *** p<0.001). Note differences in y-axis ranges between A and B. 
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 Replicate disturbed mesocosms (again, inclusive of Disturbance and Disturbance + 

Immigration) had highly reproducible responses during the press. They had high overlap in 

membership and overall synchronous trajectories (i.e. changes in community structure through 

time), even after the immigration event at week 16 (33 of 36 PROTEST all R > 0.89 and false-

discovery rate adjusted p-values < 0.05). 

 

Resistance and resilience 

For the Active community, we calculated resistance and resilience of the disturbed 

mesocosms relative to the Control using community divergence from the first sampling time 

(Week 4, end of acclimatization period) as the reference (Figure 4.6A). Even in the Control 

communities, there was an initial drop in similarity between weeks 4 and 5, which we attribute to 

incomplete acclimatization and a bottle effect.  However, after that, the Control communities 

remain relatively stable with no additional divergence, while the disturbed communities 

decreased to their maximum divergence at week 10 (60°C).  

Disturbance + Immigration communities converge slightly after the dispersal event. 

Overall resistance was low (Figure 4.6B), and resilience reached its maximum, 0.41, in the 

immigration treatment between weeks 16 (the time point at which the thermal press was 

released) and the final week 45, but ranged from a minimum of 0.04 between week 16 and 20 in 

the Disturbance without immigration treatment (Figure 4.6C-E). Immigration enhanced 

resilience from week 16 to week 20 (Kruskal Wallis p value 0.034) and from week 16 to week 

45 (Kruskal Wallis p value 0.083), but not from week 20 to 45, possibly because of insufficient 

power (Kruskal Wallis p value 0.180). Notably, there were only two Disturbance mesocosm 

replicates (out of five) that met the rarefaction threshold for week 45.  
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Figure 4.6. Resistance and resilience of soil mesocosm communities to a thermal press.  

(A) Temporal series of community divergence from pre-disturbance community (week 4) in 

Control (gold solid line), Disturbance (blue short dashed line), and Disturbance + Immigration 

(pink long dashed line) to calculate resistance and resilience. (B) Resistance of disturbed 

mesocosms at week 10, the time point of maximum community change after the thermal press 

begins. (C-E) Resilience of disturbed mesocosms without (-) and with (+) immigration, 

calculated after the thermal press is released (week 16) for the (C) full recovery to week 45, (D) 

initial recovery to week 20, and also for (E) long-term recovery from weeks 20 to 45. Asterisks 

indicate significant differences by a Kruskal Wallis test (n.s. = not significant, * p<0.1). 
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We wanted to assess the relative contributions of taxa that activate or inactivate after the 

disturbance subsides to the overall beta diversity (weeks 16-45). We also wanted to assess the 

relative contributions of taxa that colonized after dispersal. We calculated the relative 

contribution of activity dynamics by identifying taxa that switched between an active and 

inactive state during secondary succession. We found that these dynamically active taxa 

contributed 11.7% to 58.9% (median 28.6%) of the observed beta diversity, while immigrants 

contributed 7.9% to 26.3% (median 14.7%) of the observed beta diversity during the same time 

period. 

 

Activity dynamics of abundant taxa 

We investigated the activity dynamics of the top 50 most abundant taxa within the Active 

communities, and distinguished taxa that became inactive (rRNA:rRNA gene < 1, white cells in 

Figure 4.7A) from taxa that fell below detection (rRNA gene = 0, black cells in Figure 4.7A, 

see Methods for details). Within this set of 50, we detected no purely resistant taxa that were 

consistently active throughout the experiment. This finding agrees with the analyses showing 

low resistance (Figure 4.6B) and substantial shifts in the disturbed communities (Figure 4.5). 

We detected 17 taxa that were sensitive to the disturbance (Figure 4.7B). Sensitive taxa were 

active prior to the warming but became inactive or dropped below detection during the warming, 

and then did not reactivate. We also detected 19 transition taxa that were inactive prior to the 

warming, active during the warming, and then became inactive after the stressor was released. 

Because there was no external dispersal into the system, these thermotolerant taxa were likely in 

the dormant pool of the soil. We could divide these responses generally into early and late 

transition taxa. There were 6 early transition taxa that became active during week 5 or 6 of the 
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experiment, but then became inactive at weeks 10 and 14. There were also 13 late transition taxa 

that remained inactive during weeks 5 and 6 but became active during weeks 10 and 14.  

Among the top 50 Active taxa, we did not detect purely resilient taxa that were active 

prior to the warming, became inactive during the warming, but then reactivated after the return to 

ambient temperature. This suggests that dormancy strategies responsive to warming were not a 

substantial contributor to member preservation, nor to eventual re-seeding. Instead, opportunists 

and immigrants facilitated resilience in the mesocosms. The opportunists were defined as 

inactive or below detection prior to and during the warming, but then activated after the 

temperature returned, likely due to resuscitation, and there were five taxa in this category. Eight 

immigrants were generally active prior to the warming, dropped to below detection or became 

inactive during the warming, and then in the end, were active again only in the Disturbance + 

Immigration treatment (and not in the Disturbance mesocosms without immigration). 

  



 174

 

Figure 4.7. Activity dynamics of abundant taxa in response to the press disturbance. 

(A) Heatmap and dendrogram of abundant taxa reveal common patterns of detection and activity.  

Black cells are taxa that were undetected (coded as NA) in the 16S rRNA gene (DNA) 

community, and white cells are taxa that were detected in the DNA but had 16S rRNA:rRNA 

gene < 1 (inactive, coded as 0). The heat gradient indicates each taxon’s abundance relative to its 

maximum observed in disturbance treated mesocosms during the experiment. Immigration is 

indicated for weeks 20 and 45 by minus (no) and plus (yes) signs. (B) Summary of activity 

response patterns to the disturbance of the top 50 taxa, including resistant, sensitive, early and 

late transition, resilient, opportunist, and immigrant taxa. Definitions of each of these categories 

of taxa are found in the main text.  
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Discussion 

Our results show that both dispersal and local dormancy dynamics, including activation 

and inactivation, can contribute to overarching patterns of community resilience. The dispersal 

event simulated in this experiment posed an optimistic scenario: well-mixed, control soils were 

mixed into disturbed soils to maximize the volume of the disturbed soil that came into contact 

with the inoculum. Regardless, by all metrics (beta diversity, alpha diversity, community size), 

immigration was impactful. These data directly show that dispersal can augment resilience 

towards recovery, supporting our hypothesis. Given that the influences of dispersal on 

community assembly has been investigated previously (often indirectly for bacterial and archaeal 

microbiomes, as inferred from the contributions of stochastic or neutral processes e.g., (20, 44–

47)), this result is in agreement with the consensus of the literature that dispersal and dispersal 

limitation can matter for assembly (48–50).  

A new result is that local resuscitation also contributes to microbiome community 

transitions during disturbance, and to resilience after the stress is released. Among the most 

abundant taxa, there were near equal numbers of taxa that contributed to resilience via 

resuscitation and to resilience via immigration. While, the influence of resuscitation on resilience 

was not as impactful as that of dispersal (Figure 4.6), changes in activity dynamics contributed 

28.9% to the observed beta diversity during secondary succession. Therefore, both mechanisms – 

local resuscitation and regional immigration – contribute to microbiome stability, but potentially 

to different extents. The microbial dormant pool is important for maintaining microbial diversity 

(51) and has evolutionary implications for traits that persist within inactive populations (52). To 

make more explicit the role of dormancy dynamics for community disturbance responses (e.g., 

(53)), the phenomenon of the “storage effect” underpins modern coexistence theory (54) and 
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refers to the ability of competing species to coexist when their growth and activities are 

separately partitioned over time, typically in dynamic environments (55). Given the severity of 

the thermal stressor in Centralia and in this experiment, our results suggest that the soil microbial 

dormant pool is deep, in that it contains functionality for distinctive conditions, like thermal 

stress, that are not within the expected range of environmental variability. Our finding support 

other studies which have found thermophiles in unexpected environments such are arctic 

sediments and temperate soils (56–58).  

Alternatively, it could be that, rather than local resuscitation, extremely rare but active 

taxa that were below the limits of detection grew rapidly and repopulated to become among the 

most active and abundant taxa. These data cannot rule out this possibility, and, if true, it would 

suggest an interesting role for release of rare taxa from competition (via death or inactivation of 

the competitors sensitive to the warming) in driving post-disturbance assembly. However, given 

that no resistant taxa were detected that could withstand the wide temperature range in the 

experiment, conditional rarity may be a less common scenario than opportunistic resuscitation. 

Another goal of the experiment was to understand the reproducibility of member 

resuscitation given the press disturbance, and from the same soil. Because we observed high 

divergence in the hot soil communities in Centralia that was not attributable to any measured 

environmental variable, including temperature (20), we hypothesized that stochastic resuscitation 

could initiate priority effects (e.g., (10)), leading to divergent hot communities. However, we did 

not see the strongest differences in beta dispersion between Control and disturbed mesocosms 

until the press was subsiding (Weeks 15 and 16 in Figure 4.5). This, along with the overall 

strongly-correlated trajectories of disturbed community structures, suggest that the disturbance 

responses were consistent across disturbed mesocosms and do not support our hypothesis that 
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priority effects (initiated by different resuscitating membership) determines community structure 

during the press. Therefore, we interpret that resuscitation in response to the thermal stress was 

largely deterministic, and that observed divergences among hot soil communities in the field may 

be instead attributed to either differences local edaphic factors that were unmeasured, different 

structures of the underlying dormant pools, or stochasticity in regional dispersal during 

secondary succession.  

Moving forward, there are several insights gleaned from this experiment. For soil, 

measuring dispersal in the field is difficult, given the various means by which microorganisms 

may arrive to a locality, including wind, ground water, and invertebrate vectors. Therefore, 

controlled experimentation is needed to quantify the contributions of dispersal to secondary 

succession. However, measuring activity dynamics and estimating the dormant pool of microbes 

in field samples, while imperfect, is possible (19, 36, 59, 60). Because our experiment suggests a 

role of resuscitation in determining the community that thrives during the disturbance, and also 

an influence of resuscitation for secondary succession towards recovery, we recommend to 

collect member activity data.  More generally, routine characterization of the dormant pool of 

soil microbes, including its stability, diversity, and functions, can provide insights into the roles 

of these inactive taxa for disturbance responses.  

Microbiome stability is a progression along a trajectory, including a pre-disturbance 

community with a variance around a mean structure or a routine seasonal dynamic, a transition to 

an ephemeral community structure during the disturbance, and finally, after the disturbance is 

released, secondary succession towards either recovery or an alternative stable state. 

Longitudinal series of microbiome structure inclusive of all stages of this trajectory can be 

informative. Characterizing the full disturbance trajectory will allow for quantification of the 
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different and potentially changing mechanisms that support stability (e.g., resuscitation, 

conditional rarity, immigration), and will facilitate prediction given new stressors. In our 

experiment, one week of stress was sufficient to observe community sensitivity (by week 5, the 

control and the disturbance treatments were statistically different), but 29 weeks after the stress 

was released was not sufficient to observe complete recovery, though it seems that recovery is 

possible given the trajectory toward the controls. We expect that this time frame of response may 

be typical for many soils (61) and it can be used to inform future studies. 

To conclude, this experiment shows both dispersal and dormancy dynamics can 

contribute to soil microbiome resilience in response to a press stress. Specifically, resuscitation 

of thermotolerant members contributed to microbiome transition during press, and then 

immigration provided a substantial boost to recovery beyond what was achieved with 

resuscitated opportunists. Because activity responses to the disturbance were consistent, these 

results suggest that predictive insights into microbiome resilience can be advanced more 

generally. We expect that accounting for mechanisms of local resuscitation and regional 

dispersal together will advance quantitative understanding of environmental microbiome 

stability. 
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Supplemental Results 

Relationships between taxon activity and abundance  

The conventional thought is that relative abundance is the outcome of growth and 

therefore an indicator of fitness, and so high relative abundance is indicative of recent or current 

activity in the environment. However, we detected a weak, but statistically supported, inverse 

(log10) relationship between OTU 16S rRNA:rRNA gene ratio and relative abundance for those 

taxa with an rRNA:rRNA gene ratio >1 (Figure I.2A, Pearson’s R = -.14, p < 0.0001). This 

result is in agreement with other studies that have suggested that rare taxa may have high activity 

levels relative to their abundance in the community (42–46). We present it here to be transparent 

that there are likely additional active but rare members that contribute to stability that have not 

been considered in our analyses. 

The inverse relationship between activity and abundance could not include taxa that had 

RNA but no DNA detected (aka “phantom taxa”, (44)) because they have an undefined 16S 

rRNA:rRNA gene ratio. We make clear that, to be conservative, phantom taxa (that have RNA 

but no DNA detected) were not included in the analyses, and that rare taxa that had high activity 

ratios were not included in the description of activity response patterns among the top 50 most 

abundant taxa. On balance, phantom taxa contributed proportionally few rRNA reads and few 

unique OTUs to the dataset (Figure I.2 B and C). However, there were a few exceptions, 

including five samples that had >10% rRNA reads and > 50% of richness attributed to phantom 

taxa.  Four of these were from the Disturbance mesocosms at week 14 (peak-thermal press), and 

one sample was from week 16, at the end of the press. These samples also had relatively low 

richness and community size (Figure 4.2 and 4.3). We speculate that, by reducing community 
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size and likely also total microbial biomass, the disturbance indirectly provoked relatively higher 

contributions by phantom taxa and conditionally rare taxa (47).  
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Table H.1. Kruskal Wallis tests for Richness between Disturbance and Disturbance + 

Immigration mesocosms during the press. 

Week KW rank sum statistic p value 

4 5.00 0.025 

5 1.13 0.289 

6 5.33 0.021 

10 0.96 0.327 

14 0.02 0.885 

15 2.00 0.157 

16 1.50 0.221 
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Table H.2. Kruskal Wallis tests for on community size between Disturbance and 

Disturbance + Immigration treatments during press. 

Week KW rank sum statistic p value 

4 0.59 0.441 

5 0.05 0.821 

6 3.38 0.066 

10 0.90 0.342 

14 0.72 0.396 

15 4.21 0.040 

16 0.55 0.456 
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Table H.3. ANOSIM tests on influence of disturbance on community structure. 

Week ANOSIM 

R 

P value 

4 0.17 0.055 

5 0.57 0.001 

6 1.00 0.002 

10 1.00 0.002 

14 1.00 0.001 

15 1.00 0.002 

16 1.00 0.001 

20 1.00 0.001 

45 0.64 0.003 
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Table H.4. ANOSIM results of community structure differences between Disturbance and 

Disturbance + Immigration mesocosms during the press. 

 

Week ANOSIM 
R 

p value 

4 0.54 0.038 

5 0.15 0.222 

6 -0.06 0.515 

10 -0.05 0.63 

14 0.07 0.449 

15 0.20 0.196 

16 0.04 0.359 
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Figure I.1. Rarefaction curves for soil mesocosm microbial communities. 
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Figure I.2. Taxon activity and abundance relationships. 

(A) Log10 relative abundance and log10 rRNA:rRNA gene ratio were inversely correlated. Each 

point is a different OTU detected in the dataset that had 16S rRNA:rRNA gene greater than or 

equal to 1. (B) Distribution of percent sample richness (No. OTUs detected, inclusive of DNA 

and RNA datasets) that were phantom taxa (16S rRNA detected but not 16S rRNA gene). (C) 

Distribution of percent RNA reads attributed to phantom taxa. 
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CHAPTER 5: Conclusions and Future Directions 
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Summary 

 The work presented in this dissertation used the coal fire in Centralia, PA as a model 

disturbance to answer questions about the disturbance ecology of soil microbial communities. 

Chapter 2 broadly looked at changes in microbial community diversity in response to and in 

recovery from temperature disturbance. Fire affected soil microbial communities harbored fewer 

microbial taxa and were more divergent in the community structure than either reference soils or 

recovered soils. Using the framework of Vellend(1) and Nemergut(2) to investigate this 

divergence in community structure, little support was found for the community assembly 

processes of drift, dispersal, or selection driving  this observed divergence. We hypothesized that 

stochastic resuscitations of local dormant microbes initiated priority effects in the soils, and 

thereby causing the observed divergence. Further, despite this increased divergence in 

community structure during disturbance, soils that had recovered in temperature from the 

disturbance also showed clear signs of recovery of community. We proposed a conceptual model 

for the soil microbial community response to the coal fire wherein community structure was 

hypothesized to be driven by priority effects during the disturbance, and by weak environmental 

filtering post disturbance.  

 In Chapter 3, the traits and functional potential of the microbial communities within the 

fire affected soils was investigated using shotgun metagenomics. We found that the average 

genome size of the soil microbial communities had a strong negative correlation with the 

temperature of the soil at the time of collection. Using fluorescence microscopy of soil microbial 

cell suspensions revealed that there was also a negative correlation between average cell size 

(length) and soil temperature at the time of collection. The changes in genome size were in part 

attributable to shifts in community structure, and not contemporary genome streamlining. These 
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microbial genomes tended to have fewer two-component regulatory systems and fewer 

antimicrobial resistance and production mechanisms. This work provided culture independent 

support for the relationship between cell size, genome size, and temperature that had largely been 

observed in isolate based studies. 

 Finally in Chapter 4, we made use of a soil warming mesocosm experiment in order to 

test our hypothesis from Chapter 2, that stochastic resuscitations from dormancy initiate priority 

effects and drive divergence in community structure across disturbed sites. We used 

homogenized soil from a reference site in Centralia, PA to create replicate mesocosms and 

subjected them to warming for a period of 12 weeks. While we found no evidence that supported 

our hypothesis of priority effects, we were able to assess the importance of dispersal for recovery 

from disturbance. A subset of disturbed mesocosms received a dispersal event and these 

mesocosms showed much higher resilience than their no dispersal counterparts. These results 

reveal the importance of dispersal for recovery from disturbance while suggesting resuscitations 

from a dormant seedbank may play a larger during the disturbance itself.  

 Together these works offer insights into the disturbance ecology of soil microbial 

communities in response to elevated temperature. They demonstrate the benefit of apply the 

community assembly synthesis of Vellend(1) and Nemergut(2), specifically for understanding 

community responses to and recovery from disturbance (Chapter 2), particularly the importance 

of dispersal (Chapter 4). Further they provide support that some generalizable relationships 

discovered using large isolate collections extend to environmental systems as well (Chapter 3). 
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Future Directions 

 These studies offer a jumping off point for future research on disturbance ecology and the 

microbiology of thermal terrestrial systems. Dispersal was shown to be particular important for 

resilience of microbial community structure post disturbance. However, due to the design of our 

experiment we were unable to assess it’s importance for initial disturbance response. It is 

tempting to conclude that dispersal must be important for disturbance response since we 

observed a much lower richness of microbes in our warmed mesocosms as compared to our fire 

affected field sites. However, bottle effects are common in mesocosm experiments, and our 

decision to maintain warmed mesocosms in an aerobic environment at a constant percent 

moisture differs from our sampled fire affected sites, which tended to have higher moisture 

content and were actively venting high levels of CO2. Assessing the importance of dispersal for 

disturbance response could be with the use of reciprocal transplant experiments, where soil cores 

from a reference site are placed into a dialysis bag(thereby limiting dispersal into the core) and 

moved into a fire-affected site, and vice versa. Similar experiments have been performed to look 

at the role of community structure vs environmental conditions on ecosystem processes(3, 4), but 

their extension into investigations on dispersal’s role in determining disturbance response could 

be valuable.  

One process which we were unable to investigate in these studies was diversification. 

Due to their large population sizes and capacity for horizontal gene transfer, diversification could 

play a particularly large role in the assembly of microbial communities, particularly in cases 

where communities remain isolated from each other due to dispersal barriers. However, these 

processes are difficult to measure in  the environment. Some progress has been made, combining 

assembly of shotgun metagenomes, genome binning, and single cell genomics has allowed for 
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insights into genetic diversity of wild populations in lakes and sediments(5, 6). However, due to 

the complexity and vast diversity of microbes present in soils, using these techniques in those 

systems will remain difficult.  

 Another avenue for future work is in the characterization of the dormant seedbank. An 

unfortunate drawback to the methods employed to look at active and dormant communities in 

this dissertation is that the designation is made on the per taxa level. That is, the 16S 

rRNA:rRNA gene ratio method results in classifying a taxon as either active or dormant. 

However, microbes exhibit phenotypic diversity and this extends to cells’ activity rates as well. 

In order to predict how a microbial community may respond to a disturbance, it will be 

beneficial to know the relative size and composition of the active and dormant community. 

Recently, advances in flow cytometry and different labeling methods have led the field to be able 

to make an active/dormant classification on a per cell basis, instead of on a per taxon basis. 

Bioorthogonal non-canonical amino acid tagging (BONCAT) is a technique used to label 

translationally active cells from environmental samples(7, 8). Microbes are extracted from an 

environmental sample and then incubated with homopropargylglycine (HPG), a methionine 

analog, which is incorporated into new proteins. A fluorescent dye is added that conjugates with 

HPG containing proteins, thereby labeling translationally active cells. The translationally active 

cells can then be separated from inactive or dormant cells using fluorescence assisted cell sorting 

(FACS), and sequenced using traditional high-throughput sequencing methods. Using this cell 

specific technique could allow for identifying different dormancy strategies, such as responsive 

vs spontaneous initiation into dormancy, based on the relative abundance of taxa in the dormant 

vs active fractions. 
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