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ABSTRACT

DISTURBANCE ECOLOGY OF SOIL MICROBIAL COMMUNITIES IN
RESPONSE TO THE CENTRALIA, PA COAL FIRE

By

Jackson Winther Sorensen
Microbial communities are ubiquitous in our world and play important roles in biogeochemical
and ecosystems processes on Earth. The ability of these microbial communities to provide these
different processes is frequently tied to their community structure, which can be thought of both
in terms of membership (i.e. who is there) and the relative abundance of these members. Changes
in environmental conditions often lead to changes in microbial community structure as well.
Microbial communities are formed through the process of assembly, which in turn is driven by
the four processes of 1) Selection 2) Dispersal 3) Drift and 4) Diversification. Understanding the
relative importance of each of these processes in different systems is important for predicting
how microbial communities will change in response to disturbances.

This dissertation presents work that uses the coal fire in Centralia, PA as a model press
disturbance for understanding soil microbial community responses to and recovery from
disturbance. The experiments herein aim to shed light the relative roles of Selection, Dispersal,
and Drift in governing these responses in soil microbial communities experience a temperature
disturbance. An observation study of a chronosequence of fire disturbance in Centralia, PA is
used to generate hypotheses as to the relative roles of Selection, Dispersal, and Drift in the
assembly of soil microbial communities experiencing a temperature disturbance. Further, an in
depth look at some of these communities using shotgun metagenomics is used to observe specific

microbial traits and characteristics selected for by the temperature disturbance. Finally, a



laboratory soil mesocosm warming experiment investigates the relative influence of Dispersal

and dormancy in governing responses to and recovery from disturbance.



This dissertation is dedicated to my partner in all things, Jenny, who pushes me everyday to be a
better scientist, communicator, and person.
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CHAPTER 1: Introduction



Microbial communities and structure-function relationships

Microbial communities are ubiquitous in our world and are important players in
important geochemical processes on Earth (1, 2). Microbes play important roles in the carbon
cycle (3), and carry out key steps of the nitrogen and sulfur cycles (4, 5). Their functional
potential is not limited to these environmental processes either, as they can play key roles in
pathogen defense and growth promotion in plants (6, 7). There are an estimated 4-6 X10*°
microbial cells on Earth, equaling anywhere from 60-100% of the total carbon of plants and
estimated at nearly 10'? species (1, 8). Overall, these microbial communities provide crucial
functions for Earth

The functional output of microbial communities is often dictated by their community
structures. The relationship between the composition of a microbial community (taxonomic
membership and relative abundances of those members) and the functions that it can perform is
referred to as structure-function relationships. Early investigations into this relationship reported
correlations between community structure and specific ecosystem functions (9—13) and others
have shown strong causal relationship between community structure and ecosystem function (14,
15). However, community structure does not always appear to be intrinsically linked to all
functions. Some ecosystem processes may be more dependent on environmental context than on
community structure, though even for these processes there appears to be some relationship

between structure and function (14, 16).



Community assembly: Vellend’s synthesis of community ecology and Nemergut’s extension
to microbes

Given the relationship between community structure and function, understanding what
shapes community structure is an important field of study. The processes by which communities
are formed is often referred to as assembly. Studies that have aimed to determine what governs
assembly have often looked at the four sub-processes of Selection, Drift, Dispersal and,
Speciation. Vellend proposed a synthesis of these four processes as a model for community
assembly (17) and Nemergut and authors extended this synthesis to microbial communities,
substituting Diversification for Speciation since microbiology lacks a strong species definition
(18). Selection refers to natural selection from abiotic and biotic factors on fitness differences
between species. Drift refers to slight stochastic changes in the abundance of different members.
Dispersal is the process by which species travel between locations. Diversification is the process
by which new genetic variation arises. The relative importance of each of these processes is
dependent upon the environment.

Selection is the most common assembly processes that has been studied to date.
Numerous studies have looked at how certain environmental parameters shape and influence
community structure. Rainfall, temperature, and pH have all been identified as important factors
shaping community structure through selection (19-21). The influence of dispersal on microbial
communities tends to vary by habitat type, with soils showing little evidence for the importance
of dispersal in shaping community structure and dispersal having a greater influence in water and
air environments (22, 23). The role of diversification in community assembly has typically been
a difficult process to study. However, advances in high throughput sequencing techniques have

made it possible to recover population level genomes of microbes from environmental



samples(24). A recent study used genome reconstruction from lake metagenomes across nine
years to observe genome wide selective sweeps (25). Ecological drift appears to have its
strongest influence when community size is small across, both for microbial and plant
communities(26, 27).

Community assembly has historically borrowed terms from plant ecology to describe the
different situations in which a community assembles. The first of these terms, primary
succession, refers to assembly of a community on a blank slate environment, where there are no
species to begin the assembly process. Some have suggested that this term is not as widely useful
to microbial communities due to their larger phylogenetic and metabolic diversity in comparison
to plants, and advocate defining different succession and assembly patterns based on the
resources available at the environment(28). The second of the terms borrowed from plant
ecology is secondary succession, or the assembly of communities after the occurrence of a
disturbance. This type of succession occur when some type of disturbance shifts microbial
community structure and allows new taxa to proliferate in the community. Some authors have
advocated for calling microbial secondary succession “post-disturbance” succession, and
splitting it into “post-press (after a long-term disturbance that impacts multiple generations) and

post-pulse (after short-term disturbance)”’(29).

Disturbance and disturbance response

Disturbances are events that cause some change in an ecosystem/environment.
Historically, disturbances in abiotic factors which lead to different fit taxa being selected in the
environment have been studied. These studies have shown that factors such warming, nutrient

overload, rainfall/drought, and pH changes all have an influence on the resulting community



structure(14, 20, 30, 31). However, disturbances that influence any of the four processes of
community assembly could have ramifications for the resulting community structure and
function.

When studying a microbial community’s response to a disturbance it helps to classify the
potential outcomes of the disturbance. Allison and Martiny categorized these different types of
responses(32). Given a disturbance, a community that does not change in either structure or
function would be described as resistant. Given the same disturbance, a community that changes
in structure but not in function could be described as functionally redundant. In this case despite
an altered community composition, some metric about the community remains the same. This
metric can be any function such as nitrogen fixation or decomposition, and so long as the metric
remains the same while the community structure changes the community would be called
functionally redundant. Finally, given the same disturbance, a community that changes in either
structure or function, but returns to the original state would be called a resilient community. It is
important to note that a single community could be functionally redundant for one metric while it
may be sensitive to the disturbance for some other metric (i.e. an altered community structure
may perform the same in regards to nitrogen fixation given a disturbance, but may perform
differently in regards to primary production or respiration) .

It is also possible to calculate indices of resistance and resilience of a microbial
community for a particular parameter. Resistance can be thought of as the extent to which a
disturbed community’s parameter of interest does not change in response to a disturbance after a
given lag period(33, 34). Likewise, resilience indices can be calculated that represent the extent
of recovery of a microbial community’s parameter post disturbance, and is frequently calculated

as a rate.



While any environmental factor can be disturbed, it can be helpful to classify types of
disturbances. One such way of doing so is to classify the disturbance based on its duration
relative to the generation time of the disturbed community. A pulse disturbance is an
environmental stress that acts on less than one generation for the community being described(33)
and results in ecological change. A press disturbance on the other hand represents a stress that

persists for multiple generations of a community and may result in evolutionary changes.

Dormancy and its implications for community assembly

Microbial species can have a particular trait that can greatly influence both their response
to disturbance through the different processes of community assembly, dormancy. Dormancy is a
state of reduced metabolic activity. Microbes enter dormancy to persist in the face of harsh
environmental conditions. Dormancy strategies are widespread throughout the microbial world,
though there are particular strategies that are phylogenetically conserved. For instance, Gram
positive bacteria of the phylum Firmicutes developed the ability to make endospores, a highly
resistance cell that can persist and remain viable in environments for thousands of years(35).
This particular form of dormancy is often initiated in response to a suite of environmental factors
sensed by histidine kinases. Conversely, some bacteria spontaneously make persister cells, which
are cells that have a reduced metabolic state. These persister cells were first observed as cells
that were able to survive an antibiotic treatment but after regrowth, remained susceptible to the
antibiotic(36).

Dormancy has the potential to influence the four processes of community assembly and
consequently microbial community disturbance response. Dormancy can ease the process of

selection on microbes by reducing their susceptibility to the abiotic and biotic conditions. Indeed,



viable spores of thermophilic microbes have been found in habitats that are non-permissive to
their growth, and as mentioned before, persister cells wait out ephemeral antibiotic
treatments(37-39). Likewise, this increased resistance and relaxed selection causes cells in a
dormant state to be better passive dispersers as well. Thermophilic endospores have been used as
markers of global currents because of their longevity(40). Likewise, the global distribution of
Polaromonas species across 6 continents at high elevations and in polar environments is thought
to be due to the presence of a gene allowing them to enter into a dormant state different from that
of thermophilic endospores(41). Efforts have also been made to incorporate dormancy into the
island biogeography theory. The island biogeography theory posits that the number of species on
an island is governed by the rate of immigration and rate of extinction(42). Accounting for
dormancy within this theory would causes higher rates of immigration and lower rates of
extinction, causing higher richness of communities(43).

Dormancy’s direct influence on diversification is slightly harder to untangle. While
dormancy does help cells evade selection, and therefore may be thought to slow evolution by
natural selection, it also helps maintain genetic diversity locally. This maintenance of genetic
diversity has important ramifications in microbial communities due to the possibility of
horizontal gene transfer. Finally, it is unclear what, if any, direct effects dormancy may have on
the drift of an assembling community. One potential avenue for influence could be related to
community size. Drift is hypothesized and shown to have its largest influence when population
or community sizes are small(44, 45). Since dormancy can frequently help increase persistence
of microbial cells, it’s possible that dormancy actually lowers the impact of drift on microbial

communities by maintaining large community sizes.



Some studies have made use of different molecular techniques to look at changes in
dormant taxa through time or in response to different disturbances. One such technique is the use
of heavy water stable isotope probing (46, 47). In this method, microbial communities are
incubated in the presence of isotopically labeled water. Active microbes take up this labeled
water and incorporate the “heavy” oxygen atom into their DNA allowing their DNA to be
separated from the rest of the communities DNA through density gradient centrifugation. One
such study used this method and saw that rare biosphere members were resuscitated from the soil
during “rewetting” events (46). These rewetting events act as a disturbance of sorts to the “dried”
microbial communities, and thus these findings support a role for dormancy and dormancy
transitions in microbial community disturbance response.

Another method for investigating dormant and active communities of microbes is the 16S
rRNA:16S rRNA gene ratio methods. This method requires isolating both RNA and DNA from a
sample and sequencing both sets of nucleic acids separately. The relative recovery of sequences
associated with a taxon in the total RNA of a community vs the total DNA of a community is
used to infer the taxon’s activity. While a relationship between cellular rRNA content and
activity has been observed for pure culture isolates, it is important to note that there are
exceptions to this relationship(48), and as such 16S rRNA is indicative more of activity potential,
then pure activity(49). Despite these drawbacks, there have been studies showing an agreement
between 16S rRNA gene ratio methods and other methods for assessing activity such as
differential staining(50). Likewise, a long-term study on salt marshes used 16S rRNA sequencing
to investigate the active and dormant communities in response to elevated nutrients, another form
of disturbance. This study found that despite total community richness and structure remaining

the same in the presence of the nutrient stress, the active microbial community changed



significantly(31). The authors suggested that in this case, nutrient stress induced dormancy in

many of the microbial community members.

The Centralia, PA coal fire

This dissertation presents work centered on an atypical disturbance in the town of
Centralia, PA. Centralia was originally a coal mining town, but the mines shut down and the
locals used abandoned coal strip mines as landfills. These strip mines eventually became filled,
and caught fire in 1962(51). The burning trash eventually spread to an exposed coal seam in the
landfill. Despite several efforts to extinguish the coal seam fire the state was unsuccessful in
controlling the fire and eventually purchased all the land in the area and relocated most of the
residents.

The coal seam fire in Centralia burns to this day, and is expected to continue burning for
another 100 years(52, 53). The fire slowly moves along the coal seam, warming the overlying
soils and depositing them with coal combustion products. As the fire burns all the fuel in a given
location, the overlying soils are allowed to cool back down to ambient temperatures and begin
the process of recovery. Consequently, the coal fire has left behind a chronosequence of
temperature disturbance, where there are currently areas that have never been affected by the
fire, soils currently affected by the fire, and areas that at one point in time were affected but have
since recovered to ambient temperatures. Previous studies of boreholes and fire affected soils in
Centralia showed evidence for reductions in microbial diversity as temperatures increased, and
also pointed to elevated levels of ammonium and nitrate in some of these boreholes(54).

Throughout this dissertation, the coal mine fire in Centralia PA is used as a model system

for a press disturbance on microbial communities. The coal fire in Centralia, PA is useful model



for multiple reasons. First, it represents an intense disturbance on the soil microbial communities,
with coal combustion products being deposited on the surface soils and their temperatures having
been measured at >400°C (55). The disturbance is also an appealing system due to the length of
disturbance each field site experiences. A given surface soil site may be affected by the fire for
years before the temperature at a site begins to recover. Similarly, there are also sites that were at
one point in time affected by the fire, but are currently recovered in temperature. This allows for
the long term study of recovery dynamics. Finally, the fire is expected to continue burning for
over a hundred years(51-53), and while the timeframe is beyond the scope of this dissertation, it
provides an opportunity to study disturbance ecology for years to come.

Given the existing chronosequence of disturbance in Centralia, PA, in Chapter 2 we use
16S rRNA gene sequencing of microbial communities along this chronosequence to assess both
how microbial communities assemble during disturbance and how well they recover post
disturbance. In Chapter 3 shotgun metagenomics of the chronosequence is used to investigate
particular traits selected for by the elevated temperature and disturbance in Centralia. Finally,
Chapter 4 assesses the influence of dormancy and dispersal on disturbance response and
recovery using a mesocosm warming experiment in conjunction with 16S rRNA and 16S rRNA
gene sequencing designed to mimic the warming of soils in Centralia, PA. Together these works
expand our understanding of how community assembly processes act and interact with one
another to govern community disturbance response in soil environments and set the path for

future work predicting community outcomes to disturbance.
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CHAPTER 2: Divergent extremes but convergent recovery of bacterial and archaeal soil
communities to an ongoing subterranean coal mine fire

Work presented in the chapter has been published as
Lee SH*, Sorensen JW*, Grady KL, Tobin TC, and Shade A. Divergent extremes but
convergent recovery of bacterial and archaeal soil microbial communities. 7The ISME
Journal 11, 1447-1459 (2017)

*Contributed Equally

17



Abstract

Press disturbances are stressors that are extended or ongoing relative to the generation times of
community members, and, due to their longevity, have the potential to alter communities beyond
the possibility of recovery. They also provide key opportunities to investigate ecological
resilience and to probe biological limits in the face of prolonged stressors. The underground coal
mine fire in Centralia, Pennsylvania has been burning since 1962 and severely alters the
overlying surface soils by elevating temperatures and depositing coal combustion pollutants. As
the fire burns along the coal seams to disturb new soils, previously disturbed soils return to
ambient temperatures, resulting in a chronosequence of fire impact. We used 16S rRNA gene
sequencing to examine bacterial and archaeal soil community responses along two active fire
fronts in Centralia, and investigated the influences of assembly processes (selection, dispersal
and drift) on community outcomes. The hottest soils harbored the most variable and divergent
communities, despite their reduced diversity. Recovered soils converged toward similar
community structures, demonstrating resilience within 10-20 years and exhibiting near-complete
return to reference communities. Measured soil properties (selection), local dispersal, and neutral
community assembly models could not explain the divergences of communities observed at
temperature extremes, yet beta-null modeling suggested that communities at temperature
extremes follow niche-based processes rather than null. We hypothesize that priority effects from
responsive seed bank transitions may be key in explaining the multiple equilibria observed
among communities at extreme temperatures. These results suggest that soils generally have an
intrinsic capacity for robustness to varied disturbances, even to press disturbances considered to

be “extreme”, compounded, or incongruent with natural conditions.
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Introduction

Human interactions with and alterations of environmental systems are important
components of global change (1). Anthropogenic disturbances are outcomes of human activity,
and include land-use and land-cover changes, pollution, dispersal of invasive species, and over-
harvesting of native animal or plant populations (2). Anthropogenic disturbances are typically
classified as press disturbances, as they often impact multiple generations of organisms within
their ecosystems (3). Because of their longevity, press disturbances have the capacity to alter

ecosystems beyond the possibility of recovery (4).

Within every ecosystem, microbial communities underpin biogeochemical processes,
sustain the bases of food webs, and recycle carbon and nutrients. In some situations of
anthropogenic disturbance, such as pollution, native microbial communities also can provide
bioremediative functions to support ecosystem recovery (5-8). Because of their foundational
roles in driving important ecosystem processes, understanding how microbial communities
respond to press disturbance can provide insights into the potential for ecosystems to recover. It
may also help to uncover mechanisms by which environmental microbial communities may be
managed to improve ecosystem outcomes. A better understanding of microbial responses to
press disturbances, including examples of communities that have recovered or shifted to an
alternative stable state, is necessary to move toward the goal of microbial community

management (9) .

Recent work has highlighted the importance of understanding the relative contributions
of community assembly processes to community changes (10-16), and these processes can also
be informative for understanding community changes after a disturbance (e.g., secondary

succession; (12)). According to Vellend, 2010, community assembly can be summarized by four
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major processes: dispersal, diversification, drift, and selection. Dispersal is the movement of
individuals between localities, diversification is the generation of new genetic variation (which
can lead to speciation), drift encompasses the stochastic processes resulting in fluctuations in
member abundances (e.g. births and deaths), and selection refers to deterministic fitness
differences among taxa driven by abiotic conditions or biotic interactions (as summarized by
(11)). Together, these processes complement and interact to drive community patterns, and
together provide a foundation on which to build a predictive theoretical framework for microbial

community ecology.

Because diversification processes are relatively more important at evolutionary scales,
Vellend et al. 2014 focused on the remaining processes of ecological selection, drift, and
dispersal. They asserted that selection processes are deterministic, that drift processes are
stochastic, and that dispersal processes can be either or both, depending on the situation (14).
Tucker and colleagues provided clarity to the distinction between deterministic/stochastic and
niche/neutral processes, which are often used interchangeably. Niche/neutral refers to the
ecological differentiation and equivalence of species, while deterministic/stochastic refers to
non-probabilistic or probabilistic outcomes (15). Thus, neutrality concerns ecological
equivalence of species, while stochasticity concerns demographic variability in birth, death, and

dispersal.

We aimed to understand the responses of soil microbial communities to an anthropogenic
press disturbance, and to apply the Vellend, 2010, Nemergut et al., 2013, and Tucker et al., 2016
conceptual frameworks of community assembly for interpretation of patterns. The town of
Centralia, Pennsylvania is the site of an underground coal mine fire that has been burning since

1962. 1t is one of thousands of coal mine fires burning in the world today (17), which are
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inconspicuously common anthropogenic disturbances. However, the Centralia fire is especially
long-lived, and, after efforts to extinguish it failed, it was left to burn until it self-extinguished
(18). The fire is expected to burn slowly until the coal reserves have been consumed. The fire
currently underlies more than 150 acres and continues to spread slowly (3-7 m/yr (19)) through
underground coal seams. Depending on the depth of the coal bed, it burns at an estimated 46-69
m below the surface (18,19). Heat, steam and combustion products vent upward from the fire
through the overlying soils. The surface soil temperatures can exceed 80°C, scarring the
landscape with dead vegetation that reveals the fire's subsurface trajectory. As steam and gasses
pass through the overlying rock and soil, soil temperatures increase while soil chemical
composition is altered by both spontaneous and microbial-mediated chemical reactions (20). As
the fire expands into new areas, it also retreats from some affected sites, which then recover to
ambient temperatures (18,19). Thus, the “end” of the disturbance can be delineated by
temperature recovery. In this way, a chronosequence of fire-affected Centralia soils provides a

space-for-time proxy of disturbance response and recovery.

Our research objectives were to understand the diversity and spatio-temporal dynamics of
the surface soil bacterial and archaeal communities that have been impacted historically or are
currently influenced by the ongoing subterranean coal mine fire in Centralia. We used a
definition of disturbance response to include changes in member relative abundances as well as
in composition. Previous work using terminal restriction fragment length polymorphism analysis
showed that microbial diversity decreased at hotter sites, and that compositional changes were
correlated with soil ammonium and nitrate concentrations (21). We move forward from this work

to use high throughput sequencing of soil community 16S rRNA genes to quantify the
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community dynamics along a chronosequence of fire response and recovery. We specifically

investigated the community assembly processes of selection, dispersal, and drift.

Materials and Methods

Study site, soil sampling, soil biogeochemistry and microbial community DNA extraction

We undertook fieldwork in Centralia (GPS: 46°4624°N, 122°50”36W) on 5-6 October
2014. We collected surface soils to capture the expected maximum changes along a
chronosequence of fire recovery (Figure C.1). We sampled two fire fronts along gradients of
historical fire activity. Fronts are trajectories of fire spread from the 1962 ignition site outward
along near-surface coal seams (19). These fronts include surface soils that were previously hot
and have cooled, as well as soils that are currently warmed by the ongoing fire. We collected soil
from two unaffected, proximate sites as references, seven recovered sites along the gradient, and
nine fire-affected sites (18 total soils), and these collections were distributed across both fire
fronts. Soil samples were collected from the top 20 cm of surface soil (core diameter 5.1 cm),
and were sieved through 4 mm stainless steel mesh. We collected cores only at bare surface soil
locations (no vegetation) to minimize the influence of local vegetation and to maximize
comparability between soils, as the thermal surface soils generally lacked vegetation. Collected
soils were stored on ice up to 72 hr during transport to the laboratory, then stored at -80°C
pending further processing. The physico-chemical characteristics of each soil sample (percent
moisture, organic matter (500°C), NOs", NH4", pH, SOa, K, Ca, Mg, P, As, and Fe) were assayed
by the Michigan State Soil and Plant Nutrient Laboratory according to their standard protocols
(East Lansing, MI, USA, http://www.spnl.msu.edu/). Gravimetric soil moisture was measured

after drying the soil at 80°C for 2 days. Fire history was estimated as years since the surface soil
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was first hot from the fire, at each sampling location. Fire history observations were measured
using either winter snow cover, aerial vegetation photography, or thermal infrared imagery, as
collated and reported by Elick, 2011(Figure 3 therein). Soil community DNA was extracted from
0.25 g of soil in three technical replicates using the MoBio Power Soil DNA Isolation Kit
according to the manufacturer’s protocol (MoBio, Solana Beach, CA, USA). The concentration
of the extracted DNA was measured using the Qubit® dsDNA BR Assay Kit (Life Technologies,

NY, USA), and DNA amount was standardized for sequencing to 1,000 ng/sample.

Soil cell counts

Direct bacterial and archaeal cell counts were conducted on frozen soil samples based on
a protocol to separate cells from soil reported in (22). To dissociate the microbial cells from soil
particles, 10 g of soil was mixed with 100 mL of phosphate buffered saline containing 0.5%
Tween-20 (PBST). Soil samples were homogenized in a Waring blender three times for 1 min
each, followed by a 5 min incubation on ice. Slurries were centrifuged at 1000 x g for 15 min to
concentrate soil particulates. Supernatants were set aside and stored at 4°C, and the remaining
soil pellets were re-suspended in 100 mL of fresh PBST and blended for an additional 1 min. The
soil slurry was then transferred to sterile 250 mL centrifuge bottles and the blender was washed
with an additional 25 mL of sterile PBST and added to the slurry before centrifugation at 1000 x
g for 15 min. All resulting supernatants for each site were combined, then centrifuged at 10,000
x g for 30 min to pellet cells. Supernatants were discarded, and cell pellets were re-suspended in
10 mL of sterile Milli-q water and 400 mL of 37% formaldehyde to fix cells. 1 mL of cell
suspension was then carefully layered over 500 pL of sterile Nycodenz solution (0.8 g/mL in

0.85% NaCl), then centrifuged at 10,000 x g for 40 min. The upper layer was then collected and
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cells were pelleted by centrifugation at 20,000 x g for 15 min, then resuspended in 1 mL of
sterile 0.85% NaCl. To dissociate remaining soil clumps, cell suspensions were sonicated for 10
s in a sonicating water bath.

Cell suspensions were stained with DTAF ((5-(4,6-Dichlorotriazinyl)
Aminofluorescein)) according to (23). DTAF-stained smears were visualized on a Nikon Eclipse
€800 microscope (Tokyo, Japan) equipped with a Photometrics Coolsnap Myo camera (Tuscon,
AZ, USA), and images were collected using Micro-Manager software (24). Fiji image analysis
software was used to adjust background, thresholding, and to conduct particle counts from
images (25). Briefly, background correction was completed using an automated rolling ball
subtraction with a 35-pixel radius, followed by automatic local thresholding using the Bernsen
method with a 12-pixel radius to convert greyscale images to binary. Watershed segmentation
was conducted to separate touching nuclei, then particles were counted using the ImageJ

“Analyze Particles ” function, excluding anything smaller than 0.1 micron (26).

Quantitative PCR

We performed quantitative PCR (qPCR) using bacterial and archaeal 16S rRNA gene
universal primer sets (Table B.1; (27)). The reaction mixtures consisted of 10 puL SYBR qPCR
Master mix (Quanta Bioscience, Gaithersburg, MD, USA), 0.4 uL each of the forward and the
reverse primers (0.4 pM), 2 pL of template DNA, and sterilized deionized water to adjust the
final volume of 20 pL. The thermal profile was as follows: initial denaturation at 95°C for 10 s,
followed by 40 cycles of denaturation at 95°C for 10 s, annealing at 50°C for 15 s, and extension
at 72°C for 40 s. A final dissociation protocol (58°C to 94.5°C, increment 0.5°C for 10 s) was

performed to ensure the absence of nonspecific amplicons. The reactions were conducted using
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the Bio-Rad iQ5 real time detection system (Bio-Rad, Hercules, CA, USA). Please see the

supporting materials for more details as to the qPCR methods.

16S rRNA amplicon sequencing

For each of the 54 DNA samples (18 soils, each with three replicate DNA extractions)
and mock community DNA, paired-end sequencing (150 base pair) was performed on the
bacterial and archaeal 16S rRNA gene V4 hypervariable region using the Illumina MiSeq
platform (Illumina, CA, USA; Table B.1; (27). All of the sequencing procedures, including the
construction of Illumina sequencing library using the [llumina TruSeq Nano DNA Library
Preparation Kit, emulsion PCR, and MiSeq sequencing were performed by the Michigan State
University Genomics Core sequencing facility (East Lansing, MI, USA) following their standard
protocols. The Genomics Core provided standard Illumina quality control, including base calling
by Illumina Real Time Analysis v1.18.61, demultiplexing, adaptor and barcode removal, and
RTA conversion to FastQ format by Illumina Bel2Fastq v1.8.4. Raw sequences were submitted
to the GenBank SRA Accession SRP082686.

To estimate sequencing error, mock community DNA was prepared from six different
type strains (D. radiodurans ATCC13939, B. thailandensis E264, B. cereus UW8S5, P. syringae
DC3000, F. johnsoniae UW 101, E. coli MG1655). The genomic DNA from these type strains
were extracted separately using the EZNA Bacterial DNA Kit (Omega Bio-tek, GA, USA)
according to the manufacturer’s protocol, and then quantified using the Qubit® dsDNA BR
Assay Kit (Life Technologies, NY, USA). Each isolates’ 16S rRNA sequence was amplified
using universal 27F and 1492R primers. Amplification was performed with the GoTaq Green

Master Mix (Promega) with the following reaction conditions: 0.4uM each primer, 20-200 ng
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template, 12.5ul 2X GoTaq Green Mastermix and nuclease free water to 25 uL final volume. The
products were visualized on 1% agarose gels before being cleaned using the Promega Wizard SV
Gel and PCR Cleanup System per manufacturer’s instructions. Cleaned amplification products
were sequenced using the 27F and 1492R primers using the ABI Prism BigDye Terminator
Version 3.1 Cycle kit at Michigan State’s Genomics Research Technology Support Facility

(https://rtsf.natsci.msu.edu/genomics/). Forward and reverse reads were merged using the merger

tool in the EMBOSS (V. 6.5.7) package (28). Based on the DNA concentration, size of genomic
DNA, and 16S rRNA gene copy number, the final mixture contained 100,000 copies of 16S
rRNA gene from each strain. The mock community was sequenced alongside the 54 soils’
metagenomic DNA. All sequences are available in NCBI’s Short Read Archive

(https://www.ncbi.nlm.nth.gov/sra/SRP082686).

Sequence processing

Paired-end sequence merging, quality filtering, denoising, singleton-sequence removal,
chimera checking, and open-reference Operational Taxonomic Unit (OTU) picking were
conducted using a UPARSE workflow v8.1 (29,30). Open-reference OTU picking was modified
for compatibility with the UPARSE pipeline but proceeded as described for open-reference
workflows (31). We selected open-reference OTU picking because it allowed us to retain all
high-quality sequences, even if they did not match to the reference database. In addition, we
expected novel diversity in Centralia, and it was likely that many Centralia sequences would not
hit to reference databases. Furthermore, we wanted to create consistent OTU definitions that
could be tractable across this study and future work. In the open-reference OTU picking

workflow, reference-based OTU clustering first was conducted using the usearch_global
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command to cluster sequences with 97% identity to the greengenes database (v 13.8,
http://greengenes.secondgenome.com/downloads). Second, de novo OTU picking was performed
for any sequences that did not hit the greengenes reference; the usearch command cluster otus
was used to cluster sequences at 97% identity (this step includes chimera checking). The
reference-based and de novo OTUs were combined together to create the final dataset. Finally, to
reduce the potential effects of candidate contaminant sequences, any sequences in the final
dataset that matched 100% to a database of extraneous sequences (found in the mock
community) were removed.

Additional analyses were performed with QIIME v. 1.9.1 (32), including alignment with
PyNAST (33), taxonomic assignment with the RDP Classifier (34), tree building with FastTree
(35), subsampling/rarefaction to an equal sequencing depth, and within and comparative
diversity calculations (e.g., UniFrac , (36)). Sequences identified as Chlorophyta, Streptophyta
(i.e., Chloroplasts) and Mitochondria were removed before subsampling to an even sequencing
depth. Our sequence analysis workflow and computing notes are available on GitHub
(https://github.com/ShadeLab/PAPER LeeSorensen inprep/blob/master/Sequence analysis/Moc
kCommunityWorkflow.md). We used the UPARSE workflow (with the recommended 10%
divergence filter) for error rate calculation using the mock community

(http://driveS.com/usearch/manual/upp_tut_misop_qual.html).

Ecological statistics
We first assessed the reproducibility of evenly-sequenced technical replicates (DNA
extraction and sequencing replicates), and found that replicates were similar to one another in

measures of within-sample (alpha) and comparative diversity (beta diversity). The average and
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standard deviation of weighted nonnormalized UniFrac distances between replicates was 0.319 +
0.126 with a range from 0.105 to 1.29 (maximum distance between different samples was 4.49;
Figure C.2; and alpha diversity among technical replicates provided in Table B.2). Given the
low technical variability, unrarefied technical replicates were collapsed into one combined set of
sequences for each soil core to provide more exhaustive sequencing of each soil; these collapsed
samples were subsampled to an even sequencing depth (321,000 sequences per soil), and
singleton OTUs (observed only once in the dataset) were removed before proceeding with
analysis. Within sample-diversity of species richness, Faith’s phylogenetic diversity (whole tree
method), and comparative diversity of weighted and unweighted UniFrac distance
(nonnormalized and normalized, (37,38) were calculated within QIIME. Non-normalized
UniFrac distances can fall outside of 0 and 1, while normalized UniFrac distances are bound to 0
to 1; Lozupone et al., 2007 reported no differences in overarching patterns in beta diversity
between the nonnormalized and normalized UniFrac (37), and we have found that this holds for
our dataset (Table B.3). The data were then moved into the R environment for statistical
analyses. Briefly, we used vegan functions for multivariate hypothesis testing, fitting
environmental vectors to ordinations (envfit), constrained ordination (capscale), and Mantel tests
(mantel) and to calculate Pielou’s evenness (39); the cmdscale function (stats) for principal
coordinates analysis; custom code of neutral models of community assembly (40) as written and
implemented by Burns et al., 2015 ("snem.fit_function.R”); custom R scripts for beta-null model
fitting written by Tucker ef al., 2016, Appendix 2 therein) modified by our group to include
weighted UniFrac beta-null modeling; and ggplot and ggplots2 for plotting (42). Our R script is
available on GitHub (“R_analysis” repository in

https://github.com/ShadeLab/PAPER LeeSorensen ISMEJ 2017)
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Results and discussion
Soil physical-chemical characteristics and microbial population size

We measured a suite of contextual data for each sampling site, and asked whether any of
those data were correlated with surface soil temperature (Figure C.3). Centralia soils generally
represented a wide range of soil chemistry. We did not find strong correlations between
measured contextual data and temperature, with the exception of correlations with ammonium
and nitrate (Pearson’s R = 0.50 and 0.54, respectively; p < 0.05). This finding supports previous
work in Centralia showing that ammonium and nitrate were elevated at active vents (21). In
addition, the pH of recovered sites was consistently lower than reference sites (mean pH = 4.4
and 5.9, respectively), and the hottest soils were more likely to have extreme or disparate values.
In two previous reports, soil ammonium, nitrate, and sulfur concentrations were not necessarily
correlated with absolute soil temperature values at Centralia, nor to proximity to an active vent;
though extreme or disparate chemistry values were sometimes observed at hot sites, values
comparable to unaffected sites were also routinely observed (20,21). The authors suggested that
duration of fire impact, whether the fire was advancing or receding from the site, and other

complex environmental factors were likely contributing.

All soils were within one order of magnitude of 16S rRNA copies per dry mass of soil
with fire-affected soils having the highest copy numbers and recovered soils having the lowest,
but there were no statistical differences among groups (Figure C.4A, Student’s t-test all pairwise
p > 0.09). Total number of cells per dry mass of all soil ranged from 10° to 107 cells per gram of

dry soil, but cell counts across fire classifications also were not statistically distinct (Figure
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C.4B, Student’s t-test all pairwise p > 0.09). Together, these data indicate overall community
size is relatively stable across the fire gradient and that any changes in community structure
along the fire gradient are due to changes in member abundances rather than to differences in the

total number of individuals (community size) among soils.

Sequencing efforts were near-exhaustive for these soils, as assessed by a clear asymptote
achieved with rarefaction (Figure C.5). A summary of sequencing efforts, as well as a
discussion of reference-based and de novo OTU taxonomic assignments for fire-affected and

recovered soils, are provided in supporting materials.

Selection

To understand the influence of selection (deterministic) processes on community
responses, we used surface soil temperatures measured in 2014 to designate categorical groups of
communities according to their fire classification. Soils classified as reference and recovered had
temperatures between 12 and 15°C (ambient air temperature was 13.3°C at the time of soil
collection), while soils classified as fire-affected had temperatures ranging from 21 to 58°C. We
hypothesized that within-sample diversity would be lower in fire-affected soils because of the
extreme environmental filter of high temperatures, which we expected to result in lower richness
and less phylogenetic breadth. Faith’s phylogenetic diversity and OTU richness both were lowest
and most variable for fire-affected soils, and highest for reference sites (Figure 2.1; Student’s t-
test all pairwise p < 0.001). Pielou’s evenness had a similar trend, with fire-affected soils having
lower evenness than other soils, suggesting that there are a small number of highly dominant
OTUs in the fire-affected soils (all pairwise p > 0.05, not significant). These results generally

agree with studies investigating soil microbial diversity after coal mine reclamation in China and
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Brazil, respectively, where the most recovered/reconstructed soils (20 years post-mining in (43)
and 19 years of reconstruction in (44)) had highest within-sample diversity and were most
comparable to reference sites. Centralia soils are expected to share similar contamination from
coal extraction with these mine reclamation soils, but also are distinct because of their thermal
conditions and ongoing surface contamination by coal combustion products, such as inorganic
gases containing arsenic, selenium, ammonium, sulfur, and hydrogen sulfide, and organic toxins
like polycyclic aromatic hydrocarbons (20). Elements within inorganic gases mineralize and
deposit around active vents (20). Some coal combustion products, like volatile sulfur and
nitrogen compounds, may enrich for microorganisms capable of using them, while other
combustion products, like organic toxins, may decrease microbial community size or diversity

(20).
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Figure 2.1. Alpha diversity of Centralia soils.

Within-sample (alpha) diversity of fire-affected, recovered, and reference soils in Centralia for
bacterial and archaeal community (A) Faith’s phylogenetic diversity (all p < 0.001); (B) richness
(total no. observed OTUs clustered at 97% sequence identity, all p <0.001); and (C) Pielou’s

evenness (all p not significant).
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We used weighted UniFrac distance to assess comparative community diversity across
the fire categories. Weighted UniFrac distance was chosen after considering multiple taxonomic
and phylogenetic, and weighted and unweighted metrics. All resemblances revealed the same
overarching patterns (all pairwise Mantel and PROTEST p < 0.001, Table B.3), demonstrating
that these patterns were very robust. However, weighted UniFrac distance provided the highest
explanatory value (Table B.3), suggesting that changes in both phylogenetic breadth and the
relative abundances of taxa are important for interpreting community responses. As compared to
recovered and reference sites, fire-affected soils were distinct (PERMANOVA pseudo F = 16.10,
R2=10.50 and p = 0.001 on 1000 permutations) and more variable in their community structure
(difference in median dispersions = 0.53, p = 0.008; Figure 2.2). Differences in surface soil
temperature had most explanatory value on Axis 1 (77.1% variance explained by Axis 1,
temperature Axis 1 correlation = 0.97, p = 0.001, Table B.4), with nitrate and iron contributing;
calcium and pH (and, to a lesser extent, soil moisture) explained variation on Axis 2 (12.7%
variance explained by Axis 2, Table B.4). Notably, soil fire history (estimated years since the
local soil surface was first measured hot as reported by (19)) was not correlated to community

dynamics (Table B.4).
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Figure 2.2. PCoA of Centralia Microbial communities based on weighted UniFrac.

Principal coordinate analysis (PCoA) based on weighted UniFrac distances of phylogenetic
bacterial and archaeal community structure. Colors show the fire classification of the soil as fire-
affected (red), recovered (yellow), or reference (green). The strength of statistically significant (p

< 0.10) explanatory variables are shown with solid arrows.
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Fire-affected soils were more variable in their community structure across soils,
especially in soils at the most extreme temperatures observed (sites C13, C10 which were >50°C
at the time of sampling and were at the opposite ends of PCoA2). In contrast, recovered soils
were less variable, even though they spanned decades of difference in their years of peak fire
activity (the earliest impacted soils that we sampled were last recorded to be hot in 1980; (19).
Also, recovered soils were very similar in community structure to reference soils. These patterns
show that Centralia soils achieve divergent community structures over the transition from
ambient to extreme conditions, but then generally converge towards a consistent community
structure after the fire subsides. These results also show resilience of soil communities impacted
by an extreme press disturbance, with recovery occurring within 10-20 years after the stressor

subsided.

We observed a temperature “threshold” effect among fire-affected soils, and soils with
temperatures between 21 and 24.5°C (sites C06, C11, and C16) separated cleanly from soils with
temperatures greater than 30°C (Figure 2.2). To better understand the divergence in community
structure among fire-affected soils, we performed a PCoA with these communities (Figure
C.6A, Table B.5), and also a constrained analysis to ask what variability remained after
removing the influence of temperature (Figure C.6B, Table B.6). Even after removing the
influence of temperature, three discrete subsets of fire-affected communities separated from each
other along both axes, with C13 remaining as an outlying point. C13 had very different calcium
and pH than the other soils, and both of these factors had high value in discriminating C13 from
the other fire-affected soils (p = 0.092 and 0.014 respectively). There were no other measured
abiotic factors that explained the divergence among the fire-affected soils. In addition, the

constrained axes had high explanatory value (Figure C.6B, combined axes 1 and 2 = 90.0% var.
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explained), suggesting that, given the measured conditions, there are additional processes beyond

abiotic selection that explain the differences in these subsets.

We observed broad phylum-level changes in response to the fire (Figure 2.3, Table B.8).
Not all OTUs affiliated with particular phyla had identical responses; however, our analysis of
phylum-level responses points to some general trends. In particular, fire-affected soils were
enriched for members of Chloroflexi, Crenarcheaota and many lineages of unidentified Bacteria.
As compared to the fire-affected soils, recovered soils also were enriched for Parvarchaeota,
Bacteroidetes, Elusimicrobia, Gemmatimonadetes, Planctomycetes, Spirochaetes, TM6, and
Verrucomicrobia suggesting that members affiliated with this these phyla are able to persist after
the fire subsides. Acidobacteria also had an increase in recovered soils (but less significant, p =
0.10), presumably because of the decrease in soil pH observed post-fire (Figure C.3, pH panel:
row 1, column 3). Reference soils had higher representation of Proteobacteria and

Verrucomicrobia, which suggests that members of these phyla may be sensitive to the fire.
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Figure 2.3. Phylum-level responses to the Centralia coal mine fire.

Phylum-level responses to the Centralia coal mine fire. Mean relative abundance of phyla
summarized within soil fire classifications (fire-affected, recovered, and reference). Unidentified
Bacteria are a combination of OTUs unable to be assigned taxonomy at the phylum level, and are
not a monophyletic group. “Phyla Below 0.01” are all OTUs assigned to phyla that collectively

comprise less than 0.01 relative abundance in, and also are not a monophyletic group.
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Dispersal and drift

To investigate the relative importance of local dispersal, we assessed the value of spatial
distance for explaining differences in community structure. If local dispersal were important, we
would expect that soils in close proximity would have more similar community structures than
soils that are distant from one another. We found no relationship in the measured spatial
distances between soil collection sites and their corresponding differences in community
structure for all sites (Mantel p = 0.66 on 999 permutations), nor for recovered sites only (after
removing the fire-affected sites from analysis; Mantel p = 0.135 on 999 permutations). The lack
of evidence for spatial autocorrelation suggests that local dispersal is not a key factor shaping

community structure in Centralia soils.

To explore the relative importance of drift in fire-affected and recovered soils, we used
two complementary approaches. First, we fitted a neutral model of community assembly. The
model predicts taxon frequencies as a function of their metacommunity log abundances, which is
one method to consider the influence of drift with the influence of dispersal (calculated as an
immigration term, m, to the model). The neutral model fit better to the recovered sites than to
fire-affected sites (R-squared = 0.53, 0.12 respectively; Figure C.7, Table B.7). Furthermore, we
found a lower influence of dispersal (lower value of m) in the fire-affected sites (Table B.7).
These differences in fit and generally minimal influence of dispersal suggest that neutral
processes play a more minor role in the microbial community assembly of fire-affected sites than

they do in the recovered sites.

Next, we asked how observed differences in beta diversity deviate from null expectations.
We used abundance-based beta-null approaches to distinguish niche and null processes

according to (15), and we extended their approach to also consider community differences in
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phylogenetic breadth by applying it to weighted UniFrac distances. In this comparative approach,
deviations to and from a permuted null expectation (neutral) are used to interpret the relative
influences of neutral and niche processes, respectively. All Centralia communities deviated from
neutral, with reference and recovered soils falling closer to neutral expectations than fire-affected
soils (Figure 2.4A). Fire-affected soils had statistically higher beta-null deviations than
recovered soils (both p < 0.05 for Bray-Curtis and weighted UniFrac). In the fire-affected soils,
there was a consistent increase in niche processes with increasing soil temperature, and the
hottest sites deviated furthest from the neutral expectation (Figure 2.4B). Accounting for
phylogenetic breadth (using weighted UniFrac distance, Figure 2.4B suggested relatively less
deviation from neutral than accounting for abundance alone (using Bray-Curtis dissimilarity,
Figure 2.4B), but both resemblances had similar trends (Pearson’s R=0.71, p =0.001) and
produced identical statistical outcomes. These abundance null deviation results agree with the
Sloan neutral model because they suggest that unmeasured niche processes structure soil

communities at temperature extremes.
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Figure 2.4. Beta-null model deviations in Centralia soil microbial communities.

The relative changes in niche and neutral processes assessed using deviations from abundance-
weighted beta-null models. Color gradient shows the soil temperature, as a proxy for disturbance
intensity. (A) Abundance null deviations by fire classification. For both Bray-Curtis and
weighted Unifrac resemblances, recovered and fire-affected communities had distinct null
deviations (both p < 0.05); (B) Trajectory of beta-null deviations ranked by disturbance intensity
from reference to fire-affected to recovered soils. Weighted UniFrac and Bray-Curtis trajectories

are correlated (p = 0.71, p=0.001).
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Understanding community divergences at temperature extremes

To dig deeper into the differences in the three subsets of fire-affected soil (Figure C.6)
that were not well explained by measured abiotic selection, local dispersal, or drift as assessed by
the Sloan neutral model of community assembly and beta-null modeling, we asked if there were
notable differences in their dominant memberships. Fire-affected soils generally had more
variability and greater phylogenetic breadth in their dominant membership than recovered soils,
and each fire-affected subset harbored an exclusive membership among their most prevalent
taxa. We examined the top 10 prevalent taxa from each of the nine fire-affected soils.
Collectively, there were 68 unique top 10 OTUs in fire-affected soils (out of a possible 90, if
each of the nine fire-affected soil harbored mutually exclusive membership across their top 10).
These prevalent fire-affected OTUs spanned fourteen phyla or Proteobacteria classes, included
30 de novo OTUs, and included seven taxa of unidentified Bacteria and two taxa of unidentified
Proteobacteria. Acidobacteria OTUs were detected among the top 10 for all fire-affected soils,
and eight of nine fire-affected soils included Chloroflexi among the top 10 OTUs. In comparison,
recovered soils included ten phyla or Proteobacteria classes among their collective top 10, had no
unidentified Bacteria or Proteobacteria, and included four de novo OTUs. Acidobacteria and
Alphaproteobacteria OTUs were among the top 10 for all recovered soils, and six of the seven
recovered soils also included Deltaproteobacteria. Together, these results show that fire-affected

soils were more divergent and diverse in their prevalent membership than recovered soils.

An analysis of occurrence patterns of prevalent OTUs also showed greater divergence
among fire-affected soils than recovered (Figure 2.5), and further supported the distinction
among the subsets of fire-affected soils revealed by the constrained ordination Figure C.6B).

Fire-affected soils had more OTUs within their collective most prevalent taxa, and were more
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heterogeneous as shown by the wider range represented by the color scale and the more
divergent sample and OTU clustering. In fact, taxa that were among the top 10 in one fire-
affected soil were likely to be among the rare biosphere in another fire-affected soil, exhibiting
stark contrast in their abundances within these soils. However, most of the top 10 prevalent
OTUs were detected within every fire-affected soil (Table 1, Figure 2.5), suggesting that
changes in taxa relative abundances, rather than turnover in membership, were driving these

patterns.
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Table 2.1. Ten most abundant OTUs in fire-affected Centralia soils.

OTUs (defined at 97% sequence identity) were assigned to the most resolved taxonomic level

possible; there were no taxonomic assignments that could be made to these prevalent OTUs

below the family level (RDP Classifier confidence > 0.80).

OTUID Cumulative | % occurrence Taxonomic assignment
% abundance (out of 9
(out of total warm or
No. sequences | venting fire-
in fire- affected soils)
affected
samples)

111933 5.5% 100% Archaea; Crenarchaeota; MBGA

OTU dn 1 |25 100% Bacteria; Chloroflexi;
Ktedonobacteria; Thermogemmatisporales;
Thermogemmatisporaceae;

OTU dn 2 |22 100% Bacteria; Chloroflexi;
Ktedonobacteria; Thermogemmatisporales
Thermogemmatisporaceae

242467 2.0 100% Bacteria; Acidobacteria; DA052;Ellin6513

174835 2.0 100% Archaea; Crenarchacota;
Thermoprotei; YNPFFA; SK322

61819 1.7 100% Bacteria; Acidobacteria; TM1

OTU dn 17| 1.5 78% Bacteria; Proteobacteria;
Deltaproteobacteria

215700 1.4 100% Bacteria; Acidobacteria;
Acidobacteriia;Acidobacteriales;
Koribacteraceae

OTU dn 8 | 1.3 100% Bacteria

OTU dn 3 | 1.2 100% Bacteria
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observed in (A) fire-affected or (B) recovered soils (columns) in Centralia. Color
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Figure 2.5. (cont’d)

gradients indicate taxa relative abundances, with warm colors indicating prevalent taxa and cool
colors indicating rare taxa within that soil. Note differences in color scale gradient between (A)
and (B). Column labels are sample IDs, and OTU IDs are provided as row labels. OTU IDs that
begin “OTU_dn” indicate that the taxon was clustered de novo in the open-reference OTU
picking workflow; IDs that are numeric indicate that the taxon was assigned with high identity to
a reference in the greengenes database. For reference-based OTUs, the numeric identifier
corresponds to its representative sequence in the greengenes database. Top dendrograms cluster
soils that have similar community structure, and side dendrograms cluster OTUs that have

similar occurrence patterns.
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This dominance analysis helps to explain the lower fit of the neutral model, and the
relatively higher influence of niche processes with beta-null modeling, to fire-affected
communities. Outliers to the neutral model that were below detection (taxa that were present in
fewer sites than predicted given their relative abundance in the metacommunity) included these
many lineages that were prevalent in few fire-affected soils. Taxa that fall below their neutral
model prediction have been proposed to be “selected against” or particularly dispersal limited
(41). However, in the Centralia extreme environment, we suggest these are taxa that were most

successful locally given the thermal disturbance.

Community assembly processes given a press disturbance

Centralia soil communities were sensitive to the coal mine fire, and changed substantially
from reference conditions. Selection processes, specifically abiotic soil conditions, offered high
explanatory value for Centralia soil community dynamics. These communities first were
constrained by environmental filters imposed by the press disturbance, such as thermal
temperatures in fire-affected soils and low pH in recovered soils. The fire acts as a strong
environmental filter, resulting in decreased diversity and a very different phylogenetic
representation among the surviving lineages in fire-affected soils. These environmental filters,
such as changes in pH, likely alter the functions of the community as well as its composition.
However, even after removing the influence of temperature on fire-affected communities, the
communities fell into three distinct subsets that could not be explained by the physico-chemical
characteristics measured. Furthermore, neutral modeling, beta-null modeling and lack of spatial
autocorrelation suggests that these particular assessments for drift and dispersal processes offer

minimal explanation for fire-affected sites. Given the low explanatory value of unweighted
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resemblances in describing patterns of comparative diversity (Table B.3), and the observation
that many of the prevalent taxa detected in some fire-affected soils were rare in other fire-
affected soils (Figure 2.5A), we can also attribute these patterns to changes in the relative
abundances of taxa within a locality, rather than to changes in taxa turnover (differing
memberships). Thus, given that neither assessed selection, dispersal, nor drift processes, nor their
combination can provide a complete explanation for the divergence of fire-affected communities,
the questions remain: why are fire-affected soils so divergent from each other, and how do they

eventually manage to recover to the same post-disturbance community structure?

One hypothesis is that the remaining variability in community structure of fire-affected
sites may be attributed to priority effects initiated from different local transitions between the
dormant seed bank and the active community. The proportion of dormant cells in soils is
estimated to be as high as 80% (45), and the importance of dormancy for microbial community
assembly processes has been discussed at length (11). Specific to the Centralia coal mine fire
disturbance, thermophiles are prime examples of microbial seed bank members that often have

been found in environments that are improbable to permit their growth (46-48).

There are two aspects of seed banks that could help to explain Centralia community
divergences at temperature extremes: membership and dynamics. If each soil harbored a
different seed bank membership, different thermophilic taxa could become active and prevalent
in each fire-affected soil, and would manifest as drift influences. This scenario is not well-
supported by our data because we detect the dominant members of each fire-affected soil in the
other fire-affected soils, albeit in lower abundances. Alternatively, awakenings from the
microbial seed bank (49) could result in priority effects at temperature extremes, in which the

first fit microorganisms to wake after the fire’s local onset have important influence over the
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community’s ultimate trajectory (50). In our chronosequence study, the outcome of priority
effects would appear as divergent community structures at high temperatures that are explained
by niche processes. In addition, unknown nuances in local abiotic conditions at fire onset could
also set communities onto parallel trajectories and result in multiple equilibria during the press,
which would also be explained by niche processes. Our data indirectly support either of these last
two scenarios, as the three separate clusters of fire-affected communities suggest multiple
equilibria (Figure C.6B). It could be that the most similar fire-affected communities began either
from the same (or functionally equivalent) waking pioneer taxon, or from the same abiotic
conditions (that are similar beyond reaching thermal temperatures), or from some combination of

both, which initiated distinct trajectories towards each equilibrium.

Diversification is a fourth community assembly process discussed by Vellend, 2010 and
Nemergut et al., 2013. At ecological time scales, diversification was suggested by Vellend et al.,
2014 to have relatively lower influence than the other community assembly processes. We do not
directly address diversification in this study, focusing instead on ecological processes. Aside
from a consistent observation of Acidobacteria and Chloroflexi among the dominant taxa in fire-
affected soils, there is no evidence that different but closely related lineages are most prevalent
across all fire-affected soils, which may have hinted at distinct but parallel trajectories of
diversification within a locality. However, we cannot reject the hypothesis that diversification

processes also contribute to divergences in community structure at temperature extremes.
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Conceptual model

Extending the conceptual models of (16) and (12), we present a hypothesis of the
assembly processes shaping communities before, during, and after an extreme press disturbance.
Our model is based on our chronosequence trajectory for beta-null data presented in Figure
2.4B, and includes a phase encompassing the press disturbance, which extends beyond the
representation of a pulse disturbance as a single time point as typical in previous conceptual
models. Our model also incorporates a hypothesis of multiple transient equilibria within the press
disturbance phase. We apply the advice of (15) to not use the direction of the change from

neutral (positive or negative) to infer specific ecological processes.

We hypothesize that weak variable selection drives stability in heterogeneous Centralia
soil communities before the fire (reference sites in Figure 2.4; phase 1 in Figure 2.6). This is
additionally supported by the literature demonstrating generally high heterogeneity and diversity
in mature soil microbial communities (51). Next, strong environmental filtering from thermal
temperatures (homogeneous selection, phase 2) decreases community diversity at the onset of the
press disturbance. The lower diversity and prolonged disturbance conditions permit priority
effects initiated by taxa fit in the thermal environment (e.g., thermophiles waking from the
seedbank), which set communities onto distinct deterministic trajectories with multiple equilibria
during the fire (phase 2). Alternatively, the distinct trajectories and multiple equilibria could
have been initiated by unmeasured nuances in abiotic conditions at thermal onset. Finally, weak
environmental filtering from increased soil acidity relaxes communities back towards neutral in

post-fire conditions (homogeneous selection, phase 3).
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Figure 2.6. Conceptual model of Centralia community assembly.

Hypothesized conceptual model of Centralia community assembly following press disturbance.
Phase 1 represents the stable soil community pre-fire, and is characterized by weak variable
selection from typical soil heterogeneity and high community diversity. Because the disturbance
is a press, phase 2 occurs concurrent with the fire, when strong environmental filters
(homogenizing selection) imposed by the extreme conditions drive a sharp increase in niche
processes away from neutral conditions at the onset of the fire. Within phase 2, multiple
equilibria result from priority effects of pioneer taxa that are fit to survive in the extreme press
environment. Phase 3 is post-fire, characterized by relatively weak environmental filtering (e.g.,
increased in soil acidity) that relaxes communities towards neutral. Complete neutrality was not

observed in pre-fire or post-fire soils.
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Regardless of the interim dynamics that resulted in community divergence to the stressor,
Centralia soils eventually recovered to a community structure very similar to reference soils, and
these community structures were explained by the ultimate post-fire soil environment. Our
results show that Centralia soil communities, though sensitive to this extreme, complex, and
arguably unnatural stressor, had near-complete return to pre-disturbance conditions, and were
resilient within ten to twenty years after the stressor subsides. We have no reason to suspect that
temperate soils in Centralia are exceptional as compared to other soils. Thus, these results
suggest that soils may have an intrinsic capacity for robustness to varied disturbances, even to
those disturbances considered to be “extreme”, compounded, or incongruent with natural
conditions. Understanding the precise functional underpinnings of soil microbial community
resilience, including the roles of seed banks in determining that resilience, is a next important

step in predicting and, potentially, managing, microbial community responses to disturbances.
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Supplemental Methods

We performed quantitative PCR (qPCR) using bacterial and archaeal 16S rRNA gene
universal primer sets (Table B.1; (1)). The gPCR was conducted in 20 pL reactions, consisting
of 10 uL SYBR qPCR Master mix (Quanta Bioscience, Gaithersburg, MD, USA), 0.4 pM each
of the forward and the reverse primers, and 2 pL of template DNA. Triplicate qPCR reactions for
each DNA sample was performed. The thermal profile was as follows: initial denaturation at
95°C for 10 s, followed by 40 cycles of denaturation at 95°C for 10 s, annealing at 50°C for 15 s,
and extension at 72°C for 40 s. A final dissociation protocol (58°C to 94.5°C, increment 0.5°C

for 10 s) was performed to ensure the absence of nonspecific amplicons. The reactions were

conducted using the Bio-Rad iQ5 real time detection system (Bio-Rad, Hercules, CA, USA).

To create the standard curve for the primer set, extracted E. coli K-12 MG1655 genomic
DNA was used to amplify 16S rRNA genes with the 515F and 806R universal primer set (1).
The reaction mixtures consisted of 1X final concentration GoTaq® Green Master Mix
(Promega), 1 pM each of the forward and the reverse primers, and 1 pL of E. coli template DNA,
in a 50 pL final volume. The thermal profile was as follows: initial denaturation at 95°C for 10 s,
followed by 30 cycles of denaturation at 95°C for 10 s, annealing at 50°C for 15 s, and extension
at 72°C for 40 s. Amplified E.coli PCR products were purified using Promega Wizard SV Gel
and PCR Cleanup System per manufacturer’s instructions. Purified PCR amplicons were cloned
into the TOPO cloning vectors with a TOPO TA cloning kit (Invitrogen, Carlsbad, Calif.)
according to the manufacturer’s protocol. Cloned plasmid DNA was extracted using QIAPrep
Spin Plasmid Miniprep kit (Qiagen) following manufacturer’s protocol, and the concentration
was measured using Qubit® dsDNA BR Assay Kit (Life Technologies, NY, USA). A standard

curve was then constructed using a 10-fold dilution series of cloned plasmid DNA. Based on the
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DNA size for plasmid DNA clone and Avogadro’s number (6.02 x 10* molecules per mole), we
calculated the copy number of cloned plasmid DNA (where 4.52 x 10 fg is equal to one plasmid
copy). qPCR amplifications were performed in triplicate with a range of concentrations from
18.8 to 1.88 x 10® copies of plasmid DNA using Bio-Rad iQ5 real time detection system, and the
observed Ct values were plotted with regression curve using Sigma plot software (Figure C.8).
Copy number of 16S rRNA genes in each DNA sample was determined based on the observed
Cr values calculated by function of regression curve [Y =-3.13x + 41.81, where x is observed Cr
value and Y is converted copy number of 16S rRNA gene. The qPCR efficiency, E, was

calculated based on the slope in the JPCR standard curves as described by (2):

E = 10[_1/slope]
According to this calculation, the qPCR amplification efficiency of 16S rRNA gene using EMP
primers was 2.08.

To calculate 16S rRNA copies per gram of dry soil, the average copies of the three qPCR
technical replicates per DNA extraction was multiplied by the dilution factor (the elution volume
of the DNA extraction divided by the microliters added to the qPCR reaction), and then that
value was divided by the dry mass of the soil used for the DNA extraction to get copies per gram

of dry soil.

Supplemental Results

After quality filtering, our 16S rRNA amplicon dataset produced 5,778,000 high-quality
reads (5,776,626 sequences after omitting singletons OTUs) with a UPARSE-calculated error
rate of 0.469%. In total, we observed 28,220 OTUs (26,846 when omitting singleton OTUs)

defined at 97% sequence identity; approximately one-third of OTUs were defined based on high-
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identity matches to the greengenes v13.8 reference database (8,967 OTUs; 8,794 when omitting
singleton OTUs), while two-thirds were defined de novo after unsuccessful attempts to match the
database (19,253 OTUs; 18,052 when omitting singleton OTUs). We observed 65 phyla in

Centralia soils.

Though it was not unexpected in a soil ecosystem impacted by an unusual disturbance,
the observation of a large proportion on de novo OTUs (with the open-reference OTU picking
workflow) suggests that Centralia soils may harbor substantial undescribed microbial diversity
and functions. Coal mine fire ecosystems have been sources of novel microbial functions,
including reported aerobic nitrogen fixation (3) and novel antibiotics (4,5). Furthermore,
thermophiles are of interest for bioprospecting for natural products such as thermally-stable
enzymes (e.g., for biomass deconstruction from lignocellulosic crops (6) and novel antibiotics
(7). Among the de novo lineages of interest were several archaeal taxa tentatively identified as
Crenarcheaota and Parvarcheaota, and several minor bacterial lineages tentatively assigned as
™6, TM7, OD1, OP11, LDI1, WPS-2, and WS-3. A 16S rRNA clone library and T-RFLP study
of three soil microbial communities that were each proximate to active coal seam vents in China
also reported a proportionally large number of Crenarcheaota among detected archaeal clones

(8), suggesting that these may be common inhabitants of soils impacted by long-term fires.
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Table B.1. Primers used in this study.

Pri target Product
rimer sequence (5' - 3") Target arge size Tm Reference
name
(bp)
515F  GTGCCAGCMGCCGCGGTAA S15- 69.5
16S 534 291 Caporaso et al.,
806R GGACTACHVGGGTWTCTAAT ~“+ 787 45, [SMEJ. 2012
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Table B.2. Mean and standard deviation of phylogenetic diversity and richness across
technical sequencing replicates.

Three replicate DNA extractions, amplifications and sequencing reactions were performed per soil,
and, after calculating the technical variability, these sequences were pooled into one aggregate set
of sequences to achieve deep coverage of the community within each soil.

SampleID PD mean PD sd Richness mean Richness sd

C01 | 393.96 16.22  4073.67 55.77
C02 | 392.48 9.42 3805.00 48.50
C03 | 403.12 15.25 4498.67 39.72
C04 | 374.95 6.51 4420.33 89.51
C05 | 405.05 14.17  4389.33 109.25
C06 | 332.89 13.26 3718.67 117.33
co7 | 371.50 7.80 4253.00 67.01
C08 | 525.93 5.37 6011.67 191.04
c09 | 312.71 32.40  2328.33 352.23
C10 | 267.32 27.06 2128.00 225.08
Cl1 | 343.84 12.26  3886.67 81.56
C12 | 24992 29.65 2106.67 280.73
C13]316.18 58.27  2471.00 816.28
Cl14 | 307.29 16.47 2688.67 232.20
C15 | 330.40 38.06 3011.67 435.15
C16 | 356.85 12.24  3546.33 83.93
C17 | 506.13 19.77  5724.00 179.43
C18 | 392.64 13.98 4210.67 105.61
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Table B.3.

(A) Percent variation explained for PCoA axes 1 and 2 for weighted and unweighted UniFrac,
Sorensen-dice, and Bray-Curtis distances/dissimilarities. Nonnormalized Weighted UniFrac was
chosen because it was most informative in explaining the variance along the first two axes. (B)
Pairwise resemblance correlations calculated with Mantel and PROTEST. All p < 0.001 for all
tests.

A.
PCoAl PCoA2
Weighted UniFrac 77.1 12.7
Normalized Weighted Unifrac 74.6 10.9
Unweighted UniFrac 18.3 13.6
Sorensen-dice 20.1 15.2
Bray-Curtis 23.9 13.7
B.
Distl Dist2 Mantel R
weighted UniFrac unweighted UniFrac 0.63
weighted UniFrac normalized weighted UniFrac 0.96
weighted UniFrac BrayCurtis 0.72
weighted UniFrac Sorenson 0.68
unweighted UniFrac normalized weighted UniFrac 0.61
unweighted UniFrac BrayCurtis 0.81
unweighted UniFrac Sorensen 0.94
normalized weighted UniFrac BrayCurtis 0.70
normalized weighted UniFrac Sorensen 0.69
BrayCurtis Sorensen 0.85
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Table B.4. Explanatory value of soil contextual data to changes in Centralia soil community
structure along PCoA axes for all soils.

Factors significant at p < 0.10 are in bold.

PCoAl PCoA2 R2 P
value
% explanation 77.1 12.7
Soil Temperature 0.968 -0.252 0.787 0.002 **
NOsN (ppm) 0.226 -0.974 0.290 0.067 .
pH 0.185 0.983 0.649 0.008 =**
K (ppm) -0.813 0.582  0.006 0.946
Mg (ppm) -0.148 0989 0.123 0.374
Organic matter 0.812 -0.583 0.002 0.984
NH4N (ppm) 0.194 -0.981 0.287 0.088
SulfateSulfur (ppm) 0.121 -0.993 0.116 0.372
Ca (ppm) 0.182 0.983 0.529 0.022 *
Fe (ppm) 0.253 -0.967 0.271 0.094
Fire history -0.605 0.797 0.253 0.169
As (ppm) -0.014 -1.000 0.124 0.404
P (ppm) 0.435 -0.900 0.093 0.462
Soil Moisture (%) 0.263 -0.965 0.405 0.035 *
Significant codes: “***> 0.001; “**> 0.01; “** 0.05; . 0.1; “* 1
Number of permutations: 999
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Table B.S. Explanatory value of soil contextual data to changes in Centralia soil community
structure along PCoA axes for fire-affected soils.

Factors significant at p < 0.10 are in bold.

PCoAl PCoA2 R2 P
value
% explanation 70.9 22.0
SoilTemperature_tol0cm 0.765 -0.644 0.578 0.088
NO3N_ppm -0.002 -1.000 0.328 0.236
pH 0.490 0.872 0.823 0.002 **
K ppm 0.282 -0.959 0.232 0.429
Mg ppm 0.767 0.641 0.604 0.058
OrganicMatter 500 0.407 -0913 0.218 0.498
NH4N_ppm -0.021 -1.000 0.342 0.155
SulfateSulfur_ppm -0.216 -0.976 0.118 0.759
Ca_ppm 0.613 0.790 0.694 0.015 *
Fe ppm 0.044 -0.999 0.355 0.204
As ppm -0.492  -0.871 0.388 0.228
P _ppm 0.142 -0.990 0.238 0.453
SoilMoisture Per -0.023  -1.000 0.460 0.143
Fire history 0.742 -0.670 0.136 0.637
Significant codes: ‘**** 0.001; “*** 0.01; “** 0.05; *.> 0.1; ** 1
Number of permutations: 999
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Table B.6. Explanatory value of soil contextual data to changes in Centralia soil community
structure along the contrained PCoA axes for fire-affeted soils, after removing the influence
of temperature.

Factors significant at p < 0.10 are in bold.

CAP_Al1 CAP A2 R2 P
- - value
% explanation 64.2 25.9
SoilTemperature tol0cm 1.000 0.000 0.000 1.000
NO3N_ppm -0.973 -0.233  0.354 0.285
pH 0.771 0.637 0.729 0.014 *
K ppm -0.416 -0.909  0.093 0.730
Mg ppm 0.641 0.767 0.370 0.247
OrganicMatter 500 0.070 -0.997  0.128 0.613
NH4N _ppm -0.962 -0.273  0.367 0.240
SulfateSulfur ppm -0.988 0.154  0.234 0.446
Ca_ppm 0.652 0.759  0.551 0.092
Fe ppm -0.862 -0.508  0.396 0.355
As ppm -0.948 -0.317  0.378 0.216
P _ppm -0.132 -0.991  0.287 0.350
SoilMoisture Per -0.813 -0.583  0.419 0.203
Fire history 0.636 -0.771  0.276 0.375
Significant codes: ‘**** 0.001; “*** 0.01; “** 0.05; <> 0.1; ** 1
Number of permutations: 999
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Model
parameter

m
m.ci

m.mle
maxLL
binoLLLL
poisLL

Rsqr
Rsqr.bino
Rsqr.pois
RMSE
RMSE.bino
RMSE.pois
AIC

BIC
AIC.bino
BIC.bino
AIC.pois
BIC.pois

N

Samples
Richness
Detect

% AbovePred
% BelowPred

all

0.04

0.00

0.04
-5838.12
475.69
475.67
0.45

-1.19
-1.19
0.20

0.39

0.39
-11672.24
-11655.75
955.38
971.88
955.35
971.84
321000.00
18.00
28220.00
0.00

0.14

0.10

Fire-
affected
0.08

0.00
0.08
1187.68
1162.47
1162.46
0.12
-0.86
-0.86
0.26
0.38
0.38
2379.36
2394.86
2328.94
2344.43
2328.92
2344.42
321000.00
9.00
17097.00
0.00
0.12
0.07

Table B.7. Parameters and fits of neutral models.

Recovered

0.10
0.00
0.10
-2735.42
-143.93
-143.94
0.53
-0.47
-0.47
0.21
0.37
0.37
-5466.85
-5451.16
-283.86
-268.17
-283.88
-268.19
321000.00
7.00
18866.00
0.00

0.13
0.12
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Table B.8. Welch’s t-tests comparing the mean relative abundances of phyla across fire-
affected and recovered soils.

Bold values are significant at p < 0.05.

Phylum T-statistic DF p-
value

Crenarchaeota 2.80 8.36 0.02
Euryarchaeota -0.47 11.86 0.65
[Parvarchaeota] -3.31 11.34 0.01
Unidentified Bacteria 2.33 8.22  0.05
AD3 -1.58 728 0.16
Acidobacteria -1.74 13.64 0.10
Actinobacteria -0.22 13.12 0.83
Armatimonadetes -0.58 13.21 0.57
Bacteroidetes -4.00 9.73  0.00
Chlamydiae -1.68 10.73 0.12
Chlorobi -0.43 10.96 0.67
Chloroflexi 2.82 9.67 0.02
Cyanobacteria 1.85 8.07 0.10
Elusimicrobia -3.45 8.01 0.01
FCPU426 -0.79 11.28 0.45
Firmicutes 0.60 10.97 0.56
Gemmatimonadetes  -2.24 12.33 0.04
Nitrospirae 0.04 12.47 0.97
OD1 -1.28 10.05 0.23
OP11 -1.82 7.56  0.11
Planctomycetes -3.33 11.61 0.01
Proteobacteria -2.42 12.89 0.03
SBR1093 2.02 8.00 0.08
Spirochaetes -2.43 6.68 0.05
TM6 -2.48 7.47  0.04
Tenericutes 0.14 10.06 0.89
Verrucomicrobia -3.78 10.92 0.00
WPS-2 0.41 10.37 0.69
WS3 -2.26 6.59 0.06
Below 0.01 -0.27 8.39 0.79
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Figure C.1. Soil sampling sites at Centralia mine fire.
In total, 18 surface soil samples (5.08 cm x 20 cm PVC core) were collected along two fire fronts
in Centralia, on 15/16 October 2014. Sampling sites encompass a gradient of historical fire

activity (red flags: Fire-affected in 2014 (temperature > 21°C); yellow flags: recovered in

temperature, post-fire; and green flags: reference soils).
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Figure C.2. PCoA showing the variability among technical replicates.
Three replicate DNA extractions, amplifications and sequencing reactions were performed per soil,
and these sequences were subsequently pooled into one aggregate set of sequences to achieve deep
coverage of the community within each soil. Error bars are standard deviation around the mean
weighted UniFrac distance among technical replicates, each subsampled to an even 53,000

sequences per replicate.

69



NO3N_ppm NH4N_ppm pH SulfateSulfur_ppm

[ ] [ ) [ ) [ )
[ ) ° [ ] [ )
50+
4010 ° ° °
e : il ) .
30+
20+
o & [ e J[Br % | Classification
0 25 5 75 1000 25 50 75 100 1254 5 6 7 8 0 20 40 60 e | FireAffected
K_ppm Ca_ppm Mg_ppm OrganicMatter_500 a
= o . o . Recovered
[ ] [ ] [ ]
5 50+ ¢ B Reference
[0}
940-
P ° hi ¢ ¢ Temperature
— o o [ 2 ® o [ ] [ ]
3 30_0 [ ] ) [ ]
o 50
(]
g 207 40
K T YUY ol [# & A AMA, - Alltgaa A A
40 60 80 1000 5001000150020002500 50 100 150 200 250 10 20 30 40 50 30
Fe_ppm As_ppm P_ppm SoilMoisture_% 20
[ ] [ ] [ ] [ ] | ]
[ ) [ ] [ ) [ )
50+
4097 o ° ° °
() [ ) ° ) e [ ] [ J .. (X ] °
30+
204
o s A Ay M aa 2 Alfaa -5 Al (ags an 4
0 100 200 300 400500 2 3 4 5 6 7 0O 50 100 150 20025010 20 30 40 50
Value

Figure C.3. Soil physical and chemical data plotted against temperature.
Color gradient shows the soil temperature, and symbols show soil fire classification in October

2014 as fire-affected, recovered, or reference.
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Figure C.4. Community size measurements.

Quantification of (A) 16S rRNA copies per gram of dry soil and (B) cell counts per gram of dry
soil in fire-affected, recovered, and reference soils. 16S rRNA copies were assessed using
quantitative PCR, and cell counts were assessed using cell separation from soil, staining and
microscope imaging. There were no statistical differences in values across fire classification for

either measurement (all pairwise p > 0.09 with a student’s t-test).
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Figure C.5. Rarefaction curves.

Centralia 16S rRNA amplicon sequencing effort assessed by subsampling/rarefaction of (A)

richness and (B) Faith’s phylogenetic diversity with increasing total number of sequences.
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Figure C.6. Divergence in fire-affected soils is not well explained by temperature.

(A) Principal coordinate analysis (PCoA) based on weighted UniFrac distances of phylogenetic
bacterial and archaeal community structure in fire-affected soils. The strength of statistically
significant (p < 0.10) explanatory variables are shown with blue arrows. (B) Constrained analysis
(CAP) based on weighted UniFrac distances, where the explanatory value of temperature is

removed from the analysis to understand the influence of the remaining explanatory variables.

73



(A) All (B) Recovered

= = 2 > @ T ar— 5
e - q9 & -
) | E’ S o | e e——
8 o : g © - 1 E—
[T o (' ©
g g © o N ¥
5] 7 5 S | oy ——
- N p—
§ S § o o gy
(e} O ©  |ow & ——e
1 1T T T 1T T ST 1T T T 1
-16 -12 -8 -4 -14 -10 -6
Log Abundance Log Abundance
(C) Fire_Affected
> S I er— 5
& Y/ EE—0
> T - —
L‘li_’ © - 1 ¥ o=
o © @ 1 1 E——
§ o= | EE—
= JEN | B
3
% g | cow 7 ——
o Oar 4 E—
ST T r 11
-14 -10 -6
Log Abundance

Figure C.7. Neutral models of community assembly.

(A) the total community (“All”, n= 18), (B) recovered soils (“Recovered” n=7), and (C) fire-
affected soils (“Fire_Affected”, n=9). Red symbols show OTUs that had higher abundance than
their prediction, and blue symbols show OTUs that had lower abundance than their prediction. The
thick yellow line is the neutral model prediction, and the thin yellow lines show a 95% confidence

interval around the prediction.
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Quantitative PCR standard curve for the amount of E.coli 16S rRNA gene copies (cloned into
plasmids) versus Cr values. The solid line is the regression (R? = 0.988). The error bars are the

standard deviations obtained in three independent experiments.
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CHAPTER 3: Ecological selection for small microbial genomes along a temperate-to-

thermal soil gradient

Work presented in this chapter has been published as
Sorensen JW, Dunivin TK, Tobin TC and Shade A. Ecological selection for small
microbial genomes along a temperate-to-thermal soil gradient. Nature Microbiology 4,
55-61(2019)
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Abstract

Small bacterial and archaeal genomes provide insights into the minimal requirements for
life (1) and are phylogenetically widespread (2). However, the precise environmental pressures
that constrain genome size in free-living microorganisms are unknown. A study including
isolates has shown that thermophiles and other bacteria with high optimum growth temperatures
often have small genomes (3). It is unclear whether this relationship extends generally to
microorganisms in nature (4,5), and in particular to microbes inhabiting complex and highly
variable environments like soils (3,6,7). To understand the genomic traits of thermally-adapted
microorganisms, here we investigated metagenomes from a 45°C gradient of temperate-to-
thermal soils overlying the ongoing Centralia, Pennsylvania (USA) coal seam fire. We found that
hot soils harbored distinct communities with small genomes and small cell sizes relative to
ambient soils. Hot soils notably lacked genes encoding known two-component regulatory
systems and antimicrobial production and resistance. Our results provide field evidence for the
inverse relationship between microbial genome size and temperature in a diverse, free-living

community over a wide range of temperatures that support microbial life.

Main

Centralia, Pennsylvania is the site of a slow-burning, near-surface coal seam fire that
ignited in 1962. The heat from the fire vents through overlying soils, causing surface soil
temperatures to reach as high as > 400°C (8), but more recently in the range of 40 - 75°C (9,10).
Centralia offers an interesting model press disturbance (11) that can be used to directly compare
the traits of microorganisms that can withstand thermal temperatures to traits of microorganisms

from proximal soils with ambient temperature.
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We recently assessed compositional changes in Centralia soil microbial communities
along an ambient-to-thermal temperature gradient overlying the fire (10). We collected surface
soils that were hot from fire (“fire-affected”), previously hot but now recovered to ambient
temperatures (“recovered”) and never impacted by the fire (“reference”). Fire-affected soils had
starkly different community structure from ambient soils. These hot soils also had overlapping
16S rRNA gene compositions but differences in which taxa were most abundant. However, after
the fire advanced, soils reasonably recovered towards reference community structure. This
suggested a considerable capacity of soil microbiomes for resilience, even after exposure to a
severe and unanticipated stressor, and prompted us to ask what microbial attributes underlay the
community changes in fire-affected soils.

From twelve metagenomes (six fire-affected, five recovered, and one reference; Table
E.1), we calculated average genome sizes inclusive of chromosomes and plasmids. Average
genome sizes were negatively and strongly correlated with temperature (Figure 3.1A, Pearson’s
R =-0.910, p <0.001, n=12 metagenomes). This relationship was not due to changes in
eukaryotes or plasmids along the gradient (Table E.2). We used three additional methods to
assess changes in genome size with soil temperature and found them all to be in agreement
(Figure F.1). Though unmeasured variables might provide additional information, only
temperature was explanatory out of thirteen measured soil variables (Table E.3). To the best of
our knowledge, this is the first report of decreases in average genome size across an in situ

temperature gradient that spans physiological requirements from mesophiles to thermophiles.
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Figure 3.1. Changes in average genome size and cell sizes with temperature.

Changes in average genome and cell sizes across the soil temperature gradient in Centralia. (A)
Average genome size in each metagenome was calculated using MicrobeCensus and plotted
against site temperature (Pearson’s correlation p = 4.095x107°). (B) Average cell length was
measured from 44-910 cells from 3-9 replicate fields for each soil and plotted against soil

temperature (Pearson’s correlation p = 0.022). (C) Average genome size had a direct
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Figure 3.1. (cont’d)
relationship with average cell size (Pearson’s correlation p = 0.025). All Pearson’s correlations

were two-sided and had n=12 soils.
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We next compared average genome sizes estimated from Centralia metagenomes to those
from 22 public soil metagenomes (Figure 3.2A, Table E.4). Generally, hot Centralia soils had
small genomes relative to other soils, while ambient Centralia soils were closer to the average
size observed among this set. The average genome sizes from ambient Centralia soils were in
agreement with sizes reported from other soils and calculated using comparable methods
(7,12,13).

We compared average genome sizes in Centralia to the sizes of a collection of soil isolate
genomes (RefSoil , Figure 3.2B). Genome sizes from RefSoil were not different across several
soil types (Figure 3.2C), suggesting a minimal influence of soil type on genome size. While the
average genome size in hot Centralia soils is not as small as the soil oligotroph Candidatus
Udaeobacter (2.81 Mbp (6)), it is significantly smaller than directly-comparable ambient
Centralia soils and small relative to other soils (Figure 3.2A). Together, these results support
comparably small genomes in Centralia soils and more generally provide a range of expected soil
genome sizes. Moreover, the average genome sizes in Centralia ambient soils are not
remarkably large. This suggests that the inverse relationship between genome size and soil

temperature in Centralia soils is an ecologically meaningful outcome of abiotic filtering.
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Figure 3.2. Comparison of Centralia genome sizes to other soils.

Comparison of Centralia genome sizes to other soils. (A) Comparison to publicly available
metagenomes of similar coverage and quality from the database MG-RAST. Average genome
size in soil metagenomes, estimated using MicrobeCensus. Samples are ordered by average
genome size and colored by sample location. (B) Distribution of genome size from cultivable
soil microorganisms (RefSoil) with and without plasmids. The mean genome size of Centralia
active and recovered metagenomes are plotted over the distribution. (C) The distribution of
genome size (including plasmids) are not distinct across different soil orders. Previously
published estimates of the abundance of RefSoil organisms in the soil Earth Microbiome Project
(53) dataset were used to estimate the distribution of genome size of soil microbiomes in
Alfisols, Vertisols, and Mollisols. Midlines of each boxplot corresponds to the median values.
The top and bottom of each boxplots represent the 75" and 25" percentiles respectively. The

upper and lower whiskers extend to the furthest values that are not outliers.
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It was hypothesized by Sabath and colleagues (2013) that small cells may be selected to
minimize cellular maintenance costs at high temperatures and that small cells indirectly select for
small genomes (3). We re-analyzed microscope images from soil cell counts in Centralia (10) to
extract size information. Average cell sizes were also negatively correlated with temperature
(Figure 3.1B; Pearson’s R =-0.65, p =0.021, n = 12 soils, Table E.5). Accordingly, cell size
correlated with genome size (Figure 3.1C; Pearson’s R = 0.64, p = 0.025, n= 12 soils). These
results agree with reported in situ relationships between cell size and temperature observed in
aquatic systems (4,5). Our results extend the cell size-temperature trend to soils and also to a
45°C temperature range.

Cell and genome sizes can be governed not only by environmental conditions but also by
taxonomy (e.g., 3,14). As we previously reported (10) and as confirmed by this work using
phylogenetic inference of genome size (Figure F.1B), there were stark changes in community
structure between fire-affected and ambient soils (Figure F.2). This provides evidence that there
was environmental filtering for taxa with small genomes in hot Centralia soils caused by
compositional turnover. Using 104 high-quality, de novo metagenome-assembled genomes
(MAGs; Figure F.1C, Table E.6), which represent some of the most abundant taxa, we asked if
small MAGs typical of hot Centralia soils were relatives of thermophiles or lineages that have
characteristically small genomes (Figure 3.3, Figure F.2B). Some of the MAGs assembled
from hot soils were related to known thermophile lineages, such as Crenarcheota,
Thaumarchaeota and Chloroflexi; however, other “hot” MAGs cluster with lineages not
described as thermotolerant (Figure 3.3A). Taxonomy could not be assigned to 51 (out of 104)
MAGs beyond the phylum level, and two Bacteria were unable to be assigned beyond the

domain level, suggesting previously undescribed taxa (Figure 3.3B, Table E.6). For some phyla,

88



Centralia MAGs trended small relative to the median genome sizes of isolate references (e.g.,
Acidobacteria and Actinobacteria; Figure 3.3B), although there were exceptions (e.g,
Chloroflexi). Other lineages did not have a sufficient number of reference genomes to make

robust comparisons and point to phylogenetic gaps in soil reference genomes.
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Figure 3.3. Distribution and diversity of Centralia MAGs in comparison to IMG and
RefSoil database.

Temperature distributions and diversity of Centralia MAGs compared to reference soil genomes
from IMG and the RefSoil database. (A) Microbial reference phylogeny based on single-copy
(aka “marker”) genes (45) that was expanded to include Centralia MAGs. For clarity, large
clades that did not contain MAGs are collapsed. The inner color ring shows phylum-level
taxonomy, matched to phyla in panel B. The outer color ring shows the temperature reported for
IMG reference lineages (muted) and the distribution and measured soil temperatures for
Centralia MAGs (bright, black flags). (B) Genome sizes of RefSoil isolates compared to 104 of
the highest-quality Centralia MAGs from fire-affected and ambient soils (taxonomy assigned by

MiGA (44)). Sample sizes indicated in the panel headers are the total number of RefSoil
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Figure 3.3. (cont’d)

genomes or Centralia MAGs detected within each lineage. Note differences in y-axis ranges.
Because the many of the highest-quality MAGs assembled from hot soils, Figure

3.3B does not provide robust MAG comparisons across Centralia fire impact categories.
Midlines of each boxplot corresponds to the median values. The top and bottom of each boxplots
represent the 75 and 25™ percentiles respectively. The upper and lower whiskers extend to the
furthest values that are not outliers. Sample numbers for each box plot are indicated in the panel

headers and refer to either genomes in the RefSoil database or MAGs detected in this study.
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We used metagenome annotations from the KEGG module (KM) database to determine
changes in functional genes with increasing temperature. KMs are groups of KEGG Orthologs
(KOs) that represent complexes, functional sets, metabolic pathways, or signatures. Eighty-one
percent of KOs detected in Centralia metagenomes were detected in all 12 soils, and many
patterns with temperature were attributable to changes in normalized KO abundance rather than
in KO detection. In total, 284 (out of 541 detected; 52.50%) were correlated with temperature
(Figure 3.4, Table E.8, Supplementary Results).

Twenty-seven KMs were positively correlated with temperature (Pearson’s R > 0.656,
false discovery rate < 0.05; Figure 3.4A, Table E.8). Anaerobic processes, including
dissimilatory sulfate reduction (M00596), dissimilatory nitrate reduction (M00530) and
denitrification (M00529), were enriched in hot soils (Figure 3.4A, cluster iii), aligning with
known and expected environmental conditions in Centralia. Fire-affected soils from actively
steaming vents had higher moisture than ambient soils (Pearson’s R = 0.714, p <0.01,n =12
soils), which likely causes inundated and anaerobic microhabitats. Prior work in Centralia
indicated an importance of these metabolisms: sulfur, sulfate, nitrate and ammonium were
commonly elevated at vents (8,9). These results also agree with observations of thermophile
metabolisms in other terrestrial and geothermal environments (15-18). These anaerobic KMs had
similar dynamics to several archaeal proteins (Figure 3.4A, cluster iii; Archaeal ribosome
MO00179, polymerase M00184, and exosome M00390). There was an increase in Crenarchaeota
in fire-affected soils (10), an archaeal phylum that includes sulfate reducers (19) and has nine
soil reference genomes that average 2.26 Mbp (Figure 3.3B). Together, these data suggest that
pathways enriched in small genomes from hot soils encode functions attuned to the Centralia

habitat.
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(Figure 3.4. cont’d)

Modules (rows) are centered and standardized across Centralia metagenomes (columns), with
warm colors showing relative enrichment and cool colors showing relative depletion. Modules
with significant relationships with temperature are shown. Sites are arranged by increasing
temperature from left to right. (A) 27 KEGG modules were positively correlated with
temperature (Pearson’s R range = 0.646 to 0.933, n = 12 soils). (B) 257 KEGG modules were
negatively correlated with temperature (Pearson’s R range = -0.642 to -0.925, n = 12 soils). A
third of the KEGG modules negatively correlated with temperature were either two-component
regulatory systems (blue dendrogram tips), antimicrobial resistance or production (gray tips), or
both (black tips). Note differences in color gradient ranges across panels A and B. Row
dendrograms show the hierarchical clustering of KEGG modules by response patterns to the
temperature gradient. Numbers (e.g. 1, ii) denote clusters of KEGG modules with similar
response patterns to the temperature gradient. Full information on correlation statistics for each

KEGG module is listed in Table E.8.
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Temperature was negatively correlated with 257 KMs (47.5%, Pearson’s R <-0.6, false
discovery rate < 0.05; Figure 3.4B, Table E.8). In general, depleted KMs were detected across
ambient soils. Of note were antimicrobial resistance and production and two component
regulatory systems, which comprised 32.7% of KMs negatively correlated with temperature (84
out of 257, Figure 3.4B). This trend was striking, but some KMs belonging to these categories
had no relationships with temperature and these KM categories were always detected in fire-
affected soils.

Thirty-nine modules for antimicrobial production and resistance were negatively
correlated with temperature, which agrees with our prior analysis of antibiotic resistance genes in
Centralia (20). Small genomes of host-associated symbionts often lack antimicrobial genes (21).
However, the free-living marine Pelagibacter clade, a model for genome streamlining attributed
to oligotrophic conditions, has a multidrug transporter conserved across sequenced genomes
(22). The challenges in developing selectable antibiotic resistance markers for thermophiles
(23,24) suggest that thermophiles might have fewer genes encoding resistance to described
antimicrobials. Like most databases, KEGG is biased towards genomes and genes from fast-
growing mesophiles and may miss annotation of under-described thermophile antimicrobial
genes. However, thermal conditions might present a strong environmental filter that reduces
competition and the need for antimicrobial production and resistance. We previously reported
decreased richness and phylogenetic diversity of fire-affected Centralia soils (10), suggesting
that there is a smaller pool of potential competitors inhabiting the hot soils.

Forty-nine detected two-component regulatory system modules were also negatively
correlated with temperature (Pearson’s R <-0.6). Two-component systems allow bacteria to

respond to multiple stimuli with little genetic material (25,26). Smaller genomes, including those
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that are reduced or streamlined, can have fewer regulatory components (5,7,27) and less
regulation (22,28-31). Our results suggest that thermophiles may have relatively low regulatory
needs. It has been proposed that thermophiles with small genomes may be more likely to utilize
global regulatory systems that mediate transcriptional responses to co-occurring environmental
stimuli (29). Environmental stability is also predicted to influence the relative benefit an
organism gains from investing in sensing its environment (32). For example, obligate
endosymbionts are thought to have drifted towards having small genomes in part because
conditions are stable and sensing requirements are minimal (7). In Centralia, seasonal
temperature fluctuations in fire-affected and ambient soils are equivalent (Figure F.3), providing
evidence that the soils experience similar environmental stability in temperature, albeit at
different ranges. This suggests that wild small genomes are not necessarily conditional on stable
environments (7) and invites investigation of whether two-component regulatory systems are
consistently less prevalent among thermophiles.

Our cultivation-independent field study supports cultivation-dependent studies that
suggest higher temperatures support growth of bacteria and archaea with small genomes (3).
Surprisingly, it also suggests that microbial populations inhabiting complex environments, like
soils, may generally reflect similar overarching traits in genome size as those observed in
laboratory studies.

These results add evidence that supports selection for both smaller genomes and cells at
higher temperatures, but also offer a key point of distinction. Our study considers the ecological
process of selection (33) via abiotic environmental filtering, not the evolutionary process of
natural selection towards streamlining. Though taxa enriched in hot soils characteristically had

smaller genomes and cells, there is no evidence for contemporary genome streamlining in

96



Centralia. Rather, we suspect that these thermotolerant cells were resuscitated from the vast
dormant pool in soil. This is supported by three lines of evidence. First, there was turnover in
community membership across hot and ambient Centralia soils (10), providing evidence against
contemporary streamlining within local lineages. Second, many of the lineages that we detected
in high abundance in certain hot sites were also detected in low abundance in other sites,
including ambient sites (Figure 3.3A and (10)), suggesting a role for the rare biosphere or
dormant pool as a diversity reservoir for unanticipated thermal conditions. Finally, many other
studies have described thermophile persistence and resuscitation from non-thermal
environments, suggesting that thermophilic lineages are widespread but typically inactive
(16,34,35). Therefore, we posit that Centralia small genomes are characteristic of previously
dormant thermophiles in the soil and not the outcome of genome streamlining.

Centralia afforded a unique opportunity to directly compare the metagenomes of
proximal soils along an extreme temperature range. It is unusual to observe such a wide
temperature range in soils, especially one that is inclusive of thermal temperatures, historically
and geologically comparable, and with shared exposure to the same regional pool of dispersed
microbes. When more metagenomes are available, comparisons with other thermal soils will
provide insights into the generality of the trends observed in Centralia.

There are many environmental factors that contribute to microbial genome size, including
oligotrophic conditions (6,36), relative environmental stability (7,32), and symbiotic lifestyle
(28,31), and these factors are expected to interact with taxonomy (3,14). Furthermore, there are
evolutionary explanations as to why small genomes might trend with high temperatures, as
discussed in detail by Sabath and colleagues (3). Here, we provide evidence that many lineages

of soil microorganisms that can thrive at thermal temperatures and have small genomes and cells,
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supporting the hypothesis that small cells constrain genome size (3). Importantly, our results
show that high temperature is one environmental factor that can drive overarching changes in the

genomic and cellular traits of wild microbial communities.
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Materials and Methods
DNA extraction and metagenome sequencing

DNA for metagenome sequencing was manually extracted using a phenol chloroform
extraction (37) and then purified using the MoBio DNEasy PowerSoil Kit (MoBio, Solana
Beach, CA, USA) according the manufacturer’s instructions. To briefly summarize the published
methods we used (5), after the four cycles of freeze thawing, 10 mL of a Phenol-chloroform-
isoamyl alcohol mixture (25:24:1) was added to each sample, mixed and centrifuged at 7,500 g
for 10 minutes. After precipitation, DNA was pelleted via centrifugation at 7,500 g for 15 min.
The pelleted DNA was resuspended in 100 UL of TE buffer (10mM Tris-HCI, ImM EDTAeNa.
The resulting manually extracted DNA was then purified using the MoBio DNEasy PowerSoil
kit per the manufacturer’s instructions, omitting the 10 min vortexing step after adding solution
‘C1.” Total DNA sequencing was performed on all 12 samples by the Department of Energy’s
Joint Genome Institute (Community Science Project) using an Illumina HiSeq 2500. Libraries
were prepared with a targeted insert size of 270 base pairs. Samples had between 19Gbp and

50Gbp of sequence data. Additional methodology details are provided in Supporting Materials.

Quality control, assembly and annotation

Adapters were removed and quality trimmed at values less than 12 using BBDuk
(https://sourceforge.net/projects/bbmap/). BBDuk was also used to remove reads that had more
than one ambiguous base, a final length of less than 40bp after trimming, or an average quality
score less than 8. Reads matching Illumina artifacts, spike-ins, or phiX were also removed and
the resulting reads mapped to human genome HG19 using BBMap, removing all reads that hit

with >93% identity. These quality controlled reads from each metagenome were assembled
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separately using megahit (6) with kmer size ranging from 31-121 with a k-step of 10. Coverage
of resulting contigs was estimated using seal to map all reads onto the contigs.

To use all sequencing data, we worked with assembled and unassembled reads processed
by Integrated Microbial Genomes (IMG) using their standard annotation pipeline (38). After
comparing several annotation methods (Supplementary Discussion), we chose to use the KEGG
Orthology database (39) for analyzing the Centralia data due to its inherent structure and ability
to integrate metabolic pathways. KEGG Ortholog (KO) abundances were relativized to the
median abundance in each site of a set of 36 single copy genes published previously (40) (Table
E.7). One single copy gene (K01519) was an outlier in 7 out of 12 samples as assessed by
Grubb’s test for outliers and removed. We analyzed patterns in KEGG Modules (KMs) (39), a
set of manually defined functional units made up of multiple KOs. KM abundances were
calculated based on the median abundance of their constituent KOs that were present in the
metagenomes. KMs were included in analysis if 50% or more of their constituent KOs were
identified in the dataset. Approximately one third of the open reading frames per sample were
able to be annotated with KEGG (Table E.1). As a caveat to the study, unannotated open reading
frames can result from erroneous reads and mis-assemblies but also could be previously
undescribed and or divergent genes critical for microbial processes. Thus, new annotations could

impact the overarching patterns described here.

Average genome size
Average genome size was calculated from the quality filtered DNA sequences using
MicrobeCensus (“run_microbe census.y —n 2000000), which estimates average genome size by

calculating the percent of sampled reads that match to a set of single copy genes (41). We also
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used three additional methods to calculate average genome size (Figure F.1), and all were in
agreement in detecting a significant, negative relationship between temperature and average
genome size. Finally, eukaryotic sequence and plasmid contributions were consistent and low
across the metagenomes (Table E.2), showing that there was no systematic overestimation of
genome size in ambient soils due to eukaryotic signal or characteristic changes in plasmids with
temperature.

We calculated the odds ratios for each of the 36 single-copy gene KOs, previously used
by He et al. 2015 (40) to estimate average genome sizes. Odds ratios were determined at each
site by comparing their abundance within a site to their average abundance across all 12 sites.
One KO (K01519, Triosephosphate isomerase) was an outlier in seven out of twelve
metagenomes, as determined by grubbs test, and was removed.

We used previously published 16S rRNA gene sequencing data (3) to estimate average
genome size. A mean phylum genome size was calculated for each phylum present in Centralia
metagenomes using all complete or permanent draft genomes deposited in IMG. Outliers in
genome size were identified using the Tukey method and omitted from calculation of the mean
phylum genome size (13). Phyla present in Centralia metagenomes but without representative
genomes in IMG were combined at the Domain level, and a mean Domain genome size was
calculated in the same manner. Each site’s weighted mean genome size site was calculated based
on the relative abundance of the phyla at each site.

Quality filtered metagenome reads were downloaded from JGI GOLD database. Paired-
end reads from all 12 soils were assembled together using MEGAHIT (v1.0.2) (6) with a kmer
range from 27 - 107 and a k-step of 10. Reads were mapped to the resulting assembly using

bbmap (v35.34) with a minimum identity of 76%. Resulting SAM files were converted to sorted
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BAM files using SAMTools (v1.3). Contigs larger than 2,500bp were binned into metagenome-
assembled genomes (MAGs) with MetaBAT (v0.26.3) using the “--veryspecific” flag.
Completeness and contamination were estimated for each MAG using CheckM (v1.0.5). MAGs
with greater than 90% completeness and less than 5% contamination were used to estimate
genome size. The genome size of a MAG was estimated by multiplying the sum of the length of
its constituent contigs by inverse of its completeness (6). The average MAG size at each site was

calculated by taking the mean of size of all MAGs detected in a site.

Average Cell Size

To calculate cell size, we re-analyzed microscope images previously used to count
microbial cells for community size quantifications in the same soils (10). We hand-curated a
debris-free subset from the images and measured 44 - 910 cells from 3 - 9 replicate fields for
each soil. The major and minor axes of cells were measured using a FIJI macro in ImageJ
(Version: 2.0.0-rc-65/1.51s Build: 961c5f1b7f). We found that cell size range and deviations

(Table E.5) were consistent with those previously reported (42).

Construction of metagenome-assembled genomes (MAGs), taxonomic assignments, and
visualization

Assembled contigs from quality filtered reads were binned into MAGs using MetaBAT
(43) (v0.26.3) with the “--veryspecific” flag. Detailed description of assembly and binning
procedures can be found in supplemental. Completeness and contamination were estimated for
each MAG using CheckM (v1.0.5). MAG’s we assigned taxonomy using the Microbial Genome

Atlas (MiGA) NCBI Prokaryote project (44). Highest quality MAGs with greater than 90%
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completeness and less than 5% contamination were used to estimate genome size. The genome
size of a MAG was estimated by multiplying the sum of the length of its constituent contigs by
inverse of its completeness (6). The average MAG size at each site was calculated by taking the
mean of size of all MAGs detected in a site.

The CheckM (45) genome tree was extended to include Centalia high-quality MAGs.
The Interactive Tree of Life (iTOL) (46) was used for visualization
(https://itol.embl.de/tree/352041174435631527858534#). Temperature range and taxonomy for
each genome in the tree was collected from JGI IMG. MAGs were classified as fire-affected or
ambient based on in which group of samples they had a higher coverage, and 95% of MAGs had

at least 10x greater coverage in one soil category as compared to the other.

Comparisons with other soil metagenomes and genomes
All metagenome data sets for comparison were obtained from MG-RAST

((http://metagenomics.anl.gov/). The MG-RAST database was searched with the following

criteria: material = soil, sequence type = shotgun, public = true. The resulting list of metagenome
data sets were ordered by number of base pairs (bp). Metagenomic data sets with the most bp
were included if they were sequenced using Illumina (to standardize sequencing errors), had an
available FASTQ file (for internal quality control), and contained < 30% low quality as
determined by MG-RAST. Within high quality [llumina samples, priority for inclusion was
given to projects with multiple samples. When a project had multiple samples, data sets with the
greatest bp were selected. This search yielded 22 data sets from 12 locations and five countries
(Table E.4). Sequences from MG-RAST data sets were quality checked using FastQC (v0.11.3,

(47) and quality controlled using the FASTX toolkit (fastq quality filter, "-Q33 -q 30 -p 50").
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Average genome size for each dataset was calculated from the quality filtered DNA sequences
using MicrobeCensus with default parameters.

The RefSoil database of soil genomes (48) was used to estimate genome sizes of soil
organisms. Genome and plasmid sizes from all 922 RefSoil organisms were extracted from

GenBank files and read into R for analysis.

Statistical analyses

Statistics for the metagenome datasets were performed in the R environment for
statistical computing (49). The stats package was used for calculating two-sided Pearson’s
correlations (49). The outliers package (50) was used for identifying outlying KOs. The ggplot2
package was used for visualization (51). Heat maps were created with heatmap2 from the gplots

package (52).

Data Availability
Metagenome data are available on IMG under the GOLD Study ID GS0114513. MG-
RAST data are available under Project IDs mgp3731, mgp252, mgp5588, mgp14596, mgp6377,

mgp6368, mgp2592, mgp2076, mgp11628, mgp13948, mgp7176 and mgp15600.

Code availability

All analysis workflows are available on GitHub

(ShadeLab/PAPER_Sorensen NatMicro 2018).
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Supplementary Results
Comparison of metagenome annotation methods on results

We first compared both assembled and unassembled data using the Cluster of
Orthologous Groups (COG) (7), Pfam (8), KEGG Orthology (9-11), and Enzyme IMG (12)
databases to investigate whether any of these databases provided more complete annotation or
resulted in different overarching community patterns. We found that COG, pfam and KO
annotated between 29 and 42% of the genes present at each site, while the Enzyme database
annotated only 17.15% to 20.80%. Bray Curtis distance matrices calculated from the Centralia
gene tables of each of these databases were all correlated (Mantel test all R > 0.738, p <0.001),

but the Enzyme database consistently had the lowest correlation with other databases.

Additional calculations of average genome size in Centralia

For each metagenome, we assessed the abundance of 36 single copy genes (1) that were
annotated to KEGG Orthologs (KO) (2). Twenty-nine single-copy gene KOs had odds ratios
positively correlated with temperature (p < 0.04, Pearson’s R > 0.59, Figure F.1A, Table E.7).
None of the single-copy genes had correlations with metagenome sizes (all p > 0.15), affirming
that this method is robust to differences in metagenome size. There were increases in single copy
gene abundance with temperature, despite that the metagenomes had similar sequencing efforts.
Thus, the odds ratios of single copy genes and estimates of genome size support a reduction in
average genome size with increased soil temperature.

We also calculated an average genome size for each soil based on the 16S rRNA gene

phylum-level composition of the community (3), which allowed us to also assess whether the
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changes in genome size could be attributed to replacement of members along the thermal
gradient (community turnover). In agreement with the above estimates of genome size changes,
this phylogenetic inference analysis revealed a negative correlation between average genome
size and temperature (Figure F.1B, Pearson’s r = -0.860, p <0.001, n = 12 amplicon datasets).
This suggests that the shift in average genome size was, at least in part, due to compositional
changes favoring taxa with smaller genomes.

We also estimated the sizes of metagenome-assembled genomes (MAGs) that were
observed along the temperature gradient. We assembled 104 MAGs from Centralia that had <
5% contamination and > 90% completeness (Table E.6). There was an inverse trend in the
average sizes of these MAGs with temperature (R =-0.63, p = 0.03, n = 12 metagenomes,
Figure F.1C). An analysis limitation is that these MAGs represent a subset of the most
community members that were prevalent such that their genomes could be well-assembled from
metagenomes, and so we do not know how representative these genome sizes are of their
community. We expect that this trend is conservative because we did not weight by MAG
abundance at each site to be cautious about abundance normalization. However, together with
our other independent assessments of genome size, this provides additional support for the

prevalence of small genomes in hot Centralia soils.

Patterns of enriched KEGG Modules in hot soils

For KMs positively correlated with temperature, all were enriched in the hottest soil
(C10; 54.2 °C). Most temperature-correlated KMs in soils C06 and C16 (21.7°C and 24.1°C,
respectively) had relatively low abundances that were comparable to KM levels in sites with

ambient temperatures. Broadly, the response patterns of the positively correlated KMs fell into
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five clusters. Cluster 7 had a relatively linear response with increasing temperature, with no
particular modules of note. Cluster ii also had a linear response to the temperature gradient, but
contained KMs that were especially enriched in the hottest site C10. Cluster ii contained modules
related to archaeal proteasome (M00343) and isoprenoid biosynthesis (M00365). In addition,
cluster i7 included two carbon transport systems: glucose/arabinose transporters (M00203) and
trehalose transporters (M00604). Cluster iii contained 14 modules that were consistently
enriched in the three hottest sites, C14(34.1°C), C15(38.9 °C) and C10(54.2 °C), suggesting a
threshold for these enriched modules with temperatures > 30°C (Figure 3.4A). Site C15
generally had lower representation of these KMs than C14 and C10. Archaeal ribosome
(M00179), archaeal RNA polymerase (M00184) and archaeal exosome (M00390) respectively
were more abundant in C10 (the hottest site, 54.2 °C) than in C14 or C15. The KM for
dissimilatory sulfate reduction (M00596) was also present in cluster iii. This clustering of
dissimilatory sulfate reduction with archaeal proteins points to an enrichment in sulfate reducing
archaea in hot soils, and is also supported by an increase in Crenarchaeota in fire-affected soils
(3), an archaeal phylum including known sulfate reducers (4). In addition to sulfate reduction,
the KMs for dissimilatory nitrate reduction (M00530) and denitrification (M00529) were also
part of cluster iii. (Figure 3.4A). Clusters iv and v both had KMs enriched in C12. Cluster iv
shares enrichment in KMs between C12 and C10 soils and includes three KMs related to
photosynthesis (M00161, M00162, M00163). Cluster v includes KMs generally shared across all

soils > 30 °C, and included primary metabolisms (e.g. histidine biosynthesis).
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Table E.1. Sequence summary information for Centralia metagenomes.

Sequencing | Raw Quality Aligned Assembled | Number Percent Site

Depth Reads Reads Reads Length Contigs Genes Temperature

(Gbases) Annotated | (°C)

with KO

CenO1 |23 1.59E+08 | 1.55E+08 1.18E+08 | 2.44E+09 | 5.05E+06 29.56 14.1
Cen03 |26 1.77E+08 | 1.74E+08 1.21E+08 | 2.85E+09 | 6.33E+06 30.85 14.7
Cen04 |25 1.71E+08 | 1.68E+08 1.08E+08 | 2.50E+09 | 5.98E+06 30.9 133
Cen05 |25 1.70E+08 | 1.67E+08 1.14E+08 | 2.77E+09 | 6.32E+06 30.34 14.0
Cen06 |22 1.51E+08 | 1.49E+08 1.10E+08 | 2.22E+09 | 4.63E+06 30.63 24.1*
Cen07 |21 1.41E+08 | 1.39E+08 9.64E+07 | 2.26E+09 | 4.84E+06 31.32 13.5
Cenl0 |36 2.43E+08 | 2.38E+08 2.22E+08 | 1.17E+09 | 1.89E+06 35.57 54.2*
Cenl2 |24 1.64E+08 | 1.61E+08 1.51E+08 | 1.20E+09 | 1.59E+06 33.04 32.0*
Cenld |24 1.59E+08 | 1.57E+08 1.40E+08 | 1.42E+09 | 2.23E+06 34.21 34.1
Cenl5 |20 1.32E+08 | 1.28E+08 1.09E+08 | 1.14E+09 | 1.84E+06 34.44 38.9*
Cenl6 |51 3.40E+08 | 3.30E+08 2.93E+08 | 4.06E+09 | 6.61E+06 32.43 21.7
Cenl7 |24 1.61E+08 | 1.55E+08 7.87E+07 | 1.90E+09 | 5.17E+06 31.14 12.1
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Table E.2. Two-sided Pearson’s correlations of Eukaryotic-specific ribosomal KEGG

Orthologs and plasmid pfam categories with temperature.

KO/pfam Description Pearsons R p_value
K02868 Large subunit L11 -0.321 0.309
K02997 Small subunit S9 -0.126 0.695
K02870 Large subunit L12 -0.163 0.613
K02865 Large subunit L10 -0.423 0.17
K02901 Large subunit L27 -0.144 0.656
K02932 Large subunit L5 -0.25 0.432
K02981 Small subunit S2 -0.303 0.338
K02953 Small subunit S13 -0.339 0.281
K02949 Small subunit S11 -0.331 0.294
K02891 Large subunit L22 -0.332 0.291
K02900 Large subunit L27 -0.246 0.441
K02920 Large subunit L37 0.303 0.339
K02964 Small subunit S18 -0.303 0.338
K02969 Small subunit S20 -0.206 0.521
K02985 Small subunit S3 -0.337 0.284
K02993 Small subunit S7 -0.186 0.562
K02893 Large subunit L23 0.065 0.841
K02905 Large subunit L29 Not Detected Not Detected
K02923 Large subunit L38 -0.384 0.218
pfam01446 Rep 1 0.104 0.747
pfam01719  Rep 2 Not Detected Not Detected
pfam01051 Rep 3 -0.393 0.207
pfam05732 RepL -0.276 0.385
pfam07042 TrfA protein 0.456 0.136
pfam04796  RepA C 0.75 0.005
pfam02486 Rep trans 0.16 0.62
pfam01402  RHH 1 0.368 0.239
pfam01815 Rop protein Not Detected Not Detected
pfam03428  RP-C -0.518 0.084
pfam10134  RPA -0.032 0.921
pfam06970 RepA N Not Detected Not Detected
pfam06504  RepC 0.065 0.842
pfam03090  Replicase -0.491 0.105
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Table E.3. Two-sided Pearson’s correlations of soil environmental variables with average
genome size.

Pearson’s R | Test Statistic | FDR AdjustedP value
SoilTemperature tolOcm -0.910 -6.920 0.001
OrganicMatter 500 -0.131 -0.418 0.926
NO3N ppm -0.591 -2.317 0.113
NH4N ppm -0.592 -2.325 0.113
pH 0.030 0.096 0.926
SulfateSulfur ppm -0.390 -1.338 0.391
K ppm -0.110 -0.350 0.926
Ca ppm 0.072 0.229 0.926
Mg ppm 0.121 0.385 0.926
Fe ppm -0.607 -2.415 0.113
P ppm -0.447 -1.582 0.314
As ppm -0.039 -0.125 0.926
SoilMoisture Per -0.590 -2.310 0.113
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Table E.4. MG-RAST metadata for soil metagenomes used in this study.

Project Name

ARMO
ARMO

ARMO

Axel Heiberg
Permafrost: Part 4A
Axel Heiberg
Permafrost: Part 4A
CedarCreek minsoil
June2013
CedarCreek minsoil
June2013

Fermi-
syntheticlongreads

Fermi-
syntheticlongreads

GED prairie
unassembled
GED prairie
unassembled
GED prairie
unassembled
GP corn unassembled

Hofmockel Soil
Aggregate COB
KBASE

Sample Location

Rondonia
Rondonia

Rondonia

Central Axel
Heiberg Island
Central Axel
Heiberg Island

Bethel, MN

Bethel, MN

Fermi National
Accelerator
Laboratory
Fermi National
Accelerator
Laboratory

Towa
Towa

Towa

Towa

Boone County, A

Country

Brazil
Brazil

Brazil

Canada
Canada
USA

USA

USA

USA

USA
USA

USA
USA

USA

Sample Shortname

Brazilian forest
Brazilian forest

Brazilian forest

Permafrost Canada
Permafrost Canada
Minnesota grassland

Minnesota grassland

Mlinois switchgrass

[llinois switchgrass

Iowa prairie
Iowa prairie

lowa prairie

Towa corn

Iowa agricultural
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Project ID

mgp3731
mgp3731
mgp3731

mgp252
mgp252
mgpS5588

mgpS5588

mgp14596

mgp14596

mgp6377
mgp6377

mgp6377
mgp6368

mgp2592

Sample Name

mgm4546395.3
mgm4536139.3
mgm4535554.3

mgm4523023.3
mgm4523145.3
mgm4541646.3

mgm4541645.3

mgm4653791.3

mgm4653788.3

mgm4539575.3
mgm4539572.3

mgm4539576.3
mgm4539523.3

mgm4509400.3

Gbp

13.27
9.04
9.69

6.52
5.52
10.65

9.77

7.95

7.14

18.79
17.58

17.43
8.12

24.98



Table E.4. (cont’d)
Hofmockel Soil
Aggregate COB
KBASE

ISA-SMC-2011

ISA-SMC-2011

Mining of new genes
and pathways from
soil of mangrove
forest

Mining of new genes
and pathways from
soil of mangrove
forest

NEON

Permafrost
sediments, North-
East Siberia, Kolyma
lowland

Ungulate Exclosure
2015

Boone County, [A

Auburn, IL
Auburn, IL

Matang Mangrove
Forest

Matang Mangrove
Forest

Disney Wilderness
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mgp2592

mgp2076
mgp2076

mgpl1628

mgpl1628

mgp13948

mgp7176

mgpl15600

mgm4509401.3

mgm4502542.3
mgm4502540.3

mgm4603402.3

mgm4603270.3

mgm4664918.3

mgm4546813.3

mgm4670120.3

7.86

12.54
10.60

24.38

24.54

11.20

19.20

6.41



Table E.S. Cell size measurements from microscope images, quantified with FIJI software.

Soil Average Area | SD Area | Average Length | SD Length | Average Minor | SD Minor | Number Cells
Cen01 0.345 0.245 0.829 0.395 0.502 0.130 327
Cen03 0.450 0.349 0.941 0.409 0.557 0.221 225
Cen04 0.371 0.328 0.826 0.439 0.495 0.218 910
Cen05 0.376 0.306 0.869 0.473 0.507 0.171 434
Cen06 0.355 0.257 0.777 0.315 0.527 0.180 431
Cen07 0.347 0.269 0.793 0.378 0.511 0.163 581
Cenl0 0.323 0.215 0.769 0.299 0.498 0.160 390
Cenl2 0.370 0.280 0.824 0.385 0.517 0.187 217
Cenl4 0.298 0.207 0.710 0.278 0.487 0.164 515
Cenl5 0.290 0.201 0.727 0.341 0.464 0.162 44
Cenl6 0.430 0.383 0.850 0.385 0.578 0.215 841
Cenl7 0.385 0.313 0.878 0.335 0.524 0.156 455
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Table E.6. Completeness, contamination, and taxonomy of Metagenome Assembled

Genomes (MAGS).
MAG Completeness Contamination MiGA.Taxonomy
METABAT VerySpecific.86 100 0 f Acidobacteriaceae
METABAT VerySpecific.338 100 0.99 p_ Proteobacteria
METABAT VerySpecific.126 100 0.68 c__ Spartobacteria
METABAT VerySpecific.189 99.62 4 p_ Proteobacteria
METABAT VerySpecific.119 99.51 0.97 p_ Thaumarchaeota
METABAT VerySpecific.132 99.5 0.28 c__ Alphaproteobacteria
METABAT VerySpecific.561 99.44 2.31 p_ Proteobacteria
METABAT VerySpecific.135 99.15 1.28 ¢ Actinobacteria
METABAT VerySpecific.57 99.12 1.75 f Solibacteraceae
METABAT VerySpecific.244 99.06 0.06 f Beijerinckiaceae
METABAT VerySpecific.384 98.99 1.36 f Intrasporangiaeae
METABAT VerySpecific.343 98.9 2.2 ¢ Gemmatimonadetes
METABAT VerySpecific.180 98.65 2.2 p_ Verrucomicrobia
METABAT VerySpecific.78 98.54 0.97 p_ Thaumarchaeota
METABAT VerySpecific.138 98.41 3.17 p__ Proteobacteria
METABAT VerySpecific.36 98.25 1.1 ¢ Solibacteres
METABAT VerySpecific.134 98.24 2.61 p__ Acidobacteria
METABAT VerySpecific.41 98.21 2.15 f Hyphomicrobiaceae
METABAT VerySpecific.396 98.18 1.82 ¢ Anaerolineae
METABAT VerySpecific.166 98.08 4.27 c¢__ Solibacteres
METABAT VerySpecific.167 98.06 291 f Nitrosophaeraceae
METABAT VerySpecific.71 98.03 0.74 o__ Chitinophagales
METABAT VerySpecific.115 98.02 2.38 p__Chloroflexi
METABAT VerySpecific.209 97.82 1.71 c__ Acidobacteriia
METABAT VerySpecific.334 97.8 1.37 p__ Bacteroidetes
METABAT VerySpecific.176 97.73 0.97 p_ Thaumarchaeota
METABAT _ VerySpecific.65 97.69 0.99 p_ Chloroflexi
METABAT VerySpecific.377 97.69 1.98 p_ Proteobacteria
METABAT VerySpecific.339 97.66 1.37 p__ Bacteroidetes
METABAT VerySpecific.231 97.48 2.52 p_ Proteobacteria
METABAT VerySpecific.52 97.4 4.03 p_ Proteobacteria
METABAT VerySpecific.306 97.3 0.72 ¢ Spartobacteria
METABAT VerySpecific.258 97.29 1.31 o Xanthomonadales
METABAT VerySpecific.412 97.29 3.94 f Isosphaeraceae
METABAT VerySpecific.434 97.23 3.8 o_ Nostocales
METABAT VerySpecific.152 97.13 3.34 c__ Alphaproteobacteria
METABAT VerySpecific.140 97.08 1.01 ¢ Alphaproteobacteria
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Table E.6. (cont’d)

METABAT VerySpecific.42
METABAT VerySpecific.82
METABAT VerySpecific.56
METABAT VerySpecific.79
METABAT VerySpecific.331
METABAT VerySpecific.325
METABAT VerySpecific.106
METABAT VerySpecific.385
METABAT VerySpecific.154
METABAT VerySpecific.443
METABAT VerySpecific.199
METABAT _ VerySpecific.294
METABAT VerySpecific.137
METABAT VerySpecific.73
METABAT VerySpecific.388
METABAT VerySpecific.89
METABAT VerySpecific.457
METABAT VerySpecific.175
METABAT VerySpecific.38
METABAT VerySpecific.97
METABAT VerySpecific.96
METABAT VerySpecific.399
METABAT VerySpecific.59
METABAT VerySpecific.53
METABAT VerySpecific.32
METABAT VerySpecific.117
METABAT VerySpecific.18
METABAT VerySpecific.278
METABAT _ VerySpecific.536
METABAT _ VerySpecific.45
METABAT VerySpecific.491
METABAT VerySpecific.520
METABAT VerySpecific.23
METABAT VerySpecific.33
METABAT VerySpecific.596
METABAT VerySpecific.505
METABAT VerySpecific.174
METABAT VerySpecific.129

97.07
97.01
97.01
96.84

96.7

96.7

96.7
96.66
96.64
96.62
96.59
96.59
96.58
96.52
96.51
96.36
96.32
96.25
96.15
95.99
95.94

95.8

95.7
95.63
95.07
95.06
94.69
94.54
94.47
94.44
94.44
94.14
94.13
94.07
94.06
93.94
93.91
93.82
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2.23
3.85
2.14
3.73
2.2
2.38
4.16
0.58
0.84
0
0.57
1.68
2.23
2.03
2.33
0.89
2.94
1.12
2.94
4.63
0
3.83
1.68
0.97
0.12
1.55
1.26
2.52
2.14
2.96
0.43
1.85
1.71
3.36
3.07
2.55
4.4
1.4

p__ Actinobacteria
p__Actinobacteria
p__Actinobacteria

¢ Gammaproteobacteria
¢ __Gemmatimonadetes
p__Chloroflexi

p__ Proteobacteria
c__Alphaproteobacteria
p__Proteobacteria
c__Spartobacteria

p__ Planctomycetes
p__Proteobacteria

p__ Actinobacteria

o__ Rhizobiales

p__ Planctomycetes

p__ Proteobacteria
p__Crenarchaeota
c__Alphaproteobacteria

¢ Actinobacteria

p__ Firmicutes
c__Solibacteres

p__ Proteobacteria
p__Proteobacteria
p__Thaumarchaeota

¢ Gammaproteobacteria
¢ Gammaproteobacteria
¢ Gammaproteobacteria
p__ Proteobacteria

¢ Gammaproteobacteria
p__ Firmicutes

¢ Solibacteres

p__ Armatimonadetes
p__Actinobacteria

p__ Proteobacteria

o__ Oscillatoriales
p__Proteobacteria

¢ Solibacteres

f Rhodanobacteraceae



Table E.6. (cont’d)

METABAT VerySpecific.223
METABAT VerySpecific.67
METABAT VerySpecific.208
METABAT VerySpecific.445
METABAT VerySpecific.243
METABAT VerySpecific.47
METABAT VerySpecific.155
METABAT VerySpecific.593
METABAT VerySpecific.342
METABAT VerySpecific.449
METABAT VerySpecific.6
METABAT VerySpecific.91
METABAT VerySpecific.675
METABAT VerySpecific.233
METABAT VerySpecific.577
METABAT VerySpecific.68
METABAT VerySpecific.164
METABAT VerySpecific.554
METABAT VerySpecific.427
METABAT VerySpecific.507
METABAT VerySpecific.109
METABAT VerySpecific.483
METABAT VerySpecific.187
METABAT VerySpecific.122
METABAT VerySpecific.692
METABAT _ VerySpecific.580
METABAT VerySpecific.27
METABAT VerySpecific.333
METABAT VerySpecific.3

93.78
93.73
93.18
93.18
93.07
93
92.87
92.74
92.72
92.4
92.2
92.19
92.08
92.08
92.06
91.89
91.67
91.47
91.45
91.36
91.26
91.22
91.01
90.6
90.59
90.58
90.57
90.29
90.22
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1.94
0.99

1.16
0.68
0.93
0.93
4.16
4.82
1.36

1.8
1.71
0.99

1.56
1.12
0.79
2.36

0.97
4.89
0.87
2.28
2.73
1.78
0.85
0.07
3.39

f Nitrosophaeraceae
p__ Proteobacteria
p__Chloroflexi

¢ Gammaproteobacteria
¢_Chlamydiia

p__ Firmicutes

p__ Proteobacteria
p__Chloroflexi
c__Actinobacteria

¢ Gammaproteobacteria
p__ Acidobacteria
d_Bacteria

p__ Proteobacteria

p__ Firmicutes

d_ Bacteria

f Acidiferrobacteraceae
c__Alphaproteobacteria
c__ Spartobacteria

¢ Acidobacteriia
c_Chitinophagia
p__Thaumarchaeota
p__Verrucomicrobia

c__ Solibacteres

p__ Proteobacteria
p__Verrucomicrobia
c__Acidobacteriia

p__ Acidobacteria

¢ Nitrososphaeria
c__Alphaproteobacteria



Table E.7. Two-sided Pearson’s correlations of single-copy KEGG Ortholog odds ratios

with temperature.

KEGG | Test Statistic T | Pearson's r | FDR Adjusted p-value
K00773 2.502 0.621 3.89E-02
K01409 2.180 0.568 5.92E-02
K01889 4.385 0.811 1.89E-03
K01890 -2.364 -0.599 4.49E-02
K01937 -1.718 -0.477 1.20E-01
K02428 5.214 0.855 6.15E-04
K02519 -1.865 -0.508 9.72E-02
K02864 6.485 0.899 1.57E-04
K02867 6.863 0.908 1.41E-04
K02874 8.547 0.938 7.88E-05
K02876 6.307 0.894 1.67E-04
K02881 6.339 0.895 1.67E-04
K02886 4.662 0.828 1.28E-03
K02890 7.058 0.913 1.41E-04
K02906 5.893 0.881 2.74E-04
K02926 2.361 0.598 4.49E-02
K02931 6.994 0911 1.41E-04
K02933 8.036 0.931 8.15E-05
K02946 5.791 0.878 3.00E-04
K 02948 9.381 0.948 5.13E-05
K02950 6.542 0.900 1.57E-04
K 02952 6.442 0.898 1.57E-04
K02956 6.807 0.907 1.41E-04
K02959 2.726 0.653 2.74E-02
K02961 6.606 0.902 1.57E-04
K02965 7.171 0.915 1.41E-04
K02967 4.877 0.839 9.67E-04
K 02982 5.421 0.864 4.79E-04
K02988 6.565 0.901 1.57E-04
K02992 8.233 0.934 8.15E-05
K02994 9.828 0.952 5.13E-05
K 02996 6.990 0911 1.41E-04
K03106 1.680 0.469 1.24E-01
K03470 6.948 0.910 1.41E-04
K03596 -2.426 -0.609 4.28E-02
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Table E.8. Significant two-sided Pearson’s correlations of KEGG Modules with temperature.

FDR
Module  Module Description Completeness Pearson'sr adjusted
p-value
MO00432  Leucine biosynthesis, 2-oxoisovalerate => 2-oxoisocaproate 1 -0.925 1.32E-03
MO00183  RNA polymerase, bacteria 1 -0.922 1.32E-03
MO00709  Macrolide resistance, MacAB-TolC transporter 1 -0.917 1.32E-03
M00477 ]SE;/S%CSI-HEng (acid and drug tolerance) two-component regulatory 1 0.916 1 32F-03
MO00729  Fluoroquinolone resistance, gyrase-protecting protein Qnr 0.667 -0.915 1.32E-03
MO00453  QseC-QseB (quorum sensing) two-component regulatory system 1 -0.912 1.32E-03
M00499  HydH-HydG (metal tolerance) two-component regulatory system 1 -0.912 1.32E-03
MO00086  beta-Oxidation, acyl-CoA synthesis 0.5 -0.912 1.32E-03
MO00082  Fatty acid biosynthesis, initiation 0.571 -0.91 1.32E-03
MO00565  Trehalose biosynthesis, D-glucose 1P => trehalose 1 -0.909 1.32E-03
MO00258  Putative ABC transport system 1 -0.906 1.43E-03
MO00096  C5 isoprenoid biosynthesis, non-mevalonate pathway 0.9 -0.905 1.43E-03
MO00501 i’;lsfe-rP;:IR (type 4 fimbriae synthesis) two-component regulatory 1 -0.901 1 62F-03
M00446  RstB-RstA two-component regulatory system 1 -0.901 1.62E-03
MO00017  Methionine biosynthesis, apartate => homoserine => methionine 0.846 -0.899 1.66E-03
MO00037  Melatonin biosynthesis, tryptophan => serotonin => melatonin 0.5 -0.899 1.66E-03
MO00134  Polyamine biosynthesis, arginine => ornithine => putrescine 1 -0.895 1.90E-03
MO00028  Ornithine biosynthesis, glutamate => ornithine 0.714 -0.891 2.13E-03
MO00050  Guanine ribonucleotide biosynthesis IMP => GDP,GTP 0.833 -0.888 2.30E-03
M00042 Satecholamine biosynthesis, tyrosine => dopamine => noradrenaline 0.5 _0.885 2 54F-03
=> adrenaline

MO00509  WspE-WspRF (chemosensory) two-component regulatory system 1 -0.883 2.60E-03
M00649  Multidrug resistance, efflux pump AdeABC 1 -0.882 2.60E-03
MO00251  Teichoic acid transport system 1 -0.881 2.60E-03
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Table E.8. (cont’d)

MO00135
MO00539

M00454
M00394
MO00655

M00046

MO00170
M00627
M00221
M00247

MO00722

MO00457

MO00045

MOOI115
MO00013
M00498
MO00605

MO00006

MO00126
M00298
M00049
MO00156

GABA biosynthesis, eukaryotes, putrescine => GABA

Cumate degradation, p-cumate => 2-oxopent-4-enoate + 2-
methylpropanoate

KdpD-KdpE (potassium transport) two-component regulatory system
RNA degradosome

AdeS-AdeR two-component regulatory system

Pyrimidine degradation, uracil => beta-alanine, thymine => 3-
aminoisobutanoate

C4-dicarboxylic acid cycle, phosphoenolpyruvate carboxykinase type
beta-Lactam resistance, Bla system

Putative simple sugar transport system

Putative ABC transport system

Cationic antimicrobial peptide (CAMP) resistance,
phosphoethanolamine transferase PmrC

TctE-TctD (tricarboxylic acid transport) two-component regulatory
system

Histidine degradation, histidine => N-formiminoglutamate =>
glutamate

NAD biosynthesis, aspartate => NAD

Malonate semialdehyde pathway, propanoyl-CoA => acetyl-CoA
NtrY-NtrX (nitrogen regulation) two-component regulatory system
Glucose/mannose transport system

Pentose phosphate pathway, oxidative phase, glucose 6P => ribulose
5P

Tetrahydrofolate biosynthesis, GTP => THF

Multidrug/hemolysin transport system

Adenine ribonucleotide biosynthesis, IMP => ADP,ATP

Cytochrome c oxidase, cbb3-type
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0.6

0.667

0.5
0.75

0.857
0.667

0.667
0.565

0.556

-0.881
-0.881

-0.88
-0.88
-0.878

-0.877

-0.876
-0.873
-0.873
-0.872

-0.87

-0.87

-0.869

-0.867
-0.866
-0.866
-0.866

-0.863

-0.862
-0.861
-0.857
-0.857

2.60E-03
2.60E-03

2.60E-03
2.60E-03
2.70E-03

2.70E-03

2.70E-03
2.91E-03
2.91E-03
2.91E-03

2.93E-03

2.93E-03

3.00E-03

3.08E-03
3.08E-03
3.08E-03
3.08E-03

3.25E-03

3.29E-03
3.40E-03
3.57E-03
3.57E-03



Table E.8. (cont’d)

MO00012
M00502

MO00475

M00631

MO00641
MO00169
MO00015
M00639
M00210

M00662

MO00467

M00140
M00250
MO00359
M00669
MO00670

M00451
MO00129
MO00551

M00230
M00497
M00549

Glyoxylate cycle

GIrK-GIrR (amino sugar metabolism) two-component regulatory
system

BarA-UvrY (central carbon metabolism) two-component regulatory
system

D-Galacturonate degradation (bacteria), D-galacturonate => pyruvate

+ D-glyceraldehyde 3P

Multidrug resistance, efflux pump MexEF-OprN
CAM (Crassulacean acid metabolism), light
Proline biosynthesis, glutamate => proline
Multidrug resistance, efflux pump MexCD-OprJ
Phospholipid transport system

Hk1-Rrpl (glycerol uptake and utilization) two-component regulatory

system

SasA-RpaAB (circadian timing mediating) two-component regulatory

system

C1-unit interconversion, prokaryotes

Lipopolysaccharide transport system

Aminoacyl-tRNA biosynthesis, eukaryotes
gamma-Hexachlorocyclohexane transport system

Mce transport system

BasS-BasR (antimicrobial peptide resistance) two-component
regulatory system

Ascorbate biosynthesis, animals, glucose-1P => ascorbate
Benzoate degradation, benzoate => catechol / methylbenzoate =>
methylcatechol

Glutamate/aspartate transport system

GInL-GInG (nitrogen regulation) two-component regulatory system
Nucleotide sugar biosynthesis, glucose => UDP-glucose
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0.667

0.955
0.75
0.75

0.714

0.833

-0.857
-0.856

-0.855

-0.853

-0.853
-0.851
-0.85
-0.85
-0.85

-0.848

-0.846

-0.845
-0.844
-0.843
-0.842
-0.842

-0.841
-0.841
-0.84

-0.838
-0.837
-0.837

3.57E-03
3.57E-03

3.57E-03

3.77E-03

3.77E-03
3.94E-03
3.94E-03
3.94E-03
3.94E-03

4.15E-03

4.22E-03

4.28E-03
4.31E-03
4.41E-03
4.46E-03
4.46E-03

4.46E-03
4.46E-03
4.48E-03

4.58E-03
4.58E-03
4.58E-03



Table E.8. (cont’d)

MO00172
M00027
MO00525
M00526
M00220
M00699
MO00307

MO00473

M00216
MO00168

MO00527
M00002
MO00572

M00238
M00204
M00628
MO00157

M00503

MO00189
MO00455
MO00097
MO00754
MO00193
MO00083

C4-dicarboxylic acid cycle, NADP - malic enzyme type

GABA (gamma-Aminobutyrate) shunt

Lysine biosynthesis, acetyl-DAP pathway, aspartate => lysine
Lysine biosynthesis, DAP dehydrogenase pathway, aspartate => lysine
Rhamnose transport system

Multidrug resistance, efflux pump AmeABC

Pyruvate oxidation, pyruvate => acetyl-CoA

UhpB-UhpA (hexose phosphates uptake) two-component regulatory
system

Multiple sugar transport system

CAM (Crassulacean acid metabolism), dark

Lysine biosynthesis, DAP aminotransferase pathway, aspartate =>
lysine

Glycolysis, core module involving three-carbon compounds
Pimeloyl-ACP biosynthesis, BioC-BioH pathway, malonyl-ACP =>
pimeloyl-ACP

D-Methionine transport system

Trehalose/maltose transport system

beta-Lactam resistance, AmpC system

F-type ATPase, prokaryotes and chloroplasts

PgtB-PgtA (phosphoglycerate transport) two-component regulatory
system

Molybdate transport system

TorS-TorR (TMAO respiration) two-component regulatory system
beta-Carotene biosynthesis, GGAP => beta-carotene

Nisin resistance, phage shock protein homolog LiaH

Putative spermidine/putrescine transport system

Fatty acid biosynthesis, elongation
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0.75
0.857

0.9

0.5

0.5
0.909
0.917

— e

-0.837
-0.837
-0.836
-0.836
-0.833
-0.833
-0.831

-0.83

-0.828
-0.828

-0.827
-0.826
-0.826

-0.826
-0.823
-0.823
-0.822

-0.822

-0.821

-0.82
-0.819
-0.816
-0.816
-0.814

4.58E-03
4.58E-03
4.64E-03
4.64E-03
4.85E-03
4.86E-03
5.07E-03

5.15E-03

5.25E-03
5.28E-03

5.33E-03
5.36E-03
5.36E-03

5.37E-03
5.66E-03
5.66E-03
5.71E-03

5.71E-03

5.76E-03
5.83E-03
6.04E-03
6.34E-03
6.34E-03
6.67E-03



Table E.8. (cont’d)

MO00377
MO00718
MO00119
M00459

MO00485
MO00595
M00445

M00504

M00255
M00040
M00328
M00546
M00044
M00668
MO00036
M00208
M00004

M00478

M00593
M00644
M00212
MO00760
M00324
M00743

Reductive acetyl-CoA pathway (Wood-Ljungdahl pathway)
Multidrug resistance, efflux pump MexAB-OprM

Pantothenate biosynthesis, valine/L-aspartate => pantothenate
VicK-VicR (cell wall metabolism) two-component regulatory system
KinABCDE-SpoOFA (sporulation control) two-component regulatory
system

Thiosulfate oxidation by SOX complex, thiosulfate => sulfate
EnvZ-OmpR (osmotic stress response) two-component regulatory
system

DctB-DctD (C4-dicarboxylate transport) two-component regulatory
system

Lipoprotein-releasing system

Tyrosine biosynthesis, prephanate => pretyrosine => tyrosine
Hemophore/metalloprotease transport system

Purine degradation, xanthine => urea

Tyrosine degradation, tyrosine => homogentisate

Tetracycline resistance, TetA transporter

Leucine degradation, leucine => acetoacetate + acetyl-CoA

Glycine betaine/proline transport system

Pentose phosphate pathway (Pentose phosphate cycle)

DegS-DegU (multicellular behavior control) two-component
regulatory system

Inositol transport system

Vanadium resistance, efflux pump MexGHI-OpmD

Ribose transport system

Erythromycin resistance, macrolide 2-phosphotransferase I MphA
Dipeptide transport system

Aminoglycoside resistance, protease HtpX
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—

0.6
0.95

0.833
0.5

0.867

e
e e A B e e

-0.813
-0.813
-0.813
-0.812

-0.811
-0.811
-0.811

-0.809

-0.809
-0.807
-0.807
-0.805
-0.805
-0.803
-0.803
-0.802
-0.802

-0.801

-0.801
-0.801

-0.8
-0.798
-0.798
-0.797

6.67E-03
6.67E-03
6.67E-03
6.77E-03

6.77E-03
6.79E-03
6.79E-03

6.91E-03

6.91E-03
7.19E-03
7.19E-03
7.26E-03
7.26E-03
7.53E-03
7.53E-03
7.60E-03
7.64E-03

7.64E-03

7.68E-03
7.68E-03
7.68E-03
8.04E-03
8.04E-03
8.18E-03



Table E.8. (cont’d)

M00227
MO00009
MO00127

MO00658

MO00519
M00063
MO00136
M00672
MO00505
M00360
MO00555
MO00277

MO00656
M00350
M00022

M00020
M00642
M00300
M00339
M00260
MO00766
MO00077
M00237
M00361
MO00025

Glutamine transport system

Citrate cycle (TCA cycle, Krebs cycle)

Thiamine biosynthesis, AIR => thiamine-P/thiamine-2P
VanS-VanR (actinomycete type vancomycin resistance) two-
component regulatory system

YesM-YesN two-component regulatory system

CMP-KDO biosynthesis

GABA biosynthesis, prokaryotes, putrescine => GABA
Penicillin biosynthesis, aminoadipate + cycteine + valine => penicillin
KinB-AlgB (alginate production) two-component regulatory system
Aminoacyl-tRNA biosynthesis, prokaryotes

Betaine biosynthesis, choline => betaine

PTS system, N-acetylgalactosamine-specific Il component
VanS-VanR (VanB type vancomycin resistance) two-component
regulatory system

Capsaicin biosynthesis, L-Phenylalanine => Capsaicin
Shikimate pathway, phosphoenolpyruvate + erythrose-4P =>
chorismate

Serine biosynthesis, glycerate-3P => serine

Multidrug resistance, efflux pump MexJK-OprM

Putrescine transport system

RaxAB-RaxC type I secretion system

DNA polymerase III complex, bacteria

Streptomycin resistance, deactivating enzyme StrAB
Chondroitin sulfate degradation

Branched-chain amino acid transport system

Nucleotide sugar biosynthesis, eukaryotes

Tyrosine biosynthesis, chorismate => tyrosine
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0.7
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0.857
0.857

-0.796
-0.794
-0.794

-0.794

-0.793
-0.793
-0.793
-0.791
-0.791

-0.79

-0.79
-0.786

-0.785
-0.784
-0.783

-0.783
-0.782
-0.781

-0.78

-0.78
-0.779
-0.779
-0.779
-0.777
-0.775

8.22E-03
8.38E-03
8.38E-03

8.41E-03

8.41E-03
8.41E-03
8.44E-03
8.55E-03
8.59E-03
8.68E-03
8.68E-03
9.28E-03

9.46E-03
9.70E-03
9.74E-03

9.74E-03
9.81E-03
1.01E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.04E-02
1.08E-02



Table E.8. (cont’d)

M00532
MO00335
MO00010
M00024

MO00728

MO00589
M00093
M00149
M00232
MO00318

MO00579

M00474

M00456
M00306
M00524
MO00538
MO00124
MO00078
M00200
MO00713
MO00714
M00253
M00240
M00368
M00493

Photorespiration

Sec (secretion) system

Citrate cycle, first carbon oxidation, oxaloacetate => 2-oxoglutarate
Phenylalanine biosynthesis, chorismate => phenylalanine

Cationic antimicrobial peptide (CAMP) resistance, envelope protein
folding and degrading factors DegP and DsbA

Putative lysine transport system

Phosphatidylethanolamine (PE) biosynthesis, PA => PS => PE
Succinate dehydrogenase, prokaryotes

General L-amino acid transport system

Iron/zinc/copper transport system

Phosphate acetyltransferase-acetate kinase pathway, acetyl-CoA =>
acetate

ResC-ResD-ResB (capsule synthesis) two-component regulatory
system

ArcB-ArcA (anoxic redox control) two-component regulatory system
PTS system, fructose-specific II-like component

FixL-FixJ (nitrogen fixation) two-component regulatory system
Toluene degradation, toluene => benzoate

Pyridoxal biosynthesis, erythrose-4P => pyridoxal-5P

Heparan sulfate degradation

Putative sorbitol/mannitol transport system

Fluoroquinolone resistance, efflux pump LfrA

Multidrug resistance, efflux pump QacA

Sodium transport system

Iron complex transport system

Ethylene biosynthesis, methionine => ethylene

AlgZ-AlgR (alginate production) two-component regulatory system
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0.8

0.857

— e e

— e e

0.667

0.5
0.5

0.667

-0.773
-0.773

-0.77
-0.768

-0.768

-0.768
-0.768
-0.768
-0.767
-0.765

-0.765

-0.764

-0.764
-0.763
-0.762
-0.762
-0.759
-0.759
-0.758
-0.758
-0.758
-0.756
-0.756
-0.755
-0.754

1.12E-02
1.13E-02
1.18E-02
1.19E-02

1.19E-02

1.19E-02
1.19E-02
1.19E-02
1.20E-02
1.23E-02

1.23E-02

1.24E-02

1.24E-02
1.26E-02
1.27E-02
1.27E-02
1.32E-02
1.32E-02
1.33E-02
1.33E-02
1.33E-02
1.36E-02
1.36E-02
1.39E-02
1.39E-02



Table E.8. (cont’d)

M00034
M00439
MO00035
M00542
M00299
MO00014
M00330
M00500
MO00531
M00740
MO00570

M00447

MO00511
M00704
MO00697

MO00654
M00101
M00468

M00256
M00323
M00259
M00622
MO00167
M00326
MO00618

Methionine salvage pathway

Oligopeptide transport system

Methionine degradation

EHEC/EPEC pathogenicity signature, T3SS and effectors
Spermidine/putrescine transport system

Glucuronate pathway (uronate pathway)

Adhesin protein transport system

AtoS-AtoC (cPHB biosynthesis) two-component regulatory system
Assimilatory nitrate reduction, nitrate => ammonia
Methylaspartate cycle

Isoleucine biosynthesis, threonine => 2-oxobutanoate => isoleucine
CpxA-CpxR (envelope stress response) two-component regulatory
system

PleC-PleD (cell fate control) two-component regulatory system
Tetracycline resistance, efflux pump Tet38

Multidrug resistance, efflux pump MdtEF-TolC

ParS-ParR (polymyxin-adaptive resistance) two-component regulatory

system

Cholesterol biosynthesis, squalene 2,3-epoxide => cholesterol
SaeS-SaeR (staphylococcal virulence regulation) two-component
regulatory system

Cell division transport system

Urea transport system

Heme transport system

Nicotinate degradation, nicotinate => fumarate

Reductive pentose phosphate cycle, glyceraldehyde-3P => ribulose-5P

RTX toxin transport system
Acetogen
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0.842

0.857
0.765

0.667

0.667
0.667

0.5
0.5

0.727

—

0.625

-0.754
-0.753
-0.752
-0.752
-0.752
-0.752
-0.748
-0.747
-0.745
-0.745
-0.745

-0.744

-0.742
-0.742
-0.742

-0.741
-0.74
-0.738

-0.736
-0.735
-0.734
-0.734
-0.733
-0.732
-0.732

1.39E-02
1.40E-02
1.41E-02
1.41E-02
1.41E-02
1.42E-02
1.48E-02
1.51E-02
1.55E-02
1.55E-02
1.55E-02

1.57E-02

1.61E-02
1.61E-02
1.61E-02

1.63E-02
1.66E-02
1.69E-02

1.74E-02
1.75E-02
1.77E-02
1.78E-02
1.79E-02
1.81E-02
1.81E-02



Table E.8. (cont’d)

MO00016
MO00575
MO00535

MO00533

MO00003
M00254
MO00742

M00448

M00741
MO00100
M00023

M00488

MO00517
MO00215
M00663
M00648
MO00338
M00325
MO00613
MO00607
M00471
M00356
MO00060

MO00513

Lysine biosynthesis, succinyl-DAP pathway, aspartate => lysine
Pertussis pathogenicity signature 2, T1SS

Isoleucine biosynthesis, pyruvate => 2-oxobutanoate
Homoprotocatechuate degradation, homoprotocatechuate => 2-
oxohept-3-enedioate

Gluconeogenesis, oxaloacetate => fructose-6P

ABC-2 type transport system

Aminoglycoside resistance, protease FtsH

CssS-CssR (secretion stress response) two-component regulatory
system

Propanoyl-CoA metabolism, propanoyl-CoA => succinyl-CoA
Sphingosine degradation

Tryptophan biosynthesis, chorismate => tryptophan

DcuS-DcuR (C4-dicarboxylate metabolism) two-component
regulatory system

RpfC-RptG (cell-to-cell signaling) two-component regulatory system
D-Xylose transport system

SsrA-SsrB two-component regulatory system

Multidrug resistance, efflux pump MdtABC

Cysteine biosynthesis, homocysteine + serine => cysteine
alpha-Hemolysin/cyclolysin transport system

Anoxygenic photosynthesis in green nonsulfur bacteria

Glycerol transport system

NarX-NarL (nitrate respiration) two-component regulatory system
Methanogenesis, methanol => methane

Lipopolysaccharide biosynthesis, KDO2-lipid A
LuxQN/CqgsS-LuxU-LuxO (quorum sensing) two-component
regulatory system
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0.929

0.833

0.846

0.688

—t e ek e e e e ek e e e

—

-0.732
-0.731
-0.731

-0.729

-0.729
-0.729
-0.728

-0.728

-0.728
-0.728
-0.728

-0.727

-0.726
-0.726
-0.725
-0.724
-0.724
-0.724
-0.724
-0.723
-0.722
-0.721

-0.72

-0.719

1.81E-02
1.82E-02
1.82E-02

1.85E-02

1.85E-02
1.85E-02
1.85E-02

1.85E-02

1.85E-02
1.85E-02
1.85E-02

1.86E-02

1.86E-02
1.86E-02
1.89E-02
1.89E-02
1.89E-02
1.90E-02
1.90E-02
1.91E-02
1.93E-02
1.97E-02
1.98E-02

2.00E-02



Table E.8. (cont’d)

MO00566
MO00761

M00660
MO00011
M00222

MO00778
M00591
MO00019

MO00118
M00449
M00332
M00236
M00244

MO00727

M00213
MO00779
M00214
M00652
MO00664
M00696
M00362

MO00008
M00568

Dipeptide transport system, Firmicutes

Undecaprenylphosphate alpha-L-Ara4N biosynthesis, UDP-GIcA =>
Undecaprenyl phosphate alpha-L-Ara4N

Xanthomonas spp. pathogenicity signature, T3SS and effectors
Citrate cycle, second carbon oxidation, 2-oxoglutarate => oxaloacetate
Phosphate transport system

Type II polyketide backbone biosynthesis, acyl-CoA + malonyl-CoA
=> polyketide

Putative xylitol transport system

Valine/isoleucine biosynthesis, pyruvate => valine / 2-oxobutanoate
=> isoleucine

Glutathione biosynthesis, glutamate => glutathione

CreC-CreB (phosphate regulation) two-component regulatory system
Type 111 secretion system

Putative polar amino acid transport system

Putative zinc/manganese transport system

Cationic antimicrobial peptide (CAMP) resistance, N-
acetylmuramoyl-L-alanine amidase AmiA and AmiC

L-Arabinose transport system

Dihydrokalafungin biosynthesis, octaketide => dihydrokalafungin
Methyl-galactoside transport system

Vancomycin resistance, D-Ala-D-Ser type

Nodulation

Multidrug resistance, efflux pump AcrEF-TolC

Nucleotide sugar biosynthesis, prokaryotes

Entner-Doudoroff pathway, glucose-6P => glyceraldehyde-3P +

pyruvate
Catechol ortho-cleavage, catechol => 3-oxoadipate
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0.75
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-0.718
-0.716

-0.716
-0.716
-0.716

-0.714
-0.714
-0.714

-0.714
-0.713
-0.711
-0.708
-0.706

-0.706

-0.704
-0.698
-0.697
-0.695
-0.694
-0.692
-0.691

-0.685
-0.681

2.02E-02
2.07E-02

2.07E-02
2.07E-02
2.07E-02

2.09E-02
2.09E-02
2.09E-02

2.09E-02
2.09E-02
2.16E-02
2.25E-02
2.29E-02

2.29E-02

2.33E-02
2.54E-02
2.58E-02
2.65E-02
2.69E-02
2.73E-02
2.76E-02

2.98E-02
3.11E-02



Table E.8. (cont’d)

M00476
M00480

M00235
MO00001
M00506
M00320
MO00701
MO00514
MO00617
MO00150

MO00674

M00194
MO00319
MO00581

MO00673
MO00645
M00721
MO00584
M00487

MO00121
MO00095
M00163
MO00161

ComP-ComA (competence) two-component regulatory system
VraS-VraR (cell-wall peptidoglycan synthesis) two-component
regulatory system

Arginine/ornithine transport system

Glycolysis (Embden-Meyerhof pathway), glucose => pyruvate
CheA-CheYBYV (chemotaxis) two-component regulatory system
Lipopolysaccharide export system

Multidrug resistance, efflux pump EmrAB

TtrS-TtrR (tetrathionate respiration) two-component regulatory system
Methanogen

Fumarate reductase, prokaryotes

Clavaminate biosynthesis, arginine + glyceraldehyde-3P =>
clavaminate

Maltose/maltodextrin transport system

Manganese/zinc/iron transport system

Biotin transport system

Cephamycin C biosynthesis, aminoadipate + cycteine + valine =>
cephamycin C

Multidrug resistance, efflux pump SmeABC

Cationic antimicrobial peptide (CAMP) resistance, arnBCADTEF
operon

Acetoin utilization transport system

CitS-CitT (magnesium-citrate transport) two-component regulatory
system

Heme biosynthesis, glutamate => protoheme/siroheme

C5 isoprenoid biosynthesis, mevalonate pathway

Photosystem I

Photosystem II
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0.75

0.826
0.875
1
1

-0.677
-0.673

-0.673

-0.67
-0.669
-0.668
-0.668
-0.668
-0.664
-0.664

-0.663

-0.661
-0.66
-0.653

-0.651
-0.648
-0.648
-0.647
-0.647

-0.642
0.646
0.657

0.68

3.25E-02
3.41E-02

3.43E-02
3.54E-02
3.59E-02
3.59E-02
3.59E-02
3.60E-02
3.77E-02
3.77E-02

3.77E-02

3.90E-02
3.91E-02
4.24E-02

4.34E-02
4.50E-02
4.50E-02
4.50E-02
4.51E-02

4.74E-02
4.53E-02
4.06E-02
3.13E-02



Table E.8. (cont’d)

M00052
MO00120
M00343
MO00162
M00203

M00633

M00275
MO00365
MO00166
M00530
MO00031
M00423
MO00763
M00026
M00596
M00604
M00529
MO00159
MO00179
MO00184
M00390
M00391
MO00177
M00425

Pyrimidine ribonucleotide biosynthesis, UMP => UDP/UTP,CDP/CTP
Coenzyme A biosynthesis, pantothenate => CoA

Archaeal proteasome

Cytochrome b6f complex

Glucose/arabinose transport system

Semi-phosphorylative Entner-Doudoroff pathway,
gluconate/galactonate => glycerate-3P

PTS system, cellobiose-specific Il component

C10-C20 isoprenoid biosynthesis, archaea

Reductive pentose phosphate cycle, ribulose-5P => glyceraldehyde-3P
Dissimilatory nitrate reduction, nitrate => ammonia

Lysine biosynthesis, mediated by LysW, 2-aminoadipate => lysine
Molybdate/tungstate transport system

Ornithine biosynthesis, mediated by LysW, glutamate => ornithine
Histidine biosynthesis, PRPP => histidine

Dissimilatory sulfate reduction, sulfate => H2S

Trehalose transport system

Denitrification, nitrate => nitrogen

V/A-type ATPase, prokaryotes

Ribosome, archaea

RNA polymerase, archaea

Exosome, archaca

Exosome, eukaryotes

Ribosome, eukaryotes

H/ACA ribonucleoprotein complex
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0.571
0.909

0.875

0.692
0.693
0.713
0.714
0.737

0.75

0.76
0.794
0.806
0.807
0.829
0.831
0.833

0.84
0.846

0.86
0.872
0.893
0.908

0.91
0.916
0.917

0.93
0.933

2.74E-02
2.70E-02
2.09E-02
2.09E-02
1.72E-02

1.46E-02

1.30E-02
8.38E-03
7.26E-03
7.19E-03
5.20E-03
5.07E-03
4.85E-03
4.49E-03
4.22E-03
3.40E-03
2.92E-03
2.04E-03
1.32E-03
1.32E-03
1.32E-03
1.32E-03
1.17E-03
1.13E-03



Table E.9. Permanent finished genomes per phylum in Integrated Microbial Genomes
database used in Figure F.2.

Phylum Genomes
Chlorobi 21
Crenarchaeota 224
Acidobacteria 68
Bacteroidetes 1900
Proteobacteria 23638
Planctomycetes 104
Bacteria 48637
Cyanobacteria 391
Chloroflexi 154
Verrucomicrobia 96
Nitrospirae 49
Actinobacteria 6075
Armatimonadetes 13
candidate division TM6 1
Gemmatimonadetes 26
Chlamydiae 270
Elusimicrobia 42
Candidatus Parcubacteria 60
Firmicutes 14186
candidate division WPS-2 8
Euryarchaeota 651
Candidatus Parvarchaeota 7
OP11 0
Spirochaetes 746
Fusobacteria 132
Candidatus Omnitrophica 60
BRCl1 2
WS1 1
Tenericutes 336
candidate division GAL15 3
Candidatus 47
Saccharibacteria

Unclassified 0
FBP 0
Fibrobacteres 30
Archaea 882
NC10 0

134



Table E.9. (cont’d)

Candidatus Aerophobetes
Deferribacteres
Deinococcus-Thermus
Candidatus Fervidibacteria
Aquificae

Lentisphaerae

cadidate division SR1

51
74
13
36
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Supplemental figures
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Figure F.1. Complementary methods used to assess changes in average genome size across
the soil temperature gradient in Centralia.

(A) Odds ratios were calculated for 35 single-copy gene KEGG Orthologs in each site and
plotted against site temperature. Reported two-sided Pearson’s correlation is between all single

copy gene odds ratios and temperature(p = 2.2x10°'%). (B) Average genome size in each site was
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Figure F.1. (cont’d)

calculated based on phylum level abundances from 16S rRNA gene amplicon data, using
weighted average genome sizes of each phylum present in JGI IMG (accessed 19 June 2017,
two-sided Pearson’s correlation p = 0.0003). (C) Average MAG size at each site was calculated
based on presence/absence of 104 MAGs (two-sided Pearson’s correlation p = 0.029,). For all

Pearson’s correlations, n= 12 soils.
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Chloroflexi
Gemmatimonadetes
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Figure F.2. Community structure in Centralia.

(A) Relative abundance of phyla in fire-affected (red, n=6 soils) and recovered/reference (blue,
n=6 soils) sites based on 16S rRNA gene amplicon sequences. Taxonomic assignments were
with the RDP classifier against the greengenes database (B) Sizes of permanent draft and
finished genomes in IMG from phyla detected in Centralia. Midlines of each boxplot correspond
to median values. The top and bottom of each boxplot represent the 75" and 25™ percentiles
respectively. The upper and lower whiskers extend to the furthest values that are not outliers.

Number of genomes per boxplot is described in Table E.9.
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Figure F.3. Annual temperature fluctuations at three fire-affected and two ambient
Centralia sites

Annual temperature fluctuations at three fire-affected (circles) and two ambient (triangles)
Centralia sites, measured using in situ temperature loggers (HOBOs) that were buried 5 - 10 cm
below the surface. Temperature loggers were deployed after the soils were collected for this

study.
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CHAPTER 4: Dormancy dynamics and dispersal contribute to soil microbiome resilience

This work is currently in review and revision at Philosophical Transactions B as
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Abstract

In disturbance ecology, stability is composed of resistance to change and resilience
towards recovery after the disturbance subsides. Two key microbial mechanisms that can support
microbiome stability include dormancy and dispersal. Specifically, microbial populations that are
sensitive to disturbance can be re-seeded by local dormant pools of viable and reactivated cells,
or by immigrants dispersed from regional metacommunities. However, it is difficult to quantify
the contributions of these mechanisms to stability without, first, distinguishing the active from
inactive membership, and, second, distinguishing the populations recovered by local
resuscitation from those recovered by dispersed immigrants. Here, we investigate the
contributions of dormancy dynamics (activation and inactivation), and dispersal to soil microbial
community resistance and resilience. We designed a replicated, 45-week time-series experiment
to quantify the responses of the active soil microbial community to a thermal press disturbance,
including unwarmed control mesocosms, disturbed mesocosms without dispersal, and disturbed
mesocosms with dispersal after the release of the stressor. Communities changed in structure
within one week of warming. Though the disturbed mesocosms did not fully recover within 29
weeks, resuscitation of thermotolerant taxa was key for community transition during the press,
and both resuscitation of opportunistic taxa and immigration contributed to community
resilience. Also, mesocosms with dispersal were more resilient than mesocosms without. This
work advances the mechanistic understanding of how microbiomes respond to disturbances in

their environment.
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Introduction

Ongoing changes to Earth’s climate are projected to alter disturbance regimes and to
pervasively expose ecosystems to stressors like elevated atmospheric greenhouse gases and
increased temperatures (1). Microbial communities, or microbiomes, provide vital ecosystem
functions and are key players in determining ecosystem responses to environmental changes (2,
3). Understanding the mechanisms that underpin microbiome responses to environmental
disturbances will support efforts to predict, and, potentially, manage, microbiomes for stable
functions within their ecosystems.

In disturbance ecology, stability refers to consistent properties in the face of a stressor (4).
Here, we apply terms from disturbance ecology as they have been adopted in microbial ecology
(5-7). Stability includes components of both resistance and resilience. Resistance is the capacity
of a system to withstand change in the face of a stressor, and its inverse is sensitivity. Resilience
is the extent to which a system recovers following a disturbance, and is often expressed as a rate
of change over time. Secondary succession is the process of community reassembly after a
disturbance, and it can lead to either a state of recovery or an alternative stable state. Recovery is
when a system fully returns to either its pre-disturbance state or is indistinguishable from a
comparative control, and this term can be applied both to the state of the stressor and to the
responsive community. Similarly, an alternative stable state is when the system does not return
but rather assumes a different state. Together, resistance and resilience are the major quantifiable
components of stability, and they can be calculated from community measurements of alpha
diversity, beta diversity, or function (6, 8).

There are two related microbial mechanisms that support population persistence in the face

of disturbance, and therefore contribute to community resistance, resilience, and recovery. One
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mechanism is microbial dispersal, as successful immigrants can support resilience and recovery
of sensitive populations. Across an interconnected landscape, microbial metacommunities are
linked via dispersal, and so immigrants originate from the regional species pool (9—-12). A second
important but less-considered mechanism is microbial dormancy dynamics (13, 14). Dormancy
dynamics include initiation and resuscitation. Initiation into dormancy can support local survival
of populations sensitive to the disturbance, and therefore support community resistance by
stabilizing community structure. Resuscitation from dormancy can support resilience and
recovery by re-seeding sensitive populations from the local dormant pool. Thus, while both
dispersal and resuscitation can support microbiome stability, dispersed immigrants originate
regionally while resuscitated members originate locally. After a disturbance, if sensitive
populations are not repopulated via immigration or resuscitation, they will become locally
extinct and contribute to necromass (aka relic DNA, (15)).

We designed a replicated time-series experiment to quantify the contributions of
dormancy dynamics and dispersal to the response of a soil microbiome to a thermal press
disturbance. We targeted a soil microbiome because terrestrial microbiomes are front-line
responders to climate change and sequesters of carbon (2, 3), and therefore an important
constituent to understand for predicting ecosystem outcomes to environmental change. Also,
soils harbor the highest known microbial diversity (16—18) and present a maximum challenge in
deciphering microbiome responses to disturbance. Furthermore, a majority of the microbial cells
or richness in soil is dormant (13, 19), reportedly as high as 80%, representing a considerable
pool of microbial functional potential. Finally, across heterogeneous soils, an average of 40% of
the microbiome DNA was necromass that existed extracellularly (15). This suggests that DNA-

based methods of determining microbiome dynamics include both inactive and necromass
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reservoirs, and that there is need for increased precision to move forward to quantify
mechanisms underpinning microbiome stability.

The mesocosm experiment reported here follows prior field work in Centralia,
Pennsylvania (20-24). Centralia is the site of an underground coal seam fire that ignited in 1962
and advances 5-7 my! along the coal seams (25, 26). The coal seams are highly variable in
depth, but average 70 m below the surface (25), so as the fire advances underground it warms the
overlying surface soils from ambient to mesothermal to thermal conditions. After the fire
advances, previously warmed soils cool to ambient temperatures. In the field, we observed that
previously warmed soils recovered towards reference soils in bacterial and archaeal community
structure, with the exception of a slightly increased selection for Acidobacteria in the recovered
soils (attributable to lower soil pH after coal combustion, (20)). However, during fire impact,
there was high divergence among soil communities, and we hypothesized that differences in
dormancy dynamics (e.g., different members resuscitating and initiating priority effects during
the stress) may explain the divergences. We also hypothesized that resuscitation would shift
community structure during the thermal disturbance, but that resuscitation and dispersal would
together support resilience after the disturbance subsided. Therefore, in this experiment, we
aimed to control dispersal, and also to quantify activity dynamics and determine their

consistency and test our hypotheses.

Materials and Methods
Soil collection, mesocosm design, and soil sampling
Eight kg of soil was collected in Whirlpack bags from the top ten centimeters of a

reference site in Centralia, PA (site C08, 40 48.084N 076 20.765W) on March 31%, 2018. The
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site is temperate with the following chemical-physical properties: Organic Matter 4.8%; Nitrate
7.9 ppm; Ammonium 20.5 ppm; pH 5; Sulfur 19 ppm; Potassium 69 ppm; Calcium 490 ppm,
Magnesium 59 ppm; Iron 110 ppm, and Phosphorus 395 ppm. The ambient soil temperature
when collected was 4°C. The sample was stored at 4°C until the experiment was initiated. Soil
was sieved through a 4mm mesh, homogenized, and ~300 g were dispensed into 15 autoclaved
quart-sized glass canning jars that were used as mesocosms (Ball). The homogenized soil sample
intentionally was used in all 15 mesocosms to assess the reproducibility of community temporal
dynamics starting from the same soil source. Percent soil moisture was determined using by
massing and drying. Each mesocosm was massed weekly to assess evaporation and any loss of
water mass was replaced with sterile water to maintain percent soil moisture throughout the
experiment. Sterile metal canning lids were secured loosely to prevent anaerobiosis. All set-up
and manipulation of the mesocosms was performed in a Biosafety Level 2 cabinet
(ThermoScientific 1300 Series A2) and we used aseptic technique.

Mesocosms first were acclimated at 14°C to mimic the ambient soil temperature at the
typical time of fall soil collection and to coordinate with our previous field study (20).
Acclimation proceeded for four weeks in a cooling incubator (Fischer Scientific Isotemp), and
then soils were divided into three treatment groups (Figure 4.1). Six unwarmed control
mesocosms (“Control”’) were maintained at 14°C for the duration of the experiment. Nine
warmed mesocosms (“Disturbance”) were subjected to a 12-week disturbance regime to simulate
a press thermal disturbance. First, the temperature was gradually increased to 60°C, by 3°C to
3.5°C daily increments over two weeks. Second, the temperature was maintained at 60°C for 8
weeks. Sixty degrees was chosen because it was close to the observed maximum thermal

temperature that we have measured in surface soils impacted by the Centralia coal seam fire (20).
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Next, the temperature was gradually decreased to 14°C, by 3°C to 3.5°C daily increments over
two weeks. Finally, the mesocosms were maintained at 14°C for four weeks until the penultimate
sampling. From the nine disturbed mesocosms, four were randomly selected for the dispersal
treatment (“Disturbance + Immigration”). These four disturbed mesocosms received a dispersal
event one week after the temperature was recovered to 14°C after the thermal disturbance. Each
was inoculated with 0.5 mL of a 10% weight by volume soil slurry made from a composite soil
sample from the six unwarmed control mesocosms, and then gently mixed with a sterile spatula.
Using qPCR data from control mesocosms at week 16, we estimate that approximately 6.37x10°
cells were dispersed into each Disturbance + Immigration mesocosm. We used soil from the
control mesocosms to simulate dispersal from similar, adjacent soils to repopulate disturbed
communities, as expected in the field. Finally, all mesocosms were left undisturbed at 14°C for
another 25 weeks prior to the final 45-week sampling. During the final 25-week incubation,
percent moisture was not monitored.

Mesocosms were non-destructively sampled after 4, 5, 6, 10, 14, 15, 16, 20, and 45
weeks of incubation. At each time point, approximately 15 g soil was removed from a
mesocosm, of which ~13 g was flash-frozen in liquid nitrogen for RNA preservation and stored

at -80°C until RNA/DNA co-extraction.

152



o))
o
|

Mesocosm
Temperature (°C)
IN
|

Thermal press

Sampling points 0*

1l I LI
456 10 141516

Time (week)

Experimental phase
Acclimation <———>
Temp. increase <>
Thermal press < >
Temp. decrease —

Return

AN

Figure 4.1. Experimental design of the mesocosm study.
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At time 0 (indicated by the asterisk), reference temperate soil (0-20 cm depth from surface) was

homogenized and divided among fifteen 1 L glass mesocosms that were maintained at ambient

moisture through the experiment. Nondestructive sampling of each mesocosm proceeded from

week 4 onward as indicated by the x-axis. Unwarmed Control mesocosms (solid gold line, n = 6)

were maintained at 14°C, which was ambient soil temperature at the time of collection.

Disturbed mesocosms (dashed blue line, n = 9, including Disturbance and Disturbance +

Immigration groups) were acclimated for four weeks at 14°C, increased to 60°C over two weeks,

maintained at 60°C as a thermal press disturbance for eight weeks, then decreased back to 14°C
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Figure 4.1. (cont’d)

over two weeks, and finally maintained for a total of 45 weeks. Four of the disturbance
mesocosms received homogenized soil slurry from Control mesocosms as a dispersal event at
week 17, after the thermal press was released (Disturbance + Immigration treatment; see

methods). Note the break in the x-axis time scale between weeks 20 and 45.
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RNA/DNA co-extraction

To obtain RNA and DNA from the same cell pool, we minimally modified a manual
coextraction protocol originally published by (27). For each sample, 0.5 g of flash-frozen soil
was added to Qiagen PowerBead Tubes containing 0.70 mm garnet beads. Next, 500 uL of a 5%
CTAB/Phosphate buffer and 500 uL of phenol:chloroform:isoamyl alcohol were added to each
PowerBead tube. Cells were then lysed using a Model 607 MiniBeadBeater-16 (BioSpec
Products Inc.) for 30 seconds, followed by a 10 min centrifugation at 10,000 x g and 4°C. The
top aqueous layer was transferred to a fresh tube and 500 uL chloroform:isoamyl alcohol was
added. The tubes were inverted several times to form an emulsion before a five minute
centrifugation at 16,000 x g and 4°C. The top aqueous layer was transferred to a clean 1.5 mL
centrifuge tube. Nucleic acids were precipitated by adding two volumes of a 30% PEG6000
1.6M NaCL solution, inverting several times to mix, and incubating on ice for two hours. After
incubation, nucleic acids were pelleted by a 20 min centrifugation at 16,000 x g and 4°C. The
supernatant was removed from each tube and one mL of ice-cold ethanol was added to the
pelleted nucleic acids. Tubes were centrifuged for 15 min at 16,000 x g and 4°C, and the ethanol
supernatant was removed. Pelleted nucleic acids were left to air dry before resuspending in 30 uL
of sterile DEPC-treated water.

To purify the RNA, co-extracted nucleic acids were diluted 1:100 before treatment with
Ambion Turbo DNA-free DNase kit, using the robust treatment option in the manufacturer’s
instructions. Extracted nucleic acids were mixed with 0.1 volumes of the 10X Turbo DNase
Buffer and three uL of TURBO Dnase enzyme (six units total) and incubated at 37°C for 30 min.
After incubation, 0.2 volumes of DNase inactivation reagent was added and incubated for five

minutes at room temperature before a five min centrifugation at 2,000 x g and room temperature.
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The treated supernatant was removed and used as the template for reverse transcription. RNA
purity was assessed by PCR (see below for details) and showed no amplification. Reverse
transcription was performed with random hexamers using the SuperScript III First-Strand
Synthesis System for RT-PCR(Invitrogen) per manufacturer’s instructions.

PCR of ¢cDNA and no-RT controls was performed using the Earth Microbiome Project
16S rRNA gene V4 primers(515F 5’-GTGCCAGCMGCCGCGGTAA-3’, 806R 5°-
GGACTACHVGGGTWTCTAAT-3") (16, 28). Temperature cycling was as follows: 94°C for
four minutes followed by 30 cycles of 94°C for 45 seconds, 50°C for 60 seconds and 72°C for 90
seconds followed by a final elongation step at 72°C for 10 minutes. Products were visualized

using gel electrophoresis.

16S rRNA and 16S rRNA gene sequencing and processing

Here, for simplicity we use “microbiome” to refer to the bacterial and archaeal
community members captured by amplifying and Illumina sequencing of the 16S ribosomal
RNA and DNA (rRNA gene). Library preparation and sequencing was performed by the
Michigan State University Genomics Core Research Facility. A single library was prepped using
the method in Kozich et al (2013) (29). PCR products were normalized using Invitrogen
SequalPrep DNA Normalization Plates. This library was loaded onto 4 separate Illumina MiSeq
V2 Standard flow cells and sequenced using 250bp paired end format with a MiSeq V2 500
cycle reagent cartridge. Base calling was performed by the Illumina Real Time Analysis (RTA)
V1.18.54.

All samples were first checked for any contaminating primer sequences using

cutadapt(30), before being processed together using the USEARCH pipeline (31, 32). Briefly,
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paired end reads were merged using -fastq _mergepairs and then dereplicated using -
fastx_uniques. Reads were clustered de novo at 97% identity and then the original merged reads
were mapped to the representative sequences of each cluster. Each OTU was classified using

SINTAX(33) and with the Silva database (version 123, (34)).

Designating Total and Active Communities

Each RNA and DNA sample was rarefied to 50,000 reads in R using the vegan package
version 2.5-4 (35) discarding any samples which did not contain sufficient reads (Figure 1.1).
Samples for which either the RNA or DNA did not have 50,000 reads were omitted from the
analysis presented here (12 out of 135 in total). The Total community was defined as the
community recovered in the DNA reads. The Active community was defined per sample, using
the DNA read numbers of those taxa that had 16S rRNA:rRNA gene ratio was >1 in each
sample(36). Consequently, while every sample was initially rarefied to 50,000 reads, each
sample’s active community varied slightly in total reads. Finally, we did not include taxa that
had undefined rRNA:rRNA gene ratios (“phantoms”) in the analysis (Figure I.2, see discussion

in supplementary materials).

Quantitative PCR (qPCR)

qPCR was performed on the V4 region of the 16S rRNA gene and conducted in a BioRad
CFX gPCR machine using the Absolute QPCR Mix, SYBR Green, no ROX (Thermo Scientific).
Each reaction contained 12.5ul of the 2X Absolute QPCR Mix, 1.25 ul each of 10uM primers
515F and 806R, 3uL of template DNA and 2uL of PCR grade water. Temperature cycling

conditions were as follows: 15 minutes at 95°C, followed by 39 cycles of 94°C for 45 seconds,
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50°C for 60 seconds, and 72°C for 90 seconds, followed by a final elongation step at 72°C for 10
minutes. Fluorescence was measured in each well at the end of every cycle. Extracted gDNA
from E. coli MG1655 was used for the standard curve, and was run in triplicate with every plate.
Samples were run in duplicate across different plates and those that amplified after the lowest
point of the standard curve (27 copies per reaction) were treated as zeroes. No template controls
were included in every qPCR plate and they never amplified. Amplification specificity was

assessed by melt curve (60°C to 95°C, 0.5°C increments).

Calculating resistance and resilience of community structure
We calculated resistance and resilience as described in Shade and Peter 2012 (6) and
Orwin and Wardle 2004 (8). These are unitless metrics that have a theoretical range from -1 to 1.
Resistance of the active community structure at week 10 was calculated for every disturbed
mesocosm using Equation 1:
Eq. 1

2%|yc—
RS — 1 _ |YC Yd|
Yetlye—yadl

, where y. is the mean Bray Curtis similarity for Control mesocosms at week 10 compared to
week 4 (pre-disturbance), and y, is the individually calculated Bray Curtis similarity of each
disturbed mesocosm at week 10 to week 4. Resilience of the active community in each disturbed
mesocosm was calculated for the observed secondary succession (week 16 to 45) as well as the
initial (week 16 to 20) and the long-term (week 20 to 45) secondary succession using Equation 2.

Eq 2.
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, where s is the start of the secondary succession and e is the end, y.s is the mean Bray Curtis
similarity of Control mesocosms at week S to week 4 (pre-disturbance), yq s is the Bray Curtis
similarity of each disturbed mesocosm at week S to week 4 (pre-disturbance), y.. is the mean
Bray Curtis similarity of Control mesocosms at week e to week 4, and yq4. is the Bray Curtis

similarity of each disturbed mesocosms at week e to week 4.

Ecological statistics

Ecological analyses were performed in R (37). The adonis and anosim function in the
vegan package was used to perform PERMANOVAs (38) and ANOSIM respectively, to assess
disturbance and immigration effects on community composition, and the betadisper function was
used to quantify beta dispersion (39) with Tukey’s Honestly Significant Difference post-hoc test
across Control, Disturbance, and Disturbance + Immigration treatments. Pairwise tests for alpha
diversity (Richness and Pielou’s Evenness), community size (i.e. 16S rRNA gene copies per
gram of soil), and resilience values were performed using the Kruskal-Wallis test, with Dunn’s
post-hoc correction for multiple comparisons when needed to assess differences between control,
disturbance, and immigration treatments. Principal coordinates analysis was used for ordination
of pairwise sample differences based on Bray-Curtis dissimilarity. Procrustes superimposition
(PROTEST) was performed using the procrustes function in the vegan package to compare
community structure trajectories in direction and extent of change and a false discovery rate
adjustment was used for multiple tests. Data visualizations were performed using ggplot2 (40).

Heatmaps were made using the heatmap.2 function in the gplots package (41).
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To understand potential roles of dormancy initiation and resuscitation in driving
community resistance and resilience, we distinguished between taxa that changed in their activity
from taxa that changed in their detection over the course of the disturbance. Taxa that fell below
detection (there was no rRNA gene detected in a particular sample) were coded differently for
the heatmap than taxa that became inactive (rRNA:rRNA gene shifted from > 1 to < 1). For the
heatmap, we used the Active community for the input data, but coded taxa that fell below
detection in the Total community as NAs to distinguish them from inactive taxa, which were
coded as 0. Notably, taxa that fell below detection in the Total community could have been either
active, inactive, or locally extinct. To conservatively attribute activity dynamics, we restricted
the heatmap visualization only to the taxa that were among the 50 most abundant in Active
samples over the course of the experiment.

Responsive taxa were those that changed in activity over secondary succession (between
weeks 16, 20, and 45) by their 16S rRNA:rRNA gene ratio, either from<1to>1or>1to<1.
Immigrant taxa were undetected in all disturbed mesocosms at week 16, but detected in Control
mesocosms at Week 16 and Disturbance + Immigration mesocosms at either week 20 or week 45
while remaining undetected in the Disturbance mesocosms. Contributions of responsive and
immigrant taxa to beta diversity were calculated as the Bray-Curtis dissimilarity attributed to the
responsive taxa subset and divided by the total Bray-Curtis dissimilarity, both calculated from
the Total (DNA) community, as done previously to assess the contributions of conditionally rare

taxa (42) and the contributions of core taxa (43) to beta diversity
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Data availability and code

Sequence workflows, OTU tables, and statistical workflows to reproduce the analyses
described here are available on GitHub
(https://github.com/ShadeLab/PAPER Sorensen InPrep Mesocosms). All raw sequence data

are deposited in the NCBI Short Read Archive under BioProject PRINA559185.

Results
Sequencing summary

In total, we sequenced 135 pairs of samples (cDNA and DNA) across nine timepoints and
15 mesocosms. We rarefied all samples to 50,000 reads, and removed those samples with fewer
than 50,000 reads. This resulted in the removal of 12 samples and left 53 unwarmed Control, 36
Disturbance, and 34 Disturbance + Immigration pairs of samples. After rarefaction, sample
richness ranged from 84 to 4,108, with 16,854 total OTUs observed, inclusive of both DNA and

RNA datasets.

Overarching responses to the thermal press disturbance

Total community richness responded consistently and as expected to the thermal press
disturbance. There was a notable bottle effect of maintaining field soil in mesocosms, indicated
by the gradual decrease in richness over time in the unwarmed Control treatment (Figure
4.2AB). In the Disturbance treatment, there was a modest but statistically supported decrease in
richness one week after warming from 14°C to 37°C (week 5 all Disturbance v. Control
comparison, Kruskal-Wallis test, p = 0.003), and then a more substantial decrease after warming

to 60°C at week 6 (Kruskal-Wallis test, p = 0.002). Disturbance community size decreased over
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weeks four to seven and then maintained at a median of 1.03 x 10" rRNA gene copies per g soil
(Figure 4.3). Control communities decreased until week seven (bottle effect) and then increased
rapidly by week ten and generally stabilized at median of 2.98 X 10% 16S rRNA gene copies/g
soil (Figure 4.3A). Together, these results show that the warming treatment acted as an
environmental filter, resulting either in death or population decreases past the limits of detection
for taxa that were otherwise fit in unwarmed conditions. Furthermore, there was a weak increase
in richness after the dispersal event in the Disturbance + Immigration treatment, relative to the
Disturbance treatment (Kruskal — Wallis test p= 0.088 at week 20, and p = 0.168 at week 45),
and this increase was also observed for community size, which approaches that of the unwarmed
control (Kruskal — Wallis test Control vs Disturbance + Immigration p=0.11, Control vs
Disturbance p=0.0004, Disturbance vs Disturbance + Immigration p=0.013) (Figure 4.3B). This
suggests that the dispersal treatment was effective in promoting the process of recovery in
richness and community size. Importantly, Disturbance and Disturbance + Immigration
mesocosms were not significantly different in either richness nor community size prior to the
immigration event (Table H.1 and Table H.2) However, disturbed mesocosms did not
completely recover richness to the level of the ambient Controls, even by week 45 (Figure

4.2B). Evenness followed the same overarching patterns as richness (Figure 4.2CD).
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Figure 4.2. Changes in alpha diversity over the disturbance experiment.

Alpha diversity was assessed using operational taxonomic units clustered at 97% sequence
identity, after 16S rRNA gene sequencing and rarefaction to 50,000 sequences per sample. (A)
Changes in the observed no. OTUs (richness) in Control (gold, circles) and Disturbance (blue,
squares and triangles) mesocosms over the thermal press (weeks 4-16). (B) Changes in richness
in Control (gold circles), Disturbance (blue squares), and Disturbance + Immigration (pink

triangles) mesocosms over the recovery period, weeks 20-45. The Disturbance + Immigration
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Figure 4.2. (cont’d)

mesocosms received a dispersal event at week 17. (C) Changes in evenness over weeks 4-16. (D)
Changes in evenness over weeks 20-45. Asterisks indicate significant differences by a Kruskal
Wallis test (n.s = not significant; * p<0.1, ** p<0.01, *** p<0.001, with a Dunn correction for

multiple comparisons in B and D).
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Figure 4.3. Changes in community size over the disturbance experiment.

Community size was estimated using qPCR of the 16S rRNA gene and standardized per gram of
soil from which nucleic acids were extracted. (A) Changes in the 16S rRNA gene copies in
Control (gold, circles) and disturbed (blue, squares and triangles) mesocosms over the thermal
press (weeks 4-16). (B) Changes in the 16S rRNA gene copies in Control, Disturbance (blue
squares) and Disturbance + Immigration (pink triangles) mesocosms over the recovery period,
weeks 20-45. The Disturbance + Immigration mesocosms received a dispersal event at week 17.
Asterisks indicate significant differences by a Kruskal Wallis test (n.s. = not significant, * p<0.1,

** p<0.01, *** p<0.001, with a Dunn correction for multiple comparisons in B).
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We compared community structure across treatments for the Total community dataset,
rRNA gene; 14,159 OTUs) and the Active dataset (rRNA:rRNA gene > 1; 6,693 = OTUs). There
were clear and consistent shifts in beta diversity in the disturbed mesocosms (n=9, inclusive of
Disturbance and Disturbance + Immigration), as well as high reproducibility among replicates in
community structure within treatments as shown by the overlap of symbols per treatment and
timepoint in the ordination (Figure 4.4). As compared to the Controls, the disturbed mesocosms
had increased betadispersion (variability in community structure) starting at week 6 onward, with
the exception of week 10 (Figure 4.5). Over the experiment, disturbed mesocosms had distinct
community structures compared to Control (disturbed v. Control PERMANOVA PsuedoF =
63.87, Rsqr = 0.345, p=0.001 for Total communities, and PsuedoF=35.97, Rsqr=0.229, p=0.001
for Active communities, all timepoints). Control communities were relatively stable over the
study, while disturbed communities changed directionally, and were significantly different from
Control communities after a single week of warming (week 5 Control vs Disturbed
PERMANOVA PsuedoF = 3.06, Rsqr=0.218, p=0.001 for Total community and PsuedoF= 2.88,
Rsqr=0.208, p=0.001 for Active community, Table H.3). Disturbed communities continued to
shift with temperature during the course of the experiment, and then shifted slightly back
towards the Control after the stressor was released and Disturbance and Disturbance +
Immigration communities had similar structures during the press (Table H.4). Though no
disturbed mesocosms fully recovered to overlap with the Control communities, the Disturbance
+ Immigration mesocosms were more similar to the Control than the Disturbance mesocosms
without dispersal (Figures 4.2B, 4.3B, 4.4) . Across all treatments, Total communities and
Active communities were synchronous in their temporal trajectories (Mantel R =0.943, p = 0.001

on 999 permutations; Protest Sum of Squares =0.238, R=0.873, p=0.001), but there was higher
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betadispersion in the disturbed treatments for the Active communities (Comparing Total v.
Active for disturbed mesocosms, Kruskal Wallis p=0.029). This suggests that there was Active

community variability masked by the contributions of dead and dormant taxa to the Total

community.
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Figure 4.4. Changes in beta diversity over the disturbance experiment.

Pairwise differences in community structure was quantified using pairwise Bray-Curtis

dissimilarity and then ordinated using Principal Coordinates Analysis (PCoA). Time is shown by

symbol size, and mesocosm temperature is indicated by heat colors, with the brightest red

indicating the warmest time point. Control mesocosms are circles, Disturbance are squares, and

Disturbance + Immigration are triangles. (A) PCoA of the Total community, assessed using

sequencing of the 16S rRNA gene. (B) PCoA of the Active community, including only OTUs

that had 16S rRNA:rRNA gene > 1.
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Figure 4.5. Changes in beta dispersion over the disturbance experiment.

Beta dispersion, an indicator of variability in community structure, was quantified using the
distance to the median in ordination space (Figure 4.4.), which was constructed based on Bray-
Curtis dissimilarity. (A) Changes in beta dispersion in Control (gold, circles) and Disturbance
(blue, squares and triangles) mesocosms over the thermal press (weeks 4-16). (B) Changes in
beta dispersion in Control, Disturbance (blue squares), and Disturbance + Immigration (pink
triangles) mesocosms over the recovery period, weeks 20-45. The Disturbance + Immigration
mesocosms received a dispersal event at week 17. Asterisks indicate significant differences with
a Tukey’s Honestly Significant Difference post-hoc test (n.s. = not significant, * p<0.1, **

p<0.01, *** p<0.001). Note differences in y-axis ranges between A and B.
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Replicate disturbed mesocosms (again, inclusive of Disturbance and Disturbance +
Immigration) had highly reproducible responses during the press. They had high overlap in
membership and overall synchronous trajectories (i.e. changes in community structure through
time), even after the immigration event at week 16 (33 of 36 PROTEST all R > 0.89 and false-

discovery rate adjusted p-values < 0.05).

Resistance and resilience

For the Active community, we calculated resistance and resilience of the disturbed
mesocosms relative to the Control using community divergence from the first sampling time
(Week 4, end of acclimatization period) as the reference (Figure 4.6A). Even in the Control
communities, there was an initial drop in similarity between weeks 4 and 5, which we attribute to
incomplete acclimatization and a bottle effect. However, after that, the Control communities
remain relatively stable with no additional divergence, while the disturbed communities
decreased to their maximum divergence at week 10 (60°C).

Disturbance + Immigration communities converge slightly after the dispersal event.
Overall resistance was low (Figure 4.6B), and resilience reached its maximum, 0.41, in the
immigration treatment between weeks 16 (the time point at which the thermal press was
released) and the final week 45, but ranged from a minimum of 0.04 between week 16 and 20 in
the Disturbance without immigration treatment (Figure 4.6C-E). Immigration enhanced
resilience from week 16 to week 20 (Kruskal Wallis p value 0.034) and from week 16 to week
45 (Kruskal Wallis p value 0.083), but not from week 20 to 45, possibly because of insufficient
power (Kruskal Wallis p value 0.180). Notably, there were only two Disturbance mesocosm

replicates (out of five) that met the rarefaction threshold for week 45.

170



>
(o9)

0.012+ >

1.001 4 Treatments
O Control
0.75 1 O Disturbance 0.009-

/\ Disturbance + Immigration

Resistance
o
o
o
®

Bray-Curtis similarity to week 4

0.50 1 ‘
0251 \‘. 0.003-
‘ 7 RS A
OOO_ é“—ﬂ———%.’.i._a ________________________________________ _@ 0.000- =‘=I
456 10 1diste 20 Week 45 Week 10
C Week 161045 D Week 161020 [ Week 20 to 45
0.5 | _
N S
- _ | __ns.
(0] $
% 0.3 ] I |
%
g 0.2 o s ] | i
$ —
0.1 | |
e
0- T -
B + - . _+ — +
Immigration

Figure 4.6. Resistance and resilience of soil mesocosm communities to a thermal press.

(A) Temporal series of community divergence from pre-disturbance community (week 4) in
Control (gold solid line), Disturbance (blue short dashed line), and Disturbance + Immigration
(pink long dashed line) to calculate resistance and resilience. (B) Resistance of disturbed
mesocosms at week 10, the time point of maximum community change after the thermal press
begins. (C-E) Resilience of disturbed mesocosms without (-) and with (+) immigration,
calculated after the thermal press is released (week 16) for the (C) full recovery to week 45, (D)
initial recovery to week 20, and also for (E) long-term recovery from weeks 20 to 45. Asterisks

indicate significant differences by a Kruskal Wallis test (n.s. = not significant, * p<0.1).
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We wanted to assess the relative contributions of taxa that activate or inactivate after the
disturbance subsides to the overall beta diversity (weeks 16-45). We also wanted to assess the
relative contributions of taxa that colonized after dispersal. We calculated the relative
contribution of activity dynamics by identifying taxa that switched between an active and
inactive state during secondary succession. We found that these dynamically active taxa
contributed 11.7% to 58.9% (median 28.6%) of the observed beta diversity, while immigrants
contributed 7.9% to 26.3% (median 14.7%) of the observed beta diversity during the same time

period.

Activity dynamics of abundant taxa

We investigated the activity dynamics of the top 50 most abundant taxa within the Active
communities, and distinguished taxa that became inactive (rRNA:rRNA gene < 1, white cells in
Figure 4.7A) from taxa that fell below detection (rRNA gene = 0, black cells in Figure 4.7A,
see Methods for details). Within this set of 50, we detected no purely resistant taxa that were
consistently active throughout the experiment. This finding agrees with the analyses showing
low resistance (Figure 4.6B) and substantial shifts in the disturbed communities (Figure 4.5).
We detected 17 taxa that were sensitive to the disturbance (Figure 4.7B). Sensitive taxa were
active prior to the warming but became inactive or dropped below detection during the warming,
and then did not reactivate. We also detected 19 transition taxa that were inactive prior to the
warming, active during the warming, and then became inactive after the stressor was released.
Because there was no external dispersal into the system, these thermotolerant taxa were likely in
the dormant pool of the soil. We could divide these responses generally into early and late

transition taxa. There were 6 early transition taxa that became active during week 5 or 6 of the
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experiment, but then became inactive at weeks 10 and 14. There were also 13 late transition taxa
that remained inactive during weeks 5 and 6 but became active during weeks 10 and 14.

Among the top 50 Active taxa, we did not detect purely resilient taxa that were active
prior to the warming, became inactive during the warming, but then reactivated after the return to
ambient temperature. This suggests that dormancy strategies responsive to warming were not a
substantial contributor to member preservation, nor to eventual re-seeding. Instead, opportunists
and immigrants facilitated resilience in the mesocosms. The opportunists were defined as
inactive or below detection prior to and during the warming, but then activated after the
temperature returned, likely due to resuscitation, and there were five taxa in this category. Eight
immigrants were generally active prior to the warming, dropped to below detection or became
inactive during the warming, and then in the end, were active again only in the Disturbance +

Immigration treatment (and not in the Disturbance mesocosms without immigration).
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Figure 4.7. Activity dynamics of abundant taxa in response to the press disturbance.

(A) Heatmap and dendrogram of abundant taxa reveal common patterns of detection and activity.
Black cells are taxa that were undetected (coded as NA) in the 16S rRNA gene (DNA)
community, and white cells are taxa that were detected in the DNA but had 16S rRNA:rRNA
gene < 1 (inactive, coded as 0). The heat gradient indicates each taxon’s abundance relative to its
maximum observed in disturbance treated mesocosms during the experiment. Immigration is
indicated for weeks 20 and 45 by minus (no) and plus (yes) signs. (B) Summary of activity
response patterns to the disturbance of the top 50 taxa, including resistant, sensitive, early and
late transition, resilient, opportunist, and immigrant taxa. Definitions of each of these categories

of taxa are found in the main text.
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Discussion

Our results show that both dispersal and local dormancy dynamics, including activation
and inactivation, can contribute to overarching patterns of community resilience. The dispersal
event simulated in this experiment posed an optimistic scenario: well-mixed, control soils were
mixed into disturbed soils to maximize the volume of the disturbed soil that came into contact
with the inoculum. Regardless, by all metrics (beta diversity, alpha diversity, community size),
immigration was impactful. These data directly show that dispersal can augment resilience
towards recovery, supporting our hypothesis. Given that the influences of dispersal on
community assembly has been investigated previously (often indirectly for bacterial and archaeal
microbiomes, as inferred from the contributions of stochastic or neutral processes e.g., (20, 44—
47)), this result is in agreement with the consensus of the literature that dispersal and dispersal
limitation can matter for assembly (48—50).

A new result is that local resuscitation also contributes to microbiome community
transitions during disturbance, and to resilience after the stress is released. Among the most
abundant taxa, there were near equal numbers of taxa that contributed to resilience via
resuscitation and to resilience via immigration. While, the influence of resuscitation on resilience
was not as impactful as that of dispersal (Figure 4.6), changes in activity dynamics contributed
28.9% to the observed beta diversity during secondary succession. Therefore, both mechanisms —
local resuscitation and regional immigration — contribute to microbiome stability, but potentially
to different extents. The microbial dormant pool is important for maintaining microbial diversity
(51) and has evolutionary implications for traits that persist within inactive populations (52). To
make more explicit the role of dormancy dynamics for community disturbance responses (e.g.,

(53)), the phenomenon of the “storage effect” underpins modern coexistence theory (54) and
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refers to the ability of competing species to coexist when their growth and activities are
separately partitioned over time, typically in dynamic environments (55). Given the severity of
the thermal stressor in Centralia and in this experiment, our results suggest that the soil microbial
dormant pool is deep, in that it contains functionality for distinctive conditions, like thermal
stress, that are not within the expected range of environmental variability. Our finding support
other studies which have found thermophiles in unexpected environments such are arctic
sediments and temperate soils (56—58).

Alternatively, it could be that, rather than local resuscitation, extremely rare but active
taxa that were below the limits of detection grew rapidly and repopulated to become among the
most active and abundant taxa. These data cannot rule out this possibility, and, if true, it would
suggest an interesting role for release of rare taxa from competition (via death or inactivation of
the competitors sensitive to the warming) in driving post-disturbance assembly. However, given
that no resistant taxa were detected that could withstand the wide temperature range in the
experiment, conditional rarity may be a less common scenario than opportunistic resuscitation.

Another goal of the experiment was to understand the reproducibility of member
resuscitation given the press disturbance, and from the same soil. Because we observed high
divergence in the hot soil communities in Centralia that was not attributable to any measured
environmental variable, including temperature (20), we hypothesized that stochastic resuscitation
could initiate priority effects (e.g., (10)), leading to divergent hot communities. However, we did
not see the strongest differences in beta dispersion between Control and disturbed mesocosms
until the press was subsiding (Weeks 15 and 16 in Figure 4.5). This, along with the overall
strongly-correlated trajectories of disturbed community structures, suggest that the disturbance

responses were consistent across disturbed mesocosms and do not support our hypothesis that
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priority effects (initiated by different resuscitating membership) determines community structure
during the press. Therefore, we interpret that resuscitation in response to the thermal stress was
largely deterministic, and that observed divergences among hot soil communities in the field may
be instead attributed to either differences local edaphic factors that were unmeasured, different
structures of the underlying dormant pools, or stochasticity in regional dispersal during
secondary succession.

Moving forward, there are several insights gleaned from this experiment. For soil,
measuring dispersal in the field is difficult, given the various means by which microorganisms
may arrive to a locality, including wind, ground water, and invertebrate vectors. Therefore,
controlled experimentation is needed to quantify the contributions of dispersal to secondary
succession. However, measuring activity dynamics and estimating the dormant pool of microbes
in field samples, while imperfect, is possible (19, 36, 59, 60). Because our experiment suggests a
role of resuscitation in determining the community that thrives during the disturbance, and also
an influence of resuscitation for secondary succession towards recovery, we recommend to
collect member activity data. More generally, routine characterization of the dormant pool of
soil microbes, including its stability, diversity, and functions, can provide insights into the roles
of these inactive taxa for disturbance responses.

Microbiome stability is a progression along a trajectory, including a pre-disturbance
community with a variance around a mean structure or a routine seasonal dynamic, a transition to
an ephemeral community structure during the disturbance, and finally, after the disturbance is
released, secondary succession towards either recovery or an alternative stable state.
Longitudinal series of microbiome structure inclusive of all stages of this trajectory can be

informative. Characterizing the full disturbance trajectory will allow for quantification of the
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different and potentially changing mechanisms that support stability (e.g., resuscitation,
conditional rarity, immigration), and will facilitate prediction given new stressors. In our
experiment, one week of stress was sufficient to observe community sensitivity (by week 5, the
control and the disturbance treatments were statistically different), but 29 weeks after the stress
was released was not sufficient to observe complete recovery, though it seems that recovery is
possible given the trajectory toward the controls. We expect that this time frame of response may
be typical for many soils (61) and it can be used to inform future studies.

To conclude, this experiment shows both dispersal and dormancy dynamics can
contribute to soil microbiome resilience in response to a press stress. Specifically, resuscitation
of thermotolerant members contributed to microbiome transition during press, and then
immigration provided a substantial boost to recovery beyond what was achieved with
resuscitated opportunists. Because activity responses to the disturbance were consistent, these
results suggest that predictive insights into microbiome resilience can be advanced more
generally. We expect that accounting for mechanisms of local resuscitation and regional
dispersal together will advance quantitative understanding of environmental microbiome

stability.
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Supplemental Results
Relationships between taxon activity and abundance

The conventional thought is that relative abundance is the outcome of growth and
therefore an indicator of fitness, and so high relative abundance is indicative of recent or current
activity in the environment. However, we detected a weak, but statistically supported, inverse
(log10) relationship between OTU 16S rRNA:rRNA gene ratio and relative abundance for those
taxa with an rRNA:rRNA gene ratio >1 (Figure I.2A, Pearson’s R =-.14, p < 0.0001). This
result is in agreement with other studies that have suggested that rare taxa may have high activity
levels relative to their abundance in the community (42—46). We present it here to be transparent
that there are likely additional active but rare members that contribute to stability that have not
been considered in our analyses.

The inverse relationship between activity and abundance could not include taxa that had
RNA but no DNA detected (aka “phantom taxa”, (44)) because they have an undefined 16S
rRNA:rRNA gene ratio. We make clear that, to be conservative, phantom taxa (that have RNA
but no DNA detected) were not included in the analyses, and that rare taxa that had high activity
ratios were not included in the description of activity response patterns among the top 50 most
abundant taxa. On balance, phantom taxa contributed proportionally few rRNA reads and few
unique OTUs to the dataset (Figure 1.2 B and C). However, there were a few exceptions,
including five samples that had >10% rRNA reads and > 50% of richness attributed to phantom
taxa. Four of these were from the Disturbance mesocosms at week 14 (peak-thermal press), and
one sample was from week 16, at the end of the press. These samples also had relatively low

richness and community size (Figure 4.2 and 4.3). We speculate that, by reducing community
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size and likely also total microbial biomass, the disturbance indirectly provoked relatively higher

contributions by phantom taxa and conditionally rare taxa (47).

182



APPENDIX H

Supplemental tables

183



Table H.1. Kruskal Wallis tests for Richness between Disturbance and Disturbance +

Immigration mesocosms during the press.

Week KW rank sum statistic | p value
4 5.00 0.025
5 1.13 0.289
6 5.33 0.021
10 0.96 0.327
14 0.02 0.885
15 2.00 0.157
16 1.50 0.221
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Table H.2. Kruskal Wallis tests for on community size between Disturbance and

Disturbance + Immigration treatments during press.

Week KW rank sum statistic | p value
4 0.59 0.441
5 0.05 0.821
6 3.38 0.066
10 0.90 0.342
14 0.72 0.396
15 4.21 0.040
16 0.55 0.456
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Table H.3. ANOSIM tests on influence of disturbance on community structure.

Week ANOSIM | P value
R
4 0.17 0.055
5 0.57 0.001
6 1.00 0.002
10 1.00 0.002
14 1.00 0.001
15 1.00 0.002
16 1.00 0.001
20 1.00 0.001
45 0.64 0.003

186



Table H.4. ANOSIM results of community structure differences between Disturbance and

Disturbance + Immigration mesocosms during the press.

Week | ANOSIM | p value
R

4 0.54 0.038

5 0.15 0.222
6 -0.06 0.515
10 -0.05 0.63

14 0.07 0.449
15 0.20 0.196
16 0.04 0.359
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Figure I.1. Rarefaction curves for soil mesocosm microbial communities.
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Figure 1.2. Taxon activity and abundance relationships.

(A) Logl0 relative abundance and log10 rRNA:rRNA gene ratio were inversely correlated. Each
point is a different OTU detected in the dataset that had 16S rRNA:rRNA gene greater than or
equal to 1. (B) Distribution of percent sample richness (No. OTUs detected, inclusive of DNA
and RNA datasets) that were phantom taxa (16S rRNA detected but not 16S rRNA gene). (C)

Distribution of percent RNA reads attributed to phantom taxa.
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CHAPTER 5: Conclusions and Future Directions
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Summary

The work presented in this dissertation used the coal fire in Centralia, PA as a model
disturbance to answer questions about the disturbance ecology of soil microbial communities.
Chapter 2 broadly looked at changes in microbial community diversity in response to and in
recovery from temperature disturbance. Fire affected soil microbial communities harbored fewer
microbial taxa and were more divergent in the community structure than either reference soils or
recovered soils. Using the framework of Vellend(1) and Nemergut(2) to investigate this
divergence in community structure, little support was found for the community assembly
processes of drift, dispersal, or selection driving this observed divergence. We hypothesized that
stochastic resuscitations of local dormant microbes initiated priority effects in the soils, and
thereby causing the observed divergence. Further, despite this increased divergence in
community structure during disturbance, soils that had recovered in temperature from the
disturbance also showed clear signs of recovery of community. We proposed a conceptual model
for the soil microbial community response to the coal fire wherein community structure was
hypothesized to be driven by priority effects during the disturbance, and by weak environmental
filtering post disturbance.

In Chapter 3, the traits and functional potential of the microbial communities within the
fire affected soils was investigated using shotgun metagenomics. We found that the average
genome size of the soil microbial communities had a strong negative correlation with the
temperature of the soil at the time of collection. Using fluorescence microscopy of soil microbial
cell suspensions revealed that there was also a negative correlation between average cell size
(length) and soil temperature at the time of collection. The changes in genome size were in part

attributable to shifts in community structure, and not contemporary genome streamlining. These
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microbial genomes tended to have fewer two-component regulatory systems and fewer
antimicrobial resistance and production mechanisms. This work provided culture independent
support for the relationship between cell size, genome size, and temperature that had largely been
observed in isolate based studies.

Finally in Chapter 4, we made use of a soil warming mesocosm experiment in order to
test our hypothesis from Chapter 2, that stochastic resuscitations from dormancy initiate priority
effects and drive divergence in community structure across disturbed sites. We used
homogenized soil from a reference site in Centralia, PA to create replicate mesocosms and
subjected them to warming for a period of 12 weeks. While we found no evidence that supported
our hypothesis of priority effects, we were able to assess the importance of dispersal for recovery
from disturbance. A subset of disturbed mesocosms received a dispersal event and these
mesocosms showed much higher resilience than their no dispersal counterparts. These results
reveal the importance of dispersal for recovery from disturbance while suggesting resuscitations
from a dormant seedbank may play a larger during the disturbance itself.

Together these works offer insights into the disturbance ecology of soil microbial
communities in response to elevated temperature. They demonstrate the benefit of apply the
community assembly synthesis of Vellend(1) and Nemergut(2), specifically for understanding
community responses to and recovery from disturbance (Chapter 2), particularly the importance
of dispersal (Chapter 4). Further they provide support that some generalizable relationships

discovered using large isolate collections extend to environmental systems as well (Chapter 3).
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Future Directions

These studies offer a jumping off point for future research on disturbance ecology and the
microbiology of thermal terrestrial systems. Dispersal was shown to be particular important for
resilience of microbial community structure post disturbance. However, due to the design of our
experiment we were unable to assess it’s importance for initial disturbance response. It is
tempting to conclude that dispersal must be important for disturbance response since we
observed a much lower richness of microbes in our warmed mesocosms as compared to our fire
affected field sites. However, bottle effects are common in mesocosm experiments, and our
decision to maintain warmed mesocosms in an aerobic environment at a constant percent
moisture differs from our sampled fire affected sites, which tended to have higher moisture
content and were actively venting high levels of CO,. Assessing the importance of dispersal for
disturbance response could be with the use of reciprocal transplant experiments, where soil cores
from a reference site are placed into a dialysis bag(thereby limiting dispersal into the core) and
moved into a fire-affected site, and vice versa. Similar experiments have been performed to look
at the role of community structure vs environmental conditions on ecosystem processes(3, 4), but
their extension into investigations on dispersal’s role in determining disturbance response could
be valuable.

One process which we were unable to investigate in these studies was diversification.
Due to their large population sizes and capacity for horizontal gene transfer, diversification could
play a particularly large role in the assembly of microbial communities, particularly in cases
where communities remain isolated from each other due to dispersal barriers. However, these
processes are difficult to measure in the environment. Some progress has been made, combining

assembly of shotgun metagenomes, genome binning, and single cell genomics has allowed for
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insights into genetic diversity of wild populations in lakes and sediments(5, 6). However, due to
the complexity and vast diversity of microbes present in soils, using these techniques in those
systems will remain difficult.

Another avenue for future work is in the characterization of the dormant seedbank. An
unfortunate drawback to the methods employed to look at active and dormant communities in
this dissertation is that the designation is made on the per taxa level. That is, the 16S
rRNA:rRNA gene ratio method results in classifying a taxon as either active or dormant.
However, microbes exhibit phenotypic diversity and this extends to cells’ activity rates as well.
In order to predict how a microbial community may respond to a disturbance, it will be
beneficial to know the relative size and composition of the active and dormant community.
Recently, advances in flow cytometry and different labeling methods have led the field to be able
to make an active/dormant classification on a per cell basis, instead of on a per taxon basis.
Bioorthogonal non-canonical amino acid tagging (BONCAT) is a technique used to label
translationally active cells from environmental samples(7, 8). Microbes are extracted from an
environmental sample and then incubated with homopropargylglycine (HPG), a methionine
analog, which is incorporated into new proteins. A fluorescent dye is added that conjugates with
HPG containing proteins, thereby labeling translationally active cells. The translationally active
cells can then be separated from inactive or dormant cells using fluorescence assisted cell sorting
(FACS), and sequenced using traditional high-throughput sequencing methods. Using this cell
specific technique could allow for identifying different dormancy strategies, such as responsive
Vs spontaneous initiation into dormancy, based on the relative abundance of taxa in the dormant

vs active fractions.
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