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ABSTRACT

QUANTIFYING STRENGTH OF EVIDENCE IN EDUCATION RESEARCH: ACCOUNTING
FOR SPILLOVER, HETEROGENEITY, AND MEDIATION

By

Qinyun Lin

It is very rare that education studies have constant intervention effects through simple mechanisms

to independent individuals. It is well-documented that schooling is a complex process because

teachers, students, and administrators interact with each other in a diverse set of social contexts

(e.g., An, 2018; Frank, 1998; Hong, 2015; Kim, Frank, & Spillane, 2018; Maroulis et al., 2010).

As such, considering potential bias due to unobserved or uncontrolled spillover, heterogeneity

and alternative mediators is important to making an inference for policy implications. Addition-

ally, since the ultimate goal of education research is to inform decision-makings in the allocation

of educational resources regarding curricula, pedagogy, practices or school organizations (e.g.,

Bulterman-Bos, 2008; Cook, 2002), education research must be accessible to practitioners. Conse-

quently, a sensitivity framework that can account for all potential sources of bias, including spillover,

heterogeneity and alternative mediators, is required to allow all stakeholders to conceptualize the

quality of evidence independently so that the debate for future policy manipulations can take place

in a more transparent, effective and equitable way.

Drawn on the work by Frank, Maroulis, Duong, and Kelcey (2013), Chapters 1 and 2 in this

dissertation propose a non-parametric case replacement approach to quantify the robustness of

inference in multisite randomized control trials and value-added measures for teacher effectiveness,

accounting for spillover and heterogeneity. Throughout, the Tennessee class size experiment

(Project STAR) is applied to demonstrate the case replacement approach. Chapters 3 and 4 focus

on unobserved mediators in a single-mediator model. Specifically, Chapter 3 examines whether

and how omitting an alternative mediator can bias causal mediation effect estimates in a cross-

sectional single-mediator model. Further, a sensitivity analysis approach is proposed to evaluate

the robustness of causal mediation inference to missing a potential confounding mediator. Chapter



4 continues the discussion in Chapter 3 and a parameter framework is developed to characterize

inconsistency in mediation models. This parameter framework is also applied to a longitudinal

design for a post-treatment confounder.
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INTRODUCTION

This dissertation is centered on causal inference regarding evaluation of an intervention, from

whether an intervention works to why it works, accounting for the social and dynamic contexts in

which interventions are implemented. The first two chapters propose an approach to quantify the

robustness of inference in multisite randomized control trials and value-added measures for teacher

effectiveness. Drawn on the work by Frank et al. (2013), these two chapters further extend the

non-parametric case replacement approach to quantify how much bias due to spillover violations of

SUTVA and presence of heterogeneous treatment effects must be present to invalidate an inference.

Throughout, the Tennessee class size experiment (Project STAR) is applied to demonstrate the

case replacement approach in both contexts of multisite randomized control trials and value-added

measures.

One of the main goals of Project STAR is to study the effect of small class size effect on

student achievement. It is well documented that small class size has a positive effect on boosting

students’ learning, but the effect can vary substantially depending on grade levels and schools

(e.g., Hanushek, 1999; Konstantopoulos, 2011; Pedder, 2006; Schanzenbach, 2007). As shown in

Chapter 1, this also includes the fact that some schools in Project STAR show strong evidence for

negative small class size effects. Additionally, we need to evaluate each school on its own, and to

do so we need to quantify its effect relative to a unique threshold for that school. We also need to

account for how students might influence each other within or between classrooms as these may

bias the estimation of the intervention effects.

Mediating Mechanisms

Underlying this treatment effect heterogeneity are potential mechanisms for how an intervention

affects students’ learning. Specifically, these mechanisms require in-depth studies of complex

classroom and school processes that mediate interventions on students’ learning (Pedder, 2006),

where various factors are included regarding teachers’ practices, classroom discourse routines,

teacher-student interactions, peer relations etc. Studying these mechanisms can tell us why an
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intervention works or not in certain contexts so that future policy manipulations can be better

informed. For example, Harfitt (2013) shows that reducing small class sizes may not work if

teachers do not seek to exploit the advantages of a smaller class size via changing their pedagogies.

With teaching practices serving as a crucial mediator, class size reduction may only work as

expected when coupled with professional development for teachers. As such, studying the causal

mechanismmay allowus to explain the heterogeneity of treatment effects, and to figure out necessary

conditions for realizations of intervention effects, so that later policy manipulations can be better

informed. Otherwise, heterogeneous treatment effects may lead to unexplained inconsistencies that

allow politicians of different persuasions to intentionally select findings that support their preferred

policy choices (Blatchford & Martin, 1998; Pedder, 2006).

Recognizing the importance of studying mediation analysis, Chapters 3 and 4 focus on unob-

served mediators in a single-mediator model. Specifically, Chapter 3 examines whether and how

omitting an alternative mediator that is confounded with an observed mediator can bias causal

mediation effect estimates in a cross-sectional single-mediator model. Further, a sensitivity anal-

ysis approach is proposed to evaluate the robustness of causal mediation inference to missing a

potential confounding mediator. Chapter 4 continues the discussion in Chapter 3 about an un-

observed mediator but further leverages a parameter framework to discuss how the bias (more

precisely, inconsistency) is generated for each path coefficient of interest in a time varying model

consistent with a dynamic process. Applying the Law of Iterated Expectation and the Linear

Regression Framework, the bias (more precisely, inconsistency) generation mechanism underlying

the cross-sectional model can also be applied to a post-treatment confounder in a time varying

single-mediator model.
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CHAPTER 1

QUANTIFYING STRENGTH OF EVIDENCE FOR INFERENCES IN MULTISITE
RANDOMIZED CONTROL TRIALS: CASE REPLACEMENT, SPILLOVER, AND

HETEROGENEITY

1.1 Introduction

In the introduction I described how threats to validity can be interpreted in terms of the sampling

mechanism. The goal of this chapter is to characterize the robustness of a causal inference by

interpreting it as the percentage of a sample that must be replaced with counterfactual no-effect

cases to alter the inference. Most importantly, I will extend this case replacement framework to

attend to violations of the Stable Unit Treatment Value Assumption (SUTVA) and presence of

heterogeneous treatment effects.

The ultimate goal of any educational research is to inform decision-makings in the allocation

of educational resources regarding curricula, pedagogy, practices or school organizations (e.g.,

Bulterman-Bos, 2008; Cook, 2002). Consequently, education research must be accessible to prac-

titioners. There are two overarching principles underlying the AERA’s “Standards for Reporting

on Empirical Social Science Research” guide education researchers to engage stakeholders: the

sufficiency of the warrants and the transparency of the report. But it is not easy for education

researchers to achieve these two principles in practice, especially for varied audiences that may

include stakeholders from various backgrounds: policymakers and practitioners including adminis-

trators, teachers and parents. Effective communication requires a framework to inform discussions

and debate about inferences that make sense to all stakeholders.

Sensitivity analyses can serve as a useful tool to inform debate about specific inferences by

quantifying the strength of evidence in education research. The quality of evidence is quantified

by discussing the conditions that would alter the inference (e.g., Frank, 2000; Imbens, 2003;

Rosenbaum, 2002; VanderWeele & Arah, 2011). These analyses generate statements such as “an

omitted variable would have to be correlated at __ with the treatment and with the outcome to
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invalidate an inference of an effect of the treatment on the outcome.” As such recent approaches to

sensitivity analysis help interpreters of research quantify the conditions necessary to invalidate an

inference drawing on familiar quantities such as correlations (Frank, 2000), percentage of variance

explained (Cinelli & Hazlett, 2018) or graphical representations such as contour plots (Imbens,

2003).

But these existing sensitivity analyses approaches are constrained by specific models and the

discourse is in the language of correlations and variances. We argue that a well-designed sensitivity

analysis framework should go beyond the constraint of specific models and make sense to varied

audiences, including those without any statistics background. As a result, a powerful sensitivity

framework should allow all stakeholders to conceptualize the quality of evidence independently so

that the debate can take place in a more transparent, effective and equitable way. Accordingly, the

resulting policy manipulations can also be based on a well-informed discussion. In addition, the

advantage of going beyond model constraints allows comparisons among different studies.

As an attempt to provide a powerful sensitivity analysis tool that serves these requirements, we

will introduce a non-parametric case replacement approach illustrated by Frank et al. (2013) that

draws on Rubin’s causal model (RCM) (Rubin, 1974) to express concerns about bias in terms of

the characteristics of unobserved, counterfactual data. To demonstrate how this case replacement

framework differs from other existing approaches, we will contextualize our discussions in mul-

tisite randomized control trials (MSTs). The MSTs are highly relevant as they provide evidence

for inference to inform policy manipulations and demonstrate typical education scenarios where

SUTVA and constant treatment effect assumption are rarely satisfied in practice.

For purpose of illustration, we will use the Tennessee class size experiment, or Project STAR

(Student-Teacher Achievement Ratio), to demonstrate our sensitivity approach. There were 79

elementary schools in 42 school districts involved in this 4-year long project to study the effect of

class sizes on student achievement. In each school, kindergarten students were randomly assigned

into small classes (13-17 students), regular classes (22-26 students), or regular classes with a full-

time aid. Teachers were also randomly assigned to these different types of classes. The assignments

4



of students and teachers to different class types were maintained from kindergarten through the

third grade.

1.2 Multisite Randomized Control Trials (MSTs)

Regarded as the “gold standard” and the most powerful experimental design, randomized

control trials (MSTs) are being applied with increasing frequency to measure the effectiveness of

educational interventions. More than 160 evaluations that randomized individuals or groups to

treatment and control conditions have been funded by the National Center for Education Research

of the Institute of Education Sciences (IES) since 2002 (Bloom & Spybrook, 2017). Among

these, MSTs are gaining increasing popularity (Spybrook & Raudenbush, 2009; Spybrook, Shi, &

Kelcey, 2016), where individuals within each site are randomly assigned to treatment and control

conditions. With a large and diverse sample from different sites, MSTs may have several potential

advantages, including stronger generalizability of findings and allowing estimations of cross-site

treatment effect variation (e.g., Bloom, Raudenbush, Weiss, & Porter, 2017; Bloom & Spybrook,

2017). The findings regarding the overall mean treatment effect as well as the variance of cross-site

treatment effects are then both used to inform later policymanipulations. For example, some studies

based on Project STAR suggest that the positive effect of small class size on student achievement in

early grade is large enough to inform education policy (Nye, Hedges, & Konstantopoulos, 2000),

but the small class effect is not consistent in all schools: although students in many schools benefit

considerably, in other schools being assigned in small class shows no effect or even negative effects

on student achievement (Konstantopoulos, 2011). Thus, based on these findings, a policymaker

might conclude that reduction of class sizes might benefit some students, but not all.

Even randomized control trials are not free of bias. The underlying idea of randomization

is to eliminate possible contaminating effects by trying to ensure no systematic differences in

participants’ baseline characteristics. But randomization cannot exclude other sources of error that

can happen in educational settings, such as non-compliance, attrition and problems in intervention

implementation fidelity (e.g., Hanushek, 1999; Sullivan, 2011). These potential sources of bias can
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create validity problem of MSTs as well. For example, it is well-documented that Project STAR

suffers from a number of important design and implementation issues that can create potential

bias (Hanushek, 1999; Konstantopoulos, 2011; Nye et al., 2000). First, the manipulation of class

size, as the intervention of interest, was not implemented with fidelity in all schools. Second,

there was sizable attrition as well as missing test scores in each year. When attrition occurred,

new students were added but there were no pretests available for these new students to verify the

randomization through the experiment. Third, the participating schools were not randomly selected,

instead they had to volunteer to participate. Evidence shows the sample does differ from the total

student population in Tennessee in fall 1986 (Hanushek, 1999). Finally, some students moved

between different classroom types (treatment or control conditions in this project) throughout the

experiment.

1.3 Spillover and Heterogeneity in MSTs

MSTs demonstrate typical education scenarios where SUTVA is rarely satisfied in practice. As

a fundamental assumption for causal inferences, SUTVA requires the treatment status experienced

by one unit does not affect the treatment effect for another (Rubin, 1986, 1990). But it is well-

documented that schooling is a complex process because teachers, students, and administrators

interact with each other in a diverse set of social contexts (e.g., An, 2018; Frank, 1998; Kim et

al., 2018; Maroulis et al., 2010). In many MSTs for educational interventions, each site can be

one classroom or one school, where peer effects can create bias for even the estimation of the

treatment in a single site. For example, in Project STAR, students were randomly assigned to each

treatment condition in kindergarten but because of attrition, new students were added to each grade

every year. With no guarantee that these new students were randomly assigned, they might become

distractors or contributors that can affect other students in the same classroom. It is also possible

that students from different classrooms (i.e., treatment conditions) might interact and learn from

each other, introducing bias to estimating the between-class achievement average (i.e., intervention

effect).
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Whenever a single treatment effect is estimated, there can be heterogeneous treatment effects.

The heterogeneity can stem from differences in any aspect that relates to the realization of the

treatment effect, including individual characteristics, contextual effects and mediating mechanisms.

InMSTs, heterogeneous treatment effects can appear bothwithin sites and across sites, amongwhich

the cross-site inconsistencies of treatment effects can play a crucial role in the generalizability of

the findings and policy implications.

1.4 Strength of Evidence in MSTs

In MSTs, the estimated effects are compared to a certain threshold to make an inference as

a basis for policy implications. Specifically, the thresholds based on statistical significance can

be applied to claim whether the overall mean intervention effect is significantly positive/negative

and whether there are significant cross-site variations. Regardless of the specific definition, a

threshold represents “the point at which evidence from a study would make one indifferent to the

policy choices” Frank et al. (2013). As argued in (Frank et al., 2013), the comparison between

the threshold and the estimate then represents the strength of evidence that supports the inference

that directly links to the policy choice. Thus, all stakeholders should be able to understand this

comparison so that the policy choice can be made after comprehensive consideration and evaluation

of the strength of evidence against potential costs.

For example, if Project STAR supports an inference for a positive small class size effect on

student achievement, then future educational policies would be informed to reduce class sizes.

However, there are debates about whether the inference is strong enough to inform policies. For

instance, Hanushek (1999) maintains that considerable uncertainty about the class size effects

is suggested by a number of important design and implementation issues in the project and the

evidence is not strong enough to show a systematic effect from overall class size reduction policies.

In contrast, Nye et al. (2000) argues that even with shortcomings in implementation, the estimated

class size effects are large enough to inform policies. The debate here is essentially about how far

the estimated effect exceeds the threshold, and how consistent the effect is across different sites.
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Thresholds based on statistical significance require thinking about a repeated sampling frame-

work that conjures a scenario that is beyond the observed data. This can create difficulties for

people without any statistical background. As we will demonstrate, the case replacement approach

proposed in Frank et al. (2013) provides a more intuitive alternative to quantify the compari-

son between the threshold and the estimated effect to inform discussions among all stakeholders.

Additionally, this framework can be applied to any type of threshold.

This study has two goals. First, we want to demonstrate how the case replacement approach

can be applied in MSTs. Second, we aim to extend Frank et al. (2013) work by discussing how

we can quantify the uncertainty to violations of SUTVA and presence of heterogeneous treatment

effects. In the following section, we will first review the case replacement framework proposed by

Frank et al. (2013).

1.5 Case Replacement as a Counterfactual Thought Experiment

In Frank et al. (2013), the authors showed an approach to quantify how much bias there must be

in an estimate to invalidate an inference. Then the bias is interpreted in terms of sample replacement

to inform more intuitive interpretation. In other words, to show how robust an inference is, we ask

a question based on a thought experiment which is counterfactual: what percentage of the sample

should be replaced with counterfactual (unobserved) no-effect cases to invalidate an inference made

from the data? Or if the concern is about external validity, we consider what percentage of the

samples should be replaced with no-effect cases from an unsampled population. The larger the

percentage is, the more robust the conclusion/inference is, the less likely that the finding is only

due to chance or bias.

This case replacement idea can be applied in variousways to characterize the strength of evidence

inMSTs. But the general idea is always about replacing some observed cases with some unobserved

cases. The replacement process can become very flexible depending on: (1) how we select cases

from the observed sample to be replaced (2) what cases are regarded as replacement cases (3)

whether the non-replaced cases in the sample experience any changes during the replacement. In
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the following analysis, we will discuss different ways to consider the hypothetical replacement and

how each approach helps inform the comparison between the threshold and the estimated effect

under different contexts.

1.6 Case Replacement for Quantifying the Strength of Evidence in MSTs

1.6.1 Sources of bias in MSTs.

As discussed above, there can be various sources of bias in MSTs. However, we can regard all

these as essentially violating the random assignment assumption. That is, sources of bias create

differences between the treatment and control group in addition to the experiment condition and

more importantly, these differences affect the outcome measures. For example, attrition and added

students in Project STAR may introduce differences between the small and regular classes that

can lead to differential achievement outcomes. Teacher expectation or reactions to the treatment

condition can be another example for one potential contaminating factor. When these differences

between treatment and control groups are present, they are confounded with the intervention of

interest and we cannot tell whether and how the intervention of interest causes changes separately

from other contaminating factors.

1.6.2 Case replacement for each site when SUTVA holds.

In a counterfactual framework, the violation of random assumption indicates the control group indi-

viduals do not provide an accurate approximation of counterfactuals for treatment group individuals

if they were assigned to the control condition. Or vice versa: the treatment group individuals do

not provide accurate approximation of counterfactuals for control group individuals if they had

been exposed to the treatment condition. In other words, bias is introduced because 1) treatment

group members are compared with observed control group members rather than their counterfac-

tuals: treatment group members if they had received the control and 2) control group members are

compared with observed treatment group members rather than their counterfactuals: control group

members if they had received the treatment (Frank et al., 2013). That is, the way different sources
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of biases create problems can be understood as missing data for individuals if they were assigned

to a different experiment condition (Holland, 1986). This feature that recasts all potential sources

of bias in terms of missing data has been used in the case replacement approach to quantify the

robustness of inference (Frank et al., 2013).

To illustrate, consider in each site we have two experiment conditions: treatment vs control. The

null hypothesis is �0 : `) = `� , where `) and `� are population means under the treatment and

control conditions, respectively. Note these are different outcomes for the same population under

different conditions. Now consider we observe sample averages of treatment and control groups,

denoted as -̄) and -̄� , respectively, and we have -̄) − -̄� > )ℎA4Bℎ>;3 for a significantly positive

intervention effect. In other words, -̄� is used as an approximation of counterfactuals for treatment

individuals’ outcomes if they had received the control. Now in the thought experiment, assume a

proportion of observations, say c, in the control group that cannot serve as accurate approximations

for counterfactuals of the treatment group, due to violations of the random assignment assumption.

And the true intervention effect for these individuals are zero, indicating their true counterfactuals

would be -̄) rather than -̄� if they had received the control. Then the average for the control

condition becomes: -̄� · (1 − c) + -̄) · c. The intervention effect, as the difference between the

control and treatment conditions, becomes -̄) − [-̄� · (1 − c) + -̄) · c]. Setting this difference to

be equivalent to the threshold so that the amount of bias can invalidate the inference, we can solve

for c, where c = 1−)ℎA4Bℎ>;3/( -̄) − -̄�). That is, c characterizes the amount of bias necessary

to invalidate the inference (i.e., the difference between the estimated effect and the threshold), as

the proportion of treatment cases for which the true treatment effect is zero and the control group

members provide biased approximations of their counterfactuals if they had been assigned to the

control condition.

To put it more simply, the case replacement approach quantifies the robustness of an inference by

considering replacing a proportion of the observed control cases with unobserved counterfactuals of

the treatment cases if they had received the control, assuming these treatment cases experience null

treatment effects. This leads to a new estimated effect after replacement: ( -̄) − -̄�) · (1−c) +0 · c.
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By setting this to be equivalent to the threshold, we can solve for c that represents a value that can be

applied to characterize the strength of evidence against a certain threshold for an inference. A larger

c indicates more cases need to be replaced with null-effect cases to invalidate the inference, and

correspondingly, more bias needs to be present to invalidate the inference, which represents a more

robust inference for all sources of bias. This is a very brief review for how the case replacement

approach applies the counterfactual framework to quantify the robustness of inference. See Frank

et al. (2013) for more detailed formalization of this thought experiment.

Similar arguments can be applied for scenarios where the observed treatment effect is positive

but below the threshold: 0 < -̄) − -̄� < )ℎA4Bℎ>;3. Now the goal is to quantify how the

data must change to sustain an inference. Specifically, consider the observed treatment group

average represents a combination of cases experiencing zero effects and threshold level effects,

with proportions c and (1−c), respectively. This gives us: -̄) = (0+ -̄�) ·c+ ()ℎA + -̄�) · (1−c),

from which we can solve for c: c = 1 − ( -̄) − -̄�)/)ℎA4Bℎ>;3. In this scenario, c represents the

proportion of null effect cases that need to be replaced with threshold level effect cases to sustain

the inference. A larger c indicates more evidence is needed to sustain the inference, which means

the estimated effect is further away from the threshold for making an inference.

1.6.3 Case replacement for within-site spillover effects.

Now we want to relax the assumption of no spillover effects: the experiment condition of one unit

can affect the outcome of another unit. That is, we want to conceptualize the potential bias due

to spillover effects within each site so that we can characterize how sensitive the inference of each

randomized control trial is to potential bias caused by spillover effects.

It is important to note that, in order to generate bias, the spillover effects should not be introduced

by the treatment condition, otherwise it becomes a mediator that should be counted as part of the

total treatment effect. We argue that spillover effects should satisfy at least two conditions to

introduce bias: (1) inhere in direct interactions or indirect exposures among individuals; (2)

perform in a way that is independent of the treatment assignment.
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As before, consider we observe sample averages of treatment and control groups, denoted as -̄)

and -̄� , respectively, and we have -̄) − -̄� > )ℎA4Bℎ>;3 for a significantly positive intervention

effect. But we wonder if the observed difference -̄) − -̄� might be biased by either positive

spillover effects in the treatment group or negative spillover effects in the control group, or even

both.

Specifically, assume in the treatment group (with sample size =) ) we have a proportion (rep-

resented by c) ) of cases teaching the other treatment cases =) · (1 − c) ). For each case in the

teaching group, they benefit from teaching the other cases. Define the positive effect of teaching

one case as )� (teaching effect), then teaching other =) · (1 − c) ) cases gives each of them the

benefit of =) · (1 − c) ) · )� . Similarly, each case of the learning group can experience positive

learning effect of =) · c) · !� through studying from the other =) · c) cases. Define the isolated

average outcome in the treatment group, without the spillover effects, as -̄)) , then we should be

able to get the following formula, representing that the observed treatment average is the sum of

the isolated treatment average and positive spillover effects:

-̄) = -̄))
+ c) · =) · (1 − c) ) · )� + (1 − c) ) · =) · c) · !�

= -̄))
+ =) · c) · (1 − c) ) · ()� + !�)

Similarly, assume in the control group (with sample size =�) we have a proportion (represented

by c�) of cases distracting the other control cases =� · (1 − c�). Then each first group case

experiences a level of =� · (1 − c�) · (�� self-initiated distraction effect and each second group

case experiences a level of =� · c� · %�� peer-initiated distraction effect. Denoting the isolated

average outcome in control group as -̄�) , we should be able to get:

-̄� = -̄�)
− c� · =� · (1 − c�) · (�� − (1 − c�) · =� · c� · %��

= -̄�)
− =� · c� · (1 − c�) · (%�� + (��)

Now we can write out the formulas for isolated treatment and control group average, without

any spillover effects, as follows:

-̄))
= -̄) − =) · c) · (1 − c) ) · (!� + )�)

-̄�)
= -̄� + =� · c� · (1 − c�) · (%�� + (��)
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By subtracting the second equation from the first, we get the difference between -̄)) and -̄�)
as the treatment effect. Setting this effect equivalent to the threshold so that the amount of bias can

invalidate the inference, we can get:

-̄) − -̄� − )ℎA4Bℎ>;3 = =) · c) · (1 − c) ) · (!� + )�) + =� · c� · (1 − c�) · (%�� + (��)

This illustrates a general situation when the bias comes from both positive spillover effects

in the treatment group and negative spillover effects in the control group. We can also consider

two special situations: 1) all the bias comes from positive spillover effects in the treatment group

(i.e., %�� + (�� = 0) and we can get -̄) − -̄� − )ℎA4Bℎ>;3 = =) · c) · (1 − c) ) · %� , where

%� (positive effect) = !� + )� ; 2) all the bias comes from negative spillover effects in the control

group (i.e., !� +)� = 0) and we can get -̄) − -̄� −)ℎA4Bℎ>;3 = =� · c� · (1− c�) · #� , where

#� (negative effect) = %�� + (��.

In all three situations, we see the difference between the estimated treatment effect -̄) − -̄� and

the threshold is written as either a linear function of spillover effect (i.e., %� or #�), given c and =,

or a quadratic function of c given the spillover effect (i.e., %� or #� or both) and =. To simplify the

discussion, take the scenario where all bias comes from positive effects from the treatment group

as an example. Figure 1.1 shows bias introduced from spillover effects as a quadratic function of

c) at different levels of spillover effect (i.e., %�). The axis of symmetry is c) = 0.5. Consider

the situations when 0 < c) < 0.5. If c) > 0.5, we can always find another c) from (0, 0.5) that

generates the same (-̄) − -̄� − )ℎA4Bℎ>;3) by symmetry. Then given a fixed amount of %� , we

can see that a larger c) indicates a larger difference between the observed estimated effect and the

threshold. That is, we need to have stronger spillover effects (more individuals teaching others

in the treatment group) to invalidate the inference, indicating a more robust inference. Similar

conclusions hold for sites whose estimated effect is so large that the distance to the threshold

(-̄) − -̄� − )ℎA4Bℎ>;3) is larger than the maximum value of this function, which is 0.25=)%� .

Another way to interpret this is to assume 50% of cases teach the other 50% of cases in the

treatment group (i.e., c) = 0.5). Then we can solve for %� = )� + !� . That is, %� tells us

how large the positive spillover effects must be to invalidate the inference of a positive intervention
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Figure 1.1: Bias introduced by spillover effects.

effect? The larger the resulting %� is, the more robust the inference is to the threat of spillover

effect.

Additionally, by assuming c) = c� = c and %� = #� = ', we can further simplify the

formula for the general scenario where bias is introduced by both positive spillover effects in the

treatment group and negative spillover effects in the control group: -̄) − -̄� − )ℎA4Bℎ>;3 =

(=) + =�) · c · (1 − c) · '. Then we can apply the same approach above, using either c or '

to describe the robustness of inference to potential spillover effects as bias. This way we can

reduce the number of sensitivity parameters while considering spillover effects in both treatment

conditions. Underlying the discussions for spillover effects are also counterfactual interpretations.

By removing the spillover effects among participants, we are in fact trying to come up with the

estimated effect when the SUTVA assumption is satisfied and individuals are independent from each

other. Alternatively, we can consider replacing individuals with other individuals who experience

the same treatment effect but no spillover effect.

The discussion above has made several assumptions for spillover effects. To illustrate, we use

Table 1.1 to present the relations between senders and receivers of spillover effects indicated by

the discussion above, when we wonder whether the estimated effect is biased by positive spillover
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Table 1.1: Quantifying robustness of inference to potential spillover effects under restricted
assumptions.

Individuals within
treatment group

Teaching Learning
A B C D

Teaching A NA B→ A = 0 C→ A = )� D→ A = )�
B A→ B = 0 NA C→ B = )� D→ B = )�

Learning C A→ C = !� B→ C = LE NA D→ C = 0
D A→ D = !� B→ D = !� C→ D = 0 NA

effects within the treatment group. Assume four individuals are in the treatment group: A, B,

C, and D. 50% of them teach the other 50% (c) = 0.5). Specifically, consider A and B teach C

and D. Then Table 1.1 displays the specific spillover effect experienced by each pair of individuals

based on the discussion above. For example, in the first row, A experiences )� (teaching effect) by

teaching C and D but A does not experience any spillover effects from B. Similarly, C experiences

!� by learning from A and B but does not experience any spillover effects from D. As such, several

assumptions are implied here. First, we assume spillover effects are present for pairs of individuals

within one treatment condition group (i.e., either treatment or control) but across teaching and

learning groups (or self-initiated distracting and peer-initiated distracting groups). Second, each

type of spillover effect (either !� , )� , (�� or %��) is constant for different individuals. Inspired

by the Linear-in-Means model in the peer effect literature, these assumptions can help us simplify

the sensitivity approach technique and we can easily apply this for any unknown types of spillover

effects.

But what if we have specific spillover effects that violate these assumptions? Then a weighted

matrix of relations between senders and receivers of spillover effects can provide us with a more

powerful and flexible tool to realize any possibilities. For simplicity, still assume we have four

individuals: A, B, C and D. But now A and B are from the treatment group and C and D are from

the control group. Then we can use a four by four table, as presented in Table 1.2, to specify

spillover effects between each pair of individuals, whether they are from the same experimental

condition or not. For example, the first row lists the spillover effects experienced by individual

A from individuals B, C and D. Importantly, all the off-diagonal cells can have different values
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(the diagonal elements are meaningless because they represent one experience spillover effect from

himself/herself). Assume we have weighted friendship data for all individuals in the sample, then

we can use this table to ask how strong the unit spillover effect through the friendship network

needs to be to invalidate the inference.

Table 1.2: A general approach for quantifying robustness of inference to potential spillover effects.

Treatment Control
Inidividuals A B C D

Treatment A NA B→ A C→ A D→ A
B A→ B NA C→ B D→ B

Control C A→ C B→ C NA D→ C
D A→ D B→ D C→ D NA

Now consider a simple application of this weighted matrix for a scenario where we have a

positive but insignificant estimated treatment effect (i.e.,)ℎA4Bℎ>;3 > -̄) − -̄� > 0 ). We wonder

if the observed difference -̄) − -̄� might be downward biased by positive spillover effects from

the treatment to the control group. That is, individuals in the control group experience positive

effects by interacting with individuals in the treatment group. Table 1.3 demonstrates how Table

1.2 can be applied to study this scenario, where only the bottom left panel shows spillover effects

because that panel represents spillover effects from all individuals from the treatment group to all

individuals in the control group.

Table 1.3: Quantifying robustness of inference to potential spillover effects from treatment to
control group.

Treatment Control
Inidividuals A B C D

Treatment A NA 0 0 0
B 0 NA 0 0

Control C A→ C B→ C NA 0
D A→ D B→ D 0 NA

Now define the positive learning effect experienced by each individual in the control group

through interacting with one individual in the treatment group as !� , each control individual gets

an amount of =) · !� positive spillover effects. Denote the isolated control mean as -̄�) , then we
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can write: -̄�) = -̄� −=) · !� . Now by setting the difference between treatment (-̄) ) and isolated

control mean (-̄�) ) equivalent to the threshold, we obtain: )ℎA4Bℎ>;3 − ( -̄) − -̄�) = =) · !� .

From this we can calculate how large !� must be to sustain a positive treatment effect inference. A

larger difference between the threshold and the estimated treatment effect indicates larger positive

spillover effects (i.e., !�) must be present to sustain an inference.

1.6.4 Case replacement for within-site heterogeneous treatment effects.

As illustrated by Holland (1986), the average causal effect is an average and thus it “enjoys all of the

advantages and disadvantages of averages”. The constant treatment effect assumption says that all

the units in the population of interest experience the same treatment effect caused by the treatment.

This assumption will then allow the average treatment effect to be used to draw causal inference at

the unit level.

One may argue that we only need to draw an inference at an average level rather than at a unit

level. But in educational MSTs, each site may only have very small sample size. The number of

participants in either treatment or control group can be even smaller. For example, small classes

in Project STAR may include fewer than 20 students and most schools only had one to two small

classes. With such small sample sizes, an outlier can have a considerable effect on the group

average.

To quantify how sensitive the inference about the intervention effect in each site is to the het-

erogeneous or the outlier effect, we propose a successive extreme replacement thought experiment.

Because the outlier effect can affect either the treatment or the control group or both, this selective

replacement approach can be applied to both groups. To illustrate, consider a scenario where we

have -̄) − -̄2 > )ℎA4Bℎ>;3 for a significantly positive intervention effect. The goal of this discus-

sion is to characterize how robust this inference for a specific site is to outlier effects. Under this

scenario, we may consider outliers from the higher end in the treatment group or lower end in the

control group. Specifically, we start our replacement from the individual who has the most extreme

outcome in the group, which means the highest in the treatment and the lowest in the control group
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under this scenario. For replacement cases, we may consider the overall grand mean outcome

across all participants within this site, favoring the null hypothesis that there is no treatment effect.

Alternatively, we can replace extreme cases in each group with their own group mean, which means

replacing the highest in the treatment with the treatment mean and replacing the lowest in the control

with the control mean. Figure 1.2 shows both approaches, where the blue dotted line represents the

Figure 1.2: Successive extreme replacement for within-site heterogeneous treatment effects.

control distribution and red solid line represents the treatment distribution. If replacing the most

extreme case is not enough to cross the threshold, we continue by replacing the second extreme

case. We continue this process until the difference between the treatment and control group reduces

to the threshold and we record how many cases need to be replaced to invalidate the inference. The

more we need to replace, the more robust the inference is.
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1.6.5 Heterogeneous treatment effects across sites.

All previous discussions focus on randomized control trials within each site. But one important

advantage of the MST is that it allows researchers to study how consistent the intervention effect

is across different sites. To characterize this cross-site variation, we apply the case replacement

approach for each single site and consider four groups of sites. Figure 1.3 presents how this may

Figure 1.3: Cross-site variation of the intervention effect.

work. The first group (Group 1) includes all sites that show a significantly positive intervention

effect. Applying our case replacement approach, we can quantify the strength of evidence for

each site by considering what percent of observed cases need to be replaced with no effect cases

to invalidate the inference of a positive intervention effect. As such, we get a proportion c 9 for

each site 9 , which allows us to generate a distribution of robustness represented by c 9 . The more

sites with larger c 9 (towards 1) the stronger the evidence for a positive intervention effect across

sites. The second group (Group 2) includes all sites that show a positive but not significant effect

within site, under which the case replacement approach allows us to have c 9 indicating how much

more evidence we need to sustain a positive effect inference. Then the more sites with a smaller

c 9 (towards 0), the more evidence is given towards a positive intervention effect. The third group
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(Group 3) includes all sites with significantly negative within-site treatment effect. More sites

showing a large c 9 (towards 1) indicate stronger evidence towards a negative effect. The final

group (Group 4) includes all sites with negative but not significant effects. The more sites showing

small c 9 (towards 0) indicate a trend towards a negative intervention effect.

More importantly, from how all sites are distributed across all four groups, we can see 1)

where most sites are; 2) whether sites are distributed towards inferences of different directions of

intervention effect; and 3) variation in the robustness of inference. For example, if there are many

sites that are located in the center of both group 1, 2 and group 3, 4, as shown by both the green and

red brackets, then we know that the variation of cross-site intervention effect is substantial as we

have pretty robust evidence towards inferences of both positive and negative intervention effects.

1.7 Illustrative Example of the Study of Class Size Effect in Project STAR

In this section, we will use Project STAR as an example to demonstrate how the discussion

above can be applied to quantify the strength of evidence in multisite randomized trials to potential

bias. For simplicity, we will focus on the math achievement of students in Grade K who were

assigned to either small classes or regular classes. We excluded those students in regular classes

with a full-time aide so that we have two experimental conditions to be consistent with the previous

discussion. In general, we consider the small class to be the treatment group and the regular class

to be the control group. In total, there are 3,794 students from 79 schools included in the following

analysis. We standardized the math achievement scores for each school to make the interpretation

easier.

1.7.1 Case replacement when SUTVA holds.

We start with the general case replacement approach when the SUTVA assumption holds. Specif-

ically, we look at two schools as examples, both of which have a significantly positive treatment

effect but having very different levels of robustness of inference. Table 1.4 shows the summary

statistics of math achievement by class type for each school. Because students and teachers are
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Table 1.4: Summary Statistics of Math Achievements by Class Type in School A and B.

Math achievement # " (� <8= <0G

School A Small class 13 1.321 0.794 0.183 3.171
Regular class 34 -0.426 0.735 -1.761 1.037

School B Small class 14 0.498 0.941 -1.286 2.002
Regular class 23 -0.154 0.916 -2.153 1.314

Notes. # , " and (� represent sample size, mean, and standard deviation, respectively. <8=
and <0G represent minimum and maximum values, respectively.

randomly assigned to each class type, we applied an independent samples t-test to estimate the small

class effect1: the estimated effect for school A is 1.738 with a p value < 0.001 and the estimated

effect for school B is 0.652 with a p value of 0.045. If we apply the commonly used threshold of

0.05, we may conclude that both schools show a significantly positive class size effect.

But do they have the equal strength of evidence or the same level of robustness of inference?

To consider this, we apply our case replacement framework, which tells us: around 71.63% of the

cases in school A must be replaced with null effect cases to invalidate the inference while only

2.26% of the cases in school B must be replaced with null effect cases to invalidate the inference.

This shows the inference of an effect in school A is much more robust than that in school B.

1.7.2 Case replacement for within-site heterogeneous treatment effect.

As shown above, the inference of a positive small class effect in school B is not robust. Now we

use the selective replacement approach to see whether this inference is very sensitive to outlier

effects. Following Figure 1.4 shows a distribution of math achievement by class type in school B.

We observe that there are a few students showing very low math achievement in the control group

(regular class). Specifically, the lowest score is −2.152. Once we replace this student (the blue part)

with a hypothetical average student with the grand mean of 0.093 (the pink part), the average score

in regular class increases to −0.056 and the corresponding difference from the average in small

class reduces from 0.652 to 0.554, which is lower than the threshold of 0.637. This means only by

1This is essentially the same approach as Konstantopoulos (2011) used. The difference is that
we excluded the full class with aide and accordingly, we did not use Bonferroni correction.
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Figure 1.4: Math achievement by class type in school B.

replacing one student who has the lowest score in the regular class, the inference of a positive small

class effect would be invalidated, indicating a very weak inference to potential outlier effects.

1.7.3 Case replacement for spillover effects.

Now we consider how sensitive the inferences in school A and B are to potential spillover effects.

Assume 50% of students assigned to small classes teach other 50% of students in small classes.

If all the bias comes from these positive learning and teaching effects, each unit of the spillover

effect needs to be larger than 0.38 (more than 22% of the estimated treatment effect) in school A

to invalidate the inference while in school B the positive spillover effect among students assigned

in small classes only needs to be larger than 0.004 (less than 1% of the estimated treatment effect)

to invalidate the inference. Alternatively, assume 50% of the students assigned to regular classes

distract other 50% of students. If all the bias comes from these negative distraction effects among
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students who were assigned to regular classes for school A, the distraction effect needs to exceed

0.146 (more than 8% of the estimated treatment effect) to invalidate the inference while in school

B, the distraction spillover effect only needs to exceed 0.0026 (less than 0.4% of the estimated

treatment effect) to invalidate the inference. Again, this comparison between school A and B shows

the large difference in terms of robustness of inference to potential bias.

We can also consider positive spillover effects from small class students to regular class students,

leading to underestimation of the small class size effect. To illustrate this, we look at one school

where 17 students were in the small class with an average math achievement of 0.264, and 20

students were in the regular class with an average math achievement of -0.423. The difference is

0.687, which is just below the threshold for statistical significance (U = 0.5) of 0.707. In order

to sustain an inference of a positive small class size effect, we can apply Table 1.3 as a tool to

quantify how large the positive spillover effect from small class size to regular class must be. After

calculation2 , each student in the regular class must experience an amount of 0.0012 spillover effect

from each student in small class, which is only about 0.17% of the estimated treatment effect, to

alter the inference regarding a positive small class size effect. This quantifies the robustness of no

effect in the school.

1.7.4 Case replacement for cross-site heterogeneity.

Figure 1.5 applies the case replacement approach to present cross-site variation in small class size

effects on math achievement. First, many schools do not show any evidence of either positive or

negative effects, indicated by the concentration of the distribution on the very right of Group 2 and

Group 4. Second, many schools are in Group 1 or 2, indicating the estimated small class effects

are positive. Additionally, 7 schools in Group 1 have a robust inference for positive small class

size effects: more than 40% of observed cases need to be replaced by unobserved zero effect cases
2To sustain the inference, the average in regular classmust be lower than 0.264−0.707 = −0.443.

Then the difference between this and the observed average in regular class is −0.423 − (−0.443) =
0.02. Each student in regular must learn at least 0.02 from all students in small class, then each
student must learn 0.02/17 ≈ 0.0012, which is only about 0.0012/0.687 ≈ 0.17% of the estimated
treatment effect.
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Figure 1.5: Cross-site variation in the robustness of inference of a small class size effect on math
achievement (Grade K).

to invalidate the inference. Meanwhile, a few schools in Group 2 are close to the threshold: there

are 3 schools in which fewer than 10% of zero effect cases need to be replaced with threshold level

cases to sustain a positive intervention effect inference. However, as shown by the two frequency

distributions for Group 3 and 4 in the second row, there are a few schools that show negative

estimated effect, among which 3 are significantly negative. One school in Group 3 has such strong

evidence to support a negative effect of small class size that one would need to replace more than

70% of the cases with zero-effect case to invalidate the inference. Additionally, in Group 4, a few

schools are not too far away from the threshold of negative class size effects. Therefore, we may

conclude that schools do differ from each other in terms of the inference of an effect of small class

size on students’ math achievement in kindergarten.

The red dotted lines in each group in Figure 1.5 represents the overall robustness for each group

when school sizes are considered to weigh each school. That is, within each group, we summed up
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the number of students needed to be replaced from all schools and divided this by the total number

of students. Figure 1.6 further aggregates all information into one figure: the distribution illustrates

Figure 1.6: Summarizing small class size effect across schools in one Figure.

the estimated treatment effect across all schools, and the dotted line indicates the threshold for a

positive treatment effect, for which we used the standard error as Konstantopoulos (2011) calculated

for the average small class effect across schools. Comparing Figure 1.6 with Figure 1.5, we argue

that Figure 1.5 provides much more detailed information about how inconsistent the small class

effect is across schools. Although one estimate that summarizes all schools is appealing, missing

the heterogeneity across schools can provide misleading information for policymakers. Moreover,

summarizing all schools with one estimated effect ignores the fact that each school will make its

own inference about the effectiveness of small classes. This applies to scale-up because schools

have local control over policy. Thus, schools must ask if the intervention worked in their context.

To further show how our approach can provide richer information regarding cross-site hetero-

geneity in MSTs, we carried out a similar analysis for Grade 1 students regarding whether small

class size influence their math achievement. Figure 1.7 presents the result. Comparing Figure 1.5
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Figure 1.7: Cross-site variation in small class size effect on math achievement (Grade 1).

with Figure 1.7, we can tell the inferences regarding small class size effects on math achievement

in Grade 1 and Grade K share both similarities and differences3. First, compared to Grade K, there

are more schools in Grade 1 showing robust findings for positive small class size effects; in Group

1 of Grade 1, there are 11 schools for which more than 50% observed cases need to be replaced

by unobserved zero effect cases to invalidate the inference. Meanwhile, both Grade 1 and Grade

K have schools with strong evidence for negative effect as well. In Grade 1, two schools in Group

3 show strong evidence for negative small class size effects. In the strongest school more than

70% of the cases must be replaced with zero-effect case to invalidate the inference. Therefore, we

may conclude that Grade 1 has even stronger evidence for positive small class size effects but both

Grade K and Grade 1 show cross-site heterogeneity with evidence for both positive and negative

intervention effects.
3The sample for Grade 1 includes 76 schools, compared to 79 schools for Grade K.
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1.8 Discussion

This chapter extends the case replacement approach (Frank et al., 2013) to quantify strength

of evidence in multisite randomized control trials, accounting for spillover and heterogeneity.

Throughout, Project STAR has been applied as an example to demonstrate how this non-parametric

approach can better inform debate regarding relevant policy choice. Drawing on Rubin’s causal

model (RCM) (Rubin, 1974), concerns about bias are expressed in terms of unobserved, counter-

factual data. Specifically, the robustness of a causal inference is interpreted as the percentage of

a sample that must be replaced with counterfactual no-effect cases to alter the inference. Most

importantly, by carefully considering how to select cases from the observed sample to be replaced,

what cases are regarded as replacement cases, and whether the non-replaced cases in the sample

experience any changes during the replacement, this case replacement framework can be extended

to attend to violations of the Stable Unit Treatment Value Assumption (SUTVA) and presence of

heterogeneous treatment effects.

One limitation of this chapter is that the case replacement approach might be better motivated

when an overall inference across sites is based on the accumulation of inferences within each site.

In that case the inference within each site must be compared with the site-specific threshold as I have

done here. Additionally, the discussion of spillover effects can be more thorough and better tailored

for the context of multisite randomized control trials, considering that the randomization can help

eliminate some type of spillover effects but not others. For example, assuming randomization is

implemented with fidelity, we should not expect any presence of within treatment group (or control

group) spillover effects due to non-random assignment of distractors or contributors. However,

spillover effects between different treatment groups cannot be excluded by randomization, especially

in the context of educational interventions, where the subjects are always students who interact

with each other in a social context. While these issues are present in any study, they are especially

prominent when we compare inferences across sites, as in the multisite trial.
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CHAPTER 2

QUANTIFYING STRENGTH OF EVIDENCE FOR INFERENCES IN VALUE ADDED
MEASURES: CASE REPLACEMENT, SPILLOVER, AND HETEROGENEITY

2.1 Introduction

The introduction establishes the goal of understanding the robustness of inferences in terms of

how the sampling mechanism could be altered to replace cases in the data. In the previous chapter,

we derived the case replacement approach to quantify strength of evidence for inferences inmultisite

randomized control trials, accounting for spillover effects and heterogeneous treatment effects. In

this chapter, we will continue to demonstrate how this case replacement framework can be applied

to quantify uncertainty in value-added measures (VAMs) that have been used to evaluate teacher

effectiveness. The VAM context is highly relevant for policy and personnel decisions because

the evaluation of teacher effectiveness is related to high-stake decisions. By comparing students’

expected test scores to their actual ones, the “deflections” are inferred to be the “added value” from

the teacher (Raudenbush&Bryk, 2002). Proponents of value-addedmodels cite research that shows

teachers’ considerable and long-lasting influences on student achievement (e.g., Chetty, Friedman,

& Rockoff, 2011; Hill, Kapitula, & Umland, 2011; Rivkin, Hanushek, & Kain, 2005). They argue

that there is important variation in teachers’ effectiveness that can be better identified by VAM

(e.g., Aaronson, Barrow, & Sander, 2007; Hanushek & Rivkin, 2010). By selecting or deselecting

teachers based on value-added we can improve teacher quality and increase student achievement

and long-term outcomes (e.g., Chetty et al., 2011; Gordon, Kane, & Staiger, 2006; Winters &

Cowen, 2013a, 2013b). For example, under the evaluation system of IMPACT in the District of

Columbia Public Schools (DCPS), teachers were dismissed with rare exceptions once evaluated as

“ineffective” and the dismissal threats are claimed to have helped improve teacher performance and

student achievement (Adnot, Dee, Katz, & Wyckoff, 2017; Dee & Wyckoff, 2015).

Various concerns have been raised about the validity and reliability of value added measures
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as a basis to inform teacher evaluation (e.g., Guarino, Reckase, & Wooldridge, 2015; Harris,

2009; Raudenbush, 2015). These issues may include test unreliability, missing data and model

misspecifications. In order to get a more reliable value added measure, researchers recommend

model specification with two years of prior tests (Goldhaber & Hansen, 2010; Kane & Staiger,

2012; Rothstein, 2009). This can reduce the population of teachers who can be measured because

it is not uncommon for teachers to change grades or students to change schools within three-year

duration. Furthermore, unreliability in test scores can appear as measurement errors or differences

among different achievement measures. Previous research has shown bias in value-added caused

by measurement errors alone (Lockwood, Louis, & McCaffrey, 2002) as well as large variation

in the estimated effects of applying different achievement measures (Lockwood et al., 2007).

Therefore, those high-stake decisions for a specific teacher (e.g., hiring, retention, and professional

development) require all stakeholders to be able to understand and conceptualize the uncertainty

and quality of the measures to avoid unfairness and loss of investments and resources.

2.2 Spillover and Heterogeneity in Value-added Measures (VAMs)

LikeMSTs, VAMs also demonstrate typical education scenarioswhere SUTVA is rarely satisfied

in practice. In the VAM context for teacher evaluation, SUTVA suggests there are no peer effects

that can affect a student’s achievement, which is rarely satisfied in real life. Previous researchers

have controlled peer effects through model specification (e.g., Carrell, Fullerton, & West, 2009;

Hoxby & Weingarth, 2005; Levin, 2002; Van Ewijk & Sleegers, 2010). For example, the most

well-known peer effects are based on classmates’ achievement levels. Other peer effects can be

generated by racial, ethnic or economic forces. Unfortunately, identifying all possible sources of

peer effects is challenging as it would have to include non-cognitive attributes as well as interaction

styles. As a result, we will never know whether we have controlled for all potential significant peer

effect mechanisms in a model. For example, how can we control the peer effects from friendships

if we do not have adequate information on friendship to define closer knit peer effects more than

simply class membership?
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In theVAMcontext, heterogeneous treatment effects are present if one teacher is good at teaching

certain students but not others, which can cause debate in teacher evaluation. Additionally, the

VAM context exemplifies the scenario where violations of one single treatment (as a fundamental

component of SUTVA) may lead to heterogeneity of treatment effects, as discussed in Chapter 1.

For example, teachers may modify their way of teaching to better suit the special requirements of

each student, which may lead to heterogeneous teacher effects experienced by different students

in one classroom. Even with the same teaching approach, different students can still benefit

differently due to variations in their aptitudes, motivations, prior knowledge or any other individual

or contextual factors.

2.3 Strength of Evidence in VAMs

In VAM, the threshold for being an effective teacher is generally arbitrary since the estimation

of standard errors in VAM is controversial; the standard errors can be quite sensitive to how one

conceptualizes the level of analysis and what formula one chooses. Regardless of the specific

definition/calculation, a threshold in VAM represents the point at which the evidence from VAMs

would make one indifferent to the final teacher evaluation result, such as effective or ineffective. As

argued in Frank et al. (2013), the comparison between the threshold and the VAM then represents

the strength of evidence that supports the evaluation result that directly links to high-stake personnel

decision-making. Thus, all stakeholders, including teachers, administrators and parents, should

be able to understand this comparison so that the personnel decision-making can be made after

comprehensive consideration and evaluation of the strength of evidence against potential costs.

For example, consider a debate between an administrator and a teacher whose VAM is below the

threshold of being effective. The administrator may use this below-threshold VAM to evaluate this

teacher as ineffective, but the teacher may argue that her low VAM is primarily because she has

been assigned to lower-end students. Essentially, this debate is about how far the teacher’s VAM is

below the threshold, and whether this difference generates strong evidence for this teacher’s lack of

effectiveness and potential dismissal, considering all potential sources of bias in estimating VAM.
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As we will demonstrate in this chapter, the case replacement approach proposed in Frank et al.

(2013) provides an intuitive alternative to quantify the comparison between the threshold and the

estimated VAM to inform discussions among all stakeholders. Additionally, it does not rely on the

controversial calculation of standard errors.

Like Chapter 1, this chapter has two goals. First, we want to demonstrate how the case

replacement approach can be applied in VAMs. Second, we aim to extend Frank et al. (2013)

work by discussing how we can quantify the uncertainty to violations of SUTVA and presence

of heterogeneity in VAMs. In the following section, we will first review the case replacement

framework proposed by Frank et al. (2013).

2.4 Case Replacement as a Counterfactual Thought Experiment

In Frank et al. (2013), the authors showed an approach to quantify how much bias there must be

in an estimate to invalidate an inference. Then the bias is interpreted in terms of sample replacement

to inform more intuitive interpretation. In other words, to show how robust an inference is, we ask

a question based on a thought experiment which is counterfactual: what percentage of the sample

should be replaced with counterfactual (unobserved) no-effect cases to invalidate an inference made

from the data? Or if the concern is about external validity, we consider what percentage of the

sample should be replaced with no-effect cases from an unsampled population. The larger the

percentage is, the more robust the conclusion/inference is, the less likely that the finding is only

due to chance or bias.

This case replacement idea can be applied in various ways to characterize the strength of

evidence in VAMs. But the general idea is always about replacing some students taught by one

teacher with counterfactuals of other students, if they were taught by that teacher, as a thought

experiment. The replacement process can become very flexible depending on: (1) how we select

students from the teacher’s class to be replaced (2) what students are regarded as replacement

students (3) whether the non-replaced, remaining students in the class experience any changes in

achievement during the replacement. In the following analysis, we will discuss different ways to
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consider the hypothetical replacement and how each approach helps inform the comparison between

the threshold and estimated VAM under different contexts.

2.5 Case Replacement for Quantifying Uncertainty in VAMs

2.5.1 Sources of bias in VAMs.

Various concerns have been raised about the validity and reliability of value addedmeasures (VAMs)

as a basis to inform high stake decisions (e.g., hiring, retention, and professional development) for

a specific teacher (e.g., Guarino et al., 2015; Harris, 2009; Raudenbush, 2015). We will begin

our review of these concerns with the conditional random assignment assumption. Almost all the

potential inconsistencies of value added, such as those caused by test unreliability, missing data or

model specification, can be represented in terms of the violations of conditional random assignment

assumption. Our approach to quantify the uncertainty of value-added also draws on this framework

of the student-teacher assignment mechanism.

The conditional random assignment assumption is that students are randomly assigned to every

teacher conditional on the other variables (Rothstein, 2009, 2010). However, research has shown

that there is a nontrivial amount of sorting based on students’ prior test scores as well as a nontrivial

amount of non-random assignment of teachers to classrooms. For example, recent research has

shown that teachers who are nominated as help-providers to other teachers and with leadership

positions are assigned better students (Kim et al., 2018). These nonrandom assignments may cause

substantial bias in value added estimates if not captured by the controls in the model specification

(Paufler & Amrein-Beardsley, 2014; Rothstein, 2010). In some cases, the estimates based on value

added may even have the opposite sign of the true teacher effect (Dieterle, Guarino, Reckase, &

Wooldridge, 2015). Hiring or dismissing a teacher based on this flipped ranking can be unfair for

teachers and cause unwanted competition that can lead to test-driven teaching.
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2.5.2 Case replacement when SUTVA holds.

To better motivate the case replacement approach, we start our discussion with a hypothetical

example. Consider three teachers’ VAMs as presented in following Figure 2.1. Both Ashley and

Jessica are below the threshold of 0.15. If the threshold represents a serious lack of effectiveness,

the administrator may decide to dismiss both of them. However, we can see that Ashley is much

closer to the threshold than Jessica. This indicates that an evaluation of Ashley as ineffective is

much less robust than that for Jessica. It might be some bias in VAM estimation causes teacher

Ashley to be below the threshold. As a result, the personnel decision should be considered more

seriously, or other measures should be referred to. Or the administrator may direct Ashley to

professional development if the school resources can only support one teacher for this opportunity.

Similarly, an administrator may want to provide professional development to teacher Emily who is

above the threshold, but just barely so.

Figure 2.1: Teacher effects estimated by VAM (hypothetical example).

In the hypothetical example, how can we better quantify the difference between Ashley’s VAM

and the threshold as strength of evidence for her evaluation? The case replacement approach leads

us to ask how many students in her class need to be replaced with average students to get her to the

threshold. Ashley has a VAM of 0.14, which could be the average of her students’ gain scores. The

threshold is 0.15. Assume she has 20 students, whose gain scores have a distribution represented
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as black and grey parts shown in 2.2. Hypothetically, to improve Ashley’s VAM from 0.14 to

0.15, we can replace two students (the grey parts) with two average students whose gain scores are

0.16 (the white parts with black outline). This counterfactual thought experiment tells us that via

replacing the two worst students with grade-average students, Ashely could achieve the threshold

of being effective. We can also say that 2 out of 20, that is about 10% of Ashley’s students need to

be replaced with grade average students to alter the evaluation.

Figure 2.2: Example replacement of students to invalidate Ashley’s evaluation based on VAM.

We now formalize the intuition in 2.2. For the following discussion, assume that all grade nine

math teachers in one middle school were evaluated based on their students’ achievement scores.

Suppose we have a general value-added model as follows:

�8C = gC + _�8,C−1 + )8CW + -8CV + `8C , 1

1There are various value added models. This particular (simplified) model is only used as an
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where �8C is student 8’s test score at time C (post-test score); gC is the intercept; _ is the coefficient

(scaler) for the pre-test score �8,C−1; �8,C−1 is student 8’s test score at time C − 1 (pre-test score); )8C

is a row vector of teacher indicators;2 W is a column vector of teacher fixed-effects;3 -8C is a row

vector that include covariates to control student heterogeneity such as student family backgrounds;

V is a column vector that include the coefficients for the covariates -8C ; `8C is an unobserved error

term.

After estimating those parameters, we obtain a “purified” gain score B8; for each student 8 in

teacher ;’s class at time C after removing the effects from those observed characteristics (�8,C−1 and

-8C) included in the value-added model. This is shown in the following equation:

B8; = �8C − (ĝC + _̂�8,C−1 + -8C V̂)

This gain score B8; can also be understood as a “deflection” score which is the difference between

a student’s expected score (based on those covariates �8,C−1 and -8C that are outside teacher ;’s

control) and the actual score. We assume that this deflection is caused by teacher ; who teaches

student 8.4 To clarify, all the gain scores in following discussions refer to this B8; . We can decompose

B8; by using ANOVA parameterization:B8; = ` + U; + 48; = +�" ; + 48; , where ` is the grand mean

gain score of all students in this grade. For simplicity, we assume that each teacher teaches one

example to illustrate that: all the following discussions are based on the “purified” or adjusted
“gain scores”. In other words, the gain score here is after adjusting for student characteristics that
are included in the value-added model. Theoretically, the change in students’ test scores can be
decomposed to teacher effectiveness and student heterogeneity. By removing the latter part, we can
estimate the teacher effectiveness.

2If there are 10 teachers in this grade, then)8C is a 1×10 row vector for each student (observation).
Correspondingly, W is a 10 × 1 column vector, with each element representing one teacher’s fixed
effect.

3Here “fixed-effect” means that we are NOT viewing all teachers as a population and then
getting an estimate based on a random sample drawn from this population of teachers. Instead,
we are interested in learning individual teacher’s effect on student achievement. Therefore, we just
use dummy variables to indicate each teacher. There are also other estimation methods in value
added literature. For example, when we apply Project STAR later to illustrate our approach, we
will demonstrate two approaches: the EB residual approach and the Dynamic OLS approach.

4Here we contextualize our discussion by using student-level data to evaluate teachers within a
school as an example. Therefore, the school-level effect is not included.
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class and each class has the same number of students =, then ` = +�" , which is the average VAM

of all teachers in this grade; U; is how far teacher ;’s value added score (+�" ;) departures from

the +�"; +�" ; 5 is the VAM for teacher ;; 48; is how far the score of student 8 in teacher ;’s

classroom departures from the classroom mean.

To simplify the discussion for now, assume that we are evaluating teachers for one grade within

one school. One way to set the threshold is to use a certain percentile such as the 5Cℎ percentile in

all teachers’ VAM distribution.

For teacher ;, we can only observe her effect on the students in her class. For the other students

taught by other teachers, we cannot know their scores if they were taught by teacher ; because this

is counterfactual. Because of this, teacher ; may argue that her value-added +�" ; is below the

threshold ()ℎA) because of the students she is assigned. She may argue she has the average teacher

effect and she will be able to achieve the threshold if she is assigned more grade average students

(this could well be the argument of a beginning teacher – see Kim et al. (2018)). However, the

evaluator, such as the principal, may argue that the teacher’s low +�" ; reflects teacher ;’s lack

of effectiveness. While the dispute is about the point estimate of the VAM, the debate about the

teacher’s evaluation is informed by understanding the uncertainty of the VAM.

To formalize the discourse above for the uncertainty of value-added, the case replacement

approach leads us to consider how many grade average students need to replace to alter teacher

;’s evaluation. Another argument for replacing with grade-average students is that if we randomly

choose one student from the grade then a grade-average student will be the expectation for a student

being selected.

In order to carry out the replacement analysis, we need to know the grade average student’s

gain score. As before, this gain score is achieved after adjusting for all those covariates included

in the value-added model. Two possible ways are presented as follows to get an estimate for this

grade-average student’s gain score 6C .

In the first approach, we can just use ` as an estimate for 6C . This approach is convenient and
5If the pre-test score (test score for time 1) is set before the teacher encounters the student, then

we can think about this VAM as a function of the post-test score (test score for time 2).
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the resulting 6C will be the same for all teachers in the replacement thought experiment. From the

teacher’s argument illustrated before, she has the average teacher effect in this grade and this 6C might

be a good estimate for an average teacher’s effect on a grade average student. The disadvantage is

that this average gain score is under the observed teacher-student assignment condition and we are

assuming that this grade average student will keep the grade average score if taught by this teacher.

Another possible way to estimate this grade average student’s gain score 6C is still conditioning

on covariates in the current model and the observed teacher-student assignment but is more conser-

vative. Specifically, rather than look for an estimate for an average teacher’s effect on a grade average

student, we try to estimate this particular teacher ;’s effect on a grade average student. The “average”

here refers to having the grade average pre-test scores and other controlled characteristics. This

means looking for a student 9 in teacher ;’s class so that the value of
���(� 9 ,C−1 + - 9 C

)
− ( �̄C−1 + -̄C)

���
is minimized (where �̄C−1 and -̄C are the grade average covariates). Then we use this student 9’s

gain score B 9 ; as 6C . The second approach here seems to provide a “closer guess” for a grade aver-

age student’s gain score if taught by teacher ;. However, since we only use one specific student’s

observed gain score for the replacement, the reliability will be a more serious issue than the first

approach.

Once we get 6C , we consider randomly selecting students from teacher ;’s class to be replaced

with grade average students, then the formula is shown as follows.

)ℎA = (1 − c) · +�" ; + c · 6C = (6C −+�" ;) · c ++�" ;

From this we can get: c =
)ℎA−+�";
6C−+�";

= 1 − 6C−)ℎA
6C−+�";

, where c is the percentage of students

need to be replaced, )ℎA is the threshold of value-added above which the teacher will be evaluated

as effective. In this chapter, we assume that the threshold ()ℎA) is below the average value added

score (+�") and all the +�" ; we are interested in is below the threshold ()ℎA). That is, we have

+�" ; < )ℎA < +�" .

Suppose 6C is bigger than )ℎA and +�" ; . Also the 6C is the same for all teachers (the first

approach discussed previously). Then with higher +�" ; , the c gets smaller. This makes sense
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intuitively because teachers who are closer to the threshold need to replace fewer students. However,

we can see that the relationship between +�" ; and c is not linear.

If we treat c as a function of+�" ; (and assume 6C as a known constant for now), we can apply

delta method to get a standard error for c as follows.

3+�" ;

3c
= ()ℎA − 6C) · (6C −+�" ;)−2

( 3+�" ;

3c
)2 = ()ℎA − 6C)2 · (6C −+�" ;)−4

Then we get:

�+0A [
√
=(ĉ − c)] = ()ℎA − 6C)2 · (6C −+�" ;)−4 · �+0A [

√
=(�+�" ; −+�" ;)]

From this formula, we note that as the VAM moves further away from the grade average gain

score (that is, the (6C − +�" ;) gets larger), the asymptotic variance of ĉ approaches 0 because of

the term (6C −+�" ;)−4. This indicates that for a teacher with a relatively low VAM, we can get a

quite precise estimate for c. In other words, the more certain we are as the VAM gets further away

from the threshold.6 In that case, a relatively large ĉ can represent a quite robust evaluation for a

teacher’s ineffectiveness relative to a threshold.

In order to account for randomness in estimating 6̂C , we consider a bootstrap approach. To

generate one bootstrap sample, we resample students with replacement within each teacher. Then

for each such sample, we can calculate �+�" ; , 6̂C and ĉ. Repeating this step allows us to get a

distribution of ĉ where a confidence interval can be obtained that accommodates both randomness

and potential bias. One advantage of this approach is it accounts for the uncertainty of �+�" ; via

bootstrap as well, without going into debates about what formula we should use to calculate the

standard error. If this confidence interval is close to 0, then the evaluation for this teacher as being

ineffective is sensitive to either potential bias or sampling variability or both.

Similar arguments can be applied for scenarios where the estimated VAM is above the threshold:

)ℎA < �+�" ; . Now the goal is to quantify how the data must change to get this teacher below

6Note the discussion here assumes the uncertainty of VAM (i.e., �+0A [
√
=(�+�" ; −+�" ;)])

keeps unchanged.
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threshold because we wonder whether the teacher’s above-threshold VAM might be due to upward

bias and if so, the teacher may need some professional development. The case replacement

approach here is similar to that in Chapter 1 when we wanted to quantify how the data must change

to sustain an inference. Specifically, consider the estimated VAM represents a combination of

students with grade average gain scores and threshold level gain scores, with proportions c and

(1 − c), respectively. This gives us: +�" ; = 6C · c + )ℎA · (1 − c), from which we can solve for

c: c =
+�";−)ℎA
6C−)ℎA . In this scenario, c represents the proportion of students with grade average

gain scores that must be replaced with students who have threshold level gain scores to bring this

teacher below the threshold. A larger c indicates more data must be changed to change the teacher

evaluation to ineffective, which means the estimated VAM is higher and further away from the

threshold.

2.5.3 Selective case replacement for heterogeneous effects.

As we discussed for MSTs, we can apply the case replacement approach to quantify how robust

a teacher evaluation inference is to outlier students in his/her class. Note in the VAM context,

this constant effect assumption does not necessarily relate to student grouping based on prior test

results. Prior test scores may reflect students’ ability but the constant effect assumption is about

teachers’ effects on students. Students’ ability may or may not relate to their improvement affected

by the teachers. The treatment effect in this context is more a problem of whether this teacher’s

teaching works for one student (matching problem). Therefore, even in the most homogeneous case

where students are grouped based on their pre-test scores, we still need to think about violation of

the constant effect assumption.

Another important note here is the heterogeneous teacher effects can be caused by violations

of SUTVA, or more specifically, the single treatment level assumption in SUTVA. This happens

when a teacher modifies their teaching for different students. But as discussed earlier, the presence

of heterogeneity of teacher effects on student achievement does not rely on violations of this single

treatment level assumption. Whether and how one teacher’s teaching benefits student learning can
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be affected by various factors.

This constant effect assumption is also highly relevant in the VAM context: if we want to

rank all teachers, we should consider the heterogeneity of the students in their classes and ideally

the teacher whose teaching works out for more students should be more favored. Consider two

teachers who have the equivalent value-added. In teacher ;’s class, there is only one student who

gets an extremely low gain score and it is this score that makes the teacher’s value-added below

the threshold. However, teacher < has several students who get quite low gain scores. In addition

to the estimated value-added, we can also use this information of mismatching as another measure

for teacher’s effectiveness. Even if we are only interested in the average level, we may still be

concerned about the effects of outliers.

To quantify how sensitive the VAM is to this heterogeneous or the outlier effect, we propose

three selective replacement approaches as follows, assuming the teacher has a below-threshold

VAM.

(1) Successive extreme replacement: this process is data-dependent and there is no closed

formula. This is very similar to what we discussed in the context of MSTs: we start our replacement

from the student who has the lowest gain score in teacher ;’s class. If the teacher’s value-added is

still lower than the threshold, then we replace the student with the second lowest gain score. We

continue this process until teacher ;’s value-added achieves the threshold and we record how many

students need to be replaced with 6C .

(2) Purposeful sampling process: the lower the student 8’s gain score is, the higher the probability

for this student gets selected to be replaced. This is shown in the following formula:

�>A 0;; B8; < +�" ; , Pr (B8; 8B B4;42C43 C> 14 A4?;0243) =
+�" ; − B8;∑ (+�" ; − B8;)

Then the formula for replacement is shown as follows:

)ℎA =
∑

B8;<+�";

[
(6C − B8;) ·

+�" ; − B8;∑ (+�" ; − B8;)

]
· c ++�" ;
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From this we obtain:

c =
)ℎA −+�" ;∑

B8;<+�";

[
(6C − B8;) ·

+�";−B8;∑(+�";−B8;)
]

For now we are only replacing students who are below the class average (for all B8; < +�" ;).

But we can also consider including those students who are above the class average but below the

threshold ()ℎA > B8; > +�" ;). In this case, the formula will be the following one.

c =
)ℎA −+�" ;∑

B8;<)ℎA

[
(6C − B8;) ·

)ℎA−B8;∑()ℎA−B8;)
]

(3) Replace the teacher’s median student(s) with grade average students. This approach is

proposed considering that median is less sensitive to extreme values thanmean. Instead of replacing

the mean student gain score in the teacher’s class, we select the median student to think about the

replacement ("43;). The formula is represented as follows.

c =
)ℎA −+�" ;

6C − "43;
For any of these approaches, the magnitude of c gives us an intuitive understanding about how

far teacher ; is from the threshold if we assume the value-added is a valid and reliable evaluation.

It also quantifies how much bias there needs to be to invalidate this evaluation. A small c indicates

a lack of robustness or a small departure from the threshold. Similarly, we may get a confidence

interval for c by applying the delta method or bootstrap.

Additionally, the three selective replacement schemes can help provide a supplemental measure

for teacher evaluation. For instance, when two teachers have the same value-added, we can use c

from selective replacements as another measure for evaluation purpose. The teacher with a smaller

c may be favored because her VAM is more likely to have been negatively affected by just a few

outlier students.

2.5.4 Case replacement for peer effect (violation of SUTVA).

In this section, we will conceptualize the potential bias due to peer effects in value added models

in terms of random or purposeful resampling of students in a counterfactual scenario. To start, we
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will discuss how peer effects generate bias in VAMs.

In the VAM context, we prefer to use “peer effects” rather than “spillover effects” because

spillover can occur through teachers (such as one naughty student distracts the teacher’s attention

from the rest of the class). But we define peer effects as those direct effects among students. These

peer effects are then just like other factors such as students’ own background that we should control

in value-added models.

To further define peer effects as a potential bias in value-added, we need first consider the

baseline peer effects. The value-addedmodel is essentially a normative comparison among teachers.

Therefore, the baseline peer effects that are present in all teachers’ classes should not be credited to

one teacher. That is, to generate “bias” in value-added measures, peer effects should satisfy several

conditions: (1) inhere in direct interactions or indirect exposures among students; (2) perform in

a way that is independent of particular teachers; (3) is unique for a particular classroom that is

not covered by the normative baseline peer effects. Specifically, the second requirement indicates

that the peer effects do not depend on which teacher teaches the class, while the third requirement

illustrates the existence of a biasing peer effect needs to be different from baseline peer effects

that are experienced by all teachers. Assume we are comparing all the teachers within a school.

Then the baseline peer effect depicts what happens in all teachers’ classrooms in that school. But

some peer effects are unique for the classroom. Consider teacher Ashley’s classroom in which peer

effects are not due to Ashley’s instruction. These effects can bias our evaluation for Ashley.

It is also important to note that the level of baseline peer effects can be quite different in various

school environments. Students involved in project-based learning can experience strong peer effects

through frequent group discussions while students in schools with conventional teaching styles may

only experience a minimal level of peer effect by observation. Therefore, we should consider these

variations when discussing peer effects as potential bias in different contexts.

The non-random assignment of students to teachers can introduce bias to VAM via non-random

assignment of contributors and distractors to teachers. For example, a teacher can be assigned with

more students who are really distractors that may have negative effects on other students in the
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class. This negative spillover effect can introduce bias to the VAM. To quantify how sensitive one

teacher’s value-added is to potential bias due to such peer effect, we propose an approach that is

very similar to what we discussed in Chapter 1 for spillover effects in the MST context. Consider

a group of students =c distracting the other students =(1 − c) in the class and they experience

self-initiated ((��) and peer-initiated distraction effects (%��), respectively. The derivation is the

same as the MST context. Following we present the result for the VAM context when we worry

about negative peer effects as bias that may threat teacher’s evaluation result. The notation is the

same as before and +�" ;)
indicates the isolated/true VAM score for teacher ;.

+�" ; = +�" ;)
− =c · (1 − c) · (�� − (1 − c) · =c · %��

By setting +�" ;)
equivalent to the threshold of being an effective teacher, we can solve for c.

As before, we only need to specify the negative effect #� = (�� + %�� rather than specifying the

self-initiated and peer-initiated distracting effects separately. Figure 1.1 in Chapter 1 still applies

to show the relationship among the #� , c and the difference between teacher’s VAM and the

threshold (i.e., )ℎA −+�" ;).

)ℎA −+�" ; = −= · #� · (c − 0.5)2 + 0.25 · = · #�

As mentioned before, underlying these discussions for potential peer effects are counterfactual

interpretations. The hypothetical example presented in following Figure 2.3 illustrates this coun-

terfactual idea in the VAM context, based on our previous example about teacher Ashley.

Recall Ashley has 20 students, where the first figure represents her 20 students’ distribution of

gain scores before replacement. Then in the thought-experiment, we replace the students indicated

by the green part with the other students represented by the red part. Importantly, these two groups

of students have comparable gain scores, but they have different peer effects on the remaining

students: the green students will distract others but the red students only have baseline peer effects

on others. Therefore, after the replacement, the remaining students in the class (represented by the

black part) will not experience the peer-initiated distraction effects anymore. As such their scores

get higher, causing the change in the teacher’s VAM.
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Figure 2.3: Case replacement for peer effects.

Importantly, the crucial trick in this thought experiment for peer effects is the remaining

students change their gain scores during the replacement. When there is no peer effect, the change

of teacher ;’s value-added is only from the difference between the new students’ and original

students’ gain scores after the replacement. For example, in the hypothetical example in Figure

2.2, teacher Ashley needs (0.15 − 0.14) × 20 (Cℎ4 C402ℎ4A ℎ0B 20 BCD34=CB) = 0.2 total increase

to achieve the threshold. This 0.2 comes from the difference between the two original students in

the class (denoted in grey parts) and two replacement students (represented as the white parts), i.e.,

(0.16− 0.06) + (0.16− 0.06) = 0.2. Those original students who are not replaced do not change

their scores in the replacement process. In contrast, in Figure 2.3, the gain in the VAM occurs

because of the change experienced by the students remaining in the classroom.

Finally, 1.2 in Chapter 1 can again be applied as a more flexible framework for quantifying more
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specific peer effect mechanism if we know specific social interaction patterns within the teacher’s

classroom.

2.6 Illustrative Example of Evaluating Grade 1 Math Teachers in Project STAR

We will use Project STAR as an example to demonstrate how the discussion above can be

applied to quantify uncertainty in VAMs. Different from the MST context, Project STAR is not

designed for teacher evaluation purpose. The discussion here is mainly for demonstrating our case

replacement approach. But as previous research illustrated (Nye, Konstantopoulos, & Hedges,

2004), the randomization of teacher assignments within schools and the broad range of schools

from throughout a diverse state make Project STAR a great resource to study teacher effect variance

on student achievement.7 Specifically, because both students and teachers were randomly assigned

to different classes, any systematic between-classroom variance in achievements should be due to

either the treatment effects (class types) or teacher effectiveness. As such, in this paper, we first

follow the approach applied in Nye et al. (2004) to study teacher effectiveness. Specifically, schools

are included in our demonstration sample if there were more than three classrooms in the same

grade so that within each school at least two classrooms were assigned to the same class type.8 A

three-level hierarchical linear models is applied, specified as follows.

Level 1 (student 8)

.8 9 : = V08 9 + V1 9 :%A4C4BC8 9 : + V2 9 :�4<0;48 9 : + V3 9 :�'!8 9 : + V4 9 :"8=>A8CH8 9 : + Y8 9 :

7It is important to distinguish between: evaluate specific teachers versus evaluate teacher effect
variance.

8Nye et al. (2004) has shown that the constrained sample is very similar to the complete sample
on important characteristics.
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Level 2 (teacher/classroom 9)9

V0 9 : = c00: + c01:(<0;; 9 : + c01: �834 9 : + A0 9 :

V1 9 : = c10: , V2 9 : = c20: , V3 9 : = c30: , V4 9 : = c40:

Level 3 (school :)

c00: = W000 + [00:

c10: = W100 , c20: = W200, c30: = W300, c40: = W400

At the student level, we control pretest, gender, whether the student is eligible for free and

reduced lunch and whether the student is minority. At the classroom/teacher level, the treatment

condition is controlled, and teacher random effect is applied. That is, A0 9 : is the teacher effect for

teacher 9 at school : . At the school level, the random component [00: captures school :’s effect on

student’s achievement score.10 The Empirical Bayes estimates for the teacher random component

A0 9 : are then regarded as the estimated VAM for teacher 9 in school : .11

For simplicity, we focus on math achievements in Grade 1. As such, we get a sample with

3, 209 students taught by 268 teachers in 54 schools.12 After fitting the three-level model illustrated

above, we used the Empirical Bayes estimates for the 268 teachers as their VAM scores.

9For purpose of evaluating individual teachers, it might be better to exclude students in the
regular class with an aide since in those classrooms, we cannot distinguish between teacher’s effect
from the aide’s effect. Here we include these students in our sample to better align with earlier
research and also this is only for demonstration of the case replacement approach.

10We decided to follow Nye et al. (2004) to treat teacher and school effect as random effects here
for two considerations: (1) teacher fixed effect (i.e., teacher dummies) can be collinear with the
treatment effect of different class types; (2)we acknowledge that school fixed effect can better control
school effects on students but within each school there were only a few classrooms. Moreover, for
most schools within each treatment assignment there were at most two classrooms, which can make
the collinearity even worse. We also compared the coefficients of students’ pretest, gender, SES
and minority between school random effect and school fixed effect estimation. The results (both
point estimate and standard error) are very similar to each other.

11Although we call teacher random effect and school random effect, this is different from random
effect estimation in econometrics literature. In econometrics literature, random effect estimation in
the VAM context mainly refers to student random effect when panel data is available. See Guarino
et al. (2015) for more detailed information for different estimators for VAMs. What we use here is
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Figure 2.4: VAMs for 268 teachers.

Figure 2.4 shows a distribution of these VAM scores. Now consider the 5Cℎ percentile of

−0.43 as a threshold for teacher to be effective, indicated by the red dotted line in Figure 2.4.

We choose this threshold because researchers have illustrated that student achievement in US can

get to the level of Canadian by eliminating bottom 5 − 8 percent of teachers (Hanushek, 2014).

Additionally, in the controversial teacher evaluation system introduced in the District of Columbia

Public Schools (IMPACT), teachers were dismissed with rare exceptions if they were evaluated

as ineffective (bottom 3%) and researchers argued this dismissal threat increased performance of

remaining teachers (Adnot et al., 2017; Dee & Wyckoff, 2015).

Based on this threshold of the 5Cℎ percentile of −0.43, there are in total 14 teachers falling into

this category of “being ineffective”. Figure 2.5 presents the estimated VAMs for these teachers,

where each blue bar represents VAM for teacher � through teacher # . Note the VAMs are negative,

and a longer/lower bar indicates a worse estimate for teacher effectiveness. The red horizontal line

what they call “Empirical Bayes and Related Estimators”.
12This sample is slightly different from that in Nye et al. (2004), but the results are very similar.

This particular sample is selected based on several constraints: (1) school has at least four classrooms
in grade 1 (2) students have both Grade K and Grade 1 math achievement score available, also not
missing information about gender, race and whether the student was eligible for free and reduced
lunch (3) we remove two teachers, for whom only one and three students’ data are available.
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represents the threshold of being evaluated as effective. Then the more the blue bar below the red

threshold, the more robust teacher evaluation is.

Figure 2.5: VAMs for 14 ineffective teachers and their robustness in terms of percent of students
need to be replaced (c).

Now we apply our student replacement approach to quantify how robust the teacher evaluation

is for these teachers. We first assume the SUTVA holds. To carry out the case replacement thought

experiment, we first calculated the value of the replacement case (i.e., 6C in discussion above). In

this context, the teachers are being evaluated against all the other teachers in this sample, and the

argument made by an ineffective teacher is that they could achieve the threshold if they had been

assigned with more average students in this sample. To approximate this counterfactual situation

of being assigned with “an average student”, we calculated an average VAM weighted by each

teacher’s number of students, to serve as an estimate for the teacher effect an average student can

experience with an average teacher. As such we get an average of −0.0086.13 Nowwe can apply the

13This is not too far away from the unweighted average of 0. We argue for this weighted version
because in the counterfactual situation the teacher had been assigned with an average student and
the weighted version captured this student assignment by focusing on the student level. But the
results should be very similar no matter which one we use, as long as assignment of students to
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student replacement approach to quantify how robust each teacher’s evaluation is to any potential

sources of bias (when SUTVA holds). The results are presented by the orange dots for each teacher.

For example, for teacher �, more than 57% students need to be replaced with average students to

get this teacher above the threshold. In comparison, teacher # only needs to replace a little more

than 1% students in his/her class to get to the threshold. That is, the evaluation for teacher � is

much more robust for the evaluation for teacher # . We ordered the 14 teachers in Figure 2.5 to have

their VAMs getting closer and closer to the threshold from teacher � to # . Correspondingly, the

percentage of students need to be replaced in the thought experiment also gets smaller. For teacher

� through # , we only need to replace less than 10% of their students to get them to the threshold,

indicating their evaluation is very sensitive to potential bias and accordingly, the related personnel

decisions may need more considerations.

We acknowledge that the calculation of c (percentage of students need to be replaced) involves

sampling uncertainty. Now we want to take into account the sampling variability for our index of

inference robustness. To achieve this goal, we apply bootstrap approach to generate a distribution

of c for each teacher. The bootstrap is based on within-teacher resampling with replacement.

Following Figure 2.6 presents the result for teacher � and � (based on 1, 000 iterations). First all

1, 000 iterations generated a below-threshold VAM for teacher �. Additionally, as presented in

Figure 2.6, the 95% confidence interval for this teacher’s c is (42.09%, 60.93%). Thus, we may

conclude that the evaluation for teacher � is pretty robust, even after we consider the sampling

variability. In comparison, although teacher � also has a pretty large c of 34.82%, the sampling

variability is much larger compared to that for teacher �. First there are 53 times out of 1, 000

iterations where �’s VAM is actually higher than threshold. For the remaining 947 times, the 95%

confidence interval is (3.88%, 46.12%), which is much closer to 0 compared to that for teacher

�. This comparison shows teacher �’s students are more diverse compared to teacher �, and thus

teacher � is much more affected by sampling variability.

Now we want to relax the SUTVA and see how sensitive the teacher evaluation is to potential

teachers is not too unbalanced.

49



Figure 2.6: Sampling variability for percentage of students need to be replaced (c) for teacher �
and �.
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peer effects that can generate bias. Figure 2.7 presents the result by applying our approach for the

14 teachers below the threshold. As Figure 2.5, the blue bars indicate teachers’ VAMs and the

red horizontal line indicates the threshold. But now the green ones represent the smallest negative

distraction effect to invalidate teacher evaluation if we assume 50% of the students are distracting

the others in the teacher’s class. The orange ones represent the distraction effect if we assume 10%

of the students are distracting the others.

Figure 2.7: VAMs for 14 ineffective teachers and their robustness to potential peer effect as bias.

First, we observe assuming more students distracting others, smaller unit of distraction effects

(#�) is needed to invalidate the inference (the orange dot is always above the green dot). As we

discussed before, assuming 50% students distracting others gives us the smallest peer effect possible.

Second, there is a difference between Figure 2.7 and Figure 2.5: in Figure 2.5, as teacher’s VAM

gets closer to the threshold, we always have smaller percentage of students need to be replaced to

invalidate the teacher evaluation. But this is not always the case in Figure 2.7. For example, teacher

� has a higher VAM than teacher �, but teacher � needs a stronger peer effect as bias to invalidate

her evaluation than teacher �. This is because the calculation of peer effect takes into account the

number of students in the class. This makes sense because peer effects essentially describe the

interaction among students which should be related to the number of students. However, as we
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mentioned before, if one prefers more specific interaction styles, they can apply a more flexible

approach presented in Table 1.2 in Chapter 1.

As mentioned before, we can always interpret Figure 2.7 in two ways: either interpreting the

#� as the smallest necessary negative peer effect to invalidate the evaluation, or interpreting c as

how many (more precisely, what percentage of) students need to be replaced with students having

comparable scores but will only influence the other students with baseline peer effects. Take the

teacher � for example. Assuming 50% of the students in the class were distracting others, then

there must be at least 0.226 negative peer effects as bias to get the teacher to the threshold. What

does 0.226 mean? It indicates that each of the 50% students (1BC group) are distracting each of the

other 50% of students (2=3 group). And 0.226 is the sum of two effects: (1) one unit self-initiated

distraction effect suffered by one student in the 1BC group by distracting one student in the 2=3

group; (2) one unit peer-initiated distraction effect experienced by each student in the 2=3 group

due to being distracted by one student in the 1BC group. Because we standardized the outcome

variables (the math achievements in Grade 1), the 0.226 means more than 2 standard deviations,

which is a large effect. Alternatively, assuming the negative peer effect is 0.226, we can interpret

the 50% as: 50% of the students need to be replaced with students who have comparable math

achievements but only have baseline peer effects on their classmates. Therefore, each of the 50%

remaining students can experience an increase of 0.226 (more than 2 standard deviations) in their

math achievements once those distracting students get replaced. By applying the same bootstrap

approach before, we can also get a 95% confidence interval for the negative effect, which is (0.147,

0.285) for teacher �. Additionally, consistent with earlier discussion, the sampling variability for

teacher �’s negative peer effect is also large. Among the 947 out of 1, 000 iterations where this

teacher is below the threshold, the necessary negative peer effect has a 95% confidence interval of

(0.010, 0.193).

The demonstration above uses the Empirical Bayes (EB) estimates for the VAMs. As is well

known (e.g., Guarino et al., 2015), there are several different estimation methods for VAMs. In

the following discussion, we apply a different estimation method, the Dynamic Ordinary Least
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Squares (DOLS) approach, to estimate VAMs. We do this for two considerations. First, this DOLS

approach better aligns with our derivation above and allows us to demonstrate the selective sampling

for heterogeneity in an intuitive way. As pointed out by Guarino et al. (2015), the EB estimates

are similar to shrinking teacher average residuals towards the overall mean, where the residuals are

obtained after regressing posttest on pretest and other covariates, except teacher assignments. Since

this shrinking process occurs at the teacher level and the magnitude of shrinkage can be different

for each teacher, the VAM cannot be considered as a simple average of the students’ adjusted gain

scores any more, unless we are willing to conceptualize the shrinking procedure at the student

level. But going deep into the shrinking procedure can complicate the thought experiment and

make the sensitivity analysis technique less accessible to potential audience. Second, presenting

two estimation approaches allows us to show how our student replacement approach works for

different teachers and different estimation methods. We will show that the student replacement

approach provides us with a general framework that can be easily applied to compare evaluation

results generated from different estimation methods.

Specifically, we use the DOLS approach for a model specified as: .8 = V0 + V1%A4C4BC8 +

V2�4<0;48 + V3�'!8 + V4"8=>A8CH8 +)8W + Y8, where )8C is a row vector of teacher indicators and

W is a column vector of teacher fixed-effects (i.e., VAMs). The other notation is the same as before,

where .8 is math achievement at Grade 1 and %A4C4BC8 is math achievement at Grade K. We restrict

our sample to teachers who taught small classes so that we do not need to worry about collinearity

between teacher effect and class type effect. As such, we get a smaller sample with 1, 128 students

taught by 101 teachers. Figure 2.8 shows the distribution of these 101 teachers’ VAMs (i.e., Ŵ in the

equation), where the red dotted line represents the 5Cℎ percentile (−1.60) as a threshold for being

an effective teacher. 5 teachers’ VAMs are below this threshold.

Now we apply the student replacement approach to characterize the robustness of teacher

evaluation based on VAMs for the 5 teachers who are below the threshold. Table 2.1 presents

the results together with the robustness for the 14 teachers who are below the threshold in the

EB approach. Specifically, the second column (# of students in total) reports the total number of
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Figure 2.8: VAMs (estimated by DOLS) for 101 teachers who taught small classes.

students for the teacher. The third column (EB_c) reports the percentage of students that must be

replaced to change the teacher evaluation in the EB approach. There are 5 ineffective teachers in the

EB approach who did not teach small classes, thus the robustness of their evaluation in the DOLS

approach is not applied (#�). The fourth column (DOLS_c) reports the percentage of students

that must be replaced to change the teacher evaluation in the DOLS approach. In both the third and

fourth column, if the percentage is within a parenthesis, then the teacher is above the threshold and

the percentage indicates how much the data must change to get the teacher below the threshold.

The last two columns (i.e., DOLS_het_c1 and DOLS_het_c2) present the results of two selective

replacement approaches to examine the robustness of teacher evaluation to potential heterogeneous

effects.

Table 2.1 allows us to see how our robustness index works for different teachers and different

estimation methods. Note that the two approaches (i.e., EB and DOLS) are very different. The

EB approach compares teachers from all treatment conditions (i.e., small class, regular class and

regular class with aide). But the DOLS approach is only applied to teachers who taught small
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Table 2.1: Case replacement approach for VAMs estimated by EB and DOLS.

Teacher # of students
in total EB_c DOLS_c

DOLS_het_c1
(# of students

must be replaced)
DOLS_het_c2

A 12 57.74% 35.52% 33.33% (4) 26.93%
B 10 34.82% 1.56% 10.00% (1) 0.96%
C 15 31.14% NA
D 14 27.29% NA
E 11 24.52% 29.27% 18.18% (2) 14.29%
F 14 23.27% (24.27%)
G 10 20.75% (0%)
H 16 18.74% (27.18%)
I 10 9.73% 4.91% 10.00% (1) 1.99%
J 14 8.14% NA
K 15 7.95% NA
L 13 5.69% (32.47%)
M 12 3.02% (10.94%)
N 15 1.07% NA
P 8 (10.87%) 22.67% 25.00% (2) 16.70%

Note: The DOLS approach only includes teachers for teaching small classes.
NA indicates the teacher did not teach small class.

classes. All teachers in the DOLS approach are included in the EB approach, but not vice versa.

As such, the two approaches generate different coefficients for the same predictors (i.e., students’

gender, race and free and reduced lunch information), different VAMs, and different thresholds.

But our student replacement approach allows us to compare the robustness of teacher evaluation

results across these two approaches. Comparing the third and fourth columns (i.e., EB_c and

DOLS_c), first we observe that four out of five ineffective teachers in the DOLS approach are also

below the threshold in the EB approach: teacher �, �, � and �. In both approaches, we have

strong evidence for teacher � to be ineffective. The only teacher that is below the threshold in EB

but above the threshold in DOLS is teacher %. But our thought experiment tells us that in the EB

approach, the evidence for teacher % being effective is not very strong since only 10.87% of average

students must be replaced with threshold-level students to bring this teacher below the threshold.

Similarly, our approach tells us that two estimation approaches give similar results in general for

small class teachers who are ineffective in the EB approach but effective in the DOLS approach.
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For example, teacher � is below the threshold in the EB approach and is just at the threshold in the

DOLS approach (his/her VAM is exactly at the threshold of −1.60). Another example is: among

the nine small class teachers below the EB approach threshold, the three teachers with the strongest

evidence of being ineffective are also below the threshold in the DOLS approach (i.e., teacher �,

� and �); it is the teachers with the weakest evidence in the EB approach that turn to be effective

in the DOLS approach (i.e., teacher ! and "). This indicates the VAMs generated by different

approaches can be highly correlated. However, when it comes to the evaluation for one individual

teacher, the inference can be reversed when the teacher is close to the threshold. As we see here,

in total there are five teachers whose evaluation changes in different approaches and none of them

shows very strong evidence of being ineffective in either approach, which illustrates the importance

of quantifying the robustness of the inferences in evaluating individual teachers based on VAMs.

Asmentioned before, the last two columns in Table 5 present the results of selective replacement

approaches for the five teachers who are below the threshold in the DOLS approach. Specifically,

the left column (DOLS_het_c1) applies the successive extreme replacement approach and the right

column (DOLS_het_c2) applies the purposeful replacement approach. For example, for teacher

A, the four lowest score students (33.33%) in the class must be replaced with average students to

get this teacher to the threshold. Alternatively, 26.93% of below class average students must be

replaced. The motivation for the selective replacement is to characterize how sensitive the teacher

evaluation is to potential heterogeneous/outlier effects. That is, we want to use this information to

capture not only how far the VAM (which is also the class average gain score) is from the threshold,

but also to what extent the difference between VAM and threshold is due to students with very low

gain scores in the class (i.e., tail part of the distribution). To illustrate how the selective replacement

approaches achieve this goal, we present the results together with gain score distributions for the

five teachers, as shown in Figure 2.9, where the red solid line represents the threshold and the black

dashed line represents each teacher’s VAM, which is also the class average gain score.

First, we compare teacher � and �. As shown in Figure 2.9, both � and � have students with

very low gain scores. But teacher �’s VAM is much closer to the threshold than � . Reflected in
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Figure 2.9: Gain score distributions for 5 teachers below the threshold in the DOLS approach.

57



Table 2.1, the selective replacement approach tells us that teacher � only needs to replace very

few low-end students to get to threshold while teacher � needs to replace more low-end students.

Second, we compare teacher � and %. � is a little further away from the threshold compared to %:

29.27% of �’s students must be replaced with average students to change his/her evaluation and

22.67% of %’s students must be replaced with average students to change his/her evaluation. But

� has a few students with extremely low gain scores. As such, the selective replacement tells us

that �’s evaluation is more sensitive to students in the lower tail than teacher %.

2.7 Discussion

This Chapter discusses how the case replacement approach can be applied in the VAM context,

accounting for spillover and heterogeneity. The general approach is very much like that in the MST

context: to quantify the strength of evidence for an inference by considering how many observed

cases need to be replaced with unobserved cases to change the inference (Frank et al., 2013). As

we have shown, this is a very powerful non-parametric framework that can be easily generalized

for violations of SUTVA and presence of heterogeneity. The extensions to account for spillover

and heterogeneity are also essentially the same in both MST and VAM contexts.

Meanwhile, it is important to note two important differences in MST and VAM. First, sampling

variability is accommodated by statistical significance attached to the threshold in the MST context.

This is also the most general situation in empirical research. However, in the context of VAM, the

threshold is arbitrary and thus we consider sampling variability with the number of cases that need

to be replaced to invalidate the inference. In other words, instead of adding sampling variability

to the threshold, we accommodate the sampling variability in the index of inference robustness.

Second, the heterogeneity in VAM only exists within class (one level) but the MST has two levels

of heterogeneity. Importantly, we argue that the second level of heterogeneity really needs more

attention from researchers since the cross-site variation in treatment effects always has significant

policy implications. The study of cross-site variation also leads to more research about how and

why an intervention works in certain contexts but not others. We argue that our approach has a
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strong potential in helping researchers, as well as policymakers in understanding and interpreting

these important variations.
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CHAPTER 3

UNOBSERVED MEDIATOR IN A SINGLE-MEDIATOR MODEL

3.1 Introduction

Chapters 1 and 2 focus on how researchers can present strength of evidence in educational

research with an intuitive framework so that all stakeholders can evaluate the effectiveness of one

intervention against potential costs to better inform policy choices. Now Chapters 3 will turn to

the second goal stated in the introduction: exploring why an intervention works through mediation

mechanisms so that policy choices may be better informed. Under a simple mediation model, a

binary variable - is randomly assigned (e.g., treatment vs. control groups) and causes change

in the outcome variable . . A mediator variable "$ explains one mechanism or process through

which - affects. . In other words, the mediator is intermediate in the causal sequence that explains

why the intervention (-) causes the outcome (. ) (e.g., Baron & Kenny, 1986; MacKinnon, 2008).

This mediation process with a single mediator is presented in Figure 3.1(a), where the product of

the effects from - to "$ and from "$ to . is defined as the indirect effect via the mediator "$

(e.g., Hayes, 2013; MacKinnon, 2008).

The basic single mediator model can also be extended to more than one simultaneous mediator.

Figure 3.1(b) presents a two-mediator parallel mediation model, where there are two simultaneous

mediation processes, one through each mediator, connecting - to . . Preacher and Hayes (2008)

discussed approaches to test hypotheses for individual mediators and contrast the magnitude of

indirect effects for different mediators in a multiple mediation model like this, where more than

one simultaneous mediators are involved to explain why the intervention - causes the outcome . .

Researchers have emphasized the importance of testing multiple mediators in a single model rather

than in separate models to prevent potential parameter bias due to omitted variables (e.g., Hayes,

2013; Judd & Kenny, 1981; Preacher & Hayes, 2008). In many cases, however, a single mediation

model may be tested because a researcher has not measured another relevant potential mediator or
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Figure 3.1: Simple mediation and dual mediator designs.

is unable to measure a theoretically relevant mediator. In such instances, the second potentially

relevant mediator is unobserved (denoted by "*). For example, suppose a researcher studying

the impact of tracking/grouping students (-) on students’ learning outcomes (. ) is interested in

potential mediators that might explain associations between tracking and learning. If the researcher

hypothesizes that stigma and teachers’ mindset might both be mediators of interest but teachers’

mindset was not measured under the research design, then in such an instance stigma is observed

("$) and teachers’ mindset is unobserved ("*).

When "* is associated with the observed mediator (denoted by "$) (Figure 3.1(c)), it may

threaten inference of the mediation effect via "$ . In this case, "* is also a posttreatment

confounder for the mediation path from - to "$ to . as "* explains the "$ to . relation and

is caused by - (e.g., Fritz, Kenny, & MacKinnon, 2016). Many recent studies have investigated
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influence of potential confounders on causal mediation inferences by providing approaches to

sensitivity analyses (e.g., Hong, Qin, & Yang, 2018; Imai, Keele, & Tingley, 2010; Imai, Keele, &

Yamamoto, 2010; Imai & Yamamoto, 2013; VanderWeele, 2015). Specifically, sensitivity analyses

may describe the responsiveness of an estimated effect or the robustness of a causal inference to a

potential confounder.

However, based on our knowledge, existing sensitivity analysis strategies are either 1) intended

primarily for unobserved confounders, which are not potential mediators (e.g., Imai, Keele, &

Yamamoto, 2010; Imai & Yamamoto, 2013; VanderWeele, 2010), or 2) use an alternative coun-

terfactual framework targeting the “natural indirect effect” (NIE), “natural direct effect” (NDE)

or “controlled direct effect” (CDE) (e.g., Hong et al., 2018; VanderWeele, 2015; VanderWeele &

Chiba, 2014). Under models with multiple mediators, NIE, NDE and CDE can be very different

from the specific indirect and direct effects defined from a path-specific perspective. For example,

the NIE is defined as the difference in outcome . if the mediator of interest changed to what it

would have been if the exposure - changed to control (assuming - is binary for simplicity), while

the exposure - stays at the treatment condition. In our dual mediator model of Figure 3.1(c),

then the NIE transmitted through "$ includes not only the pathway - → "$ → . but also

- → "* → "$ → . . Additionally, the NDE is defined as the difference in outcome . if only -

changes from control to treatment but the mediator of interest "$ stays at the level that would have

taken under the control condition of exposure - . Then in Figure 3.1(c), the NDE includes both

- → . and - → "* → . . Thus, the sensitivity approach under the counterfactual framework

cannot be applied directly if we take the path-specific perspective commonly used in psychology

(e.g., Hayes, 2013; MacKinnon, 2008).

Extending previous research, the goal of this study is to examine whether and how omitting an

alternative mediator that is also a confounder can bias causal mediation effect estimates from the

path-specific perspective. Furthermore, we propose a sensitivity analysis to evaluate robustness of

a causal mediation inference to an unobserved mediator.
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3.2 Dual-Mediator Designs

Hayes (2013) presented a complex serial mediation model with two mediators (Figure 3.1(c),

with the dotted lines) where one mediator ("*) has a serial or predictive effect on the second

mediator ("$), en route to Y. The parallel or serial mediation models (Figure 3.1(e) or 3.1(f)) are

special cases of the complex mediation model presented in Figure 3.1(c). Specifically, when the

path coefficient for "* → "$ is zero, the model in Figure 3.1(c) becomes the parallel mediation

model in Figure 3.1(e). When the path coefficients for both - → "$ and "* → . are zero,

the model in Figure 3.1(c) becomes the serial mediation model in Figure 3.1(f). We focus on the

complex serial mediation model (Figure 3.1(c), with the dotted line), as a general model, to evaluate

whether and how an unobserved mediator may bias estimation of the direct and indirect effects via

the observed mediator. Specifically, we study how excluding "* affects estimation of the specific

mediation effect via "$ , defined as the product of the paths from - to "$ and "$ to . . That is,

when "* is no longer observed in our analysis, all the pathways that relate to this omitted mediator

"* are excluded from the analysis, as shown by dotted lines in Figure 3.1(c). To illustrate potential

effects by omitting such a mediator, we will apply a real data example also used by Hayes (2013)

about how media use affects behaviors.

3.3 Illustrative Data Example about Consequences of Omitting an Alternative Related Me-
diator

Illustrative data were originally drawn from an experimental study conducted by Tal-Or, Cohen,

Tsfati, and Gunther (2010). The research was to test a hypothesis about the influence of media use:

whether media (-) affects people’s attitudes or behaviors (. ) through changing people’s perceptions

regarding how other people may be influenced by the media ("$). For example, when a person

Ashley reads a media report, she may tend to predict that others in her community will respond to

this report in certain ways. This prediction can further affect Ashley’s attitudes or behaviors. To

test this hypothesis, participants were randomly assigned into two groups (-). Both groups were

asked to read a newspaper article about an economic crisis that can affect the price and supply
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of sugar in Israel. However, one group were told that this article came from the front page of a

major newspaper whereas the other group were told that the article appeared in the middle of an

economic supplement of the newspaper. A condition variable (- , denoted by COND) was used to

indicate whether the participant was manipulated to consider this article as a front-page article or

interior-page article. After a participant finished reading the article, he/she was asked how much

he/she believed that others in the community would be encouraged to buy sugar after they read this

article. This presumedmedia influence served as one mediator ("$ , denoted by PMI) in the model.

The participants were also asked about how important they thought this article was. This perceived

issue importance was a second mediator ("* , denoted by IMPORT) in the model. Finally, the

participants in both groups were asked about how soon they intended to buy sugar and how much

they would buy. These responses were then aggregated to generate a variable that measured their

intention to buy sugar. This is then the outcome variable (. , denoted by REACTION).

The first fitted model includes two mediators PMI and IMPORT as presented in the left panel

of Figure 3.2. For the mediation path via PMI, it is hypothesized that others are more likely to

Figure 3.2: Illustrative data example of presumed media influence.

be affected by an article appearing on the front page than on the interior page. Therefore, before

others act to buy sugar forcing the price up, one would act as soon as possible to purchase sugar

when it is available at an acceptable price. For the mediation path via IMPORT, people can infer
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the importance of the article based on where it is published and consequently, people act upon the

importance of the issue. Moreover, IMPORT is also presumed to predict media influence, under

the hypothesis that the more important people believe the article is, the more likely they believe

others would be influenced by that article.

We fit the model in the left panel of Figure 3.2 to data using standardized variables1. The

estimated path coefficients were therefore standardized coefficients. Both the effects fromCOND to

IMPORT and from IMPORT to REACTION are significantly positive. Using the joint significance

approach (Fritz & MacKinnon, 2007), the estimated indirect effect through IMPORT was 0.181 ·

0.363 = 0.066. The 95% percentile bootstrap confidence interval of the indirect effect is 0.001

to 0.150 (based on 5,000 bootstrap samples). In contrast, the other indirect effect via presumed

media influence was not significant, with a 95% percentile bootstrap confidence interval of -0.013

to 0.114 (based on 5,000 bootstrap samples). That is to say, the specific mediated effect of the

article’s location did not have statistically significant influence on participants’ reactions through

presumed media influence. Additionally, the predictive relationship from IMPORT to PMI was

significantly positive (0.258, ? = 0.003). This confirms the hypothesis that as participants think

the issue is more important, they have a stronger belief that others are going to be affected by that

article.

Now we ask, “What would happen if the mediator IMPORT was excluded from the fitted

model?” This may be the case if an alternative theoretically important mediator (such as IMPORT)

is not measured in the research design, as can occur in almost any example of a mediation analysis.

In this case, PMI is the only observed mediating variable included in the model. The results are

presented in the right panel of Figure 3.2. After excluding IMPORT, the specific indirect effect via

PMI changed from being non-significant to significantly positive: both paths in the indirect effect

are statistically significantly positive and the indirect effect has a 95% confidence interval of 0.078

to 0.042 (based on 5,000 bootstrap samples). Specifically, the direct path from article location

to presumed media influence increased from 0.134 to 0.181 and the direct path from presumed
1We standardized all variables for analysis to be consistent with our later derivation. Therefore,

the coefficients are different from those in Hayes (2013).
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media influence to participants’ reaction increased from 0.338 to 0.432. Therefore, excluding

IMPORT, both paths for this indirect effect via presumed media influence were greater. Omitting

this alternative mediator has given us a different conclusion that the indirect effect via presumed

media influence is significantly positive. We also observe that in both models the direct path from

article location to participants’ reaction was not statistically significant from 0 but the point estimate

increases from 0.033 to 0.082 once we exclude the IMPORT mediator from our model.

It is important to note that whenwe compare the two fittedmodels above, we aremainly focusing

on two estimates: 1) the specific indirect effect via PMI, defined as the product of the paths from

COND to PMI and from PMI to REACTION; 2) the direct path from COND to REACTION. The

specific indirect effect defined as the product of two path coefficients (e.g., Hayes, 2013) is not equal

to either the natural indirect effect or the randomized interventional analogue of the natural direct

effect (e.g., VanderWeele, 2015). The direct effect we are interested here is also different from

both natural and control direct effect defined in the counterfactual framework (e.g., VanderWeele

& Chiba, 2014).

3.4 Unobserved Causally Related Mediator as Posttreatment Confounder

The example above illustrates that omitting an alternative mediator can alter estimates of the

mediating path coefficients for PMI and change the inference for thismediating effect. To understand

why omitting IMPORT can generate such effects, we first present a general representation of a

confounder in Figure 3.3(a): a confounder / of - and . can bias the estimate and inference

of the effect from - to . by serving as an alternative cause of both - and . . Following the

illustrative data example, in such a case IMPORT is associated with both the mediator PMI and

the outcome REACTION. Thus, if IMPORT is omitted, it serves as a potential confounder for PMI

and REACTION.

Previous studies on sensitivity analysis in the mediation literature have focused on the case

where a potential confounder (e.g., IMPORT) between a mediator (e.g., PMI) and an outcome (e.g.,

REACTION) is assumed to be independent from the input variable (e.g., COND) (Figure 3.3(b)).
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Figure 3.3: Confounder in mediation.

For example, Imai, Keele, and Yamamoto (2010) presented a sensitivity analysis based on residual

correlations to deal with unmeasured pre-treatment covariates “that confound the relationship

between the mediator and the outcome”. The “pre-treatment” covariates precede the input variable

- and therefore are not influenced by - . Fritz et al. (2016) combined the effects of measurement

errors and omitting confounders on bias of the mediation effect, but they considered the confounder

/ as independent of - throughout their analytical study (Figure 3.3(b)).

Meanwhile, empirical studies across the social sciences have shown considerable evidence for

the existence of multiple causal mechanisms that may involve simultaneous or causally related

mediators. For example, Bekman, Cummins, and Brown (2010) examined a parallel multiple-

mediator model where depression affected adolescent alcohol use through simultaneous mediators

perceptions and expectancies. Imai and Yamamoto (2013) discussed several empirical studies

where both content and importance mechanisms mediated the effect of political issue framing on

citizens’ political opinion and behaviors. Singh, Chen, and Wegener (2014) showed evidence for

several sequential multiple-mediator models for how attitude similarity affected inferred attraction

through several mediators. As such, the parallel mediation (Figure 3.1(b)) and serial mediation

(Figure 3.1(d)) models are often observed to characterize mediational effects, which emphasizes the

importance of understanding unobserved/omitted mediators in cases where there is an association

between the predictor and the unobserved mediator.

Therefore, it is of critical importance to fill the research gap regarding how unobserved/omitted

mediators affect estimates and inferences for observed mediators as these post-treatment con-
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founders can easily occur in practice. In this chapter, we focus on the two-mediator model discussed

by Hayes (2013) (Figure 3.1(c) with dotted lines) to study how an unobserved/omitted mediator

("*) may bias direct and indirect effect estimates via the observed mediator ("$). This selected

two-mediator model also makes our study results generalizable from two perspectives. First, as

discussed before, this model can be simplified to other popular two-mediator designs: parallel two-

mediator model (Figure 3.1(e)) and serial two-mediator model (Figure 3.1(f)). Second, by setting

the path coefficient from - to the omitted mediator "* to zero, the studied scenario becomes the

same as that for previous studies of the sensitivity of mediation effects (e.g., Fritz et al., 2016; Imai,

Keele, & Yamamoto, 2010; Imai & Yamamoto, 2013; VanderWeele, 2010). Therefore, we can also

compare our findings with these previous studies and extend their findings.

3.5 Goals of the Study

This study has three goals. Our first goal is to establish conditions under which omitting a

mediator can yield consistent results. However, we show that the conditions to obtain consistent

estimates for the direct and indirect effect via"$ are not the same, so that one cannot simultaneously

obtain consistent direct and indirect effects. Second, recognizing that these conditions may be

difficult to meet in practice, we evaluate how omitting "* biases the mediation effect estimate

via "$ . For example, we find that when the path coefficients related to "* are all positive or

all negative, the specific indirect effect via "$ is always overestimated while the direct effect

from - to . can be either positively or negatively biased. We further show that as the path

coefficient of "* → "$ becomes larger, the positive bias in estimating the indirect effect via

"$ becomes larger, but the estimation of the direct effect - → . changes from overestimation to

underestimation. Third, we also seek to identify the magnitude of bias under different scenarios in

order to contextualize the potential threats to inference by omitting the post-treatment confounder

"* . Finally, stemming from the first three goals, we seek to propose a sensitivity analysis to

assessing the robustness of the causal mediation inference to omission of an unobserved mediator

that is confounded with the "$ paths through its relationship to - and . .
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We present our analytical findings in terms of path coefficients as well as correlations among

variables in the underlying model. The path coefficient framework shows how different levels of

parameters for causal pathways in the truemodel affect the direction andmagnitude of inconsistency.

Alternatively, the correlation framework shows how estimates of path coefficients varywith different

magnitudes of correlations among the variables. We have elected to present both frameworks

because the parameter framework allows us to understand how inconsistency is generated when

we omit the other mediator by assuming we know the “truth”, while the correlation framework

facilitates our development of sensitivity analysismethods that can be directly applied by substantive

researchers in real studies. We expect that these two frameworks can complement each other to fulfill

a more comprehensive picture so that a solid foundation can be built for substantive researchers

to deal with an unobserved mediator as a potential confounder. Throughout, we will draw on the

previously discussed illustrative example of presumed media influence to demonstrate the effect of

omitting a related mediator.

3.6 Inconsistency When "* is Omitted

The first and primary goal of this paper is to derive the effect estimates with an omitted con-

founding mediator and their deviations from the true effects in the underlying model. Specifically,

we would like to study the differences between 0̃1, 1̃1 , 2̃ and 01, 11, 2, as shown in Figure 3.4.

We applied the Law of Iterated Expectation to derive 0̃1, 1̃1, 2̃. The Law of Iterated Expectation

states that � (. |-) = � [� (. |-, /) |-] where - ,. and / are three variables and � (. |-) represents

the conditional expectation (or conditional mean) of. given - (Wooldridge, 2009). The Appendix

has shown the derivation details and the results are presented in Equations 3.1 through 3.4 as
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Figure 3.4: True model with two mediators and the model omitting "* .

follows.

0̃1 = 01 + : · 02, (3.1)

1̃1 = 11 + 12 · : ·
1 − 02

2
1 − (: · 02 + 01)2

, (3.2)

2̃ = 2 + 12 ·
02 − (: + 01 · 02) · (: · 02 + 01)

1 − (: · 02 + 01)2
= 2 + 12 ·

d-,"*
− d"$,"* · d-,"$

1 − (: · 02 + 01)2
(3.3)

0̃11̃1 = 0111 + : · 01 · 11 +
: · (01 + : · 02) (1 − 02

2)
1 − (: · 02 + 01)2

(3.4)

As such we obtain 0̃1, 1̃1, and 2̃ as functions of true parameters. Specifically, 01 and 11

represent the true effects via the observed mediator "$ , while 02 and 12 represent the true effects

via the omitted mediator "* . In our illustrative example, the product of 01 and 11 is the true

mediation effect through the mediator PMI, while the product of 02 and 12 is the true mediation

effect through the omitted mediator IMPORT. : stands for the path coefficient from IMPORT to

PMI. As shown by Equations 3.1 through 3.4, only under very stringent conditions are 0̃1, 1̃1, and

2̃ equal to 01, 11, and 2. In the following subsections, we will show these stringent conditions, and

how the key parameters influence the differences between 0̃1, 1̃1, 2̃ and the true parameters 01, 11,
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2.

To note, the derivation here is at the population level and therefore is free of sampling error.

Technically speaking, the difference between 0̃1, 1̃1, 2̃ and 01, 11, 2 are inconsistencies, not bias.

That is, 0̃1, 1̃1, 2̃ are the estimates we get even when we have all population data available (i.e.,

sample size = → ∞). In all following discussion, “bias” in the population parameters is a rough

way to describe “inconsistency” for an audience more comfortable with conceptualizations of bias.2

3.6.1 Conditions for consistent estimates when omitting "*

Next, we examine conditions under which omitting "* can result in consistent results. If an

empirical researcher can justify their studies as meeting these conditions, there is less concern

about omitting "* .

From Equation 3.1, 0̃1 = 01 if and only if : = 0 or 02 = 0. When : = 0, there is no causal

relation between the two mediators, which reduces to the parallel mediation model represented in

Figure 3.1(e). In our illustrative data example, this condition is satisfied when IMPORT has no

effect on PMI. Under this condition, excluding IMPORT does not affect the effect estimate from

COND to PMI. Alternatively, 0̃1 = 01 when 02 = 0, or there is no effect of the treatment variable

- on the omitted variable "* . This condition is equivalent to the situation that the omitted "* is

only a confounder of the "$ − . relation and is not caused by - .

Based on Equation 3.2, to satisfy 1̃1 = 11, we can have (1) 12 = 0, indicating no effect of "*

on . , (2) : = 0, indicating no effect of "* on "$ (a parallel two-mediator model), or (3) 02
2 = 1,

indicating the effect of - on "* is -1 or 1. If condition (3) is true, then the omitted mediator "*
2Take the 0̃1 as an example to see why we are deriving inconsistencies rather than bias. The

derivation in the Appendix shows that 02 comes from V1 where � ("* |-) = V1 · - . For one
sample, we can express V̂1 as (-′-)−1(-′"*) where - and "* are sample data for - and "* .
This is a nonlinear function of - . If we really want to derive the magnitude of bias, we need
to know � ((-′-)−1(-′"*)). Since only probability limit goes through nonlinear function but
expectation cannot, we can only know ?;8<((-′-)−1(-′"*)) but not � ((-′-)−1(-′"*)). That
is why in this chapter (also chapter 4) I am in fact deriving inconsistency which is at the population
level.
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is fully determined by the treatment - 3. In our illustrative example, condition (3) indicates that the

value of IMPORT is solely dependent on COND.

In terms of the direct effect 2̃, based on Equation 3.3, 2̃ = 2 if and only if 02 = (: + 01 · 02) ·

(: · 02 + 01) or 12 = 0. The first condition 02 = (: + 01 · 02) · (: · 02 + 01) is equivalent to

d-,"*
= d"$,"*

· d-,"$ , where d-,"* , d"$,"* , d-,"$ are correlations between - and "* ,

between "$ and "* , and between - and "$ , respectively. In the illustrative example, this means

the correlation between COND and the omitted mediator IMPORT is equivalent to the product

correlation between PMI and IMPORT × the correlation between COND and PMI. The second

condition 12 = 0 indicates no effect of "* on . .

In sum, as long as the mediation effect via the omitted mediator "* is nonzero (02 ≠ 0 and

12 ≠ 0) and "* has a nonzero effect on the observed mediator "$ (: ≠ 0), the estimates for

01, 11, 2 will be inconsistent (i.e., 01 ≠ 0̃1, 11 ≠ 1̃1, 2 ≠ 2̃). Furthermore, the conditions to

obtain consistent direct and indirect effects are not the same, so that one cannot simultaneously

obtain accurate direct and indirect effects. An unbiased indirect effect can be obtained when "*

is omitted when "* has a zero effect on the observed mediator "$ , or the underlying model is a

parallel two-mediator model. In fact, under a parallel two-mediator model, not only can we obtain

an consistent indirect effect, but also consistent estimates of 01 and 11. A consistent direct effect

from - to . can be obtained when "* is omitted when d-,"* = d"$,"*
· d-,"$ or 12 = 0.

3.6.2 Direction of inconsistency when omitting "*

From the previous discussion, we note that conditions for obtaining unbiased estimates of direct

and/or indirect effects are difficult to justify in practice. This leads us to the following discussion

to achieve our second goal: to examine the direction and magnitude of bias of direct and indirect

effect estimates when omitting "* .

From Equation 3.1, 0̃1 > 01 as long as : and 02 are in the same direction. That is, when

3We standardized all variables in our derivation. Therefore, this condition of 02
2 = 1 is equivalent

to zero error term, indicating the omitted mediator only depends on the treatment variable.
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: and 02 are both positive or negative, 01 is overestimated. Similarly, 1̃1 > 11 when : and 12

are in the same direction (either both positive or both negative, but not zero, see Appendix for

detailed proof). Therefore, the indirect effect estimate via "$ is overestimated when : , 02 and

12, the three "*-related path coefficients, are all positive or all negative. The amount of bias is

: · 02 · 11 +
: ·12·(01+: ·02)·(1−02

2)
1−(: ·02+01)2

. In our earlier example, the three path coefficients related to

IMPORT were all positive. Correspondingly, when IMPORT was excluded from the model, the

indirect effect through PMI became larger, from 0.045 to 0.078.

In terms of the direct effect 2, the direction of bias depends onwhether 12 and [02−(: + 01 · 02)·

(: · 02 + 01)] have the same sign. In the Appendix, we show that [02− (: + 01 · 02) · (: · 02 + 01)]

is equivalent to (d-,"* − d-,"$ · d"$,"* ), which is also the numerator of the partial correlation

between - and "* conditional on "$ . When 12 > 0 and d-,"* > d-,"$
· d"$,"* , 2 is

overestimated. In contrast, when 12 > 0 and d-,"* < d-,"$
· d"$,"* , 2 is underestimated.

One way to think about the sign of (d-,"* −d-,"$ ·d"$,"* ) is to consider the observedmediator

"$ as a common outcome of the omitted variable "* and the treatment variable - . When we

have d-,"* < d-,"$
· d"$,"* , then d-,"* changes its sign once paritialling out the "$ . In

this case, "$ functions similarly to a suppressor since it distorts the relation between "* and -

(e.g., Cohen & Cohen, 1983; Rosenberg, 1968).

In our illustrative example of presumed media influence, the path coefficient from PMI to

the outcome REACTION (12) was positive. Additionally, the correlation between COND and

IMPORT was larger than the product of correlations between COND and PMI and between PMI

and IMPORT: d-,"* > d-,"$
· d"$,"* . Accordingly, the direct effect became larger, from

0.033 to 0.082, when IMPORT was excluded from the model.

3.6.3 How inconsistency changes with "*-related parameters.

Next we will demonstrate how the omission of "* can generate bias with regards to "$ under

different scenarios. To achieve this goal, we will manipulate each of the parameters related to "* .

The discussion here will exhaust all possible scenarios about how each "*-related path coefficient
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affects bias regarding "$ , in terms of increasing or decreasing the bias. For example, the path

coefficient from "* to "$ (:) is always positively associated with the bias in estimating 11, no

matter what values other parameters take on. In contrast, the path coefficient from - to"* (02) can

be either positively or negatively related to the bias in 1̃1 depending on values of other parameters.

To simplify, we constrain our discussion to all parameters in the true model being positve4.

We start our discussion with the effect from "* to "$ (represented as :). Figure 3.5 plots

the bias in estimating 01, 11, 2 against different values of : , while all the other parameters are

fixed at certain values: 01 = 02 = 0.2, 12 = 0.1. First the magnitude of bias in estimating both

- → "$ (01) and "$ → . (11) increases as path : becomes larger. Focusing on the effects

- → "* → "$ in the true model (left panel in Figure 3.4), the larger the : the more some of

the effect attributed to "$ should be attributed to "* as a mediator. Therefore, we overestimate

01 and the difference between 0̃1 and 01 grows as : gets bigger. Similary, : plays a role in the

chain of effects - → "* → "$ → . . Here, the larger the magnitude of : the larger the bias in

the estimated effect "$ → . . Thus, as : increases the bias in both 0̃1 and 1̃1 increase, leading to

more serious overestimation of the indirect effect - → "$ → . .

Figure 3.5 also shows that after the positive bias in the estimated direct effect - → . falls to 0

it continues decreasing to negative values as : increases to 1. That is, when : is relatively small

we overestimate 2 while when : becomes larger we underestimate 2. As : gets closer to 1, the

magnitude of negative bias in 2̃ keeps growing. This is consistent with our previous discussion

about the direction of bias in 2̃. As : becomes larger, the “suppression” function from the common

outcome "$ becomes more serious as the difference between d-,"*
and d-,"$

· d"$,"*
becomes larger.

To summarize, when we manipulate : to vary from 0 to 1, we always overestimate the indirect

effect via "$ and the bias becomes larger. However, the increase in : first countermands the

overestimation in 2 and as : gets closer to 1 it finally leads to underestimation of the direct effect

- → . . The Appendix also proves that this pattern of associations between : and the bias of 0̃1,
4See theAppendix formore detailed discussion about howwe calculated these different scenarios

by studying the first derivatives of the bias of 0̃1, 1̃1 and 2̃ as a function of "*-related parameters.
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Figure 3.5: How bias changes with different levels of : .

1̃1 and 2̃ is consistent no matter what values other parameters take on.

Now we manipulate 02 and see how this direct effect - → "* relates to changes in bias.

The results are presented in Figure 3.6(a) and Figure 3.6(b). In both figures, a larger direct effect

- → "* (02) is associated with larger bias in the estimated direct effect - → "$ . The intuition

is similar to how : affects the bias of 0̃1: the indirect effect - → "* → "$ is allocated to

the biased effect - → "$ (reflected as 0̃1), where the omitted "* plays a role of mediator.

Consistent with our previous discussion, Figure 3.6(a) and 3.6(b) shows the direct effect "$ → .

is always overestimated (the bias is positive) (when all parameters are positive) while 2̃ can be

either positively or negatively biased.

Note that Figure 3.6(a) and 3.6(b) present different trends of changes in the bias of 1̃1 and 2̃ as

02 increases5. Figure 3.6(a) shows the bias of 1̃1 decreases until 0 as 02 increases while Figure

3.6(b) shows the bias of 1̃1 increases as 02 gets bigger. On the contrary, the bias of 2̃ becomes

5The Appendix shows how we calculated these two different patterns by studying the partial
derivatives of the bias in estimating 01, 11 and 2 with respect to 02.
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Figure 3.6: How bias changes with different level of 02.

larger in Figure 3.6(a) but Figure 3.6(b) gives a decreasing curve for the bias in estimating 2. The

decreasing curve indicates the underestimation of 2 becomes more extreme as 02 increases. The

distinction between Figure 3.6(a) and 3.6(b) illustrates that the effect of 02 on the bias in estimating

12 and 2 relies on the values of other parameters. Specifically, Figure 3.6(a) presents the scenario

where the magnitude of 01 and : are both relatively small (with values of 0.15 and 0.22) while in

Figure 3.6(b) 01 and : are both relatively large (with values of 0.6 and 0.5).

The last parameter that relates to "* is the effect "* → . , represented as 12. Figure 3.7(a)6

and Figure 3.7(b) 7 present how the bias in estimating 01, 11 and 2 vary with differing levels of 12

under two different scenarios 8. In both Figure 3.7(a) and 3.7(b), 0̃1 and 1̃1 are always positively

biased. But the positive bias of 1̃1 becomes larger as 12 gets closer to 1 while the level of 12 has

no effect on the bias in estimating 01.

To see why 12 has no effect on the magnitude of the bias of 0̃1, we focus on - → "* → "$

in the true model because this is where the bias of 0̃1 comes from (based on Equation 3.1). It is

601 = 0.2, 02 = 0.2, : = 0.2.
701 = 0.55, 02 = 0.2, : = 0.6.
8The Appendix shows how we calculated these two different patterns by studying the partial

derivatives of the bias in estimating 01, 11 and 2 with respect to 12.
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Figure 3.7: How bias changes with different levels of 12.

obvious then that 12 plays no role in - → "* → "$ . That is, the direct effect "* → . (12) is

not directly connected with the direct effect - → "$ (01). Alternatively, we can consider this “no

effect” by noticing that the path 12 is invoked after the direct effect - → "$ (01) in the sequence

of causality. Equation 3.2 also shows that the bias in estimating 11 is a linear function of 12 as in

both Figure 3.7(a) and 3.7(b).

The distinction between Figure 3.7(a) and 3.7(b) is how different levels of 12 affect the bias

of 2̃. In Figure 3.7(a), 2 becomes overestimated and the positive bias grows but in Figure 3.7(b)

we always underestimate 2 and more importantly, the negative bias becomes more serious as

12 increases. This distinction is due to the direction of 2̃’s bias while the effect of 12 on the

magnitude of 2̃’s bias follows the same pattern in Figure 3.7(a) and 3.7(b). In Figure 3.7(a) we have

01 = : = 02 = 0.2 but in Figure 3.7(b), 01(= 0.55) and : (= 0.6) are much larger than 02(= 0.2).

Correspondingly, d-,"* > d-,"$
· d"$,"* for Figure 3.7(a) and d-,"* < d-,"$

· d"$,"*
for Figure 3.7(b). Based on the previous discussion, these two scenarios exemplify the cases in

which 2 gets overestimated and underestimated, respectively. Importantly, in both scenarios, 12

has no effect on the direction of 2̃’s bias but only exhibits a positive influence on the magnitude of
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2̃’s bias. When 2̃ is positively biased, this influence then manifests as more serious overestimation.

Alternatively, when the bias is negative, it results in more serious underestimation.

3.7 How Serious Inconsistency Could be at Different Levels of "*-related Parameters

In the previous section we demonstrate how differing levels of "*-related parameters may

affect bias. In this section, we will solve for bias under different conditions of 02, 12 and : as small

(0.1), medium (0.25) and large (0.4) to demonstrate how serious the bias could be and how large

the bias is relative to the true effect. Starting from general situations, we will also discuss special

situations where parallel (: = 0) or serial (01 = 12 = 0) two-mediator model is the true underlying

mediation process. To link our analysis with previous literature, we will also present situations

where the omitted "* is only a confounder for the mediator-to-outcome relation but not a mediator

itself (02 = 0).

Table 3.1 depicts situations where the dual mediator design in Figure 1.7(c) (with dotted lines)

is the true model, with all pathway coefficients being positive. Specifically, in all models, 01 = 0.2,

11 = 0.15 and 2 = 0.1 (except in Table 3.3 of serial mediation models where 01 = 0). That is,

the true indirect effect is 0.03 and the true direct effect is 0.1. Each row displays the bias in one

scenario with different values of 02, 12 and : either small (0.1), medium (0.25) or large (0.4).

Consistent with previous discussion, all cases in Table 3.1 generate positively biased values for

the indirect effect via "$ from - to . , since all "*-related path coefficients (02, 12 and :) take

on positive values. But the magnitude of bias for the estimated indirect effect via "$ can vary

substantially in different cases: in the worst scenario, large 02, medium 12 and large : generates a

biased indirect effect around 0.09, almost three times as large as the true value of 0.03; while in the

best scenario, small 02, 12 and : only generates an indirect effect of 0.034, just slightly larger than

the true value of 0.03. The magnitude of bias for the estimated direct effect 2̃ also varies greatly

from case to case, with the worst scenario displaying a bias as large as 0.15. In our illustrative

example, when IMPORT was included in the model, 02 was a small to medium value of 0.181,

: was a medium value of 0.258, and 12 was a medium to large value of 0.363. As such, when
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IMPORT was excluded, the indirect effect via PMI increased around 73.33%, from 0.045 to 0.078.

The direct effect from COND to REACTION increased almost 150%, from 0.033 to 0.082.

Table 3.1: Bias in the Estimated Direct Effect of - on . and Estimated Indirect Effect via "$ .

Parameters0 Bias Bias/True value

02 12 :
(0̃1
−01)

(1̃1
−11)

(2̃
−2)

(0̃11̃1
−0111)

(0̃1
−01)
/01

(1̃1
−11)
/11

(2̃
−2)
/2

(0̃11̃1
−0111)
/0111

0.4 0.4 0.1 0.04 0.04 0.15 0.01 20.0% 23.8% 151.4% 48.5%
0.4 0.4 0.25 0.10 0.09 0.13 0.04 50.0% 61.5% 132.3% 142.3%
0.4 0.4 0.4 0.16 0.15 0.10 0.08 80.0% 102.9% 104.4% 265.3%
0.4 0.25 0.1 0.04 0.02 0.09 0.01 20.0% 14.9% 94.7% 37.8%
0.4 0.25 0.25 0.10 0.06 0.08 0.03 50.0% 38.5% 82.7% 107.7%
0.4 0.25 0.4 0.16 0.10 0.07 0.06 80.0% 64.3% 65.3% 195.8%
0.4 0.1 0.1 0.04 0.01 0.04 0.01 20.0% 5.9% 37.9% 27.1%
0.4 0.1 0.25 0.10 0.02 0.03 0.02 50.0% 15.4% 33.1% 73.1%
0.4 0.1 0.4 0.16 0.04 0.03 0.04 80.0% 25.7% 26.1% 126.3%
0.25 0.4 0.1 0.03 0.04 0.09 0.01 12.5% 26.3% 91.1% 42.1%
0.25 0.4 0.25 0.06 0.10 0.07 0.04 31.3% 67.1% 73.6% 119.4%
0.25 0.4 0.4 0.10 0.16 0.05 0.06 50.0% 109.9% 50.5% 214.8%
0.25 0.25 0.1 0.03 0.02 0.06 0.01 12.5% 16.5% 56.9% 31.0%
0.25 0.25 0.25 0.06 0.06 0.05 0.03 31.3% 42.0% 46.0% 86.3%
0.25 0.25 0.40 0.10 0.10 0.03 0.05 50.0% 68.7% 31.6% 153.0%
0.25 0.1 0.1 0.03 0.01 0.02 0.01 12.5% 6.6% 22.8% 19.9%
0.25 0.1 0.25 0.06 0.03 0.02 0.02 31.3% 16.8% 18.4% 53.3%
0.25 0.1 0.4 0.10 0.04 0.01 0.03 50.0% 27.5% 12.6% 91.2%
0.1 0.4 0.1 0.01 0.04 0.03 0.01 5.0% 27.6% 31.3% 34.0%
0.1 0.4 0.25 0.03 0.10 0.02 0.03 12.5% 69.5% 16.5% 90.7%
0.1 0.4 0.4 0.04 0.17 0.00 0.05 20.0% 112.1% -0.3% 154.5%
0.1 0.25 0.1 0.01 0.03 0.02 0.01 5.0% 17.3% 19.6% 23.1%
0.1 0.25 0.25 0.03 0.07 0.01 0.02 12.5% 43.4% 10.3% 61.4%
0.1 0.25 0.4 0.04 0.11 -0.0002 0.03 20.0% 70.0% -0.2% 104.0%
0.1 0.1 0.1 0.01 0.01 0.01 0.004 5.0% 6.9% 7.8% 12.2%
0.1 0.1 0.25 0.03 0.03 0.004 0.01 12.5% 17.4% 4.1% 32.1%
0.1 0.1 0.4 0.04 0.04 -0.0001 0.02 20.0% 28.0% -0.1% 53.6%
Note: 02 = direct effect of - → "* ; 12 = direct effect of "* → . ;
: = direct effect of "* → "$ ; 01 = direct effect of - → "$ ;
11 = direct effect of "$ → . ; 2 = direct effect of - → . ;
0̃1 = direct effect of - → "$ with the omission of "* ;
1̃1 = direct effect of "$ → . with the omission of "* ;
2̃ = direct effect of - → . with the omission of "* .
0 Hypothetical path coefficients for the model depicted in Figure 3.4.
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Additionally, most cases in Table 3.1 generate positively biased values for the direct effect from

- to . , with only two exceptions of underestimation but the magnitude of bias is very small in both

cases (-0.0002 and -0.0001). Additionally, it is very important to note Equation 3.3 also implies

the bias in estimating 2 does not depend on the true value of 2. From a practical perspective, this

suggests even with a very large sample, omitting "* can yield evidence of a medium positive (or

a small negative) direct effect from - to . when the actual direct effect is zero.

Table 3.2: Bias in the Estimated Direct Effect of - on . and Estimated Indirect Effect via
"$ (: = 0).

Parameters0 Bias Bias/True value

02 12 :
(0̃1
−01)

(1̃1
−11)

(2̃
−2)

(0̃11̃1
−0111)

(0̃1
−01)
/01

(1̃1
−11)
/11

(2̃
−2)
/2

(0̃11̃1
−0111)
/0111

0.1 0.1 0 0.00 0.00 0.0100 0.00 0.0% 0.0% 10.0% 0.0%
0.1 0.25 0 0.00 0.00 0.0250 0.00 0.0% 0.0% 25.0% 0.0%
0.1 0.4 0 0.00 0.00 0.0400 0.00 0.0% 0.0% 40.0% 0.0%
0.25 0.1 0 0.00 0.00 0.0250 0.00 0.0% 0.0% 25.0% 0.0%
0.25 0.25 0 0.00 0.00 0.0625 0.00 0.0% 0.0% 62.5% 0.0%
0.25 0.4 0 0.00 0.00 0.1000 0.00 0.0% 0.0% 100.0% 0.0%
0.4 0.1 0 0.00 0.00 0.0400 0.00 0.0% 0.0% 40.0% 0.0%
0.4 0.25 0 0.00 0.00 0.1000 0.00 0.0% 0.0% 100.0% 0.0%
0.4 0.4 0 0.00 0.00 0.1600 0.00 0.0% 0.0% 160.0% 0.0%
Note: 02 = direct effect of - → "* ; 12 = direct effect of "* → . ;
: = direct effect of "* → "$ ; 01 = direct effect of - → "$ ;
11 = direct effect of "$ → . ; 2 = direct effect of - → . ;
0̃1 = direct effect of - → "$ with the omission of "* ;
1̃1 = direct effect of "$ → . with the omission of "* ;
2̃ = direct effect of - → . with the omission of "* .
0 Hypothetical path coefficients for the model depicted in Figure 3.4.

Tables 3.2 and 3.3 depict situations where the true underlying mediation process are parallel

(Figure 3.1(e), : = 0) and serial (Figure 3.1(f), 01 = 12 = 0) two-mediator models, respectively.

Importantly, all cases in Table 3.2 (parallel mediation model) yield positively biased direct effect

from - to . but unbiased indirect effect via "$ ; while all cases in Table 3.3 (serial mediation

model) yield positively biased indirect effect via "$ but unbiased direct effect from - to . . These

patterns are also implied by Equation 3.4 and 3.3, where : = 0 gives unbiased effect for 0111 in
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the parallel model and 12 = 0 gives unbiased effect for 2 in the serial model. Additionally, the

positive bias in both Table 3.2 and Table 3.3 increases as "*-related path coefficients get larger.

Most importantly, the actual indirect effect in the serial model is 0 (since 01 = 0) but the omission

of "* can introduce bias to estimate a considerable indirect effect even when the researcher has a

very large sample, especially when 02 and : have large values in the true serial mediation model.

Table 3.3: Bias in the Estimated Direct Effect of - on . and Estimated Indirect Effect via
"$ (01 = 12 = 0).

Parameters0 Bias Bias/True value

02 12 :
(0̃1
−01)

(1̃1
−11)

(2̃
−2)

(0̃11̃1
−0111)

(0̃1
−01)
/01

(1̃1
−11)
/11

(2̃
−2)
/2

(0̃11̃1
−0111)
/0111

0.1 0 0.1 0.01 0 0 0.0015 NA 0% 0% NA
0.1 0 0.25 0.03 0 0 0.0038 NA 0% 0% NA
0.1 0 0.4 0.04 0 0 0.0060 NA 0% 0% NA
0.25 0 0.1 0.03 0 0 0.0038 NA 0% 0% NA
0.25 0 0.25 0.06 0 0 0.0094 NA 0% 0% NA
0.25 0 0.4 0.10 0 0 0.0150 NA 0% 0% NA
0.4 0 0.1 0.04 0 0 0.0060 NA 0% 0% NA
0.4 0 0.25 0.10 0 0 0.0150 NA 0% 0% NA
0.4 0 0.4 0.16 0 0 0.0240 NA 0% 0% NA
Note: 02 = direct effect of - → "* ; 12 = direct effect of "* → . ;
: = direct effect of "* → "$ ; 01 = direct effect of - → "$ ;
11 = direct effect of "$ → . ; 2 = direct effect of - → . ;
0̃1 = direct effect of - → "$ with the omission of "* ;
1̃1 = direct effect of "$ → . with the omission of "* ;
2̃ = direct effect of - → . with the omission of "* .
0 Hypothetical path coefficients for the model depicted in Figure 3.4.

Table 3.4 depicts situations where the omitted "* is only a confounder for the mediator-to-

outcome relation but not a mediator (i.e., 02 = 0). In our illustrative example, this means the

path coefficient from COND to IMPORT is zero. All cases in this table negatively bias the direct

effect from - to . and positively bias the indirect effect via "$ , which is consistent with previous

literature (Fritz et al., 2016). By setting 02 = 0 in Equation 3.1 through 3.3, we get the formulas for

bias in estimating 11 and 2, which are the same as that in previous literature9. To further understand

9By setting 02 = 0 in Equations 3.1 through 3.3, we can get that the bias in 0̃1 is 0, the bias in
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Table 3.4: Bias in the Estimated Direct Effect of - on . and Estimated Indirect Effect via
"$ (02 = 0).

Parameters0 Bias Bias/True value

02 12 :
(0̃1
−01)

(1̃1
−11)

(2̃
−2)

(0̃11̃1
−0111)

(0̃1
−01)
/01

(1̃1
−11)
/11

(2̃
−2)
/2

(0̃11̃1
−0111)
/0111

0 0.1 0.1 0 0.01 -0.0021 0.002 0% 6.9% -2.1% 6.9%
0 0.1 0.25 0 0.03 -0.0052 0.01 0% 17.4% -5.2% 17.4%
0 0.1 0.4 0 0.04 -0.0083 0.01 0% 27.8% -8.3% 27.8%
0 0.25 0.1 0 0.03 -0.0052 0.01 0% 17.4% -5.2% 17.4%
0 0.25 0.25 0 0.07 -0.0130 0.01 0% 43.4% -13.0% 43.4%
0 0.25 0.4 0 0.10 -0.0208 0.02 0% 69.4% -20.8% 69.4%
0 0.4 0.1 0 0.04 -0.0083 0.01 0% 27.8% -8.3% 27.8%
0 0.4 0.25 0 0.10 -0.0208 0.02 0% 69.4% -20.8% 69.4%
0 0.4 0.4 0 0.17 -0.0333 0.03 0% 111.1% -33.3% 111.1%
Note: 02 = direct effect of - → "* ; 12 = direct effect of "* → . ;
: = direct effect of "* → "$ ; 01 = direct effect of - → "$ ;
11 = direct effect of "$ → . ; 2 = direct effect of - → . ;
0̃1 = direct effect of - → "$ with the omission of "* ;
1̃1 = direct effect of "$ → . with the omission of "* ;
2̃ = direct effect of - → . with the omission of "* .
0 Hypothetical path coefficients for the model depicted in Figure 3.4.

this Table 3.4, we consider cases in this table as special situations of Table 3.1, where 02 takes on

the value of 0 in all cases. Implied by Equations 3.1, 02 = 0 suggests an unbiased direct effect

estimate from - to "$ and thus only the bias of the estimated direct effect from "$ to . remains

and contributes to the positively biased indirect effect via "$ . Implied by Equation 3.3, 02 = 0

indicates a negative bias for the estimated direct effect from - to . , under the conditions that 01, :

1̃1 is 12 · :/(1− 02
2), and the bias for the bias in 2̃ is 12 · (−: · 01)/(1− 02

2). These are exactly the
same as the bias formula presented in Fritz et al. (2016) (p. 684), where they wrote 12 as 41 and
they use�1 to denote the confounder. Their A�1" is our d"$"* , and their A-" is our d-"$ . The
Appendix presents the formulas of correlations as a function of path coefficients. When 02 = 0, we

get d"$"* = : and d-"$ = 01. Thus, their bias in estimating 11, which is 41 ·
[
A�1"

1−A2
-"

( B�1
B-

)]
,

is equivalent to our 12 · :

(1−022)
; their bias in estimating 2, which is 41 ·

[
−A-"A�1"

1−A2
-"

( B�1
B-

)]
, is

equivalent to our 12 ·
−: ·01
1−022 .
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and 12 are all positive.

3.8 Correlation Framework and Sensitivity Analysis for Omitted Alternative Mediators

We have demonstrated that omitting alternative mediators/post-treatment confounders may bias

the estimate of the direct effect from - to . as well as the indirect effect via "$ . The direction

and magnitude of bias can vary substantially under different underlying mediating processes. From

a practical perspective, we never know the actual parameters in the true model, but we can use

our analysis to quantify the robustness of any inference regarding "$ to a potential post-treatment

confounder.

Sensitivity analyses can serve as a useful tool to inform the strength of evidence for specific

inferences by quantifying the conditions that would alter the inference (e.g., Frank, 2000; Imbens,

2003; Rosenbaum, 2002;VanderWeele&Arah, 2011). For example, if a study focuses on estimating

a treatment effect, sensitivity analyses can generate statements about how strong an omitted variable

would have to be correlated with the treatment and with the outcome to invalidate an inference of

an effect of the treatment on the outcome. As such, recent approaches to sensitivity analysis help

interpreters of research quantify the conditions necessary to invalidate an inference drawing on

familiar quantities such as correlations (Frank, 2000), percentage of variance explained (Cinelli &

Hazlett, 2018) or graphical representations such as contour plots (Imbens, 2003).

In this section, we quantify the robustness of inferences by evaluating how sensitive the estimated

direct and indirect effects of "$ are to a potential post-treatment confounder "* . For example,

we can quantify how large must be the effect of the "* on the "$ and . to change a statistically

significant direct or indirect effect to zero. Specifically, we quantify the sensitivity of estimates and

robustness of inferences as functions of correlations between "* and other observed variables - ,

. and "$ , so that empirical researchers can use these quantities to discuss the robustness of their

inferences in terms of "* .

To introduce this sensitivity analysis approach, we first present the correlation framework:

based on Equations 3.1 through 3.4 we write the bias in estimating 01, 11, and 2 as function of
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correlations among the four variables - , "$ , "* and . : d-,"$ , d-,"* , d-,. , d.,"$ , d.,"*
and d"$,"* . The Appendix provides details and the final derivation results. Compared to the

parameter framework Equation 3.1 through Equation 3.4 where all the path parameters are unknown

(i.e., 01, 11, 2, 02, 12 and :) to substantive researchers, now we can always estimate d-,"$ , d-,. ,

and d.,"$ from the sample data. As such, the bias only depends on the three unknown "*-

related correlations: d-,"* , d.,"* and d"$,"* . These three unknown correlations are the key

parameters in our sensitivity analysis approach.

To demonstrate this sensitivity analysis approach, we go back to our illustrative example re-

garding presumed influence of media use. Assume we fit the model only with one mediator PMI,

where the results were presented in the right panel of Figure 3.2. The specific indirect effect via

PMI was estimated as 0.078 and significantly positive. Next, we ask how sensitive this estimate

is to an unobserved post-treatment confounder/mediator. For example, we consider IMPORT as

a potential confounder, but we fail to measure this variable. Focusing on the indirect effect via

PMI, Figure 3.8 presents the result for the sensitivity analyses based on the three correlations as

sensitivity parameters: the correlations between the unobserved post-treatment confounder "*

and the other observed variables - , . and "$ .

Considering that we have three sensitivity parameters, we include 15 scenarios in Figure 3.8

to comprehensively present the sensitivity analyses. In all scenarios, the horizontal dotted line is

drawn at the point estimate of 0.078, which is the estimated indirect effect via PMI when we fit

the model excluding the confounder "* . The solid black line plots the estimated indirect effect

via PMI against differing values of one correlation related to the confounder "* . The grey region

represents the 95% confidence interval based on the Delta method (Sobel, 1982) 10. Each column

includes five scenarios plotting how the estimated indirect effect varies with one particular "*-

related correlation: the left column has x-axis representing the correlation between - and "* ; the

middle column has x-axis representing the correlation between "$ and "* ; the right column has

x-axis representing the correlation between . and "* . Each row includes three scenarios where

10The standard error of the indirect effect is approximated by
√
012E0A (11) + 11

2E0A (01).
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Figure 3.8: Sensitivity analysis for unobserved post-treatment confounder.
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the other two unmanipulated "*-related correlations are fixed at a certain level: the 1BC to 3A3 rows

show scenarios where the two correlations taking on low, medium and high values11 , respectively;

the 4Cℎ and 5Cℎ rows show scenarios where the two correlations taking on one low, one high and

one high, one low values, respectively.

We interpret the sensitivity analyses by looking at each column separately. The five plots in the

left column show how the estimated indirect effect changes with different values of the correlation

between COND and the potential posttreatment confounder, when the correlation between PMI

and the confounder "* (rmomu) and the correlation between REACTION and the confounder

"* (rymu) are fixed at different values. For example, the fourth plot in the left column indicates

when the correlation between PMI and "* (rmomu) is low (0.1) and the correlation between

REACTION and "* (rymu) is high (0.5), the original inference about the direction of the indirect

effect via PMI would always be maintained, no matter how large the correlation between COND

and "* . However, if we consider sampling variability, the confidence interval covers the value

of zero when the correlation between COND and "* is between -0.043 and 0.834. This implies

that the conclusion of a positive indirect effect via PMI is sensitive to a posttreatment confounder.

Similar conclusions can be drawn based on other plots in the first column: although only extreme

values of the correlation between COND and "* can alter the direction of the indirect effect from

positive to negative, once we take into account the sampling variability, the confidence interval

can cover zero even when the correlation between COND and "* is around 0. The five plots in

the middle column imply the same conclusion: the direction of the indirect effect via PMI can

be maintained in most cases unless the correlation between PMI and "* takes on some extreme

values; however, once sampling variability is taken into account, the confidence interval can cover

zero even when the correlation between PMI and "* is close to zero. The scenarios in the right

column, which plot the estimated indirect effect against differing values of the correlation between

11We used 0.1, 0.3 and 0.5 for low, medium and high correlations between continuous variables
(i.e., "$ , "* and . ). For correlations involving the binary variable - , we used 0.2, 0.5 and 0.8 as
low, medium and high Cohen’s D, which corresponds to correlations of 0.0995, 0.2425 and 0.3713
as low, medium and high, respectively.
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REACTION and "* , support an even stronger conclusion that the positive indirect effect via PMI

is very sensitive to a post-treatment confounder "* : in all five plots, the confidence interval can

cover zero for most values of the correlation between REACTION and "* , especially when the

other two "*-related correlations are high (the 3A3 plot).

3.9 Discussion

The major conclusion of this article is that omitting a mediator "* will typically generate

biased (more precisely, inconsistent) estimates for the specific indirect effect via "$ , as well as the

direct effect from - to . . Additionally, the magnitude of bias (inconsistency) can be substantial.

In our illustrative example that studies whether media (-) affects people’s attitudes or behaviors

(. ) through changing people’s perceptions regarding how other people may be influenced by the

media ("$), excluding the alternative mediator of the perceived importance of the article ("*)

has given us a different conclusion that the indirect effect via presumed media influence ("$)

is significantly positive. Once the perceived media importance ("*) was included, the indirect

effect via presumed media influence ("$) is not significant from 0, decreasing from 0.078 to

0.045. Though the inference about the direct path from the direct path from article location (-) to

participants’ reaction (. ) did not change no matter whether the perceived media importance ("*)

was included or not, the point estimate decreased from 0.082 to 0.033 once we included the "* in

our model.

The exact pattern of bias (inconsistency) depends on the specific underlying mediation process.

In the parallel two-mediator model (Figure 3.1(e)) where the omitted mediator is independent of the

observed mediator, the estimate of the specific indirect effect via "$ is not biased but the estimate

of the direct effect from - to. can be either positive or negatively biased, depending on the specific

indirect effect via the omitted mediator "* . If the specific indirect effect via omitted mediator "*

is positive, then the direct path from - to . is overestimated. Some credits via the direct effect

from - to . should be attributed to "* as a mediator. If the specific indirect effect via omitted

mediator "* is negative, then the direct path from - to . is underestimated. The magnitude of the
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bias (inconsistency) in estimating 2 is exactly the true specific indirect effect via "* .

In the serial two-mediator model (Figure 3.1(f)), the estimate of the direct effect from - to

. is unbiased but the estimate of the specific indirect effect via "$ can be either positively or

negatively biased, depending on the path coefficients directly related to the unobserved mediator

"* . The estimated effect attributed to - → "$ should be attributed to - → "* → "$ . Note

the true path from - to "$ is zero, indicating that the true specific indirect effect via "$ is zero.

By excluding "* , we may conclude a nonzero indirect effect via "$ .

If the underlying mediating process is a more general two-mediator model where all path

coefficients are positive, then the indirect effect via "$ is overestimated and the magnitude of

bias can vary substantially. The estimate of the direct effect from - to . can be either positively

or negatively biased. When the path from "* to "$ (:) is relatively small, we overestimate the

direct effect (2) while when : gets close to 1, we underestimated the direct effect (2). Further, the

larger the path coefficient from "* to "$ (:), the larger the positive bias in estimating the indirect

effect via "$ . Importantly, the conditions to obtain unbiased direct and indirect effect estimates

are not the same, so that one cannot simultaneously obtain accurate direct and indirect effects.

Situations will become even more complicated once we consider sampling variability. Omitting an

alternative mediator can have either have no implications or disastrous consequences for hypothesis

testing regarding the observed mediator "$ . Therefore, we propose a sensitivity analysis approach

where the three "*-related correlations serve as sensitivity parameters. We are also developing

an easy-to-use R package for empirical researchers to examine the robustness of their inference

regarding "$ to a potential omitted mediator "* . The demonstration for the sensitivity analysis

in this paper only shows one way this package can be applied. If the researcher has any knowledge

about a certain "* , they can choose to specify two of the unknown "*-related correlations so

that they can focus on one figure to see how the other "*-related correlation affects the estimated

effect and the inference.

One may ask that what if more than one mediator is omitted? From a practical perspective,

we can never know the true underlying mediating process and there can always be another omitted
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mediator. We argue that for the purpose of quantifying the strength of evidence in making inference,

it is enough to consider one mediator that captures all sources of bias. To better conceptualize the

omitted mediator in our thought experiment of the sensitivity analysis, we can think about "* as

one latent variable that captures all potential omitted mediators that may bias our inference for "$ .

Finally, it is important to note that the definition of the indirect effect and direct effect is

different from the natural indirect effect (NIE), natural direct and the control direct effect in the

counterfactual framework. As reviewed before, this distinction can be considerable under models

with multiple mediators, which emphasized the importance to clarify the definition of indirect

effect and direct effect in applied research. Additionally, although the counterfactual framework

allows us to relax those parametric assumptions, we argue that, by specifying a parametric model,

we can see how omitting another mediator may bias our estimation for each specific path coefficient

we are interested in (i.e., 01, 11 and 2).

3.10 Limitations and Future Directions

Several limitations of the current work suggest avenues for future research. First, we have strong

assumptions for model specifications, including no mediator-outcome interaction and the original

conditions (-) are randomly assigned. Amore complex situation arises when these assumptions are

relaxed. Second, we applied the deltamethod to approximate the sampling variability, whichmay be

not accurate under some scenarios. Third, we acknowledge that three sensitivity parameters are a lot

to consider. Though we provided several plots in the sensitivity approach to accommodate different

scenarios, it would be valuable if future studies can reduce the number of sensitivity parameters.

Furthermore, we only examined the cross-sectional dual-mediator model. Recent research has

suggested longitudinal designs to test mediation because cross-sectional examination of mediation

can generate biased estimates (e.g., Maxwell & Cole, 2007; Maxwell, Cole, & Mitchell, 2011;

Mitchell & Maxwell, 2013). Accordingly, future studies should consider whether omitting another

mediator may bias our estimation in longitudinal designs.
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CHAPTER 4

APPLYING A PARAMETER FRAMEWORK TO QUANTIFY INCONSISTENCY IN A
TIME VARYING MEDIATION MODEL

4.1 Introduction

This chapter will continue the discussion in Chapter 3 about an unobserved mediator as a

posttreatment confounder in a single-mediator model. Specifically, I will leverage the parameter

framework to further discuss how inconsistency is generated for each path coefficient we are

interested in when a posttreatment confounder is omitted. Therefore in the first section of this

chapter I will develop a parameter framework for characterizing inconsistency in mediation models.

Then in the second part I will apply this parameter framework to a longitudinal design.

Two important tools will serve as the basis for all the discussion in this chapter: namely the Law

of Iterated Expectation (LIE) and the Linear Regression framework. These powerful tools allow

us to grasp a deep and intuitive understanding about the mechanisms underlying inconsistency

generation. More importantly, this understanding can be applied in several ways: (1) it helps us

better understand the patterns of how each "*-related parameter affects inconsistency; (2) it has

implications for how we may consider the effects of the unobserved confounder "* on the indirect

effect via "$ and the direct effect from - to . ; (3) this understanding also goes beyond the cross-

sectional model and depicts the underlying story of a post-treatment confounder in a longitudinal

single-mediator model as well.

4.2 Deriving Inconsistency Using the Law of Iterated Expectation for a Parameter Frame-
work

The Law of Iterated Expectation (LIE) states that � (. |-) = � [� (. |-, /) |-] where - , .

and are / three variables and � (. |-) represents the conditional expectation (or conditional mean)

of . given - (Wooldridge, 2009). The LIE allows us to apply a two-step approach to solve the

conditional mean: � (. |-). First, we find � (. |-, /), which is the conditional mean of . given
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- and / . As such, we get a function of - and / for this conditional mean. Second, we use the

information from � (/ |-), which is a function of - , to solve the expected value of � (. |-, /)

conditional on - .

The LIE can be a very useful tool to derive inconsistency at the population level when we omit a

related independent variable in a regression model (model misspecification). For example, consider

that the true model is � (. |-, /) = 0- + 1/ and the correlation between - and / is not zero. But

when we fit a regression model with all population data, we omit / and only regress . on - . This

can lead to an inconsistent estimator for the parameter 0. In this scenario, we can apply the LIE to

derive the inconsistency. We do this by writing � (. |-) = � [� (. |-, /) |-] = 0 · - + 1 · � (/ |-)

and then plugging in � (/ |-) (which is a function of -) to solve the question. The underlying

intuition is that part of the explanatory credit that belongs to the omitted / has been allocated to

- . As a result, the mistakenly attributed credit generates inconsistency when we estimate 0 while

omitting / .

To note, the derivation here is at the population level and therefore is free of sampling error.

Technically speaking, the difference between 0̃1, 1̃1 ,2̃ and 01, 11, 2 are inconsistencies, not bias.

That is, 0̃1, 1̃1, 2̃ are the estimates we get even when we have all population data available (i.e.,

sample size = → ∞). In all following discussion, “bias” in the population parameters is a rough

way to describe “inconsistency” for an audience more comfortable with conceptualizations of bias.

Recall that the true model and the model that omits the unobserved mediator can be written as

follows, in Figure 3.4 (from Chapter 3). - is the exposure variable, "$ is the observed mediator

of interest, . is the outcome, and "* is the unobserved mediator. We are interested in estimating

the specific indirect effect via "$ and the direct path from - to . . As such, three true effects are

of key interest: 01 that represents the path - → "$ , 11 that represents the path "$ → . , and

2 that represents the path - → . . When "* is omitted, 0̃1, 1̃1 and 2̃ are the estimated effect for

- → "$ , "$ → . and - → . , respectively.

Now we apply LIE to express the inconsistency due to omitting "* . That is, we want to derive

the differences between the estimators and their true effects when the confounder "* is present yet
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not included, and we have the population data (i.e., sample size =→ ∞). In this case, the omitted

"* plays the role of / in our previous example. Specifically, we first write our true models as

Equations 4.1 through 4.3:

� ("$ |"* , -) = : · "* + 01 · - (4.1)

� ("* |-) = 02 · - (4.2)

� (. |"$ , "* , -) = 11 · "$ + 12 · "* + 2 · - (4.3)

By LIE, we can further write equations 4.4 to 4.5 to see what happens when "* is excluded:

� ("$ |-) = � [� ("$ |"* , -) |-] = : · � ("* |-) + 01 · - (4.4)

� (. |"$ , -) = � [� (. |"$ , "* , -) |"$ , -] = 11·"$ + 12 · � ("* |-, "$) + 2 · - (4.5)

Now write:

� ("* |-) = V1 · - (4.6)

� ("* |-, "$) = V2 · "$ + V3 · - (4.7)

Plugging Equation 4.6 and 4.7 back to Equation 4.4 and 4.5, we can get formulas for inconsistencies

in 0̃1, 1̃1 and 2̃, as follows:

0̃1 − 01 = : · V1 (4.8)

1̃1 − 11 = 12 · V2 (4.9)

2̃ − 2 = 12 · V3 (4.10)

Importantly, as implied by Equation 4.6 and 4.7, V1, V2 and V3 are three regression coefficients

(again, at the population level). Specifically, V1 is the regression coefficient of - when we regress

"* on - , which is also equivalent to 02. V2 and V3 are regression coefficients of "$ and - ,

respectively, when regressing "* on "$ and - .

Before going to deep discussion about the inconsistency, it is necessary to clarify that I use

the linear regression framework here in a “loose” way to serve as a tool for easy interpretation
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only. No causality is implied in the regression models. For example, Equation 4.7 implies a linear

regression model where"$ and - are predictors for "* , which only has statistical meaning but no

causal implications. In other words, the coefficients V2 and V3 only represent statistical association

between "$ , - and "* . They do not imply that "$ and - cause "* .

4.3 Understanding What Happens When Omitting "*

Now Iwill present how Equations 4.8 to 4.10 can help us understand the underlyingmechanisms

of sources of bias. To simplify the discussion, we assume all parameters are positive. Chapter

3 shows that the bias in estimating 01 and 11 are always positive. But the direction of 2̃’s bias

depends on the relative magnitude of d-,"* and d-,"$ · d"$,"* . As we will see later, this is

much more than just a mathematical result. In fact, the discussion for 2̃’s story has inspired me

to consider more deeply about what’s actually happening when omitting "* . Importantly, this

parameter framework allows us to have a powerful tool to understand how the omittance of "*

generates the bias. Following Figure 4.1 presents a summary of this interpretative framework, in

which the formulas in the right columns are based on Equations 4.8 through 4.10.

We will start our consideration of this framework from the first row for 0̃1, which happens to be

the most direct and easy result. The formula tells us that the bias is the product of : and 02. From

the causal pathways in the left column, we can see that this bias comes from the causal pathway

- → "* → "$ . That is, 0̃1 measures the effect - → "$ plus the effect - → "* → "$ .

Therefore, omitting "* is basically omitting a mediator when estimating 01.

The stories for 1̃1 and 2̃ aremore complicated. First we observe that the bias in estimating 11 and

2 are both a weighted version of 12, which represents the causal pathway "* → . . Interestingly

enough, the two weights for the bias in 1̃1 and 2̃ are the two partial regression coefficients from one

regression model. The last row of Figure 4.1 presents this crucial regression model, in which we

use - and "$ to predict "* . Specifically, the weight for 1̃1’s bias is the coefficient for "$ and the

weight for 2̃’s bias is the coefficient for - . We know that a partial regression coefficient in a multiple

regression model measures the unique contribution of the predictor to predict/explain the variance
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Figure 4.1: Parameter framework to understand what happens when omitting "* .
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of the outcome (again, no causality is implied here). In this context, the unique contribution made

by "$ to explain "* composes the weight applied to 12 to generate the bias in estimating 11. On

the other hand, the unique contribution attributed by - to explain "* becomes the weight of 12 to

form the bias 2.

This observation that centers on regressing "* on - and "$ actually points us to understand

two competing mechanisms about how omitting "* affects the estimation of 11 and 2. If we trace

all the causal pathways that go through "* , the beginning point is surely - → "* . But then this

causal pathway splits into two parts. The first part goes through "$ to the ending point of . . This

first part passes through the 11 pathway and thus it contributes to the bias in estimating 11. The

second part, on the other hand, passes directly to . after "* . The second part here - → "* → .

picks up a mediation pathway from - to . and as a result, it is responsible for bias in estimating 2.

Importantly, the role of the omitted "* is different in these two parts though confounding and

mediation are known to have statistical similarities (MacKinnon, Krull, & Lockwood, 2000). In the

first part for the bias in 1̃1, "* is a real confounder because it has an effect on both "$ and . . In

other words, the explanatory credit that belongs to "* via direct effects "* → "$ and "* → .

are allocated to the direct effect "$ → . . This explains why 1̃1 is the sum of 11 and 12 · V2.

Intuitively, we can consider V2 as a measure for effects that flow through - → "* → "$ . On the

contrary, "* is only a mediator instead of confounder for estimating 2. As the third row in Figure

4.1 shows, the estimated effect of 2 is biased because we count the indirect effects - → "* → .

as part of the direct effect - → . . Because part of the effect from - → "* flows to "$ , we only

get the remaining part multiplied by 12 to form the bias in estimating 2. The remaining part of

- → "* is exactly what is represented by V3.

Because these two flows (i.e., - → "* → "$ → . and - → "* → . ) both orginate from

- → "* , they are in fact competing with the path - → "* . This competition manifests iteself

by the linear regression model in our previous discussion, in which "* is regressed on - and "$ .

In other words, - and "$ are competing with each other to explain the variation in "* . The part

that - wins then continues to the flow toward . (i.e., - → "* → . ), which results in the bias
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in estimating 2. On the other hand, the unique contribution made by "$ passes through "$ to .

(i.e., - → "* → "$ → . ), which leads to the bias in estimating 11.

Equipped with this framwork, we are now able to have a more intuitive understanding for the

direction of bias in 2̃ discussed inChapter 3. Previously, we said that the sign of the bias in estimating

2 depends on the relative magnitude of d-,"* versus d-,"$ · d"$,"* . If d-,"* > d-,"$
·

d"$,"*
, we overestimat 2. Otherwise, we underestimate 2 when d-,"* < d-,"$

· d"$,"* .

The comparison between d-,"* and d-,"$ · d"$,"* reflects exaclty the competition between

- and "$ to explain the variation in "* . This is because
(
d-,"*

− d-,"$ · d"$,"*
)
is just

the numerator of the regression coefficient for - . Alternatively, this is also equivalent to the partial

correlation between - and "* conditional on "$ . When d-,"* < d-,"$
· d"$,"* (and

assuming all correlations are positive), we have the unconditional (zero-order) correlation between

- and "* reversing the sign once conditional on "$ . This effect is also known as suppression in

the literature (Cohen & Cohen, 1983) and somestimes "$ is called a distorter variable (Rosenberg,

1968). That is, the relationship between - and "* gets suppressed or distorted once we include

"$ to explain the outcome "* . Intuitively, we may consider this as - losing the competion with

"* to explain "$ . When this is the case, we underestimate c. (Again, we only refer to statistical

relations rather than any causal relationships when talking about a suppressor.)

Because parameters represent causal pathways, we see that the parameter framework allows us

to tell stories about mechanisms generating the bias. In the following section, more analyses will

be presented that applies this framework to better understand how "*-related parameters affect the

magnitude of bias. As we will see, this framework (Figure 4.1) serves as a very useful instrument in

interpreting how bias vary under different conditions, providing us a deeper discussion compared

to that in Chapter 3.
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4.4 Using the Mechanism to Understand How Inconsistency Changes with "*-related Pa-
rameters

4.4.1 How inconsistency changes with different levels of : .

We start with the causal effect from "* to "$ , which is represented as : . In Chapter 3, we have

mentioned that the magnitude of bias in estimating both 01 and 11 increase as the causal effect

: becomes stronger. But now we have a framework to better understand why this is the case.

Focusing on the effects - → "* → "$ as shown in the first row of Figure 4.1, larger : leads us

to allocate more explanatory power to "$ that in fact belongs to "* as a mediator. Therefore, we

overestimate 01 and the difference between 0̃1 and 01 grows as : gets bigger. Similary, : plays a

role in the chain of causal effects - → "* → "$ → . (the second row of Figure 4.1). Then

larger : leads more explanatory power via "* to be attributed to "$ , which manifests as larger

bias in estimating 11. Thus, bias in both 0̃1 and 1̃1 increase, leading to more serious overestimation

of the indirect effect - → "$ → . .

Alternatively, we can interpret why the bias in 1̃1 increases with : by considering the role of :

in the key regression model discussed before. In Figure 4.1 (last row), this key regression model is

presented with the zero-order bivariate correlations as functions of parameters. We can tell : plays

an important role in the correlation between "* and "$ but the correlation between "* and -

only depends on 02. In the example of Figure 3.5 (from Chapter 3), we fix the value of 02 as 0.2

while increasing the value of : . That is, the correlation between "* and "$ becomes larger and

larger compared to that between "* and - . This leads to greater importance attached to "$ in

the competition between - and "$ to explain "* , which also means that - becomes less and less

important. Correspondingly, the partial regression coefficient for "$ (V2) becomes larger while

the partial regression coefficient for - (V3) turns to be smaller as : increases. Based on previous

discussion, we know that V2 is responsible for the bias in 1̃1 and V3 is responsible for the bias in 2̃.

Therefore, the increase in V2 explains the growing bias in 1̃1 and the decrease in V3 explains the

declining bias in 2̃.
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Moreover, in Chapter 3 we also emphasized that after the positive bias in 2̃ falls to 0 it continues

decreasing to negative values as : increases to 1. That is, when : is relatively small we overestimate

2 while when : becomes larger we underestimate 2. And as : gets closer to 1, the magnitude of

negative bias in estimating 2 keeps growing. This is in fact consistent with our previous discussion

regarding the direction of 2̃’s bias. As : becomes larger, suppression starts to take place and

becomes increasingly serious. That is, the difference between d-,"*
and d-,"$

· d"$,"*
becomes larger. Again, we can apply our competition story to interpret this observation: as :

becomes larger, - becomes weaker and weaker in its competition with "$ . This leads more effect

from - → "* to be attracted towards "$ → . rather than directly flowing to . , which means

that the overestimation of the direct effect "$ → . (11) keeps growing. Meanwhile, as less effect

remains to pass through - → "* → . , the bias in 2̃ first decreases to 0 and then further becomes

more and more negative.

4.4.2 How inconsistency changes with different levels of 02

In Chapter 3, we discussed the larger the direct effect - → "* (02), the larger the bias is

estimating 01. Relying on the first row in Figure 4.1, we are able to explain this as the indirect

effect - → "* → "$ is allocated to - → "$ , where the omitted "* plays a role of mediator.

In Chapter 3, we also discussed that the effects of 02 on the bias in 1̃2 and 2̃ rely on the values of

other parameters. Specifically, Figure 3.6(a) in Chapter 3 gives the scenario where the magnitude

of 01 and : are both relatively small (with values of 0.15 and 0.22) while in Figure 3.6(b) 01 and

: are both relatively large (with values of 0.6 and 0.5).

Figure 4.2 presents how the competing story in the parameter framework we discussed before

for the bias in estimating 11 and 2 can be served as a useful tool to interpret the distinctions

between Figure 3.6(a) and 3.6(b). We know that the direct effect - → "* (02) splits into two

causal pathways after the point of "* , one toward "$ and the other towards . , generating the bias

in 1̃1 and 2̃, respectively. And the way the effect - → "* (02) gets split can be understood by a

competition between - and "$ to predict "* . Interestingly, how the competition is affected by
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02 depends on the magnitudes of 01 and : , which is exactly the distinction between Figure 3.6(a)

and 3.6(b).

Figure 4.2: Understand how bias changes with different levels of 02.

In Figure 3.6(a), 01 and : are relatively small, the increase in 02 has larger effect on d-,"*
compared to d-,"$ and d"$,"* . This is because the latter two correlations can be read as

02 weighted by 01 and : . That is, the increase in 02 needs to be discounted when reflected in

d-,"$
and d"$,"* . In comparison, d-,"* can get the 100% growth from 02 because d-,"*

is just equivalent to 02. Therefore, when 01 and : are small in Figure 3.6(a), the increase in 02

leads - to gain more and more advantage in the competition with "$ . In this context, larger 02

causes more explanatory credit to be allocated to - → "* → . with less credit attributed to

- → "* → "$ → . . As such, though 2 can be underestimated in the very beginning (02 is very

close to 0), the negative bias becomes positive quickly and keeps growing larger. At the same time,

the overestimation in 1̃1 slowly reduces to 0 as 02 gets closer to 1.

As a comparison, Figure 3.6(b) shows the opposite scenario where the increase in 02 has smaller
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effect on d-,"* compared to d-,"$ and d"$,"* . That is, the increase in 02 gets enlarged in

d-,"$
and d"$,"* due to the large magnitudes of 01 and : in d-,"$ and d"$,"* . As a result,

- gains more and more comparative advantage in its competition with "$ . Under this scenario

the increase in 02 leads more explanatory power to the path - → "* → "$ → . relative to the

credit assigned to the pathway - → "* → . .

Figure 4.2 summarizes these patterns and interpretations about how 02 affects the bias in

estimating 11 and 2 under different scenarios. Again, we see that the key regression model plays a

significant role in helping us understand the mechanisms that generate the bias in 1̃1 and 2̃ when

we omit "* .

4.4.3 How inconsistency changes with different levels of 12.

For how 12 affects the bias, we also presented two different scenarios in Chapter 3, exemplified by

Figure 3.6(a) and 3.6(b). In both scenarios, the positive bias of 1̃1 becomes larger as 12 gets closer

to 1 while the level of 12 has no effect on the magnitude of bias in 01. The first two rows of Figure

4.1 can help us interpret these patterns by applying our framework.

First for 0̃1, we know that its bias comes from the explanatory power that belongs to the

- → "* → "$ and there is no role of 12 here. That is, the direct effect "* → . (12) is not

directly connected with the direct effect - → "$ (01). Alternatively, we can think about this “no

effect” by noticing that the parameter we manipulate 12 occurs after the direct effect - → "$ (01)

in the sequence of causality.

Figure 4.1 illustrates the bias in estimating 11 is the product of V2 and 12. The magnitude

of V2 depends on the competition between "$ and - that happens in the key regression model

represented in Figure 4.1. We can tell from the triangle of the key regression model that 12 has no

effect on this model. Therefore, the only way for 12 to influence the bias in 1̃1 is to through 12 but

not V2. This helps explain why the bias in 1̃1 is a linear relationship of 12 in both Figure 3.6(a) and

3.6(b).

The distinction between Figure 3.6(a) and 3.6(b) is the pattern for the bias of 2. In Figure

100



3.6(a), c gets overestimated and the positive bias keeps growing but in Figure 3.6(b) we always

underestimate 2 and importantly, the negative bias gets more serious as 12 increases. In fact,

the fundamental reason underlying this distinction between two figures (3.6(a) and 3.6(b)) is the

direction of bias while the effect of 12 on the magnitude of bias follows the same pattern in both

two figures. This ties back to the earlier discussion of the direction of 2̃’s bias, which can be

interpreted with our parameter framework again. In Figure 3.6(a) we have 01 = : = 02 = 0.2 but in

Figure 3.6(b), 01(= 0.55) and : (= 0.6) are much larger than 02(= 0.2). Correspondingly, we have

d-,"*
> d-,"$

· d"$,"* for Figure 3.6(a) and d-,"* < d-,"$
· d"$,"* for Figure 3.6(b). In

other words, in Figure 3.6(b), the relationship between - and "* gets suppressed or distorted once

we include "$ to explain the outcome "* but this suppression does not occur in Figure 3.6(a).

4.5 Using the Mechanism to Understand the Inconsistency of Indirect and Direct Effects
When Omitting "*

In the previous section, we applied our parameter framework to interpret how bias is generated

in estimating each parameter we are interested in (i.e., 01, 11 and 2). But we are also interested

in the indirect effect via "$ , which is the product of 01 and 11. Importantly, as we will see later,

this discussion can provide empirical researchers some ideas to consider how different potential

candidates of"* may impact our estimation of the indirect effect 0111 and direct effect 2 differently.

We start our discussion by getting the following equation for the bias in estimating 0111 (the

specific indirect effect via "$) based on our previous derivations.

0̃11̃1 − 01 · 11 = 02 · : · 11 + 12 · V2 · (01 + : · 02) (4.11)

Combing Equation 4.11 and 4.10, we can get:[
0̃11̃1 − 01 · 11

]
+ [2̃ − 2] = 02 · : · 11 + 12 · V2 · (01 + : · 02) + 12 · V3 (4.12)

In Equation 4.12, the two last components 12 · V2 · (01 + : · 02) + 12 · V3 can be written as 02 · 12

(see Appendix for more detailed proof). This allows us to get the following equation 4.13.[
0̃11̃1 − 01 · 11

]
+ [2̃ − 2] = 02 · : · 11 + 02 · 12 (4.13)
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Equation 4.13 tells us an important fact: the bias in estimating the indirect effect 0111 and the

bias in estimating the direct effect 2 adds up to the two pathways: - → "* → "$ → . and

- → "* → . . Figure 4.3 summarizes this finding by comparing different pathways from - to .

by models: the true model with two mediators versus the model that omits "* . The left column

Figure 4.3: Different causal pathways from - to . by models: the true model with two mediators
versus the model that omits "* .

shows four causal pathways in the true model from - to . . As a comparison, there are only two

causal pathways in the right column to account for the total effect from - to . . Because the total
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effect from - to . is fixed, the effect via the two missing pathways, namely - → "* → "$ → .

and - → "* → . , must be assigned to the two remaining pathways when "* is excluded. In

other words, the explanatory power via - → "* → "$ → . and - → "* → . either goes to

the indirect effect 0̃11̃1 or the direct effect 2̃. When more effect is allocated to the indirect effect,

then omitting "* results in more biased estimate of the indirect effect and less biased estimate of

the direct effect. The same vice versa: if more effect is allocated to the direct effect, then omitting

"* generates more biased direct effect and less biased indirect effect.

What factors affect how the effect via - → "* → "$ → . and - → "* → . is allocated to

the bias in the estimated indirect effect or the bias in the estimated direct effect? The answer to these

questions goes back to our parameter mechanisms, more specifically, the competition between -

and "$ in the key regression model. We know the bias either goes to the estimated indirect effect

or the estimated direct effect, and it is easier to focus on the direct effect. As we discussed before,

the bias in estimating the direct effect 2 is 12 · V3. 12 does not even show up in the key regression

model or the competition between - and "$ . Then as the exposure variable - gets stronger at

predicting the unobserved mediator "* , compared to the observed mediator "$ , more bias will

be allocated to the estimated direct effect and less bias will be allocated to the estimated indirect

effect. In other words, when 12 is fixed at a certain level (not zero), if the unobserved mediator "*

becomes more correlated to - and less correlated to "$ , then omitting "* generates more biased

direct effect and less biased indirect effect.

It is important to note that this “more” or “less” is not a comparison between the amount of

bias between the estimated indirect effect and the estimated direct effect. Instead, it is a trend in the

change of the bias of either the indirect effect itself or the direct effect itself. Assume an example

where 10% of the total bias (i.e., the effects via - → "* → "$ → . and - → "* → . ) is

allocated to the estimated direct effect and other 90% of the total bias is allocated to the estimated

indirect effect. Now as the unobservedmediator"* gets more correlated with - and less correlated

with "$ , maybe 20% of the bias is allocated to the estimated direct effect and the other 80% is

allocated to the direct effect. But still more bias gets assigned to the indirect effect in this case
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(80% versus 20%).

With this understanding, now we can better understand two special situations, as summarized in

Figure 4.4. In the first context, the true underlying process is a parallel mediation model. "* does

not have a direct effect on "$ and consequently, "* and "$ are independent once conditional on

- . That is, - wins all possible explanatory power in the competition with "$ . Once we have - ,

"$ has no predictive power for "* . As such, the direct effect is mostly overestimated, accounting

for all the explanatory credit that belongs to the omitted - → "* → . . In contrast, the indirect

effect - → "$ → . is not affected at all by the omitted mediator (i.e., the estimated indirect effect

is consistent).

Figure 4.4: Two special situations where all inconsistency goes to the direct effect - → . or all
inconsistency goes to the indirect effect - → "$ → . .

In the second context, we have d-,"* − d-,"$ · d"$,"* = 0. This means - has no predictive

power for "* once conditional on "$ . Then "$ wins all the explanatory credit possible in its

competition with - to predict "* . As such, all the bias is allocated to the estimated indirect effect

- → "$ → . and the direct effect - → . is consistent.

Note the key in the second situation is: once conditional on "$ , - has no predictive power
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for "* . This does not happen when there is no effect from - to "* (02 = 0). That is, when "*

is only a confounder for "$ → . but not a mediator, even conditional on "$ , - can still have a

predictive effect on "* . Another important note here is that in both two situations in Figure 4.4,

there is a path of "* → . (i.e., 12 ≠ 0). When 12 = 0, only 0̃1 is biased. As such, only the

estimated indirect effect is biased, and direct effect is unbiased. The serial mediation model is a

special situation of this where 01 = 12 = 0.

4.6 Applying the Mechanism to Understand the Inconsistency in Longitudinal Designs
When Omitting "*

Recent research has suggested longitudinal designs to test mediation because cross-sectional

examination of mediation can generate biased estimates and longitudinal designs provide more

rigorous inference for mediation effects (e.g., Maxwell &Cole, 2007;Maxwell et al., 2011;Mitchell

&Maxwell, 2013). Yet there may be post-treatment confounders"* invalidating mediation effects

even in longitudinal designs. This section will present how our parameter framework can help us

understand the bias generation in a longitudinal design. More specifically, this section will focus

on one autoregressive model presented by Maxwell et al. (2011). Following Figure 4.5 presents

the path diagram for this model and the formal equations are followed.

This model can be written as follows:

-8,C+1 = G-8,C + Y-8,C+1 (4.14)

"8,C+1 = <"8,C + 0-8,C + Y"8,C+1 (4.15)

.8,C+2 = H.8,C+1 + 1"8,C+1 + 2-8,C + Y.8,C+2 (4.16)

where -8,C+1 is the treatment status for individual 8 at time C + 1, -8,C is the treatment status for

individual 8 at time C, "8,C+1 is the value for individual 8 on mediator " at time C + 1, "8,C is the

value for individual 8 on mediator " at time C, .8,C+2 is the value for individual 8 on outcome . at

time C + 2, .8,C+1 is the value for individual i on outcome . at time C + 1, and similarly, .8,C is the

value for individual 8 on outcome . at time C. We can also tell that the direct effect in this model

is the product of 0 and 1 while the indirect effect is 2. We assumed that this longitudinal model
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Figure 4.5: Longitudinal mediation model with two unit lag for direct effect of - on . .

satisfies the stationarity and equilibrium. This means that the causal relationships among variables

and the within-wave correlations are unchanged over time (the variance-covariance matrix among

-8,C , .8,C and "8,C is time invariant).

We then introduced an unobserved mediator "* into this model and allowed this mediator to

have an effect on the observed mediator. To make a clear distinction between these two mediators

and make the notation consistent with our cross-sectional design, we note the observed mediator

of interest as "$ . The path diagram is presented in the following Figure 4.6.

This model can be written formally as follows:

-8,C+1 = G-8,C + Y-8,C+1 (4.17)

"$8,C+1 = <1"$8,C + :"*8,C + 01-8,C + Y"$8,C+1 (4.18)

"*8,C+1 = <2"*8,C + 02-8,C + Y"*8,C+1 (4.19)

.8,C+2 = H.8,C+1 + 11"$8,C+1 + 12"*8,C+1 + 2-8,C + Y.8,C+2 (4.20)

where the notation is almost the same as before. The only distinction is that another mediator

"* is introduced so we use "$ to represent the observed mediator. Similarly, the indirect effect
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Figure 4.6: Longitudinal mediation model with unobserved latent mediator "* .

associated with the observed mediator is the product of 01 and 11. Additionally, the autoregressive

parameters for the two mediators are noted as <1 and <2 and : represents the causal effects of

"*8,C on "$8,C+1. As before, we assumed stationarity and equilibrium, indicating that the causal

relationship and the correlation matrix among - , "$ , "* , and . are time-invariant. Note in

this longitudinal model, the unobserved mediator "* serves as a lagged confounding, but not

simultaneous confounding. That is, the longitudinal design only has an effect "*,C → "$,C+1 but

not "*,C+1 → "$,C+1.

Now we apply the same approach LIE to derive the inconsistency in estimating 01, 11, and 2

when omitting "* . The procedure is essentially the same. We first write our true models as:

� (-C+1 |-C) = G · -C (4.21)

�
(
"$,C+1 |"*,C , "$,C , -C

)
= <1 · "$,C + : · "*,C + 01 · -C (4.22)

�
(
"*,C+1 |-C , "*,C

)
= <2 · "*,C + 02 · -C (4.23)

�
(
.C+2 |"$,C+1, "*,C+1, -C

)
= H · .C+1 + 11 · "$,C+1 + 12 · "*,C+1 + 2 · -C (4.24)
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By LIE, we can further write above Equation 4.22 and 4.24 to see what happens when "* gets

excluded:

�
(
"$,C+1 |"$,C , -C

)
= �

[
�

(
"$,C+1 |"*,C , "$,C , -C

)
|"$,C , -C

]
= <1 · "$,C + : · �

(
"*,C |-C , "$,C

)
+ 01 · -C (4.25)

�
(
.C+2 |"$,C+1, -C

)
= �

[
�

(
.C+2 |"$,C+1, "*,C+1, -C

)
|"$,C+1, -C

]
= H · .C+1 + 11 · "$,C+1 + 12 · �

(
"*,C+1 |-C , "$,C+1, .C+1

)
+ 2 · -C (4.26)

Now write:

�
(
"*,C |-C , "$,C

)
= W1 · "$,C + W2 · -C (4.27)

�
(
"*,C+1 |-C , "$,C+1, .C+1

)
= V1 · .C+1 + V2 · "$,C+1 + V3 · -C (4.28)

Plugging these two equations back to Equations 4.25 and 4.26, we can get formulas for inconsistency

in estimating 01, 11 and 2, as follows, where 0̃1, 1̃1, and 2̃ are estimated effect of 01, 11 and 2

when "* is excluded (again, assuming we have population level data, =→∞).

0̃1 − 01 = : · W2 (4.29)

1̃1 − 11 = 12 · V2 (4.30)

2̃ − 2 = 12 · V3 (4.31)

Importantly, as implied by Equation 4.27 and 4.28, W2, V2 and V3 are three regression coefficients.

Specifically, W2 is the regression coefficient of -C when we regress "*,C on -C and "$,C . V2 and V3

are regression coefficients of "$,C+1 and -C , respectively, when regressing "*,C+1 on.C+1, "$,C+1

and -C .

Figure 31 presents how our parameter mechanism can be extended to this autoregressive longi-

tudinal mediation model to understand how bias (more precisely, inconsistency) is generated when

omitting "* . As we will see, the major distinction between the cross-sectional and longitudinal

design is the control of prior - , "* , "$ and . .

We start our consideration with 0̃1. In the cross-sectional design, it is evident to see from the

path diagram that the bias in 0̃1 comes from the omitted causal pathway - → "* → "$ . 0̃1

108



Figure 4.7: Parameter framework extended to longitudinal designs.
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measures the effect - → "$ plus the effect - → "* → "$ . Now in the longitudinal scenario,

the mechanism is essentially the same: 0̃1 is biased because it accounts for the effect -C → "*,C →

"$,C+1 that should be attributed to "*,C as a mediator. The effect of "*,C → "$,C+1 is captured

by : in the formula but we do not have a parameter for -C → "*,C . We only have 02 to represent

-C → "*,C+1 in the longitudinal scenario. This is why in the formula we have W2 rather than

02. Loosely speaking, W2 captures what the effect of -C → "*,C+1(02) projects on -C → "*,C .

However, W2 is not equivalent to the correlation between -C and "*,C because both -C and "*,C

are also determined by their prior values, namely -C−1 and "*,C−1. That explains why W2 is the

regression coefficient of -C when we regress "*,C on -C and "$,C . The presence of "$,C in this

regression is exactly controlling for -C−1 and "*,C−1, because our model implies that "$,C is

determined by -C−1, "*,C−1 and its own prior value "$,C−1.

The stories for 1̃1 and 2̃ are also essentially the same with the cross-sectional design. In the

longitudinal case we still observe that the bias in estimating 11 and 2 are both a weighted version of

12("*,C → .C+1). The twoweights for the bias in estimating 11 and 2 are still two partial regression

coefficients from one regression model. The last row of Figure 4.7 presents a comparison between

the key regression model in the cross-sectional desgin versus that in the longitudinal design. In

both situations, we use - and "$ to predict "* , and the weight for the bias in estimating 11 is the

coefficient of "$ and the weight for the bias in estimating 2 is the coefficient of - . This similarity

illustrates the competition between - and "$ is still present in the longitudinal situation: the

unique contribution made by "$ to explain "* composes the weight before 12 to generate the

bias in 1̃1, and the unique contribution attributed by - to explain "* becomes the weight of 12

to form the bias in 2̃. The argument about "* serving as a confounder in the bias of 1̃1 and as a

mediator in the bias of 2̃ is also the same in the longitudinal design.

What is different in the longitudinal design is that now we need to consider time points and

controlling for prior values. In the cross-sectional design, we argue that the competition between -

and "$ comes from the fact: pathway - → "* splits into two pathways - → "* → "$ → .

and - → "* → . . Now the longitudinal story is a little different: it is the pathway of -C → "*,C+1
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that splits into -C → "*,C+1 → "$,C+1 → .C+2 and -C → "*,C+1 → .C+2. This first part (i.e.,

-C → "*,C+1 → "$,C+1 → .C+2) passes through the 11 pathway and contributes to the bias in 1̃1.

The second part (i.e., -C → "*,C+1 → .C+2) picks up amediation effect transmitted through"*,C+1

and generates the bias in 2̃. This helps us interpret why the key regression model in the longitudinal

design is regressing "*,C+1 on "$,C+1 and -C and why the coefficient of "$,C+1 is responsible

for the bias in 1̃1 while the coefficient of -C is responsible for the bias in 2̃. Note the longitudinal

design does not really have the effect of "*,C+1 → "$,C+1 since "*,C+1 and "$,C+1 are at the

same time point. But one can loosely interpret this as a projection of the effect "*,C+1 → "$,C+2,

just as previously how we interpret W2 as a projection of the effect -C → "*,C+1.

Now we only need to explain why .C+1 shows up as a control variable in the key regression

model in longitudinal design. This is similar to why "$,C is controlled to generate W2. Here .C+1

is present as a control for prior values that can have an effect on "*,C+1, "$,C+1 and -C , namely

"*,C , "$,C and -C−1. This ties back to the argument about the fundamental difference between

the cross-sectional and longitudinal design: as Maxwell and Cole (2007) argued, what is missing

in cross-sectional examination of mediation is the failure to capture the autoregressive effects.

To summarize, although the longitudinal design to examine mediation is much more compli-

cated, the interpretation of how bias (more precisely, inconsistency) is generated with omitting "*

is essentially the same as the cross-sectional design. The parameter framework depicted in this

chapter allows us to grasp an intuitive path-based understanding of how omitting "* generates

bias in both cross-sectional and longitudinal designs.

4.7 Discussion

This chapter leverages the parameter framework to explain how inconsistency is generated when

an unobserved mediator is omitted. Briefly speaking, the inconsistency of 0̃1 is due to omitting

- → "* → "$ and thus part of the direct effect - → "$ should be allocated to this omitted

indirect effect - → "* → "$ via "* . The inconsistency of 1̃1 comes from the omission of

- → "* → "$ → . and the inconsistency of 2̃ comes from the omission of - → "* → . .

111



Importantly, we can consider the fact that the inconsistency of 1̃1 and 2̃ both originates from

- → "* as competition between - and "$ to predict "* in a linear regression framework. As

the exposure variable - gets stronger at predicting the unobserved mediator "* , compared to the

observed mediator "$ , more bias will be assigned to 2̃ and less bias will be assigned to 1̃1.

Applying this framework, we can better understand how each "*-related parameter affects the

inconsistency, how inconsistency is allocated to either the direct effect from - to . or the indirect

effect via "$ , as well as inconsistency in some special situations including the parallel and serial

mediation models. Additionally, I showed that the inconsistency underlying a longitudinal design

is essentially the same, except that prior values are controlled in the longitudinal design.

4.8 Limitations and Future Directions

There are at least two limitations of the current chapter that suggest avenues for future research.

First, this chapter focus on understanding how inconsistency is generated when the alternative

mediator is omitted. Future studies can look at how this understanding can be applied in a more

practical perspective. For example, can we bound the inconsistency for the indirect (0̃11̃1) and

direct (2̃) effects if we have some ideas about the correlation between the unobserved mediator "*

and the intervention - , and the correlation between "* and the mediator of interest "$? Second,

it would be valuable if future studies can develop a sensitivity approach for an unobserved post-

treatment confounder in a longitudinal design, as what we do in Chapter 3 for the cross-sectional

model.
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DISCUSSION

As mentioned in the introduction, this dissertation is centered on causal inference regarding eval-

uation of an intervention, from whether an intervention works to why it works, accounting for the

social and dynamic contexts in which interventions are implemented. The first two chapters focus

on whether an intervention works by proposing a non-parametric case replacement framework to

quantify strength of evidence for inferences in multisite randomized control trials and value-added

measures for teacher effectiveness. The last two chapters focus on why an intervention works by

studying post-treatment confounders in mediating processes.

From a practical perspective, the four chapters represent the effort to refine policy analysis so that

policies regarding the allocation of educational resources can be better informed. As the first step,

we are interested in the total average intervention effect. But summarizing an intervention with only

one estimated effect can be misleading, especially in the context of multisite randomized control

trials. For example, presence of heterogeneity in multisite randomized control trials emphasizes the

importance of considering local contextual effects and causal mechanisms that can help explain why

an intervention works in some sites but not others. Identifying important mediating pathways may

point out an alternative intervention option, especially when the mediating pathway can explain a

large proportion of the causal effect and it is easier or more cost-efficient to manipulate the mediator

directly. Further, considering alternative mediators as potential confounders can help researchers

and policy makers evaluate the robustness of the inference regarding the identified mediator of

interest so that the reallocation of educational resources regarding the mediator of interest can be

made after comprehensive evaluation against potential costs and other alternatives.

There are other ways that mediation studies can inform policy manipulations. For example,

sometimesmediation analysis may present us with twomediating pathways with opposite directions

that cancel out each other and lead to a zero total effect (i.e., average treatment effect), which provides

another example for consideringmanipulating onemediator instead to achieve the expected changes

in the outcome. Under other scenarios, a mediator can also be a side effect of interest that inheres
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in the intervention. Then knowing the presence of this mediator can allow us to figure out ways to

minimize the negative side effects.

Problems of causal inference can be conceptualized in terms of omitted variables, or in terms

of sampling bias. Both mediators and confounders are third variables that influence the associ-

ation between the predictor of interest and the outcome, and they are statistically identical (e.g.,

MacKinnon et al., 2000). In Chapters 1 and 2, the presence of spillover effects violates SUTVA

and generates bias via playing a similar role as a confounder: by associating with both exper-

iment conditions and outcome measures. Importantly, the association between spillover effects

and experiment condition implies the treatment and control group individuals experience different

levels of spillover effects. For example, positive spillover effects within the treatment group, or

negative spillover effects within the control group, due to non-random assignment of contributors

and spoilers to treatment and control conditions, can bias the treatment effect estimate negatively

(assuming a positive treatment effect). Sometimes capacity constraints can also lead to negative

spillover effects within treatment group (e.g., Maroulis, 2016), leading to downward bias in the

treatment effect estimation. Alternatively, the treatment condition triggers positive spillover ef-

fects from treatment individuals to control individuals, or the control condition triggers negative

spillover effects from control group to treatment group, both of which may cause downward bias

in estimating the treatment effect (again, assuming a positive treatment effect). In other situations,

affecting individuals’ interactions to introduce spillover effects can be one mediating process that

explains why the intervention works. For example, if reducing class size improves students’ learn-

ing through maximizing the learning and teaching among students, then the peer effect becomes a

mediator that helps explain how smaller classes boost students’ performance.

Furthermore, constant effects through simple mechanisms to independent individuals rarely

occur in education research (Frank, Saw,&Xu, 2016). Hong (2015) conceptualizes causal inference

regarding moderation, mediation and spillover as weighting issues in a sampling framework.

Relatedly, the case replacement approach proposed in the first two chapters for spillover and

heterogeneity applies the feature in the counterfactual framework that recast potential sources of
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bias in terms of missing data (Frank et al., 2013). Both replacing observed cases with unobserved

cases and adjusting weights in observed cases are rooted in a sampling framework. Chapters 3 and

4 study mediation within a parametric framework, but they also contribute to existing literature that

applies a non-parametric approach (e.g.,Hong et al., 2018) by taking on a path coefficient perspective

and digging into the effects of a confounding mediator on each path-coefficient estimate. We argue

that parametric and non-parametric approaches complement each other so that researchers can

better understand spillover, heterogeneity, and mediation in education research.

Finally, it is important to note that sensitivity analysis cannot exclude bias, regardless of what

type of approach one uses, either traditional approaches that draw on familiar quantities such as

correlations or percentage of variance explained, or the non-parametric case replacement approach

proposed in Chapters 1 and 2. Before applying sensitivity analysis, one should make sure that best

considerations have been given to research design, model specification, and choice of estimation

approach. Sensitivity analysis cannot substitute any of these crucial steps, but rather provides a

discourse for researchers to communicate with all potential stakeholders regarding the strength of

evidence, after all those efforts are made to remove as much bias as possible.
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DERIVATION NOTE FOR UNOBSERVED MEDIATOR IN A CROSS-SECTIONAL
DESIGN

Introduction

This Appendix derives the inconsistency an unobserved mediator "* may bring to the estima-

tion of the indirect and direct effects in a cross-sectional design. The key approach applied in this

derivation is the Law of Iterated Expectations (LIE). I will introduce the true model in Part 1 and

then write the true model in terms of conditional mean (Part 2). After that, I derive several correla-

tions that are useful in later derivation (Part 3). In Part 4, I apply LIE to derive the inconsistency as

a function of parameters that have been derived in Part 3. I work out the formulas for inconsistency

as a function of only correlations in Part 5 and the formulas for percent of inconsistency in Part

6. Part 7 includes the derivation of the error variances for the purpose of simulation (to generate

standardized variables) and also constraints of parameters. Part 8 and 9 discuss the directions of

inconsistency (Part 8) and how the inconsistency changes with parameters (Part 9). The last part

includes some derivation to decompose the total inconsistency into two omitted pathways.

One crucial assumptions made in this derivation is that all variables are standardized.

True model

Note: the causal relationship between two mediators is: "* causes "$ .

"$ = : · "* + 01 · - + n"$ (32a)

"* = 02 · - + n"* (32b)

. = 11 · "$ + 12 · "* + 2 · - + n. (32c)
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True model in terms of conditional mean

Note: the assumptions underlying themodel are actually stronger than this. But the assumptions

listed here are enough for the purpose of derivation in this Appendix.

� ("$ |"* , -) = : · "* + 01 · - (33a)

� ("* |-) = 02 · - (33b)

� (. |"$ , "* , -) = 11 · "$ + 12 · "* + 2 · - (33c)

Correlations

Correlation between - and "*

From Eq.32b:

2>E(-, "*) = 02 · E0A (-)

Assuming all variables are standardized:

d-,"*
= 02

Correlation between - and "$

From Eq.32a:

2>E(-, "$) = : · 2>E(-, "*) + 01 · E0A (-)

Assuming all variables are standardized:

d-,"$
= :02 + 01

Correlation between "$ and "*

From Eq.32a:

2>E("$ , "*) = : · E0A ("*) + 01 · 2>E(-, "*)
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Assuming all variables are standardized:

d"$,"*
= : + 0102

Correlation between . and "*

From Eq.32c:

2>E("* , . ) = 11 · 2>E("* , "$) + 12 · E0A ("*) + 2 · 2>E("* , -)

Assuming all variables are standardized:

d.,"*
= 11: + 110102 + 12 + 202

To summarize,

d-,"*
= 02 (34a)

d-,"$
= :02 + 01 (34b)

d"$,"*
= : + 0102 (34c)

d.,"*
= 11: + 110102 + 12 + 202 (34d)

Inconsistency if omitting "*

By Law of Iterated Expectation (LIE), the right model that excludes "* can be written as

follows:

� ("$ |-) = � [� ("$ |"* , -) |-]

= : · � ("* |-) + 01 · - (35a)

� (. |"$ , -) = � [� (. |"$ , "* , -) |"$ , -]

= 11 · "$ + 12 · � ("* |"$ , -) + 2 · - (35b)

Write:

� ("* |-) = V1 · - (36a)

� ("* |"$ , -) = V2 · "$ + V3 · - (36b)

119



Then we get:

� ("$ |-) = :V1 · - + 01 · - (37a)

� (. |"$ , -) = 11 · "$ + 12 · V2 · "$ + 12 · V3 · - + 2 · - (37b)

Therefore, we can see that if we omitting "* , we can get inconsistent estimates.

0̃1 = 01 + :V1 (38a)

1̃1 = 11 + 12V2 (38b)

2̃ = 2 + 12V3 (38c)

The inconsistency for 0̃1 would be: : · V1;

The inconsistency for 1̃1 would be: 12 · V2;

The inconsistency for indirect effect 0̃11̃1 would be: (01 + :V1) · (11 + 12V2) − 0111;

The inconsistency for 2̃ would be: 12 · V3.

Following are derivations for V1, V2, V3

From Eq.36a: V1 is the regression coefficient of - when we regress "* on - (at the population

level). Therefore,

V1 = d-,"*
= 02

Similarly, from Eq.36b: V2 is the regression coefficient of "$ when we regress "* on "$ and -;

V3 is the regression coefficient of - when we regress "* on "$ and - (at the population level).

V2 =
d"$,"*

− d-,"* · d-,"$
1 − d2

-,"$

(39a)

V3 =
d-,"*

− d"$,"* · d-,"$
1 − d2

-,"$

(39b)

(39c)

where all elements have been derived in Eq.34.

Note: V2 and V3 are derived based on formula of regression coefficients as follows (I derived

both of these through the well-known (-′-)−1-′. and some linear algebra).
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When we regress . on -1 and -2, the coefficient of -1 is (in terms of correlations):

d.,-1 − d.,-2 · d-1,-2

1 − d2
-1,-2

(40)

To summarize, we can get following estimates if we omit "* :

0̃1 = 01 + : · 02 (41a)

1̃1 = 11 + 12 · : ·
1 − 02

2
1 − (: · 02 + 01)2

(41b)

2̃ = 2 + 12 ·
02 − (: + 01 · 02) · (: · 02 + 01)

1 − (: · 02 + 01)2
(41c)

We can also get:

0̃1 · 1̃1 = 01 · 11 + : · 02 · 11 + (01 + : · 02) ·
12 · : · (1 − 02

2)
1 − (: · 02 + 01)2

(42)

Inconsistency as a function of correlations only

This section aims to write the inconsistent estimators as a function only of correlations. To

achieve this, we start from Eq.38a, Eq.38b, Eq.38c and formulas for V1, V2 and V3. From these

equations, we can write the inconsistency as a function of correlations and parameters (: and 12).

Therefore, we only need to derive : and 12 as a function of correlations and then plug into previous

equations.

From Eq.32a, : is the regression coefficient of "* when we regress "$ on "* and - .

Similarly, from Eq.32c, 12 is the regression coefficient of "* when we regress . on "$ , "* and
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- . Therefore, we can write the results in terms of correlations:

0̃1 = 01 + : · V1 (43)

= 01 + d-,"* ·
d"$,"*

− d-,"$ · d-,"*
1 − d2

-,"*

1̃1 = 11 + 12 · V2 (44)

= 11 +
1

1 + 2 · d"$,"* · d-,"* · d-,"$ − d
2
"$,"*

− d2
-,"*

− d2
-,"$

· (d.,"* + d.,"$ · d-,"* · d-,"$ + d-,. · d"$,"* · d-,"$ − d.,"* · d
2
-,"$

− d.,"$ · d"$,"* − d-,. · d-,"* ) ·
d"$,"*

− d-,"* · d-,"$
1 − d2

-,"$

2̃ = 2 + 12 · V3 (45)

= 2 + 1
1 + 2 · d"$,"* · d-,"* · d-,"$ − d

2
"$,"*

− d2
-,"*

− d2
-,"$

· (d.,"* + d.,"$ · d-,"* · d-,"$ + d-,. · d"$,"* · d-,"$ − d.,"* · d
2
-,"$

− d.,"$ · d"$,"* − d-,. · d-,"* ) ·
d-,"*

− d"$,"* · d-,"$
1 − d2

-,"$

Note: 12 is derived based on formula of regression coefficients as follows (I derived both of

these through the well-known (-′-)−1-′. and some linear algebra).

When we regress . on -1, -2 and -3, the coefficient of -1 is (in terms of correlations):

1
1 + 2 · d-1,-2 · d-2,-3 · d-1,-3 − d2

-1,-2 − d
2
-2,-3 − d

2
-1,-3

· (d.,-1 + d.,-2 · d-1,-3 · d-2,-3 + d.,-3 · d-1,-2 · d-2,-3 − d.,-1 · d2
-2,-3

− d.,-2 · d-1,-2 − d.,-3 · d-1,-3)

(46)

Percent of inconsistency

In this section, we will derive the percent of inconsistency as a function of correlations.

From Eq.32 we know 01, 11 and 2 are also functions of correlations, which can be shown as
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follows.

01 =
d-,"$

− d"$,"* · d-,"*
1 − d2

-,"*

11 =
1

1 + 2 · d"$,"* · d-,"* · d-,"$ − d
2
"$,"*

− d2
-,"*

− d2
-,"$

· (d.,"$ + d.,"* · d-,"$ · d-,"* + d-,. · d"$,"* · d-,"* − d.,"$ · d
2
-,"*

− d.,"* · d"$,"* − d-,. · d-,"$ )

2 =
1

1 + 2 · d"$,"* · d-,"* · d-,"$ − d
2
"$,"*

− d2
-,"*

− d2
-,"$

· (d-,. + d.,"* · d-,"$ · d"$,"* + d.,"$ · d-,"* · d"$,"* − d-,. · d
2
"$,"*

− d.,"* · d-,"* − d.,"$ · d-,"$ )

Together with the previous section, we can get percent of inconsistency as a function of correlations.

0̃1 − 01
0̃1

=
d-,"*

· (d"$,"* − d-,"$ · d-,"* )

d-,"$
· (1 − d2

-,"*
)

1̃1 − 11
1̃1

=
d"$,"*

− d-,"$ · d-,"*
d.,"$

− d-,"$ · d-,.
·

1
1 + 2 · d"$,"* · d-,"* · d-,"$ − d

2
"$,"*

− d2
-,"*

− d2
-,"$

· (d.,"* + d.,"$ · d-,"* · d-,"$ + d-,. · d"$,"* · d-,"$ − d.,"* · d
2
-,"$

− d.,"$ · d"$,"* − d-,. · d-,"* )
2̃ − 2
2̃

=
d-,"*

− d"$,"* · d-,"$
d-,. − d-,"$ · d.,"$

·

1
1 + 2 · d"$,"* · d-,"* · d-,"$ − d

2
"$,"*

− d2
-,"*

− d2
-,"$

· (d.,"* + d.,"$ · d-,"* · d-,"$ + d-,. · d"$,"* · d-,"$ − d.,"* · d
2
-,"$

− d.,"$ · d"$,"* − d-,. · d-,"* )
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Derive error variation for standardization

In order to have all variables standardized, we need to constrain the error variations. From

Eq.32:

E0A ("$) = E0A (: · "*) + E0A (01 · -) + 2 · 2>E(: · "* , 01 · -) + E0A (n"$ )

E0A ("*) = E0A (02 · -) + E0A (n"* )

E0A (. ) = E0A (11 · "$) + E0A (12 · "*) + E0A (2 · -)+

2 · 2>E(11 · "$ , 12 · "*) + 2 · 2>E(11 · "$ , 2 · -) + 2 · 2>E(12 · "* , 2 · -) + E0A (n. )

E0A (n"$ ) = 1 − :2 − 02
1 − 2:01 · d-,"* = 1 − :2 − 02

1 − 2:0102 (49a)

E0A (n"* ) = 1 − 02
2 (49b)

E0A (n. ) = 1 − 12
1 − 1

2
2 − 2

2 − 21112 · d"$,"* − 2112 · d-,"$ − 2122 · d-,"*

= 1 − 12
1 − 1

2
2 − 2

2 − 21112 · (: + 0102) − 2112 · (:02 + 01) − 202122 (49c)

Note: From Eq.49, we can tell that we have following constraints on parameters:

1 − :2 − 02
1 − 2:0102 > 0 (50a)

1 − 02
2 > 0 (50b)

1 − 12
1 − 1

2
2 − 2

2 − 21112 · (: + 0102) − 2112 · (:02 + 01) − 202122 > 0 (50c)

Discussion about the directions of inconsistency

In this section, we discuss the directions of inconsistency based on previous derivations.

with respect to 01

From Eq.41a, we can tell 0̃1 − 01 > 0 as long as : and 02 have the same direction. That is, we

overestimate 01 when : and 02 are both positive or both negative. If : > 0, 02 < 0 or : < 0, 02 > 0

we underestimate 01.
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with respect to 11

From Eq.41b, we can show that the sign of 1̃1 − 11 depends on whether : and 12 have the same

direction.

First, 1 − 02 > 0 based on Eq.50b.

Second, 1 − (: · 02 + 01)2 > 0 because:

(: · 02 + 01)2 = :2 · 02
2 + 0

2
1 + 2:0102 < :

2 + 02
1 + 2:0102 < 1

where the last inequality is based on Eq.50a.

Therefore, we overestimate 11 when : and 12 are both positive or both negative. If : > 0, 12 < 0

or : < 0, 12 > 0 we underestimate 11.

with respect to 2

From Eq.41c, we can tell that sign of 2̃−2 depends on whether 12 and 02− (: +01 ·02) · (: ·02+01)

have the same direction. This is because we have already shown that 1 − (: · 02 + 01)2 > 0 when

we discuss inconsistency for 11.

We overestimate 2 when 12 and 02 − (: + 01 · 02) · (: · 02 + 01) are both positive or both

negative. If one positive and one negative then we underestimate 2.

Interestingly, from Eq.34 we can tell that:

02 − (: + 01 · 02) = d-,"* − d"$,"* · d-,"$

Parameter framework: how inconsistency changes with parameters

In this section, we work out partial derivatives of 0̃1, 1̃1, 2̃ with respect to parameters related

to "* : 02, 12 and : .
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with respect to :

From Eq.41a, Eq.41b, Eq.41c

m0̃1
m:

= 02 (51a)

m1̃1
m:

=
(1 − 02

2)12 · [02
2:

2 + (1 − 02
1)]

[1 − (01 + 02:)2]2
(51b)

m2̃

m:
=
12(1 − 02

2){−202: + 01 [(01 + 02:)2 − 1]}
(−1 + 02

1 + 20102: + 02
2:

2)2
(51c)

When all parameters are positive and follow the constraints given by Eq.50, it can be easily

shown that m0̃1
m:

and m1̃1
m:

are always positive.

For m2̃
m:

, we can show that it is always negative by following:

(01 + 02:)2 = 02
1 + 0

2
2:

2 + 2:0102 < 0
2
1 + :

2 + 2:0102 < 1 (52)

where the last inequality is based on Eq.50a.

with respect to 02

From Eq.41a, Eq.41b, Eq.41c

m0̃1
m02

= : (53a)

m1̃1
m02

=
212: [01: + 010

2
2: + 02(−1 + 02

1 + :
2)]

[1 − (01 + 02:)2]2
(53b)

m2̃

m02
=
12{04

1 + 203
102: − 20102: (1 + :2) + (1 − :2) (1 + 02

2:
2) + 02

1 [(0
2
2 − 1):2 − 2]}

[1 − (01 + 02:)2]2
(53c)

When all parameters are positive, m0̃1
m02

is positive.

When all parameters are positive, m1̃1
m02

and m2̃
m02

can be either positive or negative, depending

on the magnitudes of 01 and : . Discussions are as follows.

Fig..8 shows how the sign of m1̃1
m02

changes when 02, 01 and : take on different values. The

dashed line represents the constraint given by Eq.50a. The constraint says that we can only take on

values below the dashed line. The solid line, on the other hand, shows where m1̃1
m02

is equivalent to
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0. Importantly, this partial derivative is positive when 01 and : take on values above the solid line

and negative below the solid line. And these two lines become closer to each other as 02 becomes

larger, which are shown from the left figure to the right one.

Similarly, Fig..9 shows how the sign of m2̃
m02

changes when 02, 01 and : take on different values.

Again, the dashed line represents the constraint given by Eq.50a. And we can only take on values

below the dashed line. The solid line shows where m2̃
m02

is equivalent to 0. Above this solid line this

partial derivative is negative and below the solid line it is positive. And the three figures from left

to right show what happens as 02 becomes larger.

Therefore, we can summarize as follows:

When 01 and : are relatively small (in the left-lower corner), m1̃1
m02

can be positive first then

quickly become negative as 02 becomes larger. Instead, m1̃1
m02

is always positive.

When 01 and : are relatively large (in the center part), m1̃1
m02

can be always positive. For m1̃1
m02

,

the sign can be negative or first positive then negative.

Figure .8: Sign of m1̃1
m02
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Figure .9: Sign of m2̃
m02

with respect to 12

From Eq.41a, Eq.41b, Eq.41c

m0̃1
m12

= 0 (54a)

m1̃1
m12

= : ·
1 − 02

2
1 − (: · 02 + 01)2

(54b)

m2̃

m12
=
02 − (: + 01 · 02) · (: · 02 + 01)

1 − (: · 02 + 01)2
(54c)

When all parameters are positive (and other restrictions required by standardization), it can be

shown that m1̃1
m12

is always positive by using Eq.52.
m2̃
m12

can be either positive or negative, depending on the magnitudes of 01, 02 and : .

Fig..10 shows how the sign of m1̃1
m02

changes when 02, 01 and : take on different values. The

dashed line represents the constraint given by Eq.50a. The constraint says that we can only take on

values below the dashed line. The solid line, on the other hand, shows where m2̃
m12

is equivalent to

0. This partial derivative is positive when 01 and : take on values below the solid line and negative

above the solid line. The three figures from left to right show what happens when 02 turns larger.

Therefore, when 01 and : are relatively small (in the left-lower corner) and 02 is also very small,
m2̃
m02

is positive. When 01 and : are relatively large (compared to 02)(in the center part, between

the two lines), m2̃
m02

is negative. Importantly, because we are talking about the partial derivatives
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with regards to 2 and 2 does not appear in this derivative, the slope always keeps the same no matter

what value 2 takes.

Figure .10: Sign of m2̃
m12

Decompose total inconsistency into two missing pathways when omitting "*

First we write the following equation based on the results in Eq. 41.

[0̃1 · 1̃1 − 01 · 11] + [2̃ − 2] = 02 · : · 11 + 12 · V2 · (01 + : · 02) + 12 · V3 (55)

Then following derivation shows that the last two components 12 · V2 · (01 + : · 02) + 12 · V3 is

equivalent to 02 · 12.

12 · V2 · (01 + : · 02) + 12 · V3 (56a)

= 12 · : ·
1 − 02

2
1 − (: · 02 + 01)2

· (01 + : · 02) + 12 ·
02 − (: + 01 · 02) · (: · 02 + 01)

1 − (: · 02 + 01)2

=
12 · : · (1 − 02

2) · (01 + : · 02) + 12 · [02 − (: + 01 · 02) · (: · 02 + 01)]
1 − (: · 02 + 01)2

=
(: · 02 + 01) · 12 · [: · (1 − 02

2) − (: + 01 · 02)] + 12 · 02

1 − (: · 02 + 01)2

=
(: · 02 + 01) · 12 · [: − : · 02

2 − : − 01 · 02] + 12 · 02

1 − (: · 02 + 01)2

=
−(: · 02 + 01) · 12 · 02 · (: · 02 + 01) + 12 · 02

1 − (: · 02 + 01)2

= 02 · 12 (56b)
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