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ABSTRACT

QUANTIFYING STRENGTH OF EVIDENCE IN EDUCATION RESEARCH: ACCOUNTING
FOR SPILLOVER, HETEROGENEITY, AND MEDIATION

By
Qinyun Lin

It is very rare that education studies have constant intervention effects through simple mechanisms
to independent individuals. It is well-documented that schooling is a complex process because
teachers, students, and administrators interact with each other in a diverse set of social contexts
(e.g., An, 2018; Frank, 1998; Hong, 2015; Kim, Frank, & Spillane, 2018; Maroulis et al., 2010).
As such, considering potential bias due to unobserved or uncontrolled spillover, heterogeneity
and alternative mediators is important to making an inference for policy implications. Addition-
ally, since the ultimate goal of education research is to inform decision-makings in the allocation
of educational resources regarding curricula, pedagogy, practices or school organizations (e.g.,
Bulterman-Bos, 2008; Cook, 2002), education research must be accessible to practitioners. Conse-
quently, a sensitivity framework that can account for all potential sources of bias, including spillover,
heterogeneity and alternative mediators, is required to allow all stakeholders to conceptualize the
quality of evidence independently so that the debate for future policy manipulations can take place
in a more transparent, effective and equitable way.

Drawn on the work by Frank, Maroulis, Duong, and Kelcey (2013), Chapters 1 and 2 in this
dissertation propose a non-parametric case replacement approach to quantify the robustness of
inference in multisite randomized control trials and value-added measures for teacher effectiveness,
accounting for spillover and heterogeneity. Throughout, the Tennessee class size experiment
(Project STAR) is applied to demonstrate the case replacement approach. Chapters 3 and 4 focus
on unobserved mediators in a single-mediator model. Specifically, Chapter 3 examines whether
and how omitting an alternative mediator can bias causal mediation effect estimates in a cross-
sectional single-mediator model. Further, a sensitivity analysis approach is proposed to evaluate

the robustness of causal mediation inference to missing a potential confounding mediator. Chapter



4 continues the discussion in Chapter 3 and a parameter framework is developed to characterize
inconsistency in mediation models. This parameter framework is also applied to a longitudinal

design for a post-treatment confounder.



Copyright by
QINYUN LIN
2019



This dissertation is dedicated in memory of my mother, Minhong Du. I miss you everyday, but I
believe you would be glad to see this process through to completion.



ACKNOWLEDGMENTS

Doctoral study is such a long and challenging journey that I would have not been here without
help and support from so many great people. I have been waiting for this moment when I can say
THANK YOU to all the great people that I have met and learned from during the past five years.

First, I would like to show my greatest gratitude to my incredible adviser, Dr. Ken Frank, for
all his encouragement, guidance, trust, and support. I have learned so much from him that is far
beyond just doing good research. I was so fortunate to have so many opportunities to travel with
him and talk with him to learn about his journey as a scholar, a professor and a farther, which has
inspired me greatly along my journey as a graduate student, especially when I felt struggled or lack
of confidence for my future as a scholar. He has brought me to the world where I found genuine joy
in research, especially those moments when I finally figured out those intriguing questions. Thank
you so much for always believing and trusting me. It is your encouragement and support that has
given me the confidence to continue pursuing the research journey I have dreamed about!

I want to express my sincere appreciation to all my committee members, for all the constructive
suggestions and advice that they have provided. My dissertation is very interdisciplinary as it
relates to methods and topics across education, econometrics and psychology. It is my committee
members’ open-mindedness that has made this dissertation possible. I would like to thank Dr. Amy
Nuttall for her dedicated and motivating guidance, that has not only made her a great instructor, but
also an inspiring mentor that led me through a challenging period of graduate studies. For the past
two years, she has been so generous with her time and excellent advice. I also want to express my
appreciation for Dr. Jeffrey Wooldridge. Your econometrics courses have introduced me to such
an amazing world that I got fascinated by the beauty of quantitative methods. I believe these are
the best courses I have ever taken! I also owe a thank you to Dr. Spiro Maroulis and Dr. Spyros
Konstantopoulos. They have provided me with so many constructive suggestions and comments
on how to frame this dissertation to keep moving forward. Although Dr. Qian Zhang is not my

committee member, she has provided me with a great amount of comments and suggestions for the

vi



last two chapters, which I appreciate a lot!

I also want to send special thanks to Dr. Andy Anderson for your generous support. You have
been a role model for me as a good scientist and researcher. Every time we discussed quantitative
analysis, your questions pushed me to think more and understand deeper. I also feel so fortunate
to have the opportunity to work with Christie Thomas, Dr. Stefanie Marshall, and everyone else in
Carbon TIME in the past five years. I have learned so much from working with you. Thank you
for all the help and support!

I also owe so many thanks to my friends and colleagues. Dr. Siwen Guo and Dr. Ran Xu, |
appreciate all your help along the way. Talking with you can always help me understand a problem
much better when I got stuck at somewhere. I also have special thanks to everyone in our research
group: Tingqgiao Chen, Zixi Chen, Yuqing Liu, Dr. I-Chien Chen. I deeply appreciate so many
discussions and emotional support that we have shared.

Finally, I would like to give my most special thanks to my husband, Xukun Xiang, and my
farther, Hui Lin. You are always there with me, no matter when I am struggled, lost, or enthusiastic
about some new progress. I am the luckiest person in the world to have such a great family in my

life, always supporting me to pursue the life I really want.

vii



LIST OF TABLES

LIST OF FIGURES

TABLE OF CONTENTS

INTRODUCTION . i it e e it e e e e e et e e ettt ottt oo annenn

CHAPTER 1 QUANTIFYING STRENGTH OF EVIDENCE FOR INFERENCES IN

1.1
1.2
1.3
1.4
1.5
1.6

1.7

1.8

MULTISITE RANDOMIZED CONTROL TRIALS: CASE REPLACE-

MENT, SPILLOVER, AND HETEROGENEITY . . ... ... ... ....
Introduction . . . . . . .. L
Multisite Randomized Control Trials MSTs) . . . . . . . . . ... .. ... ...
Spillover and Heterogeneity in MSTs . . . . . . . .. .. .. .. ... ... ....
Strength of Evidence in MSTs . . . . . . . ... .. ... ... ... ... ....
Case Replacement as a Counterfactual Thought Experiment . . . . . . . ... ...
Case Replacement for Quantifying the Strength of Evidence in MSTs . . . . . . ..
1.6.1 Sourcesofbiasin MSTs. . . . . . ... .. ... ... ... ...
1.6.2  Case replacement for each site when SUTVA holds. . . . . . .. ... ...
1.6.3 Case replacement for within-site spillovereffects. . . . . . ... ... ...
1.6.4 Case replacement for within-site heterogeneous treatment effects. . . . . . .
1.6.5 Heterogeneous treatment effects across sites. . . . . . . .. ... ... ...
llustrative Example of the Study of Class Size Effect in Project STAR . . . . . ..
1.7.1 Case replacement when SUTVA holds. . . . . . . ... ... ... .....
1.7.2  Case replacement for within-site heterogeneous treatment effect. . . . . . .
1.7.3  Case replacement for spillover effects. . . . . . ... .. ... ... ....
1.7.4 Case replacement for cross-site heterogeneity. . . . . . ... .. ... ...
Discussion . . . . . . . . L e

CHAPTER 2 QUANTIFYING STRENGTH OF EVIDENCE FOR INFERENCES IN

2.1
2.2
2.3
24
2.5

2.6
2.7

VALUE ADDED MEASURES: CASE REPLACEMENT, SPILLOVER,

AND HETEROGENEITY . . .« v i i e i e i it i ettt e e e
Introduction . . . . . ..o
Spillover and Heterogeneity in Value-added Measures (VAMs) . . . ... ... ..
Strength of Evidencein VAMs . . . . . . . . . .. oo oL
Case Replacement as a Counterfactual Thought Experiment . . . . . . . . ... ..
Case Replacement for Quantifying Uncertainty in VAMs . . . . . . ... ... ..
25.1 Sourcesofbiasin VAMs. . . . . . . ... Lo oL
2.5.2 Casereplacement when SUTVA holds. . . . . .. ... ... ........
2.5.3 Selective case replacement for heterogeneous effects. . . . . . . . ... ..
2.5.4 Case replacement for peer effect (violation of SUTVA). . . . . . . ... ..
[lustrative Example of Evaluating Grade 1 Math Teachers in Project STAR
Discussion . . . . . . . ... e

viii

ooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooo



CHAPTER 3 UNOBSERVED MEDIATOR IN A SINGLE-MEDIATOR MODEL . ... 60

3.1 Introduction . . . . . . . . . . L 60
3.2 Dual-Mediator Designs . . . . . . . . .. ... 63
3.3 Illustrative Data Example about Consequences of Omitting an Alternative Related
Mediator . . . . . . .. 63
3.4 Unobserved Causally Related Mediator as Posttreatment Confounder . . . . . . . . 66
35 GoalsoftheStudy . . . . . . . . .. 68
3.6 Inconsistency When My is Omitted . . . . . . .. ... ... ... ... ..... 69
3.6.1 Conditions for consistent estimates when omitting My . . . . . ... ... 71
3.6.2 Direction of inconsistency when omitting My . . . . . . . ... ... ... 72
3.6.3 How inconsistency changes with My;-related parameters. . . . . . . . . .. 73
3.7 How Serious Inconsistency Could be at Different Levels of My -related Parameters 78
3.8 Correlation Framework and Sensitivity Analysis for Omitted Alternative Mediators 83
3.9 Discussion . . . ... e e e e e 87
3.10 Limitations and Future Directions . . . . . . . .. .. .. ... ... ... .... 89

CHAPTER 4 APPLYING A PARAMETER FRAMEWORK TO QUANTIFY INCON-

SISTENCY IN A TIME VARYING MEDIATION MODEL .. .... ... 90
4.1 Introduction . . . . . . . . . L e e e 90
4.2 Deriving Inconsistency Using the Law of Iterated Expectation for a Parameter
Framework . . . . . . . . . 90
4.3 Understanding What Happens When Omitting My . . . . . . . . ... ... ... 93
4.4 Using the Mechanism to Understand How Inconsistency Changes with M-
related Parameters . . . . . . . .. Lo 97
4.4.1 How inconsistency changes with different levelsof k. . . . . . .. ... .. 97
4.4.2 How inconsistency changes with different levelsofa, . . . . . . . ... .. 98
4.4.3 How inconsistency changes with different levelsof bp. . . . . . . ... .. 100
4.5 Using the Mechanism to Understand the Inconsistency of Indirect and Direct
Effects When Omitting My . . . . . . . . . . .o 101
4.6 Applying the Mechanism to Understand the Inconsistency in Longitudinal De-
signs When Omitting My . . . . . . . . . . o e 105
477 DISCUSSION . . . . . . o o e e e e e e e e e e e e 111
4.8 Limitations and Future Directions . . . . . . . ... .. ... ... ........ 112
DISCUSSION & o it it et e e e e e ettt ettt ettt n e 113
APPENDIX . . it it it e e e e e e e e e e e e e e e e e e 116
REFERENCES . . . o i i i i it it i e e e et ettt et et anen 130

ix



Table 1.1:

Table 1.2:

Table 1.3:

Table 1.4:

Table 2.1:

Table 3.1:

Table 3.2:

Table 3.3:

Table 3.4:

LIST OF TABLES

Quantifying robustness of inference to potential spillover effects under re-
stricted assumptions. . . . . . ... L. oLl 15

A general approach for quantifying robustness of inference to potential spillover

effects. . . . . . 16
Quantifying robustness of inference to potential spillover effects from treatment

tocontrol group. . . . . ... 16
Summary Statistics of Math Achievements by Class Type in School A and B. . . 21
Case replacement approach for VAMs estimated by EB and DOLS. . . . . . .. 55
Bias in the Estimated Direct Effect of X on Y and Estimated Indirect Effect via M. 79

Bias in the Estimated Direct Effect of X on Y and Estimated Indirect Effect via
Bias in the Estimated Direct Effect of X on Y and Estimated Indirect Effect via
M0(611=b2=0). ................................. 81

Bias in the Estimated Direct Effect of X on Y and Estimated Indirect Effect via
Mpo(ar =0). . . . e 82



Figure 1.1:

Figure 1.2:

Figure 1.3:
Figure 1.4:

Figure 1.5:

Figure 1.6:
Figure 1.7:
Figure 2.1:

Figure 2.2:

Figure 2.3:
Figure 2.4:

Figure 2.5:

Figure 2.6:

Figure 2.7:

Figure 2.8:
Figure 2.9:
Figure 3.1:

Figure 3.2:

LIST OF FIGURES

Bias introduced by spillovereffects. . . . . . ... ... ... ... ... 14

Successive extreme replacement for within-site heterogeneous treatment ef-

fects. . . e 18
Cross-site variation of the interventioneffect. . . . . . . . . . . . .. ... ... 19
Math achievement by class typeinschool B. . . . . . ... ... ... ..... 22

Cross-site variation in the robustness of inference of a small class size effect

on math achievement (Grade K). . . . . ... ... .. ... ... .. ..... 24
Summarizing small class size effect across schools in one Figure. . . . . . .. 25
Cross-site variation in small class size effect on math achievement (Grade 1). . . 26
Teacher effects estimated by VAM (hypothetical example). . . . . . . . ... .. 33

Example replacement of students to invalidate Ashley’s evaluation based on

VAM. . e 34
Case replacement for peereffects. . . . . . . ... ... ... ... ... 44
VAMs for 268 teachers. . . . . . . . ... 47

VAMs for 14 ineffective teachers and their robustness in terms of percent of
students need to be replaced (7). . . . . . .. ... oL 48

Sampling variability for percentage of students need to be replaced () for
teacherAand B. . . . . . ... L o 50

VAMs for 14 ineffective teachers and their robustness to potential peer effect

VAMs (estimated by DOLS) for 101 teachers who taught small classes. . . . . . 54
Gain score distributions for 5 teachers below the threshold in the DOLS approach. 57
Simple mediation and dual mediator designs. . . . . . . ... ... ... L. 61

[lustrative data example of presumed media influence. . . . . . . . .. ... .. 64

Xi



Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 4.1:
Figure 4.2:

Figure 4.3:

Figure 4.4:

Figure 4.5:
Figure 4.6:

Figure 4.7:

Figure .8:

Figure .9:

Figure .10:

Confounder in mediation. . . . . . . . ... ... Lo
True model with two mediators and the model omitting M. . . . . . . . . . ..
How bias changes with different levelsof k. . . . . . ... ... ... .....
How bias changes with different levelof ap. . . . . . .. ... ... ... ...
How bias changes with different levelsof b,. . . . . . . . . .. ... ... ...
Sensitivity analysis for unobserved post-treatment confounder. . . . . . . . . ..
Parameter framework to understand what happens when omitting M. . . . . .
Understand how bias changes with different levelsofay. . . . . . .. ... ...

Different causal pathways from X to Y by models: the true model with two
mediators versus the model that omits M. . . . . . . .. ... ... ... ...

Two special situations where all inconsistency goes to the directeffect X — Y
or all inconsistency goes to the indirect effect X —- Mp — Y. .. .. ... ..

Longitudinal mediation model with two unit lag for direct effect of X onY.
Longitudinal mediation model with unobserved latent mediator My;. . . . . . .

Parameter framework extended to longitudinal designs. . . . . . . .. .. ...
. ab

Sign of Bay el
: a¢

Sign of Bag et

Sign of (59752 ....................................

Xii



INTRODUCTION

This dissertation is centered on causal inference regarding evaluation of an intervention, from
whether an intervention works to why it works, accounting for the social and dynamic contexts in
which interventions are implemented. The first two chapters propose an approach to quantify the
robustness of inference in multisite randomized control trials and value-added measures for teacher
effectiveness. Drawn on the work by Frank et al. (2013), these two chapters further extend the
non-parametric case replacement approach to quantify how much bias due to spillover violations of
SUTVA and presence of heterogeneous treatment effects must be present to invalidate an inference.
Throughout, the Tennessee class size experiment (Project STAR) is applied to demonstrate the
case replacement approach in both contexts of multisite randomized control trials and value-added
measures.

One of the main goals of Project STAR is to study the effect of small class size effect on
student achievement. It is well documented that small class size has a positive effect on boosting
students’ learning, but the effect can vary substantially depending on grade levels and schools
(e.g., Hanushek, 1999; Konstantopoulos, 2011; Pedder, 2006; Schanzenbach, 2007). As shown in
Chapter 1, this also includes the fact that some schools in Project STAR show strong evidence for
negative small class size effects. Additionally, we need to evaluate each school on its own, and to
do so we need to quantify its effect relative to a unique threshold for that school. We also need to
account for how students might influence each other within or between classrooms as these may
bias the estimation of the intervention effects.

Mediating Mechanisms

Underlying this treatment effect heterogeneity are potential mechanisms for how an intervention
affects students’ learning. Specifically, these mechanisms require in-depth studies of complex
classroom and school processes that mediate interventions on students’ learning (Pedder, 2006),
where various factors are included regarding teachers’ practices, classroom discourse routines,

teacher-student interactions, peer relations etc. Studying these mechanisms can tell us why an



intervention works or not in certain contexts so that future policy manipulations can be better
informed. For example, Harfitt (2013) shows that reducing small class sizes may not work if
teachers do not seek to exploit the advantages of a smaller class size via changing their pedagogies.
With teaching practices serving as a crucial mediator, class size reduction may only work as
expected when coupled with professional development for teachers. As such, studying the causal
mechanism may allow us to explain the heterogeneity of treatment effects, and to figure out necessary
conditions for realizations of intervention effects, so that later policy manipulations can be better
informed. Otherwise, heterogeneous treatment effects may lead to unexplained inconsistencies that
allow politicians of different persuasions to intentionally select findings that support their preferred
policy choices (Blatchford & Martin, 1998; Pedder, 2006).

Recognizing the importance of studying mediation analysis, Chapters 3 and 4 focus on unob-
served mediators in a single-mediator model. Specifically, Chapter 3 examines whether and how
omitting an alternative mediator that is confounded with an observed mediator can bias causal
mediation effect estimates in a cross-sectional single-mediator model. Further, a sensitivity anal-
ysis approach is proposed to evaluate the robustness of causal mediation inference to missing a
potential confounding mediator. Chapter 4 continues the discussion in Chapter 3 about an un-
observed mediator but further leverages a parameter framework to discuss how the bias (more
precisely, inconsistency) is generated for each path coefficient of interest in a time varying model
consistent with a dynamic process. Applying the Law of Iterated Expectation and the Linear
Regression Framework, the bias (more precisely, inconsistency) generation mechanism underlying
the cross-sectional model can also be applied to a post-treatment confounder in a time varying

single-mediator model.



CHAPTER 1

QUANTIFYING STRENGTH OF EVIDENCE FOR INFERENCES IN MULTISITE
RANDOMIZED CONTROL TRIALS: CASE REPLACEMENT, SPILLOVER, AND
HETEROGENEITY

1.1 Introduction

In the introduction I described how threats to validity can be interpreted in terms of the sampling
mechanism. The goal of this chapter is to characterize the robustness of a causal inference by
interpreting it as the percentage of a sample that must be replaced with counterfactual no-effect
cases to alter the inference. Most importantly, I will extend this case replacement framework to
attend to violations of the Stable Unit Treatment Value Assumption (SUTVA) and presence of
heterogeneous treatment effects.

The ultimate goal of any educational research is to inform decision-makings in the allocation
of educational resources regarding curricula, pedagogy, practices or school organizations (e.g.,
Bulterman-Bos, 2008; Cook, 2002). Consequently, education research must be accessible to prac-
titioners. There are two overarching principles underlying the AERA’s “Standards for Reporting
on Empirical Social Science Research” guide education researchers to engage stakeholders: the
sufficiency of the warrants and the transparency of the report. But it is not easy for education
researchers to achieve these two principles in practice, especially for varied audiences that may
include stakeholders from various backgrounds: policymakers and practitioners including adminis-
trators, teachers and parents. Effective communication requires a framework to inform discussions
and debate about inferences that make sense to all stakeholders.

Sensitivity analyses can serve as a useful tool to inform debate about specific inferences by
quantifying the strength of evidence in education research. The quality of evidence is quantified
by discussing the conditions that would alter the inference (e.g., Frank, 2000; Imbens, 2003;
Rosenbaum, 2002; VanderWeele & Arah, 2011). These analyses generate statements such as “an

omitted variable would have to be correlated at __ with the treatment and with the outcome to



invalidate an inference of an effect of the treatment on the outcome.” As such recent approaches to
sensitivity analysis help interpreters of research quantify the conditions necessary to invalidate an
inference drawing on familiar quantities such as correlations (Frank, 2000), percentage of variance
explained (Cinelli & Hazlett, 2018) or graphical representations such as contour plots (Imbens,
2003).

But these existing sensitivity analyses approaches are constrained by specific models and the
discourse is in the language of correlations and variances. We argue that a well-designed sensitivity
analysis framework should go beyond the constraint of specific models and make sense to varied
audiences, including those without any statistics background. As a result, a powerful sensitivity
framework should allow all stakeholders to conceptualize the quality of evidence independently so
that the debate can take place in a more transparent, effective and equitable way. Accordingly, the
resulting policy manipulations can also be based on a well-informed discussion. In addition, the
advantage of going beyond model constraints allows comparisons among different studies.

As an attempt to provide a powerful sensitivity analysis tool that serves these requirements, we
will introduce a non-parametric case replacement approach illustrated by Frank et al. (2013) that
draws on Rubin’s causal model (RCM) (Rubin, 1974) to express concerns about bias in terms of
the characteristics of unobserved, counterfactual data. To demonstrate how this case replacement
framework differs from other existing approaches, we will contextualize our discussions in mul-
tisite randomized control trials (MSTs). The MSTs are highly relevant as they provide evidence
for inference to inform policy manipulations and demonstrate typical education scenarios where
SUTVA and constant treatment effect assumption are rarely satisfied in practice.

For purpose of illustration, we will use the Tennessee class size experiment, or Project STAR
(Student-Teacher Achievement Ratio), to demonstrate our sensitivity approach. There were 79
elementary schools in 42 school districts involved in this 4-year long project to study the effect of
class sizes on student achievement. In each school, kindergarten students were randomly assigned
into small classes (13-17 students), regular classes (22-26 students), or regular classes with a full-

time aid. Teachers were also randomly assigned to these different types of classes. The assignments



of students and teachers to different class types were maintained from kindergarten through the

third grade.

1.2 Multisite Randomized Control Trials (MSTSs)

Regarded as the “gold standard” and the most powerful experimental design, randomized
control trials (MSTs) are being applied with increasing frequency to measure the effectiveness of
educational interventions. More than 160 evaluations that randomized individuals or groups to
treatment and control conditions have been funded by the National Center for Education Research
of the Institute of Education Sciences (IES) since 2002 (Bloom & Spybrook, 2017). Among
these, MSTs are gaining increasing popularity (Spybrook & Raudenbush, 2009; Spybrook, Shi, &
Kelcey, 2016), where individuals within each site are randomly assigned to treatment and control
conditions. With a large and diverse sample from different sites, MSTs may have several potential
advantages, including stronger generalizability of findings and allowing estimations of cross-site
treatment effect variation (e.g., Bloom, Raudenbush, Weiss, & Porter, 2017; Bloom & Spybrook,
2017). The findings regarding the overall mean treatment effect as well as the variance of cross-site
treatment effects are then both used to inform later policy manipulations. For example, some studies
based on Project STAR suggest that the positive effect of small class size on student achievement in
early grade is large enough to inform education policy (Nye, Hedges, & Konstantopoulos, 2000),
but the small class effect is not consistent in all schools: although students in many schools benefit
considerably, in other schools being assigned in small class shows no effect or even negative effects
on student achievement (Konstantopoulos, 2011). Thus, based on these findings, a policymaker
might conclude that reduction of class sizes might benefit some students, but not all.

Even randomized control trials are not free of bias. The underlying idea of randomization
is to eliminate possible contaminating effects by trying to ensure no systematic differences in
participants’ baseline characteristics. But randomization cannot exclude other sources of error that
can happen in educational settings, such as non-compliance, attrition and problems in intervention

implementation fidelity (e.g., Hanushek, 1999; Sullivan, 2011). These potential sources of bias can



create validity problem of MSTs as well. For example, it is well-documented that Project STAR
suffers from a number of important design and implementation issues that can create potential
bias (Hanushek, 1999; Konstantopoulos, 2011; Nye et al., 2000). First, the manipulation of class
size, as the intervention of interest, was not implemented with fidelity in all schools. Second,
there was sizable attrition as well as missing test scores in each year. When attrition occurred,
new students were added but there were no pretests available for these new students to verify the
randomization through the experiment. Third, the participating schools were not randomly selected,
instead they had to volunteer to participate. Evidence shows the sample does differ from the total
student population in Tennessee in fall 1986 (Hanushek, 1999). Finally, some students moved
between different classroom types (treatment or control conditions in this project) throughout the

experiment.

1.3 Spillover and Heterogeneity in MSTs

MSTs demonstrate typical education scenarios where SUTVA is rarely satisfied in practice. As
a fundamental assumption for causal inferences, SUT VA requires the treatment status experienced
by one unit does not affect the treatment effect for another (Rubin, 1986, 1990). But it is well-
documented that schooling is a complex process because teachers, students, and administrators
interact with each other in a diverse set of social contexts (e.g., An, 2018; Frank, 1998; Kim et
al., 2018; Maroulis et al., 2010). In many MSTs for educational interventions, each site can be
one classroom or one school, where peer effects can create bias for even the estimation of the
treatment in a single site. For example, in Project STAR, students were randomly assigned to each
treatment condition in kindergarten but because of attrition, new students were added to each grade
every year. With no guarantee that these new students were randomly assigned, they might become
distractors or contributors that can affect other students in the same classroom. It is also possible
that students from different classrooms (i.e., treatment conditions) might interact and learn from
each other, introducing bias to estimating the between-class achievement average (i.e., intervention

effect).



Whenever a single treatment effect is estimated, there can be heterogeneous treatment effects.
The heterogeneity can stem from differences in any aspect that relates to the realization of the
treatment effect, including individual characteristics, contextual effects and mediating mechanisms.
In MSTs, heterogeneous treatment effects can appear both within sites and across sites, among which
the cross-site inconsistencies of treatment effects can play a crucial role in the generalizability of

the findings and policy implications.

1.4 Strength of Evidence in MSTs

In MSTs, the estimated effects are compared to a certain threshold to make an inference as
a basis for policy implications. Specifically, the thresholds based on statistical significance can
be applied to claim whether the overall mean intervention effect is significantly positive/negative
and whether there are significant cross-site variations. Regardless of the specific definition, a
threshold represents “the point at which evidence from a study would make one indifferent to the
policy choices” Frank et al. (2013). As argued in (Frank et al., 2013), the comparison between
the threshold and the estimate then represents the strength of evidence that supports the inference
that directly links to the policy choice. Thus, all stakeholders should be able to understand this
comparison so that the policy choice can be made after comprehensive consideration and evaluation
of the strength of evidence against potential costs.

For example, if Project STAR supports an inference for a positive small class size effect on
student achievement, then future educational policies would be informed to reduce class sizes.
However, there are debates about whether the inference is strong enough to inform policies. For
instance, Hanushek (1999) maintains that considerable uncertainty about the class size effects
is suggested by a number of important design and implementation issues in the project and the
evidence is not strong enough to show a systematic effect from overall class size reduction policies.
In contrast, Nye et al. (2000) argues that even with shortcomings in implementation, the estimated
class size effects are large enough to inform policies. The debate here is essentially about how far

the estimated effect exceeds the threshold, and how consistent the effect is across different sites.



Thresholds based on statistical significance require thinking about a repeated sampling frame-
work that conjures a scenario that is beyond the observed data. This can create difficulties for
people without any statistical background. As we will demonstrate, the case replacement approach
proposed in Frank et al. (2013) provides a more intuitive alternative to quantify the compari-
son between the threshold and the estimated effect to inform discussions among all stakeholders.
Additionally, this framework can be applied to any type of threshold.

This study has two goals. First, we want to demonstrate how the case replacement approach
can be applied in MSTs. Second, we aim to extend Frank et al. (2013) work by discussing how
we can quantify the uncertainty to violations of SUTVA and presence of heterogeneous treatment
effects. In the following section, we will first review the case replacement framework proposed by

Frank et al. (2013).

1.5 Case Replacement as a Counterfactual Thought Experiment

In Frank et al. (2013), the authors showed an approach to quantify how much bias there must be
in an estimate to invalidate an inference. Then the bias is interpreted in terms of sample replacement
to inform more intuitive interpretation. In other words, to show how robust an inference is, we ask
a question based on a thought experiment which is counterfactual: what percentage of the sample
should be replaced with counterfactual (unobserved) no-effect cases to invalidate an inference made
from the data? Or if the concern is about external validity, we consider what percentage of the
samples should be replaced with no-effect cases from an unsampled population. The larger the
percentage is, the more robust the conclusion/inference is, the less likely that the finding is only
due to chance or bias.

This case replacement idea can be applied in various ways to characterize the strength of evidence
in MSTs. But the general idea is always about replacing some observed cases with some unobserved
cases. The replacement process can become very flexible depending on: (1) how we select cases
from the observed sample to be replaced (2) what cases are regarded as replacement cases (3)

whether the non-replaced cases in the sample experience any changes during the replacement. In



the following analysis, we will discuss different ways to consider the hypothetical replacement and
how each approach helps inform the comparison between the threshold and the estimated effect

under different contexts.

1.6 Case Replacement for Quantifying the Strength of Evidence in MSTs

1.6.1 Sources of bias in MSTs.

As discussed above, there can be various sources of bias in MSTs. However, we can regard all
these as essentially violating the random assignment assumption. That is, sources of bias create
differences between the treatment and control group in addition to the experiment condition and
more importantly, these differences affect the outcome measures. For example, attrition and added
students in Project STAR may introduce differences between the small and regular classes that
can lead to differential achievement outcomes. Teacher expectation or reactions to the treatment
condition can be another example for one potential contaminating factor. When these differences
between treatment and control groups are present, they are confounded with the intervention of
interest and we cannot tell whether and how the intervention of interest causes changes separately

from other contaminating factors.

1.6.2 Case replacement for each site when SUTVA holds.

In a counterfactual framework, the violation of random assumption indicates the control group indi-
viduals do not provide an accurate approximation of counterfactuals for treatment group individuals
if they were assigned to the control condition. Or vice versa: the treatment group individuals do
not provide accurate approximation of counterfactuals for control group individuals if they had
been exposed to the treatment condition. In other words, bias is introduced because 1) treatment
group members are compared with observed control group members rather than their counterfac-
tuals: treatment group members if they had received the control and 2) control group members are
compared with observed treatment group members rather than their counterfactuals: control group

members if they had received the treatment (Frank et al., 2013). That is, the way different sources



of biases create problems can be understood as missing data for individuals if they were assigned
to a different experiment condition (Holland, 1986). This feature that recasts all potential sources
of bias in terms of missing data has been used in the case replacement approach to quantify the
robustness of inference (Frank et al., 2013).

To illustrate, consider in each site we have two experiment conditions: treatment vs control. The
null hypothesis is Hq : ur = uc, where ur and uc are population means under the treatment and
control conditions, respectively. Note these are different outcomes for the same population under
different conditions. Now consider we observe sample averages of treatment and control groups,
denoted as X7 and X, respectively, and we have X7 — X > Threshold for a significantly positive
intervention effect. In other words, X is used as an approximation of counterfactuals for treatment
individuals’ outcomes if they had received the control. Now in the thought experiment, assume a
proportion of observations, say 7, in the control group that cannot serve as accurate approximations
for counterfactuals of the treatment group, due to violations of the random assignment assumption.
And the true intervention effect for these individuals are zero, indicating their true counterfactuals
would be Xr rather than X if they had received the control. Then the average for the control
condition becomes: X - (1 — ) + X7 - m. The intervention effect, as the difference between the
control and treatment conditions, becomes X7 — [X¢ - (1 — 7r) + X7 - nr]. Setting this difference to
be equivalent to the threshold so that the amount of bias can invalidate the inference, we can solve
for 7, where = 1 — Threshold /(X — Xc). That is,  characterizes the amount of bias necessary
to invalidate the inference (i.e., the difference between the estimated effect and the threshold), as
the proportion of treatment cases for which the true treatment effect is zero and the control group
members provide biased approximations of their counterfactuals if they had been assigned to the
control condition.

To put it more simply, the case replacement approach quantifies the robustness of an inference by
considering replacing a proportion of the observed control cases with unobserved counterfactuals of
the treatment cases if they had received the control, assuming these treatment cases experience null

treatment effects. This leads to a new estimated effect after replacement: (X7 —X¢)-(1—-m)+0- 7.
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By setting this to be equivalent to the threshold, we can solve for 7 that represents a value that can be
applied to characterize the strength of evidence against a certain threshold for an inference. A larger
n indicates more cases need to be replaced with null-effect cases to invalidate the inference, and
correspondingly, more bias needs to be present to invalidate the inference, which represents a more
robust inference for all sources of bias. This is a very brief review for how the case replacement
approach applies the counterfactual framework to quantify the robustness of inference. See Frank
et al. (2013) for more detailed formalization of this thought experiment.

Similar arguments can be applied for scenarios where the observed treatment effect is positive
but below the threshold: 0 < X7 — X < Threshold. Now the goal is to quantify how the
data must change to sustain an inference. Specifically, consider the observed treatment group
average represents a combination of cases experiencing zero effects and threshold level effects,
with proportions 7 and (1 — ), respectively. This gives us: X7 = (0+X¢)-w+(Thr+Xc) - (1—n),
from which we can solve for 7: 7 = 1 — (X — Xc)/Threshold. In this scenario,  represents the
proportion of null effect cases that need to be replaced with threshold level effect cases to sustain
the inference. A larger & indicates more evidence is needed to sustain the inference, which means

the estimated effect is further away from the threshold for making an inference.

1.6.3 Case replacement for within-site spillover effects.

Now we want to relax the assumption of no spillover effects: the experiment condition of one unit
can affect the outcome of another unit. That is, we want to conceptualize the potential bias due
to spillover effects within each site so that we can characterize how sensitive the inference of each
randomized control trial is to potential bias caused by spillover effects.

Itis important to note that, in order to generate bias, the spillover effects should not be introduced
by the treatment condition, otherwise it becomes a mediator that should be counted as part of the
total treatment effect. We argue that spillover effects should satisfy at least two conditions to
introduce bias: (1) inhere in direct interactions or indirect exposures among individuals; (2)

perform in a way that is independent of the treatment assignment.

11



As before, consider we observe sample averages of treatment and control groups, denoted as X7
and X, respectively, and we have X7 — X > Threshold for a significantly positive intervention
effect. But we wonder if the observed difference X7 — X might be biased by either positive
spillover effects in the treatment group or negative spillover effects in the control group, or even
both.

Specifically, assume in the treatment group (with sample size ny) we have a proportion (rep-
resented by 77) of cases teaching the other treatment cases ny - (1 — 7). For each case in the
teaching group, they benefit from teaching the other cases. Define the positive effect of teaching
one case as TE (teaching effect), then teaching other ny - (1 — 717) cases gives each of them the
benefit of ny - (1 — n7) - TE. Similarly, each case of the learning group can experience positive
learning effect of ny - n7 - LE through studying from the other ny - 77 cases. Define the isolated
average outcome in the treatment group, without the spillover effects, as XTT’ then we should be
able to get the following formula, representing that the observed treatment average is the sum of
the isolated treatment average and positive spillover effects:

XTZXTT+7TT-I1T-(1—7TT)~TE+(1—7TT)-nT-7TT~LE
= Xgp +nr a7 - (L =n7) - (TE + LE)

Similarly, assume in the control group (with sample size n) we have a proportion (represented
by m¢) of cases distracting the other control cases n¢ - (1 — m¢). Then each first group case
experiences a level of n¢ - (1 — ) - SID self-initiated distraction effect and each second group
case experiences a level of n¢ - m¢ - PID peer-initiated distraction effect. Denoting the isolated

average outcome in control group as XCT’ we should be able to get:
XC :XCT—JTC'HC'(I—ﬂc) 'SID—(I —JTc) -I’lc'ﬂc-PID

=Xcy —nc-nc - (1=nc) - (PID +SID)
Now we can write out the formulas for isolated treatment and control group average, without

any spillover effects, as follows:
XTT :XT—nT-JTT-(l —7TT) : (LE+TE)

XCT :Xc+l’lc-ﬂ'c : (1 —7Tc) : (PID+SID)
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By subtracting the second equation from the first, we get the difference between )_(TT and XCT
as the treatment effect. Setting this effect equivalent to the threshold so that the amount of bias can

invalidate the inference, we can get:
Xr — Xc —Threshold =ny -np - (1 —n7) - (LE+TE) +nc -nc - (1 =nc) - (PID + SID)

This illustrates a general situation when the bias comes from both positive spillover effects
in the treatment group and negative spillover effects in the control group. We can also consider
two special situations: 1) all the bias comes from positive spillover effects in the treatment group
(i.e., PID + SID = 0) and we can get X; — Xc — Threshold = ny - ny - (1 — n) - PE, where
PE (positive effect) = LE + TE; 2) all the bias comes from negative spillover effects in the control
group (i.e., LE + TE = 0) and we can get X — X — Threshold = n¢c -nc - (1 —nc) - NE, where
NE (negative effect) = PID + SID.

In all three situations, we see the difference between the estimated treatment effect X7 — X and
the threshold is written as either a linear function of spillover effect (i.e., PE or NE), given m and n,
or a quadratic function of 7 given the spillover effect (i.e., PE or NE or both) and n. To simplify the
discussion, take the scenario where all bias comes from positive effects from the treatment group
as an example. Figure 1.1 shows bias introduced from spillover effects as a quadratic function of
nr at different levels of spillover effect (i.e., PE). The axis of symmetry is 77 = 0.5. Consider
the situations when 0 < 77 < 0.5. If 77 > 0.5, we can always find another 77 from (0, 0.5) that
generates the same (X7 — Xc — Threshold) by symmetry. Then given a fixed amount of PE, we
can see that a larger 7 indicates a larger difference between the observed estimated effect and the
threshold. That is, we need to have stronger spillover effects (more individuals teaching others
in the treatment group) to invalidate the inference, indicating a more robust inference. Similar
conclusions hold for sites whose estimated effect is so large that the distance to the threshold
(X7 — Xc — Threshold) is larger than the maximum value of this function, which is 0.25n7 PE.

Another way to interpret this is to assume 50% of cases teach the other 50% of cases in the
treatment group (i.e., 77 = 0.5). Then we can solve for PE = TE + LE. That is, PE tells us

how large the positive spillover effects must be to invalidate the inference of a positive intervention
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Figure 1.1: Bias introduced by spillover effects.

effect? The larger the resulting PE is, the more robust the inference is to the threat of spillover
effect.

Additionally, by assuming n7 = n¢ = m and PE = NE = R, we can further simplify the
formula for the general scenario where bias is introduced by both positive spillover effects in the
treatment group and negative spillover effects in the control group: X7 — Xc — Threshold =
(n +n¢c) -m- (1 —n)-R. Then we can apply the same approach above, using either 7 or R
to describe the robustness of inference to potential spillover effects as bias. This way we can
reduce the number of sensitivity parameters while considering spillover effects in both treatment
conditions. Underlying the discussions for spillover effects are also counterfactual interpretations.
By removing the spillover effects among participants, we are in fact trying to come up with the
estimated effect when the SUT VA assumption is satisfied and individuals are independent from each
other. Alternatively, we can consider replacing individuals with other individuals who experience
the same treatment effect but no spillover effect.

The discussion above has made several assumptions for spillover effects. To illustrate, we use
Table 1.1 to present the relations between senders and receivers of spillover effects indicated by

the discussion above, when we wonder whether the estimated effect is biased by positive spillover
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Table 1.1: Quantifying robustness of inference to potential spillover effects under restricted
assumptions.

Individuals within Teaching Learning

treatment group A B C D

Teaching A NA B—-A=0 |[C>A=TE D—>A=TE
B A—-B=0 NA C—-B=TE D—>B=TE

Learning C A—-C=LE B—-C=LE NA D—-C=0
D A—-D=LE B—-D=LE| C—>D=0 NA

effects within the treatment group. Assume four individuals are in the treatment group: A, B,
C, and D. 50% of them teach the other 50% (77 = 0.5). Specifically, consider A and B teach C
and D. Then Table 1.1 displays the specific spillover effect experienced by each pair of individuals
based on the discussion above. For example, in the first row, A experiences TE (teaching effect) by
teaching C and D but A does not experience any spillover effects from B. Similarly, C experiences
LE by learning from A and B but does not experience any spillover effects from D. As such, several
assumptions are implied here. First, we assume spillover effects are present for pairs of individuals
within one treatment condition group (i.e., either treatment or control) but across teaching and
learning groups (or self-initiated distracting and peer-initiated distracting groups). Second, each
type of spillover effect (either LE, TE, SID or PID) is constant for different individuals. Inspired
by the Linear-in-Means model in the peer effect literature, these assumptions can help us simplify
the sensitivity approach technique and we can easily apply this for any unknown types of spillover
effects.

But what if we have specific spillover effects that violate these assumptions? Then a weighted
matrix of relations between senders and receivers of spillover effects can provide us with a more
powerful and flexible tool to realize any possibilities. For simplicity, still assume we have four
individuals: A, B, C and D. But now A and B are from the treatment group and C and D are from
the control group. Then we can use a four by four table, as presented in Table 1.2, to specify
spillover effects between each pair of individuals, whether they are from the same experimental
condition or not. For example, the first row lists the spillover effects experienced by individual

A from individuals B, C and D. Importantly, all the off-diagonal cells can have different values
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(the diagonal elements are meaningless because they represent one experience spillover effect from
himself/herself). Assume we have weighted friendship data for all individuals in the sample, then
we can use this table to ask how strong the unit spillover effect through the friendship network

needs to be to invalidate the inference.

Table 1.2: A general approach for quantifying robustness of inference to potential spillover effects.

Treatment Control
Inidividuals A B C D
Treatment A NA B—-A C—>A D—A
B A—B NA C—»B D—B
Conirol C A—-C B-C NA D—-C
D A—-D B—->D|C—>D NA

Now consider a simple application of this weighted matrix for a scenario where we have a
positive but insignificant estimated treatment effect (i.e.,Threshold > X7 — X¢c > 0). We wonder
if the observed difference X7 — X might be downward biased by positive spillover effects from
the treatment to the control group. That is, individuals in the control group experience positive
effects by interacting with individuals in the treatment group. Table 1.3 demonstrates how Table
1.2 can be applied to study this scenario, where only the bottom left panel shows spillover effects
because that panel represents spillover effects from all individuals from the treatment group to all

individuals in the control group.

Table 1.3: Quantifying robustness of inference to potential spillover effects from treatment to
control group.

Treatment Control

Inidividuals A B C D

Treatment A NA 0 0 0

B 0 NA 0 0

Control C A—-C B—>C|NA O
D A—-D B—-D| 0 NA

Now define the positive learning effect experienced by each individual in the control group
through interacting with one individual in the treatment group as LE, each control individual gets

an amount of ny - LE positive spillover effects. Denote the isolated control mean as )_(CT, then we
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can write: XCT = Xc —nr - LE. Now by setting the difference between treatment (X7) and isolated
control mean (Xc;.) equivalent to the threshold, we obtain: Threshold — (X — X¢) = ny - LE.
From this we can calculate how large LE must be to sustain a positive treatment effect inference. A
larger difference between the threshold and the estimated treatment effect indicates larger positive

spillover effects (i.e., LE) must be present to sustain an inference.

1.6.4 Case replacement for within-site heterogeneous treatment effects.

As illustrated by Holland (1986), the average causal effect is an average and thus it “enjoys all of the
advantages and disadvantages of averages”. The constant treatment effect assumption says that all
the units in the population of interest experience the same treatment effect caused by the treatment.
This assumption will then allow the average treatment effect to be used to draw causal inference at
the unit level.

One may argue that we only need to draw an inference at an average level rather than at a unit
level. But in educational MSTs, each site may only have very small sample size. The number of
participants in either treatment or control group can be even smaller. For example, small classes
in Project STAR may include fewer than 20 students and most schools only had one to two small
classes. With such small sample sizes, an outlier can have a considerable effect on the group
average.

To quantify how sensitive the inference about the intervention effect in each site is to the het-
erogeneous or the outlier effect, we propose a successive extreme replacement thought experiment.
Because the outlier effect can affect either the treatment or the control group or both, this selective
replacement approach can be applied to both groups. To illustrate, consider a scenario where we
have X7 — X, > Threshold for a significantly positive intervention effect. The goal of this discus-
sion is to characterize how robust this inference for a specific site is to outlier effects. Under this
scenario, we may consider outliers from the higher end in the treatment group or lower end in the
control group. Specifically, we start our replacement from the individual who has the most extreme

outcome in the group, which means the highest in the treatment and the lowest in the control group
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under this scenario. For replacement cases, we may consider the overall grand mean outcome
across all participants within this site, favoring the null hypothesis that there is no treatment effect.
Alternatively, we can replace extreme cases in each group with their own group mean, which means
replacing the highest in the treatment with the treatment mean and replacing the lowest in the control
with the control mean. Figure 1.2 shows both approaches, where the blue dotted line represents the

AApproach 1: replace with grand mean

-+, Grand|mean

Control Treatment

Lowes¢in the control / e treatment
A Approach 2: replace with group mean
Control Treatment

# Contrql mean’ %

Lmée,s;{-ﬁh the contragl Highes

in the tre;;tment

Figure 1.2: Successive extreme replacement for within-site heterogeneous treatment effects.

control distribution and red solid line represents the treatment distribution. If replacing the most
extreme case is not enough to cross the threshold, we continue by replacing the second extreme
case. We continue this process until the difference between the treatment and control group reduces
to the threshold and we record how many cases need to be replaced to invalidate the inference. The

more we need to replace, the more robust the inference is.
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1.6.5 Heterogeneous treatment effects across sites.

All previous discussions focus on randomized control trials within each site. But one important
advantage of the MST is that it allows researchers to study how consistent the intervention effect
is across different sites. To characterize this cross-site variation, we apply the case replacement

approach for each single site and consider four groups of sites. Figure 1.3 presents how this may

Group 1: Group 2:
positive significant effect within site. positive but nor significant effect within site.

Towards positive irfftervention effect
I} X | I}

H Group 3: Group 4:
negative significant effect within site. negative but not significant effect within site.
0 T 1 0 ;i 1

Figure 1.3: Cross-site variation of the intervention effect.

work. The first group (Group 1) includes all sites that show a significantly positive intervention
effect. Applying our case replacement approach, we can quantify the strength of evidence for
each site by considering what percent of observed cases need to be replaced with no effect cases
to invalidate the inference of a positive intervention effect. As such, we get a proportion 7 for
each site j, which allows us to generate a distribution of robustness represented by 7;. The more
sites with larger 7r; (towards 1) the stronger the evidence for a positive intervention effect across
sites. The second group (Group 2) includes all sites that show a positive but not significant effect
within site, under which the case replacement approach allows us to have x; indicating how much
more evidence we need to sustain a positive effect inference. Then the more sites with a smaller

n; (towards 0), the more evidence is given towards a positive intervention effect. The third group
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(Group 3) includes all sites with significantly negative within-site treatment effect. More sites
showing a large r; (towards 1) indicate stronger evidence towards a negative effect. The final
group (Group 4) includes all sites with negative but not significant effects. The more sites showing
small 7 ; (towards 0) indicate a trend towards a negative intervention effect.

More importantly, from how all sites are distributed across all four groups, we can see 1)
where most sites are; 2) whether sites are distributed towards inferences of different directions of
intervention effect; and 3) variation in the robustness of inference. For example, if there are many
sites that are located in the center of both group 1, 2 and group 3, 4, as shown by both the green and
red brackets, then we know that the variation of cross-site intervention effect is substantial as we

have pretty robust evidence towards inferences of both positive and negative intervention effects.

1.7 TIllustrative Example of the Study of Class Size Effect in Project STAR

In this section, we will use Project STAR as an example to demonstrate how the discussion
above can be applied to quantify the strength of evidence in multisite randomized trials to potential
bias. For simplicity, we will focus on the math achievement of students in Grade K who were
assigned to either small classes or regular classes. We excluded those students in regular classes
with a full-time aide so that we have two experimental conditions to be consistent with the previous
discussion. In general, we consider the small class to be the treatment group and the regular class
to be the control group. In total, there are 3,794 students from 79 schools included in the following
analysis. We standardized the math achievement scores for each school to make the interpretation

easier.

1.7.1 Case replacement when SUT VA holds.

We start with the general case replacement approach when the SUTVA assumption holds. Specif-
ically, we look at two schools as examples, both of which have a significantly positive treatment
effect but having very different levels of robustness of inference. Table 1.4 shows the summary

statistics of math achievement by class type for each school. Because students and teachers are
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Table 1.4: Summary Statistics of Math Achievements by Class Type in School A and B.

Math achievement N M SD min max
School A Small class | 13 | 1.321 | 0.794 | 0.183 3.171
Regular class | 34 | -0.426 | 0.735 | -1.761 1.037

School B Small class | 14 | 0.498 | 0.941 | -1.286 2.002
Regular class | 23 | -0.154 | 0.916 | -2.153 1.314

Notes. N, M and SD represent sample size, mean, and standard deviation, respectively. min
and max represent minimum and maximum values, respectively.

randomly assigned to each class type, we applied an independent samples t-test to estimate the small
class effect!: the estimated effect for school A is 1.738 with a p value < 0.001 and the estimated
effect for school B is 0.652 with a p value of 0.045. If we apply the commonly used threshold of
0.05, we may conclude that both schools show a significantly positive class size effect.

But do they have the equal strength of evidence or the same level of robustness of inference?
To consider this, we apply our case replacement framework, which tells us: around 71.63% of the
cases in school A must be replaced with null effect cases to invalidate the inference while only
2.26% of the cases in school B must be replaced with null effect cases to invalidate the inference.

This shows the inference of an effect in school A is much more robust than that in school B.

1.7.2 Case replacement for within-site heterogeneous treatment effect.

As shown above, the inference of a positive small class effect in school B is not robust. Now we
use the selective replacement approach to see whether this inference is very sensitive to outlier
effects. Following Figure 1.4 shows a distribution of math achievement by class type in school B.
We observe that there are a few students showing very low math achievement in the control group
(regular class). Specifically, the lowest score is —2.152. Once we replace this student (the blue part)
with a hypothetical average student with the grand mean of 0.093 (the pink part), the average score
in regular class increases to —0.056 and the corresponding difference from the average in small

class reduces from 0.652 to 0.554, which is lower than the threshold of 0.637. This means only by

I This is essentially the same approach as Konstantopoulos (2011) used. The difference is that
we excluded the full class with aide and accordingly, we did not use Bonferroni correction.
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Figure 1.4: Math achievement by class type in school B.

replacing one student who has the lowest score in the regular class, the inference of a positive small

class effect would be invalidated, indicating a very weak inference to potential outlier effects.

1.7.3 Case replacement for spillover effects.

Now we consider how sensitive the inferences in school A and B are to potential spillover effects.
Assume 50% of students assigned to small classes teach other 50% of students in small classes.
If all the bias comes from these positive learning and teaching effects, each unit of the spillover
effect needs to be larger than 0.38 (more than 22% of the estimated treatment effect) in school A
to invalidate the inference while in school B the positive spillover effect among students assigned
in small classes only needs to be larger than 0.004 (less than 1% of the estimated treatment effect)
to invalidate the inference. Alternatively, assume 50% of the students assigned to regular classes

distract other 50% of students. If all the bias comes from these negative distraction effects among
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students who were assigned to regular classes for school A, the distraction effect needs to exceed
0.146 (more than 8% of the estimated treatment effect) to invalidate the inference while in school
B, the distraction spillover effect only needs to exceed 0.0026 (less than 0.4% of the estimated
treatment effect) to invalidate the inference. Again, this comparison between school A and B shows
the large difference in terms of robustness of inference to potential bias.

We can also consider positive spillover effects from small class students to regular class students,
leading to underestimation of the small class size effect. To illustrate this, we look at one school
where 17 students were in the small class with an average math achievement of 0.264, and 20
students were in the regular class with an average math achievement of -0.423. The difference is
0.687, which is just below the threshold for statistical significance (@ = 0.5) of 0.707. In order
to sustain an inference of a positive small class size effect, we can apply Table 1.3 as a tool to
quantify how large the positive spillover effect from small class size to regular class must be. After
calculation? , each student in the regular class must experience an amount of 0.0012 spillover effect
from each student in small class, which is only about 0.17% of the estimated treatment effect, to
alter the inference regarding a positive small class size effect. This quantifies the robustness of no

effect in the school.

1.7.4 Case replacement for cross-site heterogeneity.

Figure 1.5 applies the case replacement approach to present cross-site variation in small class size
effects on math achievement. First, many schools do not show any evidence of either positive or
negative effects, indicated by the concentration of the distribution on the very right of Group 2 and
Group 4. Second, many schools are in Group 1 or 2, indicating the estimated small class effects
are positive. Additionally, 7 schools in Group 1 have a robust inference for positive small class

size effects: more than 40% of observed cases need to be replaced by unobserved zero effect cases

2To sustain the inference, the average in regular class must be lower than 0.264—0.707 = —0.443.
Then the difference between this and the observed average in regular class is —0.423 — (—0.443) =
0.02. Each student in regular must learn at least 0.02 from all students in small class, then each
student must learn 0.02/17 ~ 0.0012, which is only about 0.0012/0.687 ~ 0.17% of the estimated
treatment effect.
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Figure 1.5: Cross-site variation in the robustness of inference of a small class size effect on math
achievement (Grade K).

to invalidate the inference. Meanwhile, a few schools in Group 2 are close to the threshold: there
are 3 schools in which fewer than 10% of zero effect cases need to be replaced with threshold level
cases to sustain a positive intervention effect inference. However, as shown by the two frequency
distributions for Group 3 and 4 in the second row, there are a few schools that show negative
estimated effect, among which 3 are significantly negative. One school in Group 3 has such strong
evidence to support a negative effect of small class size that one would need to replace more than
70% of the cases with zero-effect case to invalidate the inference. Additionally, in Group 4, a few
schools are not too far away from the threshold of negative class size effects. Therefore, we may
conclude that schools do differ from each other in terms of the inference of an effect of small class
size on students’ math achievement in kindergarten.

The red dotted lines in each group in Figure 1.5 represents the overall robustness for each group

when school sizes are considered to weigh each school. That is, within each group, we summed up
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the number of students needed to be replaced from all schools and divided this by the total number

of students. Figure 1.6 further aggregates all information into one figure: the distribution illustrates
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Figure 1.6: Summarizing small class size effect across schools in one Figure.

the estimated treatment effect across all schools, and the dotted line indicates the threshold for a
positive treatment effect, for which we used the standard error as Konstantopoulos (2011) calculated
for the average small class effect across schools. Comparing Figure 1.6 with Figure 1.5, we argue
that Figure 1.5 provides much more detailed information about how inconsistent the small class
effect is across schools. Although one estimate that summarizes all schools is appealing, missing
the heterogeneity across schools can provide misleading information for policymakers. Moreover,
summarizing all schools with one estimated effect ignores the fact that each school will make its
own inference about the effectiveness of small classes. This applies to scale-up because schools
have local control over policy. Thus, schools must ask if the intervention worked in their context.
To further show how our approach can provide richer information regarding cross-site hetero-
geneity in MSTs, we carried out a similar analysis for Grade 1 students regarding whether small

class size influence their math achievement. Figure 1.7 presents the result. Comparing Figure 1.5
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Figure 1.7: Cross-site variation in small class size effect on math achievement (Grade 1).

with Figure 1.7, we can tell the inferences regarding small class size effects on math achievement
in Grade 1 and Grade K share both similarities and differences3. First, compared to Grade K, there
are more schools in Grade 1 showing robust findings for positive small class size effects; in Group
1 of Grade 1, there are 11 schools for which more than 50% observed cases need to be replaced
by unobserved zero effect cases to invalidate the inference. Meanwhile, both Grade 1 and Grade
K have schools with strong evidence for negative effect as well. In Grade 1, two schools in Group
3 show strong evidence for negative small class size effects. In the strongest school more than
70% of the cases must be replaced with zero-effect case to invalidate the inference. Therefore, we
may conclude that Grade 1 has even stronger evidence for positive small class size effects but both
Grade K and Grade 1 show cross-site heterogeneity with evidence for both positive and negative

intervention effects.

3The sample for Grade 1 includes 76 schools, compared to 79 schools for Grade K.
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1.8 Discussion

This chapter extends the case replacement approach (Frank et al., 2013) to quantify strength
of evidence in multisite randomized control trials, accounting for spillover and heterogeneity.
Throughout, Project STAR has been applied as an example to demonstrate how this non-parametric
approach can better inform debate regarding relevant policy choice. Drawing on Rubin’s causal
model (RCM) (Rubin, 1974), concerns about bias are expressed in terms of unobserved, counter-
factual data. Specifically, the robustness of a causal inference is interpreted as the percentage of
a sample that must be replaced with counterfactual no-effect cases to alter the inference. Most
importantly, by carefully considering how to select cases from the observed sample to be replaced,
what cases are regarded as replacement cases, and whether the non-replaced cases in the sample
experience any changes during the replacement, this case replacement framework can be extended
to attend to violations of the Stable Unit Treatment Value Assumption (SUTVA) and presence of
heterogeneous treatment effects.

One limitation of this chapter is that the case replacement approach might be better motivated
when an overall inference across sites is based on the accumulation of inferences within each site.
In that case the inference within each site must be compared with the site-specific threshold as I have
done here. Additionally, the discussion of spillover effects can be more thorough and better tailored
for the context of multisite randomized control trials, considering that the randomization can help
eliminate some type of spillover effects but not others. For example, assuming randomization is
implemented with fidelity, we should not expect any presence of within treatment group (or control
group) spillover effects due to non-random assignment of distractors or contributors. However,
spillover effects between different treatment groups cannot be excluded by randomization, especially
in the context of educational interventions, where the subjects are always students who interact
with each other in a social context. While these issues are present in any study, they are especially

prominent when we compare inferences across sites, as in the multisite trial.
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CHAPTER 2

QUANTIFYING STRENGTH OF EVIDENCE FOR INFERENCES IN VALUE ADDED
MEASURES: CASE REPLACEMENT, SPILLOVER, AND HETEROGENEITY

2.1 Introduction

The introduction establishes the goal of understanding the robustness of inferences in terms of
how the sampling mechanism could be altered to replace cases in the data. In the previous chapter,
we derived the case replacement approach to quantify strength of evidence for inferences in multisite
randomized control trials, accounting for spillover effects and heterogeneous treatment effects. In
this chapter, we will continue to demonstrate how this case replacement framework can be applied
to quantify uncertainty in value-added measures (VAMs) that have been used to evaluate teacher
effectiveness. The VAM context is highly relevant for policy and personnel decisions because
the evaluation of teacher effectiveness is related to high-stake decisions. By comparing students’
expected test scores to their actual ones, the “deflections” are inferred to be the “added value” from
the teacher (Raudenbush & Bryk, 2002). Proponents of value-added models cite research that shows
teachers’ considerable and long-lasting influences on student achievement (e.g., Chetty, Friedman,
& Rockoft, 2011; Hill, Kapitula, & Umland, 2011; Rivkin, Hanushek, & Kain, 2005). They argue
that there is important variation in teachers’ effectiveness that can be better identified by VAM
(e.g., Aaronson, Barrow, & Sander, 2007; Hanushek & Rivkin, 2010). By selecting or deselecting
teachers based on value-added we can improve teacher quality and increase student achievement
and long-term outcomes (e.g., Chetty et al., 2011; Gordon, Kane, & Staiger, 2006; Winters &
Cowen, 2013a, 2013b). For example, under the evaluation system of IMPACT in the District of
Columbia Public Schools (DCPS), teachers were dismissed with rare exceptions once evaluated as
“ineffective” and the dismissal threats are claimed to have helped improve teacher performance and
student achievement (Adnot, Dee, Katz, & Wyckoff, 2017; Dee & Wyckoff, 2015).

Various concerns have been raised about the validity and reliability of value added measures
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as a basis to inform teacher evaluation (e.g., Guarino, Reckase, & Wooldridge, 2015; Harris,
2009; Raudenbush, 2015). These issues may include test unreliability, missing data and model
misspecifications. In order to get a more reliable value added measure, researchers recommend
model specification with two years of prior tests (Goldhaber & Hansen, 2010; Kane & Staiger,
2012; Rothstein, 2009). This can reduce the population of teachers who can be measured because
it is not uncommon for teachers to change grades or students to change schools within three-year
duration. Furthermore, unreliability in test scores can appear as measurement errors or differences
among different achievement measures. Previous research has shown bias in value-added caused
by measurement errors alone (Lockwood, Louis, & McCaffrey, 2002) as well as large variation
in the estimated effects of applying different achievement measures (Lockwood et al., 2007).
Therefore, those high-stake decisions for a specific teacher (e.g., hiring, retention, and professional
development) require all stakeholders to be able to understand and conceptualize the uncertainty

and quality of the measures to avoid unfairness and loss of investments and resources.

2.2 Spillover and Heterogeneity in Value-added Measures (VAMs)

Like MSTs, VAMs also demonstrate typical education scenarios where SUT VA is rarely satisfied
in practice. In the VAM context for teacher evaluation, SUTVA suggests there are no peer effects
that can affect a student’s achievement, which is rarely satisfied in real life. Previous researchers
have controlled peer effects through model specification (e.g., Carrell, Fullerton, & West, 2009;
Hoxby & Weingarth, 2005; Levin, 2002; Van Ewijk & Sleegers, 2010). For example, the most
well-known peer effects are based on classmates’ achievement levels. Other peer effects can be
generated by racial, ethnic or economic forces. Unfortunately, identifying all possible sources of
peer effects is challenging as it would have to include non-cognitive attributes as well as interaction
styles. As a result, we will never know whether we have controlled for all potential significant peer
effect mechanisms in a model. For example, how can we control the peer effects from friendships
if we do not have adequate information on friendship to define closer knit peer effects more than

simply class membership?
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In the VAM context, heterogeneous treatment effects are present if one teacher is good at teaching
certain students but not others, which can cause debate in teacher evaluation. Additionally, the
VAM context exemplifies the scenario where violations of one single treatment (as a fundamental
component of SUTVA) may lead to heterogeneity of treatment effects, as discussed in Chapter 1.
For example, teachers may modify their way of teaching to better suit the special requirements of
each student, which may lead to heterogeneous teacher effects experienced by different students
in one classroom. Even with the same teaching approach, different students can still benefit
differently due to variations in their aptitudes, motivations, prior knowledge or any other individual

or contextual factors.

2.3 Strength of Evidence in VAMs

In VAM, the threshold for being an effective teacher is generally arbitrary since the estimation
of standard errors in VAM is controversial; the standard errors can be quite sensitive to how one
conceptualizes the level of analysis and what formula one chooses. Regardless of the specific
definition/calculation, a threshold in VAM represents the point at which the evidence from VAMs
would make one indifferent to the final teacher evaluation result, such as effective or ineffective. As
argued in Frank et al. (2013), the comparison between the threshold and the VAM then represents
the strength of evidence that supports the evaluation result that directly links to high-stake personnel
decision-making. Thus, all stakeholders, including teachers, administrators and parents, should
be able to understand this comparison so that the personnel decision-making can be made after
comprehensive consideration and evaluation of the strength of evidence against potential costs.
For example, consider a debate between an administrator and a teacher whose VAM is below the
threshold of being effective. The administrator may use this below-threshold VAM to evaluate this
teacher as ineffective, but the teacher may argue that her low VAM is primarily because she has
been assigned to lower-end students. Essentially, this debate is about how far the teacher’s VAM is
below the threshold, and whether this difference generates strong evidence for this teacher’s lack of

effectiveness and potential dismissal, considering all potential sources of bias in estimating VAM.
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As we will demonstrate in this chapter, the case replacement approach proposed in Frank et al.
(2013) provides an intuitive alternative to quantify the comparison between the threshold and the
estimated VAM to inform discussions among all stakeholders. Additionally, it does not rely on the
controversial calculation of standard errors.

Like Chapter 1, this chapter has two goals. First, we want to demonstrate how the case
replacement approach can be applied in VAMs. Second, we aim to extend Frank et al. (2013)
work by discussing how we can quantify the uncertainty to violations of SUTVA and presence
of heterogeneity in VAMs. In the following section, we will first review the case replacement

framework proposed by Frank et al. (2013).

2.4 Case Replacement as a Counterfactual Thought Experiment

In Frank et al. (2013), the authors showed an approach to quantify how much bias there must be
in an estimate to invalidate an inference. Then the bias is interpreted in terms of sample replacement
to inform more intuitive interpretation. In other words, to show how robust an inference is, we ask
a question based on a thought experiment which is counterfactual: what percentage of the sample
should be replaced with counterfactual (unobserved) no-effect cases to invalidate an inference made
from the data? Or if the concern is about external validity, we consider what percentage of the
sample should be replaced with no-effect cases from an unsampled population. The larger the
percentage is, the more robust the conclusion/inference is, the less likely that the finding is only
due to chance or bias.

This case replacement idea can be applied in various ways to characterize the strength of
evidence in VAMs. But the general idea is always about replacing some students taught by one
teacher with counterfactuals of other students, if they were taught by that teacher, as a thought
experiment. The replacement process can become very flexible depending on: (1) how we select
students from the teacher’s class to be replaced (2) what students are regarded as replacement
students (3) whether the non-replaced, remaining students in the class experience any changes in

achievement during the replacement. In the following analysis, we will discuss different ways to
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consider the hypothetical replacement and how each approach helps inform the comparison between

the threshold and estimated VAM under different contexts.

2.5 Case Replacement for Quantifying Uncertainty in VAMs

2.5.1 Sources of bias in VAMs.

Various concerns have been raised about the validity and reliability of value added measures (VAMs)
as a basis to inform high stake decisions (e.g., hiring, retention, and professional development) for
a specific teacher (e.g., Guarino et al., 2015; Harris, 2009; Raudenbush, 2015). We will begin
our review of these concerns with the conditional random assignment assumption. Almost all the
potential inconsistencies of value added, such as those caused by test unreliability, missing data or
model specification, can be represented in terms of the violations of conditional random assignment
assumption. Our approach to quantify the uncertainty of value-added also draws on this framework
of the student-teacher assignment mechanism.

The conditional random assignment assumption is that students are randomly assigned to every
teacher conditional on the other variables (Rothstein, 2009, 2010). However, research has shown
that there is a nontrivial amount of sorting based on students’ prior test scores as well as a nontrivial
amount of non-random assignment of teachers to classrooms. For example, recent research has
shown that teachers who are nominated as help-providers to other teachers and with leadership
positions are assigned better students (Kim et al., 2018). These nonrandom assignments may cause
substantial bias in value added estimates if not captured by the controls in the model specification
(Paufler & Amrein-Beardsley, 2014; Rothstein, 2010). In some cases, the estimates based on value
added may even have the opposite sign of the true teacher effect (Dieterle, Guarino, Reckase, &
Wooldridge, 2015). Hiring or dismissing a teacher based on this flipped ranking can be unfair for

teachers and cause unwanted competition that can lead to test-driven teaching.
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2.5.2 Case replacement when SUTVA holds.

To better motivate the case replacement approach, we start our discussion with a hypothetical
example. Consider three teachers’ VAMs as presented in following Figure 2.1. Both Ashley and
Jessica are below the threshold of 0.15. If the threshold represents a serious lack of effectiveness,
the administrator may decide to dismiss both of them. However, we can see that Ashley is much
closer to the threshold than Jessica. This indicates that an evaluation of Ashley as ineffective is
much less robust than that for Jessica. It might be some bias in VAM estimation causes teacher
Ashley to be below the threshold. As a result, the personnel decision should be considered more
seriously, or other measures should be referred to. Or the administrator may direct Ashley to
professional development if the school resources can only support one teacher for this opportunity.
Similarly, an administrator may want to provide professional development to teacher Emily who is

above the threshold, but just barely so.
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Figure 2.1: Teacher effects estimated by VAM (hypothetical example).

In the hypothetical example, how can we better quantify the difference between Ashley’s VAM
and the threshold as strength of evidence for her evaluation? The case replacement approach leads
us to ask how many students in her class need to be replaced with average students to get her to the
threshold. Ashley has a VAM of 0.14, which could be the average of her students’ gain scores. The

threshold is 0.15. Assume she has 20 students, whose gain scores have a distribution represented
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as black and grey parts shown in 2.2. Hypothetically, to improve Ashley’s VAM from 0.14 to
0.15, we can replace two students (the grey parts) with two average students whose gain scores are
0.16 (the white parts with black outline). This counterfactual thought experiment tells us that via
replacing the two worst students with grade-average students, Ashely could achieve the threshold
of being effective. We can also say that 2 out of 20, that is about 10% of Ashley’s students need to

be replaced with grade average students to alter the evaluation.

Frequency
2
|

.05 A A5 2

- Original students that were not replaced (stay in the class)

- Original students being replaced

I:I Replacement students (e.g. grade average students)
Figure 2.2: Example replacement of students to invalidate Ashley’s evaluation based on VAM.
We now formalize the intuition in 2.2. For the following discussion, assume that all grade nine

math teachers in one middle school were evaluated based on their students’ achievement scores.

Suppose we have a general value-added model as follows:

Ajp =11+ AAj 1 + Ty + Xit B+ s, !

IThere are various value added models. This particular (simplified) model is only used as an

34



where Aj; is student i’s test score at time ¢ (post-test score); 77 is the intercept; A is the coefficient
(scaler) for the pre-test score A; ;_1; A;;—1 is student i’s test score at time ¢ — 1 (pre-test score); Tj;
is a row vector of teacher indicators;? 7y is a column vector of teacher fixed-effects;? X;; is a row
vector that include covariates to control student heterogeneity such as student family backgrounds;
B is a column vector that include the coefficients for the covariates Xj;; u;; is an unobserved error
term.

After estimating those parameters, we obtain a “purified” gain score s;; for each student i in
teacher [’s class at time ¢ after removing the effects from those observed characteristics (A; ;1 and

Xi;) included in the value-added model. This is shown in the following equation:
sit = Air — (fr + AA; 11 + XiuPp)

This gain score s;; can also be understood as a “deflection” score which is the difference between
a student’s expected score (based on those covariates A;;_1 and X;; that are outside teacher I’s
control) and the actual score. We assume that this deflection is caused by teacher / who teaches
studenti.# To clarify, all the gain scores in following discussions refer to this s;;. We can decompose
s;1 by using ANOVA parameterization:s;; = u +aj +e;; = VAM| + e;;, where u is the grand mean

gain score of all students in this grade. For simplicity, we assume that each teacher teaches one

example to illustrate that: all the following discussions are based on the “purified” or adjusted
“gain scores”. In other words, the gain score here is after adjusting for student characteristics that
are included in the value-added model. Theoretically, the change in students’ test scores can be
decomposed to teacher effectiveness and student heterogeneity. By removing the latter part, we can
estimate the teacher effectiveness.

2f there are 10 teachers in this grade, then 7j; is a 1 X 10 row vector for each student (observation).
Correspondingly, y is a 10 X 1 column vector, with each element representing one teacher’s fixed
effect.

3Here “fixed-effect” means that we are NOT viewing all teachers as a population and then
getting an estimate based on a random sample drawn from this population of teachers. Instead,
we are interested in learning individual teacher’s effect on student achievement. Therefore, we just
use dummy variables to indicate each teacher. There are also other estimation methods in value
added literature. For example, when we apply Project STAR later to illustrate our approach, we
will demonstrate two approaches: the EB residual approach and the Dynamic OLS approach.

4Here we contextualize our discussion by using student-level data to evaluate teachers within a
school as an example. Therefore, the school-level effect is not included.
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class and each class has the same number of students n, then u = VA—M, which is the average VAM
of all teachers in this grade; «; is how far teacher I’s value added score (VAM;) departures from
the VAM; VAM,3 is the VAM for teacher [; e;; is how far the score of student i in teacher I’s
classroom departures from the classroom mean.

To simplify the discussion for now, assume that we are evaluating teachers for one grade within
one school. One way to set the threshold is to use a certain percentile such as the 5° h percentile in
all teachers” VAM distribution.

For teacher /, we can only observe her effect on the students in her class. For the other students
taught by other teachers, we cannot know their scores if they were taught by teacher / because this
is counterfactual. Because of this, teacher [ may argue that her value-added VAM); is below the
threshold (T hr) because of the students she is assigned. She may argue she has the average teacher
effect and she will be able to achieve the threshold if she is assigned more grade average students
(this could well be the argument of a beginning teacher — see Kim et al. (2018)). However, the
evaluator, such as the principal, may argue that the teacher’s low VAM, reflects teacher I’s lack
of effectiveness. While the dispute is about the point estimate of the VAM, the debate about the
teacher’s evaluation is informed by understanding the uncertainty of the VAM.

To formalize the discourse above for the uncertainty of value-added, the case replacement
approach leads us to consider how many grade average students need to replace to alter teacher
I’s evaluation. Another argument for replacing with grade-average students is that if we randomly
choose one student from the grade then a grade-average student will be the expectation for a student
being selected.

In order to carry out the replacement analysis, we need to know the grade average student’s
gain score. As before, this gain score is achieved after adjusting for all those covariates included
in the value-added model. Two possible ways are presented as follows to get an estimate for this
grade-average student’s gain score g;.

In the first approach, we can just use u as an estimate for g;. This approach is convenient and

SIf the pre-test score (test score for time 1) is set before the teacher encounters the student, then
we can think about this VAM as a function of the post-test score (test score for time 2).
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the resulting g; will be the same for all teachers in the replacement thought experiment. From the
teacher’s argument illustrated before, she has the average teacher effect in this grade and this g; might
be a good estimate for an average teacher’s effect on a grade average student. The disadvantage is
that this average gain score is under the observed teacher-student assignment condition and we are
assuming that this grade average student will keep the grade average score if taught by this teacher.

Another possible way to estimate this grade average student’s gain score g; is still conditioning
on covariates in the current model and the observed teacher-student assignment but is more conser-
vative. Specifically, rather than look for an estimate for an average teacher’s effect on a grade average
student, we try to estimate this particular teacher /’s effect on a grade average student. The “average”
here refers to having the grade average pre-test scores and other controlled characteristics. This
means looking for a student j in teacher /’s class so that the value of ) (Aj,,_l + th) - (A1 + X))
is minimized (where A,_; and X; are the grade average covariates). Then we use this student j’s
gain score s;; as g;. The second approach here seems to provide a “closer guess” for a grade aver-
age student’s gain score if taught by teacher /. However, since we only use one specific student’s
observed gain score for the replacement, the reliability will be a more serious issue than the first
approach.

Once we get g;, we consider randomly selecting students from teacher I’s class to be replaced

with grade average students, then the formula is shown as follows.

Thr=(—-n)-VAM;+n-g=(g —VAM;) -1+ VAM,;

T/’lr—VAMl _ gt—T/’lV

From this we can get: 7 = S-VAM, ~ '~ g-VAM’

where 7 is the percentage of students
need to be replaced, T hr is the threshold of value-added above which the teacher will be evaluated
as effective. In this chapter, we assume that the threshold (7'hr) is below the average value added
score (VA—M) and all the VAM we are interested in is below the threshold (7'Ar). That is, we have
VAM; < Thr < VAM.

Suppose g; is bigger than Thr and VAM;. Also the g; is the same for all teachers (the first

approach discussed previously). Then with higher VAM/, the n gets smaller. This makes sense
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intuitively because teachers who are closer to the threshold need to replace fewer students. However,
we can see that the relationship between VAM| and r is not linear.
If we treat 7 as a function of VAM; (and assume g; as a known constant for now), we can apply

delta method to get a standard error for 7 as follows.

dVAM,

dn
dVAM,

dr

= (Thr - g;) - (g — VAM )2

( )2 = (Thr —g1)? - (g — VAM)) ™

Then we get:
AVar[vVn(# - n)] = (Thr - g;)z (gt — VAMI)_4 . AVar[\/E(VAMl - VAM))]

From this formula, we note that as the VAM moves further away from the grade average gain
score (that is, the (g; — VAM)]) gets larger), the asymptotic variance of & approaches 0 because of
the term (g, — VAM l)_4. This indicates that for a teacher with a relatively low VAM, we can get a
quite precise estimate for . In other words, the more certain we are as the VAM gets further away
from the threshold.® In that case, a relatively large 77 can represent a quite robust evaluation for a
teacher’s ineffectiveness relative to a threshold.

In order to account for randomness in estimating g;, we consider a bootstrap approach. To
generate one bootstrap sample, we resample students with replacement within each teacher. Then
for each such sample, we can calculate m,, g: and 7. Repeating this step allows us to get a
distribution of # where a confidence interval can be obtained that accommodates both randomness
and potential bias. One advantage of this approach is it accounts for the uncertainty of m, via
bootstrap as well, without going into debates about what formula we should use to calculate the
standard error. If this confidence interval is close to O, then the evaluation for this teacher as being
ineffective is sensitive to either potential bias or sampling variability or both.

Similar arguments can be applied for scenarios where the estimated VAM is above the threshold:

Thr < VAM;. Now the goal is to quantify how the data must change to get this teacher below

6Note the discussion here assumes the uncertainty of VAM (i.e., AVar[vn(VAM; - VAM))])
keeps unchanged.
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threshold because we wonder whether the teacher’s above-threshold VAM might be due to upward
bias and if so, the teacher may need some professional development. The case replacement
approach here is similar to that in Chapter 1 when we wanted to quantify how the data must change
to sustain an inference. Specifically, consider the estimated VAM represents a combination of
students with grade average gain scores and threshold level gain scores, with proportions 7 and

(1 — m), respectively. This gives us: VAM; = g; - 7+ Thr - (1 — «), from which we can solve for

VAM~Thr

o= gt—Thr

. In this scenario, 7 represents the proportion of students with grade average
gain scores that must be replaced with students who have threshold level gain scores to bring this
teacher below the threshold. A larger 7 indicates more data must be changed to change the teacher

evaluation to ineffective, which means the estimated VAM is higher and further away from the

threshold.

2.5.3 Selective case replacement for heterogeneous effects.

As we discussed for MSTs, we can apply the case replacement approach to quantify how robust
a teacher evaluation inference is to outlier students in his/her class. Note in the VAM context,
this constant effect assumption does not necessarily relate to student grouping based on prior test
results. Prior test scores may reflect students’ ability but the constant effect assumption is about
teachers’ effects on students. Students’ ability may or may not relate to their improvement affected
by the teachers. The treatment effect in this context is more a problem of whether this teacher’s
teaching works for one student (matching problem). Therefore, even in the most homogeneous case
where students are grouped based on their pre-test scores, we still need to think about violation of
the constant effect assumption.

Another important note here is the heterogeneous teacher effects can be caused by violations
of SUTVA, or more specifically, the single treatment level assumption in SUTVA. This happens
when a teacher modifies their teaching for different students. But as discussed earlier, the presence
of heterogeneity of teacher effects on student achievement does not rely on violations of this single

treatment level assumption. Whether and how one teacher’s teaching benefits student learning can
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be affected by various factors.

This constant effect assumption is also highly relevant in the VAM context: if we want to
rank all teachers, we should consider the heterogeneity of the students in their classes and ideally
the teacher whose teaching works out for more students should be more favored. Consider two
teachers who have the equivalent value-added. In teacher /’s class, there is only one student who
gets an extremely low gain score and it is this score that makes the teacher’s value-added below
the threshold. However, teacher m has several students who get quite low gain scores. In addition
to the estimated value-added, we can also use this information of mismatching as another measure
for teacher’s effectiveness. Even if we are only interested in the average level, we may still be
concerned about the effects of outliers.

To quantify how sensitive the VAM is to this heterogeneous or the outlier effect, we propose
three selective replacement approaches as follows, assuming the teacher has a below-threshold
VAM.

(1) Successive extreme replacement: this process is data-dependent and there is no closed
formula. This is very similar to what we discussed in the context of MSTs: we start our replacement
from the student who has the lowest gain score in teacher [’s class. If the teacher’s value-added is
still lower than the threshold, then we replace the student with the second lowest gain score. We
continue this process until teacher /’s value-added achieves the threshold and we record how many
students need to be replaced with g;.

(2) Purposeful sampling process: the lower the studenti’s gain score is, the higher the probability

for this student gets selected to be replaced. This is shown in the following formula:

. VAMZ — 8
For all s;j < VAM,Pr (s; lected to b laced) =
or all s; 1, Pr(s; is selected to be replaced) S (VAM, = s)
Then the formula for replacement is shown as follows:
VAMl — 8
Thr = (gr—si1) - T+ VAM,
Z X (VAM - sip)

sij<VAM;
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From this we obtain:
Thr —VAM,

VAMI_Sil
Zsil<VAMl (gt Sll) Z(VAMl_sil)

T =

For now we are only replacing students who are below the class average (for all s;; < VAM]).
But we can also consider including those students who are above the class average but below the
threshold (T"hr > s;; > VAM)]). In this case, the formula will be the following one.

Thr - VAM,

Thr-s;;
Zsil<Thr (8¢ = sir) - S (Thr—s;;)

(3) Replace the teacher’s median student(s) with grade average students. This approach is
proposed considering that median is less sensitive to extreme values than mean. Instead of replacing
the mean student gain score in the teacher’s class, we select the median student to think about the

replacement (Med;). The formula is represented as follows.

B Thr —-VAM,;
B gr—Med;

m

For any of these approaches, the magnitude of 7 gives us an intuitive understanding about how
far teacher / is from the threshold if we assume the value-added is a valid and reliable evaluation.
It also quantifies how much bias there needs to be to invalidate this evaluation. A small  indicates
a lack of robustness or a small departure from the threshold. Similarly, we may get a confidence
interval for 7 by applying the delta method or bootstrap.

Additionally, the three selective replacement schemes can help provide a supplemental measure
for teacher evaluation. For instance, when two teachers have the same value-added, we can use «
from selective replacements as another measure for evaluation purpose. The teacher with a smaller

m may be favored because her VAM is more likely to have been negatively affected by just a few

outlier students.

2.5.4 Case replacement for peer effect (violation of SUTVA).

In this section, we will conceptualize the potential bias due to peer effects in value added models

in terms of random or purposeful resampling of students in a counterfactual scenario. To start, we
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will discuss how peer effects generate bias in VAMs.

In the VAM context, we prefer to use “peer effects” rather than “spillover effects” because
spillover can occur through teachers (such as one naughty student distracts the teacher’s attention
from the rest of the class). But we define peer effects as those direct effects among students. These
peer effects are then just like other factors such as students’ own background that we should control
in value-added models.

To further define peer effects as a potential bias in value-added, we need first consider the
baseline peer effects. The value-added model is essentially a normative comparison among teachers.
Therefore, the baseline peer effects that are present in all teachers’ classes should not be credited to
one teacher. That is, to generate “bias” in value-added measures, peer effects should satisfy several
conditions: (1) inhere in direct interactions or indirect exposures among students; (2) perform in
a way that is independent of particular teachers; (3) is unique for a particular classroom that is
not covered by the normative baseline peer effects. Specifically, the second requirement indicates
that the peer effects do not depend on which teacher teaches the class, while the third requirement
illustrates the existence of a biasing peer effect needs to be different from baseline peer effects
that are experienced by all teachers. Assume we are comparing all the teachers within a school.
Then the baseline peer effect depicts what happens in all teachers’ classrooms in that school. But
some peer effects are unique for the classroom. Consider teacher Ashley’s classroom in which peer
effects are not due to Ashley’s instruction. These effects can bias our evaluation for Ashley.

It is also important to note that the level of baseline peer effects can be quite different in various
school environments. Students involved in project-based learning can experience strong peer effects
through frequent group discussions while students in schools with conventional teaching styles may
only experience a minimal level of peer effect by observation. Therefore, we should consider these
variations when discussing peer effects as potential bias in different contexts.

The non-random assignment of students to teachers can introduce bias to VAM via non-random
assignment of contributors and distractors to teachers. For example, a teacher can be assigned with

more students who are really distractors that may have negative effects on other students in the
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class. This negative spillover effect can introduce bias to the VAM. To quantify how sensitive one
teacher’s value-added is to potential bias due to such peer effect, we propose an approach that is
very similar to what we discussed in Chapter 1 for spillover effects in the MST context. Consider
a group of students nz distracting the other students n(1 — 7) in the class and they experience
self-initiated (S71D) and peer-initiated distraction effects (PID), respectively. The derivation is the
same as the MST context. Following we present the result for the VAM context when we worry
about negative peer effects as bias that may threat teacher’s evaluation result. The notation is the

same as before and VAM Iy indicates the isolated/true VAM score for teacher /.
VAM; =VAM,, —nn-(1-n)-SID - (1-n)-nn-PID

By setting VAM . equivalent to the threshold of being an effective teacher, we can solve for 7.
As before, we only need to specify the negative effect NE = SID + PID rather than specifying the
self-initiated and peer-initiated distracting effects separately. Figure 1.1 in Chapter 1 still applies
to show the relationship among the NE, m and the difference between teacher’s VAM and the

threshold (i.e., Thr — VAM)).
Thr—=VAM; = -n-NE-(n —0.5)%>+0.25-n- NE

As mentioned before, underlying these discussions for potential peer effects are counterfactual
interpretations. The hypothetical example presented in following Figure 2.3 illustrates this coun-
terfactual idea in the VAM context, based on our previous example about teacher Ashley.

Recall Ashley has 20 students, where the first figure represents her 20 students’ distribution of
gain scores before replacement. Then in the thought-experiment, we replace the students indicated
by the green part with the other students represented by the red part. Importantly, these two groups
of students have comparable gain scores, but they have different peer effects on the remaining
students: the green students will distract others but the red students only have baseline peer effects
on others. Therefore, after the replacement, the remaining students in the class (represented by the
black part) will not experience the peer-initiated distraction effects anymore. As such their scores

get higher, causing the change in the teacher’s VAM.
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Figure 2.3: Case replacement for peer effects.
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because of the change experienced by the students remaining in the classroom.

Importantly, the crucial trick in this thought experiment for peer effects is the remaining
students change their gain scores during the replacement. When there is no peer effect, the change
of teacher /’s value-added is only from the difference between the new students’ and original
students’ gain scores after the replacement. For example, in the hypothetical example in Figure
2.2, teacher Ashley needs (0.15 — 0.14) x 20 (the teacher has 20 students) = 0.2 total increase
to achieve the threshold. This 0.2 comes from the difference between the two original students in
the class (denoted in grey parts) and two replacement students (represented as the white parts), i.e.,
(0.16 —0.06) + (0.16 —0.06) = 0.2. Those original students who are not replaced do not change

their scores in the replacement process. In contrast, in Figure 2.3, the gain in the VAM occurs

Finally, 1.2 in Chapter 1 can again be applied as a more flexible framework for quantifying more




specific peer effect mechanism if we know specific social interaction patterns within the teacher’s

classroom.

2.6 Illustrative Example of Evaluating Grade 1 Math Teachers in Project STAR

We will use Project STAR as an example to demonstrate how the discussion above can be
applied to quantify uncertainty in VAMs. Different from the MST context, Project STAR is not
designed for teacher evaluation purpose. The discussion here is mainly for demonstrating our case
replacement approach. But as previous research illustrated (Nye, Konstantopoulos, & Hedges,
2004), the randomization of teacher assignments within schools and the broad range of schools
from throughout a diverse state make Project STAR a great resource to study teacher effect variance
on student achievement.” Specifically, because both students and teachers were randomly assigned
to different classes, any systematic between-classroom variance in achievements should be due to
either the treatment effects (class types) or teacher effectiveness. As such, in this paper, we first
follow the approach applied in Nye et al. (2004) to study teacher effectiveness. Specifically, schools
are included in our demonstration sample if there were more than three classrooms in the same
grade so that within each school at least two classrooms were assigned to the same class type.? A
three-level hierarchical linear models is applied, specified as follows.

Level 1 (student i)

Yijk = Boij + B1jikPretestji +ﬁ2ijemale,-jk + B3k FRL;j +,84jkMin0rityl-jk +Eijk

"It is important to distinguish between: evaluate specific teachers versus evaluate teacher effect
variance.

8Nye et al. (2004) has shown that the constrained sample is very similar to the complete sample
on important characteristics.
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Level 2 (teacher/classroom j)°

Bojk = mook + 7T()1kSmalljk + 7T()1kAid€]'k + 70k

Bljk = T10k> B2jk = T20ks B3jk = T30k> Bajk = M40k

Level 3 (school k)

00k = Y000 + 100k

10k = Y100 > 20k = Y200> T30k = Y300, 40k = Y400

At the student level, we control pretest, gender, whether the student is eligible for free and
reduced lunch and whether the student is minority. At the classroom/teacher level, the treatment
condition is controlled, and teacher random effect is applied. That is, r is the teacher effect for
teacher j at school k. At the school level, the random component g, captures school k’s effect on
student’s achievement score.’® The Empirical Bayes estimates for the teacher random component
rojk are then regarded as the estimated VAM for teacher j in school k."

For simplicity, we focus on math achievements in Grade 1. As such, we get a sample with
3,209 students taught by 268 teachers in 54 schools.!? After fitting the three-level model illustrated

above, we used the Empirical Bayes estimates for the 268 teachers as their VAM scores.

9For purpose of evaluating individual teachers, it might be better to exclude students in the
regular class with an aide since in those classrooms, we cannot distinguish between teacher’s effect
from the aide’s effect. Here we include these students in our sample to better align with earlier
research and also this is only for demonstration of the case replacement approach.

10We decided to follow Nye et al. (2004) to treat teacher and school effect as random effects here
for two considerations: (1) teacher fixed effect (i.e., teacher dummies) can be collinear with the
treatment effect of different class types; (2) we acknowledge that school fixed effect can better control
school effects on students but within each school there were only a few classrooms. Moreover, for
most schools within each treatment assignment there were at most two classrooms, which can make
the collinearity even worse. We also compared the coefficients of students’ pretest, gender, SES
and minority between school random effect and school fixed effect estimation. The results (both
point estimate and standard error) are very similar to each other.

1 1Although we call teacher random effect and school random effect, this is different from random
effect estimation in econometrics literature. In econometrics literature, random effect estimation in
the VAM context mainly refers to student random effect when panel data is available. See Guarino
et al. (2015) for more detailed information for different estimators for VAMs. What we use here is
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Figure 2.4: VAMs for 268 teachers.

Figure 2.4 shows a distribution of these VAM scores. Now consider the 5"

percentile of
—0.43 as a threshold for teacher to be effective, indicated by the red dotted line in Figure 2.4.
We choose this threshold because researchers have illustrated that student achievement in US can
get to the level of Canadian by eliminating bottom 5 — 8 percent of teachers (Hanushek, 2014).
Additionally, in the controversial teacher evaluation system introduced in the District of Columbia
Public Schools (IMPACT), teachers were dismissed with rare exceptions if they were evaluated
as ineffective (bottom 3%) and researchers argued this dismissal threat increased performance of
remaining teachers (Adnot et al., 2017; Dee & Wyckoft, 2015).

Based on this threshold of the 5" percentile of —0.43, there are in total 14 teachers falling into
this category of “being ineffective”. Figure 2.5 presents the estimated VAMs for these teachers,

where each blue bar represents VAM for teacher A through teacher N. Note the VAMs are negative,

and a longer/lower bar indicates a worse estimate for teacher effectiveness. The red horizontal line

what they call “Empirical Bayes and Related Estimators”.

12This sample is slightly different from that in Nye et al. (2004), but the results are very similar.
This particular sample is selected based on several constraints: (1) school has at least four classrooms

in grade 1 (2) students have both Grade K and Grade 1 math achievement score available, also not
missing information about gender, race and whether the student was eligible for free and reduced
lunch (3) we remove two teachers, for whom only one and three students’ data are available.
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represents the threshold of being evaluated as effective. Then the more the blue bar below the red

threshold, the more robust teacher evaluation is.
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Figure 2.5: VAMs for 14 ineffective teachers and their robustness in terms of percent of students
need to be replaced ().

Now we apply our student replacement approach to quantify how robust the teacher evaluation
is for these teachers. We first assume the SUT VA holds. To carry out the case replacement thought
experiment, we first calculated the value of the replacement case (i.e., g; in discussion above). In
this context, the teachers are being evaluated against all the other teachers in this sample, and the
argument made by an ineffective teacher is that they could achieve the threshold if they had been
assigned with more average students in this sample. To approximate this counterfactual situation
of being assigned with “an average student”, we calculated an average VAM weighted by each
teacher’s number of students, to serve as an estimate for the teacher effect an average student can

experience with an average teacher. As such we get an average of —0.0086.13> Now we can apply the

13This is not too far away from the unweighted average of 0. We argue for this weighted version
because in the counterfactual situation the teacher had been assigned with an average student and
the weighted version captured this student assignment by focusing on the student level. But the
results should be very similar no matter which one we use, as long as assignment of students to
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student replacement approach to quantify how robust each teacher’s evaluation is to any potential
sources of bias (when SUTVA holds). The results are presented by the orange dots for each teacher.
For example, for teacher A, more than 57% students need to be replaced with average students to
get this teacher above the threshold. In comparison, teacher N only needs to replace a little more
than 1% students in his/her class to get to the threshold. That is, the evaluation for teacher A is
much more robust for the evaluation for teacher N. We ordered the 14 teachers in Figure 2.5 to have
their VAMs getting closer and closer to the threshold from teacher A to N. Correspondingly, the
percentage of students need to be replaced in the thought experiment also gets smaller. For teacher
I through N, we only need to replace less than 10% of their students to get them to the threshold,
indicating their evaluation is very sensitive to potential bias and accordingly, the related personnel
decisions may need more considerations.

We acknowledge that the calculation of 7 (percentage of students need to be replaced) involves
sampling uncertainty. Now we want to take into account the sampling variability for our index of
inference robustness. To achieve this goal, we apply bootstrap approach to generate a distribution
of & for each teacher. The bootstrap is based on within-teacher resampling with replacement.
Following Figure 2.6 presents the result for teacher A and B (based on 1, 000 iterations). First all
1,000 iterations generated a below-threshold VAM for teacher A. Additionally, as presented in
Figure 2.6, the 95% confidence interval for this teacher’s r is (42.09%, 60.93%). Thus, we may
conclude that the evaluation for teacher A is pretty robust, even after we consider the sampling
variability. In comparison, although teacher B also has a pretty large & of 34.82%, the sampling
variability is much larger compared to that for teacher A. First there are 53 times out of 1,000
iterations where B’s VAM is actually higher than threshold. For the remaining 947 times, the 95%
confidence interval is (3.88%, 46.12%), which is much closer to 0 compared to that for teacher
A. This comparison shows teacher B’s students are more diverse compared to teacher A, and thus
teacher B is much more affected by sampling variability.

Now we want to relax the SUTVA and see how sensitive the teacher evaluation is to potential

teachers is not too unbalanced.

49



i i
I Teacherd  _ [] 1
| | i
75- ! 10 I
42.09% ! s 60.93%
i i
. z i \_
| iR
g0 ! 7 I
: ' o
O | 1
. T = 7Z h‘ 1
I /', I
| i
25- | |
I
i
!
0.0- 'I
30.0% 40.0% 50.0% 60.0%
4- : = !
: Teacher B Mo [ :
I [] L A= [}
| 3.88% e 1 46.12%
I | I
3- _
| N i
| [l U
I /7/ | | T ]
= ! !
B e [
o | d — ]
| i
I il 1
1- - !
I
I
I
0 l
1 I 1 1
0.0% 20.0% 40.0%

Figure 2.6: Sampling variability for percentage of students need to be replaced (i) for teacher A
and B.

50



peer effects that can generate bias. Figure 2.7 presents the result by applying our approach for the
14 teachers below the threshold. As Figure 2.5, the blue bars indicate teachers’ VAMs and the
red horizontal line indicates the threshold. But now the green ones represent the smallest negative
distraction effect to invalidate teacher evaluation if we assume 50% of the students are distracting
the others in the teacher’s class. The orange ones represent the distraction effect if we assume 10%

of the students are distracting the others.

Teacher

A B CcC D E F 66 H I I K L M N
0 0.9
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Figure 2.7: VAMs for 14 ineffective teachers and their robustness to potential peer effect as bias.

First, we observe assuming more students distracting others, smaller unit of distraction effects
(NE) is needed to invalidate the inference (the orange dot is always above the green dot). As we
discussed before, assuming 50% students distracting others gives us the smallest peer effect possible.
Second, there is a difference between Figure 2.7 and Figure 2.5: in Figure 2.5, as teacher’s VAM
gets closer to the threshold, we always have smaller percentage of students need to be replaced to
invalidate the teacher evaluation. But this is not always the case in Figure 2.7. For example, teacher
G has a higher VAM than teacher F, but teacher G needs a stronger peer effect as bias to invalidate
her evaluation than teacher F. This is because the calculation of peer effect takes into account the
number of students in the class. This makes sense because peer effects essentially describe the

interaction among students which should be related to the number of students. However, as we
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mentioned before, if one prefers more specific interaction styles, they can apply a more flexible
approach presented in Table 1.2 in Chapter 1.

As mentioned before, we can always interpret Figure 2.7 in two ways: either interpreting the
NE as the smallest necessary negative peer effect to invalidate the evaluation, or interpreting  as
how many (more precisely, what percentage of) students need to be replaced with students having
comparable scores but will only influence the other students with baseline peer effects. Take the
teacher A for example. Assuming 50% of the students in the class were distracting others, then
there must be at least 0.226 negative peer effects as bias to get the teacher to the threshold. What
does 0.226 mean? It indicates that each of the 50% students (15 group) are distracting each of the

other 50% of students (Z”d group). And 0.226 is the sum of two effects: (1) one unit self-initiated

15t 2nd

distraction effect suffered by one student in the group by distracting one student in the
group; (2) one unit peer-initiated distraction effect experienced by each student in the ond group
due to being distracted by one student in the 1*7 group. Because we standardized the outcome
variables (the math achievements in Grade 1), the 0.226 means more than 2 standard deviations,
which is a large effect. Alternatively, assuming the negative peer effect is 0.226, we can interpret
the 50% as: 50% of the students need to be replaced with students who have comparable math
achievements but only have baseline peer effects on their classmates. Therefore, each of the 50%
remaining students can experience an increase of 0.226 (more than 2 standard deviations) in their
math achievements once those distracting students get replaced. By applying the same bootstrap
approach before, we can also get a 95% confidence interval for the negative effect, which is (0.147,
0.285) for teacher A. Additionally, consistent with earlier discussion, the sampling variability for
teacher B’s negative peer effect is also large. Among the 947 out of 1, 000 iterations where this
teacher is below the threshold, the necessary negative peer effect has a 95% confidence interval of
(0.010, 0.193).

The demonstration above uses the Empirical Bayes (EB) estimates for the VAMs. As is well

known (e.g., Guarino et al., 2015), there are several different estimation methods for VAMs. In

the following discussion, we apply a different estimation method, the Dynamic Ordinary Least
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Squares (DOLS) approach, to estimate VAMs. We do this for two considerations. First, this DOLS
approach better aligns with our derivation above and allows us to demonstrate the selective sampling
for heterogeneity in an intuitive way. As pointed out by Guarino et al. (2015), the EB estimates
are similar to shrinking teacher average residuals towards the overall mean, where the residuals are
obtained after regressing posttest on pretest and other covariates, except teacher assignments. Since
this shrinking process occurs at the teacher level and the magnitude of shrinkage can be different
for each teacher, the VAM cannot be considered as a simple average of the students’ adjusted gain
scores any more, unless we are willing to conceptualize the shrinking procedure at the student
level. But going deep into the shrinking procedure can complicate the thought experiment and
make the sensitivity analysis technique less accessible to potential audience. Second, presenting
two estimation approaches allows us to show how our student replacement approach works for
different teachers and different estimation methods. We will show that the student replacement
approach provides us with a general framework that can be easily applied to compare evaluation
results generated from different estimation methods.

Specifically, we use the DOLS approach for a model specified as: Y; = Bg + B Pretest; +
PoFemale;+B3FRL; + B4sMinority; +T;y + &;, where Tj; is a row vector of teacher indicators and
v is a column vector of teacher fixed-effects (i.e., VAMs). The other notation is the same as before,
where Y; is math achievement at Grade 1 and Pretest; is math achievement at Grade K. We restrict
our sample to teachers who taught small classes so that we do not need to worry about collinearity
between teacher effect and class type effect. As such, we get a smaller sample with 1, 128 students
taught by 101 teachers. Figure 2.8 shows the distribution of these 101 teachers’ VAMs (i.e., ¥ in the
equation), where the red dotted line represents the 5 h percentile (—1.60) as a threshold for being
an effective teacher. 5 teachers’ VAMs are below this threshold.

Now we apply the student replacement approach to characterize the robustness of teacher
evaluation based on VAMs for the 5 teachers who are below the threshold. Table 2.1 presents
the results together with the robustness for the 14 teachers who are below the threshold in the

EB approach. Specifically, the second column (# of students in total) reports the total number of
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Figure 2.8: VAMs (estimated by DOLS) for 101 teachers who taught small classes.

students for the teacher. The third column (EB_x) reports the percentage of students that must be
replaced to change the teacher evaluation in the EB approach. There are 5 ineffective teachers in the
EB approach who did not teach small classes, thus the robustness of their evaluation in the DOLS
approach is not applied (NA). The fourth column (DOLS_x) reports the percentage of students
that must be replaced to change the teacher evaluation in the DOLS approach. In both the third and
fourth column, if the percentage is within a parenthesis, then the teacher is above the threshold and
the percentage indicates how much the data must change to get the teacher below the threshold.
The last two columns (i.e., DOLS_het_n1 and DOLS_het_n2) present the results of two selective
replacement approaches to examine the robustness of teacher evaluation to potential heterogeneous
effects.

Table 2.1 allows us to see how our robustness index works for different teachers and different
estimation methods. Note that the two approaches (i.e., EB and DOLS) are very different. The
EB approach compares teachers from all treatment conditions (i.e., small class, regular class and

regular class with aide). But the DOLS approach is only applied to teachers who taught small
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Table 2.1: Case replacement approach for VAMs estimated by EB and DOLS.

# of students DOLS _het_r1
Teacher ) EB x DOLS x (# of students DOLS_het_n2
in total
must be replaced)
A 12 57.74% | 35.52% 33.33% (4) 26.93%
B 10 34.82% 1.56% 10.00% (1) 0.96%
C 15 31.14% NA
D 14 27.29% NA
E 11 24.52% | 29.27% 18.18% (2) 14.29%
F 14 23.27% | (24.27%)
G 10 20.75% (0%)
H 16 18.74% | (27.18%)
I 10 9.73% 4.91% 10.00% (1) 1.99%
J 14 8.14% NA
K 15 7.95% NA
L 13 5.69% | (32.47%)
M 12 3.02% | (10.94%)
N 15 1.07% NA
P 8 (10.87%) | 22.67% 25.00% (2) 16.70%
Note: The DOLS approach only includes teachers for teaching small classes.
NA indicates the teacher did not teach small class.

classes. All teachers in the DOLS approach are included in the EB approach, but not vice versa.
As such, the two approaches generate different coefficients for the same predictors (i.e., students’
gender, race and free and reduced lunch information), different VAMs, and different thresholds.
But our student replacement approach allows us to compare the robustness of teacher evaluation
results across these two approaches. Comparing the third and fourth columns (i.e., EB_m and
DOLS_n), first we observe that four out of five ineffective teachers in the DOLS approach are also
below the threshold in the EB approach: teacher A, B, E and I. In both approaches, we have
strong evidence for teacher A to be ineffective. The only teacher that is below the threshold in EB
but above the threshold in DOLS is teacher P. But our thought experiment tells us that in the EB
approach, the evidence for teacher P being effective is not very strong since only 10.87% of average
students must be replaced with threshold-level students to bring this teacher below the threshold.
Similarly, our approach tells us that two estimation approaches give similar results in general for

small class teachers who are ineffective in the EB approach but effective in the DOLS approach.
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For example, teacher G is below the threshold in the EB approach and is just at the threshold in the
DOLS approach (his/her VAM is exactly at the threshold of —1.60). Another example is: among
the nine small class teachers below the EB approach threshold, the three teachers with the strongest
evidence of being ineffective are also below the threshold in the DOLS approach (i.e., teacher A,
B and E); it is the teachers with the weakest evidence in the EB approach that turn to be effective
in the DOLS approach (i.e., teacher L and M). This indicates the VAMs generated by different
approaches can be highly correlated. However, when it comes to the evaluation for one individual
teacher, the inference can be reversed when the teacher is close to the threshold. As we see here,
in total there are five teachers whose evaluation changes in different approaches and none of them
shows very strong evidence of being ineffective in either approach, which illustrates the importance
of quantifying the robustness of the inferences in evaluating individual teachers based on VAMs.

As mentioned before, the last two columns in Table 5 present the results of selective replacement
approaches for the five teachers who are below the threshold in the DOLS approach. Specifically,
the left column (DOLS_het_ 1) applies the successive extreme replacement approach and the right
column (DOLS_het_x2) applies the purposeful replacement approach. For example, for teacher
A, the four lowest score students (33.33%) in the class must be replaced with average students to
get this teacher to the threshold. Alternatively, 26.93% of below class average students must be
replaced. The motivation for the selective replacement is to characterize how sensitive the teacher
evaluation is to potential heterogeneous/outlier effects. That is, we want to use this information to
capture not only how far the VAM (which is also the class average gain score) is from the threshold,
but also to what extent the difference between VAM and threshold is due to students with very low
gain scores in the class (i.e., tail part of the distribution). To illustrate how the selective replacement
approaches achieve this goal, we present the results together with gain score distributions for the
five teachers, as shown in Figure 2.9, where the red solid line represents the threshold and the black
dashed line represents each teacher’s VAM, which is also the class average gain score.

First, we compare teacher E and /. As shown in Figure 2.9, both E and [ have students with

very low gain scores. But teacher I’s VAM is much closer to the threshold than E. Reflected in
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Figure 2.9: Gain score distributions for 5 teachers below the threshold in the DOLS approach.
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Table 2.1, the selective replacement approach tells us that teacher I only needs to replace very
few low-end students to get to threshold while teacher E needs to replace more low-end students.
Second, we compare teacher E and P. E is a little further away from the threshold compared to P:
29.27% of E’s students must be replaced with average students to change his/her evaluation and
22.67% of P’s students must be replaced with average students to change his/her evaluation. But
E has a few students with extremely low gain scores. As such, the selective replacement tells us

that E’s evaluation is more sensitive to students in the lower tail than teacher P.

2.7 Discussion

This Chapter discusses how the case replacement approach can be applied in the VAM context,
accounting for spillover and heterogeneity. The general approach is very much like that in the MST
context: to quantify the strength of evidence for an inference by considering how many observed
cases need to be replaced with unobserved cases to change the inference (Frank et al., 2013). As
we have shown, this is a very powerful non-parametric framework that can be easily generalized
for violations of SUTVA and presence of heterogeneity. The extensions to account for spillover
and heterogeneity are also essentially the same in both MST and VAM contexts.

Meanwhile, it is important to note two important differences in MST and VAM. First, sampling
variability is accommodated by statistical significance attached to the threshold in the MST context.
This is also the most general situation in empirical research. However, in the context of VAM, the
threshold is arbitrary and thus we consider sampling variability with the number of cases that need
to be replaced to invalidate the inference. In other words, instead of adding sampling variability
to the threshold, we accommodate the sampling variability in the index of inference robustness.
Second, the heterogeneity in VAM only exists within class (one level) but the MST has two levels
of heterogeneity. Importantly, we argue that the second level of heterogeneity really needs more
attention from researchers since the cross-site variation in treatment effects always has significant
policy implications. The study of cross-site variation also leads to more research about how and

why an intervention works in certain contexts but not others. We argue that our approach has a
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strong potential in helping researchers, as well as policymakers in understanding and interpreting

these important variations.
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CHAPTER 3

UNOBSERVED MEDIATOR IN A SINGLE-MEDIATOR MODEL

3.1 Introduction

Chapters 1 and 2 focus on how researchers can present strength of evidence in educational
research with an intuitive framework so that all stakeholders can evaluate the effectiveness of one
intervention against potential costs to better inform policy choices. Now Chapters 3 will turn to
the second goal stated in the introduction: exploring why an intervention works through mediation
mechanisms so that policy choices may be better informed. Under a simple mediation model, a
binary variable X is randomly assigned (e.g., treatment vs. control groups) and causes change
in the outcome variable Y. A mediator variable M explains one mechanism or process through
which X affects Y. In other words, the mediator is intermediate in the causal sequence that explains
why the intervention (X) causes the outcome (Y) (e.g., Baron & Kenny, 1986; MacKinnon, 2008).
This mediation process with a single mediator is presented in Figure 3.1(a), where the product of
the effects from X to M and from My to Y is defined as the indirect effect via the mediator My
(e.g., Hayes, 2013; MacKinnon, 2008).

The basic single mediator model can also be extended to more than one simultaneous mediator.
Figure 3.1(b) presents a two-mediator parallel mediation model, where there are two simultaneous
mediation processes, one through each mediator, connecting X to Y. Preacher and Hayes (2008)
discussed approaches to test hypotheses for individual mediators and contrast the magnitude of
indirect effects for different mediators in a multiple mediation model like this, where more than
one simultaneous mediators are involved to explain why the intervention X causes the outcome Y.
Researchers have emphasized the importance of testing multiple mediators in a single model rather
than in separate models to prevent potential parameter bias due to omitted variables (e.g., Hayes,
2013; Judd & Kenny, 1981; Preacher & Hayes, 2008). In many cases, however, a single mediation

model may be tested because a researcher has not measured another relevant potential mediator or
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(a) Simple mediation model (b) Parallel two-mediator

(c) Unobserved mediator as a posttreatment confounder (d) Serial two-mediator model

(e) Omitting My, in a parallel two-mediator model (f) Omitting M, in a serial two-mediator model

Figure 3.1: Simple mediation and dual mediator designs.

is unable to measure a theoretically relevant mediator. In such instances, the second potentially
relevant mediator is unobserved (denoted by Mp;). For example, suppose a researcher studying
the impact of tracking/grouping students (X) on students’ learning outcomes (Y) is interested in
potential mediators that might explain associations between tracking and learning. If the researcher
hypothesizes that stigma and teachers’ mindset might both be mediators of interest but teachers’
mindset was not measured under the research design, then in such an instance stigma is observed
(M) and teachers’ mindset is unobserved (My).

When My, is associated with the observed mediator (denoted by M) (Figure 3.1(c)), it may
threaten inference of the mediation effect via Mp. In this case, My is also a posttreatment
confounder for the mediation path from X to My to Y as My explains the M to Y relation and

is caused by X (e.g., Fritz, Kenny, & MacKinnon, 2016). Many recent studies have investigated
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influence of potential confounders on causal mediation inferences by providing approaches to
sensitivity analyses (e.g., Hong, Qin, & Yang, 2018; Imai, Keele, & Tingley, 2010; Imai, Keele, &
Yamamoto, 2010; Imai & Yamamoto, 2013; VanderWeele, 2015). Specifically, sensitivity analyses
may describe the responsiveness of an estimated effect or the robustness of a causal inference to a
potential confounder.

However, based on our knowledge, existing sensitivity analysis strategies are either 1) intended
primarily for unobserved confounders, which are not potential mediators (e.g., Imai, Keele, &
Yamamoto, 2010; Imai & Yamamoto, 2013; VanderWeele, 2010), or 2) use an alternative coun-
terfactual framework targeting the “natural indirect effect” (NIE), “natural direct effect” (NDE)
or “controlled direct effect” (CDE) (e.g., Hong et al., 2018; VanderWeele, 2015; VanderWeele &
Chiba, 2014). Under models with multiple mediators, NIE, NDE and CDE can be very different
from the specific indirect and direct effects defined from a path-specific perspective. For example,
the NIE is defined as the difference in outcome Y if the mediator of interest changed to what it
would have been if the exposure X changed to control (assuming X is binary for simplicity), while
the exposure X stays at the treatment condition. In our dual mediator model of Figure 3.1(c),
then the NIE transmitted through My includes not only the pathway X — My — Y but also
X — My — Mp — Y. Additionally, the NDE is defined as the difference in outcome Y if only X
changes from control to treatment but the mediator of interest M, stays at the level that would have
taken under the control condition of exposure X. Then in Figure 3.1(c), the NDE includes both
X — Y and X — My — Y. Thus, the sensitivity approach under the counterfactual framework
cannot be applied directly if we take the path-specific perspective commonly used in psychology
(e.g., Hayes, 2013; MacKinnon, 2008).

Extending previous research, the goal of this study is to examine whether and how omitting an
alternative mediator that is also a confounder can bias causal mediation effect estimates from the
path-specific perspective. Furthermore, we propose a sensitivity analysis to evaluate robustness of

a causal mediation inference to an unobserved mediator.
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3.2 Dual-Mediator Designs

Hayes (2013) presented a complex serial mediation model with two mediators (Figure 3.1(c),
with the dotted lines) where one mediator (M) has a serial or predictive effect on the second
mediator (M), en route to Y. The parallel or serial mediation models (Figure 3.1(e) or 3.1(f)) are
special cases of the complex mediation model presented in Figure 3.1(c). Specifically, when the
path coefficient for My — M, is zero, the model in Figure 3.1(c) becomes the parallel mediation
model in Figure 3.1(e). When the path coefficients for both X — My and My — Y are zero,
the model in Figure 3.1(c) becomes the serial mediation model in Figure 3.1(f). We focus on the
complex serial mediation model (Figure 3.1(c), with the dotted line), as a general model, to evaluate
whether and how an unobserved mediator may bias estimation of the direct and indirect effects via
the observed mediator. Specifically, we study how excluding My, affects estimation of the specific
mediation effect via M, defined as the product of the paths from X to My and M to Y. That is,
when My, is no longer observed in our analysis, all the pathways that relate to this omitted mediator
My are excluded from the analysis, as shown by dotted lines in Figure 3.1(c). To illustrate potential
effects by omitting such a mediator, we will apply a real data example also used by Hayes (2013)

about how media use affects behaviors.

3.3 Illustrative Data Example about Consequences of Omitting an Alternative Related Me-
diator

llustrative data were originally drawn from an experimental study conducted by Tal-Or, Cohen,
Tsfati, and Gunther (2010). The research was to test a hypothesis about the influence of media use:
whether media (X) affects people’s attitudes or behaviors (Y) through changing people’s perceptions
regarding how other people may be influenced by the media (Mp). For example, when a person
Ashley reads a media report, she may tend to predict that others in her community will respond to
this report in certain ways. This prediction can further affect Ashley’s attitudes or behaviors. To
test this hypothesis, participants were randomly assigned into two groups (X). Both groups were

asked to read a newspaper article about an economic crisis that can affect the price and supply
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of sugar in Israel. However, one group were told that this article came from the front page of a
major newspaper whereas the other group were told that the article appeared in the middle of an
economic supplement of the newspaper. A condition variable (X, denoted by COND) was used to
indicate whether the participant was manipulated to consider this article as a front-page article or
interior-page article. After a participant finished reading the article, he/she was asked how much
he/she believed that others in the community would be encouraged to buy sugar after they read this
article. This presumed media influence served as one mediator (M, denoted by PMI) in the model.
The participants were also asked about how important they thought this article was. This perceived
issue importance was a second mediator (M, denoted by IMPORT) in the model. Finally, the
participants in both groups were asked about how soon they intended to buy sugar and how much
they would buy. These responses were then aggregated to generate a variable that measured their
intention to buy sugar. This is then the outcome variable (¥, denoted by REACTION).

The first fitted model includes two mediators PMI and IMPORT as presented in the left panel

of Figure 3.2. For the mediation path via PMI, it is hypothesized that others are more likely to

(p < 0.001)
IMPORT

Figure 3.2: Illustrative data example of presumed media influence.

be affected by an article appearing on the front page than on the interior page. Therefore, before
others act to buy sugar forcing the price up, one would act as soon as possible to purchase sugar

when it is available at an acceptable price. For the mediation path via IMPORT, people can infer
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the importance of the article based on where it is published and consequently, people act upon the
importance of the issue. Moreover, IMPORT is also presumed to predict media influence, under
the hypothesis that the more important people believe the article is, the more likely they believe
others would be influenced by that article.

We fit the model in the left panel of Figure 3.2 to data using standardized variables!. The
estimated path coefficients were therefore standardized coefficients. Both the effects from COND to
IMPORT and from IMPORT to REACTION are significantly positive. Using the joint significance
approach (Fritz & MacKinnon, 2007), the estimated indirect effect through IMPORT was 0.181 -
0.363 = 0.066. The 95% percentile bootstrap confidence interval of the indirect effect is 0.001
to 0.150 (based on 5,000 bootstrap samples). In contrast, the other indirect effect via presumed
media influence was not significant, with a 95% percentile bootstrap confidence interval of -0.013
to 0.114 (based on 5,000 bootstrap samples). That is to say, the specific mediated effect of the
article’s location did not have statistically significant influence on participants’ reactions through
presumed media influence. Additionally, the predictive relationship from IMPORT to PMI was
significantly positive (0.258, p = 0.003). This confirms the hypothesis that as participants think
the issue is more important, they have a stronger belief that others are going to be affected by that
article.

Now we ask, “What would happen if the mediator IMPORT was excluded from the fitted
model?” This may be the case if an alternative theoretically important mediator (such as IMPORT)
is not measured in the research design, as can occur in almost any example of a mediation analysis.
In this case, PMI is the only observed mediating variable included in the model. The results are
presented in the right panel of Figure 3.2. After excluding IMPORT, the specific indirect effect via
PMI changed from being non-significant to significantly positive: both paths in the indirect effect
are statistically significantly positive and the indirect effect has a 95% confidence interval of 0.078
to 0.042 (based on 5,000 bootstrap samples). Specifically, the direct path from article location

to presumed media influence increased from 0.134 to 0.181 and the direct path from presumed

'We standardized all variables for analysis to be consistent with our later derivation. Therefore,
the coefficients are different from those in Hayes (2013).
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media influence to participants’ reaction increased from 0.338 to 0.432. Therefore, excluding
IMPORT, both paths for this indirect effect via presumed media influence were greater. Omitting
this alternative mediator has given us a different conclusion that the indirect effect via presumed
media influence is significantly positive. We also observe that in both models the direct path from
article location to participants’ reaction was not statistically significant from O but the point estimate
increases from 0.033 to 0.082 once we exclude the IMPORT mediator from our model.

Itis important to note that when we compare the two fitted models above, we are mainly focusing
on two estimates: 1) the specific indirect effect via PMI, defined as the product of the paths from
COND to PMI and from PMI to REACTION; 2) the direct path from COND to REACTION. The
specific indirect effect defined as the product of two path coefficients (e.g., Hayes, 2013) is not equal
to either the natural indirect effect or the randomized interventional analogue of the natural direct
effect (e.g., VanderWeele, 2015). The direct effect we are interested here is also different from
both natural and control direct effect defined in the counterfactual framework (e.g., VanderWeele

& Chiba, 2014).

3.4 Unobserved Causally Related Mediator as Posttreatment Confounder

The example above illustrates that omitting an alternative mediator can alter estimates of the
mediating path coefficients for PMI and change the inference for this mediating effect. To understand
why omitting IMPORT can generate such effects, we first present a general representation of a
confounder in Figure 3.3(a): a confounder Z of X and Y can bias the estimate and inference
of the effect from X to Y by serving as an alternative cause of both X and Y. Following the
illustrative data example, in such a case IMPORT is associated with both the mediator PMI and
the outcome REACTION. Thus, if IMPORT is omitted, it serves as a potential confounder for PMI
and REACTION.

Previous studies on sensitivity analysis in the mediation literature have focused on the case
where a potential confounder (e.g., IMPORT) between a mediator (e.g., PMI) and an outcome (e.g.,

REACTION) is assumed to be independent from the input variable (e.g., COND) (Figure 3.3(b)).
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(a) Confounder Z of the X'to ¥ relation (b) Confounder Z of the mediator-outcome

Figure 3.3: Confounder in mediation.

For example, Imai, Keele, and Yamamoto (2010) presented a sensitivity analysis based on residual
correlations to deal with unmeasured pre-treatment covariates “that confound the relationship
between the mediator and the outcome”. The “pre-treatment” covariates precede the input variable
X and therefore are not influenced by X. Fritz et al. (2016) combined the effects of measurement
errors and omitting confounders on bias of the mediation effect, but they considered the confounder
Z as independent of X throughout their analytical study (Figure 3.3(b)).

Meanwhile, empirical studies across the social sciences have shown considerable evidence for
the existence of multiple causal mechanisms that may involve simultaneous or causally related
mediators. For example, Bekman, Cummins, and Brown (2010) examined a parallel multiple-
mediator model where depression affected adolescent alcohol use through simultaneous mediators
perceptions and expectancies. Imai and Yamamoto (2013) discussed several empirical studies
where both content and importance mechanisms mediated the effect of political issue framing on
citizens’ political opinion and behaviors. Singh, Chen, and Wegener (2014) showed evidence for
several sequential multiple-mediator models for how attitude similarity affected inferred attraction
through several mediators. As such, the parallel mediation (Figure 3.1(b)) and serial mediation
(Figure 3.1(d)) models are often observed to characterize mediational effects, which emphasizes the
importance of understanding unobserved/omitted mediators in cases where there is an association
between the predictor and the unobserved mediator.

Therefore, it is of critical importance to fill the research gap regarding how unobserved/omitted

mediators affect estimates and inferences for observed mediators as these post-treatment con-
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founders can easily occur in practice. In this chapter, we focus on the two-mediator model discussed
by Hayes (2013) (Figure 3.1(c) with dotted lines) to study how an unobserved/omitted mediator
(My) may bias direct and indirect effect estimates via the observed mediator (My). This selected
two-mediator model also makes our study results generalizable from two perspectives. First, as
discussed before, this model can be simplified to other popular two-mediator designs: parallel two-
mediator model (Figure 3.1(e)) and serial two-mediator model (Figure 3.1(f)). Second, by setting
the path coefficient from X to the omitted mediator My to zero, the studied scenario becomes the
same as that for previous studies of the sensitivity of mediation effects (e.g., Fritz et al., 2016; Imai,
Keele, & Yamamoto, 2010; Imai & Yamamoto, 2013; VanderWeele, 2010). Therefore, we can also

compare our findings with these previous studies and extend their findings.

3.5 Goals of the Study

This study has three goals. Our first goal is to establish conditions under which omitting a
mediator can yield consistent results. However, we show that the conditions to obtain consistent
estimates for the direct and indirect effect via My are not the same, so that one cannot simultaneously
obtain consistent direct and indirect effects. Second, recognizing that these conditions may be
difficult to meet in practice, we evaluate how omitting My biases the mediation effect estimate
via M. For example, we find that when the path coefficients related to My are all positive or
all negative, the specific indirect effect via M is always overestimated while the direct effect
from X to Y can be either positively or negatively biased. We further show that as the path
coeflicient of My — M becomes larger, the positive bias in estimating the indirect effect via
M becomes larger, but the estimation of the direct effect X — Y changes from overestimation to
underestimation. Third, we also seek to identify the magnitude of bias under different scenarios in
order to contextualize the potential threats to inference by omitting the post-treatment confounder
My. Finally, stemming from the first three goals, we seek to propose a sensitivity analysis to
assessing the robustness of the causal mediation inference to omission of an unobserved mediator

that is confounded with the M paths through its relationship to X and Y.
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We present our analytical findings in terms of path coefficients as well as correlations among
variables in the underlying model. The path coefficient framework shows how different levels of
parameters for causal pathways in the true model affect the direction and magnitude of inconsistency.
Alternatively, the correlation framework shows how estimates of path coefficients vary with different
magnitudes of correlations among the variables. We have elected to present both frameworks
because the parameter framework allows us to understand how inconsistency is generated when
we omit the other mediator by assuming we know the “truth”, while the correlation framework
facilitates our development of sensitivity analysis methods that can be directly applied by substantive
researchers in real studies. We expect that these two frameworks can complement each other to fulfill
a more comprehensive picture so that a solid foundation can be built for substantive researchers
to deal with an unobserved mediator as a potential confounder. Throughout, we will draw on the
previously discussed illustrative example of presumed media influence to demonstrate the effect of

omitting a related mediator.

3.6 Inconsistency When M;; is Omitted

The first and primary goal of this paper is to derive the effect estimates with an omitted con-
founding mediator and their deviations from the true effects in the underlying model. Specifically,
we would like to study the differences between @;, by , ¢ and ay, by, ¢, as shown in Figure 3.4.

We applied the Law of Iterated Expectation to derive dy, b1, & The Law of Iterated Expectation
states that E(Y|X) = E [E(Y|X, Z)|X] where X, Y and Z are three variables and E (Y| X) represents
the conditional expectation (or conditional mean) of ¥ given X (Wooldridge, 2009). The Appendix

has shown the derivation details and the results are presented in Equations 3.1 through 3.4 as
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Figure 3.4: True model with two mediators and the model omitting My, .
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As such we obtain dy, by, and ¢ as functions of true parameters. Specifically, a; and b
represent the true effects via the observed mediator M, while a, and b, represent the true effects
via the omitted mediator My;. In our illustrative example, the product of a; and by is the true
mediation effect through the mediator PMI, while the product of a; and b, is the true mediation
effect through the omitted mediator IMPORT. k stands for the path coefficient from IMPORT to
PMI. As shown by Equations 3.1 through 3.4, only under very stringent conditions are @, b1, and
¢equaltoay, by, and c. In the following subsections, we will show these stringent conditions, and

how the key parameters influence the differences between dy, b, & and the true parameters ay, b,
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To note, the derivation here is at the population level and therefore is free of sampling error.
Technically speaking, the difference between d, 151, ¢ and ay, by, c are inconsistencies, not bias.
That is, aj, l;l, ¢ are the estimates we get even when we have all population data available (i.e.,
sample size n — o0). In all following discussion, “bias” in the population parameters is a rough

way to describe “inconsistency” for an audience more comfortable with conceptualizations of bias.?

3.6.1 Conditions for consistent estimates when omitting My,

Next, we examine conditions under which omitting M, can result in consistent results. If an
empirical researcher can justify their studies as meeting these conditions, there is less concern
about omitting M.

From Equation 3.1, @; = a; if and only if £k = 0 or ap = 0. When k = 0, there is no causal
relation between the two mediators, which reduces to the parallel mediation model represented in
Figure 3.1(e). In our illustrative data example, this condition is satisfied when IMPORT has no
effect on PMI. Under this condition, excluding IMPORT does not affect the effect estimate from
COND to PMI. Alternatively, @; = a; when ap = 0, or there is no effect of the treatment variable
X on the omitted variable My;. This condition is equivalent to the situation that the omitted My, is
only a confounder of the My — Y relation and is not caused by X.

Based on Equation 3.2, to satisfy b; = by, we can have (1) by = 0, indicating no effect of My,
onY, (2) k =0, indicating no effect of My on M (a parallel two-mediator model), or (3) a% =1,

indicating the effect of X on My, is -1 or 1. If condition (3) is true, then the omitted mediator My,

2Take the d; as an example to see why we are deriving inconsistencies rather than bias. The
derivation in the Appendix shows that a, comes from 8; where E(My|X) = B; - X. For one
sample, we can express A1 as (X’X)~1(X’My) where X and My are sample data for X and M.
This is a nonlinear function of X. If we really want to derive the magnitude of bias, we need
to know E((X’X)~1(X’My)). Since only probability limit goes through nonlinear function but
expectation cannot, we can only know plim((X’X)~!(X’My)) butnot E((X’X)~1(X’My)). That
is why in this chapter (also chapter 4) I am in fact deriving inconsistency which is at the population
level.
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is fully determined by the treatment X3. In our illustrative example, condition (3) indicates that the
value of IMPORT is solely dependent on COND.

In terms of the direct effect ¢, based on Equation 3.3, ¢ = cif and only if ap = (k +a - ap) -
(k -ap+ay) or bp = 0. The first condition ap = (k +ay - ap) - (k - ap + ay) is equivalent to
PX.My = PMp.My *PX,Mg» where PX,Mp» PMy,My;» PX, Mg, are correlations between X and My,
between M and My, and between X and My, respectively. In the illustrative example, this means
the correlation between COND and the omitted mediator IMPORT is equivalent to the product
correlation between PMI and IMPORT X the correlation between COND and PMI. The second
condition b, = 0 indicates no effect of My onY.

In sum, as long as the mediation effect via the omitted mediator My;is nonzero (ap # 0 and
by # 0) and My has a nonzero effect on the observed mediator M (k # 0), the estimates for
ai, by, ¢ will be inconsistent (i.e., a; # dy,b1 # El,c # ¢). Furthermore, the conditions to
obtain consistent direct and indirect effects are not the same, so that one cannot simultaneously
obtain accurate direct and indirect effects. An unbiased indirect effect can be obtained when My,
is omitted when My has a zero effect on the observed mediator M, or the underlying model is a
parallel two-mediator model. In fact, under a parallel two-mediator model, not only can we obtain
an consistent indirect effect, but also consistent estimates of a; and b|. A consistent direct effect

from X to Y can be obtained when Mp; is omitted when PX, My = PMy,My; * PX, My OF by = 0.

3.6.2 Direction of inconsistency when omitting {;

From the previous discussion, we note that conditions for obtaining unbiased estimates of direct
and/or indirect effects are difficult to justify in practice. This leads us to the following discussion
to achieve our second goal: to examine the direction and magnitude of bias of direct and indirect
effect estimates when omitting M.

From Equation 3.1, d; > a; as long as k and a, are in the same direction. That is, when

3We standardized all variables in our derivation. Therefore, this condition of a% = lisequivalent
to zero error term, indicating the omitted mediator only depends on the treatment variable.
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k and a, are both positive or negative, a; is overestimated. Similarly, b; > b; when k and b,
are in the same direction (either both positive or both negative, but not zero, see Appendix for
detailed proof). Therefore, the indirect effect estimate via My is overestimated when k, a, and

b,, the three My -related path coeflicients, are all positive or all negative. The amount of bias is
k-by-(ay+k-ap)-(1-a3)
1—(k~a2+a1)2
IMPORT were all positive. Correspondingly, when IMPORT was excluded from the model, the

k-ap- b+ . In our earlier example, the three path coefficients related to
indirect effect through PMI became larger, from 0.045 to 0.078.

In terms of the direct effect ¢, the direction of bias depends on whether b, and [ay—(k + a; - ap)-
(k - ap + ap)] have the same sign. In the Appendix, we show that [ay — (k + ay - ap)-(k -ap +ay)]
is equivalent to (py, My = PX,Mp " PMy, MU), which is also the numerator of the partial correlation
between X and My conditional on Mp. When by > 0 and PX.My > PX.Mp * PMp.My» € is
overestimated. In contrast, when by > 0 and pyx, My < PX,Mg " PMy,My;» € is underestimated.
One way to think about the sign of (px_ My —PX,My PMy, MU) is to consider the observed mediator
Mo as a common outcome of the omitted variable My; and the treatment variable X. When we
have PX.My < PX,Mp * PMp, My then PX,My changes its sign once paritialling out the M. In
this case, M functions similarly to a suppressor since it distorts the relation between My and X
(e.g., Cohen & Cohen, 1983; Rosenberg, 1968).

In our illustrative example of presumed media influence, the path coefficient from PMI to
the outcome REACTION (b;) was positive. Additionally, the correlation between COND and
IMPORT was larger than the product of correlations between COND and PMI and between PMI
and IMPORT: py My > PX.Mp * PMp.My- Accordingly, the direct effect became larger, from

0.033 to 0.082, when IMPORT was excluded from the model.

3.6.3 How inconsistency changes with M{;-related parameters.

Next we will demonstrate how the omission of My can generate bias with regards to M under
different scenarios. To achieve this goal, we will manipulate each of the parameters related to My;.

The discussion here will exhaust all possible scenarios about how each My;-related path coefficient
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affects bias regarding My, in terms of increasing or decreasing the bias. For example, the path
coefficient from My to My (k) is always positively associated with the bias in estimating b1, no
matter what values other parameters take on. In contrast, the path coefficient from X to My, (ap) can
be either positively or negatively related to the bias in b depending on values of other parameters.
To simplify, we constrain our discussion to all parameters in the true model being positve*.

We start our discussion with the effect from My to My (represented as k). Figure 3.5 plots
the bias in estimating aj, by, ¢ against different values of k, while all the other parameters are
fixed at certain values: a; = ap = 0.2, bp = 0.1. First the magnitude of bias in estimating both
X — Mp(ay) and My — Y(b)) increases as path k becomes larger. Focusing on the effects
X — My — My in the true model (left panel in Figure 3.4), the larger the k the more some of
the effect attributed to M should be attributed to My; as a mediator. Therefore, we overestimate
a1 and the difference between @ and a; grows as k gets bigger. Similary, k plays a role in the
chain of effects X — My — Mp — Y. Here, the larger the magnitude of k the larger the bias in
the estimated effect My — Y. Thus, as k increases the bias in both d; and 151 increase, leading to
more serious overestimation of the indirect effect X — Mp — Y.

Figure 3.5 also shows that after the positive bias in the estimated direct effect X — Y falls to 0
it continues decreasing to negative values as k increases to 1. That is, when k is relatively small
we overestimate ¢ while when k& becomes larger we underestimate c. As k gets closer to 1, the
magnitude of negative bias in ¢ keeps growing. This is consistent with our previous discussion
about the direction of bias in ¢. As k becomes larger, the “suppression” function from the common
outcome M becomes more serious as the difference between PX, My and PX.Mp * PMy,My
becomes larger.

To summarize, when we manipulate k to vary from O to 1, we always overestimate the indirect
effect via Mp and the bias becomes larger. However, the increase in k first countermands the
overestimation in ¢ and as k gets closer to 1 it finally leads to underestimation of the direct effect

X — Y. The Appendix also proves that this pattern of associations between k and the bias of a,

4See the Appendix for more detailed discussion about how we calculated these different scenarios
by studying the first derivatives of the bias of @, b1 and ¢ as a function of Mp;-related parameters.
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Figure 3.5: How bias changes with different levels of k.

by and ¢ is consistent no matter what values other parameters take on.

Now we manipulate a, and see how this direct effect X — M relates to changes in bias.
The results are presented in Figure 3.6(a) and Figure 3.6(b). In both figures, a larger direct effect
X — My (ay) is associated with larger bias in the estimated direct effect X — M. The intuition
is similar to how k affects the bias of d;: the indirect effect X — My — My is allocated to
the biased effect X — M/ (reflected as d1), where the omitted My plays a role of mediator.
Consistent with our previous discussion, Figure 3.6(a) and 3.6(b) shows the direct effect Mp — Y
is always overestimated (the bias is positive) (when all parameters are positive) while ¢ can be
either positively or negatively biased.

Note that Figure 3.6(a) and 3.6(b) present different trends of changes in the bias of 5{ and ¢ as
a increasesS. Figure 3.6(a) shows the bias of b; decreases until 0 as a, increases while Figure

3.6(b) shows the bias of b increases as a, gets bigger. On the contrary, the bias of & becomes

>The Appendix shows how we calculated these two different patterns by studying the partial
derivatives of the bias in estimating a, b; and ¢ with respect to a,.
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Figure 3.6: How bias changes with different level of a5.

larger in Figure 3.6(a) but Figure 3.6(b) gives a decreasing curve for the bias in estimating c. The
decreasing curve indicates the underestimation of ¢ becomes more extreme as a; increases. The
distinction between Figure 3.6(a) and 3.6(b) illustrates that the effect of a; on the bias in estimating
by and c relies on the values of other parameters. Specifically, Figure 3.6(a) presents the scenario
where the magnitude of a; and k are both relatively small (with values of 0.15 and 0.22) while in
Figure 3.6(b) a1 and k are both relatively large (with values of 0.6 and 0.5).

The last parameter that relates to My is the effect My — Y, represented as b,. Figure 3.7(a)®
and Figure 3.7(b) 7 present how the bias in estimating a{, b and ¢ vary with differing levels of b,
under two different scenarios 8. In both Figure 3.7(a) and 3.7(b), d@; and by are always positively
biased. But the positive bias of b; becomes larger as b, gets closer to 1 while the level of b5 has
no effect on the bias in estimating a.

To see why b, has no effect on the magnitude of the bias of @, we focus on X — My — My

in the true model because this is where the bias of d@; comes from (based on Equation 3.1). It is

6a1=02,a,=0.2,k=0.2.

Ta; =0.55,a, =02,k =0.6.

8The Appendix shows how we calculated these two different patterns by studying the partial
derivatives of the bias in estimating a, | and ¢ with respect to bj.
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Figure 3.7: How bias changes with different levels of b,.

obvious then that b, plays no role in X — My — M. That is, the direct effect My — Y (b)) is
not directly connected with the direct effect X — M (a1). Alternatively, we can consider this “no
effect” by noticing that the path b, is invoked after the direct effect X — M (a;) in the sequence
of causality. Equation 3.2 also shows that the bias in estimating b is a linear function of b, as in
both Figure 3.7(a) and 3.7(b).

The distinction between Figure 3.7(a) and 3.7(b) is how different levels of b, affect the bias
of ¢. In Figure 3.7(a), ¢ becomes overestimated and the positive bias grows but in Figure 3.7(b)
we always underestimate ¢ and more importantly, the negative bias becomes more serious as
by increases. This distinction is due to the direction of ¢’s bias while the effect of b, on the
magnitude of ¢’s bias follows the same pattern in Figure 3.7(a) and 3.7(b). In Figure 3.7(a) we have
ay =k = ar = 0.2 but in Figure 3.7(b), a; (= 0.55) and k(= 0.6) are much larger than a (= 0.2).
Correspondingly, PX.My > PX. Mg * PMg, My for Figure 3.7(a) and PX.My < PX,Mp * PMy,My
for Figure 3.7(b). Based on the previous discussion, these two scenarios exemplify the cases in
which ¢ gets overestimated and underestimated, respectively. Importantly, in both scenarios, by

has no effect on the direction of ¢’s bias but only exhibits a positive influence on the magnitude of
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¢’s bias. When ¢ is positively biased, this influence then manifests as more serious overestimation.

Alternatively, when the bias is negative, it results in more serious underestimation.

3.7 How Serious Inconsistency Could be at Different Levels of M -related Parameters

In the previous section we demonstrate how differing levels of My;-related parameters may
affect bias. In this section, we will solve for bias under different conditions of a;, b, and k as small
(0.1), medium (0.25) and large (0.4) to demonstrate how serious the bias could be and how large
the bias is relative to the true effect. Starting from general situations, we will also discuss special
situations where parallel (k = 0) or serial (a; = by = 0) two-mediator model is the true underlying
mediation process. To link our analysis with previous literature, we will also present situations
where the omitted My, is only a confounder for the mediator-to-outcome relation but not a mediator
itself (ap = 0).

Table 3.1 depicts situations where the dual mediator design in Figure 1.7(c) (with dotted lines)
is the true model, with all pathway coefficients being positive. Specifically, in all models, a; = 0.2,
b1 = 0.15 and ¢ = 0.1 (except in Table 3.3 of serial mediation models where a; = 0). That is,
the true indirect effect is 0.03 and the true direct effect is 0.1. Each row displays the bias in one
scenario with different values of ap, by and k either small (0.1), medium (0.25) or large (0.4).
Consistent with previous discussion, all cases in Table 3.1 generate positively biased values for
the indirect effect via My from X to Y, since all My;-related path coefficients (ap, b, and k) take
on positive values. But the magnitude of bias for the estimated indirect effect via M can vary
substantially in different cases: in the worst scenario, large a,, medium b, and large k generates a
biased indirect effect around 0.09, almost three times as large as the true value of 0.03; while in the
best scenario, small a;, b, and k only generates an indirect effect of 0.034, just slightly larger than
the true value of 0.03. The magnitude of bias for the estimated direct effect ¢ also varies greatly
from case to case, with the worst scenario displaying a bias as large as 0.15. In our illustrative
example, when IMPORT was included in the model, a, was a small to medium value of 0.181,

k was a medium value of 0.258, and b, was a medium to large value of 0.363. As such, when
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IMPORT was excluded, the indirect effect via PMI increased around 73.33%, from 0.045 to 0.078.

The direct effect from COND to REACTION increased almost 150%, from 0.033 to 0.082.

Table 3.1: Bias in the Estimated Direct Effect of X on Y and Estimated Indirect Effect via M.

Parameters® Bias Bias/True value
. > < 7 (a (b1 (¢ (a1by
a, | by | k _(Zl) _(Zl) _(g) _(lel) —-ay) | —by) —-c) | —a1by)
1 ! U g, /b, le layb,

04 | 04 | 0.1 | 0.04 | 0.04 0.15 0.01 | 20.0% | 23.8% | 151.4% | 48.5%
04 | 04 | 025 0.10 | 0.09 0.13 0.04 | 50.0% | 61.5% | 132.3% | 142.3%
04 | 04 | 04 | 0.16 | 0.15 0.10 0.08 | 80.0% | 102.9% | 104.4% | 265.3%
04 |025| 0.1 | 0.04 | 0.02 0.09 0.01 |20.0% | 149% | 94.7% | 37.8%
04 | 025|025 0.10 | 0.06 0.08 0.03 | 50.0% | 38.5% | 82.7% | 107.7%
04 |025| 04 | 0.16 | 0.10 0.07 0.06 | 80.0% | 64.3% | 65.3% | 195.8%
04 | 0.1 | 0.1 | 0.04 | 0.01 0.04 0.01 |20.0% | 5.9% 37.9% | 27.1%
04 | 0.1 {0251 0.10 | 0.02 0.03 0.02 | 50.0% | 154% | 33.1% | 73.1%
04 | 0.1 | 04 | 0.16 | 0.04 0.03 0.04 | 80.0% | 25.7% | 26.1% | 126.3%
025] 04 | 0.1 | 0.03 | 0.04 0.09 0.01 12.5% | 26.3% | 91.1% | 42.1%
0.25] 04 | 025 | 0.06 | 0.10 0.07 0.04 |31.3% | 67.1% | 73.6% | 119.4%
025| 04 | 04 | 0.10 | 0.16 0.05 0.06 | 50.0% | 109.9% | 50.5% | 214.8%
0.25]1025] 0.1 | 0.03 | 0.02 0.06 0.01 12.5% | 16.5% | 56.9% | 31.0%
0.25]0.25]0.25 | 0.06 | 0.06 0.05 0.03 | 31.3% | 42.0% | 46.0% | 86.3%
0.25]0.25 | 040 | 0.10 | 0.10 0.03 0.05 |50.0% | 68.7% | 31.6% | 153.0%
0.25| 0.1 | 0.1 | 0.03 | 0.01 0.02 0.01 12.5% | 6.6% 22.8% | 19.9%
0.25| 0.1 | 0.25 | 0.06 | 0.03 0.02 0.02 |31.3% | 16.8% | 18.4% | 53.3%
0.25] 0.1 | 04 | 0.10 | 0.04 0.01 0.03 | 50.0% | 27.5% | 12.6% | 91.2%
0.1 | 04 | 0.1 | 0.01 | 0.04 0.03 0.01 5.0% | 27.6% | 31.3% | 34.0%
0.1 | 04 | 0251 0.03 | 0.10 0.02 0.03 12.5% | 69.5% | 16.5% | 90.7%
0.1 | 04 | 04 | 0.04 | 0.17 0.00 0.05 |20.0% | 112.1% | -0.3% | 154.5%
0.1 {025] 0.1 | 0.01 | 0.03 0.02 0.01 5.0% | 17.3% | 19.6% | 23.1%
0.1 {0.25]0.25 | 0.03 | 0.07 0.01 0.02 | 12.5% | 43.4% | 10.3% | 61.4%
0.1 {025| 04 | 0.04 | 0.11 | -0.0002 | 0.03 |20.0% | 70.0% | -0.2% | 104.0%
0.1 | 0.1 | 0.1 | 0.01 | 0.01 0.01 0.004 | 5.0% 6.9% 7.8% 12.2%
0.1 | 0.1 {025 0.03 | 0.03 | 0.004 0.01 12.5% | 17.4% 4.1% 32.1%
0.1 | 0.1 | 04 | 0.04 | 0.04 | -0.0001 | 0.02 |20.0% | 28.0% | -0.1% | 53.6%
Note: a, = direct effect of X — My; by = direct effect of My — Y
k = direct effect of My — My; a1 = direct effect of X — My;
by = direct effect of Mp — Y; ¢ = direct effect of X — Y
day = direct effect of X — M with the omission of My;;
by = direct effect of My — Y with the omission of My;;
¢ = direct effect of X — Y with the omission of M.
¢ Hypothetical path coefficients for the model depicted in Figure 3.4.
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Additionally, most cases in Table 3.1 generate positively biased values for the direct effect from
X to Y, with only two exceptions of underestimation but the magnitude of bias is very small in both
cases (-0.0002 and -0.0001). Additionally, it is very important to note Equation 3.3 also implies
the bias in estimating ¢ does not depend on the true value of ¢. From a practical perspective, this
suggests even with a very large sample, omitting Mp; can yield evidence of a medium positive (or

a small negative) direct effect from X to ¥ when the actual direct effect is zero.

Table 3.2: Bias in the Estimated Direct Effect of X on Y and Estimated Indirect Effect via
Mo (k =0).

Parameters“ Bias Bias/True value
. > < 7 (a | (0 (¢ (a1by
a by |k _(al) _(l];l) _(C) _(alzl) —ay) | =by) —C) —aiby)
a1 1 ¢ GOV g by /e Jayby
0.1 | 0.1 {0 0.00 | 0.00 | 0.0100 | 0.00 | 0.0% | 0.0% | 10.0% 0.0%
0.1 [025{0 | 0.00 | 0.00 | 0.0250 | 0.00 | 0.0% | 0.0% | 25.0% 0.0%
0.1 | 04 [ 0| 0.00 | 0.00 | 0.0400 | 0.00 | 0.0% | 0.0% | 40.0% 0.0%
025] 0.1 [ 0| 0.00 | 0.00 | 0.0250 | 0.00 | 0.0% | 0.0% | 25.0% 0.0%
025]1025{0 | 0.00 | 0.00 | 0.0625 | 0.00 | 0.0% | 0.0% | 62.5% 0.0%
025| 04 [ 0| 0.00 | 0.00 | 0.1000 | 0.00 |0.0% | 0.0% | 100.0% | 0.0%
04 | 0.1 {0 0.00 | 0.00 | 0.0400 | 0.00 | 0.0% | 0.0% | 40.0% 0.0%
04 |025|0 | 0.00 | 0.00 | 0.1000 | 0.00 |0.0% | 0.0% | 100.0% | 0.0%
04 | 04 |0 0.00 | 0.00 | 0.1600 | 0.00 |0.0% | 0.0% | 160.0% | 0.0%

Note: a, = direct effect of X — My;; by = direct effect of My — Y;
k = direct effect of My — Mp; a; = direct effect of X — My;

by = direct effect of Mp — Y; ¢ = direct effectof X — Y

dy = direct effect of X — M with the omission of My;

by = direct effect of My — Y with the omission of My;

¢ = direct effect of X — Y with the omission of M.

¢ Hypothetical path coefficients for the model depicted in Figure 3.4.

Tables 3.2 and 3.3 depict situations where the true underlying mediation process are parallel
(Figure 3.1(e), k = 0) and serial (Figure 3.1(f), a; = b, = 0) two-mediator models, respectively.
Importantly, all cases in Table 3.2 (parallel mediation model) yield positively biased direct effect
from X to Y but unbiased indirect effect via Mp; while all cases in Table 3.3 (serial mediation
model) yield positively biased indirect effect via M but unbiased direct effect from X to Y. These

patterns are also implied by Equation 3.4 and 3.3, where k = O gives unbiased effect for a5 in
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the parallel model and b, = O gives unbiased effect for ¢ in the serial model. Additionally, the
positive bias in both Table 3.2 and Table 3.3 increases as Mp-related path coefficients get larger.
Most importantly, the actual indirect effect in the serial model is O (since a; = 0) but the omission
of My can introduce bias to estimate a considerable indirect effect even when the researcher has a

very large sample, especially when a, and k have large values in the true serial mediation model.

Table 3.3: Bias in the Estimated Direct Effect of X on Y and Estimated Indirect Effect via
Mop(ay = by =0).

Parameters® Bias Bias/True value

. - o (a | by | (€ | (aiby
ay | by| k _(“‘) _(Zl) _(C) _(“1’;1) —ay) | =by) | =¢) | —a1by)

a1 ! ¢ 4101 /al /b1 lc /a1b1
01 | 0| 01 | 0.01 0 0 | 00015 | NA | 0% | 0% NA
0.1 0 10251 0.03 0 0 | 00038 | NA | 0% | 0% NA
01 ] 0| 04 | 004 0 0 | 00060 | NA | 0% | 0% NA
0251 0 | 0.1 | 0.03 0 0 | 00038 | NA | 0% | 0% NA
025 0 | 0.25]| 0.06 0 0 | 00094 | NA | 0% | 0% NA
0251 0 | 04 | 0.10 0 0O | 00150 | NA | 0% | 0% NA
04 | 0| 0.1 | 0.04 0 0 | 0.0060 | NA | 0% | 0% NA
04 | 0 |025| 0.10 0 0 | 00150 | NA | 0% | 0% NA
04 | 0| 04 | 0.16 0 0 | 00240 | NA | 0% | 0% NA

Note: ap = direct effect of X — My; by = direct effect of My — Y;
k = direct effect of My — Mp; a1 = direct effect of X — My;

b1 =direct effect of Mp — Y; ¢ = direct effect of X — Y;

a = direct effect of X — M with the omission of M{;;

by = direct effect of My — Y with the omission of M{;;

¢ = direct effect of X — Y with the omission of M.

4 Hypothetical path coefficients for the model depicted in Figure 3.4.

Table 3.4 depicts situations where the omitted My is only a confounder for the mediator-to-
outcome relation but not a mediator (i.e., ap = 0). In our illustrative example, this means the
path coeflicient from COND to IMPORT is zero. All cases in this table negatively bias the direct
effect from X to Y and positively bias the indirect effect via My, which is consistent with previous
literature (Fritz et al., 2016). By setting a, = 0 in Equation 3.1 through 3.3, we get the formulas for

bias in estimating b| and ¢, which are the same as that in previous literature®. To further understand

9By setting ar = 0 in Equations 3.1 through 3.3, we can get that the bias in d; is 0, the bias in
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Table 3.4: Bias in the Estimated Direct Effect of X on Y and Estimated Indirect Effect via
MO (Clz = 0)

Parameters® Bias Bias/True value

- ~ - - 7 (@ (by (¢ (a1by
ay | by | k _(Zl) _(Zl) _(E) _(allgl) —ap) | —by) —-c) | —aiby)

! ! 41P1 la 1 /b 1 /e la 1 b 1

0 01| 0.1 0 0.01 | -0.0021 | 0.002 0% 6.9% -2.1% 6.9%
0] 0.1 |025 0 0.03 | -0.0052 | 0.01 0% 174% | -52% | 17.4%
0] 01| 04 0 0.04 | -0.0083 0.01 0% | 27.8% | -8.3% | 27.8%
0 1025 0.1 0 0.03 | -0.0052 | 0.01 0% 17.4% | -52% | 17.4%
0 025|025 0 0.07 | -0.0130 | 0.01 0% | 43.4% | -13.0% | 43.4%
01025 04 0 0.10 | -0.0208 0.02 0% | 69.4% | -20.8% | 69.4%
0] 04 | 0.1 0 0.04 | -0.0083 0.01 0% | 27.8% | -8.3% | 27.8%
0] 04 |0.25 0 0.10 | -0.0208 0.02 0% | 69.4% | -20.8% | 69.4%
0] 04| 04 0 0.17 | -0.0333 0.03 0% | 111.1% | -33.3% | 111.1%

Note: ap = direct effect of X — My; by, = direct effect of My — Y
k = direct effect of My — My; a1 = direct effect of X — My;

by = direct effect of Mp — Y; ¢ = direct effectof X — Y

a = direct effect of X — M with the omission of M{;;

by = direct effect of My — Y with the omission of M{;;

¢ = direct effect of X — Y with the omission of M;.

¢ Hypothetical path coefficients for the model depicted in Figure 3.4.

this Table 3.4, we consider cases in this table as special situations of Table 3.1, where a5 takes on
the value of O in all cases. Implied by Equations 3.1, ap = 0 suggests an unbiased direct effect
estimate from X to M and thus only the bias of the estimated direct effect from My to ¥ remains
and contributes to the positively biased indirect effect via M. Implied by Equation 3.3, ap = 0

indicates a negative bias for the estimated direct effect from X to Y, under the conditions that aj, k

byis by - k/(1—ay?), and the bias for the bias in & is by - (—=k - a1)/(1 —a52). These are exactly the
same as the bias formula presented in Fritz et al. (2016) (p. 684), where they wrote b, as e; and
they use C to denote the confounder. Their rc M isour pyy oMy and their ry s is our px s 0 The
Appendix presents the formulas of correlations as a function of path coefficients. When a, = 0, we

C 1 . . . C . 'ctM (SC
get Py My = k and PXMp = a1 Thus, their bias in estimating b, which is e - + (S—Xl) ,
= m
o o . TXMTCOIM (SCp\ |
is equivalent to our by - k 5= their bias in estimating ¢, which is ey - —21 (—1) , is
(1-ay*) 1-r SX
XM

. —k~a1

equivalent to our b, - 5
1—02
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and b, are all positive.

3.8 Correlation Framework and Sensitivity Analysis for Omitted Alternative Mediators

We have demonstrated that omitting alternative mediators/post-treatment confounders may bias
the estimate of the direct effect from X to ¥ as well as the indirect effect via M. The direction
and magnitude of bias can vary substantially under different underlying mediating processes. From
a practical perspective, we never know the actual parameters in the true model, but we can use
our analysis to quantify the robustness of any inference regarding M to a potential post-treatment
confounder.

Sensitivity analyses can serve as a useful tool to inform the strength of evidence for specific
inferences by quantifying the conditions that would alter the inference (e.g., Frank, 2000; Imbens,
2003; Rosenbaum, 2002; VanderWeele & Arah, 2011). For example, if a study focuses on estimating
a treatment effect, sensitivity analyses can generate statements about how strong an omitted variable
would have to be correlated with the treatment and with the outcome to invalidate an inference of
an effect of the treatment on the outcome. As such, recent approaches to sensitivity analysis help
interpreters of research quantify the conditions necessary to invalidate an inference drawing on
familiar quantities such as correlations (Frank, 2000), percentage of variance explained (Cinelli &
Hazlett, 2018) or graphical representations such as contour plots (Imbens, 2003).

In this section, we quantify the robustness of inferences by evaluating how sensitive the estimated
direct and indirect effects of M are to a potential post-treatment confounder My;. For example,
we can quantify how large must be the effect of the My on the M and Y to change a statistically
significant direct or indirect effect to zero. Specifically, we quantify the sensitivity of estimates and
robustness of inferences as functions of correlations between My; and other observed variables X,
Y and My, so that empirical researchers can use these quantities to discuss the robustness of their
inferences in terms of M.

To introduce this sensitivity analysis approach, we first present the correlation framework:

based on Equations 3.1 through 3.4 we write the bias in estimating a;, b1, and ¢ as function of
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correlations among the four variables X, Mp, My and Y: PX.Mg» PX, My PX.Y> PY,Mgy» PY, My
and p My.My- The Appendix provides details and the final derivation results. Compared to the
parameter framework Equation 3.1 through Equation 3.4 where all the path parameters are unknown
(i.e., ay, by, c, ap, by and k) to substantive researchers, now we can always estimate px Mp» PX.Y
and py, Mg from the sample data. As such, the bias only depends on the three unknown M-
related correlations: px My PY, My and p Mo.My- These three unknown correlations are the key
parameters in our sensitivity analysis approach.

To demonstrate this sensitivity analysis approach, we go back to our illustrative example re-
garding presumed influence of media use. Assume we fit the model only with one mediator PMI,
where the results were presented in the right panel of Figure 3.2. The specific indirect effect via
PMI was estimated as 0.078 and significantly positive. Next, we ask how sensitive this estimate
is to an unobserved post-treatment confounder/mediator. For example, we consider IMPORT as
a potential confounder, but we fail to measure this variable. Focusing on the indirect effect via
PMI, Figure 3.8 presents the result for the sensitivity analyses based on the three correlations as
sensitivity parameters: the correlations between the unobserved post-treatment confounder My,
and the other observed variables X, Y and M.

Considering that we have three sensitivity parameters, we include 15 scenarios in Figure 3.8
to comprehensively present the sensitivity analyses. In all scenarios, the horizontal dotted line is
drawn at the point estimate of 0.078, which is the estimated indirect effect via PMI when we fit
the model excluding the confounder M. The solid black line plots the estimated indirect effect
via PMI against differing values of one correlation related to the confounder My;. The grey region
represents the 95% confidence interval based on the Delta method (Sobel, 1982) 9. Each column
includes five scenarios plotting how the estimated indirect effect varies with one particular My;-
related correlation: the left column has x-axis representing the correlation between X and My;; the
middle column has x-axis representing the correlation between M and My;; the right column has

x-axis representing the correlation between Y and My;. Each row includes three scenarios where

10The standard error of the indirect effect is approximated by \/ ai2var (by) + b 2var (ay).
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Note: The dashed line represents the estimated indirect effect for no omitted post-treatment
confounder. The grey area represents the 95% confidence interval for the indirect effect via
observed mediator at each value of the unobserved M;;-related correlation. The solid line
represents the estimated indirect effect via observed mediator at each value of the unobserved M-
related correlation.

Figure 3.8: Sensitivity analysis for unobserved post-treatment confounder.
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the other two unmanipulated My -related correlations are fixed at a certain level: the 1% to 3" 4 rows
show scenarios where the two correlations taking on low, medium and high values! , respectively;
the 4" and 5" rows show scenarios where the two correlations taking on one low, one high and
one high, one low values, respectively.

We interpret the sensitivity analyses by looking at each column separately. The five plots in the
left column show how the estimated indirect effect changes with different values of the correlation
between COND and the potential posttreatment confounder, when the correlation between PMI
and the confounder My (rmomu) and the correlation between REACTION and the confounder
My (rymu) are fixed at different values. For example, the fourth plot in the left column indicates
when the correlation between PMI and My (rmomu) is low (0.1) and the correlation between
REACTION and My, (rymu) is high (0.5), the original inference about the direction of the indirect
effect via PMI would always be maintained, no matter how large the correlation between COND
and My. However, if we consider sampling variability, the confidence interval covers the value
of zero when the correlation between COND and My is between -0.043 and 0.834. This implies
that the conclusion of a positive indirect effect via PMI is sensitive to a posttreatment confounder.
Similar conclusions can be drawn based on other plots in the first column: although only extreme
values of the correlation between COND and My; can alter the direction of the indirect effect from
positive to negative, once we take into account the sampling variability, the confidence interval
can cover zero even when the correlation between COND and My is around 0. The five plots in
the middle column imply the same conclusion: the direction of the indirect effect via PMI can
be maintained in most cases unless the correlation between PMI and My, takes on some extreme
values; however, once sampling variability is taken into account, the confidence interval can cover
zero even when the correlation between PMI and My, is close to zero. The scenarios in the right

column, which plot the estimated indirect effect against differing values of the correlation between

e used 0.1, 0.3 and 0.5 for low, medium and high correlations between continuous variables
(i.e., Mp, My and Y). For correlations involving the binary variable X, we used 0.2, 0.5 and 0.8 as
low, medium and high Cohen’s D, which corresponds to correlations of 0.0995, 0.2425 and 0.3713
as low, medium and high, respectively.
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REACTION and My, support an even stronger conclusion that the positive indirect effect via PMI
is very sensitive to a post-treatment confounder My;: in all five plots, the confidence interval can
cover zero for most values of the correlation between REACTION and My, especially when the

other two My;-related correlations are high (the 3" d plot).

3.9 Discussion

The major conclusion of this article is that omitting a mediator My; will typically generate
biased (more precisely, inconsistent) estimates for the specific indirect effect via M, as well as the
direct effect from X to Y. Additionally, the magnitude of bias (inconsistency) can be substantial.
In our illustrative example that studies whether media (X) affects people’s attitudes or behaviors
(Y) through changing people’s perceptions regarding how other people may be influenced by the
media (M), excluding the alternative mediator of the perceived importance of the article (My,)
has given us a different conclusion that the indirect effect via presumed media influence (M)
is significantly positive. Once the perceived media importance (M) was included, the indirect
effect via presumed media influence (M) is not significant from 0, decreasing from 0.078 to
0.045. Though the inference about the direct path from the direct path from article location (X) to
participants’ reaction (Y) did not change no matter whether the perceived media importance (M)
was included or not, the point estimate decreased from 0.082 to 0.033 once we included the My in
our model.

The exact pattern of bias (inconsistency) depends on the specific underlying mediation process.
In the parallel two-mediator model (Figure 3.1(e)) where the omitted mediator is independent of the
observed mediator, the estimate of the specific indirect effect via M is not biased but the estimate
of the direct effect from X to Y can be either positive or negatively biased, depending on the specific
indirect effect via the omitted mediator My;. If the specific indirect effect via omitted mediator My;
is positive, then the direct path from X to Y is overestimated. Some credits via the direct effect
from X to Y should be attributed to My as a mediator. If the specific indirect effect via omitted

mediator My, is negative, then the direct path from X to Y is underestimated. The magnitude of the
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bias (inconsistency) in estimating c is exactly the true specific indirect effect via My;.

In the serial two-mediator model (Figure 3.1(f)), the estimate of the direct effect from X to
Y is unbiased but the estimate of the specific indirect effect via M can be either positively or
negatively biased, depending on the path coefficients directly related to the unobserved mediator
My. The estimated effect attributed to X — My should be attributed to X — My — M. Note
the true path from X to M is zero, indicating that the true specific indirect effect via M is zero.
By excluding M7, we may conclude a nonzero indirect effect via M.

If the underlying mediating process is a more general two-mediator model where all path
coeflicients are positive, then the indirect effect via M is overestimated and the magnitude of
bias can vary substantially. The estimate of the direct effect from X to Y can be either positively
or negatively biased. When the path from My to M (k) is relatively small, we overestimate the
direct effect (¢) while when k gets close to 1, we underestimated the direct effect (c¢). Further, the
larger the path coefficient from My; to M, (k), the larger the positive bias in estimating the indirect
effect via M. Importantly, the conditions to obtain unbiased direct and indirect effect estimates
are not the same, so that one cannot simultaneously obtain accurate direct and indirect effects.
Situations will become even more complicated once we consider sampling variability. Omitting an
alternative mediator can have either have no implications or disastrous consequences for hypothesis
testing regarding the observed mediator M. Therefore, we propose a sensitivity analysis approach
where the three Mj;-related correlations serve as sensitivity parameters. We are also developing
an easy-to-use R package for empirical researchers to examine the robustness of their inference
regarding M to a potential omitted mediator My;. The demonstration for the sensitivity analysis
in this paper only shows one way this package can be applied. If the researcher has any knowledge
about a certain My, they can choose to specify two of the unknown Mj;-related correlations so
that they can focus on one figure to see how the other My -related correlation affects the estimated
effect and the inference.

One may ask that what if more than one mediator is omitted? From a practical perspective,

we can never know the true underlying mediating process and there can always be another omitted
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mediator. We argue that for the purpose of quantifying the strength of evidence in making inference,
it is enough to consider one mediator that captures all sources of bias. To better conceptualize the
omitted mediator in our thought experiment of the sensitivity analysis, we can think about My, as
one latent variable that captures all potential omitted mediators that may bias our inference for M.

Finally, it is important to note that the definition of the indirect effect and direct effect is
different from the natural indirect effect (NIE), natural direct and the control direct effect in the
counterfactual framework. As reviewed before, this distinction can be considerable under models
with multiple mediators, which emphasized the importance to clarify the definition of indirect
effect and direct effect in applied research. Additionally, although the counterfactual framework
allows us to relax those parametric assumptions, we argue that, by specifying a parametric model,
we can see how omitting another mediator may bias our estimation for each specific path coefficient

we are interested in (i.e., a1, b1 and ¢).

3.10 Limitations and Future Directions

Several limitations of the current work suggest avenues for future research. First, we have strong
assumptions for model specifications, including no mediator-outcome interaction and the original
conditions (X) are randomly assigned. A more complex situation arises when these assumptions are
relaxed. Second, we applied the delta method to approximate the sampling variability, which may be
not accurate under some scenarios. Third, we acknowledge that three sensitivity parameters are a lot
to consider. Though we provided several plots in the sensitivity approach to accommodate different
scenarios, it would be valuable if future studies can reduce the number of sensitivity parameters.
Furthermore, we only examined the cross-sectional dual-mediator model. Recent research has
suggested longitudinal designs to test mediation because cross-sectional examination of mediation
can generate biased estimates (e.g., Maxwell & Cole, 2007; Maxwell, Cole, & Mitchell, 2011;
Mitchell & Maxwell, 2013). Accordingly, future studies should consider whether omitting another

mediator may bias our estimation in longitudinal designs.
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CHAPTER 4

APPLYING A PARAMETER FRAMEWORK TO QUANTIFY INCONSISTENCY IN A
TIME VARYING MEDIATION MODEL

4.1 Introduction

This chapter will continue the discussion in Chapter 3 about an unobserved mediator as a
posttreatment confounder in a single-mediator model. Specifically, I will leverage the parameter
framework to further discuss how inconsistency is generated for each path coefficient we are
interested in when a posttreatment confounder is omitted. Therefore in the first section of this
chapter I will develop a parameter framework for characterizing inconsistency in mediation models.
Then in the second part I will apply this parameter framework to a longitudinal design.

Two important tools will serve as the basis for all the discussion in this chapter: namely the Law
of Iterated Expectation (LIE) and the Linear Regression framework. These powerful tools allow
us to grasp a deep and intuitive understanding about the mechanisms underlying inconsistency
generation. More importantly, this understanding can be applied in several ways: (1) it helps us
better understand the patterns of how each Mp;-related parameter affects inconsistency; (2) it has
implications for how we may consider the effects of the unobserved confounder My; on the indirect
effect via M and the direct effect from X to Y; (3) this understanding also goes beyond the cross-
sectional model and depicts the underlying story of a post-treatment confounder in a longitudinal

single-mediator model as well.

4.2 Deriving Inconsistency Using the Law of Iterated Expectation for a Parameter Frame-
work

The Law of Iterated Expectation (LIE) states that E(Y|X) = E[E (Y|X, Z) |X] where X, Y

and are Z three variables and E (Y |X) represents the conditional expectation (or conditional mean)

of Y given X (Wooldridge, 2009). The LIE allows us to apply a two-step approach to solve the

conditional mean: E(Y|X). First, we find E (Y|X, Z), which is the conditional mean of Y given
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X and Z. As such, we get a function of X and Z for this conditional mean. Second, we use the
information from E(Z|X), which is a function of X, to solve the expected value of E (Y|X, Z)
conditional on X.

The LIE can be a very useful tool to derive inconsistency at the population level when we omit a
related independent variable in a regression model (model misspecification). For example, consider
that the true model is E (Y|X, Z) = aX + bZ and the correlation between X and Z is not zero. But
when we fit a regression model with all population data, we omit Z and only regress Y on X. This
can lead to an inconsistent estimator for the parameter a. In this scenario, we can apply the LIE to
derive the inconsistency. We do this by writing E (Y|X) = E [E (Y|X,Z) |X] =a-X+b-E (Z|X)
and then plugging in E (Z|X) (which is a function of X) to solve the question. The underlying
intuition is that part of the explanatory credit that belongs to the omitted Z has been allocated to
X. As aresult, the mistakenly attributed credit generates inconsistency when we estimate a while
omitting Z.

To note, the derivation here is at the population level and therefore is free of sampling error.
Technically speaking, the difference between @, by ,é and ay, by, ¢ are inconsistencies, not bias.
That is, dy, by, ¢ are the estimates we get even when we have all population data available (i.e.,
sample size n — o0). In all following discussion, “bias” in the population parameters is a rough
way to describe “inconsistency” for an audience more comfortable with conceptualizations of bias.

Recall that the true model and the model that omits the unobserved mediator can be written as
follows, in Figure 3.4 (from Chapter 3). X is the exposure variable, M is the observed mediator
of interest, Y is the outcome, and My, is the unobserved mediator. We are interested in estimating
the specific indirect effect via M and the direct path from X to Y. As such, three true effects are
of key interest: @ that represents the path X — M, b that represents the path My — Y, and
c that represents the path X — Y. When My is omitted, d, b1 and & are the estimated effect for
X — Mp,Mp — Y and X — Y, respectively.

Now we apply LIE to express the inconsistency due to omitting My;. That is, we want to derive

the differences between the estimators and their true effects when the confounder My; is present yet
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not included, and we have the population data (i.e., sample size n — o). In this case, the omitted
My plays the role of Z in our previous example. Specifically, we first write our true models as

Equations 4.1 through 4.3:

E(MolMU,X):k-MU+a1-X 4.1)
EMylX)=as-X (4.2)
E(YlMO,MU,X):bl Mo +by My+c-X 4.3)

By LIE, we can further write equations 4.4 to 4.5 to see what happens when My, is excluded:

E(Mp|X)=E[E(Mp|My,X)|X]|=k-EMy|X)+a;-X 4.4)

E(Y|Mp,X) =E[E(Y|Mo,My,X) Mo, X] =by-Mo + by - E(My|X,Mp) +c-X  (4.5)
Now write:

E(MylX)=p1-X (4.6)

E(MylX, Mp) =B2-Mp+p3-X 4.7)

Plugging Equation 4.6 and 4.7 back to Equation 4.4 and 4.5, we can get formulas for inconsistencies

indy, by and ¢, as follows:

ay-ay=k-pi (4.8)
by—by1=by- B 4.9)
c—c=by- B (4.10)

Importantly, as implied by Equation 4.6 and 4.7, 31, B> and B3 are three regression coefficients
(again, at the population level). Specifically, 8 is the regression coefficient of X when we regress
My on X, which is also equivalent to a;. B and 3 are regression coefficients of My and X,
respectively, when regressing My on My and X.

Before going to deep discussion about the inconsistency, it is necessary to clarify that I use

the linear regression framework here in a “loose” way to serve as a tool for easy interpretation
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only. No causality is implied in the regression models. For example, Equation 4.7 implies a linear
regression model where M) and X are predictors for M, which only has statistical meaning but no
causal implications. In other words, the coeflicients §, and 53 only represent statistical association

between My, X and My . They do not imply that M and X cause M.

4.3 Understanding What Happens When Omitting My,

Now I will present how Equations 4.8 to 4.10 can help us understand the underlying mechanisms
of sources of bias. To simplify the discussion, we assume all parameters are positive. Chapter
3 shows that the bias in estimating a; and b are always positive. But the direction of ¢’s bias
depends on the relative magnitude of py, My and py, My " PMp.My- As we will see later, this is
much more than just a mathematical result. In fact, the discussion for ¢’s story has inspired me
to consider more deeply about what’s actually happening when omitting My;. Importantly, this
parameter framework allows us to have a powerful tool to understand how the omittance of My,
generates the bias. Following Figure 4.1 presents a summary of this interpretative framework, in
which the formulas in the right columns are based on Equations 4.8 through 4.10.

We will start our consideration of this framework from the first row for d;, which happens to be
the most direct and easy result. The formula tells us that the bias is the product of k and a;. From
the causal pathways in the left column, we can see that this bias comes from the causal pathway
X — My — Mp. Thatis, d; measures the effect X — My plus the effect X — My — Mp.
Therefore, omitting My, is basically omitting a mediator when estimating a.

The stories for b and & are more complicated. First we observe that the bias in estimating b and
¢ are both a weighted version of b5, which represents the causal pathway My — Y. Interestingly
enough, the two weights for the bias in b and ¢ are the two partial regression coefficients from one
regression model. The last row of Figure 4.1 presents this crucial regression model, in which we
use X and M to predict My;. Specifically, the weight for 5 ’s bias is the coefficient for M and the
weight for ¢’s bias is the coefficient for X. We know that a partial regression coefficient in a multiple

regression model measures the unique contribution of the predictor to predict/explain the variance
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Figure 4.1: Parameter framework to understand what happens when omitting My;.
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of the outcome (again, no causality is implied here). In this context, the unique contribution made
by M to explain My composes the weight applied to b, to generate the bias in estimating »1. On
the other hand, the unique contribution attributed by X to explain My becomes the weight of b, to
form the bias c.

This observation that centers on regressing My on X and M actually points us to understand
two competing mechanisms about how omitting My, affects the estimation of b and c. If we trace
all the causal pathways that go through My, the beginning point is surely X — Mp;. But then this
causal pathway splits into two parts. The first part goes through M to the ending point of Y. This
first part passes through the b; pathway and thus it contributes to the bias in estimating ;. The
second part, on the other hand, passes directly to Y after My;. The second part here X — My — Y
picks up a mediation pathway from X to Y and as a result, it is responsible for bias in estimating c.

Importantly, the role of the omitted My, is different in these two parts though confounding and
mediation are known to have statistical similarities (MacKinnon, Krull, & Lockwood, 2000). In the
first part for the bias in b;, My is a real confounder because it has an effect on both My and Y. In
other words, the explanatory credit that belongs to My, via direct effects My — Mp and My — Y
are allocated to the direct effect My — Y. This explains why b is the sum of b; and b, - 8.
Intuitively, we can consider 5, as a measure for effects that flow through X — My — M. On the
contrary, My is only a mediator instead of confounder for estimating c. As the third row in Figure
4.1 shows, the estimated effect of ¢ is biased because we count the indirect effects X — My — Y
as part of the direct effect X — Y. Because part of the effect from X — My flows to M, we only
get the remaining part multiplied by b, to form the bias in estimating c¢. The remaining part of
X — My is exactly what is represented by S3.

Because these two flows (i.e., X - My — Mp — Y and X — My — Y) both orginate from
X — My, they are in fact competing with the path X — Mj;. This competition manifests iteself
by the linear regression model in our previous discussion, in which My, is regressed on X and M.
In other words, X and M are competing with each other to explain the variation in My. The part

that X wins then continues to the flow toward Y (i.e., X — My — Y), which results in the bias
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in estimating c. On the other hand, the unique contribution made by My passes through My to Y
(i.e., X = My — Mo — Y), which leads to the bias in estimating b.

Equipped with this framwork, we are now able to have a more intuitive understanding for the
direction of bias in ¢ discussed in Chapter 3. Previously, we said that the sign of the bias in estimating
¢ depends on the relative magnitude of PX, My VEISUS PX M) * PMp,My;- If PX.My > PX,Mp *
PMg.My» We overestimat c¢. Otherwise, we underestimate ¢ when py My < PX.Mgy " PMo, My
The comparison between py My and py, My * PMy.My reflects exaclty the competition between
X and My to explain the variation in My;. This is because (PX,MU —PX.Mp pMo’MU) is just
the numerator of the regression coefficient for X. Alternatively, this is also equivalent to the partial
correlation between X and My conditional on Mp. When pyx, My < PX.My * PMp. My (and
assuming all correlations are positive), we have the unconditional (zero-order) correlation between
X and My reversing the sign once conditional on M. This effect is also known as suppression in
the literature (Cohen & Cohen, 1983) and somestimes M is called a distorter variable (Rosenberg,
1968). That is, the relationship between X and My gets suppressed or distorted once we include
M to explain the outcome My;. Intuitively, we may consider this as X losing the competion with
My to explain M. When this is the case, we underestimate c. (Again, we only refer to statistical
relations rather than any causal relationships when talking about a suppressor.)

Because parameters represent causal pathways, we see that the parameter framework allows us
to tell stories about mechanisms generating the bias. In the following section, more analyses will
be presented that applies this framework to better understand how My, -related parameters affect the
magnitude of bias. As we will see, this framework (Figure 4.1) serves as a very useful instrument in
interpreting how bias vary under different conditions, providing us a deeper discussion compared

to that in Chapter 3.
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4.4 Using the Mechanism to Understand How Inconsistency Changes with M;-related Pa-
rameters

4.4.1 How inconsistency changes with different levels of «.

We start with the causal effect from My to M, which is represented as k. In Chapter 3, we have
mentioned that the magnitude of bias in estimating both a; and b; increase as the causal effect
k becomes stronger. But now we have a framework to better understand why this is the case.
Focusing on the effects X — My — M/ as shown in the first row of Figure 4.1, larger k leads us
to allocate more explanatory power to M that in fact belongs to My as a mediator. Therefore, we
overestimate a; and the difference between d; and a grows as k gets bigger. Similary, k plays a
role in the chain of causal effects X — My — My — Y (the second row of Figure 4.1). Then
larger k leads more explanatory power via My, to be attributed to My, which manifests as larger
bias in estimating b{. Thus, bias in both @; and b increase, leading to more serious overestimation
of the indirect effect X — Mp — Y.

Alternatively, we can interpret why the bias in b increases with k by considering the role of k
in the key regression model discussed before. In Figure 4.1 (last row), this key regression model is
presented with the zero-order bivariate correlations as functions of parameters. We can tell k plays
an important role in the correlation between My and M but the correlation between My and X
only depends on a,. In the example of Figure 3.5 (from Chapter 3), we fix the value of a, as 0.2
while increasing the value of k. That is, the correlation between My and M becomes larger and
larger compared to that between My and X. This leads to greater importance attached to M in
the competition between X and M to explain My, which also means that X becomes less and less
important. Correspondingly, the partial regression coefficient for M (8,) becomes larger while
the partial regression coeflicient for X (83) turns to be smaller as k increases. Based on previous
discussion, we know that 3, is responsible for the bias in b; and 3 is responsible for the bias in ¢.
Therefore, the increase in 3, explains the growing bias in 5 and the decrease in 83 explains the

declining bias in €.
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Moreover, in Chapter 3 we also emphasized that after the positive bias in ¢ falls to O it continues
decreasing to negative values as k increases to 1. That is, when £ is relatively small we overestimate
¢ while when k becomes larger we underestimate c. And as k gets closer to 1, the magnitude of
negative bias in estimating ¢ keeps growing. This is in fact consistent with our previous discussion
regarding the direction of ¢’s bias. As k becomes larger, suppression starts to take place and
becomes increasingly serious. That is, the difference between PX,My; and PX.Mp * PMy,My;
becomes larger. Again, we can apply our competition story to interpret this observation: as k
becomes larger, X becomes weaker and weaker in its competition with M. This leads more effect
from X — My, to be attracted towards Mp — Y rather than directly flowing to Y, which means
that the overestimation of the direct effect My — Y (b) keeps growing. Meanwhile, as less effect
remains to pass through X — My — Y, the bias in ¢ first decreases to 0 and then further becomes

more and more negative.

4.4.2 How inconsistency changes with different levels of a,

In Chapter 3, we discussed the larger the direct effect X — My(ay), the larger the bias is
estimating a. Relying on the first row in Figure 4.1, we are able to explain this as the indirect
effect X — My — My is allocated to X — M , where the omitted My, plays a role of mediator.

In Chapter 3, we also discussed that the effects of a, on the bias in b, and ¢ rely on the values of
other parameters. Specifically, Figure 3.6(a) in Chapter 3 gives the scenario where the magnitude
of ay and k are both relatively small (with values of 0.15 and 0.22) while in Figure 3.6(b) a; and
k are both relatively large (with values of 0.6 and 0.5).

Figure 4.2 presents how the competing story in the parameter framework we discussed before
for the bias in estimating | and ¢ can be served as a useful tool to interpret the distinctions
between Figure 3.6(a) and 3.6(b). We know that the direct effect X — My (ap) splits into two
causal pathways after the point of My, one toward M and the other towards Y, generating the bias
in b and ¢, respectively. And the way the effect X — My (a) gets split can be understood by a

competition between X and M to predict My . Interestingly, how the competition is affected by
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a, depends on the magnitudes of a; and k, which is exactly the distinction between Figure 3.6(a)

and 3.6(b).
The key regression model:
Pxpm, =02 k+a; ey
e i
e i
EMy|Mg,X) =B, My +P3-X @ épMo,MUzal.az-l'k
. ;
i
pX,M” =a,; \'\“ ...... T
My
a, starts as a, Affecting b; Affecting c Comment
from small becomes | through S, through S5
value larger
a, and k are M, gains less X gains more ¢ can be first negatively
small importance; importance; biased then becomes
d . positively biased (bias first
Bz decreases P increases reduce then increase)
a, and k are M, gains more X gains less c is always negatively
large importance; importance; biased (more seriously
. biased along the way)
[, increases B decreases

Figure 4.2: Understand how bias changes with different levels of a,.

In Figure 3.6(a), ay and k are relatively small, the increase in a, has larger effect on py, My
compared to py, Mg and p Mp.My;- This is because the latter two correlations can be read as
a, weighted by a; and k. That is, the increase in ap needs to be discounted when reflected in
PX, Mo and p Mp.My- In comparison, pyx My can get the 100% growth from a, because py My
is just equivalent to a,. Therefore, when a| and k are small in Figure 3.6(a), the increase in a,
leads X to gain more and more advantage in the competition with M. In this context, larger a,
causes more explanatory credit to be allocated to X — My — Y with less credit attributed to
X — My — Mp — Y. As such, though ¢ can be underestimated in the very beginning (a5 is very
close to 0), the negative bias becomes positive quickly and keeps growing larger. At the same time,
the overestimation in 51 slowly reduces to 0 as ay gets closer to 1.

As a comparison, Figure 3.6(b) shows the opposite scenario where the increase in a, has smaller
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effect on py. My compared to px, Mo and p Mg.My- That is, the increase in ao gets enlarged in
PX, My and PM¢), My due to the large magnitudes of @ and k in PX, M) and PMy,My;- As a result,
X gains more and more comparative advantage in its competition with M. Under this scenario
the increase in a, leads more explanatory power to the path X — My — Mo — Y relative to the
credit assigned to the pathway X — My — Y.

Figure 4.2 summarizes these patterns and interpretations about how a, affects the bias in
estimating b and ¢ under different scenarios. Again, we see that the key regression model plays a
significant role in helping us understand the mechanisms that generate the bias in b; and ¢ when

we omit M.

4.4.3 How inconsistency changes with different levels of b,.

For how b5 affects the bias, we also presented two different scenarios in Chapter 3, exemplified by
Figure 3.6(a) and 3.6(b). In both scenarios, the positive bias of b; becomes larger as b, gets closer
to 1 while the level of b, has no effect on the magnitude of bias in a. The first two rows of Figure
4.1 can help us interpret these patterns by applying our framework.

First for d;, we know that its bias comes from the explanatory power that belongs to the
X — My — My and there is no role of b, here. That is, the direct effect My — Y (bj) is not
directly connected with the direct effect X — M (a;). Alternatively, we can think about this “no
effect” by noticing that the parameter we manipulate b, occurs after the direct effect X — My (aq)
in the sequence of causality.

Figure 4.1 illustrates the bias in estimating b; is the product of 8, and b,. The magnitude
of B, depends on the competition between M and X that happens in the key regression model
represented in Figure 4.1. We can tell from the triangle of the key regression model that 5, has no
effect on this model. Therefore, the only way for b, to influence the bias in b is to through b, but
not 3. This helps explain why the bias in b is a linear relationship of b, in both Figure 3.6(a) and
3.6(b).

The distinction between Figure 3.6(a) and 3.6(b) is the pattern for the bias of c¢. In Figure

100



3.6(a), c gets overestimated and the positive bias keeps growing but in Figure 3.6(b) we always
underestimate ¢ and importantly, the negative bias gets more serious as b, increases. In fact,
the fundamental reason underlying this distinction between two figures (3.6(a) and 3.6(b)) is the
direction of bias while the effect of b, on the magnitude of bias follows the same pattern in both
two figures. This ties back to the earlier discussion of the direction of ¢’s bias, which can be
interpreted with our parameter framework again. In Figure 3.6(a) we have a; = k = ap = 0.2 butin
Figure 3.6(b), a; (= 0.55) and k(= 0.6) are much larger than a, (= 0.2). Correspondingly, we have
PX.My > PX,Mp * PMgy,My; for Figure 3.6(a) and PX. My < PX,Mp *PMg,My; for Figure 3.6(b). In
other words, in Figure 3.6(b), the relationship between X and My, gets suppressed or distorted once

we include M to explain the outcome My but this suppression does not occur in Figure 3.6(a).

4.5 Using the Mechanism to Understand the Inconsistency of Indirect and Direct Effects
When Omitting My,

In the previous section, we applied our parameter framework to interpret how bias is generated
in estimating each parameter we are interested in (i.e., aj, b and c¢). But we are also interested
in the indirect effect via M, which is the product of a; and b. Importantly, as we will see later,
this discussion can provide empirical researchers some ideas to consider how different potential
candidates of My may impact our estimation of the indirect effect a1 b and direct effect ¢ differently.

We start our discussion by getting the following equation for the bias in estimating a5 (the

specific indirect effect via M) based on our previous derivations.
dyby—ay-by=ay-k-by+by-Pr-(a;+k-ay) (4.11)
Combing Equation 4.11 and 4.10, we can get:
la1by —ay by +[6—cl=ap-k-by+by-Br-(ay+k-ap)+by- B3 (4.12)

In Equation 4.12, the two last components by - 8 - (aj + k - az) + by - B3 can be written as aj - by

(see Appendix for more detailed proof). This allows us to get the following equation 4.13.
[dllsl—al-bl]+[c~—c]:az-k-b1+a2-b2 (4.13)
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Equation 4.13 tells us an important fact: the bias in estimating the indirect effect a5 and the
bias in estimating the direct effect ¢ adds up to the two pathways: X — My — Mp — Y and
X — My — Y. Figure 4.3 summarizes this finding by comparing different pathways from X to Y

by models: the true model with two mediators versus the model that omits My;. The left column

Pathways from X to Y in the True Model | Pathways from X to ¥ in the Model that omits Mv
X—>My,—Y Inconsistent indirect effect: d, b;

a;

Inconsistent direct effect: ¢

by
¢
OO

a; @ b,

Figure 4.3: Different causal pathways from X to Y by models: the true model with two mediators
versus the model that omits M.

shows four causal pathways in the true model from X to Y. As a comparison, there are only two

causal pathways in the right column to account for the total effect from X to Y. Because the total

102



effect from X to Y is fixed, the effect via the two missing pathways, namely X — My — Mgy — Y
and X — My — Y, must be assigned to the two remaining pathways when Mp; is excluded. In
other words, the explanatory power via X — My — My — Y and X — My — Y either goes to
the indirect effect @b or the direct effect & When more effect is allocated to the indirect effect,
then omitting M{; results in more biased estimate of the indirect effect and less biased estimate of
the direct effect. The same vice versa: if more effect is allocated to the direct effect, then omitting
My generates more biased direct effect and less biased indirect effect.

What factors affect how the effect via X — My — My — Y and X — My — Y is allocated to
the bias in the estimated indirect effect or the bias in the estimated direct effect? The answer to these
questions goes back to our parameter mechanisms, more specifically, the competition between X
and My in the key regression model. We know the bias either goes to the estimated indirect effect
or the estimated direct effect, and it is easier to focus on the direct effect. As we discussed before,
the bias in estimating the direct effect ¢ is b, - 3. by does not even show up in the key regression
model or the competition between X and M. Then as the exposure variable X gets stronger at
predicting the unobserved mediator My;, compared to the observed mediator M, more bias will
be allocated to the estimated direct effect and less bias will be allocated to the estimated indirect
effect. In other words, when b5 is fixed at a certain level (not zero), if the unobserved mediator My,
becomes more correlated to X and less correlated to M, then omitting M{; generates more biased
direct effect and less biased indirect effect.

It is important to note that this “more” or “less” is not a comparison between the amount of
bias between the estimated indirect effect and the estimated direct effect. Instead, it is a trend in the
change of the bias of either the indirect effect itself or the direct effect itself. Assume an example
where 10% of the total bias (i.e., the effects via X - My — Mp — Y and X —» My — Y)is
allocated to the estimated direct effect and other 90% of the total bias is allocated to the estimated
indirect effect. Now as the unobserved mediator Mg; gets more correlated with X and less correlated
with M, maybe 20% of the bias is allocated to the estimated direct effect and the other 80% is

allocated to the direct effect. But still more bias gets assigned to the indirect effect in this case
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(80% versus 20%).

With this understanding, now we can better understand two special situations, as summarized in
Figure 4.4. In the first context, the true underlying process is a parallel mediation model. My; does
not have a direct effect on My and consequently, My; and My are independent once conditional on
X. That is, X wins all possible explanatory power in the competition with M. Once we have X,
M has no predictive power for M. As such, the direct effect is mostly overestimated, accounting
for all the explanatory credit that belongs to the omitted X — My — Y. In contrast, the indirect
effect X — M — Y is not affected at all by the omitted mediator (i.e., the estimated indirect effect

is consistent).

¢ No My - M, (k=0). *  Pxmy — PxMo  Promy = 0-

¢ Once conditional on X, M, has no e Once conditional on My, X has no
predictive power for My,. predictive power for M.

¢ All inconsistency goes to the direct e All inconsistency goes to the indirect
effect X - Y. effect X - My = Y.

Figure 4.4: Two special situations where all inconsistency goes to the direct effect X — Y or all
inconsistency goes to the indirect effect X — My — Y.

In the second context, we have px My = PX,Mg) " PMp,. My = 0. This means X has no predictive
power for My; once conditional on M. Then My wins all the explanatory credit possible in its
competition with X to predict M. As such, all the bias is allocated to the estimated indirect effect
X — Mo — Y and the direct effect X — Y is consistent.

Note the key in the second situation is: once conditional on My, X has no predictive power
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for My. This does not happen when there is no effect from X to My (ap = 0). That is, when My,
is only a confounder for M — Y but not a mediator, even conditional on M, X can still have a
predictive effect on M. Another important note here is that in both two situations in Figure 4.4,
there is a path of My — Y (i.e., bp # 0). When by = 0, only a; is biased. As such, only the
estimated indirect effect is biased, and direct effect is unbiased. The serial mediation model is a

special situation of this where a; = b = 0.

4.6 Applying the Mechanism to Understand the Inconsistency in Longitudinal Designs
When Omitting My,

Recent research has suggested longitudinal designs to test mediation because cross-sectional
examination of mediation can generate biased estimates and longitudinal designs provide more
rigorous inference for mediation effects (e.g., Maxwell & Cole, 2007; Maxwell et al., 2011; Mitchell
& Maxwell, 2013). Yet there may be post-treatment confounders My, invalidating mediation effects
even in longitudinal designs. This section will present how our parameter framework can help us
understand the bias generation in a longitudinal design. More specifically, this section will focus
on one autoregressive model presented by Maxwell et al. (2011). Following Figure 4.5 presents
the path diagram for this model and the formal equations are followed.

This model can be written as follows:

Xi,t+1 = xXl-J + 8Xi,t+l (4.14)
Mi,t+l = mM,-’, + aX,-,, + 8Mi,t+l (4.15)
Yirs2 = YYips1 + DM iy +cXip + €Y 142 (4.16)

where X; ;41 is the treatment status for individual i at time 7 + 1, X;; is the treatment status for
individual i at time 7, M; ;] is the value for individual i on mediator M at time 7 + 1, M; ; is the
value for individual i on mediator M at time 7, ¥; ;47 is the value for individual i on outcome Y at
time 7 + 2, ¥; ;41 is the value for individual i on outcome Y at time 7 + 1, and similarly, Y;; is the
value for individual i on outcome Y at time ¢. We can also tell that the direct effect in this model

is the product of a and b while the indirect effect is c. We assumed that this longitudinal model
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Figure 4.5: Longitudinal mediation model with two unit lag for direct effect of X on Y.

satisfies the stationarity and equilibrium. This means that the causal relationships among variables

and the within-wave correlations are unchanged over time (the variance-covariance matrix among

X1, Yi and M; ; is time invariant).

We then introduced an unobserved mediator My, into this model and allowed this mediator to

have an effect on the observed mediator. To make a clear distinction between these two mediators

and make the notation consistent with our cross-sectional design, we note the observed mediator

of interest as M. The path diagram is presented in the following Figure 4.6.

This model can be written formally as follows:

Xigr1 =xXig+ex;

Moj 41 = miMoi + kMyi: + a1 Xis +€pmp, 4

My 1 = moMyi s + a2 Xis + Epmyy

Yitv2 =YY 141 + 1Mo 11 + DoMyjpp1 +cXip + &

Yi,t+2

(4.17)
(4.18)
(4.19)

(4.20)

where the notation is almost the same as before. The only distinction is that another mediator

My, is introduced so we use My to represent the observed mediator. Similarly, the indirect effect
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Figure 4.6: Longitudinal mediation model with unobserved latent mediator My;.

associated with the observed mediator is the product of a; and . Additionally, the autoregressive
parameters for the two mediators are noted as m and my and k represents the causal effects of
My on Mg, +41. As before, we assumed stationarity and equilibrium, indicating that the causal
relationship and the correlation matrix among X, My, My, and Y are time-invariant. Note in
this longitudinal model, the unobserved mediator My, serves as a lagged confounding, but not
simultaneous confounding. That is, the longitudinal design only has an effect My ; — Mg ;.1 but
not My r+1 = Mo t+1-

Now we apply the same approach LIE to derive the inconsistency in estimating a1, b, and ¢

when omitting My;. The procedure is essentially the same. We first write our true models as:

E(Xp11Xe) =x- X; 4.21)

E (Mo 41|Mys, Mo, Xi) =my - Mo+ k- My, +ay - X; (4.22)
E (My 141|Xe, My ) =mo - My s +az - X; (4.23)

E (Yi42lMo 141, My 41, X:) =y - Yeg1 + b1 - Mo e + b2 - My sy +¢ - X, (4.24)
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By LIE, we can further write above Equation 4.22 and 4.24 to see what happens when My gets
excluded:
E (Mg 411Mo 1. X1) = E |E (Mo 1411My 1 Mo 1. X1) (Mo 4, X1 |
=my-Mo,+k-E(My/X:,Mo,) +ay - X (4.25)
E (Y2lMo 441, Xi) = E [E (Yi2IM0 441, My g1, Xt) Mo 141, Xi]
=y Y1 + b1 - Mo 1+ b E (My 411Xe, Mo 441, Yee1) + ¢ - Xp (4.26)
Now write:
E (My |X:, Mo ;) =y1- Mo, +v2- X (4.27)
E (My 1411Xt, Mo 141, Yis1) = B1 - Vi1 + B2 - Mo pp1 + B3 - X (4.28)
Plugging these two equations back to Equations 4.25 and 4.26, we can get formulas for inconsistency

in estimating a1, b and ¢, as follows, where @, b, and ¢ are estimated effect of ay, b; and ¢

when Mp; is excluded (again, assuming we have population level data, n — o0).

671 - a1 = k . ’}/2 (4.29)
by-by=by- B (4.30)
E—c=by B3 (4.31)

Importantly, as implied by Equation 4.27 and 4.28, y,, 5, and B3 are three regression coefficients.
Specifically, y; is the regression coefficient of X; when we regress My ; on X; and Mg ;. 57 and 33
are regression coefficients of Mg ;.1 and Xy, respectively, when regressing My ;.1 on Y1, Mo 141
and X;.

Figure 31 presents how our parameter mechanism can be extended to this autoregressive longi-
tudinal mediation model to understand how bias (more precisely, inconsistency) is generated when
omitting My. As we will see, the major distinction between the cross-sectional and longitudinal
design is the control of prior X, My, Mp and Y.

We start our consideration with 4. In the cross-sectional design, it is evident to see from the

path diagram that the bias in d; comes from the omitted causal pathway X — My — Mp. a
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Parameter framework in cross-sectional design

Longitudinal design

Omitting the
dashed paths X —
My — Mpleads to
bias for the solid
path X — M.

Omitting the
dashed paths
X—->My—
Mpleads to bias
for the solid
path M, - V.

Omitting the
dashed paths
X->M;->Y
leads to bias for
the solid path
X->Y.

The key regression model:

Cross — setional: E(My|Mg, X) =

Ba-Mg+pB3-X

Longitudinal: E(MU,t+1 |YH1, Mp 41, Xt)
=P1-Yir1 + B2 Mopsr + B3 X,

Figure 4.7: Parameter framework extended to longitudinal designs.
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measures the effect X — M/ plus the effect X — My — M. Now in the longitudinal scenario,
the mechanism is essentially the same: d is biased because it accounts for the effect X; — My ; —
Mg 141 that should be attributed to My, ; as a mediator. The effect of My, — Mg ;41 is captured
by k in the formula but we do not have a parameter for X; — My; ;. We only have a; to represent
Xt — My ;41 in the longitudinal scenario. This is why in the formula we have 7y, rather than
ap. Loosely speaking, y, captures what the effect of X; — My ;11 (ay) projects on X; — My ;.
However, vy, is not equivalent to the correlation between X; and My, because both X; and My,
are also determined by their prior values, namely X;_; and My ;_;. That explains why 5 is the
regression coeflicient of X; when we regress My ; on X; and Mg ;. The presence of My ; in this
regression is exactly controlling for X;_; and My ;_1, because our model implies that Mg ; is
determined by X;_1, My ;1 and its own prior value Mg ;1.

The stories for b; and ¢ are also essentially the same with the cross-sectional design. In the
longitudinal case we still observe that the bias in estimating b; and ¢ are both a weighted version of
br(My,; — Yi41). The two weights for the bias in estimating b and c are still two partial regression
coeflicients from one regression model. The last row of Figure 4.7 presents a comparison between
the key regression model in the cross-sectional desgin versus that in the longitudinal design. In
both situations, we use X and M to predict My, and the weight for the bias in estimating b is the
coeflicient of M) and the weight for the bias in estimating c is the coefficient of X. This similarity
illustrates the competition between X and My is still present in the longitudinal situation: the
unique contribution made by My to explain My composes the weight before b, to generate the
bias in b{, and the unique contribution attributed by X to explain My becomes the weight of by
to form the bias in ¢. The argument about My serving as a confounder in the bias of 5| and as a
mediator in the bias of ¢ is also the same in the longitudinal design.

What is different in the longitudinal design is that now we need to consider time points and
controlling for prior values. In the cross-sectional design, we argue that the competition between X
and My comes from the fact: pathway X — My, splits into two pathways X — My — My — Y

and X — My — Y. Now the longitudinal story is a little different: itis the pathway of X; — My ;11
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that splits into X; — My ;41 — Mo 141 — Y42 and Xy — My ;41 — Y40, This first part (i.e.,
Xt = My 111 = Mo 141 — Yi42) passes through the by pathway and contributes to the bias in by.
The second part (i.e., Xy — My ;41 — Y;42) picks up a mediation effect transmitted through My ;41
and generates the bias in ¢. This helps us interpret why the key regression model in the longitudinal
design is regressing My ;41 on Mg ;41 and X; and why the coefficient of Mg ;1 is responsible
for the bias in b; while the coefficient of X; is responsible for the bias in & Note the longitudinal
design does not really have the effect of My 141 — Mg 141 since My ;41 and Mg ;4 are at the
same time point. But one can loosely interpret this as a projection of the effect My ;11 — Mg 142,
just as previously how we interpret y, as a projection of the effect X; — My 141.

Now we only need to explain why Y;,; shows up as a control variable in the key regression
model in longitudinal design. This is similar to why M, ; is controlled to generate y,. Here Y,
is present as a control for prior values that can have an effect on My 141, Mo ;41 and X;, namely
My, Mo and X;_;. This ties back to the argument about the fundamental difference between
the cross-sectional and longitudinal design: as Maxwell and Cole (2007) argued, what is missing
in cross-sectional examination of mediation is the failure to capture the autoregressive effects.

To summarize, although the longitudinal design to examine mediation is much more compli-
cated, the interpretation of how bias (more precisely, inconsistency) is generated with omitting My,
is essentially the same as the cross-sectional design. The parameter framework depicted in this
chapter allows us to grasp an intuitive path-based understanding of how omitting My generates

bias in both cross-sectional and longitudinal designs.

4.7 Discussion

This chapter leverages the parameter framework to explain how inconsistency is generated when
an unobserved mediator is omitted. Briefly speaking, the inconsistency of @; is due to omitting
X — My — My and thus part of the direct effect X — M should be allocated to this omitted
indirect effect X — My — M, via My. The inconsistency of 5 comes from the omission of

X — My — Mp — Y and the inconsistency of ¢ comes from the omission of X — My — Y.
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Importantly, we can consider the fact that the inconsistency of 5 and ¢ both originates from
X — My as competition between X and M to predict My in a linear regression framework. As
the exposure variable X gets stronger at predicting the unobserved mediator My;, compared to the
observed mediator M), more bias will be assigned to ¢ and less bias will be assigned to bj.
Applying this framework, we can better understand how each My -related parameter affects the
inconsistency, how inconsistency is allocated to either the direct effect from X to ¥ or the indirect
effect via My, as well as inconsistency in some special situations including the parallel and serial
mediation models. Additionally, I showed that the inconsistency underlying a longitudinal design

is essentially the same, except that prior values are controlled in the longitudinal design.

4.8 Limitations and Future Directions

There are at least two limitations of the current chapter that suggest avenues for future research.
First, this chapter focus on understanding how inconsistency is generated when the alternative
mediator is omitted. Future studies can look at how this understanding can be applied in a more
practical perspective. For example, can we bound the inconsistency for the indirect (d1b;) and
direct (¢) effects if we have some ideas about the correlation between the unobserved mediator My;
and the intervention X, and the correlation between My and the mediator of interest M ? Second,
it would be valuable if future studies can develop a sensitivity approach for an unobserved post-
treatment confounder in a longitudinal design, as what we do in Chapter 3 for the cross-sectional

model.
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DISCUSSION

As mentioned in the introduction, this dissertation is centered on causal inference regarding eval-
uation of an intervention, from whether an intervention works to why it works, accounting for the
social and dynamic contexts in which interventions are implemented. The first two chapters focus
on whether an intervention works by proposing a non-parametric case replacement framework to
quantify strength of evidence for inferences in multisite randomized control trials and value-added
measures for teacher effectiveness. The last two chapters focus on why an intervention works by
studying post-treatment confounders in mediating processes.

From a practical perspective, the four chapters represent the effort to refine policy analysis so that
policies regarding the allocation of educational resources can be better informed. As the first step,
we are interested in the total average intervention effect. But summarizing an intervention with only
one estimated effect can be misleading, especially in the context of multisite randomized control
trials. For example, presence of heterogeneity in multisite randomized control trials emphasizes the
importance of considering local contextual effects and causal mechanisms that can help explain why
an intervention works in some sites but not others. Identifying important mediating pathways may
point out an alternative intervention option, especially when the mediating pathway can explain a
large proportion of the causal effect and it is easier or more cost-efficient to manipulate the mediator
directly. Further, considering alternative mediators as potential confounders can help researchers
and policy makers evaluate the robustness of the inference regarding the identified mediator of
interest so that the reallocation of educational resources regarding the mediator of interest can be
made after comprehensive evaluation against potential costs and other alternatives.

There are other ways that mediation studies can inform policy manipulations. For example,
sometimes mediation analysis may present us with two mediating pathways with opposite directions
that cancel out each other and lead to a zero total effect (i.e., average treatment effect), which provides
another example for considering manipulating one mediator instead to achieve the expected changes

in the outcome. Under other scenarios, a mediator can also be a side effect of interest that inheres
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in the intervention. Then knowing the presence of this mediator can allow us to figure out ways to
minimize the negative side effects.

Problems of causal inference can be conceptualized in terms of omitted variables, or in terms
of sampling bias. Both mediators and confounders are third variables that influence the associ-
ation between the predictor of interest and the outcome, and they are statistically identical (e.g.,
MacKinnon et al., 2000). In Chapters 1 and 2, the presence of spillover effects violates SUTVA
and generates bias via playing a similar role as a confounder: by associating with both exper-
iment conditions and outcome measures. Importantly, the association between spillover effects
and experiment condition implies the treatment and control group individuals experience different
levels of spillover effects. For example, positive spillover effects within the treatment group, or
negative spillover effects within the control group, due to non-random assignment of contributors
and spoilers to treatment and control conditions, can bias the treatment effect estimate negatively
(assuming a positive treatment effect). Sometimes capacity constraints can also lead to negative
spillover effects within treatment group (e.g., Maroulis, 2016), leading to downward bias in the
treatment effect estimation. Alternatively, the treatment condition triggers positive spillover ef-
fects from treatment individuals to control individuals, or the control condition triggers negative
spillover effects from control group to treatment group, both of which may cause downward bias
in estimating the treatment effect (again, assuming a positive treatment effect). In other situations,
affecting individuals’ interactions to introduce spillover effects can be one mediating process that
explains why the intervention works. For example, if reducing class size improves students’ learn-
ing through maximizing the learning and teaching among students, then the peer effect becomes a
mediator that helps explain how smaller classes boost students’ performance.

Furthermore, constant effects through simple mechanisms to independent individuals rarely
occur in education research (Frank, Saw, & Xu, 2016). Hong (2015) conceptualizes causal inference
regarding moderation, mediation and spillover as weighting issues in a sampling framework.
Relatedly, the case replacement approach proposed in the first two chapters for spillover and

heterogeneity applies the feature in the counterfactual framework that recast potential sources of
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bias in terms of missing data (Frank et al., 2013). Both replacing observed cases with unobserved
cases and adjusting weights in observed cases are rooted in a sampling framework. Chapters 3 and
4 study mediation within a parametric framework, but they also contribute to existing literature that
applies anon-parametric approach (e.g., Hong et al., 2018) by taking on a path coeflicient perspective
and digging into the effects of a confounding mediator on each path-coefficient estimate. We argue
that parametric and non-parametric approaches complement each other so that researchers can
better understand spillover, heterogeneity, and mediation in education research.

Finally, it is important to note that sensitivity analysis cannot exclude bias, regardless of what
type of approach one uses, either traditional approaches that draw on familiar quantities such as
correlations or percentage of variance explained, or the non-parametric case replacement approach
proposed in Chapters 1 and 2. Before applying sensitivity analysis, one should make sure that best
considerations have been given to research design, model specification, and choice of estimation
approach. Sensitivity analysis cannot substitute any of these crucial steps, but rather provides a
discourse for researchers to communicate with all potential stakeholders regarding the strength of

evidence, after all those efforts are made to remove as much bias as possible.
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DERIVATION NOTE FOR UNOBSERVED MEDIATOR IN A CROSS-SECTIONAL
DESIGN

Introduction

This Appendix derives the inconsistency an unobserved mediator My may bring to the estima-
tion of the indirect and direct effects in a cross-sectional design. The key approach applied in this
derivation is the Law of Iterated Expectations (LIE). I will introduce the true model in Part 1 and
then write the true model in terms of conditional mean (Part 2). After that, I derive several correla-
tions that are useful in later derivation (Part 3). In Part 4, I apply LIE to derive the inconsistency as
a function of parameters that have been derived in Part 3. I work out the formulas for inconsistency
as a function of only correlations in Part 5 and the formulas for percent of inconsistency in Part
6. Part 7 includes the derivation of the error variances for the purpose of simulation (to generate
standardized variables) and also constraints of parameters. Part 8 and 9 discuss the directions of
inconsistency (Part 8) and how the inconsistency changes with parameters (Part 9). The last part
includes some derivation to decompose the total inconsistency into two omitted pathways.

One crucial assumptions made in this derivation is that all variables are standardized.

True model

Note: the causal relationship between two mediators is: My causes M.

M0=k-MU+a1-X+EMO (323)
MU:aZ'X"'EMU (32b)
Y:bl-M0+b2-MU+C-X+EY (320)
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True model in terms of conditional mean

Note: the assumptions underlying the model are actually stronger than this. But the assumptions

listed here are enough for the purpose of derivation in this Appendix.

E(M0|MU,X):k-MU+a1 - X (33a)
EMy|lX)=ar- X (33b)
E(Y|M0,MU,X)=b1-M0+b2-MU+C-X (33¢)

Correlations

Correlation between X and My,

From Eq.32b:

cov(X,My) = ap -var(X)

Assuming all variables are standardized:
pX,MU =a

Correlation between X and M

From Eq.32a:

cov(X,Mp) =k -cov(X,My) +ay -var(X)

Assuming all variables are standardized:

PX. My = kaz +a;

Correlation between My and My,

From Eq.32a:

cov(Mop, My) =k -var(My) +a; - cov(X, My)
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Assuming all variables are standardized:

PMy.My =k +ajay

Correlation between Y and My,
From Eq.32c:
cov(My,Y) = by -cov(My,Mg) + by - var(Myy) + ¢ - cov(My, X)

Assuming all variables are standardized:

PY.My; = b1k +bjayar + by +cay
To summarize,

PX .My = a2

PX.My = kaz +ay

PMy,My =k +ajay

PY .My = bik +biajar + by +cay

Inconsistency if omitting My,

(34a)
(34b)
(34¢)

(34d)

By Law of Iterated Expectation (LIE), the right model that excludes My can be written as

follows:
E(Mp|X) = E[E(Mo|My, X)|X]
=k-E(My|X)+a;-X
E(Y|Mg,X) = E[E(Y|Mo, My, X)|Mg, X]
=by-Mp+by - E(My|Mp,X) +c-X
Write:

EMyl|X) =p1-X

E(MylMp,X) =p2-Mp+p3-X
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Then we get:

EMp|X)=kBy-X+ay-X (37a)

E(Y|M0,X)=b1~M0+b2-,32-M0+b2-,83-X+C-X (37b)

Therefore, we can see that if we omitting My;, we can get inconsistent estimates.

ay=a;+kp (38a)
by =by+ by (38b)
C=c+bypB3 (38¢)

The inconsistency for a; would be: k - B1;

The inconsistency for by would be: b, - B7;

The inconsistency for indirect effect @;5 would be: (a; + kB;) - (b1 + byBr) —ayby;

The inconsistency for ¢ would be: b, - 3.

Following are derivations for 81, 82, 53

From Eq.36a: S is the regression coeflicient of X when we regress My; on X (at the population

level). Therefore,

B1=px,My = a2
Similarly, from Eq.36b: (3, is the regression coeflicient of My when we regress My on M and X;
B3 is the regression coefficient of X when we regress My on M and X (at the population level).

pMo,MU - PX,MU : PX,MO

B2 T2 (39a)
~Px.my
PX.My ~ PMo,My " PX.M,
B3 = g oy 0 (39b)
L=rx M,
(39¢)

where all elements have been derived in Eq.34.
Note: B, and 3 are derived based on formula of regression coefficients as follows (I derived

both of these through the well-known (X’X )~1X’Y and some linear algebra).
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When we regress Y on X1 and X2, the coefficient of X1 is (in terms of correlations):

Py, X1 — PY,X2 " PX1,X2

(40)
2
I=rx1x2
To summarize, we can get following estimates if we omit My;:
ar=ay+k-ap (41a)
by=by+by-k L-a (41b)
— + . .
! ! 2 1—(k-ay+a)?
—(k . (k-
Gociby P (k+ay-ap)-(k-ap+ay) “10)
1-(k-ay+ap)?
We can also get:
3 by k- (1-a3)
ay-by=ay-by+k-ay-by+(ay+k-ap)- 42)

1—(k-ar+ap)?
Inconsistency as a function of correlations only

This section aims to write the inconsistent estimators as a function only of correlations. To
achieve this, we start from Eq.38a, Eq.38b, Eq.38c and formulas for 1, 8, and 53. From these
equations, we can write the inconsistency as a function of correlations and parameters (k and b5).
Therefore, we only need to derive k and b, as a function of correlations and then plug into previous
equations.

From Eq.32a, k is the regression coefficient of My when we regress Mp on My and X.

Similarly, from Eq.32c, b; is the regression coefficient of My; when we regress Y on M, My and
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X. Therefore, we can write the results in terms of correlations:

d1:a1+k-ﬁ1 (43)
PMp.My — PX,Mg * PX,My;
=aytpx.my v — 2 v
~PX. My
by=b1+by- B (44)
1
=b1+

. . . 2 2 2
1+2 pMO’MU pX,MU pX,MO pMO’MU pX’MU pX’MO

2
: (pY,MU +pY,MO : pX,MU ' pX,MO +pX,Y ' pMO’MU : pX,MO - pY,MU : pX’MO
pMO’MU - pX,MU ' pX,MO
1

—PY.Mg " PMp.My — PX.Y * PX,Myy) * 3
~Px.my
C=c+by- B3 (45)

1
=c+

1+2- : : - p? —p% . —p2
pMO,MU pX,MU pX,MO pMO’MU pX’MU pX’MO

2
Py, My *+ PY. My PX My PX My PX.Y - PMg,My * PX. Mg — PY.My; * PX. Mo
pX,MU - pMo,MU : PX,MO
1

—PY.My * PMy.My — PX.Y * PX,My;) * By
X, M)

Note: b, is derived based on formula of regression coeflicients as follows (I derived both of
these through the well-known (X’X )~1X’Y and some linear algebra).
When we regress Y on X1, X2 and X3, the coeflicient of X1 is (in terms of correlations):

1

2 2 2
1+2- PX1,X2 " PX2,X3 " PX1,X3~ le,XZ - pXZ,X3 - le,X3

2 (46)
~(Py.x1+ Py X2 PX1,X3° PX2.X3 + PY,X3 " PX1,X2 " PX2,X3 — PY.X1 P X2.X3

- PY.X2 ' PX1,X2 ~ PY.X3 " PX1,X3)

Percent of inconsistency

In this section, we will derive the percent of inconsistency as a function of correlations.

From Eq.32 we know a, b and c are also functions of correlations, which can be shown as
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follows.

pX,MO - pMO’MU ' pX,MU

a
! 1

2
~Px .My
1

ey . . — 2 2 2
PMg.My ~PX.My " PX.Mo =~ Pyp.my ~ Px.my ~ Py

2
: (pY,MO tPY. My PX.Mg PX.My TPXY " PMo.My " PX.My — PY.Mg " PX My,

— PY.My - PMo.My — PX.Y * PX. M)

_ 1

L2 Py, My PXMy  PX M — P - p% o — P3
oMy "PXMy " PXMo = Ppo.my ~ Px.my ~ PX.Mp

2
: (pX,Y +pY,MU ' pX,MO : pMO’MU +pY,M0 ' pX,MU ' pMO’MU —PX)Yy " pMO’MU
— PY.My " PX, My — PY.My * PX. M)

Together with the previous section, we can get percent of inconsistency as a function of correlations.

a—a; _ PxMy  (PMg.My = PX.My " PX.My)

a1 pPx.Mp - (1 —P§’MU)
by —by _PMg.My ~PX.Mg " PX.My

by PY.Mp ~— PX,Mgp " PX.Y
1

. . . _ 2 _ 2 2
1+2 pMo,MU pX,MU pX,MO pMO’MU pX’MU pX,MO

2
’ (pY,MU +pY,M0 : pX,MU 'pX,MO +Poxy 'pMO’MU ' pX,MO _pY,MU ' pX’MO

—PY.My - PMo. My — PX.Y " PX, M)
c—c pX,MU _pMO’MU 'pX,MO

¢ PXY = PX,Mg " PY,M)
1

) . . _ 2 _ 2 _ 2
1+2 pMO’MU pX,MU pX,MO pMO’MU pX’MU pX’MO

2
(Py. My + PY. My PX. My PX Mg + PX.Y - PMgy.My " PX. Mg = PY,My; * P XMy

—PY.My - PMo. My — PX.Y " PX, M)
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Derive error variation for standardization

In order to have all variables standardized, we need to constrain the error variations. From
Eq.32:
var(Mp) = var(k - My) +var(ay - X) +2-cov(k - My,ap - X) + var(eMO)
var(My) = var(ay - X) +var(epy;)
var(Y) =var(by - Mp) +var(by - My) + var(c - X)+

2-cov(by-Mp,by - My)+2-cov(by-Mgp,c-X)+2-cov(by - My, c-X)+var(ey)

var(ey,) =1 - k* = aj = 2kay - px .y, = 1 = k* — aj - 2kaya; (49a)
var(eMU) =1- a% (49b)
var(ey) =1— b% - b% % - 2b1by - PMo.My — 2bc “PX,Mg) ~ 2bsc - PX, My

=1-b2— b3 —c* - 2b1by - (k+ajay) - 2bjc - (kay +ay) —2azhye  (49¢)
Note: From Eq.49, we can tell that we have following constraints on parameters:

1 - k% - a? - 2kajap > 0 (50a)
1-a5>0 (50b)

1= b3 = b3~ c? = 2b1by - (k +ajay) - 2byc - (kay +ay) - 2azbyc > 0 (50¢)
Discussion about the directions of inconsistency

In this section, we discuss the directions of inconsistency based on previous derivations.

with respect to a

From Eq.41a, we can tell d; —a; > 0 as long as k and a, have the same direction. That is, we
overestimate a; when k and a; are both positive or both negative. If k > 0,a, < Oork < 0,a, >0

we underestimate a.
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with respect to b

From Eq.41b, we can show that the sign of b; — b depends on whether k and b, have the same
direction.
First, 1 —a® > 0 based on Eq.50b.

Second, 1 — (k - ap + ay)? > 0 because:
(k - a2+a1)2 = k2~a%+a%+2ka1a2 < k2+a%+2ka1a2 <1

where the last inequality is based on Eq.50a.
Therefore, we overestimate b; when k and b, are both positive or both negative. If k > 0, b, < 0

or k <0, by >0 we underestimate b.

with respect to ¢

From Eq.41c, we can tell that sign of ¢ — ¢ depends on whether by and ar — (k+ay-ap)-(k-ar+ay)
have the same direction. This is because we have already shown that 1 — (k - ap + a1)2 > 0 when
we discuss inconsistency for .

We overestimate ¢ when by and ay — (k + aj - ap) - (k - ap + ay) are both positive or both
negative. If one positive and one negative then we underestimate c.

Interestingly, from Eq.34 we can tell that:
ap — (k+ay -az) = px. My — PMy,My * PX, M)
Parameter framework: how inconsistency changes with parameters

In this section, we work out partial derivatives of @, b, ¢ with respect to parameters related

to My: aj, by and k.
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with respect to k

From Eq.41a, Eq.41b, Eq.41c

% =ay (51a)
0by  (1=a3)by- [a3k*+ (1 - a})] 5ib)
ok [1 - (ay +azk)?]?

o¢  ba(1—a3){=2azk +ai[(as +azk)* - 11} .
ak (-1+ a% +2ajark + a%kz)2 Clo)

When all parameters are positive and follow the constraints given by Eq.50, it can be easily
da ab .
shown that % and a_kl are always positive.

For 2¢ ¥ k’ we can show that it is always negative by following:
(a1 +azk)? = a? +a3k? + 2kajay < a? + k* +2kaja; < 1 (52)

where the last inequality is based on Eq.50a.

with respect to a,

From Eq.41a, Eq.41b, Eq.41c

Py
0_2 . (53a)
db, ~ 2b2k[a1k+a1a%k+a2(—l+a%+k2)] (53b)
day [1 - (ay +azk)?]?

9E _ bz{a‘l1 + Zai’azk —2ajark(1+ k%) + (1 - k3)(1 + a%kz) + a%[(a% - Dk? - 2]} (53¢)
day [1 - (a) +azk)?]?

.. 0a
When all parameters are positive, da, 2L §s positive.

When all parameters are positive, g% and ‘9—62 can be either positive or negative, depending
on the magnitudes of @ and k. Discussions are as follows.

Fig..8 shows how the sign of % changes when a,, a; and k take on different values. The
dashed line represents the constraint given by Eq.50a. The constraint says that we can only take on

values below the dashed line. The solid line, on the other hand, shows where % is equivalent to
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0. Importantly, this partial derivative is positive when a; and k take on values above the solid line
and negative below the solid line. And these two lines become closer to each other as a; becomes
larger, which are shown from the left figure to the right one.

Similarly, Fig..9 shows how the sign of changes when a,, a1 and k take on different values.
Again, the dashed line represents the constraint given by Eq.50a. And we can only take on values
below the dashed line. The solid line shows where 6802 is equivalent to 0. Above this solid line this
partial derivative is negative and below the solid line it is positive. And the three figures from left
to right show what happens as a, becomes larger.

Therefore, we can summarize as follows:

When a; and k are relatively small (in the left-lower corner), 313 can be positive first then
quickly become negative as ap becomes larger. Instead, 35 is always positive.

aby ab
When a; and k are relatively large (in the center part), ——— a can be always positive. For 8a1

the sign can be negative or first positive then negative.

a2=0.05 a2=0.35 a2=08
0

Partial_bla2

Partial_b1a2

Partial_bla2
Constraint

Constraint

Constraint

Figure .8: Sign of gaﬂ
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Constraint

Partial_ca2
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02

00 ! 0.0

Figure .9: Sign of 66752

with respect to b,

From Eq.41a, Eq.41b, Eq.41c

0d

— =0 54

db, e
b 1-da2

b1 _y. 2 (54b)

abz 1—(k-a2+a1)2

oc¢ :az—(k+a1-a2)-(k-a2+a1) (54¢)

dby 1—(k-ay+a)?

When all parameters are positive (and other restrictions required by standardization), it can be

shown that % is always positive by using Eq.52.

66752 can be either positive or negative, depending on the magnitudes of a1, ap and k.

Fig..10 shows how the sign of % changes when aj, a; and k take on different values. The
dashed line represents the constraint given by Eq.50a. The constraint says that we can only take on
values below the dashed line. The solid line, on the other hand, shows where 6(9752 is equivalent to
0. This partial derivative is positive when a1 and k take on values below the solid line and negative
above the solid line. The three figures from left to right show what happens when a5 turns larger.

Therefore, when a and k are relatively small (in the left-lower corner) and a5 is also very small,
66762 is positive. When a| and k are relatively large (compared to a5 )(in the center part, between

the two lines), 88762 is negative. Importantly, because we are talking about the partial derivatives
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with regards to ¢ and ¢ does not appear in this derivative, the slope always keeps the same no matter

what value ¢ takes.

a2=0.05

Figure .10: Sign of 68_l762

Decompose total inconsistency into two missing pathways when omitting My,

First we write the following equation based on the results in Eq. 41.
(@ -by—ay-bil+[E~cl=ay-k-by+by-By-(aj+k-az)+by- B3 (55)

Then following derivation shows that the last two components by - 8y - (a; + k - ap) + by - B3 is

equivalent to ap - bs.

by Bo-(ay+k-ap)+by- B3 (56a)

2
2 ay —(k+ay-ay) - (k-ax+ay)

.1—(k-a2+a1)2 1—(k-a2+a1)2
bz-k~(1—a%)-(a1+k~a2)+b2~[az—(k+a1 -a2)~(k~a2+a1)]
1—(k~a2+a1)2

(k-ay+ay)-by-[k-(1-a3) - (k+aj-ay)]+by-ay
1—(k-ap+a;)?
(k-a2+a1)-b2-[k—k-a%—k—al-a2]+b2-a2
1—(k-ap+a)?
_—(k-ay+ay)-by-ay-(k-ar+ay)+by-ap
B 1—(k-a2+a1)2

1-a

-(a1+k-a2)+b2-

—ay-by (56b)
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