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ABSTRACT 

IMPROVING THE REPRESENTATION OF IRRIGATION AND GROUNDWATER IN 
GLOBAL LAND SURFACE MODELS TO ADVANCE THE UNDERSTANDING OF 

HYDROLOGY-HUMAN-CLIMATE INTERACTIONS 

By 

Farshid Felfelani 

Hydrological models and satellite observations have been widely used to study the variations in 

the Earth’s hydrology and climate over multitude of scales, especially in relation to natural and 

human-induced changes in the terrestrial water cycle. Yet, both satellite products and model results 

suffer from inherent uncertainties, calling for the need to improve the representation of critical 

processes in the models and to make a combined use of satellite data and models to examine the 

variations in the terrestrial hydrology. The representation of irrigation and groundwater—two 

major hydrologic processes with complex reciprocal interplay—in large-scale hydrological 

models is rather poorly parameterized and heavily simplified, hindering our ability to realistically 

simulate groundwater-human-climate interactions. This dissertation advances the physical basis 

for irrigation and groundwater parameterizations in global land surface models, leveraging the 

potential of emerging satellite data (i.e., data from GRACE and SMAP satellite missions) toward 

a more realistic quantification of the impacts of human activities on the hydrological cycle. A 

comprehensive global analysis is developed to examine the historical spatial patterns and long-

term temporal response, i.e., the terrestrial water storage (TWS), of two models to natural and 

human-induced drivers. Human-induced changes in TWS are then quantified in the highly 

managed global regions to identify the uncertainties arising from a simplistic representation of 

irrigation and groundwater. The potential of improving irrigation representation in the Community 

Land Model version 4.5 (CLM4.5) is then investigated by assimilating the soil moisture data from 

SMAP satellite mission using 1-D Kalman Filter assimilation approach. The new irrigation scheme 



 
 

 
 

is then tested over the heavily irrigated central U.S. Next, the existing groundwater module of 

CLM5 is broadly evaluated over conterminous U.S. and a new prognostic groundwater module is 

implemented in CLM5 to account for lateral groundwater flow, pumping, and conjunctive water 

use for irrigation. In particular, an explicit parameterization for the steady-state well equation is 

introduced for the first time in large-scale hydrological modeling. Finally, the impacts of climate 

change on global TWS variabilities and the implications on sea level change are examined for the 

entire 21st century using multi-model hydrological simulations. The key findings and conclusions 

from the aforementioned multi-scale analysis and model developments are: (1) in terms of TWS, 

notable differences exist not only between simulations of hydrological models and GRACE but 

also among different GRACE products, therefore, TWS variations from a single model cannot be 

reliably used for global analyses; (2) these differences significantly increase in projections of TWS 

under climate change, however, models agree in sign of change for most global areas; (3) TWS is 

expected to decline in many regions in southern hemisphere, but increase in northern high 

latitudes, projected to accelerate sea level rise by the mid- and late-21st century; (4) constraining 

the target soil moisture in CLM4.5 using SMAP data assimilation with 1-D Kalman Filter reduces 

the bias in the simulated irrigation water by up to 60% on average, improving irrigation and soil 

moisture simulations in CLM4.5; (5) the new groundwater model significantly improves the 

simulation of groundwater level change and promisingly captures most of the hotspots of 

groundwater depletion across the U.S. overexploited aquifers; and (6) the simulation with the 

lateral groundwater flow substantially enhances the TWS trends relative to the default CLM5. 

These results and findings could provide a basis for improved large-scale irrigation and 

groundwater modeling and improve our understanding of hydrology-human-climate interactions. 
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CHAPTER 1 

 
1. Introduction 

1.1. Research Motivation  

1.1.1. Global Freshwater Systems and Human Land-Water Management Activities 

The question of how terrestrial water systems have been changing under the dual influence 

of natural climate variability and increasing human activities (e.g., damming, flow regulation, 

groundwater pumping, and irrigation) has been a subject of growing concern and debate in the face 

of increasing water scarcity and crisis around the world (Alley et al., 2002; Famiglietti, 2014; Fan, 

2015; Gleeson et al., 2012). Profound changes in regional terrestrial water storages such as the 

stores in rivers and groundwater systems have been reported, which are suggested to have been 

primarily caused by the acceleration in human alteration of land and water systems, and 

unsustainable use of freshwater resources (Giordano, 2009; de Graaf et al., 2019; Pokhrel, 

Hanasaki, Yeh, et al., 2012; Pokhrel et al., 2015; Rodell et al., 2009; Scanlon, Faunt, et al., 2012; 

Trancoso et al., 2017). The changes in regional terrestrial water storages not only affect terrestrial 

hydrologic systems but also exert influence on the climate systems (Boucher et al., 2004) and 

contribute to the global mean sea level (GMSL) change (Pokhrel, Hanasaki, Yeh, et al., 2012; 

Wada et al., 2016). However, the lack of long-term and continuous in-situ observations of water, 

carbon, and energy fluxes and states worldwide restricts our ability to fully understand the 

changing dynamics of the hydrology-human-climate interactions and the impacts on freshwater 

systems and discharge to oceans (Alley et al., 2002; Döll et al., 2016; Pokhrel et al., 2016; R. G. 

Taylor et al., 2013).  
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Large-scale (i.e., regional to global) hydrological models play an irreplaceable role to 

bridge this gap by providing a spatially complete and temporally continuous simulations of 

hydrological fluxes and stores for a verifiable assessment and a realistic prediction of water 

resources by representing the effects of human activities and climate change. Large number of 

global terrestrial hydrology models have been developed in the recent past. The earliest efforts to 

incorporate the human impacts in hydrological models were made in the early 2000s by 

implementing simple irrigation schemes (i.e., with simple parameterizations for irrigation water 

calculations, crops, and sources of water withdrawal, etc.) in the WaterGAP (Alcamo et al., 1997; 

Döll et al., 1999; Döll & Siebert, 2002) and ORCHIDEE (de Rosnay et al., 2003; Vérant et al., 

2004) models. Noteworthy progress has been made since then to improve the large-scale 

hydrological models from different aspects (Bierkens, 2015) and to advance the representation of 

anthropogenic water management (Döll et al., 2012; Koirala et al., 2014; Pokhrel, Hanasaki, 

Koirala, et al., 2012; Wada et al., 2014, 2017). However, the emphasis was initially put more on 

improving hydrological fluxes such as river discharge and evapotranspiration and less on terrestrial 

water storage (TWS) due the challenges in explicitly representing all TWS components 

(Haddeland, Lettenmaier, et al., 2006; Liang et al., 2003; Overgaard et al., 2006; Pitman, 2003; 

Pokhrel, Hanasaki, Yeh, et al., 2012; Pokhrel et al., 2015).  

Further, physically-based advancements of the models’ subsurface representation, 

including the enhancement of soil configuration, coupling of prognostic groundwater model, and 

improvement of boundary conditions in the soil column (Fan et al., 2007; Maxwell & Miller, 2005; 

Pokhrel et al., 2015; X. Zeng & Decker, 2009), have led to more accurate simulation of TWS in 

some of the hydrological models. These advancements have enabled us to quantify the contribution 

of the human activities to the changes in freshwater systems over the past century and thereby to 
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partition the total TWS change into the natural and human-induced changes; however, the progress 

has been hindered by the inability to capture the effects of heterogeneity present, especially below 

the land surface (Sivapalan, 2018). Further, the use of coarse grid resolution in global studies has 

inhibited the representation of many processes that are relevant at fine scales (e.g., lateral ridge-

to-valley surface and groundwater flow, capturing sunny and shady slopes processes in the context 

of hillslope hydrology) and therefore, the representation of the subsurface dynamics is relatively 

simplistic in most global models (Pokhrel et al., 2015, 2016), mainly due to our limited knowledge 

of the subsurface (Fan et al., 2019). Another aspect of human impact representation in large-scale 

models that remains still poorly characterized is irrigation, which accounts for the largest portion 

of human water use globally and is known to affect land hydrology and climate over varying spatial 

(local to global) and temporal scales (e.g., long-term climate and short-term weather fluctuations). 

Therefore, challenges remain in better parameterizing irrigation, groundwater, and aquifer 

pumping on a physical basis to better capture sub-(surface) heterogeneity and the fine-scale details 

of land-water management practices. 

1.1.2. Advancing Irrigation and Groundwater Representation in Hydrological Models to 
Improve Our Understanding of Human Impacts on the Water Cycle 

Irrigation water use, which accounts for ~90% of consumptive water use globally (Döll, 

2002; Scanlon, Faunt, et al., 2012) and ~40% of total freshwater withdrawals in the U.S. (Dieter 

et al., 2018), has increased significantly over the past several decades and is expected to increase 

further in the future due to growing food demands and rising temperatures (Haddeland et al., 2014; 

Wada et al., 2015). As such, irrigation modeling has become a subject of intense research for 

hydrology, water resources, and climate modeling communities, due to its importance for both 

practical applications and scientific investigations (Pokhrel et al., 2016). Irrigation not only affects 
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local (first-order) to regional (second-order) water resources (Kustu et al., 2010), but also alters 

local to regional climate system (Boucher et al., 2004; J. Jin & Miller, 2011; Lo & Famiglietti, 

2013; Pei et al., 2016; Wei et al., 2012) as well as short-term weather fluctuations (Yamada & 

Pokhrel, 2019) through changes in surface energy budget (Ozdogan et al., 2010; Pokhrel, 

Hanasaki, Koirala, et al., 2012) and carbon fluxes (Foley et al., 2005). For example, intensive 

irrigation in California’s Central Valley Aquifer (CVA) changes local climate and water resources 

but also strengthens water vapor transport toward the southwest, increasing summer precipitation 

in the southwestern US by 15% and streamflow in the Colorado River by 30% (Lo & Famiglietti, 

2013). There have also been clear evidences that development of irrigation in the U.S. High Plains 

Aquifer (HPA) has increased downwind summer precipitation by 20-30%, consequently 

increasing late-summer streamflow in the Midwest.  

Mechanistically, irrigational pumping first enhances soil moisture (i.e., by removing water 

from deep in the ground and adding it to the land surface), then impacts surface energy fluxes (e.g., 

evapotranspiration and atmospheric water vapor), and eventually affects precipitation in the 

regions with strong land-atmosphere (i.e., soil moisture-precipitation) coupling mainly in the 

northern hemisphere (Koster, 2004). Today, there is a growing number of global land surface 

models (LSMs) that can be potentially coupled with atmospheric/climate models to simulate 

irrigation and examine the hydrologic and climate impacts at regional to global scales (Nazemi & 

Wheater, 2015a; Pokhrel et al., 2016).  

Despite of all the progress that have been made, outstanding challenges and opportunities 

still remain to better simulate irrigation water requirement and soil moisture (SM) in irrigated areas 

(e.g., by refining the grid resolution and benefiting from new high resolution datasets to better 
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represent the land surface and subsurface heterogeneity) (Nazemi & Wheater, 2015a; Pokhrel et 

al., 2016; Wada et al., 2017). For example, the threshold and target SM, as the key variables in the 

irrigation schemes used in many LSMs, have been set to largely varying values in different studies 

because no guidelines or data exist on the thresholds used by farmers in different regions 

(Haddeland, Lettenmaier, et al., 2006; Harding & Snyder, 2012; Lawston et al., 2015; Ozdogan et 

al., 2010; Pokhrel, Hanasaki, Koirala, et al., 2012; Sorooshian et al., 2011; Vahmani & Hogue, 

2014; X. Z. Zhang et al., 2017). 

Such differences in the representation of irrigation can lead to strongly varying irrigation 

estimates among models (Pokhrel et al., 2016), which in turn can result in a varying degree of 

change in surface energy balance and associated climate impacts. Moreover, the spatially-constant 

bulk coefficients and parameters employed in the threshold and target SM parameterizations in 

most irrigation schemes cause a small temporal and spatial variability of threshold and target SM 

which in turn underrepresent the heterogeneity in irrigation attributes (e.g., irrigation practices, 

crop-specific water requirements, and irrigation timing).  

Further uncertainties can be added in irrigation modeling due to uncertainties in other 

model parameterizations that are coupled with irrigation, which include an inaccurate 

representation of crop phenology and crop calendar (Peng et al., 2018) and oversimplification in 

the simulation of water availability and extraction from surface water and groundwater resources. 

In particular, groundwater dynamics in large-scale hydrological models is rather poorly 

parameterized (e.g., linear representation of groundwater, lack of SM-groundwater interactions, 

lack of lateral groundwater flow, fixed allocation of total irrigation withdrawals to surface water 

and groundwater sources, lack of fully-coupled surface water-groundwater representation) or even 
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completely ignored in many models (Döll et al., 2012; Leng et al., 2015; Pokhrel et al., 2015; 

Wada et al., 2014; Y. Zeng et al., 2018).  

For example, in the Community Land Model (CLM) which is a state-of-the-art LSMs that 

is widely used globally, despite the presence of a bulk aquifer reservoir at the bottom of the soil 

layer, irrigation water is only extracted from surface water (i.e., from the total runoff in version 

4.5 and from river water storage and ocean model in version 5) as the sole and unlimited source 

for irrigation (Lawrence et al., 2011, 2019; Leng, Huang, Tang, Sacks, et al., 2013). Considering 

the coarse resolution in global simulations (e.g., 0.5o), the lateral groundwater flow is assumed to 

be insignificant and hence ignored (Krakauer et al., 2014), which is not anymore a valid 

assumption in higher resolution model grids (e.g., <0.05o) (Y. Zeng et al., 2018). Further, another 

key characteristic of groundwater model in CLM is the unlimited amount of water in the aquifer 

as well as unlimited source of irrigation water which, for example, results in unrealistic response 

to drought periods (Swenson & Lawrence, 2015). To address these issues and toward developing 

a comprehensive irrigation modeling framework (i.e., consistently integrates surface water, 

groundwater, and irrigation system), it is essential to improve the representation of groundwater 

and irrigation interactions by explicitly simulating groundwater pumping and water table dynamics 

globally, combined with other recent advancements in the literature, e.g., implementation of lateral 

groundwater flow and accounting for a realistic conjunctive water use for irrigation.  

1.1.3. Leveraging the Potential of Emerging Satellite Data in the Hydrological Modeling 

In recent years, emerging satellite-based observations related to hydrological fluxes and 

states have significantly enhanced our ability to map the global heterogeneity in hydrology, to 

monitor and investigate the changes in global freshwater systems and thus, to enhance sustainable 
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water resources management (Sheffield et al., 2018). The satellite products and hydrological 

models complement each other; the use of information from the satellites in combination with 

hydrological models has transformed the way we study global hydrology in many different ways 

(van Dijk & Renzullo, 2011; Famiglietti et al., 2015). Satellite data have been extensively used to 

validate model simulations, particularly over regions with poor in-situ observation networks and 

for the hydrological variables that are difficult to measure at site (e.g., TWS) (Alkama et al., 2010; 

Decharme et al., 2010; Döll et al., 2014; Eicker et al., 2016; Freedman et al., 2014; Grippa et al., 

2011; Landerer et al., 2010, 2013; Rosenberg et al., 2013; Swenson & Lawrence, 2015; H. Xie et 

al., 2012; Yang et al., 2011).  

Satellite data assimilation techniques have been utilized to improve global hydrological 

simulations. For example, the TWS derived from the Gravity Recovery and Climate Experiment 

(GRACE) satellite mission as well as the remotely sensed SM products from the satellites such as 

the Soil Moisture Active Passive (SMAP) have been assimilated into the land surface or ecosystem 

models to enhance the estimate of various hydrological components such as TWS and SM (X. 

Chen et al. 2017; Eicker et al. 2014; Girotto et al. 2016; Houborg et al. 2012; Li et al. 2012; Li and 

Rodell 2015; Zaitchik, Rodell, and Reichle 2008; Khaki and Awange 2019; Alvarez‐Garreton et 

al., 2016; He et al., 2017; Kumar et al., 2015; Lievens et al., 2017, 2015). 

SMAP, launched in 2015, is one of the most recent satellite missions of the National 

Aeronautics and Space Administration (NASA) with hydrologic applications that provides global 

surface SM retrievals with original spatial resolution of 36 km from its radiometer instrument. 

Numerous studies have evaluated SMAP data with ground-based observations (Chan et al., 2016; 

M. Pan et al., 2016), showing that SMAP generally provides SM data with lower errors across 
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different climate regions compared to the other remotely sensed SM products (Kumar et al., 2018). 

A recent study reported that SMAP data can also be used to detect the seasonal timing and spatial 

signature of irrigation (Lawston, Santanello Jr., & Kumar, 2017). Given the increasing length of 

SMAP data record and the high-quality data, there has been an increased use of SMAP data in 

hydrologic research. However, to my best knowledge, the potential of using SMAP data to improve 

irrigation modeling by mimicking the heterogeneity in irrigation has not yet been examined. All 

in all, the improvements in the physics and structure of the models in concert with the emerging 

indispensable satellite remote sensing have enhanced our understanding of the big picture of global 

hydrological changes (Famiglietti et al., 2015). 

1.1.4. Global TWS under Climate Change and the Implications on GMSL 

One of the primarily goals in large-scale hydrologic studies—towards which efforts for 

models’ advancements are directed—is to investigate the impacts of climate change on terrestrial 

hydrology and to assess the resulting consequences on other global changes such as drought 

severity, flood occurrence and GMSL change. TWS is an inclusive compartment of terrestrial 

hydrology which represents water resources availability and is inherently linked to droughts, 

floods, and GMSL change (Pokhrel, Hanasaki, Yeh, et al., 2012; Reager et al., 2016; Tapley et al., 

2019; Thomas et al., 2014; Wada et al., 2016; M. Zhao et al., 2017). Evaluation of the GMSL 

budget shows that land water/hydrology (other than ice sheets and glaciers) is one of the key 

contributors to the GMSL change; however, the magnitude and even the net sign of its contribution 

remain uncertain and heavily debated (Chambers et al., 2017; Reager et al., 2016; Wada et al., 

2016). While a large body of literature exist on the impacts of projected climate change and socio-

economic scenarios on global water availability and use, water scarcity, runoff, and river discharge 

(Alcamo et al., 2003; Arnell, 1999, 2004; Gosling & Arnell, 2016; Haddeland et al., 2014; 
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Hanasaki et al., 2013a, 2013b; Oki & Kanae, 2006; Schewe et al., 2014; Veldkamp et al., 2017), 

impacts of projected climate change on TWS, GMSL change, and drought severity are currently 

unknown.  

The high uncertainties in the projections of climate models in magnitude and even sign of  

changes, together with the secondary uncertainties associated with the physics and structure of 

different components in hydrological models make our assessment of the climate change impacts 

on hydrology and water resources highly uncertain (Schewe et al., 2014). Therefore, it is essential 

to bring together a large ensemble of global terrestrial hydrologic simulations forced by different 

climate models outputs under the various climate change scenarios to first, reduce the above 

uncertainties in the analysis and second, to encompass a wide range of future scenarios of 

greenhouse gases concentration and socio-economic conditions describing the human influences 

such as land use and land management in response to growing population and water demand 

(Frieler et al., 2017).  

Leveraging the multi-model simulations of TWS projection from a large ensemble of 

hydrological models, the future projections of global TWS change can be investigated under 

different climate change and socio-economic scenarios. Future global hotspots of TWS deficit can 

be detected and from a broader perspective, the future TWS contribution to the GMSL can be 

quantified, as yet rarely investigated. 

1.2. Research Goal, Science Questions, and Objectives  

As discussed above, there are both gaps/challenges and opportunities to improve 

hydrological models to advance our understanding of hydrology-human-climate interactions. The 

necessity of using hydrological models to quantify the influence of human activities on terrestrial 
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hydrology (Section 1.1.1) and the need to advance the simplified representation of irrigation and 

groundwater schemes in hydrological models (Section 1.1.2) by leveraging the available data from 

satellite missions (Section 1.1.3) lead me to pursue the overarching goal of my Ph.D. dissertation, 

which is to advance our understanding of hydrology-human-climate interactions by improving the 

irrigation and groundwater parameterizations in the large-scale hydrological models. The 

advancements in irrigation and groundwater models enhance the surface water-groundwater-

irrigation coupling and aquifer depletion simulation which then have broader hydrological 

applications toward assessing the impacts of terrestrial hydrology on GMSL change as well as the 

food, energy, and water nexus under climate change. I ask the following overarching scientific 

question: How can we overcome some of the critical existing challenges in the state-of-the-art 

global LSMs by utilizing novel approaches and emerging datasets? This overarching question is 

addressed by answering the specific science questions under each chapter of the dissertation 

followed by the objectives. 

Chapter 2. How are human land-water management activities affecting the spatial and temporal 

patterns of global terrestrial water storage variations? 

Obj. 1: Examine the historical spatiotemporal variations in TWS over global river basins 

to explain water deficits worldwide. 

Obj. 2: Quantify the contribution of human activities to the total TWS variations. 

Obj. 3: Assess the contribution of different TWS components (e.g., snow water, river 

discharge, SM, and groundwater) to the total TWS variations over different 

global regions/basins. 
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Chapter 3. Can irrigation parameterizations in global land surface models be improved by using 

the emerging soil moisture data from satellites? 

Obj. 1: Present a parsimonious parameterization for SMAP SM extrapolation to the entire 

root zone. 

Obj. 2: Enhance irrigation representation in large-scale hydrological models by 

assimilating SMAP data in the target SM parameterization using a 1-D Kalman 

Filter (KF) in CLM version 4.5 (CLM4.5). 

Chapter 4. How can we improve the simulation of groundwater dynamics and pumping-induced 

aquifer storage change in global land surface models? 

Obj. 1: Implement a prognostic groundwater module which accounts for lateral 

groundwater flow, conjunctive use of groundwater and surface water for 

irrigation, and pumping in the CLM version 5 (CLM5). 

Obj. 2: Examine the role of lateral groundwater flow on simulation of continental-level 

groundwater and TWS. 

Obj. 3: Investigate the impacts of conjunctive surface water-groundwater use for 

irrigation over groundwater and TWS dynamics.  

Chapter 5. How will the global terrestrial water storage change under climate change? 

Obj. 1: Quantify the variations in global TWS under climate change scenarios and detect 

the future global hotspots of TWS deficit. 
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Obj. 2: Investigate the implications of projected global TWS change on GMSL change 

under climate change and explore whether the land hydrology have its current 

positive contribution to GMSL change under climate change scenarios. 

 The scientific question and objectives posed in Chapter 2 are addressed by using the 

global simulations from two hydrological models, i.e., HiGW-MAT (Pokhrel et al., 2015; 

Pokhrel, Hanasaki, Koirala, et al., 2012) and PCR-GLOBWB (van Beek et al., 2011; Wada et al., 

2010). The new irrigation scheme in Chapter 3 and groundwater model in Chapter 4 are 

implemented in CLM4.5 and CLM5, respectively, and verified across highly irrigated and data-

rich regions in U.S. i.e., CVA and HPA. While the present model development is conducted at 

regional and continental scales (chosen to reduce the computational cost), the newly developed 

approaches can be incorporated into any LSM and applied and validated globally. Finally, the 

scientific question and objectives posed in Chapter 5 are addressed by utilizing the global 

simulations of future projections of TWS under climate change from seven terrestrial hydrology 

models, namely five global hydrological models (GHMs): CWatM (Burek et al., 2019), H08 

(Hanasaki et al., 2008a, 2008b, 2018), MPI-HM (Stacke & Hagemann, 2012), PCR-GLOBWB 

(Wada et al., 2014), and WaterGAP (Müller Schmied et al., 2016); one global LSM: CLM4.5 

(Oleson et al., 2013); and one dynamic global vegetation model (DGVM): LPJmL (Bondeau et 

al., 2007). 
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1.3. Dissertation Outline 

The research questions of this dissertation are addressed in separate chapters (Chapter 2 

through Chapter 6). A brief summary of the remaining five chapters is provided as below.  

Chapter 2. Natural and Human-induced Terrestrial Water Storage Change: A Global 

Analysis using Hydrological Models and GRACE 

The global spatiotemporal TWS variations are investigated and TWS variations are attributed to 

climate and human-induced factors. 

Chapter 3. Utilizing SMAP Soil Moisture Data to Improve Irrigation Parameterization in 

Land Surface Models 

A new irrigation modeling framework is presented that assimilated SMAP SM data to set the target 

SM in LSMs. 

Chapter 4. Implementing a Prognostic Groundwater Model with Lateral Groundwater 

Flow, Conjunctive Water Use for Irrigation and Pumping 

Continental-scale groundwater simulations, including lateral flow and pumping, are improved by 

using a newly developed groundwater scheme for CLM5 

Chapter 5. Global Terrestrial Water Storage Change under Climate Change and 

Implications on Global Mean Sea Level  

The future projections of the global TWS is investigated and the implications on the GMSL change 

is quantified by using multi-model ensemble global hydrological simulations. 

Chapter 6. Summary and Conclusions  
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CHAPTER 2 

 
2. Natural and Human-induced Terrestrial Water Storage Change: 

A Global Analysis using Hydrological Models and GRACE 

Based on: 

Felfelani, F., Wada, Y., Longuevergne, L., & Pokhrel, Y. N. (2017). Natural and human-induced 
terrestrial water storage change: A global analysis using hydrological models and GRACE. Journal 
of Hydrology, 553, 105–118. https://doi.org/10.1016/j.jhydrol.2017.07.048. 

 

 

 

2.1. Introduction 

The question of how freshwater systems are changing under the dual influence of climate 

variability and increasing human water exploitation has been a topic of great concern and debate 

in the face of growing water scarcity around the world (Alley et al., 2002; Famiglietti, 2014; Fan, 

2015; Gleeson et al., 2012). Ground-based monitoring of surface water and groundwater systems 

suggests profound changes in surface water flows and groundwater storages globally due to 

accelerating human alteration of land and water systems (Giordano, 2009; Scanlon, Faunt, et al., 

2012) which can be both direct, e.g., flow regulation and groundwater pumping and indirect, e.g., 

changes in climate forcing, CO2 concentrations and impacts on photosynthetic activities (Trancoso 

et al., 2017).  However, the lack of in-situ observations worldwide limits our understanding of the 

dynamic relationship between natural climate variability and direct and indirect human impacts 

(HI)  on freshwater systems (Alley et al., 2002; Döll et al., 2016; R. G. Taylor et al., 2013). Large-

https://doi.org/10.1016/j.jhydrol.2017.07.048
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scale hydrological models play an irreplaceable role in filling this data gap and provide an 

improved understanding of the changes in the water cycle, which is crucial for the accurate 

assessment and realistic prediction of water availability and use. In recent years, satellite-based 

observations of water flows and storages have substantially advanced our ability to better monitor 

the changing water systems at the global scale. In particular, the combined use of the satellite data 

and hydrological models has revolutionized the way we study global freshwater systems (van Dijk 

& Renzullo, 2011; Famiglietti et al., 2015).  

Large-scale hydrological models have been widely used to study global freshwater systems 

and human water use (Nazemi & Wheater, 2015b; Pokhrel et al., 2016). These models can be 

classified into two general types: (i) land surface models (LSMs) and (ii) global hydrological 

models (GHMs) (Haddeland et al., 2011). LSMs, such as the MATSIRO (Takata et al., 2003) and 

CLM (Lawrence et al., 2011), are designed to simulate the land hydrology within the general 

circulation models (GCMs) and Earth system models (ESMs), but GHMs, such as the WaterGAP 

(Alcamo et al., 2003; Döll et al., 2003) and PCR-GLOBWB  (van Beek et al., 2011; Wada et al., 

2010), have been traditionally developed as stand-alone models for offline water resource 

assessment. While LSMs simulate various hydrological processes on a physical basis and solve 

both surface water and energy balances at the land surface, GHMs simulate these processes using 

relatively simple and conceptual approaches even though they are more comprehensive in 

simulating human land-water management practices (Pokhrel et al., 2016). As such, LSMs and 

GHMs have certain limitations in simulating the natural or human-induced changes in various 

branches of the water cycle. In particular, despite noteworthy progress that has been made in model 

improvements over the years (Overgaard et al., 2006; Pitman, 2003; Sellers et al., 1997), water 

table dynamics and groundwater pumping still remain largely ignored or poorly simulated (Nazemi 
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& Wheater, 2015b; Pokhrel et al., 2016), making the models incapable of accurately capturing 

subsurface water flows and storages in general, and the human-induced groundwater storage 

depletion in particular. While the hydrological fluxes such as river discharge can be simulated with 

relatively high accuracy either by calibrating the model with observations (Döll et al., 2003) and/or 

by employing lumped routing schemes to explicitly simulate shallow groundwater flows (Kim et 

al., 2009), these approaches do not guarantee the correct simulation of soil moisture (SM) and 

groundwater storage. Moreover, the uncertainties arising from these deficiencies in model 

parameterizations can be further amplified by the uncertainties in meteorological forcing datasets 

used to drive these models (Decharme & Douville, 2006).  

Advances in satellite observations have enabled us to address some of the challenges in 

using hydrological models for large-scale hydrological studies (Pail et al., 2015). For example, the 

assimilation of terrestrial water storage (TWS) derived from the GRACE satellite mission into 

LSMs has been used to improve global simulation of TWS and its components by model 

calibration and assimilation techniques (Chen et al., 2017; Eicker et al., 2014; Girotto et al., 2016; 

Houborg et al., 2012; B. Li et al., 2012; B. Li & Rodell, 2015; Zaitchik et al., 2008) and to quantify 

the changes in certain variables that are not explicitly simulated by the models (e.g., groundwater 

storage) (Castellazzi et al., 2016; Famiglietti et al., 2011; Feng et al., 2013; S. Jin & Feng, 2013; 

Long et al., 2016; Nanteza et al., 2016; Rodell et al., 2009; Scanlon, Longuevergne, et al., 2012). 

GRACE data has also been extensively used to benchmark the accuracy of hydrological model 

simulations (Alkama et al., 2010; Decharme et al., 2010; Döll et al., 2014; Eicker et al., 2016; 

Freedman et al., 2014; Grippa et al., 2011; Landerer et al., 2010, 2013; Rosenberg et al., 2013; 

Swenson & Lawrence, 2015; H. Xie et al., 2012; Yang et al., 2011); conversely, LSMs have also 

proved useful to evaluate the performance of different GRACE products and processing methods 
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(Klees et al., 2008; Werth et al., 2009) and used as a priori information to restore signal attenuation 

and leakage errors arising from the low spatial resolution of GRACE (Landerer & Swenson, 2012; 

Long, Longuevergne, et al., 2015; Long, Yang, et al., 2015).  

The GRACE and hydrological models complement each other to better constrain the 

different components on the water cycle; however, GRACE products are affected by various 

limitations and uncertainties. First, it provides a large-scale estimate of vertically integrated water 

storage variations, limiting safe interpretation to relatively large regions (>200,000 km2) 

(Longuevergne et al., 2010). Second, GRACE products are affected by latitude-dependent 

uncertainties with higher uncertainties in mid and low latitudes compared to the poles (Wahr et 

al., 2006). Moreover, varying uncertainties can be found even among different GRACE solutions 

i.e., spherical harmonic (SH) products and mascons (Long et al., 2017; Scanlon et al., 2016; 

Watkins et al., 2015) which vary across different global regions.  

GRACE measures the vertically integrated TWS variations caused by both natural and 

anthropogenic drivers. Therefore, hydrological models or other supplementary data are required 

to disintegrate the total TWS into separate components and to partition it into the natural and 

human-induced changes. For example, Human-induced TWS variations are estimated by 

computing the difference between GRACE that includes the human factors and hydrological 

models that simulate only the natural part of the water cycle (Huang et al., 2015; Y. Pan et al., 

2016). Some other studies have used GRACE-based TWS variations and observed or simulated 

surface water storage variations to derive groundwater storage change in depleted aquifer systems 

where in some cases, the GRACE-detected TWS signature is mostly due to human-induced 

groundwater storage change (Famiglietti et al., 2011; Rodell et al., 2009; Scanlon, Longuevergne, 
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et al., 2012) and in some cases it is due to specific climatic events such as climate variability or 

droughts (Russo & Lall, 2017; Scanlon et al., 2015). Although these approaches are useful for 

extracting human-induced TWS variations from models that do not account for human activities, 

they can involve significant uncertainties arising from the errors and uncertainties in two 

independent products (GRACE and models). The recent advancements in representing human 

activities in models (e.g., Pokhrel et al., 2016) provide the opportunity to directly isolate the 

human-induced TWS variations from models (e.g., Pokhrel et al., 2017) and compare the results 

with GRACE-based approaches.  

Given the above background, we use multiple GRACE SH products and results from two 

hydrological models (one LSM and one GHM) to examine the spatio-temporal patterns of TWS 

variations and the uncertainties arising from the use of different GRACE products and hydrological 

models. To limit the propagation of some GRACE errors, we use the strategy to filter model output 

as GRACE before performing a comparison. Both models explicitly simulate the human-induced 

changes in TWS, including the changes in groundwater storage due to pumping, making the results 

directly comparable with GRACE. A detailed analysis is presented for the selected river basins 

located in different geographic regions and having different extent of human alterations in terms 

of flow regulation and groundwater use. Results from the simulation with natural settings (without 

considering human factors) are then used in conjunction with GRACE data to isolate the human-

induced TWS variations from the total TWS change measured by GRACE. Our specific objectives 

are to: (1) examine the global spatial patterns in TWS variations over different river basins, 

especially by quantifying the contribution of different components to the total TWS variations; (2) 

carry out a temporal comparison among multiple GRACE SH products and two models and 

attribute the TWS variations to climate and human-induced factors in the basins where human 
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land-water management has largely altered the terrestrial water balance; and (3) quantify the 

uncertainties in simulated TWS caused by the use of different sets of meteorological forcing data.  

These objectives provide the structural sub-headings used in the Methods, Results, and Discussion 

sections. 

2.2. Models and Data  

2.2.1. Models 

We use two state-of-the-art hydrological models, namely the HiGW-MAT, an LSM 

(Pokhrel et al., 2015) and the PCR-GLOBWB, a GHM (Wada et al., 2014) to simulate the global 

terrestrial water fluxes and storages (excluding Antarctica and Greenland). Both models simulate 

the natural and human-induced changes in flows and storage of water, explicitly taking into 

account groundwater abstractions and the resulting changes in subsurface storage, which is crucial 

to realistically simulate the variations of TWS in regions with intensive groundwater mining. 

However, the two models use different groundwater representations; while PCR-GLOBWB 

simulates the groundwater storage as a linear reservoir model without explicitly representing water 

table dynamics, HiGW-MAT uses a more sophisticated groundwater scheme that explicitly 

simulates the water table dynamics. A detailed description of both models can be found in our 

earlier works (Pokhrel et al., 2015; Wada et al., 2014) but for completeness, we provide a brief 

summary of the models below.  

The HiGW-MAT model is based on the Minimal Advanced Treatment of Surface 

Interactions and Runoff (MATSIRO) (Takata et al., 2003) LSM. In MATSIRO, effects of 

vegetation on the surface energy balance are calculated on the basis of the multi-layer canopy 

model of Watanabe (1994) and the photosynthesis-stomatal conductance model of Collatz et al. 
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(1991). The vertical movement of SM is estimated by numerically solving the Richards equation 

(Richards, 1931) for the soil layers in the unsaturated zone. Surface and subsurface runoff 

parameterizations are based on the simplified TOPMODEL (Beven & Kirkby, 1979; Stieglitz et 

al., 1997). In our recent studies, we enhanced MATSIRO by first representing HI schemes such as 

reservoir operation and irrigation (Pokhrel, Hanasaki, Koirala, et al., 2012; Pokhrel, Hanasaki, 

Yeh, et al., 2012) and then groundwater pumping (Pokhrel et al., 2015), resulting in the latest 

development called the HiGW-MAT.  

In HiGW-MAT, irrigation is simulated by using a SM-deficit-based scheme described in 

Pokhrel et al. (2012). Gridded irrigated areas are based on the Pokhrel et al. (2012). The pumping 

scheme described in Pokhrel et al. (2015) explicitly simulates the amount of water withdrawn from 

aquifer and the associated changes in groundwater storage. The water table dynamics is simulated 

by using the scheme of Koirala et al. (2014). All soil and vegetation parameters and land cover 

data are prescribed based on the Global Soil Wetness Project 2 (GSWP2) (Dirmeyer et al., 2006). 

Subgrid variability of vegetation is represented by partitioning each grid cell into two tiles: natural 

vegetation and irrigated cropland. The crop growth module, based on the crop vegetation 

formulations and parameters of the Soil and Water Integrated Model (SWIM) (Krysanova et al., 

1998), estimates the growing period necessary to obtain mature and optimal total plant biomass 

for 18 different crop types. The leaf area index (LAI) is resolved according to Hirabayashi et al. 

(2005). Surface runoff is routed through the river network using the Total Runoff Integrating 

Pathways (TRIP) (Oki & Sud, 1998). The reservoir operation is based on Hanasaki et al. (2006). 

Data for large and medium-sized reservoirs are same as in Pokhrel et al. (2012), which account for 

the majority of dams having a height of 15m or more.  
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The original MATSIRO and the HI schemes in HiGW-MAT have been extensively 

validated using observed river discharge, TWS, irrigation water withdrawals, groundwater 

pumping, and water table depth (Koirala et al., 2014; Pokhrel et al., 2015; Pokhrel, Hanasaki, 

Koirala, et al., 2012; Pokhrel, Hanasaki, Yeh, et al., 2012; F. Zhao et al., 2017). The results of 

evapotranspiration (ET) have not been validated due to the lack of reliable global ET products, but 

as in any typical global model, the underlying assumption is that since the models are forced by 

observed meteorological data and they perform reasonably well in reproducing river flow, ET 

simulations are also reasonable. 

PCR-GLOBWB is an offline GHM that simulates the interaction of surface water and 

subsurface water through the atmosphere, land surface, two vertically stacked soil layers and an 

explicit underlying groundwater reservoir that is represented as a linear reservoir model 

(Kraijenhoff Van De Leur, 1958). PCR-GLOBWB explicitly simulates the water demands for 

agriculture, industry and households, and associated use from different water sources. The 

irrigation water requirement including the losses is calculated for paddy and nonpaddy crops based 

on the MIRCA2000 dataset (Portmann et al., 2010). The irrigation scheme is dynamically linked 

to the surface and subsurface hydrology schemes to provide a more realistic SM content and ET 

over irrigated croplands (Wada et al., 2014). Other water demands including livestock, industry 

and domestic are calculated based on various available socio-economic data and country statistics 

including livestock densities, GDP, electricity production, energy consumption, and population 

(Wada et al., 2014).  

The vegetation and land cover are parameterized according to the Global Land Cover 

Characteristics Data Base version 2.0 (GLCC 2.0; https://lta.cr.usgs.gov/glcc/globdoc2_0#avhrr) 

https://lta.cr.usgs.gov/glcc/globdoc2_0#avhrr
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and the Land Surface Parameter dataset (LSP2) (Hagemann, 2002). Soil properties are obtained 

from the vector-based FAO Digital Soil Map of the World (DSMW) (FAO, 2003) and the ISRIC-

WISE global dataset of derived soil properties (Batjes, 2005). Using Simulated Topological 

Network (STN30) (Vörösmarty et al., 2000), surface and subsurface runoff are routed along the 

river network. The Global Reservoir and Dam database (GRanD) (Lehner et al., 2011) is used to 

locate the reservoirs on the river network based on the construction year. Reservoir regulation and 

release is simulated based on Hanasaki et al. (2006) and van Beek et al. (2011) to satisfy 

downstream water demands (Wada et al., 2010, 2014). The PCR-GLOBWB model is also 

validated with the observations of river discharge and runoff, TWS, irrigation water requirement, 

and groundwater withdrawal (van Beek et al., 2011; Wada et al., 2014). 

2.2.2. Climate Forcing 

We use forcing data from multiple sources. HiGW-MAT is driven by three forcing 

datasets: (1) the WFDEI (WATCH Forcing Data methodology applied to ERA-Interim reanalysis 

data) (Weedon et al., 2014), (2)  the forcing data from Princeton University (Sheffield et al., 2006), 

and (3) the JRA-25 atmospheric reanalysis data provided by Japanese Meteorological Agency 

(JMA) Climate Data Assimilation System (JCDAS) (Kim et al., 2009; Onogi et al., 2007). The 

results from the third forcing data, which are validated in our previous studies, are used for the 

analysis of TWS, and the other two datasets are used to examine the uncertainty arising from the 

climate forcing data (see Section 2.3.3). PCR-GLOBWB is forced only by WFDEI data and is not 

considered for uncertainty analysis.  
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2.2.3. GRACE Data  

The GRACE data along with model results are used to analyze the TWS variations. We 

use different level-3 SH-based GRACE products of equivalent water height (EWH) from three 

processing centers, namely: (i) the Center for Space Research (CSR) at University of Texas at 

Austin, (ii) Jet Propulsion Laboratory (JPL) at California Institute of Technology, and (iii) the 

German Research Center for Geoscience (GFZ) (available for download from JPL website; 

http://grace.jpl.nasa.gov/data/get-data/) for model evaluation and to characterize the uncertainty 

within the three GRACE products. In general, while the three official products (CSR, JPL, and 

GFZ) underestimate GRACE uncertainties (Sakumura et al., 2014), they provide a fair estimate to 

evaluate hydrological models. The GRACE satellite level 2 data processing delivers the 

dimensionless Stokes’ coefficients (𝐶𝐶𝑙𝑙𝑙𝑙 and 𝑆𝑆𝑙𝑙𝑙𝑙) complete to degree and order 96 (𝑙𝑙 = 𝑚𝑚 = 96 ). 

Corrections and adjustments are needed to reduce noises and isolate the TWS changes from other 

signals visible in GRACE. The GRACE data from aforementioned sources already carry 

corrections and filtering including atmospheric mass changes removal, glacial isostatic adjustment 

(GIA), truncation of SH coefficients at degree 60, and application of destriping filter alongside 

with a 300-km Gaussian smoother.  

It is important to consider observational errors when using GRACE data to evaluate 

models. The GRACE error budget can be separated into three types (Longuevergne et al., 2010): 

(1) errors associated with fundamental GRACE measurements satellite to satellite range rate (~5 

mm EWH at the scale of GRACE resolution limit, ~400 km), (2) errors in atmospheric and oceanic 

corrections (~10 to 20 mm EWH at ~400 km scale) and (3) bias and leakage correction errors 

which can be the largest depending on basin area and context (~30 mm EWH for a 200,000 km² 

basin). In this work, rescaling factors are not used, and the model results are filtered as GRACE to 

http://grace.jpl.nasa.gov/data/get-data/
http://gracetellus.jpl.nasa.gov/data/pgr/
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compare at an equivalent resolution and avoid type (3) errors. This method has been highlighted 

as a robust approach for model evaluation (Güntner, 2008; H. Xie et al., 2012).  

2.3. Methods 

2.3.1. Spatial Patterns in TWS Variations and Contribution of Different Components  

We use the results from the fully coupled versions of both models (i.e., by activating all 

human impacts schemes) to evaluate the model performance in capturing the spatial variability in 

TWS rates measured by GRACE. For consistent comparison with GRACE data, the spatial map 

of simulated TWS rates from both models is transformed into SH domain, truncated at degree and 

order 60, and smoothed by the 300-km Gaussian filter, following Wahr et al. (1998). The spatial 

filtering process reduces the errors and noises as well as the true signals. The use of same filtering 

processes for model outputs, as used for GRACE products, offsets the necessity to reconstruct the 

attenuated signals when directly comparing GRACE-based and simulated TWS (Landerer & 

Swenson, 2012).  

Additionally, understanding how different storage compartments (i.e., snow and ice, soil 

water, river water, and groundwater) contribute to the variations of total TWS is crucial to 

investigate how the changes in these individual compartments can potentially affect the availability 

and utilization of water resources. Isolation of the individual components also provides key 

insights on the interactions and feedback among different components under changing hydrologic 

regime. Here, we use a dimensionless metric called the component contribution ratio (CCR) 

proposed by Kim et al. (2009) to determine the role of different TWS components in modulating 

the total TWS variations in river basins from different climate regions. The ratio is calculated as:  
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𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑀𝑀𝑀𝑀𝑀𝑀
𝑇𝑇𝑇𝑇

 (2-1) 

where 𝑀𝑀𝑀𝑀𝑀𝑀 is the mean absolute deviation of a TWS component (1
𝑁𝑁
∑ |𝑆𝑆𝑡𝑡 − 𝑆𝑆̅|,𝑁𝑁
𝑡𝑡 𝑆𝑆𝑡𝑡 is the 

value of component 𝑆𝑆 at time 𝑡𝑡 and 𝑁𝑁 is the number of months), 𝑇𝑇𝑇𝑇 is the total variability and is 

calculated as summation of all components MADs (∑ 𝑀𝑀𝑀𝑀𝐷𝐷𝑖𝑖
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖=𝑆𝑆 ). The 𝐶𝐶𝐶𝐶𝐶𝐶  values are 

calculated by using HiGW-MAT model results. 

2.3.2. Temporal Variability of TWS in Global Basins: Human-induced TWS Change 

We make an integrated use of GRACE data and models to examine the temporal variability 

of TWS over the selected global river basins and isolate the human-induced TWS change. To 

estimate basin-scale water storage, a simple basin function (which has the value 1 for inside the 

basin and 0 outside) is used. The function is then multiplied by different model and GRACE signals 

to form the basin scale water storage. Since the data are in 1-degree resolution with varying grid 

cell area, an area-weighted arithmetic mean is finally calculated as: 

𝐻𝐻(𝑥𝑥, 𝑡𝑡) =
∑ 𝑆𝑆𝑖𝑖(𝑥𝑥, 𝑡𝑡)𝑛𝑛
𝑖𝑖=1

𝐴𝐴
,   𝑆𝑆𝑖𝑖(𝑥𝑥) = �1 × 𝑠𝑠 × 𝑎𝑎𝑖𝑖            𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

0                         𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
 (2-2) 

where 𝑠𝑠 is the LSM or GRACE estimate, 𝑎𝑎𝑖𝑖 is the cell area, 𝑆𝑆𝑖𝑖 is the weighted estimate for 

each cell inside the basin, 𝑛𝑛 is the number of cells in a basin, 𝐴𝐴 is the total area of the basin, and 

𝐻𝐻(𝑥𝑥, 𝑡𝑡) represents the estimate of water storage for basin at time 𝑡𝑡. 

We quantify the human-induced TWS change using GRACE and hydrological models in 

some of the basins affected by human activities. First, we estimate the long-term linear trend in 

TWS from GRACE observations, PCR-GLOBWB, and HiGW-MAT (simulations with HI). Then, 

we estimate the similar trend using the model results from the simulation with natural setting in 

which all HI schemes are deactivated. We then calculate the difference between the two trends as 
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an estimate of the direct human-induced changes in TWS. To estimate the variations in monthly 

TWS from model results, we use two different approaches. First, for simulations with HI, we 

directly integrate the individual TWS components (i.e., snow water, canopy water, river water, 

SM, and groundwater). Due to explicit representations of human activities in both HiGW-MAT 

and PCR-GLOBWB, all TWS components are explicitly simulated, also taking into account the 

impacts of human activities. In this approach, the vertically integrated TWS is expressed as: 

𝑇𝑇𝑇𝑇𝑇𝑇 =  𝑆𝑆𝑆𝑆 +  𝑆𝑆𝑆𝑆𝑆𝑆 +  𝑆𝑆𝑆𝑆 +  𝐺𝐺𝐺𝐺 +  𝐶𝐶𝐶𝐶 (2-3) 

where, 𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆, 𝐺𝐺𝐺𝐺, and 𝐶𝐶𝐶𝐶 denote surface water, snow water, SM, groundwater, 

and canopy water storages (all terms have the dimension [L]), respectively. The changes in storage 

terms (Equation 2-3) include groundwater storage and water table changes due to pumping; 

changes in surface water reservoirs, and changes in SM due to human water management (e.g., 

irrigation).  

Second, for the simulation with natural setting, we use the water balance approach 

(Famiglietti et al., 2011; Nanteza et al., 2016; Rodell et al., 2004; Syed et al., 2008; N. Zeng et al., 

2008) in which the TWS change is deduced from monthly precipitation, evapotranspiration, and 

runoff as: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 =  𝑃𝑃 − 𝐸𝐸𝐸𝐸 − 𝑅𝑅 (2-4) 

where, 𝑃𝑃 is the observed precipitation, 𝐸𝐸𝐸𝐸 is the simulated actual evapotranspiration, and 

𝑅𝑅 is the simulated runoff (all terms have the dimension [LT−1]). Equation 2-4 can be used over 

large river basins and long-term simulation period with the assumption of no lateral groundwater 

fluxes in the boundaries (Long et al., 2017). However, we use the water balance method only for 

the simulation with natural setting (and not for HI simulations) due to high uncertainties in flux 
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variables, particularly in 𝐸𝐸𝐸𝐸 and 𝑅𝑅 (Long et al., 2014, 2017; Wang, Pan, et al., 2015) that are 

strongly influenced by HI such as irrigation, surface water flow regulation, and groundwater 

storage change due to pumping. While we use Equation 2-3 to derive the TWS from model 

simulations with all HI schemes activated which is used for model evaluation with GRACE, the 

TWS estimated by using Equation 2-4 (based on HiGW-MAT model) is combined with GRACE 

data to isolate the human-induced TWS variations in the highly-managed river basins.  

To better investigate the performance of models in TWS simulations, we decompose the 

observation data and simulated time series into general trend and seasonality using moving 

averages and applying convolution filter. In the decomposition progress, the data (𝑌𝑌[𝑡𝑡] ) is 

disaggregated into general trend (𝑇𝑇[𝑡𝑡]), seasonality (𝑆𝑆[𝑡𝑡]), and residuals (𝑒𝑒[𝑡𝑡]) to form the additive 

model: 𝑌𝑌(𝑡𝑡) = 𝑇𝑇(𝑡𝑡) + 𝑆𝑆(𝑡𝑡) + 𝑒𝑒(𝑡𝑡).  

2.3.3. The Uncertainty from Climate Forcing Data 

We examine the uncertainty in the simulated TWS by using different forcing datasets listed 

in Section 2.2.2. For this purpose, we use only the HiGW-MAT model which is driven by the three 

forcing datasets. Among the three datasets, we use the data from Kim et al. (2009) to derive the 

TWS used for the spatio-temporal analysis, including the comparison with the results from PCR-

GLOBWB model which is driven by the WFDEI data, and the estimation of CCR because the 

same data has been used in our previous model validation studies (Pokhrel et al., 2015; Pokhrel, 

Hanasaki, Koirala, et al., 2012; Pokhrel, Hanasaki, Yeh, et al., 2012). The other two datasets are 

then used to examine the uncertainties in simulated TWS that are caused by the use of different 

forcing data. We did so to ensure that the HiGW-MAT simulations used to derive the key 

conclusion are well-validated before.  
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The results from the uncertainty analysis are derived from filtered simulations and are not 

directly compared with GRACE. Therefore, it is necessary to account for the true signal losses 

(caused by filtering and smoothing) by rescaling the simulations. Here, we use the scaling factor 

approach (Landerer and Swenson, 2012; Long et al., 2015a, 2015b) which estimates the scaling 

factors, also referred as multiplicative factors, from the least squares fit (Equation 2-5) between 

the gridded filtered and unfiltered TWS changes from the model (see Landerer and Swenson, 2012 

and Long et al., 2015a for details) as: 

𝑀𝑀 = �(𝑆𝑆𝑡𝑡 − 𝑘𝑘𝑆𝑆𝑓𝑓)2
𝑇𝑇

 (2-5) 

  where, 𝑀𝑀 is the objective function to be minimized, 𝑆𝑆𝑡𝑡 is the true signal (model output), 𝑆𝑆𝑓𝑓 

is the filtered signal, 𝑇𝑇 is the time steps (here, months in 2002-2008), and 𝑘𝑘 is the scaling factor.  

2.4. Results 

2.4.1. Spatial Patterns in TWS Variations and Contribution of Different Components 

We first evaluate the spatial variability of the long-term trend in total TWS variations 

simulated by the two models with GRACE (the mean of CSR, JPL, and GFZ) TWS trend (Figure 

2-1). Due to high susceptibility of the linear trend to the selection of time window, we use the 

2002-2008 period that represents high diversity in signal patterns with relatively distinct spatial 

variations in positive and negative trends among natural and human-affected global regions, 

especially the downward TWS trends due to groundwater depletion. Overall, a good agreement 

can be seen between GRACE (Figure 2-1a), and both HiGW-MAT (Figure 2-1b), and PCR-

GLOBWB (Figure 2-1c) models in terms of the direction of change; however, significant 

discrepancies are also apparent in terms of the magnitude. For example, the global hotspots of 

groundwater depletion such as the northwestern India and parts of Pakistan, the North China Plain, 
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and parts of Middle East (where the changes in total TWS are known to be dominated by 

groundwater storage change) are detected in both GRACE and models but the magnitude of 

changes varies largely among the three estimates. In northwest India, clear differences can be seen; 

while GRACE data suggest a small downward trend, HiGW-MAT suggests a much larger TWS 

depletion and PCR-GLOBWB shows little change. In the California’s Central Valley Aquifer 

(CVA), HiGW-MAT simulates a larger decrease in TWS compared to the other two estimates, 

which is likely due to overestimation of groundwater pumping as suggested by Pokhrel et al. 

(2015). The performance of PCR-GLOBWB is generally good in many of these regions that are 

affected by human activities, but it doesn't reproduce the GRACE-detected negative trends in parts 

of southeastern Australia and northeastern China.  

In some of the regions with relatively low human influence such as the Amazon, Orinoco, 

and Parana River basins in South America and southern parts of Africa, significant variations are 

obvious among the models and GRACE both in the sign and magnitude. In the Amazon and 

Orinoco, the HiGW-MAT model captures the GRACE trend reasonably well while the PCR-

GLOBWB shows a larger deviation. On the contrary, in the southern parts of Africa HiGW-MAT 

simulates a large positive trend while PCR-GLOBWB simulates a milder trend, consistent with 

GRACE. In the river basins in the northern high latitude such as the Yukon, GRACE detects a 

large negative TWS trend during 2002-2008 which has been suggested to be due to glacier melts, 

permafrost thaw, and snow cover shrinkage (Ge et al., 2013; Spence, 2002; St. Jacques & Sauchyn, 

2009; Wang, Huang, et al., 2015), processes that are not explicitly simulated by both models.  
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Figure 2-1. Spatial pattern of TWS trend from GRACE, and the two models (HiGW-MAT 
and PCR-GLOBWB) for 2002-2008. GRACE results are shown as the mean of the solutions 
from three different processing centers (i.e., CSR, JPL, and GFZ).  

The contribution of the individual storage components to total TWS is quantified for 30 

river basins. The river basins are selected considering: (a) a wide coverage over different climatic 

regions and continents, and (b) a good balance between natural and human-affected regions. Figure 
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2-2 depicts the river basins along with the CCR calculated by using HiGW-MAT model results. 

The size of the circles is proportional to the seasonal amplitude of the total TWS variation, with 

the largest amplitude being 500 mm in the Orinoco River basin. Both models used in the study do 

not explicitly simulate glacier processes, so the surface water component includes only snow and 

river water. As expected, in the northern high latitudes and polar regions snow storage component 

dominates the TWS. The highest contribution of snow is found in the Yenisey (61%), Mackenzie 

(60%), Yukon (59%), Lena (54%), and OB (54%) river basins. Moving toward the mid-latitudes 

and the subtropical area, high snow storage is substituted by surface and subsurface storages. The 

highest contribution of surface water storage can be seen in the Yangtze (33%), Brahmaputra 

(28%), and Ganges (20%), all located in the subtropics and managed by large number of reservoirs 

(Lehner et al., 2011). Subsurface water storage dominatingly modulates the total TWS variations 

in the temperate and tropical regions such as the Niger (97%), Parana (90%), Tocantins (90%), 

and Congo (89%) river basins, and also in river basins with semi-arid climates such as the Murray–

Darling (95%) and Euphrates (88%) basins. The contribution of subsurface water storage is also 

found to be large in the river basins with strong human influence, particularly in regions where 

excessive groundwater is used for irrigation (e.g., the Indus, Huang-He, Euphrates, and Murray-

Darling basins).  
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Figure 2-2. Map showing the selected 30 river basins with the component contribution ratio 
(CCR) for snow water, surface water (rivers and reservoirs), and subsurface water (SM 
and groundwater) storages, shown as pie charts for each of the basins. The CCR values are 
calculated by using HiGW-MAT model results. The size of pie chart is proportional to the 
seasonal amplitude of TWS variation, with the largest amplitude being 500 mm in the Orinoco 
river basin.  

2.4.2. Temporal Variability of TWS in Global Basins: Human-induced TWS Change 

Figure 2-3 presents the seasonal cycle of TWS variations from GRACE, HiGW-MAT, and 

PCR-GLOBWB for the selected basins. We present the range of variations among the three SH 

solutions (CSR, JPL, and GFZ) as the gray-shaded band. In this figure, the basins have been 

classified into three categories, namely the natural, managed, and snow-dominated which are 

shown with white, yellow, and light-blue background, respectively. Similar to the spatial patterns 

of the long-term trend (Figure 2-1), a generally good agreement can be seen between GRACE 

products and models, especially in the basins with less human influence and snow contribution 

(white background). In some of the managed and snow-dominated basins such as the Huang-He 
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(Yellow River), Amur, Murray-Darling, and Yukon the GRACE-model agreement is generally 

poor for both models. In the basins such as the Huang-He, Indus, Amur, Lena, Mackenzie, and 

Yukon notable difference between the two models are also obvious both in terms of the seasonal 

amplitude and timing of peak.  

Also shown in Figure 2-3 are the individual TWS components (i.e., snow, river, soil, and 

groundwater storages) to scrutinize how different storage compartments modulate the total TWS 

signal in different geographic and climatic regions. For clarity of view we present these details 

only from the HiGW-MAT model. In many of the selected basins where the contribution of snow 

is relatively small, the seasonal TWS signal is strongly modulated by the variations in subsurface 

storage, which is governed by the inverse relationship between SM and groundwater. These two 

components compete for the same storage space and thus evolve over time in opposite phase 

(Duffy, 1996; Pokhrel et al., 2013). Note that in HiGW-MAT, the SM and groundwater are 

estimated as water stored above and below the water table depth, respectively, which is different 

than in typical global LSMs and GHMs that consider SM to be the water stored within the fixed 

soil depth (typically top 1-2m) resulting in the same-phase relationship between SM and 

groundwater storages, but with certain time lag. The dominance of surface water can be seen in 

basins such as the Ganges, Brahmaputra, and Mekong where the seasonal flood pulse transports 

large volume of water during the monsoon season. In snow-dominated basins such as the 

Mackenzie, Yenisey, and Yukon a strong seasonal signal of snow accumulation can be seen during 

the boreal spring which is followed by an increase in river water arising from snowmelt.  
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Figure 2-3. Seasonal cycle of simulated and observed TWS and components for the selected 
river basins. Yellow background indicates the region with human impacts and light blue 
background represents snow-dominated basin. Basins with relatively less human influence and 
contribution from snow are shown with white background. The thick black line represents the 
mean of three GRACE products from CSR, JPL, and GFZ and the gray-shaded band shows the 
range of variations among the three GRACE products. While the simulated total TWS from both 
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Figure 2-3 (cont’d) models are shown, the individual components (i.e., snow, river and reservoir, 
SM, and groundwater storages) are shown only from the HiGW-MAT model for clarity of view.  

In Figure 2-4, we provide further details on the inter-annual variability of TWS from 

different GRACE solutions (shown as shaded range) and both models along with the individual 

components from HiGW-MAT. All results are shown as anomalies relative to the 2004-2009 time-

mean baseline to be consistent with GRACE. The simulated TWS from both expansions (Equation 

2-3 and Equation 2-4) is truncated at degree and order 60 and smoothed by the 300-km Gaussian 

filter in all figures corresponding to GRACE products. In Figure 2-4, the slopes of the trend lines 

from GRACE, models (with activated HI modules), and the water balance analysis (i.e., the 

simulation without human activities) are shown at the bottom of each panel. The 𝑝𝑝-value approach 

is used to measure the statistical significance of linear trends from GRACE and model outputs, 

i.e., to determine the probability of whether the simulated trends are non-zero and that is 

statistically significant (Zhou et al., 2014). Results indicate that the TWS trend in natural 

simulation, which is mostly close to zero, is not statistically significant (𝑝𝑝 values > 0.05) in most 

of the managed basins. Further, the 𝑝𝑝 values indicate that the PCR-GLOBWB trend for Euphrates, 

Indus, Murray-Darling, and Volga basins, the GRACE trend for Brahmaputra, Euphrates, Ganges, 

Indus, and Volga basins, and the HiGW-MAT trend for most of the managed basins are statistically 

significant (𝑝𝑝 values < 0.05). 

For most of the managed river basins (except for the Colorado and Murray-Darling), the 

long-term negative trend in the total TWS is larger in GRACE solutions than in the results from 

water balance, suggesting that these basins experienced certain loss of water during the analysis 

period. The PCR-GLOBWB model mostly follows the GRACE trends in most river basins but the 

HiGW-MAT model suggests a substantially larger negative trend in TWS in the managed basins 
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that is primarily due to the decline in groundwater storage (noticeable in the Indus and Huang-He 

basins). This also implies that the pumping scheme in HiGW-MAT may have overestimated 

groundwater pumping as discussed earlier in Figure 2-1. Colorado and Murray-Darling, show 

unexpected increase in GRACE TWS that represents smaller deficit rate than in the natural 

simulation. The positive trend in GRACE data in these basins is primarily due to some wet cycles 

(e.g., year 2005 and year 2010) in their long-term inter-annual variability of TWS. For instance, 

the precipitation increases in the wet year of 2010 in Murray-Darling basin and also the snow 

amount change that is followed by two wet cycles around the years 2005 and 2010 in the Colorado 

basin resulted in such positive overall trends during 2002-2010. As such, if the wet cycles of 2005 

and 2010 are excluded from the analysis, Murray-Darling and Colorado basins also show a 

significant TWS loss.  

The largest difference between GRACE and natural trends can be seen in the Euphrates, a 

transboundary river basin between Iraq, Turkey, Jordan, and Saudi Arabia. While GRACE TWS 

regression line drops at rate of 2.13 cm year-1, only 0.06  cm year-1 of that is caused by natural 

variability, and the rest (2.07 cm year-1) is caused by direct HI. The Ganges River basin with the 

second largest divergence between the natural and GRACE trend lines also experiences a 1.99  

cm year-1 human-induced TWS loss. For this basin, HiGW-MAT performs well especially in 

simulating the drought years (negative peaks). In the Indus, despite a relatively constant and 

positive precipitation trend as well as a small negative P-ET-R trend (0.01 cm year-1 of water 

storage loss), GRACE shows a larger drop in TWS that is 0.82 cm year-1. Clearly, this huge 

difference is due to the widely reported depletion of groundwater resources in part of the basin 

(Rodell et al., 2009; Tiwari et al., 2009). For river basins with considerable snow water component 

(distinguished by light blue background color), HiGW-MAT performs better. In particular, HiGW-
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MAT shows the seasonal variations consistent with GRACE (Figure 2-3 and Figure 2-4) likely 

due to advanced energy balance scheme. In other basins that represent low human influence and 

small contribution from snow (e.g., Amazon, Danube, and Niger), both models simulate TWS 

variability and seasonal cycle well. 
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Figure 2-4. Inter-annual variability in TWS from GRACE and the two models. Background 
colors represent the same as in Figure 3. For the managed basins (top five rows with yellow 
background), the GRACE data and model results are plotted as line diagram on the top and the 
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Figure 2-4 (cont’d) results from the water balance analysis using the natural simulations 
(Equation 2-4) are shown on the bottom as bars. The gray-shaded range represents the range of 
variations of the GRACE products (CSR, JPL, and GFZ) along with the thick black line that 
shows the mean. The individual water storage components are shown only from the HiGW-MAT 
model for clarity of view. 

To provide further insights, we present a decomposition of the TWS signal into the general 

trend and seasonality for two selected river basins, namely the Indus (managed) and the Lena 

(snow-dominated). As shown in Figure 2-5, for the Indus while the PCR-GLOBWB simulates both 

the trend and seasonality in line with GRACE, HiGW-MAT doesn't capture the long-term trend 

despite simulating the seasonality relatively well. This further confirms that the issue in HiGW-

MAT could be the overestimation of groundwater pumping that results in a larger depletion rate 

even though the model simulates the seasonal dynamics of the various land surface hydrologic 

processes as well as water table dynamics. The results for the Lena are contrasting. Here, both 

models capture the general trend rather accurately but the PCR-GLOBWB fails to simulate the 

seasonality and timing of TWS anomaly. Analysis of the results for other basins such as the 

Amudarya, Colorado, and Euphrates (not shown) suggests that the performance of HiGW-MAT 

in these basins is similar to that in the Indus but it performs relatively well in the Brahmaputra, 

Ganges, and Volga basins. The performance of PCR-GLOBWB in most of the other snow-

dominated basins is similar to that in the Lena.  
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Figure 2-5. Decomposition of TWS time series into the general trend and seasonality for the 
Lena (snow-dominated) and Indus (managed) river basins. 

2.4.3. The Uncertainty Arising from the Climate Forcing Data 

The standard deviation of 2002-2008 trend map from three climate forcing datasets 

illustrates high uncertainty in the order of 10 cm year-1 (Figure 2-6a), highlighting the significant 

impact of forcing data selection in model results. Since the results presented here are based on the 

filtered products that we used for comparison with GRACE, it is necessary to consider the 

multiplicative factors (Equation 2-5) to restore the original signals. As seen in Figure 2-6b, the 

scaling factors are in the order of 1-3 for some regions which means that the trends in Figure 2-6a 

could be 1-3 times larger.  The spatial pattern of standard deviation in TWS trend using three 

different forcing datasets (Figure 2-6) in comparison with the discrepancies between the spatial 

pattern of TWS trend from GRACE and HiGW-MAT (Figure 2-1a vs Figure 2-1b) notes that the 

discrepancies between model results and GRACE could partly be contributed by high uncertainties 



 
 

41 

arising from forcing datasets. Furthermore, high standard deviation is particularly obvious over 

the human affected areas comprising northwest of India, northeastern China, southern Australia, 

Argentina, central U.S., and west regions of the Caspian Sea. This is reasonable because the forcing 

datasets are based on reanalysis (e.g., Onogi et al., 2007), which are produced by assimilating the 

available observations with the results from atmospheric models that typically do not account for 

human activities. That is, the forcing datasets, particularly precipitation, may have relatively larger 

biases in the highly managed regions. 

 

Figure 2-6. Standard deviation of TWS trend for 2002-2008 based on the results from 
HiGW-MAT model simulated by using three different forcing datasets (a), and the spatial 
distribution of scaling factors derived from the HiGW-MAT model (b). Since the TWS trend 
is calculated from filtered products that we used for comparison with GRACE, it is necessary to 
consider the scaling factors (when model results are not directly comparing with GRACE) to 
restore the original signals.  

2.5. Discussion 

2.5.1. Spatial Patterns in TWS Variations and Contribution of Different Components 

The spatial patterns of the long-term trend in total TWS from models show a generally 

good agreement with GRACE in capturing the direction of change; however, significant 

differences are found in the magnitude of TWS signal between the two models and GRACE as 

well as between the two models. These differences are highly pronounced especially in the global 

hotspots of groundwater overexploitation identified by various previous studies. This is found to 
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be caused partly by the overestimation of groundwater abstraction and the associated change in 

subsurface storage in the HiGW-MAT model. In other regions, such as the northern high latitudes 

where the TWS variations are largely modulated by snow water storage, the HiGW-MAT model 

generally captures the GRACE-based TWS trend but the PCR-GLOBWB model shows a larger 

deviation from the GRACE trend. The differences between GRACE and models in the high 

latitudes is likely due to glacier melts, permafrost thaw, and snow cover shrinkage processes that 

are not explicitly represented in the models as in any other current-generation LSMs and GHMs 

(Chen et al., 2017; Long et al., 2017). In most of the regions with relatively less human influence 

and snow contribution (e.g., parts of Europe, western Australia, central Asia and northern Africa) 

both models perform relatively well, suggesting higher reliability of model results in these areas.  

These analyses contribute to the discussion on how the two models that include HI 

representations regenerate the spatial patterns of the long-term trend in TWS observed by GRACE. 

Our results corroborate the findings of previous studies that have reported certain discrepancies 

between GRACE and models in some of the river basins studied here by using other GHMs and 

LSMs such as the CLM (Swenson & Lawrence, 2015), WaterGAP model (Döll et al., 2014), and 

GLDAS (S. Jin & Feng, 2013) models. Together, these findings suggest that a single model cannot 

be identified as the best model over all global regions, implying that an ensemble model mean 

could provide a better estimate of TWS variations. 

2.5.2. Temporal Variability of TWS in Global Basins: Human-induced TWS Change 

An in-depth analysis of the seasonal cycle of TWS variations further suggests that the PCR-

GLOBWB tends to perform better in some of the managed basins (e.g., the Indus), in line with 

studies such as Wada et al. (2014). However, it is found that both models do not accurately capture 
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the seasonal dynamics of TWS in some of these managed basins such as the Huang-He and 

Murray-Darling. It is also evident from the results that while one model captures the amplitude of 

the positive seasonal anomaly accurately, it fails to reproduce the negative seasonal anomaly with 

similar accuracy, and this applies to both models (see Huang-He, Indus, Murray-Darling basins). 

This implies that while certain human water management practices such as reservoir operation 

may have been well simulated, the model may have failed to accurately simulate other processes 

such as groundwater dynamics that can act as a buffer during high and low flow seasons. It is also 

important to note that there are differences among the GRACE products in some of these basins 

making it difficult to evaluate the model performance with high confidence. In the snow-

dominated basins (e.g., the Lena, Amur, Mackenzie, and Yukon), the performance of HiGW-MAT 

is relatively good likely due to its relatively robust and physically-based snow melt scheme which 

is based on multi-layer snow energy balance (Takata et al., 2003). 

The partitioning of inter-annual TWS changes into natural and human components in the 

highly-managed basins such as the Indus, Amudarya, Ganges, Brahmaputra, Euphrates, and Volga 

suggests a large deviation in the natural trend from the trend in GRACE data, indicating an 

expansion of human influence in these basins during 2002-2010. It is worth noting that the rates 

of TWS change from HI simulations are remarkably different from GRACE observations in many 

basins, which highlights the uncertainties in simulated trends. The groundwater extraction scheme 

in HiGW-MAT tends to consistently overestimate groundwater withdrawals in some of the human 

affected basins such as Amudarya, Colorado, Euphrates, Huang-He, and Indus, causing larger 

TWS decline compared with both GRACE and the PCR-GLOBWB model. However, in other 

basins such as the Brahmaputra, Ganges, Mekong, and Volga, which also include some managed 

agricultural regions, no such overestimation of groundwater depletion is found. The varying 
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performance of HiGW-MAT in the managed basins is likely owing to the use of inaccurate 

parameters such as the specific yield or overestimation of agricultural demands caused by 

overestimated irrigated areas (Giordano, 2009; Pokhrel et al., 2015). Similar to the results for the 

spatial variability, the PCR-GLOBWB performs relatively better in the managed basins but 

simulates large deviations from both GRACE and HiGW-MAT in the snow-dominated basins such 

as the Amur, Lena, and Yukon.  

Further, the analysis of the general trend and seasonal variability in the Indus and Lena 

river basins shows that while one model captures the general trend in one basin the other model 

performs better in capturing the seasonal variability. These large differences in capturing different 

aspects of the TWS variations in river basins located in different regions again suggest that a single 

model cannot be used with high reliability in all global regions or to simulate all aspects of TWS 

variations.  

2.5.3. The Uncertainty Arising from the Climate Forcing Data 

Results from the HiGW-MAT TWS simulations with three different meteorological 

forcing datasets reveal that, in some regions, the uncertainties in TWS trends due to the uncertainty 

in forcing datasets are as high as the differences among different models, or among different 

models and GRACE data. The forcing uncertainties are particularly pronounced in the highly 

managed regions, possibly due to the large uncertainties in the reanalysis products in which results 

from models without HI are assimilated. Additionally, the uncertainties could be even larger in 

some regions considering the spatial distribution of scaling factors derived from the HiGW-MAT 

model (in line with gridded scaling factors obtained from other studies e.g., Landerer and Swenson, 

2012; Long et al., 2015a that used other LSMs). Such large uncertainties arising from forcing 
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datasets suggest that the model results of TWS based on one particular forcing data need to be 

interpreted with enough caution, which is especially important when using the model results to 

evaluate the disagreements among different GRACE solutions and the performance of various 

filtering and other post-processing techniques applied to GRACE solutions. 

2.6. Conclusions 

This study quantifies the impacts of human activities (e.g., irrigation, reservoir operation, 

and groundwater extraction) on TWS variations over global regions by using multiple GRACE SH 

products and results from two different hydrological models. Two state-of-the-art models are used, 

namely the HiGW-MAT LSM and PCR-GLOBWB GHM, both simulate the natural as well as 

anthropogenic flow of water, also taking into account groundwater abstractions and associated 

changes in subsurface water storage. We find that despite noteworthy progress that has been made 

in incorporating human factors in global-scale LSMs and GHMs, significant limitations still 

remain in accurately simulating the spatial patters and temporal variations in TWS over all global 

regions. In particular, results indicate that while one model performs better in the highly managed 

river basins, it fails to reproduce the GRACE-observed signal in snow-dominated regions, and vice 

versa. Further, in some regions the uncertainties in TWS trends due to the uncertainties in forcing 

datasets underscore the need to consider forcing data uncertainties when evaluating the 

disagreements among different model results and GRACE. Our results from the partitioning of 

total TWS into natural and human-induced components suggest a continuing decline in TWS 

through 2002-2010 in the Euphrates, Ganges, Brahmaputra, Volga, and Indus river basins, which 

is largely human-induced. Overall, our results highlight the need to improve model 

parameterizations for the simulation of human water management and snow physics (e.g., glacier 
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melts, permafrost thaw, and snow cover shrinkage) to reliably simulate the spatial and temporal 

variability in TWS over all global regions.  
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CHAPTER 3 

 
3. Utilizing SMAP Soil Moisture Data to Improve Irrigation 

Parameterization in Land Surface Models 

Based on: 
Felfelani, F., Pokhrel, Y., Guan, K., and Lawrence, D. M. (2018). Utilizing SMAP Soil Moisture 
Data to Constrain Irrigation in the Community Land Model. Geophysical Research Letters 45(23): 
12,892-12,902. https://doi.org/10.1029/2018GL080870 

 

 

 

3.1. Introduction 

Irrigation water use accounts for ~90% of consumptive water use globally (Scanlon, Faunt, 

et al., 2012) and ~40% of total freshwater withdrawals in the U.S. (Dieter et al., 2018). Over the 

past decade, there has been increasing interest in better simulating irrigation processes in global 

land surface models (LSMs), mainly because these models are capable of being coupled with 

atmospheric/climate models and can simulate the local to regional impacts of irrigation on both 

land and atmosphere. de Rosnay et al. (2003) developed one of the early schemes for examining 

irrigation impacts on surface water and energy balance within LSMs that are used to distribute 

mass and energy over and below the land surface to simulate the land hydrology within general 

circulation models (GCMs) and Earth system models (ESMs). Numerous studies subsequently 

used similar schemes to examine global and regional climate impacts of irrigation (e.g., Boucher 

et al., 2004; Sacks et al., 2009). These early irrigation schemes provided the basis to simulate 

irrigation within LSMs but were simplified in many aspects; for example, annual irrigation amount 

https://doi.org/10.1029/2018GL080870
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was prescribed, temporal variation in irrigation amount was ignored, and crop types and growth 

dynamics were not considered. Ozdogan et al. (2010) and Pokhrel et al. (2012) presented relatively 

advanced irrigation schemes for global LSMs by incorporating certain parameterizations not 

considered in previous studies (e.g., improved representation of irrigation amount, method, and 

timing based on crop-growth dynamics), and by coupling irrigation schemes with crop models. 

Numerous studies have since then used similar or modified schemes to examine the hydrologic 

and climate impacts of irrigation at regional to global scales (e.g., Harding and Snyder, 2012; Leng 

et al., 2013a; Pei et al., 2016; Pokhrel et al., 2017; Wada et al., 2014).  

Advances have consequently been made in irrigation schemes used in LSMs through 

improved representation of the amount, method, and timing of irrigation. However, challenges and 

opportunities to better simulate soil moisture (SM) in irrigated areas and hence the irrigation water 

requirement still remain (Nazemi & Wheater, 2015a; Pokhrel et al., 2016; Wada et al., 2017). In 

most irrigation schemes in LSMs (e.g., Haddeland et al., 2006; Ozdogan et al., 2010; Pokhrel et 

al., 2012), the timing and amount of irrigation are determined based on SM deficit in the root zone. 

Irrigation is triggered when root-zone SM drops below a specified threshold. Irrigation water 

requirement is then calculated as the amount required to bring the root-zone SM to the target level. 

Different studies have used a range of values for threshold and target SM, which are the key 

variables in irrigation schemes (Haddeland et al., 2006; Harding and Snyder, 2012; Lawston et al., 

2015, 2017a; Leng et al., 2013b, 2013a; Ozdogan et al., 2010; Pei et al., 2016; Pokhrel et al., 2012; 

Sorooshian et al., 2011). Such differences in the irrigation representation can lead to discrepancies 

in the estimates of irrigation water requirement and irrigation timing among models (Pokhrel et 

al., 2016), resulting in varying impacts on terrestrial water systems (Chaudhari et al., 2018; 

Felfelani et al., 2017) as well as surface energy balance and climate (Sacks et al., 2009). Further, 
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the threshold and target SM parameterizations in most irrigation schemes employ spatially 

constant bulk coefficients and parameters, causing a small temporal and spatial variability of 

threshold and target SM and underrepresenting the heterogeneity in irrigation attributes (e.g., 

irrigation practices, crop-specific water requirements, and irrigation timing). 

A promising approach to address some of these limitations in large-scale LSMs is the 

integration of spatially explicit data from satellite measurements. The recent SMAP satellite 

provides global surface SM with generally low errors across different climate regions (Kumar et 

al., 2018). Numerous studies have evaluated SMAP data with ground-based observations (Chan et 

al., 2016; M. Pan et al., 2016) and used SMAP data to improve hydrological and carbon flux 

simulations (Alvarez‐Garreton et al., 2016; He et al., 2017; Kumar et al., 2015; Lievens et al., 

2015, 2017). Recently, Lawston et al. (2017) demonstrated that SMAP data can be used to detect 

seasonal timing and spatial signature of irrigation. In another study (Brocca et al., 2018), SMAP 

data were incorporated into the soil water balance equation to quantify irrigation water 

requirement. These recent findings imply that SMAP data could potentially be used to better 

constrain and improve irrigation simulations in large-scale LSMs; however, to the authors’ best 

knowledge, such potential has not yet been investigated. 

We propose a novel approach for assimilating SMAP data to overcome the above 

limitations and enhance irrigation simulations by (1) presenting a parsimonious parameterization 

for extrapolating the 5cm SMAP SM to the entire root zone, (2) using a 1-D Kalman Filter (KF) 

for SMAP data assimilation into the irrigation scheme of the CLM4.5, and (3) accounting for bias 

correction of the SMAP data using an a priori scaling approach. Our hypothesis is that the 

assimilation of SMAP data to set the target SM can significantly improve the simulation of 
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irrigation water requirement and SM, thus enabling advancements in the representation of 

irrigation in global LSMs. 

3.2. Study Domain, Data, and Methods 

3.2.1. Study Domain and Data 

The model is set up for a region overlying the High Plains Aquifer (HPA) in central U.S., 

ranked first for groundwater withdrawal among all U.S. aquifers (Pokhrel et al., 2015) and a 

heavily-irrigated and data-rich region for ground-based SM observations (30°N-50°N, 116°W-

92°W; Figure 3-1). The annual total freshwater withdrawals in HPA region are estimated at ~22-

27 km3 year-1 during 2005-2015 (Dieter et al., 2018), of which >90% is used for irrigation.  

 

Figure 3-1. Irrigation area map over study region from Portmann et al. (2010). To fully 
enclose upstream areas of the rivers draining over the High Plains Aquifer (HPA), we include the 
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Figure 3-1 (cont’d) Missouri, Arkansas, and Colorado River basins as well as parts of the Snake 
River Plain (SRP) and Southwest Alluvial Basins in Arizona (ABA). The scatters show the 
location of ground observation stations. Stations where SM time series or vertical profiles are 
validated spotted with red squares. Red rectangle shows SRP region and green box delineates 
ABA region.  

We use version 4 of the SMAP level-3 radiometer SM data for 2015-2017 period to 

generate the daily climatology, which is then re-gridded to 3 arc-minute model grids. The SMAP 

data record is short, which means that extreme events such as wet/drought cycles that might have 

occurred in the period could have an outsize effect on our results. However, this concern is less 

important than at first glance because of the rationale that irrigation maintains optimal SM levels 

for crop growth, preventing SM anomaly caused by wet/drought cycles. Nevertheless, since SMAP 

data might have been affected by other biases (Dong et al., 2018), we apply bias correction using 

an a priori scaling approach, in which the cumulative distribution function of SMAP data 

(𝐶𝐶𝐶𝐶𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) is matched with the CDF of ground observations (𝐶𝐶𝐶𝐶𝐹𝐹𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) located within a sampling 

window of 0.5º radius and assumed as the true data (Kumar et al., 2012; Reichle & Koster, 2004). 

Solving the equation 𝐶𝐶𝐶𝐶𝐶𝐶𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�𝑥𝑥′� = 𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥) for 𝑥𝑥′, SMAP data (i.e., 𝑥𝑥) are scaled to the 

bias-corrected SM (i.e., 𝑥𝑥′). 

The ground-based data are taken from three monitoring networks, namely Soil Climate 

Analysis Network (SCAN), U.S. Climate Reference Network (USCRN), and SNOwpack 

TELemetry (SNOTEL), which are used for both bias correcting SMAP data and validating 

simulated SM (Bell et al., 2013; Bitar et al., 2012; Schaefer et al., 2007). To validate simulated 

irrigation water requirement, we use the USGS census data of irrigation withdrawals (Dieter et al., 

2018; Maupin et al., 2014), available every 5 years since 1985. 
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3.2.2. Existing Irrigation Scheme in CLM4.5  

The CLM (Lawrence et al., 2011; Oleson et al., 2013) is the land component of the 

Community Earth System Model (CESM). The CLM4.5 includes an irrigation scheme based on 

Ozdogan et al. (2010), which is used in conjunction with a prognostic crop module (Levis et al., 

2012; Peng et al., 2018). Irrigated areas are prescribed based on the high-resolution global irrigated 

and rainfed crop areas from Portmann et al., (2010). The irrigation scheme uses the SM deficit 

approach, in which irrigation is activated when the crop leaf area index is greater than zero and 

water is limiting for photosynthesis depending on crop type, wilting factor, and root fraction. 

Irrigation water requirement is then estimated based on the difference between the prescribed 

target SM and the simulated SM in all soil layers within the root zone (𝑖𝑖 = 1, 𝑛𝑛), as: 

𝑆𝑆𝑆𝑆𝑑𝑑𝑒𝑒𝑒𝑒 = �𝑚𝑚𝑚𝑚𝑚𝑚 (𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖 − 𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖, 0)
𝑛𝑛

𝑖𝑖=1

 (3-1) 

where, 𝑆𝑆𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑 is the soil water deficit; 𝑆𝑆𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖  and 𝑆𝑆𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖 are the simulated and target soil 

water amount (all in kg m-2), corresponding to the simulated and target SM, respectively, at 𝑖𝑖th 

layer from the surface. If irrigation is required and 𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑 > 0 , irrigation water (𝑆𝑆𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑 ) is 

withdrawn from runoff and applied directly to the surface at a constant rate during 6-10 am each 

day. Runoff is allowed to become negative when irrigation water requirement is larger than runoff 

(Leng et al., 2013b) so that irrigation water is not artificially suppressed. The target soil water is 

simply the weighted arithmetic mean of minimum soil water (𝑆𝑆𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖)—that prevents crop water 

stress—and soil water at saturation (𝑆𝑆𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖): 

𝑆𝑆𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖 = �1 − 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� × 𝑆𝑆𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 + 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × 𝑆𝑆𝑊𝑊𝑠𝑠𝑠𝑠𝑡𝑡,𝑖𝑖 (3-2) 
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where, 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is an empirical factor that is set globally at 0.7 to roughly replicate the global 

annual irrigation amount observed circa year 2000. Leng et al. (2015; 2013) suggest that the 

globally-calibrated 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 parameter may not be suitable for regional studies and that calibration at 

the scale of administrative units can result in improved regional irrigation simulations. Minimum 

SM (mm3 mm-3) corresponding to 𝑆𝑆𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 is calculated based on the Clapp and Hornberger (1978) 

relation: 

𝑆𝑆𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 = 𝜙𝜙𝑒𝑒,𝑖𝑖 × �
𝜓𝜓𝑜𝑜,𝑖𝑖

𝜓𝜓𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖
�
−1𝐵𝐵𝑖𝑖 

 (3-3) 

where, 𝜙𝜙𝑒𝑒,𝑖𝑖  is the effective porosity, 𝐵𝐵𝑖𝑖  is the Clapp and Hornberger parameter 

representing the soil type (i.e., organic matter, sand and clay fractions), and 𝜓𝜓𝑜𝑜,𝑖𝑖  is the matric 

potential when stomata are fully open, set to -74000 mm, the average of matric potential at wilting 

point (-150000 mm) and field capacity (-3400 mm).  

The existing irrigation scheme in CLM4.5 uses constant 𝜓𝜓𝑜𝑜,𝑖𝑖  for all crops, and other 

effective terms in Equation 3-2 and Equation 3-3 such as 𝜙𝜙𝑒𝑒,𝑖𝑖 , 𝜓𝜓𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖 , 𝐵𝐵𝑖𝑖 , and 𝑆𝑆𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖  only 

represent the soil type. Thus, other parameters that play crucial roles in irrigation estimation (e.g., 

crop type and irrigation practices) are ignored altogether due to the lack of global data. Further, as 

in other LSMs (e.g., Lawston et al., 2015; Pei et al., 2016), CLM4.5 irrigation scheme uses a 

constant bulk coefficient (here 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖; Equation 3-2) globally, which is a major limitation of the 

existing scheme as described above. Finally, the use of fixed irrigated areas representing circa 

2000 is another structural limitation in CLM4.5 because irrigation location and extent can have 

significant interannual variability, especially during wet-dry transitions (Deines et al., 2017). 
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3.2.3. Improved Representation for Target SM in Irrigation Modeling 

Our rationale is that, since SMAP can detect seasonal timing and spatial signature of 

irrigation (Lawston, Santanello Jr., & Kumar, 2017), SMAP SM retrievals can be used to constrain 

the target SM in irrigation parameterizations, enabling us to capture the effects of some of the 

missing irrigation attributes (e.g., irrigation water requirement for different crops) and practices 

(i.e., drip, sprinkler, and flood systems). In using SMAP data, we set the target SM of each irrigated 

grid cell on any particular day of the year as a function of daily climatology of SMAP data for the 

given grid cell and day of the year. The daily climatology of SMAP data is assumed to represent 

the daily average level of SM maintained by local farmers based on the crop type, atmospheric 

conditions, and irrigation practice during the SMAP period.  

A realistic use of SMAP data for SM-based irrigation modeling requires vertical 

extrapolation of SM from 5cm to the entire root zone. Various filtering approaches have been 

suggested to relate the root-zone SM to surface SM (observed by satellite sensors), by applying 

recursive equations on time series of surface SM to update certain parameters (e.g., characteristic 

time length and gain factor) and then to estimate the root-zone SM (Albergel et al., 2008; Sabater 

et al., 2007). Here, for simplicity, we propose a parsimonious (i.e., requires minimal parameters) 

formulation based on the concept of Clapp and Hornberger (1978) to vertically extrapolate the 

SMAP SM as a function of the model soil type (represented in 𝐵𝐵𝑖𝑖) and the degree of saturation 

(𝜃𝜃∗ = 𝑆𝑆𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖 
𝜙𝜙𝑒𝑒,𝑖𝑖

). The target SM for soil layers deeper than 5cm from the surface is then computed 

as:  

𝑆𝑆𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖 = 𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,5𝑐𝑐𝑐𝑐 + 𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,5𝑐𝑐𝑐𝑐 × �1 − �1 −
𝑆𝑆𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖 
𝜙𝜙𝑒𝑒,𝑖𝑖

�
𝐵𝐵𝑖𝑖
�

 

 (3-4) 
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where, 𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,5𝑐𝑐𝑐𝑐 is the SMAP SM and 𝑆𝑆𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖 is the target SM in layer 𝑖𝑖, both in mm3 

mm-3. Overall, the multiplying term (1 − (1 − 𝜃𝜃∗)𝐵𝐵𝑖𝑖) starts from 0 and approaches unity as the 

degree of saturation ranges from 0 to 1. Therefore, 𝑆𝑆𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖 ranges from 𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,5𝑐𝑐𝑐𝑐 in the top two 

layers (where depth is less than 5 cm) to twice the 𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,5𝑐𝑐𝑐𝑐 close to the water table (where 

θ∗ ≈ 1). The vertical profile of extrapolated SMAP SM thus derived is presented in Figure 3-2, 

which is comparable with the temporally-averaged vertical SM profile discussed in previous 

studies (e.g., Zeng and Decker, 2009). 

 

Figure 3-2. The variation of the multiplying term in Equation 3-3 (i.e., the vertical 
extrapolation of SMAP data) as a function of degree of saturation for different soil types. 
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Figure 3-2 (cont’d) The extrapolation of the SMAP top-5-cm SM data to deeper depths uses the 
degree of saturation and Clapp and Hornberger coefficient (i.e., parameter B in Equation 3-3). 
The parameter 𝐵𝐵 represents different soil types (e.g., 4.05 for sand, 5.3 for silt loam, 8.52 for 
clay loam, and 11.4 for clay; also see Table 2 Clapp and Hornberger, 1978). Comparison of clay 
soils (i.e., larger 𝐵𝐵) to sandy soil types (i.e., smaller 𝐵𝐵) suggests a relatively drastic reduction of 
SM in sandy loams as the degree of saturation decreases toward the ground surface, implying 
that in clay loams that have strong capillarity, water table can be felt more near the surface 
compared to the sandy loams (Fan et al., 2007).  

We test the original CLM4.5 irrigation scheme and two new representations for target SM 

using SMAP data assimilation by: (1) directly integrating raw SMAP data, and (2) assimilating 

SMAP data using KF with and without bias correction. In the direct integration approach, the target 

SM at each timestep is set by evaluating Equation 3-4, given the daily climatology of SMAP SM 

for the day of the year and the grid cell considered. If there is no SMAP observations for the day 

of the year, the scheme relies on the CLM4.5 estimation of irrigation water (Section 3.2.2). In the 

second approach, original and bias-corrected SMAP data are assimilated into the irrigation scheme 

using 1-D KF to set the target SM based on the SMAP data for the day of the year and the grid cell 

considered as well as adjacent spatial and temporal grid cells. That is, some degree of ergodicity 

is assumed in the assimilation framework following previous studies (e.g., Reichle and Koster, 

2004). We note that, SMAP data are assimilated into CLM to modify the target SM representation 

in irrigation parameterization, and not to directly adjust SM, meaning that SM simulation is not 

constrained by SMAP data and hence SMAP can be used for an independent validation of 

simulated SM. 

3.2.4. SMAP Data Assimilation using 1-D KF 

In the SMAP data assimilation using 1-D KF, the state variable is updated through 

iterations based on a weighting scheme as: 
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𝑋𝑋𝑘𝑘 = 𝑋𝑋𝑘𝑘𝑝𝑝 + 𝐾𝐾 �𝑌𝑌𝑘𝑘 − 𝑋𝑋𝑘𝑘𝑝𝑝� (3-5) 

where, 𝑋𝑋𝑘𝑘 is the updated state of 𝑋𝑋, 𝑋𝑋𝑘𝑘𝑝𝑝 is the model prediction of state 𝑋𝑋 at iteration 𝑘𝑘, 𝑌𝑌𝑘𝑘 

is the measurement of the state at iteration 𝑘𝑘, and 𝐾𝐾 is the Kalman gain which determines the 

contribution of observation to the updated state variable based on the error terms of model 

estimation and observation. Here, the state variable (𝑋𝑋𝑘𝑘) at each grid cell is the target SM that 

enters the KF loop with an initial value equal to the target SM from the original CLM4.5 calculated 

from Equation 3-2 in the main paper. Because of short SMAP data record, we assume some degree 

of ergodicity in the assimilation framework following previous studies (e.g., Reichle and Koster, 

2004). That is, 𝑌𝑌𝑘𝑘 is the vector of SMAP observations neighboring the point of simulation in time 

and space. The vector 𝑌𝑌𝑘𝑘 includes the daily-averaged SMAP observation for the day of the year 

and the grid cell being considered, one-month temporal succession of SMAP data (from 15 days 

before through 15 days after) for the grid cell being considered, and SMAP observations for the 

neighboring cells within the range of 1.5º around the grid cell being considered. The Kalman gain 

is evaluated as: 

𝐾𝐾 =
𝑃𝑃𝑘𝑘𝑝𝑝

𝑃𝑃𝑘𝑘𝑝𝑝 + 𝑅𝑅
 (3-6) 

where, 𝑅𝑅 is the error variance of observations, which in multi-dimensional state vector 𝑋𝑋 

(i.e., in multi-dimensional KF) is presented as error covariance matrix. Here, the error variance 

represents the uncertainties in SMAP data. We set the SMAP error variance as a constant value 

for the entire study domain following He et al. (2017). Further, 𝑃𝑃𝑘𝑘𝑝𝑝is the error variance of the 

model estimate and is updated at the end of each iteration as: 

𝑃𝑃𝑘𝑘+1𝑝𝑝 = (1 − 𝐾𝐾)𝑃𝑃𝑘𝑘𝑝𝑝 (3-7) 
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In the SMAP_KF and SMAP_KF_BC simulations that use KF data assimilation, a white 

noise of ±0.015 mm3 mm-3 is added randomly to SMAP data following He et al. (2017). The 

uncertainty in SMAP data is set to 0.09 mm3 mm-3 across the study area (see Table 3-1), which is 

based on our regional assessment of SMAP data validated by all available in-situ observations 

from SCAN and USCRN networks. 

Table 3-1. The RMSE of the SMAP data using ground observations. The RMSE of SMAP 
data using SNOTEL stations, located in the western half of the study domain where irrigation is 
mostly underestimated in SMAP-based simulations (i.e., SMAP_raw, SMAP_KF, and 
SMAP_KF_BC) shows larger error compared to the other ground networks.  

 GROUND OBSERVATION NETWORKS 

DOMIAN SCAN  
(# of Stations) 

USCRN  
(# of Stations) 

SNOTEL  
(# of Stations) 

Entire Study Domain 0.096 (85) 0.099 (127) * (573) 

Western Half (116°W-
105°W) 0.095 (51) 0.069 (81) 0.137 (570) 

* Almost all SNOTEL stations are in the western half of the study domain 

3.2.5. Experimental Design 

We conduct five sets of offline simulations (i.e., CLM decoupled from CESM and forced 

by meteorological data) using CLM4.5 with: (1) no crop and irrigation schemes (NOirrig 

simulation); (2) the default irrigation scheme (control simulation; CTRL), (3) the improved 

representation for target SM by directly integrating raw SMAP data (SMAP_raw); (4) the 

improved representation for target SM enhanced by 1-D KF (SMAP_KF); and (5) the improved 

representation for target SM enhanced by using a priori bias reduced SMAP data and 1-D KF 

(SMAP_KF_BC). The crop model is activated for all simulations except for NOirrig. The model 

is set up at high resolution of 3 arc-minute (0.05º) to capture fine-scale details of irrigation 

processes and reduce scale mismatch with field observations. The model is first spun up for 100 
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years; simulations are then conducted for 1985-2016 period using the North America Land Data 

Assimilation System phase II (NLDAS2) forcing data (Xia et al., 2012).  

3.3. Results and Discussion 

Figure 3-3 shows the spatial variability of top-5cm SM from SMAP and CTRL, along with 

differences between the SM from SMAP and NOirrig, and SMAP_KF and CTRL, all averaged for 

June-August (JJA) 2015-2016. It is evident from Figure 3-3a,b that broad wet/dry patterns of SM 

are reasonably reproduced in CTRL. However, a significant wet bias (up to ~0.18 mm3 mm-3) 

compared to SMAP observations can be discerned especially in regions over HPA, SRP and 

western portions of the domain (Figure 3-3a,b). This SM overestimation in CTRL is due in part to 

the overestimation of irrigation water (discussed in Figure 3-4). However, multiple other factors 

such as evapotranspiration and soil resistance in CLM (Lawrence et al., 2011; Sakaguchi & Zeng, 

2009; Swenson & Lawrence, 2014), biases in precipitation, and uncertainties in runoff 

parameterizations could have also contributed to a certain extent. To isolate the potential SM bias 

caused by these factors, surface SM from NOirrig is deducted from SMAP data (Figure 3-3c); a 

large wet bias (up to ~0.15 mm3 mm-3) is found even in the absence of irrigation. Further, the large 

wet bias in surface SM seen in CTRL is reduced by up to 15% and 40% over HPA and SRP, 

respectively, in SMAP_KF (Figure 3-3d). This bias reduction results from the lower target SM in 

the improved irrigation representation in SMAP_KF as dictated by SMAP data; consequently, 

irrigation water requirement is essentially reduced in SMAP_KF. We note that the three-month 

average SMAP SM is generally drier than in NOirrig (Figure 3-3c); regardless, irrigation is 

triggered when daily SMAP SM becomes wetter than that in NOirrig even when the 

monthly/seasonal SMAP SM is drier. This is likely caused by a short surface SM memory during 

spring-summer time and in dry regions (Rahman et al., 2015; Wu & Dickinson, 2004). 
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Figure 3-3. Spatial distribution of top-5cm SM (averaged for JJA of 2015-2016) from 
SMAP satellite observations (a), CTRL (b), the difference between NOirrig simulation and 
SMAP observations (c), and the change (percentage) in surface SM from SMAP_KF 
relative to CTRL (d). 

Figure 3-4 presents the county-level comparison of simulated annual total irrigation water 

requirement with USGS data for census years during 2005-2015; the data for years other than 2015 

are used as out-of-sample test data to evaluate irrigation simulations for non-SMAP period. Results 
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for earlier years during 1985-2005 are shown in Figure 3-5. We note that CLM4.5 simulates 

irrigation water requirement without considering field losses (e.g., conveyance and application 

losses) but USGS data represent total withdrawals. Thus, for consistency, we convert USGS 

withdrawals to equivalent water requirements by multiplying withdrawals by traditional irrigation 

efficiency obtained from Jägermeyr et al. (2015) (Figure 3-6c).  

 

Figure 3-4. County-level difference between annual total irrigation water requirement 
from different simulation settings and USGS data during 2005-2015. USGS withdrawals are 
converted to equivalent water requirements, and 3-arc-minute model results are aggregated for 
each county. The dark black outline indicates HPA and the red and green rectangles show SRP 
and ABA regions, respectively.  
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Figure 3-5. Same as Figure 3-4 but for the census years during 1985-2005. 

As it is evident in Figure 3-4, significant improvements in the simulated irrigation water 

requirement are achieved in other simulations compared to CTRL. The CTRL overestimates 

irrigation water requirement for regions over HPA, Southwest Alluvial Basins in Arizona (ABA), 

the Snake River Plain (SRP) (green and red rectangles in Figure 3-4), Montana, New Mexico, and 
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eastern Colorado for all years (Figure 3-4a,e,i). Conversely, CTRL underestimates irrigation in 

western Colorado, Wyoming, and southwest of Montana. These comparisons clearly demonstrate 

the deficiency in the default CLM4.5 irrigation scheme in accurately capturing the amount of 

irrigation water applied, especially over highly-irrigated areas (e.g., HPA and ABA; Figure 3-6a). 

We make the following key observations. 

 

Figure 3-6. Mean (a) and standard deviation (b) of USGS irrigation water withdrawals for 
census years during 1985-2015. Red rectangle shows SRP region and green box delineates 
ABA region. The mean irrigation efficiency is also shown for counties (c) based on the data from 
Jägermeyr et al. (2015).  

First, notable improvements are found in SMAP_raw (Figure 3-4b,f,j) compared to CTRL 

(Figure 3-4a,e,i), most noticeably over HPA. We find that SMAP detects a likely accurate SM in 

these highly-irrigated areas over HPA, thus improving the target SM and hence the irrigation water 

requirement compared to that in CTRL which uses a static (i.e., temporally-invariant; Figure 3-7) 

soil-type-based irrigation trigger threshold (Section 3.2.2). In some counties in the west of the 

domain, irrigation is underestimated because of relatively low SM in SMAP data over large SMAP 

grids (36 km) that are sparsely irrigated (Figure 3-1); that is, a decreased target SM is set in the 

model. The assessment of SMAP data quality against ground networks indicates that the SMAP 
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error estimate is higher in the western half of the domain, covered mainly by SNOTEL stations 

(Table 3-1). This implies that the potentially lower SMAP data quality in the western half of the 

domain could have contributed to the underestimation of irrigation. On the contrary, there are areas 

of overestimated irrigation water requirement in northwestern Utah, western Montana, and western 

ABA, which coincide with high SM in SMAP data (Figure 3-3a).  

 

Figure 3-7. Spatial variability of target SM averaged in soil layers and for JJA of 2010 
from CTRL (a), SMAP_KF (b), and SMAP_KF_BC (c) simulations. Temporal variability 
of target SM for sample grid cells (which are marked by stars in spatial maps a-c) is shown 
for the entire year 2010 (d-i). The white area in northern HPA shows that irrigation is not 
triggered during JJA. The target SM in the CLM4.5 irrigation scheme (CTRL) does not vary in 
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Figure 3-7 (cont’d) time and its spatial variability, prescribed as a function of soil type, is 
generally small. Bias correction locally alters the SMAP-based target SM in areas such as 
Colorado and Utah (c compared to b); however, most of the other areas are affected by very 
slight change in SMAP target SM, mainly due to similarity of CDFs of SMAP and ground data 
or absence of concentrated ground data in the neighboring cells.  

Second, the positive bias in irrigation water requirement over HPA is further reduced for 

most of the years when the 1-D KF is applied (Figure 3-4c,g,k, Figure 3-5, Table 3-2, and Table 

3-3). For example, the bias in total irrigation water requirement in HPA reduces by up to 60% from 

CTRL to SMAP_KF when compared with USGS data for years 2005, 2010, and 2015. Moreover, 

application of the filter also enables a significant improvement in the highly overestimated 

irrigation water requirement in regions of ABA, Utah and Montana in SMAP_raw (Figure 

3-4b,f,j). These improvements are achieved through dampening of the potential noise in SMAP 

data by considering the underestimated signals from the temporally and spatially neighboring grid 

cells (See Section 3.2.3 and Section 3.2.4). However, KF does not reduce the underestimation of 

irrigation water requirement for some counties in SRP and ABA because the neighboring SMAP 

observations used in KF are also dry, meaning that the surrounding regions are also under-irrigated 

(Figure 3-4c,g,k compared to Figure 3-4b,f,j).  

Finally, improvements are found in results from the application of bias correction of SMAP 

data using ground observations (Figure 3-4d,h,l) compared to those obtained from the application 

of KF alone (Figure 3-4c,g,k), especially over HPA and for years 2015, 2010, 1990, and 1985 

(Table 3-2 and Table 3-3). However, these improvements are relatively small and results from 

SMAP_KF_BC resemble SMAP_KF results, due primarily to similarity in target SM between the 

two simulations (Figure 3-7). Nevertheless, results from bias correction confirm that the bias in 
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simulated irrigation water requirement is not primarily due to the use of SMAP data for the 2015-

2016 period for all simulation years.  

Comparisons for other census years (Figure 3-5) show similar performance as for 2005-

2015 discussed above, which is primarily because of (1) the target SM that is constant for all years 

despite the year-round variability in SMAP simulations, and (2) small temporal variability of 

USGS data throughout 1985-2015 (Figure 3-6b). In general, Figure 3-3c and Figure 3-4 suggest 

that CLM4.5 tends to overestimate irrigation and the improvements in irrigation simulation are 

achieved likely due to the reduced wet bias resulting from the constrained target SM through 

assimilation of SMAP data. Utilizing higher quality SMAP products with longer record could 

further improve irrigation estimation. 

A summary of statistical measures obtained from the state-level comparison of simulated 

irrigation water requirement with USGS data for all census years is provided in Table 3-2 and 

Table 3-3 for the three states that cover the majority of HPA (i.e., Nebraska, Kansas, and Texas). 

These statistics corroborate our findings that promising improvements are achieved in all modified 

model settings compared to CTRL. For example, the root-mean-square error (against USGS data) 

of simulated irrigation water is reduced on average by 50% for above states in SMAP_KF 

compared with CTRL. 
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Table 3-2. Statistical measures (i.e., RMSE, MSD, and Nash-Sutcliffe efficiency coefficient) 
of simulated irrigation water requirement validated against the USGS data in states of 
Nebraska, Kansas, and Texas (i.e., the part of Texas that is inside the study domain) for the 
census years during 1985-2015. For the sake of consistency, irrigation efficiency is multiplied 
to USGS data to convert it to irrigation water requirement. The best simulations are bolded. A 
hypothesis test (T-test) on samples from CTRL and other simulations suggests that the average 
irrigation water requirement simulated in SMAP_raw, SMAP_KF, and SMAP_KF_BC 
experiments are significantly different (marked by *) from that in the CTRL.  

State Simulation 

2015  2010 

RMSE MSD Nash–Sutcliffe 
 

RMSE MSD Nash–Sutcliffe 

N
eb

ra
sk

a CTRL 0.35 0.25 -37.49  0.50 0.38 -53.42 
SMAP_raw 0.19* 0.14* -10.08*  0.39* 0.29* -31.15* 
SMAP_KF 0.13* 0.09* -4.03*  0.25* 0.19* -12.40* 

SMAP_KF_BC 0.14* 0.10* -5.44*  0.13* 0.09* -2.42* 

K
an

sa
s CTRL 0.29 0.14 -46.58  0.36 0.18 -51.95 

SMAP_raw 0.30 0.15 -51.58  0.27* 0.14* -29.79* 
SMAP_KF 0.15* 0.07* -12.09*  0.19* 0.09* -13.72* 

SMAP_KF_BC 0.12* 0.06* -7.16*  0.18* 0.09* -13.14* 

T
ex

as
 CTRL 0.39 0.14 -56.00  0.50 0.19 -69.56 

SMAP_raw 0.53* 0.2* -103.11*  0.52 0.19 -76.16 
SMAP_KF 0.18* 0.06* -10.51*  0.24* 0.09* -15.06* 

SMAP_KF_BC 0.14* 0.05* -6.81*  0.21* 0.08* -11.87* 

State Simulation 

2005  2000 

RMSE MSD Nash–Sutcliffe 
 

RMSE MSD Nash–Sutcliffe 

N
eb

ra
sk

a CTRL 0.39 0.28 -24.12  0.44 0.33 -28.78 
SMAP_raw 0.16* 0.10* -3.59*  0.45 0.30 -30.11 
SMAP_KF 0.20* 0.15* -6.09*  0.20* 0.15* -4.98* 

SMAP_KF_BC 0.17* 0.12* -3.75*  0.26* 0.20* -9.67* 

K
an

sa
s CTRL 0.30 0.15 -47.30  0.29 0.14 -22.93 

SMAP_raw 0.12* 0.07* -7.38*  0.33* 0.17* -30.47* 
SMAP_KF 0.17* 0.08* -14.43*  0.16* 0.08* -6.38* 

SMAP_KF_BC 0.19* 0.09* -18.15*  0.24* 0.12* -14.90* 

T
ex

as
 CTRL 0.44 0.17 -30.01  0.35 0.13 -16.86 

SMAP_raw 0.18* 0.06* -3.88*  0.38 0.15 -20.10 
SMAP_KF 0.20* 0.08* -5.62*  0.16* 0.06* -2.64* 

SMAP_KF_BC 0.23* 0.09* -7.69*  0.20* 0.07* -4.70* 
* Indicates that the average irrigation water requirement differs significantly from the CTRL simulation (from the T-
test on two related samples) 
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Table 3-3. The same as Table 3-2 but for years 1985-1995. 
St

at
e 

Simulation 
1995 1990 1985 

RMSE MSD Nash–
Sutcliffe 

RMSE MSD Nash–
Sutcliffe 

RMSE MSD Nash–
Sutcliffe 

N
eb

ra
sk

a 

CTRL 0.335 0.221 -20.306 0.451 0.333 -30.676 0.480 0.359 -25.307 
SMAP_raw 0.155* 0.109*   -3.572* 0.581 0.397 -51.457 0.556 0.414 -34.283 
SMAP_KF 0.103* 0.062*   -1.017* 0.219* 0.165*   -6.434* 0.252* 0.188*   -6.229* 

SMAP_KF_BC 0.193* 0.144*   -6.055* 0.183* 0.129*   -4.232* 0.190* 0.129*   -3.133* 

K
an

sa
s CTRL 0.240 0.118 -17.586 0.318 0.163 -21.446 0.246 0.121 -10.921 

SMAP_raw 0.184* 0.091*   -9.898* 0.327 0.175 -22.700 0.193 0.105   -6.302 
SMAP_KF 0.114* 0.052*   -3.164* 0.180* 0.091*   -6.189* 0.120* 0.054*   -1.846* 
SMAP_KF_BC 0.140* 0.069*   -5.290* 0.130* 0.064*   -2.762* 0.127* 0.060*   -2.154* 

T
ex

as
 

CTRL 0.400 0.153 -22.002 0.474 0.178 -47.458 0.428 0.159 -38.623 
SMAP_raw 0.339 0.147 -15.465 0.473 0.173 -47.243 0.395 0.156 -32.820 
SMAP_KF 0.164* 0.066*   -2.839* 0.229* 0.085* -10.359* 0.195* 0.074*   -7.218* 
SMAP_KF_BC 0.151* 0.055*   -2.277* 0.178* 0.067*   -5.842* 0.181* 0.069*   -6.068* 

* Indicates that the average irrigation water requirement differs significantly from the CTRL simulation (from the T-
test on two related samples) 

Figure 3-8 depicts the comparison of simulated SM using different settings with ground 

observations from SCAN and USCRN networks (red squares in Figure 3-1) for JJA of 2005-2006, 

a period chosen as a non-SMAP period. Top panels (Figure 3-8a-d) show time series of top-5m 

SM at four of these stations located over HPA. For clarity of view, only CTRL, SMAP_raw, and 

SMAP_KF_BC are shown; results from SMAP_KF are highly similar to that from SMAP_KF_BC 

due to the similitude of target SM in most of the areas across HPA (Figure 3-7). 

Overall, CTRL fails to capture the episodes of low SM and often simulates false peaks, 

likely due to false irrigation timing during the growing season. The overall temporal dynamics is 

improved in SMAP_raw and SMAP_KF_BC, especially in terms of better capturing the episodes 

of low SM. Occasionally, SMAP_raw outperforms, even the SMAP_KF_BC in reproducing low 

SM (e.g., in year 2006); however, it fails to capture the overall temporal variability. For example, 

while observations show a descending trend in SM which is closely followed by SMAP_KF_BC, 

SMAP_raw exhibits false peaks (e.g., SCAN_2105 and SCAN_2106 during 2005 June-July, 

SCAN_2107 during 2005 June-July, and SCAN_2111 in 2006 June). 
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Figure 3-8. Temporal variability of top-5cm SM from CTRL, SMAP_raw, and 
SMAP_KF_BC simulations and SCAN observations for JJA of 2005-2006 at stations not 
located in irrigated areas (a-d). Vertical profiles of averaged SM over JJA during 2015-
2016 from SMAP, ground observations, and CTRL, SMAP_raw, and SMAP_KF_BC 
simulations (e-l). 
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Figure 3-9. Same as vertical profiles of Figure 3-8 in the main paper but for 25 more 
stations. Vertical SM simulations are all averaged over JJA of years in 2005-2016 when ground 
observations (from SCAN, USCRN, and SNOTEL networks) are available. The top-5cm SM 
from SMAP is shown as a single star averaged over JJA of SMAP period.  
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Interestingly, SMAP_KF_BC realistically simulates the periods of low SM (e.g., 

SCAN_2105, SCAN_2106, and SCAN_2107 during 2006 June-July, and SCAN_2111 during 

2006 July-August) as in SMAP_raw, while also capturing the observed SM dynamics (e.g., 

SCAN_2105, SCAN_2106, and SCAN_2107 during 2005 June-August, and SCAN_2111 in 2006 

August) which is more accurately simulated in CTRL than in SMAP_raw. This demonstrates the 

promising performance of KF that predicts the target SM considering the uncertainties associated 

with SMAP and the model estimation of target SM (see Section 3.2.4). Additionally, the bar plot 

in Figure 3-8 shows daily precipitation stacked above irrigation water requirement from 

SMAP_KF_BC, in which the coincidence of most of observed dry SM events with irrigation 

application suggests that irrigation is triggered expectedly during relatively dry periods. 

The bottom two rows in Figure 3-8 (e-l) show vertical profiles of SM in the top meter 

averaged over JJA of 2015-2016 from different simulations compared against SMAP and ground 

observations for eight stations over HPA (additional points are shown in Figure 3-9). In general, a 

shift in the SM profile toward the observed profile and SMAP data can be observed in the improved 

irrigation schemes, suggesting an improvement also in SM simulations due to SMAP data 

assimilation. Note that SMAP data are used only to improve irrigation representation by revising 

the threshold-based irrigation application, and not to directly alter SM in the model. Therefore, a 

perfect match between the simulated and observed SM is not expected. Further, since most of the 

ground stations are located in non-irrigated areas, wetter SM profile in the model is expected. The 

comparison of SMAP data and ground observations further suggests a fair degree of dry bias in 

SMAP data across the domain (Figure 3-8 and Figure 3-9), more pronounced over the western 

states; the underestimation of irrigation water in SMAP_raw, SMAP_KF and SMAP_KF_BC 

(Figure 3-4) discussed above is caused by this dry bias in SMAP. While these comparisons 
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demonstrate that SMAP data assimilation in the irrigation scheme also improves SM simulations, 

the results should be interpreted with caution because this comparison is done between grid-based 

results and point observations from sparse networks. Despite certain caveats (Chan et al., 2016), 

such a comparison is common (Pan et al., 2016; Zhang et al., 2017) owing to the lack of dense 

observation networks and the difficulty in quantifying and comparing SM across observations and 

models (Dirmeyer et al., 2016, 2017).   

3.4. Conclusions  

This study presents a new approach to assimilate SM from SMAP satellite into global 

LSMs to improve irrigation representation. Results suggest that the simulation of irrigation can be 

improved by directly integrating SMAP data to constrain the target SM. However, we find that 

further improvements in simulation of irrigation can be achieved if the 1-D KF assimilation 

framework is applied. Use of bias corrected SMAP further improves results in some regions, but 

the improvements are relatively small compared to those achieved from the KF application. We 

conclude that, despite certain limitations, the use of SMAP data with 1-D KF better represents the 

target SM, thus providing robust improvements in simulation of irrigation water requirement and 

SM, and generally reducing wet bias in irrigation water requirement in the control simulation (e.g., 

by up to 60% over HPA). These results demonstrate the potential of the new parameterizations for 

constraining target SM using SMAP data and KF which can be incorporated into any LSM, and 

applied and validated globally, even for the regions where ground-based data are not available for 

bias correction. Future research directions include: (1) the use of higher-quality SMAP data from 

level-4 products with a longer record, (2) incorporation of other available information from SMAP 

(e.g., surface flag and land cover class) in the analysis, (3) refinement in model spatial resolution 

(e.g., 1 arc-minute) for better comparison of results with point measurements, and (4) consideration 
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of field-scale details and uncertainties (e.g., in irrigation extent and practices) in irrigation 

representation with increased spatial resolution. 
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CHAPTER 4 

 
4. Implementing a Prognostic Groundwater Model with Lateral 

Groundwater Flow, Conjunctive Water Use for Irrigation, and 
Pumping 

In Preparation: 
Felfelani, F., Pokhrel, Y. et al., Implementing a Prognostic Groundwater Scheme in the 
Community Land Model version 5 to Improve Simulation of Groundwater Depletion in 
Overexploited Aquifers. 

 

 

 

4.1. Introduction 

Groundwater accounts for ~40% of global irrigation and household water use and ~30% of 

global industrial water use (Döll et al., 2012). The strong resilience of groundwater to climate 

variability (Cuthbert et al., 2019) makes it a reliable source of freshwater in many (semi-)arid 

areas, causing an alarmingly rapid increase in groundwater use as a response to climate change 

and growing food demand worldwide (Wada et al., 2014). Hydrologically, groundwater acts as a 

buffer that directly modulates soil moisture (i.e., affected by the root water extraction and soil 

matric potential), and converges to streams and surface water bodies as baseflow through a 

relatively slow two-way water exchange between surface water and groundwater (Fan et al., 2007, 

2019; de Graaf et al., 2015, 2017; Y. Zeng et al., 2018). Groundwater links with other hydrological 

variables such as the evapotranspiration and precipitation in critical zones where water table is 

shallower than 10 m from the surface (Condon & Maxwell, 2019). Human-induced groundwater 
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depletion reported across the globe has gravely endangered the groundwater-supplied hydrologic 

systems such as rivers, lakes, and wetlands (de Graaf et al., 2019), calling on compendious studies 

to quantify the human-induced changes in groundwater systems toward taking immediate actions 

to limit water cycle perturbations.  

 Given that groundwater plays an important role in hydrology-human-climate interactions, 

several advanced groundwater models have been developed to accurately resolve complex 

processes of groundwater across local to regional scales. For example, the U.S. Geological Survey 

Regional MODFLOW model simulates the three-dimensional steady-state and transient 

groundwater flow based on a rectangular structured finite-difference grid (Panday et al., 2013) and 

recently developed for unstructured grids (Feinstein et al., 2016). The Interactive Groundwater 

(IGW) model is an object-oriented hierarchical patch dynamics paradigm based on nested grids 

that decomposes the groundwater system into levels vertically and patches horizontally to simulate 

groundwater flow and solute transport across multiple scales (S.-G. Li et al., 2006; S.-G. Li & Liu, 

2006). These two models (i.e., MODFLOW and IGW) only simulated the sub-surface hydrology 

and need to be forced by recharge and surface water levels or be coupled with a surface model, 

e.g., a land surface model (LSM) or a global hydrological model (GHM) (de Graaf et al., 2015). 

ParFlow (Maxwell & Condon, 2016; Maxwell & Miller, 2005) is a rather comprehensive coupled 

surface water-groundwater model which fully solves the three-dimensional Richards equation 

(Richards, 1931) to account for variably saturated soil with very high resolution (e.g., 1 km), 

however high computation costs make decadal simulations over large domains (i.e., continental to 

global) infeasible.  
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In general, as the spatial extend of the models increases (i.e., from local, to regional and 

global), the complexity of the groundwater parameterizations degrades by a large degree to offset 

the limited global data availability and high computational costs (Koirala et al., 2019). In 

particular,  groundwater is still rather poorly represented in large-scale LSMs that are designed for 

coupling with Earth system models (ESMs), hindering our ability to realistically simulate 

hydrological and climatic processes connected with groundwater and to accurately assess regional 

to global freshwater resources (Pokhrel et al., 2016). As an early attempt to represent groundwater 

in large-scale models, underground runoff was implicitly parameterized in the NASA’s large-scale 

ground hydrology model (Abramopoulos et al., 1988) by using Darcy’s law. Since then, several 

studies incorporated groundwater flow representation with varying levels of rigor and complexity 

in large-scale LSMs to explicitly simulate the aquifer storage and water table dynamics. The 

Variable Infiltration Capacity (VIC) (Liang et al., 2003), LEAF-Hydro (Fan et al., 2007), CLM 

(Lawrence et al., 2011; Leng, Huang, Tang, Gao, et al., 2013; Y. Zeng et al., 2018), the upgraded 

version of the MATSIRO (i.e., HiGW-MAT; Pokhrel et al., 2015), and Noah-

Multiparameterization (Noah-MP; Nie et al., 2018; Niu et al., 2011) are among LSMs that have 

been equipped with groundwater schemes.  

These LSMs have certain limitations in their groundwater schemes. First, the majority of 

the hydrological models (e.g., CLM, HiGW-MAT, Noah-MP) resolve only one-dimensional (i.e., 

vertical) soil moisture-groundwater movement and do not account for lateral groundwater flow 

because of (a) the insignificant effect of topography-driven lateral groundwater flow on water table 

in global simulations with grid sizes of 0.5o / 1o (Krakauer et al., 2014; Pokhrel et al., 2015), (b) 

the absence of groundwater pumping mechanism, and (c) the lack of global-scale hydrological 

datasets of permeability and depth to bedrock (Z. Xie et al., 2018). Second, the anthropogenic 
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impacts on groundwater (i.e., through pumping) are missing in many (e.g., LEAF-Hydro, CLM) 

and simplistically quantified/parameterized in few models. To better replicate the real irrigation 

practices where groundwater storage supplies irrigation in conjunction with surface water, 

groundwater needs to be linked with irrigation through a pumping mechanism in the models. The 

pumping scheme is usually based on the simple water balance for groundwater storage. That is, 

the groundwater storage and water table are adjusted based on the total withdrawals (i.e., total 

demand), the gravity drainage from the soil column and the groundwater discharge to the river 

(Pokhrel et al., 2015). The impact of withdrawals from the other cells is ignored in this approach. 

Note that some of the GHMs ( e.g., PCR-GLOBWB; Wada et al. 2017; de Graaf et al. 2015) 

include a relatively comprehensive setup for human activities including groundwater pumping, 

however, these models have been developed as stand-alone models for offline simulation (i.e., 

cannot be coupled with ESMs) of water resource availability and use (see the limitations in Chapter 

2, Section 2.1). 

To address these limitations and toward developing a comprehensive irrigation-surface 

water-groundwater system in global LSMs, a prognostic groundwater model is developed and 

coupled with the irrigation scheme which explicitly simulates groundwater pumping and also 

accounts for lateral groundwater flow based on two approaches: (1) the conventional Darcy’s law 

for natural topography-driven lateral flow and (2) the steady-state well equation. The lateral 

groundwater flow based on the steady-state well equation (i.e., the steady-state solution to the 

groundwater equation with pumping as the boundary condition) is implemented—for the first time 

in large-scale hydrological models to the authors’ best knowledge—to account for pumping-

induced lateral flow. The goal of this study is to present an advanced representation of groundwater 

in LSMs by implementing a comprehensive prognostic groundwater model in CLM5. The new 
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groundwater model accounts for lateral groundwater flow, groundwater pumping and realistic 

irrigation source from groundwater in conjunction with surface water. The specific objectives are 

to: (1) investigate the effects of groundwater withdrawal on the water table change across the 

heavily exploited U.S. aquifers; (2) quantify the impacts of pumping on the sub-surface lateral 

flow patterns; (3) evaluate the improvements achieved in simulations of groundwater and 

terrestrial water storage (TWS) with the new prognostic groundwater scheme implemented in the 

CLM5; and (4) test different sub-surface configuration and lower boundary condition of soil 

column. 

4.2. Data and Methods 

4.2.1. Data 

We use the county-level USGS census data of irrigation water withdrawals, available for 

every five years since 1985 (Dieter et al., 2018; Maupin et al., 2014), to quantify the groundwater 

and surface water contribution to total irrigation water withdrawals which is used as input to CLM 

to account for conjunctive use of groundwater and surface water for irrigation. Figure 4-1 shows 

the county-level, groundwater-based irrigation percentage across the conterminous U.S. (CONUS) 

averaged for 1985-2015, which ranges from zero in most of the counties in Colorado Plateaus, to 

around 40% in the Central Valley Aquifer (CVA) and the Snake River Plain (SRP), to more than 

90% in most of the counties in the High Plains Aquifer (HPA) and Mississippi Alluvial Plain. The 

county-level USGS data are further used to validate the simulated irrigation water requirement and 

irrigation water withdrawals supplied by groundwater. 
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Figure 4-1. Groundwater contribution percentage to the total irrigation water withdrawal 
based on the USGS water use data averaged for 1985-2015. The major U.S. aquifers (i.e., 
HPA, CVA, Mississippi Alluvial Plain, Colorado Plateaus, Snake River Plain, Surficial, and 
Coastal Lowlands) are outlined with red color.  

The equilibrium water table depth, aggregated to 0.25° resolution, is obtained from Fan et 

al. (2013) to initialize the water table condition from the equilibrium state in the CLM, which 

substantially reduced the spin-up period (Y. Zeng et al., 2018). The GRACE RL05 mass 

concentration (mascon) solutions of TWS, expressed in equivalent water height, from CSR (Save 

et al., 2016) and JPL (Watkins et al., 2015) processing centers are used to validate the simulated 

TWS anomalies and trends from CLM5. The mascon solutions have been shown to be less affected 

by the leakage error, less dependent on using the scaling factors, and require less post-processing 

(e.g., de-striping filtering is not required for mascon products) than the spherical harmonic 

solutions (Long, Longuevergne, et al., 2015; Scanlon et al., 2016; Watkins et al., 2015). Finally, 

the USGS river discharge data are also used to validate the seasonal streamflow at selected major 

gauging stations across the CONUS. 
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4.2.2. The Community Land Model version 5 

We implement the new groundwater parameterizations (i.e., the lateral groundwater flow, 

pumping scheme, and conjunctive water use for irrigation) within the codebase of the newly 

released CLM5. The CLM5, the land model component of CESM2, incorporates the updates and 

improvements in underlying physical processes and parametrizations in hydrology, 

biogeochemical and surface energy sections, built upon the previous version CLM4.5 (Lawrence 

et al., 2019). The key changes in the hydrology section of CLM5 are: (1) introduction of a revised 

soil structure with variable soil depth and increased vertical resolution, improved solution to the 

Richard’s equation with allowing for sub-steps within the CLM standard timestep, (2) replacing 

the head-based lower boundary condition of the soil column with a zero flux boundary condition, 

(3) improving the target soil moisture level in the irrigation scheme to remove the irrigation water 

bias, and (4) including the Model for Scale Adaptative River Transport ( MOSART, H. Li et al. 

2013) which simulates the streamflow, channel velocity and water depth based on the kinematic 

wave method. One of the new features of the CLM5 codebase is to allow selecting from multiple 

parameterizations available for the key processes which enables the researchers and model 

developers to choose the parameterizations which best address their research objectives.  

4.2.3. Impact of Pumping 

Most of LSMs lack groundwater pumping and those equipped with a pumping scheme have 

been reported to suffer from systematic biases in groundwater related fluxes and states. For 

instance, the rate of groundwater storage loss caused by pumping is overestimated in Noah-

Multiparameterization (Noah-MP) and HiGW-MAT, attributed to the uncertainties in model 

parameters, scarce groundwater data, and limitations in model processes (Nie et al., 2018; Pokhrel 

et al., 2015).  
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In this study, groundwater pumping is parameterized to satisfy the groundwater-supplied 

irrigation reported in the U.S. Geological Survey (USGS) census data of irrigation withdrawals. 

The water balance of a grid cell with pumping is then computed as (Pokhrel et al., 2015): 

𝑑𝑑𝑆𝑆𝑔𝑔
𝑑𝑑𝑑𝑑

= 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 − 𝐺𝐺𝑊𝑊𝑝𝑝𝑝𝑝 − 𝑄𝑄𝑟𝑟 (4-1) 

where, 𝑑𝑑𝑆𝑆𝑔𝑔 is the groundwater storage change, 𝑅𝑅 is the net recharge, 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 is the grid cell 

area, 𝑄𝑄𝑟𝑟 is the groundwater discharge to the river, and 𝐺𝐺𝑊𝑊𝑝𝑝𝑝𝑝 is the groundwater pumpage rate. 

Starting from the soil layer right below the water table, water is removed from the soil layers in 

sequential order until 𝐺𝐺𝑊𝑊𝑝𝑝𝑝𝑝 is satisfied. Should there be a 𝐺𝐺𝑊𝑊𝑝𝑝𝑝𝑝 residual not satisfied by amount 

of water in the soil layers, the underlying aquifer layer contributes. The water table depth is then 

lowered as: 

𝑧𝑧′𝑤𝑤𝑤𝑤 = 𝑧𝑧𝑤𝑤𝑤𝑤 +
𝑑𝑑𝑑𝑑𝑊𝑊𝑝𝑝𝑝𝑝

𝑆𝑆𝑦𝑦
 (4-2) 

 

where, 𝑧𝑧′𝑤𝑤𝑤𝑤 and 𝑧𝑧𝑤𝑤𝑤𝑤 are the updated and old water table depth, respectively, 𝑑𝑑𝑑𝑑𝑊𝑊𝑝𝑝𝑝𝑝 is the 

partial of groundwater total pumpage subtracted from a soil layer, and 𝑆𝑆𝑦𝑦 is the specific yield of 

the aquifer diagnosed in CLM5 based on the soil properties and water table location. Finally, the 

liquid water storage of the soil layers and the aquifer layer are also updated based on the water 

extracted for pumping. 

4.2.4. Lateral Groundwater Flow from Darcy’s Law 

The contribution of lateral groundwater flow to the total grid cell water balance depends 

on multiple factors such as climate, topography, aquifer properties, and pumping; however, 

reported to be significant in high resolution simulations (Krakauer et al., 2014). Therefore, the 
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lateral groundwater flow has been implemented in the large-scale hydrological models with high 

resolution (e.g., with grid sizes of 5 km and smaller) in a handful of literature (Z. Xie et al., 2018; 

Y. Zeng et al., 2016, 2018), which are mostly based on the scheme presented by Fan et al. (2007). 

In this approach, lateral groundwater flow is also included in the groundwater mass balance for a 

grid cell (Fan et al., 2007) and the Equation 4-1 is generalized as: 

𝑑𝑑𝑆𝑆𝑔𝑔
𝑑𝑑𝑑𝑑

= 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 + � 𝑄𝑄𝑛𝑛
8

1
− 𝑄𝑄𝑟𝑟 (4-3) 

where, 𝑆𝑆𝑔𝑔 is the groundwater storage in the column, 𝑅𝑅 is the net recharge (i.e., the flux 

between the unsaturated soil and the groundwater), ∑ 𝑄𝑄𝑛𝑛8
1  is the net lateral flow between the center 

cell and the neighbors which driven by topography, pumping, etc., and 𝑄𝑄𝑟𝑟 is the groundwater 

discharge to the river which can be dropped in the steady state condition and for a non-river cell. 

The lateral flow between each two cells can be computed based on Darcy’s law: 

𝑄𝑄𝑛𝑛 = 𝑤𝑤𝑤𝑤 �
ℎ𝑛𝑛 − ℎ
𝑙𝑙

� (4-4) 

where, 𝑇𝑇 is the transmissivity, 𝑙𝑙 = Δ𝑥𝑥√2 and 𝑤𝑤 = Δ𝑥𝑥�0.5tan (𝜋𝜋/8) is the width of an 

imaginary octagon (Figure 4-2) replaced the square grid cell to provide an equal chance for all 8 

sides/neighbors to flow to/from the central cell. Figure 4-2 shows the schematic diagram of 

between-grid-cells lateral groundwater flow in the absence (Figure 4-2a; Fan et al., 2007) and the 

immediate vicinity of pumping wells (Figure 4-2b). 

The prognostic aquifer transmissivity is also calculated based on the water table depth and 

hydraulic conductivity for different cases (Fan et al., 2007) as follows: (1) if water table depth is 

less than the soil column depth in the model, 𝑇𝑇 = 𝑇𝑇1 + 𝑇𝑇2, where 𝑇𝑇1 is the transmissivity of soil 

column up to the water table and 𝑇𝑇2 is the transmissivity below the soil column depth. 
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𝑇𝑇1

=  �
� (𝐾𝐾𝑖𝑖 + 𝛥𝛥𝑧𝑧𝑖𝑖)
𝑛𝑛

𝑖𝑖=𝑖𝑖𝑖𝑖𝑖𝑖+1

+ 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖 × �𝑍𝑍ℎ,𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑍𝑍𝑤𝑤𝑤𝑤�            𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖 < 𝑛𝑛

𝐾𝐾𝑛𝑛 × �𝑍𝑍ℎ,𝑛𝑛 − 𝑍𝑍𝑤𝑤𝑤𝑤�                                                                𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛

 (4-5) 

𝑇𝑇2 = � 𝐾𝐾(𝑧𝑧′)𝑑𝑑𝑧𝑧′
∞

0
= � 𝐾𝐾𝑛𝑛 𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑧𝑧′

𝑓𝑓
�𝑑𝑑𝑧𝑧′

∞

0
= 𝐾𝐾𝑛𝑛 × 𝑓𝑓 (4-6) 

where, iwt is the soil layer index of the groundwater table level, Ki is the hydraulic 

conductivity of layer i, Δ𝑧𝑧𝑖𝑖 is the soil thickness of layer i, Zh,iwt is the bottom interface depth of 

layer i, Zwt is the groundwater table depth, n is the soil layer index of the deepest layer. The aquifer 

transmissivity for the depth lower than the model soil column (T2) is estimated using the hydraulic 

conductivity of the lowest layer and applying an exponential decay with depth i.e., 𝐾𝐾 =

𝐾𝐾𝑛𝑛 exp �− 𝑧𝑧′

𝑓𝑓
�. Finally, f is the e-folding length representing the complexity of sediment-bedrock 

profile (Y. Zeng et al., 2016) and is calculated following the hyperbolic equation presented in Fan 

et al. (2007). 

𝑓𝑓 = 𝑎𝑎
1+𝑏𝑏𝑏𝑏

  for 𝛽𝛽 ≤ 0.16, and 𝑓𝑓 = 5𝑚𝑚 for 𝛽𝛽 > 0.16  (4-7) 

where, a and b are parameters set to 120 m and 150 m, respectively, and 𝛽𝛽 is the terrain 

slope; (2) if water table depth is below the soil column, the transmissivity is calculated using 

Equation 4-6 but for the lower bound equals to the distance from the water table depth and the 

bottom interface depth of layer n (i.e., 𝑍𝑍ℎ,𝑛𝑛). 

𝑇𝑇 = � 𝐾𝐾(𝑧𝑧′)𝑑𝑑𝑑𝑑′
∞

𝑍𝑍𝑤𝑤𝑤𝑤−𝑍𝑍ℎ,𝑛𝑛

= � 𝐾𝐾𝑛𝑛 𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑧𝑧′

𝑓𝑓
�𝑑𝑑𝑑𝑑′

∞

𝑍𝑍𝑤𝑤𝑤𝑤−𝑍𝑍ℎ,𝑛𝑛

= 𝐾𝐾𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 �
𝑧𝑧ℎ,𝑛𝑛 − 𝑧𝑧𝑤𝑤𝑤𝑤

𝑓𝑓
� 

(4-8) 
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Note that hydraulic conductivity in the above equations is the lateral hydraulic conductivity 

that is determined based on the vertical hydraulic conductivity, resolved in the vertical one-

dimensional soil movement, and percent of clay in the soil layer as the representative of anisotropy 

factor (i.e., 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙
𝐾𝐾𝑣𝑣𝑣𝑣𝑣𝑣

) (Fan et al., 2007; Y. Zeng et al., 2016). 

 

Figure 4-2. The schematic of a grid cell and the 8 neighboring cells in the absence (a) and 
the immediate vicinity of pumping wells. Note that the entire groundwater-supplied irrigation 
water requirement of a grid cell is assumed to be withdrawn from a single well (with the radius 
of 𝑟𝑟𝑒𝑒) in the center of the cell.  

4.2.5. Lateral Groundwater Flow from the Steady-state Well Equation 

The 2-D form of the groundwater equation with the assumption of lateral isotropy can be 

written in both the Cartesian coordinate system (Equation 4-9) and the radial coordinate system 

(Equation 4-10). 

𝑆𝑆𝑦𝑦
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

=
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑇𝑇
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕
� +

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑇𝑇
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕
� + 𝜀𝜀 (4-9) 

𝑆𝑆𝑦𝑦
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

=
1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕
𝑇𝑇𝑇𝑇

𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

+ 𝜀𝜀 (4-10) 



 
 

85 

where, 𝑆𝑆𝑦𝑦 is the specific yield of the aquifer, h is the hydraulic head, T is the transmissivity, 

and 𝜀𝜀 is the sink/source term. The analytical solution of the radial partial differential equation 

(Equation 4-10) for the steady state condition and with considering the pumping in the boundary 

condition at well radius (i.e., 𝑟𝑟 = 𝑟𝑟0, 𝑄𝑄 = 𝐾𝐾 𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

× 2𝜋𝜋𝑟𝑟0ℎ, where Q is the pumping rate�L
3

T
�) is 

�
1

2𝑟𝑟
�
𝑄𝑄
𝜋𝜋

+ 𝜀𝜀𝑟𝑟02� −
𝜀𝜀𝜀𝜀
2
� 𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑇𝑇ℎ (4-11) 

Assuming that the head change due to pumping is negligible compared to the aquifer 

thickness and evaluating the above integral, we reach the solution as Equation 4-12 which can be 

simplified as Equation 4-13 (known also as the well equation) should there be a known head (i.e., 

𝑟𝑟 = 𝑅𝑅,ℎ = 𝐻𝐻). 

 � 𝑄𝑄
2𝜋𝜋

+ 𝜀𝜀𝑟𝑟02

2
� 𝑙𝑙𝑙𝑙 𝑟𝑟 − 𝜀𝜀𝑟𝑟2

4
= 𝑇𝑇ℎ + 𝐶𝐶 (4-12) 

 

�
𝑄𝑄

2𝜋𝜋𝜋𝜋
+
𝜀𝜀𝑟𝑟02

2𝑇𝑇
� 𝑙𝑙𝑙𝑙

𝑅𝑅
𝑟𝑟
−
𝜀𝜀(𝑅𝑅2 − 𝑟𝑟2)

4𝑇𝑇
= 𝐻𝐻 − ℎ (4-13) 

Solving Equation 4-13 for Q, applying it between the effective well block radius 𝑟𝑟 = 𝑟𝑟𝑒𝑒 

(Anderson et al., 2015) and the center of a neighbor cell (i.e., 𝑟𝑟 = 𝑎𝑎 = Δ𝑥𝑥 or Δ𝑥𝑥√2), together with 

considering 8 neighboring grid cells for a given cell (Figure 4-2), we can assume the total pumped 

water in the center cell is supplied by the lateral groundwater flows from the 8 neighboring cells 

following (Anderson et al., 2015) which yields 

𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙 =
𝑄𝑄
8

=
𝜋𝜋𝜋𝜋�𝑧𝑧𝑤𝑤𝑤𝑤@𝑟𝑟𝑒𝑒 − 𝑧𝑧𝑤𝑤𝑤𝑤@𝑎𝑎�
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�

+  
𝜀𝜀𝜀𝜀(𝑎𝑎2 − 𝑟𝑟𝑒𝑒2)

16𝑙𝑙𝑙𝑙 �𝑎𝑎𝑟𝑟𝑒𝑒
�

−
𝜋𝜋𝜋𝜋𝑟𝑟02

8
 (4-14) 

where, 𝑧𝑧𝑤𝑤𝑤𝑤@𝑟𝑟𝑒𝑒  and 𝑧𝑧𝑤𝑤𝑡𝑡@𝑎𝑎  are the water table depth at 𝑟𝑟 = 𝑟𝑟𝑒𝑒  and 𝑟𝑟 = 𝑎𝑎 . Adapting the 

approach introduced by Anderson et al. (2015) for the 8-neighbor case, the effective well block 
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radius is calculated as 𝑟𝑟𝑒𝑒 = 0.178Δ𝑥𝑥 (Figure 4-2b). In case the recharge is explicitly resolved and 

directly added to groundwater storage, the recharge terms in Equation 4-14 need to be ignored. 

4.2.6. Experimental Settings 

We conduct three sets of CLM5 off-line simulations (see Table 4-1) forced by the North 

America Land Data Assimilation System phase II (NLDAS2) meteorological data. Table 4-1 

illustrates the groundwater and sub-surface configurations for all simulations. In the control 

simulation (hereafter CTRL), the aquifer beneath the soil column is activated and the drainage 

(𝑞𝑞𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) from the lowest soil layer is controlled by a head-based lower boundary condition (i.e., 

𝑞𝑞𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑞𝑞𝑖𝑖 + 𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙,𝑖𝑖

∂𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙,𝑖𝑖, where 𝑞𝑞𝑖𝑖 is the water flux across the lowest interface and 𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙,𝑖𝑖 is the 

liquid volumetric soil moisture). This groundwater parameterization was initially introduced in 

CLM4.5 but is now implemented in CLM5 and available to choose via namelist control. The water 

table depth is not restricted in this groundwater setting and can vary from 0 to 80 m.  

Table 4-1. The configuration of groundwater, sub-surface runoff generation, and pumping. 

Simulation Lower BC Aquifer 
Layer 

Sub-surface 
Runoff 

Pumping Soil 
Configuration 

Lateral 
Flow 

CTRL Head-based  Active Exponential No 20 Layers, 8.5m No 
DarcyLat_NoPump Head-based Active Exponential No 20 Layers, 8.5m Darcy 
DarcyWellLat_Pump Head-based Active Exponential Yes 20 Layers, 8.5m Darcy and 

Well Eq. 

In CLM5, there is also a new sub-surface hydrology scheme in which the bulk aquifer layer 

below the model soil column is removed and the head-based lower-boundary condition is replaced 

by a zero-flux boundary condition at the base of the soil column. This scheme is suggested to 

improve the simulated TWS seasonal and interannual variability (Swenson & Lawrence, 2015). 

However, the major drawback of this new CLM5 groundwater parameterization (i.e., removing 
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the aquifer layer and imposing a zero-flux boundary condition) is that the water table is restricted 

to vary only within the soil column depth (e.g., 8.5 m) which is an unrealistic restriction, 

particularly over arid and semi-arid regions where water table can be deeper than 8.5m. Therefore, 

given that the primary objectives of this study are to improve the simulation of water table 

dynamics and better capture the impact of extensive groundwater pumping in the CONUS domain, 

we select the active aquifer layer and the head-based drainage for our simulations. 

The sub-surface runoff in CTRL decays exponentially according to water table depth, i.e., 

𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠 = Θ𝑖𝑖𝑖𝑖𝑖𝑖𝑞𝑞𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑚𝑚𝑚𝑚𝑚𝑚 exp(−𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑧𝑧wt); where, Θ𝑖𝑖𝑖𝑖𝑖𝑖  is an ice impedance factor, 𝑞𝑞𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑚𝑚𝑚𝑚𝑚𝑚  is the 

maximum sub-surface runoff when 𝑧𝑧𝑤𝑤𝑤𝑤 = 0 and is set to 𝑞𝑞𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑚𝑚𝑚𝑚𝑚𝑚 = 10sin (𝛽𝛽) to best compare 

with observations in global simulations, 𝛽𝛽 is the mean grid cell topographic slope in radians, and 

𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is the decay factor (Niu et al., 2005).  

The next experiment (hereafter DarcyLat_NoPump) is setup to implement the lateral 

groundwater flow based on Darcy’s Law (Fan et al., 2007) into the CLM5 considering the same 

sub-surface configuration as CTRL (i.e., the same lower boundary condition, the same sub-surface 

runoff parameterization, and the activated aquifer layer). The last experiment (hereafter 

DarcyWellLat_Pump) is designed to implement groundwater pumping as well as the lateral 

groundwater flow based on combination of Darcy’s Law and wells hydraulics. That is in 

calculating the between-cell lateral groundwater flow, in case one or both of the grid cells are 

pumping cells (i.e., a grid cell with a non-zero groundwater-supplied irrigation demand) Equation 

4-14 applies, and if both are natural cells (i.e., without pumping) Equation 4-4 applies. This 

simulation, likewise, uses the same soil configuration and lower boundary condition as CTRL. 
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The parallel computing architecture in CLM5 needs to be examined and modified to enable 

communications between processors. Figure 4-3 depicts the CLM static strip partitioning of 

473,439 active (i.e., only land) grid cells through which the grid-level tasks are assigned to 320 

processors. The strip partitioning scheme in the original CLM is well suited (i.e., compared to the 

block partitioning scheme) to 1-D processes where there is no inter-task communication. However, 

incorporation of the lateral groundwater flow requires processors to pass information 

(transmissivity, water table depth, pumping rate, etc.) between the neighboring cells. CLM is 

written in modern object-oriented Fortran which allows class-based behavior by defining the 

methods and derived types containing the data through separate instances (Akin, 2003; Clerman 

& Spector, 2011). Therefore, for the sake of efficiency and to benefit from the object-oriented 

features, the grid cell indices associated with the 8 neighbors of each cell are identified and saved  

(to be called later) as the instances of a public derived type only once and in the beginning of the 

simulation. 

 

Figure 4-3. A schematic of the static strip partitioning of the grid cells across the CONUS. 
A total of 320 processors is used in this experiment to simulate 473,439 active grid cells in 
the domain. 
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For the model spin-up, the water table depth in the CTRL and DarcyLat_NoPump 

simulation is initialized from the equilibrium water table depth from Fan et al. (2013), both spun 

up for 120 years cyclically using the available atmospheric forcing data, and then the actual CTRL 

and DarcyLat_NoPump simulations are conducted for 1998-2016. The DarcyWellLat_Pump 

simulation is started from the DarcyLat_NoPump (i.e., spun up for 120 years), with an extra spin 

up of 10 years with activated pumping to reach the new equilibrium state over the highly exploited 

aquifers, and then the actual simulation is conducted for 1998-2016. 

4.3. Results and Discussion 

4.3.1. Spatial Variability of Groundwater Table Depth 

Figure 4-4 shows the comparison of the average groundwater table depth from the CLM 

simulations at 3 arc-min resolution for 1998-2016 (Figure 4-4b-d) with equilibrium water table 

depth (i.e., climatologic mean that represents the long-term balance between the climate-driven 

recharge and the topography-driven lateral flow) at 0.25° resolution from a fused product (i.e., the 

LEAF-Hydro model simulation constrained with observations) by Fan et al. (2013) (Figure 4-4a). 

In general, water table depth is controlled by the balance between the vertical (e.g., recharge from 

the soil column to the aquifer and capillary flux) and lateral (i.e., the base flow and lateral 

groundwater flow) water fluxes (Fan et al., 2007; Swenson & Lawrence, 2015).  

In the CTRL simulation where the lateral groundwater flow is absent, the spatial portrait 

of groundwater table depth mostly reflects climate patterns. That is, across the eastern U.S. with 

abundant precipitation, which partly ends up as recharge to the aquifer, the water table resides 

within shallow depths (i.e., maximum 10-14 m from the land surface). Conversely, over the 

southwestern U.S. (mostly arid and semi-arid climate), water table depth is much deeper (i.e., up 
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to 80 m) owing to less recharge and also the steep and rugged topography (i.e., the slope term in 

the sub-surface runoff parameterization). The comparision of CTRL with the equilibrium water 

table depth from Fan et al. (2007) highlights the differences in the magnitudes and spatial patterns, 

for example across the Appalachians mountains in the southeast as well as the northwest where 

CTRL simulates much shallower water table. These discrepancies could be attributed primarily to 

the differences in the parameterizations of the key processes (e.g., elevation representation, sub-

surface runoff generation, boundary conditions) in the groundwater schemes of the two models 

(CLM5.0 and LEAF-Hydro) (Y. Zeng et al., 2018). 

 

Figure 4-4. Equilibrium water table depth (m) from Fan et al. (2013) (a) and CLM 
simulations (b-d) for 1998-2016. Long-term average groundwater table depth from CLM CTRL 
simulation (b), and the differences between DarcyLat_NoPump and DarcyWellLat_Pump against 
CTRL (c, d) are shown. The major U.S. aquifers (i.e., HPA, CVA, Mississippi Alluvial Plain, 
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Figure 4-4 (cont’d) Colorado Plateaus, Snake River Plain, Surficial, and Coastal Lowlands) are 
outlined with black color.  

Next, after adding the lateral flow based on Darcy’s law, shown as the difference between 

DarcyLat_NoPump and CTRL (Figure 4-4c), the average water table depth across the eastern U.S. 

remains within the range of -1 m to +1 m difference from the CTRL simulation due a small water 

table gradient between the grid cells, whereas the large water table gradients across the west and 

southwest drive large lateral flows between the intermountain hills and valleys. Note that positive 

(negative) values mean deeper (shallower) water level compared to CTRL. Finally, the results 

shown as the difference between DarcyWellLat_Pump and CTRL simulations (Figure 4-4d) 

demonstrate that groundwater pumping imposes large depletion over the managed aquifer systems. 

For example, a water table decline of up to ~20-25 m can be seen over the southern and central 

parts of HPA region, which are intensively irrigated using groundwater. Further, water table 

drawdown of up to ~17 m and 10 m stands out over the southern part of CVA (i.e., the San Joaquin 

River basin) and SRP, respectively. 

4.3.2. Groundwater Level Change in HPA and CVA 

HPA and CVA are the most heavily exploited aquifers in the U.S., ranked first and second 

in terms of the groundwater withdrawals and are extensively monitored by the USGS (Scanlon, 

Faunt, et al., 2012). HPA overlays ~450,000 km2 over the central U.S., mostly made of alluvial 

deposits and generally classified as unconfined, containing ~30% of the total U.S. irrigated 

acreage, producing ~10% of the total U.S. crop value, and supplying more than 95% of the total 

irrigation demand in the region (Dennehy et al., 2002; Konikow, 2013; Maupin et al., 2014; Smidt 

et al., 2016). The USGS continuously monitors and reports the changes in groundwater level across 

HPA before the irrigation season starts every year using over 3,000 wells (McGuire, 2011).  
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Figure 4-5 compares the spatial patterns of accumulated water level change from CLM 

simulations (a-c) and USGS report (d) provided at 500 m resolution (McGuire, 2017). The USGS 

report (Figure 4-5d) illustrates water level changes from predevelopment (~1950) to 2015, which 

ranges from ~25 m increase over a small region in Nebraska (i.e., along the Platte River) to ~70 m 

depletion in Texas. While the largest irrigated fields are developed in the northeast of HPA (Figure 

3-1), the USGS map shows little to no depletion in that region. Contrarily, there are patches of 

water level increase in the north-center part of Nebraska due to increased recharge in recent times 

(Scanlon, Faunt, et al., 2012). However, towards the south of HPA, the reported depletion reaches 

to ~20 m at the border of Nebraska and Colorado, ~50 m in the southwest of Kansas and north 

border of Texas, and exceeds 50 m in the southern HPA. In general, the north-to-south water level 

gradient can be explained mainly by the annual recharge which has eventuated in unsustainable 

groundwater withdrawals in the central and southern HPA. 
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Figure 4-5. Groundwater level change across HPA accumulated for 2000-2015 from CLM5 
simulations (a-c) compared with the USGS reported water level change for predevelopment 
(~1950) to 2015 (d). Note that the three CLM simulations (a-c) share the left color bar. 

As seen in Figure 4-5a-b, the simulated water level changes from CTRL and 

DarcyLat_NoPump present relatively similar spatial variability for 2000-2015 period, suggesting 

that changes in these simulations are mostly climate-driven. These two simulations fall short in 

capturing the reported depletion hotspots across HPA by a large margin. A minor depletion of 0.5-

1.5 m is discernible at the border of Nebraska and Kansas and the northeast corner of Texas, both 

inconsistent with the critical regions reported by the USGS map. Further, the increasing water level 

on the west side of HPA is ascribed to large recharge on the west border of HPA which is then 

spread over by lateral groundwater flow, controlled by the water level gradient and the 

transmissivity in DarcyLat_NoPump and DarcyWellLat_Pump simulations (Figure 4-5b-c).  

Implementation of groundwater pumping (i.e., removing the groundwater-supplied portion 

of irrigation water from aquifer storage) and the lateral flow based on the well equation results in 



 
 

94 

a significantly improved simulation of the accumulated water level change (Figure 4-5) in which 

most of the hotspots of groundwater depletion in the central and southern regions are well captured. 

The groundwater drawdown in DarcyWellLat_Pump reaches ~6 m at the border of Colorado and 

Nebraska, ~11 m over the southwestern Kansas, and ~15 m in Texas for 2000-2015 period. The 

major difference between the USGS map and DarcyWellLat_Pump arises in Nebraska. While most 

of the regions with small water level change (i.e., -0.5 to 0.5 m) in central and northern Nebraska 

and even the small region of large depletion in northwest of Nebraska are promisingly generated, 

~0.5-3 m drawdown is simulated across the northeast and south-center of Nebraska that does not 

exist with the comparable spatial extent in the USGS map. The over-depletion in Nebraska can be 

associated with overestimation of irrigation water owing to the uncertainties in input data (e.g., 

irrigation fraction map and crop types which impact the estimation of irrigation water 

requirement), and underestimation of recharge, especially irrigation return flows. 

CVA with an area of ~52,000 km2 includes the Sacramento Valley in north, the San Joaquin 

Valley in the center and the Tulare Basin in the south of CVA. Unlike in HPA, surface water 

accounts for a large fraction (~50%) of irrigation water over this arid to semi-arid region (Bertoldi, 

1989). Over 90% of croplands and pasturelands are irrigated in CVA (Scanlon, Faunt, et al., 2012). 

Geologically, the aquifer thickness varies from ~460 m in the Sacramento Valley to ~880 m in the 

San Joaquin Valley and is unconfined in the shallow parts and semiconfined or confined in the 

deep parts to the south (Bertoldi, 1989; Konikow, 2013). 

Figure 4-6 compares the water level changes from the CLM5 simulations (a-c) 

accumulated for 2000-2015 with the USGS estimated changes (d) from the predevelopment 

(~1860) to 1961 across CVA (Bertoldi et al., 1991; Williamson et al., 1989). Note that the 
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simulation period in this study falls entirely after the period in USGS report (i.e., ~1860-1961), 

however, since the intensive groundwater pumping across CVA developed more than a century 

ago and has been maintained until now, we expect to see a relatively similar spatial patterns of 

groundwater drawdown over time. Further, this type of comparison also has done by previous 

studies (e.g., de Graaf et al., 2019) due to the limited data availability. 

According to the USGS model, the maximum depletion (i.e., 12 to 120 m) had occurred in 

the Tulare Basin in the southern CVA with the utmost depletion on the west (Scanlon, 

Longuevergne, et al., 2012). The water level declines in the Sacramento and San Joaquin Valleys 

are less severe, ranging from 0 to 24 m, and yet small regions of water level rise of ~3 m are 

estimated, e.g., in the Delta on the west. In the absence of groundwater extraction and lateral 

groundwater flow, the CTRL only reflects the vertical climate-driven water level changes (Figure 

4-6a). The CTRL shows declines of less than 2 m in the valleys, mainly due to prolonged drought 

and reduced recharge, and rises in the range of 0-2 m in the surrounding areas with higher elevation 

and more precipitation. 
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Figure 4-6. Groundwater level change across CVA accumulated for 2000-2015 from CLM5 
simulations (a-c) compared with the USGS estimated water level change for 
predevelopment (~1860) to 1961 (Faunt, 2009; Williamson et al., 1989) (d). Note that the 
three CLM simulations (a-c) share the left color bar. 

Similar to HPA case, the DarcyLat_NoPump simulation compares favorably with the 

CTRL with a relatively small (0-2 m) groundwater decline in most of CVA and 0-2 m increase on 

the south edge; however, the lateral flow extends the central depletion to the west borders of the 

aquifer and reverses the rises in CTRL to declines in DarcyLat_NoPump. The results from the 

DarcyWellLat_Pump (Figure 4-6c) suggest an overall improvement in simulating the groundwater 

level changes in the highly managed CVA. The growing intensity of simulated water level drop 

towards the southern San Joaquin Valley and central Tulare Basin matches with the well 

observations and the findings from other studies (de Graaf et al., 2019; Scanlon, Longuevergne, et 

al., 2012; Williamson et al., 1989). The greatest depletion (i.e., ~12 m) is simulated in the center 

of the Tulare Basin, a bit shifted compared to the maximum depletion location estimated by the 

USGS model (Figure 4-6d). Finally, a ~0-1.5 m water level declines as well as ~0-0.7 m rises are 
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simulated in the northern part of the aquifer (i.e., the Sacramento Valley and the Delta) which 

show good consistency with the observations. 

Figure 4-7 depicts the comparison of the simulated groundwater level change for HPA (a) 

and CVA (b) with the annual/biennial USGS observations for HPA (McGuire, 2014, 2017) and 

the monthly well analysis for CVA (Faunt, 2009; Pokhrel et al., 2015; Scanlon, Longuevergne, et 

al., 2012). Consistent with the spatial maps across HPA (Figure 4-5), the CTRL and 

DarcyLat_NoPump results show a relatively stable temporal patterns with increases and decreases 

but fluctuating close to the zero line, as opposed to the USGS cumulative water level changes 

which show a continuous fall-off from 2001 to 2015, reaching to more than 2 m of depletion by 

2015 (Figure 4-7a). Among CLM simulations, the DarcyWellLat_Pump shows the best agreement 

with the USGS data by starting to decline from 2009 and reaching 1 m of drawdown by the end of 

2015. This simulation levels off at 2012 and maintains the water level until the end of 2015, mainly 

due to increased amount of recharge in this period that also causes the CTRL and 

DarcyLat_NoPump simulations to rise up to 0.5 m. 

  

Figure 4-7. The cumulative time series of water level change from CLM5 simulations 
compared with the observations from the USGS reports across HPA and the well analysis 
in CVA. 
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Similarly in CVA (Figure 4-7b), the CTRL and DarcyLat_NoPump vary close to the zero 

line and do not show any depletion during the simulation period, while the monthly well analysis 

data start a sharp decline by 2007 and fells down ~3 m by the end of 2009. The 

DarcyWellLat_Pump simulation presents a much-improved groundwater dynamics, starts the 

decline two years earlier in 2005 with a gentler slope (i.e., compared to the well analysis) that 

reaches ~ 2 m depletion by the end of 2009, 1 m above the well observations. 

To better investigate how large-scale pumping impacts the groundwater movement and 

flow regime, we calculate the lateral groundwater flow fields with and without pumping. For this 

purpose, the lateral fluxes from all eight neighboring cells are projected onto the coordinate axes, 

aggregated on the four edges of grid cells, and then averaged for both vertical and horizontal 

directions to get the north-south and east-west components at the center of the cell. These 

components are then used to show the mean lateral groundwater flow fields for 2000-2016 across 

CVA and HPA (Figure 4-8). While the lateral fluxes in the DarcyLat_NoPump simulation (Figure 

4-8a,c) are controlled by the recharge (e.g., on the west border of HPA) and topography (e.g., 

southwest of CVA), extracting irrigation water from groundwater causes water table gradient 

which imposes large lateral influxes (i.e., up to 3.5 mm month-1) towards the cones of depression 

in the two aquifers (Figure 4-8b,d). For example, the most depleted regions in central and southern 

HPA (Figure 4-5c) and southern CVA (Figure 4-6c) receive relatively large lateral flows, 

modulated by the estimated transmissivity, from the surrounding areas. 
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Figure 4-8. Mean lateral groundwater flow fields over HPA and CVA regions for 2000-
2016. Background shows the shaded mean grid cell topographic slope where darker colors 
represent larger slopes. 

4.3.3. Irrigation-induced Spatial Variations in TWS  

Figure 4-9 shows the spatial variability of the TWS trends from the GRACE JPL mascon 

solution (a) and the CLM5 simulations (c-d) across the CONUS for 2002-2013. A coastline 

resolution improvement is applied to the GRACE solution used in this study, by multiplying 

GRACE data by a set of scaling factors to downscale the original GRACE resolution (i.e., ~3° ×3°) 

to 0.5° ×0.5° by redistributing the mass within each mascon in such a way that total mass in the 
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block is conserved (Nie et al., 2018; Wiese et al., 2016). In general, GRACE data depict large 

negative TWS trends (i.e., ~1 to 4 cm year-1) over CVA, southern HPA, the Coastal Lowlands 

Aquifer, and the Surficial Aquifer (Figure 4-9a). These areas mostly overlap with the irrigation 

hot spots, suggesting that irrigation plays a major role in modulating TWS in these regions. There 

are also large negative trends over non-irrigated areas detected by GRACE during 2002-2013, e.g., 

across the western Great Lakes region and small decreases in TWS over the eastern U.S. which 

are mainly driven naturally. Conversely, the GRACE captures large positive trends in TWS 

changes across the higher latitudes (i.e., above 40° N), specifically in the northern HPA region 

which is in line with the USGS groundwater depletion map that has shown groundwater rises in 

these highly irrigated regions (Figure 4-5d). 

 

Figure 4-9. Spatial map of TWS trends (in cm year-1) from GRACE JPL mascon solution 
and CLM5 simulations for 2002-2013. Scaling factors are multiplied by the GRACE mascon 
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Figure 4-9 (cont’d) solution. Trend maps from the CLM simulations are regridded to the 
0.5° ×0.5° grid to be consistent with the GRACE. 

As discussed before in Section 4.2.6, the aquifer model with the head-based lower 

boundary condition in CLM is reported to generate unrealistic TWS response during the transitions 

between dry and wet years (Swenson & Lawrence, 2015). This poor response is also shown in the 

CTRL simulated trends (Figure 4-9b) where biases and false trends are clearly discerned, mostly 

across groundwater supplied irrigated regions, in comparison with GRACE. For example, the TWS 

trends simulated over the northern CVA, southern HPA, western Coastal Lowlands Aquifer, the 

Surficial Aquifer, and north-center of U.S. (e.g., North and South Dakota and Montana states) 

show completely opposite direction compared to the GRACE. In the DarcyLat_NoPump 

simulation (Figure 4-9c), the lateral flow mechanism substantially improves the trend values of 

most of these regions. Specifically, the increasing trend signals over central and southern HPA and 

west part of Coastal Lowlands Aquifer are changed to negative trends with the magnitudes and 

extends analogous to of the GRACE. Further, the large increasing TWS changes in the north-

center of the U.S. is better captured in the DarcyLat_NoPump compared to the CTRL. Lastly, the 

DarcyWellLat_Pump resembles the DarcyLat_NoPump in most of the regions and to a large 

degree, except for areas with large groundwater-supplied irrigation where the 

DarcyWellLat_Pump shows large overestimation of TWS depletion rate due to groundwater 

pumping. 
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Table 4-2. Irrigation water withdrawals (total as well as broke down into groundwater and 
surface water sources) across HPA from the CLM5 simulations and USGS reports. The 
irrigation water requirement is also presented for all the simulations. Results for CTRL and 
DarcyLat_NoPump are presented only for years 2000 and 2005.  

Year 
 USGS  Simulations 
 Irrigation 

Withdrawal 
GW 

Source 
 Name IWR* Total 

Withdrawal 
GW§ 

Source 
SW¥ 

Source 

2015 
 

19.7 17.5 
 CTRL - - - - 

  DarcyLat_NoPump - - - - 
  DarcyWellLat_Pump 23.88 23.36 22.19 1.17 

2010 
 

19.8 16.8 
 CTRL - - - - 

  DarcyLat_NoPump - - - - 
  DarcyWellLat_Pump 32.54 31.67 29.75 1.92 

2005 
 

24.6 22.3 
 CTRL 21.56 10.09 0 10.09 

  DarcyLat_NoPump 21.56 10.08 0 10.08 
  DarcyWellLat_Pump 18.83 18.39 17.18 1.21 

2000 
 

26.5 23.6 
 CTRL 31.83 10.08 0 10.08 

  DarcyLat_NoPump 31.83 10.07 0 10.07 
  DarcyWellLat_Pump 29.30 28.47 26.79 1.68 

* IWR: Irrigation water requirement 

§ GW: Groundwater  

¥ SW: Surface water 

To explain the main driver behind the overestimation of the declining TWS by 

DarcyWellLat_Pump (i.e., relative to GRACE and other simulations), Table 4-2 compares the 

irrigation water requirement and withdrawals from groundwater and surface water sources in 

different simulations with the county-level data of irrigation water withdrawals from the USGS 

(Dieter et al., 2018; Maupin et al., 2014). The USGS census data records show that the irrigation 

water withdrawals in HPA ranges from 26.5 to 19.7 km3 year-1 during 2000-2015, of which more 

than 88% on average has been extracted from the groundwater (Table 4-2). In CLM5, the irrigation 

water requirement is applied to the soil column as add-on to the precipitation in the beginning of 

the time step and later (i.e., toward the end of the time step) is withdrawn from the surface water 

(i.e., water in the main channel in the MOSART river routing scheme) as the only source of 

irrigation by default. In the conditions where water in the river channel is not sufficient, the 

remaining irrigation water requirement is supplied by an imaginary source (e.g., ocean model). For 
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example, while the total irrigation water requirement is estimated as 31.83 km3 year-1 in 2000 in 

both CTRL and DarcyLat_NoPump, only 32% of it is withdrawn from the surface water (Table 

4-2). Whereas, in the DarcyWellLat_Pump simulation in the same year, 28.47 out of 29.30 km3 

year-1 is extracted from both the groundwater (%94) and surface water (6%). Similar proportions 

exist in other years (Table 4-2). Therefore, it can be concluded that the net irrigation impact on 

TWS is positive in CLM5 default setting which is an unrealistic representation of irrigation and 

partly explains the increasing TWS changes over irrigated regions in Figure 4-9b. Overall, it still 

remains as an issue in hydrological modeling that where conjunctive use of groundwater and 

surface water for irrigation is implemented, substantial improvements are achieved in the 

simulation of groundwater dynamics and depletion but at the expense of overestimation of TWS 

trend compared to the GRACE observations. This overestimation is not only exclusive to the CLM 

and is reported in other studies that used other models (e.g., the HiGW-MAT, Noah-MP) to 

account for groundwater withdrawals for irrigation (Nie et al., 2018; Pokhrel et al., 2015). 

4.3.4. River Discharge Simulation by MOSART 

One of the major updates included in CLM5 is the inclusion of the MOSART river model 

which utilizes the kinematic wave method to simulate the channel velocity, water depth, and 

surface water dynamics (Lawrence et al., 2019). Here, we assess the impact of pumping on the 

river discharge simulated by the MOSART. It is expected that the differences in the simulation of 

groundwater table depth from CTRL, DarcyLat_NoPump, and DarcyWellLat_Pump would 

directly affect sub-surface runoff (see Section 4.2.6) used for surface water routing in MOSART, 

which is coupled with the CLM5, and that the impact of pumping is reflected in streamflow 

simulations. To evaluate these expectations, a validation of river discharge simulated by the 

MOSART is presented at the major USGS gauging stations across the U.S. (Figure 4-10). The 
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statistical metrics (i.e., Nash-Sutcliffe efficiency coefficient and RMSE) are also presented for the 

seasonal river discharge. 

Overall, a promisingly good agreement is found between the simulated river discharge and 

the USGS observations, specifically in the less managed basins as the current MOSART scheme 

in the CLM5 does not simulate reservoir inundation and operation. However, the differences 

between the three CLM simulations seem to be small, particularly in terms of the seasonal cycle. 

The main reason for such similarity is that the sub-surface runoff parameters (i.e., 𝑞𝑞𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑚𝑚𝑚𝑚𝑚𝑚 and 

𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) are not specifically calibrated for these basins and therefore the parameterization is less 

sensitive to the groundwater table depth that is the main distinction between these three 

simulations. 
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Figure 4-10. Comparison of simulated river discharge from the MOSART scheme and the 
USGS streamflow data at the major gauging stations across the U.S. Note that the unit is 103 
m3 s-1.  

In general, marginal improvements in simulation of seasonal cycle are found (e.g., 

Columbia River, Sacramento River, Yellowstone River, Mississippi River, Ohio River, and 

Susquehanna River) in the DarcyLat_NoPump simulation, however, the CTRL performs slightly 
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better in some of the other basins/tributaries (e.g., Illinois River, White River). The entire time 

series also show a mixture of good and poor (e.g., false peaks and overestimation/underestimation) 

agreements with the USGS data in all simulations, making it difficult to rank them. It is expected 

that by calibrating the sub-surface runoff parameters and increasing the sensitivity to the water 

table (e.g., by reducing the decay factor 𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑), we see the direct impact of pumping on the river 

discharge and can better validate different simulations with the gauge data. 

4.4. Conclusions 

A prognostic groundwater model is implemented into the latest version of the CLM 

(CLM5) to enhance the simulation of groundwater dynamics and assess the impacts of extensive 

pumping on groundwater storage as well as the TWS changes with the focus on U.S. major 

aquifers. Three sets of CLM5 simulations are conducted at 5 km grids and over the CONUS to (1) 

evaluate the existing groundwater model of CLM5, (2) account for lateral groundwater flow based 

on Darcy’s law, and (3) present the conjunctive use of groundwater and surface water for irrigation 

and introduce—for the first time—the parameterizations for an explicit representation of the 

steady-state well equation for the pumping grid cells. The results show that the new groundwater 

model (i.e., equipped with pumping from the aquifer storage and parameterized to account of the 

lateral flow based on Darcy’s law and the well equation) significantly improves the simulation of 

groundwater level change and promisingly captures most of the hotspots of groundwater depletion 

across the overexploited HPA and CVA aquifers in U.S. Further, while the default CLM5 shows 

large biases and false TWS trends particularly over the highly irrigated regions (e.g., the central 

and southern HPA), the simulation with the lateral groundwater flow presents more accurate 

spatial patterns of TWS trends compared to the GRACE data. We find that unrealistic 

representation of irrigation source, i.e., the surface water as the only source in the default CLM5, 
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leads to a failure in withdrawing irrigation water requirement from the river channels (i.e., due to 

the limited water availability during the irrigation season) and the majority of irrigation water 

demand is met by an imaginary source. Therefore, using the pumping scheme to replace the 

imaginary source of irrigation with groundwater eventuates in overestimation of declining TWS 

trend across the highly irrigated regions. There are several areas for future works to address the 

overestimation issue with the TWS trends. First, it is recommended to leverage the geological 

information of the new datasets of global aquifer properties such as the global permeability and 

depth to bedrock datasets to be utilized in the representation of lateral groundwater flow and 

pumping (e.g., in estimation of transmissivity). Second, testing different boundary conditions and 

soil configurations to improve the representation of groundwater are critically important and 

mentioned in the literature as well. Third, it is also essential to assess the uncertainties in the 

GRACE products in estimation of the TWS trends over the largely depleted regions.  
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CHAPTER 5 

 
5. Global Terrestrial Water Storage Change under Climate Change 

and Implications on Global Mean Sea Level  

In Preparation: 
Pokhrel, Y., Felfelani, F. , Satoh, Y., Boulange, J., Burek, P., Gädeke, A., Gerten, D., Gosling, S., 
Grillakis, M., Gudmundsson, L., Hanasaki, N., Koutroulis, A., Liu, J., Papadimitriou, L., Schewe, 
J.,  Müller Schmied, H., Stacke, T., Eliza Telteu, C., Thiery, W., Veldkamp, T., Zhao, F., and 
Wada, Y., Global Terrestrial Water Storage and Drought Severity under Climate Change. 

 
Felfelani, F., Pokhrel, Y., et al., Terrestrial Water Storage Contribution to Sea Level Rise under 
Climate Change.  

 

 

 

5.1. Introduction 

Recent advances in hydrological modeling in terms of the physics, parameterizations and 

structure in concert with the emerging indispensable satellite remote sensing data  (e.g., data from 

GRACE and SMAP) have enabled an improved representation of terrestrial water storage (TWS) 

in models (Döll et al., 2014; Felfelani et al., 2018; Hanasaki et al., 2018; Pokhrel et al., 2015). 

TWS (i.e., the vertically integrated measure of water stored in aquifers, soil layers, wetlands, lakes 

and reservoirs, rivers, ice and snow, and canopies) is a critical component of the global water and 

energy budget and plays key roles in determining water resource availability (Rodell et al., 2018) 

and modulating water flux interactions between different Earth system components (Tapley et al., 

2019).  
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Large number of studies have been used GRACE TWS data and model simulations for a 

wide range of applications, including the assessment of water resources and impacts of human 

activities (Döll et al., 2014; Felfelani et al., 2017; Pokhrel et al., 2017), quantifying groundwater 

losses (Döll et al., 2014; Famiglietti et al., 2011; Pokhrel et al., 2015; Rodell et al., 2009; Scanlon, 

Faunt, et al., 2012), drought monitoring (Chaudhari et al., 2019; Houborg et al., 2012; M. Zhao et 

al., 2017), assessing flood potential (Reager et al., 2014), and quantifying the global mean sea level 

(GMSL) changes (Reager et al., 2016; Wada et al., 2012). These studies have found inherent 

linkages between the TWS and critical hydrologic phenomena (e.g., drought, flood and GMSL 

change) and thus, have advanced our understanding of the big picture of global hydrologic systems 

(Famiglietti et al., 2015) under the influence of natural hydro-climatic variability and human land-

water management activities. However, as presented in Chapter 2, the emphasis has been on 

historical variabilities in TWS. Crucially, there is a body of literature on the impacts of climate 

change on river discharge, evapotranspiration, and groundwater recharge (Oki & Kanae, 2006; 

Schewe et al., 2014), but no study has to date presented a comprehensive analysis of the potential 

impacts of future climate change on global TWS change and variabilities.  

Recently, the Inter-Sectoral Impact Model Intercomparison Project, phase 2b (ISIMIP2b; 

https://www.isimip.org/) (Frieler et al., 2017; Warszawski et al., 2014) provided a framework for 

multi-model ensemble comparisons by bringing together 14 global impact models (out of which 

simulations of 7 global models are currently available) that are capable of simulating human 

activities (irrigation, water extraction, dams and reservoir operation, etc.) for the water sector. 

These multi-model and multi-GCM (general circulation model) simulations now provide TWS 

estimates for the historical and future periods, providing an opportunity to assess the TWS 

https://www.isimip.org/
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variability over the entire 21st century and thus examining the potential impact on drought severity 

and GMSL change. 

Thus, we present a first global assessment of climate change impacts on TWS. We use 

multi-model hydrological simulations (27 ensemble members; Table 5-1) from the selected seven 

terrestrial hydrology models driven by atmospheric forcing from four global climate models 

(GCMs). We then examine the impacts of future climate-induced TWS change and variability on 

GMSL changes.  

5.2. Methods 

5.2.1. Models, Simulation Settings, Forcing Data 

The seven terrestrial hydrology models used in this study include five global hydrological 

models (GHMs): CWatM (Burek et al., 2019), H08 (Hanasaki et al., 2008a, 2008b, 2018), MPI-

HM (Stacke & Hagemann, 2012), PCR-GLOBWB (van Beek et al., 2011; Wada et al., 2010, 

2014), and WaterGAP2 (Müller Schmied et al., 2016); one global land surface model (LSM): 

CLM4.5 (Oleson et al., 2013); and one dynamic global vegetation model (DGVM): LPJmL 

(Bondeau et al., 2007). All models simulate the key natural terrestrial hydrological processes (e.g., 

soil hydrology, vegetation, rivers) and the major human impacts on water resources. 

Meteorological data are derived from climate simulations by four of the global climate models 

(GCMs; a subset of models participating in the Coupled Model Intercomparison Project Phase 5; 

CMIP5) included in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate 

Change (IPCC), i.e., GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, and MIROC5. The 

forcing data include the climate variables (precipitation, air temperature, short-wave and long-

wave downwards solar radiation, wind speed, specific humidity, and surface pressure), are bias 
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corrected (Lange, 2019), and downscaled to the same spatial resolution as that of the terrestrial 

hydrology models (i.e., 0.5°×0.5°). A comprehensive description of bias adjustment and 

downscaling can be found in the previous literature (Hempel et al., 2013; Lange, 2018, 2019). 

For each GCM, four radiative forcing/climate scenarios are considered for varying periods: 

the pre-industrial control (PIC; pre-industrial climate; 1861-2099), historical climate (HIST; that 

includes effects of human emissions including greenhouse gases and aerosols; 1861-2005) (K. E. 

Taylor et al., 2011), strong mitigation climate scenario (Representative Concentration Pathway, 

RCP2.6; 2006-2099) which represents low greenhouse gas emission (i.e., CO2 equivalent 

concentration of ~420 ppm by 2100), and no-mitigation climate scenario (RCP6.0; 2006-2099) 

which represents medium-high greenhouse gas emission (i.e., CO2 equivalent concentration of 

~740 ppm by 2100) (Table 5-1) (Miao et al., 2014). Simulations are conducted under the standard 

protocol of the Group-2 simulation scenario design of the ISIMIP2b. The two RCPs are the only 

RCPs for which TWS results were available from ISIMIP2b simulations. The hydrology models 

are run for each GCM-radiative forcing combination by considering time-varying human 

influences and socio-economic conditions for the PIC and HIST runs but fixed at the present day 

(i.e., 2005) levels for future projections (2006-2099; RCP2.6 and RCP6.0). There is only one 

exception (CLM4.5) that utilizes the fixed (i.e., at year 2005) socio-economic conditions for all 

PIC, HIST, and RCPs, which is allowed by the ISIMIP2b protocol. Human influences and socio-

economic drivers considered are population, national gross domestic product (GDP), land use and 

land cover change (LULCC), irrigated areas, fertilizer use, and reservoir operation including water 

withdrawal, depending on the model schemes. The HYDE3-MIRCA data (Goldewijk et al., 2011; 

Portmann et al., 2010; Ramankutty et al., 2008) are used to prescribe LULCC and irrigated areas 

and the GRanD database (Lehner et al., 2011) is employed for dams and reservoirs 
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implementation. Irrigation (and other water use sector) schemes vary among models but all models 

simulate global irrigation requirements within plausible limits of reported datasets based on 

country statistics (see reference to each model for more details). The reservoir operation schemes 

also vary among models; H08 and WaterGAP2 are based on the reservoir model in Hanasaki et al. 

(2006), LPLmL is based on Biemans et al. (2011), and CWatM and PCR-GLOBWB are based on 

a combination of Haddeland et al. (2006) and Adams et al. (2007). Note that reservoirs are not 

represented in MPI-HM and CLM4.5. Soil column depth and layer configuration and groundwater 

representation vary among models (see reference to each model). 

Table 5-1. Summary of multi-model ensemble simulations. Note that the simulations from the 
MPI-HM model (forced by HADGEM2-ES GCM) are not available.  

Radiative Forcing Preindustrial Control (PIC) Historical (HIST) RCP2.6 RCP6.0 
Period 1861-2005 2006-2099 1861-2005 2006-2099 
                                    Socio- 
                             economic 
 
Terrestrial  
Hydrology Models 

histsoc 2005soc 2005soc histsoc 2005soc 2005soc 2005soc 

CLM4.5  GE, HE 
ICL, M5 

GE, HE 
ICL, M5 

 GE, HE 
ICL, M5 

GE, HE 
ICL, M5 

GE, HE 
ICL, M5 

CWatM GE, HE 
ICL, M5 

 GE, HE 
ICL, M5 

GE, HE 
ICL, M5 

 GE, HE 
ICL, M5 

GE, HE 
ICL, M5 

H08 GE, HE 
ICL, M5 

 GE, HE 
ICL, M5 

GE, HE 
ICL, M5 

 GE, HE 
ICL, M5 

GE, HE 
ICL, M5 

LPJ-mL GE, HE 
ICL, M5 

 GE, HE 
ICL, M5 

GE, HE 
ICL, M5 

 GE, HE 
ICL, M5 

GE, HE 
ICL, M5 

MPI-HM GE 
ICL, M5 

  GE 
ICL, M5 

 GE 
ICL, M5 

GE 
ICL, M5 

PCR-GLOBWB GE, HE 
ICL, M5 

 GE, HE 
ICL, M5 

GE, HE 
ICL, M5 

 GE, HE 
ICL, M5 

GE, HE 
ICL, M5 

WaterGAP2 GE, HE 
ICL, M5 

 GE, HE 
ICL, M5 

GE, HE 
ICL, M5 

 GE, HE 
ICL, M5 

GE, HE 
ICL, M5 

GE: 
HE: 
ICL: 
M5: 

CFDL-ESM2M 
HADGEM2-ES 
IPSL-CM5A-LR 
MIROC5 

histsoc: time-varying, historical socio-economic scenarios 
2005soc: socio-economic scenarios fixed at 2005 level 
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5.2.2. Multi-model Weighted Mean 

Following the previous studies (Eyring et al., 2019; Sanderson et al., 2017), multi-model 

mean is calculated by weighting the ensemble members based on their skill (i.e., RMSE of the 

area-weighted seasonal cycle of TWS relative to GRACE data) and independence (i.e., a measure 

of how a model result differs from others, represented as the pairwise Euclidean distances between 

model results as well as model results and GRACE data ) scores. The independence weight of 

member 𝑖𝑖,𝑤𝑤𝑢𝑢(𝑖𝑖), is computed as the inverse of the summation of pairwise similarity score, 𝑆𝑆�𝛿𝛿𝑖𝑖,𝑗𝑗�, 

which ranges between 1 (for identical members) and 0 (for the most distinct members):  

𝑤𝑤𝑢𝑢(𝑖𝑖) =
1

1 + ∑ 𝑆𝑆�𝛿𝛿𝑖𝑖,𝑗𝑗�27
𝑗𝑗≠1

 (5-1) 

The pairwise similarity score is calculated as a function of the Euclidean distance between 

the members (𝛿𝛿𝑖𝑖,𝑗𝑗), represented by the RMSE of the continent-level average TWS seasonal cycle 

from two members, and a parameter called the radius of similarity (𝐷𝐷𝑢𝑢): 

𝑆𝑆(𝛿𝛿𝑖𝑖,𝑗𝑗) = 𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝛿𝛿𝑖𝑖,𝑗𝑗
𝐷𝐷𝑢𝑢
�
2

 (5-2) 

where, 𝛿𝛿𝑖𝑖,𝑗𝑗 is normalized by the mean of pairwise inter-model distances. The parameter 𝐷𝐷𝑢𝑢 

is the distance below which models are marked as similar and is resolved for each continent as a 

fraction of the distance between the best performing member (i.e., the model with the smallest 

RMSE) and GRACE through an iterative process (Sanderson et al., 2017). Figure 5-1 illustrates 

the continent-based pairwise inter-model distances ( 𝛿𝛿𝑖𝑖,𝑗𝑗  in Equation 5-2) for 27 ensemble 

simulations as well as GRACE data. Lower values (blue colors) of 𝛿𝛿𝑖𝑖,𝑗𝑗 between two members (𝑖𝑖 

and 𝑗𝑗) indicate high similarity between the seasonal cycle of TWS from members 𝑖𝑖 and 𝑗𝑗, whereas 

larger values (red colors) which show low similarity. 
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Figure 5-1. Continent-based pairwise inter-model distance matrix for all ensemble 
simulations and GRACE observations. Each row or column represents a single ensemble 
member or GRACE observations, and each cell represents a pairwise distance of that member 
compared to others. Distances are evaluated based on the root mean squared error (RMSE) of 
TWS seasonal cycle (calculated for 2002-2016 period by combining the results from HIST 
simulations with RCP2.6) spatially averaged over each domain (the continents).  
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The skill weighting of member 𝑖𝑖,𝑤𝑤𝑞𝑞(𝑖𝑖), is calculated based on the stretched exponential 

function of the distance from GRACE (𝛿𝛿𝑖𝑖,𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ; the normalized RMSE of member i’s TWS 

seasonal cycle against GRACE for 2002-2016) and the radius of model quality (𝐷𝐷𝑞𝑞):  

𝑤𝑤𝑞𝑞(𝑖𝑖) = 𝑒𝑒𝑒𝑒𝑒𝑒 �−�
𝛿𝛿𝑖𝑖,𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝐷𝐷𝑞𝑞

�
2

� (5-3) 

where, smaller distances from the GRACE seasonal cycle result in larger skill score/weight. 

The parameter 𝐷𝐷𝑞𝑞 is also defined as a fraction of the distance between the best performing member 

and GRACE. This parameter controls the strength of the skill weighting. That is, when 𝐷𝐷𝑞𝑞 

approaches zero, most of the simulations get significantly down-weighted and only the best 

performing model is assigned a high skill score. Conversely, as 𝐷𝐷𝑞𝑞  approaches infinity, all 

ensemble members are allotted a high (i.e., close to 1) skill score alike and therefore, the multi-

model weighted mean approaches the non-skilled weighted mean. Finally, the continent-based 

𝐷𝐷𝑞𝑞 values are estimated following a perfect model test and through an iterative procedure 

(Sanderson et al., 2017). The continent-based weights (𝑤𝑤𝑜𝑜(𝑖𝑖)) for the 27 ensemble members 

(Figure 5-2) are then calculated as the normalized product of the skill and independence weights 

so that their sum is unity (Eyring et al., 2019; Sanderson et al., 2017), i.e., (∑ 𝑤𝑤𝑜𝑜(𝑖𝑖) = 127
𝑖𝑖=1 ). 

Results from the continent-based weights (Figure 5-2) show that there are relatively small 

differences between the weights assigned to a given terrestrial hydrology model forced by different 

GCMs.  
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Figure 5-2. Continent-based model skill and independence weights (see Methods for details) 
for 27 ensemble members. CWatM and MPI-HM are given relatively lower overall weights 
compared to the other models.  

5.2.3. Simulated TWS, GRACE data, Model Evaluation, and TWS Variability under 
Climate Change  

To drive the monthly-scale simulated TWS, the surface and subsurface water storages, 

which include snow, canopy, river, reservoir (if simulated), lake (if simulated), wetland (if 

simulated), soil, and groundwater storages are vertically integrated in this study (Hirschi et al., 

2006; Pokhrel et al., 2013). For all analyses presented, anomalies of TWS are used, not the absolute 

values. We use the GRACE TWS, the mean of mascon products from the CSR (Center for Space 

Research at University of Texas at Austin) (http://www2.csr.utexas.edu/grace/) and NASA’s JPL 

(Jet Propulsion Laboratory) (https://podaac.jpl.nasa.gov/GRACE) processing centers  (Scanlon et 

http://www2.csr.utexas.edu/grace/
https://podaac.jpl.nasa.gov/GRACE
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al., 2016), to evaluate the simulated TWS for the 2002-2016 period. For model results, since the 

evaluation period is not covered completely by HIST simulations, we combine the results from 

HIST simulations (2002-2005) with results from RCP2.6 (2006-2016). Note that the results from 

the RCP6.0 is highly analogous to RCP2.6 in the starting years. For the validation purpose, the 

seasonal mean of TWS anomalies (shown in Figure 5-4) is derived by first calculating the 

climatological mean seasonal cycle of TWS for the evaluation period and then taking the mean for 

each season. For consistency, the same reference period (2002-2016) is used in calculating the 

seasonal anomalies for both GRACE data and model simulations. Changes in TWS for the mid 

(2030-2059) and late (2070-2099) 21st century (for the two RCPs) are calculated by taking the 

difference of mean TWS for those periods to the mean TWS for the historical baseline period of 

1976-2005, which is the last 30-year period of the historical simulations; simulations from year 

2006 are conducted under future climate scenarios. For some of the analyses, sub-continental 

regions (Figure 5-3) defined by the IPCC Special Report On Extremes (SREX) are used to derive 

the mean seasonal cycle of TWS. 
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Figure 5-3. Geographic location and description of the selected sub-continental regions 
defined by the IPCC Special Report on Extremes (SREX). 

5.3. Results and Discussion 

5.3.1. Validation of Seasonal TWS 

Figure 5-4 and Figure 5-5 show the validation of spatial seasonal TWS anomalies and 

monthly TWS seasonal cycles, respectively, against GRACE data—presented as the mean of 

mascon products from the two processing centers. Model results for the 2002-2005 period are 

taken from the historical simulations (see Table 5-1), and for 2006-2016 from RCP2.6 runs (with 

2005soc socio-economic conditions). Anomalies are calculated by using the mean for 2002-2016 

period for both model results and GRACE data. The results from RCP6.0 (not shown) are almost 

identical to that shown here. The broad global spatial patterns and seasonal variations in TWS are 

accurately captured by the weighted mean of multi-model ensemble, although some differences 
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are evident in the magnitude of seasonal amplitude (e.g., across the Amazon basin that model tend 

to underestimate the amplitudes in DJF and MAM) (Figure 5-4). There are also differences stand 

out especially along major river channels that are explicitly considered in the models but not 

resolved in GRACE data. Further, the seasonal variations in the simulated TWS averaged over the 

major global river basins and presented as ensemble median, unweighted ensemble mean, and 

weighted ensemble mean are also in good agreement with GRACE data in most of the basins 

(Figure 5-5). It is evident that small differences exist between the ensemble median, unweighted 

ensemble mean, and weighted ensemble mean lines for 2002-2016, owing to the similarity of 

model results in the early years of 21st century.  
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Figure 5-4. Spatial patterns of seasonal TWS anomalies from models and GRACE 
satellites. Shown here are the seasonal averages (December-February (DJF), March-May 
(MAM), June-August (JJA), and September-November (SON)) of the simulated (weighted 
ensemble mean) and GRACE-based monthly TWS deviation from the mean for the GRACE 
period (2002-2016). 
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Figure 5-5. Monthly seasonal cycle (2002-2016) of TWS for the major global river basins. 
GRACE data are the mean of two mascon products (CSR and JPL; see Methods for more 
details). The light blue, pink, and orange lines show the unweighted mean, weighted mean, and 
median, respectively, of multi-model ensemble simulations. Gray shading indicates inter-model 
range expressed as one standard deviation (SD) from the weighted mean. 
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5.3.2. Impacts of Projected Climate Change on TWS 

Figure 5-6 portrays the future changes in global TWS in mid- (2030-2059) and late-21st 

century (2070-2099) relative to the historical period (1976-2005) under the impacts of projected 

climate change based on RCP2.6 and RCP6.0 scenarios. To better identify the main drivers of 

TWS changes, similar spatial maps are shown for projected precipitation (Figure 5-7) and 

temperature (Figure 5-8) for the same periods and from the same climate scenarios and GCMs of 

CMIP5. TWS is projected to decline by the mid- and late-21st century in the majority of the 

southern hemisphere (e.g., the Amazon basin, parts of central Africa, and Australia), the 

conterminous U.S. (CONUS), most of Europe, and the Mediterranean, but is projected to increase 

in eastern Africa, south Asia, and a large portion of northern high latitudes, especially northern 

Asia (Figure 5-6). Consistent with the changes in precipitation (Figure 5-7), results indicate a 

strong north-south contrast in TWS change, readily discernible in the latitudinal mean (Figure 5-6). 

While the aforementioned changes are evident by the mid-21st century (under both RCPs; Figure 

5-6a,c), the signals become even stronger by the late-century, and especially under RCP6.0 (Figure 

5-6d). There are also exceptions, e.g., parts of Midwest and eastern CONUS where TWS under 

RCP2.6 is projected to decline by the mid-century but then increases or shows no significant 

change during the late-century, primarily due to the projected increase in precipitation (Figure 5-7) 

but decrease in temperature (Figure 5-8) under RCP2.6 and from mid- to late-century. For RCP6.0 

and across most global regions, the projected changes (positive or negative) seen in the mid-

century become more pronounced in the late-century. Next, the comparison of the RCPs for both 

periods reveals that the differences between the two RCPs are less obvious; an exception is in 

Australia where results indicate a smaller decline in TWS under RCP6.0 than under RCP2.6 



 
 

123 

(Figure 5-6), which again is consistent with the patterns of changes in precipitation where RCP2.6 

projects a drier climate for Australia than RCP6.0 for both mid- and late-century (Figure 5-7).  

 

Figure 5-6. Impact of climate change on TWS. Shown are the changes (multi-model weighted 
mean) in TWS averaged for the mid (2031-2059; a and c) and late (2070-2099; b and d) 21st 
century under RCP2.6 (a and b) and RCP6.0 (c and d) relative to the average for the historical 
baseline period (1976-2005). Color hues show the magnitude of change and saturation indicates 
the agreement, among ensemble members, on the sign of change. The graph on the right of each 
panel shows the latitudinal mean.  
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Figure 5-7. Spatial patterns of change in precipitation by the mid (2030-2059) and late 
(2070-2099) 21st century under RCP2.6 and 6.0. Shown are the absolute differences in the 
annual mean between the two future periods and historical baseline period of 1976-2005, 
calculated as the mean of the results from four Global Climate Models (GCMs) used to drive the 
hydrological models: HadGEM2-ES, GFDL-ESM2M, IPSL-CM5A-LR, and MIROC5. Note that 
Greenland is masked out. The graph on the right of each panel shows the latitudinal mean.  
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Figure 5-8. Same as in Supplementary Figure 5-7 but for annual mean temperature (in 
Kelvin). 

Overall, color saturation in Figure 5-6 shows that a strong agreement exists across 

ensemble members in the sign of change for most regions, indicating high confidence in the model 

projections. For example, the TWS decline in most of the Amazon basin, Australia, and the 

CONUS as well as the TWS increase in northern Asia are agreed among more than 80% of the 

ensemble members. The confidence in model projections is further reinforced by a strong 

agreement between the simulated TWS seasonal cycle and GRACE data for the historical period 

discussed above (Figure 5-4 and Figure 5-5).  

Figure 5-9 shows the weighted mean of TWS seasonal cycles for the SREX regions based 

on the TWS anomalies, generated by combining the results from HIST simulations with the 

corresponding RCP. Anomalies are calculated considering the reference period set to 1861-2099 

to avoid potential exaggerations in the estimates of TWS variabilities (Sippel et al., 2015). 
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Projected changes in TWS seasonal cycle vary across regions (Figure 5-9). Regions (Figure 5-3) 

including the Amazon, Mediterranean, North Australia (NAU), Northeast Brazil (NEB), South 

Australia (SAU), Southeastern South America (SSA), and West Africa (WAF) are projected to 

experience a substantial downward shift in the seasonal cycle caused by declining TWS, whereas 

East Africa (EAF), North Asia (NAS), and South Asia (SAS) will experience an upward shift in 

the seasonal cycle, reflecting a large increase in TWS compared to the baseline period. Many of 

the regions with increasing TWS overlap with regions with marked increase in precipitation 

(Figure 5-7). Further, our findings here corroborate discoveries of previous studies; two examples 

are: the strong drying in the Mediterranean which is consistent with the historically-observed north 

(wet)-south (dry) contrast in pan-European river flows (Gudmundsson et al., 2017) and the TWS 

deficit in the Amazon basin which is in line with the reported substantial decline in water table 

depth and sub-surface water storage under future climate (Pokhrel et al., 2014).  

 

Figure 5-9. Seasonal TWS variations for sub-continental regions defined by the IPCC 
Special Report On Extremes (SREX). Ensemble weighted mean seasonal cycle is estimated 
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Figure 5-9 (cont’d) from the time series of TWS for the respective periods (see legends). X-axis 
labels are shown in the plot for SAU. A description of the SREX regions is provided in Figure 
5-3.  

The comparison of the HIST and RCPs simulations with the PIC simulation suggests that 

the projected changes in TWS for the past and late-21st century (Figure 5-9) are driven primarily 

by changes in climate forcing, as opposed to changes in land-water management and/or socio-

economic drivers. Since the PIC simulations use identical socio-economic scenarios as the HIST 

and RCP simulations for the respective periods (Table 5-1), the comparison reveals that TWS 

would have remained generally stable in most regions under a preindustrial climate. 

5.3.3. Implications of Projected Changes in TWS on Sea Level  

The IPCC reported the rate of GMSL rise to be ~1.7±0.2 mm year-1 during 1901-2010, 

however, largely increased to ~3.2±0.4 mm year-1 toward the end of the period (i.e., 1993-2010). 

The emergence of GRACE era with monthly observations of Earth’s gravity field has enabled us 

to better estimate the total GMSL changes as well as the components’ contributions. The total 

GMSL budget (i.e., ~2.74 to 3.2 mm year-1) is then broken down into the major components, i.e., 

the thermal/steric expansion of oceans (~1.38 mm year-1), ablation of Greenland (~0.73 to 0.77 

mm year-1), Antarctica (~0.26 to 0.49 mm year-1), and land glaciers (~0.38 to 0.65 mm year-1), and 

the terrestrial hydrology contribution (~- 0.29 to - 0.33 mm year-1) (Reager et al., 2016; Rietbroek 

et al., 2016). While the human-induced TWS declines/changes have been proved to contribute to 

GMSL rise with the rate of 0.31 to 0.69 mm year-1 (Table 5-2) (Pokhrel, Hanasaki, Yeh, et al., 

2012; Wada et al., 2012), large climate-driven TWS changes have slowed the GMSL rise with the 

rate of 0.71 mm year-1 and thus, resulting in a net GMSL decrease (i.e., ~- 0.29 to - 0.33 mm year-
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1) caused by the terrestrial hydrology (i.e., excluding the land glaciers and ice sheets) (Reager et 

al., 2016).  

Table 5-2. The comparison of estimated contribution of terrestrial hydrology to GMSL rise 
from different studies and the projected values of this studies. 

   Land Hydrology Contribution to GMSL rise 

Study Method Time Period Glaciers Human-induced TWS Climate-driven TWS 
Llovel et al. (2010) GRACE 2002-2009  -0.22 
Konikow et al. (2011) In situ Obs. 2000-2008  0.41 ± 0.10  
Wada et al. (2012) PCR-GLOBWB Model 2000  0.57 ± 0.09  
Pokhrel et al. (2012) HiGW-MAT Model 1961-2003  0.69 0.08 
IPCC AR5 (2013) Previous Studies 1993-2010  0.38 ± 0.12  
Döll et al. (2014) WaterGAP Model 2000-2009  0.31 ± 0.0  
Richey et al. (2015) GRACE 2003-2014  0.24 ± 0.02  
Rietbroek et al. (2016) GRACE 2003-2014 0.38 ± 0.07 −0.29 ± 0.26 
Reager et al. (2016) GRACE 2002-2014 0.65 ± 0.09 0.38 ± 0.12 −0.71 ± 0.20 
This Study TWS Projection (RCP2.6) 2030-2059  0.07 ± 0.027 
This Study TWS Projection (RCP6.0) 2030-2059  0.18 ± 0.024 
This Study TWS Projection (RCP2.6) 2070-2099  0.08 ± 0.024 
This Study TWS Projection (RCP6.0) 2070-2099  0.07 ± 0.016 
     

Figure 5-10 shows the weighted mean of annual land water storage variation expressed as 

the equivalent sea level with monthly climatology removed for 1861-2099 (i.e., after the results 

form HIST and corresponding RCP are combined) and land glaciers and ice sheets excluded. The 

results show that the global land, excluding glaciers, gains water (i.e., ocean loses) during 2002-

2014 consistent with previous studies (e.g., Llovel et al. 2010; Reager et al. 2016). However, the 

TWS trend values (i.e., 0.01±0.08 mm year-1 for RCP2.6 and 0.1±0.10 for mm year-1 for RCP6.0) 

are underestimated compared to the GRACE measurements, in line with the findings of Scanlon 

et al. (2018) that many of the global models tend to underestimate large decadal rising and 

declining TWS trends.  
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Figure 5-10. Simulation of land water storage changes, expressed as equivalent sea level 
changes, for 1976-2099. Ensemble weighted mean of TWS changes, grouped by climate 
scenarios, is shown as solid lines and the shaded areas indicate the ∓1 standard deviation (SD) 
from the weighted mean. 

Starting from 2016 and continued in the mid (2030-2059) and late (2070-2099) 21st century, 

land water storage is projected to shift from gaining to losing water (i.e., ocean gaining) (Figure 

5-10). Therefore, the role of the terrestrial hydrology, as a component that has decelerated the 

GMSL rise in the past decade, is projected to be reversed by the mid- and late-21st century. The 

rates of TWS changes are estimated as - 0.07±0.03 and - 0.18±0.02 mm year-1 based on RCP2.6 

and RCP6.0 scenarios, respectively, for the mid-century and - 0.08±0.02 and - 0.07±0.02 mm 

year-1 based on RCP2.6 and RCP6.0 scenarios, respectively, for the late-century (Table 5-2). These 

rates are statistically significant (i.e., p < 0.05) based on the Wald test.  

5.4. Conclusions 

In summary, the impacts of climate change on global TWS variations and the implications 

on GMSL change are quantified by using multi-model ensemble global simulations from seven 

global terrestrial hydrology models (i.e., CLM4.5, CWatM, H08, LPJmL, MPI-HM, PCR-
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GLOBWB, and WaterGAP) input by the forcing data of four GCMs (i.e., GFDL-esm2, Had-

GEM2-ES, IPSL-CM5-LR, and MIROC5). Four cases of radiative forcing are considered for each 

GCM: the pre-industrial control, historical climate, and the low (RCP2.6) and medium-high 

(RCP6.0) greenhouse gas concentration scenarios. Simulations are conducted under the framework 

of the ISIMIP2b. Results are indicated as multi-model weighted mean of TWS anomalies 

calculated by scoring the ensemble members based on their continent-level skill and independence 

weights. The results from the climate-induced TWS changes show that an overall north-south 

contrast exists, where TWS is projected to increase in northern high latitudes, south Asia, and 

eastern Africa, but to decrease in other regions including the Amazon, U.S., Australia, southern 

Europe and the Mediterranean, and southwestern Africa. There is a strong agreement among 

ensemble model projections suggesting that the findings are robust. We further find that the critical 

role of global TWS as a component that has decelerated the GMSL rise is projected to be reversed 

(i.e., contributing to the GMSL rise) by the mid- and late-21st century. Our results have important 

implications for improved assessment of climate impacts on land water resources and future 

GMSL changes. 
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CHAPTER 6 

 
6. Summary and Conclusions 

Land surface models (LSMs) are designed to be coupled with atmospheric/climate and 

ocean models within the framework of Earth system models (ESMs), providing the opportunity to 

simulate various hydrological, biogeochemical, and biogeophysical processes on land as the 

feedback and interactions among various Earth system components (e.g., atmosphere and oceans). 

Despite noteworthy progress that has been made in incorporating human footprints on global 

hydrology in LSMs, limitations and significant challenges still remain in representation of human 

impacts, particularly irrigation and groundwater extraction, which lead to failure in accurately 

capturing the process heterogeneities on and below the land surface and the fine-scale details of 

land-water management practices. Therefore, the overarching goal of my Ph.D. dissertation is to 

improve the irrigation and groundwater parameterizations in LSMs toward advancing our 

understanding of hydrology-human-climate interactions. 

In Chapter 2, two state-of-the-art models (i.e., HiGW-MAT and PCR-GLOBWB) together 

with multiple GRACE spherical harmonic (SH) products are used to quantify the impacts of human 

activities on terrestrial water storage (TWS) change. Overall, the results from the TWS simulations 

show that a good agreement can be seen between GRACE and both HiGW-MAT and PCR-

GLOBWB models in terms of the direction and magnitude of change. However, a relatively poor 

agreement exists between the models and GRACE over the highly-managed and snow-dominated 

regions, highlighting the need to improve model parameterizations for the simulation of human 
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water management and snow physics to reliably simulate the spatial and temporal variability in 

TWS. 

In Chapter 3, a new approach is presented to improve irrigation representation in global 

LSMs by assimilating soil moisture (SM) from SMAP satellite. This approach includes the 

derivation of vertical soil moisture profile from SMAP data and assimilation using 1-D Kalman 

Filter smoother to improve the representation of target soil moisture.  SMAP SM data are also bias 

corrected using ground-based soil moisture data in one of the simulations. The approach is tested 

over the highly irrigated region in the central U.S.  at 3 arc-minute spatial resolution in CLM4.5. 

The results show that significant improvements in irrigation simulations can be achieved through 

1-D Kalman Filter data assimilation. Thus, while the present study is conducted at the regional 

scale using CLM4.5, the newly developed approach can be incorporated into any LSM and applied 

globally. 

In Chapter 4, a prognostic groundwater model, equipped with lateral groundwater flow, 

conjunctive water use for irrigation, and pumping, is implemented in the latest version of CLM 

(CLM5) to investigate the role of lateral groundwater flow and impacts of pumping on simulation 

of continental-level groundwater and TWS. Specifically, an explicit parameterization for the 

steady-state well equation is introduced—for the first time—in the global land surface modeling. 

The new groundwater model with pumping is shown to promisingly simulate groundwater 

depletions across the two heavily irrigated aquifers in the U.S. Further, results show that large 

biases and false TWS trend values simulated by the default CLM5 are significantly corrected when 

adding the lateral groundwater flow based on Darcy’s law. We find that unrealistic representation 

of irrigation source, i.e., withdrawing from the surface water as the only source in the default 
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CLM5, leads to a large water deficit in satisfying the irrigation water requirement due to the limited 

water availability during the irrigation season. Therefore, the majority (i.e., ~two third) of 

irrigation water is coming from an imaginary source, causing false wet biases in simulated TWS 

trend across irrigation regions. When the pumping scheme is activated to account for conjunctive 

water use for irrigation, the majority of the irrigation water requirement is supplied by real 

groundwater and surface water sources, however, the declining TWS trends are mostly 

overestimated. Future studies need to address this overestimation issue by including more 

geological information in the representation of lateral groundwater flow and pumping. 

In Chapter 5, multi-model ensemble global simulations of projected TWS are used to 

investigate the impacts of climate change on global TWS and to quantify the consequent 

implications on the global mean sea level (GMSL) change. Seven global terrestrial hydrology 

models (i.e., CLM4.5, CWatM, H08, LPJmL, MPI-HM, PCR-GLOBWB, and WaterGAP) input 

by the forcing data from four general circulation models (GCMs; i.e., GFDL-esm2, Had-GEM2-

ES, IPSL-CM5-LR, and MIROC5) under four cases of radiative forcing: the pre-industrial control, 

historical climate, and the low and medium-high greenhouse gas concentration scenarios (i.e., 

RCP2.6 and RCP6.0, respectively) are utilized in the analyses. Results indicate that major global 

hotspots of TWS deficit are mostly located in the southern hemisphere (e.g., the Amazon, Australia, 

and southwestern Africa), while the northern high latitudes, south Asia, and eastern Africa are 

projected to experience TWS increases by the mid- and late-21st century. We further find that the 

global TWS as a critical component of the GMSL budget is projected to shift from decelerating 

(i.e., in the past several decades) to accelerating the GMSL rise by the mid- and late-21st century. 
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