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ABSTRACT

SMOOTH SWITCHING LPV CONTROL AND ITS APPLICATIONS
By
Tianyi He

This dissertation studies the smooth switching LPV (Linear Parameter-Varying) system and control,
as well as its applications in mechanical systems, aerospace systems to achieve the smooth transition
between switching LPV controllers. Both state-feedback and dynamic output-feedback cases are
addressed by the simultaneous design approach of smooth switching LPV control, and the proposed
method has been applied to active vibration control of BWB (Blended-Wing-Body) aircraft flexible
wing and the AMB (Active Magnetic Bearing) system. Moreover, a sequential design approach is
developed to design smooth switching LPV controllers, where the high-dimensional optimization
in the simultaneous design approach can be relaxed.

In conventional switching LPV control, switching controllers are designed on each subregion
while guaranteeing safe switching, but without considering the smoothness during switching events.
The abruptly varying control signal can exceed actuator authority; moreover, abrupt changes in
system responses caused by unsmooth controller gains will be harmful to system components and
hardware. The simultaneous design of smooth switching LPV control minimizes a combined cost
of system output o performance and smooth-switching index subject to Ho constraints on control
inputs and H  constraint on bounded model uncertainty. These stability and performance criteria
are then formulated using a set of Parametric Linear Matrix Inequalities (PLMIs). Besides, a
tunable weighting coeflicient is introduced to provide an optimal trade-off design between system
‘Ho performance and switching smoothness. Simulation results with the AMB model and BWB
aircraft wing model are provided to demonstrate the effectiveness of the proposed smooth switching
control.

In the above approach, switching controllers are synthesized by controller variables that si-

multaneously satisfy PLMIs on all subregions and switching stability conditions on all switching



surfaces. When the number of subregions goes large, simultaneous design approach leads to a
high-dimensional optimization problem, with a high number of LMI constraints, decision vari-
ables, online computational load, and memory requirement. As a result, these drawbacks make
simultaneous design practically infeasible for high-order systems with many divided subregions.
An innovative sequential design approach is proposed by introducing interpolated controller deci-
sion variables and formulating independent PLMI conditions on each subregion such that system
performances on overlapped subregions are guaranteed as well. In this way, the switching controller
synthesis conditions are formulated as independent optimization problems and can be well solved
sequentially.

Besides, this dissertation also utilizes the LPV framework to investigate optimal sensor place-
ment to achieve optimal vibration suppression for a flexible BWB airplane wing. For a given flight
speed range, vibration behaviors of the wing structure are evaluated by the guaranteed Ho perfor-
mance with the Ho LPV controller. Candidate sensor locations are identified on each wing, and
the optimal sensor placements can be found among these candidate sensor locations by the greedy
algorithm. The searched optimal results are validated by globally searching through all possible
combinations. With the LPV model of a flexible wing and H9 controller synthesis conditions,
search results provide the optimal sensor locations, and besides, the trade-off between optimal

system performance and the number of sensors can also be obtained.
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CHAPTER 1

INTRODUCTION

1.1 LPYV System and Control

1.1.1 Overview

Linear Parameter-Varying (LPV) system and control have gained significant interest from the control
community over the past two decades [2, 3, 4, 5, 6, 7, 8]. The main benefit of the LPV system
is that the varying characteristics of system dynamics can be captured by the LPV model with its
linear system matrices dependent on scheduling parameter. LPV controllers can be designed with
its gain scheduled based on the scheduling parameters measured in real-time.

The LPV control method is seen as a "modern" gain-scheduling control, which is one of the
most popular and effective approaches to address nonlinear systems. Gain-scheduling control
has been widely used in a wide variety of dynamical systems with nonlinear and time-varying
dynamics. The classical gain-scheduling control utilizes the idea of divide and conquer. The
nonlinear system is firstly linearized at gridded operating points to a bundle of linear models,
usually called parametric gridded model. Linear controllers are then designed based on each
local model by linear control theory, which leads to a bundle of corresponding fixed-gain linear
controllers. In controller implementation, controller gains are scheduled or switched according
to operating points. As shown in Figure 1.1, one linear controller is active when the system is
operating within the region close to its linearization point.

The classical gain-scheduling tackles the complicated nonlinear control problem by solving a
bundle of simpler sub-problems, however, it has a few drawbacks and limitations in theory and

applications.

* Classical gain-scheduling control designs linear controller at gridded operating points, thus

stability, performance, and robustness can only be guaranteed locally, but not globally in the



Figure 1.1: Classical gain-scheduling control

entire operating region. The closed-loop system performance by linear controllers designed
at gridded points will degrade when the current operating point deviates from linearization

points.

* Classical gain-scheduling control is only suitable for the slow-varying system, because the
switching stability between local controllers will impose constraints on switching signals.

This is well studied in switching stability conditions in switching LTI systems [9, 10].

* The trade-off between the density of gridding points and computational complexity needs to
be well considered. In general, more gridding points are needed to more precisely describe the
system dynamics, which inevitably increases computational complexity. Moreover, gridded
linear controllers are designed beforehand and are restored in memory, then they are read
from memory in controller implementation, which means that more memory is needed by

more gridded operating points.

To avoid the drawbacks of classical gain-scheduling control and retain the gain-scheduling
strategy, modern LPV control has been proposed in the early 90s’ by Shamma [11] and extended
by pioneering researchers Becker, Apkarian, Gahinet and Wu [12, 2, 3, 13, 14, 15, 16]. The
modern gain-scheduling control-LPV control can be described in Figure 1.2. In modern gain-
scheduling control, controllers are designed with scheduling gains over the entire operating region.

The operating conditions are considered as scheduling parameters and assumed to be available in



Figure 1.2: LPV control-modern gain-scheduling control

real-time. The controller matrices are designed as parameter-dependent and vary with scheduling
parameters.

The mainstream approach of LPV gain-scheduling control design is to formulate control syn-
thesis conditions in terms of Linear Matrix Inequalities (LMIs) or Parameterized Linear Matrix
Inequalities (PLMIs) [12, 17, 3, 18, 19, 20, 13]. Numerically tractable optimization methods, such
as convex optimization, can then be applied to solve for feasible or optimal LPV gain-scheduling
controllers. LPV control designs with pole placement, guaranteed o and/or H, performance
have been intensively studied in the literature [21, 22, 23, 24, 20, 13, 15], as well as the case of
inexact scheduling parameters [25, 26, 27, 28, 29, 30, 31, 32], and LPV systems with delay [16].

As long as a solution to the formulated optimization problem is obtained, then the derived
parameter-dependent LPV controller matrices will achieve the guaranteed system performance.
Apparently, the modern LPV gain-scheduling control is able to guarantee stability globally over the
scheduling parameter region, to achieve guaranteed closed-loop system performance, and to avoid
repeating linearization and linear controller design.

This chapter introduces the non-switching LPV system and control, followed by the switching
LPV system and control. The system description, system performance specifications, and multiple

performance channels will be included in the following context.



1.1.2 LPV system and performance
Consider the closed-loop LPV system described by

(t) = Ay (0)x(t) + Boo(f)woo(t) + Ba(0)wa(t);
Xa(0) : 20(t) = Ceg oo (0)(t) + Doo (§)woo () (1.1)
2(t) = Cp 2(0)x(t)

where §(t) = [61(t),02(1), ..., 04(1)] T denotes the scheduling parameter vector of g elements, z(t)
denotes the state, wso (t) the exogenous inputs (for instance, system uncertainty input, sensor noises,
etc.), and wo the disturbance input; z(t) the Hoo controlled output, 29(t) the Ho performance
output. The system matrices depend on the scheduling parameter vector ¢, which is assumed to be

measurable in real-time. The magnitude and variational rate 0 are bounded as

0e0=1{0;<0;(t)<0;ic{1,2,.,4}} (1.2)

0eh={—v<bi(t)<v,ie{l,2,..q}}
There are two independent performance channels in this system, Ho channel from w9 to 29 and H
channel from w to 25. In the next subsections, system performances are specified. Throughout

this dissertation, we make use of the following standard definition of L9 and L, norms on

x(t) € R" forall t > 0,

o0
213 tz/ o' (D)z(t)dt, |3 = sup () (1)
0 >0

1.1.3 Performance specifications and PLMI formulations

It should be noted that there are two separate input and output pairs defined in (1.1), and they
are specifically designated for assessing the closed-loop LPV system performances, as shown in
Figure 1.3. In the mixed Hoo/Ho control, the LPV system () achieves specific Ho performance
while subject to H, performance constraints. Note that the interconnection of A in Figure 1.3
is to capture the model uncertainties in Y(6), and the robustness against modeling uncertainty is

addressed by H o channel. The definitions of H o, Ho performances are given below.



Ly ) —2

Figure 1.3: Closed-loop LPV system in LFT form with uncertainty block

1.1.3.1 H performance

The H~o performance, defined from weoo () to 200 (t) with Lo input and L9 output, is utilized to
assess the closed-loop system robustness in the presence of model uncertainties. Mathematically,
Too(0, 5) := Tryoweo (6, s) denotes the parameter-dependent transfer function from w(t) to 2o ()
and ||To||co the Hoo norm of T, . Then, the Hoo performance for the (woo (), 200(t)) pair is

defined as Lo gain [14, 15], where

(1.3)

t
HTooHoo = sup sup M
00 woo,200 € Lo w000 |[Woo (D)2

Physically, H~o norm is related to the robust stability of a given system with modeling error. Based
on the Small Gain Theorem [33], the closed-loop system satisfying the condition || 7o ||00 < Yoo iS
well-posed and internally stable for all uncertainty satisfying the constrain ||Al|sc < 1/700, Where
A is system uncertain dynamics interconnected from zo, to woo, see Figure 1.3. The following

Lemma 1 for H o performance is given [12, 2, 15].

Lemma 1. Suppose that there exists a parameter dependent positive-definite matrix Pxo(0), such
that (1.4) holds for any admissible (9,9) € ©U) x A. Then the closed-loop system (1.1) is

exponentially stable with guaranteed performance ||zxo||2 < V||wool|2 for a given robustness level



v > 0 and for all admissible trajectories (0, 9) € © x A. ( x denotes symmetric terms.)

CclpoPOO I Do <0 (1.4)

* x =l

1.1.3.2 Hs performance

The 9 performance, defined from wo (%) to z9(t), is utilized to assess the closed-loop system output

performance. Let T5(0, s) :=T.

29wy (0, ) be the parameter-dependent transfer function from wy (t)

to 29(t), and if the closed-loop system matrix A, is stable, then the H9 norm of T5(#, s) is defined

as the worst-case Ho performance on the subregion © [34, 20],

IT(0), ) = sup ok [5 trace [T5(6, jw)To(0, )] do
S

- (1.5)
= sup tmce(Ccl’Q(@)PQ(H)Cg;2(9)).
0cO ’
where P solves the differential Riccati equation,
Do A PP T T
Py =AqPy+ Py(Ag)" + Ba(B2) (1.6)

with zero initial condition.

The Ho norm of a system has two interesting physical interpretations both stochastically and
deterministically. To be more specific, stochastically, {2 norm of a system denotes the trace of the
output covariance matrix, or in other words, the summation of RMS-value of the system outputs
to a white noise input; and deterministically, H9 norm of a system denotes the square summation
of L9 to L gains of individual channels from exogenous disturbance inputs to system outputs. In
vibration control, system H9 norm can be used as a measure of output magnitude (L~ norm) due
to energy limited (L9 norm) disturbance inputs.

Note that for LPV control case, ||15(0,s)||o depends on varying scheduling parameter 6,
leading to increased complexity due to unknown scheduling parameter trajectory. To reduce

complexity and keep optimization as a unified approach to derive the H9 norm, the upper bound



trace(W) = sup {tmce(Ccm(H)152(9)0;"2’2(6))} for all 0 satisfying (1.2) is sought instead. W
is an introduced auxiliary variable, which is a symmetric matrix with compatible dimensions with
outputs . Using this constraint, the guaranteed H9 performance for all admissible scheduling
parameter can be formulated.

The following Lemma 2 is given to evaluate the Ho performance for LPV system [20, 34].

Lemma 2. For a stable A, if there exist a parameter dependent positive-definite matrix P5(6)

and a constant matrix W, such that

—Py+ AgPy+ (%) By
* -1

<0, (1.7)

and

W CyoP
22 g (1.8)

* P

hold for all (6, 9) € O X A, then the Ho norm of the closed-loop system is bounded by trace(W),
Le.

trace(C’cmﬁg(C’dg)T) < trace(Ccl’QPQ(C’d’Q)T) < trace(W). (1.9)
1.2 Switching LPV System and Control

1.2.1 Overview

In the non-switching LPV controller design, if controller variables subject to PLMIs optimize
the system performance index, the closed-loop system performance will be guaranteed over the
entire scheduling parameter region. However, when the scheduling parameter region is very large,
the formulated PLMIs could be extremely conservative, making it difficult or even impossible to
achieve satisfactory closed-loop system performance. Moreover, describing system dynamics over
a large scheduling parameter region by a single LPV model would lead to significant modeling

errors, and hence inevitably degrades the closed-loop system performance [35, 36].



It is easy to observe in non-switching LPV controller synthesis that, a single Parameter-
Dependent Lyapunov Matrix (PDLM) is utilized to derive system stability and performance condi-
tions. To reduce the conservativeness, switching LPV control using multiple Lyapunov functions
has been proposed by Lu and Wu [1]. The entire region of the scheduling parameter is divided
into multiple subregions, and multiple PDLMs are utilized to formulate PLMIs conditions for
controller synthesis. To ensure switching stability, additional switching stability constraints on
PDLMs need to be satisfied on switching surfaces. The conservativeness of formulated PLMIs on
the entire scheduling parameter region can be effectively reduced by a set of smaller subregions
and multiple PDLMs, thus the resulting optimal performance will be improved. The switching
LPV system borrows the idea and stability analysis method from [37, 38, 39, 40, 25, 10, 41, 42] to
conduct the stability analysis and controller design. The switching LPV system and control have
been demonstrated to achieve prominent performance over non-switching LPV control in multiple
engineering practices [43, 44, 45, 46, 47, 48, 49].

As shown in Figure 1.4, the entire scheduling parameter region is divided into multiple sub-
regions. An LPV gain-scheduling controller is designed for each subregion, and all controllers
are often assumed to have the same form. It is essential to point out that switching controllers
can have different order and form, but switching stability conditions will be difficult to derive.
The assumption of same-order controllers will primarily simplify the stability issue and controller
synthesis.

The switching LPV controllers are usually designed offline, and their switching logic is deter-
mined in terms of scheduling parameter region division. The switching stability is often proved
by non-increasing Lyapunov functions in the switching sequence. In the earliest paper discussing
switching LPV control by Lu and Wu [1], hysteresis switching and average-dwell-time switching
strategies were focused, and associated controller synthesis conditions were developed. Besides
that, the minimum switching strategy was reported in [50]. These switching strategies impose con-
straints on Lyapunov matrices or switching signals on switching surfaces and achieve guaranteed

switching stability. The detailed description of switching strategies and their associated switching
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Figure 1.4: Switching LPV gain-scheduling control

stability conditions will be covered in the later subsection.

1.2.2 Switching LPV system and performance

Consider again the closed-loop system described in (1.1), but the scheduling parameter region is
divided into .J subregions. The sub-systems for adjacent subregions are to be switched according
to different laws, including scheduling-parameter-dependent laws, state-dependent laws or external
switching signals. The jth subregion is denoted by o) (j € Ny=1{1,2,...,J}), and switching
surface from ©() to ©U) is denoted by S (:3), For example, Figure 1.5 shows a three-subregion
partition of one-dimensional scheduling parameter and switching events by hysteresis switching
. When 6 crosses the switching surface 5(1:2), the sub-system Eil(ﬁ) is switched to zgl(e), and

when 6 crosses the switching surface S(21), 231(9) is switched back to Egl(Q).

S@21)  g(12) S3:2) §(23)

Figure 1.5: Three-subregion partition of scheduling parameter region

Then the closed-loop system with H~, and Hs performance channels on the subregion (6, 0) €

00U) x A is described as



i(t) = AL (B)x(t) + Blo(0)wao(t) + BS(8)wa(t);
10): 9 20o(t) = ) (0)a(t) + Do (O)woo(t) (1.10)

cl,00

25(t) = € o (0)a()

1.2.3 Performance specifications in switching LPV system

1.2.3.1 H performance

The H~o performance, defined from weo () to 200 (t) with Lo input and L9 output, is utilized to
assess the closed-loop system robustness in the presence of model uncertainties. Mathematically,
let Too(0,5) = Tanoweo (0, s) denotes the parameter-dependent transfer function from w(t) to
Zoo(t) and || T || oo the Hoo norm of T . Then, the H oo performance for the (woo (), 200(t)) pair

is defined similar to that of non-switching LPV system Lo gain [15], where

(1.11)

Zool(l
ITaloe = sw wp Ll
HEO(j)JeNJ Woo,200 €L9,Woo#0 Hwoo(t)HQ

The following Lemma 3 can be used to formulate the H , performance for Z‘Z . [1,32].

Lemma 3. Suppose that there exists a family of parameter-dependent positive-definite matrices
Pgo(e) such that (1.12) holds for all admissible trajectories (6,6) € ©U) x A, then the closed-
loop subsystem (1.10) is exponentially stable on entire subregion with guaranteed performance
l|200ll2 < Y||weo||2 for a given robustness level v > 0. ( * denotes symmetric terms.)

—Pgo + Agngo + (%) Bgo

Cj Pgo —I Dgo <0 (1.12)

cl,00
* * =l
1.2.3.2 H9 performance

The #Ho performance, defined from wo(t) to 2o(t), is utilized to assess the closed-loop system

output performance. Let T5(0,s) := Tzyw, (0, s) be the parameter-dependent transfer function

10



from wy(t) to zo(t), and if each of subregion closed-loop system matrix Aﬁ ; is stable, then the #o
norm of is defined as the worst-case Ho performances on all the subregions eu),
ITl3 = sup  trace(Ch,(O)P3(0)C] ,(0)T). (1.13)
96@0), JEN
where ?g solves the differential Riccati equation,
Py = A1 P}+ Pyl + BY(BY)T (1.14)
with zero initial condition.

The Ho norm of a stochastic system is the trace of output stochastic covariance matrix, or
the summation of RMS-value of the outputs to a white noise input, whereas the o norm of a
deterministic system denotes the square summation of L9 to L~ gains of individual channel from
exogenous inputs to system outputs. Alternatively, the 7o norm can be interpreted as deterministic
outputs covariance in terms of time correlation [51]. With the following lemma, The 2 norm for

9 c oU) subregion is bounded by its upper bound ¢race(WW'), and can be derived by minimizing

trace(W'), which falls into the typical min-max problem.

Lemma 4. [20] For any stable A‘é ;» If there exist a parameter dependent positive-definite matrix

PJ(0) and a constant matrix W, such that

—PJ+ AP+ (x) B
2 cl” 2 ( ) cl < O7 (1.15)
* -1

and

J pl
W OleP

J
* P2

>0, (1.16)

hold for all (0, 9) e o) x A, then the Ho norm of the closed-loop local subsystem in the jth

subregion is bounded by trace(W), i.e.,

trace(C’ o 2P2(C ! 2) ) < trace(C’ P (C 1Y < trace(W). (1.17)

cl,2

If the condition (1.15) and (1.16) are valid on all subregions, then trace(W) is the universal

upper bound of Ho norm on entire scheduling parameter region.
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1.2.4 Switching strategies and stability conditions

Switching LPV system is a special case of switching system, which considers the switching of
systems in a more general sense. Switching systems can be seen as a hybrid of the continuous-time
system and discrete-time switching signal. The neighboring controllers to be switched are always
assumed to be in the same form and order to simplify the stability problem and controller synthesis
complexity. It is noted that this dissertation also follows this assumption.

In the literature, there are extensive studies about the switching strategies and associated
switching stability conditions for linear systems [52, 10, 9]. These switching strategies have been
extended to switching LPV systems [53, 1]. In this section, the state-of-art research about switching
LPV system and control will be covered, then popular switching strategies and associated switching
stability conditions of LPV systems will be given.

Consider the closed-loop autonomous LPV system without external inputs in (1.18) for analysis

of switching stability,

(0)(t). (1.18)

1.2.4.1 Hysteresis switching

Revisit Figure 1.5, there is an overlapped subregion between any two neighboring subregions.
When 6 crosses the switching surface S(1:2) the sub-system Egl(Q) is switched to ZEZ(Q), and
when 6 crosses the switching surface S(2:1), Egl(ﬁ) is switched back to 221(9).

Direct Lyapunov method is often used to prove the switching stability. Due to that multiple
controllers are designed on subregions, we suppose that there is a family of positive definite Lya-
punov matrices P/ (0) dependent on scheduling parameter §. Then parameter-dependent Lyapnov

functions are formulated as quadratic functions as

Vi(z,0) = 2T PI()x (1.19)

12



where j represents the active controller on the j“ " subregion ©, and its corresponding Lyapunov
matrx P7(6) is used in formulating the Lyapnov function.

The switching stability can be achieved by non-increasing Lyapunov functions during each
switching event [54, 1]. The non-increasing condition is proved to be a sufficient condition but
not a necessary condition. In literature, there are proven results to relax this conservative result,
in which the multiple Lyapunov functions may increase its value during a time interval, only if the
increment is bounded by certain kinds of continuous functions. Interested readers are recommended
to the reference [55, 56].

Consider one switching event on surface S (:3) from ith subregion to j th subregion, if the hys-
teresis switching is utilized, the sufficient condition of globally exponentially stability of switching

system is given by Theorem 1 and the proof is given following the reference [1].

Theorem 1. If there exists a family of parameter-dependent Lyapunov matrices satisfying con-
dition (1.20), then the exponential stability is achieved within local subsystems Zg l<9) with
(0,9) e 0U) x A.  Moreover, if condition (1.21) is satisfied on the switching surface, then

global exponential stability is achieved on entire scheduling parameter region (0, 9) €0 x A

PI(0)A?,(0) + (A))L,(0)PI (8) + PI(6) < 0 (1.20)
Pio) > PI(0), 0e S ijeNyi#] (1.21)
Proof. We assume that the sequence of switching time is tq,%1,...,tx. If (1.20) is satisfied on

local subregion, then there must exist a scalar A > 0 that satisfies
PI(0)A?,(0) + (A))L(0) P (0) + PP (0) < —APY(B). (1.22)
On the time interval ¢ € [t;, ;1) which ' controller is active, we have

VI (x(),0) < e NERIVI(2(1y.), 6). (1.23)

13



Moreover, the switching stability condition on switching surface (1.21) will lead to V7 (z(t},), ) <

1% (z(t}, ), 0). Therefore,

Vi(a(t),0) < e MRV (a(t7),60)

< e ME=t) At D)V (22, 1),0)
(1.24)

< e A0V (2(1), 9)

so the global exponential stability is achieved. [

1.2.4.2 Average-Dwell-Time (ADT) switching

The Average-Dwell-Time (ADT) switching strategy enforces the "slow-switching" property of
switching signals so that the closed-loop system achieves global stability under the switching
sequence. By ADT switching strategy, only a limited number of switches are allowed within a
finite time interval [1, 4, 57].

We assume that switching signal o (t) renders N, (7', ¢) number of switching events within the

time interval [¢, T'|. If there exist two positive numbers Ny and 7, such that

T —t
Ny (T, t) < Ny + . VT >t>0 (1.25)

Ta

where V) is the chatter bound to avoid chattering phenomenon. Then sufficient condition for ADT

switching is given in Theorem 2 and the proof is given following the reference [10, 57].

Theorem 2. Given positive scalar Ay and p, if there exists a family of parameter-dependent
Lyapunov matrices PJ(0) satisfying condition (1.26) on each subregion (0,0) € 0U) x A and
condition (1.27) on switching surface, then the exponentially stability is achieved by switching signal

In .
with average dwell time 1, > B vithin the entire scheduling parameter region (0,0) € © x A.

Ao
PI()AL(8) + (AN 5(0)PI(6) + PI(6) + AP (8) < 0 (1.26)
%PHG) > Pi(0) > uPi(9),  0e S i je N i#j (1.27)
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Proof. Without loss of generality, we assume that the sequence of switching time is ¢¢, 1, ...,%x.

By (1.26), it is easy to obtain
VI(x(t),0) < =XV (x(t),0) < 0, (1.28)

thus local exponential stability on each subregion is achieved.
Consider the Lyapunov function W (z(t), ) = 20tV (2(t), §) when j* controller is active,
thus

W =20 W + 20ty

The function W is obviously positive and non-increasing between switching intervals. Then at the

time interval [t;,t; 1), we arrive at

W (tig) = 2041V Ci11) (2 (£,1),0) < pe?0ti+ 1V (3 (4,,4) , 0)

(1.29)
= pW(t; ) < uW (&)
Sum up from ¢ to terminal time 7', then we have
W(T) < Wity) < NN W (1) (1.30)
From the defined W (t),
20TV (2(7),0) < N T vito) (2 (1), 0) (1.31)
VM (1), 0) < & 20T N0 My t0) (44 )
" (1.32)
— Mo lnﬂe(i_%O)TVj(tO)(x(to), 6)

|
Therefore, if the switching signal satisfies the limitation of average-dwell-time 7, > %, then it is
0
concluded that V7(T) (z(T"),0) converges to zero exponentially as 7" — oo, which indicates global

exponential stability of switching LPV system.
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1.3 Motivations of Smooth Switching LPV Control

As discussed in the above paragraphs, with given partitioned subregions, a family of LPV con-
trollers is designed by constructing Parametric Linear Matrix Inequalities (PLMIs) with multiple
parameter-dependent Lyapunov functions. Controllers are designed by solving the corresponding
optimization problem associated with switching stability conditions and specific performance cri-
teria. Many engineering applications of switching LPV control have shown system performance
improvement over non-switching LPV controllers. These applications include active magnetic
bearing (AMB) system [1], F-16 aircraft model [58], flexible ball-screw drives [59] and air-fuel
ratio control of spark ignition engines [48].

However, in most of these applications, the drawback of unsmooth transient responses over
the switching surfaces can be observed [1, 48, 32], and the un-smoothness can be attributed to
sharp changes in control inputs or controller gains. In Figure 1.6, the conventional switching LPV
control [1] resulted in the abrupt changes of control input, marked by red squares. These spikes in
control command signals impose heavy-duty tasks on actuators, which will be harmful to hardware
and sometimes exceed actuator’s authority.

Only a few smooth switching techniques have been proposed in the literature to compensate
for sharp jumps. Chen [60] considered the hysteresis switching state-feedback LPV control and
conducted linear interpolation of controller variables on switching surfaces to achieve smooth
switching during switch-in and switch-out on the overlapping region. However, this method cannot
quantitatively evaluate switching smoothness, and only relative stability is achieved. Hanifzadegan
and Nagamune [61] followed the idea of linear interpolation of controller matrices on switching
surfaces, and introduced a measure of smoothness index and imposed constraints on controller
matrix derivative to compensate for the drawbacks found in Chen [60]. The design of stabilizing
controllers was formulated into a non-convex optimization problem, and an iterative descent algo-
rithm was then applied to find a local LPV controller for each subregion. The linear interpolations of
controller matrices on switching surfaces were conducted to obtain switching LPV controller on the

overlapping region. This method relies heavily on iterative computations to solve multi-objective
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Figure 1.6: Unsmooth control input signal from conventional switching LPV control [1]

non-convex problems. Moreover, the introduced smoothness index lacks physical meaning, and the
smoothness constraints on controller matrices are selected through trial and error.

Considering that existing methods cannot efficiently address the design of smooth switching
LPYV controller, it is highly needed to develop an efficient and systematic approach to achieve smooth
switching between adjacent LPV controllers. In the authors’ point of view, the leading cause of
un-smooth control inputs and system responses is due to the sudden change of control variables
during switching events. The ultimate reason is that un-smooth switching LPV control optimizes
closed-loop system performance over each subregion, nevertheless switching smoothness between
adjacent controllers is not considered. The system performance optimization over each subregion,
but ignoring switching often leads to high-gain controllers with jumped controller gains. This can
be easily validated by checking the control gain difference between two neighboring subregions
over the switching surface.

The core idea of smooth switching LPV controller can be illustrated by the comparison of

Figures 1.7a and 1.7b. The smooth switching LPV controller minimizes the gap between controller
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Figure 1.7: Illustration of motivations of smooth switching LPV control

gains and achieves smooth switching, whereas the conventional LPV controller only considers the
switching stability but not the switching smoothness. Two approaches, simultaneous design and
sequential design, are proposed in this dissertation and the design strategies are summarized in the
following paragraphs.

In the simultaneous design approach, a convex optimization problem is formulated to design
all switching controllers at the same time. A numerically tractable smoothness index is introduced
into the cost function by using the norm of deviation of controller parameters between any two
switching surfaces. By means of minimizing this smoothness index, it can be demonstrated that
sharp changes in control states or outputs can be significantly reduced, but at the cost of degraded
Ho and Ho system performance. In other words, there exists a trade-off relationship between
system performance and switching smoothness. Intuitively, a tunable weighting coefficient can be
adopted to balance the system performance and switching smoothness in the cost function. By
tuning the weighting coefficient, i.e., line search, an optimal trade-off can be obtained, leading to a
smooth-switching LPV controller with acceptable system performance.

Controller synthesis conditions by the simultaneous design approach are not independent on
adjacent subregions due to the switching stability condition. When the number of subregions
goes large, the simultaneous design approach leads to a high-dimensional optimization problem,

with a high amount of LMI (Linear Matrix Inequality) constraints, decision variables, online
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computational load, and memory requirement [62, 63]. As a result, the simultaneous design would
be practically infeasible for high-order systems with many divided subregions.

To reduce the computational complexity, a sequential controller design approach is proposed.
Interpolated controller variables for overlapped subregions and newly formulated PLMISs are utilized
to synthesize switching LPV controllers on each subregion independently. On each overlapped sub-
region, the Lyapunov matrix is formulated by convexly combining PDLLM on adjacent subregions.
The PLMIs for H , performance on each subregion is formulated, such that the convex combination
of adjacent PLMISs leads to a guaranteed H~, performance on every overlapped subregion. More-
over, the proposed method guarantees that the overlapped subregion has intermediate performance
between its neighboring subregions. The proposed method designs an individual controller for each
subregion in sequential order, instead of synthesizing all controllers simultaneously. By iteratively
solving the reduced-dimensional optimization problem for each subregion, switching controllers

with guaranteed H , performance on all subregions and overlapped subregions can be obtained.

1.4 Organization of This Dissertation

In this dissertation, two approaches of smooth switching LPV controller design are proposed,
including simultaneous design and sequential design. After the introduction of switching LPV
system and control in Chapter 1, simultaneous design and sequential design of smooth switching
LPV control are discussed, and controller synthesis conditions are given in Chapter 2. In Chapter 3,
a few application examples are given to demonstrate the effectiveness of smooth switching LPV
control designs. Simultaneous design approach is applied to the AMB model and BWB aircraft
flexible wing, then another two numerical examples are applied with sequential design approach.
Also, the optimal sensor placement problem using the LPV framework is investigated in Chapter 4.
At last, conclusions and future work are discussed in Chapter 5.

The structure of this dissertation is shown in Figure 1.8.
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CHAPTER 2

SMOOTH SWITCHING LPV CONTROL

As discussed in Chapter 1, smooth switching LPV control is needed to remedy for unsmooth
responses in conventional switching LPV control. This chapter will give the theoretical derivations
and controller synthesis conditions for smooth switching LPV controllers.

Before we get into the smooth switching LPV control, the mixed Input Covariance Constraint
(ICC) and H o LPV control is firstly introduced. The mixed ICC/H ~, LPV control is able to achieve
multi-objective performance of closed-loop system. The o performance is optimized while the
closed-loop system satisfying H o performance and input covariance constraint. The ICC/H~o

control is able to avoid high-gain controller by setting upper limit of control input covariance.

2.1 Mixed ICC/H, Control

2.1.1 State-feedback LPV control

Consider the following affine LPV systems,

B(t) = A(O()x(t) + Boo(0(t))woo(t) + Ba(6(t))wa(t) + Bu(O(t))u(t)
B(0) © § 2oo(t) = Coo(0(t))x(t) + Doo(0(t))weo(t) + Eoo(6(t))ult) 2.1)
2(t) = Ca(8(1))x(t)

where 0(t) = [91(25), Oa(1), . .. ,Oq(t)]T denotes the scheduling parameter vector of ¢ elements,
x(t) € R"™ denotes the state, woo(t) € R the H disturbance input due to modeling error,
wa(t) € R™v2 the Ho disturbance input, u(t) € R™ the control input, zo(t) € R™?> the Hoo
controlled output, and 29(t) € R"22 the Ho performance output. All system matrices are assumed

to have compatible dimensions and in affine parameter-dependent form. For example, A(f) can be

described by

q
AO() = Ao+ Y Aibi , (2.2)
=1
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where Agand A;,7 = 1,2, ..., g, are constant matrices. Itis assumed that the scheduling parameters
are measurable in real-time, and their magnitude and variational rate are bounded. Specifically, the

scheduling parameter set is formulated as:

. . (2.3)
0el= {_Vi < Qz(t) <vyt € {172, ...,q}.}
Assume we are seeking for a gain-scheduling state-feedback controllers of the form
u(t) = K(6(1))x(t), (2.4)

where K (f) is the parameter-dependent control gain matrix. Note that u(t) can be partitioned as
u(t) = [ur(t),ua(t), ..., un, (t)]7. Then, substituting (2.52) into (2.1) yields the closed-loop LPV

system described by
(t) = Aa(0)x(t) + Boo(0)weo(t) + Ba(0)wa(t);
Sa(8) 3 zoo(t) = Cop oo (0)(t) + Do (B)woc(t) 25)
2(t) = C2(0)x(t)
where Ay (68) = A(6) + Bu(6)K (8), Cup o0 (6) = Cool(68) + Esc(8)K (6).

The control input is given as

Hence, the variance of kth control input of jth controller is bounded as [64, 65]

cov(up,(8(t))) < sup e K (0) Py (0) KT (0)el = U, (2.6)
0cO

where ¢}, is a selection row vector such that e;. K'(6) equals to the kth row of matrix K(#), and
Py is given by (1.6). The following lemma provides hard constraint on variance of the kth control

input for any 6 € ©.

Lemma 5. The ICC condition of the kth control input of the state-feedback controller

Up = ey KPyKT el < e, KPyKT el < T, 2.7)
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is equivalent to

U e.KPy
bk S0, k=12, 2.8)
* P

where n,, is the number of control inputs.

The following lemma gives the synthesis conditions for mixed ICC/H~, LPV state-feedback

controller.

Theorem 3. Given the input covariance constraints U k=12 ny and a positive scalar
Yoo if there exist continuously differentiable parameter-dependent matrices 0 < P(0) = P2T (0) €
RMXMx () < Poo(f) = PL(A) € RXnx, G(0) € R™>"x, Z() € R™>"x, small scalars
€9 > 0and es > 0, and matrix W = W1 e R"22*"22 that minimize the Jfollowing cost function
with a given scaling matrix () > 0,

min trace(QW) (2.9)

subject to the following inequalities (* denotes symmetric terms),

CDH * *
Do —e(GO)+GOT)  « <0, (2.10)
W Co(0)G(6
2(6)C(6) >0, 2.11)

« G0)+ GO — Py

U er.Z (0
F k2(0) >0, k=1,2,-- ,ny, (2.12)
« GO)+GO)T - Py0)
ST * * *
P — oo (G(O) + G(O)T ¥ *
ooz (G(6) + G O)7) <0, (2.13)
i BOO(Q)T onwxnx DOO<9)T _7golnw i
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where ©1) = A(0)G(0) + Bu(0)Z(0) + (A(0)G(9) + Bu(0)2(0)T — 22194 @15 = py(0) -

G(0) + ea(A(0)G(0) + By (0)Z(0))T, and ey, is input channel selection matrix for control input of

interest, and @51 = A(6)G(0) + Bu(6)Z(8) + (A(B)G(8) + Bu(8)Z(6))T — 2Lx)f o, —
Poo(8) — G(0) + €00 (A(0)G(0) + Bu(0)Z(0)T, and ®oo3 = Coo(0)G(0) + Eno(0)Z(0). Then,

the gain-scheduling controller
u(t) = K(0)z(t), K(0) = Z(60)G~1(0) (2.14)

exponentially stabilizes the LPV system Y(0) for any (0,0) € © x A with a guaranteed Hoo

performance bound . In addition, the ICC cost is bounded by
trace(W) > trace {CQ(H)PQ (0)02(0)T} ) (2.15)
and the constraint (2.6) is satisfied.

Proof. For closed-loop LPV system (2.5), assume A;(6) is stable for any pair (6,0) € A x Q,
then there is a continuously differentiable parameter-dependent positive-definite matrix P(6) =

Py(0)T > 0, such that

Py(8) + A (0) Po(6) + Po(0) Ay (0)T + Ba(6)Ba(6)T =0 (2.16)

where Py (6) is the controllability Gramian of the LPV system. In other words, there is a parameter-

dependent positive-definite matrix P»(0) > P»(6) satisfying the following inequality
Py(6) + Ac(8) Pa(6) + Pa(8) A (6)" + Ba(6) Ba(6)" < 0. (2.17)

To decouple A;(0) and P»(0) in (2.17), we utilize Finsler’s Lemma [66] to obtain the following,

re)+xove) +viexte <o, (2.18)
where
Py(0) Py(6) 0 GT@) o
AL@) -1 0
r@)=| p@) o of,.X0O0=|R@® o|.V(O)= ,
Bl o0 -1
0 0 I 0o I



and G(¢) and R(#) are introduced as slack variables. To maintain convex parametrization property,
R(0) is chosen to be R(0) = e2G(0), where eo > 0 is a scalar that is used to provide an
extra degree-of-freedom when performing the line search and to reduce conservativeness. Letting
Z(0) = K(0)G(0) yields (2.62).

Now, consider (2.63). Pre- and post-multiplying (2.63) by [/, C5] and [/, CQ]T renders

w Co(0)G(0) I
[ I Oy ] >0 (2.19)
x GO)+GO)T — Py) cl
from which we obtain
W > Ca(0) Pa(0)Ca(6)" (2.20)

hence (2.20) leads to (2.67). Since Co(8)Po(0)Ca(0)T > Ca(8)Py(8)C ()T, as a result, mini-
mizing trace(QW) implies minimizing the upper bound of the weighted ICC cost.

Similarly, pre- and post-multiplying (2.64) by [/, e K ()] and [I, e K (9)]T to obtain

U er.Z(0) 1
{ I e K(0) ] >0, (2.21)
x GO)+GO) —Pa0) | | (exK(0)"
which yields

U, > e, KOPOKO) el k=1,2,--- ny.

This implies that the selected control input covariance is upper bounded by Uy,

Now, for H~ performance inequality (2.65), we consider the following transformation matrix

I Agy@) 00

TO)= |0 Cuyunol®) I 0

0 0 0 I
Pre- and post-multiplying (2.65) by 7'(6) and T'(9)” leads to the H, performance criterion based
upon the well-known Real Bounded Lemma [15] that the H~, norm of the closed-loop system is

bounded by v~. This can be easily verified by plugging in search variables and operating matrix

multiplication. O
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Remark 1. For each given pair of small positive scalar variables ey and €~o, the minimization leads
to a sub-optimal solution. Fixing both scalar variables would lead to conservativeness, however,
the line search of scalar variables can reduce conservativeness significantly. Note that constraining
P~o = P for multi-objective control design, as commonly found in the literature, could lead to
large conservativeness. The optimization process can be repeated for a set of gridded scalar values
to minimize trace(QW). The line search process may burden the computational load, but with

current advanced computational capacity, this should not be an issue.

2.1.2 Dynamic output-feedback LPV control

Suppose a LPV system with independent Ho and H o channels :

[ () = AW©)ep(t) + BiB®)w(t) + Bo(8(t))ut
sy + 4 0 = ColBO)n(0)+ Dra(BO)w(e) + Dralole)utt) o)
2(t) = Col0)ap(t) + Ea(0(1))ult)
| v = Cy00)p() + Dy(b®)w(?)

Without loss of generality, Dy,, = 0. System matrices represent in affine form as:
q
A() = Ag+ ) Ab; (2.23)
1=1

Each parameter and the rate of variations are assumed to be bounded as by 6; € @, 672-} ,651- €
m, v‘i] . The proposed gain-scheduling output-feedback controller is defined as (2.24) and Dy = 0

so that the closed-loop system is strictly proper and has meaningful o norm.

ix = Ag(0,0)xx + Bg(0,0)y
U = CK(H,Q)ZL’K

(2.24)

which ensures internal stability and a guaranteed H oo performance ||7%. /|0 < v from distur-
bance w to performance output zoo, and minimize the Ho performance ||T%qw||2, while control
covariance C'ov(uy(t)) < Uy, k = 1,2,--- , ny, for all admissible trajectories (6, #) and zero-state

initial conditions.

26



The resulted closed-loop system is:

z(t) = Aq(0t)za(t) + Ba(0(t))w(t)

Ecl(e) : Zoo(t) = Cclpo(e(t))xcl(t)+Dcl,oo(0(t))w(t)

2(t) = Ca2(0(t))rq(t)

ng = [mg, xIT(], where 6 is omitted in following notations:

A ByOx By
Acl - , By =

Ccl,oo = { Cxo D120k } >Dcl,oo =Dy

Ccl,2 = { Cy EyCk } chl,2 =0

2.1.2.1 ICC condition

The control input is calculated as u(t) = Cgrg = Cyzy = [ 0 Cg }
TK
The ICC condition of the k%" control input

Uy = 0.0, PoCl ol < 0,0, Cl el < T,
is equivalent to LMI [67]

T, ©.C,Ps
o TR >0, k=1,2,-- ,ny.

2.1.2.2 Synthesis conditions

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

Theorem 4. Consider the LPV system (2.22), there exists a gain-scheduling output-feedback con-

troller (2.24), which minimize output performance bound trace(Q)), while ICC constrained (2.29)

control input enforcing internal stability and guaranteed H o performance of closed-loop system, if
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exist parameter-dependent symmetric matrices R, S, and a parameter-dependent state-space data

(Ag, By, Crc) such that the LMIs hold for all admissible (6, 0) set.

~ min trace(Q)
Ap B CiR.S

| AR+ BoCi + () - R ] -
AT 1+ Ap SA+ BgCy+(x)+S *  « 0
BT (SBy + BgDy)T  —yI %
| CxR+ D1l Coo Dy —yI |
I
>0
I S
AR+ BoCp + (¥) — R % *
AT 4 Ag SA+ BrCy+(x)+S = | <0
BT (SB1 + BgDy)l I

Q CiR+D1sCx €4

* R I >0
* I S
Uk (I)ké[( 0

* R I >0, k=1,2,--- ng.

* I S

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

If the parameter-dependent matrices are found to satisfy the PLMI conditions, the gain-

scheduling output-feedback controller can be obtained by two-step scheme:

* Solve for N,M, the factorization problem [ — RS = NM T
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» compute Ay, Br, Ci, D with
A =N"YApg — SR~ NMT — SAR — BCyR — SByCre )M~ T
Bg = N"1Bg (2.37)
Cxg=CxgM~T
Proof. Hx~o channel

Suppose Lyapunov matrix for Hoo channel, partition P = 11111, L 1L, TH{.

R 1 I S R M 1 S N

I = o = , P = P70 = (2.38)
MT 0 0 NT Mt U NT v

Define nonsingular congruence matrix 7o, = diag(Ilo, I, I'), which means that reverse derivation

is valid. Pre- and post-multiply Tg; and 75, on left and right side of (1.4).

el AaP+PAL =P By PCh Il
I BY —I DY I <0 (239
I i Celo0 P Dejoo =1 I
T AL + (%) -3 PIy % X
Bl —~I x| <0 (2.40)
i Ccl,oonl Dcl,oo -1

By change of variables
A =SAR+ NBgCyR + SBoCxMT + NAgMT + SR+ NMT
Bx = NBg (2.41)
Cx =CxgMT

Then (1.4) is transformed to

AR+ ByCx + (x) + R * * *
AT + A SA+BrCy+ (x)— S x
K h (*) <0 (2.42)
Bf (SBy + B Dy)T  —4I
CR+ D12C'K C Dy —I
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Ineqaulity (2.33) ensures P > 0, and I — RS is nonsingular, leading to unique mapping of change

of variables.
R I

>0=P=ILI">0 (2.43)
I S
Ho channel
In order to convexify the controller variables, same Lyapunov matrix is used for 7o channel,
partition P = 1_[11'12_1 = H;TH{.
R I I S R M 1 S N
I = o = , P = P70 = (2.44)
MT 0 0 NT Mt U NT v
Define congruence matrix 7o = diag(Ilo, I). Pre- and post-multiply TQT and 75 on left and

right side of (1.7).

1z P+ Ay P+ PA, B 11
2 cl cl cl 2 <0 (2.45)
I x —1 I
AR+ BCk + (x) + R * *
= AT 4+ A SA+BgCy+(x)—S x | <0 (2.46)
BT (SBy + BgDy)T  —I

Define 13 = diag(I,Ils), Pre- and post-multiply TlT and 77 on left and right side of (1.8).

I C 0P I
Q Ca >0 (2.47)
el « P Iy
Q CR+ EyCi C
= | . R 71 >0 (2.48)

* I S
ICC condition

Pre- and post-multiply T?:‘F and 73 on left and right side of (2.30).
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> 0, (2.49)
s x P Ty
U. ©.Cx 0
=1 %« R I|>0 k=12 ny (2.50)
« I S
O

Remark 2. To remove the 6 information introduced by R and M, practical validity approach
from [68] is applied. Due to factorization problem doesn’t influence existence of controller but
with introduced conservativeness. Set one of them as constant matrix, then derivative term will
be eliminated. For example, set N(0) = R(#) = R° (constant), MT(0) = (I — RYS(0)). then

controller matrix A K IS now
A = N"YAg — SAR — BgCyR — SByCy )M~ T (2.51)
RY = Ry
q
S(0) = So+>_ Sif;
i=1

Determine variables A K> B K, C K are chosen in affine form as plant matrix.

q

A(0) = Ao+ > Akt
i=1

A A q A~

B (9) = Bxo+ Y Bt
i=1

~ A~ q A~

Cr(0) = Cro+ Y Ckib;
i=1

31



2.2 Simultaneous Design Approach

2.2.1 Continuous-time state-feedback case

The scheduling parameter region is divided into ./ subregions, with ./ — 1 overlapped region between
any two adjacent subregions. A J number of gain-scheduling state-feedback controllers designed

on J subregions for switching are given by

W (t) = KT (0@)x(t),j e Ny ={1,2,...,J} (2.52)

where u/(t) is partitioned as u/(t) = [ujl (1), u%(t), . ,u%u (1) T. Then, the closed-loop LPV
system involved with the jth controller is now written as [69]
B(t) = AL (0(0)a(t) + Bool0(t)woc(t) + Ba(0(t) wa(t);
zoo(t) = CY) (0(1)2(t) + Doo(0(1))woo (1) (2.53)
2(t) = Ca(0(1))z(t)
where A (0(t)) = A(0(1)) + Bu(0(t)) K7 (6(2)). Cop oo (0(2)) = Co (0(1)) + Enc(0(8) K7 (0(1)).
There are two separated input and output pairs defined in (2.53), and they are specifically
designated for assessing the closed-loop LPV system performances, as described below: (1) Hoo
performance is defined from wee (t) to 200 (t) with Lo input and Lo output used to handle model
uncertainties; (2) Ho performance is defined from wa () to z5(t) with Lo input and L~ output (or
L9-L~ gains), for improving system performance.
The control objective is to design a family of smooth switching ICC/H~, LPV controllers

to robustly stabilize system in (2.1). This control problem can be divided into two parts: mixed

ICC/H o control for each subregion and smooth switching with hysteresis switching strategy.

2.2.1.1 Problem formulation

The mixed ICC/H control problem is to find a state-feedback gain-scheduling controller (2.52)

on each subregion for the LPV system (2.1) that minimizes the upper bound of Ho performance
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cost:

min sup [Ty g (K7 (6),)]]2,5 € Ny; (2.54)
KJ ()

such that the closed-loop system (2.53) is exponentially stable, and in addition, the following

constraints are satisfied,

1T 00000 (B2 (8), 8] |oe < Yoo » (2.55)
Cov(up(t) < Up, bk =1,2,...,ny, (2.56)

where 7 is the given Ho-norm bound on system robustness subject to model uncertainties, and
U}, is the given bound on the control covariance C'ov(uy(t)) for the k" control input uy(¢) defined

below,

Contun) = |5 [ o (90). ) Tu (0 jlds| . 257

2r J o

where Ty, (K;(0),s) = Tw2_>uk(Kj(9), s) denotes the transfer function from wy(t) to uy ()
for the closed-loop LPV system (2.53). If the exogenous input w9 () is an unknown disturbance
that belongs to a bounded L5 set, the covariance C'ov(uy(t)) defined in (2.56) becomes the time
correlation of control signal uy,(¢). Then, the mixed ICC and H ~ control problem is to minimize the
summation of £ to L gains from wo(t) to individual output channel 2 ;.(t) fork = 1,2,...,n,9
subject to the Lo to L gain constraints on wuy(t) for k = 1,2, ..., n, and the H constraint. In
other words, the mixed ICC and H ~, problem minimizes the weighted sum of the worst case peak
values of performance output subject to the constraints on the worst-case peak values of control
inputs and the H o constraint.

To design a family of switching LPV controllers, hysteresis switching strategy is utilized to
switch between adjacent controllers, ensuring the switching stability over any two neighboring
subregions.

For the jth subregion, consider a continuously differentiable parameter-dependent matrix

Pi(0) = PI(0)T > 0 in Hoo channel, or more precisely, the Lyapunov matrix { P/ (0)}jen 7
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Then the Lyapunov function can be expressed as,
Vi(z,0) = 21 PI(0)a (2.58)

where x is the closed-loop system state. On the switching surfaces S (1), the condition below
should be satisfied,

Pi(8) > PI(6) (2.59)

indicating that the Lyapunov function of the closed-loop system is non-increasing when switching

from ©(!) to ©\). The condition of Lyapunov matrices implies that
Vi(x,0) > VI(x,0). (2.60)

Then, switching from the ith controller to the jth controller is safe [1].
To smoothen the potential sharp change in controller gains, a cost function to be minimized is

formulated as

F = trace(W) +p Yy |(K; = Kj)l,_g(i)|13: 3.5 € Nji # (2.61)

where > ||(K; — Kj”ges(i,j)H% denotes the gain differences on switching surfaces 6 € 5+,
The first term trace(W) in Eqn. (2.61) is viewed as an index of output Ho performance, while
second term is the measure of switching smoothness. p > 0 is the tunable variable to balance
these two indexes, leading to a trade-off relationship between output performance and switching

smoothness.

2.2.1.2 Controller synthesis PLMIs

This section provides the synthesis PLMI conditions for the proposed smooth switching ICC/H ~o
controllers. The upper bound of the Ho-norm, instead of actual Ho-norm, is minimized in order
to make optimization numerically tractable. Theorem 5 gives the PLMIs conditions for controller
synthesis with guaranteed H9 /H~o performance. Combining mixed ICC/H , controller synthesis
conditions and hysteresis switching conditions, Theorem 6 then provides conditions for designing

switching controllers design.
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Theorem 5. Given the input covariance constraints U k(k=1,2,--- ny)andapositive scalar o,
in the jth subregion of scheduling parameter, if there exist continuously differentiable parameter-
dependent matrices 0 < P2j(9) = Pg(@)T € RzXnx () < ng(e) = ng(e)T € RazxXnx,
G (0) € Rraxnx 7i(9) € R small scalars 6‘% > 0and €y > 0, and symmetric matrix

Wi € R"X"z subject to the following inequalities (% denotes symmetric terms),

Py * *
by - (GO +GIO)T) x| <O; (2.62)
By(0)T 0 -
Wi Ca(0)G7 (6
2()G7(6) > 0; (2.63)

«  GIO)+GIO)T - Pl(6)

U er. 79 (60
S e (6) , S0 k=12 ny (2.64)
« GI(O)+GIO)T —PJ0)

Dot * * *

) —o(GI(0) + GI )T x «

002 oo( ( ) ( ) ) < 0, (2.65)

Poo3 Eg)oq)oo?) —Yool *

i Boo(‘g)T 0 DOO(Q)T —Yool i

where ®11 = A(0)GY (0)+By(0)Z7(0)+ (A(0)GI (0)+ By (0) 27 (0))T — apéf) 0, 219 = ng (0)—

G (0) —i—e% (A(0)GY (0)+ By (0) 27 ()T, and ey, is input channel selection matrix for control input of

interest, and ®o1 = A(0)GI(0)+Byu(0) 27 (0)+(A(0)GI (0)+ By (0) 27 ()T —%9‘, Dogo =

PL(0) = GI(0) + bo(A0)G (0) + Bu(0)27(0))T, and ®ocy = Coo(0)G9(0) + Eno(0)27(0),

then the gain-scheduling controller
u(t) = K9 ()x(t), K7 (9) = Z7(9)G7 () (2.66)

exponentially stabilizes the LPV system (0) for any (0,0) € A x Q with a guaranteed Hoo
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performance bound 7~o, and in addition, the ICC cost is bounded by

trace(W) > trace(Cy(0)P()Co(6)T) 2.67)
> trace(Cy(0)P(9)C2(0)T) = Jroo

and the constraint (3.3) is satisfied.
Proof. The proof is omitted because it is similar to that of 3. [

Theorem 6. For any two adjacent subregions ©' and ©7 (i,j € N 7), if PLMIs in Theorem 5 are

satisfied simultaneously over switching surfaces S (7) and the following PLMIs are satisfied,
P (0) > PL(9),0 € SU) (2.68)

then switching mixed ICC | Ho controller exponentially stabilizes LPV system (), forany (0, 0) €
A x Q with a guaranteed H~o performance bound o, guaranteed ICC cost bound W9 on jth

subregion.

The proof is omitted because it can be easily proved by combining switching stability and
Theorem 5 [25].

In Theorem 5, controller is formulated as K7 (6) = Z7(6)G7 (6) 1. Thus, parameter dependent
matrices Z(6) and G(6) determine the controller gain deviation on switching surfaces. To optimiz-
ing switching smoothness, the smoothness index is introduced as sum of Z(#) and G(6) deviations

over all switching surfaces, as shown in the following formula.

> (11210) = 27 (0)I5 + 16"(0) — 67 (O)]13).

- (2.69)
i,j € Nj,0¢e St

By then, smooth switching LPV control has been transformed into a convex optimization

problem with a tunable cost function

F =3 tr(W) +u 32 (112°(0) = Z2(0)]13 +11G*(0) = &7 (0)][3),

! (2.70)
i,j € Nj,0¢e St

while inequalities (2.62), (2.63), (2.64), (2.65), and (2.68) are satisfied simultaneously.
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2.2.2 Continuous-time dynamic output-feedback (DOF) case

Consider the following affine LPV system,

)
) 2.71)
)
)

where 0(t) = [61(t),62(), ... ,Hq(t)]T denotes the scheduling parameter vector of ¢ elements,
xp(t) denotes the state, w(t) the exogenous inputs (for instance, disturbance inputs, sensor noises,
etc.), u(t) the control input; zoo(t) the Ho controlled output, z5(t) the Hy performance output,
and y(t) the measurement output. All system matrices have compatible dimensions and are in the

affine parameter-dependent form. For example, A(6(¢)) can be described by

q
A(B(t)) = Ao+ > Aibi(1). (2.72)
1=1

It is assumed that the scheduling parameters are measurable in real-time, and their magnitudes and

variational rates are bounded as (6, 6) € © x A:

00 ={0;<0;(t)<b;ic{l,2 .q} (2.73)

0 €N ={-vy <0;(t) <wp,i€{l,2..,q}}
The scheduling parameter region is divided into J subregions, with an overlapping region between
any two adjacent subregions. A gain-scheduling DOF controller is to be designed for each subregion,
and the controllers for adjacent subregions are to be switched according to hysteresis switching
logic. The jth subregion is denoted by o) (j € Ny={1,2,...,J}), and switching surface from
0@ t0 1) is denoted by 5(0d),
The jth DOF controller K7 (0) for the jth subregion is given by

. e = Al (0 B(0
K9 (6) e K (0)zr + By (0)y @.74)

u = C?((Q)ZL‘K
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where z ¢ denotes the controller state and (AJK7 B%{, C’%{) are controller variables to be determined.
Note that there is no direct feedthrough term in u, because a strictly proper DOF controller leads to
a finite /9 norm for transfer functions 7’ Zow and input covariance. The state vector for the closed-
loop LPV system associated with the jth controller becomes :cz; = [xg, :c%}], with the following

state space realization

r A BCl| B

cl

J J J
ci _\ph_|= PrCy Ak | Pily | (2.75)
Cij’oo e Cq DQC%(— D1
o2 Cy EQC}( 0

For simplicity, the dependency on scheduling parameter 6 will be omitted unless necessary in the
rest of thesis.

The proposed control input u(t) associated with the j th controller can be equivalently rewritten

as
ult) = Chag = [ 0 O3 }
TK
Hence, the variance of the k' (k € Ny, = {1,2,--- ,n4}) control input of the j** controller is

constrained as

cov(uy(t)) < sup ekC&F‘%(Cﬁ)Teg < Uy,
96@(j),j€NJ

kth

where e;. is a selection row vector with 1 at the entry and O elsewhere, such that e, C;, equals

to the k" control. We have the following lemma providing hard constraint on variance of control

input for any scheduling parameter trajectory 6 € el),

Lemma 6. [67] The ICC condition on the k" control input of the jth controller,

sup ekCzﬁ%(C’g)Te% < sup ekC'ﬂP‘Qj(C’Z)Teg < Uy, (2.76)
ool ocell)
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is equivalent to the following PLMI to be held for any 6 € o),

U, e C’ij
BRI S0, ke Ny, 2.77)
* PQJ

2.2.2.1 Problem formulation

For a given divided subregion set, the smooth-switching ICC/H, DOF LPV control problem is
to find a family of gain-scheduling DOF controllers K7 (0),j € Nj, defined in (2.74), over all
subregions for the LPV system (2.71) that minimizes the following cost function,
_ min  extrace(W) + I, (2.78)
AT-(0),B7-(0),C% (0)
subject to the following constraints

1 Toolloo <7 (2.79)
cov(uy(t)) < Uy, k € Ny, (2.80)

where I, denotes the smoothness index to be defined in the next section, trace(1V) is the upper
bound of the system o norm over all subregions, and € > 0 is a tunable weighting coefficient to be
used to trade-off between switching smoothness and system performance. In order to ensure that the
control design problem is convex, /s, is chosen as the deviation norm of controller parameters over
all switching surfaces that is a convex function describing the smoothness of controller variables

over switching surfaces.

2.2.2.2 Controller synthesis PLMIs

The following theorem contains the main result. Note that cost function (2.81) is a linear com-
bination of two convex functions of output performance trace(WW) and smoothness index g,
associated with controller parameters. The tunable parameter € > 0 is used to balance the output
performance and smoothness of controller parameters over switching surfaces. A line search for e

is needed in order to find the optimal trade-off relationship.
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Theorem 7. Consider LPV system (2.71). There exists a family of gain-scheduling DOF controllers
(2.74) that minimizes the e-balanced cost function
~ min e x trace(W) + Ism, (2.81)
Al Bl Ad i v
AL B O XT YT
subject to the ICC condition (2.80) and H~o constraint (2.79), if there exists a family of parameter-
dependent symmetric matrices X7 and Y7, and a family of parameter-dependent controller vari-
ables A%(, BJK, and CA’%( (7 € Nj), such that PLMIs (2.83) - (2.87) hold with a given robustness
level v > 0 for all admissible (0, 0) € ) x A, and one of the two conditions in (2.88) holds on

the switching surfaces S (@.5) for € > 0 with Igy, given by

1A% = Agella + 1B — Bl

Iom= > | +ICk = Clla+11Y =Yl |lpegtin)- (2.82)
i,,i#j . :
+[X* = X7]2
Myq * * *
AT -+ AJ MQQ * *
K <0 (2.83)
B? Mso  —~I1 *
ClXj + DQG%( C1 Dy —l
where
My = AX7 + BaC + (%) — X7,
Mag = YIA+ BJ.Cy + () + Y7,
Mso = (YjBl + B%Dy)T.
XJ T
| >0, (2.84)
I Y
My * *
AT ¢ Al My x| <0, (2.85)
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W C1X7 + Dol
* XJ
* I

Uk ekCA'%( 0

Ch
I >0

Y

% XJ I | >0, ke Ny,

X< XJ

Vi—(xH7l>yi — (x7)~t

(2.86)

(2.87)

(2.88)

Proof. To convexify control strategy with 9 and Hoo channels, let P/ = PQj = Pgo for the jt

subregion. Suppose that the Lyapunov matrix PJ can be partitioned as

YyJ NJ

J (P! =

(NH)T
where *« denotes the elements which are not used.

Furthermore, define the congruence matrices as
. X7 0 ,
J J
Hl - T 7H2 -
(M7)H)* 0

X7 M
(MHT
I Y
0 (NHT

(2.89)

such that P/ H{ = H%. For the H, performance channel, the PLMIs (2.83) can be easily

obtained by following the procedures in [68, 12, 13, 32]. Define nonsingular congruence matrix

TL = diag(Hg, I, I), which means that reverse derivation is valid. Pre- and post-multiply (TgO)T

and Tgo on left and right side of the H , performance condition (1.12) for each subregion.
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J J pj i(AINT _ pj J J
1 * —~1I * I <0 (2.90)
J J
I C(cl,oop Dcl,oo 1 I

By P/ = H{ (H%)_l, the above LMI can be converted to

()T AT + (+) — (TP, =«

(BT I x| <0 (2.91)
J J J
Ccl,oonl Dcl,oo e

Introduce the change of controller variables as

Al = NIAL(MIYT 4 NI BJ.Cy X7 + YT ByCe(MI)T 4 YIAXT

Y i 2J

BK _ N]BK (2.92)
Cl = Ch(MIT,

then the PLMI condition (2.83) can be obtained.

For the H9 performance channel, define the congruence matrix sz = diag(H%, I). Pre- and
post-multiply (1.15) by T2T and 75 to obtain,
—Pi+ Al PI+ (x) B

<11 <o, (2.93)
* -1

(17"

which yields (2.85) by means of change of variables in (2.92). Define T = diag(1, H%), and pre-
and post-multiply (1.16) by (T:;Z )T and Tg , We obtain
T ‘ .
I W Ch Pl || T
. “ | >0, (2.94)
J j J
1T * PJ 115
which yields (2.86) by means of change of variables in (2.92). For the ICC condition, pre- and
post-multiplying Tér and 735 to (2.77) yields

42



>0, (2.95)

which gives (2.87).
]

Remark 3. The PLMIs formulated in Theorem 7 renders an optimization problem of infinite
dimensions and un-defined decision variable structures. To numerically tackle this optimiza-
tion problem, affine decision variable structure is assumed, for example, A‘;{(Q) is expressed as
A‘}((Q) = A]KO +3 7, A‘}(ﬂz . Coefficient check in multi-simplex domain [19, 70, 71] has been
adopted to successfully obtain a finite set of LMIs but with introduced conservativeness. Other
options [72, 73] can also be applied, for instance, sum-of-square relaxation [74] and enforcing

multi-convexity method [75].

Remark 4. If the controller variables are obtained by minimizing the e-balanced cost function
subject to formulated PLMIs, the gain-scheduling DOF controller can be constructed by first
solving the factorization problem I — YJXJ = NJ (Mj )T for N7 and M, and then computing

AJI'{, B%{, and C'g( from the following equations

Al = (NI)y=V AL — YIXT — NI(N)T — v AXT
) ~B).CyXT —YIByCY | (M) T .96
Bl. = N71BJ

Y = Cr(M)~T

\

Remark 5. In order to remove the 0 dependency introduced by X7 and Y, the practical validity
approach presented in [68] is applied. Either X7 or Y7 is set to be a constant matrix eliminates the

derivative terms. For example, we may set X (0) = Xoand N = 1 forall§ € ©, then Y7 = Y7 (6)
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and (M) = (I —Y3(0)Xy). As a result, the reconstructed controller variables can be simplified
Ao = (N[ A = YIAXT — BlCy X7
_YIBy(Y ] Mi-T
R () (2.97)
Bg = N7B%

Cg = Cr(MI)~T
Note that the switching stability condition (2.88) is non-convex and freezing X (0) = Xq will

convexify it into

Yi(0) > YI(6), 65U (2.98)

Therefore, variables (A%Q, f?%ﬁ, CA'%(Z, Y;] , X() can be iteratively searched to optimize the cost
function with the tuning parameter €. The operation of PLMIs and optimization problem are solved

by using the parser YALMIP [76] jointly with optimization algorithm SeDuMi [77].
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2.3 Sequential Design Approach

2.3.1 Motivations of sequential design

In conventional switching LPV control design, switching controllers are synthesized by controller
variables that simultaneously satisfy PLMIs for both H, performance on all subregions and
switching stability conditions on all switching surfaces. In other words, controller synthesis
conditions on each subregion are not independent with adjacent ones due to the switching stability
condition imposed on switching surfaces. When the number of subregions goes large, simultaneous
design approach leads to a high-dimensional optimization problem, with a high amount of LMI
constraints, decision variables, online computational load, and memory requirement [78, 79]. As a
result, these drawbacks make simultaneous design practically infeasible for high-order systems with
many divided subregions. For example, in the polytopic synthesis approach, it’s well known that
the number of LMIs grows with O(29), where ¢ is the dimension of scheduling parameter [78, 63].

Chen [60] considered the hysteresis switching state-feedback LPV control and conducted linear
interpolation of controller variables on switching surfaces. However, only the relative stability is
achieved on the overlapping subregion by this method. Hanifzadegan and Nagamune [61] followed
the idea of linear interpolation of controller matrices on switching surfaces, and imposed constraints
on controller matrix derivative. The design of stabilizing controllers was formulated into a non-
convex optimization problem, and an iterative descent algorithm was then applied to find a local
LPV controller for each subregion. Their approach relies heavily on iterative computations to solve
multi-objective non-convex problems. Moreover, the interpolation of controller matrices cannot
guarantee the H, robust performance over the overlapped region. Jiang et.al [80] provided a
systematic approach for developing switching LPV controller by linearly interpolating controller
variables for average-dwell-time switching strategy. However, the formulated PLMIs are not
numerically tractable, due to the scheduling parameter term in the denominator, which induces
infinity term on switching surfaces. Bianchi [81] proposed a new design approach based on Youla

parametrization that closed-loop system stability is not affected by the inclusion of any stable
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switched LPV system. This makes it possible to design switched controllers independently ,but
this method cannot be extended to parameter-dependent quadratically stable systems.

A sequential controller design approach is proposed in this thesis to design switching controllers
with higher efficiency and less computational burden than simultaneous design. Interpolated con-
troller variables for overlapped subregions and newly formulated PLMIs are utilized to synthesize
switching LPV controllers on each subregion independently. On each overlapped subregion, the
Lyapunov matrix is formulated by convexly combining PDLM on adjacent subregions. The PLMIs
for H o performance on each subregion is formulated, such that the convex combination of adjacent
PLMIs leads to a guaranteed H o performance on every overlapped subregion. Moreover, the guar-
anteed system performance on overlapped subregion is no worse than its neighboring subregions.
In this way, an individual controller for each subregion can be designed in sequential order, instead
of synthesizing all controllers simultaneously. By iteratively solving the reduced-dimensional opti-
mization problem on each subregion, switching controllers for all subregions with guaranteed H
performance on all subregions and overlapped subregions can be obtained.

Note that, in order to simplify the design problem, all sequential LPV controllers are assumed
to have access to full states and that they share the same parametric controller form, while controller
gains are different on each subregion. In this thesis, switching H~, LPV state-feedback control
is considered, we will present the basic ideas of the proposed sequential design method by one-
dimensional and two-dimensional cases. After that, the proposed approach will be extended to the
general case of any dimensional scheduling parameters. The main contributions of this work are
three-fold: (1) proposition of sequential design of switching LPV controllers; (2) formulation of
synthesis conditions for sequential design of switching H~o state-feedback LPV controllers; (3)
demonstration of the benefits of the proposed sequential design approach by numerical examples.

Consider the affine LPV system in Eqn. (2.99),

ap(t) = A(0(t))zp(t) + B1(0(t))w(t) + B2(0(t))u(t)
2(t) = C0())xp(t) + Di(0(2)w(t) + Da(0(t))u(t)

(2.99)

where the system state is denoted as x(t), the exogenous inputs denoted as w(¢) (for instance distur-
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bance inputs, sensor noise, etc.), the control input as u(t), and the controlled output as z(¢). System
matrices are assumed to depend on scheduling parameter vector 6(t) = [61(t),02(2), ..., 04(t)] T

and be in the affine parameter-dependent form. For example, A(#(t)) is described as

q
A(B(t) = Ao+ ) Aiby(t), (2.100)
1=1
where Ag and A;,7 =1,2,..., ¢, are constant matrices.

The real-time measurable scheduling parameters are assumed to vary within parameter region

which is formulated by bounds of magnitudes and variational rates,

0; €0, =1{0;<0;(t)<0;,i=1,2,....q,}, o100
0, € \; = {—VZ' < 0;(t) < i = 1,2,...,q.}

Now consider the switched LPV system, which consists of M numbers of divided schedul-
ing parameters [01,0s,...,0m,...,0)/], and S numbers of un-divided scheduling parameters
00741,001292, - Oprass -, 00r1g]. Hence, M + S = ¢. For each of divided scheduling
parameters, ), is divided into /N, numbers of subregions with its variational rate remained un-
divided as A = Ay x --- x A9, and neighboring subregions will produce overlapped subregions.
The entire scheduling parameter is divided into H%lem numbers of subregions, among which
the (n1,n9,...,nyr)th subregion, denoted as ©1:m2:n01) s formed by Cartesian product of
subregions @gnl) X @é@) X e X @g\ZM) X Opr41 X - -+ X O4. The overlapped subregion formed
by @%Lm) and @Q{‘m“) , is denoted as @,%nm’nmﬂb. Figure 2.1 and Figure 2.2 illustrate the
divisions scenarios of one- and two-dimensional scheduling parameters.

In Figure 2.1, three adjacent subregions Q(i_l), @(i), eli+1) produce two overlapped subre-
gion oi=1) and ©Hi+1])| with switching surfaces S(i=14) and S(Ei+1) defined as region
boundaries of overlapped subregions. In Figure 2.2, any four adjacent subregions eli), eli+l.j),
elii+l) glit+lj+1) produce two kinds of overlapped subregions. The center subregion denoted

by o[Hi+1L17.5+1)) is formed by 22 overlapped subregions in two dimensions, whereas other over-

lapped subregions are individually formed by 2! overlapping subregions in one dimension, denoted
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as @([i’i+1]’j), @([ivi+1]’j+1), G(i’[j’ﬂ"”), O(i+L17.7+1])  In the case of M-dimensional divided

scheduling parameter, the center-overlapped subregion is formed by 2 overlapping subregions.

-~ N N -

|
(Na)
[uny
D
D
I
=
D
+
=
D)
Y
+
=
D

—i+1 —j+1

. —j+1 —i —j+1
—j+1 (Q{H'ez ) (91'92 ) (91 ;92 )

i+l —j_
01 ,02) =

—i+1 . .
@ 0

Figure 2.2: Subregion division illustration of two-dimensional scheduling parameter

For the given switching LPV system, we are seeking for a gain-scheduling state-feedback
switching controller

u(t) = K;(0)x(t) (2.102)

stabilizing the LPV system (2.99) with guaranteed H ., performance, and controller gain K;(0) is

to be switched according to switching signal i(¢). The switched closed-loop system matrices are

derived as
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By A+ BK; | B

Acl,i

(2.103)

Ceti | D C+ D2K; | Dy

The Ho performance, defined as L£o-induced norms from w(t) to z(t), is utilized to assess
the closed-loop system robustness in the presence of model uncertainties. Mathematically, let
To(0,s) := Try(0,s) denotes the parameter-dependent transfer function from w(t) to z(t) and
|| Too || oo as the worst-case H oo norm of T, defined in @ € ©. Then, the H ., performance for the

(w(t), z(t)) pair is defined as Lo gain [15], where

IELQIIP

|| Too||co = sup sup (2.104)

020 we Ly, |[wllyz0 W (D)]l2

The following lemma provides PLMI conditions for simultaneously designing switching LPV
Ho state-feedback controller with average-dwell-time switching logic [52, 53, 1], which has been

well proven and widely used in literature.

Lemma 7. Given scalars \y > 0, p > 1, if there exist parameter dependent matrices P;(0) >
0, Z;(0) such that (2.105) holds for all admissible trajectories (6,6) € ©() x A and (2.106)
holds for any switching surface, then the closed-loop system (2.103) is exponentially stabilized by
switching LPV state-feedback controller gains K;(6) = Zi(H)PZ-_l(H) for every switching signal

i(t) with average dwell time 1, > ln/\M

and ||z||2 < v||w||2 is achieved with robustness level
v = max{y;} >0,

_Pi + (AP, + BoZ;) + NP * By

CP;+ Dy Z; —v;l Dy <0, (2.105)

* * —; 1

1 .
Pi1(0) < Bi(0) < uPia (0), 0 € G (2.106)

Remark 6. This simultaneous design method requires that PLMI conditions for all subregions
and switching stability are satisfied at the same time. All switched controllers for subregions are
designed simultaneously, leading to a very high-dimensional optimization problem, especially in

the scenario of multi-dimensional scheduling parameters.
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2.3.2 Controller synthesis PLMIs

A novel sequential design method is proposed to overcome the disadvantages of the convention-
al design method. The main idea is introducing interpolated controller decision variables and
formulating independent PLMI conditions on each subregion such that system performances on
overlapped subregions are guaranteed as well. In this way, the switching controller synthesis con-
ditions are formulated as independent optimization problems and can be well solved sequentially.
One- and two-dimensional scheduling parameter scenarios are provided as motivation examples

for a more general g-dimensional scheduling parameter scenario.

2.3.2.1 One-dimensional scheduling parameter

Consider three neighboring subregions (-1, o), olitl) 45 shown in Figure 2.1 and designate

controller decision variable pairs P;_1(6), Z;_1(0), P;(6), Z;(0), and P;1(0), Z;1(0) for con-

i—1,i])

troller synthesis. On the overlapped subregion of eli-1nel) = all , define the interpolated

parameter-dependent positive definite matrix P(;_; ;)(#) and interpolated Z; 1 ;) () as

(i—1,3) (i—1,3)

Pi_1py=¢11 (O)P(0) + e T (0)Fi1(0), @.107)
—1,i —1,i '
Z(i—14) = S 0)240) + <5 (0021 (0),
where interpolation function () is chosen as a sigmoid function as
L 9) L
(i1 gy _ O iy 1
€11 ( ) ea(g) N 17 €12 ( ) ea(e) N 17
200 — gy — (8" _ gi 20 — o) — I,(i—1,0) o
and o(0) = pRo=-8) - &)l = pRo-8) ] The variable L(:~1%) denotes

—i—1 (i—1,i)
91 . Qz L )
the size of the overlapped subregion and [ is a tunable scalar which determines the interpolation

function shape.

Then the time derivative of interpolated parametric matrix can be written as

Py 1) = {8%71’”(9)1%'_1(9) +€§ifl’i)(9)f3i(9)}

o _al0) . 930 L 080 (2.108)
(i-1,0) e B _ (i~1,0) s .
* {512 ) () 4 1)L(i—140) Fioa(0) +eny 700) (e(9) 4 1)L(i—14) £ Z(m} '
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The associated PLMI conditions for (6, §) € O~ x A and (0,0) € ©(1) x A can be accordingly

formulated as

(AP;1+ BaZi—1) = Pio1 + MoPi1 + (ea(Z?f)l')zLﬁ(f_u) -1 By
CPi—1+ DaZi —i-1L D1 <0
* * —i-11
(2.109)
(AP; + BoZ;) — P + Mg P; + 0 iﬁ)i(i—l,w P % B
CP; + DyZ; —yI Dy | <0 @10
* * =yl

such that 5%_1’i) - (2.109) + 6§i1_1’i) - (2.110) yielding the following standard PLMI condition,

which indicates the guaranteed ., performance for any (6, 6) € oli-1i) x A,

<AP(ifl,i) + B2Z(z‘—1,z‘)> - P(i—l,i) + AOP(Z;LZ-) * By
Op(i—l,i) + D2Z(i—1’i) _fy(i—l,i)[ Dl <0 (2.111)
i * ~V(i—1,i)]

(i—1,) (i—1,i)

where V(i-1,4) = €12 Vi-1t & Vi < max{y;-1,7}-

In order to convert Eqns. (2.109) and (2.110) into numerically tractable ones, the bounds that,

. 0
—v <0(t) <v, + < 1, and eag# < 1 are used to modify the controller synthesis PLMI
ea( )—i—l e0( )—i—l

conditions with upper bound constant oli=Li) — —L(’Qf '{ i) > 0,
(AP, + BaZi_1) — Pi_1 + (Mg + oL & By
CP 1+ DyZi —~i_1I Dy <0, (2.112)
¥ =il

(AP, + BoZ;) — Bi+ (Mo + o= B)P, « By
CP;+ DyZ; —v I Dy < 0. (2.113)

* * =yl
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If there exist feasible controller decision matrices P;_1, Z;_1 and P;_q, Z;_1, and scalars
~i_1,7; such that PLMI conditions (2.112) and (2.113) are valid on subregion ©("~1) x A and
o) x A, respectively, then the standard PLMI conditions as of Eqn. (2.105) will be also valid
on these subregions, leading to the guaranteed H . performance on each subregion. Furthermore,

conditions (2.112) and (2.113) lead to conditions (2.109) and (2.110), and hence, result in (2.111)

on the overlapped subregion oli-1), leading to guaranteed H~o performance V(i—1,;) ho worse
than that of neighboring subregions.
Now designate controller decision matrices P 1(#) and Z; 1(6) for subregion ©(+1) and on

the overlapped subregion of eneli+l) = g(lii+1]) , define the interpolated parameter-dependent

matrix P; ;1 1)(0) and Z(; ;1 1)(0) as

P (®) = 50 0) P 1(0) + 5 6) P(6),

(i,i+1) (i,i+1) 2.114)
Z(ii41)(0) = 1] (0)Zi11(0) + 215 7 (0)Zi(0),

where similarly sigmoid function is chosen for interpolation as

a(6) B _gitly (i)
G 0) = . at) = 2RO BT

(ii+1), €
£ (0) = @) 5112 76t D)

11

where L(:i1+1) — gi — ¢+l Then the PLMI conditions for controller synthesis on subregion o)

and ©(+1) are formulated similarly with olhi+l) = 200 0,
1,(5,i+1)

(AP, + BoZ;) — By + (\g + oW ))P, & By

CP;+ Dy Z; —viI Dy <0, (2.115)
* * —v; 1
(APiy1 + BaZi1) — Biy1 + (0o + o) Py * B
CPiy1+ DaZ;yq —Yig1d Dy < 0. (2.116)
* * —Yi1d

If there exist feasible controller decision variables F; 1, Z; 1 and scalar ;41 such that PLMI

condition (2.116) is valid on subregion @(i+1), then the standard PLMI conditions as of Eqn. (2.105)
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will be valid on subregion ©(+1), In other words, controller gain K; 1 = Z; 1 Pijrll guarantees the

‘H o performance ;1 on subregion OU+1) - At the same time, the interpolated controller variables

P i1y Z(i,i+1) Will satisfy the following PLMI condition obtained by E%’HD <(2.115)+ 5%’”1) .

(2.116),
<AP(z',z'+1) + BQZ(Z',2'+1)> = Pliir1) Aol 11) * By
CPiv1y + D122 1) i+l Dn <0 2117
* * —V(i,i+1)]
wherey(; ;1) = agil’iﬂ)fyiﬂ—i—egg’iﬂ)% < max {7;,7;+1} - In other words, controller Kiiv1) =

A (i.i +1)P(;; +1) also guarantees H, performance max{~;,v; 11} over the overlapped subregion

o([ii+1])
Note that o= 1) and o(#-i+1) depend on the size of overlapped subregions, thus they may not

be identical. In order to identify the common controller K;(#) on ©(), the maximum value of two
i=1,4) ”H)} is used to replace the coefficients of introduced terms

variables 7Y = max {0 Lol

in Eqns. (2.113) and (2.115).

To ensure switching stability, the minimum dwell time for switching signal can be calculated

. Ai)\-i—l 1 )\L—l
as 7; = 1%\;5 , 0 =max{ 1+ eLﬂ’ 1+ ;éﬂ 1+ *ZEL , such that (2.106) is satisfied on

switching surfaces. A; and ); denote the maximum and minimum eigenvalues of matrix P;() at
switching surfaces. If the interpolation variable 3 is chosen large enough, then p* is close to 1,
and the minimum dwell time is close to 0. In other words, the average dwell time signal is almost

arbitrary. At this point, we are ready to obtain the following theorem.

Theorem 8. With given \g and given scheduling parameter subregions, if there exist parameter-
dependent positive-definite matrices P;(0), parameter-dependent matrices Z;(0), and positive s-
calars y;, satisfying the PLMIs (2.118) for any (6, 9) € 0 x A, then the switching controller gain
K;(0) = ZZ-(Q)Pi_l(Q) guarantees the closed-loop system H o performance ~y; , and the interpo-

lated controllers with its adjacent controllers by Eqn. (2.114) also guarantee same performance

for switching signals with average dwell time T, larger than T, which can be close to O..
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(AP, + BoZ;) — Bi+ (N + 7 )P;  x By
CPi + Do Z; —I Dy | <0, (2.118)

* * =yl

Remark 7. The constant 7\V) in the PLMI condition illustrate the introduced relative stability of
the closed-loop system, which is known in literature as o-stability [60]. It is determined by the
sizes of overlapped subregions min {L(i’“‘l), L(i_l’i)} and interpolation rate [3 of sigmoid func-
tion. The introduced relative stability, together with interpolation of controller decision variables,
provide independent synthesis conditions for each individual subregion, but with introduced design

conservativeness.

2.3.2.2 Two-dimensional scheduling parameters

Suppose that entire scheduling parameter region is divided into /N1 - N9 subregions, and consider a
subregion o) e N1,7 € No, as well as its adjacent subregions ®(i+1’j), @(i’jJrl), elitlj+1),
As illustrated by shadows in Figure 2.2, the overlapped subregions are categorized into two type-
s: single-overlapped subregion (slash shadow) and double-overlapped subregion(cross shadow).
The double-overlapped subregion is firstly focused and associate PLMI conditions will be de-
rived. Designate parameter-dependent controller variables for each subregion is P(Z-J), Z(Z'J)’
Pty Ziiv15) Plijr1) Ziij+1)> Dlivr1,j+1) Z(iv1,j+1)» then the controller decision vari-

ables on the double-overlapped subregion § = (01,65) € eii+1[7.5+1]) gre interpolated as

P =e11(b1,02) P 5y +e21(01,02) P y1 5y + 1201, 02) P 1) + €22(01,02) Pigq ji1),

Z =en(0h,02)Z; 5 +e21(01,02) Z (511 5) +€12(01,02) Z; j 1 1) +€22(01,02) Z5 11 1 1),

(2.119)
c(01) e(02) 1 e(02)
611(&1,92) = ea(gl) 1 ea(92) ] 7821(91,92) = |:€ (61) + 1} ea(€2) 11 )
ea(el) 1 1 1
812(91,92) = 6a(91) T [60‘(92) n 1} 7822(91792) = [60(91) n J [eo‘(%) N 1} .



26161 2265

P:511 — — P--+€11P--
(@) 4 LY (e(02) 4 1)ngvJJ_r )| () (&)
_ea<91) ) 25191 2ﬁ292 .
Te21 i — Py +eonPuqs
(20D 4 1)L (eab2) 4 1y (T HY (i+1,) (i+1.9)
[ - 0) ons ] (2.120)
26101 —e92) . 25350, .
(@) 4 1LY (pal8) 4 1) LI (i:5+1) (i.+1)
ol amd o) g, | |
— = P .. J
o (e(01) 4 1)L§“+1) (e¥02) 1 1) ngayﬂ) (i+1,5+1) T €220 (i41,j41)
ity (6i+1)
It’s obvious that, 11 + €12 + €21 + €22 = 1. Moreover, a(6;,) = Bim[2(0m %ﬁ+)l) L1, —
Ly
1,2, where L%H_D = 5;1 — Qfﬁ{l denotes the size of overlapped subregion in 6,,, direction, (3,

determines the interpolation rate in #,,, direction.
With the expression of time derivative of interpolated parametric matrix in Eqn. (2.120), the

coefficients of these additional terms are bounded as

2616, 23205 28111 209v9  (ii+1) | _(jj+1)
(i,i+1) (4,7+1) (i,i+1) (G,j+1) 71 T3 :
(ea(el) + 1)L1 ) (ea(92) + 1)L2.7a] Ll , L2.7a]
The other three coefficients are also bounded by agi’iﬂ) + aéj JH+1) — (5] [, +1]) , abbreviated
as o in following formula.
<AP (i) T B2Z<m)> ~ Py + Qo+ Py B
CPij) + D2Z(ij) “ep! Do | <0 (@12D
* 0 igd
<AP (i+1,5) T B2Z<z'+1,j>> = Pir1g)+ Qo+ 2)Pira ) * By
CPit1,5) + DaZ(i41 ) Wi+l D1 <0
* * ~Yir1g)]

(2.122)
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<AP (.g+1) + BQZ(Z’J+1)> = Plijp1y+ Qo+ )P * By

CPi j1) + D22 j11) (i j+1)! Dy <0
i * —Vig+1)!
(2.123)
<AP(i+1,j+1) + BQZ(i+1,j+1)> — Plit1j41) + (Mo +9) Pligy ) * By
CPit1g+1) + D2Ziiva i) ~V(i+1,5+1)] Dy <0
* * V1]
(2.124)

(AP 4 BZ) — P+ XP x B
CP+ DoZ —~I D; | <0 (2.125)
* x =l
If the PLMI conditions on the subregions eliJ ), Qi+l ), Qi +1), OU+1,j+1) are proposed in
Eqns. (2.121), (2.122), (2.123) and (2.124), then H~ performance on each individual subregion is
guaranteed with associated ~y-level. Meanwhile, 11 - (2.121) +e91 - (2.122) + €19 - (2.123) 4+ €99 -
(2.124) yields PLMI (2.125), where

Y= E1 V(6,5 T E21 T V(i+1,5) TEL2 V(i g+1) T €22 V(i+1,5+1) (2.126)
<max{(; 1), V(i+1,5) Vi j+1)> Vit1,j+1) )

which indicates that H~, performance on double-overlapped subregion is guaranteed with four

adjacent subregions for two-dimensional scheduling parameter cases.

For these single-overlapped subregion, denoted by slash shadows in Figure 2.2, the H . perfor-
mance can also be achieved if Eqns. (2.121), (2.122), (2.123) and (2.124) are satisfied, which can
be easily validated by eliminating either #; or #> in Eqn. (2.119) and convert it into Eqn. (2.107)
used in one-dimensional scheduling parameter case .

When designing K (i.9) in sequential order, all its four overlapped subregion with adjacent

subregions should be considered, in other words, o-relative stability needs to be satisfied under the
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most conservative condition. Hence, we have the largest o-relative stability index

S S R (U N S R

The switching stability condition between any adjacent subregions can be calculated according

to the average-dwell-time switching conditions [52, 10, 53]. To ensure switching stability, the

*
minimum average dwell time can be calculated as 7, = hi\/é ,

<)\(i+17j) A3 j41) ) B, A1
Alig) Aig)
(eF+1)2

@ = max<q 1+

X(Z-’ ;) and A; ;) denote the maximum and minimum eigenvalues of matrix F; ;(6) over switching
surfaces. If the interpolation coefficient S is chosen large enough, p* =~ 1 and the minimum dwell
time 7, is very close to 0, which indicates that switching signal can be almost arbitrary.

By this point, it’s obvious to conclude the following theorem of designing switching state-
feedback LPV controller for two-dimensional scheduling parameter system. The proof can be

easily proved by the derivation procedure.

Theorem 9. With given \q and given scheduling parameter subregions, if there exist parameter-
dependent positive-definite matrices P(Z', j)(Q), parameter-dependent matrices Z(i, j)(Q), and pos-
itive scalars Y(i,5) satisfying the PLMIs (2.127) for any (0, 9) € ©0d) x A, then the switching
controller gain K ; 1y(0) = Z; ) (Q)P(;j.) (0) guarantees the closed-loop system H o performance
Vij) and the interpolated controllers with its adjacent controllers by Eqn. (2.119) also guarantee
same performance on the overlapped subregions with its adjacent subregions for switching signals

with average dwell time 1, larger than T, which is close to O..

<AP (i.g) T BZZ(z‘,j>> — Py + o+ a Py By
CP j)+ DaZ j) iyl D1 | <0 (12D
* o gt
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2.3.2.3 Scheduling parameter of any dimensions

Consider the general scenario that 6(t) = [01(t),62(t), ..., 0, (t)}T with M numbers of divided
scheduling parameters [01, 602, ...,0m,,...,05]. The overlapped subregion formed by oM neigh-
boring subregions is denoted as elnrnytillnarnar+1)) | and the associated Lyapunov matrix
P(6) and controller variable Z(0) are defined as (2.128) by the convex combination of Lyapunov
matrices on neighboring overlapping subregions. Note that subregion numbering is abbreviated,

for example P( is abbreviated by P(‘

nl—i—il—1,n2+i2—1,...,nM+iM—1) Z17i2""’iM).

2 9 2
P =% X X {511'1(91)521'2(92)---5MiM(QM)P(il,iQ,...,iM)(QL92a~-7%)}
i1=1ig=1  iys=1
2 2 2

M
S YRy {H emim<em>P<Z-1,i2,...,Z-M><91,927--.,0q>}

11=11i9=1 =1 | m=1
(2.128)
_ _clm) =1 =
where &p,1(0m) = ea(9m>+175m2(9m) = O ,m=1,2, , M.
2Oy — Gy — Lt _
Moreover, a(fy,) = B [2(0rm szzm nszrl)m ], where L{mmmtl) 0" —
L bl

m
Q%’”l denotes the size of overlapped subregion in 6,,, direction, and [3,,, determines the interpola-

tion rate in 6, direction. Obviously, we have the equation that summation of all coefficients equals

to 1,

[\)

2 2

Yo > {511'1(01)52@'2(92)"'5MiM(‘9M)} = 1. (2.129)
i1=lig=1 ip=1

Thus we have the bounds for the derivative of interpolation coefficient as

: _ (_1)im+125m9m 28mvm
Emim (em) = Emim(l — Emim) (nmomm+1) mimm. (2.130)
L\ L
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The time derivative of Lyapunov matrix P (61,02, ...,0,) can be derived as,

2

_21{51i152i2---5MiMP(11 igving) T ELi1 €20y - EMip Py ig,ning)
ZMZ

2 2
11=11i9p=1

TE1i1€20g - EMipg Dliy sigipg) T T E1i182ig - -EMiMP(il,iQ,...,iM)}

2 2 2 M .
< E Z T Z Hlgmim(em)P(il,iQ,...,iM)

11=11i9=1 ipg=1 \m=
M 20111 2ﬁMVM
T i) |2 P |
AL mim Lgnl,nl—l—l) LA(AZM’nM_H) (41,8955 D)
_ [ 20mm ) L (et
_m—l (nmanerl) N _1Um
=1\ e
: ; : T M (nm’nm—Fl)P
Z Z y Z H Emim Zl 09, vM) T Z om (ilviQ""viM)
= 2= ip=1 m=1

(2.131)

For the subregion ©("1+1— L nar+ing—1) 5w A PLMI for Hoo performance is formulated as

CPly iy T D220 ing) iy sing) Dy <0 (2.132)
* * _7(1'1"",2‘M)]
where €(ig, i)
= : nm,nm-i-l

such that the convex combination of PLMI conditions (2.132) on all 2 overlapping subregions

2 2 2
DI HemZm (2.132)

11=11i9=1 =1 =1

yields the PLMI condition on M -overlapped subregion e(n1ny 1],y npr+1])

(AP + BoZ) — P+ X P x B
CP+ D27 —~I Dy | <0 (2.133)

* * =yl
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2 2 2 M
which indicates that the Ho performance v = > > -+ > 11 Emim Wiy sig, iyg) (1S
i1=lig=1  ip=1 (m=1 ’

achieved by interpolating controller variables, and it’s obvious that v < max {7(1‘ Loy s M)} for
any i1,%9, - -ip; = 1, 2.

The H~ performance on the rest less than M-overlapped subregion can also be achieved, if
Eqn. (2.132) is satisfied on each individual subregion, which can be easily validated by eliminat-
ing terms related to the un-overlapped scheduling parameter. When designing K (nq, ) ON
O ) in a sequential order, all overlapped subregions produced by this subregion with its

adjacent subregions should be considered, in other words, o-relative stability index needs to be

replaced by

n17 nm Z max {o ) (nm—1,nm) 7 ﬁgm,nm+1)}'

To ensure switching stability, the minimum average dwell time can be calculated by the eigen-
values of P(6) over switching surfaces. If the interpolation coefficient /3 is chosen large enough,
the minimum dwell time is very close to 0, which indicates that switching signal can be almost
arbitrary.

By this point, it’s obvious to provide the following theorem of designing switching state-
feedback LPV controller for two-dimensional scheduling parameter system. The proof is provided

by the above derivation procedures.

Theorem 10. With given \q and given scheduling parameter subregions, if there exist parameter-
dependent positive-definite matrices P(0), parameter-dependent matrices Z(0), and positive s-

calars 7, )» satisfying the PLMIs (2.134) for any (0,0) € 01 M) 5 A, then the

1> ..’nM

switching controller gain K 0) = Z(0)P~Y(0) guarantees the closed-loop system Hoo

nl7 7nM)(

performance Y ) and the interpolated controllers with its adjacent controllers by E-

nl, ..,nM

gn. (2.119) also guarantee same performance on the overlapped subregions with its adjacent
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subregions for switching signals with average dwell time 1, larger than T, which is close to 0.

(AP + ByZ) — P + g1 nm) p % By
CP+ DyZ Vg mpp)] Dy <0 (2.134)
* * _7(”17"'7”M)I

2.4 PLMI Relaxation Method

2.4.1 Modeling scheduling parameters

The scheduling parameter vector considered in the open-loop system (2.1) is defined in an affine
manifold, so we first need to map that into a multi-simplex manifold for subsequent convex analysis.
Following the aprocedure presented in Lacerda et al.[82] and Oliveira et al.[70], the original
parameter domain can be converted into a convex multi-simplex domain. Note that a multi-simplex
domain is defined as the Cartesian product of multiple unit-simplexes. Thus, the scheduling

parameter 0;(¢) can be converted into the unit-simplex variable «;(t) using the following formula,

0;(t) — 0; 0; — 0; (t) .
1= = io=1—a;1=——">,1=1,2,...,q. 2.135
al,l 02 . QZ ) 052’2 al,l 02 . Qz )b ) < »q ( )

As aresult, we have a; = (o 1, ;. 2) € A; 2, where the two dimensional unit-simplex A; o for a;

is defined as

2
2
Ai72 ={o; € R*: Z Q) = 1aai,k >0}.
k=1
Hence, the unit-simplex variable «; € A;9 is created. Similarly, the time derivative of the

scheduling parameter can also be converted into a unit-simplex variable by utilizing the following
condition,

&; 1(t) 4+ 2(t) = 0. (2.136)
Hence, the rates of convex parameters are bounded as follows,

0 h < i i k=12 (2.137)
@—QZ_ Z’k_é@'—gi7 - ) 7"'7Q7 - 9 . .
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Note that the time derivative of parameter «; lies in the space modeled by the convex combination

of the columns of the matrix H; € R2*2 given by

B U&Z, VQZ_
0.—0," 0,—0, ,
Hi=| 55 "o [i=12.0 2.138)
_ 1 [
0:—0.;" 6._Q‘

1 4 14

and ¢; can be established using a unit-simplex of dimension 2 as
2
Qio={¢; eR* 1y => mpHl mi € Ao}, i=12,... ¢, (2.139)
k=1

where 1; = (1;.1,7;2) and H, Zk denotes the k" column of matrix H;. Therefore, the unit-simplex
variable &; € €); 9 is created. Furthermore, the scheduling parameters (0, 9) with given bounds can
then be converted into multi-simplex domain from Cartesian product of multiple unit-simplexes as

follows,

q q
(a,d)Ez\>(Q:=:Ilz\sz Ilfhg.
1=1 1=1

By utilizing the scheduling parameter transformation presented above, the LPV system X(6) de-
scribed in (2.1), which is an affine function of parameter #, can now be transformed into an LPV
system representation (<) that is a function of « in multi-simplex domain. For simplicity, we
assume that () takes the same form as Y(6) in that all the system matrices are now functions of
a. Subsequently, the LPV controller design, to be presented in the next section, will be based on
the convex scheduling parameter . However, in actual control implementation, the designed LPV
controller in multi-simplex o domain will need to be mapped back to the controller in the affine 0

domain [70].

2.4.2 PLMIs relaxation

The PLMIs formulated in Theorem 5, 7, 8, 9, and 10 renders an optimization problem of infinite
dimensions and un-defined decision variable structures. To numerically tackle this optimization
problem, affine decision variable structure is assumed, for example, /1‘}{ (0) is expressed as AJK (0) =

A%(O + 2321 fl’%ﬁi . Coefficient check in multi-simplex domain [19, 70, 71] has been adopted to
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successfully obtain a finite set of LMIs but with introduced conservativeness. Other options [72, 73]

can also be applied, for instance, sum-of-square relaxation [74] and enforcing multi-convexity

method [75].

Therefore, controller decision variables can be iteratively searched to optimize the cost function.
The operation of PLMIs and optimization problem are solved by using the parser YALMIP [76]

jointly with optimization algorithm SeDuMi [77].
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CHAPTER 3

APPLICATION EXAMPLES

3.1 Active Magnetic Bearing (AMB) Model

An active magnetic bearing (AMB) system borrowed from Lu and Wu [1, 83, 84, 85] is revisited
to demonstrate the effectiveness of the proposed smooth-switching LPV control design. In [1],
states and control inputs experience sharp jump over switching surfaces, and these sharp jumps will
be effectively smoothened by applying the proposed method.

The AMB system is formulated into an LPV model with rotor speed as the scheduling parameter
6. In the automatic balancing design, the measured rotor displacements are assumed to be exposed
to sensor noises, and the gain-scheduling controller is desired to suppress the displacements of rotor
centerlines. While H o channels are kept the same as these in [1] for attaining guaranteed robust
stability, the outputs of #o channels are chosen to be [z, xQ]T = (16, lw]T, the displacements
of rotor centerline. In this way, the smooth-switching mixed ICC/H~, LPV controller will be
designed to suppress rotor displacements subject to measurement noise, with constrained control
inputs and bounded modeling uncertainty. The main benefits of the proposed method over [1]
are three-fold. First, e-balanced optimal Ho performance is achieved with smooth responses over
switching surfaces. Second, the control input constraint is enforced during the control design.
Last, the trade-off among system o performance, ICC condition, and switching smoothness is
established and provides insights as to how to tune the controllers to attain a balanced system
performance.

The weighting functions used in this study are the same as those in [1, 86]. That is, W, =
10(s + 8) 0.01(s + 100)
gy Wy = o )
s +0.001 5+ 100000
within the range # € [315, 1100] rad/s and variational rate § € [—100, 100] rad/s>. The scheduling

Is, and W), = 0.001/2. The rotor speed is assumed to vary

parameter is divided into two overlapping subregions; namely, § € [315, 720] and 6 € [700, 1100},

and its trajectory is defined in Figure 3.1. Switching events happen when 6 = 720 rad/s (at
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t1 = 2.9s) and # = 700 rad/s (at ty = 6.5s). Same as [1], the two dimensional measurement

noises are chosen as step inputs with the same magnitude of 0.001m but with the opposite sign.
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Figure 3.1: Trajectory of scheduling parameter, rotor speed

3.1.1 Trade-off between ¢race(1V) and ICC conditions

To study the influence of ICC conditions when optimizing the /o performance, different upper
bounds of control inputs are considered in PLMIs. When the cost function (2.81) without smooth-
ness index is minimized to obtain the optimal Ho performance, the trade-off relationship of ICC
conditions U and Ho performance upper bound trace(W) can be found in Figure 3.2. It can be
observed that increasing ICC bound U leads to decreasing trace(V), indicating that larger control
authority will result in improved system performance. Moreover, when U is greater than 108,
further reducing trace(W) requires much larger control authority. Hence, U = 108 is selected as
the optimal trade-off point, considering both control effort and achievable performance.

The displacement and control input responses under different U and fixed v = 36 are investigat-
ed. As shown in Figures 3.3 and 3.4, with larger control authority, the displacements are suppressed
to a much smaller level. In the case of infinite ICC condition, the gray solid curve provides the best
performance, and U = 10® produces slightly better responses than the duplicated results following

the procedure in [1]. Furthermore, the responses experience smaller jumps, because of the lack of
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feed-forward term D in the mixed ICC/H~, control. In Figures 3.5-3.7, larger control constraint
leads to larger control effort in order to achieve better performance. Infinitely large U will produce
control input magnitude larger than 6000 N, in order to achieve the best Ho performance as shown
in Figures 3.3 and 3.4. From the time-domain simulation results, considering both control effort U
and achievable system 75 performance, the selection of optimal trade-off ICC constraint U = 108

can be cross-validated with Figure 3.2.
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Figure 3.3: x1 response under different ICC conditions
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Figure 3.4: x9 response under different ICC conditions
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Figure 3.5: uq response under different ICC conditions
3.1.2 Smooth switching LPV control by simultaneous design

3.1.2.1 Trade-off between trace(1V') and switching smoothness

In this subsection, the smoothness index is considered in the cost function in order to attain an
optimal trade-off relationship between system performance and switching smoothness. With the

fixed robustness level v = 36, weighting factor € is tuned to balance the system performance and
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Figure 3.7: Control inputs under infinite ICC conditions

switching smoothness on S (1.2) and $(21). Two different ICC conditions Uy = 107 and Uy = 108
are considered in this study. From Figures 3.8 and 3.9, one can see that increased weighting factor
¢ leads to decreased trace(WV) or improved output performance. Note that increased [y, leads to
decreased controller switching performance. These results clearly show the trade-off relationship
between performance and switching smoothness. One choice of optimal trade-off point is that

magnitude trace(W) is small, and the smoothness index is not yet increased significantly, such
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that system performance is close to the best achievable level while the switching smoothness is

acceptable. The chosen weighting factor for two cases are: (€1, €9) = (10, 1).
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Figure 3.9: Trade-off relationship between switching smoothness and ¢trace(W) under Uy=10%
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3.1.2.2 Simulation results and discussions
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Figure 3.10: State x1 response by [1] and proposed method
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Figure 3.11: State z9 response by [1] and proposed method

After an optimal trade-off point is chosen, the time-domain simulations under different ICC
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Figure 3.12: Control input ©; response by [1] and proposed method
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Figure 3.13: Control input uo response by [1] and proposed method

conditions are conducted with designed controllers!. As shown in Figures 3.10 and 3.11, dashed-
lines are the un-smooth state responses duplicated using the method in [1], while solid- and
dotted-lines represent these responses obtained by the proposed method under two different ICC

conditions.

IThe designed switching controller matrices are available online, https://github.com/
hetianyi1992/smooth_switching LPV.
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The unsmooth state responses from [1] experience sharp jumps on switching surfaces at t1 =
2.9s and t9 = 6.5s. However, with the proposed method, the sharp jumps of state responses are
successfully smoothened by minimizing the e-balanced cost function (2.81), which demonstrates
the effectiveness of the proposed smooth-switching control design.

By comparing state responses under different ICC conditions, it is easy to find that rotor
displacements can be further suppressed when larger control authority is made available. With
tuned Uy = 108, €9 = 1, the proposed method not only leads to a smooth-switching controller, but
also reduces the peak magnitude of rotor displacements over the un-smooth responses duplicated by
following the procedure in [1]. That is, the well-tuned ICC conditions and smoothness weighting
coeflicient lead to significantly improved switching smoothness, while system performance is not
degraded compared to conventional LPV control .

Figures 3.12 and 3.13 show the unsmooth control responses duplicated from [1] and smooth
control inputs under different ICC conditions. Unsmooth control inputs experience sharp jumps
at switching instants, while control inputs are smoothened using the proposed smooth-switching
controllers. By comparing control input responses, it can be found that ICC conditions influence
the peak magnitudes of control inputs. With determined ICC conditions, a well-tuned weighting
coeflicient enforces smooth switching without sacrificing system performance.

Besides the demonstrated switching smoothness, this study also provides valuable insights
regarding how to tune the model-based controller gain. Note that tuning control gain plays an
essential role in implementing model-based controllers for practical applications. Due to system
modeling error, high gain controllers often lead to instability or degraded system performance,
while low gain controllers might not improve system performance much. Therefore, the ability to
design a controller with an adequate gain is essential in practice, and the proposed method makes it
possible to design controllers with different gains by modifying ICC conditions. The ICC condition
tuning along with the line search of smoothness weighting coefficient makes it possible to balanced
switching smoothness and system performance in practice, which is very beneficial for practical

applications.
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3.2 Blended-Wing-Body (BWB) Airplane Flexible Wing

3.2.1 LPV modeling of BWB airplane flexible wing

Before the smooth switching LPV control design is applied to the BWB airplane flexible wing
model, in this section, we consider the LPV modeling of BWB flexible wing; see Figure 3.14
for a schematic illustration. Assume that the BWB airplane is flying at a fixed altitude but with
varying flight speed. The main body of BWB is gridded into six beam elements, and each wing
is gridded into four beam elements. The inner three elements at each wing are selected as control
surfaces, labeled as U1-U6 in Figure 3.14, and wing bending displacements are to be suppressed
by activating the control surfaces. In order to modulate the vibrational behaviors of entire airplane
wings, a total of 18 bending displacements are selected as system outputs. For example, outputs 1
and 9 are the nodal displacements at the right-wing root and right wing tip in Figure 3.14.

The LPV modeling procedure can be described as follows:

A bundle of LTI full-order models (FOMs) are derived by linearizing nonlinear aero-elastic

model at each gridded flight speed [87];

* FOM:s are then transformed into modal coordinates and all system modes are properly aligned

to track mode variations from one flight speed to the next;

* Model-reduction is conducted to keep the most significant modes over the entire gridded

flight envelop [88];

* Linear interpolation over the aligned reduced-order models to attain the affine LPV model.
The interpolation of aligned modes is able to capture the variation of system’s coupled
aerodynamic mode with varying flight speed, which cannot be achieved by direct interpolation

of LTI system matrices [88].

In this study, the scheduling parameter is chosen to be the airplane flight speed, and it ranges

from 110 to 130 m/s. A bundle of reduced-order LTI models are derived at varying flight speeds
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Table 3.1: Mode description in reduced-order model

Mode ID | Rigid-body component Flexible component Note
Ml Plunging and pitching First symmetric out-of-plane bending Bending/torsion coupling
M2 Plunging and pitching Second symmetric out-of-plane bending Bending/torsion coupling
M3 Plunging and pitching First symmetric in-plane bending Bending/torsion coupling
M4 Roll Second anti-symmetric out-of-plane bending Bending/torsion coupling
M5 - First anti-symmetric in-plane bending Bending/torsion coupling
M6 - - Aerodynamic dominant mode

and at an increment of 0.5 m/s to capture model variation. Six dominant modes are kept in the
reduced-order LTI models, as marked by M1-M6 in Figure 3.15. Physical meanings of these
modes are summarized in Table 3.1. Note that all the bending/torsion coupling effects come from
the backswept of the wing, and the wing structural rigidity itself has no inherent bending/torsion
coupling. The vibration modes stay stable when flight speed is below 115 m/s, and mode M1

becomes unstable beyond 115 m/s as shown in Figure 3.15.

Figure 3.14: Schematic layout of BWB airplane configuration

The affine LPV model is obtained by linearly interpolating the first and last eigenvalues of each
mode. As shown in the close-up view of Figure 3.15, the solid line shows the linear interpolation of
the eigenvalues, where crosses denote the loci of actual eigenvalues as function of flight speed. As
a result, in the interpolated affine LPV model, system damping coefficient is approximated while
system stability remains unchanged over the entire flight envelope. Similarly, all other system
matrices are also obtained by following the same linear interpolation process. The resulted affine
LPV model consists of 12 states (6 modes), 6 control inputs (control surfaces deflection angles)

and 18 performance outputs (wing bending displacements).
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Figure 3.15: Root loci of open-loop system with varying flight speed

There are two main control design goals. One is to robustly stabilize the closed-loop system
under bounded modeling error and the other is to suppress wing bending displacements, excited by
the gust disturbance, using control surfaces on the wing. As a result, two independent H~, and Ho
input channels are used along with two independent H~, and Ho output channels for the system
described in Eqn. (2.1), where modeling error is modeled as system disturbance input w, excited
by the system output z, through uncertainty A and the closed-loop robust stability is achieved
by satisfying the desired H~o performance; the gust disturbance is treated as disturbance input w9
with associated H9o performance output 29 to be optimized for suppressing bending displacement
29 caused by the gust disturbance. In addition, ICC constraints are imposed on control inputs
or deflection angles of control surfaces, so that they are hard-constrained to operate within their

limits. In order to apply switching LPV control, the switching LPV model is developed by dividing
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the scheduling parameter range into multiple overlapping subregions, as shown in Figure 3.16. In
the next subsection, a generic LPV model with H, and Ho channels will be considered and the
associated system performances defined.

S g(1.2) 9B32) g(2:3)

110 122 122.5 126 126.5 130 ™

Figure 3.16: Three-subregion partition for scheduling parameter

3.2.2 Mixed ICC/H LPV control

The Ho outputs of interest are bending displacements, while the H~, outputs include bending
displacements and control inputs. The weighting matrix () is chosen to be identity matrix, that
is, all outputs are weighted equally. The scheduling parameter is chosen as a biased sinusoidal
function, 0(t) = 110 + 20sin(¢/20) m/s, as shown in Figure 3.17. Therefore, within the time
interval of [0, 207] second, the scheduling parameter is bounded as 110 m/s < 6 < 130 m/s, and
its rate bounded as -1 m/s®> < < 1 m/s%. In general, the scheduling parameter trajectory should
satisfy the boundary conditions for both 6 and 0, and be at least piece-wise differentiable. It is
commonly accepted that the variation of the scheduling parameters must be "slow” compared to
the system dynamics, because designing an LPV controller for fast-varying scheduling parameters

is a challenge [89].

3.2.2.1 Constraints and performance trade-off

In the mixed ICC and H o (or robust ICC) LPV control problem, both control input constraints
and robustness requirement would significantly impact the optimal solution to the PLMIs. Hence,

a trade-off study is conducted to better understand the characteristics of LPV models. Figure 3.18
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Figure 3.17: Scheduling parameter (flight speed) trajectory

shows the complete trade-off between the control effort U, the robustness levels 740, and the output
performance trace(W). For a given robustness level, the trade-off contour illustrates that larger
control input constraint leads to smaller output covariance, hence better Ho performance for the
closed-loop system. In addition, with small control effort, output performance will be degraded,
resulting in a large output covariance. An increase in control effort leads to notable improvement
on system #Ho performance with wider range of admissible robustness levels. This demonstrates
that larger control input can effectively compensate for the robustness constraints.

Furthermore, based on the Small Gain Theorem [33], the closed-loop system satisfying the
condition ||Tso||co < 7Yoo is well-posed and internally stable for all uncertainty satisfying ||A|]|oo <
1/9~0, where A can be considered as an interconnection from 2, t0 weg, as shown in Figure 1.3.
In Figure 3.18, with a fixed U, it is obvious that with more stringent requirement on robust
performance, i.e. smaller 7o, the output performance degrades with increase in trace(W), leading
to worsen Hg performance. Note that, while 7, decreases incrementally, trace(W) increases
or Ho performance degrades much drastically. This can be explained by the reciprocal relation

between uncertainty A and 7.
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The trend at higher or lower robustness level reveals an important implication for controller
design. At lower robustness level, for instance 7~ = 2, the achievable Ho performance remains
almost unchanged when U > 0.01. This indicates that the robust H, performance requirement
is not the dominant factor for control design and the H9 performance can be achieved with a
relatively small control effort. However, at higher robustness level, for instance 7o, = 0.5, the H
performance becomes critical for control design. As a result, in order to achieve a specific Ho
performance, more control effort is required. Itis also observed that the achievable H9 performance
degrades with increased robustness level. Based on the above-mentioned trade-offs, the constraints
for the control design are chosen to be U = 0.02 and v, = 1, which ensure a good robustness

margin to handle modeling error with good balance between Ho performance and control effort.
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3.2.2.2 Mixed ICC and H, Control Problem

The mixed ICC and H, control problem is to find a state-feedback gain-scheduling controller (2.52)

for the LPV system (2.1), while minimizing the upper bound of 9 performance cost [90, 35]

21(151) trace(W), 3.1)

such that:
* the closed-loop system (2.5) is exponentially stable,

* the following constraints of robustness level and control input covariance are satisfied,

[ Too (K (0),5)]|oo < Yoo s (3.2)
Cov(up(t)) < U, k=1,2,...,ny, (3.3)

where 750 > 0 is the given H~,-norm bound on system robustness, and U}, the given bound on the

control covariance C'ov(uy(t)) for the k" control input uy,(¢) defined below,

Conlun() = |- [ THKO) TR O j)ts] (3.4)

21 J oo

and Ty (K(0),s) = Twy—u(K(0),s) denotes the transfer function from ws(t) to u(t) for the
LPV system (2.5). Note that, for deterministic signal, covariance is defined in terms of time
correlation [51, 91, 7, 92].

As aresult, the proposed mixed ICC and H, control problem has interesting interpretations in
stochastic and deterministic perspectives. The stochastic interpretation assumes that the exogenous
input ws (t) is an uncorrelated zero-mean white noise with unit intensity. Then, the mixed ICC and
‘H o control problem is to minimize the output covariance (or RMS-value) while satisfying multiple
control input covariance constraints and H, robust performance criterion. The control input
covariance constraints can be considered as constraints on the variances of the control actuation. In

other words, the proposed control provides the best output /o performance with the given control
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‘Ho performance and robust H o constraints. On the other hand, the deterministic interpretation
assumes that the exogenous input wo(¢) is an unknown disturbance that belongs to a bounded L9
set. Then, the mixed ICC and H, control problem is to minimize the square summation of Lo
to Loo gains from wo(t) to individual output channel zg .(t) for k = 1,2,...,n,9, subject to the
L9 to Lo gain constraints (3.3) on wuy(t) for k = 1,2,...,ny and the Ho constraint (3.2). In
other words, the proposed control problem is to minimize the weighted sum of the worst case peak
values of performance output subject to the constraints on worst-case peak values of control inputs
and the # o constraint. It should be noted that the Lo-L~ gain from wo(t) to 29(t) is defined in

White et al. [91] as follows,

1o, . . 22113
b / T5(K(0), jw)I»(K(0), jw)dw| = sup s (3.5)
T J wy€ Lo, 29 Loo,|lwalla0 [[w2(t)[3

where 7 [-| denotes the maximum singular value operator.

3.2.2.3 Time-domain simulation results

Given the range of 6 and 9, the control input constraints, and the robustness level, the LPV model of
the BWB airplane is simulated when it is subjected to a sharp-edged gust disturbance for 5 seconds.
Figures 3.19 and 3.20 show the wing root (output 1) and wing tip (output 12) bending displacement
of the right wing for open-loop case, and as can be seen the results are unstable. Therefore, a
state-feedback LPV controller in the form of Eqn. (2.52) is designed to stabilize wing elements and
suppress the bending displacement.

Using Theorem 3, a state-feedback LPV controller can be design with scheduled control gain
matrix of dimension 6 x 12, mapping 12 states to 6 control inputs. Note that the LPV model is
developed in the modal coordinate, the measured or observed states in original coordinate need to
be transformed to the modal coordinate. In practical implementation, scheduling parameter (flight
speed) will be online measured in each sampling time, and control inputs of altering flap angles

can be calculated from corresponding controller gain matrix and measured or observed states.
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Figure 3.20: Bending displacement at wing tip

To demonstrate the effect of control input constraints and robustness levels to H9 performance,
multiple simulations are performed for comparison. When robustness level 7~ = 1 is fixed, each
control input is identically constrained by various upper bounds U. Figures 3.21 and 3.22 show the
bending displacement at wing root and wing tip for U = 0.01,0.02,0.04. As can be seen, during
the gust disturbance, the outputs are converged and bounded. In addition, with larger control

inputs, the output responses have smaller overshoot and faster convergent rate, indicating that Ho
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Figure 3.22: Wing tip bending under different U/

output performance are improved. As shown in Figures 3.23 - 3.28, the control inputs U1-U6 are
increased by more than twice when upper bounds become doubled. This comparison indicates that
the selection of U = 0.02 offers a good balance between the performance and the control effort,

which produces an upper bound of u = 0.14 rad ~ 8°.
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All 6 inputs are compared to show how the control law allocates 6 independent inputs to
suppress airplane wing displacements. It can be observed that inputs 1 and 3 are distributed by
similar control authority. The equal distribution of control authority also happens on control inputs
2 and 4, control inputs 5 and 6.

When U = 0.02 is fixed, the robustness level v is varied to study its influence on output
performance. As shown in Figures 3.29 and 3.30, the bending displacement at wing root and
wing tip are improved when 74 increases from 0.5 to 1. However, the responses remain almost
unchanged when v increases from 1 to 2. This phenomenon matches well with the earlier trade-off
study shown in Figure 3.18. Figures 3.31 and 3.32 show the control inputs when the robustness level
is greater than 1, as can be seen that vy, is no longer the dominant factor for output performance.

After U is chosen, the LPV controller is designed and applied to actual gridded LTI models to
validate its feasibility. Figure 3.37 shows the root loci of the closed-loop system with varying flight
speed. As shown, the proposed LPV controller stabilizes the gridded LTI models subject to input
constraints, while minimizing the output H9 performance. However, in an effort to reduce control
energy, some modes are kept unchanged by the proposed controller. Comparing Figures 3.15
and 3.37, the modes (M1, M2, M4), which dominate in z—directional bending motion, have been
significantly shifted, while other modes (M 3, M5, M 6) are kept unchanged. Inaddition, Figure 3.38
shows the ICC cost or H9 norm of the closed-loop system with the LPV controller applied to the
interpolated LPV system and actual gridded LTI models, respectively. Their magnitudes are very
close and upper bounded by trace(W'). When combining with Figure 3.37, Figure 3.38 effectively
validates that the proposed interpolation of LTI models and LPV controller design is feasible for

vibration control of the BWB airplane.
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3.2.3 Smooth switching LPV control by simultaneous design

3.2.3.1 Time-domain simulation results

The scenario that a BWB airplane experiences a sharp gust disturbance is considered in this study.
The gust disturbance is assumed to induce a constant shift angle w9 on all control surfaces for
t € [0,9] second, and we assume that we = 0.005 rad ~ 0.28°. As shown in Figure 3.39, two
switching events happen at t = 77 = 3s and ¢t = 15 = 8s. Therefore, within the time interval of
[0, 10] second, the scheduling parameter is bounded by 110 m/s < 6 < 130 m/s, and its rate bounded
by -1 m/s2 < 6 < 1 m/s2. Note that when the open-loop system is subject to gust disturbance,
bending displacements are unstable, as shown in Figure 3.40. A family of smooth-switching mixed
ICC/H o LPV DOF controllers are to be designed using Theorem 7 for stability as well as achieving
a balanced Ho performance and switching smoothness, with guaranteed  ~, robust performance

(at v = 10).
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Figure 3.39: Scheduling parameter with switching events

The trade-off relationship is explored by line search of weighting coefficients € under different
ICC constraints: U; = 8, Uy = 12 and U3 = 20. As shown in Figure 3.41, the switching

smoothness index can be reduced by decreasing the weighting coefficient ¢, which results in an
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increased Ho performance index trace(W) or degraded Ho performance. This illustrates that sys-
tem performance is sacrificed in order to enforce switching smoothness. Especially, when € < 102,

the system performance index increases significantly for all three ICC constraints, indicating that
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system performance is degrading much drastically in order to achieve smoother responses. Thus,
an optimal weighting coefficient is chosen to be ¢ = 102 to attain smooth switching with acceptable
system performance. To demonstrate the effectiveness of the proposed method, extensive simula-
tions are conducted by considering three different controllers: 1) non-switching LPV controller, 2)
un-smooth switching LPV controller, and 3) the proposed smooth-switching LPV controller. And
these controllers are applied to the BWB flexible wing model for vibration suppression.

Figures 3.42 and 3.43 show the bending displacement at wing root (output 1) and wing tip
(output 12), respectively, while Figures 3.44-3.49 show the control allocation of deflection angles

of six flaps according to three different control strategies.
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Figure 3.42: Upper: comparison at wing root with smooth/un-smooth switching controller; Lower:
comparison at wing root with three control methods
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Figure 3.43: Upper: comparison at wing tip with smooth/un-smooth switching controller; Lower:
comparison at wing tip with three control methods

In the upper sub-figure of Figure 3.43, smooth (blue) and un-smooth (red) responses of bending
displacement at wing root are shown. At switching event 77 = 3s, controller 1 is switched
to controller 2, and the sudden changes of un-smooth controllers cause abrupt jumps for all three
different ICC conditions. On the other hand, the smooth-switching LPV controllers enforce smooth
output responses, with slightly increased bending displacement as a minor penalty on system
performance. Similar behaviors can be observed at the switching event 75 = 8s. Another trade-off
relationship can be observed from output responses. Different ICC constraints will influence the
optimal achievable system performance. With larger control input, the bending displacements can
be suppressed even further, however, when U > 12, much more control effort will be consumed
to further improve system performance, as seen from control responses in Figures 3.44-3.49.
Therefore, the hard constraint on control input is chosen as U = 12, in order to achieve acceptable
performance and energy saving.

The lower sub-figure of Figure 3.43 shows the comparison of wing tip responses with three

different controllers. As shown, all three control methods are able to stabilize and suppress bending
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displacements for the entire flight speed envelope. It can be further observed that both smooth and
un-smooth switching LPV controllers produce a smaller magnitude of bending displacements than
the non-switching LPV controller, and this is achieved by relaxing the PLMI conservativeness and
enforcing the optimal performance on each subregion. However, un-smooth switching LPV leads
to undesirable jump on the bending displacement at wing tip, which is effectively smoothened by
the proposed smooth-switching LPV controller.

The responses of control input also demonstrate the effectiveness of the proposed control
method. In the upper sub-figures of Figures 3.44-3.49, the un-smooth control design results in
control inputs exhibiting sharp jump at the switching events, but the proposed smooth-switching
LPV controllers effectively remove these jumps. Especially at switching event 75 = 8s, un-smooth
switching controller commands the control surfaces to deflect in opposite directions within a very
short time, which imposes a severe capacity burden on the actuator. Smooth-switching controller,
on the other hand, allocates the deflection angles of control surfaces with smooth control commands
when switching occurs. In the lower sub-figures, control commands of three control methods are
compared. Unlike switching LPV control, non-switching LPV control results in a conservative con-
trol input of a very small magnitude due to the conservativeness introduced in PLMIs. Un-smooth
switching LPV control is able to relax conservativeness and assign slightly larger control energy,
leading to improved vibration suppression of bending displacements. However, by minimizing
control gain differences in the optimization cost function, smooth-switching LPV control can result
in much smoother responses with slight degradation on system performance, which is still better

than the performance of the un-smooth switching LPV control.
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Figure 3.45: Upper: control 2 responses comparison with smooth/un-smooth switching controller;
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Figure 3.46: Upper: control 3 responses comparison with smooth/un-smooth switching controller;
Lower: control 3 responses comparison with three control methods
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Figure 3.47: Upper: control 4 responses comparison with smooth/un-smooth switching controller;
Lower: control 4 responses comparison with three control methods
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Figure 3.49: Upper: control 6 responses comparison with smooth/un-smooth switching controller;
Lower: control 6 responses comparison with three control methods
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3.3 Numerical Examples for Sequential Design

In order to demonstrate the feasibility of the proposed method, two examples will be given
and results will be compared with simultaneous design, as well as non-switching LPV design.
Furthermore, the interpolation rate 5 and scheduling parameter variational rate are varied to study
their ultimate influence to closed-loop H~ performance ~.

The formulated PLMIs are of infinite-dimension, and they can be transformed into finite-
dimensional by means of various relaxation methods. To numerically tackle this optimization
problem, coefficient check in multi-simplex domain by Polya theorem [19] is applied. Gridding
technique [68] or other relaxation methods [73] can also be potentially used to tackle this problem.
Some software is available to manipulate the PLMIs and handle the convex optimization. In this
study, The PLMIs are solved by using the parser ROLMIP [93] and YALMIP [76], which work
jointly with optimization tool SEDUMI [77]. Computation is operated using a computer with
Intel core i7-4770T CPU @2.50 GHz and 16 G RAM, and computation times of three design
approaches are obtained by running tic and foc commands in MATLAB, and they are compared to

show computational efforts.

3.3.1 Example 1

The LPV model in reference [94] is revisited to illustrate the feasibility of the proposed sequential
design approach of smooth switching LPV controllers. Consider the LPV model with affine

dependency of one-dimensional scheduling parameter 6,

25.9 — 606 1 3
= 7BU = )
20 — 400 34 — 646 2
—0.03 11 0 0
By = aC = >Dw = y Dy =
—0.47 00 0 1

The time-varying scheduling parameter 0(¢) is bounded as 0 < 6(¢) < 1, and its variational

rate is bounded as —v < é(t) < v. The domain of © is assumed to be partitioned as three

100



Table 3.2: Comparison of three different design methods in each design iteration

H non-switching \ sequential \ simultaneous

No. LMIs 8 8 27
No. variables 14 14 42
tic/toc time (s) 0.23 0.21 0.39

overlapping subregions of ¢ range, [0, 0.4], [0.3,0.7], [0.6, 1] , and variational rate bound is kept as
not divided. Controller decision variables P(6) and Z(f) are assumed to be in the affine form as
P(0) = Py+ P10, and Z(0) = Zy + Z10. Controller decision variables Py, P;, Z(, Z; are sought
to minimize the H~, performance index v, while PLMIs formulated by different design approaches
are satisfied. In the non-switching LPV control design, a single v on entire scheduling parameter
region is minimized. In the simultaneous design approach, 1, 9 and 73 are associated with three
subregions, and max {71, 7y2,7v3} is minimized in objective function. However, 1, y2 and 3 are

minimized sequentially on each subregion by sequential design approach.
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Figure 3.50: 1 obtained by sequential (black), simultaneous(blue) and non-switching(red) design
approach
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Figure 3.51: 9 obtained by sequential (black), simultaneous(blue) and non-switching(red) design
approach
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Figure 3.52: 3 obtained by sequential (black), simultaneous(blue) and non-switching(red) design
approach
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With given \g = 2, interpolation rate 5 and variational rate v are varied to get insight of how
they influence the H ~, performance 71, 2 and 3 plotted in Figures. 3.50-3.52. The non-switching
design result is plotted as red surface , while 1, 72 and 73 obtained by simultaneous and sequential
designs are plotted in blue and black surfaces, respectively.

It can be observed that, both switching design methods lead to an improved closed-loop system
Hoo performance over non-switching LPV control. In most area of shown region, sequential
design approach results in a smaller v in magnitude than simultaneous design approach on three
subregions, indicating design conservativeness can be relaxed in these cases. In the situation
that large variational rate v and aggressive interpolation rate /3, switching smoothness between
adjacent controllers will be improved, but conservative constraints of additional relative o-stability
will be introduced. As a consequence, H o performance by sequential design is worse than that
of simultaneous design. Thus, there exists a trade-off relationship between system performance
and switching smoothness represented by interpolation coefficient. Performance degradation is a
sacrifice to guarantee the robust performance by interpolated controller variables. In other words,
the limitation of this method is that tuning work may be needed if optimizing system performance
is the objective rather than reducing design complexity.

The time-domain responses of three different design approaches have been simulated and com-
pared in Figure 3.53. System disturbance is set as w(t) = 0.5 for ¢ € [0, 4.5] second and w(t) = 0
for t > 4.5 second. Scheduling parameter trajectory is set as 6(¢) = 0.3 + 0.1¢. In the sequen-
tial design approach, interpolation rate and variational rate are chosen as § = 2 and v = 0.02,
respectively. It is easy to observe that switching controllers by the sequential design lead to state
responses with smaller signal norms than these from simultaneous design approach and nonswitch-
ing control. This conclusion matches well with these results in Figures 3.50-3.52 that sequentially
designed switching controller leads to smaller H~, norm. Moreover, simultaneous design results
in jumps at switching instants of ¢ = 1 and ¢ = 4 second, whereas the proposed sequential design
leads to smooth responses because controller gains are interpolated over overlapped subregions.

After t = 4.5 second when system disturbance disappears, states are regulated to 0 by all three
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controllers.

Table 3.2 summarizes the number of relaxed LMIs and controller decision variables and com-
putation time by three different design approach. Non-switching design approach deals with fewer
LMIs and search for minima in a smaller space of variables, thus less computational time is utilized
in the optimization. However, the optimized H~, performance is worse than both switching LPV
control design approaches. Sequential design iterates the optimization on each individual subregion
sequentially, thus in each design iteration, sequential design deals with same amounts of LMIs and
variables with non-switching design, but within smaller size of subregion. The simultaneous design
approach is imposed with all LMIs and variables, thus has the largest computational complexity.
Note that in this example, total solving time of sequential design is slightly larger than simultaneous
design approach, and it can be possibly reasoned that optimization problem formulated by low-order

system can still be well handled by the simultaneous design approach.

0.2 .

Magnitude

Time/s

Figure 3.53: Closed-loop system states responses by sequential (black), simultaneous(blue) and
non-switching(red) design approaches
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3.3.2 Example 2

The A(f) matrix in Example 1 is modified into two-dimensional affine dependency of #; and
2, while other system matrices are unchanged. The domains of two scheduling parameters are
©1 = [0, 10], ©2 = [0, 7], and they are respectively divided into [0, 7], [5, 10] and [0, 5], [3, 7]. With
given \o = 0.1 and division of scheduling parameter domain, three different design approaches are

conducted again to compare optimized H~, performance and computational efforts.

20 — 264 16
12 8 — 669

Similar to Example 1, controller decision variables P(f) and Z(f) are assumed to be in the
affine form as P(0) = Py + P10y + P»bo, and Z(0) = Zy + Z101 + Z205. On each subregion,
controller decision variables Fy, P, P», Zy, Z1, Z> are sought to minimize the H~, performance
index v, while PLMIs formulated by different design approaches are satisfied.

The optimized system performance indexes on subregions by sequential design, simultaneous
design and non-switching design are plotted by black, blue and red surfaces in Figures. 3.54-
3.57. Non-switching control design minimizes H, performance 7 over entire subregion. In
the simultaneous design approach, 711,712,721 and 792 are associated with four subregions,
and max {11, 712,721,722} is minimized in objective function. However, they are minimized
sequentially on each subregion by sequential design approach. It can be seen that in most cases,
sequential design approach obtains smaller v magnitudes, in other words, better system performance
than simultaneous design and non-switching LPV control design.

From simulation results, the conservativeness of high-dimensional optimization in simultaneous
design can be relaxed by iterating low-dimensional optimization in the sequential design approach.
However, in the scenario of aggressive interpolation rate J and large variational rate v, sequential
design provides very conservative o-stability and hence worse system performance is obtained by
sequential design approach. This surface gives insight of how o-stability will trade-off with H o

performance in switching LPV control, and gives hint on how to further tune subregion division
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and interpolation rate.

Table 3.3 summarizes the number of LMIs and controller matrices variables and computational
time by three different design approach. Both switching LPV control design approaches sacrifice
more solving time to obtain better system performances. In the simultaneous design, much more
constraints than sequential design are imposed, thus more solving time are taken to obtain an
optimal solution. However, the resulting system performance is contrarily worse than that of
sequential design approach if interpolation coefficient is properly chosen. In this example with 4
subregions formed by two-dimensional scheduling parameters, sequential design approach exceeds

simultaneous design approach in terms of computational efforts and achieved system performance.
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Figure 3.54: ~11 obtained by sequential(black), simultaneous(blue) and non-switching(red) design
approach
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Table 3.3: Comparison of three different design methods in each design iteration

H non-switching \ sequential \ simultaneous

No. LMIs 40 40 192
No. variables 21 21 84
tic/toc time(s) 0.40 0.47 3.48
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Figure 3.57: ~99 obtained by sequential(black), simultaneous(blue) and non-switching(red) design
approach
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CHAPTER 4

OPTIMAL SENSOR PLACEMENT

4.1 Introduction

A light and flexible airplane wing is benefited from structure flexibility, and it features with high
aerodynamic and fuel efficiency. However, the structure flexibility poses a great challenge to control
system design for active vibration suppression. Structural control community has made various
attempts on developing effective control techniques in order to suppress vibration, avoid structural
failure and enlarge flight stability margin. Among control system components, positioning and
selection of sensors play a role of great importance but have not been paid enough attention.
Sensor placement needs to be integrated into both modeling and control design, and will ultimately
influence state observability, as well as the achievable closed-loop system performance.

As a large-scale structural system, a flexible wing exhibits coupled aero-structure dynamics at
various flight conditions [87, 88]. Multiple nodal points along the wing span are often selected to
get insight on overall structural behavior. Moreover, multiple sensors are needed to be installed at
different locations to provide feedback information for active vibration control. Sensor positioning
on a large-scale flexible wing structure is even more complex. Sparse density of measured locations
cannot capture all vibrational modes and very likely lead to no feasible solution for an output
feedback-based controller. On the contrary, too dense of sensor placement will increase both model
and controller dimensions, which dramatically increases computational complexity and potentially
limits achievable system performance. These practical demands call for a systematic method to
compute, evaluate and determine optimal number of sensors and their placement.

In this dissertation, we investigate the problem that with a given range of varying flight speed,
how to determine sensor position within a limited number of feasible locations to achieve optimal
vibration suppression [95]. Known as part of input/output selection problem, sensor positioning

together with actuator positioning have been widely studied in flexible structures [96, 97, 98].
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Readers are suggested to the reference [97] for more detailed survey. These methods are mostly
based on quantitative measures for state controllability, observability or efficiency of manipulation,
estimation. These measures can be connected well with the energy stored by structural system,
supplied by actuators or being supplied to sensors. However, these methods are mostly established
for linear time-invariant (LTI) systems, which have static vibration frequency and damping, and
hence static vibration nodes. For a BWB airplane flexible wing, it has been demonstrated that
flexible modes will vary under different flight conditions. Hence, the LTI framework is not capable
of capturing the mode dynamics, thus a new framework that is able to handle varying modes is
needed.

Linear parameter-varying (LPV) modeling and control have been demonstrated as an effective
alternative for active vibration suppression for a BWB airplane flexible wings [88, 87, 62, 35, 99].
The LPV model is able to capture mode dynamics with varying flight condition and depict varying
input-output characteristics between flap deflection angles (control surfaces) and wing bending
displacements (controlled outputs). The LPV controller then schedules the control gains according
to the measured real-time flight condition to achieve specific system performance. By this way,
the controller synthesis is well defined as an optimization problem, with performance-associated
index as objective function and a set of PLMIs (Parametric Linear Matrix Inequalities) derived
from specific system performance requirements.

The LPV framework is adopted in this study to numerically analyze how a sensor selection
and its location influence the closed-loop system performance. To the best knowledge of authors,
such an attempt has never been made in structural control literature. With o LPV controllers,
different combinations of sensor locations are evaluated in terms of the guaranteed closed-loop
system performance. Because the control input, e.g. flap angle, is physically limited, ICC (Input
Covariance Constraint) is applied to controller synthesis conditions. Under this constraint, the
worst-case Ho performance within given range of flight speed is treated as the evaluation index
for achievable system performance, which guarantees the performance under any possible flight

condition within the flight envelope.
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4.2 Problem formulation of sensor placement

Revisit the LPV model of the BWB airplane flexible wing. for simplicity, we consider the Ho

performance of sensor placement, thus only 9 performance of signal pair (w, z) is considered.

ap(t) @.1)

y(t) = Cy0(t))xp(t) + v(t)
where the external disturbance w(t) and measurement noise v(t) are assumed to be zero-mean,

Gaussian white noise, but not necessarily stationary. They are also assumed as independent as

E {w(s)wT(t)} — W)t —s), E {U(S)UT(t)} — V)t — s) 4.2)

As shown in Figure. 4.1, the sensor location candidates are marked by triangles in red. It is
assumed that bending displacements in z-direction can be measured by available sensors. All of
these equally spaced locations together are selected as performance outputs to evaluate closed-loop
Ho system performance. Some or all these candidate locations may be selected to install bending
displacement sensors. For the given flight speed range, the question that how many candidates and
what candidates group will lead to the optimal system performance, arises as the objective of this
study.

Note that 4(t) = [y1(t),52(t), -, Um(t), -, yas(t)], where M = 9 is the total number of
sensor location candidates. All available measurement output () can be derived from Cy(0)zp,

where

C1(0)

Cy(0) = | Cn(0)
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A

Figure 4.1: Sensor location candidates

The selected subset of measured output y(t) is obtained by stacking the chosen measurement v,

then N < M measured outputs are obtained by C, as

Cyl (0)
Cy -
C’yN (‘9)
N M!
Therefore, there is a total of C' M= m combinations to choose /N sensor locations from

M candidate locations.

RNXM

Suppose the projection operator Py € maps the selected sensor subset from the entire

set of available sensors, where the m!" column is 1 for the selected m!" sensor and the column is

0 if associate sensor is not chosen. Then the selected sensor output can be expressed by
y = PNyCy(0)xp(t) + Pyo(t). (4.3)

The projected measurement noise has the variance as
E{[Pyo(s)][Pxo]" } = PyV ()Pt s)
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Using the selected sensor measurement, the dynamic output-feedback (DOF) LPV controller K ()

is expressed as
T =Arg0@)rg + Br(0)y
o). ] = A0 (0) s
u =Cg(0)rg + Dk (0)y
Recall the definition of H9 performance of LPV system, defined from w = [w(t);v(t)] to z(t),
is utilized to assess the closed-loop performance against external disturbance. Let T5(0,s) =
T.w(0, s) be the parameter-dependent transfer function from w(t) to z(t), and if the system pair
(Ag, By, Cp, 0) is stable, the Ho norm |]T2||% can be obtained by minimizing tracelW while
subject to the following PLMIs over the region (6,0) € © x A,
_PZ + AP+ (%) By

<0, 4.5)
* -1

W CuaPo
S (4.6)
* P
The optimal sensor placement by selecting from available sensor set is actually deciding the
projection operator. By this step, we are ready to give the problem formulation of optimal sensor

placement. The H9 performance of closed-loop LPV system minimized by the projection operator

Py in dynamic output-feedback LPV control.

min min trace(W) 4.7)
Py

subject to (4.5) and (4.6).
This optimization problem is well-known as an NP hard problem [100, 101], which involves
hybrid optimization of integer variable (binary optimization) and real matrix variables(control

design).
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4.3 Simulation results by global search

4.3.1 Simulation results

Following the same H9 LPV control design procedure, different combinations of sensor location
candidates are explored to calculate the achievable guaranteed system performance. The observabil-
ity of system pair (A(6), Cy()) is firstly checked at gridded points over the scheduling parameter
range. Those sensor combinations which cannot be observed at all gridded points are considered

as unobservable, and hence they are removed from controller synthesis.

0.8

0.7

trace(W)

03F

0.2 !
1 2 3 4 5 6 7 8 9

number of available sensors

Figure 4.2: trace(W') versus the number of available sensors, U = 6

Figures. 4.2 and 4.3 show the 9 system performance trace(W') (y—axis) when limited number
of sensors (r—axis) are used. Using one sensor and some combinations of two sensors are
determined unobservable, thus feasible 1o LPV DOF controller cannot be designed. When N > 3
number of sensor locations are available, the system matrices pairs are checked as observable for
entire flight speed range. As a result, there is no data points shown at N = 1, and only a few data
points can be seen at N = 2, whereas N'(MLLN)' data points are obtained for other cases.

Note that weighting matrix () is chosen as 100 x I for evaluating all bending displacements

equally. Figures 4.2 and 4.3 are corresponding to two different ICC conditions for all control
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Figure 4.3: trace(W) versus the number of available sensors, U = 8

surfaces U = 6, 8. It is apparent that, when bending displacement sensors are installed at more
candidate locations, the upper bound of achievable system performance ¢race(1W') becomes smaller,
which indicates that improved system performance can be achieved. Moreover, the solid line and
dash line are plotted by connecting the best and worst performance of each combination group with
available sensor number. The variance trace of system performance is shrinking and converging
as available sensor number increases. When sensor number is plenty enough, system states can
be well recovered and vibration behaviors within entire flight envelop can be well handled. This
is simply due to that with more sensors more useful information can be accessible for feedback
control.

Furthermore, when large control authority is allowed, the achievable system performance
trace(W') is suppressed further, indicating better system performance can be achieved. The
combination candidates with the best system performance for any N number of sensor candidates
group are summarized in Table 4.1. Note that, if only one sensor is used, there is no feasible sensor

due to the unobservability.
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4.3.2 Discussion

As shown in Figures. 4.4 and 4.5, LTI H» controllers with ICC condition U = 8§ are also designed
at gridded flight speed ¢ = 115,125 m/s, and a set of sensor location combinations are globally
searched to find optimal sensor placement. The optimal group of sensor locations is found varying
with different flight speed. Thus, sensor positioning determined by following conventional LTI
approach cannot produce optimal system performance within the flight speed range. For example,
when N = 7 number of sensors are used at § = 115 m/s, the optimal sensor group is found as
{1,2,4,5,6,7,8}. However, when flexible wing is flying at # = 125 m/s, the optimal sensor
location combination is found as {2, 3,4,5,6,7,9}. This validates the fact that the optimal sensor
combinations obtained under different specific flying conditions can vary, and hence may not be
optimal for the entire flight envelope. On the contrary, the LPV approach considers the optimal
sensor combination over the entire flight envelope, and looking for the optimal sensor positioning
in terms of the best guaranteed system performance. This is the main advantage of the proposed

LPV approach over the conventional LTI approach.
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Figure 4.4: trace(W) versus number of available sensors, at flight speed 115 m/s
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Figure 4.5: trace(W) versus number of available sensors, at flight speed 125 m/s
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Table 4.1: Summary of optimal sensor candidate combinations

LPV approach LTI approach
U=6 U=8 U=38,0=115 U=28,0=125

N sensor trace(W) sensor trace(W) sensor trace(W) sensor trace(W)
1 _ _ _ _ _ _ _ _

2 {3,9} 0.7009 {3,8} 0.5569 {4,5} 0.1223 {2,3} 0.2866
3 {3,4,5} 0.2416 {3,7,9} 0.1519 {2,4,5} 0.0496 {6,7,9} 0.0814
4 {3,5,7,9} 0.2202 {3,4,7,8} 0.1338 {3,5,7,9} 0.0470 {5,7,8,9} 0.0760
5 {1,3,4,6,8} 0.2165 {1,2,3,4,6} 0.1314 {1,3,5,6,9} 0.0467 {4,5,7,8,9} 0.0745
6 {1,2,3,4,6,9} 0.2148 {1,2,3,4,6,8} 0.1604 {1,4,5,6,7,9} 0.0468 {1,2,3,6,7,9} 0.0750
71 {1,2,3,4,5,7,8} | 0.2148 |{1,2,3,4,5,7,9} | 0.1306 | {1,2,4,5,6,7,8} | 0.0465 |{2,3,4,5,6,7,9} | 0.0749
8 {1,2,3,4,6,7,8,9}} 0.2147 {1,2,3,4,5,6,8,9} 0.1301 |{1,3,4,5,6,7,8 9} 0.0473 {1,2,4,5,6,7,8,9} 0.0753
9 {1-9} 0.2147 {1-9} 0.1313 {1-9} 0.0483 {1-9} 0.0754
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4.4 Sub-modular property of sensor placement problem

At different fixed flight condition, the contribution of each sensor to each vibration mode can
be calculated based on [102]. The results are shown in the Figures 4.6-4.8.

It is easy to observe that the contribution of sensor to each mode follows an increasing trend,
moreover, the contribution of each sensor will vary under different flight conditions. Even though
the Gawronski’s approximation method [102] can only be applied to stable LTI systems, the results
indicate that the sensor placement has the sub-modular property.

In the searching of optimal sensor placement, global search is not an efficient approach, due to
the NP hard nature of the hybrid optimization. However, the sub-modular property of the optimal
sensor placement problem is uncovered and will be shown in this section.

The sub-modularity will be firstly reviewed and basic greedy algorithm will be introduced [100,

101]

sensor index for flight speed 6 = 110

<>
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Figure 4.6: Sensor contribution to each vibration mode at flight speed 110 m/s
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sensor index for flight speed ¢ = 113

Figure 4.7: Sensor contribution to each vibration mode at flight speed 113 m/s

sensor index for flight speed ¢ = 115

Figure 4.8: Sensor contribution to each vibration mode at flight speed 115 m/s
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4.4.1 Set function and sub-modular property

Definition 1 (set function). Let S be a finite set and a set function over S assigns a value to every

subset of S, i.e. f(S):25 = R.

Definition 2 (submodularity). Let S be a finite set and 25 denote power set. A set function

f: 2% = Ris said to be submodular if and only if
f(AUB)+ f(ANB) < f(A) + f(B), VA, B CS. (4.8)
For finite set S, this is equivalent to
f(A+7) = f(A) = f(B+j)— f(B), VYACBCSVjeS\B. (4.9)

In other words, the function f satisfies the diminishing increment property. The submodular
function f is monotone if f(A) < f(B),YA C B. If a set function is submodular, then the
contribution of any new element s to the set function value decreases when the set gets bigger.

Based on the definition of submodularity, we can conclude that if the optimal sensor placement
problem with LPV DOF control is a submodular function, then performance increment by adding
one sensor will decrease with the set size. This indicates that greedy algorithm has the potential to

efficiently solve the sensor placement problem.

4.4.2 Greedy algorithm

Greedy algorithm utilizes a series of optimal local steps to conduct the optimization of NP hard
problem. Instead of directly searching for a global solution, greedy algorithm searches towards
minimum step by step. It has been proved that greedy algorithm has polynomial complexity and

achieves to a sub-optimal solution within (1 — [1/¢]) of the optimum [103].

s f(5) (4.10)

The optimization of the set function f(.S) over the set S with the size limit |S| < k is formulated

as (4.10) , then the basic greedy algorithm is given as Algorithm 1.
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Algorithm 1: Greedy algorithm for set function optimization

Result: K
Step 1. Initialization:
S:l’KS:{},SSIS

while s < k do
Step 2. Determine greedily the next element from residual set S*:

ks = arg ma S
s rgjesgf()

Step 3. Update the residual set S® and selected set /K®

S5t = S\ks, K5t =KSUks, s« s+1

end

Optimal set variable K is searched within set S to maximize the set function f(.S), and the
maximum set size is k, residual set S® and selected set K are updated in every step to maximize
the updated set function. In this algorithm, Step 2 searches among the residual set for the element
to be added into selected set, which will lead to the maximum value of set function f(S).

In the sensor placement problem, Algorithm 1 is customized to Algorithm 2 to select N number
of sensors from set .S of M number of sensors.

In this modified algorithm, the performance index trace(W') of Hg performance with LPV
control is minimized by the set variable K3 and LPV controller K (6). LPV controller is designed
following the design technique discussed in Chapter 1. It is noted that the observability of sensor
subset needs to be checked in Step 2, so that there exists a LPV controller stabilizing the flexible
wing model.

The greedy algorithm is well-known to have polynomial time efficiency. At each step, the
algorithm scans among the residual sensor subset S® and conduct set function evaluation. After
that, the element resulting in maximum set function value is added to selected set, which only needs
polynomial number of operations to get local optimal sensor set.

The Figure 4.9 shows the submodular property of sensor placement. When searching only
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one single sensor, there is no feasible sensor to achieve observability, thus no value of minimized
trace(W) is labeled. In the case of two sensors, the sensor combination of 8, 9 leads to the optimal
trace(W) of closed-loop system, thus these two sensors are the optimal selection. When more than
two sensors are chosen, then it is clear to observe the descending trace(1V) value from left to right.
This indicates that the sensors close to wing tip lead to better closed-loop system performance.
Moreover, the decrement of optimal trace(WW), representing improvement of #Ho performance,
decreases with the number of selected sensors, which demonstrates the submodular property of

optimal sensor placement on flexible wing.

3l 0.0955 I 0.0955

Ciad0.1346M0.13450.1333 M 0.13130.1267jM0.1195.0.1111
2 | -
1 | -
| | | | | | | | |
1 2 3 4 5 6 7 8 9
sensor lable

Figure 4.9: Submodular property of sensor placement on flexible wing
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Algorithm 2: Greedy algorithm for optimal sensor placement

Result: K
Step 1. Initialization of set variable:
S:l’KS:{},SSIS

while s < N do
Step 2. Check observability of sensor subset

1=1;
while i < |S*| do
if K5 N j sensor set is unobservable then
| 8% =5%j
else
| continue;
end

end
Step 3. Determine greedily the next element from residual set S*:
ks =arg min trace(W)

K(0),jeS5
Step 4. Update the residual set S® and selected set K®

S5l = S5\ky, KTl =K5Uks, s« s+1

end

124



CHAPTER 5

CONCLUSIONS AND RECOMMENDED WORK

5.1 Conclusions

In this dissertation, simultaneous design and sequential design of smooth switching LPV control
design have been proposed, and optimal sensor placement on the BWB aircraft flexible wing has
been sought in the LPV framework. The main contributions can be grouped into the following

items.

* The simultaneous design approach for smooth-switching /CC'/H~, state-feedback and dy-
namic output-feedback LPV control has been separately explored and PLMIs (Parametric
Linear Matrix Inequalities) for controller synthesis have been accordingly derived. To obtain
smooth switching, smoothness and system performance indexes were incorporated into the
cost function and weighted by a tunable coefficient, introducing another tunable trade-off
between system performance and switching smoothness. By tuning the coefficient, optimal

balance of switching smoothness and system performance can be attained.

* The sequential design approach designs the LPV controllers independently and uses sigmoid
interpolation of adjacent controllers on overlapped subregion. The H~, LPV state-feedback
case is studied and controller synthesis conditions are derived. Furthermore, the effectiveness
of sequential design and reduced computational complexity than simultaneous design are

demonstrated by two numerical examples.

* The proposed LPV controllers have been applied to an active magnetic bearing system and
vibration suppression of a BWB flexible airplane wing. The simulation results demonstrated
that the proposed smooth-switching LPV IC'C'/H ~, controllers are able to balance switching
smoothness and system performance subject to constraints on control inputs and system

uncertainty. In addition, the results show that the proposed method improves the switching
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smoothness significantly compared with the results from the earlier study without considering
switching smoothness. Simulation results of BWB airplane wing have showed that the
proposed design method is able to significantly reduce the sharp jumps in system controls and
responses during switching events. Furthermore, the proposed tunable weighting coefficient
provides trade-off between system performance and smoothness of response, and the ICC
constraints on control inputs can also be used to tune the achievable performance. These

offer great advantages in practical implementation.

* In addition, the LPV approach is utilized to determine optimal sensor position for a BWB
airplane flexible wing. A gain-scheduling 9 LPV control, subject to /C'C' hard constraints,
is designed for a given scheduling parameter region. The optimal candidate for sensor
allocations is obtained by searching for the best guaranteed o system performance within
the flight speed region. By global search and greedy algorithm, the optimal candidate can
be obtained for any given number of sensors, and the trade-off between optimal performance

and sensor number can also be obtained.

5.2 Recommended work

With the results shown in this dissertation, there are still a few potential directions to work on,

in both theory and application parts.

* Potential directions in theory

— Smooth switching controller synthesis with Youla Parameterization.
Recall the Youla Parameterization, let K'(s) = V=1 (s)U(s) and G(s) = M~1(s)N(s)
be the left co-prime factorization of controller K (s) and nominal plant P(s). Then the Y-
oula parameterization of all stabilizable controllers K = (V(s)—Q(s)N(s)) 1 (U(s)+
Q(s)M (s)) for any ) € RH such that det(V (00) — Q(00)N(00)) # 0. A controller

scheme based on Youla parameterization proposed in [104] is shown in Figure 5.1.
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Figure 5.1: A controller scheme with compensating operator ()

Thus the switching controller has the potential to be divided into two parts: nominal
controller U(s), V~'(s) and operator Q(s). Then switched controller gain can be
included into @), which will greatly simplify the switching stability conditions, because
as long as switching operator () € RH~o, the controller K is stabilizable for the given

plant.

Exploration of sub-modular property in Kalman Filter design for LTI/LTV/LPV system

In conventional Kalman filter design, we utilize the given set of sensors and only focus
on the estimator gain to achieve optimal state estimation. The sensor placement usually
involves heuristic method and will limit estimation performance. However, in engineer-
ing practice, the sensor placement is essential and should be decided before Kalman
filter design. If these two decision variables can be integrated into one optimization

problem, the state estimation can be improved significantly.

Consider a stochastic system

&= A(t)r + B(t)u + F(t)w (5.1)
Y= C(t):E +v

Assume the disturbance w(t) and noise v(t) are zero-mean, Gaussian white noise, but

not necessarily stationary. They are also assumed as independent.

E {w(s)wT(t)} W)t —s), E {U<S)UT(t)} — VBt —s)  (5.2)
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The optimal estimation problem is formulated as minimizing the mean square error of

&(t) with true state value z(t)

B{((t) = ®)((t) - &))" | (53)

Theorem 11 (Kalman-Bucy, 1961). The optimal estimator has the form of a linear

observer

T = A(t)z + B(t)u + L(t)[y — C(t)i] (5.4)

where L(t) = P(4)CT (V' and P(t) = E {(w(t) — () () — fc(t))T} satisfies

P = AP+ PAT — PCTv=It)cP+ FW (@) FT

Consider a sensor selection problem for Kalman-Bucy filter that, select C subset
consisting of s row elements in set C' = [ClT ) C’QT ,...,CT1T | and estimator gain L(t)
such that estimation error is minimized, with given P(0) = E {x(O)xT(O)} and given
V = diag(Vy,) and W.

The OSP is formulated as select subset S C M such that

SergligHM trace(P(t)) (5.5)

and P(t) subject to differential equation
: T Ty,—1 T
P=AP+ PA" — PC, Vg (t)CyP + FW () F (5.6)

Suppose the covariance of sensors are known, then selecting properly the sensor set to
achieve optimal state estimation by Kalman filter is a very interesting research topic.
If the sub-modular property or more mild property can be discovered, then the sensor

placement and optimal Kalman filter gain design could be tackled.

* Potential directions in applications
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— Applications of sequential design in flight control. The BWB airplane flexible wing
model is always of high order, even though model reduction is conducted. This is a
promising application filed that could utilize sequential design approach of switching

controllers.

— Investigation of sub-modular property of flexible structure elements. In this dissertation,
the submodular property is discovered based on the model of one specific flexible wing.
It would be very interesting to explore whether the sub-modular property is valid for
flexible structures in a general sense. If so, the sensor placement and health monitoring
will be easily tackled by greedy algorithm, which has profound influence in civil and

mechanical structures.
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