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ABSTRACT

SMOOTH SWITCHING LPV CONTROL AND ITS APPLICATIONS

By

Tianyi He

This dissertation studies the smooth switching LPV (Linear Parameter-Varying) system and control,

as well as its applications in mechanical systems, aerospace systems to achieve the smooth transition

between switching LPV controllers. Both state-feedback and dynamic output-feedback cases are

addressed by the simultaneous design approach of smooth switching LPV control, and the proposed

method has been applied to active vibration control of BWB (Blended-Wing-Body) aircraft flexible

wing and the AMB (Active Magnetic Bearing) system. Moreover, a sequential design approach is

developed to design smooth switching LPV controllers, where the high-dimensional optimization

in the simultaneous design approach can be relaxed.

In conventional switching LPV control, switching controllers are designed on each subregion

while guaranteeing safe switching, but without considering the smoothness during switching events.

The abruptly varying control signal can exceed actuator authority; moreover, abrupt changes in

system responses caused by unsmooth controller gains will be harmful to system components and

hardware. The simultaneous design of smooth switching LPV control minimizes a combined cost

of system outputH2 performance and smooth-switching index subject toH2 constraints on control

inputs andH∞ constraint on bounded model uncertainty. These stability and performance criteria

are then formulated using a set of Parametric Linear Matrix Inequalities (PLMIs). Besides, a

tunable weighting coefficient is introduced to provide an optimal trade-off design between system

H2 performance and switching smoothness. Simulation results with the AMB model and BWB

aircraft wing model are provided to demonstrate the effectiveness of the proposed smooth switching

control.

In the above approach, switching controllers are synthesized by controller variables that si-

multaneously satisfy PLMIs on all subregions and switching stability conditions on all switching



surfaces. When the number of subregions goes large, simultaneous design approach leads to a

high-dimensional optimization problem, with a high number of LMI constraints, decision vari-

ables, online computational load, and memory requirement. As a result, these drawbacks make

simultaneous design practically infeasible for high-order systems with many divided subregions.

An innovative sequential design approach is proposed by introducing interpolated controller deci-

sion variables and formulating independent PLMI conditions on each subregion such that system

performances on overlapped subregions are guaranteed as well. In this way, the switching controller

synthesis conditions are formulated as independent optimization problems and can be well solved

sequentially.

Besides, this dissertation also utilizes the LPV framework to investigate optimal sensor place-

ment to achieve optimal vibration suppression for a flexible BWB airplane wing. For a given flight

speed range, vibration behaviors of the wing structure are evaluated by the guaranteed H2 perfor-

mance with the H2 LPV controller. Candidate sensor locations are identified on each wing, and

the optimal sensor placements can be found among these candidate sensor locations by the greedy

algorithm. The searched optimal results are validated by globally searching through all possible

combinations. With the LPV model of a flexible wing and H2 controller synthesis conditions,

search results provide the optimal sensor locations, and besides, the trade-off between optimal

system performance and the number of sensors can also be obtained.
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Figure 3.18: Trade-off between control limit Ū and trace(W) at different robustness conditions 78

Figure 3.19: Bending displacement at wing root . . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 3.20: Bending displacement at wing tip . . . . . . . . . . . . . . . . . . . . . . . . . 81
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CHAPTER 1

INTRODUCTION

1.1 LPV System and Control

1.1.1 Overview

Linear Parameter-Varying (LPV) system and control have gained significant interest from the control

community over the past two decades [2, 3, 4, 5, 6, 7, 8]. The main benefit of the LPV system

is that the varying characteristics of system dynamics can be captured by the LPV model with its

linear system matrices dependent on scheduling parameter. LPV controllers can be designed with

its gain scheduled based on the scheduling parameters measured in real-time.

The LPV control method is seen as a "modern" gain-scheduling control, which is one of the

most popular and effective approaches to address nonlinear systems. Gain-scheduling control

has been widely used in a wide variety of dynamical systems with nonlinear and time-varying

dynamics. The classical gain-scheduling control utilizes the idea of divide and conquer. The

nonlinear system is firstly linearized at gridded operating points to a bundle of linear models,

usually called parametric gridded model. Linear controllers are then designed based on each

local model by linear control theory, which leads to a bundle of corresponding fixed-gain linear

controllers. In controller implementation, controller gains are scheduled or switched according

to operating points. As shown in Figure 1.1, one linear controller is active when the system is

operating within the region close to its linearization point.

The classical gain-scheduling tackles the complicated nonlinear control problem by solving a

bundle of simpler sub-problems, however, it has a few drawbacks and limitations in theory and

applications.

• Classical gain-scheduling control designs linear controller at gridded operating points, thus

stability, performance, and robustness can only be guaranteed locally, but not globally in the

1



Figure 1.1: Classical gain-scheduling control

entire operating region. The closed-loop system performance by linear controllers designed

at gridded points will degrade when the current operating point deviates from linearization

points.

• Classical gain-scheduling control is only suitable for the slow-varying system, because the

switching stability between local controllers will impose constraints on switching signals.

This is well studied in switching stability conditions in switching LTI systems [9, 10].

• The trade-off between the density of gridding points and computational complexity needs to

bewell considered. In general, more gridding points are needed tomore precisely describe the

system dynamics, which inevitably increases computational complexity. Moreover, gridded

linear controllers are designed beforehand and are restored in memory, then they are read

from memory in controller implementation, which means that more memory is needed by

more gridded operating points.

To avoid the drawbacks of classical gain-scheduling control and retain the gain-scheduling

strategy, modern LPV control has been proposed in the early 90s’ by Shamma [11] and extended

by pioneering researchers Becker, Apkarian, Gahinet and Wu [12, 2, 3, 13, 14, 15, 16]. The

modern gain-scheduling control-LPV control can be described in Figure 1.2. In modern gain-

scheduling control, controllers are designed with scheduling gains over the entire operating region.

The operating conditions are considered as scheduling parameters and assumed to be available in

2



Figure 1.2: LPV control–modern gain-scheduling control

real-time. The controller matrices are designed as parameter-dependent and vary with scheduling

parameters.

The mainstream approach of LPV gain-scheduling control design is to formulate control syn-

thesis conditions in terms of Linear Matrix Inequalities (LMIs) or Parameterized Linear Matrix

Inequalities (PLMIs) [12, 17, 3, 18, 19, 20, 13]. Numerically tractable optimization methods, such

as convex optimization, can then be applied to solve for feasible or optimal LPV gain-scheduling

controllers. LPV control designs with pole placement, guaranteed H2 and/or H∞ performance

have been intensively studied in the literature [21, 22, 23, 24, 20, 13, 15], as well as the case of

inexact scheduling parameters [25, 26, 27, 28, 29, 30, 31, 32], and LPV systems with delay [16].

As long as a solution to the formulated optimization problem is obtained, then the derived

parameter-dependent LPV controller matrices will achieve the guaranteed system performance.

Apparently, the modern LPV gain-scheduling control is able to guarantee stability globally over the

scheduling parameter region, to achieve guaranteed closed-loop system performance, and to avoid

repeating linearization and linear controller design.

This chapter introduces the non-switching LPV system and control, followed by the switching

LPV system and control. The system description, system performance specifications, and multiple

performance channels will be included in the following context.
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1.1.2 LPV system and performance

Consider the closed-loop LPV system described by

Σcl(θ) :


ẋ(t) = Acl(θ)x(t) +B∞(θ)w∞(t) +B2(θ)w2(t);

z∞(t) = Ccl,∞(θ)x(t) +D∞(θ)w∞(t)

z2(t) = Ccl,2(θ)x(t)

(1.1)

where θ(t) =
[
θ1(t), θ2(t), . . . , θq(t)

]T denotes the scheduling parameter vector of q elements, x(t)

denotes the state,w∞(t) the exogenous inputs (for instance, system uncertainty input, sensor noises,

etc.), and w2 the disturbance input; z∞(t) the H∞ controlled output, z2(t) the H2 performance

output. The system matrices depend on the scheduling parameter vector θ, which is assumed to be

measurable in real-time. The magnitude and variational rate θ̇ are bounded as

θ ∈ Θ =
{
θi ≤ θi(t) ≤ θi, i ∈ {1, 2, ..., q},

}
θ̇ ∈ Λ = {−νi ≤ θ̇i(t) ≤ νi, i ∈ {1, 2, ..., q}.}

(1.2)

There are two independent performance channels in this system,H2 channel fromw2 to z2 andH∞

channel from w∞ to z∞. In the next subsections, system performances are specified. Throughout

this dissertation, we make use of the following standard definition of L2 and L∞ norms on

x(t) ∈ Rn for all t ≥ 0,

‖x‖22 :=

∫ ∞
0

xT (t)x(t)dt , ‖x‖2∞ := sup
t≥0

x(t)Tx(t) .

1.1.3 Performance specifications and PLMI formulations

It should be noted that there are two separate input and output pairs defined in (1.1), and they

are specifically designated for assessing the closed-loop LPV system performances, as shown in

Figure 1.3. In the mixedH∞/H2 control, the LPV system Σ(θ) achieves specificH2 performance

while subject to H∞ performance constraints. Note that the interconnection of ∆ in Figure 1.3

is to capture the model uncertainties in Σ(θ), and the robustness against modeling uncertainty is

addressed byH∞ channel. The definitions ofH∞,H2 performances are given below.
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LPV model with affine parameters

 LPV (linear parameter varying) system:

ሶ𝑥 = 𝐴 𝜃 𝑥 + 𝐵𝑢 𝜃 𝑢 + 𝐵∞(𝜃)𝑤∞ + 𝐵2 𝜃 𝑤2

𝑧∞ = 𝐶∞ 𝜃 𝑥 + 𝐷∞𝑢 𝜃 𝑢 + 𝐷∞∞ 𝜃 𝑤∞
𝑧2 = 𝐶2 𝜃 𝑥 + 𝐷2𝑢 𝜃 𝑢

𝑦 = 𝐶𝑦 𝜃 𝑥 + 𝐷𝑦2 𝜃 𝑤2 + 𝐷𝑦∞ 𝜃 𝑤∞

 For ℋ∞ control, 𝑤∞ is assumed to be an ℒ𝟐 signal (with finite ℒ𝟐 norm) and 𝑤2 = 0,
and for ℋ𝟐 control, 𝑤2 is assumed to be a random signal 𝑤2 = 𝑤2,0𝛿(𝑡) and 𝑤∞ = 0,

𝛿(𝑡) is the Dirac’s delta function and 𝑤2,0 is a random vector such that 𝔼∞ 𝑤2,0(𝑡) =

0 and 𝔼∞ 𝑤2,0(𝑡)𝑤2,0
𝑇 (𝑡) = 𝐼𝑛𝑤2.

 System matrices are in the following form.

𝐴 𝜃 = 𝐴0 + 𝜃1𝐴1 +⋯+ 𝜃𝑝𝐴𝑝, 𝜃 ∈ Θ if 𝜃𝑖 ≤ 𝜃𝑖 ≤ 𝜃𝑖 , ሶ𝜃𝑖 ≤ 𝜃𝑖 ≤ ሶ𝜃𝑖

 Note that the LPV model described above, the parametric matrices is not convex with
respect to parameter 𝜃

* A. K. Al-Jiboory and G. Zhu, “Improved synthesis conditions for mixed H2 and H gain-scheduling control with uncertain scheduling parameters,” International
Journal of Control, 90:3, 596-614, DOI: 10.1080/00207179.2016.1186843.

Σ(𝜃)

𝑧∞

𝑧2

𝑤∞

𝑤2

Figure 1.3: Closed-loop LPV system in LFT form with uncertainty block

1.1.3.1 H∞ performance

The H∞ performance, defined from w∞(t) to z∞(t) with L2 input and L2 output, is utilized to

assess the closed-loop system robustness in the presence of model uncertainties. Mathematically,

T∞(θ, s) := Tz∞w∞(θ, s) denotes the parameter-dependent transfer function from w(t) to z∞(t)

and ||T∞||∞ the H∞ norm of T∞ . Then, the H∞ performance for the (w∞(t), z∞(t)) pair is

defined as L2 gain [14, 15], where

||T∞||∞ = sup
θ∈Θ

sup
w∞,z∞∈L2,w∞6=0

||z∞(t)||2
||w∞(t)||2

. (1.3)

Physically,H∞ norm is related to the robust stability of a given system with modeling error. Based

on the Small Gain Theorem [33], the closed-loop system satisfying the condition ||T∞||∞ ≤ γ∞ is

well-posed and internally stable for all uncertainty satisfying the constrain ||∆||∞ < 1/γ∞, where

∆ is system uncertain dynamics interconnected from z∞ to w∞, see Figure 1.3. The following

Lemma 1 forH∞ performance is given [12, 2, 15].

Lemma 1. Suppose that there exists a parameter dependent positive-definite matrix P∞(θ), such

that (1.4) holds for any admissible (θ, θ̇) ∈ Θ(j) × Λ. Then the closed-loop system (1.1) is

exponentially stable with guaranteed performance ||z∞||2 < γ||w∞||2 for a given robustness level
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γ > 0 and for all admissible trajectories (θ, θ̇) ∈ Θ× Λ. ( ∗ denotes symmetric terms.)
−Ṗ∞ + AclP∞ + (∗) ∗ B∞

Ccl,∞P∞ −γI D∞

∗ ∗ −γI

 < 0 (1.4)

1.1.3.2 H2 performance

TheH2 performance, defined fromw2(t) to z2(t), is utilized to assess the closed-loop system output

performance. Let T2(θ, s) := Tz2w2(θ, s) be the parameter-dependent transfer function fromw2(t)

to z2(t), and if the closed-loop system matrix Acl is stable, then theH2 norm of T2(θ, s) is defined

as the worst-caseH2 performance on the subregion Θ [34, 20],

||T2(K(θ), s)||22 = sup
θ∈Θ

1
2π

∫∞
−∞ trace

[
T ∗2 (θ, jω)T2(θ, jω)

]
dω ,

= sup
θ∈Θ

trace(Ccl,2(θ)P 2(θ)CTcl,2(θ)).
(1.5)

where P 2 solves the differential Riccati equation,

Ṗ 2 = AclP 2 + P 2(Acl)
T +B2(B2)T (1.6)

with zero initial condition.

The H2 norm of a system has two interesting physical interpretations both stochastically and

deterministically. To be more specific, stochastically,H2 norm of a system denotes the trace of the

output covariance matrix, or in other words, the summation of RMS-value of the system outputs

to a white noise input; and deterministically, H2 norm of a system denotes the square summation

of L2 to L∞ gains of individual channels from exogenous disturbance inputs to system outputs. In

vibration control, system H2 norm can be used as a measure of output magnitude (L∞ norm) due

to energy limited (L2 norm) disturbance inputs.

Note that for LPV control case, ||T2(θ, s)||2 depends on varying scheduling parameter θ,

leading to increased complexity due to unknown scheduling parameter trajectory. To reduce

complexity and keep optimization as a unified approach to derive the H2 norm, the upper bound
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trace(W ) = sup
{
trace(Ccl,2(θ)P̄2(θ)CTcl,2(θ))

}
for all θ satisfying (1.2) is sought instead. W

is an introduced auxiliary variable, which is a symmetric matrix with compatible dimensions with

outputs . Using this constraint, the guaranteed H2 performance for all admissible scheduling

parameter can be formulated.

The following Lemma 2 is given to evaluate theH2 performance for LPV system [20, 34].

Lemma 2. For a stable Acl, if there exist a parameter dependent positive-definite matrix P2(θ)

and a constant matrixW , such that −Ṗ2 + AclP2 + (∗) Bcl

∗ −I

 < 0 , (1.7)

and  W Ccl,2P2

∗ P2

 > 0 , (1.8)

hold for all (θ, θ̇) ∈ Θ× Λ, then the H2 norm of the closed-loop system is bounded by trace(W ),

i.e.

trace(Ccl,2P 2(Ccl,2)T ) < trace(Ccl,2P2(Ccl,2)T ) < trace(W ) . (1.9)

1.2 Switching LPV System and Control

1.2.1 Overview

In the non-switching LPV controller design, if controller variables subject to PLMIs optimize

the system performance index, the closed-loop system performance will be guaranteed over the

entire scheduling parameter region. However, when the scheduling parameter region is very large,

the formulated PLMIs could be extremely conservative, making it difficult or even impossible to

achieve satisfactory closed-loop system performance. Moreover, describing system dynamics over

a large scheduling parameter region by a single LPV model would lead to significant modeling

errors, and hence inevitably degrades the closed-loop system performance [35, 36].
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It is easy to observe in non-switching LPV controller synthesis that, a single Parameter-

Dependent Lyapunov Matrix (PDLM) is utilized to derive system stability and performance condi-

tions. To reduce the conservativeness, switching LPV control using multiple Lyapunov functions

has been proposed by Lu and Wu [1]. The entire region of the scheduling parameter is divided

into multiple subregions, and multiple PDLMs are utilized to formulate PLMIs conditions for

controller synthesis. To ensure switching stability, additional switching stability constraints on

PDLMs need to be satisfied on switching surfaces. The conservativeness of formulated PLMIs on

the entire scheduling parameter region can be effectively reduced by a set of smaller subregions

and multiple PDLMs, thus the resulting optimal performance will be improved. The switching

LPV system borrows the idea and stability analysis method from [37, 38, 39, 40, 25, 10, 41, 42] to

conduct the stability analysis and controller design. The switching LPV system and control have

been demonstrated to achieve prominent performance over non-switching LPV control in multiple

engineering practices [43, 44, 45, 46, 47, 48, 49].

As shown in Figure 1.4, the entire scheduling parameter region is divided into multiple sub-

regions. An LPV gain-scheduling controller is designed for each subregion, and all controllers

are often assumed to have the same form. It is essential to point out that switching controllers

can have different order and form, but switching stability conditions will be difficult to derive.

The assumption of same-order controllers will primarily simplify the stability issue and controller

synthesis.

The switching LPV controllers are usually designed offline, and their switching logic is deter-

mined in terms of scheduling parameter region division. The switching stability is often proved

by non-increasing Lyapunov functions in the switching sequence. In the earliest paper discussing

switching LPV control by Lu and Wu [1], hysteresis switching and average-dwell-time switching

strategies were focused, and associated controller synthesis conditions were developed. Besides

that, the minimum switching strategy was reported in [50]. These switching strategies impose con-

straints on Lyapunov matrices or switching signals on switching surfaces and achieve guaranteed

switching stability. The detailed description of switching strategies and their associated switching

8



Figure 1.4: Switching LPV gain-scheduling control

stability conditions will be covered in the later subsection.

1.2.2 Switching LPV system and performance

Consider again the closed-loop system described in (1.1), but the scheduling parameter region is

divided into J subregions. The sub-systems for adjacent subregions are to be switched according

to different laws, including scheduling-parameter-dependent laws, state-dependent laws or external

switching signals. The jth subregion is denoted by Θ(j) (j ∈ NJ = {1, 2, . . . , J}), and switching

surface from Θ(i) to Θ(j) is denoted by S(i,j). For example, Figure 1.5 shows a three-subregion

partition of one-dimensional scheduling parameter and switching events by hysteresis switching

. When θ crosses the switching surface S(1,2), the sub-system Σ1
cl(θ) is switched to Σ2

cl(θ), and

when θ crosses the switching surface S(2,1), Σ2
cl(θ) is switched back to Σ1

cl(θ).

Θ(1) Θ(2)

Θ(3)

S(2,1) S(1,2) S(3,2) S(2,3)

Figure 1.5: Three-subregion partition of scheduling parameter region

Then the closed-loop system withH∞ andH2 performance channels on the subregion (θ, θ̇) ∈

Θ(j) × Λ is described as
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Σ
j
cl(θ) :


ẋ(t) = A

j
cl(θ)x(t) +B

j
∞(θ)w∞(t) +B

j
2(θ)w2(t);

z∞(t) = C
j
cl,∞(θ)x(t) +D

j
∞(θ)w∞(t)

z2(t) = C
j
cl,2(θ)x(t)

(1.10)

1.2.3 Performance specifications in switching LPV system

1.2.3.1 H∞ performance

The H∞ performance, defined from w∞(t) to z∞(t) with L2 input and L2 output, is utilized to

assess the closed-loop system robustness in the presence of model uncertainties. Mathematically,

let T∞(θ, s) := Tz∞w∞(θ, s) denotes the parameter-dependent transfer function from w(t) to

z∞(t) and ||T∞||∞ theH∞ norm of T∞ . Then, theH∞ performance for the (w∞(t), z∞(t)) pair

is defined similar to that of non-switching LPV system L2 gain [15], where

||T∞||∞ = sup

θ∈Θ(j),j∈NJ

sup
w∞,z∞∈L2,w∞6=0

||z∞(t)||2
||w∞(t)||2

. (1.11)

The following Lemma 3 can be used to formulate theH∞ performance for Σ
j
cl [1, 32].

Lemma 3. Suppose that there exists a family of parameter-dependent positive-definite matrices

P
j
∞(θ) such that (1.12) holds for all admissible trajectories (θ, θ̇) ∈ Θ(j) × Λ, then the closed-

loop subsystem (1.10) is exponentially stable on entire subregion with guaranteed performance

||z∞||2 < γ||w∞||2 for a given robustness level γ > 0. ( ∗ denotes symmetric terms.)
−Ṗ j∞ + A

j
clP

j
∞ + (∗) ∗ B

j
∞

C
j
cl,∞P

j
∞ −γI D

j
∞

∗ ∗ −γI

 < 0 (1.12)

1.2.3.2 H2 performance

The H2 performance, defined from w2(t) to z2(t), is utilized to assess the closed-loop system

output performance. Let T2(θ, s) := Tz2w2(θ, s) be the parameter-dependent transfer function
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from w2(t) to z2(t), and if each of subregion closed-loop system matrix Ajcl is stable, then theH2

norm of is defined as the worst-caseH2 performances on all the subregions Θ(j),

||T2||22 = sup

θ∈Θ(j),j∈NJ

trace(C
j
cl,2(θ)P

j
2(θ)C

j
cl,2(θ)T ) . (1.13)

where P j2 solves the differential Riccati equation,

Ṗ
j

2 = A
j
clP

j
2 + P

j
2(A

j
cl)
T +B

j
2(B

j
2)T , (1.14)

with zero initial condition.

The H2 norm of a stochastic system is the trace of output stochastic covariance matrix, or

the summation of RMS-value of the outputs to a white noise input, whereas the H2 norm of a

deterministic system denotes the square summation of L2 to L∞ gains of individual channel from

exogenous inputs to system outputs. Alternatively, theH2 norm can be interpreted as deterministic

outputs covariance in terms of time correlation [51]. With the following lemma, TheH2 norm for

θ ∈ Θ(j) subregion is bounded by its upper bound trace(W ), and can be derived by minimizing

trace(W ), which falls into the typical min-max problem.

Lemma 4. [20] For any stable Ajcl, if there exist a parameter dependent positive-definite matrix

P
j
2 (θ) and a constant matrixW , such that −Ṗ j2 + A

j
clP

j
2 + (∗) B

j
cl

∗ −I

 < 0 , (1.15)

and  W C
j
cl,2P

j
2

∗ P
j
2

 > 0 , (1.16)

hold for all (θ, θ̇) ∈ Θ(j) × Λ, then the H2 norm of the closed-loop local subsystem in the jth

subregion is bounded by trace(W ), i.e.,

trace(C
j
cl,2P

j
2(C

j
cl,2)T ) < trace(C

j
cl,2P

j
2 (C

j
cl,2)T ) < trace(W ) . (1.17)

If the condition (1.15) and (1.16) are valid on all subregions, then trace(W ) is the universal

upper bound ofH2 norm on entire scheduling parameter region.
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1.2.4 Switching strategies and stability conditions

Switching LPV system is a special case of switching system, which considers the switching of

systems in a more general sense. Switching systems can be seen as a hybrid of the continuous-time

system and discrete-time switching signal. The neighboring controllers to be switched are always

assumed to be in the same form and order to simplify the stability problem and controller synthesis

complexity. It is noted that this dissertation also follows this assumption.

In the literature, there are extensive studies about the switching strategies and associated

switching stability conditions for linear systems [52, 10, 9]. These switching strategies have been

extended to switching LPV systems [53, 1]. In this section, the state-of-art research about switching

LPV system and control will be covered, then popular switching strategies and associated switching

stability conditions of LPV systems will be given.

Consider the closed-loop autonomous LPV system without external inputs in (1.18) for analysis

of switching stability,

Σ
j
cl(θ) :

{
ẋ(t) = A

j
cl(θ)x(t). (1.18)

1.2.4.1 Hysteresis switching

Revisit Figure 1.5, there is an overlapped subregion between any two neighboring subregions.

When θ crosses the switching surface S(1,2), the sub-system Σ1
cl(θ) is switched to Σ2

cl(θ), and

when θ crosses the switching surface S(2,1), Σ2
cl(θ) is switched back to Σ1

cl(θ).

Direct Lyapunov method is often used to prove the switching stability. Due to that multiple

controllers are designed on subregions, we suppose that there is a family of positive definite Lya-

punov matrices P j(θ) dependent on scheduling parameter θ. Then parameter-dependent Lyapnov

functions are formulated as quadratic functions as

V j(x, θ) = xTP j(θ)x (1.19)

12



where j represents the active controller on the jth subregion Θj , and its corresponding Lyapunov

matrx P j(θ) is used in formulating the Lyapnov function.

The switching stability can be achieved by non-increasing Lyapunov functions during each

switching event [54, 1]. The non-increasing condition is proved to be a sufficient condition but

not a necessary condition. In literature, there are proven results to relax this conservative result,

in which the multiple Lyapunov functions may increase its value during a time interval, only if the

increment is bounded by certain kinds of continuous functions. Interested readers are recommended

to the reference [55, 56].

Consider one switching event on surface S(i,j) from ith subregion to jth subregion, if the hys-

teresis switching is utilized, the sufficient condition of globally exponentially stability of switching

system is given by Theorem 1 and the proof is given following the reference [1].

Theorem 1. If there exists a family of parameter-dependent Lyapunov matrices satisfying con-

dition (1.20), then the exponential stability is achieved within local subsystems Σ
j
cl(θ) with

(θ, θ̇) ∈ Θ(j) × Λ. Moreover, if condition (1.21) is satisfied on the switching surface, then

global exponential stability is achieved on entire scheduling parameter region (θ, θ̇) ∈ Θ× Λ.

P j(θ)A
j
cl(θ) + (Aj)Tcl(θ)P

j(θ) + Ṗ j(θ) < 0 (1.20)

P i(θ) ≥ P j(θ), θ ∈ S(i,j), i, j ∈ NJ , i 6= j (1.21)

Proof. We assume that the sequence of switching time is t0, t1, . . . , tN . If (1.20) is satisfied on

local subregion, then there must exist a scalar λ > 0 that satisfies

P j(θ)A
j
cl(θ) + (Aj)Tcl(θ)P

j(θ) + Ṗ j(θ) < −λP j(θ). (1.22)

On the time interval t ∈ [tk, tk+1) which jth controller is active, we have

V j(x(t), θ) ≤ e−λ(t−tk)V j(x(tk), θ). (1.23)
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Moreover, the switching stability condition on switching surface (1.21) will lead to V j(x(tk), θ) ≤

V j(x(t−k ), θ). Therefore,

V j(x(t), θ) ≤ e−λ(t−tk)V j(x(t−k ), θ)

≤ e−λ(t−tk)e−λ(tk−tk−1)V j(x(tk−1), θ)

. . .

≤ e−λ(t−t0)V j(x(t0), θ)

(1.24)

so the global exponential stability is achieved.

1.2.4.2 Average-Dwell-Time (ADT) switching

The Average-Dwell-Time (ADT) switching strategy enforces the "slow-switching" property of

switching signals so that the closed-loop system achieves global stability under the switching

sequence. By ADT switching strategy, only a limited number of switches are allowed within a

finite time interval [1, 4, 57].

We assume that switching signal σ(t) renders Nσ(T, t) number of switching events within the

time interval [t, T ]. If there exist two positive numbers N0 and τa such that

Nσ(T, t) ≤ N0 +
T − t
τa

, ∀T ≥ t ≥ 0 (1.25)

whereN0 is the chatter bound to avoid chattering phenomenon. Then sufficient condition for ADT

switching is given in Theorem 2 and the proof is given following the reference [10, 57].

Theorem 2. Given positive scalar λ0 and µ, if there exists a family of parameter-dependent

Lyapunov matrices P j(θ) satisfying condition (1.26) on each subregion (θ, θ̇) ∈ Θ(j) × Λ and

condition (1.27) on switching surface, then the exponentially stability is achieved by switching signal

with average dwell time τa >
lnµ

λ0
within the entire scheduling parameter region (θ, θ̇) ∈ Θ× Λ.

P j(θ)A
j
cl(θ) + (Aj)Tcl(θ)P

j(θ) + Ṗ j(θ) + λ0P
j(θ) < 0 (1.26)

1

µ
P j(θ) ≥ P i(θ) ≥ µP j(θ), θ ∈ S(i,j), i, j ∈ Nj , i 6= j (1.27)
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Proof. Without loss of generality, we assume that the sequence of switching time is t0, t1, . . . , tN .

By (1.26), it is easy to obtain

V̇ j(x(t), θ) < −λ0V
j(x(t), θ) < 0, (1.28)

thus local exponential stability on each subregion is achieved.

Consider the Lyapunov functionW (x(t), θ) = e2λ0tV j(x(t), θ) when jth controller is active,

thus

Ẇ = 2λ0W + e2λ0tV̇ .

The functionW is obviously positive and non-increasing between switching intervals. Then at the

time interval [ti, ti+1), we arrive at

W (ti+1) = e2λ0ti+1V j(ti+1) (x (ti+1) , θ) ≤ µe2λ0ti+1V j(ti) (x (ti+1) , θ)

= µW (t−i+1) ≤ µW (ti)

(1.29)

Sum up from t0 to terminal time T , then we have

W (T ) ≤ W (tN ) ≤ µNσ(tN ,t0)W (t0) (1.30)

From the definedW (t),

e2λ0TV j(T )(x(T ), θ) ≤ µNσ(T,t0)V j(t0)(x(t0), θ) (1.31)

V j(T )(x(T ), θ) ≤ e
−2λ0T+

(
N0+ T

τa

)
lnµ

V j(t0)(x(t0), θ)

= eN0 lnµe

(
lnµ
τa −2λ0

)
T
V j(t0)(x(t0), θ)

(1.32)

Therefore, if the switching signal satisfies the limitation of average-dwell-time τa >
lnµ

λ0
, then it is

concluded that V j(T )(x(T ), θ) converges to zero exponentially as T →∞, which indicates global

exponential stability of switching LPV system.
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1.3 Motivations of Smooth Switching LPV Control

As discussed in the above paragraphs, with given partitioned subregions, a family of LPV con-

trollers is designed by constructing Parametric Linear Matrix Inequalities (PLMIs) with multiple

parameter-dependent Lyapunov functions. Controllers are designed by solving the corresponding

optimization problem associated with switching stability conditions and specific performance cri-

teria. Many engineering applications of switching LPV control have shown system performance

improvement over non-switching LPV controllers. These applications include active magnetic

bearing (AMB) system [1], F-16 aircraft model [58], flexible ball-screw drives [59] and air-fuel

ratio control of spark ignition engines [48].

However, in most of these applications, the drawback of unsmooth transient responses over

the switching surfaces can be observed [1, 48, 32], and the un-smoothness can be attributed to

sharp changes in control inputs or controller gains. In Figure 1.6, the conventional switching LPV

control [1] resulted in the abrupt changes of control input, marked by red squares. These spikes in

control command signals impose heavy-duty tasks on actuators, which will be harmful to hardware

and sometimes exceed actuator’s authority.

Only a few smooth switching techniques have been proposed in the literature to compensate

for sharp jumps. Chen [60] considered the hysteresis switching state-feedback LPV control and

conducted linear interpolation of controller variables on switching surfaces to achieve smooth

switching during switch-in and switch-out on the overlapping region. However, this method cannot

quantitatively evaluate switching smoothness, and only relative stability is achieved. Hanifzadegan

and Nagamune [61] followed the idea of linear interpolation of controller matrices on switching

surfaces, and introduced a measure of smoothness index and imposed constraints on controller

matrix derivative to compensate for the drawbacks found in Chen [60]. The design of stabilizing

controllers was formulated into a non-convex optimization problem, and an iterative descent algo-

rithmwas then applied to find a local LPV controller for each subregion. The linear interpolations of

controller matrices on switching surfaces were conducted to obtain switching LPV controller on the

overlapping region. This method relies heavily on iterative computations to solve multi-objective
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Figure 1.6: Unsmooth control input signal from conventional switching LPV control [1]

non-convex problems. Moreover, the introduced smoothness index lacks physical meaning, and the

smoothness constraints on controller matrices are selected through trial and error.

Considering that existing methods cannot efficiently address the design of smooth switching

LPV controller, it is highly needed to develop an efficient and systematic approach to achieve smooth

switching between adjacent LPV controllers. In the authors’ point of view, the leading cause of

un-smooth control inputs and system responses is due to the sudden change of control variables

during switching events. The ultimate reason is that un-smooth switching LPV control optimizes

closed-loop system performance over each subregion, nevertheless switching smoothness between

adjacent controllers is not considered. The system performance optimization over each subregion,

but ignoring switching often leads to high-gain controllers with jumped controller gains. This can

be easily validated by checking the control gain difference between two neighboring subregions

over the switching surface.

The core idea of smooth switching LPV controller can be illustrated by the comparison of

Figures 1.7a and 1.7b. The smooth switching LPV controller minimizes the gap between controller
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(b) Smooth switching LPV control

Figure 1.7: Illustration of motivations of smooth switching LPV control

gains and achieves smooth switching, whereas the conventional LPV controller only considers the

switching stability but not the switching smoothness. Two approaches, simultaneous design and

sequential design, are proposed in this dissertation and the design strategies are summarized in the

following paragraphs.

In the simultaneous design approach, a convex optimization problem is formulated to design

all switching controllers at the same time. A numerically tractable smoothness index is introduced

into the cost function by using the norm of deviation of controller parameters between any two

switching surfaces. By means of minimizing this smoothness index, it can be demonstrated that

sharp changes in control states or outputs can be significantly reduced, but at the cost of degraded

H2 and H∞ system performance. In other words, there exists a trade-off relationship between

system performance and switching smoothness. Intuitively, a tunable weighting coefficient can be

adopted to balance the system performance and switching smoothness in the cost function. By

tuning the weighting coefficient, i.e., line search, an optimal trade-off can be obtained, leading to a

smooth-switching LPV controller with acceptable system performance.

Controller synthesis conditions by the simultaneous design approach are not independent on

adjacent subregions due to the switching stability condition. When the number of subregions

goes large, the simultaneous design approach leads to a high-dimensional optimization problem,

with a high amount of LMI (Linear Matrix Inequality) constraints, decision variables, online
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computational load, and memory requirement [62, 63]. As a result, the simultaneous design would

be practically infeasible for high-order systems with many divided subregions.

To reduce the computational complexity, a sequential controller design approach is proposed.

Interpolated controller variables for overlapped subregions and newly formulated PLMIs are utilized

to synthesize switching LPV controllers on each subregion independently. On each overlapped sub-

region, the Lyapunov matrix is formulated by convexly combining PDLM on adjacent subregions.

The PLMIs forH∞ performance on each subregion is formulated, such that the convex combination

of adjacent PLMIs leads to a guaranteed H∞ performance on every overlapped subregion. More-

over, the proposed method guarantees that the overlapped subregion has intermediate performance

between its neighboring subregions. The proposed method designs an individual controller for each

subregion in sequential order, instead of synthesizing all controllers simultaneously. By iteratively

solving the reduced-dimensional optimization problem for each subregion, switching controllers

with guaranteedH∞ performance on all subregions and overlapped subregions can be obtained.

1.4 Organization of This Dissertation

In this dissertation, two approaches of smooth switching LPV controller design are proposed,

including simultaneous design and sequential design. After the introduction of switching LPV

system and control in Chapter 1, simultaneous design and sequential design of smooth switching

LPV control are discussed, and controller synthesis conditions are given in Chapter 2. In Chapter 3,

a few application examples are given to demonstrate the effectiveness of smooth switching LPV

control designs. Simultaneous design approach is applied to the AMB model and BWB aircraft

flexible wing, then another two numerical examples are applied with sequential design approach.

Also, the optimal sensor placement problem using the LPV framework is investigated in Chapter 4.

At last, conclusions and future work are discussed in Chapter 5.

The structure of this dissertation is shown in Figure 1.8.
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CHAPTER 2

SMOOTH SWITCHING LPV CONTROL

As discussed in Chapter 1, smooth switching LPV control is needed to remedy for unsmooth

responses in conventional switching LPV control. This chapter will give the theoretical derivations

and controller synthesis conditions for smooth switching LPV controllers.

Before we get into the smooth switching LPV control, the mixed Input Covariance Constraint

(ICC) andH∞ LPVcontrol is firstly introduced. Themixed ICC/H∞ LPVcontrol is able to achieve

multi-objective performance of closed-loop system. The H2 performance is optimized while the

closed-loop system satisfying H∞ performance and input covariance constraint. The ICC/H∞

control is able to avoid high-gain controller by setting upper limit of control input covariance.

2.1 Mixed ICC/H∞ Control

2.1.1 State-feedback LPV control

Consider the following affine LPV systems,

Σ(θ) :


ẋ(t) = A(θ(t))x(t) +B∞(θ(t))w∞(t) +B2(θ(t))w2(t) +Bu(θ(t))u(t)

z∞(t) = C∞(θ(t))x(t) +D∞(θ(t))w∞(t) + E∞(θ(t))u(t)

z2(t) = C2(θ(t))x(t)

(2.1)

where θ(t) =
[
θ1(t), θ2(t), . . . , θq(t)

]T denotes the scheduling parameter vector of q elements,

x(t) ∈ Rnx denotes the state, w∞(t) ∈ Rnw∞ the H∞ disturbance input due to modeling error,

w2(t) ∈ Rnw2 the H2 disturbance input, u(t) ∈ Rnu the control input, z∞(t) ∈ Rnz∞ the H∞

controlled output, and z2(t) ∈ Rnz2 theH2 performance output. All system matrices are assumed

to have compatible dimensions and in affine parameter-dependent form. For example, A(θ) can be

described by

A(θ(t)) = A0 +

q∑
i=1

Aiθi , (2.2)
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whereA0 andAi, i = 1, 2, . . . , q, are constantmatrices. It is assumed that the scheduling parameters

are measurable in real-time, and their magnitude and variational rate are bounded. Specifically, the

scheduling parameter set is formulated as:

θ ∈ Θ =
{
θi ≤ θi(t) ≤ θi, i ∈ {1, 2, ..., q},

}
θ̇ ∈ Λ = {−νi ≤ θ̇i(t) ≤ νi, i ∈ {1, 2, ..., q}.}

(2.3)

Assume we are seeking for a gain-scheduling state-feedback controllers of the form

u(t) = K(θ(t))x(t), (2.4)

where K(θ) is the parameter-dependent control gain matrix. Note that u(t) can be partitioned as

u(t) = [u1(t), u2(t), . . . , unu(t)]T . Then, substituting (2.52) into (2.1) yields the closed-loop LPV

system described by

Σcl(θ) :


ẋ(t) = Acl(θ)x(t) +B∞(θ)w∞(t) +B2(θ)w2(t);

z∞(t) = Ccl,∞(θ)x(t) +D∞(θ)w∞(t)

z2(t) = C2(θ)x(t)

(2.5)

where Acl(θ) = A(θ) +Bu(θ)K(θ), Ccl,∞(θ) = C∞(θ) + E∞(θ)K(θ).

The control input is given as

u(t) = K(θ(t))x(t).

Hence, the variance of kth control input of jth controller is bounded as [64, 65]

cov(uk(θ(t))) ≤ sup
θ∈Θ

ekK(θ)P̄2(θ)KT (θ)eTk = Uk , (2.6)

where ek is a selection row vector such that ekK(θ) equals to the kth row of matrix K(θ), and

P̄2 is given by (1.6). The following lemma provides hard constraint on variance of the kth control

input for any θ ∈ Θ.

Lemma 5. The ICC condition of the kth control input of the state-feedback controller

Uk = ekKP̄2K
T eTk < ekKP2K

T eTk < Ūk (2.7)
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is equivalent to  Ūk ekKP2

∗ P2

 > 0, k = 1, 2, · · · , nu, (2.8)

where nu is the number of control inputs.

The following lemma gives the synthesis conditions for mixed ICC/H∞ LPV state-feedback

controller.

Theorem 3. Given the input covariance constraints Ūk, k = 1, 2, · · · , nu, and a positive scalar

γ∞, if there exist continuously differentiable parameter-dependent matrices 0 < P2(θ) = PT2 (θ) ∈

Rnx×nx , 0 < P∞(θ) = PT∞(θ) ∈ Rnx×nx , G(θ) ∈ Rnx×nx , Z(θ) ∈ Rnu×nx , small scalars

ε2 > 0 and ε∞ > 0, and matrixW = WT ∈ Rnz2×nz2 that minimize the following cost function

with a given scaling matrix Q > 0,

min trace(QW ) (2.9)

subject to the following inequalities (∗ denotes symmetric terms),
Φ11 ∗ ∗

Φ12 −ε2(G(θ) +G(θ)T ) ∗

B2(θ)T 0nw×nw −Inw

 < 0 , (2.10)

 W C2(θ)G(θ)

∗ G(θ) +G(θ)T − P2(θ)

 > 0 , (2.11)

 Ūk ekZ(θ)

∗ G(θ) +G(θ)T − P2(θ)

 > 0, k = 1, 2, · · · , nu , (2.12)



Φ∞1 ∗ ∗ ∗

Φ∞2 −ε∞(G(θ) +G(θ)T ) ∗ ∗

Φ∞3 ε∞Φ∞3 −Inz ∗

B∞(θ)T 0nw×nx D∞(θ)T −γ2
∞Inw


< 0 , (2.13)
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where Φ11 = A(θ)G(θ) + Bu(θ)Z(θ) + (A(θ)G(θ) + Bu(θ)Z(θ))T − ∂P2(θ)
∂θ θ̇, Φ12 = P2(θ) −

G(θ) + ε2(A(θ)G(θ) +Bu(θ)Z(θ))T , and ek is input channel selection matrix for control input of

interest, and Φ∞1 = A(θ)G(θ) + Bu(θ)Z(θ) + (A(θ)G(θ) + Bu(θ)Z(θ))T − ∂P∞(θ)
∂θ θ̇, Φ∞2 =

P∞(θ) − G(θ) + ε∞(A(θ)G(θ) + Bu(θ)Z(θ))T , and Φ∞3 = C∞(θ)G(θ) + E∞(θ)Z(θ). Then,

the gain-scheduling controller

u(t) = K(θ)x(t) , K(θ) = Z(θ)G−1(θ) (2.14)

exponentially stabilizes the LPV system Σ(θ) for any (θ, θ̇) ∈ Θ × Λ with a guaranteed H∞

performance bound γ∞. In addition, the ICC cost is bounded by

trace(W ) > trace
{
C2(θ)P2(θ)C2(θ)T

}
, (2.15)

and the constraint (2.6) is satisfied.

Proof. For closed-loop LPV system (2.5), assume Acl(θ) is stable for any pair (θ, θ̇) ∈ Λ × Ω,

then there is a continuously differentiable parameter-dependent positive-definite matrix P̄2(θ) =

P̄2(θ)T > 0, such that

˙̄P2(θ) + Acl(θ)P̄2(θ) + P̄2(θ)Acl(θ)
T +B2(θ)B2(θ)T = 0 (2.16)

where P̄2(θ) is the controllability Gramian of the LPV system. In other words, there is a parameter-

dependent positive-definite matrix P2(θ) > P̄2(θ) satisfying the following inequality

Ṗ2(θ) + Acl(θ)P2(θ) + P2(θ)Acl(θ)
T +B2(θ)B2(θ)T < 0 . (2.17)

To decouple Acl(θ) and P2(θ) in (2.17), we utilize Finsler’s Lemma [66] to obtain the following,

Γ (θ) +X(θ)V (θ) + V T (θ)XT (θ) < 0 , (2.18)

where

Γ (θ) =


Ṗ2(θ) P2(θ) 0

P2(θ) 0 0

0 0 I

 , X(θ) =


GT (θ) 0

RT (θ) 0

0 I

 , V (θ) =

 ATcl(θ) −I 0

BT2 0 −I

 ,
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andG(θ) andR(θ) are introduced as slack variables. To maintain convex parametrization property,

R(θ) is chosen to be R(θ) = ε2G(θ), where ε2 > 0 is a scalar that is used to provide an

extra degree-of-freedom when performing the line search and to reduce conservativeness. Letting

Z(θ) = K(θ)G(θ) yields (2.62).

Now, consider (2.63). Pre- and post-multiplying (2.63) by [I, C2] and [I, C2]T renders

[
I C2

] W C2(θ)G(θ)

∗ G(θ) +G(θ)T − P2(θ)


 I

CT2

 > 0 (2.19)

from which we obtain

W > C2(θ)P2(θ)C2(θ)T , (2.20)

hence (2.20) leads to (2.67). Since C2(θ)P2(θ)C2(θ)T > C2(θ)P̄2(θ)C2(θ)T , as a result, mini-

mizing trace(QW ) implies minimizing the upper bound of the weighted ICC cost.

Similarly, pre- and post-multiplying (2.64) by [I, ekK(θ)] and [I, ekK(θ)]T to obtain

[
I ekK(θ)

] Ūk ekZ(θ)

∗ G(θ) +G(θ)T − P2(θ)


 I

(ekK(θ))T

 > 0 , (2.21)

which yields

Ūk > ekK(θ)P (θ)K(θ)T eTk , k = 1, 2, · · · , nu .

This implies that the selected control input covariance is upper bounded by Ūk.

Now, forH∞ performance inequality (2.65), we consider the following transformation matrix

T (θ) =


I Acl(θ) 0 0

0 Ccl,∞(θ) I 0

0 0 0 I

 .

Pre- and post-multiplying (2.65) by T (θ) and T (θ)T leads to theH∞ performance criterion based

upon the well-known Real Bounded Lemma [15] that the H∞ norm of the closed-loop system is

bounded by γ∞. This can be easily verified by plugging in search variables and operating matrix

multiplication.
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Remark 1. For each given pair of small positive scalar variables ε2 and ε∞, the minimization leads

to a sub-optimal solution. Fixing both scalar variables would lead to conservativeness, however,

the line search of scalar variables can reduce conservativeness significantly. Note that constraining

P∞ = P2 for multi-objective control design, as commonly found in the literature, could lead to

large conservativeness. The optimization process can be repeated for a set of gridded scalar values

to minimize trace(QW ). The line search process may burden the computational load, but with

current advanced computational capacity, this should not be an issue.

2.1.2 Dynamic output-feedback LPV control

Suppose a LPV system with independentH2 andH∞ channels :

Σ(θ) :



ẋp(t) = A(θ(t))xp(t) +B1(θ(t))w(t) +B2(θ(t))u(t)

z∞(t) = C∞(θ(t))xp(t) +D11(θ(t))w(t) +D12(θ(t))u(t)

z2(t) = C2(θ(t))xp(t) + E2(θ(t))u(t)

y(t) = Cy(θ(t))xp(t) +Dy(θ(t))w(t)

(2.22)

Without loss of generality, Dyu = 0. System matrices represent in affine form as:

A(θ) = A0 +

q∑
i=1

Aiθi (2.23)

Each parameter and the rate of variations are assumed to be bounded as by θi ∈
[
θi, θ̄i

]
, θ̇i ∈[

vi, v̄i
]
. The proposed gain-scheduling output-feedback controller is defined as (2.24) andDK = 0

so that the closed-loop system is strictly proper and has meaningfulH2 norm. ẋK = AK(θ, θ̇)xK +BK(θ, θ̇)y

u = CK(θ, θ̇)xK

(2.24)

which ensures internal stability and a guaranteed H∞ performance ||Tz∞w||∞ < γ from distur-

bance w to performance output z∞, and minimize the H2 performance ||Tz2w||2, while control

covariance Cov(uk(t)) < Ūk, k = 1, 2, · · · , nu, for all admissible trajectories (θ, θ̇) and zero-state

initial conditions.
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The resulted closed-loop system is:

Σcl(θ) :


ẋcl(t) = Acl(θ(t))xcl(t) +Bcl(θ(t))w(t)

z∞(t) = Ccl,∞(θ(t))xcl(t) +Dcl,∞(θ(t))w(t)

z2(t) = Ccl,2(θ(t))xcl(t)

(2.25)

xTcl = [xTp , x
T
K ], where θ is omitted in following notations:

Acl =

 A B2CK

BKCy AK

 , Bcl =

 B1

BKDy

 (2.26)

Ccl,∞ =

[
C∞ D12CK

]
, Dcl,∞ = D11 (2.27)

Ccl,2 =

[
C2 E2CK

]
, Dcl,2 = 0 (2.28)

2.1.2.1 ICC condition

The control input is calculated as u(t) = CKxK = Cuxcl =

[
0 CK

] xp

xK

 .
The ICC condition of the kth control input

Uk = ΦkCuP̃2C
T
u ΦTk < ΦkCuP2C

T
u ΦTk < Ūk (2.29)

is equivalent to LMI [67]  Ūk ΦkCuP2

∗ P2

 > 0, k = 1, 2, · · · , nu. (2.30)

2.1.2.2 Synthesis conditions

Theorem 4. Consider the LPV system (2.22), there exists a gain-scheduling output-feedback con-

troller (2.24), which minimize output performance bound trace(Q), while ICC constrained (2.29)

control input enforcing internal stability and guaranteedH∞ performance of closed-loop system, if
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exist parameter-dependent symmetric matrices R, S, and a parameter-dependent state-space data

(ÂK , B̂K , ĈK) such that the LMIs hold for all admissible (θ, θ̇) set.

min
ÂK,B̂K,ĈKR,S

trace(Q) (2.31)



AR +B2ĈK + (∗)− Ṙ ∗ ∗ ∗

AT + ÂK SA+ B̂KCy + (∗) + Ṡ ∗ ∗

BT1 (SB1 + B̂KDy)T −γI ∗

C∞R +D12ĈK C∞ D11 −γI


< 0 (2.32)

 R I

I S

 > 0 (2.33)


AR +B2ĈK + (∗)− Ṙ ∗ ∗

AT + ÂK SA+ B̂KCy + (∗) + Ṡ ∗

BT1 (SB1 + B̂KDy)T −I

 < 0 (2.34)


Q C1R +D12ĈK C1

∗ R I

∗ I S

 > 0 (2.35)


Ūk ΦkĈK 0

∗ R I

∗ I S

 > 0, k = 1, 2, · · · , nu. (2.36)

If the parameter-dependent matrices are found to satisfy the PLMI conditions, the gain-

scheduling output-feedback controller can be obtained by two-step scheme:

• Solve for N ,M , the factorization problem I −RS = NMT .
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• compute AK , BK , CK , DK with

AK = N−1(ÂK − SṘ−NṀT − SAR− B̂KCyR− SB2ĈK)M−T

BK = N−1B̂K

CK = ĈKM
−T

(2.37)

Proof. H∞ channel

Suppose Lyapunov matrix forH∞ channel, partition P = Π1Π−1
2 = Π−T2 ΠT1 .

Π1 =

 R I

MT 0

 ,Π2 =

 I S

0 NT

 , P =

 R M

MT U

 , P−1 =

 S N

NT V

 (2.38)

Define nonsingular congruence matrix T∞ = diag(Π2, I, I), which means that reverse derivation

is valid. Pre- and post-multiply TT∞ and T∞ on left and right side of (1.4).


ΠT2

I

I



AclP + PATcl − Ṗ Bcl PCTcl,∞

BTcl −γI DT
cl,∞

Ccl,∞P Dcl,∞ −γI




Π2

I

I

 < 0 (2.39)


ΠT2 AclΠ1 + (∗)− ΠT2 ṖΠ2 ∗ ∗

BTclΠ2 −γI ∗

Ccl,∞Π1 Dcl,∞ −γI

 < 0 (2.40)

By change of variables
ÂK = SAR +NBKCyR + SB2CKM

T +NAKM
T + SṘ +NṀT

B̂K = NBK

ĈK = CKM
T

(2.41)

Then (1.4) is transformed to



AR +B2ĈK + (∗) + Ṙ ∗ ∗ ∗

AT + ÂK SA+ B̂KCy + (∗)− Ṡ ∗ ∗

BT1 (SB1 + B̂KDy)T −γI ∗

CR +D12ĈK C D11 −γI


< 0 (2.42)
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Ineqaulity (2.33) ensures P > 0, and I −RS is nonsingular, leading to unique mapping of change

of variables.  R I

I S

 > 0⇒ P = Π1Π−1
2 > 0 (2.43)

H2 channel

In order to convexify the controller variables, same Lyapunov matrix is used for H2 channel,

partition P = Π1Π−1
2 = Π−T2 ΠT1 .

Π1 =

 R I

MT 0

 ,Π2 =

 I S

0 NT

 , P =

 R M

MT U

 , P−1 =

 S N

NT V

 (2.44)

Define congruence matrix T2 = diag(Π2, I). Pre- and post-multiply TT2 and T2 on left and

right side of (1.7).

 ΠT2

I


 Ṗ + AclP + PAcl Bcl

∗ −I


 Π2

I

 < 0 (2.45)

⇒


AR +BĈK + (∗) + Ṙ ∗ ∗

AT + ÂK SA+ B̂KCy + (∗)− Ṡ ∗

BT1 (SB1 + B̂KDy)T −I

 < 0 (2.46)

Define T3 = diag(I,Π2), Pre- and post-multiply TT1 and T1 on left and right side of (1.8).

 I

ΠT2


 Q Ccl2P

∗ P


 I

Π2

 > 0 (2.47)

⇒


Q CR + E2ĈK C

∗ R I

∗ I S

 > 0 (2.48)

ICC condition

Pre- and post-multiply TT3 and T3 on left and right side of (2.30).
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 I

ΠT2


 Ūk ΦkCuP

∗ P


 I

Π2

 > 0, (2.49)

⇒


Ūk ΦkĈK 0

∗ R I

∗ I S

 > 0, k = 1, 2, · · · , nu. (2.50)

Remark 2. To remove the θ̇ information introduced by Ṙ and Ṁ , practical validity approach

from [68] is applied. Due to factorization problem doesn’t influence existence of controller but

with introduced conservativeness. Set one of them as constant matrix, then derivative term will

be eliminated. For example, set N(θ) = R(θ) = R0 (constant), MT (θ) = (I − R0S(θ)). then

controller matrix ÂK is now

AK = N−1(ÂK − SAR− B̂KCyR− SB2ĈK)M−T (2.51)

R0 = R0

S(θ) = S0 +

q∑
i=1

Siθi

Determine variables ÂK , B̂K , ĈK are chosen in affine form as plant matrix.

ÂK(θ) = ÂK0 +

q∑
i=1

ÂKiθi

B̂K(θ) = B̂K0 +

q∑
i=1

B̂Kiθi

ĈK(θ) = ĈK0 +

q∑
i=1

ĈKiθi
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2.2 Simultaneous Design Approach

2.2.1 Continuous-time state-feedback case

The scheduling parameter region is divided into J subregions, with J−1 overlapped region between

any two adjacent subregions. A J number of gain-scheduling state-feedback controllers designed

on J subregions for switching are given by

uj(t) = Kj(θ(t))x(t), j ∈ NJ = {1, 2, . . . , J}; (2.52)

where uj(t) is partitioned as uj(t) =
[
u
j
1(t), u

j
2(t), . . . , u

j
nu(t)

]T
. Then, the closed-loop LPV

system involved with the jth controller is now written as [69]
ẋ(t) = A

j
cl(θ(t))x(t) +B∞(θ(t))w∞(t) +B2(θ(t))w2(t);

z∞(t) = C
j
cl,∞(θ(t))x(t) +D∞(θ(t))w∞(t)

z2(t) = C2(θ(t))x(t)

(2.53)

where Acl(θ(t)) = A(θ(t)) +Bu(θ(t))Kj(θ(t)), Ccl,∞(θ(t)) = C∞(θ(t)) + E∞(θ(t))Kj(θ(t)).

There are two separated input and output pairs defined in (2.53), and they are specifically

designated for assessing the closed-loop LPV system performances, as described below: (1) H∞

performance is defined from w∞(t) to z∞(t) with L2 input and L2 output used to handle model

uncertainties; (2)H2 performance is defined from w2(t) to z2(t) with L2 input and L∞ output (or

L2-L∞ gains), for improving system performance.

The control objective is to design a family of smooth switching ICC/H∞ LPV controllers

to robustly stabilize system in (2.1). This control problem can be divided into two parts: mixed

ICC/H∞ control for each subregion and smooth switching with hysteresis switching strategy.

2.2.1.1 Problem formulation

The mixed ICC/H∞ control problem is to find a state-feedback gain-scheduling controller (2.52)

on each subregion for the LPV system (2.1) that minimizes the upper bound of H2 performance
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cost:

min sup
Kj(θ)

||Tz2,w2(Kj(θ), s)||2 , j ∈ NJ ; (2.54)

such that the closed-loop system (2.53) is exponentially stable, and in addition, the following

constraints are satisfied,

||Tz∞,w∞(Kj(θ), s)||∞ ≤ γ∞ , (2.55)

Cov(uk(t)) ≤ Ūk, k = 1, 2, . . . , nu , (2.56)

where γ∞ is the given H∞-norm bound on system robustness subject to model uncertainties, and

Ūk is the given bound on the control covariance Cov(uk(t)) for the kth control input uk(t) defined

below,

Cov(uk(t)) =

[
1

2π

∫ ∞
−∞

T ∗uk(Kj(θ), jω)Tuk(Kj(θ), jω)dω

]
, (2.57)

where Tuk(Kj(θ), s) := Tw2→uk(Kj(θ), s) denotes the transfer function from w2(t) to uk(t)

for the closed-loop LPV system (2.53). If the exogenous input w2(t) is an unknown disturbance

that belongs to a bounded L2 set, the covariance Cov(uk(t)) defined in (2.56) becomes the time

correlation of control signal uk(t). Then, themixed ICC andH∞ control problem is tominimize the

summation ofL2 toL∞ gains fromw2(t) to individual output channel z2,k(t) for k = 1, 2, . . . , nz2

subject to the L2 to L∞ gain constraints on uk(t) for k = 1, 2, . . . , nu and the H∞ constraint. In

other words, the mixed ICC andH∞ problem minimizes the weighted sum of the worst case peak

values of performance output subject to the constraints on the worst-case peak values of control

inputs and theH∞ constraint.

To design a family of switching LPV controllers, hysteresis switching strategy is utilized to

switch between adjacent controllers, ensuring the switching stability over any two neighboring

subregions.

For the jth subregion, consider a continuously differentiable parameter-dependent matrix

P j(θ) = P j(θ)T > 0 in H∞ channel, or more precisely, the Lyapunov matrix {P j(θ)}j∈NJ .
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Then the Lyapunov function can be expressed as,

Vj(x, θ) = xTP j(θ)x (2.58)

where x is the closed-loop system state. On the switching surfaces S(i,j), the condition below

should be satisfied,

P i(θ) ≥ P j(θ) (2.59)

indicating that the Lyapunov function of the closed-loop system is non-increasing when switching

from Θ(i) to Θ(j). The condition of Lyapunov matrices implies that

V i(x, θ) ≥ V j(x, θ). (2.60)

Then, switching from the ith controller to the jth controller is safe [1].

To smoothen the potential sharp change in controller gains, a cost function to be minimized is

formulated as

F = trace(W ) + µ
∑
||(Ki −Kj)|θ∈S(i,j) ||

2
2, i, j ∈ NJ , i 6= j. (2.61)

where
∑
||(Ki −Kj)|θ∈S(i,j) ||22 denotes the gain differences on switching surfaces θ ∈ S(i,j).

The first term trace(W ) in Eqn. (2.61) is viewed as an index of output H2 performance, while

second term is the measure of switching smoothness. µ ≥ 0 is the tunable variable to balance

these two indexes, leading to a trade-off relationship between output performance and switching

smoothness.

2.2.1.2 Controller synthesis PLMIs

This section provides the synthesis PLMI conditions for the proposed smooth switching ICC/H∞

controllers. The upper bound of the H2-norm, instead of actual H2-norm, is minimized in order

to make optimization numerically tractable. Theorem 5 gives the PLMIs conditions for controller

synthesis with guaranteedH2/H∞ performance. Combining mixed ICC/H∞ controller synthesis

conditions and hysteresis switching conditions, Theorem 6 then provides conditions for designing

switching controllers design.
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Theorem5. Given the input covariance constraints Ūk (k = 1, 2, · · · , nu) and a positive scalar γ∞,

in the jth subregion of scheduling parameter, if there exist continuously differentiable parameter-

dependent matrices 0 < P
j
2 (θ) = P

j
2 (θ)T ∈ Rnx×nx , 0 < P

j
∞(θ) = P

j
∞(θ)T ∈ Rnx×nx ,

Gj(θ) ∈ Rnx×nx , Zj(θ) ∈ Rnu×nx , small scalars εj2 > 0 and εj∞ > 0, and symmetric matrix

W j ∈ Rnz×nz subject to the following inequalities (∗ denotes symmetric terms),
Φ11 ∗ ∗

Φ12 −εj2(Gj(θ) +Gj(θ)T ) ∗

B2(θ)T 0 −I

 < 0; (2.62)

 W j C2(θ)Gj(θ)

∗ Gj(θ) +Gj(θ)T − P j2 (θ)

 > 0; (2.63)

 Ūk ekZ
j(θ)

∗ Gj(θ) +Gj(θ)T − P j2 (θ)

 > 0, k = 1, 2, · · · , nu (2.64)



Φ∞1 ∗ ∗ ∗

Φ∞2 −εj∞(Gj(θ) +Gj(θ)T ) ∗ ∗

Φ∞3 ε
j
∞Φ∞3 −γ∞I ∗

B∞(θ)T 0 D∞(θ)T −γ∞I


< 0, (2.65)

whereΦ11 = A(θ)Gj(θ)+Bu(θ)Zj(θ)+(A(θ)Gj(θ)+Bu(θ)Zj(θ))T−
∂P

j
2 (θ)

∂θ θ̇, Φ12 = P
j
2 (θ)−

Gj(θ)+ε
j
2(A(θ)Gj(θ)+Bu(θ)Zj(θ))T , and ek is input channel selectionmatrix for control input of

interest, andΦ∞1 = A(θ)Gj(θ)+Bu(θ)Zj(θ)+(A(θ)Gj(θ)+Bu(θ)Zj(θ))T− ∂P
j
∞(θ)
∂θ θ̇,Φ∞2 =

P
j
∞(θ) − Gj(θ) + ε

j
∞(A(θ)Gj(θ) + Bu(θ)Zj(θ))T , and Φ∞3 = C∞(θ)Gj(θ) + E∞(θ)Zj(θ),

then the gain-scheduling controller

u(t) = Kj(θ)x(t) , Kj(θ) = Zj(θ)Gj(θ)−1 (2.66)

exponentially stabilizes the LPV system Σ(θ) for any (θ, θ̇) ∈ Λ × Ω with a guaranteed H∞
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performance bound γ∞, and in addition, the ICC cost is bounded by

trace(W ) > trace(C2(θ)P (θ)C2(θ)T )

> trace(C2(θ)P̄ (θ)C2(θ)T ) = JICC

(2.67)

and the constraint (3.3) is satisfied.

Proof. The proof is omitted because it is similar to that of 3.

Theorem 6. For any two adjacent subregions Θi and Θj (i, j ∈ NJ ), if PLMIs in Theorem 5 are

satisfied simultaneously over switching surfaces S(i,j) and the following PLMIs are satisfied,

P i∞(θ) ≥ P
j
∞(θ), θ ∈ S(i,j) (2.68)

then switchingmixed ICC/H∞ controller exponentially stabilizes LPV systemΣ(θ), for any (θ, θ̇) ∈

Λ × Ω with a guaranteed H∞ performance bound γ∞, guaranteed ICC cost bound W j on jth

subregion.

The proof is omitted because it can be easily proved by combining switching stability and

Theorem 5 [25].

In Theorem 5, controller is formulated asKj(θ) = Zj(θ)Gj(θ)−1. Thus, parameter dependent

matrices Z(θ) andG(θ) determine the controller gain deviation on switching surfaces. To optimiz-

ing switching smoothness, the smoothness index is introduced as sum of Z(θ) andG(θ) deviations

over all switching surfaces, as shown in the following formula.

∑
(||Zi(θ)− Zj(θ)||22 + ||Gi(θ)−Gj(θ)||22),

i, j ∈ NJ , θ ∈ S(i,j).
(2.69)

By then, smooth switching LPV control has been transformed into a convex optimization

problem with a tunable cost function

F =
∑
tr(W j) + µ

∑
(||Zi(θ)− Zj(θ)||22 + ||Gi(θ)−Gj(θ)||22),

i, j ∈ NJ , θ ∈ S(i,j).
(2.70)

while inequalities (2.62), (2.63), (2.64), (2.65), and (2.68) are satisfied simultaneously.
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2.2.2 Continuous-time dynamic output-feedback (DOF) case

Consider the following affine LPV system,

ẋp(t) = A(θ(t))xp(t) +B1(θ(t))w(t) +B2(θ(t))u(t)

z∞(t) = C1(θ(t))xp(t) +D1(θ(t))w(t) +D2(θ(t))u(t)

z2(t) = C2(θ(t))xp(t)

y(t) = Cy(θ(t))xp(t) +Dy(θ(t))w(t)

(2.71)

where θ(t) =
[
θ1(t), θ2(t), . . . , θq(t)

]T denotes the scheduling parameter vector of q elements,

xp(t) denotes the state, w(t) the exogenous inputs (for instance, disturbance inputs, sensor noises,

etc.), u(t) the control input; z∞(t) the H∞ controlled output, z2(t) the H2 performance output,

and y(t) the measurement output. All system matrices have compatible dimensions and are in the

affine parameter-dependent form. For example, A(θ(t)) can be described by

A(θ(t)) = A0 +

q∑
i=1

Aiθi(t). (2.72)

It is assumed that the scheduling parameters are measurable in real-time, and their magnitudes and

variational rates are bounded as (θ, θ̇) ∈ Θ× Λ:

θ ∈ Θ =
{
θi ≤ θi(t) ≤ θi, i ∈ {1, 2, ..., q},

}
θ̇ ∈ Λ = {−νθi ≤ θ̇i(t) ≤ νθi , i ∈ {1, 2, ..., q}.}

(2.73)

The scheduling parameter region is divided into J subregions, with an overlapping region between

any two adjacent subregions. Again-schedulingDOFcontroller is to be designed for each subregion,

and the controllers for adjacent subregions are to be switched according to hysteresis switching

logic. The jth subregion is denoted by Θ(j) (j ∈ NJ = {1, 2, . . . , J}), and switching surface from

Θ(i) to Θ(j) is denoted by S(i,j).

The jth DOF controller Kj(θ) for the jth subregion is given by

Kj(θ) :

 ẋK = A
j
K(θ)xK +B

j
K(θ)y

u = C
j
K(θ)xK

(2.74)
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where xK denotes the controller state and (A
j
K , B

j
K , C

j
K) are controller variables to be determined.

Note that there is no direct feedthrough term in u, because a strictly proper DOF controller leads to

a finiteH2 norm for transfer functions Tz2w and input covariance. The state vector for the closed-

loop LPV system associated with the jth controller becomes xTcl = [xTp , x
T
K ], with the following

state space realization


A
j
cl B

j
cl

C
j
cl,∞ D

j
cl,∞

C
j
cl,2 0

 =



A B2C
j
K B1

B
j
KCy A

j
K B

j
KDy

C1 D2C
j
K D1

C2 E2C
j
K 0


. (2.75)

For simplicity, the dependency on scheduling parameter θ will be omitted unless necessary in the

rest of thesis.

The proposed control input u(t) associated with the jth controller can be equivalently rewritten

as

u(t) = C
j
uxcl =

[
0 C

j
K

] xp

xK

 .
Hence, the variance of the kth (k ∈ Nnu = {1, 2, · · · , nu}) control input of the jth controller is

constrained as

cov(uk(t)) ≤ sup

θ∈Θ(j),j∈NJ

ekC
j
uP

j
2(C

j
u)T eTk < Uk ,

where ek is a selection row vector with 1 at the kth entry and 0 elsewhere, such that ekC
j
u equals

to the kth control. We have the following lemma providing hard constraint on variance of control

input for any scheduling parameter trajectory θ ∈ Θ(j).

Lemma 6. [67] The ICC condition on the kth control input of the jth controller,

sup

θ∈Θ(j)
ekC

j
uP

j
2(C

j
u)T eTk < sup

θ∈Θ(j)
ekC

j
uP

j
2 (C

j
u)T eTk < Uk , (2.76)
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is equivalent to the following PLMI to be held for any θ ∈ Θ(j), Uk ekC
j
uP

j
2

∗ P
j
2

 > 0, k ∈ Nnu . (2.77)

2.2.2.1 Problem formulation

For a given divided subregion set, the smooth-switching ICC/H∞ DOF LPV control problem is

to find a family of gain-scheduling DOF controllers Kj(θ), j ∈ NJ , defined in (2.74), over all

subregions for the LPV system (2.71) that minimizes the following cost function,

min
A
j
K (θ),B

j
K (θ),C

j
K (θ)

ε ∗ trace(W ) + Ism , (2.78)

subject to the following constraints

||T∞||∞ < γ , (2.79)

cov(uk(t)) < Uk, k ∈ Nnu , (2.80)

where Ism denotes the smoothness index to be defined in the next section, trace(W ) is the upper

bound of the systemH2 norm over all subregions, and ε > 0 is a tunable weighting coefficient to be

used to trade-off between switching smoothness and system performance. In order to ensure that the

control design problem is convex, Ism is chosen as the deviation norm of controller parameters over

all switching surfaces that is a convex function describing the smoothness of controller variables

over switching surfaces.

2.2.2.2 Controller synthesis PLMIs

The following theorem contains the main result. Note that cost function (2.81) is a linear com-

bination of two convex functions of output performance trace(W ) and smoothness index Ism

associated with controller parameters. The tunable parameter ε > 0 is used to balance the output

performance and smoothness of controller parameters over switching surfaces. A line search for ε

is needed in order to find the optimal trade-off relationship.
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Theorem 7. Consider LPV system (2.71). There exists a family of gain-scheduling DOF controllers

(2.74) that minimizes the ε-balanced cost function

min
Â
j
K,B̂

j
K,Ĉ

j
KX

j,Y j
ε ∗ trace(W ) + Ism (2.81)

subject to the ICC condition (2.80) andH∞ constraint (2.79), if there exists a family of parameter-

dependent symmetric matrices Xj and Y j , and a family of parameter-dependent controller vari-

ables ÂjK , B̂jK , and ĈjK (j ∈ NJ ), such that PLMIs (2.83) - (2.87) hold with a given robustness

level γ > 0 for all admissible (θ, θ̇) ∈ Θ(j) × Λ, and one of the two conditions in (2.88) holds on

the switching surfaces S(i,j) for ε > 0 with Ism given by

Ism =
∑
i,j,i6=j


||ÂiK − Â

j
K ||2 + ||B̂iK − B̂

j
K ||2

+||ĈiK − Ĉ
j
K ||2 + ||Y i − Y j ||2

+||Xi −Xj ||2

|θ∈S(i,j) . (2.82)



M11 ∗ ∗ ∗

AT + Â
j
K M22 ∗ ∗

BT1 M32 −γI ∗

C1X
j +D2Ĉ

j
K C1 D1 −γI


< 0 (2.83)

where
M11 = AXj +B2Ĉ

j
K + (∗)− Ẋj ,

M22 = Y jA+ B̂
j
KCy + (∗) + Ẏ j ,

M32 = (Y jB1 + B̂
j
KDy)T . Xj I

I Y j

 > 0, (2.84)


M11 ∗ ∗

AT + Â
j
K M22 ∗

BT1 M32 −I

 < 0, (2.85)
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
W C1X

j +D2Ĉ
j
K C1

∗ Xj I

∗ I Y j

 > 0 (2.86)


Uk ekĈ

j
K 0

∗ Xj I

∗ I Y j

 > 0, k ∈ Nnu . (2.87)

 Y i ≥ Y j

Xi − (Y i)−1 ≤ Xj − (Y j)−1

or Xi ≤ Xj

Y i − (Xi)−1 ≥ Y j − (Xj)−1

(2.88)

Proof. To convexify control strategy with H2 and H∞ channels, let P j = P
j
2 = P

j
∞ for the jth

subregion. Suppose that the Lyapunov matrix P j can be partitioned as

P j =

 Y j N j

(N j)T ?

 , (P j)−1 =

 Xj M j

(M j)T ?

 , (2.89)

where ? denotes the elements which are not used.

Furthermore, define the congruence matrices as

Π
j
1 =

 Xj I

(M j)T 0

 ,Πj2 =

 I Y j

0 (N j)T

 ,
such that P jΠj1 = Π

j
2. For the H∞ performance channel, the PLMIs (2.83) can be easily

obtained by following the procedures in [68, 12, 13, 32]. Define nonsingular congruence matrix

T
j
∞ = diag(Π

j
2, I, I), which means that reverse derivation is valid. Pre- and post-multiply (T

j
∞)T

and T j∞ on left and right side of theH∞ performance condition (1.12) for each subregion.
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
Π
j
2

I

I


T 

A
j
clP

j + P j(A
j
cl)
T − Ṗ j B

j
cl ∗

∗ −γI ∗

C
j
cl,∞P D

j
cl,∞ −γI




Π
j
2

I

I

 < 0 (2.90)

By P j = Π
j
1(Π

j
2)−1, the above LMI can be converted to


(Π

j
2)TA

j
clΠ

j
1 + (∗)− (Π

j
2)T Ṗ jΠ

j
2 ∗ ∗

(B
j
cl)
TΠ

j
2 −γI ∗

C
j
cl,∞Π

j
1 D

j
cl,∞ −γI

 < 0 (2.91)

Introduce the change of controller variables as


Â
j
K = N jA

j
K(M j)T +N jB

j
KCyX

j + Y jB2C
j
K(M j)T + Y jAXj

B̂
j
K = N jB

j
K

Ĉ
j
K = C

j
K(M j)T ,

(2.92)

then the PLMI condition (2.83) can be obtained.

For the H2 performance channel, define the congruence matrix T j2 = diag(Π
j
2, I). Pre- and

post-multiply (1.15) by TT2 and T2 to obtain,

(T
j
2 )T

 −Ṗ j + A
j
clP

j + (∗) B
j
cl

∗ −I

T j2 < 0 , (2.93)

which yields (2.85) by means of change of variables in (2.92). Define T j3 = diag(I,Π
j
2), and pre-

and post-multiply (1.16) by (T
j
3 )T and T j3 , we obtain I

Π
j
2


T  W C

j
cl,2P

j

∗ P j


 I

Π
j
2

 > 0 , (2.94)

which yields (2.86) by means of change of variables in (2.92). For the ICC condition, pre- and

post-multiplying TT3 and T3 to (2.77) yields
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 I

ΠT2


 Ūk ekC

j
uP

j
2

∗ P
j
2


 I

Π2

 > 0 , (2.95)

which gives (2.87).

Remark 3. The PLMIs formulated in Theorem 7 renders an optimization problem of infinite

dimensions and un-defined decision variable structures. To numerically tackle this optimiza-

tion problem, affine decision variable structure is assumed, for example, ÂjK(θ) is expressed as

Â
j
K(θ) = Â

j
K0 +

∑q
i=1 Â

j
Kiθi . Coefficient check in multi-simplex domain [19, 70, 71] has been

adopted to successfully obtain a finite set of LMIs but with introduced conservativeness. Other

options [72, 73] can also be applied, for instance, sum-of-square relaxation [74] and enforcing

multi-convexity method [75].

Remark 4. If the controller variables are obtained by minimizing the ε-balanced cost function

subject to formulated PLMIs, the gain-scheduling DOF controller can be constructed by first

solving the factorization problem I − Y jXj = N j(M j)T for N j and M j , and then computing

A
j
K , BjK , and CjK from the following equations

A
j
K = (N j)−1

[
Â
j
K − Y

jẊj −N j(Ṁ j)T − Y jAXj

−B̂jKCyX
j − Y jB2Ĉ

j
K

]
(M j)−T

B
j
K = N−1B̂

j
K

C
j
K = ĈK(M j)−T

(2.96)

Remark 5. In order to remove the θ̇ dependency introduced by Ẋj and Ẏ j , the practical validity

approach presented in [68] is applied. EitherXj or Y j is set to be a constant matrix eliminates the

derivative terms. For example, we may setX(θ) = X0 andN = I for all θ ∈ Θ, then Y j = Y j(θ)
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and (M j)T = (I−Y j(θ)X0). As a result, the reconstructed controller variables can be simplified

A
j
K = (N j)−1

[
Â
j
K − Y

jAXj − B̂jKCyX
j

−Y jB2Ĉ
j
K

]
(M j)−T

BK = N−1B̂
j
K

CK = ĈK(M j)−T

(2.97)

Note that the switching stability condition (2.88) is non-convex and freezing X(θ) = X0 will

convexify it into

Y i(θ) ≥ Y j(θ), θ ∈ S(i,j) . (2.98)

Therefore, variables (Â
j
Ki, B̂

j
Ki, Ĉ

j
Ki, Y

j
i , X0) can be iteratively searched to optimize the cost

function with the tuning parameter ε. The operation of PLMIs and optimization problem are solved

by using the parser YALMIP [76] jointly with optimization algorithm SeDuMi [77].
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2.3 Sequential Design Approach

2.3.1 Motivations of sequential design

In conventional switching LPV control design, switching controllers are synthesized by controller

variables that simultaneously satisfy PLMIs for both H∞ performance on all subregions and

switching stability conditions on all switching surfaces. In other words, controller synthesis

conditions on each subregion are not independent with adjacent ones due to the switching stability

condition imposed on switching surfaces. When the number of subregions goes large, simultaneous

design approach leads to a high-dimensional optimization problem, with a high amount of LMI

constraints, decision variables, online computational load, and memory requirement [78, 79]. As a

result, these drawbacks make simultaneous design practically infeasible for high-order systems with

many divided subregions. For example, in the polytopic synthesis approach, it’s well known that

the number of LMIs grows withO(2q), where q is the dimension of scheduling parameter [78, 63].

Chen [60] considered the hysteresis switching state-feedback LPV control and conducted linear

interpolation of controller variables on switching surfaces. However, only the relative stability is

achieved on the overlapping subregion by this method. Hanifzadegan and Nagamune [61] followed

the idea of linear interpolation of controller matrices on switching surfaces, and imposed constraints

on controller matrix derivative. The design of stabilizing controllers was formulated into a non-

convex optimization problem, and an iterative descent algorithm was then applied to find a local

LPV controller for each subregion. Their approach relies heavily on iterative computations to solve

multi-objective non-convex problems. Moreover, the interpolation of controller matrices cannot

guarantee the H∞ robust performance over the overlapped region. Jiang et.al [80] provided a

systematic approach for developing switching LPV controller by linearly interpolating controller

variables for average-dwell-time switching strategy. However, the formulated PLMIs are not

numerically tractable, due to the scheduling parameter term in the denominator, which induces

infinity term on switching surfaces. Bianchi [81] proposed a new design approach based on Youla

parametrization that closed-loop system stability is not affected by the inclusion of any stable
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switched LPV system. This makes it possible to design switched controllers independently ,but

this method cannot be extended to parameter-dependent quadratically stable systems.

A sequential controller design approach is proposed in this thesis to design switching controllers

with higher efficiency and less computational burden than simultaneous design. Interpolated con-

troller variables for overlapped subregions and newly formulated PLMIs are utilized to synthesize

switching LPV controllers on each subregion independently. On each overlapped subregion, the

Lyapunov matrix is formulated by convexly combining PDLM on adjacent subregions. The PLMIs

forH∞ performance on each subregion is formulated, such that the convex combination of adjacent

PLMIs leads to a guaranteedH∞ performance on every overlapped subregion. Moreover, the guar-

anteed system performance on overlapped subregion is no worse than its neighboring subregions.

In this way, an individual controller for each subregion can be designed in sequential order, instead

of synthesizing all controllers simultaneously. By iteratively solving the reduced-dimensional opti-

mization problem on each subregion, switching controllers for all subregions with guaranteedH∞

performance on all subregions and overlapped subregions can be obtained.

Note that, in order to simplify the design problem, all sequential LPV controllers are assumed

to have access to full states and that they share the same parametric controller form, while controller

gains are different on each subregion. In this thesis, switching H∞ LPV state-feedback control

is considered, we will present the basic ideas of the proposed sequential design method by one-

dimensional and two-dimensional cases. After that, the proposed approach will be extended to the

general case of any dimensional scheduling parameters. The main contributions of this work are

three-fold: (1) proposition of sequential design of switching LPV controllers; (2) formulation of

synthesis conditions for sequential design of switching H∞ state-feedback LPV controllers; (3)

demonstration of the benefits of the proposed sequential design approach by numerical examples.

Consider the affine LPV system in Eqn. (2.99),

ẋp(t) = A(θ(t))xp(t) +B1(θ(t))w(t) +B2(θ(t))u(t)

z(t) = C(θ(t))xp(t) +D1(θ(t))w(t) +D2(θ(t))u(t)
(2.99)

where the system state is denoted as xp(t), the exogenous inputs denoted asw(t) (for instance distur-
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bance inputs, sensor noise, etc.), the control input as u(t), and the controlled output as z(t). System

matrices are assumed to depend on scheduling parameter vector θ(t) =
[
θ1(t), θ2(t), . . . , θq(t)

]T
and be in the affine parameter-dependent form. For example, A(θ(t)) is described as

A(θ(t)) = A0 +

q∑
i=1

Aiθi(t), (2.100)

where A0 and Ai, i = 1, 2, . . . , q, are constant matrices.

The real-time measurable scheduling parameters are assumed to vary within parameter region

which is formulated by bounds of magnitudes and variational rates,

θi ∈ Θi =
{
θi ≤ θi(t) ≤ θi, i = 1, 2, . . . , q,

}
,

θ̇i ∈ Λi =
{
−νi ≤ θ̇i(t) ≤ νi, i = 1, 2, . . . , q.

} (2.101)

Now consider the switched LPV system, which consists of M numbers of divided schedul-

ing parameters [θ1, θ2, . . . , θm, . . . , θM ], and S numbers of un-divided scheduling parameters

[θM+1, θM+2, . . . , θM+s, . . . , θM+S ]. Hence, M + S = q. For each of divided scheduling

parameters, θm is divided into Nm numbers of subregions with its variational rate remained un-

divided as Λ = Λ1 × · · · × Λq, and neighboring subregions will produce overlapped subregions.

The entire scheduling parameter is divided into ΠMm=1Nm numbers of subregions, among which

the (n1, n2, . . . , nM )th subregion, denoted as Θ(n1,n2,...,nM ), is formed by Cartesian product of

subregions Θ
(n1)
1 ×Θ

(n2)
2 × · · ·×Θ

(nM )
M ×ΘM+1× · · ·×Θq. The overlapped subregion formed

by Θ
(nm)
m and Θ

(nm+1)
m , is denoted as Θ

([nm,nm+1])
m . Figure 2.1 and Figure 2.2 illustrate the

divisions scenarios of one- and two-dimensional scheduling parameters.

In Figure 2.1, three adjacent subregions Θ(i−1),Θ(i),Θ(i+1) produce two overlapped subre-

gion Θ([i−1,i]) and Θ([i,i+1]), with switching surfaces S([i−1,i]) and S([i,i+1]) defined as region

boundaries of overlapped subregions. In Figure 2.2, any four adjacent subregions Θ(i,j), Θ(i+1,j),

Θ(i,j+1), Θ(i+1,j+1) produce two kinds of overlapped subregions. The center subregion denoted

by Θ([i,i+1],[j,j+1]) is formed by 22 overlapped subregions in two dimensions, whereas other over-

lapped subregions are individually formed by 21 overlapping subregions in one dimension, denoted
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as Θ([i,i+1],j), Θ([i,i+1],j+1), Θ(i,[j,j+1]), Θ(i+1,[j,j+1]). In the case of M -dimensional divided

scheduling parameter, the center-overlapped subregion is formed by 2M overlapping subregions.

… …

Θ(𝑖)Θ(𝑖−1) Θ(𝑖+1)

𝜃𝑖−1𝜃 𝜃𝑖 𝜃𝑖+1ҧ𝜃𝑖−1 ҧ𝜃𝑖 ҧ𝜃𝑖+1 ҧ𝜃

Figure 2.1: Subregion division illustration of one-dimensional scheduling parameter
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𝑗
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𝑗
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𝑖+1
, 𝜃2

𝑗
)

(𝜃1
𝑖 , 𝜃2

𝑗
)

(𝜃1
𝑖 , 𝜃2

𝑗+1
)

(𝜃1
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Figure 2.2: Subregion division illustration of two-dimensional scheduling parameter

For the given switching LPV system, we are seeking for a gain-scheduling state-feedback

switching controller

u(t) = Ki(θ)x(t) (2.102)

stabilizing the LPV system (2.99) with guaranteed H∞ performance, and controller gain Ki(θ) is

to be switched according to switching signal i(t). The switched closed-loop system matrices are

derived as
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 Acl,i Bcl

Ccl,i Dcl

 =

 A+B2Ki B1

C +D2Ki D1

 . (2.103)

The H∞ performance, defined as L2-induced norms from w(t) to z(t), is utilized to assess

the closed-loop system robustness in the presence of model uncertainties. Mathematically, let

T∞(θ, s) := Tzw(θ, s) denotes the parameter-dependent transfer function from w(t) to z(t) and

||T∞||∞ as the worst-case H∞ norm of T∞ defined in θ ∈ Θ. Then, the H∞ performance for the

(w(t), z(t)) pair is defined as L2 gain [15], where

||T∞||∞ = sup
θ∈Θ

sup
w∈L2,||w||2 6=0

||z(t)||2
||w(t)||2

. (2.104)

The following lemma provides PLMI conditions for simultaneously designing switching LPV

H∞ state-feedback controller with average-dwell-time switching logic [52, 53, 1], which has been

well proven and widely used in literature.

Lemma 7. Given scalars λ0 > 0, µ > 1, if there exist parameter dependent matrices Pi(θ) >

0, Zi(θ) such that (2.105) holds for all admissible trajectories (θ, θ̇) ∈ Θ(i) × Λ and (2.106)

holds for any switching surface, then the closed-loop system (2.103) is exponentially stabilized by

switching LPV state-feedback controller gains Ki(θ) = Zi(θ)P
−1
i (θ) for every switching signal

i(t) with average dwell time τa >
ln(µ)
λ0

and ||z||2 < γ||w||2 is achieved with robustness level

γ = max{γi} > 0, 
−Ṗi + 〈APi +B2Zi〉+ λ0Pi ∗ B1

CPi +D2Zi −γiI D1

∗ ∗ −γiI

 < 0 , (2.105)

1

µ
Pi+1(θ) ≤ Pi(θ) ≤ µPi+1(θ), θ ∈ S([i,i+1]) . (2.106)

Remark 6. This simultaneous design method requires that PLMI conditions for all subregions

and switching stability are satisfied at the same time. All switched controllers for subregions are

designed simultaneously, leading to a very high-dimensional optimization problem, especially in

the scenario of multi-dimensional scheduling parameters.
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2.3.2 Controller synthesis PLMIs

A novel sequential design method is proposed to overcome the disadvantages of the convention-

al design method. The main idea is introducing interpolated controller decision variables and

formulating independent PLMI conditions on each subregion such that system performances on

overlapped subregions are guaranteed as well. In this way, the switching controller synthesis con-

ditions are formulated as independent optimization problems and can be well solved sequentially.

One- and two-dimensional scheduling parameter scenarios are provided as motivation examples

for a more general q-dimensional scheduling parameter scenario.

2.3.2.1 One-dimensional scheduling parameter

Consider three neighboring subregions Θ(i−1), Θ(i), Θ(i+1) as shown in Figure 2.1 and designate

controller decision variable pairs Pi−1(θ), Zi−1(θ), Pi(θ), Zi(θ), and Pi+1(θ), Zi+1(θ) for con-

troller synthesis. On the overlapped subregion ofΘ(i−1)∩Θ(i) = Θ([i−1,i]), define the interpolated

parameter-dependent positive definite matrix P(i−1,i)(θ) and interpolated Z(i−1,i)(θ) as

P(i−1,i) = ε
(i−1,i)
11 (θ)Pi(θ) + ε

(i−1,i)
12 (θ)Pi−1(θ),

Z(i−1,i) = ε
(i−1,i)
11 (θ)Zi(θ) + ε

(i−1,i)
12 (θ)Zi−1(θ),

(2.107)

where interpolation function ε(θ) is chosen as a sigmoid function as

ε
(i−1,i)
11 (θ) =

eα(θ)

eα(θ) + 1
, ε

(i−1,i)
12 (θ) =

1

eα(θ) + 1
,

and α(θ) =
β[2(θ − θi)− (θ

i−1 − θi)]
θ
i−1 − θi

=
β[2(θ − θi)− L(i−1,i)]

L(i−1,i)
. The variable L(i−1,i) denotes

the size of the overlapped subregion and β is a tunable scalar which determines the interpolation

function shape.

Then the time derivative of interpolated parametric matrix can be written as

Ṗ(i−1,i) =
{
ε
(i−1,i)
12 (θ)Ṗi−1(θ) + ε

(i−1,i)
11 (θ)Ṗi(θ)

}
+

{
ε
(i−1,i)
12 (θ)

−eα(θ) · 2βθ̇
(eα(θ) + 1)L(i−1,i)

Pi−1(θ) + ε
(i−1,i)
11 (θ)

2βθ̇

(eα(θ) + 1)L(i−1,i)
Pi(θ)

}
.

(2.108)
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The associated PLMI conditions for (θ, θ̇) ∈ Θ(i−1)×Λ and (θ, θ̇) ∈ Θ(i)×Λ can be accordingly

formulated as


〈APi−1 +B2Zi−1〉 − Ṗi−1 + λ0Pi−1 +

eα(θ) · 2βθ̇
(eα(θ) + 1)L(i−1,i)

Pi−1 ∗ B1

CPi−1 +D2Zi−1 −γi−1I D1

∗ ∗ −γi−1I

 < 0

(2.109)


〈APi +B2Zi〉 − Ṗi + λ0Pi +

−2βθ̇

(eα(θ) + 1)L(i−1,i)
Pi ∗ B1

CPi +D2Zi −γiI D1

∗ ∗ −γiI

 < 0 (2.110)

such that ε(i−1,i)
12 · (2.109) + ε

(i−1,i)
11 · (2.110) yielding the following standard PLMI condition,

which indicates the guaranteedH∞ performance for any (θ, θ̇) ∈ Θ([i−1,i]) × Λ,
〈
AP(i−1,i) +B2Z(i−1,i)

〉
− Ṗ(i−1,i) + λ0P(i−1,i) ∗ B1

CP(i−1,i) +D2Z(i−1,i) −γ(i−1,i)I D1

∗ ∗ −γ(i−1,i)I

 < 0 (2.111)

where γ(i−1,i) = ε
(i−1,i)
12 γi−1 + ε

(i−1,i)
11 γi < max {γi−1, γi} .

In order to convert Eqns. (2.109) and (2.110) into numerically tractable ones, the bounds that,

−ν ≤ θ̇(t) ≤ ν, 1

eα(θ)+1
< 1, and eα(θ)

eα(θ)+1
< 1 are used to modify the controller synthesis PLMI

conditions with upper bound constant σ(i−1,i) = 2βν

L(i−1,i)
> 0,

〈APi−1 +B2Zi−1〉 − Ṗi−1 + (λ0 + σ(i−1,i))Pi−1 ∗ B1

CPi−1 +D2Zi−1 −γi−1I D1

∗ ∗ −γi−1I

 < 0, (2.112)


〈APi +B2Zi〉 − Ṗi + (λ0 + σ(i−1,i))Pi ∗ B1

CPi +D2Zi −γiI D1

∗ ∗ −γiI

 < 0. (2.113)
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If there exist feasible controller decision matrices Pi−1, Zi−1 and Pi−1, Zi−1, and scalars

γi−1, γi such that PLMI conditions (2.112) and (2.113) are valid on subregion Θ(i−1) × Λ and

Θ(i) × Λ, respectively, then the standard PLMI conditions as of Eqn. (2.105) will be also valid

on these subregions, leading to the guaranteedH∞ performance on each subregion. Furthermore,

conditions (2.112) and (2.113) lead to conditions (2.109) and (2.110), and hence, result in (2.111)

on the overlapped subregion Θ([i−1,i]), leading to guaranteed H∞ performance γ(i−1,i) no worse

than that of neighboring subregions.

Now designate controller decision matrices Pi+1(θ) and Zi+1(θ) for subregion Θ(i+1), and on

the overlapped subregion ofΘ(i)∩Θ(i+1) = Θ([i,i+1]), define the interpolated parameter-dependent

matrix P(i,i+1)(θ) and Z(i,i+1)(θ) as

P(i,i+1)(θ) = ε
(i,i+1)
11 (θ)Pi+1(θ) + ε

(i,i+1)
12 (θ)Pi(θ),

Z(i,i+1)(θ) = ε
(i,i+1)
11 (θ)Zi+1(θ) + ε

(i,i+1)
12 (θ)Zi(θ),

(2.114)

where similarly sigmoid function is chosen for interpolation as

ε
(i,i+1)
11 (θ) =

eα(θ)

eα(θ) + 1
, ε

(i,i+1)
12 (θ) =

1

eα(θ) + 1
, α(θ) =

β[2(θ − θi+1)− L(i,i+1)]

L(i,i+1)
,

where L(i,i+1) = θ
i − θi+1. Then the PLMI conditions for controller synthesis on subregion Θ(i)

and Θ(i+1) are formulated similarly with σ(i,i+1) = 2βν

L(i,i+1)
> 0,

〈APi +B2Zi〉 − Ṗi + (λ0 + σ(i,i+1))Pi ∗ B1

CPi +D2Zi −γiI D1

∗ ∗ −γiI

 < 0, (2.115)


〈APi+1 +B2Zi+1〉 − Ṗi+1 + (λ0 + σ(i,i+1))Pi+1 ∗ B1

CPi+1 +D2Zi+1 −γi+1I D1

∗ ∗ −γi+1I

 < 0. (2.116)

If there exist feasible controller decision variables Pi+1, Zi+1 and scalar γi+1 such that PLMI

condition (2.116) is valid on subregionΘ(i+1), then the standard PLMI conditions as of Eqn. (2.105)
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will be valid on subregionΘ(i+1). In other words, controller gainKi+1 = Zi+1P
−1
i+1 guarantees the

H∞ performance γi+1 on subregion Θ(i+1). At the same time, the interpolated controller variables

P(i,i+1), Z(i,i+1) will satisfy the following PLMI condition obtained by ε(i,i+1)
12 ·(2.115)+ε(i,i+1)

11 ·

(2.116),
〈
AP(i,i+1) +B2Z(i,i+1)

〉
− Ṗ(i,i+1) + λ0P(i,i+1) ∗ B1

CP(i,i+1) +D12Z(i,i+1) −γ(i,i+1)I D11

∗ ∗ −γ(i,i+1)I

 < 0 (2.117)

where γ(i,i+1) = ε
(i,i+1)
11 γi+1+ε

(i,i+1)
12 γi < max {γi, γi+1} . In otherwords, controllerK(i,i+1) =

Z(i,i+1)P
−1
(i,i+1)

also guarantees H∞ performance max{γi, γi+1} over the overlapped subregion

Θ([i,i+1]) .

Note that σ(i−1,i) and σ(i,i+1) depend on the size of overlapped subregions, thus they may not

be identical. In order to identify the common controllerKi(θ) on Θ(i), the maximum value of two

variables σ(i) = max {σ(i−1,i), σ(i,i+1)} is used to replace the coefficients of introduced terms

in Eqns. (2.113) and (2.115).

To ensure switching stability, the minimum dwell time for switching signal can be calculated

as τ∗a = lnµ∗
λ0

, µ∗ = max

1 + 1
eβ
, 1 +

λi+1
λi
−1

eβ+1
, 1 +

λi
λi+1

−1

eβ+1

, such that (2.106) is satisfied on

switching surfaces. λi and λi denote the maximum and minimum eigenvalues of matrix Pi(θ) at

switching surfaces. If the interpolation variable β is chosen large enough, then µ∗ is close to 1,

and the minimum dwell time is close to 0. In other words, the average dwell time signal is almost

arbitrary. At this point, we are ready to obtain the following theorem.

Theorem 8. With given λ0 and given scheduling parameter subregions, if there exist parameter-

dependent positive-definite matrices Pi(θ), parameter-dependent matrices Zi(θ), and positive s-

calars γi, satisfying the PLMIs (2.118) for any (θ, θ̇) ∈ Θ(i)×Λ, then the switching controller gain

Ki(θ) = Zi(θ)P
−1
i (θ) guarantees the closed-loop system H∞ performance γi , and the interpo-

lated controllers with its adjacent controllers by Eqn. (2.114) also guarantee same performance

for switching signals with average dwell time τa larger than τ∗a which can be close to 0..
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
〈APi +B2Zi〉 − Ṗi + (λ0 + σ(i))Pi ∗ B1

CPi +D2Zi −γiI D1

∗ ∗ −γiI

 < 0, (2.118)

Remark 7. The constant σ(i) in the PLMI condition illustrate the introduced relative stability of

the closed-loop system, which is known in literature as σ-stability [60]. It is determined by the

sizes of overlapped subregions min
{
L(i,i+1), L(i−1,i)

}
and interpolation rate β of sigmoid func-

tion. The introduced relative stability, together with interpolation of controller decision variables,

provide independent synthesis conditions for each individual subregion, but with introduced design

conservativeness.

2.3.2.2 Two-dimensional scheduling parameters

Suppose that entire scheduling parameter region is divided intoN1 ·N2 subregions, and consider a

subregionΘ(i,j), i ∈ N1, j ∈ N2, as well as its adjacent subregionsΘ(i+1,j),Θ(i,j+1),Θ(i+1,j+1).

As illustrated by shadows in Figure 2.2, the overlapped subregions are categorized into two type-

s: single-overlapped subregion (slash shadow) and double-overlapped subregion(cross shadow).

The double-overlapped subregion is firstly focused and associate PLMI conditions will be de-

rived. Designate parameter-dependent controller variables for each subregion is P(i,j), Z(i,j),

P(i+1,j), Z(i+1,j), P(i,j+1), Z(i,j+1), P(i+1,j+1), Z(i+1,j+1), then the controller decision vari-

ables on the double-overlapped subregion θ = (θ1, θ2) ∈ Θ([i,i+1],[j,j+1]) are interpolated as

P = ε11(θ1, θ2)P(i,j) + ε21(θ1, θ2)P(i+1,j) + ε12(θ1, θ2)P(i,j+1) + ε22(θ1, θ2)P(i+1,j+1),

Z = ε11(θ1, θ2)Z(i,j) + ε21(θ1, θ2)Z(i+1,j) + ε12(θ1, θ2)Z(i,j+1) + ε22(θ1, θ2)Z(i+1,j+1),

(2.119)

ε11(θ1, θ2) =

[
eα(θ1)

eα(θ1) + 1

][
eα(θ2)

eα(θ2) + 1

]
, ε21(θ1, θ2) =

[
1

eα(θ1) + 1

][
eα(θ2)

eα(θ2) + 1

]
,

ε12(θ1, θ2) =

[
eα(θ1)

eα(θ1) + 1

] [
1

eα(θ2) + 1

]
, ε22(θ1, θ2) =

[
1

eα(θ1) + 1

] [
1

eα(θ2) + 1

]
.
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Ṗ = ε11

 2β1θ̇1

(eα(θ1) + 1)L
(i,i+1)
1

+
2β2θ̇2

(eα(θ2) + 1)L
(j,j+1)
2

P(i,j) + ε11Ṗ(i,j)

+ε21

 −eα(θ1) · 2β1θ̇1

(eα(θ1) + 1)L
(i,i+1)
1

+
2β2θ̇2

(eα(θ2) + 1)L
(j,j+1)
2

P(i+1,j) + ε21Ṗ(i+1,j)

+ε12

 2β1θ̇1

(eα(θ1) + 1)L
(i,i+1)
1

+
−eα(θ2) · 2β2θ̇2

(eα(θ2) + 1)L
(j,j+1)
2

P(i,j+1) + ε12Ṗ(i,j+1)

+ε22

 −eα(θ1) · 2β1θ̇1

(eα(θ1) + 1)L
(i,i+1)
1

+
−eα(θ2) · 2β2θ̇2

(eα(θ2) + 1)L
(j,j+1)
2

P(i+1,j+1) + ε22Ṗ(i+1,j+1)

(2.120)

It’s obvious that, ε11 + ε12 + ε21 + ε22 = 1. Moreover, α(θm) =
βm[2(θm−θi+1

m )−L(i,i+1)
m ]

L
(i,i+1)
m

,m =

1, 2, where L(i,i+1)
m = θ

i
m − θi+1

m denotes the size of overlapped subregion in θm direction, βm

determines the interpolation rate in θm direction.

With the expression of time derivative of interpolated parametric matrix in Eqn. (2.120), the

coefficients of these additional terms are bounded as

2β1θ̇1

(eα(θ1) + 1)L
(i,i+1)
1

+
2β2θ̇2

(eα(θ2) + 1)L
(j,j+1)
2

<
2β1ν1

L
(i,i+1)
1

+
2β2ν2

L
(j,j+1)
2

= σ
(i,i+1)
1 + σ

(j,j+1)
2 .

The other three coefficients are also bounded by σ(i,i+1)
1 +σ

(j,j+1)
2 = σ([i,i+1],[j,j+1]), abbreviated

as σ in following formula.


〈
AP(i,j) +B2Z(i,j)

〉
− Ṗ(i,j) + (λ0 + σ)P(i,j) ∗ B1

CP(i,j) +D2Z(i,j) −γ(i,j)I D1

∗ ∗ −γ(i,j)I

 < 0 (2.121)


〈
AP(i+1,j) +B2Z(i+1,j)

〉
− Ṗ(i+1,j) + (λ0 + σ)P(i+1,j) ∗ B1

CP(i+1,j) +D2Z(i+1,j) −γ(i+1,j)I D1

∗ ∗ −γ(i+1,j)I

 < 0

(2.122)
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
〈
AP(i,j+1) +B2Z(i,j+1)

〉
− Ṗ(i,j+1) + (λ0 + σ)P(i,j+1) ∗ B1

CP(i,j+1) +D2Z(i,j+1) −γ(i,j+1)I D1

∗ ∗ −γ(i,j+1)I

 < 0

(2.123)


〈
AP(i+1,j+1) +B2Z(i+1,j+1)

〉
− Ṗ(i+1,j+1) + (λ0 + σ)P(i+1,j+1) ∗ B1

CP(i+1,j+1) +D2Z(i+1,j+1) −γ(i+1,j+1)I D1

∗ ∗ −γ(i+1,j+1)I

 < 0

(2.124)


〈AP +B2Z〉 − Ṗ + λ0P ∗ B1

CP +D2Z −γI D1

∗ ∗ −γI

 < 0 (2.125)

If the PLMI conditions on the subregions Θ(i,j), Θ(i+1,j), Θ(i,j+1), Θ(i+1,j+1) are proposed in

Eqns. (2.121), (2.122), (2.123) and (2.124), thenH∞ performance on each individual subregion is

guaranteed with associated γ-level. Meanwhile, ε11 · (2.121)+ ε21 · (2.122)+ ε12 · (2.123)+ ε22 ·

(2.124) yields PLMI (2.125), where

γ = ε11 · γ(i,j) + ε21 · γ(i+1,j) + ε12 · γ(i,j+1) + ε22 · γ(i+1,j+1)

< max{γ(i,j), γ(i+1,j), γ(i,j+1), γ(i+1,j+1)},
(2.126)

which indicates that H∞ performance on double-overlapped subregion is guaranteed with four

adjacent subregions for two-dimensional scheduling parameter cases.

For these single-overlapped subregion, denoted by slash shadows in Figure 2.2, theH∞ perfor-

mance can also be achieved if Eqns. (2.121), (2.122), (2.123) and (2.124) are satisfied, which can

be easily validated by eliminating either θ1 or θ2 in Eqn. (2.119) and convert it into Eqn. (2.107)

used in one-dimensional scheduling parameter case .

When designing K(i,j) in sequential order, all its four overlapped subregion with adjacent

subregions should be considered, in other words, σ-relative stability needs to be satisfied under the
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most conservative condition. Hence, we have the largest σ-relative stability index

σ(i,j) = max {σ(i−1,i)
1 , σ

(i,i+1)
1 }+ max {σ(j−1,j)

2 , σ
(j,j+1)
2 }.

The switching stability condition between any adjacent subregions can be calculated according

to the average-dwell-time switching conditions [52, 10, 53]. To ensure switching stability, the

minimum average dwell time can be calculated as τ∗a = lnµ∗
λ0

,

µ∗ = max

1 +

[(
λ(i+1,j)+λ(i,j+1)

λ(i,j)

)
eβ+

λ(i+1,j+1)

λ(i,j)
−1

]
(eβ+1)2

, 1 +
2eβ + 1

e2β
.


λ(i,j) and λ(i,j) denote the maximum and minimum eigenvalues of matrix P(i,j)(θ) over switching

surfaces. If the interpolation coefficient β is chosen large enough, µ∗ ≈ 1 and the minimum dwell

time τ∗a is very close to 0, which indicates that switching signal can be almost arbitrary.

By this point, it’s obvious to conclude the following theorem of designing switching state-

feedback LPV controller for two-dimensional scheduling parameter system. The proof can be

easily proved by the derivation procedure.

Theorem 9. With given λ0 and given scheduling parameter subregions, if there exist parameter-

dependent positive-definite matrices P(i,j)(θ), parameter-dependent matrices Z(i,j)(θ), and pos-

itive scalars γ(i,j), satisfying the PLMIs (2.127) for any (θ, θ̇) ∈ Θ(i,j) × Λ, then the switching

controller gainK(i,j)(θ) = Z(i,j)(θ)P
−1
(i,j)

(θ) guarantees the closed-loop systemH∞ performance

γ(i,j) , and the interpolated controllers with its adjacent controllers by Eqn. (2.119) also guarantee

same performance on the overlapped subregions with its adjacent subregions for switching signals

with average dwell time τa larger than τ∗a which is close to 0..
〈
AP(i,j) +B2Z(i,j)

〉
− Ṗ(i,j) + (λ0 + σ(i,j))P(i,j) ∗ B1

CP(i,j) +D2Z(i,j) −γ(i,j)I D1

∗ ∗ −γ(i,j)I

 < 0 (2.127)
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2.3.2.3 Scheduling parameter of any dimensions

Consider the general scenario that θ(t) =
[
θ1(t), θ2(t), . . . , θq(t)

]T with M numbers of divided

scheduling parameters [θ1, θ2, . . . , θm, . . . , θM ]. The overlapped subregion formed by 2M neigh-

boring subregions is denoted as Θ([n1,n1+1],··· ,[nM,nM+1]) , and the associated Lyapunov matrix

P (θ) and controller variable Z(θ) are defined as (2.128) by the convex combination of Lyapunov

matrices on neighboring overlapping subregions. Note that subregion numbering is abbreviated,

for example P(n1+i1−1,n2+i2−1,...,nM+iM−1) is abbreviated by P(i1,i2,...,iM ).

P =
2∑

i1=1

2∑
i2=1
· · ·

2∑
iM=1

{
ε1i1

(θ1)ε2i2
(θ2) . . . εMiM

(θM )P(i1,i2,...,iM )(θ1, θ2, . . . , θq)
}

=
2∑

i1=1

2∑
i2=1
· · ·

2∑
iM=1

{
M∏
m=1

εmim(θm)P(i1,i2,...,iM )(θ1, θ2, . . . , θq)

}
(2.128)

where εm1(θm) = eα(θm)

eα(θm)+1
, εm2(θm) = 1

eα(θm)+1
, ,m = 1, 2, · · · ,M.

Moreover, α(θm) =
βm[2(θm − θnm+1

m )− L(nm,nm+1)
m ]

L
(nm,nm+1)
m

, where L(nm,nm+1)
m = θ

nm
m −

θnm+1
m denotes the size of overlapped subregion in θm direction, and βm determines the interpola-

tion rate in θm direction. Obviously, we have the equation that summation of all coefficients equals

to 1,
2∑

i1=1

2∑
i2=1

· · ·
2∑

iM=1

{
ε1i1

(θ1)ε2i2
(θ2) · · · εMiM

(θM )
}

= 1. (2.129)

Thus we have the bounds for the derivative of interpolation coefficient as

ε̇mim(θm) = εmim(1− εmim)
(−1)im+12βmθ̇m

L
(nm,nm+1)
m

< εmim
2βmνm

L
(nm,nm+1)
m

. (2.130)
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The time derivative of Lyapunov matrix P (θ1, θ2, . . . , θq) can be derived as,

Ṗ =
2∑

i1=1

2∑
i2=1
· · ·

2∑
iM=1

{
ε1i1

ε2i2
. . . εMiM

Ṗ(i1,i2,...,iM ) + ε̇1i1
ε2i2

. . . εMiM
P(i1,i2,...,iM )

+ε1i1
ε̇2i2

. . . εMiM
P(i1,i2,...,iM ) + · · ·+ ε1i1

ε2i2
. . . ε̇MiM

P(i1,i2,...,iM )

}
<

2∑
i1=1

2∑
i2=1
· · ·

2∑
iM=1

{
M∏
m=1

εmim(θm)Ṗ(i1,i2,...,iM )

+
M∏
m=1

εmim(θm)

 2β1ν1

L
(n1,n1+1)
1

+ · · ·+ 2βMνM

L
(nM,nM+1)
M


︸ ︷︷ ︸

=
M∑
m=1

 2βmνm

L
(nm,nm+1)
m

=
M∑
m=1

σ
(nm,nm+1)
m

P(i1,i2,...,iM )}

=
2∑

i1=1

2∑
i2=1
· · ·

2∑
iM=1

{
M∏
m=1

εmim

[
Ṗ(i1,i2,...,iM ) +

M∑
m=1

σ
(nm,nm+1)
m P(i1,i2,...,iM )

]}
(2.131)

For the subregion Θ(n1+i1−1,··· ,nM+iM−1) × Λ, PLMI forH∞ performance is formulated as
e(i1,··· ,iM ) ∗ B1

CP(i1,··· ,iM ) +D2Z(i1,··· ,iM ) −γ(i1,··· ,iM )I D1

∗ ∗ −γ(i1,··· ,iM )I

 < 0 (2.132)

where e(i1,··· ,iM )

=
〈
AP(i1,··· ,iM ) +B2Z(i1,··· ,iM )

〉
− Ṗ(i1,··· ,iM ) + (λ0 +

M∑
m=1

σ
(nm,nm+1)
m )P(i1,··· ,iM ),

such that the convex combination of PLMI conditions (2.132) on all 2M overlapping subregions

2∑
i1=1

2∑
i2=1

· · ·
2∑

iM=1


M∏
m=1

εmim · (2.132)


yields the PLMI condition onM -overlapped subregion Θ([n1,n1+1],··· ,[nM,nM+1])


〈AP +B2Z〉 − Ṗ + λ0P ∗ B1

CP +D2Z −γI D1

∗ ∗ −γI

 < 0 (2.133)
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which indicates that the H∞ performance γ =
2∑

i1=1

2∑
i2=1
· · ·

2∑
iM=1

{
M∏
m=1

εmimγ(i1,i2,··· ,iM )

}
is

achieved by interpolating controller variables, and it’s obvious that γ < max
{
γ(i1,i2,··· ,iM )

}
for

any i1, i2, · · · iM = 1, 2.

The H∞ performance on the rest less than M -overlapped subregion can also be achieved, if

Eqn. (2.132) is satisfied on each individual subregion, which can be easily validated by eliminat-

ing terms related to the un-overlapped scheduling parameter. When designing K(n1,··· ,nM ) on

Θ(n1,··· ,nM ) in a sequential order, all overlapped subregions produced by this subregion with its

adjacent subregions should be considered, in other words, σ-relative stability index needs to be

replaced by

σ(n1,··· ,nm) =
M∑
m=1

max {σ(nm−1,nm)
m , σ

(nm,nm+1)
m }.

To ensure switching stability, the minimum average dwell time can be calculated by the eigen-

values of P (θ) over switching surfaces. If the interpolation coefficient β is chosen large enough,

the minimum dwell time is very close to 0, which indicates that switching signal can be almost

arbitrary.

By this point, it’s obvious to provide the following theorem of designing switching state-

feedback LPV controller for two-dimensional scheduling parameter system. The proof is provided

by the above derivation procedures.

Theorem 10. With given λ0 and given scheduling parameter subregions, if there exist parameter-

dependent positive-definite matrices P (θ), parameter-dependent matrices Z(θ), and positive s-

calars γ(n1,··· ,nM ), satisfying the PLMIs (2.134) for any (θ, θ̇) ∈ Θ(n1,··· ,nM ) × Λ, then the

switching controller gain K(n1,··· ,nM )(θ) = Z(θ)P−1(θ) guarantees the closed-loop system H∞

performance γ(n1,··· ,nM ) , and the interpolated controllers with its adjacent controllers by E-

qn. (2.119) also guarantee same performance on the overlapped subregions with its adjacent
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subregions for switching signals with average dwell time τa larger than τ∗a which is close to 0..
〈AP +B2Z〉 − Ṗ + σ(n1,··· ,nm)P ∗ B1

CP +D2Z −γ(n1,··· ,nM )I D1

∗ ∗ −γ(n1,··· ,nM )I

 < 0 (2.134)

2.4 PLMI Relaxation Method

2.4.1 Modeling scheduling parameters

The scheduling parameter vector considered in the open-loop system (2.1) is defined in an affine

manifold, so we first need to map that into a multi-simplex manifold for subsequent convex analysis.

Following the aprocedure presented in Lacerda et al.[82] and Oliveira et al.[70], the original

parameter domain can be converted into a convex multi-simplex domain. Note that a multi-simplex

domain is defined as the Cartesian product of multiple unit-simplexes. Thus, the scheduling

parameter θi(t) can be converted into the unit-simplex variable αi(t) using the following formula,

αi,1 =
θi(t)− θi
θ̄i − θi

, αi,2 = 1− αi,1 =
θ̄i − θi(t)
θ̄i − θi

, i = 1, 2, . . . , q. (2.135)

As a result, we have αi = (αi,1, αi,2) ∈ Λi,2, where the two dimensional unit-simplex Λi,2 for αi

is defined as

Λi,2 := {αi ∈ R2 :
2∑

k=1

αi,k = 1, αi,k ≥ 0} .

Hence, the unit-simplex variable αi ∈ Λi,2 is created. Similarly, the time derivative of the

scheduling parameter can also be converted into a unit-simplex variable by utilizing the following

condition,

α̇i,1(t) + α̇i,2(t) = 0 . (2.136)

Hence, the rates of convex parameters are bounded as follows,

−νθi
θ̄i − θ i

≤ α̇i,k ≤
νθi
θ̄i − θ i

, i = 1, 2, . . . , q; k = 1, 2 . (2.137)
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Note that the time derivative of parameter αi lies in the space modeled by the convex combination

of the columns of the matrix Hi ∈ R2×2 given by

Hi =

 −
νθi
θ̄i−θi

,
νθi
θ̄i−θi

νθi
θ̄i−θi

, −
νθi
θ̄i−θi

 , i = 1, 2, . . . , q , (2.138)

and α̇i can be established using a unit-simplex of dimension 2 as

Ωi,2 := {φi ∈ R2 : φi =
2∑

k=1

ηi,kH
k
i , ηi ∈ Λi,2}, i = 1, 2, . . . , q , (2.139)

where ηi = (ηi,1, ηi,2) and Hk
i denotes the kth column of matrix Hi. Therefore, the unit-simplex

variable α̇i ∈ Ωi,2 is created. Furthermore, the scheduling parameters (θ, θ̇) with given bounds can

then be converted into multi-simplex domain from Cartesian product of multiple unit-simplexes as

follows,

(α, α̇) ∈ Λ× Ω :=

q∏
i=1

Λi,2 ×
q∏
i=1

Ωi,2 .

By utilizing the scheduling parameter transformation presented above, the LPV system Σ(θ) de-

scribed in (2.1), which is an affine function of parameter θ, can now be transformed into an LPV

system representation Σ(α) that is a function of α in multi-simplex domain. For simplicity, we

assume that Σ(α) takes the same form as Σ(θ) in that all the system matrices are now functions of

α. Subsequently, the LPV controller design, to be presented in the next section, will be based on

the convex scheduling parameter α. However, in actual control implementation, the designed LPV

controller in multi-simplex α domain will need to be mapped back to the controller in the affine θ

domain [70].

2.4.2 PLMIs relaxation

The PLMIs formulated in Theorem 5, 7, 8, 9, and 10 renders an optimization problem of infinite

dimensions and un-defined decision variable structures. To numerically tackle this optimization

problem, affine decision variable structure is assumed, for example, ÂjK(θ) is expressed as ÂjK(θ) =

Â
j
K0 +

∑q
i=1 Â

j
Kiθi . Coefficient check in multi-simplex domain [19, 70, 71] has been adopted to
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successfully obtain a finite set of LMIs but with introduced conservativeness. Other options [72, 73]

can also be applied, for instance, sum-of-square relaxation [74] and enforcing multi-convexity

method [75].

Therefore, controller decision variables can be iteratively searched to optimize the cost function.

The operation of PLMIs and optimization problem are solved by using the parser YALMIP [76]

jointly with optimization algorithm SeDuMi [77].

63



CHAPTER 3

APPLICATION EXAMPLES

3.1 Active Magnetic Bearing (AMB) Model

An active magnetic bearing (AMB) system borrowed from Lu andWu [1, 83, 84, 85] is revisited

to demonstrate the effectiveness of the proposed smooth-switching LPV control design. In [1],

states and control inputs experience sharp jump over switching surfaces, and these sharp jumps will

be effectively smoothened by applying the proposed method.

The AMB system is formulated into an LPVmodel with rotor speed as the scheduling parameter

θ. In the automatic balancing design, the measured rotor displacements are assumed to be exposed

to sensor noises, and the gain-scheduling controller is desired to suppress the displacements of rotor

centerlines. While H∞ channels are kept the same as these in [1] for attaining guaranteed robust

stability, the outputs of H2 channels are chosen to be [x1, x2]T = [lθ, lψ]T , the displacements

of rotor centerline. In this way, the smooth-switching mixed ICC/H∞ LPV controller will be

designed to suppress rotor displacements subject to measurement noise, with constrained control

inputs and bounded modeling uncertainty. The main benefits of the proposed method over [1]

are three-fold. First, ε-balanced optimal H2 performance is achieved with smooth responses over

switching surfaces. Second, the control input constraint is enforced during the control design.

Last, the trade-off among system H2 performance, ICC condition, and switching smoothness is

established and provides insights as to how to tune the controllers to attain a balanced system

performance.

The weighting functions used in this study are the same as those in [1, 86]. That is, Wz =

10(s+ 8)

s+ 0.001
I2, Wu =

0.01(s+ 100)

s+ 100000
I2, and Wn = 0.001I2. The rotor speed is assumed to vary

within the range θ ∈ [315, 1100] rad/s and variational rate θ̇ ∈ [−100, 100] rad/s2. The scheduling

parameter is divided into two overlapping subregions; namely, θ ∈ [315, 720] and θ ∈ [700, 1100],

and its trajectory is defined in Figure 3.1. Switching events happen when θ = 720 rad/s (at

64



t1 = 2.9s) and θ = 700 rad/s (at t2 = 6.5s). Same as [1], the two dimensional measurement

noises are chosen as step inputs with the same magnitude of 0.001m but with the opposite sign.
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Figure 3.1: Trajectory of scheduling parameter, rotor speed

3.1.1 Trade-off between trace(W ) and ICC conditions

To study the influence of ICC conditions when optimizing the H2 performance, different upper

bounds of control inputs are considered in PLMIs. When the cost function (2.81) without smooth-

ness index is minimized to obtain the optimal H2 performance, the trade-off relationship of ICC

conditions U and H2 performance upper bound trace(W ) can be found in Figure 3.2. It can be

observed that increasing ICC bound U leads to decreasing trace(W ), indicating that larger control

authority will result in improved system performance. Moreover, when U is greater than 108,

further reducing trace(W ) requires much larger control authority. Hence, U = 108 is selected as

the optimal trade-off point, considering both control effort and achievable performance.

The displacement and control input responses under different U and fixed γ = 36 are investigat-

ed. As shown in Figures 3.3 and 3.4, with larger control authority, the displacements are suppressed

to a much smaller level. In the case of infinite ICC condition, the gray solid curve provides the best

performance, and U = 108 produces slightly better responses than the duplicated results following

the procedure in [1]. Furthermore, the responses experience smaller jumps, because of the lack of
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feed-forward termDK in the mixed ICC/H∞ control. In Figures 3.5-3.7, larger control constraint

leads to larger control effort in order to achieve better performance. Infinitely large U will produce

control input magnitude larger than 6000 N, in order to achieve the bestH2 performance as shown

in Figures 3.3 and 3.4. From the time-domain simulation results, considering both control effort U

and achievable systemH2 performance, the selection of optimal trade-off ICC constraint U = 108

can be cross-validated with Figure 3.2.
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Figure 3.2: Trade-off relationship between U and trace(W )
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Figure 3.3: x1 response under different ICC conditions
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Figure 3.4: x2 response under different ICC conditions
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Figure 3.5: u1 response under different ICC conditions

3.1.2 Smooth switching LPV control by simultaneous design

3.1.2.1 Trade-off between trace(W ) and switching smoothness

In this subsection, the smoothness index is considered in the cost function in order to attain an

optimal trade-off relationship between system performance and switching smoothness. With the

fixed robustness level γ = 36, weighting factor ε is tuned to balance the system performance and
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switching smoothness on S(1,2) and S(2,1). Two different ICC conditions U1 = 107 and U2 = 108

are considered in this study. From Figures 3.8 and 3.9, one can see that increased weighting factor

ε leads to decreased trace(W ) or improved output performance. Note that increased Ism leads to

decreased controller switching performance. These results clearly show the trade-off relationship

between performance and switching smoothness. One choice of optimal trade-off point is that

magnitude trace(W ) is small, and the smoothness index is not yet increased significantly, such
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that system performance is close to the best achievable level while the switching smoothness is

acceptable. The chosen weighting factor for two cases are: (ε1, ε2) = (10, 1).
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10-2 100 102

0

1

2

3

4

5

6

0

0.005

0.01

0.015

0.02
trace(W)

Smoothness S(1,2)

smoothness S(2,1)

Figure 3.9: Trade-off relationship between switching smoothness and trace(W ) under U2=108

69



3.1.2.2 Simulation results and discussions
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Figure 3.10: State x1 response by [1] and proposed method
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Figure 3.11: State x2 response by [1] and proposed method

After an optimal trade-off point is chosen, the time-domain simulations under different ICC
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Figure 3.12: Control input u1 response by [1] and proposed method
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Figure 3.13: Control input u2 response by [1] and proposed method

conditions are conducted with designed controllers1. As shown in Figures 3.10 and 3.11, dashed-

lines are the un-smooth state responses duplicated using the method in [1], while solid- and

dotted-lines represent these responses obtained by the proposed method under two different ICC

conditions.
1The designed switching controller matrices are available online, https://github.com/

hetianyi1992/smooth_switching_LPV.
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The unsmooth state responses from [1] experience sharp jumps on switching surfaces at t1 =

2.9s and t2 = 6.5s. However, with the proposed method, the sharp jumps of state responses are

successfully smoothened by minimizing the ε-balanced cost function (2.81), which demonstrates

the effectiveness of the proposed smooth-switching control design.

By comparing state responses under different ICC conditions, it is easy to find that rotor

displacements can be further suppressed when larger control authority is made available. With

tuned U2 = 108, ε2 = 1, the proposed method not only leads to a smooth-switching controller, but

also reduces the peak magnitude of rotor displacements over the un-smooth responses duplicated by

following the procedure in [1]. That is, the well-tuned ICC conditions and smoothness weighting

coefficient lead to significantly improved switching smoothness, while system performance is not

degraded compared to conventional LPV control .

Figures 3.12 and 3.13 show the unsmooth control responses duplicated from [1] and smooth

control inputs under different ICC conditions. Unsmooth control inputs experience sharp jumps

at switching instants, while control inputs are smoothened using the proposed smooth-switching

controllers. By comparing control input responses, it can be found that ICC conditions influence

the peak magnitudes of control inputs. With determined ICC conditions, a well-tuned weighting

coefficient enforces smooth switching without sacrificing system performance.

Besides the demonstrated switching smoothness, this study also provides valuable insights

regarding how to tune the model-based controller gain. Note that tuning control gain plays an

essential role in implementing model-based controllers for practical applications. Due to system

modeling error, high gain controllers often lead to instability or degraded system performance,

while low gain controllers might not improve system performance much. Therefore, the ability to

design a controller with an adequate gain is essential in practice, and the proposed method makes it

possible to design controllers with different gains by modifying ICC conditions. The ICC condition

tuning along with the line search of smoothness weighting coefficient makes it possible to balanced

switching smoothness and system performance in practice, which is very beneficial for practical

applications.
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3.2 Blended-Wing-Body (BWB) Airplane Flexible Wing

3.2.1 LPV modeling of BWB airplane flexible wing

Before the smooth switching LPV control design is applied to the BWB airplane flexible wing

model, in this section, we consider the LPV modeling of BWB flexible wing; see Figure 3.14

for a schematic illustration. Assume that the BWB airplane is flying at a fixed altitude but with

varying flight speed. The main body of BWB is gridded into six beam elements, and each wing

is gridded into four beam elements. The inner three elements at each wing are selected as control

surfaces, labeled as U1-U6 in Figure 3.14, and wing bending displacements are to be suppressed

by activating the control surfaces. In order to modulate the vibrational behaviors of entire airplane

wings, a total of 18 bending displacements are selected as system outputs. For example, outputs 1

and 9 are the nodal displacements at the right-wing root and right wing tip in Figure 3.14.

The LPV modeling procedure can be described as follows:

• A bundle of LTI full-order models (FOMs) are derived by linearizing nonlinear aero-elastic

model at each gridded flight speed [87];

• FOMs are then transformed into modal coordinates and all systemmodes are properly aligned

to track mode variations from one flight speed to the next;

• Model-reduction is conducted to keep the most significant modes over the entire gridded

flight envelop [88];

• Linear interpolation over the aligned reduced-order models to attain the affine LPV model.

The interpolation of aligned modes is able to capture the variation of system’s coupled

aerodynamicmodewith varying flight speed, which cannot be achieved by direct interpolation

of LTI system matrices [88].

In this study, the scheduling parameter is chosen to be the airplane flight speed, and it ranges

from 110 to 130 m/s. A bundle of reduced-order LTI models are derived at varying flight speeds
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Table 3.1: Mode description in reduced-order model

Mode ID Rigid-body component Flexible component Note
M1 Plunging and pitching First symmetric out-of-plane bending Bending/torsion coupling
M2 Plunging and pitching Second symmetric out-of-plane bending Bending/torsion coupling
M3 Plunging and pitching First symmetric in-plane bending Bending/torsion coupling
M4 Roll Second anti-symmetric out-of-plane bending Bending/torsion coupling
M5 - First anti-symmetric in-plane bending Bending/torsion coupling
M6 - - Aerodynamic dominant mode

and at an increment of 0.5 m/s to capture model variation. Six dominant modes are kept in the

reduced-order LTI models, as marked by M1-M6 in Figure 3.15. Physical meanings of these

modes are summarized in Table 3.1. Note that all the bending/torsion coupling effects come from

the backswept of the wing, and the wing structural rigidity itself has no inherent bending/torsion

coupling. The vibration modes stay stable when flight speed is below 115 m/s, and mode M1

becomes unstable beyond 115 m/s as shown in Figure 3.15.

Blended-Wing-Body Model, 

6 beam elements in body 

4 elements in each wing 

Control surfaces are defined on inner 3 elements of wing members. See below. 

I actually only used U1 U2 U4 U5 to trim the vehicle. And U3 and U6 are for other maneuvers. But it 

does not matter for a linearized model, as they are all small perturbations on top of the trimmed values. 

U7 = thrust 

Dimension of A: 209 * 209 

Dimension of B: 209 * 7 

Degree Index in A and B 

strain 1-56 

Strain rate 57-112 

Rigid body velocity 113-118 

quaternion 119-122 

Global rigid-body position 123-125 

aerodynamics 126-209 

Outputs are all bending strain (curvatures of wing elements). So: 

Dimension of C: 8 * 209 

Dimension of D: 8 * 7 

Speed from 80 to 130 m/s, incremental is 0.5 m/s. Total of 101 models. 

Figure 3.14: Schematic layout of BWB airplane configuration

The affine LPV model is obtained by linearly interpolating the first and last eigenvalues of each

mode. As shown in the close-up view of Figure 3.15, the solid line shows the linear interpolation of

the eigenvalues, where crosses denote the loci of actual eigenvalues as function of flight speed. As

a result, in the interpolated affine LPV model, system damping coefficient is approximated while

system stability remains unchanged over the entire flight envelope. Similarly, all other system

matrices are also obtained by following the same linear interpolation process. The resulted affine

LPV model consists of 12 states (6 modes), 6 control inputs (control surfaces deflection angles)

and 18 performance outputs (wing bending displacements).
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Figure 3.15: Root loci of open-loop system with varying flight speed

There are two main control design goals. One is to robustly stabilize the closed-loop system

under bounded modeling error and the other is to suppress wing bending displacements, excited by

the gust disturbance, using control surfaces on the wing. As a result, two independentH∞ andH2

input channels are used along with two independent H∞ and H2 output channels for the system

described in Eqn. (2.1), where modeling error is modeled as system disturbance input w∞ excited

by the system output z∞ through uncertainty ∆ and the closed-loop robust stability is achieved

by satisfying the desired H∞ performance; the gust disturbance is treated as disturbance input w2

with associated H2 performance output z2 to be optimized for suppressing bending displacement

z2 caused by the gust disturbance. In addition, ICC constraints are imposed on control inputs

or deflection angles of control surfaces, so that they are hard-constrained to operate within their

limits. In order to apply switching LPV control, the switching LPV model is developed by dividing
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the scheduling parameter range into multiple overlapping subregions, as shown in Figure 3.16. In

the next subsection, a generic LPV model with H∞ and H2 channels will be considered and the

associated system performances defined.

Θ(1)
Θ(2)

Θ(3)

S(2,1) S(1,2) S(3,2) S(2,3)

θ

110 122 122.5 126 130126.5 m/s

Figure 3.16: Three-subregion partition for scheduling parameter

3.2.2 Mixed ICC/H∞ LPV control

The H2 outputs of interest are bending displacements, while the H∞ outputs include bending

displacements and control inputs. The weighting matrix Q is chosen to be identity matrix, that

is, all outputs are weighted equally. The scheduling parameter is chosen as a biased sinusoidal

function, θ(t) = 110 + 20 sin(t/20) m/s, as shown in Figure 3.17. Therefore, within the time

interval of [0, 20π] second, the scheduling parameter is bounded as 110 m/s ≤ θ ≤ 130 m/s, and

its rate bounded as -1 m/s2 ≤ θ̇ ≤ 1 m/s2. In general, the scheduling parameter trajectory should

satisfy the boundary conditions for both θ and θ̇, and be at least piece-wise differentiable. It is

commonly accepted that the variation of the scheduling parameters must be "slow" compared to

the system dynamics, because designing an LPV controller for fast-varying scheduling parameters

is a challenge [89].

3.2.2.1 Constraints and performance trade-off

In the mixed ICC and H∞ (or robust ICC) LPV control problem, both control input constraints

and robustness requirement would significantly impact the optimal solution to the PLMIs. Hence,

a trade-off study is conducted to better understand the characteristics of LPV models. Figure 3.18
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Figure 3.17: Scheduling parameter (flight speed) trajectory

shows the complete trade-off between the control effort Ū , the robustness levels γ∞, and the output

performance trace(W ). For a given robustness level, the trade-off contour illustrates that larger

control input constraint leads to smaller output covariance, hence better H2 performance for the

closed-loop system. In addition, with small control effort, output performance will be degraded,

resulting in a large output covariance. An increase in control effort leads to notable improvement

on system H2 performance with wider range of admissible robustness levels. This demonstrates

that larger control input can effectively compensate for the robustness constraints.

Furthermore, based on the Small Gain Theorem [33], the closed-loop system satisfying the

condition ||T∞||∞ ≤ γ∞ is well-posed and internally stable for all uncertainty satisfying ||∆||∞ <

1/γ∞, where ∆ can be considered as an interconnection from z∞ to w∞, as shown in Figure 1.3.

In Figure 3.18, with a fixed Ū , it is obvious that with more stringent requirement on robust

performance, i.e. smaller γ∞, the output performance degrades with increase in trace(W ), leading

to worsen H2 performance. Note that, while γ∞ decreases incrementally, trace(W ) increases

or H2 performance degrades much drastically. This can be explained by the reciprocal relation

between uncertainty ∆ and γ∞.

77



0.50
0

0.5

1

10-4
tr

ac
e(

W
)

1

1.5

0.01

2

0.02 1.50.03
20.04

Figure 3.18: Trade-off between control limit Ū and trace(W) at different robustness conditions

The trend at higher or lower robustness level reveals an important implication for controller

design. At lower robustness level, for instance γ∞ = 2, the achievable H2 performance remains

almost unchanged when Ū > 0.01. This indicates that the robust H∞ performance requirement

is not the dominant factor for control design and the H2 performance can be achieved with a

relatively small control effort. However, at higher robustness level, for instance γ∞ = 0.5, theH∞

performance becomes critical for control design. As a result, in order to achieve a specific H2

performance, more control effort is required. It is also observed that the achievableH2 performance

degrades with increased robustness level. Based on the above-mentioned trade-offs, the constraints

for the control design are chosen to be Ū = 0.02 and γ∞ = 1, which ensure a good robustness

margin to handle modeling error with good balance betweenH2 performance and control effort.
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3.2.2.2 Mixed ICC andH∞ Control Problem

Themixed ICC andH∞ control problem is to find a state-feedback gain-scheduling controller (2.52)

for the LPV system (2.1), while minimizing the upper bound ofH2 performance cost [90, 35]

min
K(θ)

trace(W ) , (3.1)

such that:

• the closed-loop system (2.5) is exponentially stable,

• the following constraints of robustness level and control input covariance are satisfied,

||T∞(K(θ), s)||∞ ≤ γ∞ , (3.2)

Cov(uk(t)) ≤ Ūk, k = 1, 2, . . . , nu , (3.3)

where γ∞ > 0 is the givenH∞-norm bound on system robustness, and Ūk the given bound on the

control covariance Cov(uk(t)) for the kth control input uk(t) defined below,

Cov(uk(t)) =

[
1

2π

∫ ∞
−∞

T ∗u (K(θ), jω)Tu(K(θ), jω)dω

]
, (3.4)

and Tu(K(θ), s) := Tw2→u(K(θ), s) denotes the transfer function from w2(t) to u(t) for the

LPV system (2.5). Note that, for deterministic signal, covariance is defined in terms of time

correlation [51, 91, 7, 92].

As a result, the proposed mixed ICC andH∞ control problem has interesting interpretations in

stochastic and deterministic perspectives. The stochastic interpretation assumes that the exogenous

input w2(t) is an uncorrelated zero-mean white noise with unit intensity. Then, the mixed ICC and

H∞ control problem is to minimize the output covariance (or RMS-value) while satisfying multiple

control input covariance constraints and H∞ robust performance criterion. The control input

covariance constraints can be considered as constraints on the variances of the control actuation. In

other words, the proposed control provides the best output H2 performance with the given control
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H2 performance and robust H∞ constraints. On the other hand, the deterministic interpretation

assumes that the exogenous input w2(t) is an unknown disturbance that belongs to a bounded L2

set. Then, the mixed ICC and H∞ control problem is to minimize the square summation of L2

to L∞ gains from w2(t) to individual output channel z2,k(t) for k = 1, 2, . . . , nz2, subject to the

L2 to L∞ gain constraints (3.3) on uk(t) for k = 1, 2, . . . , nu and the H∞ constraint (3.2). In

other words, the proposed control problem is to minimize the weighted sum of the worst case peak

values of performance output subject to the constraints on worst-case peak values of control inputs

and the H∞ constraint. It should be noted that the L2-L∞ gain from w2(t) to z2(t) is defined in

White et al. [91] as follows,

σ

[
1

2π

∫ ∞
−∞

T ∗2 (K(θ), jω)T2(K(θ), jω) dω

]
= sup
w2∈L2,z2∈L∞,||w2||2 6=0

||z2(t)||2∞
||w2(t)||22

(3.5)

where σ [·] denotes the maximum singular value operator.

3.2.2.3 Time-domain simulation results

Given the range of θ and θ̇, the control input constraints, and the robustness level, the LPVmodel of

the BWB airplane is simulated when it is subjected to a sharp-edged gust disturbance for 5 seconds.

Figures 3.19 and 3.20 show the wing root (output 1) and wing tip (output 12) bending displacement

of the right wing for open-loop case, and as can be seen the results are unstable. Therefore, a

state-feedback LPV controller in the form of Eqn. (2.52) is designed to stabilize wing elements and

suppress the bending displacement.

Using Theorem 3, a state-feedback LPV controller can be design with scheduled control gain

matrix of dimension 6 × 12, mapping 12 states to 6 control inputs. Note that the LPV model is

developed in the modal coordinate, the measured or observed states in original coordinate need to

be transformed to the modal coordinate. In practical implementation, scheduling parameter (flight

speed) will be online measured in each sampling time, and control inputs of altering flap angles

can be calculated from corresponding controller gain matrix and measured or observed states.
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Figure 3.19: Bending displacement at wing root
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Figure 3.20: Bending displacement at wing tip

To demonstrate the effect of control input constraints and robustness levels toH2 performance,

multiple simulations are performed for comparison. When robustness level γ∞ = 1 is fixed, each

control input is identically constrained by various upper bounds Ū . Figures 3.21 and 3.22 show the

bending displacement at wing root and wing tip for Ū = 0.01, 0.02, 0.04. As can be seen, during

the gust disturbance, the outputs are converged and bounded. In addition, with larger control

inputs, the output responses have smaller overshoot and faster convergent rate, indicating that H2
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Figure 3.21: Wing root bending under different Ū
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Figure 3.22: Wing tip bending under different Ū

output performance are improved. As shown in Figures 3.23 - 3.28, the control inputs U1-U6 are

increased by more than twice when upper bounds become doubled. This comparison indicates that

the selection of Ū = 0.02 offers a good balance between the performance and the control effort,

which produces an upper bound of u = 0.14 rad ≈ 8◦.
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Figure 3.23: Control input 1 under different Ū
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Figure 3.24: Control input 2 under different Ū

83



0 10 20 30 40 50 60
Time/s

-0.08

-0.06

-0.04

-0.02

0

F
la

p 
an

gl
e/

de
gr

ee

10 12 14 16

-0.08

-0.06

-0.04

-0.02

0

Figure 3.25: Control input 3 under different Ū
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Figure 3.26: Control input 4 under different Ū
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Figure 3.27: Control input 5 under different Ū
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Figure 3.28: Control input 6 under different Ū
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All 6 inputs are compared to show how the control law allocates 6 independent inputs to

suppress airplane wing displacements. It can be observed that inputs 1 and 3 are distributed by

similar control authority. The equal distribution of control authority also happens on control inputs

2 and 4, control inputs 5 and 6.

When Ū = 0.02 is fixed, the robustness level γ∞ is varied to study its influence on output

performance. As shown in Figures 3.29 and 3.30, the bending displacement at wing root and

wing tip are improved when γ∞ increases from 0.5 to 1. However, the responses remain almost

unchangedwhen γ∞ increases from 1 to 2. This phenomenonmatches well with the earlier trade-off

study shown in Figure 3.18. Figures 3.31 and 3.32 show the control inputs when the robustness level

is greater than 1, as can be seen that γ∞ is no longer the dominant factor for output performance.

After Ū is chosen, the LPV controller is designed and applied to actual gridded LTI models to

validate its feasibility. Figure 3.37 shows the root loci of the closed-loop system with varying flight

speed. As shown, the proposed LPV controller stabilizes the gridded LTI models subject to input

constraints, while minimizing the output H2 performance. However, in an effort to reduce control

energy, some modes are kept unchanged by the proposed controller. Comparing Figures 3.15

and 3.37, the modes (M1,M2,M4), which dominate in z−directional bending motion, have been

significantly shifted, while othermodes (M3,M5,M6) are kept unchanged. In addition, Figure 3.38

shows the ICC cost or H2 norm of the closed-loop system with the LPV controller applied to the

interpolated LPV system and actual gridded LTI models, respectively. Their magnitudes are very

close and upper bounded by trace(W ). When combining with Figure 3.37, Figure 3.38 effectively

validates that the proposed interpolation of LTI models and LPV controller design is feasible for

vibration control of the BWB airplane.
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Figure 3.29: Wing root bending under different γ∞
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Figure 3.30: Wing tip bending under different γ∞
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Figure 3.31: Control input 1 under different γ∞
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Figure 3.32: Control input 2 under different γ∞

88



0 10 20 30 40 50 60
Time/s

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

F
la

p 
an

gl
e/

de
gr

ee

10 12 14 16

-0.04

-0.02

0

Figure 3.33: Control input 1 under different γ∞
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Figure 3.34: Control input 2 under different γ∞
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Figure 3.35: Control input 1 under different γ∞
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Figure 3.36: Control input 2 under different γ∞
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3.2.3 Smooth switching LPV control by simultaneous design

3.2.3.1 Time-domain simulation results

The scenario that a BWB airplane experiences a sharp gust disturbance is considered in this study.

The gust disturbance is assumed to induce a constant shift angle w2 on all control surfaces for

t ∈ [0, 9] second, and we assume that w2 = 0.005 rad ≈ 0.28◦. As shown in Figure 3.39, two

switching events happen at t = T1 = 3s and t = T2 = 8s. Therefore, within the time interval of

[0, 10] second, the scheduling parameter is bounded by 110m/s≤ θ ≤ 130m/s, and its rate bounded

by -1 m/s2 ≤ θ̇ ≤ 1 m/s2. Note that when the open-loop system is subject to gust disturbance,

bending displacements are unstable, as shown in Figure 3.40. A family of smooth-switching mixed

ICC/H∞ LPVDOF controllers are to be designed using Theorem 7 for stability as well as achieving

a balanced H2 performance and switching smoothness, with guaranteed H∞ robust performance

(at γ = 10).

0 1 2 3 4 5 6 7 8 9 10
Time/s

120

121

122

123

124

125

126

127

128

F
lig

ht
 s

pe
ed

 (
m

/s
)

T1

T2

Figure 3.39: Scheduling parameter with switching events

The trade-off relationship is explored by line search of weighting coefficients ε under different

ICC constraints: Ū1 = 8, Ū2 = 12 and Ū3 = 20. As shown in Figure 3.41, the switching

smoothness index can be reduced by decreasing the weighting coefficient ε, which results in an
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Figure 3.40: Unforced bending displacements at wing root (upper) and wing tip (lower)
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Figure 3.41: Trade-off between trace(W ) and smoothness index Ism

increasedH2 performance index trace(W ) or degradedH2 performance. This illustrates that sys-

tem performance is sacrificed in order to enforce switching smoothness. Especially, when ε < 102,

the system performance index increases significantly for all three ICC constraints, indicating that
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system performance is degrading much drastically in order to achieve smoother responses. Thus,

an optimal weighting coefficient is chosen to be ε = 102 to attain smooth switching with acceptable

system performance. To demonstrate the effectiveness of the proposed method, extensive simula-

tions are conducted by considering three different controllers: 1) non-switching LPV controller, 2)

un-smooth switching LPV controller, and 3) the proposed smooth-switching LPV controller. And

these controllers are applied to the BWB flexible wing model for vibration suppression.

Figures 3.42 and 3.43 show the bending displacement at wing root (output 1) and wing tip

(output 12), respectively, while Figures 3.44-3.49 show the control allocation of deflection angles

of six flaps according to three different control strategies.
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Figure 3.42: Upper: comparison at wing root with smooth/un-smooth switching controller; Lower:
comparison at wing root with three control methods
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Figure 3.43: Upper: comparison at wing tip with smooth/un-smooth switching controller; Lower:
comparison at wing tip with three control methods

In the upper sub-figure of Figure 3.43, smooth (blue) and un-smooth (red) responses of bending

displacement at wing root are shown. At switching event T1 = 3s, controller 1 is switched

to controller 2, and the sudden changes of un-smooth controllers cause abrupt jumps for all three

different ICC conditions. On the other hand, the smooth-switching LPV controllers enforce smooth

output responses, with slightly increased bending displacement as a minor penalty on system

performance. Similar behaviors can be observed at the switching event T2 = 8s. Another trade-off

relationship can be observed from output responses. Different ICC constraints will influence the

optimal achievable system performance. With larger control input, the bending displacements can

be suppressed even further, however, when Ū > 12, much more control effort will be consumed

to further improve system performance, as seen from control responses in Figures 3.44-3.49.

Therefore, the hard constraint on control input is chosen as Ū = 12, in order to achieve acceptable

performance and energy saving.

The lower sub-figure of Figure 3.43 shows the comparison of wing tip responses with three

different controllers. As shown, all three control methods are able to stabilize and suppress bending
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displacements for the entire flight speed envelope. It can be further observed that both smooth and

un-smooth switching LPV controllers produce a smaller magnitude of bending displacements than

the non-switching LPV controller, and this is achieved by relaxing the PLMI conservativeness and

enforcing the optimal performance on each subregion. However, un-smooth switching LPV leads

to undesirable jump on the bending displacement at wing tip, which is effectively smoothened by

the proposed smooth-switching LPV controller.

The responses of control input also demonstrate the effectiveness of the proposed control

method. In the upper sub-figures of Figures 3.44-3.49, the un-smooth control design results in

control inputs exhibiting sharp jump at the switching events, but the proposed smooth-switching

LPV controllers effectively remove these jumps. Especially at switching event T2 = 8s, un-smooth

switching controller commands the control surfaces to deflect in opposite directions within a very

short time, which imposes a severe capacity burden on the actuator. Smooth-switching controller,

on the other hand, allocates the deflection angles of control surfaces with smooth control commands

when switching occurs. In the lower sub-figures, control commands of three control methods are

compared. Unlike switching LPV control, non-switching LPV control results in a conservative con-

trol input of a very small magnitude due to the conservativeness introduced in PLMIs. Un-smooth

switching LPV control is able to relax conservativeness and assign slightly larger control energy,

leading to improved vibration suppression of bending displacements. However, by minimizing

control gain differences in the optimization cost function, smooth-switching LPV control can result

in much smoother responses with slight degradation on system performance, which is still better

than the performance of the un-smooth switching LPV control.
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Figure 3.44: Upper: control 1 responses comparison with smooth/un-smooth switching controller;
Lower: control 1 responses comparison with three control methods
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Figure 3.45: Upper: control 2 responses comparison with smooth/un-smooth switching controller;
Lower: control 2 responses comparison with three control methods
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Figure 3.46: Upper: control 3 responses comparison with smooth/un-smooth switching controller;
Lower: control 3 responses comparison with three control methods
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Figure 3.47: Upper: control 4 responses comparison with smooth/un-smooth switching controller;
Lower: control 4 responses comparison with three control methods
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Figure 3.48: Upper: control 5 responses comparison with smooth/un-smooth switching controller;
Lower: control 5 responses comparison with three control methods
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Figure 3.49: Upper: control 6 responses comparison with smooth/un-smooth switching controller;
Lower: control 6 responses comparison with three control methods
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3.3 Numerical Examples for Sequential Design

In order to demonstrate the feasibility of the proposed method, two examples will be given

and results will be compared with simultaneous design, as well as non-switching LPV design.

Furthermore, the interpolation rate β and scheduling parameter variational rate are varied to study

their ultimate influence to closed-loopH∞ performance γ.

The formulated PLMIs are of infinite-dimension, and they can be transformed into finite-

dimensional by means of various relaxation methods. To numerically tackle this optimization

problem, coefficient check in multi-simplex domain by Polya theorem [19] is applied. Gridding

technique [68] or other relaxation methods [73] can also be potentially used to tackle this problem.

Some software is available to manipulate the PLMIs and handle the convex optimization. In this

study, The PLMIs are solved by using the parser ROLMIP [93] and YALMIP [76], which work

jointly with optimization tool SEDUMI [77]. Computation is operated using a computer with

Intel core i7-4770T CPU @2.50 GHz and 16 G RAM, and computation times of three design

approaches are obtained by running tic and toc commands in MATLAB, and they are compared to

show computational efforts.

3.3.1 Example 1

The LPV model in reference [94] is revisited to illustrate the feasibility of the proposed sequential

design approach of smooth switching LPV controllers. Consider the LPV model with affine

dependency of one-dimensional scheduling parameter θ,

A(θ) =

 25.9− 60θ 1

20− 40θ 34− 64θ

 , Bu =

 3

2

 ,
Bw =

 −0.03

−0.47

 , C =

 1 1

0 0

 , Dw =

 0

0

 , Du =

 0

1

 .
The time-varying scheduling parameter θ(t) is bounded as 0 ≤ θ(t) ≤ 1, and its variational

rate is bounded as −v ≤ θ̇(t) ≤ v. The domain of Θ is assumed to be partitioned as three
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Table 3.2: Comparison of three different design methods in each design iteration

non-switching sequential simultaneous

No. LMIs 8 8 27
No. variables 14 14 42
tic/toc time (s) 0.23 0.21 0.39

overlapping subregions of θ range, [0, 0.4], [0.3, 0.7], [0.6, 1] , and variational rate bound is kept as

not divided. Controller decision variables P (θ) and Z(θ) are assumed to be in the affine form as

P (θ) = P0 + P1θ, and Z(θ) = Z0 + Z1θ. Controller decision variables P0, P1, Z0, Z1 are sought

to minimize theH∞ performance index γ, while PLMIs formulated by different design approaches

are satisfied. In the non-switching LPV control design, a single γ on entire scheduling parameter

region is minimized. In the simultaneous design approach, γ1, γ2 and γ3 are associated with three

subregions, and max {γ1, γ2, γ3} is minimized in objective function. However, γ1, γ2 and γ3 are

minimized sequentially on each subregion by sequential design approach.
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Figure 3.50: γ1 obtained by sequential (black), simultaneous(blue) and non-switching(red) design
approach
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Figure 3.51: γ2 obtained by sequential (black), simultaneous(blue) and non-switching(red) design
approach
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Figure 3.52: γ3 obtained by sequential (black), simultaneous(blue) and non-switching(red) design
approach
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With given λ0 = 2, interpolation rate β and variational rate ν are varied to get insight of how

they influence theH∞ performance γ1, γ2 and γ3 plotted in Figures. 3.50-3.52. The non-switching

design result is plotted as red surface , while γ1, γ2 and γ3 obtained by simultaneous and sequential

designs are plotted in blue and black surfaces, respectively.

It can be observed that, both switching design methods lead to an improved closed-loop system

H∞ performance over non-switching LPV control. In most area of shown region, sequential

design approach results in a smaller γ in magnitude than simultaneous design approach on three

subregions, indicating design conservativeness can be relaxed in these cases. In the situation

that large variational rate ν and aggressive interpolation rate β, switching smoothness between

adjacent controllers will be improved, but conservative constraints of additional relative σ-stability

will be introduced. As a consequence, H∞ performance by sequential design is worse than that

of simultaneous design. Thus, there exists a trade-off relationship between system performance

and switching smoothness represented by interpolation coefficient. Performance degradation is a

sacrifice to guarantee the robust performance by interpolated controller variables. In other words,

the limitation of this method is that tuning work may be needed if optimizing system performance

is the objective rather than reducing design complexity.

The time-domain responses of three different design approaches have been simulated and com-

pared in Figure 3.53. System disturbance is set as w(t) = 0.5 for t ∈ [0, 4.5] second and w(t) = 0

for t > 4.5 second. Scheduling parameter trajectory is set as θ(t) = 0.3 + 0.1t. In the sequen-

tial design approach, interpolation rate and variational rate are chosen as β = 2 and ν = 0.02,

respectively. It is easy to observe that switching controllers by the sequential design lead to state

responses with smaller signal norms than these from simultaneous design approach and nonswitch-

ing control. This conclusion matches well with these results in Figures 3.50-3.52 that sequentially

designed switching controller leads to smaller H∞ norm. Moreover, simultaneous design results

in jumps at switching instants of t = 1 and t = 4 second, whereas the proposed sequential design

leads to smooth responses because controller gains are interpolated over overlapped subregions.

After t = 4.5 second when system disturbance disappears, states are regulated to 0 by all three
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controllers.

Table 3.2 summarizes the number of relaxed LMIs and controller decision variables and com-

putation time by three different design approach. Non-switching design approach deals with fewer

LMIs and search for minima in a smaller space of variables, thus less computational time is utilized

in the optimization. However, the optimized H∞ performance is worse than both switching LPV

control design approaches. Sequential design iterates the optimization on each individual subregion

sequentially, thus in each design iteration, sequential design deals with same amounts of LMIs and

variables with non-switching design, but within smaller size of subregion. The simultaneous design

approach is imposed with all LMIs and variables, thus has the largest computational complexity.

Note that in this example, total solving time of sequential design is slightly larger than simultaneous

design approach, and it can be possibly reasoned that optimization problem formulated by low-order

system can still be well handled by the simultaneous design approach.
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Figure 3.53: Closed-loop system states responses by sequential (black), simultaneous(blue) and
non-switching(red) design approaches
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3.3.2 Example 2

The A(θ) matrix in Example 1 is modified into two-dimensional affine dependency of θ1 and

θ2, while other system matrices are unchanged. The domains of two scheduling parameters are

Θ1 = [0, 10], Θ2 = [0, 7], and they are respectively divided into [0, 7], [5, 10] and [0, 5], [3, 7]. With

given λ0 = 0.1 and division of scheduling parameter domain, three different design approaches are

conducted again to compare optimizedH∞ performance and computational efforts.

A(θ) =

 20− 2θ1 16

12 8− 6θ2


Similar to Example 1, controller decision variables P (θ) and Z(θ) are assumed to be in the

affine form as P (θ) = P0 + P1θ1 + P2θ2, and Z(θ) = Z0 + Z1θ1 + Z2θ2. On each subregion,

controller decision variables P0, P1, P2, Z0, Z1, Z2 are sought to minimize the H∞ performance

index γ, while PLMIs formulated by different design approaches are satisfied.

The optimized system performance indexes on subregions by sequential design, simultaneous

design and non-switching design are plotted by black, blue and red surfaces in Figures. 3.54-

3.57. Non-switching control design minimizes H∞ performance γ over entire subregion. In

the simultaneous design approach, γ11, γ12, γ21 and γ22 are associated with four subregions,

and max {γ11, γ12, γ21, γ22} is minimized in objective function. However, they are minimized

sequentially on each subregion by sequential design approach. It can be seen that in most cases,

sequential design approach obtains smaller γmagnitudes, in otherwords, better system performance

than simultaneous design and non-switching LPV control design.

From simulation results, the conservativeness of high-dimensional optimization in simultaneous

design can be relaxed by iterating low-dimensional optimization in the sequential design approach.

However, in the scenario of aggressive interpolation rate β and large variational rate ν, sequential

design provides very conservative σ-stability and hence worse system performance is obtained by

sequential design approach. This surface gives insight of how σ-stability will trade-off with H∞

performance in switching LPV control, and gives hint on how to further tune subregion division
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and interpolation rate.

Table 3.3 summarizes the number of LMIs and controller matrices variables and computational

time by three different design approach. Both switching LPV control design approaches sacrifice

more solving time to obtain better system performances. In the simultaneous design, much more

constraints than sequential design are imposed, thus more solving time are taken to obtain an

optimal solution. However, the resulting system performance is contrarily worse than that of

sequential design approach if interpolation coefficient is properly chosen. In this example with 4

subregions formed by two-dimensional scheduling parameters, sequential design approach exceeds

simultaneous design approach in terms of computational efforts and achieved system performance.
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Figure 3.54: γ11 obtained by sequential(black), simultaneous(blue) and non-switching(red) design
approach
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Figure 3.55: γ12 obtained by sequential(black), simultaneous(blue) and non-switching(red) design
approach
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Table 3.3: Comparison of three different design methods in each design iteration

non-switching sequential simultaneous

No. LMIs 40 40 192
No. variables 21 21 84
tic/toc time(s) 0.40 0.47 3.48
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Figure 3.57: γ22 obtained by sequential(black), simultaneous(blue) and non-switching(red) design
approach
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CHAPTER 4

OPTIMAL SENSOR PLACEMENT

4.1 Introduction

A light and flexible airplane wing is benefited from structure flexibility, and it features with high

aerodynamic and fuel efficiency. However, the structure flexibility poses a great challenge to control

system design for active vibration suppression. Structural control community has made various

attempts on developing effective control techniques in order to suppress vibration, avoid structural

failure and enlarge flight stability margin. Among control system components, positioning and

selection of sensors play a role of great importance but have not been paid enough attention.

Sensor placement needs to be integrated into both modeling and control design, and will ultimately

influence state observability, as well as the achievable closed-loop system performance.

As a large-scale structural system, a flexible wing exhibits coupled aero-structure dynamics at

various flight conditions [87, 88]. Multiple nodal points along the wing span are often selected to

get insight on overall structural behavior. Moreover, multiple sensors are needed to be installed at

different locations to provide feedback information for active vibration control. Sensor positioning

on a large-scale flexible wing structure is even more complex. Sparse density of measured locations

cannot capture all vibrational modes and very likely lead to no feasible solution for an output

feedback-based controller. On the contrary, too dense of sensor placement will increase both model

and controller dimensions, which dramatically increases computational complexity and potentially

limits achievable system performance. These practical demands call for a systematic method to

compute, evaluate and determine optimal number of sensors and their placement.

In this dissertation, we investigate the problem that with a given range of varying flight speed,

how to determine sensor position within a limited number of feasible locations to achieve optimal

vibration suppression [95]. Known as part of input/output selection problem, sensor positioning

together with actuator positioning have been widely studied in flexible structures [96, 97, 98].
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Readers are suggested to the reference [97] for more detailed survey. These methods are mostly

based on quantitative measures for state controllability, observability or efficiency of manipulation,

estimation. These measures can be connected well with the energy stored by structural system,

supplied by actuators or being supplied to sensors. However, these methods are mostly established

for linear time-invariant (LTI) systems, which have static vibration frequency and damping, and

hence static vibration nodes. For a BWB airplane flexible wing, it has been demonstrated that

flexible modes will vary under different flight conditions. Hence, the LTI framework is not capable

of capturing the mode dynamics, thus a new framework that is able to handle varying modes is

needed.

Linear parameter-varying (LPV) modeling and control have been demonstrated as an effective

alternative for active vibration suppression for a BWB airplane flexible wings [88, 87, 62, 35, 99].

The LPV model is able to capture mode dynamics with varying flight condition and depict varying

input-output characteristics between flap deflection angles (control surfaces) and wing bending

displacements (controlled outputs). The LPV controller then schedules the control gains according

to the measured real-time flight condition to achieve specific system performance. By this way,

the controller synthesis is well defined as an optimization problem, with performance-associated

index as objective function and a set of PLMIs (Parametric Linear Matrix Inequalities) derived

from specific system performance requirements.

The LPV framework is adopted in this study to numerically analyze how a sensor selection

and its location influence the closed-loop system performance. To the best knowledge of authors,

such an attempt has never been made in structural control literature. With H2 LPV controllers,

different combinations of sensor locations are evaluated in terms of the guaranteed closed-loop

system performance. Because the control input, e.g. flap angle, is physically limited, ICC (Input

Covariance Constraint) is applied to controller synthesis conditions. Under this constraint, the

worst-case H2 performance within given range of flight speed is treated as the evaluation index

for achievable system performance, which guarantees the performance under any possible flight

condition within the flight envelope.
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4.2 Problem formulation of sensor placement

Revisit the LPV model of the BWB airplane flexible wing. for simplicity, we consider the H2

performance of sensor placement, thus onlyH2 performance of signal pair (w, z) is considered.

ẋp(t) = A(θ(t))xp(t) +B1(θ(t))w(t) +B2(θ(t))u(t)

z(t) = C(θ(t))xp(t)

ȳ(t) = Cȳ(θ(t))xp(t) + v(t)

(4.1)

where the external disturbance w(t) and measurement noise v(t) are assumed to be zero-mean,

Gaussian white noise, but not necessarily stationary. They are also assumed as independent as

E
{
w(s)wT (t)

}
= W (t)δ(t− s), E

{
v(s)vT (t)

}
= V (t)δ(t− s) (4.2)

As shown in Figure. 4.1, the sensor location candidates are marked by triangles in red. It is

assumed that bending displacements in z-direction can be measured by available sensors. All of

these equally spaced locations together are selected as performance outputs to evaluate closed-loop

H2 system performance. Some or all these candidate locations may be selected to install bending

displacement sensors. For the given flight speed range, the question that how many candidates and

what candidates group will lead to the optimal system performance, arises as the objective of this

study.

Note that ȳ(t) = [ȳ1(t), ȳ2(t), · · · , ȳm(t), · · · , ȳM (t)], where M = 9 is the total number of

sensor location candidates. All available measurement output ȳ(t) can be derived from Cy(θ)xp,

where

Cȳ(θ) =



C1(θ)

...

Cm(θ)

...

CM (θ)


.
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Figure 4.1: Sensor location candidates

The selected subset of measured output y(t) is obtained by stacking the chosen measurement ym,

then N ≤M measured outputs are obtained by Cy as

Cy =


Cy1(θ)

...

CyN (θ)

 .

Therefore, there is a total of CNM =
M !

N !(M −N)!
combinations to chooseN sensor locations from

M candidate locations.

Suppose the projection operator PN ∈ RN×M maps the selected sensor subset from the entire

set of available sensors, where the mth column is 1 for the selected mth sensor and the column is

0 if associate sensor is not chosen. Then the selected sensor output can be expressed by

y = PNCȳ(θ)xp(t) + PNv(t). (4.3)

The projected measurement noise has the variance as

E
{

[PNv(s)][PNv(t)]T
}

= PNV (t)PTN δ(t− s)
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Using the selected sensor measurement, the dynamic output-feedback (DOF) LPV controllerK(θ)

is expressed as

K(θ) :

 ẋK = AK(θ)xK +BK(θ)y

u = CK(θ)xK +DK(θ)y
(4.4)

Recall the definition ofH2 performance of LPV system, defined from w̄ = [w(t); v(t)] to z(t),

is utilized to assess the closed-loop performance against external disturbance. Let T2(θ, s) :=

Tzw̄(θ, s) be the parameter-dependent transfer function from w̄(t) to z(t), and if the system pair

(Acl, Bcl, Ccl, 0) is stable, the H2 norm ||T2||22 can be obtained by minimizing traceW while

subject to the following PLMIs over the region (θ, θ̇) ∈ Θ× Λ, −Ṗ2 + AclP2 + (∗) Bcl

∗ −I

 < 0 , (4.5)

 W Ccl,2P2

∗ P2

 > 0 , (4.6)

The optimal sensor placement by selecting from available sensor set is actually deciding the

projection operator. By this step, we are ready to give the problem formulation of optimal sensor

placement. TheH2 performance of closed-loop LPV system minimized by the projection operator

PN in dynamic output-feedback LPV control.

min
PN

min trace(W ) (4.7)

subject to (4.5) and (4.6).

This optimization problem is well-known as an NP hard problem [100, 101], which involves

hybrid optimization of integer variable (binary optimization) and real matrix variables(control

design).

113



4.3 Simulation results by global search

4.3.1 Simulation results

Following the same H2 LPV control design procedure, different combinations of sensor location

candidates are explored to calculate the achievable guaranteed system performance. The observabil-

ity of system pair (A(θ), Cy(θ)) is firstly checked at gridded points over the scheduling parameter

range. Those sensor combinations which cannot be observed at all gridded points are considered

as unobservable, and hence they are removed from controller synthesis.

Figure 4.2: trace(W ) versus the number of available sensors, U = 6

Figures. 4.2 and 4.3 show theH2 system performance trace(W ) (y−axis) when limited number

of sensors (x−axis) are used. Using one sensor and some combinations of two sensors are

determined unobservable, thus feasibleH2 LPV DOF controller cannot be designed. WhenN ≥ 3

number of sensor locations are available, the system matrices pairs are checked as observable for

entire flight speed range. As a result, there is no data points shown at N = 1, and only a few data

points can be seen at N = 2, whereas M !
N !(M−N)!

data points are obtained for other cases.

Note that weighting matrix Q is chosen as 100 × I for evaluating all bending displacements

equally. Figures 4.2 and 4.3 are corresponding to two different ICC conditions for all control
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Figure 4.3: trace(W ) versus the number of available sensors, U = 8

surfaces U = 6, 8. It is apparent that, when bending displacement sensors are installed at more

candidate locations, the upper bound of achievable system performance trace(W ) becomes smaller,

which indicates that improved system performance can be achieved. Moreover, the solid line and

dash line are plotted by connecting the best and worst performance of each combination group with

available sensor number. The variance trace of system performance is shrinking and converging

as available sensor number increases. When sensor number is plenty enough, system states can

be well recovered and vibration behaviors within entire flight envelop can be well handled. This

is simply due to that with more sensors more useful information can be accessible for feedback

control.

Furthermore, when large control authority is allowed, the achievable system performance

trace(W ) is suppressed further, indicating better system performance can be achieved. The

combination candidates with the best system performance for any N number of sensor candidates

group are summarized in Table 4.1. Note that, if only one sensor is used, there is no feasible sensor

due to the unobservability.
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4.3.2 Discussion

As shown in Figures. 4.4 and 4.5, LTIH2 controllers with ICC condition U = 8 are also designed

at gridded flight speed θ = 115, 125 m/s, and a set of sensor location combinations are globally

searched to find optimal sensor placement. The optimal group of sensor locations is found varying

with different flight speed. Thus, sensor positioning determined by following conventional LTI

approach cannot produce optimal system performance within the flight speed range. For example,

when N = 7 number of sensors are used at θ = 115 m/s, the optimal sensor group is found as

{1, 2, 4, 5, 6, 7, 8}. However, when flexible wing is flying at θ = 125 m/s, the optimal sensor

location combination is found as {2, 3, 4, 5, 6, 7, 9}. This validates the fact that the optimal sensor

combinations obtained under different specific flying conditions can vary, and hence may not be

optimal for the entire flight envelope. On the contrary, the LPV approach considers the optimal

sensor combination over the entire flight envelope, and looking for the optimal sensor positioning

in terms of the best guaranteed system performance. This is the main advantage of the proposed

LPV approach over the conventional LTI approach.
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Figure 4.4: trace(W ) versus number of available sensors, at flight speed 115m/s

Figure 4.5: trace(W ) versus number of available sensors, at flight speed 125m/s
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Table 4.1: Summary of optimal sensor candidate combinations

LPV approach LTI approach
U = 6 U = 8 U = 8, θ = 115 U = 8, θ = 125

N sensor trace(W) sensor trace(W) sensor trace(W) sensor trace(W)
1 – – – – – – – –
2 {3, 9} 0.7009 {3, 8} 0.5569 {4, 5} 0.1223 {2, 3} 0.2866
3 {3, 4, 5} 0.2416 {3, 7, 9} 0.1519 {2, 4, 5} 0.0496 {6, 7, 9} 0.0814
4 {3, 5, 7, 9} 0.2202 {3, 4, 7, 8} 0.1338 {3, 5, 7, 9} 0.0470 {5, 7, 8, 9} 0.0760
5 {1, 3, 4, 6, 8} 0.2165 {1, 2, 3, 4, 6} 0.1314 {1, 3, 5, 6, 9} 0.0467 {4, 5, 7, 8, 9} 0.0745
6 {1, 2, 3, 4, 6, 9} 0.2148 {1, 2, 3, 4, 6, 8} 0.1604 {1, 4, 5, 6, 7, 9} 0.0468 {1, 2, 3, 6, 7, 9} 0.0750
7 {1, 2, 3, 4, 5, 7, 8} 0.2148 {1, 2, 3, 4, 5, 7, 9} 0.1306 {1, 2, 4, 5, 6, 7, 8} 0.0465 {2, 3, 4, 5, 6, 7, 9} 0.0749
8 {1, 2, 3, 4, 6, 7, 8, 9} 0.2147 {1, 2, 3, 4, 5, 6, 8, 9} 0.1301 {1, 3, 4, 5, 6, 7, 8, 9} 0.0473 {1, 2, 4, 5, 6, 7, 8, 9} 0.0753
9 {1− 9} 0.2147 {1− 9} 0.1313 {1− 9} 0.0483 {1− 9} 0.0754
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4.4 Sub-modular property of sensor placement problem

At different fixed flight condition, the contribution of each sensor to each vibration mode can

be calculated based on [102]. The results are shown in the Figures 4.6-4.8.

It is easy to observe that the contribution of sensor to each mode follows an increasing trend,

moreover, the contribution of each sensor will vary under different flight conditions. Even though

the Gawronski’s approximation method [102] can only be applied to stable LTI systems, the results

indicate that the sensor placement has the sub-modular property.

In the searching of optimal sensor placement, global search is not an efficient approach, due to

the NP hard nature of the hybrid optimization. However, the sub-modular property of the optimal

sensor placement problem is uncovered and will be shown in this section.

The sub-modularity will be firstly reviewed and basic greedy algorithm will be introduced [100,

101]

Figure 4.6: Sensor contribution to each vibration mode at flight speed 110m/s
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Figure 4.7: Sensor contribution to each vibration mode at flight speed 113m/s

Figure 4.8: Sensor contribution to each vibration mode at flight speed 115m/s
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4.4.1 Set function and sub-modular property

Definition 1 (set function). Let S be a finite set and a set function over S assigns a value to every

subset of S, i.e. f(S) : 2S → R.

Definition 2 (submodularity). Let S be a finite set and 2S denote power set. A set function

f : 2S → R is said to be submodular if and only if

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B), ∀A,B ⊆ S. (4.8)

For finite set S, this is equivalent to

f(A+ j)− f(A) ≥ f(B + j)− f(B), ∀A ⊆ B ⊆ S,∀j ∈ S\B. (4.9)

In other words, the function f satisfies the diminishing increment property. The submodular

function f is monotone if f(A) ≤ f(B),∀A ⊆ B. If a set function is submodular, then the

contribution of any new element s to the set function value decreases when the set gets bigger.

Based on the definition of submodularity, we can conclude that if the optimal sensor placement

problem with LPV DOF control is a submodular function, then performance increment by adding

one sensor will decrease with the set size. This indicates that greedy algorithm has the potential to

efficiently solve the sensor placement problem.

4.4.2 Greedy algorithm

Greedy algorithm utilizes a series of optimal local steps to conduct the optimization of NP hard

problem. Instead of directly searching for a global solution, greedy algorithm searches towards

minimum step by step. It has been proved that greedy algorithm has polynomial complexity and

achieves to a sub-optimal solution within (1− [1/e]) of the optimum [103].

max
|S|≤k

f(S) (4.10)

The optimization of the set function f(S) over the set S with the size limit |S| ≤ k is formulated

as (4.10) , then the basic greedy algorithm is given as Algorithm 1.
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Algorithm 1: Greedy algorithm for set function optimization

Result: Ks

Step 1. Initialization:

s = 1, Ks = {}, Ss = S

while s ≤ k do
Step 2. Determine greedily the next element from residual set Ss:

ks = arg max
j∈Ss

f(S)

Step 3. Update the residual set Ss and selected set Ks

Ss+1 = Ss\ks, Ks+1 = Ks ∪ ks, s← s+ 1

end

Optimal set variable Ks is searched within set S to maximize the set function f(S), and the

maximum set size is k, residual set Ss and selected set Ks are updated in every step to maximize

the updated set function. In this algorithm, Step 2 searches among the residual set for the element

to be added into selected set, which will lead to the maximum value of set function f(S).

In the sensor placement problem, Algorithm 1 is customized to Algorithm 2 to selectN number

of sensors from set S ofM number of sensors.

In this modified algorithm, the performance index trace(W ) of H2 performance with LPV

control is minimized by the set variable Ks and LPV controller K(θ). LPV controller is designed

following the design technique discussed in Chapter 1. It is noted that the observability of sensor

subset needs to be checked in Step 2, so that there exists a LPV controller stabilizing the flexible

wing model.

The greedy algorithm is well-known to have polynomial time efficiency. At each step, the

algorithm scans among the residual sensor subset Ss and conduct set function evaluation. After

that, the element resulting in maximum set function value is added to selected set, which only needs

polynomial number of operations to get local optimal sensor set.

The Figure 4.9 shows the submodular property of sensor placement. When searching only
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one single sensor, there is no feasible sensor to achieve observability, thus no value of minimized

trace(W ) is labeled. In the case of two sensors, the sensor combination of 8, 9 leads to the optimal

trace(W ) of closed-loop system, thus these two sensors are the optimal selection. When more than

two sensors are chosen, then it is clear to observe the descending trace(W ) value from left to right.

This indicates that the sensors close to wing tip lead to better closed-loop system performance.

Moreover, the decrement of optimal trace(W ), representing improvement of H2 performance,

decreases with the number of selected sensors, which demonstrates the submodular property of

optimal sensor placement on flexible wing.
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Figure 4.9: Submodular property of sensor placement on flexible wing
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Algorithm 2: Greedy algorithm for optimal sensor placement

Result: Ks

Step 1. Initialization of set variable:

s = 1, Ks = {}, Ss = S

while s ≤ N do
Step 2. Check observability of sensor subset

i = 1 ;

while i ≤ |Ss| do

if Ks ∩ j sensor set is unobservable then
Ss = Ss\j

else
continue;

end

end

Step 3. Determine greedily the next element from residual set Ss:

ks = arg min
K(θ),j∈Ss

trace(W )

Step 4. Update the residual set Ss and selected set Ks

Ss+1 = Ss\ks, Ks+1 = Ks ∪ ks, s← s+ 1

end
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CHAPTER 5

CONCLUSIONS AND RECOMMENDEDWORK

5.1 Conclusions

In this dissertation, simultaneous design and sequential design of smooth switching LPV control

design have been proposed, and optimal sensor placement on the BWB aircraft flexible wing has

been sought in the LPV framework. The main contributions can be grouped into the following

items.

• The simultaneous design approach for smooth-switching ICC/H∞ state-feedback and dy-

namic output-feedback LPV control has been separately explored and PLMIs (Parametric

Linear Matrix Inequalities) for controller synthesis have been accordingly derived. To obtain

smooth switching, smoothness and system performance indexes were incorporated into the

cost function and weighted by a tunable coefficient, introducing another tunable trade-off

between system performance and switching smoothness. By tuning the coefficient, optimal

balance of switching smoothness and system performance can be attained.

• The sequential design approach designs the LPV controllers independently and uses sigmoid

interpolation of adjacent controllers on overlapped subregion. The H∞ LPV state-feedback

case is studied and controller synthesis conditions are derived. Furthermore, the effectiveness

of sequential design and reduced computational complexity than simultaneous design are

demonstrated by two numerical examples.

• The proposed LPV controllers have been applied to an active magnetic bearing system and

vibration suppression of a BWB flexible airplane wing. The simulation results demonstrated

that the proposed smooth-switching LPV ICC/H∞ controllers are able to balance switching

smoothness and system performance subject to constraints on control inputs and system

uncertainty. In addition, the results show that the proposed method improves the switching
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smoothness significantly comparedwith the results from the earlier studywithout considering

switching smoothness. Simulation results of BWB airplane wing have showed that the

proposed design method is able to significantly reduce the sharp jumps in system controls and

responses during switching events. Furthermore, the proposed tunable weighting coefficient

provides trade-off between system performance and smoothness of response, and the ICC

constraints on control inputs can also be used to tune the achievable performance. These

offer great advantages in practical implementation.

• In addition, the LPV approach is utilized to determine optimal sensor position for a BWB

airplane flexible wing. A gain-schedulingH2 LPV control, subject to ICC hard constraints,

is designed for a given scheduling parameter region. The optimal candidate for sensor

allocations is obtained by searching for the best guaranteed H2 system performance within

the flight speed region. By global search and greedy algorithm, the optimal candidate can

be obtained for any given number of sensors, and the trade-off between optimal performance

and sensor number can also be obtained.

5.2 Recommended work

With the results shown in this dissertation, there are still a few potential directions to work on,

in both theory and application parts.

• Potential directions in theory

– Smooth switching controller synthesis with Youla Parameterization.

Recall the Youla Parameterization, letK(s) = V −1(s)U(s) andG(s) = M−1(s)N(s)

be the left co-prime factorization of controllerK(s) and nominal plantP (s). Then theY-

oula parameterization of all stabilizable controllers K̂ = (V (s)−Q(s)N(s))−1(U(s)+

Q(s)M(s)) for anyQ ∈ RH∞ such that det(V (∞)−Q(∞)N(∞)) 6= 0. A controller

scheme based on Youla parameterization proposed in [104] is shown in Figure 5.1.
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Figure 5.1: A controller scheme with compensating operator Q

Thus the switching controller has the potential to be divided into two parts: nominal

controller U(s), V −1(s) and operator Q(s). Then switched controller gain can be

included intoQ, which will greatly simplify the switching stability conditions, because

as long as switching operator Q ∈ RH∞, the controller K̂ is stabilizable for the given

plant.

– Exploration of sub-modular property in Kalman Filter design for LTI/LTV/LPV system

In conventional Kalman filter design, we utilize the given set of sensors and only focus

on the estimator gain to achieve optimal state estimation. The sensor placement usually

involves heuristicmethod and will limit estimation performance. However, in engineer-

ing practice, the sensor placement is essential and should be decided before Kalman

filter design. If these two decision variables can be integrated into one optimization

problem, the state estimation can be improved significantly.

Consider a stochastic system

ẋ = A(t)x+B(t)u+ F (t)w

y = C(t)x+ v
(5.1)

Assume the disturbance w(t) and noise v(t) are zero-mean, Gaussian white noise, but

not necessarily stationary. They are also assumed as independent.

E
{
w(s)wT (t)

}
= W (t)δ(t− s), E

{
v(s)vT (t)

}
= V (t)δ(t− s) (5.2)
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The optimal estimation problem is formulated as minimizing the mean square error of

x̂(t) with true state value x(t)

E
{

(x(t)− x̂(t))(x(t)− x̂(t))T
}

(5.3)

Theorem 11 (Kalman-Bucy, 1961). The optimal estimator has the form of a linear

observer

˙̂x = A(t)x̂+B(t)u+ L(t)[y − C(t)x̂] (5.4)

where L(t) = P (t)CT (t)V −1 and P (t) = E
{

(x(t)− x̂(t))(x(t)− x̂(t))T
}
satisfies

Ṗ = AP + PAT − PCTV −1(t)CP + FW (t)FT

P (0) = E
{
x(0)xT (0)

}
Consider a sensor selection problem for Kalman-Bucy filter that, select Cy subset

consisting of s row elements in set C = [CT1 , C
T
2 , . . . , C

T
m]T , and estimator gain L(t)

such that estimation error is minimized, with given P (0) = E
{
x(0)xT (0)

}
and given

V = diag(Vm) andW .

The OSP is formulated as select subset S ⊆M such that

min
s∈S⊆M

trace(P (t)) (5.5)

and P (t) subject to differential equation

Ṗ = AP + PAT − PCTy V −1
S (t)CyP + FW (t)FT (5.6)

Suppose the covariance of sensors are known, then selecting properly the sensor set to

achieve optimal state estimation by Kalman filter is a very interesting research topic.

If the sub-modular property or more mild property can be discovered, then the sensor

placement and optimal Kalman filter gain design could be tackled.

• Potential directions in applications
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– Applications of sequential design in flight control. The BWB airplane flexible wing

model is always of high order, even though model reduction is conducted. This is a

promising application filed that could utilize sequential design approach of switching

controllers.

– Investigation of sub-modular property of flexible structure elements. In this dissertation,

the submodular property is discovered based on the model of one specific flexible wing.

It would be very interesting to explore whether the sub-modular property is valid for

flexible structures in a general sense. If so, the sensor placement and health monitoring

will be easily tackled by greedy algorithm, which has profound influence in civil and

mechanical structures.
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