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ABSTRACT

NOVEL COMPUTATIONAL METHODS FOR IMPROVING FUNCTIONAL ANALYSIS FOR
LONG NOISY READS

By

Nan Du

Single-molecule, real-time sequencing (SMRT) developed by Pacific BioSciences (PacBio) and

Nanopore sequencing developed by Oxford Nanopore Technologies (Nanopore) produce longer

reads than second-generation sequencing technologies such as Illumina. The increased read length

enables PacBio sequencing to close gaps in genome assembly, reveal structural variations, and

characterize the intra-species variations. It also holds the promise to decipher the community struc-

ture in complex microbial communities because long reads help metagenomic assembly. However,

compared with data produced by popular short read sequencing technologies (such as Illumina),

PacBio and Nanopore data have a higher sequencing error rate and lower coverage. Therefore, new

algorithms are needed to take full advantage of third-generation sequencing technologies.

For example, during an alignment-based homology search, insertion or deletion errors in genes

will cause frameshifts, which may lead to marginal alignment scores and short alignments. In

this case, it is hard to distinguish correct alignments from random alignments, and the ambiguity

will incur errors in structural and functional annotation. Existing frameshift correction tools are

designed for data with a much lower error rate, and they are not optimized for PacBio data. As

an increasing number of groups are using SMRT, there is an urgent need for dedicated homology

search tools for PacBio and Nanopore data.

Another example is overlap detection. For both PacBio reads and Nanopore reads, there is

still a need to improve the sensitivity of detecting small overlaps or overlaps with high error rates.

Addressing this need will enable better assembly for metagenomic data produced by the third-



generation sequencing technologies.

In this article, we are going to discuss the possible method for homology search and overlap de-

tection for the third-generation sequencing. For overlap detection, we designed and implemented

an overlap detection program named GroupK. GroupK takes a group of short k-mer hits, which sat-

isfy statistically derived distance constraints to increase the sensitivity of small overlap detection.

For homology search, we designed and implemented a profile homology search tool named Frame-

Pro based on the profile hidden Markov model (pHMM) and consensus sequences finding method.

However, Frame-pro is still relying on multiple sequence alignment. So we implemented Deep-

Frame, a deep learning model that predicts the corresponding protein function for third-generation

sequencing reads. In the experiment on simulated reads of protein coding sequences and real reads

from the human genome, our model outperforms pHMM-based methods and the deep learning

based method. Our model can also reject unrelated DNA reads and achieves higher recall with the

precision comparable to the state-of-the-art method.
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Chapter 1

Introduction

Second generation sequencing technologies offered several significant improvements over tradi-

tional Sanger sequencing and became an obvious choice for metagenomics analysis. Using shot-

gun sequencing, people can interrogate the composition and function of microbial communities

efficiently. This information can lead to discovery on new biology active compounds, antimicro-

bials, virulence factors, or metabolic pathways [144]. The traditional downstream method uses

reference genomes to annotate the metagenomics dataset. However, in most cases, the metage-

nomics dataset cannot be corresponded to the known reference genomes. For example, 2 % to

96 % of metagenomics sequence from human skin cannot be annotated by the traditional method,

based on the origins of sample [112].

De novo approach, or a reference-free approach, is one alternative method that can be used to

overcome the lack of reference. With short reads from the second-generation sequencing platform,

de novo assembly can generate contigs followed by the taxonomy binning to determine the com-

positions of the sample. However, with the complex and similar genomes in metagenomics, it is

challenging to use short reads from the second-generation sequencing technology to assembly. In

such circumstances, long reads from the third generation sequencing platforms have its advantages

to generate a better overlap graph for the assembler.
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Another alternative method is analyzing the average properties of whole communities rather

than focusing on several genomes. Such an approach is irreplaceable as in particular circumstance

assembly may not even possible. In this method, longer reads are still preferred as it can provide

more accurate information than shorter fragments.

Here, we present the principles of the third generation sequencing technologies, some widely-

used algorithms designed for third generation sequencing in genome assembly, the challenge for

existing functional analysis algorithms when using third generation sequencing data.

1.1 Third-generation sequencing

Several third generation sequencing technologies were proposed [15, 39]. They share a lot of

similar characteristic, like long read length and high error rate. In these techniques, the most

intensively studied are the single-molecule, real-time sequencing (SMRT), developed by Pacific

BioSciences (PacBio), and Nanopore sequencing, developed by Oxford Nanopore Technologies

(Nanopore). Here we will introduce the theorem of SMRT and Nanopore sequencing technologies.

Although some algorithms we discussed here were originally proposed to SMRT, it can also be

used for Nanopore sequencing [93].

1.1.1 SMRT

To achieve real-time sequencing at the single molecule level, SMRT adopted an approach to gen-

erate sequencing information based on the sequential fluorescent signal generated during DNA

synthesis by a polymerase molecule.
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Figure 1.1: Principle of single-molecule, real-time DNA sequencing. Reprinted from [39].

The basic sequencing unit in SMRT is a zero-mode waveguide (ZMW). The propagation mode

in the waveguide will limit the wave, satisfying the mode to propagate in the waveguide (precisely

determine the frequency and form). The "zero-mode waveguide" means the waveguide provides

zero guided modes for the propagation of the electromagnetic wave. Observation in the zero-mode

waveguide can reach single fluorophore event scale even in the high concentration of fluorescent

molecules present [81]. In the bottom of each ZMW there is located a single molecule of DNA

template-bound Φ 29 DNA polymerase.

During an observation, a phospholinked nucleotide forms a hydrogen bond with the nucleotide

in the template. This process will produce a fluorescence signal at the bottom of ZMW. The light

pulse will end upon the cleavage of the dye-linker-pyrophosphate group. By detecting the light

pulse and recording a series of movies of the signal, we can have all information which later can

be translated to bases in continuous long reads (CLR). The average CLR read length from Pacbio

RSII using C4 chemistry can reach more than 10k bps [145], with an 11 % to 15 % error rate [8,80].

Using the circular template, SMRT can sequence DNA multiple times. By doing this, a high

quality read called circular consensus sequence (CCS) can be generated with the more than 99 %
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accuracy with 15 X coverage. However, the trade-off of CCS is the short-read length (averagely is

about 1k bps [114]) due to the limitation lifetime of the DNA polymerase [134].

1.1.2 Nanopore sequencing

Oxford Nanopore is another promising third-generation sequencing technology. In Nanopore se-

quencing, a DNA strand is threaded through a nanopore, and the ionic current fluctuations can be

used to identify the corresponding DNA sequences.

Figure 1.2: Principle of nanopore sequencing. It determine the type of nucleotide by measuring the
current level of the base passes passing through the nano hole. Reprinted from Naturejobs website.

In theory, the nano holes can be created by proteins puncturing membranes (biological nanopores)

4



or in solid materials (solid-state nanopores). In Nanopore sequencing, the nanopore is created uti-

lizing the heptameric protein α-hemolysin (α HL) [28]. During the sequencing, DNA will bind to

the binding site of the nanopore. The sequencer reads the disruption in the current passed through

the membrane as each base passes through. Since the bases have different electronic characteris-

tics, each nucleotide has a different signature of disruption, allowing for base calls.

Nanopore sequencing can produce very long sequences that length up to 2 million bases in

theory. In a recent experiment with MinION R9.4 1D chemistry, people were able to sequence

ultra long reads with 882,000 bp, with a median length of 10,589 bp. The error rates of Nanopore

sequencing are close to PacBio, which are around 18% [67].

1.2 Sequence analysis algorithms

In this section, we overviewed the common sequence analysis algorithm and its application in

third-generation sequencing reads.

1.2.1 Alignment

Alignment program is one of the fundamental algorithms for Pacbio SMRT application, as right

now the error correction and whole genome assembly both rely on building the alignment first.

The fundamental idea of aligning is using dynamic programming and selecting a maximal

score path given the different penalty of insertion, deletion, and mismatch (Figure 1.3). For exam-

ple, in BLAST [4], an identity will score 5 and a mismatch will get penalty of 4. Several different

approaches are adopted to accelerate the performance of aligning. For example, the "seed and

extend" method finds exact matches in k-mer scale first and then reduces the search space by only
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Figure 1.3: A dynamic programming alignment matrix for aligning sequence GATTACA against
GCATGCU using Needleman-Wunsch algorithm [105]. In this example, a simple scoring system,
match = 1, mismatch = -1, gap = -1, is used. (a) Start from the cell in the second row, second
column. Move through the cell row by row, calculating the score for each cell. (b) The score is
the maximal score calculated from the cell from the top, left, or left-top. If the score is calculated
using left-top cell, means a match or mismatch. Otherwise is an insertion or deletion. (c) After
finishing the filling of all table, the score of the right-bottom cell of the matrix is the score for
global alignment of the two sequence. (d) Traceback from the last cell is needed to obtain the
alignment. The final alignment is G-ATTACA vs. GCA-TGCU. Reprinted from Wikipedia.

allowing the sequence to keep with the number of matches of k-mers above the threshold. Other

methods like Burrows-Wheeler Transform [83, 84] and Hashing function [90] can be also applied

to traditional alignment tools. Although people can use those tools on Pacbio SMRT reads, the

sensitivity, accuracy and speed of alignment are compromised due to the long erroneous reads.
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Right now, BLASR [21] is a popular alignment tool designed for long reads with high error

rates. BLASR combined data structure used for short read mapping and the alignment method

for whole genome mapping. At first, the program will cluster the short exact matches found us-

ing the BWT-FM index [42, 84] or suffix array [97]. By doing this, the program can determine

the approximate coordinate that reads should align to the genome. A rough alignment using the

sparse dynamic programming on the set of short exact matches will be the following steps. Fi-

nally, with the guide of the sparse dynamic programming, an accurate alignment will be generated

using dynamic programming. Compare with other tools like BWA-SW (aligning 132M bases in

434 minutes) [89] and BLAT (aligning 181M bases in 4724 minutes) [73], BLASR can align the

largest number of reads (230M bases) to the reference genome with the fastest speed (20 minutes)

using an E. coli O104: H4 dataset.

There are more tools designed for third generation sequencing coming. For example, GraphMap

[137] is another tool designed for third generation sequencing with a gapped-seed strategy. We will

discuss alignment tools for third generation sequencing later in detail.

1.2.2 Error correction

Error correction is a necessary step for using SMRT sequencing as the error rate of raw reads is too

high. However, longer reads with small bias make consensus error correction possible. Right now,

two major approaches are available: hybrid [8, 55, 58, 78, 99, 130] and non-hybrid [24, 93] error

correction.

Hybrid error correction uses short but accurate second generation reads to help correct error in
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long third generation reads. The first type of hybrid error correction tools (LSC [8], PacBioToCA

[78], and porovread [55]) aligned accurate short reads to third generation long reads, and then us-

ing the consensus algorithm to generate error-corrected consensus sequences. The second type of

tools (LoRDEC [130], Jabba [99]) exploits the context in short reads by build a de Bruijn graph

first from those short reads. Long reads from Pacbio SMRT are then added as the guide to help the

program decide the best path in the de Bruijn graph. Other methods [58] beyond these two types

are also available, but still share a lot of similarity to the tools mentioned above.

Unlike hybrid error correction which needs second generation reads like Illumina, non-hybrid

error correction methods only use reads from the third generation sequencing. HGAP( hierarchical

genome assembly process ) [24] used non-hybrid error correction before starting the assembly

process. The method first selects the longest seed reads from Pacbio SMRT raw reads. Then

aligned other "short" read to those seed reads and built a multiple sequence alignment graph.

The program can easily find the maximal score path in the graph using dynamic programming.

After the pre-assembly stage, the average accuracy of the dataset is increased from 86.9 % to 99.9

% [24]. Similar methods [93] were also applied to reads from Oxford Nanopore successfully. The

nonhybrid method relies on the coverage of dataset [34].

1.2.3 Whole genome assembly

The long reads from third generation sequencing is more favorable for whole genome assembly

as long reads can overcome many limitations from short reads, such as handling highly repetitive

genomic regions.

The non-hybrid De novo assembly [24] needs pre-assembly error correction step to compensate
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the high error rates of Pacbio data. High quality reads after error correction are feasible to apply

traditional assembly method that can take long-read input. In this case, overlap-layout-consensus

(OLC) method is better than the De Bruijn Graph (DBG), although the latter one is quite popular

for the second generation sequencing data. In the OLC method [101, 103], the assembly will first

try to find all versus all match and then determine if the read pair has overlap. Then a graph will be

constructed by treating each read as a node and connecting overlap reads by edges. An assembly

algorithm is available by considering all the information in the graph and produces consensus out-

put. Given enough coverage, the quality of HGAP assembly can reach beyond 99.999% (QV 50).

Fast overlapping method is desired for OLC method assembler to reduce the huge computa-

tional cost for calculating the overlap by find all-versus-all alignment. The time-consuming over-

lapping is the bottleneck of De novo assembly using SMRT and prevents the application for larger

genome [12]. MinHash Alignment Process (MHAP) is a newly developed algorithm can efficiently

detect overlap between erroneous long reads. MinHash [16] is the core method of the algorithm

that used to estimate the similarity of the two sequences without a complete alignment (Figure

1.4). To evaluate the similarity of the two sequences, the MinHash start by convert all kmers in

each of the sequences to integer fingerprint using multiple randomized hashing functions. Then

the algorithm will collect the minimal value kmer for each hashing function to construct the sketch

of the sequence. The size of the sketch is determined by the number of hashing function and is

much smaller than the size of all kmers. The Jaccard Similarity of the sketch of the two sequences

can be treat as an approximation of the shared number of kmers between two sequences. This is

a computational efficiently to estimate the similarity of two sequences without alignment. In the

test, MHAP method (3.6 CPU hours for E. coli K12 dataset)is much faster than the BLASR (87

CPU hours)to find overlapping for assembly. In the experiment, MHAP achieved a comparable or
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Figure 1.4: Rapid overlapping of noisy reads using MinHash sketches. (a) To create a MinHash
sketch of a DNA sequence S, we first obtained all the k-mers of the sequence k-mers. In the
example above, k = 3, generate 12 k-mers each for S1 and S2. (b) Multiple hash functions are
used to convert k-mers to integer fingerprints. The number of hash functions H determines the
resulting sketch size. Here, we choose H = 4. The minimum kmer which hashing function value
is minimal for each hash is referred as min-mer. (c) The sketch of a sequence is composed of the
H min-mer fingerprints in order, which is much smaller (size 4) than the set of all k-mers (size 12).
In this example, the sketches of S1 and S2 share two same minimum fingerprints (underlined).
(d) Real Jaccard similarity (0.22) is estimated using the fraction of shared min-mer (0.5) between
the sketches. To have an accurate estimation, H � 4 is needed. (e) If the similarity meets the
threshold, the position of shared min-mers in the original sequence is computed to determine the
overlap offset of the S1 and S2. Reprinted from [12].

improved assembly than BLASR with less time.

10



Figure 1.5: Three stage (correction, trimming, and assembly )in a Pacbio SMRT assembler (Canu).
The correction step selects the best overlaps to use for sequence correction and generates corrected
reads from consensus sequences. The trimming step identifies unsupported regions in the input and
trims or splits reads based on the longest supported range. The assembly step makes a final pass
to determine sequencing errors; recompute overlap alignments; and outputs contigs, an assembly
graph, and summary statistics. Reprinted from [79]
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1.3 Challenges and overview

Although many novel algorithms for alignment, error correction, and whole genome assembly

have been developed for handling long noisy reads, there are still many challenges for the third-

generation sequence analysis. First, most novel algorithms are designed to target complete genome

assembly. However, in many scenarios, like metagenomics and transcriptomic sequencing, the

whole genome assembly is not realistic, or the result of the assembly is not satisfied given the

coverage of sequencing. In both cases, downstream analysis algorithm needs to process long read

with high error rates. For example, for homology search and protein domain annotation, current

methods like pHMM cannot handle the frameshifts introduced by a large number of insertions and

deletions in the third-generation sequencing reads, leading to short or non-significant alignments

in the downstream analysis. Second, for applications like metagenomics, there may coexist many

similar protein domains in the dataset, which is not easy to distinguish, even without errors. Third,

existing algorithms designed for PacBio or Nanopore still have the potential for improvement in

performance and efficiency.

In order to address these challenges and improve the performance of sequence analysis, es-

pecially protein domain prediction and annotation, we have proposed and developed three tools:

GroupK, FramePro, and DeepFrame. GroupK is an overlap detection tool designed for PacBio

and Nanopore data. The experimental results showed that GroupK enables more sensitive overlap

detection, especially for datasets of low sequencing coverage. Both FramePro and DeepFrame

are designed for improving protein prediction from third-generation sequencing. FramePro is a

profile homology search tool designed for PacBio reads. It utilizes both profiles hidden Markov

model and sequence alignment graph consensus to enable more sensitive homology search. Deep-

Frame focuses on identifying encoded protein domains from a single long noisy DNA read. It uses
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a convolutional neural network to extract useful features to distinguish protein-coding sequences

automatically. In the experiment, it outperforms pHMM-based methods in both classifications on

multiple protein families, and the detection of protein domain from other unrelated DNA reads.
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Chapter 2

Overlap Detection On Long Noisy Reads 1

Genome assembly using third-generation sequencing data requires dedicated methods and tools.

Existing genome assembly tools mainly utilize two types of graph models: overlap graph and de

Bruijn graph. When the error rate is low, de Bruijn graph has the theoretical advantage that the

graph size does not increase significantly with the sequencing coverage, which is usually high

for Illumina datasets. For third-generation sequencing data, the high error rate and low coverage

make the overlap graph a sensible choice for genome assembly [78]. A key step in constructing

the overlap graph is to identify read pairs that share overlaps, which indicates that these reads are

sequenced from the same loci in the underlying genome. Although there are a number of sequence

alignment programs available for conducting overlap alignment [4, 132], a majority of them rely

on dynamic programming and are too computationally expensive for high throughput sequencing

data. Due to high error rates, existing short read overlap detection software using BWT (Burrows-

Wheeler transform) or hash table [51,135] cannot be directly applied to long reads. To address this

challenge, many new method was proposed. Here, we summarize the major existing method and

also introduce our new method for detecting overlap from long noisy sequences.

1Du, Nan, Jiao Chen, and Yanni Sun. "Improving the sensitivity of long read overlap detection using grouped short
k-mer matches." BMC genomics 20.2 (2019): 190.
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2.1 Background

2.1.1 Related work

Two strategies are currently being employed to detect overlaps for error-prone long reads. One

strategy tries to correct sequencing errors in PB (Pacific Biosciences) and ONT (Oxford Nanopore)

data before overlap detection. There exist a number of sequencing error correction tools [24, 78].

Some of them rely on hybrid sequencing, which requires preparation of at least two sequencing

libraries and several types of sequencing runs and thus is not cost-effective for many applications.

Others conduct error correction using long reads only. One representative method is described in

Chin et al.’s hierarchical genome-assembly process HGAP [24], whose performance improves with

higher read coverage. It is worth noting that for alignment-based error correction methods such as

the one in HGAP, an important step is to identify reads that can be aligned quickly. Essentially,

techniques used for overlap detection can be used for alignment detection as well.

The second category bypasses the difficulty of error correction and identifies overlaps using

raw reads. Various approximate similarity search methods have been applied on PB and ONT

data [26]. They generally follow seed-chain-align procedure [88]. Seed-based filtration step plays

an essential role in controlling the trade-off between sensitivity and computational efficiency. Usu-

ally, these methods use short string matches as the filtration step. A short string or k-mer match

requires exact matches of k consecutive characters between two sequences. Intuitively, overlapping

reads tend to share more common k-mers than non-overlapping reads. Strategies that can quickly

find the number of shared k-mers can thus be applied. In this section, we summarize the main

strategies of several state-of-the-art overlap detection tools. We highlight the differences between

our method and the existing ones in the following section.

MHAP [12], Minimap [87, 88], and DALIGNER [102] all use k-mer matches for identifying
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candidate overlapping pairs. Due to the high error rate, usually only short k-mers will be applied

in order to achieve high sensitivity. However, identifying short k-mer matches between all pairs of

reads is computationally expensive. Thus, the leading tools employed different data structures and

algorithms for estimating k-mer-based similarity. MHAP converts long reads into sets of k-mers

and sketches using minHash. Then the similarity between reads is estimated using the compact

sketches. Minimap also uses a compact representation of the original reads by keeping minimizers

rather than all possible k-mers of a read. Then collinear k-mers will be clustered and used for

checking possible overlaps. DALIGNER directly sorts k-mers based on their positions and then

utilizes merge sort to identify the number of shared k-mers. As the sorting is cache efficient,

DALIGNER is practically very efficient.

BLASR [21] was initially designed for mapping PB reads to a reference genome. It is also

widely used as an overlap detection tool for PB data. BLASR uses BWT and FM index to identify

short k-mer matches and then clusters k-mer matches within a given distance range. The clustered

k-mers are ranked based on a function of the k-mer frequency. Only highly ranked clusters will be

kept for downstream analysis.

Being different from the above tools, GraphMap [137] uses spaced seeds that allow matches

of non-consecutive characters. Spaced seeds were initially used in homology search for improving

the trade-off between sensitivity and filtration efficiency [18, 95, 139]. In particular, spaced seeds

containing the pattern “11*” have high sensitivity in capturing homologous protein-coding genes

because of the codon structure. However, designing optimal spaced seeds (i.e., deciding the posi-

tions of the wildcard characters) is NP-hard [94, 106]. GraphMap empirically chooses two spaced

seeds. Ideally, different sets of seeds may be designed for input data of different error profiles.
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2.1.2 Overview of our work

The high error rates and also the different error profiles of PB and ONT data motivate us to use

a more flexible seeding strategy called group hit criteria [109], which define a group of possibly

overlapping k-mers satisfying statistically derived distance constrains. For brevity, we will call

the k-mers set satisfying the group hit criteria as a “group seed”. A group seed was initially

proposed and used for homology search. Given the error profiles, such as the estimated indels and

mismatch probabilities, thresholds for grouping short k-mers can be computed using the waiting

time distribution and the one-dimensional random walk [109]. A group seed can effectively handle

all types of errors and is ideal to detect small overlaps. With group seeds, we can achieve high

sensitivity using short k-mers (e.g., 9-mer) while still maintaining a desirable specificity.

In this work, we employ group seeds for detecting overlapping long reads for de novogenome

assembly. Our implementation, named GroupK, provides a complementary tool to existing meth-

ods for detecting small overlaps or overlaps compounded by high error rates of both reads. This

ability enables our tool a sensible choice for genome assembly in metagenomic data sequenced by

third-generation sequencing platforms. As these community samples usually contain microorgan-

isms with heterogeneous coverage, being able to identify small overlaps will be very important for

reconstructing genomes of rare species.

2.2 Methods

GroupK is designed for improving the sensitivity of detecting small overlaps or overlaps with low

identity. Currently, third-generation sequencing data still has high error rates. The overlapping

regions formed by two error-prone long reads can have lower sequence identity than mapping a

long read against a reference genome. Figure 2.1 presents the histogram of the overlap size and the
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Figure 2.1: Histograms of irreducible overlap sizes (top) and the ratio of overlap size to the read
length (bottom) when comparing adjacent overlapping reads on simulated PB E. coli datasets
given different coverages. The bin width for the overlap size is 500. For the 30X dataset, the
average read length is 8366 and the number of reads is 16644. For the 15X dataset, the average
read length is 8253 and the number of reads is 8436. For the 8X dataset, the average read length is
8414 and the number of reads is 4413.
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corresponding ratio of overlap size to the read length between two adjacent reads. The reads are

simulated using PBSIM [114] from E. coli with three different coverages. As we know the position

of each simulated read in the genome, the overlap size can be easily decided. Note that a read can

form overlaps with multiple reads sequenced from the same region. However, the two figures are

generated using overlaps between two adjacent reads, which define an “irreducible” edge [100] in

an overlap graph. Thus, these overlaps can decide the continuity of the final genome assembly.

The figures show that there are still substantial regions with small overlaps. For example, there are

45.46%, 34.76%, and 31.19% of the overlaps shorter than the 50% of the read length for data with

coverage of 8X, 15X, and 30X, respectively. It will be ideal to detect relatively small overlaps to

fully take advantage of the long reads for generating more complete assemblies.

2.2.1 Pipeline

Identifying small overlaps is computationally difficult. Thus, we use a carefully designed hier-

archical filtration strategy to distinguish true overlapping reads from non-overlapping ones. The

pipeline of GroupK consists of three key steps: filtration, group seed matching, and chaining (Fig-

ure 2.2). Filtration is used to reduce the search space by quickly identifying read pairs sharing

a minimum number of k-mers. High insertion/deletion error rates tend to produce short k-mer

matches on different diagonals. Thus, we adopt group seed matching to identify a group of short

k-mer matches in close proximity. There are two types of distance constraints. 1) The distance

(number of nucleotides) between the k-mers on x-axis and y-axis must be smaller than a given

threshold; 2) the diagonal distance, which is the difference of the diagonals of two k-mer matches,

must be within a given range. Chaining is used to estimate the final overlap region. Figure 2.3

shows that applying group seed can remove a large number of random k-mer hits while keeping

the k-mer matches within the overlapping region. When k = 15, there are only two hits, and it is
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Figure 2.2: The pipeline of GroupK.
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difficult to determine whether there is an overlap. When k = 9, there is clearly a chain formed by

hits in the overlapping region. However, there are also a large number of random hits. With group

seed matching criteria, most of the random 9-mer hits are filtered out. So the downstream analysis

becomes more straightforward.

2.2.2 Estimate the expected number of k-mers for the filtration stage

In this section, we analyze the expected number of random k-mer hits between two reads and also

k-mer hits in overlaps. The analysis will be used for determining the k-mer size and also other

parameters for the filtration stage. Given two reads (S1 and S2) with length L and error rate ε , we

want to determine how many k-mer hits we expect to find between S1 and S2.

We first consider the case that S1 and S2 are not related (no overlap). By assuming that the

bases in S1 and S2 are randomly distributed, the expected number of random k-mer matches E[Xr]

is roughly:

E[Xr] =

(
1
|Σ|

)k

·L2 (2.1)

Note that this equation is different from the expected number of shared k-mers in MHAP [12]

because we distinguish k-mer hits based on their locations rather than the k-mers themselves. Also,

we assume that overlapping k-mers are independent.

In the second case of S1 and S2 forming an overlap, we estimate the expected number of k-mer

matches in the overlap by first computing Po, which is the probability of observing a k-mer match

within the overlap. In the case of no sequencing error (i.e. ε = 0), the probability of observing a

k-mer match at an aligned position in an overlap is simply 1.0. But in the practical case of ε > 0,

we need to consider two scenarios in order to determine the probability of observing two identical

characters at an aligned position in the overlap: 1) the characters from S1 and S2 are correct; 2) the
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Figure 2.3: The dot plot of k-mer hits and group seeds matches for one overlapping pair from the
E. coli PB dataset used in Section 2.3. Each dot is a k-mer hit. The x-axis and y-axis show the
locations of the hits on the reads. The overlap region is roughly from 0 to 2800 on the x-axis, and
from 1000 to 3800 on the y-axis. Top: all 9-mer hits. Bottom: 9-mer hits that passed the group
hit criteria. A group seed is represented by closely located dots of the same color.
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Figure 2.4: Two cases contributed to the identical characters at an aligned position in the overlap-
ping region of S1 and S2. S1 and S2 are two reads sequenced from the same region of the underlying
genome and form an overlap. Top: both bases on S1 and S2 are correct, forming a match. Bottom:
both bases on S1 and S2 are sequencing errors, and substituted by the same character.

two characters from S1 and S2 are errors and are randomly substituted by the same character. The

two cases are visualized in Figure 2.4. So the probability is given by [12]:

Po =

[
(1− ε)2 + ε

2 1
|Σ|−1

]k

(2.2)

Considering both random k-mer matches and k-mer matches in an overlap, the expected number

of shared k-mers between two overlapping reads is estimated by:

E[Xo] = Po ·M+

(
1
|Σ|

)k

·L2 (2.3)

M is the size of the overlap. Note that the above equation slightly over-counts the number of k-mer

hits in an overlap because the random k-mer hits inside the overlap may be counted twice with
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probability Po · ( 1
|Σ|)

k. (Also, we assume that the probabilities of substitution and insertion/deletion

are on the same order and thus do not distinguish them in the above equation.)

Figure 2.5: The change of E[Xo] and E[Xr] (y-axis) with the increase of the read length (x-axis),
which is obtained from a real PB dataset. The overlap size is set as the 1/4 of the read length as we
focus on identifying the hard case of small overlaps. k = 15.

As we are mainly interested in finding small overlaps or overlaps with low sequence identity,

we plot the expected number of k-mer hits with the overlap size being 1/4 of the read size in

Figure 2.5. In order to plot the figure, we compute E[Xo] and E[Xr] using the read lengths from

a 15X E. coli PB dataset (the data of our second experiment in Section 2.3). We only consider

reads of length above 2,000. These figures allow us to choose the appropriate threshold for k-

mer-counting based filtration. For example, Figure 2.5 shows the expected number of 15-mers

between reads of different error rates. E[Xr] started as 4 when ε = 0.15. And, for larger ε , E[Xr] is

even smaller. Thus, our default filtration threshold is two 15-mers in order to ensure high filtration

sensitivity. The implementation details of the k-mer counting stage can be found towards the end
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of the Section 2.2.

2.2.3 Group Hit Criteria

Sequencing errors tend to produce short k-mer matches. In addition, the insertion/deletion errors

lead to k-mer matches on different diagonals. Thus, instead of using relatively long k-mers (such as

15 or 16-mers) as existing tools do, we use a group of short k-mers (such as 9-mer) to accommodate

the high insertion or deletion error rates. A group seed is a set of possibly overlapping k-mer hits

with statistically calculated constraints. The region containing group seeds is more likely to be

inside an overlap than a single k-mer hit. Reference [109] first introduced the group hit criteria and

also derived the method to calculate the criteria statistically. We apply their method for overlap

detection.

Assume that we have two reads S1 and S2 of length m and n, respectively. The numbers of

k-mers at different positions in S1 and S2 are m− k + 1 and n− k + 1, respectively. A k-mer

hit at position (i, j) is defined by S1[i . . . i+ k− 1] = S2[ j . . . j + k− 1], where i ≤ m− k+ 1 and

j ≤ n−k+1. For two k-mer hits at (i1, j1) and (i2, j2), their inter-seed distance D((i1, j1),(i2, j2))

is the maximum of |i2− i1| and | j2− j1|. The k-mer diagonal of a k-mer hit at (i, j), d(i, j), is

defined as j− i.

With these notations, the goal is to solve the following inequalities given confidence level 1−α

defined by significance level α:

D((i1, j1),(i2, j2))≤ ρ (2.4)

|d(i1, j1)−d(i2, j2)| ≤ δ (2.5)

ρ and δ are integers we need to define the group hit criteria. For example, when α = 0.05, our
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goal is to derive ρ and δ so that with 95% chance the inter-seed distance and the diagonal shift

between two k-mers in overlapping reads are at most ρ and δ , respectively.

2.2.3.1 Constraint on k-mer distance

We followed the model described in the article [109]. Runs of head in n-independent Bernoulli

trials are used to model k-mer matches, with the probability p for a match and (1− p) for a mis-

match. In this model, a k-mer match can be treated as k consecutive match runs with probability of

pk. From the waiting time distribution [2, 11], the probabilities of the inter-seed distance x of two

k-mers in an overlap are:

P[Dk = x] =


0 for 0≤ x < k

pk for x = k

(1− p)pk(1−∑
x−k−1
i=0 P[Dk = i]) for x > k

(2.6)

With the confidence level 1−α , ρ can be solved using following equation:

P[Dk ≤ ρ] = 1−α (2.7)

In the actual implementation we use α = 0.05. Thus, there is 95% chance that the inter-seed

distance of the two seeds in an overlap is less than the ρ calculated using Equation (2.7).

26



2.2.3.2 Constraint on k-mer diagonal distance

The diagonal shift between two k-mers, |d(i1, j1)− d(i2, j2)|, in two overlapping reads is caused

by insertions and deletions. Note that the insertions and deletions are defined by comparing two

reads, not between a read to a reference genome. So the insertion rate and deletion rate are treated

equally.

The diagonal shift between two k-mer hits can be modeled by a discrete one-dimensional ran-

dom walk model [41, 109]. The diagonal shift starts from 0. Let the steps of the random walk be

l. Assume that the insertion and deletion rate is q across the whole read. Thus, the probability of

a diagonal change is q, and the probability of staying in place is 1−2q. Also, we assume that in l

steps, there are ni inserted nucleotides (increase shift), nd deleted nucleotides (decrease shift), and

nm matched nucleotides (no impact on shift). If the final diagonal shift is i, we have the following

equations: 
ni +nd +nm = l

ni−nd = i

(2.8)

Reference [109] calculated the probability of obtaining a diagonal shift i after l steps in the

random walk. According to Equation (8), we have ni = i+nd and nm = l−(i+2nd). For a specific

nd , the probability of a random walk producing diagonal shift i can be calculated as the number

of the possible paths
( l

i+2nd

)
·
(i+2nd

i+nd

)
, times the probability product of all insertions, deletions, and

no shift change at each step qnd qnd+i(1−2q)l−(i+2nd). To calculate the probability of generating a

diagonal shift i given l, P[i, l], we need to consider all possible values of nd , which is from 0 (no

deletion) to (l− i)/2 (no match). So we have:
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P[i, l] = ∑
(l−i)/2
nd=0

( l
i+2nd

)
·
(i+2nd

i+nd

)
·qnd qnd+i(1−2q)l−(i+2nd) (2.9)

To calculate δ , we sum up the probabilities P[i, l] for i = 0,±1,±2, ...,±l until we reach the level

1−α . We refer the reader to the original article [109] for a more detailed discussion of the model

and a practical implementation using generating functions.

In our experiment, we set the sequencing accuracy p = 0.85 and the indel rate q = 0.06, as PB

reads tend to have higher indel rates than substitution error rates. Users can adjust these parameters

based on their data properties. The significance level α is 0.05 and k is 9. Using Equation (2.6),

we can obtain ρ = 54. Using Equation (2.9) and ρ as an estimation of l, we can obtain δ = 5 given

ρ = 54. Thus, when k = 9, seeds with inter-seed distance D((i1, j1),(i2, j2)) ≤ 54 and diagonal

shift |d(i1, j1)− d(i2, j2)| ≤ 5 are clustered in the same group. In addition, if k-mers (i1, j1) and

(i2, j2) are in the same group and k-mers (i2, j2) and (i3, j3) are in the same group, we will cluster

(i1, j1) and (i3, j3) as well.

2.2.4 Group Chaining

With group hit criteria, GroupK can find short similar regions. To identify the overlapping region,

we aim to find a chain of group seed matches that maximizes the number of matched bases. We

used the modified sparse dynamic programming for chaining [54, 68].

After generating a chain of group seed matches, we need to determine whether this chaining

defines an overlap. We develop two criteria for this purpose. First, we calculate the expected

number of matched bases from the group hit criteria, assuming that the chain covers the possible

overlapping region with length LO (LO can be estimated by the extension of both ends of the
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optimal chain). We used the following equation to calculate the expected number of the matched

bases ne:

ne =
1
c
· LO

ρ
· k (2.10)

Where c is a coefficient to control the criteria, k is the size of k-mer, ρ is the group hit criteria for

the inter-k-mer distance. We only report the chaining result if the number of matched bases n≥ ne.

Second, we require that both reads have similar sizes inside the overlapping region.

Figure 2.6: An example of the overlap size estimation. The suffix of read 1 and the prefix of read
2 form an overlap. Each short solid line represents a group seed match in the optimal chain. The
black dashed line indicates the true overlap alignment region between the two reads. The gray
dashed line, which is formed by the two ending group seeds in the optimal chain, can overestimate
the overlap size.

In our experiment, we found that sometimes using the optimal chain generated from sparse

dynamic programming may overestimate the overlap region, as shown in Figure 2.6. This over-

estimation can jeopardize the sensitivity of detecting small overlaps. We fix this problem by only

keeping the collinear group seeds, which are used to estimate the overlap size.
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2.2.5 Implementation details of the major components

2.2.5.1 Filtration by k-mer counts

In the first step of our pipeline, we use k-mer counting-based filtration to remove large numbers

of read pairs that are not likely sequenced from the same loci on the underlying genome. We im-

plemented k-mer counting using a generalized suffix array and the derived longest common prefix

(LCP) array. The generalized suffix array SA is created from the concatenated reads (delimited by

special characters such as $) using a linear algorithm [125]. Then, we create the LCP using both

the suffix array SA and the reversed suffix array SA′ [70, 71]. Let the sequence of concatenated

reads be T . Following the definition of the reversed suffix array, for a suffix starting at position

SA[i], we have SA′[SA[i]] = i. For each position i in the LCP, LCP[i] contains the size of the longest

common prefix between SA[i] and SA[i− 1]. The key observation [125] for efficient computation

of LCP[i] is: for a position j in T , if LCP[SA′[ j− 1]] is L, LCP[SA′[ j]] ≥ L− 1. The whole LCP

array construction takes linear time to the size of T [125].

In order to count the shared k-mers between reads and also report read pairs passing the k-

mer counting threshold, we use both LCP and an auxiliary data structure recording the read IDs

(denoted as array readID). For a suffix starting at position SA[i], its read ID is at readID[i]. The

pseudocode of finding the number of shared k-mers can be found in Algorithm 1. In practice, we

also count k-mers between a read and the other read’s reverse complement.

2.2.5.2 Group seed match and chaining

Any pair of reads that pass the above filtration stage will be used as input for finding group seed

matches. All other pairs will be discarded. Currently, we are using the codes of YASS [108, 110]

for finding the group seed matches. The program uses hashing table to find short exact matches
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Algorithm 1 Counting k-mers between reads
Input: LCP array LCP[1..n], read ID array readID[0..n], k-mer size k, k-mer counts threshold τ

Output: Read pairs whose shared k-mer counts ≥ τ

1: Initialize a map counts[key][value] for recording k-mer counts
2: for i = 1 to n do
3: readi← readID[i]
4: j← i+1
5: L← LCP[ j]
6: while L≥ k and j ≤ n do
7: read j← readID[ j]
8: if readi < read j then
9: key← readi : read j

10: end if
11: if read j < readi then
12: key← read j : readi
13: end if
14: if counts[key] does not exist then
15: counts[key]← 1
16: else
17: counts[key]++
18: end if
19: j++
20: L← min (L, LCP[ j]) . min(L, LCP[ j]) returns the minimum of L and LCP[ j]
21: end while
22: end for
23: for all key in counts do
24: if counts[key] ≥ τ then
25: output key . key contains read pair IDs passing the k-mer count threshold
26: end if
27: end for
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and creates the groups of matches on the fly. It is our future work to re-implement group seed

matching using more efficient indexing-based methods. Implementation of chaining algorithm has

been modified from the program of global chaining algorithm in SeqAn library [32].

2.2.5.3 Time complexity analysis

If we have N reads with average read length L, our text size is NL. Therefore, we have NL elements

in the suffix array and the corresponding LCP array. For each suffix in the suffix array, suppose on

average, it can form LCPs with m other suffixes with size above k, which is the size of k-mer used

in the k-mer-count filtration steps. So the time complexity of finding all the shared k-mers for all

possible reading pairs is O(mNL). If k is large enough (e.g., k = 15 and 11 in our experiment), we

have m� NL, so the time complexity will be dominated by NL.

For N′ read pairs that pass the filtration stage, let the average number of k-mer hits for each

pair be q. Sorting the hits will need O(q logq) and iterating through all hits to find groups is linear

to q. For all the read pairs, the time complexity is O(N′q logq).

Assuming finally we have r group seeds, the chaining procedure has complexity in O(r logr)

for each read pairs. For all the read pairs, the time complexity is O(N′r logr). It is practically very

fast because the number of group seed matches is very small compared to the original seed hits

(indicated by Figure 2.3).

2.3 Results

We focus on evaluating the sensitivity and precision of overlap detection. We applied GroupK to

three PB datasets and one ONT dataset: a simulated PB RSII E. coli sequencing dataset, a real PB

RSII E. coli sequencing dataset, a PB RSII human foot metagenomic sequencing dataset, and an
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ONT E. coli (SQK-MAP-006) dataset. For simulated E. coli dataset, we have the true sampling

position for each read as our ground truth. For the real E. coli dataset and human foot dataset, we

determine the ground truth via BLASR’s [21] alignments against the reference genome.

We benchmarked GroupK’s performance with Minimap [87], Minimap2 [88], DALIGNER

[102], MHAP [12], and GraphMap [137]. Those tools and methods are representative overlap

detection tools for long erroneous reads from PB or ONT [26]. All the detailed parameters can

be found at the website listed in [33]. Our main metrics include: (1) sensitivity, which measures

the ratio of the true overlaps identified by each program to the whole set of overlapping pairs; (2)

precision, which quantifies the ratio of true overlap detected by each program to the total reported

overlapping pairs; and (3) F1 score, which is the harmonic mean of sensitivity and precision. A

reported overlapping pair is regarded as correct if it is also present in our ground truth. The detailed

overlap region and overlap length were not considered in the current evaluation because these read

pairs can go through a more accurate alignment program for generating the final overlap alignment.

As we discussed before, our goal is to identify overlapping reads without using error correction.

All tested tools will thus be applied to their raw data set.

2.3.1 Simulated E. coli dataset

We first evaluated the performance of our method on a simulated E. coli dataset. The dataset

was generated using PBSIM [114] with E. coli K-12 MG1655 as the reference genome [60]. The

length distribution and the quality profile were derived from real PB P6-C4 E. coli dataset [118].

The simulated dataset has 5,620 reads, with average length of 8,344.78 bps and 14.5% average

error rate (8.6% insertions, 4.4% deletions, and 1.4% substitutions).

From the report by PBSIM, we can obtain the exact locations where the simulated reads are

sampled in the genome. This information provides us with the ground truth for reads’ overlaps so
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that we can calculate the sensitivity and precision.

Following the pipeline we discussed in Section 2.2, we first used k-mer-counting as the filtra-

tion stage. According to Equation (2.1), Equation (2.3), and Figure 2.5, we discarded all read pairs

with less than two 15-mer matches. The sensitivity of the filtration is 0.979 and only about 6% of

read pairs are kept for downstream analysis.

Figure 2.7: The ROC-like plot using GroupK, Minimap, Minimap2, DALIGNER, MHAP, and
GraphMap on the simulated PB E. coli dataset. The x-axis represents the false discovery rate
(FDR = 1−precision). Y-axis is the sensitivity (0.5 to 1).

We evaluated the performance of our tool by adjusting the group seed match criteria coefficient

c, which is introduced in Section 2.2. With the increase of c, sensitivity will become higher, and the

precision will become lower. As shown in Figure 2.7, GroupK can achieve 5% to 6% improvement

on the sensitivity with similar precision to other overlap detection tools.
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GroupK Minimap Minimap2 DALIGNER GraphMap MHAP

Time (seconds) 1871 30 16 39 171 858
Memory (GB) 1.994 1.754 1.097 2.288 1.873 2.562

Table 2.1: Computational performance on the simulated E. coli dataset. The computational per-
formance of overlap detection using GroupK, Minimap, Minimap2, DALIGNER, MHAP, and
GraphMap on the simulated E. coli dataset.

2.3.1.1 Running time and memory usage

We evaluated the running time and the peak memory usage of the tested tools in this experiment.

We run all overlap detection tools with a single core of 2.4Ghz 14-core Intel Xeon E5-2680v4

CPU and 32 GB memory requested from the High-Performance Computing Center at Michigan

State University. The performance is measured with the best F1 score. The results are reported

in Table 2.1. For the memory usage, Minimap2 is the most efficient one but all others are com-

parable. GroupK is slower than other tools, partially because we use small k-mers. We found

that the bottleneck of our program is the group matching stage, which accounts for about 1200 of

1871 seconds. By implementing a more efficient indexing-based method, we expect to reduce the

running time of this stage. For example, we can speed up k-mer counting by adopting the method

used in KMC [77].

2.3.2 Real PB E. coli dataset

After using the simulated dataset to evaluate our method’s performance, we applied GroupK to a

real PB RS II (P6-C4) E. coli dataset [118]. The coverage of the whole dataset is 150X. To test the

performance of low coverage data, we sampled a 15X coverage dataset based on the read length

distribution of the whole dataset. The dataset has 14,262 reads, with the average length of 4,882.09

bps and average error rate of 14.14% (error rate is estimated using quality score).

We applied BLASR to map the reads to the reference genome to estimate the ground truth
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(BLASR was run with parameters: minReadLength, 2000; maxScore, 1000; maxLCPLength, 16;

minMatch, 12; m 4 and nCandidates/bestn set to 10× sequencing coverage). The mapping re-

sult from BLASR may contain short alignments due to the repeat in the genomes. So when we

determine the ground truth, we only consider the alignments that cover at least 80% of the read.

By removing short noisy alignments, we can make sure the BLASR alignments are close to the

underlying ground truth.

GroupK Minimap Minimap2 DALIGNER GraphMap MHAP

Best F1 score 0.9311 0.9037 0.8426 0.8340 0.7758 0.7023
Sensitivity 0.9330 0.8939 0.8778 0.9066 0.6741 0.7258
Precision 0.9292 0.9138 0.8101 0.7722 0.9137 0.6802

Table 2.2: Overlap detection on the real E. coli dataset. The performance of overlap detection
using GroupK, Minimap, Minimap2, DALIGNER, MHAP, and GraphMap on the real PB RS II
(P6-C4) E. coli dataset. Here we only report the experiment results with the highest F1 score for
each tool.

We used the same filtration setup adopted in the simulated E. coli experiment. Among all

overlap detection tools we tested, GroupK still achieved the highest sensitivity with comparable

precision (Table 2.2). With slightly higher precision, our sensitivity is 4% better than the next

best tool, Minimap. Compared to the previous experiment, the difference in sensitivity is smaller.

One reason lies in the construction of the ground truth dataset. In the simulated dataset, we used

the sample positions of all reads to determine whether two reads form an overlap. Thus, that

dataset can include reads with small overlaps or reads with higher error rates. In this dataset, our

method discarded BLASR alignments with high error rates and the remaining alignments have

higher similarities with the reference genome and thus produce fewer “hard cases”. As Minimap is

the second best tool for this dataset, we further analyzed the performance of GroupK and Minimap

on read pairs of different overlap size in the next section.
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2.3.2.1 Performance with different overlap size

We divide all overlapping pairs into bins of width 500 based on the overlap size. For example,

the first bin has the read pairs with overlap sizes from 0 to 499, and the second bin has read pairs

with overlap sizes from 500 to 999, and so on. For each bin, we compared the sensitivity of

GroupK and Minimap using parameters yielding the similar precision in Figure 2.8. For Minimap,

we showed the result with the highest F1 score. For GroupK, we selected a parameter so that it

achieves similar precision to Minimap (F1 score: 0.9241, sensitivity: 0.9344, precision: 0.9140).

According to Figure 2.8, GroupK has much better sensitivity when the overlap size is less than

2,000. As we showed in Figure 2.1, there are a significant number of overlaps with overlap size

smaller than 2,000 even for 30X coverage. Being able to identify small overlaps allows us to

generate more complete assemblies using long reads. This is particularly useful for low coverage

data, such as what we usually have in metagenomic datasets.

2.3.3 Human Foot Metagenomic Dataset

One of the major utilities of our tool is to identify overlaps between reads in metagenomic data that

are sequenced using the PB platform. For complicated microbial communities, metagenomic data

containing only short reads poses serious computational challenges for de novoassembly and the

downstream composition/functional analysis. Long reads hold the promise to produce more com-

plete and accurate microbial genome assemblies for the metagenomic dataset. In this experiment,

we evaluated the performance of overlap detection for a mock metagenomic dataset constructed

from a real human foot dataset [144]. A particular challenge for this experiment is the low cover-

age of the component species in the metagenomic dataset, which could be caused by sequencing

throughput and complexity of the sample.
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Figure 2.8: Sensitivity of GroupK and Minimap for detecting overlaps of different size on PB E.
coli dataset. The x-axis represents the overlap size. Y-axis is the corresponding sensitivity of the
bin. The X-axis bin width is 500 and the figure only included the first 6 bins (i.e. up to overlap
size 3000) as their sensitivity becomes more similar with the increase of the overlap size.
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The human foot sample was sequenced by linear PB RSII TdT (terminal deoxynucleotidyl

transferase). Sequences that can be mapped to the human genome were removed as host-derived

DNA. According to the Supplementary Materials of [144], there are about 1,000 bacteria and

viruses in this metagenomic dataset. However, we cannot evaluate the performance of overlap

detection on all the reads from the 1,000 microbes because the coverages of many species are too

low to yield meaningful overlaps. In order to construct the ground truth, we need to align the reads

against species with known reference genomes and reasonable coverage. Thus, we only choose

reads satisfying the following criteria: 1) the reads are sequenced from a species with known refer-

ence genome; and 2) the coverage of the species cannot be too small (e.g., >3X coverage). Based

on these criteria, we keep the reads sequenced from three bacteria: Corynebacterium aurimucosum

(6.3X Coverage), Corynebacterium tuberculostearicum (8.5X Coverage), and Staphylococcus ho-

minis (3.2X Coverage). The reads are recruited via BLASR. The alignment positions are used to

determine which reads form an overlap. Note that Corynebacterium aurimucosum and Corynebac-

terium tuberculostearicum belong to the same genus and may contribute to the false positive over-

lap detection due to their shared regions. The average length of the reads is 1696.25 bps, which is

much shorter than the reads in the previous experiments.

As this dataset contains much shorter reads, the expected number of k-mer hits will change.

Intuitively we need to use shorter k-mers to ensure high filtration sensitivity. Using the read length

distribution, we calculated E[Xr] (Equation 2.1) and E[Xo] (Equation 2.3) and determined the k-

mer counting-based filtration criteria. In this experiment, we only kept read pairs that share at least

three 11-mers.

For this mock metagenomic dataset, GroupK yielded significantly better performance than

other tools on metrics including F1 score, sensitivity, and precision (Table 2.3). Compared to

other tools, GroupK can produce much higher sensitivity without sacrificing precision, leading to
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GroupK Minimap Minimap2 DALIGNER GraphMap MHAP

Total:
Best F1 score 0.9163 0.8306 0.8776 0.6911 0.7188 0.7812
Sensitivity 0.8954 0.7802 0.8352 0.6012 0.5721 0.6803
Precision 0.9381 0.8880 0.9245 0.8027 0.9666 0.9174

C. aurimucosum:
Best F1 score 0.9512 0.8072 0.9117 0.7432 0.7397 0.8545
Sensitivity 0.9228 0.6858 0.8467 0.6266 0.5892 0.8045
Precision 0.9814 0.9806 0.9874 0.9131 0.9937 0.9111

C. tubercu-
lostearicum:
Best F1 score 0.9454 0.8688 0.9050 0.8315 0.7276 0.7961
Sensitivity 0.9105 0.7958 0.8346 0.7150 0.5727 0.7355
Precision 0.9830 0.9567 0.9884 0.9934 0.9977 0.8675

S. hominis:
Best F1 score 0.9163 0.7651 0.8024 0.8754 0.6343 0.6861
Sensitivity 0.8733 0.6887 0.6813 0.7967 0.4658 0.6348
Precision 0.9245 0.8606 0.9759 0.9713 0.9938 0.7464

Table 2.3: Overlap detection on the human metagenomic dataset. The performance of overlap
detection using GroupK, Minimap, Minimap2, DALIGNER, MHAP, and GraphMap on the mock
metagenomic dataset. Here we only report the experimental results with the highest F1 score for
each tool.

the higher F1 score. Besides evaluating the performance of various tools on all the reads from

the three species, we also reported the performance of different overlap detection tools on each

single bacteria dataset without mixing with other species (Table 2.3). In these tools, GraphMap

has high specificity for all three with sacrifice of sensitivity. However, GroupK still achieves the

best performance overall. The comparisons suggest that our method has great potential to detect

overlaps for data with very low coverage (around 5X). This will enable better assembly for PB

sequenced metagenomic data, which will become more available with the advances of long read

sequencing technologies.
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2.3.4 Real ONT E. coli dataset

We also tested our method on one ONT dataset. We used downsampled 15X coverage 2D reads

from the SQK-MAP-006 dataset as 2D reads provide higher quality than 1D reads. We followed

the same pipelines we used for the real E. coli PB dataset. As 2D ONT reads have similar error

rates to the PB reads, we expect that our tool can still achieve reasonable performance given the

same setup for the PB dataset. Therefore, we used the same parameters as the ones we used for the

PB E. coli dataset.

GroupK Minimap Minimap2 DALIGNER GraphMap MHAP

F1 score 0.9383 0.9310 0.9090 0.8272 0.9280 0.8122
Sensitivity 0.9597 0.9546 0.9362 0.8730 0.8991 0.8871
Precision 0.9178 0.9085 0.8833 0.7860 0.9589 0.7490

Table 2.4: Overlap detection on the ONT E. coli dataset. The performance of overlap detection
using GroupK, Minimap, Minimap2, DALIGNER, MHAP, and GraphMap on the real ONT SQK-
MAP-006 E. coli dataset. Minimap2 uses the ava-ont setup, which is optimized for ONT data.

Among these tools, GraphMap was designed for ONT data, Minimap2 provides a specific

setup for finding the overlap on ONT dataset. All other tools are not specifically designed for ONT

datasets. GroupK achieves the best F1 score compared to other tools’ default setup while keeping

the highest sensitivity (Table 2.4). This result suggests that our strategy is robust with different

types of long reads.

2.4 Discussion

Seeding is a key step for overlap detection because of the high error rate of long reads. Successful

seeding strategies should balance the sensitivity and the specificity to achieve the optimal perfor-

mance. Popular seeding methods include maximal exact matches, spaced seeds, and gapped spaced
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seeds. However, to successfully find a hit between two reads, these methods still need either to find

relatively long continuous exact matches (large k-mer) or to find inexact matches following certain

error patterns (spaced seed). Compared to these methods, group seed matching is more flexible as

it requires multiple short exact matches without specifying the error patterns. This flexibility leads

to high sensitivity, and meanwhile the specificity is still guaranteed with the group seed match

criteria.

Currently the group seed matching step based on hash table is the bottleneck of our overlap

detection pipeline. A new method that can improve the running time efficiency of this step is

needed to make the algorithm achieve the same speed as other faster overlap detection tools.

2.5 Conclusions

In this work, we developed an overlap detection tool for third-generation sequencing data. By

adopting the group hit criteria to cluster a group of short k-mer hits that satisfy statistically derived

distance constrains, our method can improve the sensitivity of overlap detection without sacrificing

precision. Our experimental results have shown that for datasets with low sequencing coverage,

our program can detect significantly more overlapping pairs while keeping high precision. One

utility of our approach is to detect small overlaps between long reads of rare species in a microbial

community.
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Chapter 3

profile HMM model and homology search 1

3.1 Introduction

Compared to Illumina, the representative secondary generation sequencing platform, the major

disadvantages of PB include high sequencing error rate (11-15%), lower throughput, and higher

cost per base [124,126]. Similar to pyrosequencing data, most of the errors are insertion or deletion

errors. The high error rate poses challenges for all downstream sequence analysis. In particular,

during homology search for genome annotation, sequences are aligned to characterized protein

sequences or families. Insertion or deletion errors in genes will cause frameshifts and may only

lead to marginal alignment scores and short alignments [154]. As a result, it is hard to distinguish

true alignments from random alignments. The inaccurate homology search results can incur errors

in structural and functional annotation.

Different strategies have been proposed or implemented to avoid or correct sequencing er-

rors in PB data. There are various PB sequencing projects that mainly use circular consensus

sequencing (CCS) reads with sufficient sequencing passes. A coverage of 15 passes yields > 99%

accuracy [128]. However, CCS reads are much shorter than the continuous long reads of PB data.

In addition, the amount of CCS reads is much less than all the output of PB data. Thus, using only

CCS reads does not take full advantage of the sequencing power and strength of PB data.

1Du, Nan, and Yanni Sun. "Improve homology search sensitivity of PacBio data by correcting frameshifts." Bioin-
formatics 32.17 (2016): i529-i537.

43



One popular strategy to handle sequencing errors of PB data is based on hybrid sequenc-

ing [78]. As Illumina produces many more accurate but shorter reads, methods are developed

to correct errors by aligning short reads to long PB reads. Yet, this method needs preparation of at

least two sequencing libraries and several types of sequencing runs, which is not cost-effective for

many applications.

Unlike hybrid sequencing, there are methods that do not require highly accurate short reads

for error correction. One representative method is described in Chin et al.’s hierarchical genome-

assembly process HGAP [24], which aligns short sequences to the longest reads of the same se-

quencing library of PB. As the sequencing errors in PB reads occur randomly, the inferred consen-

sus sequence from the alignment between the short reads and long reads represent the high-quality

sequence. Despite its success, there is still room to improve the error correction performance for

the consensus sequence extraction stage in HGAP. In particular, its performance is heavily affected

by the coverage of the aligned short sequences against the long seed sequences. The regions with

more short sequences aligned have better error correction performance than other regions.

After error correction, corrected PB reads can usually achieve more sensitive homology search

results compared to the raw data. In particular, when the coverage is high, the corrected reads

from HGAP can achieve alignment scores similar to the ground truth. However, in practice, not all

PB sequencing projects can have sufficient coverage for all regions, transcripts, or genomes. For

example, HGAP failed to assemble the data from the arm sample in human skin microbial com-

munity [144] because of low coverage of the data set. Figure 3.7 in our experimental results show

that the difference of the alignments’ scores, lengths, and E-values between HGAP’s corrected

reads and the ground truth is still significant. Thus, there is still a need for homology search tools

designed for PB data.

In this work, we designed and implemented Frame-Pro, a homology search tool for PB reads.
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The experimental results showed that our tool can significantly improve the homology search sen-

sitivity while also correcting sequencing errors. Our method incorporated two key observations.

First, as shown by HGAP, sequencing errors in PB are distributed randomly and thus the consen-

sus sequences tend to be closer to ground truth. Our work incorporated this method. Second, we

identify frameshifts caused by sequencing errors using characterized protein families as the guid-

ance. Essentially our method corrects errors by maximizing both alignment score against protein

families and local coverage score in a constructed alignment graph. Both observations are used

together to boost the performance of both homology search and error correction.

The remainder of this Chapter is organized as follows. Section 3.2 briefly reviews other

frameshift error detection tools and their limitations in protein domain classification in PB data

sets. Section 3.4 describes the dynamic programming algorithm that incorporates consensus se-

quence finding and Viterbi algorithm for error correction and sequence alignment. In Section 3.5,

we demonstrate the results of error correction and homology search by applying our tool to sim-

ulated and real PB data. We also benchmark our tool with HGAP, a successful error correction

method without relying on hybrid sequencing. Finally, Section 3.6 concludes and suggests direc-

tions for future work.

3.2 Related work

3.2.1 Profile homology search

Homology search is still an important step in sequence-based functional analysis for genomic data.

By comparing query sequences against reference sequences or profiles, i.e., a family of homolo-

gous reference sequences, functions and structures can be inferred. The representative tools for

sequence homology search and profile homology search are BLAST [4] and HMMER [38], re-
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spectively. Profile homology search has several advantages over pairwise alignment tools such as

BLAST. First, the number of gene families is significantly smaller than the number of sequences,

rendering much faster search time. For example, there are only about 13,000 manually curated

protein families in Pfam, but these cover nearly 80% of the UniProt Knowledgebase and the cov-

erage is increasing every year as enough information becomes available to form new families [45].

The newest version of HMMER [38] is more sensitive than BLAST and is about 10% faster.

Second, previous work [35] has demonstrated that using family information can improve the

sensitivity of a remote protein homology search, which is very important for various sequencing

data such as metagenomic data analysis. These data sets may contain species remotely related to

ones in the reference database and require sensitive homology search. Thus, in this work, we focus

on implementing profile homology search for PB data. The method can be extended to pairwise

sequence alignment. As HMMER is the most widely used profile alignment tool, we focus on

evaluating the alignment performance using HMMER.

The protein domains families used in our experiments are downloaded from Pfam. Other

databases such as TIGRFAMs [57], FIGfams [98], InterProScan [152], and FOAM [123] can be

used too as long as profile hidden Markov models can be trained.

3.2.2 Related work on frameshift correction

Usually, when comparing a DNA sequence with a protein sequence or family, six-frame transla-

tions are conducted and one of the reading frame should lead to statistically significant alignment

if the query and the reference are homologous. However, frameshifts caused by insertion or dele-

tion errors make the correct translation consist of alternating reading frames. Without knowing the

error positions, choosing the correct frames for each fragment between errors is challenging.

A number of programs exist to handle frameshifts through DNA vs. protein sequence align-
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ment. Simple methods such as BLASTX discard sequences that might contain frameshifts rather

than trying to fix them. Other tools [17, 22, 49, 50, 53, 59, 120, 121, 155] are available to detect and

fix frameshift errors automatically. Besides detecting frameshift in sequence alignment, some pro-

grams [5,14,76,131] focus on frameshift detection during gene finding and use ab initio methods.

These programs are not designed for PB data. In addition, they cannot be applied to protein profile

homology search.

Alternatively, Genewise [13], a widely used DNA vs. protein alignment tool allows compar-

ison of a DNA sequence with a protein family. But it does not consider the sequencing error

properties of NGS data. The most relevant works to ours include [154], which modified Viterbi

algorithm to improve homology search for pyrosequencing data. But it does not have satisfactory

performance for PB data because the sequencing error properties of pyrosequencing and PB are

different. Pyrosequencing reads have lower error rate and most of the errors are located inside

homopolymer regions. These properties make error correction easier than PB, which have higher

error rates and the errors can occur more randomly. FrameBot [150] is another relevant work for

correcting frameshifts caused by sequencing errors. But it is not designed for profile homology

search. And, like other tools, it is only optimized and tested on sequencing data with lower error

rate than PB.

HGAP [24] is another highly relevant work because it contains error correction stage for PB

data. As discussed in Section 3.1, its performance is heavily affected by sequencing coverage.

3.3 Profile hidden Markov model

Before introducing the augmented Viterbi algorithm that used in Frame-Pro, we first reviewed the

conceptes and algorithms of profile hidden Markov model. The content of this section is mainly
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adapted from [35, 36].

3.3.1 Markov chains

We start from Markov chain, which is the simplest probabilistic model of sequence. In the model,

the probability of a symbol in the sequence depends on the previous symbol. In Markov chain,

each symbol (e.g., residue of DNA) corresponds to a state in the chain.

Figure 3.1: A Markov chain example of DNA. There are four states for each of nucleotides A, C, G
and T. A transition probability is associated with each arrow in the figure.

The transition probabilities ast is the probability that a certain state following another state:

ast = P(xi = t|xi−1 = s) (3.1)

The probability of the sequence can be write as

P(x) = P(xL,xL−1, ...,x1)

= P(xL|xL−1, ...,x1)P(xL−1|xL−2, ...,x1)...P(x1) (3.2)
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by repeat applyingP(X ,Y ) = P(X |Y )P(Y ). In Markov chain, the probability of each symbol xi de-

pends only on the previous symbol xi−1, not on entire previous sequence. So the previous equation

can be rewrite as

P(x) = P(xL|xL−1)P(xL−1|xL−2)...P(x1)

= P(x1)
L

∏
i=2

axi−1xi (3.3)

This is the general equation for the probability of a specific sequence of any Markov chain.

3.3.2 Hidden Markov models

In the Markov chain, there is a one-to-one correspondence between the states and the symbols.

Since we can directly observe the symbols in the sequences (e.g., residues in DNA sequences), we

can also confirm the state from the observation. However, in the hidden Markov model, one state

may emit many different symbols. So from the observation of symbols, we cannot confirm the

state from our observation. In other words, the state is hidden now, so we call such model hidden

Markov model.

We fomulate the hidden Markov model as following: We call the sequence of the states path,

π . The path itself is a simple Markov chain, the probability of a state in the path only depends on

the previous state. The ith state in the path is called πi. The transition probability of the chain is:

akl = P(πi = k|πi−1 = k) (3.4)

Because we have decoupled the symbols b from the states k, we must need a new set of pa-

rameters, emission probabilities ek(b), to model the probability that symbol b is observed when in
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state k:

ek(b) = P(xi = b|πi = k) (3.5)

We can write the probability of an observed sequence x and a state sequence π as:

P(x,π) = a0π1

L

∏
i=1

eπi(xi)aπiπi+1 (3.6)

where we require πL+1 = 0. The Equation 3.6 is the HMM analogue of Equation 3.3.

In real application of HMM, there are three fundamental problems we care about [69]: (1)

Given an HMM model with parameters akl and ek(b), and an observation sequence x, determine

the likelihood of P(x) (likelihood problem); (2) Given an HMM model with parameters akl and

ek(b), and an observation sequence x, decode the most probable state path π∗ (decoding problem);

(3) Given an observation sequence x and states of HMM, learn the HMM parameters akl and ek(b)

(learning problem). The Viterbi algorithm, Forward algorithm, and Forward-Backward algorithm

were developed to solve those problems, respectively. We will introduce these algorithms for

profile hidden Markov model in the following sections.

3.3.3 Profile hidden Markov models (profile HMMs)

Profile HMMs is a particular HMM developed to model multiple sequence alignments [82]. Here

we will use profile HMMs designed for protein family multiple alignments as our example. In

profile HMMs, for each position of state i in the path π , there are three possible states, match state

Mi, insertion state Ii, and deletion state Di (Figure 3.2). Insertion state Ii is used to match insertions

after the residue matching the ith column of the multiple alignments. There are transitions from

Mi to Ii, a loop transition from Ii to itself to accommodate multi-residue insertions, and a transition

50



𝑴𝒊

𝑫𝒊

𝑰𝒊

Figure 3.2: The transition structure of a profile HMM. We use squres to indicate match states,
diamonds to indicate insertion states, and circles to indicate deletion states.

from Ii back to Mi. Deletion state Di is used to handle the jump transition between non-neighboring

match states without any emission. The sum of the costs of an transition M to D followed by a

number of D to D transitions, then a D to M transitions will be the cost of a deletion.

3.3.3.1 Viterbi algorithm

Viterbi algorithm [148] is the most common algorithm for finding the most probable state path:

π
∗ = argmax

π

P(x,π) (3.7)

The most probable path π can be found recursively. For profile HMMs, let V M
j (i) be the maximum

log-odds score of aligning a best sub-sequence x1,2,..,i to the HMM path up to state j, ending with

xi being emitted by state M j, V I
j (i) be the score of the best path ending with xi being emitted by
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state I j similarly, and V D
j (i) for the best path ending in state D j. qxi is the emission probability of

a standard random model (background distribution). Then the recursive Viterbi equations can be

write as:

V M
j (i) = log

eM j(xi)

qxi

+max


V M

j−1(i−1)+ logaM j−1,M j

V I
j−1(i−1)+ logaI j−1,M j

V D
j−1(i−1)+ logaD j−1,M j

V I
j (xi) = log

eI j(xi)

qxi

+max


V M

j (i−1)+ logaM j,I j

V I
j (i−1)+ logaI j,I j

(3.8)

V D
j (xi) = max


V M

j−1(i)+ logaM j−1,D j

V D
j−1(i)+ logaD j−1,D j

In a common situation, the emission score log
eI j (xi)

qxi
for V I

j (xi) will be canceled because we

assume the emission distribution eI j(xi) from the insertion states I j is the same as the background

distribution qxi . The whole process of Viterbi algorithm is described in Algorithm 2.

Algorithm 2 Viterbi algorithm
Input: DNA sequence x with length L, profile HMM with length n
Output: Most probable state path π∗ with log-odds score logP(x,π∗)

1: V M
0 (0) = 0, V S

j (0) =−inf for0 < j and S ∈ {M, I, D}. . Initialization
2: for i = 1 to L do . Recursion
3: V S

j (i)← Equation 3.8
4: ptri( j)← argmaxS j−1

(V S
j (i))

5: end for
6: logP(x,π∗)←V M

n (L) . Termination
7: π∗L ← argmaxn−1V M

n (L)
8: for i = L to 1 do
9: π∗i−1← ptri(π

∗
i ) . Traceback

10: end for
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3.3.3.2 Forward algorithm

To evaluate the likelihood of a sequence x, we need sum the probabilities of all possible state path

to obtain the probability of x:

P(x) = ∑
π

P(x,π) (3.9)

A dynamic programming algorithm can be used to calculate this full probability recursively.

This is called the forward algorithm.

We used the similar notation that used in Viterbi algorithm. The forward log-odds score FM
j (i),

F I
j (i), and FD

j (i) are defined corresponding to V M
j (i), V I

j (i), and V D
j (i). So the recurrence equations

of forward algorithm are:

FM
j (i) = log

eM j(xi)

qxi

+ log[aM j−1,M j exp(FM
j−1(i−1))

+aI j−1,M j exp(F I
j−1(i−1))+aD j−1,M j exp(FD

j−1(i−1))]

F I
j (xi) = log

eI j(xi)

qxi

+ log[aM j,I j exp(FM
j (i−1)) (3.10)

+aI j,I j exp(F I
j (i−1))]

FD
j (xi) = log[aM j−1,D j exp(FM

j−1(i))+aD j−1,D j exp(FD
j−1(i))]

The initialization of the forward algorithm requires that FM
0 (0) = 0, which is similar to Viterbi

algorithm. Since we only need the probabilities of x so there is no traceback in the forward algo-

rithm.
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3.3.3.3 From multiple sequence alignment to profile HMM

Usually, we want to build profile HMMs from a multiple sequence alignment with multiple columns.

We first need to determine which multiple alignment columns to assign to match states, and which

to assign insertion states (Figure 3.3). We often use the heuristic rule to ignore the column for

which the fraction of gap characters is greater than or equal to a column removal threshold θ [29].

Usually, the column removal threshold θ equals to 0.5. After this, we can construct profile HMMs

as all the states are determined.

Figure 3.3: Ten columns from the multiple sequence alignments of seven globin proteins. The
starred columns are ones that will be treated ‘matches’ in the profile HMM. Reprinted from [35].

Then we need to estimate the probability parameters. From multiple sequence alignment, we

can align each of the row to the profile HMM. We can directly estimate the parameters from the

alignments. By counting up the number of times each transition or emission is used, the probability

parameters are assigned by:

akl =
Akl

∑l′ Akl′
and ek(a) =

Ek(a)
∑a′ Ek(a)

(3.11)

where k and l are indices over states, and akl and ek are the transition and emission probabilities,

and Akl and Ek are the corresponding counts.
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In many situations, we only have a limited number of sequences in the training alignments.

The major challenges here is that some transitions and emissions that never seen in the training

alignment will be assigned zero probability. To solve the problem, one can add pseudocounts to

the observed counts. The most straightforward Laplace’s rule is to add one to each count we used in

Equation 3.11. A better solution is using a mixture of Dirichlet distributions as the prior. Readers

are encouraged to learn more details in Chapter 5 of [35].

3.3.3.4 Forward-Backward algorithm

When the path is unknown for the training process, we are no longer able to estimate the parameter

value and must iterative procedure to learn the parameters. Forward-backward algorithm is the

standard algorithm for leaning the parameters of HMM. It is introduced from [9] by Leonard Baum,

so it is also called Baum-Welch algorithm. It is a special case of the Expectation-Maximization

(EM) algorithm. The algorithm first estimated the probabilities, then derived a better estimates.

The estimation is improved iteratively until some stopping criterion is reached.

We already calculated forward probability using forward algorithm. To train HMM, we also

need to calculate the posterior probability that observation xi came from state k given the observed

sequence P(πi = k|x) using backward algorithm. We first calculated the probability of producing

the entire observed sequence with the ith symbol being produced by state k:

P(x,π = k) = P(x1...xi,π = k)P(xi+1...xL|x1...xi,π = k)

= P(x1...xi,π = k)P(xi+1...xL|π = k)

= fk(i)bk(i) (3.12)
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bk(i) = P(xi+1...xL|π = k) (3.13)

bk(i) can be obtained by a backward recursion start from end of the sequence.

The posterior probabilities can be calculated by straightforward conditioning,

P(π = k|x) = fk(i)bk(i)
P(X)

(3.14)

where P(x) is the result of forward or backward algorithm.

Then we can calculate the expected number of times of transitions and emission, Akl and Ek,

using the forward probabilities and backward probabilities. The detailed derivation can be found

from text books [29, 35, 69]. The expected number of times that akl is used is given by:

Akl = ∑
j

1
P(x j)∑

i
f j
k (i)aklel(x

j
i+1)b

j
l (i+1) (3.15)

where f j
k (i) is the forward variable fk(i) calculated for sequence j, and b j

l (i) is the backward

variable correspondingly. Similarly, we have the equation for expected number of times that b

appears in state k:

Ek(b) = ∑
j

1
P(x j) ∑

{i|x j
i =b}

f j
k (i)b

j
k(i) (3.16)

where the second sum calculate over the positions i for which the symbol emitted is b.

The whole process of Baum-Welch algorithm like this:
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Algorithm 3 Baum-Welch algorithm
1: Initialize alk and ek.
2: while ∆ > predefined threshold Θ do
3: Set all the A and E to their pseudocount values.
4: for each sequence j = 1 to n do
5: for i = 1, ...,L do
6: fk(i) = ek(xi)∑h fh(i−1)aik
7: end for . forward algorithm
8: for i = L−1, ...,1 do
9: bk(i) = ∑l aklel(xi+1)bl(i+1)

10: end for . backward algorithm
11: Add the contribution of sequence j to A and E in Equation 3.15 and 3.16
12: end for
13: Calculate new alk and ek using Equation 3.11
14: Calculate the new log likelihood of the model
15: ∆← change of the log likelihood
16: end while

3.4 Methods

Frame-Pro is designed to improve profile homology search performance for PB data. It incorpo-

rates consensus-based error correction and a modified Viterbi algorithm for finding optimal align-

ment. While a standard Viterbi algorithm aligns a single sequence to a hidden Markov model

(HMM), our algorithm aligns an alignment graph to an HMM. In addition, we defined a new scor-

ing system that combines the path score from the alignment graph and the alignment score in the

HMM. We first introduce the construction of the alignment graph.

3.4.1 Generate sequence alignment graph

Following HGAP, we first construct a sequence alignment graph (SAG) from PB data. The details

of the graph construction can be found in the supplementary material of Chin et. al’s work [24].

Here we simply summarize the major steps. Reads with a length longer than a chosen cut-off are

selected as seed sequences. Other reads are then aligned to the seed sequences by BLASR [21] for
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Figure 3.4: Build an example SAG from an alignment. Top panel: multiple sequence alignment of
six sequences. The top sequence is the seed sequence. Bottom panel: sequence alignment graph.
For node x0, if we trace back for two more edges, we can identify three codons ending with x0:
TCA, ATA, and GCA. Each path has its specific nodes x(1)0 and x(2)0 marked. The consensus path
of this part of graph is ATCA.
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construction of an alignment graph (see top panel of Figure 3.4). In each aligned column, different

bases are modeled as nodes for the corresponding position in an SAG. Consecutive bases are

connected by an edge in the graph. The edge weight represents the number of aligned sequences

that go through this edge.

The consensus sequence from the alignment graph represents the most reliable sequence. Fig-

ure 3.4 shows an example SAG and the consensus sequence. Usually, when there are sufficient

reads aligning to the seed sequences, the consensus sequence can be reliably used for downstream

analysis including conducting homology search. However, when the coverage is not sufficient, the

chosen consensus sequence does not show significantly higher score than alternative sequences.

Thus, it is difficult to extract a path that is closest to the reference sequence.

Our algorithm is much less sensitive to sequencing coverage as it uses characterized protein

families as reference to choose optimal path in the alignment graph. Essentially, it aligns an align-

ment graph with a profile HMM, which represents a protein family. During the alignment, the

algorithm chooses a sequence path in SAG and a state path in the HMM in order to maximize the

combined coverage score and alignment score. Below we describe the modified Viterbi algorithm.

3.4.2 Viterbi algorithm for aligning an alignment graph with a profile HMM

Let π be a state path in a profile HMM Model M. Let π
′
be a sequence path in an SAG G. Our goal

is to search for the optimal path pair (π∗,π
′∗) such that (π∗,π

′∗)= argmax(αSM(π,π ′)+βSG(π
′
)),

where SM(π,π ′) is the alignment score between a sequence in G and the profile HMM. α and β

are the weights of the HMM score and the coverage score in G, respectively. Intuitively this algo-

rithm searches for an optimal alignment between a DNA sequence in the alignment graph G and

a profile HMM M by simultaneously considering 1) the probability of a profile HMM alignment,

represented by log-odds score SM(π,π ′), and 2) path weight in G, represented by SG(π
′
). To solve
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the above equation, we developed the following dynamic programming algorithm, which is an

augmented Viterbi algorithm [35]. The recursive equations can be extended to forward algorithm

and also posterior probability calculation for an HMM.

Input: a SAG G generated by alignments between a long DNA seed sequence xseed and multi-

ple shorter sequences, a profile HMM M. Notations of M will be described below.

Output: the error-corrected DNA sequence x′seed and its optimal alignment with M.

Algorithm: we first define notations that will be used in the recursive equations.

• Notations of the profile HMM model M: The detailed descriptions of a profile HMM

model can be found in the literature [35, 36]. A profile HMM model M consists of match

states M j, deletion states D j, and insertion states I j for each position j, which is the index

of a conserved column in a multiple sequence alignment. asis j is the transition probability

from state si to s j. As the HMM is constructed by aligned protein sequences while the

graph model is constructed by aligned DNA sequences, we need to translate the sequences

in G into amino acids. Here, let T (xi−2xi−1xi) be the amino acid translated from a codon

xi−2xi−1xi. es(T ) is the emission probability for state s to emit T . Compared to the topology

of Plan 7 model used by HMMER [38], one of the major changes we made is that N and C

are responsible for emitting all DNA bases that are outside of the protein domain.

• Notations of the SAG: Let xi represent the ith node in the topologically sorted list of the

graph. As the alignment graph is constructed in DNA space, xi also represents a base from

the aligned sequences. x(k)i represents a node, from which to node xi there exists a path

consisting of k edges. According to this definition, when k = 1, there is an edge from x(1)i

to xi. When k = 2, a codon is formed by three bases: x(2)i , x(1)i , and xi. For example, in

Figure 3.4, both nodes labeled with T and C are x(1)0 . SG(π
′
) represents the path score for
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π
′
, which can be a sequence of any length in G. We will define the path score following the

equations.

• Subproblems and the recursive equations: For a sequence path π ′ ending at node xi in G,

and a state path π ending with index j in M, the dynamic programming algorithm intends

to maximize the combined path score and alignment score: αSG(π
′
1..i)+ βSM(π ′1..i,π1.. j).

Depending on the ending states, we need to consider multiple cases.

V M
j (xi) is maximum score of aligning a sequence path ending with xi in G to the HMM up

to state M j, under the constraint that the animo acid translated by the last three bases xi,

x(1)i , and x(2)i in G is emitted by match state M j. Note that there can be multiple sequence

paths in G ending with xi. So the last three bases of any such sequence path can be generally

represented by x(2)i x(1)i xi. And the translated amino acid is thus T (x(2)i x(1)i xi).

V I
j (xi) is the maximum score of aligning a sequence path ending with xi in G to the HMM

up to state Vj, under the constraint that the animo acid translated by the last three bases xi,

x(1)i , and x(2)i in G is emitted by insertion state I j.

V D
j (xi) is the maximum score of aligning a sequence path ending with xi in G to the HMM

up to state D j. V N(xi) is the maximum score of aligning a sequence path ending with xi in G

to the HMM up to state N, given xi being emitted by the special state N. Similarly, VC(xi) is

the maximum score of aligning a sequence path ending with xi in G to the HMM up to state

C, given xi being emitted by the special state C.

For brevity of presentation, S in the following equations represents S(x(3)i x(2)i x(1)i xi), which

is the path score from the possible third base of the preceding codon to the current codon

ending with xi. Note that the path score is not a simple summation of edge weights as in a

standard graph. We will define the path score after the recursive equations. T is the abbrevi-
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ation of T (x(2)i x(1)i xi) in following equations.

V M
j (xi) = max



V M
j−1(xi(3))+αeM j(T )+α logaM j−1,M j +βS

V I
j−1(xi(3))+αeM j(T )+α logaI j−1,M j +βS

V D
j−1(xi(3))+αeM j(T )+α logaD j−1,M j +βS

V N(xi(3))+αeM j(T )+βS

V I
j (xi) = max


V M

j (xi(3))+αeI j(T )+α logaM j,I j +βS

V I
j (xi(3))+αeI j(T )+α logaI j,I j +βS

V D
j (xi) = max


V M

j−1(xi)+α logaM j−1,D j

V D
j−1(xi)+α logaD j−1,D j

V N(xi) = max
{

V N(x(1)i )+βSx
i(1)

xi

VC(xi) = max


VC(x(1)i )+βSx

i(1)
xi

V M(x(1)i )+βSx
i(1)

xi

• Calculate path scores S: we followed the same equation in HGAP paper [24] to calculate

a path score, which is the sum of the scores of all nodes in the path. In a SAG G, the local

coverage for a position in the aligned graph is defined by the number of reads aligned to

that position. For example, the local coverage is 5 for all positions in Figure 3.4 as there are

5 reads (excluding seed sequence) aligned to the seed sequence. For a node, if one of the

incoming edge’s weight is more than half of the local coverage at that position, the node gets

a positive score. Otherwise, we will assign a negative score. The path score is the sum of the

scores of nodes in the path. The detailed pseudocode can be found in HGAP.

• Combine HMM score and path score: users can choose the weights of the path score in
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graph G and the HMM score in M. Ideally, α and β should be adjusted based on the local

coverage. For high local coverage, we can assign bigger α than β . By default, we use the

same weight, which is the chosen parameters for all of the experiments in this work.

• Running time analysis The time complexity of our algorithm is O(δ |N||M|), where |N|

is the number of nodes in the G and |M| is the number of states in M . δ is the average

number of possible paths that contain a codon ending with a node. Based on our test, for

20X coverage, δ is about 4 to 6 per node. We also found at high local coverage area, the

edge with weight 1 can be ignored as the probability to include that edge in the optimal path

is extremely low. Thus, we removed those edges to further speed up the algorithm. After

this pruning, δ can be as low as near 1 per node on average.

3.4.3 Filtration stage for removing unrelevant protein domain families

During homology search, we align the constructed alignment graphs from PB data with all charac-

terized domains in Pfam. But for any given species or a community, not all domains are relevant. In

order to reduce the search space, we apply a filtration stage to remove domains that are not relevant

to the given data. In practice, we apply HMMER to all consensus sequences extracted from the

alignment graph with a very loose E-value cutoff (1000 is used in all experiments). Only domains

that yield at least partial alignments will be used as input to our dynamic programming. Other do-

mains without any hit will be discarded because it is unlikely that they will be true domains in this

data set. Each consensus sequence might be aligned to multiple domains, for regions that cannot

be aligned to any domain, we also remove them from next stage. Thus, after filtration, the trimmed

alignment graph and the corresponding domain will be used as input to our tool. Note that this do-

main may just incur a very small score and non-significant E-value. It will be re-aligned using our
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algorithm and the final alignment score will decide whether it is a true domain. In our experiments,

we refer to the input as sequence-domain pair. In all of our experiments, true domains found by

corrected sequences using suggested cutoffs is always less than the input sequence-domain pairs.

3.5 Experimental results

Our method is used to improve the sensitivity of profile homology search by correcting insertion

or deletion errors in PB sequencing data. Thus, we will focus on evaluating the performance

of our implementation in both error correction and homology search. We applied Frame-Pro to

three datasets: a simulated E. coli PB RS sequencing dataset, a real M. ruber PB RS sequencing

dataset, and a Human arm PB RSII metagenomic sequencing dataset. The three datasets enable

us to evaluate the performance of error correction for data with different sequencing coverage.

As both the genomes and their protein domain annotations of the first two data sets are available

at NCBI and Pfam, we are able to quantify the accuracy of error correction and profile HMM

search. Specifically, we used BLAST to evaluate its error correction performance by aligning

corrected sequences to reference sequence. We also quantified the performance of protein domain

annotation by applying HMMER3 to corrected sequences and the reference genomes.

We benchmarked our method with the error correction stage DAG-Con in HGAP [24]. The

error correction in HGAP and our method do not rely on short sequences generated by another

platform. And the error correction in HGAP has been extensively tested and has satisfactory per-

formance for sequencing data with reasonable coverage. DAG-Con only outputs corrected se-

quences. In order to evaluate the performance of profile homology search, we apply HMMER to

the corrected sequences of DAG-Con. Although Frame-Pro outputs both corrected sequences and

the profile alignments, we rerun the corrected sequences against input domains using HMMER to
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ensure a fair comparison by the same alignment tool.

For our experiments, all detailed commands, parameters and output can be found along with

the source code of Frame-Pro. To achieve a fair comparison on data of low coverage, we set the

coverage threshold of DAG-Con as 1 to make sure the outputs are comparable.

3.5.1 Simulated Escherichia coli sequences

In order to evaluate the accuracy of Frame-Pro in detecting and correcting insertion and deletion

errors, we generated a simulated E. coli K-12 MG1655 (NCBI tax. ID 511145) sequence dataset

by PBSIM [114]. We used the reference genome sequence (NC_000913.3, genome size 4,641,652

base pairs, [60]) generated by Sanger sequencing as input for PBSIM. The quality information and

the sequencing length distribution from real PB RS sequencing after secondary analysis [115] were

used as the simulation parameters. PBSIM generated 34,898 sequences with 92,810,130 base pairs

with average sequencing coverage of 20X. The average length of reads is 2,660 bp and the reads’

average error rate is 14.42%.

In the dataset, 3,280 sequences fulfilled seed criterion. To control the scale of experiment, we

randomly select 451 seed sequences for graph construction. After graph construction and protein

domain filtration, 7,093 sequence-domain pairs were kept as input to our program.

3.5.1.1 Performance of error correction

Both Frame-Pro and DAG-Con produced 7,093 corrected sequences from the input PB simulation

data. We first evaluated the performance of error correction of both tools by comparing their

corrected sequences to the reference sequences. The comparison is conducted using BLAST [4].

Figure 3.5 summarized the comparison of both tools on each read. For this data set, our tool can

correct more errors in about half of the reads while DAG-Con corrects more errors in less than
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E. coli M. ruber

45.8

4.7

49.6

24.9

3.5

71.6

Frame-Pro corrects more
DAG-Con corrects more
same

Figure 3.5: Comparison of error correction performance for Frame-Pro and DAG-Con in the sim-
ulated E. coli dataset and M. ruber dataset. Frame-Pro corrects more errors in larger fraction of PB
reads.
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Figure 3.6: Histogram of unfixed errors after error correction in the simulated E. coli dataset. X-
axis represents the number of remaining errors in each read. Y-axis is the corresponding numbers
of reads. Bin width is 1 and the figure only included the first 40 bins (i.e. up to 40 errors) due to
space limitation.
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5% of reads. In total, our method corrects 7,884 more errors than DAG-Con. If we only count

insertion and deletion errors, our method corrects 8,374 more errors than DAG-Con. DAG-Con

corrects 490 more mismatches than our method. It is expected because the profile HMM search is

much more sensitive to frameshifts caused by gaps as they will significantly impact the alignment

length and score. Figure 3.6 compares the number of remaining errors in corrected reads produced

by both tools. It is clear that our method can produce more reads with no error or just 1 error.

3.5.1.2 Performance of profile HMM search

One of our major goals is to improve performance of profile homology search. This section will

focus on evaluating the performance of protein domain homology search of corrected sequences.

After correcting frameshifts, we expect that the homology search program can generate longer

alignments with higher scores and smaller E-values for protein domains of interest. So the users

can distinguish true domains from random alignments with higher confidence.

HMMER 3.1b2 was used to generate profile HMM alignments from corrected sequences. The

domain composition of Escherichia coli K12 (NCBI tax. ID 83333) proteome from Pfam (Re-

lease 29.0, [45]) was used as the reference. 2,347 protein profile HMM domains were found in

7,093 output sequences. Some sequences have multiple hits. For all the data, including the PB

simulation data, and the corrected sequences by both tools, we only keep the best alignment for

each domain in our comparison. The changes of alignments’ E-values, alignment lengths, and bit

scores due to error correction are presented in Figure 3.7. On average, the length of the domain

alignment increases from DAG-Con’s 108.51 amino acids (a.a) to 150.36 a.a, which is closer to

the average alignment length of 163.62 a.a in the reference proteome from Pfam. A two-sample

Kolmogorov-Smirnov test (K-S test) on the alignments’ lengths and E-values from our method

and DAG-Con was applied to examine the statistical significance of difference from two methods.
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Figure 3.7: The comparison of alignments’ bit scores (A), lengths in a.a. (B), and E-values (C) for
reference sequences and corrected sequences produced by Frame-Pro and DAG-Con in the E. coli
simulated dataset. X-axis represents the domains. All domains are sorted by the reference values
from Pfam. Red circles represent the values of HMM alignments for corrected sequences output by
Frame-Pro. Blue circles represent the values of HMM alignments for corrected sequences output
by DAG-Con. As there are many data points, all numbers produced by one tool are processed by
SavityzkyGolay filter to generate a smoothed curve for clarity of presentation.
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The p-values for the alignments’ length, E-value, and bit score distributions were 5.4436×10−25,

1.3237×10−25, and 1.8881×10−25, respectively. Thus, the improvement by applying our method

is statistically significant.

3.5.2 Meiothermus ruber DSM1279 sequences

The simulated data enables us to thoroughly test the parameters of our tool and also to evaluate

various aspects of the performance. For the next two experiments, we apply our tool to real PB

data with different coverage. As the real sequencing projects, in particular the transcriptomic

sequencing projects and metagenomic sequencing projects, can contain transcripts or genomes

with heterogeneous coverage, it is thus important to evaluate tools for data of different coverage.

In this experiment, we tested Frame-Pro on real Meiothermus ruber DSM1279 PB Sequencing

data. Meiothermus ruber (NCBI tax. ID 504728) is usually found in hot springs [141]. It has

genome size of 3,098,881 bps. The raw sequencing data from 1 SMRT cell in HGAP [24] was

used for this experiment. The raw data in total contains 177.4M bps with 59.6% GC content with

approximate coverage of 60X.

Standard SMRT data processing pipeline [117] was used to filter the raw sequencing data to

generate filtered subreads, which contain sequences passing the commonly used length and quality

criteria. The filtered dataset has 90,114,302 bps and 36,180 sequences with 30X coverage. After

protein domain families filtration, 33,911 sequence domain pairs passed the threshold and were

input to downstream error correction pipelines.
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3.5.2.1 Evaluate error correction performance by aligning outputs against the reference

genome

To compare the error correction performance of Frame-Pro and DAG-Con on this real PB sequenc-

ing dataset, we used BLAST to search all outputs against the reference genome of Meiothermus

ruber (NC_021081.1). The comparison of error correction for each read is summarized in Fig-

ure 3.5. In total, our method corrects 14,613 more errors than DAG-Con. If we only count insertion

and deletion errors, our method corrected 15,924 more errors than DAG-Con. DAG-Con corrected

1,311 more mismatches than our method.

Comparing to the previous simulation experiment, the difference of the error correction perfor-

mance between Frame-Pro and DAG-Con decreased. The main reason is that the performance of

DAG-Con usually improves with increased coverage (20X to 30X).

3.5.2.2 Evaluate the performance of profile homology search

The corrected sequences from Frame-Pro and the consensus sequences from DAG-Con were searched

against protein domains in Pfam by HMMER3.1b2. The higher coverage of this dataset did im-

prove the performance of DAG-Con.

For 2,984 domains identified by both tools, we compared the best hit for each of them from

two tools. The annotated domains from the reference proteome were downloaded from Pfam

and were used as the reference. The changes of alignments’ bit scores due to error correction

are presented in Figure 3.8. No significant improvement can be observed for bit scores. Similar

observations were made for alignments’ lengths and E-values. Thus, the other two figures were

omitted. Compared with the average alignment length of 148.68 a.a from DAG-Con’s consensus

sequence, the average length of 157.92 a.a by Frame-Pro is much close to the reference’s 158.69
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Figure 3.8: The comparison of alignments’ bit scores for reference sequences and corrected se-
quences produced by Frame-Pro and DAG-Con in the M. ruber dataset. X-axis represents the
domains. All domains are sorted by the reference bit scores from Pfam. Red circles represent the
values of HMM alignments for corrected sequences output by Frame-Pro. Blue circles represent
the values of HMM alignments for corrected sequences output by DAG-Con. As there are many
data points, all numbers produced by one tool are processed by SavityzkyGolay filter to generate a
smoothed curve for clarity of presentation.
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a.a. We conducted a two-sample K-S test on the alignments’ lengths, E-values, and bit scores

from our method and DAG-Con. The p-values for alignments’ lengths, E-values, and bit scores’

distributions were 0.2859, 0.2321, and 0.2007, respectively. Although Frame-Pro still generated

longer alignments with better scores, DAG-Con achieved satisfactory performance of homology

search for this data set because of the sufficient coverage.

3.5.3 Human arm metagenomic dataset

When PB is applied to metagenomic sequencing, one challenge is that some datasets do not have

enough coverage for effective downstream analysis. Here, we applied Frame-Pro to analyze the

protein domain composition in the human skin metagenomic data, which were sequenced from the

human arm and foot [144].

The human arm sample was sequenced by linear PB RSII TdT (terminal deoxynucleotidyl

transferase) sequencing platform. Sequences can be mapped with CHM1 human genome were

removed as host human-derived DNA. This dataset cannot be further assembled by the HGAP

pipeline due to the insufficient coverage, providing challenges to downstream analysis including

protein domain classification. Thus in this experiment, we focus on the arm data set, which in-

cludes 16,388 sequences with 2,662,7191 bps.

3.5.3.1 Generate SAG and filtrate profile HMM domain

Compared with previous two datasets, the average read length of the human arm metagenomics

dataset is only 1,629 bps. To generate sufficient seed reads, the cut-off was changed to 3,000 bps.

Although Frame-Pro is not as sensitive as DAG-Con to the sequences’ coverage, the filtration steps

were affected as we use HMMER to search the consensus against Pfam with E-value 1000. After

filtration, 602 sequence domain pairs were kept for further analysis. For each sequence domain
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pair, a corrected sequence using Frame-Pro and a consensus sequence using DAG-Con, both from

the same graph, were generated.

Figure 3.9: The comparison of alignments’ bit scores (A), lengths in a.a. (B), and E-values (C)
for 48 domains commonly identified by Frame-Pro and DAG-Con in the arm data set. X-axis
represents the domains.
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3.5.3.2 Protein domain search using GA cutoff

Unlike previous data sets, we don’t know all the composite species in the arm sample. Thus we

cannot obtain all the ground truth protein domains in this data set, making the comparison with

the reference domains difficult. In addition, without complete reference genomes of all species,

we don’t have the actual sequences corresponding to these reads and thus we cannot evaluate the

number of unfixed errors. In order to examine the results, we thus use a stringent threshold to

examine the domain sets identified for corrected sequences output by Frame-pro and DAG-Con.

We use the gathering (GA) cutoffs from Pfam as the threshold for domain composition analysis

because GA cutoffs are family specific bit score thresholds aiming to minimize false positive rate

and to maximize the coverage [44]. In Frame-Pro’s results, 84 domains are above the GA cutoff,

comparing to 49 domains in DAG-Con’s results. Frame-Pro only missed one domain in DAG-

Con’s result with score slightly less than the corresponding GA cutoff. According to Pfam, all

domains uniquely found by Frame-Pro were annotated in microbial species. The list of domains

can be found in our website.

For the commonly identified 48 domains, we compared the alignments’ bit scores, alignment

length, and E-values on corrected sequences output by two tools (See Figure 3.9). We conducted

a two-sample K-S test on the three metrics for all alignments. The quality of alignment improve

significantly. The p-values for the the alignments’ length, E-value, and bit score distributions were

6.05×10−6, 3.66×10−12, and 7.64×10−13, respectively.

Without reference sequences, there could be one possibility that Frame-Pro over-corrects the

errors in order to maximize the alignment score. In order to test this possibility, we examined

the identified domains for one reference species: Corynebacterium aurimucosum. Although the

complete composite species of the arm sample is unknown, the phylogenetic analysis in [144]
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and other articles [47, 142] showed that Corynebacterium aurimucosum is relatively abundant in

this sample. In addition, this species has annotated domains (NCBI tax. ID 548476) in the Pfam

database. Thus, we focus on evaluating how many of the annotated domains in this species can

be identified by tested methods. By using GA cutoff, Frame-Pro can recover 41 domains while

DAG-Con can recover 24 domains. The set identified by DAG-Con is a subset of ours. Thus, this

experiment shows that extra domains identified by us are not likely false predictions. This exper-

iment adds evidence that Frame-Pro can identify more domains for data with very low coverage

and thus provides complementary analysis for metagenomic data.

3.6 Conclusion and discussion

In this work, we developed a profile homology search tool for PB sequencing data. By correct-

ing insertion or deletion errors, our implementation can improve homology search performance,

including alignment scores, lengths, and E-values. In particular, for sequencing data with low

sequencing coverage (around or lower than 20X), our tool can significantly correct more errors

and improve the sensitivity of homology search by finding more correct domains. Being able to

conduct sensitive homology search for sequencing data of low coverage is important for various

sequencing projects including metagenomic and transcriptomic sequencing. Usually, as the tran-

scripts or species have highly different abundance and thus heterogeneous coverage, conducting

homology search needs to consider the input of a full spectrum of coverage. Many rare species in

an environmental community or rare transcripts are particularly interesting for biological discov-

ery.

Although our current implementation is based on profile homology search, which compares

sequences with profile HMMs. Our method can be easily extended to pairwise alignment as well.
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In that case, the profile HMM will be replaced a single sequence. Existing pairwise alignment

algorithm can be extended to align an alignment graph with a single sequence.

Like the error correction stage in HGAP, our tool does not rely on hybrid sequencing either,

making it convenient for various applications. However, one limitation is that our tool is not a

general error correction tool because it can only correct errors in regions that are homologous to

reference sequences. This is not a problem for species with highly packed coding regions. But for

genomes with large fractions of noncoding regions, our tool is not designed for error correction in

the whole genome.

Finally, we only tested our application in PB data. But our method can be extended to other se-

quencing data with similar types of errors. For example, we will test our tool on the data produced

by Nanopore technology.
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Chapter 4

Deep Learning Based Approach For Protein

Domain Prediction

4.1 Introduction

Third-generation sequencing technologies, such as Pacific Biosciences single-molecule real-time

sequencing (PacBio) and Oxford Nanopore sequencing (Nanopore), produce longer reads than

the traditional sequencing technologies. The increased length enables closing gaps in genome

assembly [67, 149], detecting epigenetic modifications [151], and quantifying gene isoforms with

higher accuracy in the transcriptomic sequencing [107, 140]. It also shows great potentials in

sequencing the microbial communities [23, 144].

One of the most significant challenges to utilize long reads from third-generation sequencing

is the high sequencing error rate [7, 67]. Most errors are insertions and deletions, which can cause

frameshifts during translations. Without knowing the errors and their positions, the frameshifts

can lead to only short or non-significant alignments in the downstream analysis [154]. As a result,

traditional downstream analysis pipeline on the raw PacBio or Nanopore reads leads to incorrect

results [34].

Characterizing the protein domain in sequences is one of typical downstream analysis with a

continuing concern as proteins play pivotal roles in many biological processes. Homology search
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is one of the standard methods to annotate the functions of protein sequences by comparing query

sequences against reference sequences [4] or homologous sequence families [35]. Algorithms

of machine learning is an alternative approach without alignment to predict the protein domain

in sequences [30, 147]. The major challenge of these methods is how to convert the sequence to

features that can capture the information of protein families. Recent developments in the algorithm

of deep learning led to another approach with automatic feature extraction from the sequence

[91, 133].

4.1.1 Deep learning for sequential data

Different deep learning model have their own advantages to resolve specific types of problems

for sequential data. So we expect that those algorithms can also help on different problems in

bioinformatics. Here, we will describe two major deep learning structures, convolutional neural

networks (CNNs), recurrent neural networks (RNNs), that already been proved achieve state of the

art performance on sequential data.

4.1.1.1 Convolutional Neural Networks

One of the most successful model in recent years is Convolutional Neural Networks (CNNs). The

major difference between CNNs and traditional neural networks is to replace the general matrix

operation in the tradition layer with the mathematical operation called convolution.

4.1.1.1.1 Convolution operation In mathematics, the convolution of function x and w, s(t), is

defined as following equation:

s(t) =
∫

x(a)w(t−a)dt = (x∗w)(t)
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In convolutional network terminology, the first argument (in this example, the function x) to the

convolution is often referred to as the input and the second argument (in this example, the function

w) as the kernel. The output is sometimes referred to as the feature map.

Figure 4.1: How a kernel operates on one pixel. Reprinted from [6].

The convolution operation in the matrix can treat as a kind of matrix multiplication. As the

Figure 4.1 showed, the kernel convolution take source pixel from input matrix and simply multi-

plied the kernel matrix to generate the element for the convolutional layer output.

4.1.1.1.2 Major features of CNNs There are three major features that make CNNs so success-

ful: sparse interactions, parameter sharing, and equivariant representations.

Sparse interactions means that the neuron in the convolutional layers only needs to interact with

several neurons in the input and output layers. In the contrast, a neuron in the traditional neural
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network needs to interact every neuron in the input and output layers. In this way, the CNNs can

easily learn some small and meaningful features which are only from tiny part of the input matrix.

Also, it can save a lot of computation time.

Parameter sharing refers to using the same parameter for more than one function in a neural

network. At every position of the input in CNNs, it will use the each element of the kernel matrix.

By doing this, the layer can learn something with a whole picture.

Equivariant representations describes the phenomenon that if the output will change corre-

sponding to the change of input.

4.1.1.1.3 CNN for sequence classification For a character in the sequence, we can use a k-

dimension vector x to represent it. So a sequence of length n is represented as:

x1:n = x1⊕x2⊕ ...⊕xn

Here operator ⊕ is the concatenation operator. We applied convolution filter w on a window of

size h, to transform the input x1:n to a new feature ci:

ci = f (w ·xi:i+h +b)

Here b is the bias term and f is the activation function usually using non-linear function like sigmoid

or hyperbolic tangent. By repeated apply the operation, we can finally generate feature map. Then

the max-over-time pooling was applied to keep the most important features.

TextCNN [74] is one of the earliest models adopting the structure we discussed above for sen-

tence classification. The key idea of TextCNN is using kernels with different sizes to capture
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Figure 4.2: Structure of TextCNN model. Reprinted from [74].

pattern in different ranges. After global max pooling, the features then used as input for a fully-

connected layer and then convert to the probability of labels. The variation of TextCNN model

has been adopted for solving different bioinformatics problem, such as protein domain classifica-

tion [133], virus sequence identification [127], and DNA-protein binding prediction [153]

4.1.1.2 Recurrent Neural Networks

Recurrent Neural Networks, or RNNs [129] are the family of the deep learning structures to

process sequential data. Parameter sharing across the different parts of the model is the key idea

that makes RNNs to be able to deal with the sequential data. Specifically, the RNNs we talked

about is operating on a sequence that contains vectors x(t) with the time step index t ranging from

1 to τ .

4.1.1.2.1 Basic structure of RNNs A simple recurrent neural network will just process the

information from the input x and incorporate it into the state h of hidden unit and passed to the
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next unit. The hidden unit state h at time step t, h(t),

h(t) = f (h(t−1),x(t);θ)

RNN also usually have extra architectures like output layers that output the result of h for further

processing or predictions.

Figure 4.3: The repeating module in a in a simple recurrent neural network structure. Reprinted
from [113].

We can use a function g(t) to represent the unfolded recurrence after t steps, given us another

representation of h(t),

h(t) = g(t)(x(t),x(t−1), ...x(2),x(1))

In this form, g(t) takes the input of whole past sequences (x(t),x(t−1), ...x(2),x(1))) as input

and output the current state. However, we can unfolding the structure and repeated apply function

f to achieve same output. By doing this we can use the same transition function f with the same

parameters at every step.

However, a simple RNNs cannot learn long time dependency as in the optimization. As we de-

scribed above, at each time step we repeatedly apply the same operation f . We can use a multipli-

cation on matrix W to represent such operation. Suppose that matrix W has an eigendecomposition
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W = Vdiag(λ)V−1. After t steps, the input already multiply Wt , so:

Wt = Vdiag(λ)tV−1

Means that given enough large steps t, any eigenvalue λ that not close to 1 will either vanish

(less than 1) or explode (larger than 1). The gradient in such graph also scaled according to

diag(λ)t [52]. In this case, it difficult to optimize such gradient. To solve this challenge, gated

RNNs is proposed and becomes one of the most effective practical models that used for sequential

data.

4.1.1.2.2 LSTM The long short-term memory (LSTM) architecture [66] is one branch of such

gated RNNs that is extremely successful in the application like speech recognition, machine trans-

lation, and handwriting generation. The key idea of LSTM is to introduce a self loop so that

gradient can flow for long duration.

Figure 4.4: The repeating module in a LSTM cell. Reprinted from [113].

The self loop (internal recurrence) is located in “LSTM cells” with outer recurrence like ordi-

nary recurrent network. The cell is controlled by a combination of input gate and memory control

gates, formulated by equations below:
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it = σ(Uiht−1 +Wixt +bi)

ft = σ(U f ht−1 +Wf xt +b f )

ot = σ(Uoht−1Woxt +bo)

c̃t = σ(Wcxt +Ucht−1 +bc)

ct = ft� ct−1 + it� c̃t

ht = ot�σ(ct)

where it , ft and ot are three gates that control input, forget and output respectively. Each of the

gate output signal depends on its state transition matrix U , input weighting matrix W and bias b.

The final cell state c is updated by element-wise multiplication, denoted by operator “�”. σ is the

activation function, which can be chosen from sigmoid, ReLU, tanh and so on.

As we can see, LSTM adds two more gates to control the output and previous inputs, thus has

the ability to capture the long term dependencies in the sequence. So far, LSTMs are the most

successful variation of RNNs.

4.1.1.2.3 GRU The gated recurrent unit (GRU) architecture [25] is an alternative and the main

competitor to the LSTM. The performance of GRU is comparable to the LSTM on many sequential

datasets, with simple unit structures and less computation requirement.

The main difference of GRU with the LSTM is that a single update gate replace the role of the

forget and input gates. So the equations are updated to following:
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Figure 4.5: The repeating module in a GRU cell. Reprinted from [113]..

zt = σ(Uzht +Wzxt +bz)

rt = σ(Urht +Wrxt +br)

h̃t = σ(Whxt−1+Uh(rt�ht−1))

ht = zt−1�ht−1 +(1− zt−1)� h̃t

4.1.1.3 Protein function prediction using deep learning

Recently, deep learning techniques have been shown to achieve state-of-the-art results in many

machine learning problems without the need for complex feature engineering [52,85]. Deep learn-

ing based method also have demonstrated their ability on many bioinformatics problems, such as

DNA-protein and RNA-protein binding sites prediction [3, 153], taxonomic classification [19, 43],

and SNP and small-indel variant detection [122].
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The success of deep learning techniques inspired researchers to apply the approach to modeling

the protein sequences. Long short-term memory (LSTM) was first introduced by [65] to model the

protein homology detection. The model can automatically extract the long-term and short-term

dependency of the sequences and predict whether the sequences belong to the modeled protein

family. Recently, a bidirectional LSTM model, ProDec-BLSTM [91], was proposed to improve

the prediction capability of the model further. In the model, every hidden value of the LSTM was

used to capture the long and short dependency information of the proteins. The experiment result

shows ProDec-BLSTM outperforms various existing methods, including HMMER.

DeepFam [133] adopted convolutional neural networks (CNN) to model families of protein

sequences. Unlike LSTM models we mentioned earlier that can only model single protein family,

DeepFam used a single CNN model to predict multiple protein families. Various sizes of convo-

lutional filters were used in DeepFam to extract conserved regions to model protein families. It

outperforms HMMER and previous alignment-free method. Also, the execution time of DeepFam

is fast as it not affected much by the number of families while HMMER needs longer time as the

number of families increased. For example, DeepFan is more than ten times faster compared with

HMMER when 1,000 query sequences searching against thousands of protein families [133].

However, existing methods like DeepFam cannot handle errors and incomplete sequences. All

the deep learning method we mentioned were only tested using complete and correct protein se-

quences. Moreover, DeepFam used a close dataset to test their performance, which assumes that

test dataset are held-out samples from the same distributions of the training dataset. In a real appli-

cation, a sequence may be sampled from non-coding sequence or other protein families that not be

modeled in the neural network. We call this task detection task hereafter, as the main goal is to de-

tect the targeted protein-encoding sequences from other irrelevant sequences. In theory, irrelevant

input is supposed to be rejected. But current deep learning classification models employ softmax
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function to assign the label and are not able to decline such cases, yielding high false-positive

rate [10, 63].

4.1.2 Related work

4.1.2.1 Profile homology search

To predict the protein domain of a given sequence, we can directly compare the sequence with

protein-encoding sequences using pairwise alignment tool like BLAST [4]. However, in many

applications, we usually do not care if the query sequence close to one specific encoding sequence

of the target protein. Instead, we want to align the query sequence to a family of protein sequences.

A profile hidden Markov model (pHMM) can be built from multiple sequence alignments to model

a protein family. By explicitly define the match, insertion, and deletion state, pHMM can handle

the comparison of the query sequence to the profile of protein families accurately, even when the

query is remote homology of the target protein families. HMMER is one of the most widely used

profile search tools based on pHMM [36]. Profile of the protein families can be downloaded from

many protein databases, such as Pfam [40], and TIGRFAMS [56].

As an alignment-based method, the speed of the profile homology search suffers when the

number of families increases. Extensive research has studied to improve the efficiency of the

profile homology search. The newest version (3.1b2) of HMMER [37] is more sensitive than

BLAST and is about 10% faster. However, recent research [133] suggests it is still slower than the

alignment-free method.
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4.1.2.2 Homology search with error correction

Due to the high error rates, the homology search result on raw PacBio or Nanopore reads usually

is not desired with wrong annotation and short alignments. In this situation, error correction on

raw reads can effectively improve the homology search result.

There are two major correction methods for third-generation sequencing data: hybrid error

corrections and non-hybrid error corrections. The hybrid method correct long noisy read by com-

bining short, accurate second-generation sequencing reads with third-generation reads to remove

errors [78, 136]. Unlike hybrid sequencing, non-hybrid error correction, or self-correction, only

rely on the long reads themselves for error correction [24,48,93]. As the sequencing errors in third-

generation reads occur randomly, the inferred consensus sequence from the alignment between the

longest backbone reads and shorter reads from third-generation sequencing dataset represent the

high-quality sequence. However, its performance is profoundly affected by the coverage of the

aligned sequences against the backbone sequences [34].

4.1.3 Overview of our work

As we discussed in the previous section, the current protein predict algorithms cannot handle the

high error rate of the third-generation reads. Thus, we designed and implemented DeepFrame, a

deep learning based method to predict the protein domain of third-generation sequences.

We optimized the neural networks architecture of DeepFrame based on rigorous validation

performed on the classification of a simulated PacBio sequence dataset. The classification accuracy

of DeepFrame consistently outperforms the state-of-the-art method like HMMER across various

error rates. We then extended the framework to the detection task with Outlier Exposure and tested

on real third-generation sequencing dataset. DeepFrame achieves higher F1 score and higher recall
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with comparable precision when compared with HMMER.

Compared to previous works, DeepFrame has several merits. First, we designed a three-

channel encoding for the task of function prediction using DNA reads. Compared to other encod-

ing methods (discussed in Experiments and results), model with three-channel encoding achieved

better performance. Second, evaluated by simulated PacBio data and real PacBio and Nanopore

data, DeepFrame can successfully process long erroneous reads without any prepossessing. Al-

though we only used simulated PacBio reads that are easy to generate to train our model, the

performance on real Pacbio and Nanopore data is still robust and consistent. Third, unlike pre-

vious deep learning work that only designed for classification, DeepFrame can also be used for

detection tasks. With the threshold on softmax prediction probability [63] and Outlier Exposure

method [64], DeepFrame can distinguish the DNA sequences with targeted protein domain from

other random coding or non-coding DNA sequences.

4.2 Methods

DeepFrame is designed to predict protein domains for third-generation sequencing data. It in-

corporates 3-frame encoding to convert DNA reads into 3-channel tensor as the input of neural

networks. From the input, DeepFrame automatically extracts features by using convolution layer

and max-over-time pooling layer. A classifier with two fully connected layer was used to generate

the probabilities of the sequence against all possible protein domains. To exclude the unrelated

coding or non-coding DNA sequences, we then compare the max value of the output probabilities

with a threshold. We will discuss the details of our model in the following section.
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Figure 4.6: The overview of DeepFrame model. The input sequence was translated and encoded
to a 3-channel tensor. Two convolutional layer and max pooling layer extract sequence features.
These features were used by a fully connected layer with softmax function to infer the probability
of each protein families. In the classification task, the model directly outputs the families with
the largest score as the prediction. In the detection task, the maximum of softmax score needs
to compare with the threshold to determine whether the input contains a trained protein family or
should be rejected.
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4.2.1 Encoding

To process the DNA reads, we need to encode sequences to numerical values. We designed a

3-frame encoding scheme for the input sequences. Each DNA sequences is 3-frame translated

to 3 protein sequences. All the residues in the protein sequence are one-hot encoded using a

21-dimensional vector following IUPAC amino acid code notation. Then we concatenate three

matrices into a single 3-channel tensor like an RGB image. The rationale behind this is that we

hope the convolution filters can automatically distinguish the right fragment on each frame after

translation and extract the corresponding features. Also, the relative order of the residues at the

same position of the three frames incorporate the information of the original DNA sequence. Given

the sequence length L, then the encoded input is a tensor with size 3×L×21. The pseudo-code of

3-frame encoding can be found in Algorithm 4.

Algorithm 4 3-frame encoding

Input: DNA sequence x with length L, peptide to index dict idx, peptide alphabet size |Σ|, output
sequence length n.

Output: Input tensor for neural networks with size 3×n×21.
1: Initialize an array arr with all 0 values and dimensions [3, n, |Σ|]
2: for i = 1 to 3 do
3: xi← x[i :]
4: yi← translation of xi . translate nucleotides in xi to amino acids in yi
5: for residue a at position k in yi do
6: if k ≤ n then
7: arr[i,k, idx[a]]← 1 . one-hot encoding for each frame
8: end if
9: end for

10: end for
11: arr is input tensor for neural networks

We also tested other encoding methods: (1) DNA one-hot encoding, which directly trasnfer

DNA sequence to one hot vectors of size L×4. For fair comparison, we used filter sizes that are 3

times as long as we used for 3-frame encoding; (2) 3-branch model, we constructed a network ar-
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chitecture with three separate branches processing each of the 3-frame translated protein sequence

respectively. Each of the branches consists of identical layers, and all the parameters are shared

between the same layer of 3 branches. In the 3-branch model, each of the branches models the

translated protein sequences separately before the merging layer right before the two-layer classi-

fier. In contrast, in 3-frame encoding, all three translated protein sequences were processed and

combined by the 3-channel convolutional filters in the first convolutional layers. Our experimental

results show that 3-frame encoding is a better encoding scheme as it can effectively encode the

original DNA sequence information and also helps convolution filters to extract useful features for

prediction of the protein domain (Section 4.3.1.1).

4.2.2 Convolutional Neural Networks

DeepFrame consists of two convolutional layers, one max-over-time pooling layer, one hidden

linear layer, and one linear output layer with softmax function.

The convolutional layer [46, 74, 86] is the most important building block in the model. For a

residue in the single frame protein sequence, we can use a k-dimension (k = |Σ| in our case) vector

y to represent it. So a sequence of length n is represented as a one-hot encoding matrix. We applied

convolution filter w ∈ Rhk on a size h window of the matrix, to transform the input yi:i+h−1 to ci:

ci = f (w ·yi:i+h−1 +b) (4.1)

Here b is the bias term and f is the activation function usually using non-linear function like

sigmoid or hyperbolic tangent. In our model, we use ReLU [104] as activation function of convo-

lutional layer:

f (x) = σ(x) = max(0,x) (4.2)
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We can extend Eq. 4.1 to multiple channel input (in our case, channel = 3:

ci = f (
3

∑
j=1

w j ·yi:i+h−1, j +b) (4.3)

For both Eq. 4.1 and 4.3, we applied convolutional filters repeatedly to each possible window

of the one-hot matrix y1:h,y2:1+h, ...,yn−h+1:n to produce a feature map, which is the vector of

extracted feature values:

c = [c1,c2, ...,cn−h+1] (4.4)

Then the max-over-time pooling is applied on the feature map to capture the maximum value

ĉ = maxc as the feature from this particular filter. The rationale behind this operation is to extract

the peak signal as the most important feature for each feature map. The max-over-time pooling is

flexible with different input length.

We described how a single filter in the convolutional layer works. In our application, we used

multiple filters with varying filter size (or window size) to extract various features with different

ranges.

DeepFrame has two convolutional layers. The first convolutional layer uses consistent convo-

lution filter size to extract low-level short distance patterns directly from 3-frame encoding input.

Then second convolutional layer extracts high-level, intricate patterns with varying distance from

the output of the first convolution layer. By repeatedly applying the operations, we can finally

generate a feature map. Then the max-over-time pooling was applied to keep the most important

features. Dropout [138] is also used after pooling to prevent overfitting and to learn robust features.

A two-layer classifier with softmax function transfers the features to a vector of probabilities over

each label. For classification, we select the label with the maximum probability as the prediction

from DeepFrame.
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4.2.3 Out-of-distribution examples detection

We show that DeepFrame classifier with softmax function can predict the protein labels of given

DNA reads. However, the classifier will always assign a label for the input sample, even if the

input is not related to any label in the model (we call such inputs out-of-distribution examples,

compared to in-distribution examples). For example, in RNA-seq data, not every read encodes

targeted protein families in the model. When processing such unrelated inputs, the model will still

assign the input to one of the protein families in the model as there is no such label for the out-of-

distribution input. In a real application, this behavior will lead to an undesired high false-positive

rate. To address the problem, we adopt Outlier Exposure (OE) [64] with a threshold on softmax

prediction probabilities [63] to distinguish the out-of-distribution examples.

4.2.3.1 The threshold baseline

Usually, the examples from out-of-distribution dataset tend to have small softmax value because its

probabilities vector tends to be more uniformly distributed than the examples from in-distribution

dataset. Thus, by specifying a threshold on maximum probability in the softmax’s output, it is pos-

sible to distinguish out-of-distribution examples form in-distribution examples . Following [63],

we extract the maximum value of the softmax probability from the output of DeepFrame for each

input exmaple. We separate the in-distribution examples from the out-of-distribution examples

by specifying a threshold of the maximum softmax probability. To determine the threshold, an-

other simulated out-of-distribution dataset is created and combined with the simulated holdout test

dataset. For each example, we compute the maximum softmax probability. We obtain F1 score

from the dataset:

F1 = 2 · precision · recall
recall+precision

(4.5)

95



The F1 score summarizes the performance of the binary classification of in-distribution examples

and out-of-distribution examples for a given threshold. We compute the F1 score across different

thresholds and select the threshold of best F1 score as the threshold used in our model.

4.2.3.2 Outlier Exposure

To further improve the performance of out-of-distribution examples detection, we adopt the Out-

lier Exposure (OE) method introduced by [64]. As we discussed previously, we expect the out-of-

distribution examples to have uniform softmax output from the model. However, as such inputs

never be processed in the training, sometimes the model will yield unexpected high confidence pre-

diction for out-of-distribution input (Figure 4.7). To address the problem, we expose the model to

out-of-distribution examples in the training process to let the model effectively learn the heuristics

of the out-of-distribution inputs.

Given a model g and the learning objective L , the objective of OE is to minimize the original

loss function with an auxiliary loss terms to regularize the out-of-distribution examples [64]. In

original classification task, we use cross-entropy loss function as L . So we set the auxiliary loss

LOE to the uniform distribution:

LOE =− log

(
exp ŷ′

∑ j expy′j

)
=−y′+ log∑

j
expy′j (4.6)

Here, y′ is the mean value of the output logits (the output of CNNs model before the softmax

function). And we use λ = 0.5 in our experiment.

Figure 4.7 presents the distribution of the softmax score of DeepFrame model with and without

Outlier Exposure for the threshold calibration dataset we used in Section 4.3.2. Without Outlier

Exposure, there are still a lot of out-of-distribution examples with large softmax scores (0.5 to 1).

96



Figure 4.7: The distribution of softmax scores from base model (top) and model with Outlier
Exposure (bottom). Green bar represent the count of in-distribution examples that predicted cor-
rectly. Blue bar represent the count of in-distribution examples that predicted incorrectly. Red bar
represent the count of out-of-distribution examples.
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After trained with Outlier Exposure, most of the out-of-distribution examples accumulated with

small softmax scores (0 to 0.4). We also found that the scores of in-distribution examples that

incorrectly predicted by our model are close to the scores of out-of-distribution examples. So an

optimized threshold can also exclude those incorrect predictions.

4.2.4 Implementations and hyperparameters

DeepFrame was implemented by Python3 using PyTorch [119] with Apex [111] acceleration. The

DeepFrame model was trained using a gradient-descent optimization algorithm with adaptive es-

timates of moments called Adam [75]. The training target is to minimize multiple class cross-

entropy loss function.

We also implemented several commonly practiced techniques for optimizing deep neural net-

works, such as mini-batch gradient descent, He initialization [61], and hyperparameter tuning.

There are several hyperparameters including the number and the size of convolution filters, the

number of input and output features in the linear layer, dropout rate, learning rate, and batch size.

We tried our best to search the parameters, and we used the parameters that are tested to perform

well in the experiment. In our experiment, the hyperparameters were set as follows: batch size

= 256, learning rate = 0.001, dropout rate = 0.5. For the first convolutional layer, the size of

the filters is 3, and the number of filters is 64. For the second convolutional layer, the size of the

filters is 8,12,16,20,24,28,32,36 with 256 filters of each size. Also, for the hidden linear layer,

the number of output features is 512. Given the data size we used, we found our model converges

around 1 to 2 epochs training, so we trained all models two epochs with validating every 102400

samples to select the best model.
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4.3 Experiments and results

To evaluate DeepFrame model, we applied DeepFrame on two dataset: a simulated PacBio G

protein-coupled receptor (GPCR) coding sequences (cds) dataset [30], and a real third-generation

sequencing dataset of human genome [20, 116]. G protein-coupled receptor is a large protein

family that is involved in many critical physiological processes, such like visual sense, gustatory

sense, sense of smell, regulation of immune system activity, and so on [143]. We used GDS [30]

for our experiment as it is already used to evaluate DeepFam [133]. It consist of 8222 protein

sequences belonging to 5 families, 38 subfamilies, and 86 sub-subfamilies. For simulated GPCR

cds dataset, we have the protein family information of reference read for each simulated read as

our ground truth. For the human genome dataset, we determine the ground truth via BLASR’s [21]

alignments against the GPCR coding sequences.

We benchmarked DeepFrame’s performance with HMMER and DeepFam. Those tools and

methods are representatives of current state-of-the-art methods of protein domain prediction. In

experiments on simulated PacBio GPCR cds dataset, we evaluate the performance of all methods

using classification accuracy. For human genome dataset, we evaluated the performance of detec-

tion of GPCR protein families from other unrelated DNA sequences using following metrics: (1)

recall, which measures the ratio of the correct protein domains predicted by each program to the

whole set of expected protein domains; (2) precision, which quantifies the ratio of correct protein

domains detected by each program to the total reported protein domains; and (3) F1 score, which

is the harmonic mean of recall and precision. Because DeepFam is not designed to process the data

with out-of-distribution samples, we did not evaluate it in the experiment on the human genome

dataset.

For our experiments, all specific commands, parameters, and output can be found along with
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the source code of DeepFrame.

4.3.1 Simulated PacBio GPCR cds dataset

We first evaluated our model using simulated PacBio reads generated using PBSIM [114] with

GPCR cds dataset with default setup and error rates from 1% to 15%. We create a corresponding

GPCR protein-coding sequences (cds) dataset by downloading cds from NCBI by searching the

keyword of the corresponding sub-subfamilies in GDS. We also build pHMM models from GDS

using HMMER and test all cds against these models. We discarded the cds that not predicted

correctly by GPCR HMM models to clean the dataset. We determined the ground truth of sub-

subfamily label of a simulated read by assign the label of the reference coding sequence to it.

4.3.1.1 Performance with different architectures

We conducted a series of experiments by varying the key opponents in our base models: the number

of convolution layers, the number of convolution kernels, the size of convolution kernels. We also

tested different encoding strategies. We listed all variations we tested in Table 4.1. The reference

coding sequences of each sub-subfamilies were spitted to 80% training samples and 20% test

samples. Then we used PBSIM to generate simulated PacBio reads for training samples and test

samples with 15% error rates. All the models were trained using the same hyperparameters we

discussed in Section 4.2.4 with five times repeat. Figure 4.8 compares classification accuracy of

all the variants in the test samples of simulated GPCR cds dataset.

4.3.1.1.1 Comparisons of encoding. We compared three models with different encoding strate-

gies: (1) 3-frame encoding model, (2) DNA one-hot encoding model, and (3) 3-branch model. We

describe the architecture of all three encoding models in Section 4.2.1.

100



Name Architecture (compare to base model)

Base model The model we described in Methods
512filters Use 512 filters in total in the 2nd convolution layer
1024filters Use 1024 filters in total in the 2nd convolution layer
4096filters Use 4096 filters in total in the 2nd convolution layer
1layer Only keep the last convolution layer
3layer Add an extra convolution layer with 64 filters of size 3
filters6 filter sizes of 2nd convolution layer= [6,9,12,15,18,21,24,27]
filters10 filter sizes of 2nd convolution layer= [10,15,20,25,30,35,40,45]
filters12 filter sizes of 2nd convolution layer= [12,18,24,30,36,42,48,54]
3-branch 3 branches structure for translated reads
DNA-
encoding

Use one-hot encoding of DNA reads as input

Table 4.1: The name and brief description of variants of CNN models we compared.

Figure 4.8: The mean and standard deviation of classification accuracy of different network archi-
tectures. For convenient, we used different names (3-frame encoding, 2048 filters, filters8, and 2
layer) for the same base model. We used different colors for different group of comparisons: green
bars for encoding; blue bars for number of filters; purple bars for different filter sizes; orange bars
for different convolution layers.
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From Figure 4.1, the model with 3-frame encoding achieved much better performance com-

pared to the 3-branch model and DNA encoding. In the 3-branch model, the original DNA se-

quences information is lost as the orders of the three frames not kept in the model. In contrast,

DNA encoding has the original information, but the indirect information of protein in DNA is

not easy to extract useful features that can separate different protein families. The DNA encoding

model also converges much slower than the other two peptide encoding models in training. Finally,

both DNA encoding model and 3-branch model have a larger number of parameters compared to

3-frame encoding, requiring more computing resources.

To investigate the features extracted from the sequences by convolutional layers, we obtain the

feature matrix after the max-over-time pooling for all three models. We pick six sub-subfamilies

with top F1 scores for all three models for visualizing the features using t-SNE [96]. The features

from different protein sub-subfamilies have been mapper to many small clusters shown in 4.9.

The distances between clusters from different sub-subfamilies in 3-frame encoding models are

relatively larger, and each small cluster only represents one sub-subfamilies. Many clusters in

DNA one-hot encoding model are close to each other. And clusters from the 3-branch model have

overlaps. These plots may explain why the performance of the 3-frame encoding is better as it

extracts features that can easily distinguish different protein sub-subfamilies.

4.3.1.1.2 Comparisons of convolutional filters setup. Compared to the one-layer model, our

base model (2 layers) achieved higher accuracy. The extra layer helps the neural network to extract

more complex patterns such as interactions of the lower level features. However, the "deeper"

model with more layers are more difficult to optimize. That is the possible reason why the average

accuracy of 3 layer model is lower than the base model, but the highest accuracy achieved is higher

than our base model.
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Figure 4.9: 2D t-SNE plot of features extracted from the convolutional layer output. (Top) 3-frame
encoding model. (Middle) DNA one-hot encoding model. (Bottom) 3-branch model.
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We found that the additional convolutional filters increased performance for protein domain

prediction. The improvement is saturated when we have more than 2048 filters.

Increasing the size of filters can also help to improve the performance of the models. With

the larger filter size, the neural network can capture long-range features. The result suggests the

importance of choosing the right filter size, which is not explored in previous works [133, 153].

4.3.1.2 Comparison with HMMER and DeepFam

The accuracy of classification of GPCR cds of DeepFrame and DeepFam was measured using

5-fold cross-validation. The reference coding sequences of each sub-subfamilies were equally

split into five folds while preserving the ratio of the families. Then we use PBSIM simulate each

fold of the coding sequences to the simulated PacBio reads that used to train DeepFrame. For

DeepFam, we used the translated protein sequences of each fold of coding sequences to retrain it.

We then tested all three translations using our retrained model. For HMMER, we used all 5-fold

translated protein sequences to retrain the pHMM model. To generate multiple seuqnce aignment,

MAFFT [72] was used for the sequences of each sub-subfamilies. Then we used hmmbuild in

HMMER to build pHMM model. For each test DNA sequences, 3-frame translations was applied

to get three protein sequences, then was tested with hmmscan against all 86 pHMM models we built.

In both experiments of DeepFam and HMMER, if at least one of the three translated reads classified

to the right sub-subfamilies, we treated this case as a correct prediction. HMMER was not able to

assign family label for some sequences, so such cases were treated as incorrect predictions.

Figure 4.10 summarized the comparison of classification of all methods on the simulated

PacBio reads. For this data set, our method achieved consistent performance when test on dataset

with different error rates. Our method achieved much higher accuracy compared to the other two

methods when the error rates are high. The high error rates heavily impacted the performance of
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Figure 4.10: Comparison of protein classification performance of DeepFrame, HMMER, and
DeepFam across different error rates.
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HMMER and DeepFam. It is expected because the profile HMM search is much more sensitive to

frameshifts caused by gaps, and DeepFam is designed for classifying relatively complete error-free

protein sequences.

4.3.1.3 Comparison of time complexity

We measured the execution times of the tested methods. With a large amount of data generated

by the third-generation sequencing platform, we require not only high accuracy of the algorithm

but also the high efficiency of the algorithms. We run both DeepFrame, DeepFam, and HMMER

using Intel R© Xeon R© Gold 6148 CPU with 20 cores at the High-Performance Computing Center

at Michigan State University. We also tested DeepFrame and DeepFam with NVIDIA R© Tesla R©

V100 GPU with Apex acceleration library (HMMER doesn’t support GPU). For each method,

We measured its execution time by averaging 5 independent trials with randomly selected 10,000

sequences.

Setup DeepFrame DeepFam HMMER HMMER −max

CPU 1168.78s 276.74s 312.13s 3470.04s
GPU 25.71s 20.37s unavailable unavailable

Table 4.2: The average elapsed time to predict families of 10,000 simulated PacBio reads for each
method.

In CPU, HMMER with the default setup runs much faster than DeepFrame and DeepFam. With

high sequencing error rates, the alignment against many candidate sub-subfamilies cannot pass the

filter stage of HMMER, speeding up pHMM search. With --max (turn off filters), the execution

time of HMMER is even slower than deep learning methods. With GPU acceleration, the running

time of DeepFrame is much smaller than the running time of HMMER with the default setup.
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4.3.2 Human genome dataset

To evaluate DeepFrame’s performance on real third-generation sequencing dataset, we tested Deep-

Frame on the H. sapiens 10x Sequence Coverage with PacBio data [116] and Oxford Nanopore

Human Reference Datasets Rel6 [67]. We first described the dataset we used in this experiment.

4.3.2.0.1 Train dataset. For the threshold baseline, we used the model trained in the previous

classification experiment. To applying Outlier Exposure, we constructed a dataset that mixing the

previous 5-fold train dataset with a dataset of outliers. We constructed the outelier dataset using

simulated PacBio reads. To close to the real out-of-distribution examples, we simulated a PacBio

human genome dataset using GRCh37/hg19 human reference genome as reference [27]. We only

kept the simulated reads that cannot be aligned to cds by BLASR in the final out-of-distribution

dataset.

4.3.2.0.2 Threshold calibration dataset. To calibrate the threshold, we need a dataset that

mixing in-distribution examples with out-of-distribution examples. We simulated in-distribution

examples from GPCR cds dataset. Also, we simulated out-of-distribution examples using ATP

synthase families cds. We used ATP synthase families because both GPCR and ATP synthase

families belong to the membrane and cell surface proteins and peptides class in SCOP classification

[92]. Intuitively, protein families closely related may be more challenging to distinguish, and this

lead to the threshold we calibrated more robust.

4.3.2.0.3 Out-of-distribution test dataset. We constructed two test dataset: a PacBio RS II

test dataset from PacBio SMRT Sequencing for CHM1TERT human cell line; and a Nanopore test

dataset from Oxford Nanopore MinION on CEPH1463 (NA12878/GM12878, Ceph/Utah pedi-

gree) human genome reference standard using R9.4 chemistry. To determine the ground truth of
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these test reads, we first aligned all reads against GPCR cds dataset using BLASR [21]. We ex-

tracted the aligned part of the reads of which alignment length longer than 60% of aligned cds

length as our in-distribution test samples. For each sample, the ground truth is given by the label

of aligned cds. These reads are in-distribution examples in the test dataset. We also randomly

selected reads that not aligned to any cds as our out-of-distribution samples. The dataset consists

of 50% reads that may be coding GPCR and 50% out-of-distribution reads. For read longer than

3000 bps in the test dataset, we cropped read into fragments that not longer than 3000 bps to be

consistent with train dataset.

4.3.2.1 Out-of-distribution test using PacBio and Nanopore reads

Method PacBio Nanopore

Recall Precision F-1 score Recall Precision F-1 score
HMMER 0.1494 0.9507 0.2583 0.3984 0.9825 0.5670
DeepFrame
threshold

0.4235 0.5407 0.4667 0.4866 0.6234 0.5384

DeepFrame OE 0.4479 0.9837 0.6154 0.4836 0.9731 0.6458

Table 4.3: The performance of protein domain prediction with out-of-distribution examples using
DeepFrame threshold baseline, DeepFrame with Outlier Exposure (OE), and HMMER on the real
PacBio and Nanopore dataset.

For detect the GPCR coding sequence sample from out-of-distribution samples, we retrain

DeepFrame model with Outlier Exposure discussed in Methods. We used the same train dataset

in the previous simulated PacBio reads experiment. We benchmarked the OE model with HM-

MER and a baseline model with only a softmax threshold. In both PacBio and Nanopore dataset,

DeepFrame with OE achieves the best F1 score compared to HMMER default setup and threshold

baseline (Table 4.3). DeepFrame with OE achieved significant improvement on recall while the

precision is comparable with HMMER. In general, all three methods have better performance on
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Nanopore dataset. Noticed that in the whole pipeline, we only use simulated PacBio reads but no

data from Nanopore. This result suggests that our strategy is robust with different types of long

reads.

4.3.3 Visualize and understanding convolution filters

To better understand what our convolutional neural networks learned, we further investigate the

feature extracted by convolutional filters. We visualized the convolution units of our model and

found that some conserved regions were captured, although the input data is very noisy.

Following the methods adopted by previous research [3, 133], we visualize the convolution

units activated for each family. We used the model that was trained in previously experiments

and feed the test sequences that belonged to the family to our model. Then we collect all the

sequence fragments that activate the convolution units. We extracted the results from most acti-

vated convolution units and used Weblogo to generate the logos from sub-sequences of the results.

Since we translated the original input DNA sequences into 3-frames protein sequences, so for each

convolutional units, we have 3 logos associated with 3 frames respectively.

From the logos, we can found that the convolutional filters did learn some conserved regions

of protein families. However, the logo is very noisy compared to the results reported in previous

studies. When the input has insertions and deletions, a well-conserved region may appear in all

three frames due to frameshifts, so the filter of all three channels sometimes may need to extract

similar patterns. That is why some of the 3-frame logos show similar patterns across different

frames.

Figure 4.17 presented the activation value distribution of convolutional filters for the six sub-

subfamilies we discussed before. It clearly shows that different protein families will activate dif-

ferent convolutional filters.
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Figure 4.11: Most activated convolutional filters (index: 1622) for Latrophilin.

Figure 4.12: Most activated convolutional filters (index: 1877) for Cannabinoid.

4.4 Discussion

In this work, we adopted the threshold on softmax and Outlier Exposure to detect relevant target

reads from other random reads. Previous research [3, 65, 91] usually solve the challenge by using

a binary classification framework. However, for a given sequence, we need to run the binary

classification model for each possible target. Instead, our multi-classification model scales better
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Figure 4.13: Most activated convolutional filters (index: 1689) for Platelet.

Figure 4.14: Most activated convolutional filters (index: 1382) for Prostacyclin.

with a large number of candidate targets.

We addressed the challenge of prediction of protein domains with a supervised learning method,

which needs a vast amount of labeled data. However, it is challenging to obtain a large number of
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Figure 4.15: Most activated convolutional filters (index: 1033) for Cholecystokinin.

Figure 4.16: Most activated convolutional filters (index: 1776) for EMR1.

labeled reads from third-generation sequencing. In this work, we show that deep learning method

achieves acceptable results, even when training on simulated data and testing on real data. We be-
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Figure 4.17: The distributions of sum of acivation values of convolutional units. X axis is the
index of the convolution filters in DeepFram. Y axis is the sum of activation values of the given
convolutional filters.
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lieve the performance of our method can be further improved if more labeled real third-generation

reads available.

4.5 Conclusion

In this work, we developed a protein domain prediction tool for third-generation sequencing data.

By incorporating 3-frame encoding and multiple-layer convolutional filters, our CNN model can

directly predict the protein families of long erroneous read. Our experimental results have shown

that for the dataset from third-generation sequencing technologies, our program can detect rele-

vant protein domain from other random DNA reads. Being able to predict protein domain from

a single read from third-generation sequencing directly is essential for applications like tran-

scriptomic and metagenomic sequencing. DeepFrame provides a complementary tool to cur-

rent third-generation sequence analysis pipelines, which usually require high coverage for er-

ror correction. The source code and the models trained and configuration files are available at

https://github.com/strideradu/DeepFrame.
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Chapter 5

Conclusions and future works

In this dissertation, I first introduced the development of third-generation sequencing technologies

and the possible application of PacBio and Nanopore reads. As more and more third-generation

sequencing dataset accumulating, especially metagenomic data and transcriptomic data, the anal-

ysis of long noisy reads became a challenging problem. First, traditional sequence analysis tools

cannot handle high insertion and deletion rates, leading to the short annotation that cannot be

distinguished from random sequences. Second, applications like metagenomic sequencing may

contain many close protein sequences that are not easy to distinguish. Third, although some algo-

rithms have been developed for PacBio or Nanopore reads, there is still a great potential to improve

the performance and efficiency of the sequence analysis algorithm for third-generation reads. To

address these challenges, I proposed a set of algorithms in this dissertation.

In Chapter 2, I introduced GroupK, which was designed for the high sensitivity overlap detec-

tion of long noisy reads. GroupK incorporated the grouped hits criteria which has been successfully

applied to remote homology detection and achieves better sensitivity when compared with other

overlap detection tools for third-generation sequencing reads.

In Chapter 3, I introduced Frame-Pro, which was designed for the homology search of PacBio

reads. It corrects sequencing errors and also outputs the profile alignments of the corrected se-

quences against characterized protein families simultaneously. Compared with homology search

on error correction reads, Frame-Pro enables more sensitive homology search and corrects more
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sequencing errors.

In Chapter 4, I introduce DeepFrame, which was designed for protein domain prediction and

detection on a single long noisy read. DeepFrame is based on the deep convolutional neural net-

works with softmax threshold and Outlier Exposure. It outperforms HMMER on both classification

accuracy and detection F1 score with faster execution time using GPU.

There are several directions that the previous studies can be improved:

• In GroupK, the group seed matching step currently is based on hash table implementation

from YASS [108]. This step is the bottleneck of the GroupK overlap detection pipeline. In

the future, we can implement the group matching step using new k-mer finding method to

improve the running time efficiency to be comparable with other faster overlap detection

tools. We can also invest in the filter steps to allow less false-positive overlap pairs to enter

the downstream steps.

• Frame-Pro is computationally more expensive than HMMER as we do not adopt any accel-

eration approach. We can reduce the running time of Frame-Pro by pruning the dynamic pro-

gramming matrix. We can also incorporate the fast Viterbi algorithm as a filtration stage to

filter out impossible protein domain candidates. Also, Frame-Pro is currently implemented

with Python. The execution time of Frame-Pro can be greatly reduced if we implement

it using C++, or other accelerated machine learning libraries like TensorFlow [1], or Py-

Torch [119].

• In DeepFrame, we implemented two convolutional layer neural networks. In the future, we

may test a more complex model with “deeper” convolutional neural networks. However,

usually “deeper” neural networks are not easy to optimize, so we may need use techniques

like residue blocks, as used in ResNet [62]. Another candidate is transformer structure [146],
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which already proved its success on natural language processing [31]. We may also add a

filtration step to improve the efficiency of our algorithm further, especially when only CPU

available. Besides, currently we use multi-class classification framework that directly classi-

fies on the sub-subfamilies level. We may implement a hierarchical classification framework

that classify on different protein levels like families, sub-families, and sub-subfamilies si-

multaneously.
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