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ABSTRACT

A MICROMECHANICAL PLATFORM TO STUDY NONLINEAR BEHAVIOR OF
ELASTOMERIC MATERIALS

By

Vahid Morovati

Cross-linked polymers demonstrate nonlinear behavior under large deformations with inelastic

features such as the Mullins effect, permanent set, deformation-induced anisotropy, and progres-

sive stress softening. While several constitutive models are developed to take into account each of

those features individually, there are only a few models which can consider damage accumulation

in cross-linked elastomers that occur due to multiple parallel factors.

Here, a new modular platform is presented to integrate different inelastic mechanisms into one

generalized constitutive model. The concept of network decomposition is the keystone of the pro-

posed platform. Based on this concept, the polymer network is considered as a combination of

parallel networks, each responsible for the specific inelastic response. The energy of each net-

work is calculated through the concept of the unit sphere. Consequently, the polymer matrix total

strain energy can be estimated by summation of the free energy of the sub-networks in all direc-

tions. Therefore, a three-dimensional (3D) polymer matrix can be decomposed to unidirectional

sub-network elements uniformly distributed over a unit micro-sphere, which hosts a simplified 1D

inelastic mechanism. The network models can be substituted, upgraded, or removed without influ-

encing the integrity of the framework. In order to improve the accuracy of the proposed framework,

the theory of elastomer elasticity has been revisited. Next, different micro-mechanical models are

developed to describe the nature of Mullins effect, permanent set, deformation-induced anisotropy,

and necking instability in highly cross-linked elastomeric gels based on different concepts.

First, the popular assumptions that influence computational accuracy and simplicity of the pro-

posed framework are examined. In modeling polymeric systems, two competing factors determine

the type of material model that should be used in the simulation: computational cost and accu-

racy. Optimizing the trade-off between these two factors determines the minimum requirements of



the model. The proposed modular platform enables us to select the networks based on this trade-

off. Furthermore, network models are designed to return strain energy; the scale-transition will be

based on a micro-sphere concept, and the Non-Gaussian entropic behavior is assumed for polymer

chains. The non-gaussian theory is often approximated by the Kuhn-Grün (KG) distribution func-

tion, which is derived from the first-order approximation of the complex Rayleigh’s exact Fourier

integral distribution. The KG function is widely accepted in polymer physics, where the non-

Gaussian theory is often used to describe the energy of the chains with various flexibility ratios.

However, the KG function is shown to be relevant only for long chains and becomes extremely

inaccurate for chains with fewer than 40 segments. In order to overcome this shortcoming, a novel

modification of non-Gaussian theory using the inverse Langevin function is developed to provide a

family of approximation functions for non-Gaussian theory with different degrees of accuracy. In

addition, a set of simple and accurate approximation of the inverse Langevin function is proposed

to further improve the accuracy of the energy of a 1D polymer chain.

Next, two constitutive models are developed to understand and describe the mechanical behav-

ior of double network hydrogel (DN gel) based on statistical micro-mechanics of interpenetrating

polymer networks. In the first model, the nonlinear behavior of the DN gels is attributed to the

existence of pre-damage in the first network due to swelling during the polymerization process.

In the second model, DN gels behavior is divided into three parts including pre-necking, necking,

and hardening. The first network is dominant in the response of the gel in the pre-necking stage.

The breakage of the first network to smaller network fractions (clusters) induces the stress soften-

ing observed in this stage. The disentanglement of the second network chains from broken first

network chains and long chains in the second network are also considered as main contributors

to the response of gels in necking and hardening stages, respectively. The contribution of clusters

decreases during the necking as the second network starts hardening. The numerical results of the

developed models are validated and compared by uni-axial cyclic tensile experimental data of DN

gels. Finally, a finite-element implementation of the proposed model is presented to simulate the

initiation and propagation of necking instability.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Elastomeric materials can be found in a broad range of products, ranging from bio-medical devices

to tires and hoses. Elastomers have a high extensibility with nonlinear elastic behavior, high-energy

absorption ability, dynamic damping capacity, and low cost of manufacturing. These characteris-

tics make them an ideal option for different engineering applications. In addition, the mechanical

performance of these materials can be significantly enhanced by different strategies like synthesiz-

ing multi-network elastomers or addition of fillers such as carbon black, silica, and Nano particles.

The elastomer behavior is non-linear and very complicated due to high stretch-ability, nearly in-

compressibility, permanent damage, and time-temperature dependent behavior. Although recent

advances in the process and characterization of the elastomers have led to significant improve-

ments in their properties, our understanding of the load transfer mechanism within them has re-

mained sparse and inconclusive. Availability of an accurate constitutive model to predict behavior

of elastomers under different loading conditions is significantly important in the design procedure.

Mechanical properties of rubber-like elastomers were studied intensively during the last cen-

tury [6, 7, 8, 9, 10, 11, 12, 13, 14]. The behavior of elastomers in cyclic deformation including

uni-axial tension, compression and shear tests shows many complex and interesting features. Fig.

1.1-a shows a typical stress-stretch behavior of filled rubbers under uni-axial loading. In a uni-axial

tension, a considerable stress-softening is observed between loading and unloading. The amount

of this softening reduces in the subsequent cycle until it reaches a stabilized value, generally re-
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ferred as Hysteresis. Simplification of the constitutive behavior of elastomers is a regular practice

in current modeling approaches. In elastomers, the hysteresis is considerably smaller in second

and subsequent deformation cycles and thus, it is often considered as zero [15, 16]. Thus, the load-

ing and reloading are assumed to be identical and the hysteresis is eliminated from the obtained

experimental results (See Fig. 1.1d). In this case, the unloading curve provides a good estima-

tion of the reloading response of the softened material, and the difference between the load and

the unload curves in the first cycle is called idealized Mullins effect [17, 18, 19, 20, 21]. Recent

experimental studies showed that tensile cycles in one direction do not cause the Mullins effect

in the perpendicular direction [22, 23, 24]. When the Mullins effect in tension is already present,

compressive stretches weaken the stress in other directions [25]. Accordingly, the anisotropy of the

Mullins effect highly depends on the deformation in other directions [26]. This work specifically

focuses on developing a platform to predict the idealized Mullins effect, strain-induced anisotropy

and permanent set by neglecting the hysteresis. The modular nature of the proposed platform,

however, allows us to later add new inelastic features to the predicted response such as hysteresis

and strain-induced crystallization.

Experimental evidence of the Mullins effect, permanent set, and deformation-induced anisotropy

suggest that all three of them can be considered as permanent damage mechanisms in elastomers

[27, 23, 10]. Permanent damage has been investigated by several constitutive models [28, 22, 23,

29]. Two main categories of proposed concepts contain phenomenological and micro-mechanically

motivated models. Some material parameters with no physical interpretations are used in phe-

nomenological approaches, which should usually be defined by a fitting procedure. Micro-mechanically

motivated models are proposed to provide a better understanding of mechanical behavior of Mullins

effect by the interpreting physical nature of the phenomenon. These models use various concepts

including the breakage of chains between the rubber and the fillers, slipping of molecules, clus-

ter’s rupture of fillers, chain disentanglement, and more complex composite structure formations

[30, 23, 31].

2



(a) uni-axial loading (b) transverse uni-axial loading

(c) idealized response (d) idealized response

Figure 1.1. (a) A schematical stress-stretch behavior of the rubber-like elastomers under a uni-axial
tension test. Inelastic effects (Mullins effect, permanent set, and hysteresis) (b) Cyclic tension test
in transverse direction of previous elongation. Inelastic effects (Deformation induced anisotropy)
(c-d) The idealized modifications of the constitutive behavior of elastomers by excluding perma-
nent set and hysteresis.

1.1.1 Micro-mechanical Platform

This study proposes a modular platform based on a constitutive model. The model describes a

polymer matrix mechanics through a basis initiated from molecular physics, and implements it

in a multi-scale model. The accuracy improvement of the platform is two-folds, (i) enhancing

the polymer physics theory used in the platform and (ii) increasing the number of modules to

consider different phenomena. Therefore, the framework consists of modules and several theories

with different accuracy levels. Each module can be added from existing models to consider a

specific inelastic phenomenon. The modules can be substituted, upgraded, or removed without

influencing the integrity of the framework. Modules are derived to calculate the contribution of the
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sub-network in the total strain energy. The entropic and enthalpic total energy can be considered

for polymer chains. Scale transition is performed based on the assumption of uniform spatial

distribution through a micro-sphere 3D generalization. The micro-sphere scale transition simplifies

the complex 3D problem to a 1D integration of a simple rheological representation of damage for

each spatial directions. Micro-sphere scale transition provides a simplified technique to model

permanent stress softening in the material, which can consider the deformation-induced damage

and permanent set as its byproducts.

1.2 Outline of the Present Work

This dissertation presents a general platform to predict the nonlinear behavior of elastomeric ma-

terials with a desired trade off between the accuracy of the model and computational cost of its

numerical implementation. The trade-off is achieved through a micro-mechanical platform, which

enables us to choose different phenomena to be added to the model with adjustable accuracy of the

single polymer physics theory. The current study is divided into six chapters, a short summary of

which is presented in the following.

Chapter 2 reviews the Non-Gaussian theory of polymer physics. Different theories are com-

pared with the exact distribution of random walk problem in terms of the chain end-

to-end distribution function, free energy, and entropic force. Finally, a new family of

accurate approximation of the Non-Gaussian probability distribution function (PDF),

entropic force, and the strain energy of a single chain are subsequently developed to

describe the mechanics of a polymer chain.

Chapter 3 presents a novel approach which can provide a family of approximation functions for

inverse Langevin function (ILF) with different degrees of accuracy. This chapter

starts with a current practice of estimation for the ILF and continues with the general

properties of this function. At the end, three simple procedures are presented, which

can take current approximation functions with an asymptotic behavior and enhance
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them by the addition of a power series of their induced error. The accuracy/complexity

trade-off for the family of ILF approximations, generated by the proposed approaches,

is compared against those of other approaches to show the advantage of the proposed

model.

Chapter 4 proposes a micro-mechanical model to characterize the constitutive behavior of multi-

network elastomers in a quasi-static large deformation. In particular, we focused on

describing the permanent damage in double-network (DN) elastomers under large de-

formations. Irreversible chain detachment and decomposition of the first network are

explored as the underlying reasons for the nonlinear inelastic phenomenon. The pro-

posed model is able to predict the nonlinear damage mechanism based on the micro-

structure of the matrix. The model is validated with uni-axial loading and unloading

experiments of DN elastomers.

Chapter 5 presents a constitutive model to understand and describe the mechanical behavior and

necking instability of DN elastomers based on statistical micro-mechanics of interpen-

etrating polymer networks. Here, DN elastomers behavior is divided into three parts

including pre-necking, necking, and hardening. The constitutive model for the first,

interaction, and the second network is derived. Each of these networks is the main

contributor in the pre-necking, necking, and hardening stages, respectively. Further-

more, a finite-element implementation of the proposed model is presented to simulate

the initiation and propagation of the necking instability. Finally, the numerical results

of the proposed model are validated and compared by uni-axial cyclic tensile experi-

mental data of DN elastomers.

Chapter 6 concludes the findings of the study presented in this dissertation. Possible future works

extended from the current investigation are also discussed in this chapter.
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CHAPTER 2

MODELING OF ELASTOMERS

The constitutive modelling of elastomers involves nonlinear continuum mechanical quantities,

which describe the behavior of materials undergoing a large deformation. Thus, a basic foundation

on continuum mechanics, including fundamental geometric mappings and basic stress measures

of a solid body undergoing large deformations, is briefly discussed in this chapter. For a compre-

hensive description and understanding of the topic, the reader can refer to continuum mechanics

reference materials such as [32], [33].

2.1 Some Notes on Continuum Mechanics

In continuum mechanics theory, it is assumed that an object fully occupies the space by its sub-

stances. Physical properties of a solid or fluid medium are related through mathematical tensors

measures. These measures are independent of their observed coordinate system in general. How-

ever, they can be represented in different coordinate systems. In this section, the relation of various

mechanical measurements are briefly reviewed.

2.1.1 Deformation gradient

A continuum body Bt0 in a 3D Euclidean space at time t0 is shown in Fig. 2.1, in which any

arbitrary point P0 with respect to an arbitrary basis can be represented by X ∈ E3. As the body

deforms in the space, the medium occupies its current configuration at Bt. Given that the geo-

metrical mapping of body from Bt0 to Bt is one to one, any point from initial configuration, P0,
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uniquely maps to its new configuration coordinate, P , with an arbitrary basis of x ∈ E3.

The geometrical mapping of the regions of body from current configurationBt0 to the reference

configurations Bt in any arbitrary coordinate system, ei (i = 1, 2, 3), can represent the position of

point P and P0 by

x = x̂ (θ1, θ2, θ3, t), X = X̂ (θ1, θ2, θ3) = x̂ (θ1, θ2, θ3, t0). i = 1, 2, 3 , (2.1)

Therefore, the displacement vector, u , of point P can be written as

u = û(θ1, θ2, θ3, t) = x −X (2.2)

e3

e1

e2

Reference configuration

Current configuration

xX

u
Pt0

Bt0

Bt

Pt

Figure 2.1. Deformation and motion of a continuum body.

Given an Euclidean space with a set of orthonormal (Cartesian) basis vectors, say e i (i =

1, 2, 3), one can express each point of the body as

X = X ie i, Xj = X · ej, j = 1, 2, 3,

u = uie i, uj = u · ej, j = 1, 2, 3, (2.3)

x = xie i, xj = x · ej = Xj + uj, j = 1, 2, 3,

where the Einstein notation, summation over repeated indices, is applied. Deformation can be
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related to the tangent vectors of the coordinate lines in each of the configurations. Tangent vectors

of sufficiently differentiable X and x can be written as

G i =
∂X

∂θi
=, g i =

∂x

∂θi
, i = 1, 2, 3 , (2.4)

The relative motion of an arbitrary point with respect to its adjacent point can be calculated in a

direction a through the directional derivative as

d

ds
x̂
(
X + sa , t

)∣∣∣∣
s=0

= lim
∆s→0

x̂
(
X + ∆sa , t

)
− x̂

(
X , t

)
∆s

=
(
Grad x

)
a . (2.5)

Therefore, second order deformation gradient tensor,
(
Grad x

)
, can be written by a linear mapping

of vector a into vector d
ds

x̂
(
X + sa , t

)∣∣∣∣
s=0

as

F = Grad x =
dx̂

dX
. (2.6)

where, dX is a infinitesimal element before deformation and dx̂ is the same element on the body

after deformation. This tensor play a pivotal role in deformation kinematics, which can describe

the relative motion of material elements during deformation. Therefore, one has the relation of

infinitesimal element in reference and current configurations as

dx = FdX , dX = F−1dx . (2.7)

Moreover, the change of volume and surface elements can be related to deformation gradient tensor

thorough these relations. To this end, a volume in the reference configuration of three non-co-

planar vector, dX 1, dX 2 and dX 3, can be defined as

dV0 = [dX 1dX 2dX 3] =
(
dX 1 × dX 2

)
· dX 3. (2.8)

8



Using Eq. 2.7, each of these vectors deforms in the current configuration to

dx 1 = FdX 1, dx 2 = FdX 2, dx 3 = FdX 3. (2.9)

Thus, the volume of the element in the current configuration can be written as

dV =
[
dx 1dx 2dx 3

]
=
(
dx 1 × dx 2

)
· dx 3 = JdV0,

where

J =
dV

dV0

=
∣∣Fi.j∣∣ = detF > 0. (2.10)

In addition, by defining the surface element of reference and current state as dA0 = dX 1 × dX 2

and dA = dx 1 × dx 2, the relation of the surface areas can be calculated by substituting Eq. 2.9

into dV0 = JdV as

dA = JF−TdA0. (2.11)

where dA = |dA| and dA0 = |dA0| are the surface areas in the current and reference configuration,

respectively. An element length in reference and current states can be calculated similarly as

‖dx‖2 = dx · dx = dX
(
FTF

)
dX = dXCdX ,

‖dX ‖2 = dX · dX = dx
(
F−TF−1

)
dx = dxb−1dx , (2.12)

where C = FTF and b = FFTare the right and left Cauchy-Green tensors, respectively. The

change in the length of a linear element, the stretch of a material element, defined as the ratio of

the deformed to the referenced length of the material element. Deformation changes the length of

an element dX in direction N in initial state to dx in direction n in the current state as
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λ
(
N
)

=
dx

dX
=

√
‖dx‖2

‖dX ‖2
=

√
dXNCN dX

dX2

=
(
NCN

) 1
2 , (2.13)

and

λ
(
n
)

=
(
nb−1n

)− 1
2 . (2.14)

Another measure of the change in element length during deformation can be written as

‖dx‖2 − ‖dX ‖2 = 2dXEdX

= 2dxedx (2.15)

where E = 1
2

(
C− I

)
= 1

2

(
FTF − I

)
called the Green-Lagrange strain tensor and e = 1

2

(
I −

b−1
)

= 1
2

(
I− F−TF−1

)
is Almansi strain tensor.

2.1.2 Deformation rate

The material velocity gradient can be defined similar to the deformation gradient by

L = Gradẋ =
∂

∂X

[
∂x (X , t)

∂t

]
=

∂

∂t

(
∂x

∂X

)
= Ḟ. (2.16)

The spatial velocity gradient, derivative of a spatial velocity field v with respect to the current

configuration, can be written as

l = gradẋ =
∂v

∂X

∂X

∂x
= ḞF−1. (2.17)
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The spatial gradient of velocity can be decomposed to a symmetric part d = 1
2

(
l + lT

)
and a

skew-symmetric part w = −wT = 1
2
(l− lT). The symmetric part is called deformation rate

d =
1

2

(
l + lT

)
=

1

2

(
ḞF−1 + F−TḞT

)
=

1

2
F−TĊF−1. (2.18)

In addition, the skew+symmetric part is referred to spin (vorticity) tensor

w = −wT =
1

2
(l− lT) =

1

2

(
ḞF−1 − F−TḞT

)
. (2.19)

The rate of Green-Lagrange strain tensor Ė can be written as

Ė =
1

2
Ċ =

1

2
FTdF. (2.20)

The rate of the volume change can be calculated by the time derivative of the determinant of

the deformation gradient as

J̇ =
∂detF

∂t
= J trd (2.21)

2.1.3 Stress measures

The stress is defined by traction force vector dFs per unit of area (see Fig. 2.2), which is defined

as the neighbouring continuum points of the body dA. The stress in each arbitrary point P0 and P

in reference and its counterpart in the current configuration is defined based on infinitesimal areas

dA and da around them with the unit vectors of N and n normal to them, respectively. Thus, the

relation of the traction force and stress can be written as

dFs = TdA = tda, (2.22)

where the vectors T and t are the traction force in reference and deformed configurations, respec-

tively. Therefore, second-order tensors σσσ and PPP can be expressed based on the Cauchy’s stress
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theorem as

e3

e1

e2

Reference configuration

Current configuration

xX

uBt0

Bt

dA
dFs

N
dfs n

dfs

Figure 2.2. Continuum medium with a surface element and corresponding force vectors.

t = σσσn T = PPPN , (2.23)

where σσσ represents the Cauchy stress tensor related to force on the body surface in the current

configuration and PPP is the first Piola-Kirchhoff stress second-order tensor defined based on the

surface area in initial configuration. The first Piola-Kirchhoff stress and Cauchy stress tensor can

be related through the Nanson’s formula 2.11 and 2.23 as

dF = tdA = σσσdA = JσσσF−Tda . (2.24)

The second Piola-Kirchhoff stress tensors S can be calculated by pulling-back the force vector dfs

in the current state to the reference configuration. Similarly, another spatial stress measure, the

Kirchhoff stress tensor τ , can be calculated and converted to other measures as the following set

of equations

P = JσσσF−T = τF−T = FS, S = JF−1σσσF−T, τττ = Jσσσ (2.25)

Note that nominal/first Piola-Kirchhoff stress is not a symmetric tensor due to its two-point coor-

dinate systems.
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2.1.4 Balance principles

For a body B with volume V , mass M , and boundary surface A in the current state, the rate of

change of the linear momentum is directly proportional to the force applied on the body, which

can be defined by

∫
M

vdM =

∫
V

ρẋdV,

where ρ is the density and v = ẋ is the velocity vector of a particle. The momentum can be

calculated by summation of a body force and a surface force as

d

dt

∫
V

ρẋdV =

∫
V

f dV +

∫
A

tdA. (2.26)

The surface forces can be obtained through the Cauchy theorem (2.23) and divergence theorem

∫
A

tdA =

∫
A

σσσndA =

∫
V

div σσσdV. (2.27)

By substituting Eq. 2.27 into Eq. 2.26, the balance equation is then

∫
V

(
divσσσ + f − ρẍ

)
dV = 0. (2.28)

For any arbitrary point of the body, one can rewrite Eq. 2.28 as

divσσσ + f = ρẍ . (2.29)

In order to calculate the balance of mechanical energy, one can multiply Eq. 2.29 with the velocity

vector v as

v · divσσσ + v · f = ρv · ẍ . (2.30)
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Eq. 2.30 can be further simplified considering symmetry of the Cauchy stress tensor as

v · divσσσ = div (vσσσ)− σσσ : grad v = div (vσσσ)− σσσ : d, (2.31)

which gives

div(vσσσ)− σσσ : d + v · f = ρ
d

dt

(
1

2
v · v

)
. (2.32)

Integrating Eq. 2.32 over the volume of the body and considering Eq. 2.27 yield to

d

dt

∫
M

(
1

2
v · v

)
dM +

∫
V

(σσσ : d) dV =

∫
A

(v · t) dA+

∫
V

(v · f ) dV. (2.33)

The balance of mechanical energy can be rewritten by taking into account the physical meaning of

each term in the Eq. 2.33 as

K̇ +W = P , (2.34)

where P , K̇, andW refer to the power of external forces, the stress power, and the changes in the

kinetic energy, respectively. The power of external forces can be written as

P =

∫
A

(v · t) dA+

∫
V

(v · f ) dV. (2.35)

The kinetic energy and the stress power of the system is then formulated by

K =

∫
V

(
ρ

1

2
v · v

)
dV,

W =

∫
V

(σσσ : d) dV. (2.36)

Note that the stress power can be calculated through other strain-stress measures and each of the

stress measures σσσ, P, and S are conjugate with deformation measures d, Ḟ, and Ė, respectively.

For instance, the stress power can be calculated using the first Piola-Kirchhoff stress and deforma-
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tion gradient as

W =

∫
V0

(
P : Ḟ

)
dV0 =

∫
V

J−1
(
P : Ḟ

)
dV. (2.37)

Thus, the stress power can also be obtained from

(
P : Ḟ

)
= (σσσ : d) =

(
S : Ė

)
=

(
S :

1

2
Ċ

)
. (2.38)

In addition, the total energy dissipation due to the deformation D can be obtained

D =W −
∫
V0

Ψ̇ dV0 (2.39)

where Ψ̇ refers to the rate of stored energy per unit volume in the reference state.

2.2 Thermo-elasticity

The relations between mechanical and thermal energy is called thermo-elasticity, which can be

derived using the first and second laws of thermodynamics. The 1st law of thermodynamics is the

conservation of energy, which is formulated as

dU = dQ+ dW. (2.40)

where dU , dQ, and dW are the changes in the internal energy of the system, the heat absorbed by

the system, and the work done on the system. The U and W can be expressed as

U =

∫
V

ρU dV, W =
dW

dt
(2.41)

where U is the internal energy density. According to the second law, the changes in the entropy of

a reversible process (elastic deformation), dS at absolute temperature T is formulated as

dS =
dQ

T
. (2.42)
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Moreover, the change in the Helmholtz energy A is defined as

dA = dU − SdT − TdS. (2.43)

At a constant temperature, the change in Helmholtz energy is equal to the change in the work done

on the system dW = dA . In the small displacement dl of solid-like structures, dW due to force f

can be written by

dW = fdl − phdV, (2.44)

where ph and dV denote the hydro-static pressure and the volume change. In the case of incom-

pressible material like elastomers, dV can be neglected. So, the force of an isothermal process can

be obtained using Eq. 2.43 and Eq. 2.44 as

f =
dU

dl
− T dS

dl
. (2.45)

The first part of Eq. 2.45 represents the energetic interactions of a single molecule or the volume

change of the body [11]. However, experimental evidences suggest that the contribution of ener-

getic force in the total force is negligible in moderate and large deformations of elastomers. Thus,

the force of the system can be approximated only by entropy component as

f = −T dS
dl
. (2.46)

For an entropic material, the Helmholtz free energy required to perturb the entropy of the system

is

dA = −TdS. (2.47)
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2.3 Thermodynamic Consistency

According to the second law of thermodynamic that is used in continuum mechanics, elastic energy

of the system mainly increases due to the decrease in entropy, which is known as Clausius-Duhem

inequality

D ≥ 0. (2.48)

The constitutive model is thermodynamically consistent if and only if Clausius-Duhem inequal-

ity is satisfied on all points of body at any time. In other words, the energy balance should be

satisfied during a thermodynamical deformation process. The energy balance can be rewritten by

substituting Eq. 2.40 to Eq. 2.34 as

K̇ − P =
d

dt
(U −Q) = U̇ − Q̇, (2.49)

where the thermal power Q̇ is defined as

Q̇ =

∫
V

ρQ dV −
∫
A

ρq · n dA. (2.50)

In Eq. 2.50 ,Q and q are the transferred heat and the surface heat flux per unit of mass, respectively.

Moreover, Eq. 2.49 can be rewritten as

σσσ : l = ρU̇ − ρQ+ div q . (2.51)

Therefore, Clausius-Duhem inequality can be obtained by

ρD = ρT Ṡ − (ρQ− div q) ≥ 0, (2.52)

17



where S is the entropy density. Clausius-Duhem inequality can be further simplified by substitution

of the energy balance law (2.51) and mass conservation (ρ0 = Jρ) as

D = T Ṡ −
(
U̇ − 1

ρ0

PPP : Ḟ

)
≥ 0. (2.53)

considering the stored energy density per unit of reference volume Ψ = Ψ̂ (F, T,ΩΩΩ) as a function

of set of internal variables ΩΩΩ. In most of the constitutive models, the internal variables have been

adopted to describe the history dependent dissipative effects. Note that all the quantities of the

Clausius-Duhem inequality, such as S, q , and P should be functions of internal variables. For a

more comprehensive review of thermo-elasticity, the reader is referred to [34, 35]. Substituting the

Helmholtz free energy Ψ = ρ0 (U − TS) into Eq. 2.53 results in

ρJD = −Ψ̇− ρJSṪ +PPP : Ḟ ≥ 0 (2.54)

where Ψ̇ (F, T,ΩΩΩ) can be obtained as

Ψ̇ =
∂Ψ

∂F
: Ḟ +

∂Ψ

∂T
Ṫ +

∂Ψ

∂Ω
· Ω̇ΩΩ. (2.55)

Eq. 2.54 can be rewritten considering Eq. 2.55 as

ρJD = −∂Ψ

∂T
Ṫ − ∂Ψ

∂Ω
· Ω̇ΩΩ− ρJSṪ +

(
PPP − ∂Ψ

∂F

)
: Ḟ ≥ 0. (2.56)

Eq. 2.56 can be further simplified for the case of isothermal process and considering a physical

expression for the first Piola-Kirchhoff stress PPP = ∂Ψ
∂F

, which leads to an inequality of internal

energy dissipation D as

− ∂Ψ

∂Ω
· Ω̇ΩΩ ≥ 0. (2.57)

This inequality must always be satisfied over the body during deformation.
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2.4 Incompressible Materials

Resistance of most of elastomers to change volume known as incompressibility condition should

be considered in the constitutive modelling. Therefore, the internal energy function of an incom-

pressible material is modified by

Ψ = Ψ̂ (F, T,ΩΩΩ)− p(J − 1), (2.58)

where J = detF = dV
dV0

= 1 is the incompressibility constraint and p is a Lagrange multiplier to

satisfy the boundary conditions. The rate of the strain energy function Ψ is

Ψ̇ =

(
∂Ψ (F, T,ΩΩΩ)

∂F
− pF−T

)
: Ḟ, (2.59)

where the incompressibility condition is considered as the volume remains constant, V̇ = J̇ = 0.

Substituting Eq. 2.59 to Eq. 2.39, one has

(∫
V0

PdV0 −
∫
V0

(
∂FΨ̂ (F, T,ΩΩΩ)− pF−T

)
dV0

)
: Ḟ ≥ 0. (2.60)

Eq. 2.61 should be held for every deformation rate, Ḟ, which leads to

P =
∂Ψ̂ (F, T,ΩΩΩ)

∂F
− pF−T , (2.61)

This equation is valid for the case of

• Incompressible hyperelastic material

• Negligible contribution of internal energy in deformation

• Isothermal deformation

• Moderate and large range of deformation
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CHAPTER 3

IMPROVED APPROXIMATIONS OF NON-GAUSSIAN PROBABILITY, FORCE, AND

ENERGY OF A SINGLE POLYMER CHAIN

3.1 Introduction

In computational simulations of polymeric systems, two competing factors determine the type of

the material model that should be used in the simulation; computational cost (i.e. the simulation

time) and the accuracy. Optimizing the trade-off between these two factors determines the mini-

mum requirements of the model. In mechanics of polymers, the excessive computational costs of

accurate models prevents them from being used in large-scale simulations. Here, our goal is to pro-

pose a family of effective approximation functions with different range of accuracy and complexity

that can address the existing trade-off problem.

In polymer physics, micro-mechanical constitutive models are mostly derived from the non-

Gaussian statistical distribution of a randomly jointed molecular chain [36, 37, 38, 39]. In these

models, the elasticity of the chains is induced from the changes in the probability of chain end-to-

end distance, r, in the course of deformation, and thus the change of the chain entropy [11]. The

PDF of a perfectly flexible chain with fixed end positions P (r) can be calculated using a solution

that is first proposed to solve the random flights problem [40, 41, 42]. The concept was later used

in several theoretical and experimental studies to describe the properties of dilute polymer solu-

tions. In dilute solutions, the isolation of polymer molecules allows characterization of individual

molecules. A strong correlation was found between the number of segments of a chain, n, and its

end-to-end distance, r given by r ∝
√
n [11]. This correlation later became the basis to consider
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P (r) similar to that of a random-flight problem.

In most statistical polymer models, the stress-strain relation for the polymer matrix originates

from molecular description of deformation of single chains. The first attempt in understanding

behaviour of polymers was based on a statistical approach to derive entropic conformation of a

polymer chain, which was independently proposed by Kuhn [40] and Guth and Mark [43]. Both

theories successfully derived the Gaussian PDF estimation of a polymer chain from its entropy

[44]. However, it can be shown that Gaussian statistics are exact only for the polymer chains with

infinite length or very small deformation. Later, Kuhn and Grün proposed the inverse Langevin

approximation for ’freely jointed chain’ (FJC) to address the effect of finite chain length in the

network, and reached to pioneer model for single chain statistics in large deformation. The popular

Kuhn-Grün (KG) model describes the statistical probability of existence of an unconstrained single

chain with an entirely random orientation in space [45]. Beside simplicity, the relevance of the

assumption has motivated the majority of models ever since to use the KG function to estimate non-

Gaussian PDF [38, 46, 47, 48]. This estimation is the first order approximation of the Rayleigh’s

exact Fourier integral distribution function [49], and can describe the finite extensibility of the

polymer chains even at large strains. This model is widely accepted in the field of rubber elasticity

due to its accuracy to captures the ultimate strain of polymer network [50, 37, 51]. In polymer

physics, most constitutive models of the polymer matrix such as 3-chain [52], 4-chain [53], 8-

chain [37], the full-network models [11, 54] , and the micro-macro unit sphere models [55] are

based on the KG approximations of non-Gaussian theory, which generally includes the inverse

Langevin function [11]. However, different studies in the literature examined its relatively large

error for the short chains [11, 39].

As it shown in the literature, Gaussian distribution, energy and entropic force have very good

agreement with theory of rubber elasticity and experimental evidences in small deformations. As

deformation increases this theory cannot predict the behavior of elastomeric material with limited

extensibility accordingly. In order to overcome this shortcoming, the non-Gaussian theory of rub-

ber elasticity proposed to improve the theory for deformations near the failure of the material. The
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complexity some of these theories leads to extensive application of KG theory in different area of

polymer physics as a simple alternative of non-Gaussian theory. Despite the fact that KG theory is

only valid for long chains, there are several studies that used this theory with less than 20 segments

chains [55, 51, 29]. Arruda and Boyce (1993) [37] proposed their outstanding 8-chain model using

KG theory, which is validated against experimental data assuming the chains length as low as 8.

The Full network model [54] that considers the spatial uniform distribution used the KG model by

chains with only 2.8 segments (the relative error of entropic force for chain with 3 segments will

be shown in section 3.4, which is reach to more than 100% , Fig. 3.7).

Despite its wide acceptance, KG estimation is only valid for sufficiently large chains (n� 40)

[56, 44, 50]. While KG shows good graphical agreement with Rayleigh’s exact distribution in

low extensibility[56], it yields significant errors in the large extensibility (see Fig.3.1a). Moreover,

for long chains, KG approximation becomes strongly inaccurate as r
nl
→ 1 as the probability

approaches to zero. Figure 3.1-a shows that the relative errors of a short chain and a long chain

almost is the same unlike the most stated in the literature [56]. In polymer physics, the strain energy

of a chain W , which is correlated with W ∝ ln (P (r, n))), is used more often than the P (r), and

thus is the subject of interest. In Fig.3.1-d, we have plotted the relative errors in approximating W

by using KG PDF. As it can be in this figure, the maximum relative error of KG energy function

is about 25% for the chain with 8 segments. However, the maximum relative error of KG energy

function can reach to as much as 100% for the chain with 3 segments. It is evident that the relative

error for short chains are much higher than that of long chains. To address this problem, Jerningan

and Flory [56] introduced a new approximation, referred to as ’amended Kuhn-Grün’ (A-KG), by

adding an extra multiplicative term to the KG function. Due to its complexity, A-KG model were

used in very few studies such as the work of Elias-Zuniga and Beatty [46].

Currently, almost all statistical models of chain elasticity are based on the KG PDF. Accord-

ingly, the entropic force resulted from KG are the function of one parameter only; namely the

extensibility ratio, t = r
L

where r is the end-to-end distance of a chain, L = nl the contour length.

However, studies suggest that the entropic force resulted from PDFs are influenced by two param-
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(a) Normalized PDF (b) Relative error of PDF

(c) Normalized strain energies (d) Relative error of strain energies

Figure 3.1. Comparison between Exact and KG (a-b) distribution functions and strain energies
(c-d) for chains with n = 8 and 64 and their relative errors.

eters, namely t and n. To date, most constitutive models suffer from the large errors induced by

the KG function in predicting the PDF, force or energy in the case of short chains. So far, there is

no other feasible approximation of PDF that can also capture the behavior of the short chains.

Here, we developed an approach to derive a family of approximations for the PDF, force and

strain energy of polymer chains. Such an approximation model is particularly relevant in constitu-

tive models of polymer chains that use the ILF L−1( r
nl

) to describe the entropic force of a chain.

Since the ILF cannot be derived explicitly, approximation functions with different degree of errors

are used to represent it. Recently, due to significant improvement of our computational power

for simulating the entropic energy of the whole network, accurate approximation of the ILF has

become a subject of interest. In the last decade, several high accuracy approximations with errors

as low as 10−4% have been introduced [57, 2, 58, 59]. While accurate approximations of the ILF

can reduce the error of KG energy and force approximations, there still exists a significant error
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in those approximations due to the intrinsic error associated with KG PDF. Such error necessitates

the future efforts to be directed toward deriving a new approximation for PDF function first before

deriving force and energy.

The fundamentals of non-Gaussian statistical mechanics of polymers are first reviewed in sec-

tion 3.2. We propose new approximation functions for PDF in section 3.3. In section 3.4, the error

of the current approximations of entropic energy and force of a polymer chain is calculated to show

the relevance of new approximation functions. Finally, in section 3.5 and 3.6 new approximation

functions for entropic force and energy of a single polymer chain is provided. The functions show

negligible error even for short chains and are relevant for a long range of extensibility ratios.

3.2 Statistical Mechanics Treatments

In this section, the non-Gaussian PDF of existence of a chain, P (−→r ), with end-to-end vector −→r

and contour length nl is briefly reviewed. The probability distribution of an FJC is the same as

3-D random flight problem, which describes the probability of a chain ending at a certain point at

distant r. In 1905, Pearson discussed the distribution of position of a mosquito in a forest [60].

To address this problem, several distribution functions have been developed ever-since based on

the Fourier integration of the random-flight problem, first of which was developed by Rayleigh in

1919 by using the discontinuous integral of Dirichlet [49]. The probability of existence of a chain

can be derived by taking the Fourier transform of characteristic function as

Pexact (r) =
1

2π2r

∫ ∞
0

ρsin(ρr)

(
sin(ρl)

ρl

)n
dρ. (3.1)

This equation would be difficult to solve analytically for chains with large number of segments,

n > 10. The exact non-Gaussian distribution function for 3, 4, and 6 steps were derived by

Rayleigh as sets of discontinuous polynomials [49]. The exact solution of Fourier integral of

Eq.3.1, often referred to as “Rayleigh exact distribution function”, was later derived by Treloar
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[42] based on the theory of random sampling as

Pexact (r) =
1

2n+1 (n− 2)!πl2r

k≤
n− r

l
2∑

k=0

(−1)k

 n

k

(n− 2k − r

l

)n−2

. (3.2)

Similarly, Wang and Guth [52], Nagai [61], and Hsiung et al. [62] derived similar formula-

tions with different mathematical approaches. To avoid the high computational cost of the exact

solution (due to its piece-wise nature), several approximation methods were developed for non-

Gaussian distribution. The degree of mathematical difficulty of these approximations depends on

the required accuracy and the covered extensibility ratio (t = r
nl

). The Gaussian distribution, for

example, is simple and has a good agreement with the exact distribution at small t. It can be

shown that the first order approximation of 1D random walk problem yields to the Gaussian dis-

tribution (see Appendix 3.7). However, Gaussian distribution becomes exponentially inaccurate

for the chains in their fully extended length (t ∼= 1). Thus, a more elaborate distribution func-

tion is required to capture the non-Gaussian PDF. In general, the approximation functions that are

developed to approximate the Rayleigh exact PDF, Eq.3.2, can be categorized into three types (i)

Taylor expansion approximations which are valid for long chains with low extensibility, (ii) Sta-

tistical approximation which are valid for long chains at all extensibility ratios and (iii) Steepest

decent approximations which are valid for all chains and extensibility ratios, although it has a high

computational cost [52].

(i) Taylor expansion approximation (TE) has an acceptable accuracy for long chains at small

t. In this case Eq. 3.1 can be rewritten as

Pexact(r) =
1

2π2r

∫ ∞
0

ksin(kr)eφ(k)dk, (3.3)

where φ(k) = n ln sin(ka)
ka

. To further simplify the above equation, φ(k) can be substituted

by its Taylor expansion φ(k) = −nΣ∞k=1
B2k−1(2s)2k

(2k)!2k
, where Bn is Bernoulli number. By using

the first term of φ(k) Taylor series, Eq.3.3 yields the standard Gaussian distribution function,
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PG, as [44],

An (ρ) ∼= exp

(
−n (ρl)2

6

)
→ PG (r) = A0 exp

(
− r

2

2n

)
, (3.4)

where A0 =
(

3
2πa2n

) 3
2 . By using full expansion of φ(k) a more accurate approximation of

Pexact can be obtained as,

PT (r) = A0

(
1− 3

20n

(
5− 10

r2

n
+ 3

r4

n2

)
+ . . .

)
exp

(
−3r2

2n

)
. (3.5)

In order to further enhance the accuracy of the approximation, the Taylor expansion can be

written around its saddle point [63] as,

PT−SP (r) ∼= A0 exp

(
−n
[

3

2
t2(1− 1

n
+

2

5n2
) +

9

20
t4(1− 11

5n
) +

99

350
t6
])
. (3.6)

To simplify Eq. 3.6, one can assume 1
n
−→ 0 for long chains (n � 40), and thus reduce Eq.

3.6 to

PT−SP (r) ∼= A0 exp (−nα (t)) , (3.7)

where α (t) is a function of extensibility ratio only. Since Eq. 3.7 is equal to the distribution

function resulted from Taylor expansion of ILF, one can conclude that the ILF approximations

are also mainly relevant for long chains.

(ii) Statistical approximation (SA) of Pexact , also known as Kuhn-Grün (KG) PDF, is particu-

larly accurate for the large chains in the highly stretched state [11]. KG PDF is introduced in

1942 through the maximum term method of statistical mechanics as

PKG (R) = c

{
sinh (β)

β exp (tβ)

}n
, (3.8)

where c is normalization factor that can be A0 or P exact
n (10−2). The ILF parameter β =
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L−1 (t) can be implicitly calculated through Langevin function equation, t = L (β) ≡

coth (β) − 1
β

. Note that James and Guth (1943) [36] and Flory (1953) [64], independently

derived the same formulation with different approaches. In another effort Jernigan and Flory

[56] derived an amended version of KG distribution function as

PA−KG(r) = A0

[
sinh (β)

β exp(tβ)

]n [
β

t

]
=
β

t
PKG. (3.9)

(iii) Steepest decent approximation (SD) is derived by Wang and Guth [52] based on the saddle

point approximation of Eq.3.2, which gives

PWG(r) = A0

[
sinh (β)

β exp(tβ)

]n [
β

t

] [
1− t2 − 2t

β

]− 1
2
[
1 +

q(t)

n
+ ...

]
, (3.10)

where q(t) is a specific function [52]. Using steepest decent approach, another approximation

function is derived by Yamakawa [44] which can be rewritten similar to PWG as 1

PSD (r) = A0

[
sinh (β)

β exp(tβ)

]n [
β

t

] [
1− t2 − 2t

β

]− 1
2

(3.11)

Interestingly, PSD, Eq.3.11, is the first four terms of Wang and Guth approximation Eq.3.10

and PA−KG, Eq.3.9, is the first three terms. As mentioned by Jerningan and Flory [56], the

term
[

sinh(β)
β exp(tβ)

]n
becomes more significant and then the other terms can be neglected for

longer chains same as KG model. However, the other terms has more contribution in the

accuracy of the model for shorter chains.

To date, there exists no comprehensive study to characterize the error induced by each of the

aforementioned approximation methods in predicting PDF of chains with different lengths exten-

1Original formulation presented in [44] is PY (r) = 3
3
2A0

β2

t
[
1−( β

sinh(β))
2
] 1
2

{
sinh(β)
β exp(tβ)

}n
, which

can be rewritten as PSD by considering 1− t2 − 2t
β

= 1
β2 − 1

sinh2(β)
.
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sibility ratios. Here, a comprehensive comparison of the aforementioned approximation functions

in predicting PDF and strain energy of chains with different lengths at different extensibility ratios

is presented (see Fig.3.2).

PG and PT have almost similar and relatively small relative with respect to the exact distribution

in only very small t. Interestingly, PT−SP with only three terms has extremely low relative error

with respect to exact distribution in small and moderate extensibility ratios. Note that increasing

the number of terms in the expansion of this approximation can improve the relative error for

larger t. As expected, PKG(R) has a negligible error for small t which exponentially grows as t

tends to 1. Despite being the most popular approximation method, PKG(R) can be only a good

approximation for long chains that are not stretched. Therefore, it is not suitable for models of

rubber elasticity to derive force and energy due to its large error in predicting the asymptotic

behavior of ln (Pexact). The WKG has a considerably large error which can become even larger in

shorter chains. For example, the relative error of strain energy resulted from KG PDF for a short

chain with 8 segments is at least 8 times higher than that of a long chain with 64 segments. While

many other approximations such as PA−KG provide slightly more accurate approximations than

KG, they remain unpopular due to the extreme complexity of their first derivatives. Despite the

fact that PSD has an acceptable accuracy even for short chains, utilizing this distribution function

is almost unfeasible due to its mathematical complexity.

3.3 Approximation of Non-Gaussian Distribution

The accuracy-complexity trade-off problem in current PDF approximation functions (see section

3.2) necessitate to develop a family of precise and simple approximation that are particularly rele-

vant for shorter chains. Comparing PKG with Pexact for different chain lengths shows a repeating

error profile which can be considered almost independent of n. In view of this profile as a mul-

tiplicative error functions, one can consider all of the previous approximation functions such as

PWG, PSD and PA−KG as special sub-classes of a master approximation function P̃ which can be

written with respect to PKG as
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(a) Relative error of PDF - n = 8 (b) Relative error of ln (Pn) - n = 8

(c) Relative error of PDF - n = 16 (d) Relative error of ln (Pn) -n = 16

(e) Relative error of PDF - n = 64 (f) Relative error of ln (Pn) - n = 64

Figure 3.2. Comparison between Gaussian, KG, Amended KG and Eq. 3.11 distribution function
with the exact PDF (Relative error of PDF a, c and e and Relative error of ln (Pn) b, d and f )of
ideal chains with different lengths a-b n = 8, c-d n = 16 and e-f n = 64.
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P̃ (r) ' PKG (r, n)φ (t) , (3.12)

where φ (t) is a multiplicative correction function defined to reduce the error of PKG. Here, we

hypothesize that φ (t) can be chosen to control the accuracy- complexity trade off for different

applications. In view of good agreement of PWG, PSD and PY with exact distribution for short

chains, one can conclude φ (t) should have same properties as the ratio of these distribution and

PKG. As discussed in the Section 3.2, PWG, PSD and PY have almost same formulation. Thus

among them, PY is selected to calculate an estimation of φ (t) as

φ (t) ' PY
PKG

=
β2

t

[
1−

(
β

sinh(β)

)2
] 1

2

. (3.13)

The first feature of this estimation is its limit when t approaches to 1, which tends to infinity.

By considering the first order pole of ILF at t = 1 [59] and limt→1 1−
(

β
sinh(β)

)2

= 1, one can

conclude that φ (t) has second order pole at this point and its residue can be calculated as

R (φ) = lim
t→1

(t− 1)2 φ (t) = 1. (3.14)

By fitting φ (t) an approximation P̃ with good accuracy with respect to Pexact can be obtained. In

this regard, the approximation function should have same properties as φ (t), second order pole

with residue of 1. The simplest function with second order pole is (1− t)−2. In view of the second

order pole of φ (t) and (1− t)−2, it can be written as a rational function such as,

φ (t) =
a(t)

(1− t)2 , (3.15)

where a(t) is approximation function which is used to adjust the approximation function with the

exact distribution. There are different alternative forms for estimations of a(t) such as polynomial,

exponential and etc.. In this study exponential function (exp [
∑m

i=1 ait
2i−1], wherem is the number
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Table 3.1. Relative error of approximated distribution function by considering 1 and 2 terms for
chains with different length.

max. relative error [%]
m n = 8 n = 16 n = 32 n = 64
KG 100 100 100 100
1 11 8 9 10
2 3 4 5 5

of terms used in the approximation) is selected to approximate a(t), which will result simple strain

energy functions. In order to obtain best approximation with least maximum relative error in

whole domain [0 − 1], predefined min−max solver (fminimax) in MATLAB is used to minimize

the maximum relative error of P̃ (r) respect to exact distribution function. The coefficient of

approximation function with one and two terms is obtained as

Pm=1
approx (r) = PKG (r, n)

[
exp (−1.75 t)

(1− t)2

]
(3.16a)

Pm=2
approx (r) = PKG (r, n)

[
exp (−2t+ 0.29t3)

(1− t)2

]
. (3.16b)

The max relative errors of these approximations for chains with different length are presented in

Table 3.1 and summarized in Fig. 3.3. They illustrate good agreement with the exact PDF for

chains with different lengths in the whole range of t.

(a) (b)

Figure 3.3. The relative error of approximated distribution function respect to the exact PDF for
chains with different number of segment a) m = 1 and b) m = 2.
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3.4 Entropic Force of a Single Chain

In polymer physics, the elastic retraction force of a single polymer chain is associated with changes

in the entropy of the chains in the course of deformation. Accordingly, the strain energyW = −TS

of a single chain is calculated through Boltzmann’s entropy relation, S = k ln (P (r)), where S

is the entropy of the chain, T the absolute temperature, and k the Boltzmann constant. Thus, the

entropic force, fn (r), required to perturb the chains end-to-end distance is given by

fn (r) =
∂W (r)

∂r
= −kT ∂ ln (Pn (r))

∂r
. (3.17)

In view of the complicated formulation of the exact PDF, the approximates are often used to de-

scribe the force of the chain in the course of deformation. The simplest approach is to derive the

force based on the Gaussian PDF PG (Eq. 3.4) which yields the force as a linear function of de-

formation (fG (t) = kT
l
t). However, PG is valid for long chains and at small deformation regimes,

only. In large deformations, PKG is the most popular approximation function, which yields the

following equation for polymer force

fKG (t) =
kT

l
β. (3.18)

Other approximations of the force can be simply derived by implementing any of the aforemen-

tioned PDF approximations into Eq. 3.17. For example using the PSD (Eq. 3.11), the entropic

force can be estimated as

fSD (n, r) =
kT

l

{
β +

1

n

(
1

t
− γ

2t

tβ (β − γ) + 2
(
β − 5

4
γ
)

(β − γ)2

)}
, (3.19)

where γ = 2t
1−t2 . Similar to PDFs, the complexity of accurate approximations such as Eq. 3.19

prevent them from wide acceptance (e.g. compare Eq. 3.18 with Eq. 3.19).

The entropic force derived based on PG, PKG, PA−KG and PSD are compared with the force of

the exact PDF and shown in Fig. 3.4-a andb for short and long chains, respectively. As illustrated
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in Fig. 3.4-a , the force resulted from the KG has large relative errors with respect to the exact

entropic force for a small chain. In longer chains, the KG force has good agreement with the exact

one. Furthermore, the force associated with PSD has the best agreement with the exact entropic

force (see Fig. 3.4-a-b ). The Fig. 3.4-c-d show that the relative error of the steepest decent

approximation is the minimum in both short and long chains.

(a) (b)

(c) (d)

Figure 3.4. Comparison of the entropic force of a single chain resulted from exact non-Gaussian
distribution function and its approximations, steepest decent approximation, and inverse Langevin
function (a-b), and their relative errors with respect to the exact function (c-d) for a and c) n = 8
and b and d) n = 64.

3.5 Approximation of the Entropic Force

A new approximation for the force of a chain is developed based on the following observation. The

profile of the relative error, En, of the force derived by PKG is almost identical for the chains with
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different lengths, n. As shown in Fig.3.5, the relative error can be normalized by 1
n

, e(t) = −nEn,

the value of which is varying approximately between 100% and 220% (±5%). Accordingly, a new

approximation function can be derived simply by multiplying a correction function, 1
1−En , into

fKG. Then, by expanding the correction function using the geometric series and using the first two

terms, the approximation of exact force is written as

En =
fexact − fKG

fexact
=⇒ fexact = fKG

1

1− En
' fKG

n∑
i=0

(En)i ' fKG (1 + En) . (3.20)

By replacing the error, En, by its normalized value − e(t)
n

, the proposed function becomes

fapprox (n,R) =
kT

l
L−1 (t)

(
1− e (t)

n

)
, (3.21)

The approximation can be optimized by fitting a more general function for the normalized error

shown in Fig.3.5, which can make the approximation too complex for practical applications. Here,

e(t) can be estimated through a fitting procedure of a polynomial with degree of m (see Fig.3.5),

which yields

• Order 0: using e(t) = 1 reduces the Eq.19 into

fm=0
approx (n,R) =

kT

l
L−1 (t)

(
n− 1

n

)
, (3.22)

which has a relative error varying from 0% to 120
n

% as shown in Fig. 3.5. The relative

error of fm=0
approx is around half of the relative error of fKG. In another study, Horgan and

Saccomandi [65, 66] and later Beaty [67] derived almost the same formulation as Eq. 3.22

by comparing an estimation of non-Gaussian theory with the averaged stretch in the macro-

scopic level (β = 2t
1−t2 ) with Gent phenomenological model. Interestingly, it can be shown

that Gent model has better agreement with non-Gaussian theory than KG for short chains.

This simple modification can strongly improve the constitutive models [68, 21, 69], that use

a probability of chains existence with different lengths. In these models, the force of the
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(a) (b)

Figure 3.5. The relative error of the ILF a) with respect to the length of chain and b) Averaged
normalized for all lengths.

matrix is determined by summing up the forces of chains with different lengths.

• Order 2: a two term polynomial, e(t) = 1 + ti, is used to represent e(t). By minimizing the

approximation error, the second order polynomial (i = 2) is selected in this study due to its

simplicity and lower relative errors. The proposed approximation can be written as

fm=2
approx (n,R) =

kT

l
L−1 (t)

(
1− 1 + t2

n

)
. (3.23)

This approximation has extremely high accuracy, comparable to that of fSD (Eq. 3.19), as

shown in Fig. 3.6. The maximum relative error of the proposed approximation for n = 8

is equal to 1.7%, which is significantly lower than 33% error of the fKG. In addition the

maximum relative error of proposed entropic forces (Eq. 3.22 and 3.23 ) for the chains with

different lengths are plotted in comparison with the maximum relative error of Langevin

entropic force in Fig 3.7. It can be seen in Fig 3.7 that the maximum relative error of KG

entropic force with 40 segment is about 5%. Considering this limit as an error tolerance

for the approximation of Non-Gaussian entropic force, the proposed simple modification of

entropic force is valid for the chains with 4 segments. Note that both proposed approximation

functions can be easily implemented in most of the current elasticity models by replacing the
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inverse Langevin function.

In most physical-based models of rubber elasticity, breakage of the chain occurs when the

chains deformation exceeds their allowed extensibility limit, which is determined by strength of

C-C bonds. Therefore, it is important that models use an acceptable prediction of the force and

the energy at high extensibility ratios, particularly when t is approaching 1. While for long chains

there are few models to provide force and energy with enough accuracy around t = 1, for short

chains no model exists that can accurately predict force around t = 1.

(a) (b)

Figure 3.6. The relative error of the proposed entropic force for a) n = 8 and b) n = 64 along with
the relative error of full steepest decent approximation.
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Figure 3.7. The maximum relative error of the proposed entropic force for chains with different
length along with the maximum relative error of KG approximation.
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Table 3.2. Max. relative error of approximated distribution functions for chains with different
length.

max. relative error [%]
m n = 8 n = 16 n = 32 n = 64
KG 26 13 6 3
1 (Eq. 3.24a) 1.2 0.6 0.45 0.3
2 (Eq. 3.24b) 0.28 0.25 0.2 0.14

(Eq. 3.26) 1 0.68 0.65 0.67

3.6 Approximation of the Entropic Energy

In view of the proposed approximations for the distribution function and the entropic forces, one

can derive a set of approximations for the strain energy function. Accordingly, in view of the PDFs

derived in Eq. 3.16a and 3.16b, the strain energy,W , can be obtained throughW = −kT ln (P (r))

as

Wm=1
P−app (r) = WKG (r, n) + kT (1.75 t+ 2 ln (1− t)) , (3.24a)

Wm=2
P−app (r) = WKG (r, n) + kT

(
2t− 0.29t3 + 2 ln (1− t)

)
. (3.24b)

The relative errors of the proposed approximations of Eq. 3.24a and 3.24b, as shown in Fig 3.8,

are significantly more accurate in comparison to KG strain energy function (see Table 3.2). We

also propose a second approach to estimate the strain energy functions directly from the proposed

entropic forces in Eq. 3.23 by integrating them over R. Since direct integration of force approx-

imation is not feasible due to the complex nature of the ILF, the integration is carried out after

replacing the ILF by its approximation. Recently, many accurate ILF approximations with relative

error less than 0.1% have been proposed in the literature (e.g. [2, 57]) and thus using each of those,

one can derive the strain energy of the chains from Eq. 3.23 as follows

Wm=2
f−app (n, r) = n

∫ t

0

kT

l
β (t)

(
1− 1 + t2

n

)
dt (3.25)
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For example, using L−1 (y) = x
1−x + 2x− 8

9
x2 (max relative error 1%)[57], the internal energy can

be written as,

Wm=2
f−app (n, r) = kT

[
8

45
t5 − t4

2
− 8n− 17

27
t3 +

(
n− 1

2

)
t2 − (n− 2) [t+ ln (1− t)]

]
+ c

(3.26)

As shown in Fig 3.8, the relative errors of Eq 3.26 are significantly lower than that of WKG. The

relative error and the complexity of strain energy can be easily adjusted by using simpler or more

accurate ILF.

(a) (b)

(c) (d)

Figure 3.8. The relative errors of approximations of entropic energy (Eq. 3.24a, 3.24b and 3.26)
respect to the exact entropic energy for chains with different number of segments a) n = 8, b)
n = 16, c) n = 32 and d) n = 64.
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3.7 Conclusion

Currently, the probability distribution function, force and energy of a polymer chain is mostly de-

rived based on the Kuhn and Grün model. However, the KG model is only valid for long chains

(n� 40) and induces a significantly high error as the length of chain decrease [56, 39, 38]. How-

ever, long isolated polymer molecules is often does not exist in reality. They are in the interaction

with other molecules. In theory of rubber elasticity, the segment between two cross-link or entan-

glement is considered as a non-Gaussian chain. Thus, the networks mostly contain short chains

in the polymers with high cross-linking, which account for their limited extensibility. While there

are some other approximation models with considerably higher accuracy, their complex nature

prevents their wide implementation in large-scale models. In this work, we presented a generic

approach to derive a family of approximation functions for the probability distribution function,

entropic force and strain energy of a polymer chain with adjustable accuracy and complexity level,

which are summarized in Table 3.3. We show that with same level of complexity, our proposed

functions are considerably more accurate than current functions. Particularly for short chains or

chains under large deformations, our approximation functions are at least 10 times more accurate

than KG approximations and thus are excellent options to replace them in constitutive models.

We hope that the proposed family of approximations can help other researchers to improve the

modeling accuracy in polymer physics. In addition to help engineers to optimize the accuracy-cost

trade-off in large-scale simulations by allowing them to select the approximation functions based

on the application.

Having a family of approximations with different accuracy-complexity would be particularly

helpful in some specific applications where one certain form of the approximation function can re-

duce the computational loads or increase accuracy significantly. Some of application of proposed

approximation of theory of rubber elasticity includes bi-modal polymeric networks, constrained

swelling, stress induced orientation of the polymer chains and etc.. The proposed Non-Gaussian

theory can directly affect the contribution of short and long chains in a bi-modal polymeric net-

works, which contains various proportions of relatively short and long chains specially in high
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Table 3.3. Summary of the proposed approximates for PDF, entropic force and strain energy along
with their relative errors with respect to exact ones.

Eq. Formula
Max. Rel. Error [%] for n

8 16 32 64

PDF

3.8 PKG = c
{

sinh(β)
β exp(tβ)

}n
100

3.16a Pm=1
approx = PKG

[
exp(−1.75 t)

(1−t)2

]
11 8 9 10

3.16b Pm=2
approx = PKG

[
exp(−2t+0.29t3)

(1−t)2

]
3 4 5 5

Entropic
Force

3.23 fKG = kT
l
β 33.3 14.27 6.45 3.22

3.23 fm=2
approx = kT

l
β
(

1− 1+t2

n

)
1.73 0.74 0.35 0.17

Strain
Energy

WKG = nkT
(
tβ + ln β

sinhβ

)
+ c 26.6 12.2 5.9 2.9

3.24a
Wm=1
P−app = WKG +

kT (1.75 t+ 2 ln (1− t)) 1.2 0.6 0.45 0.3

3.24b
Wm=2
P−app = WKG

+ kT
(
2t− 0.29t3 + 2 ln (1− t)

) 0.28 0.25 0.20 0.14

3.26

Wm=2
f−app = kT { − (n− 2) [t+ ln (1− t)]

+
8t5

45
− t4

2
− 8n− 17

27
t3

+

(
n− 1

2

)
t2 }+ c

1 0.68 0.65 0.67

elongations [70, 71, 72]. The contribution of free energy in the total change of chemical potential

of a solvent resulting from swelling of a network contain short chains can be affected by con-

sidering more realistic non-Gaussian distribution instead of Wall−White end-to-end distribution

function, which cannot taking to account the finite extensibility limitations and only approximate

the excluded volume effect in the compact conformations region [73, 74]. The KG distribution

function and entropic force of chains is used to develop a model to predict the stress induced ori-

entation of the polymer chains [75, 76]. Another possible application of current theory is studying

molecular orientation of polymers chain due to fast elongational flow.
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The random flights’ problem was one of the interesting topics in the early 20th century. The

random flight problem first introduced by Pearson in a letter to Nature 1905 [77, 60]. He tried to

solve the distribution of position of a mosquito in a forest. Various distribution functions have been

developed in the literature based on the Fourier integration of the random-flight problem, which

is first presented by Rayleigh in 1919 [49]. In order to review the solutions of random flights’

problem, different approach is presented as below.

1D Random Walk

In 1-D random walk problem, the probability of arriving to a point with distance x from the origin

by n equal step can be written as binomial distribution

Pn (x) =
1

2n
n!(

n+x
2

)
!
(
n−x

2

)
!

(3..1)

Considering x � N and using Stirling’s formula (a! =
√

2πa
(
a
e

)a), the probability distribution

function will be simplified to Gaussian distribution2. The most well-known solution of end-to-end

distance distribution is expressed by the Gaussian distribution, which is the probability of 1-D

random links at

Pn(x) =
1√
2πn

exp

(
−x

2

2n

)
(3..2)

The efforts for enhancing the Gaussian theory of rubber elasticity to a more exact theory sacrifice

the generality and simplicity. The non-Gaussian treatment of rubber elasticity is developed to

account for the limiting extensibility of the single chain. This leads to a more accurate deformation-

force relationship in the whole range of end-to-end distance up to its limiting value. The entropic

force resulted from 1D random walk distribution (3..1) can be written as

f1D (x) =
kT

2l

(
Ψ

(
n+ x+ 2

2

)
−Ψ

(
n− x+ 2

2

))
, (3..3)

2Using Gaussian PDF to calculate entropic strain energy is the basis of the Neo-Hookean con-
stitutive model.
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where Ψ is the Digamma function. As it can be seen in Eq. 3..3, the entropic force has a asymptotic

behavior around r = n+ 2 instead of r = n.

3D Random Walk

The probability distribution of an FJC is same as 3-D random flight problem, which describes the

probability of a chain ending at a certain point at distant −→r can be solved by 3-D random flight

problem. The probability of one step with length l in an arbitrary direction is equal to probability

of existence of a point on a sphere, δ(r−l)
4πl2

. Applying the Fourier integration of this probability,

"characteristic function" of a single random step is derived as sin(ρl)
ρl

, where l is the length of a

segment in FJC chain (Kuhn length), and ρ the Fourier integral parameter. Due to the independent

nature of bonds, Pn(r) can be written by the multiplication of the probabilities of each bond.

Considering an equal probability for all steps, the "characteristic function" of FJC, An (ρ) is given

as

An(ρ) =
n∏
i=1

(ρli)
−1 sin(ρli)

li=l→ An (ρ) =

∫
exp (iρ.r)Pn (r) dr =

(
sin(ρl)

ρl

)n
(3..4)

In the next step, the probability function a chain can be derived by taking the Fourier transform

of characteristic function, which first derived by Rayleigh by using the discontinuous integral of

Dirichlet [49]. He used the inverse Fourier transformation of Eq.3..4 to derive the non-Gaussian

PDF as

Pn (r) =
1

2π2r

∫ ∞
0

ρsin(ρr)

(
sin(ρl)

ρl

)n
dρ, (3.1)

which would be difficult to solve analytically for large number of steps, n > 10. The exact non-

Gaussian distribution function for 3, 4 and 6 steps are derived by Rayleigh as sets of discontinues

polynomials [49]. The exact solution of Fourier integral of Eq.3.1, often referred to as “Rayleigh

exact distribution function”, was first derived by Treloar [42] based on the theory of random

sampling. Later, Wang and Guth [52], Nagai [61], and Hsiung et al. [62] reached to the same
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expression with different mathematical approach.

P exact
n (r) =

1

2n+1 (n− 2)!πl2r

k≤
n− r

l
2∑

k=0

(−1)k
(
n

k

)(
n− 2k − r

l

)n−2

(3.2)
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CHAPTER 4

A GENERALIZED APPROACH TO GENERATE OPTIMIZED APPROXIMATIONS OF

INVERSE LANGEVIN FUNCTION

4.1 Introduction

The inverse Langevin function L−1 (y) comes from a first-order approximation of the Rayleigh

exact distribution function [45], a prevalent distribution function in polymer physics and rubber

elasticity [78]. In polymer physics, the entropic force of a polymer chain with end-to-end distance

r, which consists of n segments with length l is given by

f (n, r) =
kBT

l
L−1

( r
nl

)
, (4.1.1)

where T denotes the absolute temperature and kB the Boltzmann’s constant. The Langevin

functions is defined by L(y) = coth (y) − 1/y. The strain energy function of a polymer chain is

then calculated by the integration of the entropic force (Eq. 4.1.1) over r [11], which yields

Ψ(N, r) = KTn

(
r

nl
β + ln

(
β

sinh β

))
β = L−1

( r
nl

)
. (4.1.2)

As the chain end-to-end distance, r, approaches its maximal value (corresponding to the con-

tour length of a fully stretched straight chain), Nl, the force tends to infinity. This implies asymp-

totic behavior of L−1 (y) in the vicinity of y = 1.

The entropic forces of polymer chains as derived in Eq. 4.1.1, are well-accepted and widely

used in nonlinear elasticity of soft materials (see e.g. [79]). Currently, most micro-mechanical
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models of polymeric systems represent polymer chains using the approximations of an ILF, since

ILF approximations cannot be expressed in an explicit form. The ILF approximation efforts can be

classified into three groups: (i) power series such as Taylor series [80, 81, 82], (ii) rational (Páde)

functions [83, 84, 11], and (iii) trigonometric functions [85, 86, 39].

(i) The Taylor expansion approach provides high accuracy with relatively low complexity in

the majority of the domain [0 − 0.95), except in the vicinity of the asymptote, y = 1. The

first 5 non-zero coefficients for the Taylor expansion of the inverse Langevin function are

introduced in [11], as

L−1
Taylor (y) = 3y +

9

5
y3 +

297

175
y5 +

1539

785
y7 +

126117

67375
y9 + ...+O(yn). (4.1.3)

Later, Itskov et al. [87] derived a simple recurrent formula for the Taylor series coefficients

of inverse functions, which gives them in terms of Bernoulli numbers. They calculated 500

terms of the series and showed that derivation of the higher terms is only valid if higher digits

are considered in the calculation of terms. Recently, Ehret [82] presented another generalized

power series which has a significantly smaller error than Taylor series. Three terms of his

series showed relative error smaller than the five terms of the Taylor approximation of the

ILF.

(ii) Rational functions are the second class of approximations, which usually have higher com-

plexity but better accuracy around the asymptote. The Cohen approximation is the most

common ILF approximation function. It is a rational function composed of a third order

polynomial as the nominator and a second order polynomial as the denominator, generally

shown by [3/2], with rounded coefficients [83]. Following the Cohen formula, functions

based on Páde approximations have extensively studied and several accurate functions (with

accuracies close to 1%) were proposed, some of which are listed below[88, 76, 89, 90].
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• Treloar [11]: L−1
Treloar(y) ≈ 3y

1−0.6y2−0.2y4−0.2y6
= 3y

(1−y2)(1+0.4y2+0.2y4)
[1/6],

• Cohen[83]: L−1
Cohen(y) ≈ y

3− 36
35
y2

1− 33
35
y2

which is further rounded to L−1
Cohen(y) ≈ y 3−y2

1−y2 [3/2],

• Puso [84]: L−1
Puso(y) ≈ 3y

1−y3 [1/3],

• Jedynak [89]: L−1
Jedynak(y) ≈ 3y−2.6y2+0.7y3

(1−y2)(1+0.1y)
[3/3],

• Kroger [90]: L−1
Kroger(y) ≈ 3y

(1−y2)(1+0.5y2)
[1/4] and L−1

Kroger(y) ≈ 3y−0.2y(6y2+y4−2y6)
1−y2

[7/2],

• Darabi and Itskov [88]: L−1
Darabi(y) ≈ 3y−3y2+y3

1−y [3/1].

In 2015, Kroger [90] presented an informative figure to show the trade-off challenge of dif-

ferent Páde approximations by showing their accuracy against their complexity. He defined

complexity by the sum of the orders of the nominator and denominator of the Páde function.

However, expressing the complexity of a function in this way is not a consistent indicator

of complexity since the expansion of the fractional functions can yield functions with differ-

ent complexity. Accordingly, this figure cannot show the relevance of these approximations,

since each of them can be simplified into two or more simpler terms, which have different

complexities. For example, while the Cohen formula is more complex (order 5) than the

Puso formula (order 4), its expanded version, L−1
Cohen (y) =

(
1

1−y −
1

1+y
+ y
)

, is less com-

plex than the expanded version of the Puso formula L−1
Puso (y)

(
1

1−y + y−1
1+y+y2

)
. Therefore, it

seems that using a higher-order Páde approximates does not necessarily lead to more complex

functions.

(iii) Trigonometric functions are the third class of ILF approximation functions, which were

first presented by Bergstrom in 1999 [86]. He proposed a piecewise function composed of

trigonometric functions which gives one of the lowest max relative errors (0.064%) among

the available approximations. However the piecewise nature of the function makes its imple-
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mentation challenging. To overcome this challenge, further efforts on this class were based

on non-piecewise equations as follows

• Bergstrom [86]:

L−1
Bergstrom(y) ≈


1.31446 tan(1.58986y) + 0.91209y |y| < 0.84136

1
sign(y)−y |y| > 0.84136

• Keady [85]: L−1
Keady(y) ≈ 6

π
tan(πy

2
)
(

1+0.4178 tan2(πy
2

)

1+0.508 tan2(πy
2

)

)
• Khiêm [39]: L−1

Khiem(y) ≈ 1
y
− π cot (πy)

Similar to the Páde approximations, these trigonometric approximations also suffered from

the tradeoff between complexity and accuracy of the method. Keady’s approach was very

accurate (max relative error less than 0.3%) but too complicated for implementation. Khiêm’s

formula was relatively simple, however, it had lower accuracy (12.3% max relative error), and

has two asymptotic points (at zero and one), which also increases its complexity [39].

In recent years, there has been an increasing interest in minimizing the error of the inverse

Langevin function[91, 2, 92, 93]. Several other methods were also developed to increase the ac-

curacy of ILF approximations. Nguessong et al. [92] used a two-step modification of the Cohen

formula to minimize the relative error of each step. The authors improved the accuracy of the Co-

hen formula by adding a non-integer power series to the original formulation, in order to reduce the

relative error from 5% to 0.05%. In 2017, Petrosyan[93] presented a new formula for the inverse

Langevin function with the combination of a rational function and a trigonometric function. Their

approach gives 0.18% relative error.

Here, a generalized approach is proposed to develop a new class of approximations with ad-

justable level of accuracy. To this end, the summation of an asymptotic function (the main function)

with a power series is used to estimate the inverse Langevin function. Thus, the proposed approach

of this study provides a series of correcting terms to the main asymptotic functions. The correcting

terms help to reduce the relative error, meaning that adding more terms will result in functions
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that are more accurate. The results show that new estimations calculated by the proposed method

outperforms many current approximations in both accuracy and computational cost.

4.2 Proposed Approach

The inverse Langevin functionL−1 (y) has two simple poles at y = ±1 with the residueRes(L(y))

defined by

Res(L(y)) = lim
y→±1

(y ∓ 1)L−1(y) = lim
x→±∞

(coth(x)− 1

x
∓ 1)x = −1. (4.2.1)

Thus, the main function for the ILF estimation should meet two conditions; (i) be an odd

function with two simple poles at y = ±1 and (ii) have a residue of -1. While some of the

proposed ILF estimations met both conditions (Cohen [83] , Kroger [90] and ...), many of them

only meet the second condition since they consider only one pole y = +1 (Pasu[84], Darabi[88],

...). However, there are cases where the functions do not have a correct residue and/or poles. For

example, the Warner approximation [94] has correct poles but the wrong residue, which leads to

an error of 50% at y = 1. However, it can be modified to yield a correct residue
(

2y
1−y2

)
. The

modified version showed smaller error (max 35% near y = 0) than the original one over the whole

domain.

In polymer physics, the argument of the ILF function, y = r
Nl

, is always a positive value, since

it represents the flexibility of a polymer chain. Thus, the ILF estimations were mostly optimized

for the argument ranges between zero and one (with one pole at y = 1). In addition, power

series-based approximations do not have a physical pole and thus cannot cover the ILF near the

pole. Even some rational functions do not have a correct pole and/or residue. In the following, the

proposed approach is introduced at 3 stages

1. Simplified Maclaurin Approach

2. Simplified Maclaurin Approach with Optimized Last-Term

3. Optimized Power Series
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4.2.1 Simplified Maclaurin approach

The simplified Maclaurin Approach is a simple class of the proposed approach consists of two

parts. The first part is the main function with correct poles and residue, which can reduce the error

of the estimation to zero at x = 1. Based on the required accuracy/complexity, many of the current

approximations with correct pole can be used in this step as a main function. In the second part,

a power series is derived to minimize the error induced by the main function in all of the domain

except the pole (y = (0− 1)). To this aim, the Maclaurin expansion of L−1 (y)− f(y)can be used

to reduce the error.

L−1 (y) = f(y) + Taylor
(
L−1 (y)− f(y)

)
(4.2.2)

In Eq. 4.2.2, the main function f(y) is an odd function with simple poles at y = ±1 and a

residue of −1. Given that both the ILF and the main function are odd functions, the Taylor expan-

sion of the error function should only contain odd powers. Therefore, the proposed estimation of

the ILF with degree n is written as

L−1
n (y) = f (y) +

n∑
i=1

aiy
2i−1 (4.2.3)

To illustrate the proposed approach, let consider two possible choices for the main function,

namely a Warner-like function 2y
1−y2 , and a trigonometric function π

2
tan
(
π
2
y
)
. Both functions are

odd, have simple poles at y = ±1 and a residue of −1. The error of both main functions are given

as the power series in the following. The resulting estimations of this approach can be written as

the following for the Warner-like formula ( main function = 2y
1−y2 ) in Eq. 4.2.4 and the trigonometric

main function in Eq. 4.2.5. In these two series, the number of added terms can be defined based

on the level of accuracy (O2i for i added terms).

L−1
n,Warner (y) =

2y

1− y2
+ y − y3

5
− 53

175
y5 − 211

875
y7 + ... (4.2.4)

50



L−1
n,Trigo. (y) =

π

2
tan
(π

2
y
)

+

(
3− π2

4

)
y +

(
9

5
− π4

48

)
y3 +

(
297

175
− π6

480

)
y5 + ...

=
π

2
tan
(π

2
y
)

+ 0.53y − 0.23y3 − 0.31y5 + 0.24y7, ... (4.2.5)

The above two functions have similar behavior, i.e. their relative error is reduced by adding

more terms in Taylor expansion (see Fig. 4.1 and Table 4.1). The first term of the series corrects

the limit of the estimation around zero, while the other terms improve the estimation over the

domain. In view of the simplified Maclaurin approach, many estimation functions developed in

other studies are just special subsets of this approach. For example, by considering the Warner

approximation ( 2y
1−y2 ) as the main function, the Cohen formula, ( y 3−y2

1−y2 ), would be the first order

expansion using simplified Maclaurin approach.

Similarly, considering y
1−|y| as the main function, some approximation functions can be derived

using the proposed generalized scheme. The y
1−|y| function is an odd function with correct poles

and residue. In polymer physics since y > 0 always holds, the function can be simplified to y
1−y ,

which is not an odd function. Thus, the power series of the estimation contains both odd and

even powers (see Eq. 4.2.6). Since this main function is not a odd function, relative errors of this

estimation do not have reducing trend. For this reason, these estimations need to be considered by

adding odd number of terms to reach lower relative error (see Fig. 4.2 and Table 4.1)

L−1 (y) =
y

1− y
+ 2y − y2 +

4

5
y3 − y4 + ... (4.2.6)

Using two terms, the above equation will be the Darabi formula

3y − 3y2 + y3

1− y
=

y

1− y
+ 2y − y2 (4.2.7)

which is relatively an accurate approximation with a relative error of 2.6%.

Similar to y
1−y function y3

1−y is used by Petrosyan [93]. This main functions do not have a
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(a) Eq. 4.2.4
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(b) Eq. 4.2.5
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Figure 4.1. Relative error of a) Eq. 4.2.4 and b) Eq. 4.2.5 with different number of terms.

Table 4.1. Maximum relative error of Eq. 4.2.4, 4.2.5, 4.2.6 and 4.2.8 with different number of
terms.

Number of added terms Eq. 4.2.4 Eq. 4.2.5 Eq. 4.2.6 Eq. 4.2.8

1 4.9 5.25 13 2.64

2 2.9 2.92 2.6 7.44

3 0.9 0.9 7.4 0.83

4 0.73 0.73 0.83 3.90
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point symmetry and have pole only at y = 1. The proposed approach can be applied to this main

function, which the result is presented in the Eq. 4.2.8 and Fig 4.2-b. Petrosyan used the first term

of the power series in Eq. 4.2.8 and added y5

5
sin (3.5y) instead of the cubic term in order to reduce

relative error from 0.83% to 0.18%.

L−1 (y) =
y3

1− y
+ 3y +

4

5
y3 − y4 +

122

175
y5 + ... (4.2.8)

(a) Eq. 4.2.6
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Figure 4.2. Relative error of a) Eq. 4.2.6 and b) Eq. 4.2.8 with different number of terms.
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4.2.2 Simplified Maclaurin with optimized last-term

The next step to increase the accuracy of the proposed method is to fit the coefficient of the last

term of the error power series. Accordingly, after trimming the series to the desired number of

terms, we minimize the induced error by fitting the last coefficient.

L−1 (y) = f (y) +
n−1∑
i=1

aiy
i + any

n (4.2.9)

In the proposed approach, the relative error at points 0 and 1 is almost zero (considering a

simple pole at 1 and a correct limit of limy→0L−1 (y) = 3y from first term of Taylor expansion of

ILF. Adding one point in the second half of the domain seems to be relevant due to the importance

of the error near the pole. Here, by choosing the point y = 0.75 (L−1 (0.75) = 4), the formulation

to adjust the coefficient of the last term with the power n is given as

an =
L−1 (0.75)− f (0.75)−

∑n−1
i=1 ai0.75i

0.75n
. (4.2.10)

To illustrate the significance of the optimized last-term coefficient, the approximation functions of

the main function 2y/(1 − y2) derived by the simplified Maclaurin approach with and without an

optimized last-term are compared in Table 4.2. The relative error has been dropped by more than

50% after using optimized last-term. Using the proposed approach, the accuracy of the main func-

tions can be improved to yield relative errors as low as 0.3% through these simple main functions.

Relative errors and equations of the modified versions of the Warner-like formula and Trigonomet-

ric formula for up to 4 added terms are presented in Table 4.2. This table shows that the higher

orders of the modified functions of the Warner-like and Trigonometric formulas show similar ac-

curacy and by adding more terms, this modification can improve the original estimation. However,

this improvement is not as much as that of adding 3 terms. The estimations with more than 3 terms

that have a good relative error at the point y = 0.75, therefore, this modification cannot improve

the accuracy any more.
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Interestingly, by considering the Warner approximation ( 2y
1−y2 ) as the main function, the very

recent Kroger formula, (L−1
301 =

3y− y
5

(6y2+y4−2y6)

1−y2 ) ,would be the third order expansion using a

simplified Maclaurin approach with an optimized last-term. By using an optimized last-term, the

coefficients of the Cohen formula can further be improved to 2y
1−y2 +0.9y which reduces the relative

error from 4.9% to 3.4%.

Table 4.2. Modified version of Eq. 4.2.4 and 4.2.5 with different number of added terms by using
single point error minimization.

L−1 (y) relative
error %

modified L−1 (y) relative
error %

Warner-like Main Functions

2y
1−y2 + y − y3

5
2.9 2y

1−y2 + y − 0.42y3 0.89

2y
1−y2 + y − y3

5
− 53

175
y5 0.9 2y

1−y2 + x− y3

5
− 0.4y5 0.28

2y
1−y2 + y − y3

5
− 53

175
y5 − 211

875
y7 0.73 2y

1−y2 + y − y3

5
− 53

175
y5 − 0.16y7 0.41

Trigonometric Main Functions

π
2

tan
(
π
2
y
)

+ 0.53y − 0.23y3 2.92 π
2

tan
(
π
2
y
)

+ 0.53y − 0.45y3 0.89

π
2

tan
(
π
2
y
)

+ 0.53y − 0.23y3 −
0.31y5

0.9 π
2

tan
(
π
2
y
)

+ 0.53y − 0.23y3 −
0.4y5

0.3

π
2

tan
(
π
2
y
)

+ 0.53y − 0.23y3 −
0.31y5 − 0.24y7

0.73 π
2

tan
(
π
2
y
)

+ 0.53y − 0.23y3 −
0.31y5 − 0.14y7

0.35

4.2.3 Optimized power series

Since the nominal error of the Maclaurin approach cannot get smaller than 0.3%, in the next step,

we propose to fit all the coefficients of the power series in Eq. 4.2.11 including a0. Although the
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residue condition would not be satisfied, this approach can provide a simple yet accurate represen-

tation of ILF approximations. In this approach, it is highly preferable that the main function be an

odd function, since we only require the odd coefficients of the power series, otherwise all terms

will be needed.

L−1
n (y) =


a0f (y) +

∑n
i=1 aiy

2i−1

a0f (y) +
∑n

i=1 aiy
i

for oddmain function

for evenmain function

(4.2.11)

In this equation, the coefficient a0 is added to adjust the relative error at point y = 1, which

is induced since the residue of the main function is not one anymore after setting a0 6= 1. This

coefficient, along with the first term of the polynomial, will help to re-distribute the relative error in

the whole domain. The presence of the main function and the condition of the correct limit when

y → 0 makes the relative error of the approximation equal to zero at the boundaries. By fitting

a0 and a1, the relative error can be minimized at these points and reduced throughout the domain.

The general error minimization for ILF estimation can be calculated by using the maximum relative

error of the approximation as an objective function:

min
ai

{
max
y∈[0,1)

∥∥∥∥L−1 (y)− L−1
n (y, ai)

L−1 (y)

∥∥∥∥} , (4.2.12)

where, L−1 (y) is the exact ILF function and L−1
n (y, ai) is its approximation with a order of

n polynomial and a function of the coefficients of ai. The minimization of the maximum relative

error in Eq. 4.2.12 will be performed over the domain of y = [0 − 1). Here, optimization of Eq.

4.2.12 has been carried out numerically by evaluating the relative error at 100 equi-distant points

in the vertical axis from [0− 1000) to cover y = (0− 0.999). First, the relative error is calculated

at each point and then the maximum over the whole domain is identified.

Let us define L−1
0 as the simplest ILF approximation with an asymptotic function of only one

term. The function can be improved by fitting the coefficient a0. Thus, following the concept

of error minimization, the Warner formula can be updated to 2.4y
1−y2 , which has a maximum relative
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Figure 4.3. One-dimensional variation of value of the objective function respect to the coefficient
of main function (a0) for different formula in Eq. 4.2.13.

error of 20%, in comparison with the 50% error of the original Warner formula and the 33.3% error

of the correct asymptotic function. Applying a similar approach to the trigonometric function,

π
2

tan (π
2
y), the revised approximation function, L−1

0 = 1.724 tan (π
2
y), will have only 9.75%

relative error in comparison to the 17.75% error of the original model. Using this method, even

the simplest main function, y
1−y , can be updated to 1.5y

1−y which has a relative error of 50% which is

lower than 66.6% error of original function and 200% error of L−1
[1/1](y) = 3y

1−y , proposed in [2].

The value of the objective function for these three main functions can be plotted with respect to

the variation of a0 in Fig. 4.3. As shown in Fig. 4.3 the parameter a0 can be optimized to yield the

least relative error.

L−1
0 (y) =


1.724 tan(π

2
y)

2.4y
1−y2

1.5y
1−y

emax = 9.75%

emax = 20%

emax = 50%

(4.2.13)

The ILF approximation functions can be further minimized by the addition of another first-

order polynomial to the main function, i.e. L−1
0 (y) = a0f (y)+a1y . Accordingly, the ILF approx-

imation is formulated with respect to two parameters a0 and a1. This approximation promotes this

minimization problem to a two-dimensional error minimization. The value of an objective func-
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Figure 4.4. Relative error of the ILF approximation function with respect to the coefficients a0 and
a1 for Warner-like formula in Eq. 4.2.14.

tion for these three main functions for a variation of a0 and a1 can be visualize as a 3-dimensional

plot, which is presented in Fig. 4.4 for Warner-like approximations. In order to investigate the

minimum value of the objective function with respect to the coefficients, the same procedure of

one-dimensional error-minimization can be applied to this state. The maximum relative errors of

first-order approximation with the trigonometric, Warner-like, and y
1−y main functions are reduced

to 2.6%, 2.4%,and 6.1%, respectively with the functions given below

L−1
1 (y) =


1.53 tan(π

2
y) + 0.52y

0.976( 2.4y
1−y2 + y) = 0.976× L−1

Cohen

0.94y
1−y + 1.874y = y 2.814−1.874y

1−y

emax = 2.6%

emax = 2.4%

emax = 6.1%

(4.2.14)

Error minimization for higher-order approximates (n > 2) are more complex than first-order

approximations. The maximum relative errors associated with the n = 2 approximates of the
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in comparison to [2].

trigonometric, Warner-like, and y
1−y main functions are 0.58%, 0.57% and 0.70%, respectively.

The coefficients of these three main functions, along with their higher orders, are presented in

the Tables 4.3-4.5. The relative error in the error minimization approach can be reduced as low

as 0.02% for higher orders of polynomial functions. As can be seen from the relative error for

different approximate functions, it is possible to reach to very accurate approximations of the

inverse Langevin function without adding complexity to the formulas. It is worth noting that all

presented formulas here consist of a polynomial series and a very simple asymptotic main function.

In order to compare the level of accuracy of these functions, the maximum relative error resulted

from y
1−y is plotted along with the error presented in [2]. The rational approximate functions order

of [n, 1], which is presented in [2] can be simplified to summation of y
1−y and a polynomial series.

As it can be seen in Fig. 4.5, the level of relative error resulted from general minimization approach

of this study can be compared with the same approach of error minimization of rational functions

recently developed by Marchi and Arruda [2].

The maximum relative error of the proposed ILF approximations associated with the main

function of x
1−x and Warner-like function are presented in the Fig. 4.6. This figure shows the
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significant improvements of the proposed approximations in this section with a fixed order of the

fractional function. Furthermore, our proposed approximations using main function with one pole

is depicted in the left hand side of the Fig. 4.6. This shows that these approximations with lower

degree of complexity have lower relative error in all proposed approximations. The second set of

proposed approximations with correct symmetry (Warner-like approximations) have lower max-

imum relative error than previously proposed approximations with same number of poles. It is

worth noting that all proposed fractional approximations in this study can be written as a summa-

tion of one or two first-order fractions (considering each pole, y
1±y ), which means that increasing

the order of proposed formula can decrease the relative error without changing complexity.

It should be noted that for errors below 5%, rounding of the multiplicative coefficients have

some major consequences. Most coefficients in this study are presented with three digits of sig-

nificance to save space and avoid complication of the proposed formulae. However, for numerical

implementation, such a reserve does not exist and users can directly implement the accurate coef-
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ficients provided in the appendix.

Table 4.3. Approximations with the main function of a0
y

1−y +
∑n

i=1 aiy
i.

 

 

With correct asymptote 

and Taylor 

 

With correct asymptote 

and one point error 

minimization 

 

General error minimization 

approach 

  
Relative 

error 
 

Relative 

error 
  

Relative 

error 

 N/A  N/A  N/A  

   N/A    

 
 

 
 

  
 

 

  

 

  

 

 

 

 

  

 

  

 

 

 

 

 

 

  

 
 

 

 

  

 

 

 

 

4.3 Conclusion

Here, an optimization approach is presented that can provide multiple approximates of the inverse

Langevin function with different degrees of accuracy and complexity. The approximates are de-

rived based on a main function that should meet two conditions; (i) be an odd function with two

simple poles at y = ±1 and (ii) have a residue of −1. Regardless of whether the main functions
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Table 4.4. Approximations with the main function of a0
2y

1−y2 +
∑n

i=1 aiy
2i−1.

 

With correct asymptote 

and Taylor 

 

With correct asymptote 

and one point error 

minimization 

 

General error minimization 

approach 

  
Relative 

error 
 

Relative 

error 
  

Relative 

error 

 N/A  N/A  N/A  

   N/A    

 
 

 
 

  
 

 

  

 

 1.002 

0.9978 

-0.2086 

-0.4213 

0.20% 

  

 

 

 

-0.1183 

-0.7583 

0.323 

0.13% 

 

 

 

 

 

1.001  

-0.2214  

-0.047523  

-1.188 

0.9881

0.02% 

 

are rational or a trigonometric functions, the accuracy of the approximates improves as the polyno-

mial order increases. Such approach allows us for the first time to choose the ILF approximation

for specific application based on the required accuracy with an acceptable computational costs.

While the derived ILF approximation does not change the order of complexity of the main func-

tions (Warner, Cohen and ...), they are significantly faster than the newly developed higher-order

Pade approximations (a complex but more accurate rational function) [58, 92, 89, 91, 93, 2] . This

is an important feature in the field of elastomer physics where ILF approximations significantly

influences the computational cost of the simulation, while high accuracy near singularity is needed

to describe finite deformation. Having a family of approximants would be particularly helpful
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Table 4.5. Approximations with the main function of a0
π
2

tan π
2
y +

∑n
i=1 aiy

2i−1.

 

With correct asymptote 

and Taylor 

 

With correct asymptote 

and one point error 

minimization 

 

General error minimization 

approach 

  
Relative 

error 
 

Relative 

error 
  

Relative 

error 

 N/A  N/A  N/A  

   N/A    

 
 

 
 

 0.99425 
 

 

  

 

 1.0009 

0.53 

-  

-0.3609 

0.17% 

  

 

 

0.53 

-0.1555 

-0.7548 

0.3203 

0.09% 

 

 

 

 

  0.02% 

 

in some specific applications where one certain form of the approximation function can signif-

icantly reduce the computational loads. Examples of such systems include MacKintosh chains

where a proper variation of the ILF approximation should be chosen to derive function f(x) in

L−1(xf(x)) = f(x), or the polymer networks where the response of the network is mainly ob-

tained through
∫
P (x)L−1(x)dx.
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CHAPTER 5

MICRO-MECHANICAL MODELING OF THE STRESS SOFTENING IN

DOUBLE-NETWORK HYDROGELS

5.1 Introduction

Hydrogels contain a large amount of water (50-99%) and are a class of hydrophilic polymers that

are extremely soft and mostly bio-compatible. These features make them a great candidate for

many pharmaceutical and biological applications, such as drug delivery carriers matrix for cell

immobilization of bone regeneration, spinal cord injuries, cartilage and fate defects, and super

absorbents [95, 96]. Due to the dispersion of cross linking and the structural in-homogeneity, con-

ventional hydrogels which are usually composed of a single network (SN) showed a poor strength

level, fragile response, and limited extensibility and recoverability. Therefore, they could not be

used in load-bearing applications. The lack of mechanical strength in most of natural and syn-

thetic hydrogels in comparison with the soft bio-tissues such as cartilage, liver, tendon, skin, and

arteries has indeed been one of the main challenges for material scientists in recent decades [97].

Furthermore, swelling of conventional hydrogels was primarily an appealing topic rather than their

mechanical response. In recent years, swelling-deswelling and diffusion-deformation behaviors of

hydrogels have been extensively studied by numerous research groups [98, 99].

Several methods of synthesis such as homogenization of structure, filler supplementation, and

use of sacrificial bonds, have been developed to toughen hydrogels [100, 101]. Examples of tough

hydrogels include slide-ring hydrogels, tetra-PEG hydrogels , nano-composite gels, and double

network hydrogels. Among different types of tough hydrogel classes, double network hydrogels
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(DN hydrogels) usually demonstrate the best mechanical properties [102].

DN hydrogels consist of highly cross-linked first network (polyelectrolyte) and loosely cross-

linked second network[103]. The first network hosts the sacrificial bonds, whereas the second

network is mostly responsible for the load transfer. Cross-linking density and the molar ratio of

the second network to the first network are critical factors that characterize the response of tough

DN hydrogels [102]. In the view of experimental data, gel properties are optimized when the molar

ratio is around 20. By controlling the interactions between the first and second networks, two types

of DN gels, connective (c-) and truly independent (t-) DN hydrogels, can be developed [104].

c-DN hydrogels have strong interactions between polymer networks, whereas such interactions

are prevented in t-DN hydrogels. On the other hand, t-DN hydrogels exhibit better mechanical

response than c-DN hydrogels if the second network is loosely cross-linked. Consequently, loosely

cross-linked second network requires high molecular weight to ensure the integrity.

DN hydrogels also demonstrate J- and S- types of nonlinear behavior under large deformations

with inelastic feature that is similar to the stress softening of the filled rubbers, generally referred

to as the “Mullins effect” [1, 105]. Therefore, constitutive modeling of hydrogels is often practiced

using the concepts that are originally developed for the study of rubber elasticity [106, 107]. The

Mullins effect in the elastomeric materials has been extensively studied over the last 70 years, and

there exist several constitutive models in the literature to describe this phenomenon [108, 109, 110,

38, 111, 112, 21].

The damage in DN hydrogels may result from the rupture of cross-linking, as no filler is present

in a DN hydrogel matrix [1, 113]. Therefore, DN hydrogel models are associated with the inelastic

response of the gel to the first network due to its highly cross-linked structure [113]. The second

network is often considered to be hyper-elastic although its elasticity modulus gradually decreases

due to the formation and propagation of cracks. The second network bridges cracks of the first

network. Wang and Hong [114] described the response, damage and yielding of a DN hydrogel

with respect to the Ogden-Roxburgh pseudo-elasticity model [115]. Later, Zhao [106] proposed

a model for interpenetrating polymer networks which decomposed the polymer matrix into short
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and long polymer networks. The model was based on Arruda - Boyce eight chain model and the

modified network alteration theory. Liu et al. [116] proposed a model for stress softening and

necking instability in DN hydrogels. They considered the energy of a network in a particular

direction and the energy of a mixture of polymer-solvent using Flory-Huggins theory. The model

attributes stress softening to the fracture of the first network, and hardening to the hyper-elastic

stiffening of the second network. Their results are verified for various DN hydrogel types, and

showed a generally good agreement with the experimental data. Recently, Lu et al. [117] and

Lu et al. [118] proposed a phenomenological model to describe visco-elastic and Mullins-effect

behavior of the tough gels.

In this work, a micro-mechanical constitutive model is proposed to describe the non-linear

response and the stress softening of DN hydrogels. The fundamentals of statistical mechanics

of polymers are first reviewed in the Section 5.2. Then, the generalized network decomposition

concept and the corresponding strain energy function approach is discussed in Section 5.4. Finally,

section 5.7 describes the evaluation of the proposed model in comparison to experimental data.

5.2 Statistical Mechanics of Polymers

The deformation gradient, F is considered as multiplication of mechanical Fm and swelling parts

v
− 1

3
p I of deformation. In the swelling part, the coefficient vp is volume fraction of gel to the fresh

gel and I is the identity tensor. In this study, we assumed that swelling-drying is isotopic and

happened before mechanical loading. Therefore, the deformation is purely mechanical and during

loading-unloading the volume of sample remains constant. Let us denote the position vector of

a chain in the reference and deformed configurations by R and r , and their lengths by R and r,

respectively. In order to consider effect of swelling/drying of the sample on constitutive model,

isotropic inflation of the sample implies that the end-to-end distance of the chains R is linearly

alter with inflation length aR. Accordingly, one has

r = FR, r = v
− 1

3
p

d

λR =
d

λRp, (5.2.1)

66



where F denotes the micro-scale deformation gradient applied on a chain, Rp is the end-to-end

distance of the chain in the swelled state, and
d

λ =
√

dFm
T · Fmd the stretch in the direction of

the unit vector d . Note that only end-to-end distance of the chains and number of chains per unit

of volume change due to swelling-drying process. Hereafter, the following font styles are used

for scalar X , vector X , and second-order X. Moreover, the parameters with a bar sign over them

◦̄ = ◦
l

denote their normalized value with respect to the segment Kuhn length l.

5.2.1 Non-Gaussian distribution function

The polymers networks consist of polymer chains with different length, that are distributed in

different directions. The probability of existence of a chain with end-to-end distance r and counter

length n can be calculated through the solution of 3D random flight problem as [119] ,

P exact
n (r) =

1

2n+1 (n− 2)!πl2r

k≤m∑
k=0

(−1)k

 n

k

 (n− 2k − r̄)n−2 , (5.2.2)

where m is equal to n−r̄
2

and l is the segment length. The strain energy of a single chain based

on Non-Gaussian probability can be calculated as a function of r through Boltzmann’s entropy

formula and thermodynamic balance, ψc (r) = −kT ln (Pn (r)) . In this relation, T is the absolute

temperature, and k the Boltzmann constant.

Due to mathematical complexity and piece-wise nature, the exact Non-Gaussian PDF was not

suitable for practical applications. Therefore, most current polymer elasticity models often use the

KG distribution function, which is derived from the first order approximation of the Rayleigh’s

exact Fourier integral distribution [11]. The free energy of a single chain based on Non-Gaussian

PDF can be calculated as a function of r through thermodynamic balance as,

ψc (n, r̄) = nKT

(
tβ + ln

β

sinh β

)
+ c0 = nKT

∫ t

0

β dt+ c0, β = L−1 (t) (5.2.3)

where L−1(t) is the ILF, t = r̄
n

is the extensibility ratio and c0 is correlated with the number
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of chains to eliminate the energy in reference state. However, several studies suggested that KG

estimation is only valid for sufficiently large chains (n� 40) [56, 120], and has significant errors

with respect to the exact PDF for short chains. The first network in the DN hydrogels consists of the

short and brittle chains. Therefore, the KG method cause significant errors in constitutive modeling

of DN hydrogels. In order to address this shortcoming, we used enhanced KG distribution function

for short chains, which is developed recently [121].

ψ̂c (n, r̄) = nKT

∫ t

0

β̂ (t;n) dt, β̂ =

[
1− 1− t2

n

]
β. (5.2.4)

The first bracket in the Eq. 5.2.4 is added to the ILF to reduce the relative error of the KG distri-

bution for short chains. Given that Inverse Langevin function cannot be derived explicitly, rational

approximation functions are used to represent it [57, 2, 58]. Therefore, this modification has same

complexity as the KG model.

5.2.2 Double network hydrogels

DN gels are composed of two dissimilar interpenetrating polymer networks generally referred to

as the first and second networks. The first network is a highly cross-linked brittle network with

high number of sacrificial bonds. The second network is a stretchable network with hyper-elastic

behavior up to very large deformation ranges, which is loosely cross-linked (Fig.5.1). Experiments

show that under tensile deformation, the first network rapidly breaks due to its lack of flexibility,

and the second network keeps the integrity of the gel.

Several types of polymer components are used in DN gels, among which the most popular

choices are PAMPS 1- PAAm 2 gel [105] and alginate - PAAm gel [122]. In PAMPS, cross-links

are formed by covalent bonds while in alginate gels, the polymers are cross-linked by ionic bonds.

Accordingly, different damage mechanisms should be considered for each gel type. The model

1poly(2-acrylamido-2-methyl-propane-sulfonic acid)
2neutral polyacrylamide
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First Network Second NetworkDouble Network Hydrogel

Figure 5.1. Schematic view of structural composition of the DN gels as the superposition of the
first and second networks. The first network is not flexible and highly cross-linked. The second
network is a loose network and is highly flexible due to its long polymer chains.

developed here is valid for those gels in which one network is hyper-elastic and the other is brittle,

such as covalent DN hydrogels composed of PAMPS and PAAm networks.

The classic constitutive behavior of DN gels under uni-axial tension is plotted in Fig. 5.2

which exhibits inelastic features similar to those of elastomers, such as stress-softening, primary

curve and hardening [1]. Comparing to filled rubbers, constitutive behavior of gels lacks three

major features, namely (i) hysteresis after the first cycle, (ii) large permanent set, and (iii) long-

term healing. In DN hydrogels, no substantial recovery in the behaviour of deformed gel can be

observed even after some weeks of relaxation [1]. After the first cycle, the hysteresis in subsequent

cycles is generally referred to as cyclic damage. As it can be seen in the Fig. 5.2, cyclic damage and

permanent set in the hydrogels are significantly smaller than those of elastomers [1]. Therefore,

the effect of stress-softening after first cycle is negligible.

Another feature of DN hydrogels is the pre-damage in the first network in their reference state,

which is induced by their two-step synthesizing method [123, 124]. The two-step polymerization

method is used to process the DN hydrogels, which is developed by Gong et al. [125]. The damage

induced in the second step of the process is schematically shown in Fig. 5.3. A rigid and brittle

network is polymerized first. It will be then immersed and swelled in a solution to synthesize the

second network. This swelling causes an increase in end-to-end distance of chains, which result

to breakage of the shorter chains. After polymerization of the second network, the gel shrinks to

reach to the new equilibrium state, which will be hereafter referred as a reference state. In order

to model this phenomena, we assumed that the chains have the end-to-end distance R in the final
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Figure 5.2. Constitutive response of a DN-hydrogel specimen under quasi-static compression,
which include three typical inelastic features, i.e., stress-softening, primary curve and hardening.
No healing behavior has been reported. [1].

state. The damage caused in the swelling stage of the first network is considered same in the all

directions.

In this work, the DN gel matrix is considered as the assembly of two independent matrices

on top of each other (see Fig.5.1). During deformation, first network with short chains breaks

down, while the second network remains intact and transfers the load within the matrix. Since the

forces between the first network fragments are transferred by the second network, the constitutive

response of the system can be schematically shown through the assembly depicted in Fig.5.1.

5.3 Constitutive Model

5.3.1 Network decomposition

By considering elastic deformation of DN hydrogel as a nearly incompressible material, its strain

energy function ΨN(C) can be decoupled into isochoric and volumetric parts by (see e.g. [32])

ΨN(C) = ΨM(C̄) + U(J), (5.3.1)
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Figure 5.3. The schematic picture of the two-step polymerization method to prepare DN hydrogels
and the damage caused by swelling.

where C denotes the right Cauchy-Green tensor, J2 = det C and C̄ = J−
2
3C. To describe the

mechanical response of DN gels, the isochoric strain energy of the matrix is considered as the total

strain energies of the first (1N) and the second (2N) networks. The networks are assumed to act

parallel to each other (see Fig. 5.3). Accordingly, the isochoric strain energy of the gel matrix ΨM

can be represented as

ΨM =
m∑
i=1

Ψi (5.3.2)

where Ψi denotes the strain energy of the ith network per unit reference volume of the material and

m is a number of sub-networks in the material, which is equal to 2 for DN hydrogels .

5.3.2 Modular platform

The model proposed here is based on the concept of the modular platform [68], which allows

a framework to be built by coupling several network models, each one of which representing a

network. A network model can describe multiple damage mechanism, where each network can be
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Figure 5.4. Schematic breakdown of a modular framework consisting of two network models for
the first and second networks to illustrate the concept of the networks, and sub-networks. The first
sub-network consists a distribution of shorts chain with different length and average end-to-end
distance, R and the second sub-network considered to be a set of long chains with same length and
end-to-end distance.

derived from existing models. Here, we propose a network model for the first network, and import

another one for the second one. The network models can be substituted, upgraded, or removed

without influencing the integrity of the framework. Network models are designed to return strain

energy; scale-transition will be based on a micro-sphere concept; and entropic behavior is assumed

for polymer chains. Here, we only consider permanent damage, however, the number of add-on

modules can be increased later on if different inelastic features needed to be added.

In Fig. 5.4, the composition of a modular framework consisting of two network models for

the first and second networks is depicted [68, 126]. From the micro-mechanical point of view,

permanent damage is a consequence of decomposition of the first network during which several

chains are deactivated through debonding. Since the de-bonded chains will not reattach back to

the network, the damage becomes permanent. Since permanent damage is mainly associated to the

first network, the second network is considered as a hyper-elastic network.

Each sub-network is subjected to a different uni-axial deformation and damage histories ac-
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cording to their directions. Integrating a sub-network in all directions, the consequent network

model is developed as a 3D representation of the 1D model of sub-networks. The contribution of

each network in strain energy is regulated by fitting the model to the experiments. Here, by as-

suming the homogeneous distribution of polymer chains in all spatial directions, the macroscopic

energy of each network, Ψi can be formulated as

Ψi =
1

As

∫
S

d

Wid
d
u, (5.3.3)

where As represents the surface area of the micro-sphere S, and d
d
u the infinitesimal area of As

with the normal direction d (see Fig. 5.4). The parameter
d

Ψi represents the energy of the ith sub-

network in direction d . The integration of the macroscopic energy of the 3D matrix can be carried

out numerically

Ψj
∼=

k∑
i=1

d i
Ψj wi, (5.3.4)

where wi are the weight factors associated to different spatial directions d i for i = 1, 2, . . . , k.

5.3.3 First network: Brittle network with damage

The first network is considered as an assembly of brittle sub-networks with short chains. The

breakage of the short chains is considered as the main source of damage in the first network. The

process initiates with the irreversible breakage of shorter chains, and eventually involves longer

chains. Let Ñ1 be the total number of active chains per unit of volume in the first network in all

directions. In an arbitrary direction d , the chains with the relative end-to-end distance R have

different number of segments n (relative length) described by a normal distribution, P(n), with the

average µn, and the standard deviation σn.

P (n) = P0 exp

(
(n− µn)2

2σ2
n

)
(5.3.5)
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Therefore, the average free energy of the first network in an arbitrary direction can be calculated

by considering the probability of existence of chains with different length in that direction. The

summation of the energies of the whole set of chains length available in the direction d further

yields the free energy of the first sub-network in this direction as

d

Ψ1N =
∑
Dn

Ñ1ψc(n, λ)P(n), (5.3.6)

where Dn represents the set of available chain lengths. The DN gels fully recover to their ref-

erence configuration after the load is removed. Thus, the reloading response will be identical to

the unloading response until the stretch reaches the maximum stretch. The first loading response

always follows a primary load curve. Such behavior suggests that the damage is permanent and

is a function of the maximum stretch in that direction,
d

λmax. Accordingly, as long as
d

λmax re-

mains unchanged, damage will not increase in the subsequent , unloading and reloading cycles.

Accordingly, the damage here is described as an interaction of two simultaneous processes of (i)

breakage and debonding of polymer chains and cross-links and (ii) network rearrangement within

the network. The schematic picture of the damage in the first network is illustrated in Fig. 5.5.

(i) Polymer Chain breakage: During the primary loading the end-to-end distance of some

chains will reach their contour length and cannot be further extended. Here, we assume that these

chains will be broken or debonded from their cross-links. This process takes place only during

the primary loading. Assuming the bond to be chemical, the chains will neither debond nor heal

in subsequent unloadings and reloadings. Accordingly, the number of active chains in the first

network, Ñ1, is only reduced during the primary load and thus, only with respect to the maximal

stretch of the first network
d

λ1m in the direction d , which can be written as

di

λmax = max
τ∈(−∞,t]

[
λp,

di

λ(τ)

]
, di ∈ V3 ∧ |d | = 1. (5.3.7)

Then, in view of a finite breakage force of a polymer chain, fb , one can determine the shortest
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Figure 5.5. Stress softening in the DN gels in the course of deformation. (a) schematic view of
different fragments of the first network connected by the chains of the second network, (b) internal
structure of a fragment in the reference state, (c) decomposed substructure of a fragment in which
shorter chains were debonded due the applied deformation. (d) schematic representation of chain
length distribution, which shows existence of short chains as 1st network and long chains as 2nd

network.

chains available in a deformed sub-network as

f
( r̄
n

)
≤ fb −→ d

nmin =
1

ξ

d

λmaxv
− 1

3
p R̄ ≤ n, (5.3.8)

where ξ = L
(
f̄b
)
< 1 represent the average limit of extensibility, which cause early breakage of

the chains, and cross-links and is a material parameter. Similarly, f̄b is the normalized breakage

force of a polymer chain. Furthermore, in view of the P (n), a cut-off length nmax = µn + 4σn can

be introduce, above which P (n) is considered to be negligible. This assumption can be released in

order to reach to higher deformation for long chains only. Accordingly, the set of available chains

in the direction d can be written as

Dn

(
d

λmax

)
=

{
n

∣∣∣∣ nmin(d

λmax

)
≤ n ≤ nmax

}
, (5.3.9)

which confirms that the material behavior in the direction d is influenced by the loading history in

that direction.
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(ii) Chain Rearrangement within a Fragment: In the course of deformation, the shortest

chains will be broken or disentangled from longer ones. This process will lead to some terminated

chains that do not contribute to the elasticity of the network anymore, while some of them will

rearrange as longer chains with higher number of segments, as illustrated in Fig. 5.5(b). The

concept of chain rearrangement suggests that the detachment of chains does not necessarily lead

to a full loss of their entropic energy, since some of the chains will remain in the network as part

of a longer macro-molecules. Thus, we assume that the total number of active segments in the first

network in each direction is decreased due to deformation. This assumption yields

∑
Dn(1)

n Ñ1 (1)P (n) =
∑

Dn

(
d
λmax

)n Ñ1

(
d

λmax

)
P(n) +Nbroken, (5.3.10)

where Nbrokenis number of inactivated segments in the network. Here, by assuming that α percent

of broken chains will remain active in the network, the number of broken segment can be written

as

Nbroken = (1− α)
∑

Dn(1)6∩Dn
(

d
λmax

)n Ñ1 (1)P(n), (5.3.11)

where α is a material parameters that governs the rate of energy dissipation. Next, considering

that Ñ1

(
d

λmax

)
to be independent of n, and Ñ1 (1) to be a constant, one can write

Ñ1

(
d

λmax

)
= N1 Φ

(
d

λmax

)
, Φ (x) = 1 + α

∑
Dn(1)6∩Dn(x)

n P(n)∑
Dn(x)

n P(n)
, (5.3.12)

where N1 is a number of chains in the first network before polymerization of the second network,

which is considered as a material constant. Finally, substituting Eq.5.3.12 in Eq.5.3.6, the energy

of a subnetwork in direction d is obtained as
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d

Ψ1N = vpN1

∑
Dn

Φ

(
d

λmax

)
ψc(n,

d

λ)P (n), (5.3.13)

5.3.4 Second network: Hyper-elastic response

The second network is the source of mechanical integrity of the gel and plays a key role in the

elasticity of the gel. Here, using the model of Miehe et al. [55], we represent the network as an

assembly of N2 chains with the average length of n2 segments. Thus, by generalizing the concept

of full network model in rubbers [54], the energy of the second sub-network in direction d can be

written as
d

Ψ2N = vpN2ψc

(
n2,

d

λ

)
, (5.3.14)

where the parametersN2, and n2 are material parameters. The second network is an elastic network

with affine motion of cross-links, which consist of identical chains. In a stress free state, the chains

are assumed to be in the unperturbed state in which the mean end-to-end distance of a chain is

R0 =
√
n2. A comprehensive review of the available hyper-elastic models that can fit the platform

is provided in Marckmann and Verron [127].

5.4 Macro-scale Response

5.4.1 3D generalization

Assuming a homogeneous spatial distribution of polymers in the gel matrix, and in view of Eqs.

5.3.4, 5.3.13, and 5.3.14, the total macroscopic energy of a three-dimensional gel matrix is given

as
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ΨM = Ψ1N + Ψ2N = vpN1

k∑
i=1

wiΦ
(

di

λmax

) ∑
Dn(

di
λmax)

P(n)ψc

(
n,

di

λ

)
+ vpN2

k∑
i=1

wiψc

(
n2,

d i
λ

)
(5.4.1)

The constitutive equation for the first-Piola-Kirchhoff stress tensor P can be written by

P =
∂ΨM

∂F
=
∂Ψ1N

∂F
+
∂Ψ2N

∂F
, (5.4.2)

where

∂Ψ1N

∂F
= vpN1

k∑
i=1

wi
∂

d

ψ1N

∂
d i
λ

1

2
d i
λ

∂d iC̄d i

∂F̄
:
∂F̄

∂F
,

∂Ψ2N

∂F
= vpN2

k∑
i=1

N2wi
∂ψ (n2, x)

∂x

∣∣∣∣
x=

di
λ

1

2
d i
λ

∂d iC̄d i

∂F̄
:
∂F̄

∂F
. (5.4.3)

These equations can be further simplified by means of the following identities

∂ψc

(
n, xv

− 1
3

p R̄
)

∂x
= v

− 1
3

p R̄KT β̂

(
xv
− 1

3
p R̄

n
, n

)
, (5.4.4)

∂
d

Ψ1N

∂
d i
λ

= vpN1Φ

(
d i
λmax

) ∑
Dn(

di
λmax)

P (n)
∂ψc (n, x)

∂x

∣∣∣∣
x=

di
λ

(5.4.5)

∂dC̄d

∂F̄
:
∂F̄

∂F
= 2F̄(d ⊗ d) : J−

1
3 I = 2J−

1
3 F̄(d ⊗ d). (5.4.6)

In the Eq. 5.4.4, β̂ is the modified version of Langevin elastic force for a short chain. Thus, Eq.
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5.4.2 yields

P = v
2
3
p N̂0

(
k∑
i=1

(P1N (d i) + P2N (d i))
wi
d i
λ

J−
1
3 F̄(d i ⊗ d i)

)
, (5.4.7)

where N̂0 is equal to N1kTR and

P1N(x ) = Φ
(x

λmax

) ∑
Dn(λmax)

P (n)L−1 (t)

(
1− 1 + t2

n

)
, t =

x

λ v
− 1

3
p R̄

n

P2N(x ) =
N2

N̂0

√
n2L−1

( x

λv
− 1

3
p√
n2

)
. (5.4.8)

A proper approximation approach for the inverse Langevin function is required depending on the

elongation range of polymer chains. In this study, due to the high elongation ratio of the chains

(relatively large value of L (fy)), a fractional approximation with error of less than 0.02% is more

favorable (see [57]). Accordingly

L−1 (x) ∼=
x

1− x
+

m∑
i=1

aix
i. (5.4.9)

where the number of terms m = 5 and the values of ai are given in [57]. Moreover in this study,

the numerical integration over the unit sphere is evaluated by using 45 integration points over half

sphere. The presence of pre-damage in the material leads to a step-wise yielding points in the

stress-strain curve, which can be smoother by increasing the number of integration points (see

Fig. 5.6-d). This number of integration points was found to yield the best optimization between

computational costs of integrating over a sphere and the resulted error of the induced anisotropy

[128, 129].
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5.5 Thermodynamic Consistency

Since the strain energy of the gel matrix ΨM is influenced by only one internal variable, namely
d

λmax, one can rewrite ΨM as

ΨM = ΨM(C̄,ΛmaxΛmaxΛmax) = Ψ̃M(F̄,ΛmaxΛmaxΛmax) = Ψ1N(C̄,ΛmaxΛmaxΛmax) + Ψ2N(C̄), (5.5.1)

where

ΛmaxΛmaxΛmax =

{
d

λmax : d ∈ V3 ∧ |d | = 1

}
. (5.5.2)

The second law of thermodynamics can be reduced to the Clausius-Duhem inequality to show the

thermodynamic consistency of the model in an arbitrary direction d

∂D
λm

ΨM ·

(
˙D

λm

)
≤ 0 ∀ d . (5.5.3)

The maximum stretch remains constant during unloading and reloading. Therefore,
˙d

λmax = 0 in

unloading-reloading while
˙D

λmax > 0 in the primary loading. Thus, satisfaction of the Clausius-

Duhem inequality during the loading is sufficient to prove (5.5.3), as one can write

∂ΨM

∂
d

λmax

≤ 0 ∀ d (5.5.4)

With respect to (5.3.2) and (5.3.4), equation (5.5.3) yields

∂ΨM

∂
d

λmax

=
∂

d

Ψ1N

∂
d

λmax

≤ 0 ∀ d . (5.5.5)

Without losing generality, (5.5.5) can be proved for an arbitrary direction d of primary loading.

For the sake of briefness,
d

λmax and
d

λ are replaced by x in primary loading and in order to take the

derivation of summations in the model, the summations are replaced by their equivalent integration
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. Using (5.3.13), one can further obtain

∂
d

Ψ1N

∂
d

λmax

=
∂

d

Ψ1N

∂x

= vpN1

dΦ (x)

dx

∑
Dn(x)

ψc(n, x)P(n)− dnmin (x)

dx
Φ (x)ψc(nmin (x) , x)P(nmin (x))

 (5.5.6)

where nmin (x) = 1
ξ
xv
− 1

3
p R̄, dnmin(x)

dx
= 1

ξ
v
− 1

3
p R̄, and

dΦ (x)

dx
=
R̄

ξ
v
− 1

3
p P(nmin (x))nmin (x)

α− 1 + Φ(x)∑
Dn(x)

n P(n)
. (5.5.7)

By substituting (5.5.7) in (5.5.6), one can obtain

∂
d

Ψ1N

∂x
= N1

R̄

ξ
v

2
3
p P(nmin (x))nmin (x)

α− 1 + Φ(x)∑
Dn(x)

n P(n)

∑
Dn(x)

ψc(n, x)P(n)− Φ (x)ψc(nmin (x) , x)

 ≤ 0 (5.5.8)

As α ≤ 1, N1
R̄
ξ
v

2
3
p P(nmin (x)) > 0, and Φ(x) > 0, (5.5.8) holds if only we have the following

inequality

nmin (x)∑
Dn(x)

n P(n)

∑
Dn(x)

ψc(n, x)P(n)− ψc(nmin (x) , x) ≤ 0 (5.5.9)

(5.5.9) can be rewritten as

nmin (x)
∑
Dn(x)

ψc(n, x)P(n)− ψc(nmin (x) , x)
∑
Dn(x)

n P(n) ≤ 0 (5.5.10)

As nmin (x) and ψc(nmin (x) , x) are not functions of n, they can be moved inside the summation,

thus
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∑
Dn(x)

P(n) [nmin (x)ψc(n, x)− nψc(nmin (x) , x)] ≤ 0 (5.5.11)

As nmin (x) ≤ n and the strain energy of the shortest chain is always higher than the energy

of the rest of the chains (ψc(n, x)� ψc(nmin (x) , x))), one can conclude nmin (x)ψc(n, x) −

ψc(nmin (x) , x)n ≤ 0 for all n ∈ Dn(x). While the bracket in the inequality (5.5.11) is less

than zero for all chain lengths (n), the proposed model holds the condition of the thermodynamic

consistency.

5.6 Analysis

The proposed model has utilized ten material parameters, seven of which belong to the 1st network

(R̄, nmax, µn, σn, λp, α and ξ), two to 2nd network (N2 and n2), and one parameter namely N̂0 is

a simple multiplicative scaling factor to describe the response of the polymer matrix. Out of the

seven parameters that are used in the first network, only four, µn, σn, α and ξ, should be obtained

by using fitting procedure and the other three, R̄, nmax, λp , can be explicitly derived from the

experimental data and material conditions.

• Parameter R̄ has no direct effect on the material response in the equilibrium state. The

main contribution of R̄ is associated to the probability parameters µn ∝ R̄ and σn ∝ R̄,

both of which are defined with respect to R̄. Thus, it can be completely neutralized in the

calculations by setting it equal to a constant (see Fig 5.6-a). As it can be seen in Fig 5.6-

a, normalized stress-strain curve does not change by variation of R as long as we consider

µn = 2R̄ and σn = R̄.

• Parameter vp, the volume fraction of the gel to the fresh gel, can be directly measured from

the samples. Note that this parameter affects the end-to-end distance, R̄. Therefore, the

constitutive model will consider the effect water content by adjusting the number of chains

and also by amplification-attenuation of the stretch for swelled-dried sample. As shown in
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Fig 5.6-b, the stress-strain curve is softened due to swelling of the sample and hardened as

the material is dried.

• Parameter nmax is used to reduce the computational load by reducing the summation bound-

aries of Eq. 5.4.1. For chains with sufficiently large n, the strain energy is becoming so

low that their contribution can be considered zero. Accordingly, one can introduce a cut-

off length as nmax = max
[
µn + 4σn, 1.5R̄λmax

]
above which the energy of the chains are

simply considered to be zero. As shown in Fig 5.6-c, stress-strain curve does not change

by variation of nmax from 30 to 50. Note that the smaller nmax, which is comparable with

R̄λmax act as a limiting stretch and cause asymptotic behavior in larger deformation.

• Parameter λP can be directly derived from the experimental data as the location of first

downturn in the primary loading curve. As shown in Fig 5.6-d, λP can be easily identified

from the stress-strain curve and is associated with the pre-stretch applied on network one

during swelling procedure. Different steps of damage can be clearly seen in , which is

attributed to the nature of numerical integration in 3D space. Each step of damage occurs

when one point on the unit sphere reaches to the pre-defined stretch. By adding number of

integration points the stress-stretch curve will be smoother and more realistic.

Next, to investigate the effects of the parameters of the 1st network, the contribution of second

network is minimized by considering N2 = N1 and n2 = 50 . Fig. 5.7 shows a summary of

the parametric analysis of µn, σn, α and ξ, where each graph represents the changes induced by

changing one of the aforementioned parameters with respect to the reference set, which is presented

in Table 5.1.

• Parameter µn and σn can control the trend of the damage in the material (see 5.7-a-b ) by

a mutual effect with the location of R̄ with respect to them. As most of the internal energy

in the material comes from the chains with the high extensibility, the stiffness of material

relates to the percentage of the chain with n ≈ r . Thus, damage will increase when R

reaches the peak of probability, µn.
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(a) Variation of R̄
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Figure 5.6. The influence of the parameters R̄, nmax, λp on the mechanical response of hydro-gels.
Red solid lines represent the reference curve, and the dashed lines show the changes in material
response due to the variation of the control parameters.

• Parameter α will affect the softening of the material as it decreases as it shown in Fig. 5.7-c.

As it can be seen in this figure, the material will experience more softening due to more

chain loss (smaller α) while the material deforms.

• Parameter ξ has great effect on the material stiffness during the loading. As it can be seen

in Fig. 5.7-d , the stiffness and the total damage of first network increases by approaching

ξ to 1. This phenomenon happens due to asymptotic behavior of chain force in the large

excitability.

To represent the second network, N2 and n2 provide sufficient flexibility for the model of Ψ2N to

represent hyper-elastic response. As shown in Fig.5.8a, the parameter n2 will change the location

of asymptote in the response of the second network and thus can govern the location of up-shift in
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Table 5.1. The reference set of parameters of the proposed model.

N1KT R̄ nmax µn σn λp α ξ N2KT n2

10 [kPa] 5 30 2R̄ R̄ 1 0.9 0.99 10 [kPa] 50

the constitutive curves. The parameterN2 is a multiplicative scaling factor for Ψ2N and accordingly

will just amplify/de-amplify the response (see Fig.5.8-b). Due to the absence of damage in repose

of the second network, these two parameters have no influence on the stress softening nor any other

damage mechanisms. However, a stronger second network reduces the permanent deformation due

to the higher contraction force it provides.

5.7 Model Predictions vs. Experimental Results

In order to validate the presented model, we first used the data of Webber et al. [1] on uni-axial

behavior of the DN hydrogel. In that study, the DN hydrogels were synthesized through a two-step

sequential UV polymerization [125]. The first network was made from a 1 M aqueous solution

of AMPS 3 crosslinked with 4 mol % MBAA 4. The second network was synthesized afterward

around the first swollen network (for details see [1]). A dumbbell-shaped specimen was elongated

up to certain stretch levels of 1.4, 1.46, 1.622, and 1.72 then unloaded (one complete uniaxial

tension cycle). Each test were preformed on a virgin sample.

Following our previous discussion, four material parameters can be explicitly derived from

experimental data and material conditions, namely

• N0 is calculated from the stress at max stretch.

• R considered to be a constant as its variation will not change the stress-stretch behavior.

• nmax is assumed to be the max [µn + 4σn, 1.1R0λmax].

32-acrylamido- 2-methylpropanesulfonic acid
4N,N’methylenebis(acrylamide)
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(a) Variation of µn (b) Variation of σn

(c) Variation of α (d) Variation of ξ

Figure 5.7. Effect of the four parameters (µn, σn, α and ξ) of the 1st network on the material
response in the course of uni-axial tension.

• λp is extracted from the point that the curvature of the loading curve is changed.

The remaining six material parameters were fitted using one loading-unloading cycle of the 1.72

stretch amplitude in tensile direction. The good agreement with other load-unloading curves in

uni-axial tension as well as compression was obtained automatically. To this end, the least square

error function was minimized with the aid of the Levenberg-Marquardt algorithm. The obtained

values of the material parameters are given in Table 5.2, while the fitted curve is plotted against

experimental test in Fig.5.9.

In order to show the relevance of the pre-damage, the dissipated energy in each cycle in the

model is compared with the experimental values. The dissipated energy per unit of volume during
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Figure 5.8. Effect of the 2nd network parameters on the large deformation response of uni-axial
tension. Red solid lines represent the reference curve, and the dashed lines show the changes in
material response due to the variation of the control parameters.

the first cycle (Mullins effect) is calculated as follows,

Uhys =

∫
loading

Pdλ−
∫
unloading

Pdλ. (5.7.1)

As shown in Fig.5.9-c, the dissipated energy in the cycle of λ = 1.28 is almost negligible in

comparison to cycles with higher amplitudes for which dissipated energy grows exponentially

with λ. The negligible dissipated energy for small stretch suggests that the material does not

show any primary damage until certain deformation level is reached. Thus, the early damage

during preparation (pre-damage) of the material can be considered as the reason for the absence of

the primary damage. The pre-damage is considered to be identical in all spatial directions so the

chains in other directions will reach to the pre-damage stretch limit gradually. Such a homogeneous
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Figure 5.9. Comparison of the nominal stress-stretch curves of the model and the experiment for
the uni-axial tensile tests.

distribution of pre-damage confirms that it can be related to early swelling of the first network. The

dissipated energy grows with a slower rate in mid-range stretches as the stretch applied on chains

exceeds the pre-stretch values.

To test the relevance of the presented model, we compared the model predictions against three

other types of DN hydrogels, namely the inorganic/organic DN [130], alginate– polyacrylamide

hybrid gel and PNaAMPS-PAAm DN hydrogel [131]. For each material, one loading-unloading

cycle in was selected and used for fitting of the material parameters. The parameters for each

material are derived and summarized in Table 5.3. Furthermore, the prediction of the model for

other loading-unloading curves are shown in Fig. 5.10.
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Table 5.2. Parameters of the proposed model fitted to the one cycle of tensile test performed on a
DN gel in [1].

N1KT R̄ nmax µn σn λp α ξ N2KT n2

1.992 [kPa] 4.5 10 1.29 R̄ 0.075 R̄ 1.1 0.87 0.986 0.8 [kPa] 85

Table 5.3. Parameters of the proposed model fitted to the tensile test performed on a different set
of DN gels data.

Ref. N1KT R̄ nmax µn σn λp α ξ N2KT n2

[130] 174[kPa] 2 10 4.3 1.5 1.0 0.95 0.994 12.5 [kPa] 72

[132] 132 [kPa] 2.3 30 4.65 4.65 1.05 0.78 0.988 3.67 [kPa] 270

[131] 14[kPa] 7 60 9 2.3 1.07 0.35 0.995 52[kPa] 108
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Figure 5.10. Comparison of the nominal stress-stretch curves of the model and the experiment for
different DN gels.

5.8 Concluding Remarks

A micro-mechanical model for the in-elastic constitutive behavior of DN gels were proposed based

on network decomposition concept. In the new model the first network hosts all the damage mech-

anisms and the second network is represented as a hyper-elastic network. The first network is mod-

eled based on the network evolution model of elastomers which is modified to account for gradual

decomposition of the first network in the course of deformation. Using a directional description of

damage, a 3D representation of the first network is developed which can describe the evolution of

damage in different directions with respect to the applied deformation. Here, the damage is defined

as the result of two simultaneous procedure, (i) debonding of chains, and (ii) partial softening of
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the fragments of the first network. The thermodynamic consistency of the model is verified.The

second network is modeled by full-network hyper-elastic model. The final model is bench-marked

against several sets of experimental data specifically selected to reveal the directional softening in

the material, and the model shows good agreement. This fact, besides the simplicity and the re-

duced fitting procedure, makes the proposed model a suitable option for commercial and industrial

applications.
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CHAPTER 6

A PHYSICALLY-BASED MODEL OF STRESS SOFTENING WITH NECKING

PHENOMENA FOR DOUBLE NETWORK GELS

6.1 Introduction

Hydrogels are elastomeric gels with chemical (ionic, hydrogen, or covalent) and/or physical cross-

links. These materials swell in water without dissolving and can contain water up to hundred times

of their dried volume. In view of their high water content and extremely soft nature, hydrogels

are considered as revolutionary materials in different fields such as drug delivery carriers matrix

for cell immobilization of bone regeneration, spinal cord injuries, cartilage defects, and super

absorbents. Due to poor strength level and fragile response of conventional single network gels,

investigation of their mechanical behavior have not been a subject of interest. However, several

studies have been conducted on their swelling-deswelling and diffusion-deformation behaviors

[98].

Over the last two decades, numerous strategies, such as the use of sacrificial bonds and filler

supplementation, have been developed to improve the mechanical properties of hydrogels and fab-

ricate tough hydrogels, including Nano-composite gels and double network hydrogels [102, 133].

Among different types of tough hydrogels, DN gels have attracted increasing attention due to their

unique mechanical performance. The DN gels have been designed with two sets of interpenetrated

cross-linked networks. The first network, e.g. PAMPS, is highly cross-linked and rigid while the

second network, e.g. PAAm, is loosely cross-linked and soft.

The toughening resulted from interactions between polymer networks showed significant im-
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provements in mechanical characteristics comparable to load-bearing tissues. These mechanical

properties demonstrate great application potentials of DN gels in many scientific fields. The non-

linear behavior of DN hydrogels under large deformation is similar to the most of elastomeric ma-

terials especially filled rubbers, which include J-type and S-type inelastic loading and significant

softening during the first unloading, known as “Mullins effect” [1, 105]. However, the behav-

ior of the material during consecutive reloading of DN gels is almost the same, which points to

negligible hysteresis in the behavior of material. Moreover, DN hydrogel with the first network

with low cross-link density or γ-radiation formation demonstrate the necking instability in large

deformations.

Utilizing this behavior, researchers proposed constitutive models for DN gels using the con-

cepts close to the ones which have been developed for rubbery materials over the last 70 years

[38, 111, 78]. Examples of these studies for mullins effect include Ogden-Roxburgh pseudo-

elasticity model [115] by Wang and Hong [114] and the modified network evolution model by

Morovati and Dargazany [48]. In addition, Zhao [106], Riku and Mimura [134] and Liu et al.

[116] enhanced the idea of using superposition of a damageable network and hyper-elastic net-

work to describe necking in DN gels. Despite the fact that these model can effectively model

the necking instability through finite element analysis, most of them are not compared against the

experimental necking instability data.

Several studies demonstrate that the highly cross-linked first network, which contains short

chains, is responsible for damage in DN hydrogels [1, 113]. Breakage of the short chains in the

first network develops numerous clusters of hard network, which act like fillers in the filled rubber.

In addition, the second network is accountable for preservation of the integrity of the fractured first

network and hardening of the material in relatively large deformations [113]. Although, recent

advances in the modelling of gels have shown significant improvements in the constitutive relation

of DN gels, our understanding of load transfer mechanism within the networks has remained sparse

and inconclusive. In addition, clusters of first network split into small and stiffer pieces during the

necking, which act as cross-link for the second network [135].
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Description of damage process and modeling of high fracture energy, stress softening and neck-

ing instability of the DN gel is a critical issue for the applicability of DN gels [135]. In this study,

a continuum scale constitutive model of DN gels in quasi-static deformation is developed which

can be particularly used to elucidate the inelastic features such as stress softening-hardening of

material during primary loading and permanent damage during deformation. The model attributes

stress softening to damage in the first network, and hardening to the hyper-elastic stiffening of the

second network. In addition, irreversible disentanglement of short chains of the second network

from first network cluster determines the stress softening during necking stage. The paper is orga-

nized as follows. First, the statistical mechanics of short chains are reviewed. Then, generalized

network decomposition concept and the corresponding strain energy function of each network are

discussed. Finally, the evaluation of the proposed model against experimental data and the con-

cluding remark are presented.

6.2 Double Network Polymers

DN gels are consist of two polymer networks in which the second network is formed in the presence

of the first network. DN gels can be considered as an interpenetrating polymer network in which

multiple networks are interwoven and entangled to each other. However, these two networks are

not covalently bonded to the other networks chain. A schematic view of the first network and the

second network is depicted in Fig. 6.1. The first network has a high cross-link density, which

results in a network with short chains. The short chains of the first network have a relatively

high initial extensibility ratio, which makes them brittle and more prone to more damage. The

second network is synthesized in the presence of the first network with low cross-link density.

The chains in this network can be divided into two sub-networks, one with free chains and the

other one entangled to chains of the first network. The free chains in the second network act as

a hyper-elastic stretchable network with the ability to stretch to very large deformation ranges.

Experimental evidence shows that the chains in the first network rapidly breaks in the course of

deformation, and the entangled chains of the second network will be unzipped and form longer
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chains. These disentanglement can be the source of the gel integrity in larger deformation.

Here, the DN gel matrix is considered as two matrices on top of each other, in which some

of the second network chains entangled to the first network chains fragments (see Fig.6.1). The

breakage of the shorters chains in the first network decomposes the first network into small indi-

vidual fragments, while the second network chains connect the fragments to ensure the integrity of

the material. Damage in the matrix is related to breakage of the first network chains and disentan-

glement of the interaction network, meanwhile, the second network chains exhibit a hyperelastic

behavior without damage. As the second network chains in the interaction network unzip due to

the breakage of first network chains, they transfer the forces between the first network fragments

and are responsible for the instability in the larger deformations. The constitutive response and

status of the interaction network are schematically depicted in Fig.6.2.

1st NetworkDN Hydrogel 2nd Network

Number of segments
per chain

N
um

be
r 

of
 c

ha
in

s

Figure 6.1. Schematics of a DN gel network, decomposition of its networks and their chain dis-
tributions. The highly cross-linked first network with short and brittle chains and loose second
network with long and flexible polymer chains.

6.2.1 Necking instability

Polymer formation structure e.g. degree of polymerization and cross-link density significantly

control the mechanical response of the material, which can cause different non-linear features
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such as stress softening and material in-elasticity. For instance, the necking instability is observed

in the DN hydrogel with the first network with low cross-link density or γ-radiation formation

[136]. In this study, we aim to propose a constitutive model for DN hydrogel, which exhibits both

stress-softening and necking inelastic behavior. Deformation process in the DN gel with necking

is schematically depicted in Fig. 6.2. As it can be in this figure, the stress-stretch behavior of the

material with the necking instability can be split to three individual part including

(i) Pre-necking The evolution of damage in the pre-necking stage can be considered as breakage

of brittle chains of the first network. The material experience the softening throughout pre-

necking stage due to the breakage of the first network.

(ii) Necking instability The first network chains will be divided into the small cluster connected

with long chains of the second network, which progress of this damage will cause the neck-

ing. This catastrophic breakage continues until the contribution of the first network become

negligible and only acts as a filler inside the second network. Clusters split into small and

stiffer pieces during the necking. Presence of the first network as a filler/cross-link play an

important role in the stiffness of the material through the necking stage. The stiffness of the

second network chains increases due to the increase of its cross-linking density and its be-

havior changes with respect to the damage in the first network. The entangled chains of the

second network release from the fillers, which results in the smooth increasing deformation

without further force, necking stage. The released shorter entangled chains in the second net-

work release a considerable amount of the energy, which can be related to the energy released

in the necking stage. Remarkable stress softening is observed during the necking due to the

continuous releasing the chains [33].

(iii) Hardening Hardening is the last stage where the sudden increase in stiffness of the material

is observed after necking. This stage caused by limiting stretch-ability of the second net-

work. chains. The stretch in the chains increases as high as the locking stretch of the long

chains of the second network. Thus, the hardening in the material starts to grow, when the
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(b) The constitutive behavior
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Pre-necking Necking Hardening

Figure 6.2. Schematic view of the constitutive behavior and chain unzipping of a DN gel under
quasi-static tension showing inelastic features such as stress softening after first loading, permanent
damage and necking instability.

entanglements between the clusters and the second network disappear. The second network

is considered to be the main stress contributor throughout the hardening. The hardening

proceeds up to the complete failure of the material (see Fig. 6.2).

6.2.2 Network decomposition

The deformation gradient, F is decomposed as two series event of mechanical Fm and uni-from

swelling v
− 1

3
p I. The swelled part shows the volume of the sample is changed vp times uniformly

due to water absorption or release. Here, we assumed that these process happen sequential and the

sample is nearly incompressible during the mechanical loading. Here, the chain end-to-end vector

in the reference state by r0 and deformed configuration r , and their lengths by r0 and r, respec-
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tively. The effect of swelling/drying of the material on constitutive behavior can be considered by

linear inflation of the end-to-end distance of the chains R. Thus, one can write

r = Fmr0 , r =
d

λ v
− 1

3
p R, (6.2.1)

where
d

λ =
√

dFm
T · Fmd is the stretch along an arbitrary direction d . Hereafter, the following

font styles are used for scalar X , vector X , and second-order X.

The decomposition of material strain energy function, ΨN(C), to isochoric and volumetric

parts yields to (see e.g. [32])

ΨN(C) = ΨM(C̄) + U(J), (6.2.2)

where C = FTF is the right Cauchy-Green tensor, J =
√

det C and C̄ = J−
2
3C. As discussed

in the section 6.2.1, the constitutive behavior of DN gels is composed of three different networks

response. Therefore, the isochoric strain energy of the material can be calculated by the summation

of the first (1N), the second (2N) networks and the interaction network (12) strain energy. These

networks act in parallel to each other (see Fig. 6.2). Thus, the isochoric strain energy of the gel

matrix ΨM can be written as

ΨM = Ψ1 + Ψ12 + Ψ2, (6.2.3)

where Ψ1 and Ψ2 are the 1st and 2nd networks strain energies per unit reference volume of the ma-

terial, respectively. Ψ12 denotes the isochoric energy of second network chains entangled with first

network clusters per unit reference volume. Here, the first network chains breakage and debond-

ing are considered as source of permanent damage, as the de-bonded chains will not reattach

back to the network. This damage can affect both the first network and the interaction network

micro-mechanically. Thus, a damageable model is considered to capture these two networks and a

hyper-elastic behavior with no damage is considered for the second network to ensure integrity of
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the network.

Here, the model is developed through the modular platform concept [137, 68]. The framework

couples different models to represent each of the networks. Here, a damage evolution model is

used to capture the behavior of the first network and the interaction network. The evolution model

adopted for each of these network in the term of damage rate and probability of chain distribution

to model a network which is weaken in large deformation and a growing network model. A hyper-

elastic network inserted to the framework to capture the behavior of the second network. Note

that each of these network model can be replaced, upgraded or removed without affecting the

generality of the model. In this study, the network developed to model only permanent damage,

however, other model can be added to consider other inelastic features such as cyclic damage,

progressive damage, etc.

The entropic energy of a single chain can be calculated through polymer statistical mechanics.

A micro-sphere scale-transition scheme is designed to estimate the strain energy of full-network

model.

The total free energy density function for a network can be obtained through integration of

the chains in each direction. The averaged free energy density function of the network with a

orientation distribution function in direction di ,
di

C can be written as

Ψi =
1

As

∫
S

d

C
d

ψid
d
u (6.2.4)

where S is the unit micro-sphere, As is the surface area, and d
d
u the infinitesimal area of As in the

direction d . In addition,
dj

ψ denotes the strain energy of the ith sub-network in the direction d . The

integration on the unit micro-sphere of the macroscopic energy can be estimated numerically

Ψi
∼=

k∑
j=1

dj

ψiwj, (6.2.5)

and wj is the associated weight factor to spatial directions dj . Here, the numerical scheme is
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Figure 6.3. Schematic framework of proposed model consisting of three sub-networks. The first
and interaction networks considered as a stochastic damageable models and the second network as
a hyper-elastic network.

calculated through the 90 integration points presented in [129]. This scheme is selected as a result

of trade off between numerical computational costs and the resulted error of the induced anisotropy

[128]. Note that the resulted summation numerical scheme can be interpreted as aggregation of 90

chains in different direction and probability. In addition, different stretch in each direction leads

to a non-uniform damage evolution and histories in each sub-network. 3D representation of the

model can be obtained based on the summation of energy of each 1D sub-network in all direction.

Thus, a damageable network evolution model of 1D sets of chains are developed here to model

constitutive behavior of the material.
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6.3 Micro-mechanics of a Single Chain

The free energy of a single polymer chain can be calculated through the non-Gaussian distribu-

tion of a random walk problem. The most prominent approximation of the non-Gaussian theory

of rubber elasticity is the KG. The KG strain energy of a single chain can be derived using the

combination of the Boltzmann's entropy relation and thermodynamic balance as,

ψc (n, r̄) = nkBT

(
tβ + ln

β

sinh β

)
+ c0

= nkBT

∫ t

0

β dτ + c0,

(6.3.1)

where kB denotes the Boltzmann’s constant and T is the absolute temperature. β (β) is the ILF

of the extensibility ratio, t = r̄
n

= L(β) = coth (β) − 1
β

and c0 (n) is added to eliminate the

free energy in reference configuration. In addition, r̄ denotes normalized end-to-end vector with

respect to the segment Kuhn length l. However, Kuhn and Grün is derived the KG model based

on the assumption that the chains are sufficiently long, which the relative error decreases as the

chain length increases (about 5% for n = 40) [50, 119]. This approximation has as much as 100

% relative error with respect to the exact theory for short chains (see Fig. ). Thus, the KG theory

is not a proper choice to describe constitutive behavior of short chains with high extensibility of

the first network in the DN hydrogels. A novel and simple enhanced KG is developed recently

with remarkable accuracy with respect to the exact theory for short chains, which can be written

as [121]

ψ̂c (n, r̄) = nkBT

∫ t

0

β̂ (τ ;n) dτ,

β̂ =

[
1− 1 + t2

n

]
β.

(6.3.2)

Eq. 6.3.2 a simple term with order of 1
n

(the first bracket) is multiplied to the ILF to improve

the accuracy of the energy function for especially the short chains. Note that the ILF cannot be

derived explicitly and most of the micro-mechanical models approximate it with rational functions
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Figure 6.4. The maximum relative error of the KG and enhanced KG for chains with different
length.

or calculate it implicitly. Therefore, this modification has same complexity as KG theory. In

addition, the ILF should be approximated by a simple approximation with good accuracy in the

whole range of polymer chains extensibility [59, 2, 138]. In this study, the ILF is approximated

through a first order fractional approximation with two polynomial terms (relative error of 1.0%)

as (see [59])

L−1 (x) ∼=
1

1− x
+ x− 8

9
x2. (6.3.3)

6.4 Statistical Network Model

The polymeric response resulted from the response of individual chains and their interactions. In

order to provide a full description of the constitutive model, we start with the statistical description

of the material in a given representative volume element (RVE). The statistical view leads to an

average response of the material, which can represent the response of the whole RVE. For the sake

of simplicity, we assumed that all active chains have their average end-to-end distance, which is

characterized by r0 for the first network with the shorter chains and Gaussian most probable end-to-

end distance, sqrtn for the longer chains of the second network. This assumption can be relaxed,

as the probability of the existence of the chains is a joint distribution, which can simply take

into account the effect of stochastic end-to-end distance as well as chain length. The total strain
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energy of the network can be evaluated by aggregating the stored energy of all the active chains

in the RVE. To further investigate the micro-mechanical chain distribution for the non-isolated

chains, we proposed a novel and simple chain length distribution is presents of the cross-linkage

or entanglement, which will be described in detail in the next section.

6.4.1 Probability of chain length between cross-links

Polymer chains are joined together due to the present of cross-links and entanglement of the chains

within the polymer matrix. Both Gaussian and non-Gaussian distribution function of chain exis-

tence with n segment is developed based on the assumption of the fully isolated chain, which

makes them insufficient for finding the distribution of chain length in entangled and cross-linked

polymers. In order to consider the effect of the presence of other chains and cross-linkage on the

distribution of chain length, we assumed the distribution can be obtained by considering the in-

dependent probability of Gaussian end-to-end and the probability of occurrence of cross-link or

entanglement in the middle of the chain as

Pn (n, r0) = PG (n, r0)Pcl (n) (6.4.1)

where PG (n, r0) is the probability chain existence and Pcl (n) is the probability of the cross-

linkage. The probability of the existence of a chain with n segments (with Kuhn length a) and

end-to-end distance r0 is assumed to follow 3-D Gaussian distribution as

PG =

(
3

2πna2

) 3
2

exp

(
− 3r2

0

2na2

)
. (6.4.2)

In PG, most probable chain has r2
0 segments which confirms that the probability of existence of

long chains in the matrix is much higher than the short chains. Although by best of our knowledge,

the physics of entanglement and chemistry of cross-linking is too complicated and is not known

completely, generally it can be considered as a random phenomena. Here, we assume that this

random process is uniform and the probability of the cross-linking of all segments is the same. The
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Figure 6.5. Schematic representation of a cross-linked network and probability of existence of
cross-link at the end of each segment .

cross-linking probability can be calculated as a ratio of the concentrations of cross-links agents to

the number backbone segments as

pc =
2[C]crosslink
[C]segments

(6.4.3)

In this equation, the concentrations of cross-links agents is multiplied by two to consider that each

cross-link reacts with two segments. Thus, the probability of existence of a chain between two

cross-links with n segments is the product of the probability of n− 1 joints without cross-link and

two joint with cross-link (6.5), which can be written as

P1 (n) = p2
c (1− pc)n−1 . (6.4.4)

Note that a polymer chain with entanglement or cross-link at a middle Kuhn segments instead

of ending segments considered as two chains with shorter lengths. Combining Eqs. 6.4.2 and

6.4.4, one can obtain the probability of chain existence between two cross-links with n segment

and end-to-end distance r0 as

Pn (n, r0) = P0 (1− pc)n
(

3

2πna2

) 3
2

exp

(
− 3r2

0

2na2

)
, (6.4.5)

where P0 is a normalization factor to ensure the integration of probability over all chains results

one. As it can be seen in this equation the chain length distribution function, Pn (n, r0) is a function

of both end-to-end distance and cross-linking probability. Increasing r0 and decreasing pc both
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(a) Variation of pc with r0 = 10 (b) Variation of r0 with pc = 0.1

Figure 6.6. Effect of pc and R0 on the probability of polymer chain existence with n segments
between cross-links.

leads to a wide probability with longer chains. However, their combination can produce different

shape of probability function as it can be seen in Fig. 6.6.

6.4.2 Distribution alteration due to damage

The experimental evidence shows that DN gels have almost negligible hysteresis after the first

cycle, the same unloading and reloading response. The material follows the primary load curve

after it reaches to the maximum stretch experienced before. Based on this observation in addition

to the fact that damage is permanent, one can assume damage as a function of the maximum

stretch in the material, λmax. This damage remains constant during unloading/reloading cycles

until deformation reaches to the λmax. However, recently the experiments by Mai et. al [139]

showed that DN gels have deformation-induced anisotropy, which suggests that the damage is not

uniform in different directions. Thus, we assume the material has a uniform distribution in the

virgin state and the damage will be evolved in the direction di based on the maximum stretch in

that direction. Here, we described the permanent damage as two coincident events of breakage of

the chains bonds and creation of the longer chains. These two processes cause the alteration of the

chain distribution function in two ways (i) change in the sets of available chains and (ii) amplifying

the presence of longer chains
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(i) Chain breakage:

The strain energy function of a single chain tends to infinity as the chain end-to-end distance,

r, approaches the ultimate locking value nl during the primary loading. However, a chain

cannot sustain indefinite force and energy. So, it will break from its cross-link or bond at

an effective breakage force, fe. Thus, the highly extended shorter chains start to break as

they reach to the locking stretch sooner than longer chains. This process cause a progressive

change in the chain distribution as the set of available chains will shrink in the course of

deformation. By considering a finite breakage force of a chain with n segment, fb, the domain

of available chains in a damaged sub-network is determined as

∂ψ̂c (n, r̄)

∂r
=
kBT

l
β̂ (t;n) ≤ fb −→

d

Dn = {
d

λmaxr̄0

ξ
≤ n ≤ nmax}, (6.4.6)

where ξ ≈ L
(

fb
kBT

)
< 1 is the maximum extensibility rate and it control the Mullins effect

in the material. Chains at the stretch equal to ξn and force equal to fb break from its bonds

or the cross-link. Similarly, the sets of available chains for the interaction network with the

most probable end-to-end distance
√
n can be written as

d

Dn = {max(2,

d

λ
2

max

ξ2
) ≤ n ≤ nmax}, (6.4.7)

where the minimum value for n is restricted to avoid chains with length 1.

(ii) Evolution of longer chains:

The chains disentanglement or breakage from the cross-links lead to a partial loss of chains

entropic energy upon their detachment. As a result, some the chains remain active in the

network and form a longer macro-molecules. The concept of alteration of distribution func-

tion suggests that α fraction of the broken chains actively contribute in the network and the

rest of will be dead-end. A detailed discussion of this concept has been provided in [48].

This assumption yields to a amplification factor, which shows that the network contain more

longer chains (see Fig. ) as
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Figure 6.7. The probability distribution alteration in the course of deformation and the schematic
view of longer chains activated due to detachment of the shorter chains.

Ñi (λmax) = NiΦ (λmax) ,

Φ (x) = 1 + α

∫
Dn(1)6∩Dn(x)

n Pn(n)dn∫
Dn(x)

n Pn(n)dn
. (6.4.8)

where α is a parameter governing the rate of energy dissipation and Ni is the initial num-

ber of chains in the ith network, both of which are considered as material constants. Here,

we assumed that all the chains in the first network will be deactivated (α = 0) and will not

contribute in the network. In addition, due to breakage of the first network chains some of

interaction network chains will be unzipped and form longer chain. Thus, all of the interac-

tion networks chains will remain active in the network (α = 0). These assumptions are made

here to limit the number of material parameters and can be released in order to reach to more

general form of the constitutive model.
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6.4.3 Total energy of sub-network

The stored energy of each sub-network direction can be evaluated by calculating the average value

of free energy of the all available chains in that direction. According to the statistical theory of

elastomer elasticity and the alteration probability of existence of chains in an arbitrary direction,

the average free energy of the damageable networks in that direction can be calculated as

d

ψi =

∫
d
Dn

Ñi

(
d

λmax

)
ψc(n, r̄

i
0

d

λ)P i
n(n)dn, (6.4.9)

where i stands for first (1) and interaction network (12), Ni is the total number of active chains

in the unit volume of the material in the ith network and
d

Dn the set of available chain lengths in

direction d . ri0 denotes the end-to-end distance in ith network, which is r0 for first network and
√
n for the interaction netwok. As the breakage of the chains in the first network is responsible

for disentanglement of the chain in the interaction network, the process of chain debonding is the

same for both networks. However, first network chains de-bond due to the load transfer between

two networks.

6.5 Hyper-elastic Model

The chains in the second network that do not entangled by the fragments of the first network can be

considered as free chains with hyper-elastic behavior. As it has been mentioned, these chains are

responsible for the mechanical integrity of the gel. Let us consider, this network as an assembly of

N2 chains with the uniform spatial distribution. This network contains long chains with an average

length of n2 segments with the most probable end-to-end distance same as interaction network,

which has same chains with a random entanglement to first network chains. Thus, in view concept

of full network model, the strain energy of the sub-networks of the second network can be obtained

as
d

ψ2 = N2ψc

(
n2,

d

λ

)
, (6.5.1)
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where the parametersN2, and n2 are considered as material parameters. Note that this hyper-elastic

model can be considered as entropic energy of chains uniformly distributed over a unit sphere.

6.6 Constitutive Model

The total macroscopic energy of gel matrix can be calculated through the concept of network

decomposition (Eq. 6.2.3), micro-sphere scale-transition (Eqs. 6.2.4 , 6.2.5) in and the total energy

of the each sub-networks (Eqs.6.4.9, 6.5.1) as

ΨM = Ψ1 + Ψ12 + Ψ2

= N1

k∑
i=1

wiΦ1(
di

λmax)

∫
Dn(

di
λmax)

P 1
n(n)ψ̂c(n, r0

di

λ)dn



+N12

k∑
i=1

wiΦ12(
di

λmax)

∫
Dn(

di
λmax)

P 12
n (n)ψ̂c(n,

√
n2

di

λ)dn


+N2

k∑
i=1

wiψ̂c(n2,
√
n2

d i
λ)

(6.6.1)

One can derive the constitutive equation of the first-Piola-Kirchhoff stress tensor P based on total

macroscopic energy function as

P =
∂ΨM

∂F
=
∂Ψ1

∂F
+
∂Ψ12

∂F
+
∂Ψ2

∂F
, (6.6.2)

where

∂Ψi

∂F
= vpNi

k∑
j=1

wj
∂

dj

ψi

∂
dj

λ

1

2
dj

λ

∂d jC̄d j

∂F̄
:
∂F̄

∂F
, i ∈ {1, 12, 2}. (6.6.3)
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By considering the enhanced KG entropic force, ∂ψ̂c(n,r)
∂r

= KT
l
β̂ (n, r), one can further sim-

plify Eq. 6.6.3 as

∂
dj

ψi

∂
dj

λ

= vpNikBTΦi

(
dj

λmax

) ∫
Dn(

dj

λmax)

r̄i0P
i
n (n)β̂

(
n, r̄i0

dj

λ

)
dn i ∈ {1, 12} (6.6.4)

∂
dj

ψ2

∂
dj

λ

= v
− 1

3
p

√
nkBT β̂

(
xv
− 1

3
p√
n
, n

)
,

where β̂ = L−1 (t)
(

1− 1+t2

n

)
. In addition, following identities can be substituted in the Eq. 6.6.3

∂dC̄d

∂F̄
= 2F̄(d ⊗ d),

∂F̄

∂F
= J−

1
3 I. (6.6.5)

Thus, by substituting Eqs. 6.6.3, 6.6.4 and 6.6.5 in Eq. 6.6.2 the first Piola-Kirchhoff stress can be

written as

P = v
2
3
p kbT

k∑
i=1

(P1 (d i) + P12 (d i) + P2 (d i))
wi
d i
λ

J−
1
3 F̄(d i ⊗ d i), (6.6.6)

where

Pi(x ) = NiΦi

(x

λmax

) ∫
Din(λmax)

P i
n (n)L−1 (ti)

(
1− 1 + t2i

n

)
dn i ∈ {1, 12},

P2(x ) = N2

√
n2L−1

( x

λv
− 1

3
p√
n2

)
, (6.6.7)

where t1 =
x
λ v

− 1
3

p r̄0
n

and t12 =
x
λ v

− 1
3

p√
n

.
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6.7 Finite Element Linearization

In this section, the equations for the calculation of second Piola-Kirchhoff stress and consistent

tangent modulus, required for the finite element implementation, are presented. The incompress-

ible plane stress situation in total Lagrangian finite strain is considered, and indicial notation is

used in equations for clarity.

In order to utilize the Newton-Raphson Method, the second Piola-Kirchhoff stress, S, should

be linearized. Its variation could be written as

dS = CdE (6.7.1)

Where C is the material tangent modulus, and E is the Green-Lagrange strain tensor. The

second Piola-Kirchhoff stress is defined as

Sij =
∂ΨM

∂Eij
− pdetC1/2C−1

ij = 2
∂ΨM

∂C̄mn

dC̄mn
dCij

− pdetC1/2C−1
ij (6.7.2)

The fourth order deviatoric projection tensor in Lagrangian description, dC̄ij
dCkl

, is

dC̄ij
dCkl

= detC−1/3

(
Iijkl −

1

3
CijC

−1
kl

)
(6.7.3)

With I as the fourth order identity tensor. By substituting (3) into (2), and defining Sn and A

2
∂ΨM

∂C̄ij
= SnDiDj (6.7.4)

A = DmDnCmn (6.7.5)

the second Piola-Kirchhoff stress is expressed as

Sij = detC−1/3Sn
(
DiDj −

1

3
AC−1

ij

)
− pdetC1/2C−1

ij (6.7.6)
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In order to find the Lagrange multiplier p, the plane stress assumption is used, and the Cauchy

stress in the out-of-plane direction is set to zero. In this manner, p is obtained

p = detC−5/6Sn
(
F 2

33D
2
3 −

1

3
A

)
(6.7.7)

By replacing (7) into (6), the final expression for Sij is obtained

Sij = detC−1/3Sn
(
DiDj − F 2

33D
2
3C
−1
ij

)
(6.7.8)

The material tangent modulus is calculated by taking derivative of S with respect to E

Cijkl =
∂Sij
∂Ekl

= 2
∂Sij
∂Ckl

= 2
∂Sij
∂C̄mn

dC̄mn
dCkl

(6.7.9)

By defining

4
∂2ΨM

∂C̄ij∂C̄kl
= CnDiDjDkDl (6.7.10)

The material tangent modulus is calculated

Cijkl = −2

3
(detC)−1/3 Sn

(
DiDj − F 2

33D
2
3C
−1
ij

)
C−1
kl

+ (detC)−2/3 Cn
(
DiDj − F 2

33D
2
3C
−1
ij

)(
DkDl −

1

3
AC−1

kl

)
+ (detC)−1/3 Sn

(
−4F33D

2
3C
−1
ij

dF33

dCkl
− 2F 2

33D
2
3

dC−1
ij

dCkl

) (6.7.11)

By knowing that the shear terms in the out-of-plane direction, S31, S13, S32 and S23, are zero,

and using the Voigt notation, the matrix form of (1) is expressed as
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

dS11

dS22

dS12

dS33


=



C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44





dE11

dE22

2dE12

dE33


(6.7.12)

In the finite element simulation in plane stress condition, the displacement in the out-of-plane

direction is not an independent variable, and therefore dE33 should be removed from (12). As

dS33 = 0 and C44 = 0, the static condensation could not be utilized. Thus, to remove dE33, it

should be expressed in terms of dE11, dE22 and dE12. To do so, and by having

E33 =
1

2
(C33 − 1) =

1

2

(
F 2

33 − 1
)

(6.7.13)

dE33 could be expressed as

dE33 =
dE33

dE
dE =

dE33

dF33

dF 33

dC

dC

dE
dE = 2F 33

dF 33

dC
dE

= 2F33

(
dF33

dC11

dE11 +
dF33

dC22

dE22 + 2
dF33

dC12

dE12

) (6.7.14)

Finally, for the plane stress situation, (1) could be rewritten as

dS = (C + CC) dE (6.7.15)

where

CC = 2F33


dF33

dC11
C14

dF33

dC22
C14 2 dF33

dC12
C14

dF33

dC11
C24

dF33

dC22
C24 2 dF33

dC12
C24

dF33

dC11
C34

dF33

dC22
C34 2 dF33

dC12
C34

 (6.7.16)

and dF33

dCij
is given by
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dF33

dCij
=

dF33

dFmn

dFmn
dCij

=
1

2
QmnδnjF

−1
im =

1

2
F−1
imQmj (6.7.17)

Q =
dF33

dF
= F 2

33


−F22 F21 0

F12 −F11 0

0 0 0

 (6.7.18)

The term C+CC is the tangent operator in the finite element formulation. The detailed deriva-

tion of Sn and Cn are given in the appendix.

6.8 Model Validation

In the following section, model prediction on Mullins effect and necking instability is compared

with the experimental results. The model's material parameters are minimized in order to simplify

the model. In the first network, the parameter α is set equal to zero, which means the energy of

all broken chains in this network will released and the network will have significant softening after

necking initiation. Note that response the first network is dominant in the pre-necking and the ma-

terial parameters of this network (N1, ξ, p1
c and r0) can be defined by using the experimental data

from pre-necking stage. Moreover, the probability of entanglement of the second network chains

to the first network clusters is assumed to be a small value (less than 5%) and the breakage of the

cluster does not affect the number of active chains in the interaction network. The material param-

eters of the interaction network (p12
c and N12) can be obtained by adjusting model in the necked

stage as this network should cancel the softening due to breakage of the first network. Finally, the

second network is responsible for the hardening of the material in large deformations and its ma-

terial parameters (N2 and n2) can be obtained from the hardening stage of the experimental data.

Note that the longest chain available for both first network and the interaction network is assumed

that to be equal to n2 as the free chains of the second network should be the longest chains in the

matrix.
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The proposed model has 8 material parameters in total in which N1 can be obtained by scaling

of the data and the model, the p12
c is preset to a small value and 6 remaining parameters should be

obtained through an error minimization approach. The maximum difference of the model predic-

tion and the experimental data is considered as error and a min-max optimization scheme is used

to find the material parameters.

To investigate the performance of proposed constitutive model, the experimental data for uni-

axial tension tests from the work of Nakajima et al. [135] are used. The truly independent

DN hydrogels used by Nakajima et. al. were synthesized through a two-step sequential photo-

polymerization, where the first network was made from a 1 M aqueous solution of AMPS cross-

linked with 4 mol % MBAA, and the second network, PAMPS was synthesized afterward around

the first swollen network (for details see [135]). In order to investigate the performance of the

proposed model, it will be evaluated with a set of uni-axial tensile tests, in which virgin dumbbell-

shaped specimens were elongated up to certain stretch levels as high as 11.8, and then unloaded to

0 (one complete uni-axial tension cycle). Through fitting the model to the loading-unloading cycle

of a tension test with the maximum stretch amplitude of 11, 8 material parameters is adjusted and

the fitted curve is plotted against experimental test in Fig.6.8.

The model capability is tested against two other types of DN hydrogels. First, the model predic-

tions are compared with the experimental data of tensile loading-unloading for SAPS(1,2,2,9)/AAm

(2,0.1,0,97) DN hydrogel. The loading behavior and the unloading behavior at stretch equal to 3,

7.5 and 13 are presented in the Fig. 6.8. Furthermore, the tensile behavior of multi-network hydro-

gel with instability is compared with the presented constitutive law, which is presented in Fig 6.10

along with the contribution of each network. As it can be seen in this figure, the network one has

significant softenning after necking initiation and the interaction network grow to cancel its effect.

In each sets of experiments, one loading and one unloading is used to find the material parameters.

The parameters for all experimental data are derived and summarized in Table 6.1.

115



Figure 6.8. Comparison of the nominal stress-stretch curves of the model and the experiment for
the uniaxial tensile experiment [3].

6.9 Numerical Simulations

In order to further assess the proposed model for constitutive behavior of DN hydrogels, the neck-

ing phenomenon is modeled using the finite element method. A 1×1 mm2 specimen is considered

in the plane stress condition, and due to the symmetry, only one quarter of the specimen is mod-

eled and symmetrical boundary conditions are employed. The uni-axial tension test is performed

by prescribing displacement on the right edge of the specimen. The geometry and boundary condi-

tions are presented in Fig. 6.11. In order to trigger the localization, the length of the left edge has

been chosen to be slightly smaller than the right edge, lleft = (1− β) lright, and it will be shown

that by choosing small value for this parameter, the results are independent of the chosen value

of this parameter. However, it should be noted that as the onset of necking in the finite element

simulation is a bifurcation point, and the necking could be captured even by β = 0 and choosing

specific load step size before the bifurcation point.

It should be highlighted that due to the softening of the DN gel, the boundary value problem

losses ellipticity and becomes ill-posed, and a regularization method should be utilized [140, 141,

142]. However, the softening has not been regularized in this simulation. In order to demonstrate

one of the consequences of loss of ellipticity, the mesh dependence, two types of meshes, namely
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Table 6.1. Material parameters of the constitutive model fitted to the tensile test performed on a
different set of hydrogels data.

Experiment N1kBT r0 ξ p1
c N12kBT p12

c N2kBT n2

[3] 29.5 11.5 0.999 0.195 146.6 0 6.9 236

[4] 9.66 5.5 0.999 0.27 23.35 0.01 2.21 260

[5] 190.5 15 0.997 0.33 1435 0.015 120.4 50

Figure 6.9. Comparison of the nominal stress-stretch curves of the model and the experiment for
the uniaxial tensile experiment [4].

aligned and unaligned, with two levels of refinements are utilized, which are shown in Fig. 6.12.

4-noded quadrilateral elements with full integration are used in this study.

According to [143], the propagating necking could be considered as a first order phase transi-

tion, and the transition stress could be calculated according to the Maxwell’s rule. The experimen-

tal and simulated stress-stretch curves with β = 1e− 3, together with the calculated Maxwell’s

line are depicted in Fig. 6.13 for various meshes. It can be seen that the mesh dependence and

oscillations in the necking propagation stage of the finite element simulation are more pronounced

in the case of aligned meshes. In this case, each oscillation corresponds to localization of one
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(a) Pre-necking (b) Necking

(c) Contribution of each sub-network

Figure 6.10. The model prediction for pre-necking and full response of the material along with
contribution of each network in total response of [5].

column of meshes, and each interval is a scaled version of constitutive behavior from the peak

to the point where the stress reaches the peak again in the re-hardening. Therefore, the number

of oscillations is equal to the number of columns of elements. It should be highlighted that the

same results and conclusions are presented in [144] for modeling of the Lüders band, which is a

propagating localization in metals, very similar to the necking of the hydrogels. The influence of β

on the response of the necking for one of the aligned meshes is presented in Fig. 6.14. Obviously,

the results are independent of the chosen value for beta.

In the case of unaligned meshes, the simulations and experimental results are in good agree-

ment; and the yield stress and strain, transition stress and the hardening stage are predicted with

good accuracy in the simulations. The three distinct deformation stages, namely the pre-necking,
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1-β 1.0

1.0

Figure 6.11. The finite element simulation of the necking of DN hydrogels; geometry and boundary
conditions.

(a)

(b)

(c)

(d)

Figure 6.12. The finite element discretization of the necking of DN hydrogels; a) Aligned 2x2, b)
Aligned 4x4, c) Unaligned coarse, d)Unaligned fine.
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(a) Aligned meshes (b) Unaligned Meshes

Figure 6.13. The Necking of DN hydrogels: A comparison of stress-stretch curves between the
experimental results and the finite element simulation.

Figure 6.14. The finite element simulation of the necking of DN hydrogels; effect of β, i.e. imper-
fection size, on the response.
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λ=2.5 λ=3.0 λ=4.0 λ=5.0λ=2.3

Figure 6.15. The finite element simulation of the necking of DN hydrogels; various stages of
necking.

necking and hardening could be distinguished in this case. In the pre-necking stage (λ < 2.4),

the deformation is homogeneous and no necking has occurred. After reaching the yield stress, the

stress has a sudden drop following by a plateau (2.4 ≤ λ < 4.4), which demonstrate the necking

stage. In this stage, the necking initiates from the left edge of the specimen and propagates to the

right, and the stress level remains approximately constant. Finally, after the necking has propa-

gated through the whole specimen, the deformation becomes homogeneous again (λ > 4.4) and

the stress will be increasing. The aforementioned stages are shown in Fig. 6.15.

6.10 Conclusion

In this work, a micro-mechanical model based on the concept of network decomposition is devel-

oped to describe the constitutive behavior of DN gels in large deformations. In this model, the

DN gel is considered as an assembly of the first and second networks, which interacts with each

other at large deformations. The first network and the interaction mode are derived by advanc-

ing the previously developed network evolution model of carbon black filled rubber. Permanent

damage is considered for these network, to describe the stress softening, which is a consequence

of two simultaneous procedures, (i) debonding of chains, and (ii) partial disentanglement of the

second network chains from first network fragments. The full network model is used for the sec-

ond network, to achieve hyper-elastic behavior up to very large stretches. Upon integration of the

network models in all spatial directions and summing the contribution of the two networks, a 3D
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representation of the polymer matrix is obtained. The performance of the model is illustrated by

comparing its results with a set of experimental data, specifically selected to reveal the softening

in the material. The results of the proposed model show a good agreement with the experimental

data. In addition to the simplicity of the proposed model, its performance makes it a suitable option

for commercial and industrial applications.
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Derivation of Sn and Cn

In this section, necessary equations for evaluating Sn and Cn are given. The free energy of the DN

gel is expressed as

ΨM = Ψ1N + Ψ12N + Ψ2N =
∑
j=1,12

ΨjN + Ψ2N

=
∑
j=1,12

[
k∑
i=1

ωi

[
NjΦ

(
λdimax

) ∫ nmaxj

nminj

(
λ
di
max

) P (n)ψc1
(
n, λdi

)
dn

]]

+N2KT
k∑
i=1

ωiψc2
(
n2, λ

di
)

(6..1)

Where the first summation is used to describe the behavior of the networks 1 and 12, as their

governing equations are similar, with only minor differences in definition of some parameter. In

order to calculate Sn and Cn, we have

SnD ⊗D = 2
∂ΨM

∂C̄

=
∑
j=1,12

[
2

k∑
i=1

ωi

[
NjΦ

(
λdimax

) ∫ nmaxj

nminj

(
λ
di
max

) P (n)
∂ψc1

(
n, λdi

)
∂C̄

dn

]]

+ 2N2KT
k∑
i=1

ωi
∂ψc2

(
n2, λ

di
)

∂C̄

(6..2)
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CnD ⊗D ⊗D ⊗D = 4
d2ΨM

dC̄2

=
∑
j=1,12

{
4Nj

k∑
i=1

ωi

[
Φ
(
λdimax

) ∫ nmaxj

nminj

(
λ
di
max

) P (n)
∂2ψc1

(
n, λdi

)
∂C̄

2 dn

+
∂Φ
(
λdimax

)
∂C̄

dλdimax
dλdi

∫ nmaxj

nminj

(
λ
di
max

) P (n)
∂ψc1

(
n, λdi

)
∂C̄

dn

−Φ
(
λdimax

) ∂nminj (λdimax)
∂C̄

dλdimax
dλdi

P
(
nminj

(
λdimax

)) ∂ψc1 (nminj (λdimax) , λdi)
∂C̄

]}

+ 4υpN2KT

k∑
i=1

ωi
∂2ψc2

(
n2, λ

di
)

∂C̄
2 (6..3)

The derivatives used in the above equations, could be calculated as follows

∂ψc1 (n, λ)

∂C̄
= KT

(
1

2λ
R̄β̂

)
D ⊗D (6..4)

∂ψc2 (n, λ)

∂C̄
= KT

(√
n2

2λ
β

)
D ⊗D (6..5)

∂2ψc1 (n, λ)

∂C̄
2 = KT

(
1

2

(
1

λ

∂β̂

∂C
− 1

2λ3
β̂

))
D ⊗D ⊗D ⊗D (6..6)

∂2ψc2 (n, λ)

∂C̄
2 = KT

(
1

2

(
1

λ

∂β

∂C
− 1

2λ3
β

))
D ⊗D ⊗D ⊗D (6..7)

∂β̂

∂C̄
=

R̄

2nλ

(
2tn

β
+

(
1− 1 + t2

n

)
∂β

∂t

)
D ⊗D (6..8)

∂β

∂C̄
=

R̄

2nλ

(
∂β

∂t

)
D ⊗D (6..9)
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∂nmin1 (λ)

∂C̄
=

R̄

2ξλ
D ⊗D (6..10)

∂nmin12 (λ)

∂C̄
=

1

ξ2
D ⊗D (6..11)

∂Φ

∂C̄
= (αj − 1 + Φ)

∂nmin (λ)

∂C̄

P
(
nminj

(
λdimax

))
nminj

(
λdimax

)∫ nmaxj
nminj

(
λ
di
max

) P (n)ndn
D ⊗D (6..12)

Thermodynamic Consistency

Since the strain energy of the gel matrix ΨM is influenced by only one internal variable, namely
d

λmax, one can rewrite ΨM as

ΨM = ΨM(C̄,ΛmaxΛmaxΛmax) = Ψ̃M(F̄,ΛmaxΛmaxΛmax) = Ψ1(C̄,ΛmaxΛmaxΛmax) + Ψ12(C̄,ΛmaxΛmaxΛmax) + Ψ2N(C̄), (6..13)

where

ΛmaxΛmaxΛmax =

{
d

λmax : d ∈ V3 ∧ |d | = 1

}
. (6..14)

The second law of thermodynamics can be reduced to the Clausius-Duhem inequality to show the

thermodynamic consistency of the model in an arbitrary direction d

∂d
λmax

ΨM ·

(
˙d

λmax

)
≤ 0 ∀ d . (6..15)

The maximum stretch remains constant during unloading and reloading. Therefore,
˙d

λmax = 0 in

unloading-reloading while
˙D

λmax > 0 in the primary loading. Thus, satisfaction of the Clausius-
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Duhem inequality during the loading is sufficient to prove (6..15), as one can write

∂ΨM

∂
d

λmax

≤ 0 ∀ d (6..16)

With respect to (6) and (8), equation (6..15) yields

∂ΨM

∂
d

λmax

=
∂

d

Ψ1

∂
d

λmax

+
∂

d

Ψ12

∂
d

λmax

≤ 0 ∀ d . (6..17)

Without losing generality, (6..17) can be proved for an arbitrary direction d of primary loading

of first or interaction network. For the sake of briefness,
d

λmax and
d

λ are replaced by x in primary

loading and in order to take the derivation of summations in the model, the summations are replaced

by their equivalent integration . Using (17), one can further obtain

∂
d

Ψi

∂
d

λmax

=
∂

d

Ψi

∂x

= vpNi

dΦi (x)

dx

∫
Din(x)

ψc(n, x)P i
n(n)dn− dnimin (x)

dx
Φi (x)ψc(n

i
min (x) , x)P i

n(nimin (x))


(6..18)

where n1
min (x) = 1

ξ
xv
− 1

3
p r̄0, dn

1
min(x)

dx
= 1

ξ
v
− 1

3
p r̄0, n2

min (x) = 1
ξ
x2v

− 1
3

p , dn
1
min(x)

dx
= 2

ξ
v
− 1

3
p x and

dΦi (x)

dx
=
Ai
ξ
v
− 1

3
p P i

n(nimin (x))nimin (x)
αi − 1 + Φi(x)∫
Din(x)

n P i
n(n)dn

. (6..19)

In Eq. (6..19), A1 = r̄i0 and A2 = 2x. By substituting (6..19) in (6..18), one can obtain
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∂
d

Ψi

∂x
= Ni

Ai
ξ
v

2
3
p P

i
n(nimin (x))nimin (x)
αi − 1 + Φi(x)∫
Din(x)

n P i
n(n)dn

∫
Din(x)

ψc(n, x)P i
n(n)dn− Φi (x)ψc(n

i
min (x) , x)

 ≤ 0 (6..20)

As α ≤ 1,N1
Ai
ξ
v

2
3
p P i

n(nmin (x)) > 0, and Φ(x) > 0, (6..20) holds if only we have the following

inequality

nimin (x)∫
Din(x)

n P i
n(n)dn

∫
Din(x)

ψc(n, x)P i
n(n)dn− ψc(nimin (x) , x) ≤ 0 (6..21)

(6..21) can be rewritten as

nimin (x)

∫
Din(x)

ψc(n, x)P i
n(n)dn− ψc(nimin (x) , x)

∫
Din(x)

n P i
n(n)dn ≤ 0 (6..22)

As nimin (x) and ψc(nimin (x) , x) are not functions of n, they can be moved inside the summation,

thus

∫
Din(x)

P i
n(n)

[
nimin (x)ψc(n, x)− nψc(nimin (x) , x)

]
≤ 0 (6..23)

As nimin (x) ≤ n and the strain energy of the shortest chain is always higher than the energy

of the rest of the chains (ψc(n, x)� ψc(n
i
min (x) , x))), one can conclude nimin (x)ψc(n, x) −

ψc(n
i
min (x) , x)n ≤ 0 for all n ∈ Di

n(x). While the bracket in the inequality (6..23) is less

than zero for all chain lengths (n), the proposed model holds the condition of the thermodynamic

consistency.
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CHAPTER 7

SUMMARY AND FUTURE WORKS

The main objectives of this study were to develop a constitutive model for cross-linked elastomers

in large deformations. In this chapter, the dissertation is briefly summarized for each section. In

the first part of this research, we focused on the derivation of a theory of polymer physics with

adjustable accuracy and computational cost. In the following part, the developed theories are used

to propose constitutive models in a modular platform basis to predict the complex behavior of

cross-linked elastomers.

7.1 General Remarks

• In chapter 3, new accurate approximation families of the Non-Gaussian PDF, entropic force,

and strain energy of a single chain are subsequently developed to describe the mechanics of

a polymer chain. To date, most of the micro-mechanical non-Gaussian constitutive models

are often developed using the KG distribution function, which is derived from the first order

approximation of the complex Rayleigh’s exact Fourier integral distribution. However, KG

function is shown to be only relevant for long chains and becomes extremely inaccurate for

the chains with less than 40 segments. The proposed approximations of Non-Gaussian PDF,

strain energy and entropic force with similar levels of complexity are at least 10 times more

accurate than KG approximations and thus are an excellent alternative option to be used in

micro-mechanical constitutive models.

• In chapter 4, a novel approach is developed that can provide a family of approximation
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functions for ILF with different degrees of accuracy. A simple procedure is presented, which

can take current approximation functions with an asymptotic behavior and enhance them by

addition of a power series of their induced error. The total error is thus correlated with

number of terms in the power series. We further proposed different approaches to reduce

the terms of the power series and increase the accuracy, the proposed approach is applied

to four different classes of ILF approximations and shows significant improvements. The

accuracy/complexity trade-off for the family of ILF approximations generated by the pro-

posed approach is compared against those of other approaches to show the superiority of the

proposed model. The level of error in this method can reach to a value as low as 0.02%.

• In chapter 5, a micro-mechanical model is developed to characterize the constitutive be-

havior of DN elastomers in quasi-static large deformations. This module of the platform is

focused on describing the non-linear behavior and permanent damage in elastomers. The

main source of the damage in the material is assumed to be an irreversible chain detachment

and breakage of the chains in the first network. The proposed model enables us to describe

the damage and the way it influences the micro-structure of the material. The model is vali-

dated with uni-axial loading and unloading experiments of the DN elastomers. The proposed

model contains a few material constants and shows a good agreement with cyclic uni-axial

test data.

• In chapter 6, a micro-mechanical model based on the concept of modular platform is de-

veloped to describe the constitutive behavior of DN elastomers with necking instability. In

this platform, the model is considered as an assembly of the three different networks. The

first network and the interaction mode are derived by advancing the previously developed

network evolution model of carbon black filled rubber. The hyper-elastic full network model

is utilized for the second network. The matrix behavior is divided into three parts including

– Pre-necking - The first network is dominant in the response of the gel at the this stage.

– Necking - The breakage of the first network to smaller network fractions (clusters)
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induces the stress softening observed at this stage. The disentanglement of the second

network chains from broken first network chains is considered as the main contributor

to the response of gel at the necking stage.

– Hardening - Limiting stretch of the long chains in second network is the main reason

of the hardening in large deformations. The contribution of clusters decreases during

the necking as the second network starts hardening.

The numerical results of the proposed model are validated and compared by uni-axial cyclic

tensile experimental data of DN gels. Finally, a finite-element implementation of the pro-

posed model is presented to simulate the initiation and propagation of the necking instability.

7.2 Potential Future Research

In line with this study, several new questions outside the scope of this dissertation may arise. Some

of these questions that require further investigations and can be a starting point for future studies

are listed below:

• Fatigue lifetime predication of the elastomeric materials is well studied in recent years, in

which the reported mechanical behavior during cyclic loading shows a significant damage

accumulation in the material. However, there is still the gap in the literature regarding the

modelling of material stress softening during the cyclic test.

• Some of newly developed cross-linked elastomeric materials have the ability to heal without

any external intervention. There are a few studies that tried to predict damaging and healing

process of these materials. However, our understanding of the physical nature of the healing

over time has still remained inconclusive.

• The experimental results show that the material behavior may differ from sample to sample.

Current practice in the constitutive modeling of the material is to consider the average re-

sponse as a target to predict. However, the uncertainty in the response of the material can
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cause significant loss in the sensitive applications. So, the addition of the uncertainty feature

to the proposed framework can predict the behavior of the material with different levels of

desired uncertainty.

• Micro-mechanical modeling of the time-dependent behavior of elastomers is still challeng-

ing due to the extreme nonlinear nature of their response. In order to understand the nature

of this time-dependent behavior, the behavior of a single isolated polymer chain can be in-

vestigated. Several advancements on numerical molecular modelling are made in recent

years which can help us understand and validate the micro-structural behavior of the ma-

terial. This understanding can be integrated by developed frameworks to predict nonlinear

time dependent behavior of the material.

• Several new elastomeric materials are developed in recent years, in which the behavior of

the material is improved by adding Nano-filler or interpenetrating multiple networks in the

matrix. The developed framework can be enhanced to be used in the design of a new material.

By understanding the effects of each component in the final response of the material, one can

optimize the behavior of the material based on the required specifications.
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